Series/1

SC34-0643-0

Event Driven Executive
Language Reference

Version 5.0

(T (T [
Library Guide and - Installation and Operator Commands
Common Index System Generation and
Guide Utilities Reference
SC34-0645 SC34-0646 SC34-0644
G y @ J € 2,
N\ a8 M
= — rLanguage Communications i) r Messages and
Reference Guide Codes
- $C34-0643 SC34-0638 $C34-0636
h) L y y,
S : . N (: W p
Operation Guide Event Driven Reference
Language Cards
Programming Guide
$C34-0642 SC34-0637 SBOF-1625
_ = 0* D VI J
P) R, 525 4] (—2)
Problem Customization Internal
Determination Guide Design
Guide
b $C34-0639 $C34-0635 LY34-0354
L C y € y € %,

b/
|
|

Series/1

SC34-0643-0

Event Driven Executive
Language Reference

Version 5.0

Language
Reference

$C34-0643

First Edition (December 1984)
Use this publication only for the purpose stated in the Preface.

Changes are made periodically to the information herein; any such changes will be
reported in subsequent revisions or Technical Newsletters.

This material may contain reference to, or information about, IBM products:
{machines and programs), programming, or services that are not announced in your
country. Such references or information must not be construed to mean that IBM
intends to announce such IBM products, programming, or services in your country.

Publications are not stocked at the address given below. Requests for copies of IBM
publications should be made to your IBM representative or the IBM branch office
serving your locality.

This publication could contain technical inaccuracies or typographical errors. A form
for readers’ comments is provided at the back of this publication. If the form has
been removed, address your comments to IBM Corporation, Information
Development, 3406, P. O. Box 1328, Boca Raton, Florida 33432. IBM may use or
distribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use the
information you supply.

© Copyright International Business Machines Corporation 1984 -

C

vy

Summary of Changes For Version 5.0

o,

The following changes have been made to this document in addition to editorial updates.

Control of 4975-01A ASCII Printer operations has been described in the PRINTEXT
section of this manual. For that information refer to ‘“‘Request Special Terminal Function
(4975-01A)” on page LR-334.

A program has been included which enables you to change address(s) for the image and/or
control stores of the 4980 Display Station from an application program. A description can
be found under “$RAMSEC - Replace Terminal Control Block (4980)” on page LR-594.

A new operand has been added to the description of the instruction “BSCOPEN - Prepare a
BSC line for use” on page LR-41. This operand is for the X.21 Circuit Switched Network.

Information has been included on how to code a disk immediate read in the READ section
of the manual. This information may be found under “Coding Example - Disk Immediate
Read” on page LR-381.

Descriptions of the following new instructions or statements have been added to Chapter 2:

— “MECB - Create a list of events” on page LR-269. This statement is used to generate
an ECB listfor the WAITM instruction.

— A new TERMCTRL statement for the 4980 Display Terminal. This description is found
under “4980 Display”’ on page LR-470.

Summary of Changes For Version 5.0 iii

Summary of Changes For Version 5.0

— A new TERMCTRL statement for the 5219 Printer. This description is found under
“5219 Printer” on page LR-473.

— “WAITM - Wait for one or more events in a list” on page LR-523. This instruction
allows a program to wait for one or more events in a list.

iv 8C34-0643

0

About This Book

This book contains details and examples of how to code the instructions and statements you can
use to write Event Driven Language application programs.

Cr Audience

. This book is intended for application programmers who write and maintain programs using the
Event Driven Language. You can learn the Event Driven Language by using the Event Driven
Executive Language Programming Guide.

How This Book Is Organized

This book contains two chapters and six appendixes:

o Chapter 1. Introduction describes how instructions and statements are presented in this
book. The chapter also describes the syntax rules for the language, defines key terms used
throughout the book, and provides information about a number of special features available
with the Event Driven Language.

o Chapter 2. Instruction and Statement Descriptions contains a detailed description of each
EDL instruction and statement and shows the syntax of the instruction or statement, the
required operands, and the default values. The instructions and statements are arranged in
alphabetical order.

About This Book V

About This Book

How This Book Is Organized (continued)

o Appendix A. Formatted Screen Subroutines contains a description of each of the formatted
screen subroutines ($IMAGE routines) along with its syntax, required operands, and default
values.

o Appendix B. Programs Communication Through Virtual Terminals contains a description of
the virtual terminal facility that allows application programs to communicate as if they were
EDX terminals.

o Appendix C. Communicating with Programs in Other Partitions (Cross-Partition Services)
contains examples that show how programs can share data and communicate with other
programs across partitions.

o Appendix D. EDX Programs, Subroutines, and Inline Code lists the syntax, options and
default values for the Indexed Access Method, Multiple Terminal Manager, and Formatted
Screen subroutines. In addition, the appendix describes a data management program and
subroutines, a program for using partitioned data sets, and a copy code routine for
identifying device types.

o Appendix E. Creating, Storing, and Retrieving Program Messages describes how to build and
use formatted program messages in your EDL application programs.

o Appendix F. Conversion Table contains a table that shows the hexadecimal, binary,
EBCDIC, and ASCII equivalents of decimal values. The table also shows transmission
codes for communications devices.

Aids in Using This Book

vi

SC34-0643

Several aids are provided to assist you in using this book:
¢ An Instructions and Statements Chart that groups EDL instructions and statements by the
common tasks they perform. The chart also lists the statements used during system

generation.

e A Glossary that defines terms and acronyms used in this book and in other EDX library
publications.

« An Index of topics covered in this book.

0 A Guide to the Library

Refer to the Library Guide and Common Index for information on the design and structure of the
Event Driven Executive Library and for a bibliography of related publications.

Contacting IBM about Problems

You can inform IBM of any inaccuracies or problems you find when using this book by
completing and mailing the Reader’s Comment Form provided in the back of the book.

If you have a problem with the Series/1 Event Driven Executive services, you should fill out an
authorized program analysis report (APAR) form as described in the IBM Series/1 Software
Service Guide, GC34-0099.

(')

About This Book Vil

Vi

+8C34-0643

Contents

Chapter 1. Introduction LR-1

The Event Driven Language LR-1

The Format of EDL Instructions and Statements LR-2
Sample EDL Instruction LR-5

Common Terms LR-7

Syntax Rules LR-7

Software Register Usage LR-10

Using The Parameter Naming Operands (Px=) LR-12
Rules to Remember LR-15

Chapter 2. Instruction and Statement Descriptions LR-17
Instructions and Statements Chart LR-17

$ID - Identify system release level LR-20

ADD - Add integer values LR-22

ADDV - Add two groups of numbers (vectors) LR-25

ALIGN - Align instruction or data to a specified boundary LR-29
AND - Compare the binary values of two data strings LR-30
ATTACH - Start a task LR-32

ATTNLIST - Enter attention-interrupt-handling routine LR-34
BSCCLOSE - Free a BSC line for use by other tasks L.LR-38
BSCIOCB - Specify BSC line address and buffers LR-39
BSCOPEN - Prepare a BSC line for use LR-41

BSCREAD - Read data from a BSC line LR-44

BSCWRITE - Write data to a BSC line LR-48

BUFFER - Define a storage area LR-55

CACLOSE - Close a Channel Attach port LR-59

CAIOCSB - Create a Channel Attach port I/O control block LR-61
CALL - Call a subroutine LR-62

CALLFORT - Call a FORTRAN subroutine or program LR-65

Contents

ix

Contents

X

SC34-0643

CAOPEN - Open a Channel Attach port LR-67
CAPRINT - Print Channel Attach trace data LR-69
CAREAD - Read from a Channel Attach port LR-71
CASTART - Start Channel Attach device LR-74
CASTOP - Stop a Channel Attach device LR-76
CATRACE - Control Channel Attach tracing LR-78
CAWRITE - Write to a Channel Attach port LR-80
COMP - Define location of message text LR-82
CONCAT - Concatenate two character strings LR-84
CONTROL - Perform tape operations LR-86

CONVTB - Convert numeric string to EBCDIC LR-93
CONVTD - Convert EBCDIC string to numeric string LR-97
COPY - Copy source code into your source program LR-102
CSECT - Identify object module segments LR-106
DATA/DC - Define data LR-108

DCB - Create a device control block LR-112

DEFINEQ - Define a queue LR-115

DEQ - Release a resource for use LR-119

DEQT - Release a terminal for use LR-120

DETACH - Deactivate a task LR-122

DIVIDE - Divide integer values LR-124

DO - Perform a program loop LR-127

DSCB - Create a data set control block LR-134

ECB - Create an event control block LR-136

EJECT - Continue compiler listing on a new page LR-138
ELSE - Specify action for a false condition LR-139

END - Signal end of source statements L.R-140
ENDATTN - End attention-interrupt-handling routine LR-141
ENDDO - End a program loop LR-142

ENDIF - End an IF-ELSE structure LR-143

ENDPROG - End a program LR-144

ENDTASK - End a task LR-146

ENQ - Gain exclusive control of a resource other than a terminal LR-148

ENQT - Gain exclusive control of a terminal LR-150
ENTRY - Define a program entry point LR-153

EOR - Compare the binary values of two data strings LR-155
EQU - Assign a value to a label LR-158

ERASE - Erase portions of a display screen LR-162
EXCLOSE - Close an EXIO device LR-168

EXIO - Execute I/O LR-169

EXOPEN - Open an EXIO device LR-173

EXTRN - Resolve external reference symbols LR-175
FADD - Add floating-point values LR-177

FDIVD - Divide floating-point values LR-180

FIND - Locate a character LR-183

FINDNOT - Locate the first different character LR-185
FIRSTQ - Acquire the first queue entry in a chain LR-187
FMULT - Multiply floating-point values LR-189

FORMAT - Format data for display or storage LR-192
FPCONY - Convert to or from floating-point LR-203
FREESTG - Free mapped and unmapped storage areas LR-206
FSUB - Subtract floating-point values LR-208
GETEDIT - Collect and store data LR-211
GETSTG - Obtain mapped and unmapped storage areas LR-218
GETTIME - Get date and time LR-220
GETVALUE - Read a value entered at a terminal L.R-222
GIN - Enter unscaled cursor coordinates LR-230
GOTO - Go to a specified instruction LR-231
HASHVAL - Condense a character string LR-233
IDCB - Create an immediate device control block LR-235
IF - Test if a condition is true or false LR-237
INTIME - Provide interval timing LR-244
IOCB - Define terminal characteristics LR-246
IODEF - Assign a symbolic name to a sensor-based I/0 device LR-250
IODEF (Analog Input) LR-251
IODEF (Analog Output) LR-252
IODEF (Digital Input) LR-253
IODEF (Digital Output) LR-254
IODEF (Process Interrupt) LR-256
IOR - Compare the binary values of two data strings LR-259
LASTQ - Acquire the last queue entry in a chain LR-262
LOAD - Load a Program LR-263
MECB - Create a list of events LR-269
MESSAGE - Retrieve a program message LR-271
MOVE - Move data LR-276
MOVEA - Move an address LR-281
MULTIPLY - Multiply integer values LR-282
NETCTL - Controlling SNA message exchange LR-285
NETGET - Receive messages from the SNA host LR-290
NETHOST - Build an SNA host ID data list LR-294
NETINIT - Establish an SNA session LR-296
NETPUT - Send messages to the SNA host LR-302
NETTERM - End an SNA session LR-306
NEXTQ - Add entries to a queue LR-308
NOTE - Store next-record pointer LR-311
PLOTGIN - Enter scaled cursor coordinates LR-313
POINT - Set next-record pointer LR-315
POST - Signal the occurrence of an event LR-317
PRINDATE - Display the date on a terminal LR-319
PRINT - Control printing of a compiler listing LR-321
PRINTEXT - Display a message on a terminal LR-324
Request Special Terminal Function (4975-01A) LR-334
Code Extension Sequences LLR-334
PRINTIME - Display the time on a terminal LR-344
PRINTNUM - Display a number on a terminal LR-346
PROGRAM - Define your program LR-351

Contents

Xi

Contents

xii SC34-0643

PROGSTOP - Stop program execution LR-359
PUTEDIT - Collect and store data from a program LR-361
QCB - Create a queue control block LR-367
QUESTION - Ask operator for input LR-369
RDCURSOR - Store static screen cursor position L.R-374
READ - Read records from a data set L.R-376
READTEXT - Read text entered at a terminal LR-385
RESET - Reset an event or process interrupt LR-399
RETURN - Return to the calling program LR-401
SBIO - Specify a sensor-based 1/0 operation LR-402

SBIO Analog Input LLR-403

SBIO (Analog Output) LR-405

SBIO (Digital Input) LR-407

SBIO (Digital Output) LR-410
SCREEN - Convert graphic coordinates to a text string LR-413
SETBIT - Set the value of a bit LR-414
SHIFTL - Shift data to the left LR-416
SHIFTR - Shift data to the right LR-418
SPACE - Insert blank lines in a compiler listing LR-420
SPECPIRT - Return from Process Interrupt Routine LR-421
SQRT - Find the square root LR-422
STATUS - Set fields to check host status data set LR-423
STIMER - Set a system timer LR-425
STORBLK - Define mapped and unmapped storage areas LR-430
SUBROUT - Define a subroutine LR-433
SUBTRACT - Subtract integer values LR-435
SWAP - Gain access to an unmapped storage area L.R-437
TASK - Define a program task L.R-440
TCBGET - Get task control block data L.R-443
TCBPUT - Store data in a task control block LR-445
TERMCTRL - Request special terminal functions LR-446

TERMCTRL Functions Chart LR-446

2741 Communications Terminal LR-449

3101 Display Terminal (Block Mode) LR-450

4013 Graphics Terminal LR-453

4973 Printer LR-454

4974 Printer LR-456

4975 Printer LR-459

4978 Display LR-464

4979 Display LLR-468

4980 Display LR-470

5219 Printer LR-473

5224 or 5225 printer LR-478

ACCA Attached Devices LR-483

General Purpose Interface Bus LR-485

Series/1-to-Series/1 LR-489

Teletypewriter Attached Devices LR-492

Virtual Terminal LR-493

TEXT - Define a text message or text buffer LR-497

TITLE - Place a title on a compiler listing LR-500

TP Instruction - Perform Host Communications Facility Operations LR-501
TP (CLOSE) - End a transfer operation LR-502
TP (FETCH) - Test for a record in the system-status data set LR-503
TP (OPENIN) - Prepare to read data from a host data set LR-504
TP (OPENOUT) - Prepare to transfer data to a host data set LR-505
TP (READ) - Read a record from the host LR-506
TP (RELEASE) - Delete a record in the system-status data set LR-507
TP (SET) - Write a record in the system-status data set LR-508
TP (SUBMIT) - Submit a job to the host LR-509
TP (TIMEDATE) - Get time and date from the host LR-511
TP (WRITE) - Write a record to the host LR-512

USER - Use assembler code in an EDL program LR-516

WAIT - Wait for an event to occur LR-520

WAITM - Wait for one or more events in a list LR-523

WHERES - Locate an executing program LR-525

WRITE - Write records to a data set LR-528

WXTRN - Resolve weak external reference symbols LR- 535

XYPLOT - Draw a curve LR-537

YTPLOT - Draw a curve LR-538

Appendix A. Formatted Screen Subroutines | R-539

$IMDATA Subroutine LR-541
$IMDEFN Subroutine LR-543
$IMOPEN Subroutine LR-545
$IMPROT Subroutine LR-547
$PACK Subroutine LR-549

$UNPACK Subroutine LR-551

Appendix B. Program Communication Through Virtual Terminals | R-553
Requirements for Defining Virtual Terminals LR-553
Considerations for Coding a Virtual Terminal Program LR-554
Virtual Terminal Communication LR-555
Sample Virtual Terminal Programs LR-556

Appendix C. Communicating with Programs in Other Partitions (Cross-Partition Services) LR-559
Transferring Data Across Partitions LR-560
Starting a Task in Another Partition (ATTACH) LR-566
Synchronizing Tasks and the Use of Resources in Different Partitions LR-568

Appendix D. EDX Programs, Subroutines, and Inline Code | R-573
EDX Programs LR-573
$DISKUTS3 - Manage Data from an Application Program LR-574
$PDS - Use Partitioned Data Sets LR-581
$RAMSEC - Replace Terminal Control Block (4980) LR-594
$SUBMITP - Submit a Job for Execution LR-597
$USRLOG - Log Specific Errors From a Program IL.LR-599

Contents Xiii

Contents

EDX Subroutines LR-601
DSOPEN - Open a data set LR-602
Formatted Screen Subroutines (Syntax Only) LR-607
Indexed Access Method (Syntax Only) LR-608
Multiple Terminal Manager (Syntax Only) LR-609
SETEOD - Set the logical end-of-file on disk LR-611
UPDTAPE - Add Records to a Tape File LR-613
Inline Code (EXTRACT) LR-614

Appendix E. Creating, Storing, and Retrieving Program Messages LR-615
Creating a Data Set for Source Messages LR-616
Entering Source Messages into a Data Set LR-616
Formatting and Storing Source Messages (using $MSGUT1) LR-619
Retrieving and Printing Formatted Messages LR-619

Appendix F. Conversion Table LR-621

Glossary of Terms and Abbreviations LR-627

Index LR-637

Xiv SC34-0643

Figures

VoI AW =

. ADD Instruction Syntax LR-2

MOVE Instruction Syntax LR-13

. Function of ATTNLIST LR-37

. Required Buffers for BSCREAD and BSCWRITE LR-40
. Physical Layout of a Buffer LR-57

. Execution of Subroutines LR-64

. Layout of a Queue LR-117

. GETEDIT Overview LR-217

. Two Ways of Loading a Program LR-267

. TEXT Statement LR-499

. Calling a Series/1 Assembler Routine and Returning LR-517
. Virtual Terminal Return Codes LR-555

. Request Block Example LR-574

. Information Returned from DSOPEN LR-606

Figures

Xv

/ /~\~

\‘“‘L »};

xvi SC34-0643

Chapter 1. Introduction

The Event Driven Language (EDL) is a programming language designed for use on the Series/1
computer. The language enables you to write programs that perform specific tasks. This
chapter describes how the various instructions and statements that make up the Event Driven
Language are presented in this book. The chapter also includes:

« Definitions of terms commonly used throughout the book
o Alist of syntax rules you need to know to code EDL instructions and statements

« A description of how to use parameter naming operands and the two software registers
available to your program.

Note: For a detailed description of how to write and structure EDL programs, see the Event
Driven Executive Language Programming Guide.

The Event Driven Language

The Event Driven Language is composed of instructions and statements. Instructions allow you
to perform specific operations such as adding or subtracting data or printing a message on a
terminal. Instructions generate object code that the system can process and execute.
Statements enable you to define the parts of a program, define data and system resources, and
format compiled output, but not all EDL statements generate object code. The system typically
uses the code that is generated by statements to set up storage locations.

Because statements do not execute in the same manner as instructions, you should not place
statements between the instructions in your programs. The exception to this rule is the four

Chapter 1. Introduction LR-1

Introduction

The Event Driven Language (continued)

statements used to control the formatting of compiler listings: PRINT, SPACE, TITLE, and
EJECT. You can code these statements between program instructions because the system
ignores them after the compile operation.

The Format of EDL Instructions and Statements

LR-2

SC34-0643

EDL instructions and statements have the general format:

label operation operands

where these terms have the following meanings:

label The symbolic name you assign to an instruction or statement. You can use this
name in your program to refer to that specific instruction or statement. In most
cases, a label is optional.

operation The name of the instruction or statement you are coding.

operands These constitute the body of the instruction or statement. An operand can
represent data that is required to complete an operation, or it can define how an
operation is to be performed.

The Event Driven Language has two types of operands: positional operands and keyword
operands. Positional operands must be coded in the position shown in the operands field for the
instruction or statement. These operands appear in lower case. Positional operands usually
require a specific value, address, or label. Keyword operands can be coded in any order
following the positional operands (if any) contained in an instruction or statement. These
operands are in the form KEYWORD=. Keyword operands typically enable you to control how
the system performs an operation.

Depending on the type of operation you are performing, you may need to code an operand with
a specific value or label. For the purposes of this book, such values or labels are generally
referred to as parameters. Figure 1 shows the syntax of the EDL ADD instruction.

label ADD opnd1,0pnd2,count, RESULT=,PREC=,
P1=,P2=,P3=

Figure 1. ADD Instruction Syntax

In the following example, operand 2 (a value of 5) is added to operand 1 (the contents in A).
The system places the result of this operation in SUM, the location specified on the keyword
operand RESULT=. ‘

O

The Format of EDL Instructions and Statements (continued)

ADD A,5,RESULT=SUM
A DATA F's’

SUM DATA F'O’

The parameter for opnd1 in the above operation is A. The parameter specified for opnd2 is 5,
and SUM is the parameter coded for the RESULT= operand.

Instruction and Statement Descriptions

This book describes each EDL instruction and statement beginning in Chapter 2. Each
description begins with an explanation of what the instruction or statement does. This
explanation is followed by a syntax box which shows the operands that make up the instruction
or statement. Positional operands are shown in the order you must code them.

Each syntax box also contains a list with the following headings:
Required: You are required to code the operand or operands listed here.

Defaults: The system will supply the data shown if you do not specify the operand or
operands listed here.

Indexable: You can use the two software registers, #1 and #2, for the operands listed here.
See “Software Register Usage” on page LR-10 for further information on the
software registers.

All operands that make up an instruction or statement are defined in a list which follows the
syntax box. The operands are listed in the order in which they appear in the syntax box. The
operand description details the use of the operand and any restrictions that may apply to its use.

Special Considerations

Syntax Examples

Coding Examples

Certain IBM devices may require you to code an EDL instruction in a special way. Other
devices offer additional features which expand the use of an instruction. Special considerations
that can affect the way you use an instruction are described after the operand list.

Most instructions and statements in this book contain syntax examples. Syntax examples show
the various ways you could code an instruction or statement. They generally consist of a single
line of code. ’

Many instructions and statements in this book also contain one or more coding examples. These
examples consist of entire programs or pieces of programs. Coding examples illustrate how an
instruction or statement works in relation to other instructions and statements in the language.

Chapter 1. Introduction ~ LR-3

Introductioh

The Format of EDL Instructions and Statements (continued) p
J

Return or Post Codes

LR-4

SC34-0643

If an instruction issues return or post codes, these are listed after the examples. Return and post
-codes are issued as follows:

Return codes

Post codes

Issued as a result of executing an EDL instruction to indicate whether the
operation was a success or a failure. Return codes are returned in the first
word of the task control block of the program or task issuing the instruction,
unless otherwise stated. The label of the task control block (TCB) is the
taskname (label) you specify on the PROGRAM or TASK statement. You
can examine the return code from an instruction by referring to the taskname
in your program or by using the TCBGET instruction.

The following example shows several ways you can check the return code:

START PROGRAM BEGIN

BEGIN EQU *
READTEXT ...
IF (START,EQ,-1) ,GOTO,MESSAGE
TCBGET RC, $TCBCO
PRINTEXT 'ERROR RETURN CODE IS: '
PRINTNUM RC

MESSAGE PRINTEXT 'OPERATION IS SUCCESSFUL' (\
e

RC DATA F'o’

Issued by the system to signal the occurrence of an event. Unless otherwise

stated, post codes are returned in the first word of the event control block

(ECB) that is posted when the event occurs. You must specify the ECB to be
posted with an ECB statement.

O

The Format of EDL Instructions and Statements (continued)

Sample EDL Instruction

The following example shows how instructions and statements are presented in this book. A full
description of the MESSAGE instruction and its operands appears in Chapter 2.

MESSAGE - Retrieve a program message

The MESSAGE instruction retrieves a program message from a data set or module, and displays or prints the
message.

Syntax:

label MESSAGE msgno,COMP=,SKIP=,LINE=SPACES=,
PARMS=(parm1,...,parm8),MSGID=,
XLATE=PROTECT=,P1=

Required: msgno,COMP=
Defaults: MSGID=NO,XLATE=YES,PROTECT=NO

Indexable: none
Operand Description
msgno (positional operand)
COMP= (keyword operand)
SKIP= (keywbrd operand)
LINE= (keyword operand)

SPACES= (keyword operand)

PARMS= (keyword operand)
MSGID= (keyword operand)
XLATE= (keyword operand)

PROTECT= (keyword operand)

Pl= (parameter-naming operand)

Chapter 1. Introduction ~ LR-5

Introduction

The Format of EDL Instructions and Statements (continued)

' Syntax Example

Retrieve the first message in the disk data set that the COMP statement points to.

MsSG1 MESSAGE 1,COMP=MSGSET
PR(.)GSTOP
MSGSET COMP 'ERRS',DS1, TYPE=DSK

Coding Example

The following example uses the MESSAGE instruction to retrieve a message contained in a disk data set. The
program TASK loads a second program CALCPGRM. A WAIT instruction suspends the execution of TASK until
CALCPGRM completes. When CALCPGRM finishes, it posts the ECB at label LOADECB. The MESSAGE
instruction at label MSG1 retrieves the first message in the disk data set MSGDS1 on volume EDX002.

TASK PROGRAM START,DS= ((MSGDS1,EDX002))

LOADECB ECB

START EQU *
LOAD CALCPGRM, EVENT=LOADECB
WAIT LOADECB

MSG1 MESSAGE 1,COMP=MSGSET,SKIP=1, PARMS=A,MSGID=YES
PROGSTOP

A DATA 'CALCPGRM'

MSGSET COMP "STAT',DS1, TYPE=DSK
ENDPROG
END

Return Codes

The return codes are returned in the first word of the task control block (TCB) of the program issuing the
instruction. The label of the TCB is the label of your program or task (taskname).

Code Description

-1 Successful completion

301-316 Error while reading message from disk.

335 Disk messages not supported (MINMSG support only)

LR-6 SC34-0643

0 The Format of EDL Instructions and Statements (continued)

Common Terms

The following list contains some terms commonly used in the Language Reference, along with
their definitions:

constant
self-defining

term

variable

immediate

data

precision

Syntax Rules

A value or address that remains unchanged throughout program execution. The
number 5 is an example of an integer constant. An address in a program, such as
009E, is an example of an address constant.

A decimal, integer, or character that the computer treats as data and not as
an address or pointer to data in storage. Self-defining terms include expressions
such as C‘A’ and X‘5B’.

An area in storage, referred to by a label, that can contain any value during
program execution. In the example below, the label A refers to an area in
storage. The area contains the value 10. When the DIVIDE instruction
executes, it divides the contents of A by 5. The system places the result of the
operation in A. The variable A now contains a value of 2.

DIVIDE A,5

A DATA F'10'

Immediate data refers to the way you can use a self-defining term.

If you code a self-defining term, such as 8, for an operand in an instruction, you
are using this term as “immediate data.” Operand 2 in the following example
uses immediate data. The MULTIPLY instruction multiplies the value of B by 8.

MULTIPLY B,8

The number of words in storage needed to contain a value in an operation.

This section contains syntax rules you should be aware of when coding programs in the Event
Driven Language. These rules apply whether you are using the Event Driven Executive
Compiler (SEDXASM) or the IBM Series/ 1 Macro Assembler ($S1ASM).

+ An “alphabetic string” can contain one or more alphabetic characters (A - Z) and any of the
following special characters: $, #, or @.

« An “alphameric string” can contain one or more alphabetic or numeric characters (0 - 9).

Chapter 1. Introduction ~LR-7

Introduction

Syntax Rules (continued)

You must code all instructions, statements, and keyword operands in upper case letters (as
shown in the syntax descriptions starting in Chapter 2, “Instruction and Statement
Descriptions” on page LR-17).

When you code a keyword operand, you must also code the equal sign (=) that follows it as
shown in the following example.)

PREC=

Operands must be separated by commas. Operands also must be separated from the
operation name by one or more blanks.

An ellipsis (...) indicates that an operand may be repeated a variable (n) number of times.

A vertical bar (|) between two operands indicates that you can use one operand or the
other, but not both.

All labels must be alphameric strings of 1 to 8 characters in length. The first character of
the label must be a letter or one of the following special characters: $, #, or @.

Instruction and statement labels must begin in column 1. Operation names can begin in
column 2, but must not go beyond column 71.

To continue a line of code on another line, code any nonblank character in column 72, for
example an “X”, and begin the next line in column 16. If the continuation line contains a
blank between column 16 and column 71, the system ignores any information after that
blank. The system concatenates the data on the continuation line to the data on the
preceding line.

The number of continuation lines allowed is limited only by the maximum of 254 characters
allowed in the operands field.

You can code operands through column 71 of the line to be continued, or you can break off
the line after a comma following an operand. An example of breaking off the line before
column 71 follows:

label

e T D et B e ST L L e e e

PRINTEXT 'ANNUAL STATUS AND RECOMMENDATION REPORT', X

SPACES=20,SKIP=1

LR-8

SC34-0643

To include a comment following an-instruction in your program, separate the comment from
the operands field by at least one blank. You can reserve an entire line in the program for
comments by coding an asterisk (*) in column 1. The system ignores everything on the line
following the asterisk. '

C

a
“ s/

Syntax Rules (continued)

Avoid the use of commas within comments for any of the following instructions or
statements: DEQT, ECB, ENQT, IOCB, PROGSTOP, or QCB.

« The system interprets any label you assign a value to with the EQU statement as an address
unless you code a plus sign (4) in front of the label. The plus sign indicates that the label
represents a numeric value.

o The following labels are reserved for system use:

— All labels beginning with a $

— RO, RI, R2, R3, R4, RS, R6, R7, FRO, FR1, FR2, FR3

— #1,#2

— RETURN (except when used in the instruction to end a user subroutine)
— SETBUSY

— SUPEXIT

- SvC

0 Note: You can refer to these labels within your program in the instruction operands.

+ The maximum number of delimiters allowed in the operands field is 70. Delimiters are ()
or , or’

« To indicate an apostrophe mark within a text message, code double apostrophe marks ().
« The EDX arithmetic operators are + (plus), - (minus), * (multiply), and / (divide).

You can use the plus and minus operators to create expressions that refer to specific
addresses in your program. The expression B+2, for example, defines an address equal to
the address of B plus 2 bytes. The expression C-A defines an address equal to the address
of C minus the address of A. You can use the expressions you create with the plus and
minus operators in all EDL instructions that allow you to code a label for an operand. You
can use an expression instead of a label.

The multiply and divide operators are valid only when you use them in an arithmetic
expression that you equate with a label. You equate arithmetic expressions with labels by
using the EQU instruction. The multiply operator multiplies an address by the number of
bytes you specify. The expression B*2 multiplies the address of B by 2. The divide
operator divides an address by the number of bytes you specify. In the expression C/D, the
address of C is divided by the value of D. See the EQU statement for examples that use the
multiply and divide operators.

Chapter 1. Introduction ~ LR-9

Introduction

Syntax Rules (continued) ({*\

e
Each arithmetic expression can contain only one operator. For example, the expressions

A+B, C-1,D*4, and E/2 are all valid. If you require an expression containing more than

one operator, you can code it using multiple equate (EQU) statements. The EQU statement

equates a label with a value. To compute the address of A+B-2, for example, you could

code the following:

APB EQU A+B EQUATE APB WITH A+B
APBM2 EQU APB-2 EQUATE APBM2 WITH APB-2

An arithmetic expression normally consists of two terms separated by an operator. You
can construct an expression, however, consisting of an operator followed by a symbol. In
this case, the system assumes that the first term of the expression is 0. For example, if the
value 2 is at location A, then +A is 2, -Ais -2, *A is 0, and /A is 0.

« Operands which do not belong with an instruction are normally not flagged as errors when
compiled under $EDXASM. The erroneous operand does not generate any code and,
therefore, does not affect the execution of the instruction.

Software Register Usage

LR-10

SC34-0643

Each task in your program has access to two software registers. You can use these registers to ‘
hold data during an operation or as a means of computing addresses. You can also use the C
registers as counters. The registers are named #1 and #2. With operands that are listed as
“indexable,” you can treat the registers in the same manner as any other variable. For example,
you can code instructions in your program to set, modify, or test these registers.

N

In the example below, the MOVE instruction moves the value O into #1. The O value replaces
any existing data in #1, thereby setting the software register to 0.

MOVE #1,0 SET #1 TO ZERO

The MOVE instruction in the next example moves the contents of variable A into #2.

MOVE #2,A SET #2 TO THE CONTENTS OF A

An example of a register used as the second operand in an instruction is:

ADD AL #1

Here, the ADD instruction adds the contents of #1 to the variable A, and places the result in A.

m Software Register Usage (continued)

You may also want to place the address of a variable into a software register. You can
accomplish this by using the MOVEA instruction. For example,

MOVEA #2,BUFFER

sets register #2 to the address of the variable BUFFER1.
Indexing with the Software Registers

You can use #1 and #2 to modify addresses in your program while the program is executing.
The process is called “indexing” and #1 and #2 are referred to as “‘index registers.” In the
following example,

MOVE A, (B,#1)

the MOVE instruction moves the contents specified by (B,#1) into variable A. The system
treats the second operand of the MOVE instruction as an address because this operand is in the
form,

(parameter, #r)

where parameter is either a label or an integer and r is either a 1 or a 2. If #1 in the preceding
example contains a 5, then the data the system moves into variable A is located at the address of
B plus 5 bytes. This sum is called the “indexed address.” Note that only one of the variables in
an operand with the (parameter #r) format, either the parameter or the index register, can
C‘.‘ represent an address. The other variable must be an integer or a label preceded by a plus sign
(+) that is equated to an integer. (Use the EQU statement to equate a label with an integer.)

The following example shows how you could use an index register to find the location of data in
a buffer. The example uses a DO loop to find the value -350 in a buffer containing 1000

entries.
MOVE #1,0
DO 1000, TIMES
IF ((BUF, #1) ,EQ,-350) ,GOTO, FOUND
ADD #1,2
ENDDO
(DID NOT FIND A MATCH)
FOUND MOVE DISP,#1
PROGSTOP
BUF BUFFER 1000, WORDS

The first MOVE instruction sets the index register, #1, to 0. A DO instruction is coded to
perform the operations within the loop 1,000 times. The IF instruction checks to see if the first
word in the buffer BUF is equal to -350. If the first word is not equal to -350, the ADD
instructions adds the value 2 to #1. When the loop repeats, (BUF,#1) points to the address of

Chapter 1. Introduction ~LR-11

Introduction

Software Register Usage (continued)

BUF plus two bytes (one word). With each succeeding loop, the program increments #1, and
points to the next word in the buffer. BUF has a length of 1,000 words (2,000 bytes).

If the program finds the value -350 in the buffer, it executes the MOVE instruction at label
FOUND. The MOVE instruction saves the displacement from the start of the buffer, which is
contained in #1, at the location DISP.

Register Considerations

Because each task in a program has its own software registers, the values in #1 and #2 can vary
from task to task. The system will use whatever values are in the software registers of the task
that is executing.

If several different tasks call a subroutine, the subroutine uses the software registers belonging
to the calling task. Overlay programs, however, are independent programs with their own tasks.
They have their own registers and do not use the invoking task’s registers.

Using The Parameter Naming Operands (Px=)

Often, when you create a program, you do not know the exact data the program will use when it
executes. Normally, you can code a label with a DATA, DC or TEXT statement. In the MOVE
instruction, for example, you may not know the byte count until a previous instruction executes.
When the instruction executes, it uses whatever data is stored at the location defined by the
label. Sometimes, however, a label cannot be coded for instruction parameters.

In the following example, the number of bytes to move is dependent on the value of the variable
called NUMBER. The count parameter of the MOVE instruction does not allow use of a label.

So, multiple MOVE instructions are needed for every count parameter option. In the following

example, only two values for NUMBER exist. A separate MOVE instruction is needed for each
value. Note that this technique requires a great deal of storage.

IF (NUMBER,EQ,6)
MOVE A,B, (6,bytes)
ELSE
IF (NUMBER,EQ, 10)
MOVE A,B, (10,bytes)

ENDIF
ENDIF
A TEXT LENGTH=10
B TEXT LENGTH=10
NUMBER DATA F'O’

If the value of NUMBER is a 6, then 6 bytes are moved from location B to A. If the value of
NUMBER is 10, 10 bytes are moved from location B to A.

LR-12 SC34-0643

O

Using The Parameter Naming Operands (Px=) (continued)

The parameter naming operand (Px=) enables you to supply data to an instruction in your
program without having to define it with a DATA, DC or TEXT statement.

The Px= operands correspond to other operands in the instruction syntax. P1= represents the
first operand in an instruction, P2= represents the second operand, P3= represents the third
operand, and so on. The number of parameter naming operands allowed within each instruction
varies.

Figure 2 shows the syntax for the MOVE instruction. The MOVE instruction has three
parameter naming operands. P1= refers to opndl, P2= refers to opnd2, and P3= refers to
count.

label MOVE opnd1,opnd2,count, FKEY=TKEY=,
P1=,P2=,P3=

Figure 2. MOVE Instruction Syntax

To use a Px= operand, you must first code it with a label. The label refers to a storage location
within the instruction. The system refers to the label you assign to the Px= operand when your
program executes. The system treats the label as the parameter of the operand to which the
Px= operand refers. Once you assign a label to the Px= operand, you can use that label in
other instructions in your program.

In the following example, a parameter naming operand (P3=) is used on the MOVE instruction
to provide the number of bytes to be moved.

MOVE A,B, (0,bytes) ,P3=NUMBER
A TEXT LENGTH=10

B TEXT LENGTH=10

This single line of code can replace the previous example. The system generates the label and
data area NUMBER when it assembles the MOVE instruction. The count parameter of the
MOVE instruction updates automatically when the variable called NUMBER contains the value
6 or 10. This method of coding does not require an IF instruction because the NUMBER
variable is in the MOVE instruction. The system generates the variable called NUMBER from
the Px= operand code. Storage is significantly reduced because it uses only one MOVE
instruction.

In the following program, the GETVALUE instruction asks you for the number of bytes to
move from B to A. Since the TEXT statement is only 10 bytes, the program checks for errors in

Chapter 1. Introduction ~LR-13

Introduction .

Using The Parameter Naming Operands (Px=) (continued)

LR-14

SC34-0643

data by making sure INPUT is between 1 and 10 bytes. When the GETVALUE instruction
receives the value for INPUT, the system automatically updates the MOVE instruction’s byte
count field. At that point the data and characters moved from location B to A are printed on the
terminal.

TEST PROGRAM START
START EQU *
RETRY GETVALUE. INPUT,MESSAGE
IF (INPUT,LT,O0) ,or, (INPUT,GT, 10) ,GOTO, RETRY
MOVE A,B, (0,bytes) ,P3=INPUT
PRINTEXT A
PRINTEXT SKIP=1
PROGSTOP
A TEXT ' ', LENGTH=10
B TEXT 'ABCDEFGHIJ ', LENGTH=10
MESSAGE TEXT "ENTER BYTE COUNT'
ENDPROG
END

Using The Parameter Naming Operands (Px=) (continued)

Rules to Remember

You should remember the following rules when coding parameter naming operands in your
program.

Coding labels on Px= operands

When the compiler sees a Px= operand, it generates the label that you specify. The compiler
flags an error if you attempt to define that label again in your program.

Referring to Px= operand labels

You can refer to the label you code on the Px= operand more than once in your program.
However, once you have defined a label with a Px= operand, you cannot use the same label on
another Px= operand in the program.

Coding the operand that Px=replaces

When you code a Px= operand, you must still code a value or label for the operand that Px=
replaces. The system does not process the Px= operand if the label you specified for it contains
a 0 when the instruction executes. (The system defines the value of the label on the Px=
operand to be 0 at compilation time.) The example that follows shows a case in which the
system does not process the P2= operand until the instruction at GETDATA executes and
supplies label B with a value other than 0.

CHECK PROGRAM START
START EQU *
ADDVAL ADD A,0,P2=B
IF (A,GT, 10) ,GOTO, END
GETDATA GETVALUE B,'ENTER NUMBER FROM 1 TO 10 ',SKIP=1
GOTO ADDVAL
END PRINTNUM A, SKIP=1
PROGSTOP
A DATA F'1'
ENDPROG
END

On the first pass through the program, the label B contains a 0. The system adds the value
coded for operand 2 (0) to the value in A. After the GETVALUE instruction executes, B
contains whatever value was entered at the terminal. The GOTO instruction passes control to
the ADD instruction at the label ADDVAL. When the ADD instruction executes the second
time, the system adds the value in B to the value in A. The system replaces the 0 value coded
for operand 2 with the value entered in B.

Chapter 1. Introduction ~LR-15

Introduction

Using The Parameter Naming Operands (Px=) (continued) U

Matching operand and Px= operand data types

LR-16

SC34-0643

The type of data that the Px= operand supplies in an instruction must match the type of data
that is being replaced. For example, if you specify the label of an address for operand 2, P2=
must also supply an address. If you specify a constant for operand 2, P2= must supply a
constant.

In the example that follows, the ADD instruction contains a P2= operand. The P2= operand
refers to operand 2 which is coded with the constant 5. Because the parameter coded for
operand 2 is a constant, the P2= operand must replace this parameter with another constant to
get the desired results. In this case, the MOVE instruction moves the value 2 into A. The
system adds 2 to C and stores a result of 2 in SUM.

MOVE A,>2
ADD C,5,RESULT=SUM, P2=A
C DATA F'0'

SUM DATA F'O'

In the next example, operand 2 of the ADD instruction is coded with the label D. The label

refers to the address of a data area. Because the parameter coded for operand 2 (D) is an)
address, the P2= operand must replace this parameter with another address to get the desired @
results. In this case, a MOVEA instruction moves the address of B into A. The system adds the =
contents of B to the contents of C and places the result in SUM.

MOVEA A,B
ADD C,D,RESULT=SUM, P2=A

DATA F'2"

B

C DATA F'o’
D DATA F'5!
SUM DATA F'O'

Chapter 2. Instruction and Statement
Descriptions

This chapter presents the Event Driven Language (EDL) instructions and statements in
alphabetical order. A description of the use of each instruction and statement is provided,
followed by its syntax, required operands, and the default values the system uses when you do
not specify certain operands. Each operand is listed and described. Examples and other
information, such as return codes and post codes, also are provided. See “The Format of EDL
Instructions and Statements” on page LR-2 for more details on how this book presents
instructions and statements.

Note: The Installation and System Generation Guide contains the statements you use to define

and generate your system. These statements are listed in the “Instructions and Statements
Chart.”

Instructions and Statements Chart

The chart on the following pages groups EDL instructions and statements by the common tasks
they perform. The chart also lists the statements you use to define and generate a system.

/
Chapter 2. Instruction and Statement Descriptions LR-17

Instruction and Statement Descriptions

Instructions and Statements Chart (continued)

Add Device Support

Define Data

DCB EXOPEN AL 1GN £EQu
EXI0 IDCB BUFFER STATUS
DATA/DC TEXT
Call Programs and Subroutines Define 1/0
CALL RETURN BSCI0CB IODEF
CALLFORT USER CAl0CB PROGRAM
SUBROUT 10CB SBIO

Code Graphics Applications

End a Program

CONCAT SCREEN
GIN XYPLOT
PLOTGIN YTPLOT

END
ENDPROG
PROGSTOP

Control Program Logic

Format and ldentify Compiler
Listings

DO FINDNOT
ELSE GOTO
ENDIF IF

ENDDO QUESTION
FIND

$1D SPACE
EJECT TITLE
PRINT

Control Tasks

Initiate and Terminate
Telecommunications

ATTACH LOAD
ATTNLIST PROGRAM
DETACH PROGSTOP
END Qcs
ENDATTN RESET
ENDPROG TASK
ENDTASK WHERES

BSCCLOSE NETHOST
BSCOPEN NETINIT
CACLOSE NETTERM
CAOPEN TP CLOSE
CASTART TP OPENIN
CASTOP TP OPENOUT
NETCTL

Control the Terminal

Manipulate Data

ATTNLIST 10CB
ENDATTN RDCURSOR
ERASE TERMCTRL

Convert Data

CONVTB FPCONV
CONVTD GETEDIT
FORMAT PUTEDIT

ADD FSUB
ADDV HASHVAL
AND I 0R
CONCAT MOVE
DIVIDE MOVEA
EOR MULTIPLY
FADD SETBIT
FDIVD SHIFTL
FMULT SHIFTR
FPCONV SQRT
SUBTRACT

O

Instructions and Statements Chart (continued)

Obtain Date and Time

Respond to Errors

GETTIME
PRINDATE
PRINTIME

CATRACE SBIO
FREESTG SWAP
GETEDIT TCBGET
GETSTG TCBPUT
LOAD WRITE
READ

Obtain and Release Resources

Retrieve User-Written Messages

DEQ
DEQT
ENQ
ENQT
FREESTG
GETSTG
STORBLK
SWAP

COMP QUEST!{ON
GETVALUE READTEXT
MESSAGE

Refer to External Modules

CoPY EXTRN
CSECT WXTRN
ENTRY

Perform Communication 1/0

Send or Receive Terminal Data

CAREAD TP (READ) GETEDIT PRINTEXT
CAWRITE TP (RELEASE) GETVALUE PRINTIME
CAPRINT TP (SET) MESSAGE PUTEDIT
NETGET TP (SUBMIT) PRINDATE QUESTION
NETPUT TP (WRITE) PRINTNUM READTEXT
TP (FETCH)
Perform Disk, Diskette, and Set Timers
Tape 1/0
CONTROL POINT INT IME
DSCB READ STIMER
NOTE WRITE
Process Interrupts Synchronize Tasks
ATTNLIST ECB STIMER
| ODEF INT IME WAIT
SPECPIRT POST
Queue Processing System Generation
DEF INEQ ADAPTER SNALU
FIRSTQ BSCLINE SNAPU
LASTQ DISK SYSTEM
NEXTQ EXIODEV TAPE
HOSTCOMM TERMINAL
SENSOR IO TIMER

Chapter 2. Instruction and Statement Descriptions

LR-19

$ID

$ID - Identify system release level

LR-20

SC34-0643

The $ID statement enables you to record within an application program the EDX system release
level that you use to compile the program. If you dump the program at a later date to diagnose a
problem, the $ID statement eliminates the need to refer back to the original source listing to find
out the system release level in use when the program was compiled.

The system release level coded with $ID appears as the last word in the dumped program.
Code the $ID statement between the ENDPROG and and END statements of your program.
This is an exception to the rule that ENDPROG and END must be the last two statements of

your program.

The $ID statement generates a 1-word constant in the form of ‘VMLP’. Each parameter is
packed into four bits and is specified in hexadecimal notation.

The $ID statement is already coded on all EDX supplied software.

Syntax:

label $ID V=,M=,L=,P=

Required: None

Defaults: V=,M=, and P= default to the current release level

of the EDX program product
Operand Description
V= The EDX system release level; it ranges from 0-9, A-F (hexadecimal).
M= The EDX modification or revision level; it ranges from 0-9, A-F (hexadecimal).
L= The unique identifier you assign to programs not prepared by IBM; it ranges
from 1-9, A-F (hexadecimal). The value 0 is reserved for IBM use.

P= The program temporary fix (PTF) release level; it ranges from 0-9, A-F

(hexadecimal).

O

$ID

Syntax Examples

$ID - Identify system release level (continued)

1) In the following example, only operand L, which is designated for your use, is coded.
Operands V, M, and P are allowed to default to the current release level of the EDX program
product.

ENDPROG
IDNOTE $1D L=2
END

2) The $ID statement in the example below will cause the identifier, ‘3121°, to be printed out as
the last word in the program when it is dumped. The identifier shows that the program was
compiled under EDX system release level 3, modification level 1, and program temporary fix 1.
The 2 on the L= operand is for the programmer’s use.

ENDPROG
IDNOTE $ID V=3,M=1,L=2,P=1
END

Chapter 2. Instruction and Statement Descriptions LR-21

ADD

ADD - Add integer values

LR-22

SC34-0643

The ADD instruction adds an integer value in operand 2 to an integer value in operand 1. The
values can be positive or negative. To add floating-point values, use the FADD instruction.

See the DATA/DC statement for a description of the various ways you can represent integer
data. ;

EDX does not indicate an overflow condition for this instruction.

Syntax:

label ADD opnd1,opnd2,count, RESULT=,PREC=,
P1=,P2=,P3=

Required: opnd1,opnd2
Defaults: count=1,RESULT=0PND1,PREC=S
Indexable: opnd1,opnd2,RESULT

Operand Description

opnd1 The label of the data area to which opnd2 is added. Opnd1 cannot be a
self-defining term. The system stores the result of the ADD operation in opnd1
unless you code the RESULT operand.

opnd2 The value added to opnd1l. You can specify a self-defining term or the label of a
data area. The value of opnd2 does not change during the operation.

count The number of consecutive values in opnd1 upon which the system performs the
operation. The maximum value allowed is 32767.

RESULT= The label of a data area or vector in which the result is placed. The data area you
specify for opndl is not modified if you specify RESULT. This operand is
optional.

PREC=xyz Specify the precision of the operation in the form xyz, where x is the precision for
opndl, y is the precision for opnd2, and z is the precision of the result
(“Mixed-precision Operations” on page L.R-23 shows the precision combinations
allowed for the ADD instruction). You can specify single-precision (S) or

double-precision (D) for each operand. Single precision is a word in length; double

precision is two words in length. The default for opnd1, opnd2, and the result is
single precision.

If you code a single letter for PREC, the letter applies to opnd1 and the result.

Opnd2 defaults to single precision. If, for example, you code PREC=D, opnd1 and

the result are double precision and opnd2 defaulits to single precision.

O

ADD

ADD - Add integer values (continued)

Px="

Mixed-precision Operations

The following table shows the precision combinations allowed with the ADD instruction:

If you code two letters for PREC, the first letter applies to opndl and the result,
and the second letter applies to opnd2. With PREC=DD, for example, opnd1 and
the result are double precision and opnd?2 is double precision.

Parameter naming operands. See ‘“Using The Parameter Naming Operands (Px=)"

on page LR-12 for a detailed description of how to code these operands.

opnd1l opnd2 Result Precision Remarks
S S S S default
S S D SSD -
D S D D -
D D D DD -

Opnd2 is one or two words long depending on the precision you specify on the PREC=

keyword. The length of opndl is equal to the operand’s precision multiplied by the value of the
count operand.

Chapter 2. Instruction and Statement Descriptions

LR-23

ADD

ADD - Add integer values (continued)

Coding Example

The following example moves the value O to index register #1. Next, the value 5 is added to #1.

Index register #1 now contains the value 5. The contents of variable A are then added to each
of three words starting at label V1. The results are placed in three words starting at label V2.
The contents of V1 and A remain unchanged because the keyword RESULT is specified. The
third ADD instruction adds 15 to the double-precision value at label E.

MOVE
ADD
ADD

ADD

~ DATA

DATA
DATA
DATA
DATA
DATA
DATA
DATA

#1,0
#1,5

MOVE O TO #1
INCREASE #1 BY 5

v1,4,3,RESULT=V2 ADD THE VALUE IN A TO EACH OF 3 WORDS

E,15,PREC=D

F'10'
F'1!
Fr2’
F'3!
F'o’
F'0'
F'O'

D'100000'

STARTING AT V1 AND PLACE THE RESULT
IN 3 WORDS STARTING AT V2.

ADD 15 TO DOUBLE-PRECISION VALUE E.

The results from the above coding example follow:

#1

V1

V2

LR-24 SC34-0643

Before

FO
F10°
Fr
F2
F3
FO
F0
FO

D*100000°

#1

Vi

V2

After

FS’

F10°

Fr

F2

F3

F‘11’
F‘12°
F‘13’
D100015°

(ﬁ

ADDV

ADDYV - Add two groups of numbers (vectors)

The add vector instruction (ADDV) adds two groups of numbers or “vectors”. The number of
times the operation occurs depends on the count you specify. The instruction adds each
consecutive value in operand 2 to the corresponding value in operand 1.

Note: An overflow condition is not indicated by EDX.

Syntax:

label

Required:
Defaults:
Indexable:

ADDV opnd1,opnd2,count, RESULT=,PREC=,
P1=,P2=,P3=

opnd1,opnd2,count
count=1,RESULT=opnd1,PREC=S
opnd1,opnd2, RESULT

Operand

opndl

opnd2

count

RESULT=

PREC=xyz

Description

The label of the data area that is modified by opnd2. Opnd1 cannot be a
self-defining term.

Do not code the software registers, #1 or #2, for this operand. You can use the
software registers, however, to create an indexed address for opnd1.

The value by which opnd1 is modified. You can specify a self-defining term or
the label of a data area.

The number of consecutive values in both opnd1 and opnd2 upon which the
system performs the operation. The maximum value allowed is 32767.

The label of a data area or vector in which the result is placed. The data area
you specify for opnd1 is not modified if you specify RESULT. This operand is -
optional. '

Specify the precision of the operation in the form xyz, where x is the precision
for opndl, y is the precision for opnd2, and z is the precision of the resuit.
(“Mixed-precision Operations” on page LR-26 shows the precision combinations
allowed for the ADDV instruction.) You can specify single-precision (S) or
double-precision (D) for each operand. Single precision is a word in length;
double precision is two words in length. The default for opnd1, opnd2, and the
result is single precision.

If you code a single letter for PREC, the letter applies to opndl and the result.

Opnd2 defaults to single precision. If, for example, you code PREC=D, opndl
and the result are double precision and opnd2 defaults to single precision.

Chapter 2. Instruction and Statement Descriptions LR-25

ADDV

ADDV - Add two groups of numbers (vectors) (continued)

If you code two letters for PREC, the first letter applies to opnd1 and the result,
and the second letter applies to opnd2. With PREC=DD, for example, opnd1
and the result are double precision and opnd2 is double precision.

Px= Parameter naming operands. See “Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

Mixed-precision Operations

The following table lists the precisions allowed with the ADDYV instruction:

opnd1 opnd2 Result Precision Remarks
S S S S default
S S D SSD -
D S D D -
D D D DD -

Syntax Example

The ADDYV instruction in the following example adds each consecutive value in V1 to the
corresponding value in V2. After the instruction executes, V1 contains 32F3’.

ADDV V1,V2,32 THE COUNT IS 32
V1 DATA 32F'1"
V2 DATA 32F'2'

LR-26 SC34-0643

O

ADDV

ADDV - Add two groups of humbers (vectors) (continued)

Coding Example

The following example moves the value 10 to X1 and the value 20 to X2. The first ADDV
instruction adds the value in C1 to X1 and the value in C2 to X2. Because the keyword
RESULT is specified, the values in C1, C2, X1, and X2 remain unchanged. The system places
the results in D1 and D2. The second ADDYV instruction adds the values of the five words,
starting at B1, to the values of the five words starting at A1. The ADDV operation occurs in the
following sequence: The value in B1 is added to the value in A1, the value in B2 is added to the

value in A2, and so on through B5 and AS.

Results of the example follow on the next page.

MOVE

MOVE
%*

ADDV
*
*
*
*

ADDV
*
*
X1 DATA
X2 DATA
*
Al DATA
A2 DATA
A3 DATA
A4 DATA
AS DATA
*
B1 DATA
B2 DATA
B3 DATA
B4 DATA
B5 DATA
*
c1 DATA
c2 DATA
*
D1 DATA
D2 DATA

X1,10
X2,20

X1,C1,2,RESULT=DI1

A1,B1,5

T
oo

) /g] g
nbhwNn -

e wN =
[eNoloNoN®]

L e I By B B s s |

MOVE 10 TO X1
MOVE 20 TO X2

ADD VALUE OF C1 TO X1 AND
THEN C2 TO X2

PLACE RESULTS IN
LOCATIONS D1 and D2

ADD THE VALUE OF THE 5 WORDS

STARTING AT B1 TO THE 5 WORDS
STARTING AT A1

Chapter 2. Instruction and Statement Descriptions LR-27

ADDV

ADDV - Add two groups of numbers (vectors) (continued)

LR-28

SC34-0643

Results of the previous coding example follow:

X1
X2

Al
A2
A3
A4
A5

B1
B2
B3
B4
B5

C1
C2
D1
D2

Before
F00’
F00’

F1r
F2
F3
F'4
F‘5’

F10
F20
F30
F40
F'50

F‘5’
F10’
F‘OS
F0’

X1
X2

Al
A2
A3
A4
AS

B1
B2
B3
B4
BS5

C1
c2
D1
D2

After
F10°
F20’

F1r
F22
F33’
F44’
F‘55°

F10
E20
F30
F‘40’
F‘50°

Fs’

F10’
F‘15
F30°

0

ALIGN

ALIGN - Align instruction or data to a specified boundary

Coding Example

The ALIGN statement ensures that the next instruction or data item in a source statement list
begins on a specified boundary: an odd byte, a word, or a doubleword. The ALIGN statement
is non-executable and should only be used to align data within data areas.

When coding the ALIGN instruction, you can include a comment which will appear with the
instruction on your compiler listing. If you include a comment, you must also code the type
operand. The comment must be separated from the operand field by at least one blank and it
may not contain commas.

Syntax:
blank ALIGN type comment
Required: none
Default: WORD
Indexable: none
Operand Description
type WORD (the default) or blank aligns data on a fullword boundary.

BYTE aligns data on an odd-byte boundary.
DWORD aligns data on a doubleword boundary.

Note: If the data field is already aligned at the boundary requested, no action results. WORD
and BYTE align the data a maximum of 1 byte. DWORD aligns the data a maximum of 3 bytes.

The ALIGN statement in the following example aligns the data area labeled BUFF on a word
boundary (even address).

Loc

0200 PROGNME DC C'EDX UTILITY'

020B ALIGN ALIGN TO WORD BOUNDARY
020cC BUFF DC CL'6e4!

Chapter 2. Instruction and Statement Descriptions ~LR-29

AND

AND - Compare the binary values of two data strings (N

The AND instruction compares the binary value of operand 2 with the binary value of operand
1. The instruction compares each bit position in operand 2 with the corresponding bit position
in operand 1 and yields a result, bit by bit, of 1 or 0. If both of the bits compared are 1, the
result is 1. If either or both of of the bits compared are 0, the result is 0.

Syntax:

label

Required:
Defaults:
Indexable:

AND opnd1,opnd2,count, RESULT=,
P1=,P2=,P3=

opnd1,opnd2
count=(1,WORD),RESULT=0pnd1,
opnd1,opnd2, RESULT

Operand

opnd1

opnd2

count

LR-30 SC34-0643

Description

The label of the data area to which opnd2 is compared. Opndl cannot be a
self-defining term. The system places the result of the operation into opnd1
unless you code the RESULT operand.

The length of opndl1 is equal to the operand’s precision multiplied by the value of

the count operand. (/ D
L

The value compared to opnd1l. You can specify a self-defining term or the label

of a data area.

The number of consecutive values in opnd1 upon which the operation is to be
performed. The maximum value allowed is 32767.

The count operand can include the precision of the data. Select one precision
which the system uses for opnd1, opnd2, and the resulting bit string. When
specifying a precision, code the count operand in the form,

(n,precision)
where “n” is the count and “precision” is one of the following:

BYTE -- byte precision
WORD -~ word precision (default)
DWORD -- doubleword precision

The precision you specify for the count operand is the portion of opnd?2 that is
used in the operation. If the count is (3,BYTE), the system compares the first
byte of data in opnd2 with the first three bytes of data in opnd1.

‘[:p

AND

AND - Compare the binary values of two data strings (continued)

Syntax Examples

RESULT= The label of a data area or vector in which the result is to be placed. When you
specify this operand, the value of opnd1 does not change during the operation.

Px= Parameter naming operands. See “Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

1) In the following example, the AND instruction turns off the rightmost four bits in DATA1
without affecting the other data field bits. After the instruction executes, DATAI1 contains
X‘E0’ (binary 1110 0000).

AND DATAT1,MASK, (1,BYTE)

DATAT DC X'E7' binary 1110 0111
MASK DC X'FO' binary 1111 0000

2) The AND instruction in this example compares opnd2 with the first three bytes of data in
opndl. The system places the result in RESULTX.

AND OPER1,0OPER2, (3,BYTE) ,RESULT=RESULTX

OPER1 DC X'00' binary 0000 0000
DC X'A5' binary 1010 0101
DC X'01"! binary 0000 0001
OPER?2 DC X'FF' binary 1111 1111
RESULTX DC 2F'0" binary 0000 0000 0000 0000

After the AND operation, RESULTX contains X‘00A5 0100’ (binary 0000 0000 1010 0101
0000 0001).

3) In the following example, the AND instruction compares the first byte of data in TEST to the
first three bytes of data in INPUT. The system stores the result in OUTPUT.

AND INPUT, TEST, (3,BYTE) ,RESULT=0UTPUT

INPUT DC

c'r.2 binary 1111 0001 0100 1011 1111 0010
TEST DC c'0.0" binary 1111 0000 1111 0000 1111 0000
OuTPUT DC 3c'o’ binary 1111 0000 1111 0000 1111 0000

After the AND operation, the contents of OUTPUT are C‘0 0’ (binary 1111 0000 0100 0000
1111 0000).

Chapter 2. Instruction and Statement Descriptions LR-31

ATTACH
ATTACH - Start a task

The ATTACH instruction starts the execution of or ““‘attaches” another task. If the task you
specify has already been attached, no operation occurs. You deactivate tasks with the
DETACH instruction.

The task to be attached is usually in the same partition as the ATTACH instruction. However,
you can attach a task in another partition by using the cross-partition capability of ATTACH.

Note that the program load point of the attaching task is placed in the $TCBPLP field of the
task being attached. The system, however, will not reference the $TCBPLP of the attached task
if the attaching task is in another partition. To avoid this problem, put the load point of the task
to be attached in the $TCBPLP field of the attaching task before the ATTACH instruction is
executed. Be sure to restore it after the ATTACH instruction is completed.

See Appendix C, “Communicating with Programs in Other Partitions (Cross-Partition
Services)” on page LR-559 for an example of attaching a task in another partition. Refer to the
Event Driven Executive Language Programming Guide for more information on cross-partition
services.

The system records the address space in which a task is executing in the $TCBADS field of the
task’s task control block (TCB). When your program attaches a task, the system moves the
address space in the program’s TCB into the $TCBADS field of the attached task’s TCB.

When the ATTACH instruction executes, the system stores the address of the terminal from
which the main task was loaded in the $TCBCCB field of the attached task. In this way, the
same terminal is active for both tasks.

If your program is to be link edited, place all TASKS to attach via the ATTACH instruction in
the same module. The assembler will chain all the TASKS within the module it assembles. Your
application program will have to chain the tasks together if they are not within the same module.
Modify the correct field in the TCB to chain tasks accross modules.

Syntax:
label ATTACH taskname,priority, CODE=,
P1=,P2=,P3=
Required: taskname
Defaults: CODE=-1
Indexable: none

LR-32 SC34-0643

ATTACH

0 ATTACH - Start a task (continued)

Operand

taskname

priority

CODE=

Coding Example

Description

Label of the task to be attached. You must define this task with a TASK
statement.

The priority you assign to the task. This priority replaces the one you assigned
on the TASK statement. It remains in effect unless it is overridden by a
subsequent ATTACH instruction. See the TASK statement for a description of
the valid priorities you can assign a task.

A code word to be inserted in the first word of the task control block of the task
being attached. This code word could help your program determine at what
point the task is being attached. The attached task could examine the code word
by referring to the taskname operand. The code word should be examined
immediately upon entry into the attached task because execution of certain
instructions (for example, 1/O instructions) cause this word to be overlaid.

Parameter naming operands. See “Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

In the following example, the ATTACH instruction attaches a task that reads a record from a
data set. The program begins by attaching TASK1. TASK1 is the label of a TASK statement.

Q TASK1 prints the message at label P1 and reads a record from MYFILE into the buffer BUF.

s The MOVE instruction moves the first 8 bytes of BUF into the text buffer labeled REC. When

TASK1 ends, it posts the event specified on the EVENT= operand of the TASK statement.
The main program receives control and the WAIT instruction at label W1 checks to see if
TASKI1 has ended. The PRINTEXT instruction at label P2 prints the message ‘PROGRAM
COMPLETE’, and the program ends.

SAMPLE PROGRAM START,DS=((MYFILE,EDX40))
START EQU *
ATTACH TASK1
W1 WAIT EVENT
P2 PRINTEXT 'PROGRAM COMPLETE',SKIP=2
PROGSTOP
BUF BUFFER 256,BYTES
REC TEXT LENGTH=8
sk 3k ok sk 3k sk sk sk 3k ok ok sk 3k sk sk sk ke sk sk sk sk sk sk ok ok sk sk sk sk ok sk sk sk sk sk sk 3k sk sk ok oK sk ok ok ok sk sk sk ok
TASK1 TASK NEXT, EVENT=EVENT
NEXT ENQT $SYSPRTR
P1 PRINTEXT 'QTASK1 ATTACHED'
READ DS1,BUF, 1
MOVE REC, BUF, (8,BYTES)
DEQT $SYSPRTR
ENDTASK
ENDPROG
END

Chapter 2. Instruction and Statement Descriptions LR-33

ATTNLIST

ATTNLIST - Enter attention-interrupt-handling routine (

LR-34

SC34-0643

_/
The ATTNLIST statement provides entry to one or more attention-interrupt-handling routines.

With the ATTNLIST statement, you can produce a list of command names and associated
routine entry points. When you press the attention key on a terminal, your program waits for
you to enter a 1—8 character command. If the command you enter matches one that is specified
in the list, the associated routine receives control. No action occurs if the command you enter is
not contained in the list or if the system cannot find the entry point of the routine.

The character $ is reserved for system use and should not be used as the first character of a
command name unless you are assigning PF keys. All other character combinations are allowed.
Your attention routines must end with an ENDATTN instruction.

Your program and the ATTNLIST routine execute asynchronously. When the ATTNLIST
routine finishes, control passes to the instruction that was executing when you pressed the
attention key. Figure 3 on page LR-37 shows the operation of the ATTNLIST instruction.

The attention list for programs you compile with $EDXASM can be up to 254 characters long
and can contain a total of 24 ATTNLIST entries. A program compiled under SEDXASM can
contain one LOCAL ATTNLIST statement and one GLOBAL ATTNLIST statement. (See the
SCOPE= operand for an explanation of LOCAL and GLOBAL ATTNLIST.) The Series/1
macro assembler and the host assembler allow multiple attention lists with a maximum of 125
characters in each list.

ATTNLIST routines should execute quickly. Because the routines execute on hardware level 1, N
lengthy routines can slow the execution of other application programs or system tasks. (%)/

Notes:
1. You should not use the following instructions in an ATTNLIST routine: DETACH,

ENDTASK, PROGSTOP, LOAD, STIMER, WAIT, TP, READ, WRITE, ENQT, and
DEQT.

2. ATTNLIST routines cannot gain access to an enqueued terminal until the program that has
exclusive access releases the terminal by issuing a DEQT or PROGSTOP instruction.

3. Do not use $DEBUG command names as command names in your attention list routine.
Refer to the Operator Commands and Utilities Reference for a list of the $DEBUG command

names.
Syntax.'
label ATTNLIST (cc1,loct,cc2,loc2,...,cen,locn), SCOPE=
Required: ccl,loc
Defaults: SCOPE=LOCAL
Indexable: none

O

ATTNLIST

ATTNLIST - Enter attention-interrupt-handling routine (continued)

Syntax Example

Operand Description

ccl A command name consisting of 1—8 alphameric characters. Do not use the
character $ as the first character of the command name unless you are assigning
PF keys. For a description of using and assigning the 4979, 4978, 4980, and
3101 terminal program function (PF) keys to invoke ATTNLIST routines, refer
to the Operation Guide.

loc1 Name of the routine to be invoked.

SCOPE= GLOBAL, allows the ATTNLIST command routines to be invoked from any
terminal assigned to the same storage partition.

LOCAL, limits the invoking of ATTNLIST commands to the specific terminal
(assigned to the same partition) from which the program containing the
commands was loaded.

A program may have one LOCAL ATTNLIST and one GLOBAL ATTNLIST.

The ATTNLIST statement that follows allows you to invoke the PCODEI1 routine by pressing
the attention key and entering PC1. To invoke the PCODE?2 routine, you would press the
attention key and enter PC2.

ATTNLIST (PC1,PCODE1,PC2,PCODE2)
PCODE1 MOVE CODE, 1

ENDATTN
PCODE2 POST EVENT, 2

ENDATTN

Chapter 2. Instruction and Statement Descriptions LR-35

ATTNLIST

ATTNLIST - Enter attention-interrupt-handling routine (continued) ([%

Coding Examples

LR-36

SC34-0643

1)The following example uses the ATTNLIST statement to control the printing of repetitive test
patterns. Once the test pattern begins printing, it can only be stopped by pressing the attention
key and entering the command “CA”.

The program begins printing a test pattern consisting of 10 numbers. You can expand the test
pattern to include 24 special characters by pressing the PF1 key.

If you press the PF2 key, the test pattern includes the alphabet, the 10 numbers (0-9), and the
24 special characters.

TESTLOOP

CANCEL

PF1

PF2

START

SWITCH

PROGRAM START
ATTNLIST (CA,CANCEL,$PF1,PF1,$PF2,PF2)

EQU *
MOVE SWITCH, 99
ENDATTN
EQU *
MOVE SWITCH, 1
ENDATTN
EQU *
MOVE SWITCH, 2
ENDATTN
EQU *
ENQT o
DO WHILE, (SWITCH,NE, 99) ;
PRINTEXT '91234567890" &hQM
IF (SWITCH,GE, 1)
PRINTEXT VI#$RCER () —+=1":;2/>.<,"
ENDIF
IF (SWITCH,EQ,2)
PRINTEXT ' ABCDEFGHIJKLMNOPQRSTUVWXYZ'
ENDIF
ENDDO
DEQT
PROGSTOP
DATA F'o’
ENDPROG
END

ATTNLIST
0 ATTNLIST - Enter attention-interrupt-handling routine (continued)

2)The following example also illustrates coding of the ATTNLIST statement. It, however, uses
PF keys to invoke ATTNLIST instead of entering a command.

ATTEST PROGRAM ATLIST
ATTNLIST ($PF1,PCODE1, $PF3, PCODE3)
PCODE1 PRINTEXT 'PF1 KEY WAS PRESSEDA'
MOVE VAR, 1
ENDATTN
PCODE3 PRINTEXT 'PF1 KEY WAS PRESSED?'
MOVE VAR, 3
ENDATTN
ATLIST EQU *
DO (WHILE, (VAR,NE, 1)
MOVE #1,4#2
ENDDO
PROGSTOP
VAR DATA X'0000"
; ENDPROG
ATTNLIST
abc -»-| abc,.exitl
—]
—— °
—— []
‘:TD , P—— _ -
‘ ! xyz,exit2 —>1exitl .
[]
° ENDATTN
@i [)
\/ exit2 e
[]
ENDATTN

Figure 3. Function of ATTNLIST

Chapter 2. Instruction and Statement Descriptions LR-37

BSCCLOSE

BSCCLOSE - Free a BSC line for use by other tasks @

The BSCCLOSE instruction frees a binary synchronous line for use by other tasks. If the line is
a switched line (TYPE=SM or SA), this instruction disconnects it.

Syntax:
label BSCCLOSE bscioch,ERROR=,P1=,P2=
Required: bsciocb
Defaults: none
Indexable: bsciocb

Operand Description

bsciocb The label or indexed location of the BSCIOCB statement associated with the
close operation.

ERROR= The label of the instruction to be executed if an error occurs while closing the
line. If you do not code this operand, control passes to the next sequential
instruction. In either case, the return code reflects the results of the operation.

Px= Parameter naming operands. See “Using The Parameter Naming Operands

Return Codes

(Px=)"’ on page LR-12 for a detailed description of how to code these operands. //\

§

All BSC instruction return codes are listed with the BSCWRITE instruction under “Return
Codes” on page LR-54.

LR-38 SC34-0643

m

BSCIOCB

BSCIOCB - Specify BSC line address and buffers

The BSCIOCB statement specifies the line address and buffer(s) needed to perform
BSCCLOSE, BSCOPEN, BSCREAD, and BSCWRITE operations.

If you are sending variable-length records, the length field (lengthl operand) must contain the
actual length of the message to be written. Reset the value coded for the length field to the
buffer length before issuing a READ. Figure 4 on page LR-40 lists the number of buffers
required for each type of BSCREAD and BSCWRITE operation.

Syntax:
label BSCIOCB lineaddr,buffer1,length1,buffer2,
length2,pollseq,pollsize, P1=,P2=,
P3=,P4=,P5=,P6=,P7=
Required: lineaddr
Defaults: none
Indexable: none
Operand Description
label The label of the BSCIOCB. The BSCCLOSE, BSCOPEN, BSCREAD, and
BSCWRITE instructions refer to this label.
Other instructions can use the label to obtain additional status information stored
in the first word of the BSCIOCB. After text is successfully received, this word
contains the address of the last character received. For all other conditions, the
word contains the Interrupt Status Word from the Series/1 BSC Adapter.
lineaddr The hardware address, in hexadecimal, of the line on which the operation is to be
performed.
buffer1 The label of the first buffer used in an I/0O operation. This buffer is located in
the target address space. The target address space is determined during a
BSCOPEN operation and is defined in $TCBADS. This address space is used as
the address space of the buffer until another BSCOPEN operation changes it.
length1 The length, in bytes, of the first buffer.
buffer2 The label of the second buffer used in an I/O operation. This buffer is located
in the target address space as defined by $TCBADS.
length2 The length, in bytes, of the second buffer.
pollseq The address of the poll or selectibn sequence to be used in a multipoint control

line initial operation.

Chapter 2. Instruction and Statement Descriptions LR-39

BSCIOCB

BSCIOCB - Specify BSC line address and buffers (continued) | C

pollsize

The length, in bytes, of the poll or selection sequence.

The polling and selection sequences consist of one to seven characters followed
by: ENQ,(Read or Write Initial)!. You can find specific sequences for a given
device in the device component description manual. Generally, a 3-byte pollsize
is sufficient for a sequence of address,address,ENQ! between Series/ 1
processors. The device type tributary determines the actual sequence.

Px= Parameter naming operands. See ‘“Using The Parameter Naming Operands
(Px=)” on page LR-12 for a detailed description of how to code these operands.
Number Number
Read of Write of
type buffers type buffers

C 1 C 1

D 0 cv 2

E 1 CvX 2

| 1 CX 1

P 1 CXB 1

Q 0 D 0

R 1 E 0

U 1 EX 0
1 1
v 2 ;
IvX 2
y 1 O
IXB 1
Q 1
N 0
U 1
Ux 2

Figure 4. Required Buffers for BSCREAD and BSCWRITE

1 Commas are for readability only and are not part of the data stream.

LR-40 SC34-0643

O

BSCOPEN

BSCOPEN - Prepare a BSC line for use

The BSCOPEN instruction prepares a binary synchronous line for use by a task. The
instruction acquires use of the BSC line and prepares it for a subsequent read or write operation.

If the line is a switched manual line (TYPE=SM), BSCOPEN requests a Data Terminal Ready
acknowledgement and waits for the telephone connection to be established. If the line is a
switched auto-answer line (TYPE=SA), BSCOPEN waits indefinitely for the ring interrupt and
then requests a Data Terminal Ready acknowledgement.

Note: BSCOPEN assumes that point-to-point lines have Data Terminal Ready (DTR)
permanently set on.

Syntax:
label BSCOPEN bsciocb,ERROR=,X21RN=,P1=,P2=,P3=
Required: bsciocb
Defaults: none
Indexable: bsciocb

Operand Description

bscioch The label or indexed location of the BSCIOCB statement associated with the
open operation.

ERROR: The label of the instruction to be executed if an error occurs while opening the
line. If you do not code this operand, control passes to the next sequential
instruction. In either case, the return code reflects the results of the operation.

X21RN= The label of the data area containing the name of a member in the X.21 Circuit
Switched Network Support connection data set. This member contains the
connection information for this BSCOPEN. See “X21RN Coding Example” on
page LR-42 for the layout of the data area.

This parameter must be coded for auto-call (TYPE=SE or TYPE=SM) if the
default data set name is not used. This parameter is optional for direct call
(TYPE=DC) and is ignored for all other connection types. (The default name
and the data set contents are explained in the Communications Guide.)

Px= Parameter naming operands. See “Using The Parameter Naming Operands

(Px=)" on page LR-12 for a detailed description of how to code these operands.

Chapter 2. Instruction and Statement Descriptions LR-41

BSCOPEN

BSCOPEN - Prepare a BSC line for use (continued) @

X21RN Coding Example

Return Codes

LR-42

SC34-0643

The following example shows how to code the data area referred to by the X21RN operand.
This data area contains the name of the X.21 Circuit Switched Network connection record data
set. The data area must be eight characters long. If the data set name is less than eight
characters, the remaining positions in the data area must contain blanks. (See the
Communications Guide for additional information about the connection data set.)

BSCOPEN BSCIOCB, X2 1RN=MYDS

MYDS DC CL8'X21RNDS ' DATA SET NAME

The following are the return codes for X.21 Circuit Switched Network. All other BSC
instruction return codes are listed with the BSCWRITE instruction under ‘“Return Codes’ on
page LR-54.

BSCOPEN

0 BSCOPEN - Prepare a BSC line for use (continued)

Return

Code Condition

-32 System is unable to find X.21 support. Re-|PL the system.

=31 Not enough storage available to handle the number of X.21 requests.
Use the $DISKUT2 SS command to allocate more storage for $X21. You can
issue three simultaneous requests for every 256 bytes of storage allocated.

-30 Your supervisor does not contain X.21 support.

-29 System does not have enough storage available to load
the X.21 support or the connection record data set, $$X21DS,
is not on the IPL volume.

-27 Unrecoverable hardware error. If $LOG is active, check the
error log record for the X.21 device for more details.

-25 Connection failed

-24 Time expired for the completion of a call request. Calt
request failed.

-23 You cancelled a call request with a $C command.

-22 Call request failed due to Public Data Network problems. Call
progress signals invalid.

-21 Call request failed due to Public Data Network problems. Call
progress signals incomplete.

-20 Call request failed and network would not allow the request to be
retried. If $LOG is active, check the error log record for the
X.21 device for more details.

-19 Number of retries exhausted for the call request. If $LOG
is active, check the error log record for the X.21 device for
more details.

-18 Hardware error for the 2080 feature card. 1/0 request
could not be completed.

0 1 -18 The Network information field of the X.21 connection record
e has no plus sign or just a plus sign.

-156 The value in the Retry or Delay field of the X.21 connection
record exceeds the maximum value allowed.

-14 The Retry or Delay field of the X.21 connection record
contains a negative value.

-13 A comma must separate the Retry, Delay, and Network
information fields of an X.21 connection record.

-12 The Retry or Delay field of the X.21 connection record
contains an invalid character.

~-11 System does not have enough storage to execute a call request.

-10 Not enough storage in partition 1 for X.21 to execute a request.

-9 An EDL instruction failed. If $LOG is active, check the error
log record for the X.21 device to find the failing instruction.

16 Your supervisor does not contain X.21 support.

17 The connection type you defined on the BSCLINE statement
is not valid for the X.21 Circuit Switched Network.

18 The 2080 feature card is incorrectly jumpered for use
with the X.21 Circuit Switched Network.

19 The X.21 network has been deactivated (DCE CLEAR).

26 Registration or cancellation request processed

27 Redirection activated

28 Redirection deactivated

Chapter 2. Instruction and Statement Descriptions LR-43

BSCREAD

BSCREAD - Read data from a BSC line , @
J

LR-44

SC34-0643

The BSCREAD instruction reads data from a binary synchronous line. If the read operation is
successful, the first word of the associated BSCIOCB contains the address of the last character

read.
Syntax:
label BSCREAD type,bsciocb,ERROR=,END=,CHAIN=,
TIMEOUT=,P1=,P2=,P3=
Required: type,bsciocb
Defaults: CHAIN=NO, TIMEOUT=YES
Indexable: bsciocb

Operand Description

type The type of read operation you want to perform. The read operations listed
below are described in detail under “BSCREAD Types” on page LR-45.

C Read Continue

D Read Delay

E Read End @
I Read Initial

P Read Poll

Q Read Inquiry

R Read Repeat

U Read User

bscioch The label or indexed location of the BSCIOCB statement associated with the
read operation.

ERROR= The label of the instruction to be executed if an error occurs (return codes 10
through 99). If you do not code this operand, control passes to the next
sequential instruction. In either case, the return code reflects the results of the
operation.

END= The label of the instruction to be executed if an ending condition occurs (return

codes 1 through 6). If you do not code this operand, control passes to the next
sequential instruction. In either case, the return code reflects the results of the
operation.

BSCREAD

Q BSCREAD - Read data from a BSC line (continued)

CHAIN=

TIMEOUT=

Return Codes

YES, to cause a write operation to take place before the read operation. Code
CHAIN=YES for Read Poll (type P) and Read User (type U). The system
chains the DCB for the read operation to the DCB for the write operation.

You must provide the address of the data for the write operation in the buffer2
field of the BSCIOCB instruction. This buffer is located in the target address
space as defined by $TCBADS during a BSCOPEN operation. You also must
define the length (in bytes) of the data for the write operation in the length2
field of the BSCIOCB.

Your program receives an error return code if the address of the data or the
length of the data for the write operation is zero. No write or read operation is
performed.

NO, to cause the read operation to take place before any write operation.

Note: You can code CHAIN=YES to respond to a POLL with an EOT and
then immediately set up the next read poll operation. This may be necessary in
direct-connect environments where the Series/1 is a tributary to an extremely
fast polling device.

YES, to cause a time-out error to occur if the access method does not receive
data within three seconds during a receive operation. The access method
attempts to recover from the error the number of times that you coded on the
RETRIES operand of the the BSCLINE statement that defines this line. In a
Read Initial operation, a time-out can occur both when attempting to establish
the correct initial sequence and during the subsequent read of the first record.

NO, to prevent a time-out error from occurring if the access method does not
receive data within three seconds during a receive operation.

Parameter naming operands. See “Using The Parameter Naming Operands
(Px=)"" on page LR-12 for a detailed description of how to code these operands.

All BSC instruction return codes are listed with the BSCWRITE instruction under “Return
Codes” on page LR-54.

BSCREAD Types

Type Operation

C Read Continue - Reads subsequent blocks of data after an initial block has been received
with a Read Initial.

D Read Delay - Acknowledges that a block of data was correctly received and asks the
transmitting station to wait before sending the next block. You can issue several Read
Delays before resuming transmission of data with a Read Continue.

Chapter 2. Instruction and Statement Descriptions ~LR-45

BSCREAD
BSCREAD - Read data from a BSC line (continued)

E Read End - Acknowledges that a block of data was correctly received and asks the
transmitting station to stop sending data. You should issue only one Read End during a
single transmission. Once you issue the Read End, issue Read Continues until you
actually receive an EOT.

| Read Initial - Reads the first block of data in a transmission. After a successful Read
Initial operation, issue Read Continues until you receive an EOT.

For a point-to-point operation (TYPE=PT,SA,SM), Read Initial monitors the line for an
ENQ sent by the transmitting station, writes a positive response (ACK-0), and reads the
message block that follows.

In a multipoint controller operation (TYPE=MC), Read Initial polls a tributary station
and, if the response to polling is positive, reads the message text.

For a multipoint tributary operation (TYPE=MT), Read Initial writes a positive
response (ACK-0) and reads the message block that follows. '

P Read Poll - Reads the poll or select sequence received when the Series/1 is acting as a
tributary station on a multipoint line (TYPE=MT). If the operation is successful, the
specified buffer contains the sequence received starting with the second station (control
unit) address character. The access method does not check the contents of the received
data stream, including control characters.

Once it is polled or selected, your program should check the next operation requested
and issue the appropriate Read/Write Initial operation.

If you code CHAIN=YES, you can provide data to be transmitted by a write operation
before the Read Poll operation. For example, you can provide three synchronization
(SYN) characters and an EOT to be transmitted before the Read Poll operation.

Q Read Inquiry - Reads an ENQ character. Read Inquiry returns an invalid sequence error
if ENQ or EOT is not received. If EOT is received, the access method takes the END=
exit, if specified.

R Read Repeat - Requests that the last block of data be retransmitted following an
unsuccessful read operation.

The RETRIES operand on the BSCLINE statement determines the number of times the
read operation attempts to recover from a common error condition. You can use Read
Repeat, however, to attempt further recovery depending on the actual error
encountered.

U Read User - Receives data without issuing a response. The access method does not
check the data or attempt any error recovery.

If you code CHAIN=YES, you can provide data to be transmitted by a write operation
before the Read User operation.

LR-46 SC34-0643

BSCREAD

w BSCREAD - Read data from a BSC line (continued)

Return Codes

All BSC instruction return codes are listed with the BSCWRITE instruction under “Return
Codes’’ on page LR-54.

Chapter 2. Instruction and Statement Descriptions ~LR-47

BSCWRITE

BSCWRITE - Write data to a BSC line

LR-48

SC34-0643

The BSCWRITE instruction writes data to a binary synchronous line.

Syntax:
label BSCWRITE type,bsciocb, ERROR=,END=,CHECK=,
P1=,P2=,P3=

Required: type,bsciocb

Defaults: CHECK=YES

Indexable: bsciocb
Operand Description
type The type of write operation you want to perform. The write operations listed

below are described in detail under “BSCWRITE Types” on page LR-49.

C

Cv

CvX

CX

CXB

EX

v

IvX

IX

IXB

Write Continue
Write Continue Conversational
Write Continue Conversational Transparent
”
Write Continue Transparent O
Write Continue Transparent Block
Write Delay
Write Endl
Write End Transparent
Write Initial
Write Initial Conversational
Write Initial Conversational Transparent ®
Write Initial Transparent
Write Initial Transparent Block
Write Inquiry

Write NAK (negative acknowledgement)

O

C

BSCWRITE

BSCWRITE - Write data to a BSC line (continued)

bscioch

8] Write User
UX Write User Transparent

The label or indexed location of the BSCIOCB statement associated with the
write operation.

ERROR= The label of the instruction to be executed if an error occurs (return codes 10

END=

through 99). If you do not code the operand, control passes to the next
sequential instruction. In either case, the return code reflects the results of the
operation.

The label of the instruction to be executed if an ending condition occurs (return
codes 1 through 6). If you do not code this operand, control passes to the next
sequential instruction. In either case, the return code reflects the results.

CHECK= YES, to allow normal checking of the response to occur. This parameter is only

Px=

BSCWRITE Types
Type

C

Cv

CvX

valid for type CV or CVX operations.

NO, to prevent the response from being checked for protocol validity.
CHECK=NO provides a chained write-to-read operation similar to Write User
and Read User.

Parameter naming operands. See ‘“Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

Operation

Write Continue - Writes subsequent blocks of data after an initial block has been written
with a Write Initial operation.

Write Continue writes the message text and reads a response from the receiving station.

Write Continue Conversational - Writes subsequent blocks of data after an initial block
has been written in conversational mode.

Write Continue Conversational writes the message text and reads a response into your
buffer. The access method checks acknowledgement sequences and attempts error
recovery when necessary. If text is received, a -2 return code is returned instead of the
normal -1.

Write Continue Conversational Transparent - Writes subsequent blocks of transparent
data after an initial block has been written in conversational mode.

Write Continue Conversational Transparent writes the message text and the ending
characters DLE ETX. It then reads a response into your buffer. The access method

Chapter 2. Instruction and Statement Descriptions ~LR-49

BSCWRITE

BSCWRITE - Write data to a BSC line (continued) ‘ .”

LR-50

SC34-0643

X

CXB

EX

checks acknowledgement sequences and attempts error recovery when necessary. If text
is received, a -2 return code is returned instead of the normal -1.

Write Continue Transparent - Writes subsequent blocks of transparent data after an
initial block has been written.

Write Continue Transparent writes the message text and the ending characters DLE
ETX. The operation then reads a response from the receiving station.

Write Continue Transparent Block - Writes subsequent blocks of transparent data after
an initial block has been written. This operation is the same as BSCWRITE type CX
except that it uses ETB as the ending character instead of ETX.

Write Continue Transparent Block writes the message text and the ending characters
DLE ETB. It then reads a response from the receiving station.

Write Delay - Informs the remote station that the transmission of the next block of data
will be delayed. You can perform several Write Delay operations before data
transmission resumes.

Write Delay writes a temporary text delay (TTD) to the receiving station and reads a
NAK response. The purpose of this operation is to inform the receiving station of a

TTD before data transmission resumes.

Write End - Informs the remote station that the previous block of data completed the @
write operation. Write End writes an EOT. =

Write End Transparent - Writes a transparent EOT (DLE EOT). You can use this
operation to notify the receiving station on a switched line that the transmitting station is
disconnecting from the line.

Write Initial - Writes the first block of data in a transmission. Write Initial establishes
the correct initial sequence (depending on the type of line), writes the first block, and
checks the response.

For a point-to-point operation (TYPE=PT,SA,SM), Write Initial:

e Writes an ENQ to gain use of the line

» Reads a positive response (ACK-O)

o Writes the message text

« Reads the response to the message text.

In a multipoint controller operation (TYPE=MC), Write Initial:

¢ Selects a tributary station

BSCWRITE

0 BSCWRITE - Write data to a BSC line (continued)

1v

« Waits for a positive response to the selection

e Writes the message text

« Reads the response to the message text.

For a multipoint tributary operation (TYPE=MT), Write Initial:
o Writes the message text

« Reads a response from the controller station.

Write Initial Conversational - Writes the first block of data for a transmission in
conversational mode.

Write Initial Conversational establishes the correct initial sequence (depending on the
type of line), writes the first block of the message text, and reads a response into your
buffer. The access method checks acknowledgement sequences and attempts error
recovery when necessary. If text is received, a -2 return code is returned instead of the
normal -1.

For a point-to-point operation (TYPE=PT,SA,SM), Write Initial Conversational:

* Writes an ENQ to gain use of the line

« Reads a positive response (ACK-0O)

o Writes the message text

« Reads the response to the message text.

In a multipoint controller operation (TYPE=MC), Write Initial:

o Selects a tributary station

« Waits for a positive response to the selection

« Writes the message text

« Reads the response to the message text.

For a multipoint tributary operation (TYPE=MT), Write Initial:

« Writes the message text

« Reads a response from the controller station.

Chapter 2. Instruction and Statement Descriptions LR-51

BSCWRITE

BSCWRITE - Write data to a BSC line (continued)

LR-52

SC34-0643

IvX

IX

Write Initial Conversational Transparent - Writes the first block of transparent data of a
transmission in conversational mode.

Write Initial Conversational Transparent establishes the correct initial sequence
(depending on the type of line), writes the first block of the message text and the ending
characters DLE ETX. It then reads a response into your buffer. The access method
checks acknowledgement sequences and attempts error recovery when indicated. If text
is received, a -2 return code is returned instead of the normal -1.

For point-to-point operation (TYPE=PT,SA,SM): Write Initial Conversational
Transparent:

. .Writes an ENQ to gain use of the line

« Reads a positive response (ACK-0O)

» Writes the message text

e Writes the required ending characters DLE ETX

+ Reads the response to the message text.

In a multipoint controller operation (TYPE=MC), Write Initial:

o Selects a tributary station

o Waits for a positive response to the selection

« Writes the message text

* Writes the required ending characters DLE ETX

« Reads the response to the message text.

For a multipoint tributary operation (TYPE=MT), Write Initial:

o Writes the message text

e Writes the required ending characters DLE ETX

« Reads a response from the controller station.

Write Initial Transparent - Writes the first block of transparent data in a transmission.
Write Initial Transparent establishes the correct initial sequence (depending on the type

of line), writes the first block of transparent data, and checks the response. The access
method terminates the message text with DLE ETX.

O

BSCWRITE

BSCWRITE - Write data to a BSC line (continued)

IXB

UX

Write Initial Transparent Block - Same as Write Initial Transparent (IX) except that ETB
is used as the ending character instead of ETX.

Write Inquiry - Writes an ENQ character and reads the response into your buffer. The
response is either a control sequence or text.

Use this operation to request that a response to a message block be retransmitted. The
access method retries the operation if it times out.

Write NAK - Writes a NAK (negative acknowledgement) character. Use this operation
to respond “device not ready” to polling or selection when the Series/1 operates as a

tributary station on a multipoint line (TYPE=MT).

Write User - Transmits a character stream. The access method does not perform an
associated read operation or attempt error recovery.

Write User Transparent - Transmits a transparent character stream. The access method
does not perform an associated read operation or attempt error recovery.

The operation concludes with one of the following character pairs contained in
BSCIOCB buffer2: DLE ETX, DLE ETB, or DLE ENQ.

Chapter 2. Instruction and Statement Descriptions ~LR-53

BSCWRITE
BSCWRITE - Write data to a BSC line (continued) @

Return Codes

Return codes are returned in the first word of the task control block (TCB) of the program or
task issuing the instruction. The label of the TCB is the label of your program or task

(taskname).
Return
Code Condition
-2 Text received in conversational mode
-1 Successful completion
END=
1 EOT received
2 DLE EOT received
3 Reverse interrupt received
4 Forward abort received
5 Remote station not ready (NAK received)
6 Remote station busy (WACK received)
ERROR=
10 Time-out occurred
11 Unrecovered transmission error (BCC error)
12 Invalid sequence received
13 Invalid multi-point tributary write attempt
14 Disregard this block sequence received
15 Remote station busy (WACK received)
20 Wrong length record - long (No COD) ‘
21 Worong length record - short (write only) m
22 Invalid buffer address \“kJ
23 Buffer length zero
24 Undefined line address
25 Line not opened by calling task
30 Modem interface error
31 Hardware overrun
32 Hardware error
33 Unexpected ring interrupt
34 Invalid interrupt during auto-answer
attempt
35 Enable or disable DTR error
99 Access method error

LR-54 SC34-0643

O

BUFFER

BUFFER - Define a storage area

The BUFFER statement defines a data storage area. The standard buffer contains an index
word, a length word, and a data buffer.

The index word indicates the number of bytes stored in the buffer, but only when incremented
by your program. A label assigned to the index word in your program will enable you to
increment and reset the index word from the program. The system sets the index word to 0
when it creates the buffer. The length word indicates the total length of the buffer in bytes.

Certain instructions, for example INTIME and SBIO allow you to add new entries sequentially
to a buffer by referring to and incrementing the index word.

You can use a BUFFER statement to define the storage area needed for use with the Host
Communications Facility TP READ/WRITE instruction. The use of the BUFFER statement to
set up a temporary 1/0 buffer for a terminal is explained under the IOCB statement.

READTEXT and GETEDIT instructions may be used to modify the BUFFER statement.
PRINTEXT and PUTEDIT instructions use the BUFFER statement to determine the number of

values to print.

Figure 5 on page LR-57 shows the physical layout of a buffer.

Syntax:
label BUFFER length,item,INDEX=
Required: length
Defaults: item=WORD
Indexable: none
Operand Description
length The length of the buffer in terms of the data item (words or bytes) you specify.

The system allocates two words of control information, the index word and the
length word, in addition to the buffer itself. The length must not exceed 16,380
words or 32,760 bytes.

If your program includes a READ instruction that will use the buffer, the buffer
area should be a multiple of 256 bytes.

Note: When filling a buffer, you should be careful not to exceed the buffer size.
The system does not check for an overflow condition.

Chapter 2. Instruction and Statement Descriptions LR-55

BUFFER

BUFFER - Define a storage area (continued) ((\m
e
item Code BYTE or BYTES if the buffer length is defined in terms of bytes. Code
WORD or WORDS if the buffer length is defined in terms of words. The default
for this operand is WORD.
Code BYTE or BYTES if you are using the BUFFER statement with a CALL
$IMOPEN instruction.
Code TPBSC to generate a buffer for use with the TP READ/WRITE
instruction (Host Communications Facility). The count operand reflects the
length of the buffer in bytes when you code TPBSC.
INDEX = The label of the buffer index word. Do not code this operand if you coded
TPBSC for the item operand. You can think of this operand as a pointer to the
next available data location in the buffer.
C
LR-56 SC34-0643

O

O

BUFFER

BUFFER - Define a storage area (continued)

Standard BUFFER

name

»- label

index

length

TPBSC BUFFER

label BUFFER

» label

X

X

x

(=]} el Noll Noll Nl

length, TPBSC

length

pad

request

data

pad

label BUFFER Iength,item,lNDEX=njme
} 2 words

index

size in bytes

DLE/STX

TP request block

ETX

length in
bytes

1 word

1 word

8 words

length in
bytes

1 word

Figure 5. Physical Layout of a Buffer

Chapter 2. Instruction and Statement Descriptions

LR-57

BUFFER

BUFFER - Define a storage area (continued)

Coding Example

LR-58

SC34-0643

The BUFFER statement labeled BUFF defines a 102-word storage area. The first word of this
area is labeled INDX as coded on the keyword INDEX. The second word contains the count of
the total number of BUFFER entries. The remaining 100 words are the actual BUFFER

storage area.

SUBROUT
IF
ENQT
PRINTEXT
DEQT
RETURN
ENDIF
MOVEA
ADD
MOVE
ADD
RETURN
BUFF BUFFER
DATA1 DATA

STORE
(INDX,GE, 198)
$SYSPRTR
'9BUFFER IS FULL'

#1,BUFF

#1,INDX

(0,#1),DATA1, (1,WORD)
INDX, 2

100, WORDS , INDEX=INDX
F'0’

MOVE ADDR OF BUFF
INCREMENT #1

MOVE DATA TO BUFF
INCREMENT BUFFER INDEX

CACLOSE

w CACLOSE - Close a Channel Attach port

The CACLOSE instruction terminates the connection between your application program and a
Channel Attach port and disables the port from receiving interrupts from the System/370.

Syntax:
label CACLOSE caiocb,ERROR=,P1=
Required: caiocb
Defaults: none
Indexable: caiocb

Operand Description

caioch The label or indexed location of the Channel Attach I/O control block defined
for this port.

ERROR= The label of the instruction to be executed if an error occurs. If you do not code
this operand, control passes to the next instruction after the CACLOSE and your
program must test for errors before issuing a WAIT.

Pl= Parameter naming operand. See “Using The Parameter Naming Operands

O (Px=)" on page LR-12 for a detailed description of how to code this operand.

Syntax Examples

1) The following example closes a port defined by the CAIOCB at USERIOCB.

CLOSE10 CACLOSE USERIOCB

2) This example closes a port defined by the CAIOCB at the indexed location of USER plus the
contents of #1. If an error occurs, the instruction at label E1 receives control.

CLOSEFC CACLOSE (USER, #1) ,ERROR=E1

- Chapter 2. Instruction and Statement Descriptions ~LR-59

CACLOSE

CACLOSE - Close a Channel Attach port (continued) @

Return and Post Codes

LR-60

SC34-0643

Return codes are returned in the first word of the task control block of the program or task
issuing the instruction. A return code other than -1 indicates that the link module found an
error before the instruction performed an I/O operation. Your program must check the return
code before it issues a WAIT because a WAIT should only be used if an I/O operation is being
performed.

CACLOSE post codes are returned to the first word of of the CAIOCB you defined for the
instruction.

For detailed explanations of the return and post codes, refer to Messages and Codes.

Post Return
Code Hex Code Explanation

FEQC -500 Data pending from host
-1 FFFF -1 Successful
501 01F5 EXIO error-device not attached
502 01F6 EXIQ error-busy
503 01F7 EXIO error-busy after reset
504 O1F8 EXIO error-command reject
505 01F9 EXIO error~intervention required
506 O1FA EXIO error-interface data check
507 01FB EXIO error-controller busy
508 O1FC EXIO error-channel command not allowed
509 01FD EXIO error-no DDB found H
510 O1FE EXIO error-too many DCBs chained @
511 O1FF EXIO error-no residual status address /
512 0200 EXIO error-zero bytes specified for

residual status

513 0201 EXIO error-broken DCB chain
516 0204 EXIO error-device already opened
524 020C Timeout

0234 564 Users CAIOCB not linked to port
567 0237 567 System error; CAPGM terminating

0238 568 Port not opened
Channel attach codes 501-513 are the same as the EXIO
post codes 1-13 respectively.

O

CAIOCB

CAIOCB - Create a Chanﬁel Attach port 1/0 control block

The CAIOCB statement creates a Channel Attach port I/O control block that contains the
information your program requires to use a port.

You supply the device address, the port number, and the label of the first buffer control area.

You must provide a CAIOCB for all operations to a port. Do not try to modify the CAIOCB
during program execution.

Syntax:
label CAIOCB address,PORT=,BUFFER=
Required: label,address,PORT=,BUFFER=
Defaults: none
Indexable: none
Operand Description
label The label of the CAIOCB for use with the CAOPEN, CACLOSE, CAREAD,
and CAWRITE instructions.
address A two-digit hexadecimal device address.
PORT= The number of the port (0-31) for which this I/O control block is being created.
BUFFER= The label of a three-word area containing:

Syntax Example

« First word - the address of the buffer to be used for the first read.
« Second word - the number of bytes to be used.

o Third word - the partition number of the buffer. If this word is zero, the

system assumes the buffer is in the partition in which you loaded your
program.

The following statement creates a Channel Attach port I/O control block for port 3. The device

address is 10.

USERIOCB CAIOCB 10, PORT=3, BUFFER=AREA

Chapter 2. Instruction and Statement Descriptions LR-61

CALL

CALL - Call a subroutine O

LR-62

SC34-0643

The CALL instruction executes a system subroutine or a subroutine that you write. You can
pass up to five parameters as arguments to the subroutine. If the subroutine you call is a
separate object module to be link-edited with your program, you must code an EXTRN
statement with the subroutine name in the calling program. Figure 6 on page LR-64 shows an
example of a primary task calling a subroutine which in turn calls a second subroutine.

Syntax:

label CALL name,parl,...,par5,P1=,...,P6=

Required: name
Defaults: none
Indexable: none

Operand Description
name The name of the subroutine to be executed.

par(n) The parameters you want to pass to the subroutine. You can pass up to five
single-precision integers or the labels of single-precision integers or null
parameters to the subroutine. The CALL instruction replaces the parameters
specified in the subroutine with the parameters you specify. For example, the N
instruction replaces the first parameter of the subroutine with par1, the second \W
parameter with par2, and so on.

If the parameter name is enclosed in parentheses, for example (parl), the
instruction passes the address of the variable to the subroutine parameter. The
address can be the label of the first word of any type of data item or data array.
Within the subroutine it will be necessary to move the passed address of the data
item into one of the index registers, #1 or #2, in order to refer to the actual data
item location in the calling program. If the parameter name enclosed in
parentheses is the label of an EQU instruction, the instruction passes the value of
that label as the parameter.

If the parameter to be passed is the label of an EQU instruction, you can code a
plus sign (+) in front of that label. The plus sign causes the value equated to the
label to be passed to the subroutine. If you do not code a plus sign in front of
the label, the instruction assumes that the value equated to the label is an address
and passes the data at that address as the parameter.

Px= Parameter naming operands. See ‘“Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

CALL

0 CALL - Call a subroutine (continued)

Syntax Examples

Coding Example

1) Call the PROG subroutine and pass it a value of 5.

CALL PROG, 5

2) Call the PROG subroutine and pass it a value of 5 and the null parameter 0.

CALL PROG, 5,

3) Call the SUBROUT subroutine and pass it the contents of PARM1, the address of PARM2,
and the value of the equated label FIVE.

CALL SUBROUT, PARM1, (PARM2) ,+FIVE

The following coding example shows a use of the CALL instruction. The main routine calls the
subroutine READREC. A relative record number is passed to the subroutine as RECNUMBR
and is received as RECORD#.

Two methods of passing an address to a subroutine are illustrated. First, at label MA, the
address of ENDFILE is moved to EOF. Then EOF is passed to the subroutine as a parameter
of a CALL instruction.

Second, in the same CALL instruction, the address of READERR is passed to the subroutine by
enclosing the label in parentheses. When EOF and READERR are passed to the subroutine,
they are referred to as EOFEXIT and ERREXIT, respectively.

The EOFEXIT and ERREXIT parameters are addresses. In order to branch to the locations
these parameters represent, they must be enclosed in parentheses as the object of a GOTO
instruction.

The subroutine uses the relative record number defined by RECORD# to read the data file. An
end-of-file condition causes a branch to the appropriate exception routine whose address is
contained in EOFEXIT.

A read error will cause a branch to the location whose address is contained in ERREXIT. If no

exception condition is encountered, control is returned to the calling routine by the RETURN
instruction.

Chapter 2. Instruction and Statement Descriptions LR-63

CALL

CALL - Call a subroutine (continued)

LR-64 SC34-0643

MOVEA

MA EOF ,ENDFILE
CALL READREC,RECNUMBR, EOF, (READERR)
GOTO CONTINU
READERR EQU *
PRINTEXT '® ERROR ENCOUNTERED READING DISK FILE RECORD NUMBER'
PRINTNUM RECNUMBR
PROGSTOP
ENDFILE EQU *
PRINTEXT '@ END OF INPUT DATA FILE REACHED'
PROGSTOP
CONTINU EQU *
SUBROUT READREC,RECORD# ,EOFEXIT,ERREXIT
READ DS1,DISKBUFR, 1, RECORD#, END=ENDEXIT, ERROR=ERRORXIT
RETURN
ENDEXIT EQU *
GOTO (EOFEXIT)
ERRORXIT EQU *
GOTO (ERREXIT)
“\\
Y
L]
CALL namel » SUBROUT name1l
° - L
° []
. CALL name2 » SUBROUT name2
o L]
[] *
RETURN °

RETURN

Figure 6. Execution of Subroutines

C
L

O

CALLFORT

CALLFORT - Call a FORTRAN subroutine or program

The CALLFORT instruction calls a FORTRAN program or subroutine from an Event Driven
Executive program. If you call a FORTRAN main program, the name you specify for the name
operand is the name you coded on the FORTRAN PROGRAM statement or the default name,
MAIN, if no PROGRAM statement was coded. If you call a FORTRAN subroutine, specify the
name of the subroutine for the name operand. You can pass parameters to FORTRAN
subroutines. Standard FORTRAN subroutine conventions apply to the use of CALLFORT.

If separate tasks within an EDL program each contain CALLFORT instructions, the tasks
should not execute concurrently because the FORTRAN subroutines are serially reusable and
not reentrant.

For a more complete description of the use of the CALLFORT instruction, see the IBM
Series/1 Event Driven Executive FORTRAN IV Program 5719-FO2 User’s Guide, SC34-0315.

Syntax:
label CALLFORT name,(a1,a2,...,an),P=(p1,p2,..pn)
Required: name
Defaults: none
Indexable: none
Operand Description
name The name of a FORTRAN program or subroutine, consisting of 1 to 6
alphameric characters, that begins with an alphabetic character. You must also
code this name, or entry point, on an EXTRN statement.
al,a2,an A list of parameters or arguments (al,a2, and so on) that you want to pass to the
subroutine. The argument can be a constant, a variable, or the name of a buffer.
If you are passing the subroutine only one argument, you do not have to enclose
it in parentheses.
pl,p2,pn Parameter naming operands. See “Using The Parameter Naming Operands

(Px=)” on page LR-12 for a detailed description of how to code these operands.
Each name in this list can be up to eight characters long. The system assigns the
first name in the list to the first argument, the second name in the list to the
second argument, and so on.

Chapter 2. Instruction and Statement Descriptions ~ L.LR-65

CALLFORT

CALLFORT - Call a FORTRAN subroutine or program (continued)

Syntax Examples

LR-66

SC34-0643

1) Call the SORT1 subroutine.

SAMPLE PROGRAM START
EXTRN SORT1

START EQU *
CALLFORT SORT1

2) Call the SUM subroutine and pass it an integer constant of 5.

SAMPLE PROGRAM START
EXTRN SUM

START EQU *
CALLFORT SUM,5

3) Call the SUM subroutine and pass it variables A and B.

SAMPLE PROGRAM START
EXTRN SUM

START EQU *
CALLFORT SUM, (A,B)

A DATA FP'S!
B DATA F'o’

4) Call the SUM subroutine and pass it variables A and B. Assign the label INPUT to
argument A and OUTPUT to argument B.

SAMPLE PROGRAM START
EXTRN SUM
START EQU *
CALLFORT SUM, (A,B) ,P=(INPUT,QUTPUT)

A DATA F'S!'
B DATA 2F'0’

U

CAOPEN

w CAOPEN - Open a Channel Attach port

The CAOPEN instruction establishes a connection between your application program and a
Channel Attach device port.

You must issue a CAOPEN instruction before your program can use a port for data transfer.
When your program opens a Channel Attach port, it has exclusive use of the port until the port
is closed. The system rejects any request to open a port already opened.

Syntax:
label CAOPEN caiocb,ERROR=,P1=
Required: caiocb
Defaults: none
Indexable: caiocb
Operand Description
caioch The label or indexed location of the Channel Attach port I/O control block you
defined for this port.

O, ERROR= The label of the instruction to be executed if an error occurs. If you do not code
this operand, control passes to the next instruction after the CAOPEN and your
program must test for errors before issuing a WAIT.

Pl1= Parameter naming operand. See “Using The Parameter Naming Operands

(Px=)” on page LR-12 for a detailed description of how to code this operand.
Syntax Examples

1) Open a port defined by the CAIOCB at label USERIOCB.

OPEN10 CAOPEN USERIOCB

2) Open a port defined by the CAIOCB at the indexed location of USER plus the contents of
#1. If an error occurs, the instruction at label E1 receives control.

OPENEFC CAOPEN (USER, #1) ,ERROR=E1

Chapter 2. Instruction and Statement Descriptions LR-67

CAOPEN

CAOPEN - Open a Channel Attach port (continued)

Return and Post Codes

LR-68

SC34-0643

Return codes are returned in the first word of the task control block of the program or task
issuing the instruction. A return code other than -1 indicates that the link module found an
error before the instruction performed an I/O operation. Your program must check the return
code before it issues a WAIT because a WAIT should only be used if an I/O operation is being
performed.

CAOPEN post codes are returned to the first word of of the CAIOCB you defined for the

instruction.

For detailed explanations of the return and post codes, refer to Messages and Codes.

Post Return
Code Hex Code Explanation
-1 FFFF -1 Successful
501 01F5 EXIO error-device not attached
502 01F6 EXIO error-busy
503 O1F7 EXIO error-busy after reset
504 01F8 EXIO error-command reject
505 01F9 EXIO error-intervention required
506 01FA EXIO error-interface data check
507 01FB EXIQ error-controller busy
508 01FC EXIO error-channel command not allowed
509 01FD EXIO error-no DDB found
510 O1FE EXIO error-too many DCBs chained
511 O1FF EXIO error-no residual status address
512 0200 EXIO error-zero bytes specified for
residual status
513 0201 EXIO error-broken DCB chain
516 0204 EXIO error-device already opened
520 0208 Interrupt error
524 020C Timeout
0227 551 Device not started
0228 552 Stop in progress
022C 556 Port out of range
022D 557 Port already open
022E 558 Read buffer not provided
022F 559 Read buffer count =0
567 0237 567 System error; CAPGM terminating
023A 570 Device in diagnostic mode
Channel attach codes 501-513 are the same as the EXIO
post codes 1-13, respectively.

6

CAPRINT

0 CAPRINT - Print Channel Attach trace data

The CAPRINT instruction prints the entire trace area on your printer or terminal. Use this
instruction for problem determination. Tracing is disabled while printing is being done.

Syntax:
label CAPRINT address,event, TITLE=, CONSOLE=,ERROR=,
P1=,P2=,P3=,P4=
Required: address
Defaults: CONSOLE=$SYSPRTR
Indexable: EVENT,TITLE
Operand Description
address A two-digit hexadecimal device address.
event The label or indexed location of the event to be posted when printing has

O TITLE=

CONSOLE=

ERROR=

completed. If you do not code this operand, your program is not posted when
printing completes.

The label or indexed location of a two-word area defining the title on the trace
data listing. The first word contains the address of the title. The second word
contains the length, in bytes, of the title. If you do not code this operand, no title
appears on the trace data listing. TITLE= cannot exceed 72 bytes if you are
using the SCHANUT1 utility.

The label of the IOCB statement that defines the terminal used as the output
device for this trace print request.

The label of the instruction to be executed if an error occurs. If you do not code
this operand, control passes to the next instruction after the CAPRINT and your

program must test for errors before issuing a WAIT.

Parameter naming operands. See ‘“Using The Parameter Naming Operands
(Px=)” on page LR-12 for a detailed description of how to code these operands.

Chapter 2. Instruction and Statement Descriptions ~LR-69

CAPRINT

CAPRINT - Print Channel Attach trace data (continued)

Syntax Examples

Return Codes

LR-70

SC34-0643

1) Print trace data for the device at address 10 on $SYSPRTR.

PRINT10 CAPRINT 10, ERROR=ERROR2

2) Print trace data for the device at address FC on PRTR2. When the printing completes, the
instruction posts the event at the indexed location of address A plus the contents of #1.

PRINTFC CAPRINT FC, (A,#1) ,TITLE=HEAD, X
CONSOLE=PRTRZ2 , ERROR=E1

Return codes are returned in the first word of the task control block of the program or task
issuing the instruction. A return code indicates that the link module found an error before the
instruction performed an I/O operation. Your program must check the return code before it
issues a WAIT because a WAIT should only be used if an I/O operation is being performed.

For detailed explanations of the return codes, refer to Messages and Codes.

Return
Hex Code Explanation
0227 551 Device not started
0228 552 Stop in progress
022A 554 Device not found

O

CAREAD

CAREAD - Read from a Channel Attach port

The CAREAD instruction reads data from a Channel Attach port. The operation occurs at the
port you specify in the CAIOCB statement.

Syntax:

label

Required:
Defaults:
Indexable:

CAREAD caiocb, thisbuf,nextbuf, ERROR=,
P1=,P2=,P3=

caiocb, thisbuf, nextbuf
none
caiocb, thisbuf, nextbuf

Operand

caiocb

thisbuf

nextbuf

ERROR=

Description

The label or indexed location of the Channel Attach port I/O control block
defined for this port.

The label of a three-word area containing:

« First word - the address of the buffer receiving the data from this read

« Second word - the number of bytes to be read into the buffer

« Third word - the partition number of the buffer

The label of a three-word area containing:

» First word - the address of the buffer to be used for the next read

» Second word - the number of bytes to be read into the buffer

¢ Third word - the partition number of the buffer

The label of the instruction to be executed if an error occurs. If you do not code
this operand, control passes to the next instruction after the CAREAD, and your

program must test for errors before issuing a WAIT.

Parameter naming operands. See ‘“Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

Chapter 2. Instruction and Statement Descriptions LR-71

CAREAD

CAREAD - Read from a Channel Attach port (continued)

Syntax Examples

1) Read data from the port defined by the CAIOCB at label USERIOCB. The address of the
buffer receiving the data is in the 3-word area at label BUF1.

READ10 CAREAD USERIOCB ,BUF1,BUF2
2) Read data from the port defined by the CAIOCB at the indexed location of USER plus the

contents of #1. The address of the buffer receiving the data is in the 3-word area at the indexed
location of BUF1 plus the contents of #2.

READFC CAREAD (USER,#1), (BUF1,%2), X
: (BUF2,#1) , ERROR=E1

LR-72 SC34-0643

CAREAD

O

Return and Post Codes

CAREAD - Read from a Channel Attach port (continued)

Return codes are returned in the first word of the task control block of the program or task
issuing the instruction. A return code other than -1 indicates that the link module found an
error before the instruction performed an I/O operation. Your program must check the return
code before it issues a WAIT because a WAIT should only be used if an I/O operation is being

performed.

CAREAD post codes are returned to the first word of the CAIOCB you defined for the

instruction.

For detailed explanations of the return and post codes, refer to Messages and Codes.

Post Return
Code Hex Code Explanation
-1 FFFF -1 Successful
501 01F5 EXIO error-device not attached
502 01F6 EXIO error-busy
503 01F7 EXIO error-busy after reset
504 01F8 EXIO error-command reject
505 01F9 EXIO error-intervention required
506 01FA EXIO error-interface data check
507 01FB EXIO error-controller busy
508 01FC EXIO error-channel command not allowed
509 01FD EXIO error-no DDB found
Q 510 01FE EXIO error-too many DCBs chained
511 O1FF EXIO error-no residual status address
512 0200 EXIO error-zero bytes specified for
residual status
513 0201 EXIO error-broken DCB chain
515 0204 EXIO error-device already opened
524 020C Timeout
520 0208 Interrupt error
521 0209 Negative acknowledgement (write only)
522 020A Buffer overlay (read only)
523 020B Protocol error
022E 558 Buffer not provided
022F 559 Buffer count =0
0232 562 Write buffer not provided
0233 563 Write buffer count =0
0234 564 Users CAIOCB not linked to port
567 0237 567 System error; CAPGM terminating
0238 568 Port not opened
Channel attach codes 501-513 are the same as the EXIO
post codes 1-13, respectively.

Chapter 2. Instruction and Statement Descriptions

LR-73

CASTART

CASTART - Start Channel Attach device

Syntax Example

"R-74

SC34-0643

The CASTART instruction starts a Channel Attach device. Your program must start the
Channel Attach device before it can open any of the device’s ports.

The first CASTART instruction you issue loads the Channel Attach device handler program,
initializes the control blocks for the device, and prepares the device to accept interrupts from the
System/370. Subsequent CASTART instructions connect to the device handler program

initially loaded.
Syntax:
label CASTART address,ecb, ERROR=P1=P2=
Required: address,ecb
Defaults: none
indexable: ecb

Operand Description

address A two-digit hexadecimal device address.

ech The label or indexed location of the event to be posted upon completion of the
CASTART operation.

ERROR= The label of the instruction to be executed if an error occurs. If you do not code
this operand, control passes to the next instruction after the CASTART, and the
program must test for errors before issuing a WAIT.

Px= Parameter naming operands. See ‘“Using The Parameter Naming Operands

(Px=)"’ on page LR-12 for a detailed description of how to code these operands.

The CASTART instruction in the following example starts the device at address 10. When the
start operation ends, the instruction posts the event at $SECB.

START10

CASTART 10, $ECB

O

O

CASTART

CASTART - Start Channel Attach device (continued)

Return and Post Codes

Return codes are returned in the first word of the task control block of the program or task
issuing the instruction. A return code other than -1 indicates that the link module found an
error before the instruction performed an I/O operation. Your program must check the return
code before it issues a WAIT because a WAIT should only be used if an I/O operation is being

performed.

CASTART post codes are returned to the first word of of the event control block (ECB) you
defined in the instruction.

For detailed explanations of the return and post codes, refer to Messages and Codes.

Post Return
Code Hex Code Explanation
-1 FFFF -1 Successful
501 01F5 EXIO error-device not attached
502 01F6 EXIO error-busy
503 01F7 EXIO error-busy after reset
504 01F8 EXIOQ error-command reject
505 01FS EXIO error-intervention required
506 01FA EXIO error-interface data check
507 01FB EXIO error-controller busy
508 01FC EXIQ error-channel command not allowed
509 01FD EXIO error-no DDB found
510 O1FE EXIO error-too many DCBs chained
511 O1FF EXIO error-no residual status address
512 0200 EXIO error-zero bytes specified for
residual status
513 0201 EXIO error-broken DCB chain
516 0204 EXIO error-device already opened
524 020C Timeout
525 0200 Not a Channel Attach device
0228 552 Stop in progress
&22A 554 Device not found
567 0237 567 System error; CAPGM terminating
0239 569 Device already started
Channel Attach codes 501-513 are the same as the EXIO
post codes 1-13, respectively.

Chapter 2. Instruction and Statement Descriptions ~LLR-75

CASTOP

CASTOP - Stop a Channel Attach device v .”

The CASTOP instruction stops a Channel Attach device and disables the device from receiving
interrupts from the System/370. Your program can stop a device only if no ports are open.
When your program stops the last device, the Channel Attach device handler program

terminates.
Syntax:
label CASTOP address,ecb, ERROR=,P1=,P2=
Required: address,ecb
Defaults: none
Indexable: ecb

Operand Description

address A two-digit hexadecimal device address.

ech The label or indexed location of the event to be posted upon completion of the
CASTOP operation.

ERROR= The label of the instruction to be executed if an error occurs. If you do not code
this operand, control passes to the next instruction after the CASTOP, and your @
program must test for errors before issuing a WAIT.

Px= Parameter naming operands. See “Using The Parameter Naming Operands

LR-76 SC34-0643

(Px=)” on page LR-12 for a detailed description of how to code these operands.

CASTOP

0 CASTOP - Stop a Channel Attach device (continued)

Syntax Example

The CASTOP instruction in the following example stops the device at addféss 10. When the
operation ends, the instruction posts the event at $ECB.

STOP10 CASTOP 10, $ECB
Return and Post Codes

Return codes are returned in the first word of the task control block of the program or task
issuing the instruction. A return code other than -1 indicates that the link module found an
error before the instruction performed an I/0 operation. Your program must check the return
code before it issues a WAIT because a WAIT should only be used if an I/O operation is being
performed.

CASTOP post codes are returned to the first word of of the event control block (ECB) you
defined in the instruction.

For detailed explanations of the return and post codes, refer to Messages and Codes.

Post Return
Code Hex Code Explanation
-1 FFFF -1 Successful
) 501 01F5 EXIO error-device not attached
W 502 O1F6 EXIO error-busy
503 01F7 EXIO error-busy after reset
504 01F8 EXIO error-command reject
505 O1F9 EX!0 error-intervention required
506 O1FA EXIO error-interface data check
507 01FB EXIO error-controller busy
508 01FC EXIO error-channel command not allowed
509 O1FD EXIO error-no DDB found
510 O1FE EXIO error-too many DCBs chained
511 O1FF EXIO error-no residual status address
512 0200 error-zero bytes specified for
residual status
513 0201 EXIO error-broken DCB chain
516 0204 EXIO error-device already opened
524 020C Timeout
0227 551 Device not started
0228 552 Stop in progress
0229 553 Device in use
022A 554 Device not found
567 0237 567 System error; CAPGM terminating
023A 570 Device in diagnostic mode
599 0257 $CAPGM has ended
Channel attach codes 501-513 are the same as the EXIO
post codes 1-13, respectively.

Chapter 2. Instruction and Statement Descriptions LR-77

CATRACE

CATRACE - Control Channel Attach tracing , @

Syntax Examples

LR-78

SC34-0643

The CATRACE instruction controls the collection of I/O trace data for a Channel Attach
device. You can turn tracing on or off.

This instruction collects Channel Attach trace data in processor storage which can slow system
performance. For this reason, you should use the CATRACE instruction primarily for problem
determination.

Syntax:
label CATRACE address,ENABLE=ERROR=,P1=
Required: address
Defaults: ENABLE=YES
Indexable: none
Operand Description
address A two-digit hexadecimal device address.

ENABLE= YES (the default), to turn on or enable tracing.
NO, to turn off or disable tracing.

ERROR= The label of the instruction to be executed if an error occurs. If you do not code
this operand, control passes to the next instruction after the CATRACE and
your program must test for errors.

P1 Parameter naming operand. See “Using The Parameter Naming Operands

(Px=)" on page LR-12 for a detailed description of how to code this operand.

1) Turn on tracing for the device at address 10.

TRACE10 CATRACE 10

2) Turn off tracing for the device at address FC. If an error occurs, the instruction at label E1
receives control.

TRACEFC CATRACE FC,ENABLE=NO, ERROR=E

CATRACE

0 CATRACE - Control Channel Attach tracing (continued)

Return Codes

Return codes are returned in the first word of the task control block of the program or task
issuing the instruction. A return code indicates that the link module found an error before the
instruction performed an I/O operation. Your program must check the return code before it
issues a WAIT because a WAIT should only be used if an I/O operation is being performed.

For detailed explanations of the return codes, refer to Messages and Codes.

Return
Hex Code Explanation
0227 551 Device not started
0228 552 Stop in progress
022A 554 Device not found
0235 565 Trace already on
0238 566 Trace already off

Chapter 2. Instruction and Statement Descriptions LR-79

CAWRITE
CAWRITE - Write to a Channel Attach port @

The CAWRITE instruction sends data to a Channel Attach port. The operation occurs at the
port you specify in the CAIOCB statement.

Syntax:
label CAWRITE caiocb,buffer, ERROR=,P1=,P2=
Required: caioch,buffer
Defaults: none
Indexable: caiocb,buffer
Operand Description
caioch The label or indexed location of the Channel Attach port I/O control block
defined for this port.
buffer The label of a three-word area containing:
o First word - the address of the buffer containing the data to be sent.
« Second word - the number of bytes to be sent. —
\
¢ Third word - the partition number of the buffer. If this word is zero, the b
system assumes the buffer is in the partition in which you loaded your
program.
ERROR= The label of the instruction to be executed if an error occurs. If you do not code
this operand, control passes to the next instruction after the CAWRITE, and
' your program must test for errors before issuing a WAIT.
Px= Parameter naming operands. See “Using The Parameter Naming Operands

(Px=)" on page LR-12 for a detailed description of how to code these operands.

Syntax Examples

1) Write data to a port defined by the CAIOCB at label USERIOCB. BUFA is the label of the
3-word area that contains the address of the buffer from which the data is to be sent.

WRITE10 CAWRITE USERIOCB, BUFA

2) Write data to a port defined by the CAIOCB at a location specified in #1. The address of
the buffer containing the data to be sent is specified in a 3-word area located at an address in
#2.

i

WRITEFC CAWRITE #1,#2, ERROR=ERROR

LR-80 8C34-0643

CAWRITE

0 CAWRITE - Write to a Channel Attach port (continued)

Return and Post Codes

Return codes are returned in the first word of the task control block of the program or task
issuing the instruction. A return code other than -1 indicates that the link module found an
error before the instruction performed an I/O operation. Your program must check the return
code before it issues a WAIT because a WAIT should only be used if an I/O operation is being
performed.

CAWRITE post codes are returned to the first word of of the CAIOCB you defined for the
instruction.

For detailed explanations of the return and post codes, refer to Messages and Codes.

Post Return
Code Hex Code Explanation
-1 FFFF -1 Successful
501 01F5 EXIO error-device not attached
502 01F6 EXIO error-busy
503 01F7 EXIO error-busy after reset
504 01F8 EXIO error-command reject
505 01F9 EXIO error-intervention required
506 01FA EXIO error-interface data check
507 01FB EXIO error-controller busy
508 O1FC EXIO error-channel command not allowed
509 01FD EXIO error-no DDB found
510 01FE EXIO error-too many DCBs chained
511 O1FF EXIO error-no residual status address
512 0200 EXIO error-zero bytes specified for
residual status
513 0201 EXIO error-broken DCB chain
516 0204 EXIO error-device already opened
520 0208 Interrupt error
521 0209 Negative acknowledgement (write only)
522 020A Buffer overlay (read only)
523 020B Protocol error
524 020C Timeout
022E 558 Buffer not provided
022F 559 Buffer count=0
0232 562 Write buffer not provided
0233 563 Write buffer count = 0
0234 564 Users CAIOCB not linked to port
567 0237 567 System error; CAPGM terminating
0238 568 Port not opened
Channel attach codes 501-513 are the same as the EXIO
post codes 1-13, respectively.

0o

Chapter 2. Instruction and Statement Descriptions LR-81

COMP

COMP - Define location of message text

The COMP statement points to a data set or module that contains formatted program messages.
The MESSAGE, READTEXT, GETVALUE, and QUESTION instructions refer to the label of
the COMP statement when retrieving program messages. ’

The COMP statement also assigns a four-character prefix to the messages your program obtains.
This prefix, the number of the message being retrieved, and the message text are the
components that make up a complete program message.

You must code at least one COMP statement in a program that retrieves program messages.
The message utility, SMSGUT1, formats the messages you write for your programs. Refer to
the Operator Commands and Utilities Reference for a description of this utility. See Appendix
E, “Creating, Storing, and Retrieving Program Messages”’ on page LR-615 for more

information.
Syntax:
label COMP “idxx',name, TYPE=
Required: label,’idxx’,name
Defaults: TYPE=STG
Indexable: none

Operand Description

label The label you specified for the COMP= keyword on a MESSAGE,
READTEXT, GETVALUE, or QUESTION instruction.

‘idxx’ A four-character prefix that identifies the messages your program obtains
through this COMP statement. The system displays this prefix with the message
text when you code MSGID=YES on a MESSAGE, READTEXT, GETVALUE
or QUESTION instruction.

name The name of the module or data set that contains the formatted messages.

For a module, this is the name you assigned to the module with the STG option
of the message utility, $SMSGUT1. This name can be up to eight characters long.

Note: You must link-edit the message module with your program.

For a disk or diskette data set, specify the name in the form DSx, where “x”
indicates the position of the message data set in the list of data sets you defined
on the PROGRAM statement. DS1, for example, refers to the first data set in
the list. DS2 refers to the second data set in the list, and so on. The valid range
for “x”isfrom 1 to 9.

LR-82 SC34-0643

O

COoMP

COMP - Define location of message text (continued)

Syntax Examples

If your program contains a DSCB instruction, you can use the label you coded on
the DS#= operand for this operand.

TYPE= STG (the default), if the messages reside in a module that you link-edit with your
program.

DSK, if the messages reside in a disk or diskette data set.

1) The COMP statement in this example points to the message module PROMPTS. The
MESSAGE instruction, which retrieves the first message in PROMPTS, refers to the label of the
COMP statement. Because the MESSAGE instruction contains MSGID=YES, the system
displays the prefix PROM and the number of the message before the message text.

MESSAGE 1,COMP=A,SKIP=1,MSGID=YES
PROGSTOP
A COMP "PROM' , PROMPTS , TYPE=STG
2) The COMP statement in this example points to the message data set MESSAGE]1 on volume

EDX002. The GETVALUE instruction, which retrieves the fifth message from MESSAGE],
refers to label of the COMP statement.

MESSAGE PROGRAM START,DS=(MESSAGE1,EDX002)

GETVALUE INPUT,5,SKIP=1,COMP=B
PROGSTOP
B COMP 'MSG1',DS1, TYPE=DSK

Chapter 2. Instruction and Statement Descriptions [LR-83

CONCAT

CONCAT - Concatenate two character strings

The CONCAT instruction concatenates two character strings, or a character string and a
graphic-control character. The instruction places the contents of string2 to the right of any
contents in stringl. The resulting character string remains in string1.

CONCAT changes the character count of stringl after the operation to reflect the original
contents of stringl plus the concatenated data from string2. Truncation on the right occurs if
the combined counts exceed the physical length of string1.

Note: To use the CONCAT statement, you must specify an AUTOCALL to $AUTO,ASMLIB
during program preparation (link-edit.)

Syntax:
label CONCAT string1,string2, RESET,REPEAT=,P1=,P2=
Required: text1,text2
Defaults: REPEAT=1
Indexable: none

Operand Description

string1 The label of a data string to which the contents of string2 are concatenated.

string2 The data to be concatenated to stringl. You can code the label of a character
string, a one-character constant (left-justified, for example C‘A’ or X‘07°), or a
symbol representing one of the following ASCII graphic-control characters: GS,
BEL, ESC, ETB, ENQ, FF, CR, LF, SUB, or US.

RESET Resets the character count of stringl to zero before starting the CONCAT
operation. The count is not reset if you omit this operand.

REPEAT= The number of times string?2 is to be concatenated to stringl. For example, if
string2 contains C* ’ and you code REPEAT=S5, five blanks are concatenated to
the contents of stringl. Code a positive integer for this operand.

Px= Parameter naming operands. See ‘“Using The Parameter Naming Operands

LR-84 SC34-0643

(Px=)" on page LR-12 for a detailed description of how to code these operands.

@

O

C

CONCAT

CONCAT - Concatenate two character strings (continued)

Syntax Examples

1) Concatenate ESC to TEXT1. Reset the character count of TEXT1 before the operation.

CONCAT TEXT1,ESC,RESET

2) Concatenate the control character FF to TEXT1.

CONCAT TEXT1,FF

Chapter 2. Instruction and Statement Descriptions LR-85

CONTROL

CONTROL - Perform tape operations

LR-86

SC34-0643

The CONTROL instruction allows you to execute tape functions. You can space forward or
backward a specified number of records or files (a file is the data between the beginning
tapemark and the ending tapemark). You can also write tapemarks, rewind the tape, erase the
tape, set the tape drive offline, or rewind the tape and set the tape drive offline. With the 4968
tape unit, the CONTROL instruction allows you to write at a density of 1600 bits per inch or
3200 bits per inch.

In addition, you can use the CONTROL instruction to close tape data sets. You should close all
tape data sets. If you do not close data sets, you must control the tape drive directly with the
various CONTROL functions.

When you close an SL (standard-label) output tape, the CONTROL instruction writes the
following trailer label: TM EOF1 TM TM. The instruction writes the following label when you
close an NL (nonlabeled) tape: TM TM.

Input tapes are automatically rewound as the result of a close operation. An attempt to write a
tapemark to an unexpired file is an error condition.

If you have two tape drives on one controller and they receive concurrent rewind requests, one
tape drive waits for the other to complete. To allow concurrent rewinds to multiple standard
label tape drives on one controller, you must issue the “CONTROL DSxx,REW” instruction to
each open tape drive.

Syntax:

label CONTROL DSx,type,count,END=,ERROR=WAIT=,P1=,P3=

Required: DSx,type
Defaults: count=1,WAIT=YES

Indexable: count
Operand Description
DSx The data set you want to use. Code DSx, where “x” is the relative number of

the data set in the list of data sets you defined on the PROGRAM statement.
DS1, for example, points to the first data set in the list; DS2 points to the second
data set, and so on.

You can substitute a DSCB name defined by a DSCB statement for this operand.

type The CONTROL function to be performed. The following functions are
available:
FSF Forward space file (tapemark). Regardless of where the tape is

currently positioned, the tape searches forward the number of tape
marks indicated in the count operand. If the specified number of

CONTROL

0 CONTROL - Perform tape operations (continued)

BSF

FSR

BSR

WTM

REW

O ROFF

OFF

CLSRU

CLSOFF

DEN16

tapemarks indicated by the count field is not on the tape, the
positioning of the tape is unpredictable.

Backward space file (tapemark). The tape searches backward until
the next tapemark is read. The default value for count is 1. If the
tape is at load point when your program issues this command, the
load point return code is returned.

Forward space record. The tape will space forward past the number
of records specified in the count field. The default value for count is
1.

Backward space record. The tape spaces backward past the number
of records specified in the count field. The default value for count is
1. If the tape is at load point when your program issues this
command, the load point return code is returned.

Write tapemark. This function writes a tapemark on the tape. If the
count field is coded, successive tapemarks are written according to
the count value.

Rewind tape to load point (beginning of tape).
Rewind tape and set the tape drive to offline.
Set tape drive to offline.

Close tape data set and allow it to be reused (reopened by another
program or task without an intervening §VARYON command). For
standard-label tapes, the tape is repositioned to the HDRI1 label of
the data set. For nonlabeled tapes, the tape is positioned to the
beginning of the first data record. You can use $VARYON to
change the file number being processed or you can use a CONTROL
function.

Once you close a tape data set, you must call DSOPEN to open the
data set before you can use it again. You can call DSOPEN with the
CALL instruction or invoke the subroutine implicitly by having the
name of the data set in another program header.

Close tape data set, rewind tape, and set the tape drive to offline.

Sets the density of the 4968 tape unit to 1600 bits per inch. This
function is not valid for other tape devices.

To set the density, the tape must be at the load point.

Chapter 2. Instruction and Statement Descriptions ~LR-87

CONTROL
CONTROL - Perform tape operations (continued) 0

DEN32 Sets the density of the 4968 tape unit to 3200 bits per inch. This
function is not valid for other tape devices.

To set the density, the tape must be at the load point.

ERASE Erases forward from the point where the tape is positioned to a point
five feet beyond the end-of-tape marker (EOT). The function then
rewinds the tape and unloads it.

The system sends out a device interrupt when the tape is at the load
point and ready.

count The number of files or records to be skipped or the number of tapemarks to be
written. You can code a constant or the label of a count value.

END= The label of the first instruction of the routine to be invoked if the system detects
an “end-of-data-set” (EOD) condition (return code=10). If you do not specify
this operand, the system treats an EOD as an error. Do not code this operand if
you code WAIT=NO.

If END is not coded, a tapemark being encountered is also treated as an error.
The physical position of the tape, under this condition, is the read/write head
position immediately following the tapemark. See the CONTROL close
functions for the repositioning of the data set. Remember also that the count
field might not be decremented to zero.

\

C

ERROR= The label of the first instruction of the routine to be invoked if an error condition
occurs during this operation. If you do not specify this operand, control passes
to the next sequential instruction in your program and you must test the return
code in the first word of the task control block for errors. Do not code this
operand if you code WAIT=NO.

WAIT= If WAIT is not coded, or if it is coded as WAIT=YES, the current task will be
suspended until the operation is complete. If the function selected is CLSRU or
CLSOFF, then WAIT=YES is the only valid option for this operand, and any
other option will be ignored.

For functions other than close, if the operand is coded as WAIT=NO, control is
returned after the operation is initiated and a subsequent WAIT DSx must be
issued in order to determine when the operation is complete.

END and ERROR cannot be coded if WAIT=NO is coded. You must
subsequently test the return code in the Event Control Block (ECB) named DSx
or in the first word of the task control block (TCB) (referred to by ‘taskname”’).
Two codes are of special significance. A -1 indicates a successful end of
operation. A +10 indicates an ‘End of Data Set’ and may be of logical
significance to the program rather than being an error. For programming
purposes, any other return codes should be treated as errors.

LR-88 SC34-0643

O

CONTROL

CONTROL - Perform tape operations (continued)

Px= Parameter naming operands. See ‘“Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

Syntax Examples

1) The instruction closes the tape data set specified by DS1, rewinds the tape, and sets the tape
drive offline.

CONTROL DS1,CLSOFF

2) The instruction causes the tape data set specified by DS2 to be spaced forward 16 data
records.

CONTROL DS2,FSR, 16

Chapter 2. Instruction and Statement Descriptions LR-89

CONTROL

CONTROL - Perform tape operations (continued)

Coding Example

LR-90 5C34-0643

The following program uses the CONTROL FSF command, at label C1, to advance the “master
name file”” to the third data set on a nonlabeled tape. The program asks the operator if he or
she wants to search the file for a particular name. If the answer is ‘yes’, the program requests
the file name.

At label C2, a CONTROL FSR command advances the tape file to record 90. If the end-of-file
is reached before the tape is positioned to the target record, control passes to an error routine
(not shown).

The program then reads a record and compares the name field in it to the name the operator
entered. This sequence continues until the program finds the name the operator entered or until
the end-of-file is reached.

Assuming the program finds the name, it prints the name (and accompanying file information)
and the record for the names before and after it.

If the name is the first on the file (INDEX=1), the program can only print the name and the
record that immediately follows it. Therefore, the CONTROL BSR command, at label C3, uses
the P3= parameter naming operand to determine dynamically how many records to back space.
The count is 1, if the name is in the first data record on the file, or 2, if the name is not in the
first data record on the file.

A DO loop at label LOOP?2 reads the name records and prints them. If the end-of-file is
reached before the last record can be printed, the program passes control to an error routine
(not shown).

At label C4, the tape is backspaced past the tapemark preceding the name file and at label C5,
the tape is positioned to the first record on the file. Control then passes to the beginning of the
program.

O

CONTROL

CONTROL - Perform tape operations (continued)

FILESRCH PROGRAM

START,DS= (NAMEFILE, TAPEO1)

START EQU *
C1 CONTROL ~ DS1,FSF, 3, ERROR=DS 1ERROR
INQUIRE EQU *
QUESTION 'aDO YOU WISH TO SEARCH THE MASTER NAME FILE ?',NO=END
PRINTEXT '@PRECEEDING AND SUCCEEDING NAMES WILL ALSO BE LISTED'
READTEXT NAME, '®ENTER SUBJECT NAME UP TO 12 CHARACTERS'
c2 CONTROL DS1,FSR,90,END=DS1ENDF 1, ERROR=DS 1ERROR
MOVE INDEX, 0
LOOP EQU *
ADD INDEX, 1
READ DS1,BUFR, END=DS 1ENDF2
IF (BUFR,NE,NAME, (12,BYTES))
GOTO LOOP
ENDIF
IF (INDEX,LE, 1)
PRINTEXT 'ANAME AT BEGINNING OF FILE - ONLY 2 LISTED'
MOVE COUNT, 2
ELSE
MOVE COUNT, 3
MOVE INDEX,2
ENDIF
c3 CONTROL DS1,BSR,2,P3=INDEX
DO 1,TIMES,P1=COUNT
READ DS1,BUFR, END=LASTONE
MOVE BUFR, TEXT, (50,BYTES)
PRINTEXT TEXT,SKIP=1
ENDDO
c4 CONTROL DS1,BSF
c5 CONTROL DS1,FSF
GOTO INQUIRE
3k 3k 3k sk sk sk sk ok 3k ok sk sk sk sk 3k sk ok 3k sk %k ok sk ok 3k 3k ok %k 5K %K 3k sk ok ok ok K Kk %k
DATA X'3232"
TEXT DATA s0¢' !
NAME TEXT LENGTH=12

DS1ENDV EQU

DS1ERROR EQU

*

Chapter 2. Instruction and Statement Descriptions LR-91

CONTROL
CONTROL - Perform tape operations (continued) (O

Tape Return Codes and Post Codes

Tape return codes are returned in the first word of the task control block of the program that
issues the instruction.

Code Condition

-1 Successful completion.

1 Exception but no status.

2 Error reading cycle steal status.
3 1/0 error; retry count exhausted.
4
6

Error issuing READ CYCLE STEAL STATUS.
1/0 error issuing /0 operations.

10 End of data; a tape mark was read.
21 Wrong length record.

22 Device not ready.

23 File protected.

24 End of tape.

25 Load point.

26 Unrecoverable | /O error.

27 SL data set not expired.

28 Invalid blocksize.

29 Offline, in-use, or not open.
30 Incorrect device type.

31 Close incorrect address.

32 Block count error during close.
33 Close detected on EQV1.

The following post codes are returned to the event control block (ECB) of the calling program.

Post

Code Condition

-1 Function successful.

101 TAPEID not found.

102 Device not offline.

103 Unexpired data set on tape.
104 Cannot initialize BLP tapes.

LR-92 SC34-0643

O

CONVTB

CONVTB - Convért numeric string to EBCDIC

The CONVTB instruction converts both integer and floating-point values to an EBCDIC
character string. You can also convert floating-point values to E notation.

Syntax:
label CONVTB opnd1,opnd2,PREC=FORMAT=P1=,P2=
Required: opnd1,opnd2
Defaults: PREC=S,FORMAT=(6,0,1)
Indexable: opnd1,opnd2
Operand Description
opndl The label of a storage area where the converted results are to be placed. The
system stores the results beginning at the label referred to by this operand. The
converted results are in EBCDIC.
Opnd1 must be a different storage location than opnd?2.
opnd2 The label of a storage area containing the value to be converted to EBCDIC.
You must know the form (precision) of the data. The following opnd2 types are
supported:
Single-precision integer -- 1 word
Double-precision integer -- 2 words
Single-precision floating-point -- 2 words
Extended-precision floating-point -- 4 words
PREC= The form of opnd2. The valid precisions are:
S - Single-precision integer
D - Double-precision integer
F - Single-precision floating-point
L - Extended-precision floating-point
FORMAT= The format of the value after the system converts it:
(w,d,t)

w Width of the EBCDIC field in bytes. If the field will contain a decimal
point or sign character (+ or -), include this in the count.

d Number of digits to the right of the decimal point. This is valid for
floating-point variables only. Code a O for integer values.

Chapter 2. Instruction and Statement Descriptions ~LR-93

CONVTB
CONVTB - Convert numeric string to EBCDIC (continued) | @

t Type of EBCDIC Data. Code I for integer data, F for floating-point
data (XXXX.XXX), or E for a number in exponent (E) notation. See
the value operand under the DATA/DC statement for a description of E
notation format.

Px= Parameter naming operands. See “Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

Notes:
1. Conversion routines assume that the type of variable to be converted is specified by the
PREC operand. If the PREC operand is not specified, and if the variable is not of the

default precision, incorrect results can occur.

2. Exponent (E) notation should be used for floating-point numbers greater than 1012,
Otherwise, a conversion error will occur.

Syntax Examples

1) The CONVTB instruction in the following example uses an integer value.
CONVTB TEXTA,VALUE,PREC=S,FORMAT=(8,0,1I)

VALUE DATA F'12345"
TEXTA TEXT LENGTH=8

The value 12345 in the variable VALUE is converted to EBCDIC at TEXTA in the following
format (b represents a blank):

bbb12345

If conversion of double-precision integers is required, PREC=D is coded.

2) In this example, the CONVTB instruction uses floating-point values.

CONVTB TEXTB,VALUE, PREC=F,FORMAT=(15,4,F)
CONVTB TEXT1,VALUE1, PREC=L,FORMAT= (20, 14,E)

VALUE DATA E'62421.16"
VALUE1 DATA L'4926139.2916"'
TEXTB TEXT LENGTH=15

TEXT1 TEXT LENGTH=20

LR-94 5C34-0643

CONVTB

O CONVTB - Convert numeric string to EBCDIC (continued)

The result of the CONVTB operation is (b represents a blank):
TEXTB=bbbbb62421.1600

TEXT1=b.49261392916000Eb07
Coding Example

This example demonstrates one use of the CONVTB instruction.

HEADER EQU *
READTEXT TITLE,TITLEMSG

PRINTEXT SKIP=4
*

CONVERT EQU *
CONVTB ENUMEXP , BNUMEXP
PRINTEXT 'aNUMBER OF EXPERIMENTS CONDUCTED :',SKIP=1
PRINTEXT ENUMEXP

*
CONVTB EMANHRS , BMANHRS , PREC=F , FORMAT= (10,2, F)
PRINTEXT 'aTOTAL MANHOURS EXPENDED ON PROJECT :', SKIP=1

PRINTEXT EMANHRS

CONVTB EAVERAGE , BAVERAGE , PREC=L, FORMAT= (20, 14,E)
PRINTEXT 'QAVERAGE PENETRATION IN CONCRETE (MILLIMETERS):'

*
C} PRINTEXT EAVERAGE

BNUMEXP DATA F'o’ BINARY VALUE

- # EXPERIMENTS
ENUMEXP TEXT LENGTH=6 EBCDIC VALUE - # EXPERIMENTS
BMANHRS DATA L'0! BINARY VALUE - MAN-HOURS USED
EMANHRS TEXT LENGTH=8 EBCDIC VALUE - MAN-HOURS USED
BAVERAGE DATA L'o’ BINARY VALUE - AVERAGE RESULT
EAVERAGE TEXT LENGTH=20 EBCDIC VALUE - AVERAGE RESULT
TITLE TEXT LENGTH=40
TITLEMSG TEXT 'ENTER A 40 CHARACTER TITLE FOR YOUR REPORTS'

If, for example, the initial value of BNUMEXP is X‘0038’, the value of BMANHRS is
X‘431B0CO00’, and the value of BAVERAGE is X‘4087915E8CAR84482’, the results of the
program would appear as follows:

NUMBER OF EXPERIMENTS CONDUCTED : 56

TOTAL MAN-HOURS EXPENDED ON PROJECT : 432.75

AVERAGE PENETRATION IN CONCRETE (MILLIMETERS) : .52956191000000E+00

Chapter 2. Instruction and Statement Descriptions LR-95

CONVTB
CONVTB - Convert numeric string to EBCDIC (continued)

7

Return Codes

The return codes are returned in the first word of the task control block (TCB) of the program
or task issuing the instruction. The label of the TCB is the label of your program or task
(taskname).

Code Description

-1 Successful completion
3 Conversion error

AN

LR-96 sC34-0643

CONVTD

O

CONVTD - Convert EBCDIC string to numeric string

The CONVTD instruction converts an EBCDIC character string to an integer or floating-point

numeric string.

Svntax:
label CONVTD opnd1,opnd2,PREC=FORMAT=P1=P2=
Required: opnd1,opnd2
Defaults: PREC=S,FORMAT=(6,0,1)
Indexable: opnd1,opnd2
Operand Description
opnd1 The label of a storage area where the converted results are to be placed. Opndl
must be a different storage location than opnd2. Make sure that you reserve
enough space to accommodate the results.
Single-precision integer -- 1 Word
Double-precision integer -- 2 Words
Single-precision floating-point -- 2 Words
@ Extended-precision floating-point -- 4 Words
i
= opnd2 A label that points to the first character of the EBCDIC character string. You

can code the following range of data values:

Single-precision integer:
Double-precision integer:
Single-precision floating-point:
Extended-precision floating-point:

-32768 to 32767
-2147483648 to 2147483647
6 decimal digits*

15 decimal digits*

*Valid range is from 10-85 through 1075

The EBCDIC field should contain only those characters that are valid for the operation being

performed. For example:
« Integers—

Leading blanks

Sign character + or -
Digits 0 through 9
Trailing blanks

LR-97

Chapter 2. Instruction and Statement Descriptions

CONVTD

CONVTD - Convert EBCDIC string to numeric string (continued) O
Floating-point—
Leading blanks
Sign character + or -
Digits 0 through 9

Decimal point
The character E, if E notation, followed by a sign character, + or -, or the digits O
through 9.

If the system finds any other character during the conversion, it takes the following action:

LR-98 SC34-0643

If the delimiters , or / are found within a string:

The system stops the conversion and returns a “‘successful completion” code (-1).
Opnd1 contains the data the system converted before it found the delimiter.

If the delimiter , or / or * or . is the first character found in a string:

The system returns a ‘““field omitted” code (2). The variable you defined in opnd1 (the
target field) remains unchanged.

If all blanks are found in opnd?2:
The system places zeros in opnd1 and returns a ‘“‘successful completion” code (-1). A
If any other character (for example, an alphabetic character) is found within a string:

The system returns a code of 1, “invalid data encountered during conversion.” Data
converted before the system found the invalid character is stored in opnd1.

If only an invalid character is found in opnd2 or the value being converted is too large or too
small:

The system returns a ‘“‘conversion error” (3). The contents of the variable you defined
for opnd1 (the target field) are unknown.

CONVTD
0 CONVTD - Convert EBCDIC string to numeric string (continued)

The following table shows the results of several conversion operations using the default format

(6,0,I):
Return
Input Code Output
12 -1 12
12, -1 12
12/ -1 12
(blanks) -1 0
12C 1 12
12.B 1 12
12C 1 12
, 2 (target field unchanged)
/ 2 (target field unchanged)
* 2 (target field unchanged)
. 2 (target field unchanged)
A 3 (target field unchanged)
1234567 3 (value of target field unknown)
PREC= The form of opndl. The valid precisions are:
S - Single-precision integer
D - Double-precision integer
F - Single-precision floating-point
O L - Extended-precision floating-point
FORMAT= The format of the value to be converted:
(w,d,t)
w Width of the EBCDIC field in bytes. If the field will contain a decimal
point or sign character (+ or -), include this in the count.
d Number of digits to the right of the decimal point. This option is valid
only for floating-point variables. Code a O for integer values.
t Type of EBCDIC Data. Code I for integer data, F for floating-point
data (XXXX.XXX), or E for a number in exponent (E) notation. See
the value operand under the DATA /DC statement for a description of E
notation format.
p Px= Parameter naming operands. See “Using The Parameter Naming Operands

(Px=)" on page LR-12 for a detailed description of how to code these operands.

Chapter 2. Instruction and Statement Descriptions LR-99

CONVTD

CONVTD - Convert EBCDIC string to numeric string (continued)

Syntax Examples

1) The following CONVTD instruction uses an integer value.

CONVTD VALUE, TEXT, PREC=S,FORMAT= (8,0, I)

VALUE DATA F'O’
TEXT TEXT '12345' ,LENGTH=8

Note: The value in EBCDIC, 12345, will be converted to a single-precision binary value and
stored at VALUE as X‘3039’. Double-precision integers can also be converted by using the
PREC=D parameter and using a 2-word variable at VALUE.

2) The CONVTD instruction in this example uses floating-point values.

CONVTD VALUE,TEXT1,PREC=F,FORMAT=(5,1,F)
CONVTD VALUE1,TEXT2,PREC=L,FORMAT=(15,0,E)

.

VALUE DATA 2F'0’

VALUE"1 DATA 4F'0"
TEXT1 TEXT '100.5',LENGTH=10
TEXT?2 TEXT '0.1005E3"' ,LENGTH=15

Note: Both values shown in the TEXT statements result in the same binary data values being
stored in the two DATA statements. The only difference is that at VALUEI, an
extended-precision value is stored.

Coding Example

The following example demonstrates one use of the CONVTD instruction:

CONVERT EQU *
READTEXT UNIT,'AENTER UNIT NUMBER'
CONVTD BUNIT,UNIT,PREC=S,FORMAT=(6,0,1I)

READTEXT MILES, '®ENTER MILES FROM FIRE '
CONVTD BMILES,MILES,PREC=F,FORMAT=(10,4,F)

READTEXT RESPONSE, '®ENTER UNIT RESPONSE TIME '

CONVTD BRESPONS,RESPONSE, PREC=L, FORMAT=(15, 8,E)
UNIT TEXT LENGTH=6 EBCDIC VALUE/UNIT I.D.
BUNIT DATA F'0’ BINARY VALUE/UNIT I.D.
MILES TEXT LENGTH=10 EBCDIC VALUE/MILES FROM FIRE
BMILES DATA D'O’ BINARY VALUE/MILES FROM FIRE
RESPONSE TEXT LENGTH=15 EBCDIC VALUE/RESPONSE TIME
BRESPONS DATA 2D'0! BINARY VALUE/RESPONSE TIME

LR-100 SC34-0643

C

C

O

CONVTD

CONVTD - Convert EBCDIC string to numeric string (continued)

Assuming that unit #6553 took 42.45292378 minutes to respond to an alarm for a fire 41.5429
miles from the station, the results of the CONVTD operations would be:

opndl Before After

BUNIT X‘0000’ X‘1999’

BMILES X‘00000000’ X‘42298 AFB’

BRESPONS X“0000000000000000’ X‘422AT3F2D016AE42’

opnd2 Before After

UNIT 6553bb X‘F6FSF5F34040°

MILES 41.5429bbb X‘FAF14BF5F4F2F9404040°

RESPONSE 42.45292378bbbb X‘F4F24BF4F5F2F9F2F3F7F840404040°

Return Codes

The return codes are returned in the first word of the task control block (TCB) of the program
or task issuing the instruction. The label of the TCB is the label of your program or task
(taskname).

Code Description
-1 Successful completion

1 Invalid data encountered during conversion
2 Field omitted
3 Conversion error

Chapter 2. Instruction and Statement Descriptions LR-101

COPY

COPY - Copy source code into your source program @

System Equates

LR-102

SC34-0643

The COPY statement copies source code into your source program. The operation occurs each
time you compile or assemble the program containing the COPY statement.

The source code you copy must be in a disk or diskette data set. The source code must not
contain a COPY statement. The system copies the source code into your source program
immediately following the COPY statement.

To prevent the system from printing the source code in your listing each time you compile your
program, code PRINT OFF before the COPY statement and PRINT ON following it. See the

program example given in ‘“PRINT - Control printing of a compiler listing” on page LR-321 for
more detail.

Syntax:
blank COPY name
Required: name
- Defaults: none
Indexable: none
Operand Description
name The name of the data set on disk or diskette that contains the source code to be @

copied into your source program.

Notes:

1. When using the SEDXASM compiler, if the source code to be copied is not
on volume ASMLIB, you must code a *COPYCOD statement in the $EDXL
data set to indicate on what volume the source code resides. $SEDXL is on
volume ASMLIB. Refer to the Customization Guide for an explanation of
the *COPYCOD statement.

2. For details on using the COPY statement with the Series/1 macro assembler,
refer to IBM Series/1 Event Driven Executive Macro Assembler
(5719-ASA).

3. For details on using the COPY statement with the System/370 macro
assembler, refer to the IBM System/370 Program Preparation Facility,
SB30-1072.

This section contains the equate names for some commonly used system control blocks. Coding
the COPY statement with the equate name gives you a listing of the control block. You can use
the equates in the control block listing to refer to and obtain data from fields within the control
block. When you compile programs with the host or Series/1 macro assemblers, the system

O

O

COPY

COPY - Copy source code into your source program (continued)

includes the following equate names in your program when it encounters a PROGRAM
statement: PROGEQU, TCBEQU, DDBEQU, CMDEQU, and DSCBEQU.

The Internal Design contains a complete list of the control blocks in the system. The control
block equates reside on volume ASMLIB and end with the characters “EQU”.

BSCEQU

CCBEQU

CMDEQU

DDBEQU

DDODEFEQ

Provides a map of the control block built by the BSCLINE system definition
statement.

Note: BSCEQU is also the name of a macro in the macro libraries that the host
and Series/1 macro assemblers use. Do not attempt to copy BSCEQU when

using either of the macro assemblers.

Provides a map of the control block (CCB) built by the TERMINAL system
definition statement.

Provides a map of the supervisor’s emulator command table built by the
PROGRAM statement.

Provides a map of the device data block (DDB) built by the DISK system
definition statement.

Provides a table that defines the format of disk directory control entries (DCEs)
and member entries.

Chapter 2. Instruction and Statement Descriptions - [LR-103

COPY

COPY - Copy source code into your source program (continued)

LR-104

SC34-0643

DSCBEQU

ERRORDEF

FCBEQU

IAMEQU

PROGEQU

TCBEQU

STOREQU

Provides a map of the data set control block (DSCB) built by the PROGRAM or
DSCB statements.

Provides equates for use in checking the return codes from the LOAD, READ,
WRITE, and SBIO instructions.

Provides a map of an Indexed Access Method file control block (FCB) for use
with the EXTRACT subroutine.

Provides a set of symbolic parameter values for use in constructing parameter
lists for calls to Indexed Access Method subroutines.

Provides maps of the program header, built by the PROGRAM statement, and
the supervisor’s communication vector table (CVT).

Provides a map of the task control block (TCB) built by the TASK or
PROGRAM statements.

Provides a map of the storage control block built by the STORBLK statement.

COPY

0 COPY - Copy source code into your source program (continued)

Coding Example

The following example uses a COPY statement to copy the source code labeled CHKBUEFR into
a source program.

CALL CHKBUFR, BUFRSIZE, (EOBUFFER)

COPY CHKBUFR

When the source program is compiled, the COPY statement copies the following code into the
source program:

SUBROUT CHKBUFR,BUFFLEN, BUFFEND
SUBTRACT BUFFLEN, 1

IF (BUFFLEN, GE, MAX)
GOTO (BUFFEND)

ENDIF

ADD BUFFLEN, 1
RETURN

MAX DATA F'256'

Chapter 2. Instruction and Statement Descriptions ~LR-105

CSECT
CSECT - Identify object module segments @

The CSECT instruction names a program module to identify its location within the program
output from $SEDXLINK.

The CSECT instruction is optional and if it is omitted, the program module has a blank name.

Program modules assembled by SEDXASM can have multiple CSECT instructions. However,
all CSECTs, after the first one, generate ENTRY instead of CSECT definitions.

Program modules assembled by the Series/1 Macro Assembler or host assembler are also
permitted to have multiple CSECT instructions in a single assembly. These assemblers will
generate a separate program module for each uniquely-named CSECT.

Syntax:
label CSECT
Required: label
Defaults: none
Indexable: none
Operand Description
label The label must be the name of the program module for the first CSECT. For Q

following CSECTs the label must be an entry name.

LR-106 SC34-0643

CSECT

w CSECT - Identify object module segments (continued)

Coding Example

In module A, the first CSECT statement signifies that the program can be entered at label
GETTIME. In module B, the CSECT statement defines label GOTTIME as being an entry
point. The ENTRY statement in module A will allow the time to be printed without the “TIME
IS NOW” text.

MODULE A
GETTIME CSECT

ENTRY GETTIME2
EXTRN GOTTIME

GETTIME EQU *
PRINTEXT '@THE TIME IS NOW'

GETTIME2 EQU *
PRINTIME
GOTO GOTTIME

MODULE B

C
GOTTIME CSECT

EXTRN GETTIME

TIME EQU *
GOTO GETTIME

GOTTIME EQU *

Chapter 2. Instruction and Statement Descriptions LR-107

DATA/DC
DATA/DC - Define data | @

The DATA/DC statement defines the data you are using in your program. You can represent
data in the following forms: binary, integer, hexadecimal, character, floating-point, or address.

Within a single DATA statement, you can define one or more character strings or variables.
With programs you compile under $EDXASM, you can code up to 10 separate data
specifications on a single DATA statement by separating the individual specifications with
commas. When you assemble programs under $S1ASM, a DATA statement can contain only
one data specification. :

Syntax:
label DATA dup type value
label DC dup type value
Required: type, value
Defaults: dup=1
Indexable: none
Operand Description
dup Duplication factor for the data type you define.
')
type Data type or form of data representation. The valid data types are: @
Code Data type Storage format
C EBCDIC 8-bit code for each character
X Hexadecimal 4-bit code for each digit
B Binary 1 bit for each digit (not allowed
with SEDXASM)
F Integer, signed fullword 2 bytes
H Integer, signed halfword 1 byte
D Integer, signed doubleword 4 bytes
E Floating-point Floating-point binary; 4 bytes
L Floating-point Floating-point binary; 8 bytes
A Address Value of address or expression,;
2 bytes
value The value to be assigned to the data area. This operand is also the field length

for some data types. The value is enclosed in quotes for all data types except A,
in which the value is enclosed in parentheses.

Notes:

1. Except for A-type data (address), the value must be a self-defining term and
cannot be defined with an EQU statement.

G

LR-108 SC34-0643

C

DATA/DC

DATA/DC - Define data (continued)

2. The maximum number of hexadecimal digits you can specify for this operand
is 8; the maximum number of characters you can specify is 15.

3. For programs compiled under $EDXASM, the value operand can define a
maximum of 65,535 bytes.

Considerations when Defining Data

The allowable ranges for data values are:

Single-precision integer -32768 to 32767
Double-precision integer -2147483648 to 2147483647
Single-precision floating-point 6 decimal digits*
Extended-precision floating-point 15 decimal digits*

*Valid range is from 10-85 to 1075

You can express floating-point values as real numbers with decimal points (for example 1.234)
or in exponent (E) notation. E notation uses the form:

SX.XXESYY
where:
S = Optional sign character (+ or -); default is (+)
X = Characteristic of 1 to 6 numeric digits for PREC=E,

or 15 digits for PREC=L
.= Decimal point anyplace within characteristic
E = Designation of E notation
YY = Mantissa, range -85 to +75. The base is 10.
(for example, 3.1415E-2 = .031415)

When coding character strings (C), you can specify a field length by coding the type as CLn,
where “n” is the length of the field in bytes. If the length of the the character string you specify
is less than the field length chosen, the balance of the field to the right of the string is filled with
blanks. To specify the field length for hexadecimal values (X), code the type as XLn. If the
length of the hexadecimal value you specify is less than the field length chosen, the balance of
the field to the left of the value is filled with zeros.

Neither SEDXASM nor $S1ASM support such complex data expressions as:

DATA A(B-C)

where B is an external label.

Chapter 2. Instruction and Statement Descriptions LR-109

DATA/DC

DATA/DC - Define data (continued)

Syntax Examples

The following examples show some of the ways that you can define data in your program.

1) Hexadecimal 30F in binary. This format is not allowed with $EDXASM.

BINCON DATA B'001100001111"

2) An integer constant of 1.

A DATA F'i!

3) 128 words of 0.

BUF DC 128F'0"

4) The EBCDIC string ‘XYZ’.

CHAR DATA C'XYZ'

5) 80 EBCDIC blanks.

BLANK DC goc' !

6) The character ‘$’ followed by seven blanks.

c8 DC CL8'$'

7) The integer 241 in hexadecimal

HEXV DATA X'00F1"

8) The address of ‘BUF’.

ADDR DATA A (BUF)

9) The 2-word integer constant 100,000

DBL DATA D'100000'

LR-110 SC34-0643

O

DATA/DC

DATA/DC - Define data (continued)

10) The floating-point value 1.234

F1 DATA E'1.234"

11) Four floating-point values of 0.123 (4 bytes for each value).

F2 DATA 4E'0.123"

12) Four extended-precision floating-point values of 12345678.9 (8 bytes for each value).

L2 DATA 4L,'12345678.9"

13) An extended-precision floating-point value in exponent (E) form.

L3 DATA L'123456E-40"'

14) A word with a value of 1 and a doubleword with a value of 2.

MANY DATA F'1',D'2'

15) The hexadecimal string X‘0001°.

X DC XL2'1"'

16) The hexadecimal string X‘000123’.

Y DC XL3'123"

Chapter 2. Instruction and Statement Descriptions LR-111

DCB

DCB - Create a device control block

LR-112

SC34-0643

The DCB statement creates a standard device control block (DCB) for use with EXIO. For
additional information on DCBs refer to the description manual for the processor in use.

Syntax:
label DCB PCl=,10TYPE=XD=,SE=, DEVMOD=,DVPARM1=,
DVPARM2=,DVPARM3=,DVPARM4=,CHAINAD=,
COUNT=,DATADDR=
Required: label
Defaults: PCI=NO,IOTYPE=OUTPUT,XD=NO,SE=NO
Indexable: none
Operand Description
PCI= YES, to cause the device to present a program-controlled interrupt at the
completion of the DCB fetch before data transfer.
NO (the default), does not cause the device to present a program-controlled
interrupt.
IOTYPE= INPUT, for operations involving transfer of data from device to processor or for
bidirectional transfers under one DCB operation.
OUTPUT (the default), for operations involving transfer of data from processor
to device or for control operations involving no data transfer.
XD= YES, if the DCB is a nonstandard type.
NO (the default), if the DCB is a standard type.
SE= YES, to allow the device to suppress the reporting of certain exception
conditions.
NO (the default), to report all exception conditions.
DEVMOD= The byte that describes functions unique to a particular device. This byte is in
word 0 of the device’s DCB. Code two hexadecimal digits.
DVPARMI1= The value of device-dependent parameter word 1. Code as four hexadecimal
digits or the label of an EQU preceded by a plus sign (+).
DVPARM2= The value of device-dependent parameter word 2. Code as four hexadecimal

digits or the label of an EQU preceded by a plus sign (+).

DCB

0 DCB - Create a device control block (continued)

DVPARM3= The value of device-dependent parameter word 3. Code as four hexadecimal
digits or the label of an EQU preceded by a plus sign (+).

DVPARM4= The value of device-dependent parameter word 4. Code as four hexadecimal
digits or, if SE=YES, the label of the first byte to which residual status data is to
be transferred. The length of the residual status area is device dependent.

- CHAINAD= The label of the next DCB in the chain if chained DCBs are desired.

COUNT= The number of data bytes to be transferred. Code a decimal number from O to
32767 or the label of an EQU preceded by a plus sign (+).

DATADDR= The label of the first byte of data to be transferred.

For information on the contents of DVPARM1-DVPARM4 and DEVMOD, refer to the
description manual of the device you are using.

Chapter 2. Instruction and Statement Descriptions LR-113

DCB

DCB - Create a device control block (continued)

Syntax Examples

Coding Example

LR-114

SC34-0643

1) The DCB labeled WR1DCB is for an output operation in which the 120-byte field labeled
MSG1 will be transferred to the device. IOTYPE= defaults to OUTPUT. The device places
any status information from the operation in RESTAT.

WRIDCB DCB SE=YES,DVPARM1=0300,DVPARM2=3048,DVPARM3=1100, X
DVPARM4=RESTAT, CHAINAD=WR2DCB, COUNT=120, X
DATADDR=MSG

MSG1 DATA 120X'00'
RESTAT DATA 2F'0'’

2) The DCB labeled WR2DCB is for a type of device-control operation. IOTYPE defaults to
OUTPUT but no data transfer occurs because the statement does not contain the DATADDR

or COUNT operands. The device places any status information from the operation in RESTAT.

WR2DCB DCB SE=YES,DVPARM1=20A0, DEVMOD=6F , DVPARM4=RESTAT

RESTAT DATA 2F'0O'

For a coding example using a DCB statement, see the example following the description of the
EXIO instruction.

DEFINEQ

0 DEFINEQ - Define a queue

The DEFINEQ statement defines the queue descriptor (QD) and a set of queue entries (QEs)
used by FIRSTQ, LASTQ, and NEXTQ. DEFINEQ can optionally define a pool of data
storage areas or data buffers. For additional information refer to the discussion of queue
processing in the Event Driven Executive Language Programming Guide.

Syntax:
label DEFINEQ COUNT=,SIZE=
Required: label, COUNT=
Defaults: SIZE=2 (2 bytes of data for each element in the
free queue chain)
Indexable: none

Operand Description

label The label of the queue that this statement creates.

COUNT= The number of 3-word queue entries (QEs) to be generated. The system also
generates a 3-word queue descriptor (QD) and assigns the first word of the QD
the label of the DEFINEQ statement.

0 “Queue Layout” on page LR-116 describes the structure of a queue.
The COUNT operand must be specified using a self-defining term; an equated
value is not allowed. This operand must also be a positive number greater than
0.
SIZE= The size, in bytes, of each buffer (data area) to be included in the buffer pool in

the initial queue. The system generates as many buffers as you specified in the
COUNT operand. It initializes each buffer to binary zeros. Each QE in the
queue contains the address of an associated buffer in the buffer pool.

If you do not specify the SIZE operand, the system places all QEs in the free

chain and the queue is defined as empty. If you specify SIZE, the system
includes all QEs in the active chain and the queue is defined as full.

Chapter 2. Instruction and Statement Descriptions LR-115

DEFINEQ

DEFINEQ - Define a queue (continued) @

Queue Layout

LR-116

SC34-0643

A queue is composed of a queue descriptor (QD) and one or more queue entries (QEs).
Figure 7 on page LR-117 shows the layout of a queue.

The DEFINEQ statement generates a 3-word QD. Word 1 of the QD is a pointer to the most
recent entry in a chain of active QEs. Word 2 is a pointer to the oldest entry in a chain of active
QEs. Word 3 is a pointer to the first QE in a chain of free QEs. If the queue is empty, words 1
and 2 contain the address of the queue (the address of the QD). If the queue is full, word 3
contains the address of the queue.

DEFINEQ also generates several 3-word QEs. Word 1 of the oldest QE in the active chain
points back to the QD. For the rest of the QE’s in the active chain, word 1 is a pointer to the
next most recent QE in the chain.

Word 2 of the most recent QE in the active chain points back to the QD. For the rest of the
QE:s in the active chain, word 2 is a pointer to the next oldest QE in the chain.

Word 3 of a QE in the active chain is a queue entry. The entry is a 16-bit word that can be a
data item or the address of an associated data buffer.

When a QE is in the free chain, word 3 is a pointer to the next element in the free chain. Word
3 of the last QE in the free chain is a pointer back to the QD.

€

O

DEFINEQ

DEFINEQ - Define a queue (continued)

Qb
CHAIN

ACTIVE QE
BUFFER POOL

» 0500 | 3000 > 1000

0500

|

2000

1000 |

4Looo —

Queue
entry

Oldest
entry

> 2000

1000

3000

Queue
entry

» 3000

2000

Queue
entry

0500

Most
recent
entry

L 4000

5000

— 5000

0500

FREE QE
CHAIN

Figure 7. Layout of a Queue

OPTI1ONAL
BUFFER AREAS

Chapter 2. Instruction and Statement Descriptions LR-117

DEFINEQ
DEFINEQ - Define a queue (continued) «

Syntax Examples

1) The statement generates a 3-word queue descriptor (QD), followed by four 3-word queue
entries (QE). All four of the QEs are placed in the QE free chain.

QUE1 DEFINEQ COUNT=4

2) The statement generates a 3-word QD, followed by two 3-word QEs and two 6-word queue
data areas (one 6-word area for each of the QEs) initialized to binary zeros. Because the SIZE
operand is specified, all QEs are included in the active chain and the queue is defined as full.

QUE2 DEFINEQ COUNT=2,SIZE=12

LR-118 SC34-0643

O

DEQ

Coding Example

DEQ - Release a resource for use

The DEQ instruction releases exclusive control of a resource other than a terminal by releasing
control of the queue control block (QCB) associated with that resource.

You acquire exclusive control of the QCB associated with a resource with the ENQ instruction.
(See the ENQ instruction for more information.) Your program must release exclusive control
of, or “dequeue,” a QCB associated with a resource before other programs can use the resource
again.

DEQ normally assumes that the QCB for the resource is defined in the same partition as the
current program. However, your program can dequeue a QCB in another partition by using the
cross-partition service capability of DEQ. See Appendix C, “Communicating with Programs in
Other Partitions (Cross-Partition Services)” on page LR-559 for an example that dequeues a
resource in another partition. Refer to the Event Driven Executive Language Programming Guide
for more information on cross-partition services.

When you use the $S1ASM macro assembler or the host assembler, the DEQ instruction causes
the assembler to generate a QCB for a resource at the end of the program. When you use
$EDXASM, no QCBs are generated; you must use the QCB statement to generate the QCBs
your program requires.

Syntax:

label DEQ qcb,code,P1=,P2=

Required: qcb
Defaults: code=-1
Indexable: qcb

Operand Description

qch The label of the QCB to be dequeued. This must be the same label used for the
ENQ instruction and is usually the label of a QCB statement.

code A code word to be inserted into the queue control block (QCB) associated with
the resource. Your program can examine the code word by referring to the label
of the QCB. A code of 0 is interpreted by the ENQ instruction to mean that the
resource is unavailable for use; all non-zero codes show that the resource is
available. You must code a self-defining term for this operand.

Px= Parameter naming operands. See “Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

See “ENQ - Gain exclusive control of a resource other than a terminal’”’ on page LR-148 for an
example using the DEQ instruction.

Chapter 2. Instruction and Statement Descriptions LR-119

DEQT

DEQT - Release a terminal for use @

LR-120

SC34-0643

The DEQT instruction releases control of the terminal that your program acquired control of
with an ENQT instruction.

When an ENQT instruction redefines the characteristics of a terminal through an IOCB
statement, DEQT restores the terminal characteristics defined on the TERMINAL definition
statement. (See Installation and System Generation Guide for information on the TERMINAL
statement.) DEQT also causes partially full buffers to be written to the terminal, completes all
pending I/0, and forces the cursor or forms to the next line (carriage return.) In addition, you
can use the DEQT instruction to end spooling to a printer assigned to your program.

Your program also releases exclusive control of a terminal when it executes a PROGSTOP
instruction.

The supervisor places a return code in the first word of the task control block (taskname)
whenever a DEQT instruction causes a terminal I/O operation to occur. If the return code is
not a -1, the address of this instruction will be placed in the second word of the task control
block (taskname+2). The terminal I/O return codes are described at the end of the
PRINTEXT and READTEXT instructions in this manual and also in the Messages and Codes.

When coding the DEQT instruction, you can include a comment which will appear with the
instruction on your compiler listing. If you include a comment, you must also code the CLOSE
operand. The comment must be separated from the operand field by at least one blank and it
may not contain commas.

Syntax: , {®

label DEQT CLOSE= comment
Required: none
Defaults: CLOSE=NO
Indexable: none
Operand Description
CLOSE= This operand provides additional control for spool jobs.

Code CLOSE=YES to logically end a spool job. Logically ending a SPOOL job
allows the executing program to create separate printed output on the spool
device. This operand has no effect on the DEQT instruction if the device to
which the DEQT is directed is not a spool device, or if spool is not active.

Code CLOSE=ALL to end all spool jobs associated with this task and all other
tasks in the program that have previously issued a DEQT instruction.

Coding CLOSE=NO (the default) has no affect on the DEQT instruction or
spool operation. :

C

DEQT

0 DEQT - Release a terminal for use (continued)

Syntax Examples

1) Release control of the system printer, $SYSPRTR.
ENQT $SYSPRTR
DEQT

2) Release control of the device TTY1.

ENQT TERM1,BUSY=ALTERN

DEQT CLOSE=NO THIS IS A COMMENT
PROGSTOP
TERM1 I0CB TTY1,PAGSIZE=24

Chapter 2. Instruction and Statement Descriptions LR-121

DETACH -
DETACH - Deactivate a task

The DETACH instruction removes a task from operational status. A task can only detach itself.

If a program reattaches a task, execution begins with the instruction following the DETACH in
the reattached task.

Syntax:
label DETACH code,P1=
Required: none
Defaults: code = -1
Indexable: none
Operand Description
code The posting code to be inserted in the terminating ECB ($TCBEEC) of the task
being detached. A complete list of TCB equates is in the Internal Design.
Pl1= Parameter naming operand. See “Using The Parameter Naming Operands

(Px=)"" on page LR-12 for a detailed description of how to code this operand.

LR-122 SC34-0643

DETACH

O

Coding Example

DETACH - Deactivate a task (continued)

The following program announces the start of each race at a racetrack.

TASKA is the program’s primary task. It starts, or “attaches,” TASKB which enqueues the
track announcement board at label RACEBORD (code not shown). TASKB then prints the
time of day and the number of the race which is about to begin. When TASKB completes, it
executes a DETACH instruction and detaches itself from the program.

When the primary task reattaches TASKB at label A2, the GOTO instruction immediately
following the DETACH instruction executes. The GOTO instruction passes control back to the
beginning of the TASKB and execution resumes at the label BEGIN.

TASKA
START

A2

TASKB

BEGIN

NUMBER

PROGRAM
EQU

ATTACH
ATTACH
PROGSTOP

TASK

EQU

ENQT

ADD
PRINTEXT
PRINTIME
PRINTEXT
PRINTNUM
PRINTEXT
DEQT
DETACH
GOTO
DATA
ENDTASK
ENDPROG
END

START
*

TASKB

TASKB

BEGIN

*

RACEBORD

NUMBER, 1

'9THE TIME IS NOW'

' AND RACE# '
NUMBER -
' OF THE DAY IS ABOUT TO BEGIN '

BEGIN
F'0!

LR-123

Chapter 2. Instruction and Statement Descriptions

DIVIDE

DIVIDE - Divide integer values

The DIVIDE instruction divides an integer value in operand 1 by an integer value in operand 2.
The values can be positive or negative. To divide floating-point values, use the FDIVD

instruction.

See the DATA/DC statement for a description of the various ways you can represent integer

data.

The system stores the remainder of the operation (an integer) in the first word of the task
control block (TCB). This remainder will be lost if a subsequent instruction issues a return code
and updates the TCB. The remainder is double-precision only if operand 2 is double precision.

The system indicates an overflow for the DIVIDE operation by placing a X‘80000000’ in the
first two words of the TCB. X‘80000000’ is also the result of a divide by zero operation.

Syntax:

label

Required:
Defaults:
Indexable:

DIVIDE opnd1,opnd2,count, RESULT=,PREC=,
P1=,P2=P3=

opnd1,opnd2
count=1,RESULT=0pnd1,PREC=S
opnd1,0pnd2, RESULT

Operand

opndl

opnd2
count

RESULT=

PREC=xyz .

LR-124 SC34-0643

Description

The label of the data area containing the value divided by opnd2. Opnd1l cannot
be a self-defining term. The system stores the result of the DIVIDE operation in
opnd1 unless you code the RESULT operand.

The value by which opndl is divided. You can specify a self-defining term or the
label of a data area. The value of opnd2 does not change during the operation.

- The number of consecutive values on which the system performs the operation.

*

The maximum value is 32767.

The label of a data area or vector in which the result is placed. The data area
you specify for opndl1 is not changed if you specify RESULT. This operand is
optional. , '

Specify the precision of the operation in the form xyz, where X is the precision
for opndl, y is the precision for opnd2, and z is the precision of the result
(“Mixed-precision Operations” on page LR-125 shows ‘the precision
combinations allowed for the DIVIDE instruction). You can specify single
precision (S) or double precision (D) for each operand. Single precision is a
word in length; double precision is two words in length. The default for opnd1,
opnd2, and the result is single precision.

PN

C

DIVIDE

0 DIVIDE - Divide integer values (continued)

If you code a single letter for PREC, the letter applies to opndl and the result.
Opnd?2 defauits to single precision. If, for example, you code PREC=D, opndl
and the result are double precision and opnd2 defaults to single precision.

If you code two letters for PREC, the first letter applies to opnd1 and the result,
and the second letter applies to opnd2. With PREC=DD, for example, opndl
and the result are double precision and opnd2 is double precision.

Px= " Parameter naming operands. See ‘“Using The Parameter Naming Operands
(Px=)"" on page LR-12 for a detailed description of how to code these operands.

Mixed-precision Operations

The following table lists the precision combinations allowed for the DIVIDE instruction:

opnd1 opnd2 Result Precision Remarks
S S S S default
S S D SSD -
D S D D -
D D D DD -
D S s DSS “o-
O Syntax Example
. The following DIVIDE instruction divides the value at location DATA by a value at a location

defined by the label TAB plus the contents of index register 1. Both operands are single
precision because no precision is specified.

DIVIDE DATA, (TAB, #1)

Chapter 2. Instruction and Statement Descriptions ~LR-125

DIVIDE

DIVIDE - Divide integer values (continued)

Coding Example

The following example uses the DIVIDE instruction to determine the amount of time an

experiment required in hours, minutes, and seconds. If the data area labeled TIME contained a
value of 4796 (seconds), the first DIVIDE instruction would place a result of 1 in HOURS and
would leave a remainder of 1196 in the first word of the TCB. The label of the TCB is TASK,

the label of the PROGRAM statement.

The second DIVIDE instruction at label GETMINS would divide the remainder by 60 and place
a result of 19 in MINUTES and a remainder of 56 in the TCB. This remainder represents the
number of seconds and would be moved into SECONDS. The program would print out a final

result of 1 hour, 19 minutes, and 6 seconds.

NUMBER OF HOURS
NUMBER OF MINUTES

GET REMAINDER

CONVERT ANOTHER COUNT

BEGINNING VALUE

NUMBER OF ELAPSED HOURS
NUMBER OF ELAPSED MINUTES
NUMBER OF ELAPSED SECONDS

S

TASK PROGRAM START
START EQU *
NEXTIME EQU *
GETHOURS EQU *
DIVIDE TIME, 3600, RESULT=HOURS
GETMINS EQU *
DIVIDE TASK, 60, RESULT=MINUTES
GETSECS EQU *
MOVE SECONDS, TASK, (1,WORD)
PRINTIME EQU *
PRINTEXT ' ELAPSED TIME IN HOURS:MINUTES:SECONDS'
PRINTNUM HOURS
PRINTEXT ' : '
PRINTNUM MINUTES
PRINTEXT ' . '
PRINTNUM SECONDS
GOTO NEXTIME
TIME DATA D'O’
HOURS DATA F'0'
MINUTES DATA F'0’
SECONDS DATA F'0'
LR-126 SC34-0643

O

DO

DO - Perform a program loop

The DO instruction begins a program loop. A loop is a set of one or more instructions that
executes repeatedly until a condition you specify in the DO instruction is satisfied. You must
end the DO loop with an ENDDO instruction.

You can code a loop within another loop. This technique is called ‘“‘nesting.” You can include
up to 20 nested loops within your initial DO-ENDDO structure.

There are three forms of the DO instruction. DO UNTIL and DO WHILE provide a means of
looping until or while a condition is true. The third form of the DO instruction causes a loop to
be executed a specific number of times. In all of these forms, a branch out of the loop is
allowed.

You also can use the DO instruction to perform a loop while or until a certain bit is ‘on’ (set to
1) or ‘off’ (set to 0).

The syntax box shows the DO UNTIL and DO WHILE forms of the DO instruction with a
single conditional statement. You can specify several conditional statements, however, by using
the AND and OR keywords. These keywords allow you to join conditional statements. The
keywords are described in the operands list and examples using the keywords are shown under
“Syntax Examples with DO and ENDDO” on page LR-130.

Syntax:
label DO count, TIMES,INDEX=,P1=
label DO UNTIL,(data1,condition,data2,width)
label DO WHILE,(data1,condition,data2, width)

Required: count or one conditional statement
with UNTIL or WHILE
Defaults: width is WORD
Indexable: count or datal and data2 in each statement

Operand Description

count The number of times the loop is to be executed. You can specify a constant or
the label of a variable. The maximum value is 32767. The system completes one
loop each time it encounters the ENDDO instruction.
Note: If count=0, the system executes the loop one time.

TIMES This optional operand serves only as a comment for the count operand.

INDEX= The label of a data area that the system resets to 0 before starting the DO loop

and increases by 1 each time the instruction following the DO instruction
executes. The first time the DO loop executes, the index has a value of 1.

Chapter 2. Instruction and Statement Descriptions ~LR-127

DO

DO - Perform a program loop (continued)

UNTIL This operand defines a loop that executes until the condition you specify is true.
The loop executes at least once, even if the condition is initially true.

WHILE This operand defines a loop that executes as long as the condition you specify is
true. The loop does not execute if the condition is initially false.

datal The label of a data item to be compared to data2 or the label of the data area
that contains the bit to be tested. This operand is valid only in a conditional

statement with UNTIL or WHILE.

condition An operator that indicates the relationship or condition to be tested. Only code
this operand in a conditional statement with UNTIL or WHILE. The valid

operators for the DO instruction are as follows:

EQ - Equalto

NE - Not equal to

GT - Greater than

LT - Lessthan

GE - Greater than or equal to
LE - Less than or equal to

ON - Bitis ‘on’
OFF - Bit is ‘off’

data2 The data to be compared to datal or the position, in datal, of the bit to be
tested. Only code this operand in a conditional statement with UNTIL or
WHILE. You can specify immediate data or the label of a variable. Immediate
data can be an integer between 1 and 32768 or a hexadecimal value between 1

and 65535 (X‘FFFF’).
Bit 0 is the left-most bit of the data area.
width Specifies an integer number of bytes or one of the following:
BYTE - bytes

WORD - words (the default)
DWORD - doublewords

FLOAT - floating-points (one word, 2-byte value)
DFLOAT - doublewords floating-points (4-byte value)

Code this operand only in a conditional statement using UNTIL or WHILE. The

default is WORD.

AND Enables you to join conditional statements when you code DO UNTIL or DO
WHILE. Code the operand between the conditional statements you want to
join. With DO UNTIL, the AND indicates that the loop should execute until all
the conditional statements that the operand joins are true. With DO WHILE,

LR-128 SC34-0643

DO

0 DO - Perform a program loop (continued)

the AND indicates that the loop should execute while all the conditional
statements the operand joins are true.

You can join several pairs of conditional statements with several AND operands.
You also can use the AND and OR operands within the same DO instruction.

OR Enables you to join conditional statements when you code DO UNTIL or DO
WHILE. Code the operand between the conditional statements you want to
join. With DO UNTIL, the OR indicates that the loop should execute until one
of the conditional statements the operand joins is true. With DO WHILE, the
OR indicates that the loop should execute while any of the conditional statements
the operand joins is true. See the syntax examples for this instruction.

You can join several pairs of conditional statements with several OR operands.
You also can use the AND and OR operands within the same DO instruction.

Pl= Parameter naming operand. See ‘“‘Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code this operand.

Rules for Evaluating Statement Strings Using AND and OR

The IF and DO instructions permit logically connected statements in the form of either:

statement, OR,statement

®

statement, AND,statement
More than two statements may be logically connected in an instruction. Logically connected
statement strings are not evaluated according to normal Boolean reduction. Instead, the string is
evaluated to be true or false by evaluating each sequence of:

statement, conjunction
to be true or false as follows:

» The expression is evaluated from left to right.

« If the condition is true and the next conjunction is OR, or if there are no more conjunctions,
the string is true and evaluation ceases. -

« If the condition is true and the next conjunction is AND, the next conjunction is checked.
« If the condition is false and the next conjunction is OR, the next condition is checked.

« If the condition is false and the next conjunction is AND, or if there are no more
conjunctions, the string is false and the evaluation ceases.

Chapter 2. Instruction and Statement Descriptions ~LR-129

DO

DO - Perform a program loop (continued) @

The order of the statements and the conjunctions in a statement string determines the evaluation
of the string. It may be possible, by reordering the sequence of statements and conjunctions, to

produce a statement string that will be evaluated to the same results as Boolean reduction of the
statement. For example, the statement string:

(A,EQ,B),AND,(C,GT,D),OR,(E,LT,F)
could be reordered as
(E,LT,F),OR,(A,EQ,B),AND,(C,GT,D)

without changing the results if evaluated by Boolean reduction. As a statement string in the IF
or DO instructions, however, the two forms produce different evaluations. If A is not equal to
B, but E is less than F, the first statement string will be evaluated false and the evaluation will
cease as soon as (A,EQ,B,) is evaluated; however, the second statement string will be evaluated
true if E is less than F, as would be expected from Boolean reduction for either the first or
second statement string.

Syntax Examples with DO and ENDDO

LR-130

SC34-0643

See the IF instruction for more samples of conditional statements.

1) Perform a loop 100 times.

DO 100

ENDDO

2) Perform a loop the number of times specified in N. The TIMES operand serves as a
comment.

DO N, TIMES

ENDDO

3) Perform a loop until the first 4 bytes of A are less than the first 4 bytes of B.

DO UNTIL, (A,LT,B,4)

ENDDO

DO

0 DO - Perform a program loop (continued)
4) Perform a loop until A contains a floating-point value equal to 1000.

DO UNTIL, (A,EQ, 1000, FLOAT)

ENDDO

5) Perform a loop while the first word of B is not equal to the first word of C.

DO WHILE, (B,NE,C)

ENDDO

6) Perform a loop while the first 4 bytes of A are less than the first 4 bytes of B.

DO WHILE, (A,LT,B,4)
ENDDO
O 7) Perform a loop until the third bit starting at label A is a 1.
DO UNTIL, (A,ON,2)
ENDDO

8) Perform a loop until the bit number contained in BIT1, starting at label A, is a 0.

DO "UNTIL, (A,OFF,BIT1)

ENDDO

9) Perform a loop until A equals B and A equals C.

DO UNTIL, (A,EQ,B),AND, (A,EQ,C)

ENDDO

Chapter 2. Instruction and Statement Descriptions ~LR-131

DO

DO - Perform a program loop (continued)

10) Perform a loop while A is not equal to 1, or while the first doubleword in D is equal to the
first doubleword in E, and while register 1 is not equal to 14.

DO WHILE, (A,NE,1),0R, (D,EQ,E,DWORD) ,AND, (#1,NE, 14)

ENDDO

11) This example shows a nested DO loop.

DO UNTIL, (A,EQ,B,DFLOAT) ,OR, (#1,EQ, 1000)
DO 10, TIMES
ENDDO

ENDDO

12) This example shows a nested DO loop that is also within an IF-ELSE-ENDIF structure.

DO WHILE, (A,GT,B,DWORD)
IF (CHAR,EQ,C'A',BYTE)
DO 40, TIMES

ENDDO
ELSE

ENDIF
ENDDO

LR-132 SC34-0643

C

DO

0 DO - Perform a program loop (continued)

Coding Example
The following example shows three DO loops.
The first DO loop, at label D1, executes twice and ends. The second DO loop, at label D2,

executes at least once and continues to loop until the value of INDEX1 is greater than or equal
to 2.

The third DO loop, at label D3, executes as long as (WHILE) the value of INDEX2 is less than
or equal to 1. If the condition is not initially true, the third loop does not execute at all.

D1 DO 2,TIMES, INDEX=INDEX
MOVE INDEX1,0
D2 DO UNTIL, (INDEX1,GE,2)

ADD INDEX1, 1
MOVE INDEX2,0

D3 DO WHILE, (INDEX2,LE, 1)
ADD INDEX2, 1
PRINTNUM INDEX,3,3,4
ENDDO
ENDDO
ENDDO
: INDEX DATA F'1'

INDEX1 DATA Fr1?
INDEX2 DATA F'O

The above example generates the following printout:

NN -2 -
NN - NN — —
N2 ==

Chapter 2. Instruction and Statement Descriptions LR-133

- DSCB

DSCB - Create a data set control block

LR-134

The DSCB statement creates a data set control block (DSCB). A DSCB provides the
information the system requires to use a data set within a particular volume.

The first 3 words of every DSCB is an event control block (ECB). You can refer to fields
within a DSCB by using the DSCB equate table, DSCBEQU.

Syntax:
DSCB DS#=,DSNAME=,VOLSER=,DSLEN=
Required: DS#=,DSNAME=
Defaults: VOLSER=null, DSLEN=0
Indexable: none
Operand Description
DS#= The alphameric label which is used to refer to a DSCB in disk or tape 1/0
instructions. This label will be assigned to the first word (ECB) of the generated
DSCB. Specify 1 to 8 characters.
DSNAME= The data set name field within the DSCB. Specify 1 to 8 characters.
N
VOLSER= The volume label to be assigned to the volume label field of the DSCB. Specify ka J}
1 to 6 characters. A null entry (blanks) will be generated if you do not specify
VOLSER.
Note: If the DSCB is for a tape data set, you must specify VOLSER prior to
DSOPEN. In addition, you must supply the 1 to 6 character tape drive ID if
there is no volume label. The tape drive ID is assigned during system generation
with the TAPE definition statement.
DSLEN= The size of the referenced direct access space. If no number is specified, this

value will be set to 0. This parameter is not used if the DSOPEN routine will be
used to open the DSCB.

When a data set is defined using the DSCB statement it must be opened before attempting disk
or tape I/O operations such as READ or WRITE. The routines DSOPEN and $DISKUT?3 are
provided for this purpose. DSOPEN must be copied into your program with the COPY
statement and then invoked with the CALL instruction. The $DISKUT3 is invoked with the
LOAD instruction. For more information on DSOPEN and $DISKUT?3 see Appendix D or
refer to the Event Driven Executive Language Programming Guide.

SC34-0643

O

DSCB

DSCB - Create a data set control block (continued)

Syntax Exarple

The following DSCB statement creates a data set control block with the label INDATA.

DSCB DS#=INDATA,DSNAME=MASTER, VOLSER=EDX003

Chapter 2. Instruction and Statement Descriptions

LR-135

ECB
ECB - Create an event control block | (i*'

The ECB statement generates a 3-word event control block (ECB) that defines an event. The
system places a value in the first word of the control block when an event has occurred. When
the system signals the occurrence of an event in the ECB, the ECB is said to have been
“posted.”

Normally this statement is not needed for application programs you assemble with the host or
Series/1 macro assemblers. The host and Series/ 1 macro assemblers automatically generate a
control block for an event named in a POST instruction.

You must code the necessary ECBs in programs assembled under SEDXASM, except for those
ECBs created when you code the EVENT = operand on the PROGRAM or TASK statement.

You can code a maximum of 25 ECB statements in a program. If your program requires more
than 25 ECBs, you must create them using DATA statements. An example of how to create an
ECB is shown following the description of this statement.

When coding the ECB statement, you can include a comment which will appear with the
statement on your compiler listing. If you include a comment, you must also specify the code
operand. The comment must be separated from the operand field by at least one blank and it
may not contain commas.

Syntax:
P
label ECB code comment Y
Required: label
Defaults: code = -1
Indexable: none
Operand Description
label The label of the event that you specify in a POST instruction.
code Initial value of the code field (word 1). If this word is not a zero when a WAIT

is issued, no wait occurs unless the WAIT has RESET coded.

LR-136 SC34-0643

O

C

ECB

ECB - Create an event control block (continued)

Syntax Example

The ECB statement:

ECB1 ECB

is equivalent to coding,

ECB1 DATA F'-1
DATA 2F'0"

Chapter 2. Instruction and Statement Descriptions

LR-137

EJECT

EJECT - Continue compiler listing on a new page

O

The EJECT statement causes the next line of the listing to appear at the top of a new page.

This statement provides a convenient way to separate sections of a program. It does not change
the page title if you are using one.

You can place EJECT within executable instructions.

Syntax:
blank EJECT
Required: none
Defaults: none
Indexable: none
Operand Description
none none

Coding Example

See the PRINT statement for an example using EJECT.

~.
N

LR-138 SC34-0643

ELSE

0 ELSE - Specify action for a false condition

The ELSE statement defines the start of the false-path code associated with the preceding IF
instruction. The end of the false-path code is the next ENDIF statement.

Syntax:
label ELSE
Required: none
Defaults: none
Indexable: none
Operand Description
none none

Syntax Examples

The examples for IF, ELSE, and ENDIF are shown following the IF instruction.

Chapter 2. Instruction and Statement Descriptions

LR-139

END

END - Signal end of source statements

The END statement signals the compiler that the program contains no further source statements.

Coding Example

LR-140

SC34-0643

END must be the last statement in a program, a separately compiled task, or a subroutine.
Unpredictable results can occur if you do not code an END statement.

Syntax:
blank END
Required: none
Defaults: none
Indexable: none
Operand Description
none none

The following example enqueues $SYSL.OG, prints the time and date, dequeues $SYSLOG, and
ends. END is the last statement in the program.

PRINDATE
START

PROGRAM
EQU

ENQT
PRINTIME
PRINDATE
DEQT
PROGSTOP
ENDPROG
END

START
*

$SYSLOG

G

®

O

ENDATTN

ENDATTN - End attention-interrupt-handling routine

Coding Example

The ENDATTN instruction ends an attention-interrupt-handling routine, as described under
ATTNLIST, and is the last instruction of that routine.

Syntax:
label ENDATTN
Required: none
Defaults: none
Indexable: none
Operand Description
none none

See the ATTNLIST statement for an example using the ENDATTN instruction.

Chapter 2. Instruction and Statement Descriptions

LR-141

ENDDO
ENDDO - End a program loop

O

The ENDDO statement defines the end of a DO loop. It must be preceded by a DO instruction.

Syntax:
label ENDDO
Required: none
Defaults: none
Indexable: none
Operand Description
none none

Coding Example

See the examples following the DO instruction.

LR-142 SC34-0643

ENDIF

ENDIF - End an IF-ELSE structure

0

The ENDIF statement indicates the end of an IF-ELSE structure. If ELSE is coded, ENDIF
indicates the end of the false code associated with the preceding IF instruction. If ELSE was
not coded, ENDIF indicates the end of the true code associated with the preceding IF

instruction.
Syntax:
label ENDIF
Required: none
Defaults: none
Indexable: none
Operand Description
none none

Syntax Examples

The examples for IF, ELSE, and ENDIF are shown following the IF instruction.

Chapter 2. Instruction and Statement Descriptions ~LR-143

ENDPROG

ENDPROG - End a program

LR-144

SC34-0643

The ENDPROG statement ends a program. It must be the next to the last statement in your
program (except when you include a $ID statement). The last statement must be END. You
can code the RETURN= operand on the ENDPROG statement to acquire the system-return
subroutine support without link-editing the subroutine with your program.

The ENDPROG statement generates a task control block (TCB) for the main program. You
can locate the TCB by referring to the label on the PROGRAM statement.

Syntax:
blank ENDPROG RETURN=
Required: none
Defaults: RETURN=NO (if your program contains
a USER instruction, the default is YES)
Indexable: none
Operand Description

RETURN= RETURN=YES generates the $$RETURN subroutine in your program.
$SRETURN enables you to return to an EDL program from an assembler
subroutine when you code

BAL RETURN,R

in the assembler subroutine. When you specify RETURN=YES, it is not
necessary to link-edit the $$RETURN subroutine to your program.

If your program has a USER instruction coded, then the RETURN operand is
not necessary on the ENDPROG statement. The USER instruction causes the
system module $$RETURN to be generated as part of your program.

RETURN=NO is the default value for the RETURN operand unless your
program contains a USER instruction. If you code RETURN=NO or allow the
default, the system module is not generated as part of your program.

RETURN=EXTRN generates an external reference to the system subroutine
$SRETURN. If you code RETURN=EXTRN, you must link-edit the
$SRETURN subroutine to your program.

N

L

c—

ENDPROG

O ENDPROG - End a program (continued)

Syntax Example

The ENDPROG statement precedes the END statement.

PROGSTOP

FIELD DATA F'O'

MESSAGE TEXT 'ENTER YOUR NAME :'
ENDPROG
END

Chapter 2. Instruction and Statement Descriptions LR-145

ENDTASK

ENDTASK - End a task

Coding Example

LR-146

SC34-0643

The ENDTASK instruction defines the end of a task. Each task, except the primary task,
requires one ENDTASK as its final instruction. When this instruction executes, the task is
detached. If another ATTACH is issued, execution begins at the first instruction of the task.

ENDTASK actually generates two instructions: DETACH and GOTO start, where “start” is
the label of the first instruction to be executed when the system attaches the task.

Syntax:
label ENDTASK code,P1=
Required: none
Defaults: code=-1
Indexable: none
Operand Description
code The post code can be any 1-word value. This code will be inserted in the
terminating ECB ($TCBEEC) of the task being detached. A complete list of
TCB equates is in the Internal Design.
Pl= Parameter naming operand. See “Using The Parameter Naming Operands

(Px=)" on page LR-12 for a detailed description of how to code this operand.

In the following example the main program, PROGA, attaches both TASKA and TASKB during
execution. Both tasks must be coded within the main program; you cannot code the tasks in
subprograms that are later link-edited with the main program. The main program code always
ends with the ENDPROG and END statements (unless you code an intervening $ID statement).
The task source code always ends with the ENDTASK statement.

The first ATTACH instruction starts TASKA. TASKA begins by setting its post code to -1. If

an error occurs, the task ends with a post code of 999. The second ATTACH instruction starts
TASKB.

The IF instruction at label CHECK examines the post code of TASKA to see if the task ended
successfully. If the task did not end successfully, another ATTACH instruction reattaches
TASKA. Because TASKA can only end with an ENDTASK statement, execution always
resumes at the instruction following the BEGINA label.

If TASKB detaches at the DETACH instruction, execution resumes at the instruction following
the DETACH. If TASKB detaches at the ENDTASK statement, the task resumes execution at
BEGINB.

ENDTASK

0 ENDTASK - End a task (continued)
PROGA PROGRAM START

START EQU *

ATTACH TASKA

ATTACH TASKB

CHECK IF ($TCBEEC+TASKA,NE, -1)
ATTACH TASKA
ENDIF
ATTACH TASV®
PROGSTOP
TASKA TASK BEGINA
BEGINA EQU *
MOVE CODE, -1
IF (RESULT, EQ, ERROR)
MOVE CODE, 999
ENDIF
ENDTASK 1,P1=CODE
*
TASKB TASK BEGINB
BEGINB EQU *
ADD c,D-
‘ ‘Q DETACH
ENDTASK
ENDPROG
END

Chapter 2. Instruction and Statement Descriptions LR-147

ENQ

ENQ - Gain exclusive control of a resource other than a terminal @

LR-148

The ENQ instruction gains exclusive control of a resource other than a terminal by acquiring
control of the queue control block (QCB) associated with that resource. Use ENQ to gain
control of logical or physical resources such as sensor-based I/O devices, subroutines, and data
sets.

Note: Use the ENQT instruction to acquire exclusive use of any resource you define with a
TERMINAL statement, such as a display station or printer.

When several programs need to use the same resource, the ENQ instruction can ensure serial
(one at a time) use of the resource. Programs try to acquire control of, or “enqueue,” a specific
QCB before trying to use the resource. If the QCB is “busy,” the program can wait for the
resource to become available or execute another routine.

In general, there are two types of resources, system and user. System resources can be shared
serially by all programs and are defined by labels that are known across the system. The QCBs
associated with these resources must reside in $SYSCOM, the system common area. (Refer to
the Installation and System Generation Guide for a discussion of $SYSCOM.) User resources are
shared serially by different parts of one user program and are identified by labels known only
within that program. The QCBs associated with these resources reside within the program.

You must define each QCB contained in a program compiled under $EDXASM with the QCB
statement. The QCB statement generates the five-word queue control block in your program.
The Series/ 1 and host macro assemblers automatically create a required QCB if you include a
DEQ instruction naming the QCB in your program. AN

ENQ normally assumes that the QCB to be enqueued is in the same partition as the current
program. However, your program can enqueue a QCB in another partition by using the
cross-partition capability of ENQ. See Appendix C, “Communicating with Programs in Other
Partitions (Cross-Partition Services)” on page LR-559 for an example of enqueuing a resource
in another partition. Refer to the Event Driven Executive Language Programming Guide for more
information on cross-partition services.

Syntax:

label ENQ qcb,BUSY=,P1=

Required: qcb
Defaults: none
Indexable: qacb

SC34-0643

ENQ

ENQ - Gain exclusive control of a resource other than a terminal (continued)

Coding Example

Operand Description
qcb The label of the QCB to be enqueued.
BUSY= The label of the instruction to receive control if the QCB you try to enqueue is in

use. If you do not code this operand and the QCB is in use, the system suspends
the execution of your program until the resource associated with the QCB
becomes available.

P1= Parameter naming operand. See ‘“‘Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code this operand.

The following example shows the use of ENQ and DEQ instructions.

The ENQ instruction attempts to enqueue the queue control block labeled SBRTNQCB. If the
first word of the QCB contains a zero, the subroutine labeled SUBRTN is being used by another
program. The program, in this case, would wait for the resource to become available. If the
first word of the QCB is not a zero, the program can call SUBRTN.

When SUBRTN ends, it places a code of 99 in RETURNCD. The DEQ instruction releases
exclusive control of the QCB and places the value of RETURNCD (99) in the first word of the
QCB. The nonzero value in the QCB serves as a signal to other programs that the resource
associated with the QCB is available.

ENQ SBRTNQCB

CALL SUBRTN

DEQ SBRTNQCB, 0, P2=RETURNCD

SUBROUT SUBRTN

MOVE RETURNCD, 99
RETURN
SBRTNQCB QCB -1

Chapter 2. Instruction and Statement Descriptions ~LR-149

ENQT

ENQT - Gain exclusive control of a terminal

LR-150

SC34-0643

The ENQT instruction acquires exclusive control of a terminal. To acquire exclusive control of
a terminal is to “enqueune” it. A “terminal” is any device, such as a display station or printer,
that you define with a TERMINAL statement during system generation.

Your program releases exclusive control of a terminal when it executes a DEQT or PROGSTOP

instruction.

Once your program enqueues a terminal, it must release control of that terminal with a DEQT
instruction before attempting to enqueue another terminal.

When coding the ENQT instruction, you can include a comment which will appear with the
instruction on your compiler listing. If you include a comment, you must specify at least one
operand with the instruction. The comment must be separated from the operand field by one or
more blanks and it may not contain commas.

Syntax:

label ENQT name,BUSY=,SPOOL=,P1= comment

Required: none

Defaults: SPOOL=YES

name - label of the terminal which is currently in use
by the program

Indexable: none
Operand Description
name The label of an IOCB statement or one of two special device names: $SYSLOG

or $SYSPRTR. $SYSLOG is the name of the system display station;
$SYSPRTR is the name of the system printer. Your program enqueues the
terminal from which you loaded it if you allow this operand to default.

When you specify $SYSLOG or $SYSPRTR, the system refers to the
TERMINAL statement you set up for each of these devices during system
generation. Do not code an IOCB statement for these devices.

When you want to specify a terminal other than $SYSLOG or $SYSPRTR, you
can code the label of an IOCB statement for this operand. The ENQT
instruction refers to the IOCB statement for the name of the terminal you want
to control. The name on the IOCB statement is the name you assigned to the
terminal during system generation. By referring to an IOCB statement, you also
can redefine certain terminal characteristics. You can, for example, reset screen
or page margins, or change a terminal from a roll screen device to a static screen
device. (See the IOCB statement for a description of the terminal characteristics
you can redefine.) The terminal characteristics you specify with an IOCB
statement remain in effect until you release control of the terminal.

O

ENQT

ENQT - Gain exclusive control of a terminal (continued)

BUSY= The label of the instruction to receive control if the terminal you try to enqueue
is in use. If you do not code this operand and the terminal is in use, the system
suspends the execution of your program until the terminal you request becomes
available.

SPOOL= YES, the default, to allow the system to send spooled output to the spool device
you enqueue when the spool facility is active. This operand has no effect if the
spool facility is not active or if the device you enqueue is not a spool device.

NO, to prevent the system from sending spooled output to the spool device you
enqueue when the spool facility is active.

This operand remains in effect until your program executes a DEQT or
PROGSTOP instruction.

Pl1= Parameter naming operand. See “Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code this operand.

Special Considerations
You should note the following considerations when using the ENQT instruction:

o If your program has exclusive control of a terminal and loads another program, the system
dequeues the terminal unless you coded DEQT=NO on the LOAD instruction. See
“LOAD - Load a Program” on page LR-263for a description of the DEQT operand.

« ATTNLIST commands cannot gain access to an enqueued terminal.

o If your program attempts to enqueue a terminal it already controls, the ENQT instruction
can change the characteristics of the terminal in use if it refers to an IOCB statement that
defines new terminal characteristics.

o If an ENQT instruction refers to an IOCB that sets up the limits of a logical screen, the
output for that screen starts at the top of the working area. The system, however, does not
immediately move the cursor to this location. Your program can position the cursor at the
top of the working area by issuing a TERMCTRL DISPLAY.

« To preserve the correct current line pointer when the system sends spooled output to an
enqueued terminal, you must code a TERMCTRL DISPLAY as the last I/O instruction
before your program issues an ENQT instruction that redefines the characteristics of that
terminal.

Chapter 2. Instruction and Statement Descriptions LR-151

ENQT

ENQT - Gain exclusive control of a terminal (continued) @

Syntax Examples

Coding Example

LR-152 SC34-0643

1) Enqueue the system printer, $SYSPRTR.
ENQT $SYSPRTR
DEQT

2) Enqueue the device TTY1. The ENQT instruction refers to the IOCB labeled TERM1 for
the name of the device. If TTY1 is not available, the program passes control to the label
ALTERN and enqueues $SYSLOG.

TEST PROGRAM START
TERM1 IOCB TTY1,PAGSIZE=24
START EQU *
ENQT TERM1,BUSY=ALTERN
DEQT
ALTERN EﬁQT $SYSLOG
The first ENQT instruction in the program attempts to enqueue $SYSPRTR. If the device is . C/\)
busy, the program displays a message and attempts to enqueue an alternate printer ($SYSLIST).

If the alternate printer is busy, the program waits for it. When the program obtains a printer, it
executes the CALL instruction at the label GOTPRTR. The DEQT instruction at the label
RELEASE releases exclusive control of the enqueued printer (either $SYSPRTR or $SYSLIST).

GETPRTR EQU *
ENQT $SYSPRTR, BUSY=BUSYEXIT
GOTO GOTPRTR
BUSYEXIT EQU *
PRINTEXT '$SYSPRTR IS BUSY. ATTEMPTING TO ENQT ALTERNATE'
ENQT PRTRIOCB
GOTPRTR EQU *
CALL SUBRTN
RELEASE EQU *
DEQT
PROGSTOP
PRTRIOCB IOCB $SYSLIST
ENDPROG
END

ENTRY

0 ENTRY - Define a program entry point

The ENTRY statement defines one or more labels as being entry points within a program
module. A maximum of 10 labels are allowed on one ENTRY statemant. These entry-point
labels can be referred to by instructions in other program modules that are link-edited with the
module that defines the entry-point label. The program modules that refer to an entry-point
label must contain either an EXTRN or WXTRN statement for the label.

Syntax:
blank ENTRY one or more relocatable symbols
separated by commas
Required: one symbol
Defaults: none
Indexable: none
Operand Description
symbol One or more symbols that appear as instruction labels within the program

module.

Chapter 2. Instruction and Statement Descriptions LR-153

ENTRY
ENTRY - Define a program entry point (continued) Q"ﬁ

Coding Example

In module A, the first ENTRY statement signifies that the program can be entered at label
GETTIME. In module B, the entry defines label GOTTIME as being an entry point. Both of
these labels are also used with EXTRN statements so that their addresses can be resolved when
the two modules are link-edited together. The second ENTRY statement in module A will allow
the time to be printed without the ‘TIME IS NOW’ text.

MODULE A
ENTRY GETTIME
ENTRY GETTIME2
EXTRN GOTTIME
GETTIME EQU *
PRINTEXT '&THE TIME IS NOW °
GETTIME2 EQU *
PRINTIME
GOTO GOTTIME
N
MODULE B { J
L4
ENTRY GOTTIME
EXTRN GETTIME
TIME EQU *
GOTO GETTIME

GOTTIME EQU *

Note: The two ENTRY statements in module A could have been coded as follows:

ENTRY GETTIME,GETTIME2

O

LR-154 SC34-0643

O

0O

EOR

EOR - Compare the binary values of two data strings

The Exclusive OR instruction (EOR) compares the binary value of operand 2 with the binary
value of operand 1. The instruction compares each bit position in operand 2 with the
corresponding bit position in operand 1 and yields a result, bit by bit, of 1 or 0. If the bits
compared are the same, the result is 0. If the bits compared are not the same, the result is 1. If
both input fields are identical, the resulting field is 0. If one or more bits differ, the resulting
field contains a mixture of 0’s and 1’s.

Syntax:

label

Required:
Defaults:
Indexable:

EOR opnd1,opnd2,count, RESULT=,
P1=,P2=,P3=

opnd1,opnd2
count=(1,WORD),RESULT=0pnd1
opnd1,opnd2, RESULT

Operand

opndl

opnd2

count

Description

The label of the data area to be compared with opnd2. Opndl cannot be a
self-defining term. The system stores the result of the operation in this operand
unless you code the RESULT operand.

This operand can be a byte, word , or doubleword.

The value compared with opnd1l. You can specify a self-defining term or the
label of a data area. This operand can be a byte, word, or doubleword.

The number of consecutive values in opnd1 on which the operation is to be
performed. The maximum value allowed is 32767.

The count operand can include the precision of the data. Select one precision
which the system uses for opndl, opnd2, and the resulting bit string. When
specifying a precision, code the count operand in the form,

(n,precision)
where “n” is the count and “precision” is one of the following:
BYTE -- byte precision
WORD -- word precision (default)
DWORD -- doubleword precision
The precision you specify for the count operand is the portion of opnd2 that is

used in the operation. If the count is (3,BYTE), the system compares the first
byte of data in opnd2 to the first three bytes of data in opndl.

Chapter 2. Instruction and Statement Descriptions LR-155

EOR

EOR - Compare the binary values of two data strings (continued)

RESULT= The label of a data area or vector in which the result is to be placed. When you
specify RESULT, the value of opnd1 does not change during the operation. This
operand is optional.

Px= Parameter naming operands. See “Using The Parameter Naming Operands
(Px=)” on page LR-12 for a detailed description of how to code these operands.

Syntax Examples

1) The EOR instruction compares the first byte of data in D to the first byte of data in C and
places the result in R.

EOR c,D, (1,BYTE) ,RESULT=R

C DATA X'92' binary 1001 0010
D DATA X'S8F' binary 1000 1111
R DATA X'00'

After the operation, R contains:
Hexadecimal -- X‘1D’
Binary -- 0001 1101 O

2) The EOR instruction compares the first byte of data in OPER2 to the first three bytes of data
in OPER1. The result of the operation is stored in RESULTX.

ECR OPER1,0OPER2Z, (3,BYTE) , RESULT=RESULTX

OPER1 DC X'o0' binary 0000 0000
DC X'A5! binary 1010 0101
DC X'01" binary 0000 0001
OPER2 DC X'FF' binary 1111 1111
RESULTX DC . 2F'0"

After the operation, RESULTX contains:
Hexadecimal -- X‘FF5A FEOO’

Binary -- 1111 1111 0101 1010 1111 1110 0000 0000

LR-156 SC34-0643

O

EOR

EOR - Compare the binary values of two data strings (continued)

3) The EOR instruction compares the first byte of data in TEST to the first three bytes of data

in _INPUT. The result of the operation is stored in OUTPUT.

EOR INPUT,TEST, (3,BYTE) ,RESULT=0OUTPUT
INPUT DC c'1.2' binary 1111 00017 0100 1010 1111 0010
TEST DC c'o.0’ binary 1111 0000
1111 0000 1111 0000 1111 0000

OUTPUT DC 3c'o! binary

After the operation, OUTPUT contains:

Binary -- 0000 0001 1011 1010 0000 0010

Chapter 2. Instruction and Statement Descriptions

LR-157

EQU

EQU - Assign a value to a label

The EQU statement assigns a value to a label. The value is a word in length. You can use the

label you define with the EQU statement as an operand in other instructions that permit the use

of labels. The ‘value’ the statement assigns, or equates, to a label can consist of an integer

constant, another label, an expression containing an arithmetic operator (for example, A+2), or

an asterisk (*). See ‘‘Syntax Rules” on page LR-7 for a description of the four arithmetic
operators: + (plus), - (minus), * (multiply), and / (divide).

Syntax:

label

EQU value

Required:label,value

Defaults: none
Indexable: none
Operand Description
label The label to be assigned a value. Do not define this label elsewhere in your
program.
value An integer constant, another label, an expression containing an arithmetic

Special Considerations

operator, or an asterisk (*). The asterisk points to the next available storage
location in a program. It allows you to generate convenient labels that you can
use within your program. Do not confuse this use of an asterisk with the
arithmetic operator that signifies multiplication (*).

Your program must define any labels you code for this operand before the
system processes the EQU statement. For example, if you code:

A EQU B

you must have previously defined the label B in your program.

Here are some things to consider when you use the EQU statement in your program:

~« When you use the label on the EQU statement as an operand in another instruction, the

system interprets the label as a storage address unless you include a plus (+) sign before it.

The system interprets a label preceded by a plus sign as a constant.

« Because EQU assigns a word value to a label, a byte-precision move of a label preceded by a
plus sign would only move the leftmost byte of the word. If you equated the label A to the

value 4 (X‘0004”), for example, the system would move only the value X‘00’.

LR-158 SC34-0643

@

O

EQU

EQU - Assign a value to a label (continued)

Syntax Examples

« If you equate a DATA or DC statement with a label, the system interprets the label as t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>