
• --------- -------- - ---- - - ----------_ .- Series/1
-

, '

SC34-0643-0

Event Driven Executive
Language Reference
Version 5.0

Library Guide an:
Common Index

SC34·0645

Language
Reference

SC34·0643

Operation Guide

SC34-0642

Problem
Determination
Guide

SC34-0639

""-......

0

o

Installation and
System Generation
Guide

SC34·0646

Communications
Guide

SC34·0638

Event Driven
Language
Programming Guide

SC34·0637

Customization
Guide

SC34·0635

Operator Commands
and
Utilities Reference

SC34·0644

Messages and
Codes

SC34-0636

Reference
Cards

SBOF·1625

Internal
Design

LY34-0354

--------- - ------- - ---- -- ----------_.-

SC34-0643-0

o

Event Driven Executive
Language Reference
Version 5.0

Language
Reference

SC34·0643

Series/1

First Edition (December 1984)

Use this publication only for the purpose stated in the Preface.

Changes are made periodically to the information herein; any such changes will be
reported in subsequent revisions or Technical Newsletters.

This material may contain reference to, or information about, IBM products
(machines and programs), programming, or services that are not announced in your
country. Such references or information must not be construed to mean that IBM
intends to announce such IBM products, programming, or services in your country.

Publications are not stocked at the address given below. Requests for copies of IBM
publications should be made to your IBM representative or the IBM branch office
serving your locality.

This publication could contain technical inaccuracies or typographical errors. A form
for readers' comments is provided at the back of this publication. If the form has
been removed, address your comments to IBM Corporation, Information
Development, 3406, P. O. Box 1328, Boca Raton, Florida 33432. IBM may use or
distribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use the
information you supply.

© Copyright International Business Machines Corporation 1984

o

Summary of Changes For Version 5.0

The following changes have been made to this document in addition to editorial updates.

Control of 497S-01A ASCII Printer operations has been described in the PRINTEXT
section of this manual. For that information refer to "Request Special Terminal Function o (4975-01A)" on page LR-334.

o

• A program has been included which enables you to change address(s) for the image and/or
control stores of the 4980 Display Station from an application program. A description can
be found under "$RAMSEC - Replace Terminal Control Block (4980)" on page LR-S94.

• A new operand has been added to the description of the instruction "BSCOPEN - Prepare a
BSC line for use" on page LR-41. This operand is for the X.21 Circuit Switched Network.

• Information has been included on how to code a disk immediate read in the READ section
of the manual. This information may be found under "Coding Example - Disk Immediate
Read" on page LR-381.

CI Descriptions of the following new instructions or statements have been added to Chapter 2:

"MECB - Create a list of events" on page LR-269. This statement is used to generate
an ECB list! for the W AITM instruction.

A new TERMCTRL statement for the 4980 Display Terminal. This description is found
under "4980 Display" on page LR-470.

Summary of Changes For Version 5.0 iii

Summary of Changes For Version 5.0

iv SC34-0643

A new TERMCTRL statement for the 5219 Printer. This description is found under
"5219 Printer" on page LR-473.

"WAITM - Wait for one or more events in a list" on page LR-523. This instruction
allows a program to wait for one or more events in a list.

o

CI:~
1'/

o

Audience

About This Book

This book contains details and examples of how to code the instructions and statements you can
use to write Event Driven Language application programs.

This book is intended for application programmers who write and maintain programs using the
Event Driven Language. You can learn the Event Driven Language by using the Event Driven
Executive Language Programming Guide.

How This Book Is Organized

This book contains two chapters and six appendixes:

Chapter 1. Introduction describes how instructions and statements are presented in this
book. The chapter also describes the syntax rules for the language; defines key terms used
throughout the book, and provides information about a number of special features available
with the Event Driven Language.

Chapter 2. Instruction and Statement Descriptions contains a detailed description of each
EDL instruction and statement and shows the syntax of the instruction or statement, the
required operands, and the default values. The instructions and statements are arranged in
alphabetical order.

About This Book v

About This Book
How This Book Is Organized (continued)

• Appendix A. Formatted Screen Subroutines contains a description of each of the formatted
screen subroutines ($IMAGE routines) along with its syntax, required operands, and default
values.

Appendix B. Programs Communication Through Virtual Terminals contains a description of
the virtual terminal facility that allows application programs to communicate as if they were
EDX terminals.

Appendix C. Communicating with Programs in Other Partitions (Cross-Partition Services)
contains examples that show how programs can share data and communicate with other
programs across partitions.

Appendix D. EDX Programs, Subroutines, and Inline Code lists the syntax, options and
default values for the Indexed Access Method, Multiple Terminal Manager, and Formatted
Screen subroutines. In addition, the appendix describes a data management program and
subroutines, a program for using partitioned data sets, and a copy code routine for
identifying device types.

• Appendix E. Creating, Storing, and Retrieving Program Messages describes how to build and
use formatted program messages in your EDL application programs.

Appendix F. Conversion Table contains a table that shows the hexadecimal, binary,
EBCDIC, and ASCII equivalents of decimal values. The table also shows transmission
codes for communications devices.

Aids in Using This Book

vi SC34-0643

Several aids are provided to assist you in using this book:

An Instructions and Statements Chart that groups EDL instructions and statements by the
common tasks they perform. The chart also lists the statements used during system
generation.

A Glossary that defines terms and acronyms used in this book and in other EDX library
publications.

• An Index of topics covered in this book.

f" ;' -----'

o

c

o

A Guide to the Library

Refer to the Library Guide and Common Index for information on the design and structure of the
Event Driven Executive Library and for a bibliography of related publications.

Contacting IBM about Problems

You can inform IBM of any inaccuracies or problems you find when using this book by
completing and mailing the Reader's Comment Form provided in the back of the book.

If you have a problem with the Series/l Event Driven Executive services, you should fill out an
authorized program analysis report (APAR) form as described in the IBM Series/l Software
Service Guide, GC34-0099.

About This Book vii

:".~~ .. , !~

viii SC34~0643

o

c

o

Chapter 1. Introduction LR-l
The Event Driven Language LR-1
The Format of EDL Instructions and Statements LR-2

Sample EDL Instruction LR-5
Common Terms LR-7
Syntax Rules LR -7
Software Register Usage LR -10
Using The Parameter Naming Operands (Px=) LR-12

Rules to Remember LR-15

Chapter 2. Instruction and Statement Descriptions LR-17
Instructions and Statements Chart LR-17
$ID - Identify system release level LR-20
ADD - Add integer values LR-22
ADDV - Add two groups of numbers (vectors) LR-25
ALIGN - Align instruction or data to a specified boundary LR-29
AND - Compare the binary values of two data strings LR-30
ATTACH - Start a task LR-32
ATTNLIST - Enter attention-interrupt-handling routine LR-34
BSCCLOSE - Free a BSC line for use by other tasks LR-38
BSCIOCB - Specify BSC line address and buffers LR-39
BSCOPEN - Prepare a BSC line for use LR-41
BSCREAD - Read data from a BSC line LR-44
BSCWRITE - Write data to a BSC line LR-48
BUFFER - Define a storage area LR-55
CACLOSE - Close a Channel Attach port LR-59
CAIOCB - Create a Channel Attach port I/O control block LR-61
CALL - Call a subroutine LR-62
CALLFORT - Call a FORTRAN subroutine or program LR-65

Contents

Contents ix

Contents

x SC34-0643

CAOPEN - Open a Channel Attach port LR-67
CAPRINT - Print Channel Attach trace data LR-69
CAREAD - Read from a Channel Attach port LR-71
CASTART - Start Channel Attach device LR-74
CASTOP - Stop a Channel Attach device LR-76
CATRACE - Control Channel Attach tracing LR-78
CAWRITE - Write to a Channel Attach port LR-80
COMP - Define location of message text LR-82
CONCAT - Concatenate two character strings LR-84
CONTROL - Perform tape operations LR-86
CONVTB - Convert numeric string to EBCDIC LR-93
CONVTD - Convert EBCDIC string to numeric string LR-97
COpy - Copy source code into your source program LR-102
CSECT - Identify object module segments LR-106
DATA/DC - Define data LR-108
DCB - Create a device control block LR -112
DEFINEQ - Define a queue LR-115
DEQ - Release a resource for use LR-119
DEQT - Release a terminal for use LR-120
DETACH - Deactivate a task LR-122
DIVIDE - Divide integer values LR-124
DO - Perform a program loop LR-127
DSCB - Create a data set control block LR-134
ECB - Create an event control block LR-136
EJECT - Continue compiler listing on a new page LR-138
ELSE - Specify action for a false condition LR-139
END - Signal end of source statements LR-140
END ATTN - End attention-interrupt-handling routine LR-141
ENDDO - End a program loop LR-142
END IF - End an IF-ELSE structure LR-143
ENDPROG - End a program LR-144
ENDT ASK - End a task LR -146
ENQ - Gain exclusive control of a resource other than a terminal LR-148
ENQT - Gain exclusive control of a terminal LR-150
ENTRY - Define a program entry point LR-153
EOR - Compare the binary values of two data strings LR-155
EQU - Assign a value to a label LR-158
ERASE - Erase portions of a display screen LR-162
EXCLOSE - Close an EXIO device LR-168
EXIO - Execute I/O LR-169
EXOPEN - Open an EXIO device LR-173
EXTRN - Resolve external reference symbols LR-175
FADD - Add floating-point values LR-177
FDIVD - Divide floating-point values LR-180
FIND - Locate a character LR-183
FINDNOT - Locate the first different character LR-185
FIRSTQ - Acquire the first queue entry in a chain LR-187
FMULT - Multiply floating-point values LR-189

(c· "'I
I:" __ J

-

o

-0

FORMAT - Format data for display or storage LR-192
FPCONV - Convert to or from floating-point LR-203
FREESTG - Free mapped and unmapped storage areas LR-206
FSUB - Subtract floating-point values LR-208
GETEDIT - Collect and store data LR-211
GETSTG - Obtain mapped and unmapped storage areas LR-218
GETTIME - Get date and time LR-220
GETVALUE - Read a value entered at a terminal LR-222
GIN - Enter unscaled cursor coordinates LR-230
GOTO - Go to a specified instruction LR-231
HASHVAL - Condense a character string LR-233
IDCB - Create an immediate device control block LR-235
IF - Test if a condition is true or false LR-237
INTIME - Provide interval timing LR-244
10CB - Define terminal characteristics LR-246
10DEF - Assign a symbolic name to a sensor-based I/O device LR-250

10DEF (Analog Input) LR-251
IODEF (Analog Output) LR-252
IODEF (Digital Input) LR-253
IODEF (Digital Output) LR-254
IODEF (Process Interrupt) LR-256

lOR - Compare the binary values of two data strings LR-259
LASTQ - Acquire the last queue entry in a chain LR-262
LOAD - Load a Program LR-263
MECB - Create a list of events LR-269
MESSAGE - Retrieve a program message LR-271
MOVE - Move data LR-276
MOVEA - Move an address LR-281
MULTIPLY - Multiply integer values LR-282
NETCTL - Controlling SNA message exchange LR-285
NETGET - Receive messages from the SNA host LR-290
NETHOST - Build an SNA host ID data list LR-294
NETINIT - Establish an SNA session LR-296
NETPUT - Send messages to the SNA host LR-302
NETTERM - End an SNA session LR-306
NEXTQ - Add entries to a queue LR-308
NOTE - Store next-record pointer LR-311
PLOTGIN - Enter scaled cursor coordinates LR-313
POINT - Set next-record pointer LR-315
POST - Signal the occurrence of an event LR-317
PRINDATE - Display the date on a terminal LR-319
PRINT - Control printing of a compiler listing LR-321
PRINTEXT - Display a message on a terminal LR-324

Request Special Terminal Function (4975-01A) LR-334
Code Extension Sequences LR-334

PRINTIME - Display the time on a terminal LR-344
PRINTNUM - Display a number on a terminal LR-346
PROGRAM - Define your program LR-351

Contents xi

Contents

xii SC34-0643

PROGSTOP - Stop program execution LR-359
PUTEDIT - Collect and store data from a program LR-361
QCB - Create a queue control block LR-367
QUESTION - Ask operator for input LR-369
RDCURSOR - Store static screen cursor position LR-374
READ - Read records from a data set LR-376
READ TEXT - Read text entered at a terminal LR-385
RESET - Reset an event or process interrupt LR-399
RETURN - Return to the calling program LR-401
SBIO - Specify a sensor-based I/O operation LR-402

SBIO Analog Input LR-403
SBIO (Analog Output) LR-405
SBIO (Digital Input) LR-407
SBIO (Digital Output) LR-410

SCREEN - Convert graphic coordinates to a text string LR-413
SETBIT - Set the value of a bit LR-414
SHIFTL - Shift data to the left LR -416
SHIFTR - Shift data to the right LR-418
SP ACE - Insert blank lines in a compiler listing LR-420
SPECPIRT - Return from Process Interrupt Routine LR-421
SQRT - Find the square root LR-422
STATUS - Set fields to check host status data set LR-423
STIMER - Set a system timer LR-425
STORBLK - Define mapped and unmapped storage areas LR-430
SUBROUT - Define a subroutine LR-433
SUBTRACT - Subtract integer values LR-435
SWAP - Gain access to an unmapped storage area LR-437
TASK - Define a program task LR-440
TCBGET - Get task control block data LR-443
TCBPUT - Store data in a task control block LR-445
TERMCTRL - Request special terminal functions LR-446

TERMCTRL Functions Chart LR-446
2741 Communications Terminal LR-449
3101 Display Terminal (Block Mode) LR-450
4013 Graphics Terminal LR-453
4973 Printer LR-454
4974 Printer LR-456
4975 Printer LR-459
4978 Display LR-464
4979 Display LR-468
4980 Display LR-470
5219 Printer LR-473
5224 or 5225 printer LR-478
ACCA Attached Devices LR-483
General Purpose Interface Bus LR-485
Series/1-to-Series/1 LR-489
Teletypewriter Attached Devices LR-492
Virtual Terminal LR-493

c-'
--)

, J

,;
"

o

c

o

TEXT - Define a text message or text buffer LR-497
TITLE - Place a title on a compiler listing LR-SOO
TP Instruction - Perform Host Communications Facility Operations LR-SOI

TP (CLOSE) - End a transfer operation LR-S02
TP (FETCH) - Test for a record in the system-status data set LR-S03
TP (OPENIN) - Prepare to read data from a host data set LR-S04
TP (OPENOUT) - Prepare to transfer data to a host data set LR-SOS
TP (READ) - Read a record from the host LR-S06
TP (RELEASE) - Delete a record in the system-status data set LR-S07
TP (SET) - Write a record in the system-status data set LR-S08
TP (SUBMIT) - Submit a job to the host LR-S09
TP (TIMEDATE) - Get time and date from the host LR-Sll
TP (WRITE) - Write a record to the host LR-S12

USER - Use assembler code in an EDL program LR-S16
WAIT - Wait for an event to occur LR-S20
WAITM - Wait for one or more events in a list LR-S23
WHERES - Locate an executing program LR-S2S
WRITE - Write records to a data set LR-528
WXTRN - Resolve weak external reference symbols LR-535
XYPLOT - Draw a curve LR-537
YTPLOT - Draw a curve LR-538

Appendix A. Formatted Screen Subroutines LR-539

$IMDATA Subroutine LR-541
$IMDEFN Subroutine LR-543
$IMOPEN Subroutine LR-545
$IMPROT Subroutine LR-547
$PACK Subroutine LR-549
$UNPACK Subroutine LR-551

Appendix B. Program Communication Through Virtual Terminals LR-553
Requirements for Defining Virtual Terminals LR-553
Considerations for Coding a Virtual Terminal Program LR-554
Virtual Terminal Communication LR-555
Sample Virtual Terminal Programs LR-556

Appendix C. Communicating with Programs in Other Partitions (Cross-Partition Services) LR-559
Transferring Data Across Partitions LR-560
Starting a Task in Another Partition (ATTACH) LR-566
Synchronizing Tasks and the Use of Resources in Different Partitions LR-568

Appendix D. EDX Programs, Subroutines, and Inline Code LR-573
EDX Programs LR-573

$DISKUT3 - Manage Data from an Application Program LR-574
$PDS - Use Partitioned Data Sets LR-581
$RAMSEC - Replace Terminal Control Block (4980) LR-594
$SUBMITP - Submit a Job for Execution LR-597
$USRLOG - Log Specific Errors From a Program LR-599

Contents xiii

Contents

xiv SC34-0643

EDX Subroutines LR-601
DSOPEN - Open a data set LR-602
Formatted Screen Subroutines (Syntax Only) LR-607
Indexed Access Method (Syntax Only) LR-608
Multiple Terminal Manager (Syntax Only) LR-609
SETEOD - Set the logical end-of-file on disk LR-611
UPDTAPE - Add Records to a Tape File LR-613

Inline Code (EXTRACT) LR-614

Appendix E. Creating, Storing, and Retrieving Program Messages LR-61S
Creating a Data Set for Source Messages LR-616
Entering Source Messages into a Data Set LR-616
Formatting and Storing Source Messages (using$MSGUTl) LR-619
Retrieving and Printing Formatted Messages LR-619

Appendix F. Conversion Table LR-621

Glossary of Terms and Abbreviations LR-627

Index LR-637

c

o

Figures

1. ADD Instruction Syntax LR-2
2. MOVE Instruction Syntax LR-13
3. Function of ATTNLIST LR-37
4. Required Buffers for BSCREAD and BSCWRITE LR-40
5. Physical Layout of a Buffer LR-57

o 6. Execution of Subroutines LR-64
7. Layout of a Queue LR-117
8. GETEDIT Overview LR-217
9. Two Ways of Loading a Program LR-267

10. TEXT Statement LR-499
11. Calling a Series/1 Assembler Routine and Returning LR-517
12. Virtual Terminal Return Codes LR-555
13. Request Block Example LR-574
14. Information Returned from DSOPEN LR-606

o
Figures xv

o

xvi SC34-0643

o

o

Chapter 1. Introduction

The Event Driven Language (EDL) is a programming language designed for use on the Series/1
computer. The language enables you to write programs that perform specific tasks. This
chapter describes how the various instructions and statements that make up the Event Driven
Language are presented in this book. The chapter also includes:

•

Definitions of terms commonly used throughout the book

A list of syntax rules you need to know to code EDL instructions and statements

A description of how to use parameter naming operands and the two software registers
available to your program.

Note: For a detailed description of how to write and structure EDL programs, see the Event
Driven Executive Language Programming Guide.

The Event Driven Language

The Event Driven Language is composed of instructions and statements. Instructions allow you
to perform specific operations such as adding or subtracting data or printing a message on a
terminal. Instructions generate object code that the system can process and execute.
Statements enable you to define the parts of a program, define data and system resources, and
format compiled output, but not all EDL statements generate object code. The system typically
uses the code that is generated by statements to set up storage locations.

Because statements do not execute in the same manner as instructions, you should not place
statements between the instructions in your programs. The exception to this rule is the four

Chapter 1. Introduction LR-1

Introduction
The Event Driven Language (continued)

statements used to control the formatting of compiler listings: PRINT, SPACE, TITLE, and
EJECT. You can code these statements between program instructions because the system
ignores them after the compile operation.

The Format of EDL Instructions and Statements

LR -2 SC34-0643

EDL instructions and statements have the general format:

I label operation operands

where these terms have the following meanings:

label

operation

operands

The symbolic name you assign to an instruction or statement. You can use this
name in your program to refer to that specific instruction or statement. In most
cases, a label is optional.

The name of the instruction or statement you are coding.

These constitute the body of the instruction or statement. An operand can
represent data that is required to complete an operation, or it can define how an
operation is to be performed.

The Event Driven Language has two types of operands: positional operands and keyword
operands. Positional operands must be coded in the position shown in the operands field for the
instruction or statement. These operands appear in lower case. Positional operands usually
require a specific value, address, or label. Keyword operands can be coded in any order
following the positional operands (if any) contained in an instruction or statement. These
operands are in the form KEYWORD=. Keyword operands typically enable you to control how
the system performs an operation.

Depending on the type of operation you are performing, you may need to code an operand with
a specific value or label. For the purposes of this book, such values or labels are generally
referred to as parameters. Figure 1 shows the syntax of the EDL ADD instruction.

label ADD opnd1,opnd2,count,RESULT=,PREC=,
P1=,P2=,P3=

Figure 1. ADD Instruction Syntax

In the following example, operand 2 (a value of 5) is added to operand 1 (the contents in A).
The system places the result of this operation in SUM, the location specified on the keyword
operand RESULT = . '

o

o

c

o

The Fonnat of EDL Instructions and Statements (continued)

A
SUM

ADD A,5,RESULT=SUM

DATA
DATA

F'8'
F'O'

The parameter for opnd1 in the above operation is A. The parameter specified for opnd2 is 5,
and SUM is the parameter coded for the RESULT= operand.

Instruction and Statement Descriptions

This book describes each EDL instruction and statement beginning in Chapter 2. Each
description begins with an explanation of what the instruction or statement does. This
explanation is followed by a syntax box which shows the operands that make up the instruction
or statement. Positional operands are shown in the order you must code them.

Each syntax box also contains a list with the following headings:

Required:

Defaults:

Indexable:

You are required to code the operand or operands listed here.

The system will supply the data shown if you do not specify the operand or
operands listed here.

You can use the two software registers, #1 and #2, for the operands listed here.
See "Software Register Usage" on page LR-10 for further information on the
software registers.

All operands that make up an instruction or statement are defined in a list which follows the
syntax box. The operands are listed in the order in which they appear in the syntax box. The
operand description details the use of the operand and any restrictions that may apply to its use.

Special Considerations

Syntax Examples

Coding Examples

Certain IBM devices may require you to code an EDL instruction in a special way. Other
devices offer additional features which expand the use of an instruction. Special considerations
that can affect the way you use an instruction are described after the operand list.

Most instructions and statements in this book contain syntax examples. Syntax examples show
the various ways you could code an instruction or statement. They generally consist of a single
line of code.

Many instructions and statements in this book also contain one or more coding examples. These
examples consist of entire programs or pieces of programs. Coding examples illustrate how an
instruction or statement works in relation to other instructions and statements in the language.

Chapter 1. Introduction LR-3

Introduction
The Format of EDL Instructions and Statements (continued)

Return or Post Codes

LR -4 SC34-0643

If an instruction issues return or post codes, these are listed after the examples. Return and post
'codes are issued as follows:

Return codes

Post codes

Issued as a result of executing an EDL instruction to indicate whether the
operation was a success or a failure. Return codes are returned in the first
word of the task control block of the program or task issuing the instruction,
unless otherwise stated. The label of the task control block (TCB) is the
taskname (label) you specify on the PROGRAM or TASK statement. You
can examine the return code from an instruction by referring to the taskname
in your program or by using the TCBGET instruction.

The following example shows several ways you can check the return code:

START
BEGIN

PROGRAM
EQU
READTEXT
IF
TCBGET
PRINTEXT
PRINTNUM

BEGIN

*
(START,EQ,-1) , GOTO,MESSAGE

RC,$TCBCO
'ERROR RETURN CODE IS: '
RC

MESSAGE PRINTEXT 'OPERATION IS SUCCESSFUL'

RC DATA F'O'

Issued by the system to signal the occurrence of an event. Unless otherwise
stated, post codes are returned in the first word of the event control block
(ECB) that is posted when the event occurs. You must specify the ECB to be
posted with an ECB statement.

o

o

o

C

o

The Fonnat of EDL Instructions and Statements (continued)

Sample EDL Instruction

The following example shows how instructions and statements are presented in this book. A full
description of the MESSAGE instruction and its operands appears in Chapter 2.

MESSAGE - Retrieve a program message

The MESSAGE instruction retrieves a program message from a data set or module, and displays or prints the
message.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

msgno

COMP=

SKlP=

LINE =

SPACES=

PARMS=

MSGID=

XLATE=

PROTECf=

Pl=

MESSAGE msgno,COMP=,SKIP=,LlNE=,SPACES=,
PARMS=(parml, ... ,parm8).MSGID=,
X LA TE=, PROTECT=, Pl =

msgno,COMP=
MSG I D=NO,XLA TE=YES, PROTECT=NO
none

Description

(positional operand)

(keyword operand)

(keyword operand)

(keyword operand)

(keyword operand)

(keyword operand)

(keyword operand)

(keyword operand)

(keyword operand)

(parameter-naming operand)

Chapter 1. Introduction LR-5

Introduction
The Fonnat of EDL Instructions and Statements (continued)

LR-6 SC34-0643

Syntax Example

Retrieve the first message in the disk data set that the COMP statement points to.

MSGl MESSAGE 1,COMP=MSGSET

PROGSTOP
MSGSET COMP 'ERRS' ,DS1,TYPE=DSK

Coding Example

The following example uses the MESSAGE instruction to retrieve a message contained in a disk data set. The
program TASK loads a second program CALCPG RM. AWAIT instruction suspends the execution of TASK until
CALCPGRM completes. When CALCPGRM finishes, it posts the ECB at label LOADECB. The MESSAGE
instruction at label MSG 1 retrieves the first message in the disk data set MSGDS 1 on volume EDX002.

TASK
LOADECB
START

MSGl

A
MSGSET

PROGRAM
ECB
EQU

LOAD
WAIT
MESSAGE

PROGSTOP

START, DS= ((MSGDS 1 ,EDX002))

*

CALCPGRM,EVENT=LOADECB
LOADECB
1,COMP=MSGSET,SKIP=1,PARMS=A,MSGID=YES

DATA 'CALCPGRM'
COMP 'STAT' ,DS1,TYPE=DSK
ENDPROG
END

Return Codes

The return codes are returned in the first word of the task control block (TCB) of the program issuing the
instruction. The label of the TCB is the label of your program or task (taskname).

Code

-1
301-316

335

Description

Successful completion
Error while reading message from disk.

Disk messages not supported (MINMSG support only)

o

o

iO" ..

\ '

o

o

o

The Format of EDL Instructions and Statements (continued)

Common Terms

Syntax Rules

The following list contains some terms commonly used in the Language Reference, along with
their definitions:

constant A value or address that remains unchanged throughout program execution. The
number S is an example of an integer constant. An address in a program, such as
009E, is an example of an address constant.

self-defining A decimal, integer, or character that the computer treats as data and not as
term an address or pointer to data in storage. Self -defining terms include expressions

such as C'A' and X'SB'.

variable An area in storage, referred to by a label, that can contain any value during
program execution. In the example below, the label A refers to an area in
storage. The area contains the value lO. When the DIVIDE instruction
executes, it divides the contents of A by S. The system places the result of the
operation in A. The variable A now contains a value of 2.

immediate
data

precision

DIVIDE A,S

A DATA F' 10'

Immediate data refers to the way you can use a self-defining term.
If you code a self-defining term, such as 8, for an operand in an instruction, you
are using this term as "immediate data." Operand 2 in the following example
uses immediate data. The MULTIPLY instruction multiplies the value of B by 8.

MULTIPLY B,8

The number of words in storage needed to contain a value in an operation.

This section contains syntax rules you should be aware of when coding programs in the Event
Driven Language. These rules apply whether you are using the Event Driven Executive
Compiler ($EDXASM) or the IBM Series/l Macro Assembler ($SlASM).

An "alphabetic string" can contain one or more alphabetic characters (A - Z) and any of the
following special characters: $, #, or @.

An "alphameric string" can contain one or more alphabetic or numeric characters (0 - 9).

Chapter 1. Introduction LR-7

Introduction
Syntax Rules (continued)

• You must code all instructions, statements, and keyword operands in upper case letters (as
shown in the syntax descriptions starting in Chapter 2, "Instruction and Statement
Descriptions" on page LR-17).

• When you code a keyword operand, you must also code the equal sign (=) that follows it as
shown in the following example.

PREC=

• Operands must be separated by commas. Operands also must be separated from the
operation name by one or more blanks.

• An ellipsis (. ..) indicates that an operand may be repeated a variable (n) number of times.

A vertical bar (I) between two operands indicates that you can use one operand or the
other, but not both.

All labels must be alphameric strings of 1 to 8 characters in length. The first character of
the label must be a letter or one of the following special characters: $, #, or @.

Instruction and statement labels must begin in column 1. Operation names can begin in
column 2, but must not go beyond column 71.

To continue a line of code on another line, code any nonblank character in column 72, for
example an "X", and begin the next line in column 16. If the continuation line contains a
blank between column 16 and column 71, the system ignores any information after that
blank. The system concatenates the data on the continuation line to the data on the
preceding line.

The number of continuation lines allowed is limited only by the maximum of 254 characters
allowed in the operands field.

You can code operands through column 71 of the line to be continued, or you can break off
the line after a comma following an operand. An example of breaking off the line before
column 71 follows:

----+----1----+----2----+----3----+----4----+----5----+----6----+----7--

label PRINTEXT 'ANNUAL STATUS AND RECOMMENDATION REPORT',
SPACES=20,SKIP=1

x

• To include a comment following an instruction in your program, separate the comment from
the operands field by at least one blank. You can reserve an entire line in the program for
comments by coding an asterisk (*) in column 1. The system ignores everything on the line
following the asterisk.

LR-8 SC34-0643

()

f~i
~--~

o

o

o

Syntax Rules (continued)

Avoid the use of commas within comments for any of the following instructions or
statements: DEQT, ECB, ENQT, IOCB, PROGSTOP, or QCB.

• The system interprets any label you assign a value to with the EQU statement as an address
unless you code a plus sign (+) in front of the label. The plus sign indicates that the label
represents a numeric value.

The following labels are reserved for system use:

All labels beginning with a $

RO, R1, R2, R3, R4, R5, R6, R7, FRO, FR1, FR2, FR3

#1, #2

RETURN (except when used in the instruction to end a user subroutine)

SETBUSY

SUPEXIT

SVC

Note: You can refer to these labels within your program in the instruction operands.

• The maximum number of delimiters allowed in the operands field is 70. Delimiters are ()
or , or ' .

To indicate an apostrophe mark within a text message, code double apostrophe marks (").

• The EDX arithmetic operators are + (plus), - (minus), * (multiply), and / (divide).

You can use the plus and minus operators to create expressions that refer to specific
addresses in your program. The expression B+2, for example, defines an address equal to
the address of B plus 2 bytes. The expression C-A defines an address equal to the address
of C minus the address of A. You can use the expressions you create with the plus and
minus operators in all EDL instructions that allow you to code a label for an operand. You
can use an expression instead of a label.

The mUltiply and divide operators are valid only when you use them in an arithmetic
expression that you equate with a label. You equate arithmetic expressions with labels by
using the EQU instruction. The multiply operator multiplies an address by the number of
bytes you specify. The expression B*2 multiplies the address of B by 2. The divide
operator divides an address by the number of bytes you specify. In the expression C/D, the
address of C is divided by the value of D. See the EQU statement for examples that use the
multiply and divide operators.

Chapter 1. Introduction LR-9

Introduction
Syntax Rules (continued)

Each arithmetic expression can contain only one operator. For example, the expressions
A+B, C-l, D*4, and E/2 are all valid. If you require an expression containing more than
one operator, you can code it using multiple equate (EQU) statements. The EQD statement
equates a label with a value. To compute the address of A+B-2, for example, you could
code the following:

APB
APBM2

EQU
EQU

A+B
APB-2

EQUATE APB WITH A+B
EQUATE APBM2 WITH APB-2

An arithmetic expression normally consists of two terms separated by an operator. You
can construct an expression, however, consisting of an operator followed by a symbol. In
this case, the system assumes that the first term of the expression is O. For example, if the
value 2 is at location A, then +A is 2, -A is -2, * A is 0, and / A is O.

Operands which do not belong with an instruction are normally not flagged as errors when
compiled under $EDXASM. The erroneous operand does not generate any code and,
therefore, does not affect the execution of the instruction.

Software Register Usage

LR -10 SC34-0643

Each task in your program has access to two software registers. You can use these registers to
hold data during an operation or as a means of computing addresses. You can also use the
registers as counters. The registers are named #1 and #2. With operands that are listed as
"indexable," you can treat the registers in the same manner as any other variable. For example,
you can code instructions in your program to set, modify, or test these registers.

In the example below, the MOVE instruction moves the value 0 into #1. The 0 value replaces
any existing data in #1, thereby setting the software register to O.

MOVE # 1 ,0 SET #1 TO ZERO

The MOVE instruction in the next example moves the contents of variable A into #2.

MOVE #2,A SET #2 TO THE CONTENTS OF A

An example of a register used as the second operand in an instruction is:

ADD A,#1

Here, the ADD instruction adds the contents of #1 to the variable A, and places the result in A.

o

o

o

Software Register Usage (continued)

You may also want to place the address of a variable into a software register. You can
accomplish this by using the MOVEA instruction. For example,

MOVEA #2,BUFFER1

sets register #2 to the address of the variable BUFFER1.

Indexing with the Software Registers

You can use # 1 and #2 to modify addresses in your program while the program is executing.
The process is called "indexing" and #1 and #2 are referred to as "index registers." In the
following example,

MOVE A, (B, # 1)

the MOVE instruction moves the contents specified by (B,#l) into variable A. The system
treats the second operand of the MOVE instruction as an address because this operand is in the
form,

(parameter,#r)

where parameter is either a label or an integer and r is either a 1 or a 2. If #1 in the preceding
example contains a 5, then the data the system moves into variable A is located at the address of
B plus 5 bytes. This sum is called the "indexed address." Note that only one of the variables in
an operand with the (parameter,#r) format, either the parameter or the index register, can
represent an address. The other variable must be an integer or a label preceded by a plus sign
(+) that is equated to an integer. (Use the EQU statement to equate a label with an integer.)

The following example shows how you could use an index register to find the location of data in
a buffer. The example uses a DO loop to find the value -350 in a buffer containing 1000
entries.

FOUND

BUF

MOVE
DO

IF
ADD

ENDDO

1 ,0
1000,TIMES

((BUF,#1) ,EQ,-350) ,GOTO,FOUND
1 ,2

(DID NOT FIND A MATCH)

MOVE DISP,#1

PROGSTOP
BUFFER 1000,WORDS

The first MOVE instruction sets the index register, #1, to O. A DO instruction is coded to
perform the operations within the loop 1,000 times. The IF instruction checks to see if the first
word in the buffer BUF is equal to -350. If the first word is not equal to -350, the ADD
instructions adds the value 2 to #1. When the loop repeats, (BUF,#1) points to the address of

Chapter 1. Introduction LR-11

Introduction
Software Register Usage (continued)

BUF plus two bytes (one word). With each succeeding loop, the program increments #1, and
points to the next word in the buffer. BUF has a length of 1,000 words (2,000 bytes).

If the program finds the value -350 in the buffer, it executes the MOVE instruction at label
FOUND. The MOVE instruction saves the displacement from the start of the buffer, which is
contained in #1, at the location DISP.

Register Considerations

Because each task in a program has its own software registers, the values in #1 and #2 can vary
from task to task. The system will use whatever values are in the software registers of the task
that is executing.

If several different tasks call a subroutine, the subroutine uses the software registers belonging
to the calling task. Overlay programs, however, are independent programs with their own tasks.
They have their own registers and do not use the invoking task's registers.

Using The Parameter Naming Operands (Px=)

LR -12 SC34-0643

Often, when you create a program, you do not know the exact data the program will use when it
executes. Normally, you can code a label with a DATA, DC or TEXT statement. In the MOVE
instruction, for example, you may not know the byte count until a previous instruction executes.
When the instruction executes, it uses whatever data is stored at the location defined by the
label. Sometimes, however, a label cannot be coded for instruction parameters.

In the following example, the number of bytes to move is dependent on the value of the variable
called NUMBER. The count parameter of the MOVE instruction does not allow use of a label.
So, multiple MOVE instructions are needed for every count parameter option. In the following
example, only two values for NUMBER exist. A separate MOVE instruction is needed for each
value. Note that this technique requires a great deal of storage.

A
B
NUMBER

IF (NUMBER,EQ,6)
MOVE A,B, (6,bytes)

ELSE
IF (NUMBER,EQ,10)

MOVE A,B, (10,bytes)
ENDIF

ENDIF

TEXT
TEXT
DATA

LENGTH=10
LENGTH=10

F'O'

If the value of NUMBER is a 6, then 6 bytes are moved from location B to A. If the value of
NUMBER is 10, 10 bytes are moved from location B to A.

o

o

o

o

Using The Parameter Naming Operands (Px=) (continued)

The parameter naming operand (Px=) enables you to supply data to an instruction in your
program without having to define it with a DATA, DC or TEXT statement.

The Px= operands correspond to other operands in the instruction syntax. PI = represents the
first operand in an instruction, P2= represents the second operand, P3= represents the third
operand, and so on. The number of parameter naming operands allowed within each instruction
varies.

Figure 2 shows the syntax for the MOVE instruction. The MOVE instruction has three
parameter naming operands. P1= refers to opndl, P2= refers to opnd2, and P3= refers to
count.

label MOVE opnd1 ,opnd2,count, FKEY=, TKEY=,
P1=,P2=,P3=

Figure 2. MOVE Instruction Syntax

To use a Px= operand, you must first code it with a label. The label refers to a storage location
within the instruction. The system refers to the label you assign to the Px= operand when your
program executes. The system treats the label as the parameter of the operand to which the
Px= operand refers. Once you assign a label to the Px= operand, you can use that label in
other instructions in your program.

In the following example, a parameter naming operand (P3=) is used on the MOVE instruction
to provide the number of bytes to be moved.

A
B

MOVE

TEXT
TEXT

A,B, (O,bytes) ,P3=NUMBER

LENGTH=10
LENGTH=10

This single line of code can replace the previous example. The system generates the label and
data area NUMBER when it assembles the MOVE instruction. The count parameter of the
MOVE instruction updates automatically when the variable called NUMBER contains the value
6 or 10. This method of coding does not require an IF instruction because the NUMBER
variable is in the MOVE instruction. The system generates the variable called NUMBER from
the Px= operand code. Storage is significantly reduced because it uses only one MOVE
instruction.

In the following program, the GETVALUE instruction asks you for the number of bytes to
move from B to A. Since the TEXT statement is only 10 bytes, the program checks for errors in

Chapter 1. Introduction LR -13

Introduction
Using The Parameter Naming Operands (Px=) (continued)

LR-14 SC34-0643

data by making sure INPUT is between 1 and 10 bytes. When the GETV ALUE instruction
receives the value for INPUT, the system automatically updates the MOVE instruction's byte
count field. At that point the data and characters moved from location B to A are printed on the
terminal.

TEST
START
RETRY

A
B
MESSAGE

PROGRAM
EQU
GETVALUE
IF
MOVE
PRINTEXT
PRINTEXT
PROGSTOP
TEXT
TEXT
TEXT
ENDPROG
END

START

*
INPUT ,MESSAGE
(INPUT,LT,O) ,or, (INPUT,GT, 10) ,GOTO , RETRY
A,B, (0,bytes),P3=INPUT
A
SKIP=1

, ,LENGTH= 1 °
'ABCDEFGHIJ' ,LENGTH=10
'ENTER BYTE COUNT'

o

o

o

o

o

Using The Parameter Naming Operands (Px=) (continued)

Rules to Remember

You should remember the following rules when coding parameter naming operands in your
program.

Coding labels on Px= operands

When the compiler sees a Px= operand, it generates the label that you specify. The compiler
flags an error if you attempt to define that label again in your program.

Referring to Px= operand labels

You can refer to the label you code on the Px= operand more than once in your program.
However, once you have defined a label with a Px= operand, you cannot use the same label on
another Px= operand in the program.

Coding the operand that Px= replaces

When you code a Px= operand, you must still code a value or label for the operand that Px=
replaces. The system does not process the Px= operand if the label you specified for it contains
a 0 when the instruction executes. (The system defines the value of the label on the Px=
operand to be 0 at compilation time.) The example that follows shows a case in which the
system does not process the P2= operand until the instruction at GETDATA executes and
supplies label B with a value other than O.

CHECK
START
ADDVAL

GETDATA

END

A

PROGRAM
EQU
ADD
IF
GETVALUE
GOTO
PRINTNUM
PROGSTOP
DATA
ENDPROG
END

START

*
A,O,P2=B
(A,GT,10) ,GOTO,END
B,'ENTER NUMBER FROM 1 TO 10 ',SKIP=1
ADDVAL
A,SKIP=1

F'1 '

On the first pass through the program, the label B contains a o. The system adds the value
coded for operand 2 (0) to the value in A. After the GETVALUE instruction executes, B
contains whatever value was entered at the terminal. The GOTO instruction passes control to
the ADD instruction at the label ADDVAL. When the ADD instruction executes the second
time, the system adds the value in B to the value in A. The system replaces the 0 value coded
for operand 2 with the value entered in B.

Chapter 1. Introduction LR -15

Introduction
Using The Parameter Naming Operands (Px=) (continued)

Matching operand and Px= operand data types

LR-16 SC34-0643

The type of data that the Px= operand supplies in an instruction must match the type of data
that is being replaced. For example, if you specify the label of an address for operand 2, P2=
must also supply an address. If you specify a constant for operand 2, P2= must supply a
constant.

In the example that follows, the ADD instruction contains a P2= operand. The P2= operand
refers to operand 2 which is coded with the constant 5. Because the parameter coded for
operand 2 is a constant, the P2= operand must replace this parameter with another constant to
get the desired results. In this case, the MOVE instruction moves the value 2 into A. The
system adds 2 to C and stores a result of 2 in SUM.

C
SUM

MOVE A,2
ADD C,S,RESULT=SUM,P2=A

DATA
DATA

F'O'
F'O'

In the next example, operand 2 of the ADD instruction is coded with the label D. The label
refers to the address of a data area. Because the parameter coded for operand 2 (D) is an
address, the P2= operand must replace this parameter with another address to get the desired
results. In this case, a MOVEA instruction moves the address of B into A. The system adds the
contents of B to the contents of C and places the result in SUM.

MOVEA A,B
ADD C,D,RESULT=SUM,P2=A

B DATA F'2'
C DATA F'O'
D DATA F'S'
SUM DATA F'O'

o

o

o

o

o

0 ... 11

I',','

Chapter 2. Instruction and Statement
Descriptions

This chapter presents the Event Driven Language (EDL) instructions and statements in
alphabetical order. A description of the use of each instruction and statement is provided,
followed by its syntax, required operands, and the default values the system uses when you do
not specify certain operands. Each operand is listed and described. Examples and other
information, such as return codes and post codes, also are provided. See "The Format of EDL
Instructions and Statements" on page LR-2 for more details on how this book presents
instructions and statements.

Note: The Installation and System Generation Guide contains the statements you use to define
and generate your system. These statements are listed in the "Instructions and Statements
Chart."

Instructions and Statements Chart

The chart on the following pages groups EDL instructions and statements by the common tasks
they perform. The chart also lists the statements you use to define and generate a system.

Chapter 2. Instruction and Statement Descriptions LR -17

Instruction and Statement Descriptions
Instructions and Statements Chart (continued)

Add Device Support Define Data

DCB EXOPEN ALIGN EQU
EXIO IDCB BUFFER STATUS

DATA/DC TEXT

Call Programs and Subroutines Define I/O

CALL RETURN BSCIOCB 10DEF
CALLFORT USER CAIOCB PROGRAM
SUBROUT 10CB SBIO

Code Gr aph i-cs App 1 i cat ions End a Program

CONCAT SCREEN END
GIN XYPLOT ENDPROG
PLOTGIN YTPLOT PROGSTOP

Control Program Logic Format and Identify Comp i ler
Listings

DO FINDNOT $10 SPACE
ELSE GOTO EJECT TITLE
ENDIF IF PRINT
ENDDO QUESTION
FIND

Control Tasks Initiate and Terminate
Telecommunications

ATTACH LOAD BSCCLOSE NETHOST
ATTNLIST PROGRAM BSCOPEN NETINIT
DETACH PROGSTOP CACLOSE NETTERM
END QCB CAOPEN TP CLOSE
ENDATTN RESET CASTART TP OPENIN
ENDPROG TASK CAS TOP TP OPENOUT
ENDTASK WHERES NETCTL

Control the Terminal Man ipu late Data

ATTNLIST 10CB ADD FSUB
ENDATTN RDCURSOR ADDV HASHVAL
ERASE TERMCTRL AND lOR

CONCAT MOVE
Convert Data DIVIDE MOVEA

EOR MULTIPLY
CONVTB FPCONV FADD SETBIT
CONVTD GETEDIT FDIVD SHIFTL
FORMAT PUTEDIT FMULT SHIFTR

FPCONV SQRT
SUBTRACT

LR-18 SC34-0643

1---\
~~J7'

c

o Instructions and Statements Chart (continued)

Obtain Date and Time Respond to Errors

GETTIME CATRACE SBIO
PRINDATE FREESTG SWAP
PRINTIME GETEDIT TCBGET

GETSTG TCBPUT
LOAD WRITE
READ

Obtain and Release Resources Retrieve User-Written Messages

DEQ COMP QUESTION
DEQT GETVALUE READTEXT
ENQ MESSAGE
ENQT
FREESTG Refer to External Modules
GETSTG
STORBLK COPY EXTRN
SWAP CSECT WXTRN

ENTRY

Perform Communication I/O Send or Receive Terminal Data

CAREAD TP (READ) GETEDIT PRINTEXT
CAWRITE TP (RELEASE) GETVALUE PRINTIME
CAPRINT TP (SET) MESSAGE PUTEDIT
NETGET TP (SUBMIT) PRINDATE QUESTION

o NETPUT TP (WRITE) PRINTNUM READTEXT
TP (FETCH)

Perform Disk, Diskette, and Set Timers
Tape I/O

CONTROL POINT INTIME
DSCB READ STIMER
NOTE WRITE

Process Interrupts Synchronize Tasks

ATTNLIST ECB STIMER
10DEF INTIME WAIT
SPECPIRT POST

Queue Processing System Generation

DEFINEQ ADAPTER SNALU
FIRSTQ BSCLINE SNAPU
LASTQ DISK SYSTEM
NEXTQ EXIODEV TAPE

HOSTCOMM TERMINAL
SENSORIO TIMER

o
Chapter 2. Instruction and Statement Descriptions LR -19

$10
$10 - Identify system release level

LR-20 SC34-0643

The $ID statement enables you to record within an application program the EDX system release
level that you use to compile the program. If you dump the program at a later date to diagnose a
problem, the $ID statement eliminates the need to refer back to the original source listing to find
out the system release level in use when the program was compiled.

The system release level coded with $ID appears as the last word in the dumped program.

Code the $ID statement between the ENDPROG and and END statements of your program.
This is an exception to the rule that ENDPROG and END must be the last two statements of
your program.

The $ID statement generates a I-word constant in the form of 'VMLP'. Each parameter is
packed into four bits and is specified in hexadecimal notation.

The $ID statement is already coded on all EDX supplied software.

Syntax:

label

Required:
Defaults:

Operand

v=

M=

L=

p=

$10 V=,M=,L=,P=

None
V=, M=, and P= default to the current release level
of the EDX program product

Description

The EDX system release level; it ranges from 0-9, A-F (hexadecimal).

The EDX modification or revision level; it ranges from 0-9, A-F (hexadecimal).

The unique identifier you assign to programs not prepared by IBM; it ranges
from 1-9, A-F (hexadecimal). The value 0 is reserved for IBM use.

The program temporary fix (PTF) release level; it ranges from 0-9, A-F
(hexadecimal) .

o

o

o

$10
$10 - Identify system release level (continued)

Syntax Examples

1) In the following example, only operand L, which is designated for your use, is coded.
Operands V, M, and P are allowed to default to the current release level of the EDX program
product.

IDNOTE
ENDPROG
$ID
END

L=2

2) The $ID statement in the example below will cause the identifier, '3121', to be printed out as
the last word in the program when it is dumped. The identifier shows that the program was
compiled under EDX system release level 3, modification levell, and program temporary fix 1.
The 2 on the L= operand is for the programmer's use.

ENDPROG
IDNOTE $ID V=3,M=1,L=2,P=1

END

Chapter 2. Instruction and Statement Descriptions LR -21

ADD
ADD - Add integer values

LR-22 SC34-0643

The ADD instruction adds an integer value in operand 2 to an integer value in operand 1. The
values can be positive or negative. To add floating-point values, use the F ADD instruction.

See the DATA/DC statement for a description of the various ways you can represent integer
data.

EDX does not indicate an overflow condition for this instruction.

Syntax:

label

Required:
Defaults:

ADD opnd1 ,opnd2,count, RESU L T=, PREC=,
P1=,P2=,P3=

Indexable:

opnd1,opnd2
count=1,RESULT=OPND1,PREC=S
opnd1,opnd2,RESULT

Operand

opndl

opnd2

count

Description

The label of the data area to which opnd2 is added. Opnd 1 cannot be a
self-defining term. The system stores the result of the ADD operation in opnd1
unless you code· the RESULT operand.

The value added to opnd 1. You can specify a self -defining term or the label of a
data area. The value of opnd2 does not change during the operation.

The number of consecutive values in opnd1 upon which the system performs the
operation. The maximum value allowed is 32767.

RESULT = The label of a data area or vector in which the result is placed. The data area you
specify for opnd1 is not modified if you specify RESULT. This operand is
optional.

PREC=xyz Specify the precision of the operation in the form xyz, where x is the precision for
opnd1, y is the precision for opnd2, and z is the precision of the result
("Mixed-precision Operations" on page LR-23 shows the precision combinations
allowed for the ADD instruction). You can specify single-precision (S) or
double-precision (D) for each operand. Single precision is a word in length; double
precision is two words in length. The default for opnd1, opnd2, and the result is
single precision.

If you code a single letter for PREC, the letter applies to opnd1 and the result.
Opnd2 defaults to single precision. If, for example, you code PREC=D, opnd1 and
the result are double precision and opnd2 defaults to single precision.

o

()

o

o

o

ADD
ADD - Add integer values (continued)

Px= '

Mixed-precision Operations

If you code two letters for PREC, the first letter applies to opndl and the result,
and the second letter applies to opnd2. With PREC=DD, for example, opndl and
the result are double precision and opnd2 is double precision.

Parameter naming operands. See "Using The Parameter Naming Operands (Px=)"
on page LR-12 for a detailed description of how to code these operands.

The following table shows the precision combinations allowed with the ADD instruction:

opnd1 opnd2 Result Precision Remarks

S S S S default
S S 0 SSO -
0 S 0 0 -
0 0 0 DO -

Opnd2 is one or two words long depending on the precision you specify on the PREC =
keyword. The length of opndl is equal to the operand's precision multiplied by the value of the
count operand.

Chapter 2. Instruction and Statement Descriptions LR -23

ADD
ADD - Add integer values (continued)

Coding Example

LR-24 SC34-0643

The following example moves the value 0 to index register #1. Next, the value 5 is added to #1.
Index register #1 now contains the value 5. The contents of variable A are then added to each
of three words starting at label VI. The results are placed in three words starting at label V2.
The contents of VI and A remain unchanged because the keyword RESULT is specified. The
third ADD instruction adds 15 to the double-precision value at label E.

MOVE # 1 ,0 MOVE 0 TO #1
ADD # 1 ,5 INCREASE #1 BY 5
ADD V1,A,3,RESULT=V2 ADD THE VALUE IN A TO EACH OF 3 WORDS

* STARTING AT V1 AND PLACE THE RESULT

* IN 3 WORDS STARTING AT V2.

*
ADD E,15,PREC=D ADD 15 TO DOUBLE-PRECISION VALUE E.

*
A DATA F' 10'
V1 DATA F'1 '

DATA F'2'
DATA F'3'

V2 DATA F'O'
DATA F'O'
DATA F'O'

E DATA D'100000'

The results from the above coding example follow:

Before After

#1 F'O' #1 F'5'
A F'10' A F'10'
VI F'I' VI F'I'

F'2' F'2'
F'3' F'3'

V2 F'O' V2 F'II'
F'O' F'12'
F'O' F'13'

E D'100000' E D'100015'

o

()

c'

0 " "

ADDV
ADDV - Add two groups of numbers (vectors)

The add vector instruction (ADDV) adds two groups of numbers or "vectors". The number of
times the operation occurs depends on the count you specify. The instruction adds each
consecutive value in operand 2 to the corresponding value in operand 1.

Note: An overflow condition is not indicated by EDX.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

opndl

opnd2

count

RESULT =

PREC=xyz

ADDV opnd 1 ,opnd2,count, RESU L T=, PREC=,
P1=,P2=,P3=

opnd1,opnd2,count
count= 1, R ESU L T=opnd 1, PR EC=S
opnd1,opnd2,RESULT

Description

The label of the data area that is modified by opnd2. Opnd1 cannot be a
self -defining term.

Do not code the software registers, #1 or #2, for this operand. You can use the
software registers, however, to create an indexed address for opndl.

The value by which opnd 1 is modified. You can specify a self-defining term or
the label of a data area.

The number of consecutive values in both opnd 1 and opnd2 upon which the
system performs the operation. The maximum value allowed is 32767.

The label of a data area or vector in which the result is placed. The data area
you specify for opnd1 is not modified if you specify RESULT. This operand is
optional.

Specify the precision of the operation in the form xyz, where x is the precision
for opnd1, y is the precision for opnd2, and z is the precision of the result.
("Mixed-precision Operations" on page LR-26 shows the precision combinations
allowed for the ADDV instruction.) You can specify single-precision (S) or
double-precision (D) for each operand. Single precision is a word in length;
double precision is two words in length. The default for opnd1, opnd2, and the
result is single precision.

If you code a single letter for PREC, the letter applies to opnd1 and the result.
Opnd2 defaults to single precision. If, for example, you code PREC=D, opnd1
and the result are double precision and opnd2 defaults to single precision.

Chapter 2. Instruction and Statement Descriptions LR-25

ADDV
ADDV - Add two groups of numbers (vectors) (continued)

Px=

If you code two letters for PREC, the first letter applies to opnd1 and the result,
and the second letter applies to opnd2. With PREC=DD, for example, opnd1
and the result are double precision and opnd2 is double precision.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

Mixed-precision Operations

Syntax Example

LR -26 SC34-0643

The following table lists the precisions allowed with the ADDV instruction:

o~nd1 opnd2 Result Precision Remarks

S S S S default
S S D SSD -
D S D D -
D D D DD -

The ADDV instruction in the following example adds each consecutive value in V1 to the
corresponding value in V2. After the instruction executes, V1 contains 32F'3'.

ADDV V1,V2,32 THE COUNT IS 32

V1 DATA 32F'1'
V2 DATA 32F'2'

10 ~ ,

/----.
/ '\
~'_J

o

C'

o

ADDV
ADDV - Add two groups of numbers (vectors) (continued)

Coding Example

The following example moves the value 10 to Xl and the value 20 to X2. The first ADDV
instruction adds the value in C 1 to X 1 and the value in C2 to X2. Because the keyword
RESULT is specified, the values in C1, C2, Xl, and X2 remain unchanged. The system places
the results in D 1 and D2. The second ADDV instruction adds the values of the five words,
starting at B1, to the values of the five words starting at Al. The ADDV operation occurs in the
following sequence: The value in B1 is added to the value in AI, the value in B2 is added to the
value in A2, and so on through BS and AS.

Results of the example follow on the next page.

MOVE X1 ,10 MOVE 10 TO X1
MOVE X2,20 MOVE 20 TO X2

*
ADDV X1,C1,2,RESULT=D1 ADD VALUE OF C1 TO X1 AND

* THEN C2 TO X2

* PLACE RESULTS IN

* LOCATIONS D1 and D2

*
ADDV A1,B1,S ADD THE VALUE OF THE SWORDS

* STARTING AT B1 TO THE SWORDS

* STARTING AT A1
X1 DATA F'O'
X2 DATA F'O'

*
A1 DATA F'1 '
A2 DATA F'2'
A3 DATA F'3'
A4 DATA F'4'
AS DATA F'S'

*
B1 DATA F' 10'
B2 DATA F'20'
B3 DATA F' 30'
B4 DATA F'40'
BS DATA F'SO'

*
C1 DATA F'S'
C2 DATA F' 10'

*
D1 DATA F'O'
D2 DATA F'O'

Chapter 2. Instruction and Statement Descriptions LR-27

ADDV
ADDV - Add two groups of numbers (vectors) (continued) 0

Results of the previous coding example follow:

Before After
Xl F'OO' Xl F'IO'
X2 F'OO' X2 F'20'

Al F'l' Al F'll'
A2 F'2' A2 F'22'
A3 F'3' A3 F'33'
A4 F'4' A4 F'44'
AS F'S' AS F'SS'

BI F'IO' BI F'IO'
B2 F'20' B2 F'20'
B3 F'3O' B3 F'3O'
B4 F'40' B4 F'40'
BS F'SO' BS F'SO'

CI F'S' CI F'S'
C2 F'IO' C2 F'IO'
DI F'O' DI F'IS'
D2 F'O' D2 F'3O'

~) ~.

o
LR-28 SC34-0643

o

0" "

ALIGN
ALIGN - Align instruction or data to a specified boundary

Coding Example

The ALIGN statement ensures that the next instruction or data item in a source statement list
begins on a specified boundary: an odd byte, a word, or a doubleword. The ALIGN statement
is non-executable and should only be used to align data within data areas.

When coding the ALIGN instruction, you can include a comment which will appear with the
instruction on your compiler listing. If you include a comment, you must also code the type
operaQd. The comment must be separated from the operand field by at least one blank and it
may not contain commas.

Syntax:

blank

Required:
Default:
Indexable:

Operand

type

ALIGN

none
WORD
none

Description

type comment

WORD (the default) or blank aligns data on a fullword boundary.

BYTE aligns data on an odd-byte boundary.

DWORD aligns data on a double word boundary.

Note: If the data field is already aligned at the boundary requested, no action results. WORD
and BYTE align the data a maximum of 1 byte. DWORD aligns the data a maximum of 3 bytes.

The ALIGN statement in the following example aligns the data area labeled BUFF on a word
boundary (even address).

Lac

0200
020B
020C

PROGNME

BUFF

DC
ALIGN
DC

C'EDX UTILITY'
ALIGN TO WORD BOUNDARY
CL'64'

Chapter 2. Instruction and Statement Descriptions LR-29

AND
AND - Compare the binary values of two data strings

The AND instruction compares the binary value of operand 2 with the binary value of operand
1. The instruction compares each bit position in operand 2 with the corresponding bit position
in operand 1 and yields a result, bit by bit, of 1 or O. If both of the bits compared are 1, the
result is 1. If either or both of of the bits compared are 0, the result is O.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

opndl

AND opnd1,opnd2,count,RESULT=,
P1 =, P2=, P3=

opnd 1 ,opnd2
count=(1 ,WORD),RESULT=opnd1,
opnd1,opnd2,RESULT

Description

The label of the data area to which opnd2 is compared. Opnd 1 cannot be a
self-defining term. The system places the result of the operation into opnd1
unless you code the RESULT operand.

(".1\ ~)

The length of opnd1 is equal-to the operand's precision multiplied by the value of
the count operand. ()

opnd2

count

LR-30 SC34-0643

The value compared to opnd 1. You can specify a self -defining term or the label
of a data area.

The number of consecutive values in opnd 1 upon which the operation is to be
performed. The maximum value allowed is 32767.

The count operand can include the precision of the data. Select one precision
which the system uses for opnd1, opnd2, and the resulting bit string. When
specifying a precision, code the count operand in the form,

(n,precision)

where "n" is the count and "precision" is one of the following:

BYTE -- byte precision
WORD -- word precision (default)
DWORD -- double word precision

The precision you specify for the count operand is the portion of opnd2 that is
used in the operation. If the count is (3,BYTE), the system compares the first
byte of data in opnd2 with the first three bytes of data in opnd 1.

o

o

C

o

AND
AND - Compare the binary values of two data strings (continued)

Syntax Examples

RESULT =

Px=

The label of a data area or vector in which the result is to be placed. When you
specify this operand, the value of opnd1 does not change during the operation.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

1) In the following example, the AND instruction turns off the rightmost four bits in DATAl
without affecting the other data field bits. After the instruction executes, DATAl contains
X'EO' (binary 11100000).

AND DATA1,MASK, (1,BYTE)

DATA1
MASK

DC
DC

X'E7'
X'FO'

binary 1110 0111
binary 1111 0000

2) The AND instruction in this example compares opnd2 with the first three bytes of data in
opnd 1. The system places the result in RESUL TX.

AND OPER1,OPER2, (3,BYTE),RESULT=RESULTX

OPER1 DC X'OO' binary 0000 0000
DC X'AS' binary 1010 0101
DC X' 01 ' binary 0000 0001

OPER2 DC X'FF' binary 1111 1111
RESULTX DC 2F'0' binary 0000 0000 0000 0000

After the AND operation, RESUL TX contains X'00A5 0100' (binary 0000 0000 1010 0101
00000001).

3) In the following example, the AND instruction compares the first byte of data in TEST to the
first three bytes of data in INPUT. The system stores the result in OUTPUT.

AND INPUT,TEST, (3,BYTE),RESULT=OUTPUT

INPUT DC
TEST DC
OUTPUT DC

C' 1. 2'
C'O.O'
3C'0'

binary 1111 0001 0100 1011 1111 0010
binary 1111 0000 1111 0000 1111 0000
binary 1111 0000 1111 0000 1111 0000

After the AND operation, the contents of OUTPUT are C'O 0' (binary 1111 000001000000
1111 0000).

Chapter 2. Instruction and Statement Descriptions LR-31

ATTACH
ATTACH - Start a task

LR-32 SC34-0643

The ATTACH instruction starts the execution of or "attaches" another task. If the task you
specify has already been attached, no operation occurs. You deactivate tasks with the
DETACH instruction.

The task to be attached is usually in the same partition as the ATTACH instruction. However,
you can attach a task in another partition by using the cross-partition capability of ATTACH.

Note that the program load point of the attaching task is placed in the $TCBPLP field of the
task being attached. The system, however, will not reference the $TCBPLP of the attached task
if the attaching task is in another partition. To avoid this problem, put the load point of the task
to be attached in the $TCBPLP field of the attaching task before the ATTACH instruction is
executed. Be sure to restore it after the ATTACH instruction is completed.

See Appendix C, "Communicating with Programs in Other Partitions (Cross-Partition
Services)" on page LR-559 for an example of attaching a task in another partition. Refer to the
Event Driven Executive Language Programming Guide for more information on cross-partition
services.

The system records the address space in which a task is executing in the $TCBADS field of the
task's task control block (TCB). When your program attaches a task, the system moves the
address space in the program's TCB into the $TCBADS field of the attached task's TCB.

When the ATTACH instruction executes, the system stores the address of the terminal from
which the main task was loaded in the $TCBCCB field of the attached task. In this way, the
same terminal is active for both tasks.

If your program is to be link edited, place all TASKS to attach via the ATTACH instruction in
the same module. The assembler will chain all the TASKS within the module it assembles. Your
application program will have to chain the tasks together if they are not within the same module.
Modify the correct field in the TCB to chain tasks accross modules.

Syntax:

label

Required:
Defaults:
Indexable:

ATTACH taskname,priority,CODE=,
P1=,P2=,P3=

taskname
CODE=-1
none

()

o

o

o

ATTACH
ATTACH - Start a task (continued)

Coding Example

Operand

taskname

priority

CODE=

Px=

Description

Label of the task to be attached. You must define this task with a TASK
statement.

The priority you assign to the task. This priority replaces the one you assigned
on the TASK statement. It remains in effect unless it is overridden by a
subsequent ATTACH instruction. See the TASK statement for a description of
the valid priorities you can assign a task.

A code word to be inserted in the first word of the task control block of the task
being attached. This code word could help your program determine at what
point the task is being attached. The attached task could examine the code word
by referring to the taskname operand. The code word should be examined
immediately upon entry into the attached task because execution of certain
instructions (for example, I/O instructions) cause this word to be overlaid.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

In the following example, the ATTACH instruction attaches a task that reads a record from a
data set. The program begins by attaching TASKl. TASKI is the label of a TASK statement.
TASKI prints the message at label PI and reads a record from MYFILE into the buffer BUF.
The MOVE instruction moves the first 8 bytes of BUF into the text buffer labeled REC. When
T ASK I ends, it posts the event specified on the EVENT = operand of the TASK statement.
The main program receives control and the WAIT instruction at label WI checks to see if
TASKI has ended. The PRINTEXT instruction at label P2 prints the message 'PROGRAM
COMPLETE', and the program ends.

SAMPLE
START

W1
P2

BUF
REC

PROGRAM
EQU
ATTACH
WAIT
PRINTEXT
PROGSTOP
BUFFER
TEXT

START,DS=((MYFILE,EDX40))

*
TASK1
EVENT
'PROGRAM COMPLETE' ,SKIP=2

256,BYTES
LENGTH=8

TASK1
NEXT
P1

TASK
ENQT
PRINTEXT
READ
MOVE
DEQT
ENDTASK

NEXT, EVENT=EVENT
$SYSPRTR
'@TASK1 ATTACHED'
DS 1 , BUF, 1
REC,BUF, (8,BYTES)
$SYSPRTR

ENDPROG
END

Chapter 2. Instruction and Statement Descriptions LR-33

ATTN LIST
ATTN LIST - Enter attention-interrupt-handling routine

LR-34 SC34-0643

The ATTNLIST statement provides entry to one or more attention-interrupt-handling routines.

With the A TTNLIST statement, you can produce a list of command names and associated
routine entry points. When you press the attention key on a terminal, your program waits for
you to enter a 1-8 character command. If the command you enter matches one that is specified
in the list, the associated routine receives control. No action occurs if the command you enter is
not contained in the list or if the system cannot find the entry point of the routine.

The character $ is reserved for system use and should not be used as the first character of a
command name unless you are assigning PF keys. All other character combinations are allowed.
Your attention routines must end with an END ATTN instruction.

Your program and the ATTNLIST routine execute asynchronously. When the ATTNLIST
routine finishes, control passes to the instruction that was executing when you pressed the
attention key. Figure 3 on page LR-37 shows the operation of the ATTNLIST instruction.

The attention list for programs you compile with $EDXASM can be up to 254 characters long
and can contain a total of 24 ATTNLIST entries. A program compiled under $EDXASM can
contain one LOCAL ATTNLIST statement and one GLOBAL ATTNLIST statement. (See the
SCOPE= operand for an explanation of LOCAL and GLOBAL ATTNLIST.) The Series/1
macro assembler and the host assembler allow mUltiple attention lists with a maximum of 125
characters in each list.

ATTNLIST routines should execute quickly. Because the routines execute on hardware level 1,
lengthy routines can slow the execution of other application programs or system tasks.

Notes:

1. You should not use the following instructions in an ATTNLIST routine: DETACH,
ENDTASK, PROGSTOP, LOAD, STIMER, WAIT, TP, READ, WRITE, ENQT, and
DEQT.

2. ATTNLIST routines cannot gain access to an enqueued terminal until the program that has
exclusive access releases the terminal by issuing a DEQT or PROGSTOP instruction.

3. Do not use $DEBUG command names as command names in your attention list routine.
Refer to the Operator Commands and Utilities Reference for a list of the $DEBUG command
names.

Syntax:

label

Required:
Defaults:
Indexable:

A TTNLlST (cc1 ,loc1 ,cc2,loc2r ... ,ccn,locn),SCOPE=

cc1,loc1
SCOPE=LOCAL
none

C -_/

o

o

o

ATTN LIST
ATTN LIST - Enter attention-interrupt-handling routine (continued)

Syntax Example

Operand

eel

locI

SCOPE=

Description

A command name consisting of 1-8 alphameric characters. Do not use the
character $ as the first character of the command name unless you are assigning
PF keys. For a description of using and assigning the 4979, 4978, 4980, and
3101 terminal program function (PF) keys to invoke A TTNLIST routines, refer
to the Operation Guide.

Name of the routine to be invoked.

GLOBAL, allows the ATTNLIST command routines to be invoked from any
terminal assigned to the same storage partition.

LOCAL, limits the invoking of A TTNLIST commands to the specific terminal
(assigned to the same partition) from which the program containing the
commands was loaded.

A program may have one LOCAL ATTNLIST and one GLOBAL ATTNLIST.

The ATTNLIST statement that follows allows you to invoke the PCODE1 routine by pressing
the attention key and entering PCl. To invoke the PCODE2 routine, you would press the
attention key and enter PC2.

PCODE1

PCODE2

ATTNLIST

MOVE
ENDATTN

POST
ENDATTN

(PC1,PCODE1,PC2,PCODE2)

CODE, 1

EVENT, 2

Chapter 2. Instruction and Statement Descriptions LR-35

ATTN LIST
ATTN LIST - Enter attention-interrupt-handling routine (continued)

Coding Examples

LR-36 SC34-0643

l)The following example uses the ATTNLIST statement to control the printing of repetitive test
patterns. Once the test pattern begins printing, it can only be stopped by pressing the attention
key and entering the command "CA".

The program begins printing a test pattern consisting of 1 0 numbers. You can expand the test
pattern to include 24 special characters by pressing the PFI key.

If you press the PF2 key, the test pattern includes the alphabet, the 10 numbers (0-9), and the
24 special characters.

TESTLOOP

CANCEL

PF1

PF2

START

SWITCH

PROGRAM
ATTNLIST
EQU
MOVE
ENDATTN
EQU
MOVE
ENDATTN
EQU
MOVE
ENDATTN
EQU
ENQT

START
(CA,CANCEL,$PF1,PF1,$PF2,PF2)

*
SWITCH,99

* SWITCH, 1

*
SWITCH, 2

*
DO WHILE, (SWITCH,NE,99)

PRINTEXT '@1234567890'
IF (SWITCH,GE,1)
PRINTEXT ' 1#$ %¢ &* () _ -+=! ,": ;? />. <, ,
ENDIF
IF
PRINTEXT
ENDIF

END DO
DEQT
PROGSTOP
DATA
ENDPROG
END

(SWITCH,EQ,2)
'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

F'O'

o

o

o

ATTN LIST
ATTN LIST - Enter attention-interrupt-handling routine (continued)

2)The following example also illustrates coding of the ATTNLIST statement. It, however, uses
PF keys to invoke ATTNLIST instead of entering a command.

ATTEST

PCODE1

PCODE3

ATLIST

VAR

PROGRAM
ATTNLIST
PRINTEXT
MOVE
ENDATTN
PRINTEXT
MOVE
ENDATTN
EQU
DO
MOVE
ENDDO
PROGSTOP
DATA
ENDPROG

ATLIST
($PF1,PCODE1,$PF3,PCODE3)
'PF1 KEY WAS PRESSED@'
VAR,1

'PF1 KEY WAS PRESSED@'
VAR,3

*
(WHILE, (VAR,NE,1)
1 , #2

X'OOOO'

ATTN LIST

--++----....... 1 abc,exitl

Figure 3. Function of A TfNLIST

• • •
xyz,exit2

• • •

exit 1 •
•

ENDATTN

exit2 • •
ENDATTN

Chapter 2. Instruction and Statement Descriptions LR-37

BSCCLOSE
BSCCLOSE - Free a BSC line for use by other tasks

Return Codes

LR-38 SC34-0643

The BSCCLOSE instruction frees a binary synchronous line for use by other tasks. If the line is
a switched line (TYPE= SM or SA), this instruction disconnects it.

Syntax:

label BSCCLOSE bsciocb,ERROR=,P1=,P2=

Required: bsciocb
Defaults: none
I ndexable: bsciocb

Operand Description

bsciocb The label or indexed location of the BSCIOCB statement associated with the
close operation.

ERROR=

Px=

The label of the instruction to be executed if an error occurs while closing the
line. If you do not code this operand, control passes to the next sequential
instruction. In either case, the return code reflects the results of the operation.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR -12 for a detailed description of how to code these operands.

All BSC instruction return codes are listed with the BSCWRITE instruction under "Return
Codes" on page LR-S4.

,I O-)·~\·

c

o

o

o

BSCIOCB
BSCIOCB - Specify BSC line address and buffers

The BSCIOCB statement specifies the line address and buffer(s) needed to perform
BSCCLOSE, BSCOPEN, BSCREAD, and BSCWRITE operations.

If you are sending variable-length records, the length field (lengthl operand) must contain the
actual length of the message to be written. Reset the value coded for the length field to the
buffer length before issuing a READ. Figure 4 on page LR-40 lists the number of buffers
required for each type of BSCREAD and BSCWRITE operation.

Syntax:

label BSCIOCB lineaddr,buffer1 ,length1 ,buffer2,
length2,pollseq, pollsize, P1 =, P2=,
P3=, P4=, P5=, P6=, P7=

Required: lineaddr
Defaults: none
Indexable: none

Operand Description

label

lineaddr

bufferl

lengthl

buffer2

length2

pollseq

The label of the BSCIOCB. The BSCCLOSE, BSCOPEN, BSCREAD, and
BSCWRITE instructions refer to this label.

Other instructions can use the label to obtain additional status information stored
in the first word of the BSCIOCB. After text is successfully received, this word
contains the address of the last character received. For all other conditions, the
word contains the Interrupt Status Word from the Series/l BSC Adapter.

The hardware address, in hexadecimal, of the line on which the operation is to be
performed.

The label of the first buffer used in an I/O operation. This buffer is located in
the target address space. The target address space is determined during a
BSCOPEN operation and is defined in $TCBADS. This address space is used as
the address space of the buffer until another BSCOPEN operation changes it.

The length, in bytes, of the first buffer.

The label of the second buffer used in an I/O operation. This buffer is located
in the target address space as defined by $TCBADS.

The length, in bytes, of the second buffer.

The address of the poll or selection sequence to be used in a multipoint control
line initial operation.

Chapter 2. Instruction and Statement Descriptions LR-39

BSCIOCB
BSCIOCB - Specify BSC line address and buffers (continued)

LR-40 SC34-0643

pollsize

Px=

Read
type

C
o
E
I
P
Q

R
U

The length, in bytes, of the poll or selection sequence.

The polling and selection sequences consist of one to seven characters followed
by: ENQ,(Read or Write Initial)l. You can find specific sequences for a given
device in the device component description manual. Generally, a 3-byte pollsize
is sufficient for a sequence of address,address,ENQl between Series/l
processors. The device type tributary determines the actual sequence.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

Number
of

buffers

1
o
1
1
1
o
1
1

Write
type

e
CV
evx
ex
eXB
o
E
EX
I
IV
IVX
IX
IXB
Q

N
U
UX

Number
of

buffers

1
2
2
1
1
o
o
o
1
2
2
1
1
1
o
1
2

Figure 4. Required Buffers for BSCREAD and BSCWRITE

Commas are for readability only and are not part of the data stream.

o

o

()

o

o

BSCOPEN
BSCOPEN - Prepare a BSC line for use

The BSCOPEN instruction prepares a binary synchronous line for use by a task. The
instruction acquires use of the BSC line and prepares it for a subsequent read or write operation.

If the line is a switched manual line (TYPE=SM), BSCOPEN requests a Data Terminal Ready
acknowledgement and waits for the telephone connection to be established. If the line is a
switched auto-answer line (TYPE=SA), BSCOPEN waits indefinitely for the ring interrupt and
then requests a Data Terminal Ready acknowledgement.

Note: BSCOPEN assumes that point-to-point lines have Data Terminal Ready (DTR)
permanently set on.

Syntax:

label BSCOPEN bsciocb,ERROR=,X21 RN=,P1 =,P2=,P3=

Required: bsciocb
Defaults: none
Indexable: bsciocb

Operand Description

bsciocb

ERROR=

X21RN=

Px=

The label or indexed location of the BSCIOCB statement associated with the
open operation.

The label of the instruction to be executed if an error occurs while opening the
line. If you do not code this operand, control passes to the next sequential
instruction. In either case, the return code reflects the results of the operation.

The label of the data area containing the name of a member in the X.21 Circuit
Switched Network Support connection data set. This member contains the
connection information for this BSCOPEN. See "X21RN Coding Example" on
page LR-42 for the layout of the data area.

This parameter must be coded for auto-call (TYPE=SE or TYPE=SM) if the
default data set name is not used. This parameter is optional for direct call
(TYPE=DC) and is ignored for all other connection types. (The default name
and the data set contents are explained in the Communications Guide.)

Parameter naming operands. See "Using The Parameter Naming Operands
(Px =)" on page LR-12 for a detailed description of how to code these operands.

Chapter 2. Instruction and Statement Descriptions LR -41

BSCOPEN
BSCOPEN - Prepare a BSC line for use (continued)

X21 RN Coding Example

Return Codes

LR-42 SC34-0643

The following example shows how to code the data area referred to by the X21RN operand.
This data area contains the name of the X.21 Circuit Switched Network connection record data
set. The data area must be eight characters long. If the data set name is less than eight
characters, the remaining positions in the data area must contain blanks. (See the
Communications Guide for additional information about the connection data set.)

BSCOPEN BSCIOCB,X21RN=MYDS

MYDS DC CL8'X21RNDS I DATA SET NAME

The following are the return codes for X.21 Circuit Switched Network. All other BSC
instruction return codes are listed with the BSCWRITE instruction under "Return Codes" on
page LR-S4.

o

o

o

0

o

BSCOPEN
BSCOPEN - Prepare a BSC line for use (continued)

Return
Code
-32
-31

-30
-29

-27

-25
-24

-23
-22

-21

-20

-19

-18

-16

-15

-14

-13

-12

-11
-10
-9

16
17

18

19
26
27
28

Condition

System is unable to find X.21 support. Re-IPL the system.
Not enough storage available to handle the number of X.21 requests.
Use the $DISKUT2 SS command to allocate more storage for $X21. You can
issue three simultaneous requests for every 256 bytes of storage allocated.

Your supervisor does not contain X.21 support.
System does not have enough storage available to load
the X.21 support or the connection record data set, $$X21 DS,
is not on the IPL volume.
Unrecoverable hardware error. If $LOG is active, check the
error log record for the X.21 device for more details.

Connection failed
Time expired for the completion of a call request. Call
request failed.

You cancelled a call request with a $C command.
Call request failed due to Public Data Network problems. Call
progress signals invalid.

Call request failed due to Public Data Network problems. Call
progress signals incomplete.

Call request failed and network would not allow the request to be
retried. If $LOG is active, check the error log record for the
X.21 device for more details.
Number of retries exhausted for the call request. If $LOG
is active, check the error log record for the X.21 device for
more details.

Hardware error for the 2080 feature card. I/O request
could not be completed.

The Network information field of the X.21 connection record
has no plus sign or just a plus sign.

The value in the Retry or Delay field of the X.21 connection
record exceeds the maximum value allowed.

The Retry or Delay field of the X.21 connection record
contains a negative value.

A comma must separate the Retry, Delay, and Network
information fields of an X.21 connection record.

The Retry or Delay field of the X.21 connection record
contains an invalid character.

System does not have enough storage to execute a call request.
Not enough storage in partition 1 for X.21 to execute a request.
An EDL instruction failed. If $LOG is active, check the error
log record for the X.21 device to find the failing instruction.

Your supervisor does not contain X.21 support.
The connection type you defined on the BSCLINE statement
is not valid for the X.21 Circuit Switched Network.

The 2080 feature card is incorrectly jumpered for use
with the X.21 Circuit Switched Network.

The X.21 network has been deactivated (DCE CLEAR).
Registration or cancellation request processed
Redirection activated
Redirection deactivated

Chapter 2. Instruction and Statement Descriptions LR-43

BSCREAD
BSCREAD - Read data from a BSC line

LR-44 SC34·0643

The BSCREAD instruction reads data from a binary synchronous line. If the read operation is
successful, the first word of the associated BSCIOCB contains the address of the last character
read.

Syntax:

label BSCREAD type,bsciocb,ERROR=,END=,CHAIN=,

Required:
Defaults:
Indexable:

Operand

type

bsciocb

ERROR =

END =

TIMEOUT=,P1 =,P2=,P3=

type, bsciocb
CHAIN=NO,TIMEOUT=YES
bsciocb

Description

The type of read operation you want to perform. The read operations listed
below are described in detail under "BSCREAD Types" on page LR-45.

C Read Continue

D Read Delay

E Read End

I Read Initial

P Read Poll

Q Read Inquiry

R Read Repeat

U Read User

The label or indexed location of the BSCIOCB statement associated with the
read operation.

The label of the instruction to be executed if an error occurs (return codes 10
through 99). If you do not code this operand, control passes to the next
sequential instruction. In either case, the return code reflects the results of the
operation.

The label of the instruction to be executed if an ending condition occurs (return
codes 1 through 6). If you do not code this operand, control passes to the next
sequential instruction. In either case, the return code reflects the results of the
operation.

o

0

C .. ~-,,\, .J

o

c

o

BSCREAD
BSCREAD - Read data from a BSC line (continued)

Return Codes

BSCREAD Types

CHAIN = YES, to cause a write operation to take place before the read operation. Code
CHAIN=YES for Read Poll (type P) and Read User (type U). The system
chains the DCB for the read operation to the DCB for the write operation.

You must provide the address of the data for the write operation in the buffer2
field of the BSCIOCB instruction. This buffer is located in the target address
space as defined by $TCBADS during a BSCOPEN operation. You also must
define the length (in bytes) of the data for the write operation in the length2
field of the BSCIOCB.

Your program receives an error return code if the address of the data or the
length of the data for the write operation is zero. No write or read operation is
performed.

NO, to cause the read operation to take place before any write operation.

Note: You can code CHAIN=YES to respond to a POLL with an EOT and
then immediately set up the next read poll operation. This may be necessary in
direct-connect environments where the Series/lis a tributary to an extremely
fast polling device.

TIMEOUT= YES, to cause a time-out error to occur if the access method does not receive
data within three seconds during a receive operation. The access method
attempts to recover from the error the number of times that you coded on the
RETRIES operand of the the BSCLINE statement that defines this line. In a
Read Initial operation, a time-out can occur both when attempting to establish
the correct initial sequence and during the subsequent read of the first record.

Px=

NO, to prevent a time-out error from occurring if the access method does not
receive data within three seconds during a receive operation.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

All BSC instruction return codes are listed with the BSCWRITE instruction under "Return
Codes" on page LR-54.

Type Operation

C Read Continue - Reads subsequent blocks of data after an initial block has been received
with a Read Initial.

D Read Delay - Acknowledges that a block of data was correctly received and asks the
transmitting station to wait before sending the next block. You can issue several Read
Delays before resuming transmission of data with a Read Continue.

Chapter 2. Instruction and Statement Descriptions LR-45

BSCREAD
BSCREAD - Read data from a BSC line (continued)

LR-46 SC34-0643

E Read End - Acknowledges that a block of data was correctly received and asks the
transmitting station to stop sending data. You should issue only one Read End during a
single transmission. Once you issue the Read End, issue Read Continues until you
actually receive an EaT.

I Read Initial - Reads the first block of data in a transmission. After a successful Read
Initial operation, issue Read Continues until you receive an EaT.

For a point-to-point operation (TYPE=PT,SA,SM), Read Initial monitors the line for an
ENQ sent by the transmitting station, writes a positive response (ACK-O), and reads the
message block that follows.

In a multipoint controller operation (TYPE=MC), Read Initial polls a tributary station
and, if the response to polling is positive, reads the message text.

For a multipoint tributary operation (TYPE=MT), Read Initial writes a positive
response (ACK-O) and reads the message block that follows.

P Read Poll - Reads the poll or select sequence received when the Series/lis acting as a
tributary station on a multipoint line (TYPE=MT). If the operation is successful, the
specified buffer contains the sequence received starting with the second station (control
unit) address character. The access method does not check the contents of the received
data stream, including control characters.

Once it is polled or selected, your program should check the next operation requested
and issue the appropriate Read/Write Initial operation.

If you code CHAIN = YES, you can provide data to be transmitted by a write operation
before the Read Poll operation. For example, you can provide three synchronization
(SYN) characters and an EaT to be transmitted before the Read Poll operation.

Q Read Inquiry - Reads an ENQ character. Read Inquiry returns an invalid sequence error
if ENQ or EaT is not received. If EaT is received, the access method takes the END=
exit, if specified.

R Read Repeat - Requests that the last block of data be retransmitted following an
unsuccessful read operation.

The RETRIES operand on the BSCLINE statement determines the number of times the
read operation attempts to recover from a common error condition. You can use Read
Repeat, however, to attempt further recovery depending on the actual error
encountered.

U Read User - Receives data without issuing a response. The access method does not
check the data or attempt any error recovery.

If you code CHAIN = YES, you can provide data to be transmitted by a write operation
before the Read User operation.

0: .. · , .

o

o

o

o

BSCREAD
BSCREAD - Read data from a BSC line (continued)

Return Codes

All BSC instruction return codes are listed with the BSCWRITE instruction under "Return
Codes" on page LR-54.

Chapter 2. Instruction and Statement Descriptions LR-47

BSCWRITE
BSCWRITE - Write data to a BSC line

LR-48 SC34-0643

The BSCWRITE instruction writes data to a binary synchronous line.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

type

BSCWRITE type,bsciocb, ERROR=, EN D=,CHECK=,
P1=,P2=,P3=

type, bsciocb
CHECK=YES
bsciocb

Description

The type of write operation you want to perform. The write operations listed
below are described in detail under "BSCWRITE Types" on page LR-49.

C Write Continue

CV Write Continue Conversational

CVX Write Continue Conversational Transparent

CX Write Continue Transparent

CXB Write Continue Transparent Block

D Write Delay

E Write End

EX Write End Transparent

I Write Initial

IV Write Initial Conversational

IVX Write Initial Conversational Transparent·

IX Write Initial Transparent

IXB Write Initial Transparent Block

Q Write Inquiry

N Write NAK (negative acknowledgement)

o

0

0

o

c

o

BSCWRITE
BseWRITE - Write data to a BSe line (continued)

bsciocb

U Write User

UX Write User Transparent

The label or indexed location of the BSCIOCB statement associated with the
write operation.

ERROR= The label of the instruction to be executed if an error occurs (return codes 10
through 99). If you do not code the operand, control passes to the next
sequential instruction. In either case, the return code reflects the results of the
operation.

END = The label of the instruction to be executed if an ending condition occurs (return
codes 1 through 6). If you do not code this operand, control passes to the next
sequential instruction. In either case, the return code reflects the results.

CHECK= YES, to allow normal checking of the response to occur. This parameter is only
valid for type CV or CVX operations.

Px=

BSCWRITE Types

NO, to prevent the response from being checked for protocol validity.
CHECK=NO provides a chained write-to-read operation similar to Write User
and Read User.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR -12 for a detailed description of how to code these operands.

Type Operation

C Write Continue - Writes subsequent blocks of data after an initial block has been written
with a Write Initial operation.

Write Continue writes the message text and reads a response from the receiving station.

CV Write Continue Conversational - Writes subsequent blocks of data after an initial block
has been written in conversational mode.

Write Continue Conversational writes the message text and reads a response into your
buffer. The access method checks acknowledgement sequences and attempts error
recovery when necessary. If text is received, a -2 return code is returned instead of the
normal-I.

CVX Write Continue Conversational Transparent - Writes subsequent blocks of transparent
data after an initial block has been written in conversational mode.

Write Continue Conversational Transparent writes the message text and the ending
characters DLE ETX. It then reads a response into your buffer. The access method

Chapter 2. Instruction and Statement Descriptions LR -49

BSCWRITE
BSCWRITE - Write data to a BSC line (continued)

LR-50 SC34-0643

checks acknowledgement sequences and attempts error recovery when necessary. If text
is received, a -2 return code is returned instead of the normal-I.

CX Write Continue Transparent - Writes subsequent blocks of transparent data after an
initial block has been written.

Write Continue Transparent writes the message text and the ending characters DLE
ETX. The operation then reads a response from the receiving station.

CXB Write Continue Transparent Block - Writes subsequent blocks of transparent data after
an initial block has been written. This operation is the same as BSCWRITE type CX
except that it uses ETB as the ending character instead of ETX.

Write Continue Transparent Block writes the message text and the ending characters
DLE ETB. It then reads a response from the receiving station.

D Write Delay - Informs the remote station that the transmission of the next block of data
will be delayed. You can perform several Write Delay operations before data
transmission resumes.

E

Write Delay writes a temporary text delay (TTD) to the receiving station and reads a
NAK response. The purpose of this operation is to inform the receiving station of a
TTD before data transmission resumes.

Write End - Informs the remote station that the previous block of data completed the
write operation. Write End writes an EOT.

EX Write End Transparent - Writes a transparent EOT (DLE EOT). You can use this
operation to notify the receiving station on a switched line that the transmitting station is
disconnecting from the line.

I Write Initial - Writes the first block of data in a transmission. Write Initial establishes
the correct initial sequence (depending on the type of line), writes the first block, and
checks the response.

For a point-to-point operation (TYPE=PT,SA,SM), Write Initial:

Writes an ENQ to gain use of the line

Reads a positive response (ACK-O)

• Writes the message text

• Reads the response to the message text.

In a multipoint controller operation (TYPE=MC), Write Initial:

Selects a tributary station

o

~,
V

o

o

o

o

BSCWRITE
BSCWRITE - Write data to a BSC line (continued)

• Waits for a positive response to the selection

• Writes the message text

• Reads the response to the message text.

For a multipoint tributary operation (TYPE=MT), Write Initial:

• Writes the message text

• Reads a response from the controller station.

IV Write Initial Conversational- Writes the first block of data for a transmission in
conversational mode.

Write Initial Conversational establishes the correct initial sequence (depending on the
type of line), writes the first block of the message text, and reads a response into your
buffer. The access method checks acknowledgement sequences and attempts error
recovery when necessary. If text is received, a -2 return code is returned instead of the
normal-I.

For a point-to-point operation (TYPE=PT,SA,SM), Write Initial Conversational:

• Writes an ENQ to gain use of the line

• Reads a positive response (ACK-O)

Writes the message text

• Reads the response to the message text.

In a multipoint controller operation (TYPE=MC), Write Initial:

• Selects a tributary station

Waits for a positive response to the selection

Writes the message text

• Reads the response to the message text.

For a multipoint tributary operation (TYPE=MT), Write Initial:

• Writes the message text

Reads a response from the controller station.

Chapter 2. Instruction and Statement Descriptions LR-5I

BSCWRITE
BSCWRITE - Write data to a BSC line (continued)

LR-S2 SC34-0643

IVX Write Initial Conversational Transparent - Writes the first block of transparent data of a
transmission in conversational mode.

Write Initial Conversational Transparent establishes the correct initial sequence
(depending on the type of line), writes the first block of the message text and the ending
characters DLE ETX. It then reads a response into your buffer. The access method
checks acknowledgement sequences and attempts error recovery when indicated. If text
is received, a -2 return code is returned instead of the normal -1.

For point-to-point operation (TYPE=PT,SA,SM): Write Initial Conversational
Transparent:

• Writes an ENQ to gain use of the line

Reads a positive response (ACK-O)

Writes the message text

Writes the required ending characters DLE ETX

• Reads the response to the message text.

In a multipoint controller operation (TYPE=MC), Write Initial:

• Selects a tributary station

Waits for a positive response to the selection

Writes the message text

Writes the required ending characters DLE ETX

• Reads the response to the message text.

For a multipoint tributary operation (TYPE=MT), Write Initial:

• Writes the message text

• Writes the required ending characters DLE ETX

Reads a response from the controller station.

IX Write Initial Transparent - Writes the first block of transparent data in a transmission.
Write Initial Transparent establishes the correct initial sequence (depending on the type
of line), writes the first block of transparent data, and checks the response. The access
method terminates the message text with DLE ETX.

o

o

o

o

o

o

BSCWRITE
BSCWRITE - Write data to a BSe line (continued)

IXB Write Initial Transparent Block - Same as Write Initial Transparent (IX) except that ETB
is used as the ending character instead of ETX.

Q Write Inquiry - Writes an ENQ character and reads the response into your buffer. The
response is either a control sequence or text.

Use this operation to request that a response to a message block be retransmitted. The
access method retries the operation if it times out.

N Write NAK - Writes a NAK (negative acknowledgement) character. Use this operation
to respond "device not ready" to polling or selection when the Series/1 operates as a
tributary station on a multipoint line (TYPE=MT).

U Write User - Transmits a character stream. The access method does not perform an
associated read operation or attempt error recovery.

UX Write User Transparent - Transmits a transparent character stream. The access method
does not perform an associated read operation or attempt error recovery.

The operation concludes with one of the following character pairs contained in
BSCIOCB buffer2: DLE ETX, DLE ETB, or DLE ENQ.

Chapter 2. Instruction and Statement Descriptions LR -5 3

BSCWRITE
BSCWRITE - Write data to a BSC line (continued)

Return Codes

LR-S4 SC34-0643

Return codes are returned in the first word of the task control block (TCB) of the program or
task issuing the instruction. The label of the TCB is the label of your program or task
(taskname) .

Return
Code Condition

-2 Text received in conversational mode
-1 Successful coml2letion

END=

1 EaT received
2 OLE EaT received
3 Reverse interrupt received
4 Forward abort received
5 Remote station not ready (NAK received)
6 Remote station busy (WACK received)

ERROR=

10 Time-out occurred
11 Unrecovered transmission error (BeC error)
12 Invalid sequence received
13 Invalid multi-point tributary write attempt
14 Disregard this block sequence received
15 Remote station busy (WACK received)
20 Wrong length record - long (No COD)
21 Wrong length record - short (write only)
22 Invalid buffer address
23 Buffer length zero
24 Undefined line address
25 Line not opened by calling task
30 Modem interface error
31 Hardware overrun
32 Hardware error
33 Unexpected ring interrupt
34 Invalid interrupt during auto-answer

attempt
35 Enable or disable DTR error
99 Access method error

o

n '-../

o

o

o

o

BUFFER
BUFFER - Define a storage area

The BUFFER statement defines a data storage area. The standard buffer contains an index
word, a length word, and a data buffer.

The index word indicates the number of bytes stored in the buffer, but only when incremented
by your program. A label assigned to the index word in your program will enable you to
increment and reset the index word from the program. The system sets the index word to 0
when it creates the buffer. The length word indicates the total length of the buffer in bytes.

Certain instructions, for example INTIME and SBIO allow you to add new entries sequentially
to a buffer by referring to and incrementing the index word.

You can use a BUFFER statement to define the storage area needed for use with the Host
Communications Facility TP READ/WRITE instruction. Th~ use of the BUFFER statement to
set up a temporary I/O buffer for a terminal is explained under the 10CB statement.

READTEXT and GETEDIT instructions may be used to modify the BUFFER statement.
PRINTEXT and PUTEDIT instructions use the BUFFER statement to determine the number of
values to print.

Figure 5 on page LR-57 shows the physical layout of a buffer.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

length

BUFFER length,item,INDEX=

length
item=WORD
none

Description

The length of the buffer in terms of the data item (words or bytes) -you specify.
The system allocates two words of control information, the index word and the
length word, in addition to the buffer itself. The length must not exceed 16,380
words or 32,760 bytes.

If your program includes a READ instruction that will use the buffer, the buffer
area should be a multiple of 256 bytes.

Note: When filling a buffer, you should be careful not to exceed the buffer size.
The system does not check for an overflow condition.

Chapter 2. Instruction and Statement Descriptions LR-55

BUFFER
BUFFER - Define a storage area (continued)

LR-56 SC34-0643

item Code BYTE or BYTES if the buffer length is defined in terms of bytes. Code
WORD or WORDS if the buffer length is defined in terms of words. The default
for this operand is WORD.

INDEX =

Code BYTE or BYTES if you are using the BUFFER statement with a CALL
$IMOPEN instruction.

Code TPBSC to generate a buffer for use with the TP READ/WRITE
instruction (Host Communications Facility). The count operand reflects the
length of the buffer in bytes when you code TPBSC.

The label of the buffer index word. Do not code this operand if you coded
TPBSC for the item operand. You can think of this operand as a pointer to the
next available data location in the buffer.

o

c

o

BUFFER - Define a storage area (continued)

Standard BUFFER

label BUFFER length,item,l NDEX=njme

+ name
I.

Index

length

label x

x

x

x

0

0

0

0

0

TPBSC BUFFER

label BUFFER length, TPBSC

I length

pad

request

-------........ ~ label

data

pad

Figure 5. Physical Layout of a Buffer

> index-

} 2 words

,

length in
> bytes

size in bytes

DLE/STX

TP request block

ETX

1 word

1 word

8 words

length in
bytes

1 word

BUFFER

Chapter 2. Instruction and Statement Descriptions LR-S7

BUFFER
BUFFER - Define a storage area (continued)

Coding Example

LR-58 SC34-0643

The BUFFER statement labeled BUFF defines a 102-word storage area. The first word of this
area is labeled INDX as coded on the keyword INDEX. The second word contains the count of
the total number of BUFFER entries. The remaining 100 words are the actual BUFFER
storage area.

BUFF
DATA1

SUBROUT
IF

ENQT
PRINTEXT
DEQT
RETURN

ENDIF
MOVE A
ADD
MOVE
ADD
RETURN
BUFFER
DATA

STORE
(INDX,GE,198)

$SYSPRTR
'@BUFFER IS FULL'

#1,BUFF
#1,INDX
(0,#1) ,DATA1, (1,WORD)
INDX,2

100,WORDS,INDEX=INDX
F'O'

MOVE ADDR OF BUFF
INCREMENT #1
MOVE DATA TO BUFF
INCREMENT BUFFER INDEX

o

o

o

o

o

o

CACLOSE
CACLOSE - Close a Channel Attach port

Syntax Examples

The CACLOSE instruction terminates the connection between your application program and a
Channel Attach port and disables the port from receiving interrupts from the System/370.

Syntax:

label CACLOSE caiocb, ERROR=, P1 =

Required: caiocb
Defaults: none
Indexable: caiocb

Operand Description

caiocb The label or indexed location of the Channel Attach 110 control block defined
for this port.

ERROR=

Pl=

The label of the instruction to be executed if an error occurs. If you do not code
this operand, control passes to the next instruction after the CACLOSE and your
program must test for errors before issuing a WAIT.

Parameter naming operand. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code this operand.

1) The following example closes a port defined by the CAIOCB at USERIOCB.

CLOSE10 CACLOSE USERIOCB

2) This example closes a port defined by the CAIOCB at the indexed location of USER plus the
contents of # 1. If an error occurs, the instruction at label E 1 receives control.

CLOSEFC CACLOSE (USER,#1) ,ERROR=E1

Chapter 2. Instruction and Statement Descriptions LR-5 9

CACLOSE
CACLOSE - Close a Channel Attach port (continued)

Return and Post Codes

LR-60 SC34-0643

Return codes are returned in the first word of the task control block of the program or task
issuing the instruction. A return code other than -1 indicates that the link module found an
error before the instruction performed an I/O operation. Your program must check the return
code before it issues a WAIT because a WAIT should only be used if an I/O operation is being
performed.

CACLOSE post codes are returned to the first word of of the CAIOCB you defined for the
instruction.

For detailed explanations of the return and post codes, refer to Messages and Codes.

Post Return
Code Hex Code Ex~lanation

FEOC -500 Data pending from host
-1 FFFF -1 Successful
501 01F5 EXIO error-device not attached
502 01F6 EXIO error-busy
503 01F7 EXIO error-busy after reset
504 01F8 EXIO error-command reject
505 01 F9 EXIO error-intervention required
506 01FA EXIO error-interface data check
507 01FB EXIO error-controller busy
508 01FC EXIO error-channel command not allowed
509 01FD EXIO error-no DDB found
510 01FE EXIO error-too many DCBs chained
511 01FF EXIO error-no residual status address
512 0200 EXIO error-zero bytes specified for

residual status
513 0201 EXIO error-broken DCB chain
516 0204 EXIO error-device already opened
524 020C Timeout

0234 564 Users CAIOCB not linked to port
567 0237 567 System error; CAPGM terminating

0238 568 Port not opened

Channel attach codes 501-513 are the same as the EXIO
post codes 1-13 respectively.

o

0

o

o

c

o

CAIOCB
CAIOCB - Create a Channel Attach port I/O control block

Syntax Example

The CAIOCB statement creates a Channel Attach port I/O control block that contains the
information your program requires to use a port.

You supply the device address, the port number, and the label of the first buffer control area.
You must provide a CAIOCB for all operations to a port. Do not try to modify the CAIOCB
during program execution.

Syntax:

label CAIOCB address, PORT=, BU FFER=

Required: label,address,PORT=,BUFFER=
Defaults: none
Indexable: none

Operand Description

label The label of the CAIOCB for use with the CAOPEN, CACLOSE, CAREAD,
and CA WRITE instructions.

address A two-digit hexadecimal device address.

PORT=

BUFFER=

The number of the port (0-31) for which this I/O control block is being created.

The label of a three-word area containing:

First word - the address of the buffer to be used for the first read.

• Second word - the number of bytes to be used.

Third word - the partition number of the buffer. If this word is zero, the
system assumes the buffer is in the partition in which you loaded your
program.

The following statement creates a Channel Attach port I/O control block for port 3. The device
address is 10.

USERIOCB CAIOCB 10,PORT=3,BUFFER=AREA

Chapter 2. Instruction and Statement Descriptions LR-61

CALL
CALL - Call a subroutine

LR-62 SC34-0643

The CALL instruction executes a system subroutine or a subroutine that you write. You can
pass up to five parameters as arguments to the subroutine. If the subroutine you call is a
separate object module to be link-edited with your program, you must code an EXTRN
statement with the subroutine name in the calling program. Figure 6 on page LR-64 shows an
example of a primary task calling a subroutine which in turn calls a second subroutine.

Syntax:

label CALL name,par1 , ... ,par5,P1 =, ... ,P6=

Required: name
Defaults: none
Indexable: none

Operand Description

name The name of the subroutine to be executed.

par(n)

Px=

The parameters you want to pass to the subroutine. You can pass up to five
single-precision integers or the labels of single-precision integers or null
parameters to the subroutine. The CALL instruction replaces the parameters
specified in the subroutine with the parameters you specify. For example, the
instruction replaces the first parameter of the subroutine with parI, the second
parameter with par2, and so on.

If the parameter name is enclosed in parentheses, for example (part), the
instruction passes the address of the variable to the subroutine parameter. The
address can be the label of the first word of any type of data item or data array.
Within the subroutine it will be necessary to move the passed address of the data
item into one of the index registers, #1 or #2, in order to refer to the actual data
item location in the calling program. If the parameter name enclosed in
parentheses is the label of an EQU instruction, the instruction passes the value of
that label as the parameter.

If the parameter to be passed is the label of an EQU instruction, you can code a
plus sign (+) in front of that label. The plus sign causes the value equated to the
label to be passed to the subroutine. If you do not code a plus sign in front of
the label, the instruction assumes that the value equated to the label is an address
and passes the data at that address as the parameter.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

o

o

o

o

CALL
CALL - Call a subroutine (continued)

Syntax Examples

Coding Example

1) Call the PROG subroutine and pass it a value of 5.

CALL PROG,S

2) Call the PROG subroutine and pass it a value of 5 and the null parameter o.

CALL PROG,S,

3) Call the SUBROUT subroutine and pass it the contents of PARMI, the address of PARM2,
and the value of the equated label FIVE.

CALL SUBROUT,PARM1, (PARM2),+FIVE

The following coding example shows a use of the CALL instruction. The main routine calls the
subroutine READREC. A relative record number is passed to the subroutine as RECNUMBR
and is received as RECORD#.

Two methods of passing an address to a subroutine are illustrated. First, at label MA, the
address of END FILE is moved to EOF. Then EOF is passed to the subroutine as a parameter
of a CALL instruction.

Second, in the same CALL instruction, the address of READ ERR is passed to the subroutine by
enclosing the label in parentheses. When EOF and READ ERR are passed to the subroutine,
they are referred to as EOFEXIT and ERREXIT, respectively.

The EOFEXIT and ERREXIT parameters are addresses. In order to branch to the locations
these parameters represent, they must be enclosed in parentheses as the object of a GOTO
instruction.

The subroutine uses the relative record number defined by RECORD# to read the data file. An
end-of-file condition causes a branch to the appropriate exception routine whose address is
contained in EOFEXIT.

A read error will cause a branch to the location whose address is contained in ERREXIT. If no
exception condition is encountered, control is returned to the calling routine by the RETURN
instruction.

Chapter 2. Instruction and Statement Descriptions LR-63

CALL
CALL - Call a subroutine (continued) o

MA MOVEA EOF,ENDFILE
CALL READREC, RECNUMBR, EOF, (READERR)
GOTO CONTINU

READ ERR EQU *
PRINTEXT '@ ERROR ENCOUNTERED READING DISK FILE RECORD NUMBER'
PRINTNUM RECNUMBR
PROGSTOP

ENDFILE EQU *
PRINTEXT '@ END OF INPUT DATA FILE REACHED'
PROGSTOP

CONTINU EQU *

SUBROUT READREC,RECORD#,EOFEXIT,ERREXIT
READ DS1,DISKBUFR,1,RECORD#,END=ENDEXIT,ERROR=ERRORXIT
RETURN

ENDEXIT EQU *
GOTO (EOFEXIT)

ERRORXIT EQU *
GOTO (ERREXIT)

•
(, .. ~._.~.'i

.J
•
•

CALL name1 SUB ROUT name1

~ • •
• •

• CALL name2 SUB ROUT name2

• fo+- •
• • --- RETURN •

• - RETURN

Figure 6. Execution of Subroutines

c
LR-64 SC34-0643

o

o

o

CALLFORT
CALLFORT - Call a FORTRAN subroutine or program

The CALLFORT instruction calls a FORTRAN program or subroutine from an Event Driven
Executive program. If you call a FORTRAN main program, the name you specify for the name
operand is the name you coded on the FORTRAN PROGRAM statement or the default name,
MAIN, if no PROGRAM statement was coded. If you call a FORTRAN subroutine, specify the
name of the subroutine for the name operand. You can pass parameters to FORTRAN
subroutines. Standard FORTRAN subroutine conventions apply to the use of CALLFOR T.

If separate tasks within an EDL program each contain CALLFORT instructions, the tasks
should not execute concurrently because the FORTRAN subroutines are serially reusable and
not reentrant.

For a more complete description of the use of the CALLFORT instruction, see the IBM
Series/l Event Driven Executive FORTRAN IV Program 5719-F02 User's Guide, SC34-031S.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

name

al,a2,an

pl,p2,pn

CALLFORT name,(a1,a2, ... ,an),P=(p1,p2, .. pn)

name
none
none

Description

The name of a FORTRAN program or subroutine, consisting of 1 to 6
alphameric characters, that begins with an alphabetic character. You must also
code this name, or entry point, on an EXTRN statement.

A list of parameters or arguments (al,a2, and so on) that you want to pass to the
subroutine. The argument can be a constant, a variable, or the name of a buffer.
If you are passing the subroutine only one argument, you do not have to enclose
it in parentheses.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.
Each name in this list can be up to eight characters long. The system assigns the
first name in the list to the first argument, the second name in the list to the
second argument, and so on.

Chapter 2. Instruction and Statement Descriptions LR-6S

CALLFORT
CALLFORT - Call a FORTRAN subroutine or program (continued)

Syntax Examples

LR-66 SC34-0643

1) Call the SORTI subroutine.

SAMPLE PROGRAM START
EXTRN SORT1

START EQU *
CALL FORT SORT1

2) Call the SUM subroutine and pass it an integer constant of 5.

SAMPLE PROGRAM START
EXTRN SUM

START EQU *
CALL FORT SUM,S

3) Call the SUM subroutine and pass it variables A and B.

SAMPLE PROGRAM START
EXTRN SUM

START EQU *

A
B

CALLFORT SUM, (A,B)

DATA
DATA

F'S'
F'O'

4) Call the SUM subroutine and pass it variables A and B. Assign the label INPUT to
argument A and OUTPUT to argument B.

SAMPLE PROGRAM START
EXTRN SUM

START EQU *
CALLFORT SUM, (A,B) ,P=(INPUT,OUTPUT)

A DATA F'S'
B DATA 2F'O'

o

(j

o

o

C~I
, ,j

0 ,
, IL"·

CAOPEN
CAOPEN - Open a Channel Attach port

Syntax Examples

The CAOPEN instruction establishes a connection between your application program and a
Channel Attach device port.

You must issue a CAOPEN instruction before your program can use a port for data transfer.
When your program opens a Channel Attach port, it has exclusive use of the port until the port
is closed. The system rejects any request to open a port already opened.

Syntax:

label CAOPEN caiocb, ERROR=, P1 =

Required:
Defaults:
Indexable:

caiocb
none
caiocb

Operand

caiocb

ERROR=

Pl=

Description

The label or indexed location of the Channel Attach port 110 control block you
defined for this port.

The label of the instruction to be executed if an error occurs. If you do not code
this operand, control passes to the next instruction after the CAOPEN and your
program must test for errors before issuing a WAIT.

Parameter naming operand. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code this operand.

1) Open a port defined by the CAIOCB at label USERIOCB.

OPEN10 CAOPEN USERIOCB

2) Open a port defined by the CAIOCB at the indexed location of USER plus the contents of
#1. If an error occurs, the instruction at label El receives control.

OPENFC CAOPEN (USER,#1) ,ERROR=E1

Chapter 2. Instruction and Statement Descriptions LR-67

CAOPEN
CAOPEN - Open a Channel Attach port (continued)

Return and Post Codes

LR-68 SC34-0643

Return codes are returned in the first word of the task control block of the program or task
issuing the instruction. A return code other than -1 indicates that the link module found an
error before the instruction performed an I/O operation. Your program must check the return
code before it issues aWAIT because a WAIT should only be used if an I/O operation is being
performed.

CAOPEN post codes are returned to the first word of of the CAIOCB you defined for the
instruction.

For detailed explanations of the return and post codes, refer to Messages and Codes.

Post Return
Code Hex Code Exelanation
-1 FFFF -1 Successful
501 01F5 EXIO error-device not attached
502 01F6 EXIO error-busy
503 01F7 EXIO error-busy after reset
504 01F8 EXIO error-command reject
505 01F9 EXIO error-intervention required
506 01FA EXIO error-interface data check
507 01FB EXIO error-controller busy
508 01FC EXIO error-channel command not allowed
509 01FD EXIO error-no DDB found
510 01FE EXIO error-too many DCBs chained
511 01FF EXIO error-no residual status address
512 0200 EXIO error-zero bytes specified for

residual status
513 0201 EXIO error-broken DCB chain
516 0204 EXIO error-device already opened
520 0208 Interrupt error
524 020C Timeout

0227 551 Device not started
0228 552 Stop in progress
022C 556 Port out of range
022D 557 Port already open
022E 558 Read buffer not provided
022F 559 Read buffer count = 0

567 0237 567 System error; CAPGM terminating
023A 570 Device in diagnostic mode

Channel attach codes 501-513 are the same as the EXIO
post codes 1-13, respectively.

o

(~
~

o

o

o

o

CAPRINT
CAPRINT - Print Channel Attach trace data

The CAPRINT instruction prints the entire trace area on your printer or terminal. Use this
instruction for problem determination. Tracing is disabled while printing is being done.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

address

event

TITLE =

CAPRI NT address,event, TITLE=,CONSOLE=, ERROR=,
P1=,P2=,P3=,P4=

address
CONSOLE=$SYSPRTR
EVE NT, TITLE

Description

A two-digit hexadecimal device address.

The label or indexed location of the event to be posted when printing has
completed. If you do not code this operand, your program is not posted when
printing completes.

The label or indexed location of a two-word area defining the title on the trace
data listing. The first word contains the address of the title. The second word
contains the length, in bytes, of the title. If you do not code this operand, no title
appears on the trace data listing. TITLE= cannot exceed 72 bytes if you are
using the $CHANUTI utility.

CONSOLE= The label of the IOCB statement that defines the terminal used as the output
device for this trace print request.

ERROR =

Px=

The label of the instruction to be executed if an error occurs. If you do not code
this operand, control passes to the next instruction after the CAPRINT and your
program must test for errors before issuing a WAIT.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

Chapter 2. Instruction and Statement Descriptions LR-69

CAPRINT
CAPRINT - Print Channel Attach trace data (continued)

Syntax Examples

Return Codes

LR -70 SC34-0643

1) Print trace data for the device at address 10 on $SYSPRTR.

PRINT10 CAPRINT 10,ERROR=ERROR2

2) Print trace data for the device at address FC on PRTR2. When the printing completes, the
instruction posts the event at the indexed location of address A plus the contents of #1.

PRINTFC CAPRI NT FC, (A,#1) ,TITLE=HEAD,
CONSOLE=PRTR2,ERROR=E1

x

Return codes are returned in the first word of the task control block of the program or task
issuing the instruction. A return code indicates that the link module found an error before the
instruction performed an I/O operation. Your program must check the return code before it
issues aWAIT because a WAIT should only be used if an I/O operation is being performed.

For detailed explanations of the return codes, refer to Messages and Codes.

Return
Hex Code Ex~lanation

0227 551 Device not started
0228 552 Stop in progress
022A 554 Device not found

o

0

o

o

o

o

CAREAD
CAREAD - Read from a Channel Attach port

The CAREAD instruction reads data from a Channel Attach port. The operation occurs at the
port you specify in the CAIOCB statement.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

caiocb

thisbuf

nextbuf

ERROR=

Px=

CAREAD caiocb, thisbuf,nextbuf, ERROR=,
P1=,P2=,P3=

caiocb, thisbuf, nextbuf
none
caiocb, thisbuf, nextbuf

Description

The label or indexed location of the Channel Attach port 110 control block
defined for this port.

The label of a three-word area containing:

First word - the address of the buffer receiving the data from this read

Second word - the number of bytes to be read into the buffer

• Third word - the partition number of the buffer

The label of a three-word area containing:

First word - the address of the buffer to be used for the next read

Second word - the number of bytes to be read into the buffer

• Third word - the partition number of the buffer

The label of the instruction to be executed if an error occurs. If you do not code
this operand, control passes to the next instruction after the CAREAD, and your
program must test for errors before issuing a WAIT.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR -12 for a detailed description of how to code these operands.

Chapter 2. Instruction and Statement Descriptions LR-71

CAREAD
CAREAD - Read from a Channel Attach port (continued)

Syntax Examples

LR-72 SC34-0643

1) Read data from the port defined by the CAIOCB at label USERIOCB. The address of the
buffer receiving the data is in the 3-word area at label BUFl.

READ 1 0 CAREAD USERIOCB,BUF1,BUF2

2) Read data from the port defined by the CAIOCB at the indexed location of USER plus the
contents of #1. The address of the buffer receiving the data is in the 3-word area at the indexed
location of BUF 1 plus the contents of #2.

READFC CAREAD (USER,#1), (BUF1,#2), x
(BUF2,#1) ,ERROR=E1

o

o

o

o

0

o

CAREAD
CAREAD - Read from a Channel Attach port (continued)

Return and Post Codes

Return codes are returned in the first word of the task control block of the program or task
issuing the instruction. A return code other than -1 indicates that the link module found an
error before the instruction performed an I/O operation. Your program must check the return
code before it issues a WAIT because a WAIT should only be used if an I/O operation is being
performed.

CAREAD post codes are returned to the first word of the CAIOCB you defined for the
instruction.

For detailed explanations of the return and post codes, refer to Messages and Codes.

Post Return
Code Hex Code Explanation
-1 FFFF -1 Successful
501 01F5 EXIO error-device not attached
502 01 F6 EXIO error-busy
503 01 F7 EXIO error-busy after reset
504 01 F8 EXIO error-command reject
505 01F9 EXIO error-intervention required
506 01FA EXIO error-interface data check
507 01FB EXIO error-controller busy
508 01FC EXIO error-channel command not allowed
509 01FD EXIO error-no DDB found
510 01FE EXIO error-too many DCBs chained
511 01FF EXIO error-no residual status address
512 0200 EXIO error-zero bytes specified for

residual status
513 0201 EXIO error-broken DCB chain
516 0204 EXIO error-device already opened
524 020C Timeout
520 0208 Interrupt error
521 0209 Negative acknowledgement (write only)
522 020A Buffer overlay (read only)
523 020B Protocol error

022E 558 Buffer not provided
022F 559 Buffer count = 0
0232 562 Write buffer not provided
0233 563 Write buffer count = 0
0234 564 Users CAIOCB not linked to port

567 0237 567 System error; CAPGM terminating
0238 568 Port not opened

Channel attach codes 501-513 are the same as the EXIO
post codes 1 -13, respectively.

Chapter 2. Instruction and Statement Descriptions LR-73)

CASTART
CASTART - Start Channel Attach device

Syntax Example

',R-74 SC34-0643

The CASTART instruction starts a Channel Attach device. Your program must start the
Channel Attach device before it can open any of the device's ports.

The first CAST ART instruction you issue loads the Channel Attach device handler program,
initializes the control blocks for the device, and prepares the device to accept interrupts from the
System/370. Subsequent CASTART instructions connect to the device handler program
initially loaded.

Syntax:

label CASTART address,ecb, ERROR=, P1 =, P2=

Required: address,ecb
Defaults: none
Indexable: ecb

Operand Description

address A two-digit hexadecimal device address.

ecb

ERROR=

Px=

The label or indexed location of the event to be posted upon completion of the
CAST ART operation.

The label of the instruction to be executed if an error occurs. If you do not code
this operand, control passes to the next instruction after the CASTART, and the
program must test for errors before issuing a WAIT.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR -12 for a detailed description of how to code these operands.

The CASTART instruction in the following example starts the device at address 10. When the
start operation ends, the instruction posts the event at $ECB.

START 1 0 CASTART 10,$ECB

(.~ y

o

o

o

C

o

CASTART
CASTART - Start Channel Attach device (continued)

Return and Post Codes

Return codes are returned in the first word of the task control block of the program or task
issuing the instruction. A return code other than -1 indicates that the link module found an
error before the instruction performed an I/O operation. Your program must check the return
code before it issues aWAIT because a WAIT should only be used if an I/O operation is being
performed.

CASTART post codes are returned to the first word of of the event control block (ECB) you
defined in the instruction.

For detailed explanations of the return and post codes, refer to Messages and Codes.

Post Return
Code Hex Code Explanation
-1 FFFF -1 Successful
501 01F5 EXIO error-device not attached
502 01F6 EXIO error-busy
503 01 F7 EXIO error-busy after reset
504 01F8 EXIO error-command reject
505 01 F9 EXIO error-intervention required
506 01FA EXIO error-interface data check
507 01FB EXIO error-controller busy
508 01FC EXIO error-channel command not allowed
509 01FD EXIO error-no DDB found
510 01FE EXIO error-too many DCBs chained
511 01FF EXIO error-no residual status address
512 0200 EXIO error-zero bytes specified for

residual status
513 0201 EXIO error-broken DCB chain
516 0204 EXIO error-device already opened
524 020C Timeout
525 0200 Not a Channel Attach device

0228 552 Stop in progress
&22A 554 Device not found

567 0237 567 System error; CAPGM terminating
0239 569 Device already started

Channel Attach codes 501-513 are the same as the EXIO
post codes 1-13, respectively.

Chapter 2. Instruction and Statement Descriptions LR -75

CASTOP
CASTOP - Stop a Channel Attach device

LR-76 SC34-0643

The CASTOP instruction stops a Channel Attach device and disables the device from receiving
interrupts from the System/370. Your program can stop a device only if no ports are open.
When your program stops the last device, the Channel Attach device handler program
terminates.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

address

ecb

ERROR=

Px=

CASTOP

address,ecb
none
ecb

Description

address,ecb, ERROR=, P1 =, P2=

A two-digit hexadecimal device address.

The label or indexed location of the event to be posted upon completion of the
CASTOP operation.

The label of the instruction to be executed if an error occurs. If you do not code
this operand, control passes to the next instruction after the CASTOP, and your
program must test for errors before issuing a WAIT.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

o

o

o

o

0

o

CASTOP
CASTOP - Stop a Channel Attach device (continued)

Syntax Example

The CASTOP instruction in the following example stops the device at ad~s 10. When the
operation ends, the instruction posts the event at $ECB.

STOP10

Return and Post Codes

CAS TOP 10,$ECB

Return codes are returned in the first word of the task control block of the program or task
issuing the instruction. A return code other than -1 indicates that the link module found an
error before the instruction performed an I/O operation. Your program must check the return
code before it issues aWAIT because aWAIT should only be used if an I/O operation is being
performed.

CASTOP post codes are returned to the first word of of the event control block (ECB) you
defined in the instruction.

For detailed explanations of the return and post codes, refer to Messages and Codes.

Post Return
Code Hex Code Explanation

-1 FFFF -1 Successful
501 01F5 EXIO error-device not attached
502 01F6 EXIO error-busy
503 01F7 EXIO error-busy after reset
504 01F8 EXIO error-command reject
505 01 F9 EXIO error-intervention required
506 01FA EXIO error-interface data check
507 01FB EXIO error-controller busy
508 01FC EXIO error-channel command not allowed
509 01FD EXIO error-no DDB found
510 01FE EXIO error-too many DCBs chained
511 01FF EXIO error-no residual status address
512 0200 error-zero bytes specified for

residual status
513 0201 EXIO error-broken DCB chain
516 0204 EXIO error-device already opened
524 020C Timeout

0227 551 Device not started
0228 552 Stop in progress
0229 553 Device in use
022A 554 Device not found

567 0237 567 System error; CAPGM terminating
023A 570 Device in diagnostic mode

599 0257 $CAPGM has ended

Channel attach codes 501-513 are the same as the EXIO
post codes 1-13, respectively.

Chapter 2. Instruction and Statement Descriptions LR-77

CATRACE
CATRACE - Control Channel Attach tracing

Syntax Examples

LR-78 SC34-0643

The CATRACE instruction controls the collection of I/O trace data for a Channel Attach
device. You can turn tracing on or off.

This instruction collects Channel Attach trace data in processor storage which can slow system
performance. For this reason, you should use the CATRACE instruction primarily for problem
determination.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

address

ENABLE =

ERROR=

P1=

CATRACE address,ENABLE=,ERROR=,P1=

address
ENABLE=YES
none

Description

A two-digit hexadecimal device address.

YES (the default), to turn on or enable tracing.

NO, to turn off or disable tracing.

The label of the instruction to be executed if an error occurs. If you do not code
this operand, control passes to the next instruction after the CATRACE and
your program must test for errors.

Parameter naming operand. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code this operand.

1) Turn on tracing for the device at address 10.

TRACE 1 0 CATRACE 10

2) Turn off tracing for the device at address FC. If an error occurs, the instruction at label E1
receives control.

TRACEFC CAT RACE FC,ENABLE=NO,ERROR=E1

o

c

o

o

o

CATRACE
CATRACE - Control Channel Attach tracing (continued)

Return Codes

Return codes are returned in the first word of the task control block of the program or task
issuing the instruction. A return code indicates that the link module found an error before the
instruction performed an I/O operation. Your program must check the return code before it
issues aWAIT because aWAIT should only be used if an I/O operation is being performed.

For detailed explanations of the return codes, refer to Messages and Codes.

Return
Hex Code Explanation
0227 551 Device not started
0228 552 Stop in progress
022A 554 Device not found
0235 565 Trace already on
0238 566 Trace already off

Chapter 2. Instruction and Statement Descriptions LR-79

CAWRITE
CAWRITE - Write to a Channel Attach port

Syntax Examples

LR-80 SC34-0643

The CA WRITE instruction sends data to a Channel Attach port. The operation occurs at the
port you specify in the CAIOCB statement.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

caiocb

buffer

ERROR=

Px=

CAWRITE caiocb,buffer, ERROR=, P1 =, P2=

ca iocb, buffer
none
caiocb,buffer

Description

The label or indexed location of the Channel Attach port 110 control block
defined for this port.

The label of a three-word area containing:

First word - the address of the buffer containing the data to be sent.

Second word - the number of bytes to be sent.

Third word - the partition number of the buffer. If this word is zero, the
system assumes the buffer is in the partition in which you loaded your
program.

The label of the instruction to be executed if an error occurs. If you do not code
this operand, control passes to the next instruction after the CA WRITE, and
your program must test for errors before issuing a WAIT.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

1) Write data to a port defined by the CAIOCB at label USERIOCB. BUF A is the label of the
3-word area that contains the address of the buffer from which the data is to be sent.

WRITE10 CAWRITE USERIOCB,BUFA

2) Write data to a port defined by the CAIOCB at a location specified in #1. The address of
the buffer containing the data to be sent is specified in a 3-word area located at an address in
#2.

WRITEFC CAWRITE #1,#2,ERROR=ERROR1

o

o

o

0

o

CAWRITE
CAWRITE - Write to a Channel Attach port (continued)

Return and Post Codes

Return codes are returned in the first word of the task control block of the program or task
issuing the instruction. A return code other than -1 indicates that the link module found an
error before the instruction performed an I/O operation. Your program must check the return
code before it issues a WAIT because a WAIT should only be used if an I/O operation is being
performed.

CA WRITE post codes are returned to the first word of of the CAIOCB you defined for the
instruction.

For detailed explanations of the return and post codes, refer to Messages and Codes.

Post Return
Code Hex Code Explanation

-1 FFFF -1 Successful
501 01F5 EXIO error-device not attached
502 01F6 EXIO error-busy
503 01F7 EXIO error-busy after reset
504 01F8 EXIO error-command reject
505 01F9 EXIO error-intervention required
506 01FA EXIO error-interface data check
507 01FB EXIO error-controller busy
508 01FC EXIO error-channel command not allowed
509 01FD EXIO error-no DDB found
510 01FE EXIO error-too many DCBs chained
511 01FF EXIO error-no residual status address
512 0200 EXIO error-zero bytes specified for

residual status
513 0201 EXIO error-broken DCB chain
516 0204 EXIO error-device already opened
520 0208 Interrupt error
521 0209 Negative acknowledgement (write only)
522 020A Buffer overlay (read only)
523 020B Protocol error
524 020C Timeout

022E 558 Buffer not provided
022F 559 Buffer count = 0
0232 562 Write buffer not provided
0233 563 Write buffer count = 0
0234 564 Users CAIOCS not linked to port

567 0237 567 System error; CAPGM terminating
0238 568 Port not opened

Channel attach codes 501-513 are the same as the EXIO
post codes 1-13, respectively.

Chapter 2. Instruction and Statement Descriptions LR-81

COMP
COMP - Define location of message text

LR-82 SC34-0643

The COMP statement points to a data set or module that contains formatted program messages.
The MESSAGE, READTEXT, GETV ALUE, and QUESTION instructions refer to the label of
the COMP statement when retrieving program messages.

The COMP statement also assigns a four-character prefix to the messages your program obtains.
This prefix, the number of the message being retrieved, and the message text are the
components that make up a complete program message.

You must code at least one COMP statement in a program that retrieves program messages.
The message utility, $MSGUT1, formats the messages you write for your programs. Refer to
the Operator Commands and Utilities Reference for a description of this utility. See Appendix
E, "Creating, Storing, and Retrieving Program Messages" on page LR-615 for more
information.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

COMP 'idxx' ,name, TYPE=

label,'idxx' ,name
TVPE=STG
none

Description

label The label you specified for the COMP= keyword on a MESSAGE,
READTEXT, GETV ALUE, or QUESTION instruction.

'idxx' A four-character prefix that identifies the messages your program obtains
through this COMP statement. The system displays this prefix with the message
text when you code MSGID= YES on a MESSAGE, READTEXT, GETVALUE
or QUESTION instruction.

name The name of the module or data set that contains the formatted messages.
\

For a module, this is the name you assigned to the module with the STG option
of the message utility, $MSGUTl. This name can be up to eight characters long.

Note: You must link-edit the message module with your program.

For a disk or diskette data set, specify the name in the form DSx, where "x"
indicates the position of the message data set in the list of data sets you defined
on the PROGRAM statement. DS1, for example, refers to the first data set in
the list. DS2 refers to the second data set in the list, and so on. The valid range
for "x" is from 1 to 9.

o

o

o

o

o

o

COMP
COMP - Define location of message text (continued)

Syntax Examples

TYPE =

If your program contains a DSCB instruction, you can use the label you coded on
the DS#= operand for this operand.

STG (the default), if the messages reside in a module that you link-edit with your
program.

DSK, if the messages reside in a disk or diskette data set.

1) The CaMP statement in this example points to the message module PROMPTS. The
MESSAGE instruction, which retrieves the first message in PROMPTS, refers to the label of the
CaMP statement. Because the MESSAGE instruction contains MSGID= YES, the system
displays the prefix PROM and the number of the message before the message text.

MESSAGE 1,COMP=A,SKIP=1,MSGID=YES

PROGSTOP
A COMP 'PROM' ,PROMPTS,TYPE=STG

2) The CaMP statement in this example points to the message data set MESSAGEl on volume
EDX002. The GET V ALUE instruction, which retrieves the fifth message from MESSAGE l,
refers to label of the CaMP statement.

MESSAGE PROGRAM START,DS=(MESSAGE1,EDX002)

B

GETVALUE INPUT,5,SKIP=1,COMP=B
PROGSTOP
COMP 'MSG1' ,DS1,TYPE=DSK

Chapter 2. Instruction and Statement Descriptions LR-83

CONCAT
CONCAT - Concatenate two character strings

LR-84 SC34-0643

The CONCAT instruction concatenates two character strings, or a character string and a
graphic-control character. The instruction places the contents of string2 to the right of any
contents in string 1. The resulting character string remains in string 1.

CONCAT changes the character count of string1 after the operation to reflect the original
contents of string1 plus the concatenated data from string2. Truncation on the right occurs if
the combined counts exceed the physical length of stringl.

Note: To use the CONCAT statement, you must specify an AUTOCALL to $AUTO,ASMLIB
during program preparation (link-edit.)

Syntax:

label

Required:
Defaults:
Indexable:

Operand

stringl

string2

RESET

REPEAT =

Px=

CONCAT

text 1 , text2
REPEAT=1
none

Description

string1 ,string2,RESET,REPEAT=,P1 =,P2=

The label of a data string to which the contents of string2 are concatenated.

The data to be concatenated to string 1. You can code the label of a character
string, a one-character constant (left-justified, for example C'A' or X'OT), or a
symbol representing one of the following ASCII graphic-control characters: as,
BEL, ESC, ETB, ENQ, FF, CR, LF, SUB, or US.

Resets the character count of string1 to zero before starting the CONCAT
operation. The count is not reset if you omit this operand.

The number of times string2 is to be concatenated to string1. For example, if
string2 contains C' , and you code REPEAT=5, five blanks are concatenated to
the contents of stringl. Code a positive integer for this operand.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

o

o

CONCAT o CONCAT - Concatenate two character strings (continued)

Syntax Examples

1) Concatenate ESC to.TEXTl. Reset the character count of TEXTl before the operation.

CONCAT TEXT1,ESC,RESET

2) Concatenate the control character FF to TEXTl.

CON CAT TEXT1,FF

o

o
Chapter 2. Instruction and Statement Descriptions LR-85

CONTROL
CONTROL - Perform tape operations

LR-86 SC34-0643

The CONTROL instruction allows you to execute tape functions. You can space forward or
backward a specified number of records or files (a file is the data between the beginning
tapemark and the ending tapemark). You can also write tapemarks, rewind the tape, erase the
tape, set the tape drive offline, or rewind the tape and set the tape drive offline. With the 4968
tape unit, the CONTROL instruction allows you to write at a density of 1600 bits per inch or
3200 bits per inch.

In addition, you can use the CONTROL instruction to close tape data sets. You should close all
tape data sets. If you do not close data sets, you must control the tape drive directly with the
various CONTROL functions.

When you close an SL (standard-label) output tape, the CONTROL instruction writes the
following trailer label: TM EOP1 TM TM. The instruction writes the following label when you
close an NL (nonlabeled) tape: TM TM.

Input tapes are automatically rewound as the result of a close operation. An attempt to write a
tapemark to an unexpired file is an error condition.

If you have two tape drives on one controller and they receive concurrent rewind requests, one
tape drive waits for the other to complete. To allow concurrent rewinds to multiple standard
label tape drives on one controller, you must issue the "CONTROL DSxx,REW" instruction to
each open tape drive.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

DSx

type

CONTROL DSx, type,count, EN D=, ERROR=, WAIT=, P1 =, P3=

DSx,type
count=1,WAIT=YES
count

Description

The data set you want to use. Code DSx, where "x" is the relative number of
the data set in the list of data sets you defined on the PROGRAM statement.
DS 1, for example, points to the first data set in the list; DS2 points to the second
data set, and so on.

You can substitute a DSCB name defined by a DSCB statement for this operand.

The CONTROL function to be performed. The following functions are
available:

FSF Forward space file (tapemark). Regardless of where the tape is
currently positioned, the tape searches forward the number of tape
marks indicated in the count operand. If the specified number of

o

()

c

o

o

o

CONTROL
CONTROL - Perform tape operations (continued)

BSF

FSR

BSR

WTM

REW

ROFF

tapemarks indicated by the count field is not on the tape, the
positioning of the tape is unpredictable.

Backward space file (tapemark). The tape searches backward until
the next tapemark is read. The default value for count is 1. If the
tape is at load point when your program issues this command, the
load point return code is returned.

Forward space record. The tape will space forward past the number
of records specified in the count field. The default value for count is
1.

Backward space record. The tape spaces backward past the number
of records specified in the count field. The default value for count is
1. If the tape is at load point when your program issues this
command, the load point return code is returned.

Write tapemark. This function writes a tapemark on the tape. If the
count field is coded, successive tapemarks are written according to
the count value.

Rewind tape to load point (beginning of tape).

Rewind tape and set the tape drive to offline.

OFF Set tape drive to offline.

CLSRU Close tape data set and allow it to be reused (reopened by another
program or task without an intervening $VARYON command). For
standard-label tapes, the tape is repositioned to the HDR1labei of
the data set. For nonlabeled tapes, the tape is positioned to the
beginning of the first data record. You can use $VARYON to
change the file number being processed or you can use a CONTROL
function.

Once you close a tape data set, you must call DSOPEN to open the
data set before you can use it again. You can call DSOPEN with the
CALL instruction or invoke the subroutine implicitly by having the
name of the data set in another program header.

CLSOFF Close tape data set, rewind tape, and set the tape drive to offline.

DEN16 Sets the density of the 4968 tape unit to 1600 bits per inch. This
function is not valid for other tape devices.

To set the density, the tape must be at the load point.

Chapter 2. Instruction and Statement Descriptions LR-87

CONTROL
CONTROL - Perform tape operations (continued)

count

END =

ERROR =

WAIT =

LR-88 SC34-0643

DEN32 Sets the density of the 4968 tape unit to 3200 bits per inch. This
function is not valid for other tape devices.

To set the density, the tape must be at the load point.

ERASE Erases forward from the point where the tape is positioned to a point
five feet beyond the end-of-tape marker (EOT). The function then
rewinds the tape and unloads it.

The system sends out a device interrupt when the tape is at the load
point and ready.

The number of files or records to be skipped or the number of tapemarks to be
written. You can code a constant or the label of a count value.

The label of the first instruction of the routine to be invoked if the system detects
an "end-of-data-set" (EOD) condition (return code = 10). If you do not specify
this operand, the system treats an EOD as an error. Do not code this operand if
you code WAIT=NO.

If END is not coded, a tapemark being encountered is also treated as an error.
The physical position of the tape, under this condition, is the read/write head
position immediately following the tapemark. See the CONTROL close
functions for the repositioning of the data set. Remember also that the count
field might not be decremented to zero.

The label of the first instruction of the routine to be invoked if an error condition
occurs during this operation. If you do not specify this operand, control passes
to the next sequential instruction in your program and you must test the return
code in the first word of the task control block for errors. Do not code this
operand if you code WAIT=NO.

If WAIT is not coded, or if it is coded as WAIT = YES, the current task will be
suspended until the operation is complete. If the function selected is CLSRU or
CLSOFF, then WAIT=YES is the only valid option for this operand, and any
other option will be ignored.

For functions other than close, if the operand is coded as WAIT=NO, control is
returned after the operation is initiated and a subsequent WAIT DSx must be
issued in order to determine when the operation is complete.

END and ERROR cannot be coded if WAIT=NO is coded. You must
subsequently test the return code in the Event Control Block (ECB) named DSx
or in the first word of the task control block (TCB) (referred to by 'taskname').
Two codes are of special significance. A -1 indicates a successful end of
operation. A + 10 indicates an 'End of Data Set' and may be of logical
significance to the program rather than being an error. For programming
purposes, any other return codes should be treated as errors.

o

~
(I

'=-I

o

o

o

o

CONTROL
CONTROL - Perform tape operations (continued)

Syntax Examples

Px= Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

1) The instruction closes the tape data set specified by DS 1, rewinds the tape, and sets the tape
drive offline.

CONTROL DS1,CLSOFF

2) The instruction causes the tape data set specified by DS2 to be spaced forward 16 data
records.

CONTROL DS2,FSR,16

Chapter 2. Instruction and Statement Descriptions LR -89

CONTROL
CONTROL - Perform tape operations (continued)

Coding Example

LR-90 SC34-0643

The following program uses the CONTROL FSF command, at label C 1, to advance the "master
name file" to the third data set on a nonlabeled tape. The program asks the operator if he or
she wants to search the file for a particular name. If the answer is 'yes', the program requests
the file name.

At label C2, a CONTROL FSR command advances the tape file to record 90. If the end-of-file
is reached before the tape is positioned to the target record, control passes to an error routine
(not shown).

The program then reads a record and compares the name field in it to the name the operator
entered. This sequence continues until the program finds the name the operator entered or until
the end-of-file is reached.

Assuming the program finds the name, it prints the name (and accompanying file information)
and the record for the names before and after it.

If the name is the first on the file (INDEX= 1), the program can only print the name and the
record that immediately follows it. Therefore, the CONTROL BSR command, at label C3, uses
the P3 = parameter naming operand to determine dynamically how many records to back space.
The count is 1, if the name is in the first data record on the file, or 2, if the name is not in the
first data record on the file.

A DO loop at label LOOP2 reads the name records and prints them. If the end-of-file is
reached before the last record can be printed, the program passes control to an error routine
(not shown).

At label C4, the tape is backspaced past the tapemark preceding the name file and at label C5,
the tape is positioned to the first record on the file. Control then passes to the beginning of the
program.

("'. .JI

o

c

CONTROL
CONTROL - Perform tape operations (continued)

FILESRCH
START
C1
INQUIRE

C2

LOOP

C3

C4
C5

PROGRAM
EQU
CONTROL
EQU
QUESTION
PRINTEXT
READTEXT
CONTROL
MOVE
EQU
ADD
READ
IF
GOTO
ENDIF

START,DS=(NAMEFILE,TAPE01)
*
DS1,FSF,3,ERROR=DS1ERROR

*
'@DO YOU WISH TO SEARCH THE MASTER NAME FILE ?' , NO=END
'@PRECEEDING AND SUCCEEDING NAMES WILL ALSO BE LISTED'
NAME, '@ENTER SUBJECT NAME UP TO 12 CHARACTERS'
DS1,FSR,90,END=DS1ENDF1,ERROR=DS1ERROR
INDEX,O

*
INDEX, 1
DS1,BUFR,END=DS1ENDF2
(BUFR,NE,NAME, (12,BYTES))

LOOP

IF (INDEX,LE,1)
PRINTEXT '@NAME AT BEGINNING OF FILE - ONLY 2 LISTED'
MOVE COUNT, 2

ELSE
MOVE COUNT, 3
MOVE INDEX,2

ENDIF
CONTROL
DO
READ
MOVE
PRINTEXT
ENDDO

DS1,BSR,2,P3=INDEX
1,TIMES,P1=COUNT
DS1,BUFR,END=LASTONE
BUFR,TEXT, (SO,BYTES)
TEXT,SKIP=1

CONTROL DS1,BSF
CONTROL DS1,FSF
GOTO INQUIRE

TEXT
NAME
DS1ENDV

DATA X'3232'
DATA SOC"
TEXT LENGTH=12
EQU *

DS1ERROR EQU *

Chapter 2. Instruction and Statement Descriptions LR-91

CONTROL
CONTROL - Perform tape operations (continued)

Tape Return Codes and Post Codes

LR-92 SC34-0643

Tape return codes are returned in the first word of the task control block of the program that
issues the instruction.

Return
Code
-1
1
2
3
4
6
10
21
22
23
24
25
26
27
28
29
30
31
32
33

Condition

Successful completion.
Exception but no status.
Error reading cycle steal status.
I/O error; retry count exhausted.
Error issuing READ CYCLE STEAL STATUS.
I/O error issuing I/O operations.
End of data; a tape mark was read.
Wrong length record.
Device not ready.
File protected.
End of tape.
Load point.
Unrecoverable I/O error.
SL data set not expired.
Invalid blocksize.
Offline, in-use, or not open.
Incorrect device type.
Close incorrect address.
Block count error during close.
Close detected on EOV1.

The following post codes are returned to the event control block (ECB) of the calling program.

Post
Code Condition

-1 Function successful.
101 TAPEID not found.
102 Device not offline.
103 Unexpired data set on tape.
104 Cannot initialize BLP tapes.

o

o

o

o

CONVTB
CONVTB - Convert numeric string to EBCDIC

The CONVTB instruction converts both integer and floating-point values to an EBCDIC
character string. You can also convert floating-point values to E notation.

Syntax:

label CONVTB opnd1 ,opnd2,PREC=,FORMAT=,P1 =,P2=

Required:
Defaults:
Indexable:

Operand

opndt

opnd2

PREC=

opnd1,opnd2
PREC=S, FORMAT=(6,Q, I)
opnd1,opnd2

Description

The label of a storage area where the converted results are to be placed. The
system stores the results beginning at the label referred to by this operand. The
converted results are in EBCDIC.

Opnd 1 must be a different storage location than opnd2.

The label of a storage area containing the value to be converted to EBCDIC.
You must know the form (precision) of the data. The following opnd2 types are
supported:

Single-precision integer
Double-precision integer
Single-precision floating-point
Extended-precision floating-point

The form of opnd2. The valid precisions are:

S - Single-precision integer
D - Double-precision integer
F - Single-precision floating-point
L - Extended-precision floating-point

-- 1 word
-- 2 words
-- 2 words
-- 4 words

FORMAT= The format of the value after the system converts it:
(w,d,t)

w Width of the EBCDIC field in bytes. If the field will contain a decimal
point or sign character (+ or -), include this in the count.

d Number of digits to the right of the decimal point. This is valid for
floating-point variables only. Code a 0 for integer values.

Chapter 2. Instruction and Statement Descriptions LR-93

CONVTB
CONVTB - Convert numeric string to EBCDIC (continued)

Syntax Examples

LR-94 SC34-0643

Px=

Notes:

t Type of EBCDIC Data. Code I for integer data, F for floating-point
data (XXXX.XXX), or E for a number in exponent (E) notation. See
the value operand under the DATA/DC statement for a description of E
notation format.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

1. Conversion routines assume that the type of variable to be converted is specified by the
PREC operand. If the PREC operand is not specified, and if the variable is not of the
default precision, incorrect results can occur.

2. Exponent (E) notation should be used for floating-point numbers greater than 1012•

Otherwise, a conversion error will occur.

1) The CONVTB instruction in the following example uses an integer value.

VALUE
TEXTA

CONVTB

DATA
TEXT

TEXTA,VALUE,PREC=S,FORMAT=(8,O,I)

F'12345'
LENGTH=8

The value 12345 in the variable VALUE is converted to EBCDIC at TEXTA in the following
format (b represents a blank):

bbb12345

If conversion of double-precision integers is required, PREC=D is coded.

2) In this example, the CONVTB instruction uses floating-point values.

VALUE
VALUE 1
TEXTB
TEXT1

CONVTB
CONVTB

DATA
DATA
TEXT
TEXT

TEXTB,VALUE,PREC=F,FORMAT=(15,4,F)
TEXT1,VALUE1,PREC=L,FORMAT=(20,14,E)

E'62421.16'
L'4926139.2916'
LENGTH=15
LENGTH=20

C~

o

c

o

CONVTB
CONVTB - Convert numeric string to EBCDIC (continued)

Coding Example

The result of the CONVTB operation is (b represents a blank):

TEXTB= bbbbb62421.1600

TEXTl=b.49261392916000Eb07

This example demonstrates one use of the CONVTB instruction.

HEADER

*

EQU *
READTEXT TITLE,TITLEMSG
PRINTEXT SKIP=4

CONVERT EQU
CONVTB
PRINTEXT
PRINTEXT

*
ENUMEXP,BNUMEXP
'@NUMBER OF EXPERIMENTS CONDUCTED .' ,SKIP=1
ENUMEXP

*

*

*

BNUMEXP
ENUMEXP
BMANHRS
EMANHRS
BAVERAGE
EAVERAGE
TITLE
TITLEMSG

CONVTB
PRINTEXT
PRINT EXT

EMANHRS,BMANHRS,PREC=F,FORMAT=(10,2,F)
'@TOTAL MANHOURS EXPENDED ON PROJECT·', SKIP=1
EMANHRS

CONVTB EAVERAGE,BAVERAGE,PREC=L,FORMAT=(20,14,E)
PRINTEXT '@AVERAGE PENETRATION IN CONCRETE (MILLIMETERS):'

PRINTEXT EAVE RAGE

F'O'
LENGTH=6
L'O'
LENGTH=8
L'O'
LENGTH=20
LENGTH=40

BINARY
EBCDIC
BINARY
EBCDIC
BINARY
EBCDIC

VALUE - # EXPERIMENTS
VALUE - # EXPERIMENTS
VALUE - MAN-HOURS USED
VALUE - MAN-HOURS USED
VALUE - AVERAGE RESULT
VALUE - AVERAGE RESULT

DATA
TEXT
DATA
TEXT
DATA
TEXT
TEXT
TEXT 'ENTER A 40 CHARACTER TITLE FOR YOUR REPORTS'

If, for example, the initial value of BNUMEXP is X'0038', the value of BMANHRS is
X'431BOCOO', and the value of BAVERAGE is X'4087915E8CA84482', the results of the
program would appear as follows:

NUMBER OF EXPERIMENTS CONDUCTED : 56

TOTAL MAN-HOURS EXPENDED ON PROJECT: 432.75

AVERAGE PENETRATION IN CONCRETE (MILLIMETERS) .52956191000000E+00

Chapter 2. Instruction and Statement Descriptions LR-95

CONVTB
CONVTB - Convert numeric string to EBCDIC (continued)

Return Codes

LR-96 SC34-0643

The return codes are returned in the first word of the task control block (TCB) of the program
or task issuing the instruction. The label of the TCB is the label of your program or task
(taskname) .

Code Description
-1 Successful completion
3 Conversion error

o

,;;f-~\

\\'~~j/

IC.i .. ,~

o

(),"
, ,

o

CONVTD
CONVTD - Convert EBCDIC string to numeric string

The CONYTD instruction converts an EBCDIC character string to an integer or floating-point
numeric string.

Svntax:

label CONVTD opnd 1 ,opnd2,PREC=, FORMAT=, P1 =, P2=

Required:
Defaults:
Indexable:

Operand

opndl

opnd2

opnd1,opnd2
PREC=S, FORMAT=(6,O, I)
opnd1,opnd2

Description

The label of a storage area where the converted results are to be placed. Opndl
must be a different storage location than opnd2. Make sure that you reserve
enough space to accommodate the results.

Single-precision integer
Double-precision integer
Single-precision floating-point
Extended-precision floating-point

-- 1 Word
-- 2 Words
-- 2 Words
-- 4 Words

A label that points to the first character of the EBCDIC character string. You
can code the following range of data values:

Single-precision integer:
Double-precision integer:
Single-precision floating-point:
Extended-precision floating-point:

*Yalid range is from 10-85 through 1075

-32768 to 32767
-2147483648 to 2147483647
6 decimal digits*
15 decimal digits*

The EBCDIC field should contain only those characters that are valid for the operation being
performed. For example:

Integers-

Leading blanks
Sign character + or -
Digits 0 through 9
Trailing blanks

Chapter 2. Instruction and Statement Descriptions LR-97

CONVTD
CONVTD - Convert EBCDIC string to numeric string (continued)

LR-98 SC34-0643

Floating-point-

Leading blanks
Sign character + or -
Digits 0 through 9
Decimal point
The character E, if E notation, followed by a sign character, + or -, or the digits 0
through 9.

If the system finds any other character during the conversion, it takes the following action:

If the delimiters , or / are found within a string:

The system stops the conversion and returns a "successful completion" code (-1).
Opndl contains the data the system converted before it found the delimiter.

If the delimiter , or / or *or . is the first character found in a string:

The system returns a "field omitted" code (2). The variable you defined in opndl (the
target field) remains unchanged.

If all blanks are found in opnd2:

The system places zeros in opnd 1 and returns a "successful completion" code (-1).

If any other character (for example, an alphabetic character) is found within a string:

The system returns a code of 1, "invalid data encountered during conversion." Data
converted before the system found the invalid character is stored in opndl.

If only an invalid character is found in opnd2 or the value being converted is too large or too
small:

The system returns a "conversion error" (3). The contents of the variable you defined
for opndl (the target field) are unknown.

o

o

/

<)

CONVTD
CONVTD - Convert EBCDIC string to numeric string (continued)

The following table shows the results of several conversion operations using the default format
(6,0,1):

Input

12
12,
12/
(blanks)
12C
12.B
12 C

/
*

A
1234567

PREC=

FORMAT =
(w,d,t)

Px=

Return
Code

-1
-1
-1
-1
1
1
1
2
2
2
2
3
3

Output
12
12
12
o
12
12
12
(target field unchanged)
(target field unchanged)
(target field unchanged)
(target field unchanged)
(target field unchanged)
(value of target field unknown)

The form of opndl. The valid precisions are:

S - Single-precision integer
D - Double-precision integer
F - Single-precision floating-point
L - Extended-precision floating-point

The format of the value to be converted:

w Width of the EBCDIC field in bytes. If the field will contain a decimal
point or sign character (+ or -), include this in the count.

d Number of digits to the right of the decimal point. This option is valid
only for floating-point variables. Code a ° for integer values.

t Type of EBCDIC Data. Code I for integer data, F for floating-point
data (XXXX.XXX), or E for a number in exponent (E) notation. See
the value operand under the DATA/DC statement for a description of E
notation format.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

Chapter 2. Instruction and Statement Descriptions LR-99

CONVTD
CONVTD - Convert EBCDIC string to numeric string (continued)

Syntax Examples

Coding Example

1) The following CONVTD instruction uses an integer value.

VALUE
TEXT

CONVTD

DATA
TEXT

VALUE,TEXT,PREC=S,FORMAT=(8,0,I)

F'O'
, 12345' , LENGTH=8

Note: The value in EBCDIC, 12345, will be converted to a single-precision binary value and
stored at VALUE as X'3039'. Double-precision integers can also be converted by using the
PREC=D parameter and using a 2-word variable at VALUE.

2) The CONVTD instruction in this example uses floating-point values.

VALUE
VALUE 1
TEXT1
TEXT2

CONVTD
CONVTD

DATA
DATA
TEXT
TEXT

VALUE,TEXT1,PREC=F,FORMAT=(5,1,F)
VALUE1,TEXT2,PREC=L,FORMAT=(15,0,E)

2F'0'
4F'0'
'100.5' ,LENGTH=10
'0.1005E3' ,LENGTH=15

Note: Both values shown in the TEXT statements result in the same binary data values being
stored in the two DATA statements. The only difference is that at VALUEl, an
extended-precision value is stored.

The following example demonstrates one use of the CONVTD instruction:

CONVERT

*

*

UNIT
BUNIT
MILES
BMILES
RESPONSE
BRESPONS

EQU *
READTEXT UNIT, '@ENTER UNIT NUMBER'
CONVTD BUNIT,UNIT,PREC=S,FORMAT=(6,0,I)

READTEXT MILES, '@ENTER MILES FROM FIRE'
CONVTD BMILES,MILES,PREC=F,FORMAT=(10,4,F)

READTEXT RESPONSE,'@ENTER UNIT RESPONSE TIME'
CONVTD BRESPONS,RESPONSE,PREC=L,FORMAT=(15,8,E)

TEXT
DATA
TEXT
DATA
TEXT
DATA

LENGTH=6
F'O'
LENGTH=10
D'O'
LENGTH=15
2D'0'

EBCDIC VALUE/UNIT I.D.
BINARY VALUE/UNIT I.D.
EBCDIC VALUE/MILES FROM FIRE
BINARY VALUE/MILES FROM FIRE
EBCDIC VALUE/RESPONSE TIME
BINARY VALUE/RESPONSE TIME

LR-IOO SC34-0643

o

CONVTD o CONVTD - Convert EBCDIC string to numeric string (continued)

Return Codes

o

o

Assuming that unit #6553 took 42.45292378 minutes to respond to an alarm for a fire 41.5429
miles from the station, the results of the CONVTD operations would be:

opndl Before After

BUN IT X'OOOO' X'1999'
BMILES X'OOOOOOOO' X'42298AFB'
BRESPONS X'OOOOOOOOOOOOOOOO' X'422A 73F2D016AE42'

opnd2 Before After

UNIT 6553bb X'F6F5F5F34040'
MILES 41.5429bbb X'F4F14BF5F4F2F9404040'
RESPONSE 42.45292378bbbb X'F4F24BF4F5F2F9F2F3F7F840404040'

The return codes are returned in the first word of the task control block (TCB) of the program
or task issuing the instruction. The label of the TCB is the label of your program or task
(taskname) .

Code Description

-1 Successful completion
1 Invalid data encountered during conversion
2 Field omitted
3 Conversion error

Chapter 2. Instruction and Statement Descriptions LR -101

COpy
COpy - Copy source code into your source program

System Equates

LR-I02 SC34-0643

The COpy statement copies source code into your source program. The operation occurs each
time you compile or assemble the program containing the COPY statement.

The source code you copy must be in a disk or diskette data set. The source code must not
contain a COpy statement. The system copies the source code into your source program
immediately following the COpy statement.

To prevent the system from printing the source code in your listing each time you compile your
program, code PRINT OFF before the COPY statement and PRINT ON following it. See the
program example given in "PRINT - Control printing of a compiler listing" on page LR-321 for
more detail.

Syntax:

blank

Required:
Defaults:
Indexable:

Operand

name

COpy

name
none
none

Description

name

The name of the data set on disk or diskette that contains the source code to be
copied into your source program.

Notes:

1. When using the $EDXASM compiler, if the source code to be copied is not
on volume ASMLIB, you must code a *COPYCOD statement in the $EDXL
data set to indicate on what volume the source code resides. $EDXL is on
volume ASMLIB. Refer to the Customization Guide for an explanation of
the *COPYCOD statement.

2. For details on using the COpy statement with the Series/l macro assembler,
refer to IBM Series/l Event Driven Executive Macro Assembler
(5719-ASA).

3. For details on using the COPY statement with the System/370 macro
assembler, refer to the IBM System/3 70 Program Preparation Facility,
SB30-1072.

This section contains the equate names for some commonly used system control blocks. Coding
the COPY statement with the equate name gives you a listing of the control block. You can use
the equates in the control block listing to refer to and obtain data from fields within the control
block. When you compile programs with the host or Series/l macro assemblers, the system

o

o

o

o

o

o

COpy
COpy - Copy source code into your source program (continued)

includes the following equate names in your program when it encounters a PROGRAM
statement: PROGEQU, TCBEQU, DDBEQU, CMDEQU, and DSCBEQU.

The Internal Design contains a complete list of the control blocks in the system. The control
block equates reside on volume ASMLIB and end with the characters "EQU".

BSCEQU

CCBEQU

CMDEQU

DDBEQU

Provides a map of the control block built by the BSCLINE system definition
statement.

Note: BSCEQU is also the name of a macro in the macro libraries that the host
and Series/l macro assemblers use. Do not attempt to copy BSCEQU when
using either of the macro assemblers.

Provides a map of the control block (CCB) built by the TERMINAL system
definition statement.

Provides a map of the supervisor's emulator command table built by the
PROGRAM statement.

Provides a map of the device data block (DDB) built by the DISK system
definition statement.

DDODEFEQ Provides a table that defines the format of disk directory control entries (DCEs)
and member entries.

Chapter 2. Instruction and Statement Descriptions LR-I03

COpy
COpy - Copy source code into your source program (continued)

DSCBEQU Provides a map of the data set control block (DSCB) built by the PROGRAM or
DSCB statements.

ERRORDEF Provides equates for use in checking the return codes from the LOAD, READ,
WRITE, and SBIO instructions.

FCBEQU Provides a map of an Indexed Access Method file control block (FCB) for use
with the EXTRACT subroutine.

IAMEQU Provides a set of symbolic parameter values for use in constructing parameter
lists for calls to Indexed Access Method subroutines.

PROGEQU Provides maps of the program header, built by the PROGRAM statement, cimd
the supervisor's communication vector table (CVT).

TCBEQU Provides a map of the task control block (TCB) built by the TASK or
PROGItAM statements.

STOREQU Provides a map of the storage control block built by the STORBLK statement.

LR-I04 SC34-0643

o

o

o

o

o

o

COpy

COpy - Copy source code into your source program (continued)

Coding Example

The following example uses a COpy statement to copy the source code labeled CHKBUFR into
a source program.

CALL CHKBUFR,BUFRSIZE, (EOBUFFER)

COPY CHKBUFR

When the source program is compiled, the COPY statement copies the following code into the
source program:

MAX

SUBROUT CHKBUFR,BUFFLEN,BUFFEND
SUBTRACT BUFFLEN,1
IF (BUFFLEN,GE,MAX)
GOTO (BUFFEND)
ENDIF
ADD
RETURN

DATA

BUFFLEN,1

F'256'

Chapter 2. Instruction and Statement Descriptions LR-I05

CSECT
CSECT - Identify object module segments

The CSECT instruction names a program module to identify its location within the program
output from $EDXLINK.

The CSECT instruction is optional and if it is omitted, the program module has a blank name.

Program modules assembled by $EDXASM can have multiple CSECT instructions. However,
all CSECTs, after the first one, generate ENTRY instead of CSECT definitions.

Program modules assembled by the Series/l Macro Assembler or host assembler are also
permitted to have multiple CSECT instructions in a single assembly. These assemblers will
generate a separate program module for each uniquely-named CSECT.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

label

LR-I06 SC34-0643

CSECT

label
none
none

Description

The label must be the name of the program module for the first CSECT. For
following CSECTs the label must be an entry name.

o

o

CSECT o CSECT - Identify object module segments (continued)

Coding Example

0

o

In module A, the first CSECT statement signifies that the program can be entered at label
GETTIME. In module B, the CSECT statement defines label GOTTIME as being an entry
point. The ENTRY statement in module A will allow the time to be printed without the "TIME
IS NOW" text.

MODULE A

GETTIME CSECT
ENTRY GETTIME2
EXTRN GOTTIME

GETTIME EQU *
PRINTEXT '@THE TIME IS NOW'

GETTIME2 EQU *
PRINTIME
GOTO GOTTIME

MODULEB

GOTTIME CSECT
EXTRN GETTIME

TIME EQU *
GO TO GETTIME

GOTTIME EQU *

Chapter 2. Instruction and Statement Descriptions LR -107

DATA/DC
DATA/DC - Define data

The DATA/DC statement defines the data you are using in your program. You can represent
data in the following forms: binary, integer, hexadecimal, character, floating-point, or address.

Within a single DATA statement, you can define one or more character strings or variables.
With programs you compile under $EDXASM, you can code up to 10 separate data
specifications on a single DATA statement by separating the individual specifications with
commas. When you assemble programs under $SlASM, a DATA statement can contain only
one data specification.

LR-I08 SC34-0643

Syntax:

label
label

Required:
Defaults:
Indexable:

Operand

dup

type

DATA
DC

dup type value
dup type value

type, value
dup=1
none

Description

Duplication factor for the data type you define.

Data type or form of data representation. The valid data types are:

Code Data type

C EBCDIC
X Hexadecimal
B Binary

F Integer, signed fullword
H Integer, signed halfword
D Integer, signed doubleword
E Floating-point
L Floating-point
A Address

Storage format

8-bit code for each character
4-bit code for each digit
1 bit for each digit (not allowed
with $EDXASM)

2 bytes
1 byte
4 bytes
Floating-point binary; 4 bytes
Floating-point binary; 8 bytes
Value of address or expression;
2 bytes

value The value to be assigned to the data area. This operand is also the field length
for some data types. The value is enclosed in quotes for all data types except A,
in which the value is enclosed in parentheses.

Notes:

1. Except for A-type data (address), the value must be a self-defining term and
cannot be defined with an EQU statement.

0·· "" ..

o

c

o

o

o

DATA/DC
DATA/DC - Define data (continued)

2. The maximum number of hexadecimal digits you can specify for this operand
is 8; the maximum number of characters you can specify is 15.

3. For programs compiled under $EDXASM, the value operand can define a
maximum of 65,535 bytes.

Considerations when Defining Data

The allowable ranges for data values are:

Single-precision integer
Double-precision integer
Single-precision floating-point
Extended-precision floating-point

*Valid range is from 10-85 to 1075

-32768 to 32767
-2147483648 to 2147483647
6 decimal digits*
15 decimal digits*

You can express floating-point values as real numbers with decimal points (for example 1.234)
or in exponent (E) notation. E notation uses the form:

SX.XXESYV

where:

S=
X=

E=
YV=

Optional sign character (+ or -); default is (+)
Characteristic of 1 to 6 numeric digits for PREC=E,
or 15 digits for PREC=L
Decimal point anyplace within characteristic
Designation of E notation
Mantissa, range -85 to + 75. The base is 10.
(for example, 3.1415E-2 = .031415)

When coding character strings (C), you can specify a field length by coding the type as CLn,
where "n" is the length of the field in bytes. If the length of the the character string you specify
is less than the field length chosen, the balance of the field to the right of the string is filled with
blanks. To specify the field length for hexadecimal values (X), code the type as XLn. If the
length of the hexadecimal value you specify is less than the field length chosen, the balance of
the field to the left of the value is filled with zeros.

Neither $EDXASM nor $SlASM support such complex data expressions as:

DATA A(B-C)

where B is an external label.

Chapter 2. Instruction and Statement Descriptions LR-109

DATA/DC
DATA/DC - Define data (continued)

Syntax Examples

LR -110 SC34-0643

The following examples show some of the ways that you can define data in your program.

1) Hexadecimal30F in binary. This format is not allowed with $EDXASM.

BINCON DATA B'001100001111'

2) An integer constant of 1.

A DATA F'1'

3) 128 words of O.

BUF DC 12SF'O'

4) The EBCDIC string 'XYZ'.

CHAR DATA C'XYZ'

5) 80 EBCDIC blanks.

BLANK DC SOC' ,

6) The character '$' followed by seven blanks.

CS DC CLS'$'

7) The integer 241 in hexadecimal

HEXV DATA X'OOF1'

8) The address of 'BUF'.

ADDR DATA A(BUF)

9) The 2-word integer constant 100,000

DBL DATA D'100000'

o

DATA/DC

o DATA/DC - Define data (continued)

10) The floating-point value 1.234

F1 DATA E'1.234'

11) Four floating-point values of 0.123 (4 bytes for each value).

F2 DATA 4E'O.123'

12) Four extended-precision floating-point values of 12345678.9 (8 bytes for each value).

L2 DATA 4L'12345678.9'

13) An extended-precision floating-point value in exponent (E) form.

L3 DATA L'123456E-40'

14) A word with a value of 1 and a doubleword with a value of 2.

MANY DATA F'1 ' ,D' 2'

o 15) The hexadecimal string X'0001'.

x XL2'1' DC

16) The hexadecimal string X'OOO 123'.

Y DC XL3'123'

o
Chapter 2. Instruction and Statement Descriptions LR-111

DeB
DCB - Create a device control block

\

LR -112 SC34-0643

The DCB statement creates a standard device control block (DCB) for use with EXIO. For
additional information on DCBs refer to the description manual for the processor in use.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

PCI=

IOTYPE=.

DCB PCI=,IOTYPE=,XD=,SE=, DEVMOD=, DVPARM 1 =,
DVPARM2=,DVPARM3=,DVPARM4=,CHAINAD=,
COUNT=,DATADDR=

label
PCI=NO,IOTYPE=OUTPUT,XD=NO,SE=NO
none

Description

YES, to cause the device to present a program-controlled interrupt at the
completion of the DCB fetch before data transfer.

NO (the default), does not cause the device to present a program-controlled
interrupt.

INPUT, for operations involving transfer of data from device to processor or for
bidirectional transfers under one DCB operation.

OUTPUT (the default), for operations involving transfer of data from processor
to device or for control operations involving no data transfer.

XD= YES, if the DCB is a nonstandard type.

NO (the default), if the DCB is a standard type.

SE= YES, to allow the device to suppress the reporting of certain exception
conditions.

NO (the default), to report all exception conditions.

DEVMOD= The byte that describes functions unique to a particular device. This byte is in
word 0 of the device's DCB. Code two hexadecimal digits.

DVPARMI = The value of device-dependent parameter word 1. Code as four hexadecimal
digits or the label of an EQU preceded by a plus sign (+).

DVPARM2= The value of device-dependent parameter word 2. Code as four hexadecimal
digits or the label of an EQU preceded by a plus sign (+).

o

o

o

o

DeB
DCB - Create a device control block (continued)

DVPARM3= The value of device-dependent parameter word 3. Code as four hexadecimal
digits or the label of an EQU preceded by a plus sign (+).

DVPARM4= The value of device-dependent parameter word 4. Code as four hexadecimal
digits or, if SE= YES, the label of the first byte to which residual status data is to
be transferred .. The length of the residual status area is device dependent.

CHAINAD= The label of the next DCB in the chain if chained DCBs are desired.

COUNT= The number of data bytes to be transferred. Code a decimal number from 0 to
32767 or the label of an EQU preceded by a plus sign (+).

DATADDR= The label of the first byte of data to be transferred.

For information on the contents of DVPARM1-DVPARM4 and DEVMOD, refer to the
description manual of the device you are using.

Chapter 2. Instruction and Statement Descriptions LR -113

DeB
DCB - Create a device control block (continued)

Syntax Examples

Coding Example

1) The DCB labeled WRIDCB is for an output operation in which the 120-byte field labeled
MSGI will be transferred to the device. IOTYPE= defaults to OUTPUT. The device places
any status information from the operation in RESTAT.

WR1DCB

MSG1
RESTAT

DCB SE=YES,DVPARM1=0300,DVPARM2=3048,DVPARM3=1100,
DVPARM4=RESTAT,CHAINAD=WR2DCB,COUNT=120,
DATADDR=MSG1

DATA 120X'OO'
DATA 2F'O'

x
x

2) The DCB labeled WR2DCB is for a type of device-control operation. IOTYPE defaults to
OUTPUT but no data transfer occurs because the statement does not contain the DATADDR
or COUNT operands. The device places any status information from the operation in REST AT.

WR2DCB DCB SE=YES,DVPARM1=20AO,DEVMOD=6F,DVPARM4=RESTAT

RESTAT DATA 2F'O'

For a coding example using a DCB statement, see the example following the description of the
EXIO instruction.

LR-114 SC34-0643

o

o

c

o

DEFINEQ
DEFINEQ - Define a queue

The DEFINEQ statement defines the queue descriptor (QD) and a set of queue entries (QEs)
used by FIRSTQ, LASTQ, and NEXTQ. DEFINEQ can optionally define a pool of data
storage areas or data buffers. For additional information refer to the discussion of queue
processing in the Event Driven Executive Language Programming Guide.

Syntax:

label

Required:
Defaults:

Indexable:

Operand

label

COUNT=

SIZE =

DEFINEQ COUNT=,SIZE=

label, COUNT=
SIZE=2 (2 bytes of data for each element in the
free queue chain)
none

Description

The label of the queue that this statement creates.

The number of 3-word queue entries (QEs) to be generated. The system also
generates a 3-word queue descriptor (QD) and assigns the first word of the QD
the label of the DEFINEQ statement.

"Queue Layout" on page LR-116 describes the structure of a queue.

The COUNT operand must be specified using a self -defining term; an equated
value is not allowed. This operand must also be a positive number greater than
O.

The size, in bytes, of each buffer (data area) to be included in the buffer pool in
the initial queue. The system generates as many buffers as you specified in the
COUNT operand. It initializes each buffer to binary zeros. Each QE in the
queue contains the address of an associated buffer in the buffer pool.

If you do not specify the SIZE operand, the system places all QEs in the free
chain and the queue is defined as empty. If you specify SIZE, the system
includes all QEs in the active chain and the queue is defined as full.

Chapter 2. Instruction and Statement Descriptions LR -115

DEFINEQ
DEFINEQ - Define a queue (continued)

Queue Layout

A queue is composed of a queue descriptor (QD) and one or more queue entries (QEs).
Figure 7 on page LR-117 shows the layout of a queue.

The DEFINEQ statement generates a 3-word QD. Word 1 of the QD is a pointer to the most
recent entry in a chain of active QEs. Word 2 is a pointer to the oldest entry in a chain of active
QEs. Word 3 is a pointer to the first QE in a chain of free QEs. If the queue is empty, words 1
and 2 contain the address of the queue (the address of the QD). If the queue is full, word 3
contains the address of the queue.

DEFINEQ also generates severa13-word QEs. Word 1 of the oldest QE in the active chain
points back to the QD. For the rest of the QE's in the active chain, word 1 is a pointer to the
next most recent QE in the chain.

Word 2 of the most recent QE in the active chain points back to the QD. For the rest of the
QEs in the active chain, word 2 is a pointer to the next oldest QE in the chain.

Word 3 of a QE in the active chain is a queue entry. The entry is a 16-bit word that can be a
data item or the address of an associated data buffer.

When a QE is in the free chain, word 3 is a pointer to the next element in the free chain. Word
3 of the last QE in the free chain is a pointer back to the QD.

LR -116 SC34-0643

o

C"' .. '")

o

o

o

DEFINEQ - Define a queue (continued)

t.
.. 0500
~ ~

QD
CHAIN

3000

1000

4000

-
-

Figure 7. Layout of a Queue

.. ...
~ 1000

--+
~ 2000

--+
~ 3000

4 4000

5000

5000

ACTIVE QE
BUFFER POOL

0500 J
2000

Queue
entry

1000 J
3000

Queue
entry

2000 J
0500

Queue
entry

FREE QE
CHAIN

0500

Oldest
entry

Most
recent
entry

DEFINEQ

OPTIONAL
BUFFER AREAS

r+

-+

-+

Chapter 2. Instruction and Statement Descriptions LR -11 7

DEFINEQ
DEFINEQ - Define a queue (continued)

Syntax Examples

LR -118 SC34-0643

1) The statement generates a 3-word queue descriptor (QD), followed by four 3-word queue
entries (QE). All four of the QEs are placed in the QE free chain.

QUE1 DEFINEQ COUNT=4

2) The statement generates a 3-word QD, followed by two 3-word QEs and two 6-word queue
data areas (one 6-word area for each of the QEs) initialized to binary zeros. Because the SIZE
operand is specified, all QEs are included in the active chain and the queue is defined as full.

QUE2 DEFINEQ COUNT=2,SIZE=12

o

C/ ._J

o

c

o

DEQ
DEQ - Release a resource for use

Coding Example

The DEQ instruction releases exclusive control of a resource other than a terminal by releasing
control of the queue control block (QCB) associated with that resource.

You acquire exclusive control of the QCB associated with a resource with the ENQ instruction.
(See the ENQ instruction for more information.) Your program must release exclusive control
of, or "dequeue," a QCB associated with a resource before other programs can use the resource
again.

DEQ normally assumes that the QCB for the resource is defined in the, same partition as the
current program. However, your program can dequeue a QCB in another partition by using the
cross-partition service capability of DEQ. See Appendix C, "Communicating with Programs in
Other Partitions (Cross-Partition Services)"on page LR-559 for an example that dequeues a
resource in another partition. Refer to the Event Driven Executive Language Programming Guide
for more information on cross-partition services.

When you use the $SlASM macro assembler or the host assembler, the DEQ instruction causes
the assembler to generate a QCB for a resource at the end of the program. When you use
$EDXASM, no QCBs are generated; you must use the QCB statement to generate the QCBs
your program requires.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

qcb

code

Px=

DEQ

qcb
code=-1
qcb

Description

qcb,code, P1 =, P2=

The label of the QCB to be dequeued. This must be the same label used for the
ENQ instruction and is usually the label of a QCB statement.

A code word to be inserted into the queue control block (QCB) associated with
the resource. Your program can examine the code word by referring to the label
of the QCB. A code of 0 is interpreted by the ENQ instruction to mean that the
resource is unavailable for use; all non-zero codes show that the resource is
available. You must code a self-defining term for this operand.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

See "ENQ - Gain exclusive control of a resource other than a terminal" on page LR-148 for an
example using the DEQ instruction.

Chapter 2. Instruction and Statement Descriptions LR -119

DEQT
OEQT - Release a terminal for use

The DEQT instruction releases control of the terminal that your program acquired control of
with an ENQT instruction.

When an ENQT instruction redefines the characteristics of a terminal through an 10CB
statement, DEQT restores the terminal characteristics defined on the TERMINAL definition
statement. (See Installation and System Generation Guide for information on the TERMINAL
statement.) DEQT also causes partially full buffers to be written to the terminal, completes all
pending I/O, and forces the cursor or forms to the next line (carriage return.) In addition, you
can use the DEQT instruction to end spooling to a printer assigned to your program.

Your program also releases exclusive control of a terminal when it executes a PROGSTOP
instruction.

The supervisor places a return code in the first word of the task control block (taskname)
whenever a DEQT instruction causes a terminal I/O operation to occur. If the return code is
not a -1, the address of this instruction will be placed in the second word of the task control
block (taskname + 2). The terminal I/O return codes are described at the end of the
PRINTEXT and READ TEXT instructions in this manual and also in the Messages and Codes.

When coding the DEQT instruction, you can include a comment which will appear with the
instruction on your compiler listing. If you include a comment, you must also code the CLOSE
operand. The comment must be separated from the operand field by at least one blank and it
may not contain commas.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

CLOSE=

LR-120 SC34-0643

DEQT CLOSE= comment

none
CLOSE=NO
none

Description

This operand provides additional control for spool jobs.

Code CLOSE= YES to logically end a spool job. Logically ending a SPOOL job
allows the executing program to create separate printed output on the spool
device. This operand has no effect on the DEQT instruction if the device to
which the DEQT is directed is not a spool device, or if spool is not active.

Code CLOSE=ALL to end all spool jobs associated with this task and all other
tasks in the program that have previously issued a DEQT instruction.

Coding CLOSE=NO (the default) has no affect on the DEQT instruction or
spool operation.

o

(n
'-...I

o

DEQT

o DEQT - Release a terminal for use (continued)

Syntax Examples

1) Release control of the system printer, $SYSPRTR.

ENQT $SYSPRTR

DEQT

2) Release control of the device TTY1.

ENQT TERM1,BUSY=ALTERN

DEQT CLOSE=NO THIS IS A COMMENT

PROGSTOP
TERM1 IOCB TTY1,PAGSIZE=24

o

o
Chapter 2. Instruction and Statement Descriptions LR -121

DETACH,
DETACH - Deactivate a task

The DETACH instruction removes a task from operational status. A task can only detach itself.
If a program reattaches a task, execution begins with the instruction following the DETACH in
the reattached task.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

code

Pl=

LR -122 SC34-0643

DETACH code,P1 =

none
code = -1
none

Description

The posting code to be inserted in the terminating ECB ($TCBEEC) of the task
being detached. A complete list of TCB equates is in the Internal Design.

Parameter naming operand. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code this operand.

o

o

o

o

o

o

DETACH
DETACH - Deactivate a task (continued)

Coding Example

The following program announces the start of each race at a racetrack.

T ASKA is the program's primary task. It starts, or "attaches," TASKB which enqueues the
track announcement board at label RACEBORD (code not shown). TASKB then prints the
time of day and the number of the race which is about to begin. When T ASKB completes, it
executes a DETACH instruction and detaches itself from the program.

When the primary task reattaches T ASKB at label A2, the GOTO instruction immediately
following the DETACH instruction executes. The GOTO instruction passes control back to the
beginning of the T ASKB and execution resumes at the label BEGIN.

TASKA
START

A2

TASKB
BEGIN

NUMBER

PROGRAM
EQU

ATTACH

ATTACH

PROGSTOP

TASK
EQU
ENQT
ADD
PRINTEXT
PRINTIME
PRINTEXT
PRINTNUM
PRINTEXT
DEQT
DETACH
GO TO
DATA
ENDTASK
ENDPROG
END

START

*

TASKB

TASKB

BEGIN

*
RACEBORD
NUMBER, 1
'@THE TIME IS NOW'

, AND RACE# '
NUMBER
, OF THE DAY IS ABOUT TO BEGIN '

BEGIN
F'O'

Chapter 2. Instruction and Statement Descriptions LR-123

DIVIDE
DIVIDE - Divide integer values

LR-124 SC34-0643

The DIVIDE instruction divides an integer value in operand 1 by an integer value in operand 2.
The values can be positive or negative. To divide floating-point values, use the FDIVD
instruction.

See the DATA/DC statement for a description of the various ways you can represent integer
data.

The system stores the remainder of the operation (an integer) in the first word of the task
control block (TCB). This remainder will be lost if a subsequent instruction issues a return code
and updates the TCB. The remainder is double-precision only if operand 2 is double precision.

The system indicates an overflow for the DIVIDE operation by placing a X'8000000P' in the
first two words of the TCB. X'80000000' is also the result of a divide by zero operation.

Syntax:

label

Required:
Defaults:
Indexable:

DIVIDE opnd 1 ,opnd2,count, RESU L T=, PREC=,
P1 =, P2=, P3=

opnd1,opnd2
count=1 ,RESULT=opnd1 ,PREC=S
opnd1,opnd2,RESULT

Operand Description

opndl The label of the data area containing the value divided by opnd2. Opndl cannot
be a self-defining term. The system stores the result of the DIVIDE operation in
opnd 1 unless you code the RESULT operand.

opnd2 The value by which opndl is divided. You can specify a self-defining term or the
label of a data area. The value of opnd2 does not change during the operation.

count The number of consecutive values on which the system performs the operation.
The maximum value is 32767. .

RESULT = The label of a data area or vector in which the result is placed. The data area
you specify for opndl is not changed if you specify RESULT. This operand is
optional.

PREC=xyz . Specify the precision of the operation in the form xyz, where x is the precision
for opndl, y is the precision for opnd2, and z is the precision of the result
("Mixed-precision Operations" on page LR-125 shows the precision
combinations allowed for the DIVIDE instruction). You can specify single
precision (S) or double precision (D) for each operand. Single precision is a
word in length; double precision is two words in length. The default for opndl,
opnd2, and the result is single precision.

o

o

o

o

o

DIVIDE
DIVIDE - Divide integer values (continued)

If you code a single letter for PREC, the letter applies to opnd1 and the result.
Opnd2 defaults to single precision. If, for example, you code PREC=D, opnd1
and the result are double precision and opnd2 defaults to single precision.

If you code two letters for PREC, the first letter applies to opnd1 and the result,
and the second letter applies to opnd2. With 'PREC=DD, for example, opnd1
and the result are double precision and opnd2 is double precision.

Px= . Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR -12 for a detailed description of how to code these operands.

Mixed-precision Operations

Syntax Example

The following table lists the precision combinations allowed for the DIVIDE instruction:

opnd1 opnd2 Result Precision Remarks

S S S S default
S S D SSD -
D S D D -
D D D DD -
D S S DSS {. -

The following DIVIDE instruction divides the value at location DATA by a value at a location
defined by the label TAB plus the contents of index register 1. Both operands are single
precision because no precision is specified.

DIVIDE DATA, (TAB,#l)

Chapter 2. Instruction and Statement Descriptions LR -125

DIVIDE
DIVIDE - Divide integer values (continued)

Coding Example

LR -126 SC34-0643

The following example uses the DIVIDE instruction to determine the amount of time an
experiment required in hours, minutes, and seconds. If the data area labeled TIME contained a
value of 4796 (seconds), the first DIVIDE instruction would place a result of 1 in HOURS and
would leave a remainder of 1196 in the first word of the TCB. The label of the TCB is TASK,
the label of the PROGRAM statement.

The second DIVIDE instruction at label GETMINS would divide the remainder by 60 and place
a result of 19 in MINUTES and a remainder of 56 in the TCB. This remainder represents the
number of seconds and would be moved into SECONDS. The program would print out a final
result of 1 hour, 19 minutes, and 6 seconds.

TASK
START

NEXTIME

GET HOURS

GETMINS

GETSECS

PRINTIME

TIME
HOURS
MINUTES
SECONDS

PROGRAM START
EQU *

EQU *

EQU *
DIVIDE TIME, 3600,RESULT=HOURS NUMBER OF HOURS
EQU *
DIVIDE TASK,60,RESULT=MINUTES NUMBER OF MINUTES
EQU *
MOVE SECONDS,TASK, (l,WORD) GET REMAINDER
EQU *
PRINTEXT , ELAPSED TIME IN HOURS:MINUTES:SECONDS'
PRINTNUM
PRINTEXT
PRINTNUM
PRINTEXT
PRINTNUM
GO TO

DATA
DATA
DATA
DATA

HOURS ,
:

,
MINUTES ,

:
,

SECONDS
NEXTIME

D'O'
F'O'
F'O'
F'O'

CONVERT ANOTHER COUNT

BEGINNING VALUE
NUMBER OF ELAPSED HOURS
NUMBER OF ELAPSED MINUTES
NUMBER OF ELAPSED SECONDS

C~' .'
~.j

o

c

o

DO
DO - Perform a program loop

The DO instruction begins a program loop. A loop is a set of one or more instructions that
executes repeatedly until a condition you specify in the DO instruction is satisfied. You must
end the DO loop with an ENDDO instruction.

You can code a loop within another loop. This technique is called "nesting." You can include
up to 20 nested loops within your initial DO-ENDDO structure.

There are three forms of the DO instruction. DO UNTIL and DO WHILE provide a means of
looping until or while a condition is true. The third form of the DO instruction causes a loop to
be executed a specific number of times. In all of these forms, a branch out of the loop is
allowed.

You also can use the DO instruction to perform a loop while or until a certain bit is 'on' (set to
1) or 'off' (set to 0).

The syntax box shows the DO UNTIL and DO WHILE forms of the DO instruction with a
single conditional statement. You can specify several conditional statements, however, by using
the AND and OR keywords. These keywords allow you to join conditional statements. The
keywords are described in the operands list and examples using the keywords are shown under
"Syntax Examples with DO and ENDDO" on page LR-130.

Syntax:

label
label
label

DO
DO
DO

count,TIMES,INDEX=,P1 =
UNTIL,(data1,condition,data2,width)
WH ILE,(data1,condition,data2,width)

Required: count or one conditional statement
with UNTIL or WHILE

Defaults: width is WORD
Indexable: count or data1 and data2 in each statement

Operand Description

count The number of times the loop is to be executed. You can specify a constant or
the label of a variable. The maximum value is 32767. The system completes one
loop each time it encounters the ENDDO instruction.

TIMES

INDEX=

Note: If count=O, the system executes the loop one time.

This optional operand serves only as a comment for the count operand.

The label of a data area that the system resets to 0 before starting the DO loop
and increases by 1 each time the~nstruction following the DO instruction
executes. The first time the DO loop executes, the index has a value of 1.

Chapter 2. Instruction and Statement Descriptions LR-127

DO
DO - Perform a program loop (continued)

UNTIL

WHILE

datal

condition

data2

This operand defines a loop that executes until the condition you specify is true.
The loop executes at least once, even if the condition is initially true.

This operand defines a loop that executes as long as the condition you specify is
true. The loop does not execute if the condition is initially false.

The label of a data item to be compared to data2 or the label of the data area
that contains the bit to be tested. This operand is valid only in a conditional
statement with UNTIL or WHILE.

An operator that indicates the relationship or condition to be tested. Only code
this operand in a conditional statement with UNTIL or WHILE. The valid
operators for the DO instruction are as follows:

EQ - Equal to
NE - Not equal to
G T - Greater than
L T - Less than
GE - Greater than or equal to
LE - Less than or equal to

ON - Bit is 'on'
OFF - Bit is 'off'

The data to be compared to data 1 or the position, in data 1, of the bit to be
tested. Only code this operand in a conditional statement with UNTIL or
WHILE. You can specify immediate data or the label of a variable. Immediate
data can be an integer between 1 and 32768 or a hexadecimal value between 1
and 65535 (X'FFFF').

Bit 0 is the left-most bit of the data area.

width Specifies an integer number of bytes or one of the following:

LR -128 SC34-0643

BYTE
WORD
DWORD
FLOAT
DFLOAT

- bytes
- words (the default)
- doublewords
- floating-points (one word, 2-byte value)
- doublewords floating-points (4-byte value)

Code this operand only in a conditional statement using UNTIL or WHILE. The
default is WORD.

AND Enables you to join conditional statements when you code DO UNTIL or DO
WHILE. Code the operand between the conditional statements you want to
join. With DO UNTIL, the AND indicates that the loop should execute until all
the conditional statements that the operand joins are true. With DO WHILE,

o

o

o

o

DO
DO - Perform a program loop (continued)

OR

the AND indicates that the loop should execute while all the conditional
statements the operand joins are true.

You can join several pairs of conditional statements with several AND operands.
You also can use the AND and OR operands within the same DO instruction.

Enables you to join conditional statements when you code DO UNTIL or DO
WHILE. Code the operand between the conditional statements you want to
join. With DO UNTIL, the OR indicates that the loop should execute until one
of the conditional statements the operand joins is true. With DO WHILE, the
OR indicates that the loop should execute while any of the conditional statements
the operand joins is true. See the syntax examples for this instruction.

You can join several pairs of conditional statements with several OR operands.
You also can use the AND and OR operands within the same DO instruction.

Pl= Parameter naming operand. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code this operand.

Rules for Evaluating Statement Strings Using AND and OR

The IF and DO instructions permit logically connected statements in the form of either:

statement, 0 R,statement

statement,AND,statement

More than two statements may be logically connected in an instruction. Logically connected
statement strings are not evaluated according to normal Boolean reduction. Instead, the string is
evaluated to be true or false by evaluating each sequence of:

statement, conjunction

to be true or false as follows:

The expression is evaluated from left to right.

If the condition is true and the next conjunction is OR, or if there are no more conjunctions,
the string is true and evaluation ceases.

If the condition is true and the next conjunction is AND, the next conjunction is checked.

If the condition is false and the next conjunction is OR, the next condition is checked.

If the condition is false and the next conjunction is AND, or if there are no more
conjunctions, the string is false and the evaluation ceases.

Chapter 2. Instruction and Statement Descriptions LR -129

DO
DO - Perform a program loop (continued)

The order of the statements and the conjunctions in a statement string determines the evaluation
of the string. It may be possible, by reordering the sequence of statements and conjunctions, to
produce a statement string that will be evaluated to the same results as Boolean reduction of the
statement. For example, the statement string:

(A,EQ,B),AND,(C,GT,D),OR,(E,LT,F)

could be reordered as

(E,LT,F),OR,(A,EQ,B),AND,(C,GT,D)

without changing the results if evaluated by Boolean reduction. As a statement string in the IF
or DO instructions, however, the two forms produce different evaluations. If A is not equal to
B, but E is less than F, the first statement string will be evaluated false and the evaluation will
cease as soon as (A,EQ,B,) is evaluated; however, the second statement string will be evaluated
true if E is less than F, as would be expected from Boolean reduction for either the first or
second statement string.

Syntax Examples with DO and ENDDO

See the IF instruction for more samples of conditional statements.

1) Perform a loop 100 times.

DO 100

ENDDO

2) Perform a loop the number of times specified in N. The TIMES operand serves as a
comment.

DO N,TIMES

ENDDO

3) Perform a loop until the first 4 bytes of A are less than the first 4 bytes of B.

DO UNTIL, (A,LT,B,4)

ENDDO

LR-130 SC34-0643

o

o

DO

o DO - Perform a program loop (continued)

4) Perform a loop until A contains a floating-point value equal to 1000.

DO UNTIL, (A,EQ,1000,FLOAT)

ENDDO

5) Perform a loop while the first word of B is not equal to the first word of C.

DO WHILE, (B,NE,C)

ENDDO

6) Perform a loop while the first 4 bytes of A are less than the first 4 bytes of B.

DO WHILE, (A,LT,B,4)

ENDDO

o 7) Perform a loop until the third bit starting at label A is a 1.

DO UNTIL, (A,ON,2)

ENDDO

8) Perform a loop until the bit number contained in BIT1, starting at label A, is a O.

DO UNTIL, (A,OFF,BIT1)

ENDDO

9) Perform a loop until A equals B and A equals C.

DO UNTIL, (A,EQ,B) ,AND, (A,EQ,C)

ENDDO

o
Chapter 2. Instruction and Statement Descriptions LR -131

DO
DO - Perform a program loop (continued)

LR -132 SC34-0643

10) Perform a loop while A is not equal to 1, or while the first doubleword in D is equal to the
first doubleword in E, and while register 1 is not equal to 14.

DO WHILE, (A,NE,l),OR, (D,EQ,E,DWORD),AND, (#1,NE,14)

ENDDO

11) This example shows a nested DO loop.

DO UNTIL, (A,EQ,B,DFLOAT),OR, (#1,EQ,1000)

DO 10,TIMES

ENDDO
ENDDO

12) This example shows a nested DO loop that is also within an IF-ELSE-ENDIF structure.

DO WHILE, (A,GT,B,DWORD)
IF (CHAR,EQ,C'A' ,BYTE)

DO 40,TIMES

ENDDO
ELSE

ENDIF
ENDDO

o

o

o

DO
DO - Perform a program loop (continued)

Coding Example

The following example shows three DO loops.

The first DO loop, at label D1, executes twice and ends. The second DO loop, at label D2,
executes at least once and continues to loop until the value of INDEX 1 is greater than or equal
to 2.

The third DO loop, at label D3, executes as long as (WHILE) the value of INDEX2 is less than
or equal to 1. If the condition is not initially true, the third loop does not execute at all.

D1 DO 2,TIMES,INDEX=INDEX
MOVE INDEX1,O

D2 DO UNTIL, (INDEX1,GE,2)
ADD INDEX 1 , 1
MOVE INDEX2,O

D3 DO WHILE, (INDEX2,LE,1)

INDEX
INDEX1
INDEX2

ADD INDEX2,1
PRINTNUM INDEX,3,3,4

ENDDO
ENDDO

ENDDO

DATA
DATA
DATA

F'1 '
F'1 '
F'1 '

The above example generates the following printout:

1
1
1
1
2
2
2
2

1
1
2
2
1
1
2
2

1
2
1
2
1
2
1
2

Chapter 2. Instruction and Statement Descriptions LR-133

oseB
OSCB - Create a data set control block

LR-134 SC34-0643

The DSCB statement creates a data set control block (DSCB). A DSCB provides the
information the system requires to use a data set within a particular volume.

The first 3 words of every DSCB is an event control block (ECB). You can refer to fields
within a DSCB by using the DSCB equate table, DSCBEQU.

Syntax:

Required:
Defaults:
Indexable:

Operand

DS#=

DSNAME=

VOLSER=

DSLEN=

DSCB DS#=, DSNAM E=, VOLSER=, DSLEN=

DS#=,DSNAME=
VOLSER=null, DSLEN=Q
none

Description

The alphameric label which is used to refer to a DSCB in disk or tape 1/0
instructions. This label will be assigned to the first word (ECB) of the generated
DSCB. Specify 1 to 8 characters.

The data set name field within the DSCB. Specify 1 to 8 characters.

The volume label to be assigned to the volume label field of the DSCB. Specify
1 to 6 characters. A null entry (blanks) will be generated if you do not specify
VOLSER.

Note: If the DSCB is for a tape data set, you must specify VOLSER prior to
DSOPEN. In addition, you must supply the 1 to 6 character tape drive ID if
there is no volume label. The tape drive ID is assigned during system generation
with the TAPE definition statement.

The size of the referenced direct access space. If no number is specified, this
value will be set to O. This parameter is not used if the DSOPEN routine will be
used to open the DSCB.

When a data set is defined using the DSCB statement it must be opened before attempting disk
or tape 110 operations such as READ or WRITE. The routines DSOPEN and $DISKUT3 are
provided for this purpose. DSOPEN must be copied into your program with the COpy
statement and then invoked with the CALL instruction. The $DISKUT3 is invoked with the
LOAD instruction. For more information on DSOPEN and $DISKUT3 see Appendix D or
refer to the Event Driven Executive Language Programming Guide.

o

o

oseB

o oseB -Create a data set control block (continued)

Syntax Example

The following DSCB statement creates a data set control block with the label INDAT A.

DSCB DS#=INDATA, DSNAME=MASTER,VOLSER=EDX003

Chapter 2. Instruction and Statement Descriptions LR -135

ECB
ECB - Create an event control block

The ECB statement generates a 3-word event control block (ECB) that defines an event. The
system places a value in the first word of the control block when an event has occurred. When
the system signals the occurrence of an event in the ECB, the ECB is said to have been
"posted. "

Normally this statement is not needed for application programs you assemble with the host or
Series/l macro assemblers. The host and Series/l macro assemblers automatically generate a
control block for an event named in a POST instruction.

You must code the necessary ECBs in programs assembled under $EDXASM, except for those
ECBs created when you code the EVENT= operand on the PROGRAM or TASK statement.

You can code a maximum of 25 ECB statements in a program. If your program requires more
than 25 ECBs, you must create them using DATA statements. An example of how to create an
ECB is shown following the description of this statement.

When coding the ECB statement, you can include a comment which will appear with the
statement on your compiler listing. If you include a comment, you must also specify the code
operand. The comment must be separated from the operand field by at least one blank and it
may not contain commas.

Syntax:

label ECB code comment

Required: label
Defaults: code = -1
Indexable: none

Operand Description

label The label of the event that you specify in a POST instruction.

code Initial value of the code field (word 1). If this word is not a zero when a WAIT
is issued, no wait occurs unless the WAIT has RESET coded.

LR-136 SC34-0643

o

c

o

o

o

ECB
ECB - Create an event control block (continued)

Syntax Example

The ECB statement:

ECB1 ECB

is equivalent to coding,

ECB1 DATA
DATA

F' -1 '
2F'O'

Chapter 2. Instruction and Statement Descriptions LR -137

EJECT
EJECT - Continue compiler listing on a new page

Coding Example

LR-138 SC34~0643

The EJECT statement causes the next line of the listing to appear at the top of a new page.
This statement provides a convenient way to separate sections of a program. It does not change
the page title if you are using one.

You can place EJECT within executable instructions.

Syntax:

blank EJECT

Required: none
Defaults: none
Indexable: none

Operand Description

none none

See the PRINT statement for an example using EJECT.

o

o

o

o

ELSE
ELSE - Specify action for a false condition

Syntax Examples

The ELSE statement defines the start of the false-path code associated with the preceding IF
instruction. The end of the false-path code is the next ENDIF statement.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

none

ELSE

none
none
none

Description

none

The examples for IF, ELSE, and ENDIF are shown following the IF instruction.

Chapter 2. Instruction and Statement Descriptions LR-139

END
END - Signal end of source statements

Coding Example

LR -140 SC34-0643

The END statement signals the compiler that the program contains no further source statements.

END must be the last statement in a program, a separately compiled task, or a subroutine.
Unpredictable results can occur if you do not code an END statement.

Syntax:

blank END

Required: none
Defaults: none
Indexable: none

Operand Description

none none

The following example enqueues $SYSLOG, prints the time and date, dequeues $SYSLOG, and
ends. END is the last statement in the program.

PRINDATE
START

PROGRAM START
EQU *
ENQT $SYSLOG
PRINTIME
PRINDATE
DEQT
PROGSTOP
ENDPROG
END

o

o

o

ENDATTN
ENDATTN - End attention-interrupt-handling routine

Coding Example

The ENDATTN instruction ends an attention-interrupt-handling routine, as described under
ATTNLIST, and is the last instruction of that routine.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

none

ENDATTN

none
none
none

Description

none

See the ATTNLIST statement for an example using the ENDATTN instruction.

Chapter 2. Instruction and Statement Descriptions LR -141

ENDDO
ENDDO - End a program loop o

The ENDDO statement defines the end of a DO loop. It must be preceded by a DO instruction.

Syntax:

label ENDDO

Required: none
Defaults: none
Indexable: none

Operand Description

none none

Coding Example

See the examples following the DO instruction.

LR-142 SC34-0643

o

()

o

ENDIF
ENDIF - End an IF-ELSE structure

Syntax Examples

The ENDIF statement indicates the end of an IF-ELSE structure. If ELSE is coded, ENDIF
indicates the end of the false code associated with the preceding IF instruction. If ELSE was
not coded, ENDIF indicates the end of the true code associated with the preceding IF
instruction.

Syntax:

label ENDIF

Required: none
Defaults: none
Indexable: none

Operand Description

none none

The examples for IF, ELSE, and ENDIF are shown following the IF instruction.

Chapter 2. Instruction and Statement Descriptions LR -143

ENDPROG
ENDPROG - End a program

The ENDPROG statement ends a program. It must be the next to the last statement in your
program (except when you include a $ID statement). The last statement must be END. You
can code the RETURN= operand on the ENDPROG statement to acquire the system-return
subroutine support without link-editing the subroutine with your program.

The ENDPROG statement generates a task control block (TCB) for the main program. You
can locate the TCB by referring to the label on the PROGRAM statement.

LR-144 SC34-0643

Syntax:

blank

Required:
Defaults:

Indexable:

Operand

ENDPROG RETURN=

none
RETURN=NO (if your program contains
a USER instruction, the default is YES)
none

Description

RETURN = RETURN = YES generates the $$RETURN subroutine in your program.
$$RETURN enables you to return to an EDL program from an assembler
subroutine when you code

BAL RETURN,R1

in the assembler subroutine. When you specify RETURN = YES, it is not
necessary to link-edit the $$RETURN subroutine to your program.

If your program has a USER instruction coded, then the RETURN operand is
not necessary on the ENDPROG statement. The USER instruction causes the
system module $$RETURN to be generated as part of your program.

RETURN = NO is the default value for the RETURN operand unless your
program contains a USER instruction. If you code RETURN=NO or allow the
default, the system module is not generated as part of your program.

RETURN = EXTRN generates an external reference to the system subroutine
$$RETURN. If you code RETURN=EXTRN, you must link-edit the
$$RETURN subroutine to your program.

()

o

ENDPROG

o ENDPROG - End a program (continued)

Syntax Example

The ENDPROG statement precedes the END statement.

PROGSTOP
FIELD DATA F'O'
MESSAGE TEXT 'ENTER YOUR NAME :'

ENDPROG
END

o
Chapter 2. Instruction and Statement Descriptions LR -145

ENDTASK
ENDTASK - End a task

Coding Example

The ENDT ASK instruction defines the end of a task. Each task, except the primary task,
requires one ENDT ASK as its final instruction. When this instruction executes, the task is
detached. If another ATTACH is issued, execution begins at the first instruction of the task.

ENDT ASK actually generates two instructions: DETACH and GOTO start, where "start" is
the label of the first instruction to be executed when the system attaches the task.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

code

Pl=

ENDTASK code,P1 =

none
code=-1
none

Description

The post code can be any I-word value. This code will be inserted in the
terminating ECB ($TCBEEC) of the task being detached. A complete list of
TCB equates is in the Internal Design.

Parameter naming operand. See "Using The Parameter Naming Operands
(Px =)" on page LR -12 for a detailed description of how to code this operand.

In the following example the main program, PROGA, attaches both TASKA and TASKB during
execution. Both tasks must be coded within the main program; you cannot code the tasks in
subprograms that are later link-edited with the main program. The main program code always
ends with the ENDPROG and END statements (unless you code an intervening $ID statement).
The task source code always ends with the ENDT ASK statement.

The first ATTACH instruction starts T ASKA. T ASKA begins by setting its post code to -1. If
an error occurs, the task ends with a post code of 999. The second ATTACH instruction starts
TASKB.

The IF instruction at label CHECK examines the post code of T ASKA to see if the task ended
successfully. If the task did not end successfully, another A TT A CH instruction reattaches
T ASKA. Because T ASKA can only end with an ENDT ASK statement, execution always
resumes at the instruction following the BEGINA label.

If T ASKB detaches at the DETACH instruction, execution resumes at the instruction following
the DETACH. If T ASKB detaches at the ENDT ASK statement, the task resumes executio1\ at
BEGINB.

LR-146 SC34-0643

o.~\ , ,J

o

o

o

o

ENDTASK
ENDTASK - End a task (continued)

PROGA
START

CHECK

TASKA
BEGINA

* TASKB
BEGINB

PROGRAM
EQU

ATTACH

ATTACH

START

*

TASKA

TASKB

IF ($TCBEEC+TASKA,NE,-1)
ATTACH TASKA

ENDIF

ATTACH

PROGSTOP

TASK
EQU
MOVE

IF
MOVE

ENDIF
ENDTASK

TASK
EQU
ADD

DETACH

ENDTASK
ENDPROG
END

TAE'V"O

BEGINA

*
CODE,-1

(RESULT,EQ,ERROR)
CODE,999

1,P1=CODE

BEGINB

* C,D,

Chapter 2. Instruction and Statement Descriptions LR -147

ENQ
ENQ - Gain exclusive control of a resource other than a terminal

The ENQ instruction gains exclusive control of a resource other than a terminal by acquiring
control of the queue control block (QCB) associated with that resource. Use ENQ to gain
control of logical or physical resources such as sensor-based I/O devices, subroutines, and data
sets.

Note: Use the ENQT instruction to acquire exclusive use of any resource you define with a
TERMINAL statement, such as a display station or printer.

When several programs need to use the same resource, the ENQ instruction can ensure serial
(one at a time) use of the resource. Programs try to acquire control of, or "enqueue," a specific
QCB before trying to use the resource. If the QCB is "busy," the program can wait for the
resource to become available or execute another routine.

In general, there are two types of resources, system and user. System resources can be shared
serially by all programs and are defined by labels that are known across the system. The QCBs
associated with these resources must reside in $SYSCOM, the system common area. (Refer to
the Installation and System Generation Guide for a discussion of $SYSCOM.) User resources are
shared serially by different parts of one user program and are identified by labels known only
within that program. The QCBs associated with these resources reside within the program.

You must define each QCB contained in a program compiled under $EDXASM with the QCB
statement. The QCB statement generates the five-word queue control block in your program.
The Series/1 and host macro assemblers automatically create a required QCB if you include a
DEQ instruction naming the QCB in your program.

LR-148 SC34-0643

ENQ normally assumes that the QCB to be enqueued is in the same partition as the current
program. However, your program can enqueue a QCB in another partition by using the
cross-partition capability of ENQ. See Appendix C, "Communicating with Programs in Other
Partitions (Cross-Partition Services)" on page LR-559 for an example of enqueuing a resource
in another partition. Refer to the Event Driven Executive Language Programming Guide for more
information on cross-partition services.

Syntax:

label ENQ qcb,8USY=,P1 =

Required: qcb
Defaults: none
Indexable: qcb

o

o

o

o

o

ENQ
ENQ - Gain exclusive control of a resource other than a terminal (continued)

Coding Example

Operand

qcb

BUSY=

Pl=

Description

The label of the QCB to be enqueued.

The label of the instruction to receive control if the QCB you try to enqueue is in
use. If you do not code this operand and the QCB is in use, the system suspends
the execution of your program until the resource associated with the QCB
becomes available.

Parameter naming operand. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code this operand.

The following example shows the use of ENQ and DEQ instructions.

The ENQ instruction attempts to enqueue the queue control block labeled SBRTNQCB. If the
first word of the QCB contains a zero, the subroutine labeled SUBRTN is being used by another
program. The program, in this case, would wait for the resource to become available. If the
first word of the QCB is not a zero, the program can call SUBRTN.

When SUBRTN ends, it places a code of 99 in RETURNCD. The DEQ instruction releases
exclusive control of the QCB and places the value of RETURNCD (99) in the first word of the
QCB. The nonzero value in the QCB serves as a signal to other programs that the resource
associated with the QCB is available.

ENQ
CALL
DEQ

SUBROUT

MOVE
RETURN

SBRTNQCB
SUBRTN
SBRTNQCB,O,P2=RETURNCD

SUBRTN

RETURNCD,99

SBRTNQCB QCB -1

Chapter 2. Instruction and Statement Descriptions LR -149

ENQT
ENQT - Gain exclusive control of a terminal

LR-lS0 SC34-0643

The ENQT instruction acquires exclusive control of a terminal. To acquire exclusive control of
a terminal is to "enqueue" it. A "terminal" is any device, such as a display station or printer,
that you define with a TERMINAL statement during system generation.

Your program releases exclusive control of a terminal when it executes a DEQT or PROGSTOP
instruction.

Once your program enqueues a terminal, it must release control of that terminal with a DEQT
instruction before attempting to enqueue another terminal.

When coding the ENQT instruction, you can include a comment which will appear with the
instruction on your compiler listing. If you include a comment, you must specify at least one
operand with the instruction. The comment must be separated from the operand field by one or
more blanks and it may not contain commas.

Syntax:

label

Required:
Defaults:

Indexable:

Operand

name

ENQT name, BUSY=,SPOOL =, P1 =

none
SPOOL=YES

comment

name - label of the terminal which is currently in use
by the program

none

Description

The label of an IOCB statement or one of two special device names: $SYSLOG
or $SYSPRTR. $SYSLOG is the name of the system display station;
$SYSPR TR is the name of the system printer. Your program enqueues the
terminal from which you loaded it if you allow this operand to default.

When you specify .$SYSLOG or $SYSPRTR, the system refers to the
TERMINAL statement you set up for each of these devices during system
generation. Do not code an IOCB statement for these devices.

When you want to specify a terminal other than $SYSLOG or $SYSPRTR, you
can code the label of an IOCB statement for this operand. The ENQT
instruction refers to the IOCB statement for the name of the terminal you want
to control. The name on the IOCB statement is the name you assigned to the
terminal during system generation. By referring to an IOCB statement, you also
can redefine certain terminal characteristics. You can, for example, reset screen
or page margins, or change a terminal from a roll screen device to a static screen
device. (See the IOCB statement for a description of the terminal characteristics
you can redefine.) The terminal characteristics you specify with an IOCB
statement remain in effect until you release control of the terminal.

C\
I _~~~~ ~ "I

o

o

o

ENQT
ENQT - Gain exclusive control of a terminal (continued)

BUSY=

SPOOL=

Pl=

Special Considerations

The label of the instruction to receive control if the termimil you try to enqueue
is in use. If you do not code this operand and the terminal is in use, the system
suspends the execution of your program until the terminal you request becomes
available.

YES, the default, to allow the system to send spooled output to the spool device
you enqueue when the spool facility is active. This operand has no effect if the
spool facility is not active or if the device you enqueue is not a spool device.

NO, to prevent the system from sending spooled output to the spool device you
enqueue when the spool facility is active.

This operand remains in effect until your program executes a DEQT or
PROGSTOP instruction.

Parameter naining operand. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code this operand.

You should note the following considerations when using the ENQT instruction:

If your program has exclusive control of a terminal and loads another program, the system
dequeues the terminal unless you coded DEQT=NO on the LOAD instruction. See
"LOAD - Load a Program" on page LR-263for a description of the DEQT operand.

A TTNLIST commands cannot gain access to an enqueued terminal.

If your program attempts to enqueue a terminal it already controls, the ENQT instruction
can change the characteristics of the terminal in use if it refers to an IOCB statement that
defines new terminal characteristics.

• If an ENQT instruction refers to an IOCB that sets up the limits of a logical screen, the
output for that screen starts at the top of the working area. The system, however, does not
immediately move the cursor to this location. Your program can position the cursor at the
top of the working area by issuing a TERMCTRL DISPLAY.

• To preserve the correct current line pointer when the system sends spooled output to an
enqueued terminal, you must code a TERMCTRL DISPLAY as the last 110 instruction
before your program issues an ENQT instruction that redefines the characteristics of that
terminal.

Chapter 2. Instruction and Statement Descriptions LR -151

ENQT
ENQT - Gain exclusive control of a terminal (continued)

Syntax Examples

Coding Example

LR-l52 SC34-0643

1) Enqueue the system printer, $SYSPRTR.

ENQT $SYSPRTR

DEQT

2) Enqueue the device TTYl. The ENQT instruction refers to the IOCB labeled TERMl for
the name of the device. If TTYl is not available, the program passes control to the label
ALTERN and enqueues $SYSLOG.

TEST PROGRAM START
TERM1 IOCB TTY1,PAGSIZE=24
START EQU *

ENQT TERM1,BUSY=ALTERN

DEQT

ALTERN ENQT $SYSLOG

The first ENQT instruction in the program attempts to enqueue $SYSPRTR. If the device is
busy, the program displays a message and attempts to enqueue an alternate printer ($SYSLIST).
If the alternate printer is busy, the program waits for it. When the program obtains a printer, it
executes the CALL instruction at the label GOTPRTR. The DEQT instruction at the label
RELEASE releases exclusive control of the enqueued printer (either $SYSPRTR or $SYSLIST).

GETPRTR EQU *
ENQT $SYSPRTR,BUSY=BUSYEXIT
GO TO GOTPRTR

BUSYEXIT EQU *
PRINTEXT '$SYSPRTR IS BUSY. ATTEMPTING TO ENQT ALTERNATE'
ENQT PRTRIOCB

GOTPRTR EQU *
CALL SUBRTN

RELEASE EQU *
DEQT
PROGSTOP

PRTRIOCB IOCB $SYSLIST
ENDPROG
END

o

o

o

ENTRY
ENTRY - Define a program entry point

The ENTRY statement defines one or more labels as being entry points within a program
module. A maximum of 10 labels are allowed on one ENTRY statemant. These entry-point
labels can be referred to by instructions in other program modules that are link-edited with the
module that defines the entry-point label. The program modules that refer to an entry-point
label must contain either an EXTRN or WXTRN statement for the label.

Syntax:

blank ENTRY one or more relocatable symbols
separated by commas

Required: one symbol
Defaults: none
Indexable: none

Operand Description

symbol One or more symbols that appear as instruction labels within the program
module.

Chapter 2. Instruction and Statement Descriptions LR -153

ENTRY
ENTRY - Define a program entry point (continued)

Coding Example

In module A, the first ENTRY statement signifies that the program can be entered at label
GETTIME. In module B, the entry defines label GOTTIME as being an entry point. Both of
these labels are also used with EXTRN statements so that their addresses can be resolved when
the two modules are link-edited together. The second ENTRY statement in module A will allow
the time to be printed without the 'TIME IS NOW' text.

MODULE A

ENTRY
ENTRY
EXTRN

GETTIME EQU
PRINTEXT

GETTIME2 EQU
PRINTIME
GOTO

MODULEB

TIME

GOTTIME

ENTRY
EXTRN

EQU
GOTO
EQU

GETTIME
GETTIME2
GOTTIME

*
'@THE TIME

*
GOTTIME

GOTTIME
GETTIME

* GETTIME

*

IS NOW ,

Note: The two ENTRY statements in module A could have been coded as follows:

ENTRY GETTIME,GETTIME2

LR-154 SC34-0643

0_'"
"

()

o

o

EOR
EOR - Compare the binary values of two data strings

The Exclusive OR instruction (EOR) compares the binary value of operand 2 with the binary
value of operand 1. The instruction compares each bit position in operand 2 with the
corresponding bit position in operand 1 and yields a result, bit by bit, of 1 or O. If the bits
compared are the same, the result is O. If the bits compared are not the same, the result is 1. If
both input fields are identical, the resulting field is O. If one or more bits differ, the resulting
field contains a mixture of O's and 1 'so

Syntax:

label

Required:
Defaults:
Indexable:

Operand

opndl

opnd2

count

EOR opnd1 ,opnd2,count, RESU L T=,
P1 =, P2=, P3=

opnd 1 ,opnd2
count=(1,WORD),RESULT=opnd1
opnd1 ,opnd2,RESUL T

Description

The label of the data area to be compared with opnd2. Opnd 1 cannot be a
self -defining term. The system stores the result of the operation in this operand
unless you code the RESULT operand.

This operand can be a byte, word, or doubleword.

The value compared with opnd 1. You can specify a self-defining term or the
label of a data area. This operand can be a byte, word, or doubleword.

The number of consecutive values in opndl on which the operation is to be
performed. The maximum value allowed is 32767.

The count operand can include the precision of the data. Select one precision
which the system uses for opndl, opnd2, and the resulting bit string. When
specifying a precision, code the count operand in the form,

(n,precision)

where "n" is the count and "precision" is one of the following:

BYTE -- byte precision
WORD -- word precision (default)
DWORD -- doubleword precision

The precision you specify for the count operand is the portion of opnd2 that is
used in the operation. If the count is (3,BYTE), the system compares the first
byte of data in opnd2 to the first three bytes of data in opndl.

Chapter 2. Instruction and Statement Descriptions LR -155

EOR
EOR - Compare the binary values of two data strings (continued)

RESULT =

Px=

The label of a data area or vector in which the result is to be placed. When you
specify RESULT, the value of opnd 1 does not change during the operation. This
operand is optionaL

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

Syntax Examples

LR-156 SC34-0643

1) The EOR instruction compares the first byte of data in D to the first byte of data in C and
places the result in R.

EOR C,D, (1,BYTE) ,RESULT=R

C
D
R

DATA X'92'
DATA X'8F'
DATA X'OO'

After the operation, R contains:

Hexadecimal-- X'lD'

Binary -- 0001 1101

binary 1001 0010
binary 1000 1111

2) The EOR instruction compares the first byte of data in OPER2 to the first three bytes of data
in OPER 1. The result of the operation is stored in RESUL TX.

EOR OPER1,OPER2, (3,BYTE),RESULT=RESULTX

OPER1 DC
DC
DC

OPER2 DC
RESULTX DC

X'OO'
X'AS'
X' 01 '
X'FF'
2F'0'

binary 0000 0000
binary 1010 0101
binary 0000 0001
binary 1111 1111

After the operation, RESUL TX contains:

Hexadecimal -- X'FF5A FEOO'

Binary -- 1111 1111 0101 1010 1111 1110 0000 0000

o

o

o

o

o

EOR
EOR - Compare the binary values of two data strings (continued)

3) The EOR instruction compares the first byte of data in TEST to the first three bytes of data
in INPUT. The result of the operation is stored in OUTPUT.

EOR INPUT,TEST, (3,BYTE),RESULT=OUTPUT

INPUT
TEST
OUTPUT

DC
DC
DC

C' 1. 2'
C'O.O'
3C'0'

binary
binary
binary

After the operation, OUTPUT contains:

1111 0001 0100 1010 1111 0010
1111 0000
1111 0000 1111 0000 1111 0000

Binary -- 0000 0001 1011 10100000 0010

Chapter 2. Instruction and Statement Descriptions LR-157

EQU
EQU - Assign a value to a label

The EQU statement assigns a value to a label. The value is a word in length. You can use the
label you define with the EQU statement as an operand in other instructions that permit the use
of labels. The 'value' the statement assigns, or equates, to a label can consist of an integer
constant, another label, an expression containing an arithmetic operator (for example, A+2), or
an asterisk (*). See "Syntax Rules" on page LR-7 for a description of the four arithmetic
operators: + (plus), - (minus), * (multiply), and / (divide).

Syntax:

label EQU value

Required :Iabel, value
Defaults: none
Indexable: none

Operand Description

label The label to be assigned a value. Do not define this label elsewhere in your
program.

value An integer constant, another label, an expression containing an arithmetic
operator, or an asterisk (*). The asterisk points to the next available storage
location in a program. It allows you to generate convenient labels that you can
use within your program. Do not confuse this use of an asterisk with the
arithmetic operator that signifies multiplication (*).

Your program must define any labels you code for this operand before the
system processes the EQU statement. For example, if you code:

A EQU B

you must have previously defined the label B in your program.

Special Considerations

LR-158 SC34-0643

Here are some things to consider when you use the EQU statement in your program:

• When you use the label on the EQU statement as an operand in another instruction, the
system interprets the label as a storage address unless you include a plus (+) sign before it.
The system interprets a label preceded by a plus sign as a constant.

Because EQU assigns a word value to a label, a byte-precision move of a label preceded by a
plus sign would only move the leftmost byte of the word. If you equated the label A to the
value 4 (X'0004'), for example, the system would move only the value X'OO'.

o

o

o

EQU o EQU - Assign a value to a label (continued)

Syntax Examples

o

o

If you equate a DATA or DC statement with a label, the system interprets the label as the
address of the DATA or DC statement. If you try to use this label with a plus sign,
however, the label will no longer point to the data when the load point of the program
changes.

• You can equate a hexadecimal value to a label if the value can fit in a word (for example,
X'FEDl'). You can also equate one or two EBCDIC characters with a label (for example,
C'AB'). You cannot form EQU expressions with the following types of data: H, D, E, and
A. (See DATA/DC for a description of each of these data types.)

1) Assign a value of 2 (X'0002') to A.

A EQU 2

2) Assign the value of A to label B. If A has a value of 5 (X'0005'), B also has a value of 5.

B EQU A

3) Assign the value of B plus 2 bytes to label A.

A EQU B+2

4) CALLA is equivalent to CALLSUB. The asterisk (*) points to the next available storage
location in the program.

GOTO CALLA

CALLA EQU
CALLSUB CALL

*
PROGA

5) Move the contents at address X'0002' to c.

A EQU
MOVE

2
C,A

6) Move A, a value of 2, to C.

A EQU
MOVE

2
C,+A

Chapter 2. Instruction and Statement Descriptions LR -159

EQU
EQU - Assign a value to a label (continued)

7) Move 7 to the indexed location of A plus # 1.

A EQU
MOVE

2
(A, #1) ,7

8) Add the value of C (X'0002') to D (X'0008'). The example defines the labels B and A
before they appear in the EQU statements.

SAMPLE PROGRAM START
B DATA F'2'
START EQU *

C EQU B
ADD D,C
PROGSTOP

A DATA F'8'
D EQU A

9) A has a word value of X'0005'. The leftmost byte (value X'OO') moves to location C.

A EQU
MOVE

5
C,+A, (1 ,BYTE)

10) Equate C to the address of F'O'. Move a value of 0 into TEMP.

LR-160 SC34-0643

C EQU
DATA
MOVE

*
F'O'
TEMP,C

11) HERE has a value of 20. Move a value of 0 to address X'0014'.

HERE EQU
MOVE

20
HERE,O

o

o

0

o

EQU
E6U - Assign a value to a label (continued)

Coding Example

The following program moves data from three storage locations labeled A, C, and E. Label A is
equal to the address of B times 2. Label C is equal to the address of D divided by 4. Label E is
equal to the address of F divided by 5.

If the address of B is X'0052', the arithmetic expression B*2 refers to address X'OOA4'. If the
address of Dis X'0054', the arithmetic expression D/4 refers to address X'OOI5'. For label F,
if the address is X'0056', the arithmetic expression F 15 yields the address X'OOI7'. The system
disregards the remainder in an arithmetic expression using the divide operator.

OPERATOR PROGRAM START
START EQU *

M1 MOVE HOLD1,A
M2 MOVE HOLD2,C
M3 MOVE HOLD3,E

PROGSTOP
HOLD1 DATA F'O'
HOLD2 DATA F'O'
HOLD3 DATA F'O'
B DATA F'1 '
D DATA F'2
F DATA F'3'

A EQU B*2
C EQU D/4
E EQU F/S

ENDPROG
END

Chapter 2. Instruction and Statement Descriptions LR -161

ERASE
ERASE - Erase portions of a display screen

The ERASE instruction clears or blanks a portion of a display screen. The instruction is only
for terminals that have static screens. You can specify a static screen with the SCREEN
operand of the TERMINAL statement or the IOCB instruction.

With a 4978,4979 or 4980 terminal, the ERASE instruction clears a portion of the screen by
setting that portion to a no data (null characters) condition. For a 3101 terminal in block mode,
the instruction normally clears a portion of the screen by writing unprotected blanks to that
area.

The ERASE instruction works differently on a 4978, 4979, or 4980 terminal than it does on a
3101 terminal in block mode. These differences are described under "3101 Display
Considerations" on page LR-164.

The supervisor places a return code in the first word of the task control block (taskname)
whenever an ERASE instruction causes a terminal I/O operation to occur. If the return code is
not a -1, the address of this instruction will be placed in the second word of the task control
block (taskname + 2). The terminal I/O return codes are described at the end of the
PRINTEXT and READ TEXT instructions in this manual and also in the Messages and Codes.

Syntax:

label

Required:
Defaults:

Indexable:

Operand

count

MODE=

LR-162 SC34-0643

ERASE count, MOD E=, TVPE=,SKI P=, LI N E=,SPACES=

none
count=maximum, MODE=FI ELD, TVPE=DATA,
SKIP=O,LlNE=current line,SPACES=O
count,SKIP, LI N E,SPACES

Description

The number of bytes to be erased. Both nonprotected and protected characters
contribute to the count, even if only nonprotected characters are to be erased.
The ERASE instruction can erase up to an entire logical screen.

FIELD, to end the erase operation when the display characters change from
nonprotected to protected, or when the operation reaches the end of the current
line.

LINE, to end the erase operation at the end of the current line.

SCREEN, to end the erase operation at the end of the logical screen.

When the ERASE instruction erases the number of bytes you specified for the
count, the operation will end even though the condition you specified on the
MODE operand is not satisfied. The MODE operand determines the end of the

O· ... \
.,

o

o

o

o

ERASE
ERASE - Erase portions of a display screen (continued)

TYPE =

SKIP=

LINE=

SPACES=

erase operation if you do not code a count value or if the condition you specify
for MODE= occurs before the instruction erases the number of bytes in count.

DATA, to erase only unprotected characters.

ALL, to erase both protected and unprotected characters.

The number of lines to be skipped before the system does an I/O operation. For
example, if your cursor is at line 2 on a display screen and you code SKIP=6, the
system does the I/O operation on line 8. For a printer, the SKIP operand
controls the movement of forms.

The SKIP operand causes the system to display or print the contents of the
system buffer.

If you specify a value greater than or equal to the logical page size, the system
divides this value by the page size and uses the remainder in place of the value
you specify.

The line number on which the system is to do an I/O operation. Code a value
between zero and the number of the last usable line on the page or logical
screen. The line count begins at the top margin you defined for the printer or
display screen. LINE=O positions the cursor at the top line of the page or screen
you defined; LINE= 1 positions the cursor at the second line of the page or
screen.

For printers, if you code a value less than or equal to the current line number, the
system does the I/O operation at the specified line on the next page or logical
screen. For static screens, if you code a value within the limits of the logical
screen, the system does the I/O operation on the line you specified.

If you code a value greater than the last usable line number, the system divides
this value by the logical page size and uses the remainder as the line number on
which to do the I/O operation. For example, if you code LINE=22 and your
static screen has a logical page size of 20, the I/O operation occurs on the
second line of the logical screen.

The LINE operand causes the system to print or display the contents of the
system buffer.

The number of spaces to indent before the system does an I/O operation.
SP ACE=O, the default, positions the cursor at the beginning of the left side of
the page or screen. If the value you specify is beyond the limits of the logical
screen or page, the system indents the next line by the excess number of spaces.

Chapter 2. Instruction and Statement Descriptions LR -163

ERASE
ERASE - Erase portions of a display screen (continued)

When you code the LINE or SKIP operands with SPACES, the system begins
indenting from the left margin of the page or screen. If you specify SPACES
without coding LINE or SKIP, the system begins indenting from the last cursor
position on the line.

3101 Display Considerations

LR-164 SC34-0643

The following considerations apply to the use of the ERASE instruction on a 3101 terminal in
block mode.

If you code an ERASE instruction in with TYPE=DAT A, the system ignores the count value.
The instruction erases from the current cursor position to the end of the screen, clearing all
unprotected data.

If you code TYPE=ALL on the ERASE instruction, the erase operation ends when the
instruction erases the number of bytes in count, or when the operation reaches the end of a
logical screen (whichever happens first). The default for count, when you code TYPE=ALL, is
from the current cursor position to the end of the screen.

The system clears the entire 3101 screen if the cursor is in the home position (line zero,space
zero), and an ERASE instruction with a count of 1920 executes.

The MODE operand on the ERASE instruction is affected by the TYPE operand in the
following ways:

MODE defaults to MODE=SCREEN if you code TYPE = DATA. The system forces the
MODE operand to SCREEN even if you code MODE=LINE or MODE=FIELD.

You can code the MODE=SCREEN or MODE=LINE if you code TYPE=ALL.

The system forces the MODE operand to MODE=LINE if you code MODE=FIELD with
TYPE = ALL.

If you code an ERASE instruction after a READTEXT instruction and the READTEXT buffer
or TEXT statement is smaller than the number of characters actually transmitted by the 3101,
you will need a delay between the READ TEXT and ERASE instructions. The delay is
necessary because your program should not issue an ERASE instruction until the 3101
completes sending the screen buffer. Depending on your application, you can use either an
STIMER or WAIT KEY instruction to cause the delay.

o

o

o

o

o

ERASE
ERASE - Erase portions of a display screen (continued)

Syntax Examples

Coding Examples

1) Erase 4 bytes of unprotected data. End operation if protected data or the end of the line is
reached.

ERASE 4,MODE=FIELD,TYPE=DATA

2) Erase the entire screen of protected and unprotected data.

ERASE LINE=O,SPACES=O,MODE=SCREEN,TYPE=ALL

3) Erase all protected and unprotected data on line 1 of the screen.

ERASE LINE=1,MODE=LINE,TYPE=ALL

1) The following example is part of a program a company uses to update its personnel files.
The example shows how you can use the ERASE instruction to erase portions of a display
screen.

The example begins by enqueuing the terminal from which the program is loaded. The ENQT
instruction refers to the label of an IOCB instruction that sets up a static screen for the terminal.
This example assumes that the enqueued terminal is a 4978 or 4980.

The ERASE instruction at label E 1 clears the entire screen, erasing both protected and
unprotected characters (TYPE=ALL). Once the program erases the screen, it asks the operator
to enter the employee's name and address in the three fields it displays on the screen. The
WAIT key at label WI prevents the program from reading the data until the operator presses the
enter key. When the operator presses the enter key, the first READ TEXT instruction reads in
the data from the name field, the second READ TEXT instruction reads in the data from the
street field, and the third READ TEXT instruction reads in data from the city field.

After the READTEXT instructions execute, the ERASE instructions at labels E2 through E4
erase all the data the operator entered on the screen. The ERASE instruction at label E2 clears
the name field and ends after erasing 71 bytes of unprotected data. The count value overrides
the MODE=SCREEN operand. The ERASE instruction at label E3 defaults to
MODE=FIELD and clears the street field. The instruction stops erasing when it reaches the
end of the line. The last ERASE instruction at label E4 clears the city field and continues to
erase to the end of the line because MODE=LINE is coded.

Chapter 2. Instruction and Statement Descriptions LR -165

ERASE
ERASE - Erase portions of a display screen (continued)

LR-166 SC34-0643

E1

W1

E2
E3
E4

TERMINAL
MSG1
MSG2
FIELD1
FIELD2
FIELD3
NAME
STREET
CITY

ENQT
ERASE
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
WAIT
READ TEXT
READTEXT
READTEXT
ERASE
ERASE
ERASE
DEQT
PROGSTOP
IOCB
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
ENDPROG
END

TERMINAL
MODE=SCREEN,TYPE=ALL,LINE=O
MSG1,LINE=4,SPACES=2,PROTECT=YES
MSG2,LINE=5,SPACES=2,PROTECT=YES
FIELD1,LINE=6,SPACES=2,PROTECT=YES
FIELD2,LINE=7,SPACES=2,PROTECT=YES
FIELD3,LINE=8,SPACES=2,PROTECT=YES
KEY
NAME,LINE=6,SPACES=11,MODE=LINE
STREET,LINE=7,SPACES=11,MODE=LINE
CITY,LINE=8,SPACES=11,MODE=LINE
71,MODE=SCREEN,TYPE=DATA,LINE=6,SPACES=11
LINE=7,SPACES=11
MODE=LINE,LINE=8,SPACES=11

SCREEN=STATIC
'ENTER EMPLOYEE'S NAME, STREET ADDRESS, AND CITY'
'IN THE LABELED FIELDS. PRESS ENTER WHEN FINISHED'
, NAME
, STREET: '
, CITY
LENGTH=40
LENGTH=60
LENGTH=30

2) The example that follows is similar to Example 1 but uses a 3101 terminal in block mode.
The example begins by enqueuing the 3101 terminal. The lOeB instruction labeled
TERMINAL sets up a static screen and a temporary I/O buffer for the device. The buffer area,
labeled BUFFER, is 1920 bytes long.

As shown in Example 1, the ERASE instruction at label E 1 erases the entire screen of protected
and unprotected data. The program then issues a message asking the operator to enter the
employee's name and address in three fields: NAME, STREET, and CITY. The program
creates unprotected fields for the operator's input with the PRINTEXT instructions at labels PI,
P2, and P3.

The WAIT key at label WI prevents the program from reading the data until the operator
presses the SEND key. When the operator presses the SEND key, the READ TEXT instruction
reads the entire display screen (protected and unprotected data) into the buffer area. A
READTEXT instruction on 3101 in block mode starts reading at the beginning of the display
screen if it does not issue a prompt message. The program reads the entire screen into the
buffer area and then moves the desired data from the name, street, and city fields into three text
buffers.

The ERASE instructions at label E2 through E4 erase all the employee data the operator
entered on the screen. TYPE=ALL is coded on the ERASE instructions so that the count
operand is not ignored. The ERASE instruction at label E2 clears the name field and ends after

o

o

OJ
"Jf'

0·"" 'I

ERASE
ERASE - Erase portions of a display screen (continued)

erasing 71 bytes of unprotected and protected data. The count value overrides the
MODE=SCREEN operand. The ERASE instruction at label E3 clears the street field and also
ends after erasing 71 bytes of protected and unprotected data. Because the instruction has
TYPE=ALL, the system changes the default MODE=FIELD to MODE=LINE. The last
ERASE instruction at label E4 clears the city field and ends after erasing 20 bytes of protected
and unprotected data.

Note: The coding of the data fields in this example differs slightly from Example 1 to allow for
the attribute byte at the beginning of each field.

E1

P1

P2

P3
W1

E2
E3
E4

TERMINAL
MSG1
MSG2
FIELD1
FIELD2
FIELD3
NAME
STREET
CITY
BUFFER

ENQT
ERASE
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
WAIT
READTEXT
MOVEA
MOVE
MOVE
MOVE
ERASE
ERASE
ERASE
DEQT
PROGSTOP
IOCB
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
BUFFER
ENDPROG
END

TERMINAL
MODE=SCREEN, TYPE=ALL, LINE=O
MSG1,LINE=4,SPACES=1,PROTECT=YES
MSG2,LINE=5,SPACES=1,PROTECT=YES
FIELD1,LINE=6,SPACES=2,PROTECT=YES
NAME,LINE=6,SPACES=10,PROTECT=NO
FIELD2,LINE=7,SPACES=2,PROTECT=YES
STREET,LINE=7,SPACES=10,PROTECT=NO
FIELD3,LINE=8,SPACES=2,PROTECT=YES
CITY,LINE=8,SPACES=10,PROTECT=NO
KEY
BUFFER,TYPE=ALL,MODE=LINE,LINE=O,SPACES=O
#1,BUFFER
NAME, (492,#1), (40,BYTES)
STREET, (572,#1), (60,BYTES)
CITY, (652,#1), (7,BYTES)
71,MODE=SCREEN,TYPE=ALL,LINE=6,SPACES=11
71,LINE=7,SPACES=11,TYPE=ALL
20,MODE=SCREEN,LINE=8,SPACES=11,TYPE=ALL

SCREEN=STATIC,BUFFER=BUFFER
'ENTER EMPLOYEE'S NAME, STREET ADDRESS, AND CITY'
'IN THE LABELED FIELDS. PRESS ENTER WHEN FINISHED'
'NAME .'
'STREET: '
'CITY .'
LENGTH=40
LENGTH=60
LENGTH=30
1920,BYTES

Chapter 2. Instruction and Statement Descriptions LR -167

EXCLOSE
EXCLOSE - Close an EXIO device

Syntax Example

The EXCLOSE instruction closes, or disables, an EXIO device that you opened with the
EXOPEN instruction.

Syntax:

label EXCLOSE devaddr, ERROR=, P1 =, P2=

Required: devaddr
Defaults: none
Indexable: none

Operand Description

devaddr The device address. Specify two hexadecimal digits.

ERROR= The label of the first instruction to be executed if an error occurs during the
execution of this instruction.

Px= Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

Close the EXIO device at the address X'08'.

EXOPEN 08,EXIOADDR
EXIO PREPARE

EXCLOSE 08

LR-168 SC34-0643

o

o

o

o

EXIO
EXIO - Execute I/O

Coding Example

The EXIO instruction executes a command in an immediate device control block (IDCB) that
you define using the IDCB statement.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

idcb

ERROR=

Pl=

EXIO

idcb
none
idcb

Description

idcb, ERROR=, P1 =

The label of an IDCB statement.

The label of the first instruction to be executed if an error occurs during the
operation. This instruction will not be executed if an error is detected at the
occurrence of an interrupt caused by the command. The condition code (ccode)
returned at interrupt time is posted in an ECB (see the EXOPEN instruction).

Note: If the ECB being posted has not been reset, then the system posts the
ECB provided for posting after an exception interrupt.

A "device busy" bit is set on by the EXIO instruction if a START command is
executed. It is reset after the device interrupts if the operation is complete. If a
device fails to interrupt or complete an operation, it will be necessary to reset the
"device busy" bit so that another command may be executed. The device busy
bit can be reset by issuing an EXIO instruction to the appropriate IDCB which
points to an IDCB instruction with COMMAND=RESET.

Parameter naming operand. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code this operand.

In the following example, the first instruction (EXOPEN) specifies that, for the device at
address X'08', information returned after an EXIO device interrupt is to be returned at the
addresses pointed to by the 3 words following the EXIOADDR label.

The first EXIO instruction prepares the device at address X'08' so that it may interrupt on
level 1.

The second EXIO instruction resets the device so that any incomplete I/O operation is ended.

The third EXIO instruction issues a START I/O command with the IDCB labeled STARTRD.
The STARTRD IDCB uses the DCB labeled WRITEDCB. WRITEDCB is built for an ACCA

Chapter 2. Instruction and Statement Descriptions LR -169

EXIO
EXIO - Execute I/O (continued)

device so that a WRITE operation will be executed with the receiving station having the
capability to BREAK the transmission. The TIMERI (PRE and POSTTRANSMIT DELA YS)
value is set to 33 milliseconds and the TIMER2 value (HALF-DUPLEX TURNAROUND) is
set to 6.6 milliseconds. There is to be no DCB chaining and 12 bytes of data are to be
transmitted starting at the address labeled MSG.

LR-170 SC34-0643

OPEN

IOERROR

MSG

* PREPARE
RESET
STARTRD

*

EQU
EXOPEN
EXIO

* OB,EXIOADDR
PREPARE

EXIO RESET

EXIO STARTRD,ERROR=IOERROR
EXCLOSE OB

EQU *
PRINTEXT '@IOERROR OCCURRED DURING INITIALIZATION@'

DATA
DATA
DATA

IDCB
IDCB
IDCB

X'544B4953'
X'20414E20'
X'41534349'

COMMAND=PREPARE,ADDRESS=OB,LEVEL=l,IBIT=l
COMMAND=RESET,ADDRESS=OB
COMMAND=START,ADDRESS=OB,DCB=WRITEDCB

WRITEDCB DCB IOTYPE=OUTPUT,DEVMOD=03,DVPARM1=0,DVPARM2=0002, X

*
EXIOADDR

*

* EXIOl

*
EXECBS

*

DATA

DATA
DATA

DATA
DATA
DATA

DATA
DATA
DATA
DATA

EXSCSDCB DCB

*
EXSCSWDS
EXCEND
EXEXECP
EXDEND

DATA
ECB
ECB
ECB

DVPARM3=000A,DVPARM4=0, CHAINAD=0,COUNT=12,DATADDR=MSG

A (EXIOl)

A(EXECBS)
A(EXSCSDCB)

F'O'
F'O'
F'O'

A(EXCEND)
F'O'
A(EXEXECP)
A (EXDEND)

POINTER TO 3 WORD
INTERRUPT BLOCK
ADDRESS OF ECB ADDRESSES
ADDRESS OF START CYCLE
STEAL STATUS DCB
INTERRUPT ID WORD
LSR AT INTERRUPT
ADDRESS OF ECB POSTED

CONDITION CODE 0 ECB ADDR
NOT USED
CONDITION CODE 2 ECB
CONDITION CODE 3 ECB ADDR

IOTYPE=INPUT,COUNT=6,DATADDR=EXSCSWDS

3F'0'
o
o
o

START CYCLE STEAL STATUS DCB

CONTROLLER END ECB
EXCEPTION ECB
DEVICE END ECB

Note: Additional examples using EXIO are shown in the Customization Guide.

o

c

0,,""·,:1'1.1
, "

EXIO
EXIO - Execute I/O (continued)

Return Codes

The following codes are issued by the EXIO and EXOPEN instructions, and are returned in
word 0 of the TCB. Word 1 of the TCB contains the supervisor instruction address.

Return
Code

-1
1
2
3
4
5
6
7
8
9
10
11
12

13
16
17
18

Condition

Command accepted.
Device not attached.
Busy.
Busy after reset.
Command reject.
Intervention required.
Interface data check.
Controller busy.
Channel command not allowed.
No DDB found.
Too many DCBs chained.
No address specified for residual status.
EXIODEV specified zero bytes for residual
status.
Broken DCB chain (program error).
Device already opened.
Device not opened or already closed.
Attempt to read or write to dynamic
partition rejected. Use a static partition.

Chapter 2. Instruction and Statement Descriptions LR-171

EXIO
EXIO - Execute I/O (continued)

Interrupt Codes

LR-172 SC34-0643

The following codes are issued when an EXIO instruction was completed successfully, but the
hardware performing the operation encountered an error. The hardware interrupt condition
codes are returned in bits 4 - 7 of the ECB (word 0). If bit 0 is on, then bits 8 - 15 equal the
device address.

Return
Code

o
1
2
3
4
5
6
7
8
9
10
11
12

13
14
15

Condition

Controller end.
Program Controlled Interrupt (PCI).
Exception.
Device end.
Attention.
Attention and PCI.
Attention and exception.
Attention and device end.
Not used.
Not used.
SE on and too many DCBs chained.
SE on and no address specified for residual status.
SE on and EXIODEV specified no bytes for residual
status.
Broken DCB chain.
ECB to be posted not reset.
Error in Start Cycle Steal Status
(after exception).

(, -'-)
---'

CA

o

o

o

EXOPEN
EXOPEN - Open an EXIO device

The EXOPEN instruction opens an EXIO device and specifies the locations where information
is to be returned after an EXIO device interrupt. EXOPEN does not reset device status or
device busy.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

devaddr

listaddr

EXOPEN devaddr,listaddr, ERROR=, P1 =, P2=

devaddr,listaddr
none
listaddr

Description

The device address. Specify two hexadecimal digits.

The label of a 3-word list containing the following addresses:

Word 1

Word 2

Word 3

The address of a 3-word block where, after an interrupt, the system
will store:

1. Interrupt ID word

2. Level status register at time of the interrupt

3. Address of ECB posted.

Note: If this address is zero, the information is not returned.

The address of a list of ECB addresses. The interrupt condition
code (ccode) received from the device will determine which ECB in
the list will be posted. A ccode=O will cause posting at the first
ECB in the list, etc. The same ECB may be specified for more than
one condition code. The ECB specified for ccode=2 (exception)
will be posted in the event of a program error. The posting code
contains:

Bit 0 of the posting code is on (1). Bits 4 to 7 contain the ccode;
bits 8 to 15 contain the device address.

Interrupt condition codes are shown in "Return Codes" on page
LR-171.

The address of a DCB statement containing the parameters of a
start cycle steal status operation. This operation will be started by
the system, using this DCB, if an exception interrupt is received

Chapter 2. Instruction and Statement Descriptions LR-173

EXOPEN
EXOPEN - Open an EXIO device (continued)

Coding Example

ERROR=

Px=

from this device. If this address is zero, the operation is not
performed.

The label of the first instruction to be executed if an error is encountered during
the execution of this instruction.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

Note: Refer to the description manual for the processor in use for more information on
interrupt ID, level status register, interrupt condition codes, and DeBs. Refer to the description
manual for the device in use for information on the causes of various condition codes and the
status information available using start cycle steal status.

The EXOPEN instruction specifies that, for the device at address X'08', information returned
after an EXIO device interrupt is to be returned at the addresses pointed to by the 3 words
following the EXIOADDR label.

OPEN EQU *
EXOPEN 08,EXIOADDR

EXCLOSE 08

EXIOADDR DATA A (EXI01) POINTER TO 3 WORD

* INTERRUPT BLOCK
DATA A(EXECBS) ADDRESS OF ECB ADDRESSES
DATA A(EXSCSDCB) ADDRESS OF START CYCLE

* STEAL STATUS DCB
EXI01 DATA F'O' INTERRUPT ID WORD

DATA F'O' LSR AT INTERRUPT
DATA F'O' ADDRESS OF ECB POSTED

*
EXECBS DATA A (EXCEND) CONDITION CODE 0 ECB ADDR

DATA F'O' NOT USED
DATA A(EXEXECP) CONDITION CODE 2 ECB
DATA A(EXDEND) CONDITION CODE 3 ECB ADDR

*
EXSCSDCB DCB IOTYPE=INPUT,COUNT=6 START CYCLE STEAL

* STATUS DCB
EXSCSWDS DATA 3F'0'
EXCEND ECB 0 CONTROLLER END ECB
EXEXECP ECB 0 EXCEPTION ECB
EXDEND ECB 0 DEVICE END ECB

Return Codes and Interrupt Codes

For a list of return codes and interrupt condition codes, see the EXIO instruction.

LR-174 SC34-0643

C.i

o

c

o

EXTRNjWXTRN
EXTRN - Resolve external reference symbols

The EXTRN and WXTRN statements identify labels that are not defined within an object
module. These labels reside in other object modules that will be link-edited to the module
containing the EXTRN or WXTRN statements. The system resolves the reference to an
EXTRN or WXTRN label when you link-edit the object module containing the EXTRN or
WXTRN statement with the module that defines the label. The module that defines the label
must contain an ENTRY statement for that label. (See the ENTRY statement for more
information.)

If the system cannot resolve a label during the link-edit, it assigns the label the same address as
the beginning of the program. You can include up to 255 EXTRN and WXTRN symbols in
your program.

WXTRN labels are resolved only by labels that are contained in modules included by the
INCLUDE statement in the link-edit process or by labels found in modules called by the
AUTO CALL function. However, WXTRN itself does not trigger AUTOCALL processing.

Only labels defined by EXTRN statements are used as search arguments during the
AUTO CALL processing function of $EDXLINK. Any additional external labels found in the
module found by AUTO CALL are used to resolve both EXTRN and WXTRN labels. Refer to
the description of $EDXLINK in the Operator Commands and Utilities Reference for further
information.

The main difference between the WXTRN and EXTRN statements is that you must resolve an
EXTRN label at link-edit time. It is not necessary to resolve a WXTRN label at link-edit time.
The unresolved label coded as an EXTRN receives an error return code from the link process.
The same unresolved label coded as a WXTRN receives a warning return code. Both the error
and the warning codes indicate unresolved labels. If you know that your application program
does not need a label resolved, code it as a WXTRN and your program should execute
successfully. Your application will not execute correctly, however, if you try to reference an
unresolved label coded in your application program as a WXTRN.

Syntax:

blank
blank
Required:
Defaults:
Indexable:

Operand

label

EXTRN label
WXTRN label
one label
none
none

Description

An external label. You can code up to 10 labels, separated by commas, on a
single EXTRN or WXTRN statement.

Chapter 2. Instruction and Statement Descriptions LR -175

EXTRNjWXTRN
EXTRN - Resolve external reference symbols (continued)

Coding Example

The following coding example shows a use of the EXTRN statement.

The labels DATAl, DATA2, LABELl, and LABEL2 are defined outside this module. The
ADD instruction adds the values at DATAl and DAT A2 although the values are defined outside
the module where they are being added. The GOTO instructions also can pass control to the
the two externally defined labels, LABEL 1 and LABEL2.

Each of the external labels could have been entered on a separate line or all three of the
EXTRN labels could have been entered with a single EXTRN statement.

EXTRN DATA 1 , DATA2
EXTRN LABELl
WXTRN LABEL2

ADD DATA1,DATA2,RESULT=INDEX
IF (INDEX,GT,6)

GOTO LABELl
ELSE

GOTO LABEL2
ENDIF

INDEX DATA F'O'

LR -176 SC34-0643

0.·" ,. ,

('~
~/:

o

o

o

FADD
FADD - Add floating-point values

The floating-point add instruction (FADD) adds a floating-point value in operand 2 to a
floating-point value in operand 1. You can use positive or negative values.

You must code FLOAT=YES on the PROGRAM statement of a program using floating-point
instructions in its initial task and on the TASK statement of every task containing floating-point
instructions.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

opndl

opnd2

RESULT=

PREC=

FADD opnd1,opnd2,RESULT=,PREC=,P1 =, P2=, P3=

opnd1,opnd2
RESULT=opnd1,PREC=FFF
opnd1,opnd2,RESULT

Description

The label of the data area to which opnd2 is added. Opnd1 cannot be a
self -defining term. The system stores the result of the operation in opnd 1 unless
you code the RESULT operand.

The value added to opnd 1. You can specify a self-defining term or the label of a
data area. The valid range for this operand is from -32768 to +32767.

The label of a data area in which the result is to be placed. When you specify
RESULT, the value of opnd 1 does not change during the operation. This
operand is optional.

All possible combinations of single and extended precision are permitted. An
immediate value for opnd2 will be converted to a single-precision value
regardless of any other method of precision specification discussed in the
following paragraphs.

The PREe operand is specified as xyz where x, y, and z are characters
representing the precision of opnd 1, opnd2, and the RESULT operands,
respectively. Either 2 or 3 characters must be specified depending on whether
the RESULT operand was coded. Permissible characters are:

F - Single-precision
L - Extended-precision

(32 bits)
(64 bits)

* - Default (single-precision)

The default is single precision.

Chapter 2. Instruction and Statement Descriptions LR-177

FADD
FADD - Add floating-point values (continued)

Index Registers

Syntax Examples

Px= Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

You cannot use the index registers (#1 and #2) as operands in floating-point operations because
they are only 16 bits in length. You can, however, use the software registers to specify the
address of a floating-point operand.

1) The FADD instruction adds two single-precision floating-point values and stores the result in
RESULTF.

FLOAT PROGRAM START,FLOAT=YES

FADD OP1 F,OP2F,RESULT=RESULTF, PREC=FFF

OP1F DC
OP2F DC
RESULTF DC

E' 1. S'
E'O.2'
E'O'

After the FADD operation, RESULTF contains the value 1.70.

2) The FADD instruction adds two extended-precision floating-point values and stores the
result in RESULTL.

FLOAT PROGRAM START,FLOAT=YES

FADD OP1L,OP2L,RESULT=RESULTL,PREC=LLL

OP1L DC
OP2L DC
RESULTL DC

L'SOOOO.S'
L'40.4'
L'O'

After the FADD operation, RESULTL contains the value 50040.90.

LR -178 SC34-0643

o

o

o

o

o

o

FADD
FADD - Add floating-point values (continued)

Return Codes

3) The FADD instruction adds two single-precision floating-point values written in exponent
(E) notation. The result is stored in RESULTFE.

FLOAT PROGRAM START,FLOAT=YES

FADD OP1FE,OP2FE,RESULT=RESULTFE,PREC=FFF

OP1FE DC
OP2FE DC
RESULTFE DC

E'2.SE+1 '
E' O. SE-1 '
E'O'

Equals decimal 25.0
Equals decimal .05

After the FADD operation, RESULTFE contains the value .2505E+02. This value is equal to
the decimal value 25.05 .

Return codes are returned in the first word of the task control block (TCB) of the program or
task issuing the instruction. The label of the TCB is the label of your program or task
(taskname). You must test for the return code immediately after the floating-point instruction is
executed or the code may be destroyed by following instructions.

Code

-1
1
5

Description

Successful completion
Floating-point overflow
Floating-point underflow

Chapter 2. Instruction and Statement Descriptions LR-179

FDIVD
FDIVD - Divide floating-point values

LR-180 SC34-0643

The floating-point divide instruction (FDIVD) divides a floating-point value in operand 1 by a
floating-point value in operand 2. You can use positive or negative values.

You must code FLOAT=YES on the PROGRAM statement of a program that uses
floating-point instructions in its initial task and on the TASK statement of every task containing
floating-point instructions.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

opndl

opnd2

RESULT =

PREC=

Px=

FDIVD opnd1 ,opnd2, RESUL T=, PREC=,
P1 =, P2=, P3=

opnd1,opnd2
RESULT=opnd1,PREC=FFF
opnd1,opnd2,RESULT

Description

The label of the data area containing the value divided by opnd2. Opnd 1 cannot
be a self-defining term. The system stores the result of the operation in opndl
unless you code the RESULT operand.

The value by which opndl is divided. You can specify a self-defining term or the
label of a data area. The valid range for this operand is from -32768 to +32767.

The label of a data area in which the result is to be placed. When you code
RESULT, the value of opnd 1 does not change during the operation.

All possible combinations of single and extended precision are permitted. An
immediate value for opnd2 will be converted to a single-precision value
regardless of any other method of precision specification discussed in the
following paragraphs.

The PREC operand is specified as xyz where x, y, and z are characters
representing the precision of opndl, opnd2, and the RESULT operands,
respectively. Either 2 or 3 characters must be specified depending on whether
the RESULT operand was coded. Permissible characters are:

F - Single-precision
L - Extended-precision
* - Default (single-precision)

The default is single precision.

(32 bits)
(64 bits)

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

o

o

o

o

o

FDIVD
FDIVD - Divide floating-point values (continued)

Index Registers

You cannot use the index registers (#1 and #2) as operands in floating-point operations because
they are only 16 bits in length. You can, however, use the software registers to specify the
address of a floating-point operand.

Syntax Examples

1) The FDIVD instruction divides two single-precision floating-point values and stores the result
inRESULTF.

FLOAT PROGRAM

FDIVD

OP1F DC
OP2F DC
RESULTF DC

START,FLOAT=YES

OP1F,OP2F,RESULT=RESULTF,PREC=FFF

E' 1.5'
E'O.2'
E'O'

After the FDIVD operation, RESULTF contains the value 7.50 .

2) The FDIVD instruction divides two extended-precision floating-point values and stores the
result in RESUL TL.

FLOAT PROGRAM

FDIVD

OP1L DC
OP2L DC
RESULTL DC

START,FLOAT=YES

OP1L,OP2L,RESULT=RESULTL,PREC=LLL

L'50000.5'
L'40.4'
L'O'

After the FDIVD operation, RESULTL contains the value 1237.64 .

Chapter 2. Instruction and Statement Descriptions LR -181

FDIVD
FDIVD - Divide floating-point values (continued)

Return Codes

LR-182 SC34-0643

3) The FDIVD instruction divides two single-precision floating-point values written in exponent
(E) notation. The result is stored in RESULTFE.

FLOAT PROGRAM START,FLOAT=YES

FDIVD OP1FE,OP2FE,RESULT=RESULTFE,PREC=FFF

OP1FE DC
OP2FE DC
RESULTFE DC

E'2.SE+1'
E'0.SE-1 '
E'O'

Equals decimal 2S.0
Equals decimal .OS

After the FDIVD operation, RESULTFE contains the value .5000E+03 . This value is equal to
the decimal value 500 .

Return codes are returned in the first word of the task control block (TCB) of the program or
task issuing the instruction. The label of the TCB is the label of your program or task
(taskname). You must test for the return code immediately after the floating-point instruction is
executed or the code may be destroyed by following instructions.

Code
-1
1
3

5

Description

Successful completion
Floating point overflow
Floating pOint divide check
(divide by '0')
Floating point underflow

()

(~
V

o

o

o

o

FIND
FI N D - Locate a character

Syntax Examples

The FIND instruction searches a character string for the first occurrence of a specific character
(byte).

Syntax:

label

Required:
Defaults:
Indexable:

Operand

character

string

length

where

notfound

DIR=

Px=

FIND cha racter, stri ng,length, where,
notfound, DI R=, P1 =, P2=, P3=, P4=, P5=

character, string, length, where, notfound
DIR=FORWARD
string, length, and where

Description

The character that is the object (target) of the search. You can specify a text
character or a hexadecimal value.

The label of the string to be searched. The search will begin at the address of the
label.

The number of bytes to be searched. You can code a positive integer or the label
of a data area containing a positive integer.

The label of a data area where the address of the target character is to be stored
if it is found. If the target character is not found, this data area remains
unchanged.

The label of the instruction to be executed if the target character is not found.

FORWARD (the default), to search from left to right.

REVERSE, to search from right to left.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

1) The FIND instruction searches the first 20 bytes of MSGI for the character '$'. If it finds a
$, it stores the address of the character in the data area labeled POINTER. If the instruction
does not find a $, it passes control to the instruction at label NOTFOUND. The direction of
search is from left to right.

FIND C'$' ,MSG1,20,POINTER,NOTFOUND

Chapter 2. Instruction and Statement Descriptions LR-183

FIND
FIND - Locate a character (continued)

Coding Example

2) The FIND instruction searches for the string X'05' beginning at the address contained in
index register 1. The search continues for the length value stored in the data area labeled LSTR.
If the instruction finds the X'05' string, it stores the address of the string in the data area labeled
POINTER. If the instruction does not find the string, it passes control to the instruction at label
NOGOOD. The direction of the search is left to right.

FIND X'05', (O,#1),LSTR,POINTER,NOGOOD

To determine if a hyphen has been included in a 40-byte parts inventory number, the FIND
instruction could be used as follows:

GETPART# EQU *

*

READTEXT PARTNUM,'ENTER REQUESTED PART NUMBER',
SKIP=1

FINDASH EQU *
FIND C'-' ,PARTNUM,40,POINTER,NOTVALID
MOVEA #1,PARTNUM GET PARTNUM ADDRESS
SUBTRACT POINTER,#1,RESULT=LENGTH FIND LENGTH OF PREFIX
IF (LENGTH,LE,1),GOTO,BADPREFX IF FEWER THAN 2 REJECT IT

*
IF (LENGTH,LE,4) , GOTO,GETCOST IF FEWER THAN 5 IT'S OK

*
BADPREFX EQU * ELSE REJECT IT

PRINTEXT PARTNUM,SKIP=1
PRINTEXT ' IS INVALID (PREFIX NOT OF ALLOWABLE SIZE) ,
GOTO GETPART# RETRY

*
NOTVALID EQU *

PRINTEXT PARTNUM,SKIP=1
PRINTEXT ' IS INVALID (MISSING HYPHEN) - REENTER'
GOTO GETPART# RETRY

*
GETCOST EQU *

PARTNUM
POINTER
LENGTH

TEXT
DATA
DATA

LENGTH=40
F'O'
F'O'

TEXT BUFFER FOR PART #
POINTER TO ADDR OF CHAR
LENGTH OF PART # PREFIX

x

If the part number entered was 1213-9234, and the label PARTNUM was at address X'2040',
the instruction would place a result of X'2044' in the data area labeled POINTER. The data
area labeled LENGTH would contain a value of 4, and the program would branch to the label
GETCOST.

LR-184 SC34-0643

o

c

o

o

o

o

FINDNOT
FINDNOT - Locate the first different character

Syntax Examples

The FINDNOT instruction searches a character string for the first occurrence of a character
tbyte) that is different from the character you specify.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

character

string

length

where

notfound

DIR=

Px=

FINDNOT character,string,length,where,
notfound,DI R=,P1 =, P2=, P3=, P4=,P5=

character, string, length, where, notfound
DIR=FORWARD
string, length, and where

Description

FINDNOT searches for a character that is different from the one you specify for
this operand. You can specify a text character or a a hexadecimal value.

The label of the string to be searched. The search will begin at the address of the
label.

The number of bytes to be searched. You can code a positive integer or the label
of a data area containing a positive integer.

The label of a data area where the address of the first different character is to be
stored if it is found. If a different character is not found, this data area remains
unchanged.

The label of the instruction to be executed if a different character is not found.

FORWARD (the default), to search from left to right.

REVERSE, to search from right to left.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

1) The FINDNOT instruction searches for the first nonblank character, starting at label
INPUT. The search continues for 80 bytes. If a nonblank character is found, the character's
address is stored in the data area labeled CPOINTER. If no characters are found during the
80-byte search, the FINDNOT instruction passes control to the instruction at label
ALLBLANK. The direction of the search is from left to right.

FINDNOT C' ',INPUT,80,CPOINTER,ALLBLANK

Chapter 2. Instruction and Statement Descriptions LR-185

FINDNOT
FINDNOT - Locate the first different character (continued)

Coding Example

2) This instruction searches for the first bit string other than X'40'. The search starts at label
CARD + 79 and continues for 80 bytes. If a bit string other than X'40' is found, the address of
the bit string is stored in the data area labeled LASTCHAR. If no bit string other than X'40' is
found during the search, the FINDNOT instruction passes control to the instruction at label
ALLBLANK. The direction of search is from right to left.

FINDNOT X'40' ,CARD+79,80,LASTCHAR,ALLBLANK,DIR=REVERSE

To reduce fixed-length, 80-byte records to variable-length records, the FINDNOT instruction
could be used as follows:

NEXTCARD EQU
ADD

*
CARDNUM,1

FINDLAST EQU *
FINDNOT X'40' ,CARD+79,80,POINTER,BLANKCRD,

DIR=REVERSE

*
GOTCHAR EQU *

MOVEA #l,CARD GET ADDRESS CARD BUFFER
SUBTRACT POINTER,#l,

RESULT=LENGTH GET NOMINAL LENGTH
ADD LENGTH, 1 BUMP TO TRUE LENGTH
MOVE (0,#2),LENGTH STORE LENGTH OF DATA
ADD #2,2 BUMP BUFFER POINTER
MOVE (0,#2) ,CARD, (1,BYTES),

P3=LENGTH STORE CARD DATA
ADD #2,LENGTH BUMP BUFFER BY DATA SIZE
GOTO NEXTCARD GET ANOTHER CARD

*
BLANKCRD EQU *

PRINTEXT , CARD # , PRINT MESSAGE ON
PRINTNUM CARDNUM LISTING INDICATING THAT

* THE CARD WAS BLANK
PRINTEXT , IS REJECTED AS BLANK'
ADD BLANKS, 1 INCR. BLANK CARD COUNT
GOTO NEXTCARD GET ANOTHER CARD

*
CARDNUM DATA F'O' CARDS READ COUNTER
POINTER DATA F'O' POINTER TO ADDR OF
CARD DATA CL80' , STORAGE BUFFER
BLANKS DATA F'O' BLANK CARD COUNTER

x

X

X

CHAR

If the data on the card occupied the first 15 character positions and the next available buffer
location (indexed by register #2) was X'5COO', POINTER would return as X'5COE'. LENGTH
would compute as X'OOOF' (X'OOOE' + X'OOOI'). Locations X'5COO'-X'5COl' would contain
X'OOOF' and addresses X'5C02' through X'5CIO' would receive the data. Register #2 would
then be set to X'5011' and another card would be searched.

LR-186 SC34-0643

o

0

c

o

o

o

FIRSTQ
FIRSTQ - Acquire the first queue entry in a chain

Coding Example

The FIRSTQ instruction acquires the first (oldest) entry in a queue. You define a queue with
the DEFINEQ statement. A queue entry can contain data or the address of a data buffer.

When you acquire the oldest entry with the FIRSTQ instruction, the second oldest entry
becomes the first or oldest entry in the queue. After you acquire the contents of the oldest
entry, the system adds the entry to the free chain of the queue.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

qname

loe

EMPTY =

Px=

FIRSTQ qname,loc,EMPTY=,P1=,P2=

qname,loc
none
qname,loc

Description

The name of the queue from which the entry is to be fetched. The queue name is
the label of the DEFINEQ statement that creates the queue.

The label of a word of storage where the entry is placed. You can use the index
registers, #1 and #2.

The first instruction of the routine to be invoked if a "queue empty" condition is
detected during the execution of this instruction. If you do not specify this
operand, control returns to the next instruction after the FIRSTQ.

A return code of -1 in the first word of the task control block indicates that the
operation completed successfully. A return code of + 1 indicates that the queue
is empty.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

See the example of queuing instructions in the example following the NEXTQ instruction.

Chapter 2. Instruction and Statement Descriptions LR -187

FIRSTQ
FIRSTQ - Acquire the first queue entry in a chain (continued)

Return Codes

LR-188 SC34-0643

The return codes are returned in the first word of the task control block (TCB) of the program
or task issuing the instruction. The label of the TCB is the label of your program or task
(taskname) .

Code Description

-1 Successful completion
1 Queue is empty

o

o

o

o

o

o

FMULT
FMUL T - Multiply floating-point values

The floating-point mUltiply instruction (FMUL T) multiplies a floating-point value in operand 1
by a floating-point value in operand 2. You can use positive or negative values.

You must code FLOAT=YES on the PROGRAM statement of a program that uses
floating-point instructions in its initial task and on the TASK statement of every task containing
floating-point instructions.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

opndl

opnd2

RESULT=

PREC=

Px=

FMULT opnd1,opnd2,RESULT=,PREC=,
P1=,P2=,P3=

opnd1,opnd2
RESULT=opnd1,PREC=FFF
opnd 1 ,opnd2, R ESU L T

Description

The label of the data area containing the value multiplied by opnd2. Opnd 1
cannot be a self-defining term. The system stores the result of the operation in
opnd 1 unless you code the RESULT operand.

The value by which opnd 1 is multiplied. You can specify a self -defining term or
the label of a data area. The valid range for this operand is from -32768 and
+32767.

The label of a data area in which the result is placed. When you specify
RESULT, the value of opndl does not change during the operation.

All possible combinations of single and extended precision are permitted. An
immediate value for opnd2 will be converted to a single-precision value
regardless of any other method of precision specification discussed below.

The PREe operand is specified as xyz, where x, y, and z are characters
representing the precision of opndl, opnd2, and the RESULT operands,
respectively. Either 2 or 3 characters must be specified depending on whether
the RESULT operand was coded. Permissible characters are:

F - Single-precision
L - Extended-precision
* - Default (single-precision)

The default is single-precision.

(32 bits)
(64 bits)

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

Chapter 2. Instruction and Statement Descriptions LR -189

FMULT
FMULT - Multiply floating-point values (continued)

Index Registers

Syntax Examples

LR-190 SC34-0643

You cannot use the index registers (#1 and #2) as operands in floating-point operations because
they are only 16 bits in length. You can, however, use the software registers to specify the
address of a floating-point operand.

1) The FMUL T instruction multiplies two single-precision floating-point values and stores the
result in RESUL TF.

FLOAT PROGRAM

FMULT

OP1F DC
OP2F DC
RESULTF DC

START,FLOAT=YES

OP1F,OP2F,RESULT=RESULTF,PREC=FFF

E' 1. 5'
E'O.2'
E'O'

After the FMULT operation, RESULTF contains the value .30 .

2) The FMULT instruction multiplies two extended-precision floating-point values and stores
the result in RESUL TL.

FLOAT PROGRAM

FMULT

OP1L DC
OP2L DC
RESULTL DC

START,FLOAT=YES

OP1L,OP2L,RESULT=RESULTL,PREC=LLL

L'SOOOO.S'
L'40.4'
L'O'

After the FMULT operation, RESULTL contains the value 2020020.20 .

o

o

o

o

o

o

FMULT
FMULT - Multiply floating-point values (continued)

Return Codes

3) The FMULT instruction multiplies two single-precision floating-point values written in
exponent (E) notation. The result is stored in RESUL TFE.

FLOAT PROGRAM START,FLOAT=YES

FMULT OP1 FE, OP2FE, RESULT=RESULTFE , PREC=FFF

OP1FE DC
OP2FE DC
RESULTFE DC

E' 2. SE+1 '
E'0.SE-1'
E'O'

Equals decimal 25.0
Equals decimal .05

After the FMULT operation, RESULTFE contains the value .1250E+01 . This value is equal
to the decimal value 1.250 .

Return codes are returned in the first word of the task control block (TCB) of the program or
task issuing the instruction. The label of the TCB is the label of your program or task
(taskname). You must test for the return code immediately after the floating-point instruction is
executed or the code may be destroyed by subsequent instructions.

Code

-1
1
5

Description

Successful completion
Floating-point overflow
Floating-point underflow

Chapter 2. Instruction and Statement Descriptions LR -191

FORMAT
FORMAT - Format data for display or storage

\

The FORMAT statement specifies the type of conversion to be performed when data is
transferred from storage to a text buffer by a PUTEDIT instruction, or from a text buffer to
storage by a GETEDIT instruction.

The FORMAT statement must be contained in the assembly in which it is referred to and
cannot be placed within a sequence of executable instructions.

Note: The FORMAT statement can be continued on mUltiple lines, but each line (except the
last) must be coded through column 71 and must have a continuation symbol in column 72.
Commas cannot be used to continue a line before column 71.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

list

gen

FORMAT (list),gen

(list)
gen=BOTH
none

Description

The format you want the data to be in after it is converted. The valid options
are:

Item
Type Definition

I Integer numeric

F Floating-point numeric

E Floating-point numeric E notation

H Literal alphameric data, enclosed in quotes

X Blanks

A Alphameric data

GET, if this FORMAT statement is for the exclusive use of GETEDIT
instruction.

PUT, if this format statement is for the exclusive use of PUTEDIT instructions.

BOTH, if this format statement can be used with GETEDIT and PUTEDIT
instructions. BOTH, the default, requires more storage than either GET or PUT.

LR-192 SC34-0643

o

o

o

o

o

o

FORMAT
FORMAT - Format data for display or storage (continued)

The PUTEDIT instruction retrieves each variable in the list, converts it according to the
respective item specification in the FORMAT statement, and loads it into the text buffer
specified. Spaces (blanks), line control characters (@), and self -defining terms can be inserted.

The GETEDIT instruction moves data from the text buffer, converts it as specified in the
FORMAT statement, and stores it at specified addresses. Characters in the input buffer may be
skipped.

The slash (/) in a FORMAT statement associated with a GETEDIT instruction acts as a
delimiter, p~rforming the same function as a comma.

Successive items in the buffer transfer list are converted and moved according to successive
specifications in the FORMAT statement until all items in the list are transferred. If there are
more items in the list than there are specifications in the FORMAT statement, control transfers
to the beginning of the FORMAT statement and the same specifications are used again until the
list is exhausted. The entire transfer is treated as a single record.

No check is made to see that the specifications in a FORMAT statement correspond in mode
with the list items in the GETEDIT or PUTEDIT instructions. It is your responsibility to ensure
that integer variables are associated with I-type format specification and real variables with
F-type or E-type format specifications. You must also ensure that ample storage is available for
transfer of data in a PUTEDIT operation.

Conversion of Numeric Data

The following specifications, or conversion codes, are available for the conversion of numeric
data:

Item
Type

I

F

E

where:

w

d

Form Definition

Iw Integer numeric

Fw.d Floating-point numeric

Ew.d Floating-point numeric E notation

is an unsigned integer constant specifying the total field length of the data. This
specification may be greater than that required for the actual digits to provide
spacing between numbers; however, the maximum width allowed is 40 for I or F
specifications.

is an unsigned integer constant specifying the number of decimal places to the right
of the decimal point. The allowable range is 0 to w-1 for F-type specifications and
o to w-6 for E-type specifications.

Chapter 2. Instruction and Statement Descriptions LR -193

FORMAT
FORMAT - Format data for display or storage (continued)

Note: The decimal point between the wand d portions of the specification is required.

LR-194 SC34-0643

The following discussion of conversion codes deals with loading a text buffer, using PUTEDIT,
in preparation for printing a line. The concepts, however, apply to all permissible text buffer
operations.

Integer Numeric Conversion: General form is Iw.

The specification Iw loads a text buffer with an EBCDIC character string representing a number
in integer form; "w" print positions are reserved for the number. The number is right-justified.
If the number to be loaded is greater than w-1 positions and the number is negative, an error
condition will occur. A print position must be reserved for the sign if negative values are
possible. Positive values do not require a position for the sign. If the number has fewer than
"w" digits, the leftmost print positions are filled with blanks. If the quantity is negative, the
position preceding the leftmost digit contains a minus sign.

The following examples show how each quantity on the left is converted, according to the
specification "13":

Internal Value Value in the Buffer

721 721
-721 ***
-12 -12
8114 ***
0 0

-5 -5
9 9

Note that all error fields are stored and printed as asterisks.

Floating-Point Numeric Conversion: General form is Fw.d.

For F-type conversion, "w" is the total field length and "d" is the number of places to the right
of the decimal point. For output, the total field length must include positions for a sign, if any,
and a decimal point. The sign, if negative, is also loaded. For output, "w" should be at least
equal to d + 2.

If insufficient positions are reserved by "d", the number is rounded upwards. If excessive
positions are reserved by "d", zeros are filled in from the right for the insignificant digits.

If the integer portion of the number has fewer than w-d-1 digits, the leftmost print positions are
filled with blanks. If the number is negative, the position preceding the leftmost digit contains a
minus sign.

o

CI

c

o

o

o

FORMAT
FORMAT - Format data for display or storage (continued)

The following examples show how quantities are converted according to the specification F5.2:

Internal Value

12.17
-41.16
-.2
7.3542

-1.
9.03
187.64

Notes:

Value in the Buffer

12.17

-0.20
b7.35

-1.00
b9.03

1. A "b" represents a blank character stored in the text buffer.

2. Internal values are shown as their equivalent decimal value, although actually stored in
floating-point binary notation requiring two or four words of storage.

3. All error fields are stored and printed as asterisks.

4. Numbers for F-conversion input need not have the decimal point appearing in the input field
(in the text buffer). If no decimal point appears, space need not be allocated for it. The
decimal point is supplied when the number is converted to an internal equivalent; the
position of the decimal point is determined by the format specification. However, if the
position of the decimal point within the field differs from the position in the format
specification, the position in the field overrides the format specification. For example, for a
specification of F5.2, the following conversions would be performed:

Text Buffer Characters

12.17
b1217
121.7

Converted Internal Value

12.17
12.17
121.7

Floating-Point Number Conversion fE-notation): General form is Ew.d.

For E-type conversion, "w" is the total field length and "d" is the number of places to the right
of the decimal point. For output, the total field length must include enough positions for a sign,
a decimal point, and space for the E-notation (4 digits). For output, "w" should be at least
equal to d+6. For input, "d" is used for the default decimal position if no decimal is found in
the input character string.

If insufficient positions are reserved by "d", the digits to the right of "d" digits are truncated. If
excessive positions are reserved by "d," zeros are filled in from the right for the insignificant
digits.

Chapter 2. Instruction and Statement Descriptions LR -195

FORMAT
FORMAT - Format data for display or storage (continued)

The following examples show how each value on the left is converted according to the
specification E10.4:

Internal Value Value in the Buffer

12.17
-41.16
-.2
7.3542

-1.
9.03
.00187

b.1217Eb02
-.4116Eb02
-.2000EbOO
b.7354EbOl

-.1000EbOl
b.9030EbOl
b.1870E-02

Notes:

LR-196 SC34-0643

1. A "b" represents a blank character stored in the text buffer.

2. Internal values are shown in their equivalent decimal value, although actually stored in
floating-point binary requiring 2 or 4 words of storage.

3. All error fields are stored and printed as asterisks.

4. Numbers for E-conversion need not have the decimal point appearing in the input field (in
the text buffer). If no decimal point appears, you need not allocate space for it. The
decimal point is supplied when the number is converted to an internal equivalent; the
position of the decimal point is determined by the format specification. However, if the
position of the decimal point within the field differs from the position in the format
specification, the position in the field overrides the format specification. For example, for a
specification of E7.2, the following conversions would be performed:

Text Buffer Characters

12.17EO
b1217E1
121.7E-2

Converted Internal Value

12.17
121.7
1.217

0""·
" -"

o

o

o

o

o

FORMAT
FORMAT - Format data for display or storage (continued)

Alphameric Data Specification

The following specifications are available for alphameric data:

Item
Type Form Definition

H 'data' Literal alphameric data

A A Alphameric data

X X Insert blanks (output) or
skip input fields

The H-specification is used for alphameric data that a program does not change, such as printed
headings.

The A-specification is used for alphameric data in storage that a program operates on, such as a
line that is to be printed.

The X-specification is used to bypass one or more input characters or to insert blanks (spaces)
on an output line.

Literal Specification: General form is H.

The H-specification is used to create alphameric constants. The maximum length for a literal is
255.

Literals must be enclosed in apostrophes. For example:

FORMAT ('INVENTORY REPORT')

The apostrophe (') and ampersand (&) characters within literal data are represented by two
successive characters. For example, the characters DO & DON'T must be represented as:

FORMAT (' DO & & DON" T ')

Literal data can be used only in loading a text buffer; it is invalid in a GETEDIT instruction. All
characters between the apostrophes (including blanks) are loaded into the buffer in the same
relative position they appear in the FORMAT statement. Thus:

FM FORMAT ('THIS IS ALPHAMERIC DATA' ,3X,A6)

PUTEDIT FM,TEXT, (ALP)

cause the following record to be loaded into the buffer labeled TEXT.

THIS IS ALPHAMERIC DATA AAAAAA

Chapter 2. Instruction and Statement Descriptions LR -197

FORMAT
FORMAT - Format data for display or storage (continued)

LR-198 SC34-0643

Literal data may also be included with variable data.

For example, the instructions:

FM FORMAT ('TOTAL OF',I2,' VALUES , ,FS.2)

PUTEDIT FM,TEXT, (TOTAL, VALUE)

cause a record such as the one in the following example to be loaded into the buffer.

TOTAL OF 5 VALUES = 35.42

Alphameric Specification: General form is Aw.

The specification Aw is used to transmit alphameric data to or from data areas in storage. It
causes the first w characters to be stored into or loaded from the area of storage specified in the
text buffer transfer list. For example, the statements:

FM FORMAT (A4)

GETEDIT FM,TEXT, (ERROR)

cause four alphameric characters to be transferred from the buffer TEXT into the variable
named ERROR.

The following statements:

FM FORMAT ('XY=',F9.3,A4)

PUTEDIT FM,TEXT, (A,ERROR,B,ERROR)

may produce the following line:

XY= 5976.000 XY= 6173.500

In this example, the ellipsis (....) represents the contents of the character string field ERROR.

The A-specification provides for storing alphameric data into a field in storage, manipulating the
data (if required), and loading it back to a text buffer.

The alphameric field can be defined using the DATA statement or the TEXT statement. On
input (GETEDIT) the alphameric field is set to blanks before data conversion. The alphameric
data is left justified in the field.

Blank Specification: General form is X.

The X-specification allows you to insert blank characters into an output buffer record and to
skip characters of an input buffer record.

G

(;1

o

c

o

FORMAT
FORMAT - Format data for display or storage (continued)

When the nX specification is used with an input record, "n" characters are skipped before the
transfer of data begins. When the nX specification is used with an output record, "n" characters
are inserted before the transfer of data begins. For example, if a buffer has four IO-position
fields of integers, the statement:

FORMAT (110,10X,110,110)

could be used to avoid transferring the second field.

When the X-specification is used with an output record, "n" positions are set to blanks, allowing
for spaces on a printed line. For example, the statement:

FORMAT (F6.2,5X,F6.2,5X,F6.2,5X)

can be used to set up a line for printing as follows:

-23.45bbbbbb17.32bbbbbb24.67bbbbb

where b represents a blank.

Blank Lines in Output Records

You can insert blank lines between output records by using consecutive slashes (/). The slash
causes a line-control character to be inserted into the buffer. The number of blank lines inserted
between output records depends on the number and placement of the slashes within the
statement.

If there are "n" consecutive slashes at the beginning or end of a format specification, "n" blank
lines are inserted between output records. For "n" consecutive slashes elsewhere in the format
specification, the number of blank lines inserted is n-l. For example, the statements:

PUTED1T FM,TEXT, (X, (Y,D) ,Z)

FM FORMAT ('SAMPLE OUTPUT' ,/,15////19,14//)

X DC
Y DC
Z DC
TEXT TEXT

F'-1234'
D'111222333'
F'22'
LENGTH=50

result in the following output:

SAMPLE OUTPUT
-1234

(3 blank lines)

111222333 22

(2 blank 1 ines)

Chapter 2. Instruction and Statement Descriptions LR-199

FORMAT
FORMAT - Format data for display or storage (continued)

Repetitive Specification

You can repeat a specification, within the limits of ~he text buffer size, by coding an integer
from 1 to 255 before the specification. I

For example,

(2F10.4)

is equivalent to:

(F10.4,F10.4)

and uses less storage.

You can use a parenthetical expression with a multiplier (repeat constant) to repeat data fields
according to the format specifications contained within the parentheses. All item types are
permitted within the parenthetical expression except another parenthetical expression. You can
specify multiple parenthetical expressions within the same FORMAT statement. For example,
the statement:

FORMAT (2(F10.6,F5.2) ,14,3(15))

is equivalent to:

FORMAT (F10.6,F5.2,F10.6,F5.2,14,15,15,15)

LR-200 SC34-0643

o

c

o

C~':
"

o

FORMAT
FORMAT - Format data for display or storage (continued)

Storage Considerations

Coding Example

In general, the fewer items in the FORMAT list, the less storage required. An item is defined as
a single conversion specification, a literal data string, one or more grouped record delimiters, or
a parenthetical multiplier. For example, the following format statements all have three items:

FORMAT (15,15,16)

FORMAT (15,3 I 5, , ITEM 3')

FORMAT (3 (IS) ,315)

FORMAT (15/,15)

FORMAT (I5,///,I5)

FORMAT (/,/,/)

FORMAT (2 (/) ,I)

FORMAT (2(1X),2X)

FORMAT (I5/,2X)

The following example begins by executing a PRINTEXT instruction that prints a message
requesting the model year and serial numbers for the automobile of interest. The first
GETEDIT actually reads the two requested numbers into a TEXT statement labeled TEXTl.

The GETEDIT instruction searches the TEXTl data and converts the first entry to a
single-precision variable called LISTl. The second entry is converted to a double-precision
variable called LIST2. Both LISTl and LIST2 are then converted back to EBCDIC and
displayed on the printer by the first PUTEDIT instruction using the PElFMT FORMAT
statement. The PUTEDIT instruction and FORMAT statement determine the layout of the data
as it is displayed.

The GETEDIT instruction following label GE2 takes the data already entered into TEXTl with
the preceding READ TEXT and again converts it into the two binary variables called LISTl
(single-precision) and LIST2 (double-precision). Because ACTION=STG, a READTEXT
must be issued before executing the GETEDIT.

The PUTEDIT instruction at label PE2 converts the two variables back to EBCDIC and places
them into the TEXT2 statement as formatted by the PE2FMT FORMAT statement .. Again, the
keyword ACTION=STG prevents the data from being printed until the following PRINTEXT
instruction is executed.

Chapter 2. Instruction and Statement Descriptions LR -20 1

FORMAT
FORMAT - Format data for display or storage (continued)

GE1

*
PE1

*

EQU *
PRINTEXT '@ENTER MODEL YEAR AND SERIAL NUMBER@'
GETEDIT GE1FMT,TEXT1,(LIST1, (LIST2,D»,

ACTION=IO,ERROR=ERR1

EQU *
ENQT $SYSPRTR
PUTEDIT PE1FMT,TEXT2,(LIST1, (LIST2,D»,

ACTION=IO

GE2 EQU *

*

*

READTEXT TEXT1, '@ENTER YOUR DEPT. AND SYSTEM ID NUMBER@'

GETEDIT GE2FMT,TEXT1, (LIST1, (LIST2,D»,
ACTION=STG,ERROR=ERR1

PE2 EQU *

ERR1

*
ERR2

*
GE1FMT
PE1FMT
GE2FMT
PE2FMT
LIST1
LIST2
TEXT1
TEXT2
ERROROUT

LR-202 SC34-0643

PUTEDIT PE2FMT,TEXT2, (LIST1, (LIST2,D» ,ACTION=STG
ENQT $SYSPRTR
PRINTEXT TEXT2
DEQT

EQU *
PRINTEXT '@GETEDIT GE1 HAS FAILED@'
GOTO ERROROUT

EQU *
PRINTEXT '@GETEDIT GE2 HAS FAILED@'
GOTO ERROROUT

FORMAT
FORMAT
FORMAT
FORMAT
DATA
DATA
TEXT
TEXT
EQU

(I4,1X,I8)
('MDL. YR. = ',I4,6X,:'SER. NO. = ',18)
(I3,1X,I6)
('DEPT. = ',I3,4X,'SYST. ID. = ',16)
F'O'
D'O'
LENGTH=13
LENGTH=42

*

o
X

X

X

o

o

C~\
" "/

o

FPCONV
FPCONV - Convert to or from floating-point

The FPCONV instruction converts integer values to or from floating-point numbers by using the
optional floating-point hardware feature.

You must code FLOAT=YES on the PROGRAM statement of programs whose primary task
uses floating-point instructions and on the TASK statement of every task containing
floating-point instructions.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

opndl

opnd2

FPCOI\lV opnd1,opnd2,COUI\lT=,PREC=,
P1 =, P2=, P3=

opnd 1 ,opnd2
CQUNT=1,PREC=FS
opnd 1 ,opnd2

Description

The label of the data area to receive the result of the conversion.

The label of the data area that contains the value to be converted. You can also
code an integer number between -32768 and +32767.

COUNT= The number of values in opnd2 to be converted and stored ~t locations beginning
at opnd 1. If opnd2 is immediate data, it is converted and placed in the storage
area defined by opnd 1 in the number of consecutive locations defined by this
operand.

PREC=xy Defines the precision of opnd1 and opnd2 and the type of data (integer or
floating-point) you coded for these operands. Specify the precision and data

Px=

, type in the form PREC=xy, where "x" is the precision and data type for opnd1
and "y" is the precision and data type for opnd2. Opnd1 and opnd2 cannot be
the same data type.

The valid precisions and data types for "x" and "y" are as follow:

S - Single-precision integer (1 word)
D - Double-precision integer (2 words)
F - Single-precision floating-point value
L - Extended-precision floating-point value
* - Use default (single-precision)

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

Chapter 2. Instruction and Statement Descriptions LR -203

FPCONV
FPCONV -Convert to or from floating-point (continued)

Syntax Examples

LR -204 SC34-0643

1) Convert five double-precision integers beginning at label B to extended-precision
floating-point values. Store the result beginning at label A.

FPCONV A,B,COUNT=5,PREC=LD

2) Convert an extended-precision floating-point value at label L4 to a double-precision integer.
Store the result beginning at label X.

FPCONV X,L4,PREC=DL

3) Convert a single-precision integer value at label C to a single-precision floating-point value.
Store the result beginning at the indexed location (6,#1).

FPCONV (6,#1),C

4) Convert an extended-precision floating-point value at the indexed location of (X,#1) to a
double-precision integer. Store the result beginning at the indexed location (Y,#2).

FPCONV (X,#1), (Y,#2) ,PREC=DL

o

o

o

o

0

o

FPCONV
FPCONV - Convert to or from floating-point (continued)

Coding Example

The example estimates the number of hours required for a plane, carrying a specified load
weight, to travel to a destination a given number of miles from its departure point.

The FPCONV instruction at label FPI converts a single-precision integer to single-precision
floating-point value. This instruction uses the default precision.

The FPCONV instruction, at label FP2, converts a double-precision integer to a single-precision
floating-point value.

At label FP3, the FPCONV instruction converts two single-precision integers to single-precision
floating-point values. The values to be converted are indexed and the parameter naming
operand (PI =) allows the result field locations to be assigned dynamically.

The FPCONV instruction at label FP4 converts a single-precision floating-point value to a
single-precision integer.

CONVERT PROGRAM START,FLOAT=YES
START EQU *

GETVALUE MILES, '@ENTER MILES TO DESTINATION'
FP1 FPCONV FMILES,MILES

GETVALUE FREIGHT,'@POUNDS OF CARGO ? ' ,FORMAT=(10,O,I),TYPE=D
FP2 FPCONV FFREIGHT,FREIGHT,PREC=FD

READTEXT TYPE, '@ENTER PLANE TYPE'
CALL FINDTYPE,TYPE
MOVE A #1,BUFR
MOVEA RESULT,FFUELUSE

FP3 FPCONV *, (32,#1) ,COUNT=2,P1=RESULT
CALL CALCTIME

FP4 FPCONV ELAPSED , FELAPSED,PREC=SF
PRINTEXT '@NUMBER OF HOURS OF ELAPSED FLIGHT TIME ,
PRINTNUM ELAPSED

BUFR DATA 2S6H'O'
TYPE TEXT LENGTH=4
MILES DATA F'O'
FREIGHT DATA D'O'
ELAPSED DATA F'O'

*
FMILES DATA E'O'
FFREIGHT DATA E'O'
FFUELUSE DATA E'O'
FSPEED DATA E'O'
FELAPSED DATA E'O'

Chapter 2. Instruction and Statement Descriptions LR-205

FREESTG
FREESTG - Free mapped and unmapped storage areas

The FREESTG instruction releases the mapped and unmapped storage areas you obtained with
the GETSTG instruction.

Note: "Mapped storage" is the physical storage you defined on the SYSTEM statement during
system generation. "Unmapped storage" is any physical storage that you did not include on the
SYSTEM statement.

Syntax:

label FREESTG name, TYPE=, ERROR=, P1 =

Required: name
Defaults: TYPE=ALL
Indexable: none

Operand Description

name The label of a STORBLK statement. The STORBLK statement defines the
mapped and unmapped storage areas that your program uses.

TYPE =

ERROR=

ALL, the default, to release the mapped storage area and all the unmapped
storage areas your program acquired with GETSTG instruction.

UNMAP, to release only the unmapped storage areas your program acquired
with the GETSTG instruction.

The label of the first instruction of the routine to be invoked if an error occurs
during the execution of this instruction.

PI= Parameter naming operand. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code this operand.

LR-206 SC34-0643

()

o

o

o

FREESTG
FREESTG - Free mapped and unmapped storage areas (continued)

Syntax Examples

Coding Example

Return Codes

1) Release the mapped storage area and all unmapped storage areas defined by the STORBLK
statement labeled BLOCK.

FREESTG BLOCK

2) Release only the unmapped storage areas defined by the STORBLK statement labeled
BLOCK.

FREESTG BLOCK,TYPE=UNMAP

3) Release the mapped storage area and all unmapped storage areas defined by the STORBLK
statement labeled BLOCK. The label of the first instruction of the error routine is OUT.

FREESTG BLOCK,TYPE=ALL,ERROR=OUT

See the SWAP instruction for an example that uses the FREESTG instruction.

The return codes are returned in the first word of the task control block (TCB) of the program
or task issuing the instruction. The label of the TCB is the label of your program or task
(taskname) .

Code Description

-1 Successful completion
1 No storage entries exist in storage control block
2 Error occurred while freeing the mapped storage area
100 No unmapped storage support in system

Chapter 2. Instruction and Statement Descriptions LR-207

FSUB
FSUB - Subtract floating-point values

LR -208 SC34-0643

The floating-point subtract instruction (FSUB) subtracts a floating-point value in operand 2
from a floating-point value in operand 1. You can use positive or negative values.

You must code FLOAT=YES on the PROGRAM statement of a program that uses
floating-point instructions in its initial task and on the TASK statement of every task containing
floating-point instructions.

Syntax:

label FSUB opnd1,opnd2,RESULT=,PREC=,

Required:
Defaults:
Indexable:

Operand

opndl

opnd2

RESULT =

PREC=

Px=

P1=,P2=,P3=

opnd1,opnd2
RESUL T=opnd1 ,PREC=FFF
opnd1,opnd2,RESULT

Description

The label of the data area from which opnd2 is subtracted. Opndl cannot be a
self -defining term. The system stores the result of the operation in opnd 1 unless
you code the RESULT operand.

The value subtracted from opnd 1. You can specify a self -defining term or the
label of a data area. The valid range for this operand is from -32768 to +32767.

The label of a data area in which the result is to be placed. When you specify
RESUL T, the value of opnd 1 does not change during the operation.

All possible combinations of single and extended precision are permitted. An
immediate value for opnd2 will be converted to a single-precision value
regardless of any other method of precision specification discussed below.

The PREC operand is specified as xyz, where x, y, and z are characters
representing the precision of opnd 1, opnd2, and the RESULT operands,
respectively. Either 2 or 3 characters must be specified depending on whether
the RESULT operand was coded. Permissible characters are:

F - Single-precision (32 bits)
L - Extended-precision (64 bits)
* - Default (single-precision)

The default is single-precision.

Parameter naming operands. See HUsing The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code this operand.

o

o

o

o

FSUB
us _. Subtract floatHng-point values (continued)

IIifU(CJex Hegisters

You cannot use the index registers (#1 and #2) as operands in floating-point operations because
they are only 16 bits in length. You can, however, use the software registers to specify the
address of a floating-point operand.

1) The FSUB instruction subtracts two single-precision floating-point values and stores the
result in RESUL TF.

FLOAT PROGRAM START,FLOAT=YES

FSUB OP1F,OP2F,RESULT=RESULTF,PREC=FFF

OP1F DC
OP2F DC
RESULTF DC

E' 1. 5'
E'O.2'
E'O'

After the FSUB operation, RESUL TF contains the value 1.30.

2) The FSUB instruction subtracts two extended-precision floating-point values and stores the
result in RESUL TL.

FLOAT PROGRAM START,FLOAT=YES

FSUB OP1L,OP2L,RESULT=RESULTL,PREC=LLL

OP1L DC L'SOOOO.S'
OP2L DC L'40.4'
RESULTL DC L'O'

After the FSUB operation, RESUL TL contains the value 49960.10.

Chapter 2. Instruction and Statement Descriptions LR -209

FSUB
FSUB - Subtract floating-point values (continued)

Return Codes

3) The FSUB instruction subtracts two single-precision floating-point values written in exponent
(E) notation. The result is stored in RESULTFE.

FLOAT PROGRAM START,FLOAT=YES

FSUB OP1FE,OP2FE,RESULT=RESULTFE,PREC=FFF

OP1FE DC
OP2FE DC
RESULTFE DC

E' 2. 5E+1 '
E'0.5E-1'
E'O'

Equals decimal 25.0
Equals decimal .05

After the FSUB operation, RESUL TFE contains the value .2495E+02. This value is equal to
the decimal value 24.95.

Return codes are returned in the first word of the task control block (TCB) of the program or
task issuing the instruction. The label of the TCB is the label of your program or task
(taskname). You must test for the return code immediately after the floating-point instruction is
executed or the code may be destroyed by subsequent instructions.

Code

-1
1
5

Oescr.iption

Successful completion
Floating-point overflow
Floating-point underflow

LR-210 SC34-0643

0'--" , ,

()

o

C'"
. /

O· . .

GETEDIT
GETEDIT - Collect and store data

The GETEDIT instruction acquires data from a terminal or storage area, converts the data
according to a FORMAT list, and stores the data in your program at the locations specified by
the data list.

When you use the GETEDIT instruction in your program, you must link-edit your program
using the "autocall" option of $EDXLINK. Refer to the Event Driven Executive Language
Programming Guide for information on how to link-edit programs.

The supervisor places a return code in the first word of the task control block (taskname)
whenever a GETEDIT instruction causes a terminal I/O operation to occur. If the return code
is not a -1, the address of this instruction will be placed in the second word of the task control
block (taskname+2). The terminal I/O return codes are described at the end of the
PRINTEXT and READTEXT instructions in this manual and also in the Messages and Codes.

See Figure 8 on page LR-217 for an illustration of how the GETEDIT instruction works.

Syntax:

label GETEDIT format,text,(list),(format list),

Required:

Defaults:

ERROR=,ACTION=,SCAN=,SKIP=,LlNE=,
SPACES=,PROTECT=

text, (list), and either format
or (format list)
ACTION=IO,SCAN=FIXED,PROTECT=NO

I ndexable: none

Operand Description

format The label of a FORMAT statement or the label to be attached to the format list
optionally included in this statement. This statement or list will be used to
control the conversion of the data. This operand is required if the program is
compiled with $EDXASM.

text

list

The label of a TEXT statement defining a storage area for character data. If
data is moved from a terminal, this area stores the data as an EBCDIC character
string before it is converted and moved into the variables.

A description of the variables or locations which will contain the desired data.
The list will have one of the following forms:

((variable,count,type), ...)

or

(variable, ...)

Chapter 2. Instruction and Statement Descriptions LR -211

GETEDIT
GETEDIT - Collect and store data (continued)

format
list

ERROR=

LR-212 SC34-0643

or

« variable,count) , ...)

or

((variable, type), ...)

where:

variable

count

type

is the label of a variable or group
of variables to be included.

is the number of variables that
are to be converted.

is the type of variable to be
converted. The type can be:

S - Single-precision integer (default)
D - Double-precision integer
F - Single-precision floating-point
L - Extended-precision floating-point

The type defaults to S for integer
format data and to F for floating-point
format data.

Refer to the FORMAT statement description for coding FORMAT
operands that are to be used by GETEDIT instructions. This operand is not
allowed if the program is compiled with $EDXASM. If you wish to refer to this
format statement from another GETEDIT instruction, then both the format and
format list operands must be coded.

The label of the routine to receive control if the system detects an error during
the GETEDIT operation. The system returns a return code to the task even if
you do not code this operand.

Errors that might cause the system to invoke the error routine are:

• Use of an incorrect format list

Field omitted (attempt is made to convert the rest)

• Not enough data in input text buffer to satisfy the data list

Conversion error (value too large).

o

o

o

o

o

o

GETEDIT
GETEDIT - Collect and store data (continued)

ACTION=

SCAN=

SKIP=

LINE=

10 (the default), causes a READ TEXT instruction to be executed before
conversion.

STG, causes the conversion of a text buffer that has been previously obtained.
The data must be in EBCDIC.

FIXED, data elements in the input text buffer must be in the format described in
the format statement. That is, if a field width is specified as 6, then there are 6
EBCDIC characters used for the conversion. Leading and trailing blanks are
ignored.

FREE, data elements in the input text buffer must be separated by delimiters:
blank, comma, or slash. If A-format-type items are included, they must be
enclosed in apostrophes; for example, 'xyz'. This allows the inclusion of any
alphameric characters except the apostrophe.

The number of lines to be skipped before the system does an I/O operation. For
example, if your cursor is at line 2 on a display screen and you code SKIP=6, the
system does the I/O operation on line 8. For a printer, the SKIP operand
controls the movement of forms.

The SKIP operand causes the system to display or print the contents of the
system buffer.

If you specify a value greater than or equal to the logical page size, the system
divides this value by the page size and uses the remainder in place of the value
you specify. For roll screens, the logical page size equals the screen's bottom
margin minus the number of history lines and the screen's top margin.

The line number on which the system is to do an I/O operation. Code a value
between zero and the number of the last usable line on the page or logical
screen. The line count begins at the top margin you defined for the printer or
display screen. LINE=O positions the cursor at the top line of the page or screen
you defined; LINE = 1 positions the cursor at the second line of the page or
screen. For roll screens, line 0 equals the screen's top margin plus the number of
history lines.

For printers and roll screens, if you code a value less than or equal to the current
line number, the system does the I/O operation at the specified line on the next
page or logical screen. For static screens, if you code a value within the limits of
the logical screen, the system does the I/O operation on the line you specified.

If you code a value greater than the last usable line number, the system divides
this value by the logical page size and uses the remainder as the line number on
which to do the I/O operation. For example, if you code LINE=22 and your
roll screen has a logical page size of 20, the I/O operation occurs on the second
line of the logical screen.

Chapter 2. Instruction and Statement Descriptions LR -213

GETEDIT
GETEDIT - Collect and store data (continued)

SPACES =

The LINE operand causes the system to print or display the contents of the
system buffer.

The number of spaces to indent before the system does an I/O operation.
SP ACES=O, the default, positions the cursor at the beginning of the left side of
the page or screen. If the value you specify is beyond the limits of the logical
screen or page, the system indents the next line by the excess number of spaces.

When you code the LINE or SKIP operands with SPACES, the system begins
indenting from the left margin of the page or screen. If you specify SPACES
without coding LINE or SKIP, the system begins indenting from the last cursor
position on the line.

PROTECT= Code PROTECT=YES if the input text is not to be printed on the terminal.
This operand is effective only for devices which require the processor to echo
input data for printing.

The PROTECT operand does not apply to the 3101 in block mode.

3101 Display Considerations

Syntax Examples

LR-214 SC34-0643

When using a 310 I in block mode, the attribute byte associated with the prompt message and
the input data will depend on the current TERMCTRL SET,ATTR in effect. The default is
SET,ATTR=HIGH (high intensity) for the attribute byte.

1) The following GETEDIT instruction converts the first four characters to an integer and
stores them at A. It converts the next six characters to a single-precision floating-point value
and stores them at B. The next two characters are bypassed, and the last 10 characters are
converted to an extended-precision floating-point value (because of the E-type specification)
and are stored at C.

TEXT1
FM

GETEDIT

TEXT
FORMAT

FM, TEXT 1 , (A, (B, F) , (C, L))

LENGTH=24
(I4,F6.2,2X,E10.4)

(\

V

o

o

o

o

GETEDIT
GETEDIT - Collect and store data (continued)

Coding Example

2) This GETEDIT instruction converts four integer values contained in the text buffer
XSCREEN to a single hexadecimal word. The GETEDIT instruction places the results in the
location SCREEN.

GETED1T

FM1 FORMAT
XSCREEN TEXT

FM1,XSCREEN, ((SCREEN,S)) ,ACT10N=STG

(14) ,GET
LENGTH=4

The example begins by executing a PRINTEXT instruction that issues a message requesting the
model year and serial numbers for the automobile of interest. The first GETEDIT actually reads
the two requested numbers with a TEXT statement labeled TEXT 1.

The GETEDIT instruction searches the TEXT1 data and converts the first entry to a
single-precision variable called LIST1. The second entry is converted to a double-precision
variable called LIST2. The first PUTEDIT instruction, using the FORMAT statement labeled
PE1FMT, converts LIST1 and LIST2 back to EBCDIC and displays these values on the printer.
The PUTEDIT instruction and FORMAT statement determine the layout of the data as it is
displayed.

The GETEDIT instruction after label GE2 takes the data already entered into TEXT1 with the
preceding READ TEXT and converts it into the two binary variables called LIST1
(single-precision) and LIST2 (double-precision). Because ACTION=STG, a READ TEXT
must be issued before executing the GETEDIT.

The PUTEDIT instruction at label PE2 converts the two variables back to EBCDIC and places
them into the TEXT2 statement as formatted by the PE2FMT FORMAT statement. Again, the
keyword ACTION =STG prevents the data from being printed until the following PRINTEXT
instruction is executed.

Chapter 2. Instruction and Statement Descriptions LR -215

GETEDIT
GETEDIT - Collect and store data (continued)

Return Codes

LR-216 SC34-0643

GE1

* PE1

*

EQU *
PRINTEXT '@ENTER MODEL YEAR AND SERIAL NUMBER@'
GETEDIT GE1FMT,TEXT1, (LIST1, (LIST2,D)),

EQU
ENQT
PUTEDIT
DEQT

ACTION=IO,ERROR=ERR1

* $SYSPRTR
PE1FMT,TEXT2, (LIST1, (LIST2,D)) ,ACTION=IO

GE2 EQU *

*

*

READTEXT TEXT1, '@ENTER YOUR DEPT. AND SYSTEM ID NUMBER@'

GETEDIT GE2FMT,TEXT1, (LIST1, (LIST2,D)),
ACTION=STG,ERROR=ERR1

PE2 EQU *

ERR1

*
ERR2

GE1FMT
PE1FMT
GE2FMT
PE2FMT
LIST1
LIST2
TEXT1
TEXT2
ERROROUT

PUTEDIT PE2FMT,TEXT2, (LIST1, (LIST2,D)) ,ACTION=STG

ENQT $SYSPRTR
PRINTEXT TEXT2
DEQT

EQU *
PRINTEXT '@GETEDIT GE1 HAS FAILED@'
GOTO ERROROUT

EQU
PRINTEXT
GOTO
FORMAT
FORMAT
FORMAT
FORMAT
DATA
DATA
TEXT
TEXT
EQU

*
'@GETEDIT GE2 HAS FAILED@'
ERROROUT
(I4,1X,I8)
('MDL. YR. = ',I4,6X,'SER. NO. = ',18)
(I3,1X,I6)
('DEPT. = ',I3,4X,'SYST. ID. ',16)
F'O'
D'O'
LENGTH=13
LENGTH=42

*

Return codes are returned in the first word of the task control block (TCB) of the program or
task issuing the instruction. The label of the TCB is the label of your program or task
(taskname) .

For several errors, the system returns the return code with the highest value.

Code Description
-1 Successful completion
1 Invalid data encountered during conversion
2 Field omitted
3 Conversion error

o
x

x

o

o

o

o

GETEDIT
GETEDIT - Collect and store data (continued)

---=

READTEXT FLOATEXT ----4 FLOATEXT TEXT LENGTH = 18

length 12
count OA
FLOATEXT 4B

F3
F1
F4
F1
F6
C5
40
FO
F1
40

[;J 40

FL TFORM FORMAT (E11.4),BOTH

Figure 8. GETEDIT Overview

GETEDIT FL TFORM,FLOATEXT,((FVAL,F)),ACTION=STG

FVAL Binary
floating­
point
number

Chapter 2. Instruction and Statement Descriptions LR-217

GETSTG
GETSTG - Obtain mapped and unmapped storage areas

The GETSTG instruction obtains mapped and unmapped storage areas.

The SW AP instruction allows your program to use the unmapped storage areas you acquire with
the GETSTG instruction. You release mapped and unmapped storage areas with the FREESTG
instruction.

Note: "Mapped storage" is the physical storage you defined on the SYSTEM statement during
system generation. "Unmapped storage" is any physical storage that you did not include on the
SYSTEM statement.

Syntax:

label GETSTG name,TYPE=,ERROR=,P1=

Required: name
Defaults: TYPE=ALL
Indexable: none

Operand Description

name The label of a STORBLK statement. The STORBLK statement specifies the
size of the mapped storage area and the number of unmapped storage areas the
GETSTG instruction can obtain.

TYPE =

ERROR=

Pl=

LR -218 SC34-0643

MAP, to acquire only the mapped storage area you defined on the STORBLK
statement.

NEXT, to acquire one of the unmapped storage areas you defined on the
STORBLK statement. The instruction also obtains the mapped storage area if it
has not acquired it already.

ALL, the default, to acquire all the unmapped storage areas you defined on the
STORBLK statement. The instruction also obtains the mapped storage area if it
has not acquired it already.

The label of the first instruction of the routine to be invoked if an error occurs
during the execution of this instruction.

Parameter naming operand. See "Using The Parameter Naming Operands
(Px=)" on page LR -12 for a detailed description of how to code this operand.

o

o

o

o

GETSTG
GETSTG - Obtain mapped and unmapped storage areas (continued)

Syntax Examples

Coding Example

Return Codes

1) Obtain all the unmapped storage areas and the mapped storage area defined on the
STORBLK statement labeled BLOCK.

GETSTG BLOCK, TYPE=ALL

2) Obtain only the mapped storage area defined on the STORBLK statement labeled BLOCK.

GETSTG BLOCK, TYPE=MAP

3) Obtain one of the unmapped storage areas defined on the STORBLK labeled BLOCK. The
label of the first instruction of the error routine for this instruction is OUT.

GETSTG BLOCK, TYPE=NEXT,ERROR=OUT

See the SWAP instruction for an example that uses the GETSTG instruction.

Return codes are returned in the first word of the task control block (TCB) of the program or
task issuing the instruction. The label of the TCB is the label of your program or task
(taskname) .

Code Description

-1 Successful completion.
1 A mapped storage entry already exists in the

storage control block.
2 Mapped storage area is not available in the system.
100 No unmapped storage support in system
3 Unmapped storage is not available or only partial storage

was obtained. Check the second word of the TCB. A
zero shows that no unmapped storage is available.
A nonzero value equals the number of unmapped storage
areas obtained by the instruction.

4 All unmapped storage entries in the storage control block
are in use.

Chapter 2. Instruction and Statement Descriptions LR -219

GETTIME
GETTIME - Get date and time

LR-220 SC34-0643

The GETTIME instruction places the contents of the system's time-of-day clock in a 3-word
table that you define in your program. The 3 words contain the hours, minutes, and seconds, in
that order. You also can specify that the date be stored in an additional 3 words, resulting in a
6-word table containing hours, minutes, seconds, month, day, and year. Use this instruction
when you want to store the time of day and date as you collect data.

The maximum time on the clock is 23.59.59. At midnight, the supervisor resets the time-of-day
clock to 0 and increases the date by 1. The supervisor resets the month and year as necessary.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

foe

DATE=

Px=

GETTIME loc,DATE=,P1=

loc
DATE=NO
loc

Description

The label of a 3-word table where the system stores the time of day as hours,
minutes, and seconds; or the label of a 6-word table where the time of day and
the date are stoted as hours, minutes, seconds, month, day, and year. The time
and date are in hexadecimal format.

YES, to obtain the date as well as the time of day. If the task control block code
word, $TCBCO, contains a -2, the date is in the form: day, month, year. If
$TCBCO contains a -1, the date is in the form: month, day, year. The format
of the date was specified on the SYSTEM statement during system generation.

NO, to obtain only the hours, minutes, and seconds, in that order.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR -12 for a detailed description of how to code these operands.

o

o

o

c

o

GETTIME
GETTIME - Get date and time (continued)

Syntax Example

Coding Example

This GETTIME instruction obtains the time and date and places the result in a 6-word table
beginning at the label TAB.

GETTIME TAB,DATE=YES

The following example shows the possible contents of TAB (in hexadecimal format) after the
GETEDIT operation:

TAB OOOD
0018
0005
0007
001B
0053

(hours)
(minutes)
(seconds)
(month)
(day)
(year)

The time and date shown is 13:24:05 on July 27,1983.

The following program demonstrates a method of acquiring the system date and time then
displaying both on a terminal according to the coded FORMAT statement.

DTERTN
START

* ERR

* DONE

CODE
TAB
TEXT
FORMAT

PROGRAM
EQU
ENQT
GETTIME
PUTEDIT
GOTO

EQU
IF
MOVE
PRINTEXT
GOTO
ENDIF

START

*
$SYSLOG
TAB,DATE=YES
FORMAT,TEXT, ((TAB,6,S)) ,LINE=8,ERROR=ERR
DONE

* DTERTN+2,NE,-1
CODE,DTERTN+2
'@RETURN CODE: '
DONE

EQU *
DEQT
PROGSTOP
TEXT LENGTH=2
DATA 6F'O'
TEXT LENGTH=36
FORMAT ('TIME ',I2,':',I2,':',I2,10X,

'DATE ',12,' /' ,12, , /' ,12)
ENDPROG
END

X

Chapter 2. Instruction and Statement Descriptions LR-221

GETVALUE
GETVALUE .. Read a value entered at a terminal

LR-222 SC34-0643

The GETV ALUE instruction reads one or more integer values, or a single floating-point value,
entered at a terminal. The values can be decimal or hexadecimal, and of single or double
precision. The system treats invalid characters as delimiters.

The supervisor places a return code in the first word of the task control block (taskname)
whenever a GETVALUE instruction causes a terminal I/O operation to occur. If the return
code is not a -1, the address of this instruction will be placed in the second word of the task
control block (taskname + 2). The terminal I/O return codes are described at the end of the
PRINTEXT and READTEXT instructions in this manual and also in the Messages and Codes.

Syntax:

label

Required:
Defaults:

Indexable:

Operand

loc

pmsg

count

GETVALU E lac, pmsg,count, MODE=, PROM PT=,
FORMAT=, TYPE=,SKI P=, LI N E=,SPACES=,
COMP=,PARMS=(parm1, ... ,parm8)'
MSG I D=, P1 =, P2=, P3=

loc
MODE=DEC, PROM PT=U NCOND,count=1 (word)
FO R MAT=(6,O, I), TYPE=S,SKI P=Q
LI N E=current line,SPACES=O, MSGI D=NO
pmsg,SKIP, LI N E,SPACES

Description

The label of the variable to receive the input value. If your program requests
more than one value, the system stores the successive values in successive words
or doublewords depending on the precision you specify in the count operand.

The prompt message. Code the label of a TEXT statement or an explicit text
message enclosed in single quotes. The GETVALUE instruction issues this
prompt according to the parameter you code for the PROMPT keyword.

To retrieve a prompt message from a data set or module containing formatted
program messages, code the number of the message you want displayed or
printed. You must code a positive integer or a label preceded by a plus sign (+)
that is equated to a positive integer. If you retrieve a prompt message from
storage, you must also code the COMP= operand. See Appendix E, "Creating,
Storing, and Retrieving Program Messages" on page LR-615 for more
information.

The number of integer values to be entered. If the FORMAT parameter is used,
the count is forced to 1 regardless of the value specified. The precision
specification can be substituted for the count specification. If the precision is
substituted for the count, the count defaults to 1. The precision can accompany
the count in the form of a sublist: (count,precision). The default value for

o

o

o

o

o

GETVALUE
GETVALUE - Read a value entered at a terminal (continued)

MODE=

precision is word, or the keyword WORD can be specified. If double-precision is
desired, code the precision keyword DWORD. Only the WORD and DWORD
precisions can be specified.

With conditional prompting, the system issues the prompt message if you do not
enter advance input. Once a prompt message has been issued, however, you may
enter one or more values. Omitted values leave the corresponding internal
variables unchanged and are indicated by coding two consecutive delimiters. The
delimiters allowed between values are the characters slash (/), comma (,), period
(.), or blank (). The number of values entered is stored at taskname+2 when
the instruction completes.

HEX, for hexadecimal input.

DEC, the default, for decimal input.

PROMPT = COND (conditional), to prevent the system from displaying the prompt message
if you enter a value before the prompt.

UNCOND (unconditional), to have the system display the prompt message
without exception. UNCOND is the default.

FORMAT = The format of the value to be read in. Use the FORMAT operand where the
default is not desired. The count parameter is ignored. The format is specified
as a 3-element list (w,d,f), defined as follows:

w A decimal value equal to the maximum field width expected from the
terminal. Count the decimal point as part of the field width.

d A decimal value equal to the number of digits to the right of an assumed
decimal point. (An actual decimal point in the input will override this
specification.) For integer variables, code this value as zero.

f Format of the input data. Code I for integer data, F for floating-point
data (XXXX.XXX), or E for floating-point data in E notation. See the
value operand under the DATA/DC statement for a description of E
notation format.

Note: You can use the floating-point format for data even if you do not
have floating-point hardware installed in your system. Floating-point
hardware is required, however, to do floating-point arithmetic.

The first FORMAT operand to execute generates a work area which all
subsequent FORMAT operands will use also. The generated work area is
nonreentrant in a multitasking environment, and all tasks must use the
ENQ/DEQ functions to serialize access to it.

Chapter 2. Instruction and Statement Descriptions LR-223

GETVALUE
GETVALUE - Read a value entered at a terminal (continued)

TYPE =

SKIP=

LINE=

LR-224 SC34-0643

Note: If you code the FORMAT parameter and you are entering advanced input
(PROMPT=COND) for multiple GETVALUE statements, a blank must be used
to separate the input values. No other delimiters are valid.

The type of variable to receive the input. Use this operand with FORMAT=
only. The valid types are:

S - Single-precision integer (1 word)
D - Double-precision integer (2 words)
F - Single-precision floating-point (2 words)
L - Extended-precision floating-point (4 words)

The number of lines to be skipped before the system does an I/O operation. For
example, if your cursor is at line 2 on a display screen and you code SKIP=6, the
system does the I/O operation on line 8. For a printer, the SKIP operand
controls the movement of forms.

The SKIP operand causes the system to display or print the contents of the
system buffer.

If you specify a value greater than or equal to the logical page size, the system
divides this value by the page size and uses the remainder in place of the value
you specify. For roll screens, the logical page size equals the screen's bottom
margin minus the number of history lines and the screen's top margin.

The line number on which the system is to do an I/O operation. Code a value
between zero and the number of the last usable line on the page or ~ogical
screen. The line count begins at the top margin you defined for the printer or
display screen. LINE=O positions the cursor at the top line of the page or screen
you defined; LINE= 1 positions the cursor at the second line of the page or
screen. For roll screens line ° equals the screen's top margin plus the number of
history lines.

For printers and roll screens, if you code a value less than or equal to the current
line number, the system does the I/O operation at the specified line on the next
page or logical screen. For static screens, if you code a value within the limits of
the logical screen, the system does the I/O operation on the line you specified.

If you code a value greater than the last usable line number, the system divides
this value by the logical page size and uses the remainder as the line number on
which to do the I/O operation. For example, if you code LINE=22 and your
roll screen has a logical page size of 20, the I/O operation occurs on the second
line of the logical screen.

The LINE operand causes the system to print or display the contents of the
system buffer.

o

o

o

o

o

o

GETVALUE
GETVALUE - Read a value entered at a terminal (continued)

SPACES =

COMP=

PARMS=

MSGID=

Px=

3101 Display Considerations

The number of spaces to indent before the system does an I/O operation.
SPACES=O, the default, positions the cursor at the beginning of the left side of
the page or screen. If the value you specify is beyond the limits of the logical
screen or page, the system indents the next line by the excess number of spaces.

When you code the LINE or SKIP operands with SPACES, the system begins
indenting from the left margin of the page or screen. If you specify SPACES
without coding LINE or SKIP, the system begins indenting from the last cursor
position on the line.

The label of a CaMP statement. You must specify this operand if the
GET VALUE instruction is retrieving a prompt message from a data set or
module containing formatted program messages. The CaMP statement provides
the location of the message. (See the COMP statement for more information.)

The labels of data areas containing information to be included in a message you
are retrieving from a data set or module containing formatted program messages.
You can code up to eight labels. If you code more than one label, you must
enclose the list in parentheses.

Note: To use this operand, you must have included the FULLMSG module in
your system during system generation. Refer to Installation and System
Generation Guide for a description of this module.

YES, if you want the message number and four-character prefix to be printed at
the beginning of the message you are retrieving from a data set or module
containing formatted program messages. See the CaMP statement operand
'idxx' for a description of the four-character prefix.

NO (the default), to prevent the system from printing or displaying this
information at the beginning of the message.

Note: To use this operand, you must have included the FULLMSG module in
your system during system generation. Refer to Installation and System
Generation Guide for a description of this module.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

When using a 3101 in block mode, the attribute byte associated with any prompt message and
the input data will depend on the current TERMCTRL SET ,ATTR in effect. The default is
SET,ATTR=HIGH (high intensity) for the attribute byte. Also TERMCTRL
SET,STREAM=NO should be in effect when the GETVALUE instruction is executed for a
3101 in block mode.

Chapter 2. Instruction and Statement Descriptions LR-225

GETVALUE
GETVALUE - Read a value entered at a terminal (continued)

Syntax Examples

LR -226 SC34-0643

The syntax examples for this instruction use the following data areas:

MSG TEXT 'ENTER NEXT NUMBER'
A DC F'O'
B DC F'O'
C DC F'O'
D DC D'O'
E DC D'O'
F DC E'O.OOOO'
L DC L'O.OOO'

1) Read a single-precision integer of up to six decimal digits into data area A.

GETVALUE A,MSG

GETVALUE A,MSG,TYPE=S,FORMAT=(6,O,I)

2) Read three consecutive single-precision integers (of six decimal digits or fewer) into data
areas A, B, and C.

GETVALUE A, MSG, (3, WORD)

3) Read a double-precision integer of up to 10 decimal digits into doubleword data area D.

GETVALUE D,MSG,DWORD

GETVALUE D,MSG,TYPE=D,FORMAT=(10,O,I)

4) Read two consecutive single-precision integers (of six decimal digits or fewer) into data areas
Band C.

GETVALUE B,MSG,2

5) Read two consecutive double-precision integers (of ten decimal digits or fewer) into data
areas D and E.

GETVALUE D , MSG, (2, DWORD)

6) Ignore the count and read a single-precision integer of up to four decimal digits into data
area A.

GETVALUE A,MSG,3,TYPE=S,FORMAT=(4,O,I)

o

o

o

o

o

GETVALUE
GETVALUE - Read a value entered at a terminal (continued)

Coding Examples

7) Read a double-precision integer of up to six decimal digits into doubleword data area E.

GETVALUE E,MSG,TYPE=D,FORMAT=(6,O,I)

8) Read a single-precision floating-point (F-format) number of seven digits, with four digits to
the right of an assumed decimal point, into data area F.

GETVALUE F,MSG,TYPE=F,FORMAT=(8,4,F)

9) Read an extended-precision floating-point (E-format) number of eight digits, with three
digits to the right of an assumed decimal point, into data area E.

GETVALUE G,MSG,TYPE=L,FORMAT=(9,3,E)

1) If, in the following example, the operator entered 55 23A5 68 in response to the prompt
from the third GETVALUE, the first three of five storage locations in DATA3 would assume
the values 0055, 23A5, and 0068, respectively. The other two word locations would remain
unchanged (X'OOOO').

MESSAGE
MSG
DATA
DATA2
DATA3

GETVALUE
GETVALUE
GETVALUE

TEXT
TEXT
DATA
DATA
DATA

DATA, MESSAGE
DATA2, '@ENTER A: ',PROMPT=COND
DATA3,MSG,S,MODE=HEX

'ENTER YOUR AGE'
'DATA: '
F'O'
F'O'
SF'O'

Chapter 2. Instruction and Statement Descriptions LR-227

GETVALUE
GETVALUE - Read a value entered at a terminal (continued)

LR -228 SC34-0643

2)In the following example, the GETV ALUE instruction, at label G 1, prints a message then
reads a value entered by an operator. Note that the message in single quot~s is printed and
provides an unconditional prompt. Also, the value read uses the following defaults: decimal,
integer, 1 - 6 digits, and single-precision.

The GETVALUE at G2 issues a prompt only if there is no advance input and it reads 1
hexadecimal input value. Default values are in effect for the FORMAT and TYPE parameters.

The GETV ALUE at G3 reads a variable number of hexadecimal input values, using the default
FORMAT and TYPE parameters.

The G4 GETV ALUE uses the FORMAT parameter to read a single, floating-point value of up
to 9 digits in length and then places the result in a double word field.

G1
G2

G3

GETVALUE
GETVALUE
MOVE
AND
PRINTEXT
PRINTNUM
MOVE
GETVALUE

COUNT,'@ HOW MANY WORDS OF STORAGE? '
DATA, '@ ENTER START ADDRESS' ,MODE=HEX,PROMPT=COND
#1,DATA
#1,X'FFFE' INSURE EVEN STORAGE ADDRESS
'@ CURRENT VALUE(S) NOW:'
(0,#1) ,1,MODE=HEX,P2=COUNT
KOUNT,COUNT
DATA, '@ ENTER NEW VALUE(S)' ,1,P3=KOUNT,MODE=HEX

G4 GETVALUE FLOAT,'@ ENTER DATA' ,FORMAT=(9,2,F) , TYPE=D

3) In this example, the GET VALUE instruction displays a prompt message contained in the
disk data set MSGSET on volume EDX002. Because +MSG9 equals 9, the system retrieves the
ninth message in MSGSET.

SAMPLE

MSG9
PNUMB
MSGSTMT

PROGRAM

GETVALUE

EQU
DATA
COMP

START,200,DS=((MSGSET,EDX002))

PNUMB,+MSG9,PROMPT=COND,COMP=MSGSTMT

9
F'O'
'SRCE',DS1,TYPE=DSK

o

C
-'~

\

.1

o

o

o

GETVALUE
GETVALUE - Read a value entered at a terminal (continued)

Message Return Codes

The system issues the following GETV ALUE return codes when you retrieve a prompt message
from a data set or module containing formatted program messages. The return codes are
returned in the first word of the task control block (TCB) of the program or task issuing the
instruction. The label of the TCB is the label of your program or task (taskname).

Code
-1
301-316

326
327
328
329
330
331
332
333
334
335

Description

Message successfully retrieved
Error while reading message from disk. Subtract
300 from this value to get the actual return code. See
the disk return codes following the READ or WRITE
instruction for a description of the code.
Message number out of range
Message parameter not found
Instruction does not supply message parameter(s)
Invalid parameter position
Invalid type of parameter
Invalid disk message data set
Disk message read error
Storage resident module not found
Message parameter output error
Disk messages not supported (MINMSG support only)

Chapter 2. Instruction and Statement Descriptions LR-229

GIN
GIN - Enter unsealed cursor coordinates

Syntax Example

LR-230 SC34-0643

The GIN instruction allows you to specify unsealed cursor coordinates interactively. The
instruction rings the bell, displays cross-hairs, and waits for you to position the cross-hairs and
enter a single character. GIN then stores the coordinates of the cross-hair cursor. It also stores
the character you entered, if you request this.

Cursor coordinates are unsealed. The PLOTGIN instruction obtains coordinates scaled by the
use of a PLOTCB control block.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

x

y

char

Px=

GIN x,y,char,P1 =, P2=,P3=

x,y
no character returned
none

Description

The location where the x cursor coordinate value is to be stored.

The location where the y cursor coordinate value is to be stored.

The location where the character you select is to be stored. The character is
stored in the right-hand byte. The left byte is set to zero. If you do not code this
operand, the instruction does not store the selected character.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

Store the x coordinate in X and the y coordinate in Y. Store the character in the location
CHAR.

GIN X,Y,CHAR

o

o

o

o

()

o

The GOTO instruction allows you to pass control, or "branch," to another instruction in the
program.

The statement can:

Pass control directly to the label of an instruction.

Pass control to an address defined by a label.

Pass control to one of the labels in a list based on the value of an index word.

GOTO can also be used as an operand of the IF instruction.

Syntax:

:2'1081

label

Required:
Defaults:
Indexable:

Operand

loc

locO,locl,
... ,locn

index

Px=

GOTO
GOTO
GOTO

lac
none
index

Description

ioc,P'i=

(locO,loc'!,loc2, ... ,iocn),irldex, p'~ =, P2o=

The label of the instruction to receive control. Enclose this label in parentheses
if the label points to a data area containing the address of the next instruction to
be executed. It may also be a displacement value from index register #1 or #2.

The instruction you branch to must be on a fullword boundary.

The labels in a list of instruction labels that can receive control depending
on the value of the index word. The label at loc 1 receives control if the index
value is equal to 1. The label at loc2 receives control if the index value is equal
to 2, and so on. The first label, locO, is the label of the instruction that receives
control if the value of the index word is not in the range of 10cI-locn.

The number of instruction labels in the list plus 1 must not exceed 50.

The label of an index word containing a value that determines the label to branch
to in a list of labels.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-I2 for a detailed description of how to code these operands.

Chapter 2. Instruction and Statement Descriptions LR-23 1

GOTO
GOTO - Go to a specified instruction (continued)

Syntax Examples

1) Branch to the label EXIT.

GOTO EXIT

2) Move the address of the ADD instruction into HOLD and branch to that address.

MOVEA HOLD,NEXT

GOTO (HOLD)

NEXT ADD A,B

HOLD DATA F'O'

3) The branch depends on the value in INDEX. If the value in INDEX is 1, the instruction
branches to label Ll. If the value in INDEX is 2, the instruction branches to label L2. Any
other value in INDEX causes the instruction to branch to ERR.

GOTO (ERR,L1,L2) ,INDEX

Another example using GOTO is shown under "Syntax Examples with IF, ELSE, and ENDIF"
on page LR-239.

LR-232 SC34-0643

o

o

o

o

o

HASHVAL
HASHVAL - Condense a character string

The HASHV AL instruction generates a value that is the sum of the binary values of a specified
character string. You can use this value to provide a compressed form of character strings.
Although other applications are possible, the following two uses are most common:

You can use the hash value as an element in a list of nearly unique one-byte values
corresponding to a list of character strings. Your program can search this list for a match
condition using a computed hash value.

You can use the hash value as an index into a table of up to 256 bytes.

Because there are far more combinations of 8-byte character strings than can be represented in
one byte, duplicate hash values can result from unique character strings. Using a hash technique
should provide help in dealing with this potential condition. When the number of duplicate hash
values exceeds approximately one half of the total number of character strings, the hash
technique begins to lose its advantage.

The algorithm used to get the hash value is as follows:

1. The character string is padded with blanks on the right to the length specified in the
instruction; then, if required, the string is padded with zeros to make a total of eight
characters.

2. The first four bytes are added to the second four bytes to form a partial result.

3. The first two bytes of the partial result are then added to the second two bytes, forming a
second partial result.

4. The resulting two bytes are then added together forming the final result or one-byte hash
total.

Syntax:

label

Required:
Defaults:
Indexable:

HASHVAL 'character string',RANGE=,LENGTH=,
TYPE=

'character string'
RANGE=256,LENGTH=8,TYPE=DATA
none

Chapter 2. Instruction and Statement Descriptions LR-233

HASHVAL
HASHVAL - Condense a character string (continued)

Syntax Examples

LR-234 SC34-0643

Operand

character
string

RANGE =

LENGTH =

TYPE =

Description

Code the actual character string and enclose it in quotes. The maximum
length is 8 bytes (characters) unless specified as less with the LENGTH operand.
If fewer characters are coded than the default or specified length, the string is
padded to the right with blanks to fill the field.

A value from I to 2S6 that specifies the maximum range of resulting hash values
(the modulus function). The resulting hash value is the remainder of the I-byte
sum divided by either the range value specified or the default value of 2S6.

A value from I to 8 that specifies the maximum number of characters to be used
in calculating the hash value. If you specify a character string with fewer
characters than the maximum, the system pads the character string to the right
with blanks until it equals the length specification.

EQU, assigns the resulting hash value the label you coded for the HASHVAL
instruction.

DATA (the default), does not equate the final hash value with the instruction
label.

1) Generate a hash value of X'7F'.

HASHVAL 'EIGHTCNT'

2) Generate a hash value of X'SC'.

HAS HVAL 'FOUR'

3) Generate a hash value of X'SA'. The value is not padded with blanks because LENGTH=4.

HAS HVAL 'FOUR' ,LENGTH=4

4) Generate a hash value of X'2A' (X'SC' modulus SO).

HASHVAL 'FOUR',RANGE=50

5) Generate a hash value of X'SC' and assign the HASHV AL label this value (LABEL EQU
X'SC').

LABEL HASHVAL 'FOUR' ,TYPE=EQU

o

c

o

CI

0

loeB
I DCB - Create an immediate device control block

The IDCB statement creates a standard immediate device control block that specifies a
hardware operation. You must use this statement when doing EXIO processing.

Note: Refer to the description manual for the processor in use for more information on IDCBs.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

IDCB COM MAN D=,ADDRESS=, DCB=, DATA=,
MOD4=,LEVEL=,IBIT=

label,COMMAND=,ADDRESS=
LEVEL=1,IBIT=ON
not applicable

Description

COMMAND= The specific I/O operation. Code one of the keywords from the following list.
In the following keyword list the resulting hexadecimal command code is shown
in parentheses. An x represents a character that is filled in by the value
specified by MOD4.

READ - Transfer a byte or word (Ox)
from the device

READl - Same as READ plus (Ix)
function bit set

READID - Read the device (20)
identification word

RSTATUS - Read the device status (2x)

WRITE - Transfer a byte or word (4x)
to the device

WRITEl - Same as WRITE plus (5x)
function bit set

PREPARE - Prepare the device for (60)
interrupts or initialization

CONTROL - Initiate a control (6x)
action to the device

RESET - Initiate a device (6F)
reset operation

Chapter 2. Instruction and Statement Descriptions LR-235

loeB
IOCB - Create an immediate device control block (continued)

Syntax Examples

START

SCSS

- Initiate a cycle
steal operation

- Initiate a start cycle
steal status operation

(7x)

(7F)

ADDRESS= The device address as two hexadecimal digits.

DCB=

DATA=

MOD4=

LEVEL =

IBIT=

The label of a DCB statement. See your hardware description manual to
determine whether you need to code this operand for the operation you want to
perform.

The data word to be transferred to the device by a WRITE, WRITE 1, or
CONTROL command. Code the actual data as four hexadecimal digits.

A 4-bit device-dependent value that modifies the command code specified by the
COMMAND operand. Code one hexadecimal digit.

The hardware interrupt level to be assigned to the device by a PREP ARE
command.

ON (the default), to allow the device to present interrupts.

OFF, if the device should not present interrupts.

1) Transfer data to the device and set the function bit.

IDCB1 IDCB COMMAND=WRITE1,ADDRESS=OO,DATA=0041

2) Prepare the device for interrupts on hardware level 3.

PREPIDCB IDCB COMMAND=PREPARE,ADDRESS=E4,LEVEL=3,IBIT=ON

3) Start a cycle steal operation for the device.

WR1IDCB IDCB COMMAND=START,ADDRESS=E1,DCB=WR1DCB

LR-236 SC34-0643

o

r~
~"'--,

0 ,
-- - ';~'

o

c

o

IF
IF - Test if a condition is true or false

The IF instruction determines whether a conditional statement is true or false and, based on its
decision, determines the next instruction to execute.

A conditional statement can compare two data items or ask whether a bit is "on" (set to 1) or
"off" (set to 0). The instruction syntax shows the general format of conditional statements used
with the IF instruction.

You can compare data in two ways: arithmetically or logically. When you compare data
arithmetically, the system interprets each number as a positive or negative value. The system,
for example, interprets X'OFFF' as 4095. It interprets X'FFFF', however, as a -1. Though
X'FFFF' seems to be a larger hexadecimal number than X'OFFF', the system recognizes the
former as a negative number and the latter as a positive number. X'FFFF' is a negative number
to the system because the left-most bit is "on."

When you compare data logically, the system compares the data areas byte by byte. The system
interprets X'FFFF' not as a -1 but as a string of 2 bytes with all bits "on."

With EBCDIC or ASCII character data, the system makes a logical comparison of the
characters byte by byte. In a logical comparison of a capital 'A' (X'C1 ') with a capital 'H'
(X'C8'), the system recognizes the capital A to be "less than" the capital H. By comparing
character data logically, you can use the IF instruction to sort items alphabetically ('a' is less
than 'c' which is greater than 'b').

The syntax box shows the IF instruction with a single conditional statement. You can specify
several conditional statements on a single IF instruction, however, by using the AND and OR
keywords. These keywords allow you to join conditional statements. "Rules for Evaluating
Statement Strings Using AND and OR" on page LR-129 provides additional information
regarding use of the IF instruction. The keywords are described in the operands list and
examples using the keywords are shown following the instruction description.

Syntax:

label

label

Required:
Defaults:
Indexable:

IF (data1,condition,data2,width)

IF (data1,condition,data2,width),GOTO,loc

one conditional statement
width is WORD for arithmetic comparison
data 1 and data2 in each statement

Chapter 2. Instruction and Statement Descriptions LR-237

IF
IF - Test if a condition is true or false (continued)

LR -238 SC34-0643

Operand

datal

condition

data2

Description

The label of a data item to be compared to data2 or the label of the data area
that contains the bit to be tested.

An operator that indicates the relationship or condition to be tested. The valid
operators for the IF instruction are as follows:

Arithmetic and Logical
Comparisons

EO - Equal to
NE - Not equal to
GT - Greater than
L T - Less than
GE - Greater than or equal to
LE - Less than or equal to

Testing a Bit
Setting

ON or OFF

The label of a data item to be compared to datal or the label of the data area
that contains the bit in datal to be tested. For an arithmetic comparison, specify
immediate data or the label of a data area. Immediate data can be an integer
from 0 to 32767, or a hexadecimal value from 0 to 65535 (X'FFFF'). For a
logical comparison, specify the label of a data area. For a bit comparison,
specify immediate data.

When you check a bit setting, remember that bit 0 is the leftmost bit of the data
area.

width Specify an integer number of bytes for a logical comparison (no default).

GOTO

For an arithmetic comparison, you can specify one of the following:

BYTE - Bytes
WORD - Words (the default)
DWORD - Doublewords
FLOAT - Floating-points (one word, 2-byte value)
DFLOAT - Doublewords, floating-points (4-byte value)

If the statement is true and GOTO is coded, control passes to the instruction at
loc.· If the statement is false, execution proceeds sequentially.

If GOTO is not coded, THEN is assumed and the next instruction is determined
by the IF-ELSE-ENDIF structure. If the condition is true, execution proceeds
sequentially. If the condition is false, execution continues with the next ELSE
statement (if one is coded) or ENDIF statement.

".1 0 '1

o

o

c

0 ',1 .1

IF
IF - Test if a condition is true or false (continued)

loe U sed with GOTO to specify the address of the instruction to be executed if the
statement is true. The instruction must be on a fullword boundary.

AND Enables you to join conditional statements. Code the operand between the
conditional statements you want to join. The AND operand indicates that each
of the conditional statements must be true before a program will execute. See
the syntax examples for this instruction.

OR

Notes:

You can join several pairs of conditional statements by using several AND
operands. You also can use the AND and OR operands within the same IF
instruction.

Enables you to join conditional statements. Code the operand between the
conditional statements you want to join. The OR operand indicates that one of
the conditional statements must be true before a program will execute.

You can join several pairs of conditional statements by using several OR
operands. You also can use the OR and AND operands within the same IF
instruction.

1. See "Rules for Evaluating Statement Strings Using AND and OR" on page LR-129 for
information on use of the OR and AND operands to connect statements logically within the
IF instruction.

2. Code the word THEN after the conditional statement to make the program easier to read.
See Syntax Example 2.

Syntax Examples with IF, ELSE, and ENDIF

1) If A equals B, pass control to the instruction at label ERROR. This is an arithmetic
comparison.

IF (A,EQ,B) ,GOTO,ERROR

2) If the first 4 bytes of A are greater than or equal to the first four bytes of B, pass control to
the instruction at label RETRY. This is a logical comparison.

IF (A,GE,B,4),GOTO,RETRY

Chapter 2. Instruction and Statement Descriptions LR-239

IF
IF - Test if a condition is true or false (continued)

3) If C is not equal to D, execute the code that follows the IF instruction. This is an arithmetic
comparison.

IF (C,NE,D) ,THEN

ENDIF

4) If register #1 is equal to 1, execute the code that follows the IF instruction; if #1 is not equal
to 1, execute the code following the ELSE statement. This is an arithmetic comparison.

IF (# 1 , EQ, 1)

ELSE

ENDIF

5) If the first three bytes of A are less than the first three bytes of B, execute the code following
the IF instruction. If the first three bytes of A are greater than or equal to the first three bytes
of B, execute the code following the ELSE statement. This is a logical comparison.

IF (A,LT,B,3)

ELSE

ENDIF

LR-240 SC34-0643

o

o

o

o

IF
IF - Test if a condition is true or false (continued)

6) Test whether A is equal to B and whether C is equal to D. If both conditional statements are
true, execute the code that follows the IF instruction; if either one or both of the conditional
statements are false, execute the code following the ELSE statement. This is an arithmetic
comparison.

IF (A,EQ,B) ,AND, (C,EQ,D)

ELSE

ENDIF

7) If A equals B and X is greater than Y, instructions xl, x2, and x3 will execute. If A equals B,
but X is not greater than Y, instructions xl and x3 will execute. If A does not equal B, only
instruction x4 executes.

IF (A,EQ,B)
x1

IF (X,GT,Y)
x2

ENDIF
x3

ELSE
x4

ENDIF

8) If the third bit starting at label A is aI, execute the code following the IF instruction. If the
third bit starting at label A is a 0, execute the code following the ELSE statement.

IF (A,ON,2)

ELSE

ENDIF

Chapter 2. Instruction and Statement Descriptions LR -241

IF
IF - Test if a condition is true or false (continued)

9) If the bit in A at the position defined by BITt is a 0, execute the code following the IF
instruction. If the bit is not a 0, set the value of the bit to 0.

LR-242 SC34-0643

IF (A,OFF,BIT1)

ELSE
SETBIT A,BIT1,OFF

ENDIF

o

o

o

o

o

o

IF - Test if a condition is true or false (continued)

Sample Conditional Statements

Arithmetic comparisons

(A,EQ,O)
(A,EQ,X'0022')
(A,NE,B)
(DATA1,LT,DATA2,WORD)
(CHAR,EQ,C'A' ,BYTE)
(XVAL,GT,Y,DWORD)
((A, # 1) , EQ , 1)
((A 1 , # 1) , LE, (B 1 , # 2))
(# 1 , EQ, 1)
(# 1 , GT, #2)
((C,#2) ,EQ,CHAR,BYTE)
(F1 , GT, 0, FLOAT)
(L2,LT,L3,DFLOAT)
((BUF,#1) ,LE,1,FLOAT)

D EQU 2

Comments

A equal to 0, WORD
A equal to hexadecimal 22, WORD
A not equal to B, WORD
DATA1 less than DATA2, WORD
CHAR equal to 'A', BYTE
XVAL greater than Y, DWORD
(A,#1) equal to 1, WORD
(A1,#1) LE (B1,#2), WORD
#1 equal to 1, WORD
#1 greater than #2, WORD
(C,#2) equal to CHAR, BYTE
F1 greater than 0, FLOAT
L2 less than L3, DOUBLEWORD FLOATING-POINT
(BUF,#1) less than or equal 1, FLOAT

D has a word value of x'0002'
IF (B,EQ,+D,BYTE) B equal to X'OO' (leftmost byte of D)

Logical Comparisons

(A,EQ,B,8)

Comments

A equal to B, 8 bytes
(BUF,#1) not equal to DATA, 3 bytes
A equal to B, 2 bytes
DATA1 less than DATA2, 3 bytes

IF

((BUF,#1) ,NE,DATA,3)
(A,EQ,B,2)
(DATA1,LT,DATA2,3)
((BUF,#1) ,GE,DATA,4) (B~F,#1) greater than or equal to DATA, 4 bytes

Testing a bit Comments

(A,ON,B)
(A,OFF,C'BB')

(DATA1,ON,X'413C')

Sample Conditional Statement Strings

(A,EQ,B) ,AND, (A,EQ,C)

The bit at position B in data area A is a 1
The bit at the hexadecimal displacement
represented by the characters 'BB' in data
area A is a O. Actual displacement
is X'C2C2'.
Bit at displacement X'413C' in DATA1 is a 1.

(A,NE, 1) ,OR, (D,EQ,E,DWORD) ,AND, (#1 ,NE, 14)
(F, EQ,G, 8) ,AND, (#1 , EQ, #2) ,AND, (X, EQ, 1) , OR, (RESULT, GT, 0)
(DATA,EQ,C'j' ,BYTE) ,OR, (DATA,EQ,C'*' ,BYTE)
((BUF,#1) ,NE, (BUF,#2)) ,OR, (#1 ,EQ,#2)

Chapter 2. Instruction and Statement Descriptions LR-243

INTIME
INTIME - Provide interval timing

LR-244 SC34-0643

The INTIME instruction provides two forms of interval timing information, reltime and loco The
first form, reltime, is a 2-word area in your program where INTIME stores a value each time an
INTIME instruction executes. This value is equal to the elapsed time since system IPL. The
count is expressed in milliseconds and is in double-precision integer format. The maximum
value for reltime is reached after approximately 49 days of continuous operation. The system
resets the counter to 0 at that time.

The second form, loc, is a single-precision integer variable where INTIME stores the time in
milliseconds since the previous execution of an INTIME instruction in this task. The maximum
interval between calls to INTIME (that is, the maximum value that can be stored at loc) is
65,535 milliseconds (65.535 seconds).

Note: Each task in the system has available to it one software-driven timer which operates with
a precision of 1 millisecond. Use the STIMER instruction to operate this timer in any task.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

reItime

toe

INDEX

Px=

INTIME

reltime,loc
no indexing
loc

Description

relti me, loc, I N D EX, P2=

The label of a 2-word table where a relative time marker may be stored. This
field should be defined by DATA 2F'0'. The relative time marker is a
double-precision count, in milliseconds, which indicates the relative time at which
the last INTIME was issued. It should be initialized to O. Proper use of this
parameter allows you to measure different intervals from the same origin in time.

The label of a buffer of data area where interval time data is to be stored. When
reltime = 0, as after initialization, the first interval returned will also be o.

Automatic indexing is to be used. The operand loc must be defined by a
BUFFER statement when INDEX is used.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

o

o

o

o

o

INTIME
INTIME - Provide interval timing (continued)

Coding Example

When the INTIME instruction executes, it places the number of milliseconds that have elapsed
since system IPL in the UPTIME variable. Because the LOC variable refers to a BUFFER
statement and automatic indexing is used, the interval count since execution of the previous
INTIME instruction will be placed in the next available BUFFER location. The PRINTEXT
and PRINTNUM instructions print the data on the appropriate forms.

GETTIME EQU
INTIME
DIVIDE
DIVIDE
DIVIDE

*

*
UPTIME, INTERVAL, INDEX
UPTIME,1000,DWORD
UPTIME, 3600,DWORD
TASK,60,RESULT=MIN

ENQT $SYSPRTR

GET TIME IN MILLISECONDS
CONVERT TIME TO SECONDS
DIVIDE TO GET HOURS
DIVIDE THE REMAINDER TO
GET MINUTES

PRINTEXT '@ADDITIONAL 100 BARRELS OF OIL

UPTIME

PROCESSED AT HR:MIN'
PRINTNUM UPTIME,TYPE=D
PRINTNUM MIN
PRINTEXT '@AFTER BEGINNING OF PROCESSING RUN@'
PRINTEXT '@CURRENT BATCH TOOK'
MULT ENTRIES,2,RESULT=INDX
MOVEA #l,INTERVAL
ADD #l,INDX
DIVIDE (0,#1) ,1000,RESULT=SECONDS
PRINTNUM SECONDS
PRINTEXT ' SECONDS TO PRODUCE@'
DEQT

DATA 2F'O'
MIN DATA
SECONDS DATA
INTERVAL BUFFER

F'O'
F'O'
1000,WORDS,INDEX=ENTRIES
F'O' INDX DATA

x

Chapter 2. Instruction and Statement Descriptions LR-245

IOCB
IOCB - Define terminal characteristics

LR-246 SC34-0643

The lOeB statement defines a terminal name and terminal characteristics for use with the
ENQT instruction. You can use this statement to temporarily change such terminal
characteristics as screen or page margins. You define these and other terminal characteristics
during system generation. When your program releases control of a terminal, the characteristics
you defined with the lOeB statement are no longer in effect.

Do not code P AGSIZE, TOPM, BOTM, LEFTM, RIGHTM, or NHIST loeB instruction
operands for a 3101 in block mode:

When coding the IOCB instruction, you can include a comment which will appear with the
instruction on your compiler listing. If you include a comment, you must specify at least one
operand with the instruction. The comment must be separated from the operand field by one or
more blanks and it may not contain commas.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

name

IOCB

none

name, PAGSIZE=, TOPM=, BOTM=, LE FTM=, RIG HTM=,
SCREEN=, N H IST=,OVFLI NE=, BU FFER= comment

see discussion below
none

Description

The name of a terminal as defined by the label on a TERMINAL definition
statement used in system generation. See the Installation and System Generation
Guide for a description of the TERMINAL definition statement. This operand
generates an 8-character EBCDIC string, padded as necessary with blanks,
whose label is the label on the IOCB instruction. It may, therefore, be modified
by the program. If unspecified, the string is blank and implicitly refers to the
terminal which is currently in use by the program.

o

Cl

c

IOCB o IOCB - Define terminal characteristics (continued)

c

o

Note: Except for the BUFFER operand, the following operands have default values established
by the TERMINAL definition statement

PAGSIZE= The physical page size (form length) of the I/O medium. Specify an integer
between 1 and the maximum value which is meaningful for the device. For
printers, specify the number of lines per page. For screen devices, specify the
size of the screen in lines. This operand is not required for the 4978, 4979, or
4980 display terminal.

TOPM=

BOTM=

If you specify this operand, BOTM must be between TOPM plus NHIST, AND
P AGSIZE-l. Otherwise, unpredictable results will occur.

The top margin (a decimal number between zero and PAGSIZE-l) to indicate
the top of the logical page within the physical page for the device. The default is
O.

The bottom margin, the last usable line on a page. Its value must be between
TOPM+NHIST and PAGSIZE-l. The default is PAGSIZE-l. If an output
instruction would cause the line number to increase beyond this value, then a
page eject, or wrap to line zero, is done before the operation is continued.

LEFTM= The left margin, the character position at which input or output begins. The
default is O. Specify a decimal value between zero and LINSIZE-l.

RIGHTM= A value (between LEFTM and LINSIZE-l) that determines the last usable
character position within a line. Position numbering begins at zero.

SCREEN =

NHIST=

If a BUFFER statement is not specified, the default is LINSIZE-l. If a
BUFFER statement is specified, the value you specify should be one less than
the buffer size value.

ROLL, the default, for screens that are to be operated similar to a typewriter.
For screen devices which are attached through the teletypewriter adapter, ROLL
indicates that the system will pause when a screen-full condition occurs during
continuous output.

ST ATIC, for a full-screen mode of operation, if full-screen mode is supported for
the device. For the 3101 Display Terminal, STATIC is valid only for block
mode.

The number of history lines to be retained when a page eject is done on the
4978, 4979 or 4980 display. The default is O. The line at TOPM+NHIST
corresponds to logical line zero for the terminal I/O instructions. When a page
eject (LINE=O) is performed, the screen area from TOPM to TOPM+NHIST-l
will contain lines from the previous page.

Chapter 2. Instruction and Statement Descriptions LR-247

IOCB
loeB - Define terminal characteristics (continued)

OVFLINE= YES, if output lines which exceed the right margin are to be continued on the
next line.

BUFFER =

NO, the default, if the lines are not to be continued.

The overflow condition occurs when the system buffer (or a buffer in an
application program) becomes full and the application program has taken no
action to write the buffer to the device.

If the application requires a temporary I/O buffer of a different size from that
defined by the LINSIZE parameter on the TERMINAL statement, then set this
operand with the label of a BUFFER statement allocating the desired number of
bytes. The buffer size then temporarily replaces the LINSIZE value and is also
the maximum amount that can be read or written at a time. For data entry
applications which require full screen data transfers, for example, this avoids the
need for allocation of a large buffer within the resident supervisor.

Note that when the buffer size is greater than the 80-byte line size of the 4978,
4979, and 4980 displays, all data transfers take place as if successive lines of the
display were concatenated. Screen positions are still designated, however, by the
LINE and SPACES parameters with respect to an 80-byte line.

If the buffer size is less than the 80-byte line size of the 4978, 4979, or 4980
display, the logical screen boundaries are adjusted accordingly. If the RIGHTM
is not specified or has a value greater than the buffer size, it is adjusted to one
less than the buffer size value. Portions of the screen outside this range are not
accessible by the application program.

Direct I/O Considerations

LR-248 SC34-0643

If the temporary buffer is not directly addressed by a terminal I/O instruction, then it acts as a
normal system buffer of size RIGHTM+ 1. It may also be used, however, for direct terminal
I/O. Direct terminal I/O occurs when the buffer, defined by an active 10CB, is directly
addressed by a PRINTEXT or READTEXT instruction. In this case the data is transferred
immediately and the new line character (for carriage return, line feed, and so on) is not
recognized.

When doing direct output operations, you must insert the output character count in the index
word of the BUFFER before the PRINT EXT (output) instruction. This mode of operation
allows the transfer of large blocks (larger than can be accommodated by a TEXT buffer) of data
to and from buffered devices such as the 4978, 4979, 4980, and 3101 displays or buffered
teletypewriter terminals. On execution of DEQT, the buffer defined by the TERMINAL
statement is restored.

o

o

o

IOCB o IOCB - Define terminal characteristics (continued)

Coding Example

o

o

The following example shows a use of the lOeB instruction.

In this program an ENQT instruction enqueues an lOeB whose label is TERMINAL. The
lOeB instruction refers to a terminal that was assigned the label TERM24 during system
generation. If no terminal named TERM24 had been defined in the system generation, the
terminal currently in use by the program would be used by default. The lOeB defines a logical
static screen that is 40 columns wide and 12 rows deep, in the middle of the physical display.

The terminal does not use the system-defined buffer for I/O operations, but instead uses a
program-defined data buffer area called BUFR. The terminal retains the characteristics defined
in the lOeB until the program executes a DEQT or PROGSTOP instruction.

GETPRTR EQU
ENQT

*
TERMINAL

TERMINAL IOCB TERM24,TOPM=6,BOTM=17,LEFTM=20,RIGHTM=59,
SCREEN=STATIC,BUFFER=BUFR

BUFR BUFFER 480,BYTES

C

Chapter 2. Instruction and Statement Descriptions LR-249

IODEF
10DEF - Assign a symbolic name to a sensor-based I/O device

LR-250 SC34-0643

The I/O definition statement (IODEF) defines the hardware address and attributes of a
sensor-based I/O device and assigns a label to that device.

The device label consists of two characters that define the type of sensor-based I/O device you
are using, followed by a number from one to 99 that identifies the individual device. The types
of devices are: AI (Analog Input), AO (Analog Output), DI (Digital Input), DO (Digital
Output), and PI (Process Interrupt).

You use the label assigned by 10DEF to code a sensor-based I/O instruction (SBIO). The
SBIO instruction only refers to the label of the I/O device. You specify the actual physical
address of the device and the device attributes on the 10DEF statement. (See the SBIO
instruction for more details on using the symbolic device name.) The WAIT and POST
instructions refer to the 10DEF Process Interrupt statement.

Each 10DEF statement creates an SBIO control block (SBIOCB). The control block provides
the link between the 10DEF statement and the SBIO instruction that refers to it. The control
block also provides a location into which your program can read data or from which it can write
data. The system stores data in the control block if you have not specified another storage
location on the SBIO instruction. The contents of the SBIOCB are described in the Internal
Design.

Each type of sensor-based I/O device requires a specific type of IODEF statement. You must
group all IODEF statements that refer to the same type of device together in your application
program. In addition, you must place all IODEF statements in your program before the SBIO
instructions that refer to them.

In EDL, All IODEF statements must be in the same assembly module as the TASK or
ENDPROG statement. If the SBIO instructions are to be in a separate module, you can provide
symbolic names using ENTRY /EXTRN statements. You must create a separate 10DEF for
each task; different tasks cannot use the same IODEF statement.

The syntax of the 10DEF statement for each device type (AI, AO, DI, DO, and PI) appears on
the following pages.

o

o

o

IODEF(Analog Input) o 10DEF - Assign a symbolic name to a sensor-based I/O device (continued)

o

o

IODEF (Analog Input)

Syntax Example

Syntax:

label

Required:
Defaults:
Indexable:

Operand

Alx

IODEF AJx,ADDRESS=, POI NT=, RANG E=,ZCOR=

Alx,ADDRESS=, POI NT=
RANGE=5V, lCOR=NO
none

Description

Analog Input, where "x" is the number (1-99) you assign to an I/O device to
identify it in your application program. If you include more than one 10DEF
Alx statement in the program, you must group these statements together.

ADDRESS= A two-digit hexadecimal address.

POINT=

RANGE =

ZCOR=

The analog input point. The point is 0 - 7 for AI relay or 0 - 15 for AI solid
state.

Range for the multirange amplifier.

5V = 5 Volts
500MV = 500 Millivolts
200MV = 200 Millivolts
100MV = 100 Millivolts
50MV = 50 Millivolts
20MV = 20 Millivolts
10MV = 10 Millivolts

YES, to use the zero-correction facility of AI.

NO (the default), not to use the zero-correction facility.

Define an analog input device with the label All.

INPUT IODEF AI1,ADDRESS=72,POINT=1,RANGE=50MV,ZCOR=YES

Chapter 2. Instruction and Statement Descriptions LR -251

IODEF (Analog Output)
10DEF - Assign a symbolic name to a sensor-based I/O device (continued/ 0
IODEF (Analog Output)

Syntax Example

LR-252 SC34-0643

Syntax:

label

Required:
Defaults:
Indexable:

Operand

AOx

ADDRESS=

POINT=

IODEF AOx,ADDRESS=,POINT=

AOx,ADDRESS=
POINT=Q
none

Description

Analog Output, where "x" is the number (1-99) you assign to an I/O device to
identify it in your application program. If you include more than one IODEF
AOx statement in the program, you must group these statements together.

A two-digit hexadecimal address.

The analog output point. The point range is 0 - 1.

Define an analog output device with the label A02.

OUTPUT IODEF A02,ADDRESS=75,POINT=1

o

o

IODEF (Digital Input) o 10DEF - Assign a symbolic name to a sensor-based I/O device (continued)

o

o

IODEF (Digital Input)

Syntax Example

Syntax:

label IODEF Dlx, TYPE=GROU P,ADDRESS=
or

Dlx,TYPE=SUBGROUP,ADDRESS=,BITS=(u,v)
or

Dlx, TYPE=EXTSYNC,ADDRESS=

Required: All
Defaults: none
Indexable: none

Operand Description

DIx

TYPE =

Digital input, where "x" is the number (1-99) you assign to an I/O device to
identify it in your application program. If you include more than one 10DEF
Dlx statement in the program, you must group these statements together.

The type of DI operation you are performing. Code one of the following:

GROUP The I/O operations will use the entire group of 16 DI points. DI
operates in unlatched mode.

SUBGROUP The I/O operations will use a subset of the 16-bit group. The
subgroup is stored right-adjusted in the input word with the
leftmost bits set to zero. DI operates in unlatched mode.

EXTSYNC The I/O operations will use the hardware external
synchronization feature for DI. You must code the count field on
the associated SBIO instructions. DI operates in latched mode.

ADDRESS= A two-digit hexadecimal address.

BITS=(u,v) The portion of the 16-point group you are using when you specify
TYPE = SUBGROUP. The portion starts at bit u (0 to 15) for a length of v (1 to
16-u).

Define a digital input device with the label DIl.

INPUT IODEF DI1,TYPE=GROUP,ADDRESS=49

Chapter 2. Instruction and Statement Descriptions LR -253

IODEF (Digital Input)

10DEF - Assign a symbolic name to a sensor-based I/O device (continued)

IODEF (Digital Output)

LR-254 SC34-0643

Syntax:

label IODEF DOx,TYPE=GROUP,ADDRESS=
or

DOx,TYPE=SU BG ROU P,ADDRESS=, BITS=(u, v)
or

DOx,TYPE=EXTSYNC,ADDRESS=,BITS=(u,v)

Required: All
Defaults: none
I ndexable: none

Operand Description

DOx

TYPE =

Digital output, where "x" is the number (1-99) you assign to an I/O device to
identify it in your application program. If you include more than one IODEF
DOx statement in the program, you must group these statements together.

The type of DO operation you are performing. Code one of the following:

GROUP The I/O operations will use the entire group of 16 DO points.

SUBGROUP The I/O operations will use a subset of the 16-bit group. Bits
that are not part of the subset you specify remain unchanged.

EXTSYN C The I/O operations will use the hardware external
synchronization feature for DO. You must code the count field
on the associated SBIO instructions.

ADDRESS= A two-digit hexadecimal address.

BITS=(u,v) The portion of the 16-point group you are using when you specify
TYPE=SUBGROUP. The portion starts at bit u (0 to 15) for a length of v (1 to
16-u).

o

o

o

IODEF (Digital Output) o IODEF - Assign a symbolic name to a sensor-based I/O device (continued)

o

o

Syntax Examples

1) Define a digital output device with the label DO 1. The I/O operations will use the entire
group of 16 DO points (TYPE=GROUP).

OUTPUT IODEF D01,TYPE=GROUP,ADDRESS=4B

2) Define a digital output device with the label D02. The I/O operations will use the hardware
external synchronization feature (TYPE=EXTSYNC).

OUTPUT2 IODEF D02,TYPE=EXTSYNC,ADDRESS=4A

Chapter 2. Instruction and Statement Descriptions LR-255

IODEF (Process Interrupt)

IODEF - Assign a symbolic name to a sensor-based I/O device (continued)

IODEF (Process Interrupt)

LR-256 SC34-0643

Syntax:

label IODEF

Required: All
Defaults: none
Indexable: none

Operand Description

Plx,ADDRESS=,BIT=,SPECPI=
or

Plx,AD D R ESS=, TY P E= BIT, B IT=, SPEC P 1=
or

Plx,ADDR ESS=, TYPE=G ROU P,SPECPI=

PIx Process interrupt, where "x" is the number (1-99) you assign to an I/O device
to identify it in your application program. If you include more than one 10DEF
PIx statement in the program, you must group these statements together.

ADDRESS= A two-digit hexadecimal address.

BIT=

TYPE =

The bit number (0 - 15) used for PI.

Indicates when the system will invoke the special process interrupt routine you
provide. Code one of the following:

GROUP The supervisor gives control to the special interrupt routine you
provide if an interrupt occurs on any bit in the PI group. The PI
group is not read or reset; reading or resetting the PI group is the
responsibility of your routine.

Control returns to the supervisor with a branch to the entry point
SUPEXIT. You must include the module $EDXATSR with your
program to use SUPEXIT. If the routine processes the interrupt on
level 0, it can issue a Series/l hardware exit level instruction (LEX)
instead of returning to SUPEXIT. Issuing the LEX instruction
greatly improves performance.

Note: To use TYPE=GROUP, you must be familiar with the
operation of the Series/l process interrupt feature. Your routine
must contain all the instructions necessary to read and reset the
process interrupt group to which it refers.

o

o

c

o

(' I ,'/
")11

o

IODEF(Process Interrupt)
IODEF - Assign a symbolic name to a sensor-based I/O device (continued)

SPECPI=

Syntax Examples

BIT The supervisor gives control to the special interrupt routine you
provide only when an interrupt occurs on the bit specified in the
BIT = operand.

When control returns to the supervisor, the contents of R 1 must be
the same as when the system invoked your routine and RO must
contain either '0' or a POST code. If RO contains a POST code, R3
must contain the address of an ECB to be posted by the POST
instruction.

Register 7 contains the supervisor return address on entry. If your
routine is in partition 1, you can return control to the supervisor by
using the assembler instruction BXS (R7). The SPECPIRT
instruction allows you to return control to the supervisor from any
partition. (See the SPECPIRT instruction for a coding description.)

The label of the first instruction of a special process interrupt routine. You must
write the routine in Series/1 assembler language.

The supervisor executes the routine when the defined interrupt occurs. This
routine bypasses the normal supervisor response and allows you to handle
process interrupts quickly.

You can include more than one special process interrupt routine in your program.
.."

1) Define a process interrupt device with the label PI 1.

A IODEF Pll,ADDRESS=48,BIT=2

2) Define a process interrupt device with the label PI2.

B IODEF PI2,ADDRESS=49,BIT=15

Chapter 2. Instruction and Statement Descriptions LR -257

IODEF (Process Interrupt)
10DEF - Assign a symbolic name to a sensor-based I/O device (continued)

Coding Examples

1) The supervisor passes control to the special interrupt routine F ASTPI 1 when an interrupt
occurs on bit 3.

IODEF

FASTPI1 EQU

MVW

MVA
MVWI
MVW
SPECPIRT

PI2,ADDRESS=48,BIT=3,TYPE=BIT,SPECPI=FASTPI1

*
R 1, SAVER 1

PI2,R3
3,RO
SAVER1,R1

SAVE R1

PUT THE ADDR OF PI2 IN R3
POSTING CODE IN RO
RESTORE R1
RETURN TO SUPERVISOR

2) The supervisor passes control to the special interrupt routine labeled FASTPI2 when an
interrupt occurs on anyone of the PI group bits at address 49.

IODEF PI6,ADDRESS=49,TYPE=GROUP,SPECPI=FASTPI2

FASTPI2 EQU *

LR-258 SC34-0643

o

c

o

o

o

lOR
lOR - Compare the binary values of two data strings

The Inclusive OR instruction (lOR) compares the binary value of operand 2 with the binary
value of operand 1. The instruction compares each bit position in operand 2 with the
corresponding bit position in operand 1 and yields a result, bit by bit, of 1 or O. If either or both
of the bits compared is 1, the result is 1. If neither of the bits compared is 1, the result is O.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

opndl

opnd2

count

RESULT =

lOR opnd1 ,opnd2,count, RESU L T=,
P1 =, P2=, P3=

opnd1,opnd2
count=(1 ,WORD)' RESU L T=opnd1
opnd1,opnd2,RESULT

Description

The label of the data area to be compared with opnd2. Opndl cannot be a
self-defining term.

The value to be compared with opnd 1. You can specify a self -defining term or
the label of a data area.

Specify the number of consecutive values in opnd 1 on which the operation is to
be performed. The maximum value allowed is 32767.

The count operand can include the precision of the data. Select one precision
which the system uses for opndl, opnd2, and the resulting bit string. When
specifying a precision, code the count operand in the form,

(n,precision)

where "n" is the count and "precision" is one of the following:

BYTE -- byte precision
WORD -- word precision (default)
DWORD -- double word precision

The precision you specify for the count operand is the portion of opnd2 that is
used in the operation. If the count is (3,BYTE), the system compares the first
byte of data in opnd2 with the first three bytes of data in opnd 1.

The label of the data area or vector in which the result is to be placed. When
you specify RESULT, the value of opndl does not change during the operation.
This operand is optional.

Chapter 2. Instruction and Statement Descriptions LR-259

lOR
lOR - Compare the binary values of two data strings (continued)

Syntax Examples

LR -260 SC34-0643

Px= Parameter naming operands. See "Using The Parameter Naming pperands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

1) Compare X'F008' with the contents of STRING and place the result in the data area labeled
ANS.

lOR STRING,X'F008' ,RESULT=ANS

STRING
ANS

DATA X'OF08'
DATA F'O'

binary 0000 1111 0000 1000
binary zeros

After the lOR operation, ANS contains:

Hexadecimal -- X'FF08'

Binary -- 1111 1111 0000 1000

2) Compare the contents of OPER2 to the first three doublewords beginning at label OPER1
and place the result in the data area labeled RESUL TX.

lOR OPER1,OPER2, (3,DWORD) ,RESULT=RESULTX

OPER1

OPER2
RESULTX

DC
DC
DC
DC
DC
DC
DC
DC

X'FFFF' binary
X'OOOO' binary
X'8888' binary
X'4S67' binary
X'1111' binary
X'AAAA' binary
2X'AAAA'
6F'0'

After the operation, RESUL TX contains:

1111 1 1 1 1 1 1 1 1
zeros
1000 1000 1000
0100 1010 0110
0001 0001 0001
1010 1010 1010

Hexadecimal -- X'FFFF AAAA AAAA EAEF BBBB AAAA'

1 1 1 1

1000
0111
0001
1010

C· ~.)
-

G

o

o

o

lOR
lOR - Compare the binary values of two data strings (continued)

3) Compare the first byte of data in TEST to the first three bytes of data in INPUT. Place the
result in the data area labeled OUTPUT.

lOR INPUT,TEST, (3,BYTE),RESULT=OUTPUT

INPUT
TEST
OUTPUT

DC
DC
DC

c' 1. 2'
C'O.O'
3C'0'

binary
binary
binary

After the operation, OUTPUT contains:

1111 0001 0100 1010 1111 0010
1111 0000
1111 0000 1111 0000 1111 0000

Binary -- 1111 000 1 1111 1010 1111 00 10

Chapter 2. Instruction and Statement Descriptions LR -261

LASTQ
LASTQ - Acquire the last queue entry in a chain

Coding Example

Return Codes

LR-262 SC34-0643

The LASTQ instruction acquires the last (most recent) entry in a queue. You define a queue
with the DEFINEQ statement. The queue entry can contain data or the address of a data
buffer. After you acquire the contents of the queue entry, the system adds the entry to the free
chain of the queue.

Syntax:

label

Required:
Default:
Indexable:

Operand

qname

loe

EMPTY =

Px=

LASTQ

qname,loc
none
qname,loc

Description

qname,loc,EMPTY=,P1=,P2=

The name of the queue from which the entry is to be fetched. The queue name is
the label on the DEFINEQ statement that creates the queue.

The label of a word of storage where the entry is placed. #1 or #2 can be used.

Specify the first instruction of the routine to be invoked if a "queue empty"
condition is detected during the execution of this instruction. If this operand is
not specified, control returns to the next instruction after the LASTQ. A return
code of -1 in the first word of the task control block indicates that the operation
completed successfully. A return code of + 1 indicates that the queue is empty.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

See the examples following the NEXTQ instructions.

The return codes are returned in the first word of the task control block (TCB) of the program
issuing the instruction. The label of the TCB is the label of your program or task (taskname).

Code Description

-1 Successful completion
1 Queue is empty

o

c

o

o

0"
, "

LOAD
LOAD - Load a Program

The LOAD instruction allows one program to load another main program or overlay program
from a program library on disk or diskette. The loaded program runs parallel with, and
independently of, the loading program, regardless of whether it is a main program or an overlay.
The loading program may, however, synchronize its own execution with the loaded program.

The LOAD instruction also allows you to load a program in another partition and to pass that
program parameters. See Appendix C, "Communicating with Programs in Other Partitions
(Cross-Partition Services)"on page LR-559 for an example of such a cross-partition operation.
Refer to the Event Driven Executive Language Programming Guide for more information on
cross-partition services.

A program can be loaded in two ways:

• As an independent program in its own contiguous storage area

As an overlay program within the storage area allocated for the loading program

The advantages of the independent LOAD operation are:

Main storage is allocated only when required

More than one program may be loaded for simultaneous execution

The advantages of the overlay LOAD operation are:

The availability of main storage can be guaranteed by the loading program since it is within
its own storage area

The loaded program is brought into storage more quickly than by an independent LOAD

Figure 9 on page LR-267 illustrates the two ways of loading a program.

You can test the first word of the task control block (TCB) of the loading program to determine
the result of the load operation. The label of the TCB is the label of the program (taskname).
If this word is -1, the operation was successful.

When a LOAD instruction loads either an independent program or an overlay, the address of
the currently active terminal of the loading program is stored in the program header of the
program being loaded.

Chapter 2. Instruction and Statement Descriptions LR-263

LOAD
LOAD - Load a Program (continued)

Syntax:

label

label

Required:
Defaults:
Indexable:

Operand

progname

PGMx

parmname

DEQT=

LOAD

LOAD

progname,parmname, DEQT=
DS=(dsname1 , ... ,dsname9), EVENT=,
LOG MSG=, PART=, ERROR=,STORAG E=, P2=

or
PGMx,parmname,DS=(DSx, ...),DEQT=,
EVENT=, ERROR=, P2=

progname or PGMx
LOG MSG=YES,STORAG E=O, DEQT=YES
none

Description

The 1-8 character name of a program stored in an Event Driven Executive
library. You can specify the volume from which to load the program by
separating the program name and the volume name by a comma and enclosing
both in parentheses. To load program PROGA on volume EDX003, you would
code: (PROGA,EDX003). The program must reside on disk or diskette. The
volume name can be 1-6 characters long.

The parameter "x" is a number from 1 to 9 that specifies which of the overlay
programs defined in the PROGRAM statement is to be loaded. PGMx is not
valid with PART; overlay programs are loaded in space included with the loading
program.

The label of the first word in a list of consecutive parameter words to be passed
to the loaded program. (See the PROGRAM statement for the maximum length
of this list.) .

YES (the default), de queues the terminal currently in use by the loading
program.

NO, prevents the terminal from being dequeued when the LOAD instruction
executes. Coding DEQT=NO also forces the LOGMSG operand to
LOGMSG=NO.

Note: Allow this operand to default or code DEQT= YES for a virtual terminal
program.

DS= The names of the data sets to be passed to the loaded program.

LR-264 SC34-0643

If your program loads another program, you can pass the loaded program the
names of 1 to 9 data sets. This operand enables the main program to define,

o

c

o

o

o

LOAD
LOAD - Load a Program (continued)

during the load operation, the names of the data sets the loaded program will use.
On the PROGRAM statement of the program to be loaded, the data set list
contains the sequence '??' for each missing data set name. This sequence
indicates that the data set name will be supplied at load time. (See the
PROGRAM statement for more information.)

For example, if the PROGRAM statement in the program to be loaded contained
the data set list:

... DS=(PARMFILE,??,RESULTS)

the LOAD instruction in the main program,

LOAD MYPROG,DS=(MYDATA)

would pass the data set name MYDAT A to the loaded program and produce the
following list for the loaded program:

... DS=(PARMFILE,MYDATA,RESULTS)

The LOAD instruction, in this case, replaces the sequence '?1' with the data set
name MYDATA.

When the main program loads an overlay program, you must code DSx, where
"x" is the relative position (number) of the data set in the list of data set names
on the PROGRAM statement of the main program.

The parameter "x" can be a number from 1 to 9. For example, to pass the
second data set name in a list to an overlay program named OVPGM, you would
code:

LOAD OVPGM,DS=DS2

All unspecified data set names in the program being loaded must be resolved at
LOAD time or the load operation will faiL

If the main program passes a tape data set to another program, the main
program's data set control block (DSCB) is no longer associated with the tape
data set. This allows the loaded program to have access to the tape data set
using the main program's DSCB. When the loaded program ends, the system
closes the tape data. If the main program needs to use the tape data set again,
the main program must call DSOPEN or load $DISKUT3 to reopen the tape data
set.

LOGMSG= YES (the default), to print or display the "PROGRAM LOADED" message on
the terminal being used by the program.

Chapter 2. Instruction and Statement Descriptions LR-265

LOAD
LOAD - Load a Program (continued)

LR-266 SC34-0643

EVENT =

PART =

ERROR=

NO, to avoid printing or displaying this message.

The label of an event (ECB statement) that the system posts complete when the
loaded program issues a PROGSTOP.

By issuing a LOAD and a subsequent WAIT for this event, the main program
can synchronize its own execution with the loaded program. The ECB, however,
must not be reset with a RESET instruction or with the RESET operand of a
WAIT instruction, or synchronization may be lost.

Note: If you specify this operand, the main program must wait for the loaded
program to end. Otherwise, the system will post the ECB when the loaded
program ends even though the main program may no longer be active. The
results, in such a case, are unpredictable.

The number of the partition in which you want to load the program. The system
loads the program in the same partition the main program resides in if you do not
code this operand. See Appendix C, "Communicating with Programs in Other
Partitions (Cross-Partition Services)" on page LR-559 for an example of loading
a program in another partition.

You can code one of the following:

• A number from I to 8 (partition I to 8).

• PART=ANY, to load the program in any available partition.

• The label of a I-word data area that contains the partition number.

If the data area contains a zero, the system loads the program in any available
partition.

Do not use this operand if the main program loads an overlay program.

The label of the first instruction of the routine to receive control if an error
condition occurs during the load operation. If you do not code this operand,
control passes to the instruction following the LOAD instruction and you can
test for errors by referring to the return code in the first word of the task control
block (TCB).

STORAGE= The number of bytes of additional storage to be added to the loaded program.
This operand overrides the value of the STORAGE operand on the PROGRAM
statement of the program to be loaded.

Some application programs have a minimum storage requirement; be sure you
know what it is before using this override. The load operation will fail if the
loaded program requires more storage than is available. (See the PROGRAM
statement for more information on allocating program storage.)

c·
~';
./

c

o

o

o

LOAD
LOAD - Load a Program (continued)

P2=

PROGRAM

•
•
•

LOAD

•
•
•
•
•
•
•
•
•

8°
•

LOAD

•
•
•
•

PROGRAM

•
•
•

Figure 9. Two Ways of Loading a Program

This operand does not override the STORAGE operand on the PROGRAM
statement if you code a 0 or allow the operand to default.

Do not use this operand if the main program loads an overlay program.

Parameter naming operand. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code this operand.

and

~-------- independent--------~

execution

Overlay program

within storage area
of loading program.

Independent execution.

PROGRAM

•
•
•
•
•

I ndept:lndent
program in its
own storage area

Chapter 2. Instruction and Statement Descriptions LR-267

LOAD
LOAD - Load a Program (continued)

Return Codes

LR-268 SC34-0643

The return codes are returned in the first word of the task control block (TCB) of the program
issuing the instruction.

Return
Code

-1
61

62
63
64
65

66

67

68
69
70
71
72

73

74
75
76

77
78

79

80

81

82

83

Condition

Successful completion.
The transient loader ($LOADER) is not included
in the system.
In an overlay request, no overlay area exists.
In an overlay request, the overlay area is in use.
No space available for the transient loader.
In an overlay load operation, the number of data
sets passed by the LOAD instruction does not equal
the number required by the overlay program.
In an overlay load operation, no parameters were
passed to the loaded program.
A disk(ette) I/O error occurred during the load
process.
Reserved.
Reserved.
Not enough main storage available for the program.
Program not found on the specified volume.
Disk or diskette I/O error while reading
directory.
Disk or diskette I/O error while reading
program header.
Referenced module is not a program.
Referenced module is not a data set.
One of the data sets not found on
referenced volume.
Invalid data set name.
LOAD instruction did not specify required data
set(s).
LOAD instruction did not specify required
parameters(s) .
Invalid volume label specified
(two or more programs referenced the same volume).
Cross partition LOAD requested, support
not included at system generation.
Requested partition number greater than number of
partitions in the system.
Load instruction attempted to access a 1024
bytes/sector diskette without $101024
pre-loaded in storage.

Note: If the program being loaded is a sensor 110 program, and a sensor 110 error is detected,
the return code will be a sensor 110 return code, not a load return code.

o

o

c

o

MECB
MECB - Create a list of events

The MECB statement creates a control block for use by a W AITM instruction. The control
block contains control information and a list of the ECBs for the events on which the W AITM
instruction must wait.

You can specify labels for several of the fields in the MECB so that you can get access to them
from your application program. The fields you can get access to are:

The number of events posted
The pointer to the last (most recent) event posted

• The post code received by each event in the list.

You must use the ECB statement to code the necessary ECBs in programs assembled under
$EDXASM, except for those ECBs specified with the EVENT= operand on the LOAD
instruction or on the PROGRAM or TASK statement. In programs assembled with the host or
Series/l macro assemblers, the system automatically generates an ECB for an event named in a
POST instruction.

See "WAITM - Wait for one or more events in a list" on page LR-523 for the description and
syntax of the WAITM instruction. See "ECB - Create an event control block" on page LR-136
for the description and syntax of tl\e ECB statement.

Note: To use the MECB statement, you must have included the SW AITM module in your
system and specified the MECBLST keyword on the system statement during system
generation. (Seethe Installation and System Generation Guide for additional information.)

Syntax:

label

Required:
Defaults:

Indexable:

Operand
ecbl,ecb2,
... ,ecbo

owait

MAXECB=

MECB (ecb1,ecb2, ... ecbn}'nwait,MAXECB=,
CODE=, NUMP=, LAST=,P1 =(lbI1 ,lbI2, ... lbln), P2=

label
nwait=1, CODE=-1,
MAXECB=number of ECB labels coded
none

Description
The label of each ECB you are including in the MECB list. The system
generates additional blank entries if the number of labels is less than the value
coded for MAXECB=.

The number of events that must occur before the waiting program can continue.

The number of events (ECBs) in the MECB list. If this value is larger than the
number of ECB labels coded, the system generates blank entries to make up the
difference.

Chapter 2. Instruction and Statement Descriptions LR-269

MECB
MECB - Create a list of events (continued)

Syntax Example

LR-270 SC34-0643

CODE=

NUMP=

LAST=

Pl=(...)

P2=

The initial value of the MECB post code. If this word is not zero when your
program issues the W AITM instruction, the system does not wait unless the
W AITM instruction has the RESET operant coded. (The default is -1.)

The label for the field containing the number of events posted.

The label for the pointer to the last event posted.

Parameter naming operand. Specify labels for the fields in the MECB that
contain the post code for the respective ECBs. (The system places the post code
received by an ECB in the first word of the MECB entry for that ECB.)

Parameter naming operand. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

Wait for two of the three specified events to occur before continuing. Place labels on the
pointer to the last event that occurred and on the post codes.

MECB1 MECB (ECB1,ECB2,ECB3) ,2,LAST=LASTECB,P1=(POST1,POST2,POST3)

o

o

o

o

o

MESSAGE
MESSAGE - Retrieve a program message

The MESSAGE instruction retrieves a formatted program message from a data set or module
and displays or prints the message. See Appendix E, "Creating, Storing, and Retrieving
Program Messages" on page LR-615 for more information.

The instruction also allows you to include data or text generated by your program within the
message.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

msgno

COMP=

SKIP=

MESSAG E msgno,COM P=,SKI P=, LI NE=,SPACES=,
PARMS=(parm1, ... ,parm8)'MSGI D=,
XLATE=, PROTECT=, P1 =

msgno,COMP=
MSG I D=NO,XLATE=YES, PROTECT=NO
none

Description

The number of the message you want displayed or printed. This operand must
be a positive integer or a label preceded by a plus sign (+) and equated to a
positive integer.

The label of the COMP statement that points to the data set or module that
contains the formatted program messages. See the COMP statement description
for more information.

The number of lines to be skipped before the system prints or displays the
message. If your cursor is at line 2 on a display screen and you coded SKIP=6,
the system displays the message on line 8. For a printer, the SKIP operand
controls forms movement.

The SKIP operand causes the system to display or print the contents of the
system buffer.

If you specify a value greater than or equal to the logical page size, the system
divides this value by the page size and uses the remainder in place of the value
you specify. For roll screens, the logical page size equals the screen's bottom
margin minus the number of history lines and the screen's top margin.

Chapter 2. Instruction and Statement Descriptions LR-271

MESSAGE
MESSAGE - Retrieve a program message (continued)

LINE=

SPACES=

PARMS=

LR-272 SC34-0643

The line number on which the message is to be printed or displayed. Code a
value between zero and the number of the last usable line on the page or logical
screen. The line count begins at the top margin you defined for the printer or
display screen. LINE=O positions the cursor at the top line of the page or screen
you defined; LINE= 1 positions the cursor at the second line of the page or
screen. For roll screens, line ° equals the screen's top margin plus the number of
history lines.

For printers and roll screens, if you code a value less than or equal to the current
line number, the system prints or displays th,e message at the specified line on the
next page or logical screen. For static screens, if you code a value within the
limits of the logical screen, the system displays the message on the line you
specified.

If you code a value greater than the last usable line number, the system divides
this value by the logical page size and uses the remainder as the line number on
which to print the message. For example, if you code LINE=22 and your roll
screen has a logical page size of 20, the message appears on the second line of
the logical screen.

The LINE operand causes the system to print or display the contents of the
system buffer.

The number of spaces to indent before the system prints or displays the message.
SPACES=O, the default, positions the cursor at the beginning of the left side of
the page or screen. If the value you specify is beyond the limits of the logical
screen or page, the system indents the next line by the excess number of spaces.

When you code the LINE or SKIP operands with SPACES, the system begins
indenting from the left margin of the page or screen. If you specify SPACES
without coding LINE or SKIP, the system begins indenting from the last cursor
position on the line.

The labels of data areas containing information to be included in the message.
You can code up to eight labels. If you code more than one label, you must
enclose the list in parentheses.

Note: To use this operand, you must have included the FULLMSG module in
your system during system generation. Refer to Installation and System
Generation Guide for a description of this module.

o

c

o

o

MESSAGE
MESSAGE - Retrieve a program message (continued)

MSGID=

XLATE=

PROTECT=

Pl=

YES, if you want the message number and four-character prefix to be printed at
the beginning of the message you are retrieving from a data set or module
containing formatted program messages. See the COMP statement operand
'idxx' for a description of the four-character prefix.

NO (the default), to avoid printing this information.

Note: To use this operand, you must have included the FULLMSG module in
your system during system generation. Refer to Installation and System
Generation Guide for a description of this module.

NO, to send the message to the terminal as is, without translation. Code this
option if the message contains special characters that should not be altered or
interpreted by the terminal.

YES (the default), to cause translation of characters from EBCDIC to the code
the terminal uses to display the message.

With a 3101 in block mode, XLATE=NO also prevents the system from
inserting the attribute byte and escape sequences into the message, and overrides
the effects of TERMCTRL SET,STREAM= YES.

Note: For a description of 3101 escape sequences refer to IBM 3101 Display
Terminal Description, GAI8-2033.

YES, to write protected characters to a static screen device that supports this
feature, such as an IBM 4978, 4979,4980, or 3101 in block mode. Protected
characters cannot be typed over.

NO (the default), to avoid writing protected characters to a static screen.

Parameter naming operand. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code this operand.

Chapter 2. Instruction and Statement Descriptions LR-273

MESSAGE
MESSAGE - Retrieve a program message (continued)

Syntax Examples

Coding Example

1) Retrieve and print the first message in the disk data set to which the COMP statement
points.

MSG1 MESSAGE 1,COMP=MSGSET

PROGSTOP
MSGSET COMP 'ERRS' ,DS1,TYPE=DSK

2) Retrieve and print the fifth message in the module to which the COMP statement points.
Insert the parameter "ACCOUNTS" in the message.

MSG2

MSG
A
MSGSET

MESSAGE

PROGSTOP
EQU
DATA
COMP

+MSG,PARMS=A,COMP=MSGSET

5
C'ACCOUNTS'
'ERRS' ,ERRORS,TYPE=STG

, " 0
,·'

The following example uses the MESSAGE instruction to retrieve and print a message contained (~-~
in a disk data set. The program TASK loads a second program called CALCPGRM. AWAIT V
instruction suspends the execution of TASK until CALCPGRM completes. When
CALCPGRM finishes, it posts the ECB at label LOADECB. The MESSAGE instruction at
label MSG 1 retrieves the first message in the disk data set MSGDS 1 on volume EDX002. The
first message in this data set is:

«PROGRAM» HAS FINISHED PROCESSING/*

o
LR-274 SC34-0643

o

o

o

MESSAGE
MESSAGE - Retrieve a program message (continued)

Return Codes

The MESSAGE instruction inserts the parameter CALCPRGM into the "PROGRAM" field of
the message and displays the message as follows:

STATOOOI CALCPGRM HAS FINISHED PROCESSING

Because the MESSAGE instruction contains MSGID= YES, the number of the message and the
four-character prefix "STAT" appear at the beginning of the message. The COMP statement
assigns the four-character prefix to the message.

TASK
LOADECB
START

MSGl

A
MSGSET

PROGRAM
ECB
EQU

LOAD
WAIT
MESSAGE

PROGSTOP
DATA
COMP
ENDPROG
END

START,DS=((MSGDS1,EDX002))

*

CALCPGRM,EVENT=LOADECB
LOADECB
1,COMP=MSGSET,SKIP=1,PARMS=A,MSGID=YES

'CALCPGRM'
'STAT' ,DS1,TYPE=DSK

The return codes are returned in the first word of the task control block (TCB) of the program
or task issuing the instruction. The label of the TCB is the label of your program or task
(taskname).

Code

-1
301-316

326
327
328
329
330
331
332
333
334
335

Description

Successful completion
Error while reading message from disk. Subtract
300 from this value to get the actual return code. See
the disk return codes following the READ or WRITE
instruction for a description of the code.
Message number out of range
Message parameter not found
Instruction does not supply message parameter(s)
Invalid parameter position
Invalid type of parameter
Invalid disk message data set
Disk message read error
Storage-resident module not found
Message parameter output error
Qisk messages not supported (MINMSG support only)

Chapter 2. Instruction and Statement Descriptions LR -2 75

MOVE
MOVE - Move data

LR-276 SC34-0643

The MOVE instruction moves data from operand 2 to operand 1. If operand 2 is "immediate
data," it must meet the requirements listed in the opnd2 description.

For an example of moving data across partitions, see Appendix C, "Communicating with
Programs in Other Partitions (Cross-Partition Services)" ort page LR-559. Refer to theEvent
Driven Executive Language Programming Guide for more information on cross-partition services.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

opndl

opnd2

MOVE opnd1,opnd2,count,FKEY=,TKEY=,
P1=,P2=,P3=

opnd 1 ,opnd2
count=(1 ,WORD)
opnd1,opnd2

Description

The label of the data area to receive the data from opnd2. Opnd1 cannot be a
self -defining term.

The value moved into opndl. You can specify a self-defining term or the label
of a data area.

If opnd2 is a self-defining term, it must be one of the following:

An integer, whose value is between -32768 and +32767

• An EBCDIC character string of one or two bytes, enclosed in single quotes,
and preceded by the constant type indicator C

• A hexadecimal character string of 1 - 4 hexadecimal digits, enclosed in single
quotes, and preceded by the constant type indicator X

count The number of consecutive values on which the operation is to be performed.
Do not code a label for count. The maximum value allowed for the count
operand is 32767.

The count operand can include the precision of the data. Since these operations
are parallel (the two operands and the result are implicitly of the same precision)
only one precision specification is required. That specification may take one of
the following forms:

BYTE -- Byte precision
WORD -- Word precision (the default)
DWORD -- Doubleword precision

o

o

()

o

o

MOVE
MOVE - Move data (continued)

FKEY=

FLOAT -- Single-precision floating-point
DFLOAT -- Extended-precision floating-point

You can substitute the precision specification for the count specification, in
which case the count defaults to 1, or the precision specification can accompany
the count in the form of a sublist: (count,precision). For example, MOVE
A,B,BYTE is equivalent to MOVE A,B,(1,BYTE). When using the sublist form
of the count operand, you must specify both the count and the precision.

For all precisions other than BYTE, opnd1 and opnd2 must specify even
addresses.

The precision is always BYTE when you do a cross-partition MOVE operation.
For example, MOVE A,B,(4,DWORD) becomes MOVE A,B,(16,BYTE). This
precision change is important to remember when you use the P3 = operand to
change the count. The instruction,

MOVE A,B, (4,WORD) ,FKEY=O,P3=COUNT

really has a count of 8 bytes. If you want to change the count to (2,WORD),
you must move a value of 4 into COUNT.

If FLOAT or DFLOAT precision is specified, the system converts the immediate
data field to floating-point format.

If BYTE precision is specified and opnd2 is immediate data, the system moves
different bytes of opnd2 depending on which assembler is used. The macro
assembler causes the system to move the rightmost byte of opnd2, while
$EDXASM causes the system to move the leftmost byte of opnd2.

For example, if the following is coded:

Q EQU X'1234'
MOVE HERE,+Q, (l,BYTE)

The system moves X '34' to location HERE if the instruction is assembled with
a macro assembler. The system moves X '12' to location HERE if the
instruction is assembled with $EDXASM.

This operand provides a cross-partition capability for opnd2 of MOVE. FKEY
designates the address key of the partition containing opnd2 (the address key is
one less than the partition number). FKEY can specify either an immediate
value from 0 to 7 or the label of a word containing a value from 0 to 7. If FKEY
is not specified, opnd2 is in the same partition as the MOVE instruction. If
FKEY is specified, opnd2 cannot be immediate data or an index register.
However, it can contain an index register in the (parameter,#r) format. See
"Software Register Usage" on page LR-10 for further information.

Chapter 2. Instruction and Statement Descriptions LR-277

MOVE
MOVE - Move data (continued)

TKEY=

Px=

LR-278 SC34-0643

This operand provides a cross-partition capability for opndl of MOVE. TKEY
designates the address key of the partition containing opndl (the address key is
one less than the partition number). TKEY can specify either an immediate
value from 0 to 7 or the label of a word containing a value from 0 to 7. If TKEY
is not specified, opndl must be in the same partition as the MOVE instruction.
If TKEY is specified, opndl cannot be an index register. However, opndl can
contain an index register if it is of the format (parameter,#r). See "Software
Register Usage" on page LR-IO for further information.

If you specify TKEY and opnd2 is immediate data, opnd2 is always one word in
length regardless of the precision specified. The values you code for the
precision and the count operand determine the amount of data that is moved.

When you specify byte precision in a cross-partition move and opnd2 is
immediate data, the system reads an entire word of data and moves that word
one byte at a time. For example, if opnd2 is X'FS', the system reads that value
as X'OOFS' and moves X'OO' as the first byte.

Parameter naming operands. If P3 is coded, only the count operand is altered.
The precision specification remains unchanged. See "Using The Parameter
Naming Operands (Px=)" on page LR-12 for a detailed description of how to
use these operands.

c

o

()

o

MOVE
MOVE - Move data (continued)

Syntax Examples

The following syntax examples show the variety of ways you can code the MOVE instruction:

1) Move a word of B to A.

MOVE A,B

2) Move 64 EBCDIC blanks to TEXT.

MOVE TEXT,C" , (64,BYTE)

3) Move 16 words of V2 to VI.

MOVE Vl,V2,16

4) Move the contents of index register 1 to SAVE.

MOVE SAVE,#l

5) Move contents of INDEX into index register 2.

MOVE #2,INDEX

6) Move four doublewords of C to D.

MOVE D,C, (4,DWORD)

7) Move a single-precision floating-point value from Fl to F2.

MOVE F2,Fl, (l,FLOAT)

8) Move the address of $START into index register 1.

MOVE #l,+$START

9) Move six doubleword floating-point numbers (24 words) from Ll to LR.

MOVE LR,Ll, (6,DFLOAT)

10) Move ten floating-point zero values to the indexed address of (BUF,#l).

MOVE (BUF,#l) ,0, (10,FLOAT)

Chapter 2. Instruction and Statement Descriptions LR-279

MOVE
MOVE - Move data (continued)

LR-280 SC34-0643

11) Move one word from $START in partition 1 to HERE.

MOVE HERE,$START,FKEY=O

12) Move the contents of index register 2 to the indexed address (0,#1) in a partition defined
by KEY.

MOVE (0,#1) ,#2,TKEY=KEY

13) Move four words of blanks to the indexed address ($NAME,#1) in partition 1. Operand 2
must be a word value.

MOVE ($NAME,#1) ,e' " (4,WORD),TKEY=0

14) Move the leftmost byte value X'OO' to B when assembling with $EDXASM. Move the
rightmost byte value X'02' to B when assembling with the macro assemblers. A has a value of
X "0002"

A EQU 2

MOVE B,+A, (1 ,BYTE)

15) Move the four-byte character string '3333' to the indexed address (HERE,#1) in
partition 1.

MOVE (HERE,#1) ,e'3', (4,BYTE) ,TKEY=O

16) Move the character string '22222222' to the indexed address (HERE,#1) in partition 1.

MOVE (HERE,#1) ,e'12', (8,BYTE) ,TKEY=O

Only one character may be specified in immediate mode. When assembled with the macro
assembler the system takes the rightmost character. In this example the character string has
been truncated and 8 characters of 2 have been moved.

17) Move the data string X'0505050505' to the indexed address (THERE,#l) in partition 1.

MOVE (THERE,#1) ,X'05' , (5,BYTE) ,TKEY=O

o

o

o

o

I.j 4i44 '411=4144, ; ;

MOVEA - Move an address

The MOVEA instruction moves the address of operand 2 to operand 1.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

MOVEA opnd1,opnd2,P1=,P2=

opnd 1 ,opnd2
none
opnd1

Description

" MOVEA

opndl The label of the data area to receive the address of opnd2. This operand must be
a word in length.

opnd2

Px=

Syntax Examples

The label of the data area whose address is moved to opnd 1.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

1) Move the address of A into PTR.

MOVEA PTR,A

2) Move the address of B plus 4 bytes into PTR.

MOVEA PTR,B+4

Chapter 2. Instruction and Statement Descriptions LR-281

.' Z';44;::;:QW,UQ.A ,M, L ."' 44MMkQtUA

,,'i'U LTI PLY
MU L TI PLY - Multiply integer values

The MULTIPL Y instruction multiplies an integer value in operand 1 by an integer value in
operand 2. The values can be positive or negative. To multiply floating-point values, use the
FMULT instruction.

See the DATA/DC statement for a description of the various ways you can represent integer
data.

The supervisor places X'80000000' in the first two words of the task control block if an
overflow condition occurs during double-precision multiplication.

Note: You can abbreviate the instruction as MULT.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

opndl

opnd2

MULTIPLY opnd1 ,opnd2,count,RESUL T=, PREC=,
P1=,P2=,P3=

opnd1,opnd2
count=1 ,RESULT=opnd1 ,PREC=S
opnd1 ,opnd2, RESULT

Description

The label of the data area containing the value to be multiplied by opnd2.
Opnd 1 cannot be a self -defining term. The system stores the result of the
MULTIPLY operation in opnd 1 unless you code the RESULT operand.

The value by which opnd 1 is multiplied. You can specify a self-defining term or
the label of a data area. The value of opnd2 does not change during the
operation.

count The number of consecutive values in opndl on which the operation is to be
performed. The maximum value allowed is 32767.

LR-282 SC34-0643

RESUL T = The label of a data area or vector in which the result is placed. The variable you
specify for opndl is not changed if you specify RESULT. This operand is
optional.

PREC=xyz Specify the precision of the operation in the form xyz, where x is the precision
for opndl, y is the precision for opnd2, and z is the precision of the result
("Mixed-precision Operations" on page LR-283 shows the precision
combinations allowed for the MUL TIPL Y instruction). You can specify single
precision (S) or double precision (D) for each operand. Single precision is a
word in length; double precision is two words in length. The default for opndl,
opnd2, and the result is single precision.

/-""

~.,

c

~
,0
I

:1,1

:1

I
i

c

MUIH;

MULTIPL"\I
MULTIPLY - Multiply integer values (continued)

Px=

If you code a single letter for PREC, the letter applies to opndl and the result.
Opnd2 defaults to single precision. If, for example, you code PREC=D, opnd1
and the result are double precision and opnd2 defaults to single precision.

If you code two letters for PREC, the first letter applies to opndl and the result,
and the second letter applies to opnd2. With PREC=DD, for example, opndl
and the result are double precision and opnd2 is double precision.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

Mixed-precision Operations

The following table lists the precision combinations allowed for the MULTIPLY instruction:

opnd1 opnd2 Result Precision Remarks

S S S S default
S S D SSD -
D S D D -
D D D DD -

Syntax Examples

1) Multiply a value in C by a value in D. The result of the operation is double precision.

MULT C,D,RESULT=E,PREC=SSD

2) Multiply a double-precision value in A by 10. The result of the operation is double precision.

MULT A,10,PREC=D

3) Multiply the single-precision values at X and X+2 by 10.

MULTIPLY X,10,2

Chapter 2. Instruction and Statement Descriptions LR-283

; z.,2 1,.ij¥;W.W\4(A, • A i # 1M ;;aM ZtAMII4AM 44;, aM ;A ¢% I ;$XAI

MULTIPLY
MULTIPLY - Multiply integer values (continued)

Coding Example

The MUL TIPL Y instruction at label M 1 multiplies a full-word value in the data area labeled
HOURS by 60. The instruction places the result in the data area labeled MINUTES.
MINUTES is defined with the P2= parameter naming operand on the MULTIPL Y instruction
labeled M2.

At label M2, the second operand, defined with the parameter naming operand P2=, is multiplied
by the value located at label SIXTY. The result is placed in the data area labeled SECONDS.

The first pair of MULTIPLY instructions uses the single-precision default for opndl, opnd2,
and RESULT=.

The third MUL TIPL Y instruction, at M3, multiplies the double word value at label MILLISEC
by 1000, and places the doubleword result in MILLISEC.

The last MULTIPLY instruction, at label M4, multiplies the value at label OPll by the value at
label OP12, and places the result in the data area labeled RESULTX. Because the count
operand equals 2, this instruction also multiplies the value at label OP21 by the value at label
OP12, and places the result at RESULTX+2.

M1 MULTIPLY HOURS,60,RESULT=MINUTES
M2 MULT SIXTY,0,RESULT=SECONDS,P2=MINUTES

MOVE MILLISEC,O
MOVE MILLISEC+2,SECONDS

M3 MULT MILLISEC,MILLI,PREC=DSD

M4 MULTIPLY OP11,OP12,2,RESULT=RESULTX

HOURS DATA FlO'
SECONDS DATA F'O'
SIXTY DATA F'60 1

MILLISEC DATA D'O'
MILLI DATA F'1000'
OP11 DATA F'l'
OP21 DATA F'2'
OP12 DATA F I 3'
RESULTX DATA 2F'O'

LR-284 SC34-0643

(

o

c

o

NETCTL
NETCTL - Controlling SNA message exchange

The NETCTL instruction controls the exchange of status and error information between your
Series/1 application program and the host program.

You can use the instruction to:

• Send error or status messages to the host application program

Receive error or status messages from the host application program.

Before you can use the NETCTL instruction, you must establish a session with the host. You
can use NETCTL to receive status information regardless of which session partner has the
right-to-send.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

LU=

BUFF=

NETCTL

LU=
TVPE=RECV
none

Description

LU=,BUFF=,TVPE=,EXIT=,
P1=,P2=

Identifies the session logical unit (LU) number (from 1-32).

The label of a 6-byte status area that is used when you code TYPE=RECV,
TYPE=REJECT, or TYPE=LUSTAT.

If you do not specify RECV, REJECT, or LUSTAT for the TYPE operand, the
BUFF operand is ignored. The use of the status area is as follows:

If you specify TYPE=RECV, the status received from the host is placed in
this area. The format of the status information varies depending on what
type of information it is. The NETCTL return codes indicate the type of
status information received.

If the return code indicates message reject, status message, or request for
right-to-send, the status area is as follows:

Message reject- The first two bytes of the area are the system sense code.
The next two bytes are the user sense code.

Chapter 2. Instruction and Statement Descriptions LR-285

NETCTL
NETCTL - Controlling SNA message exchange (continued)

TYPE =

LR-286 SC34-0643

If you do not select message resynchronization support for the session, the
last two bytes are the message number of the message rejected by the host.
If you do select message resynchronization support for the session, the
message rejected by the host is always the last message sent.

Status message- The first two bytes of the area are the status value. The
next two bytes are the status extension field.

Request for right-to-send- The first two bytes of the area are the signal
value. The next two bytes are the signal extension field.

If you specify TYPE=REJECT, you must supply the sense codes indicating
the reason the host message is unacceptable. The first two bytes of the area
are the system sense code. The next two bytes are the user sense code. If
you do not specify the sense codes, the host receives a system sense code of
X'081C' (Request Not Executable) along with a user sense code of X'OOOO'
(No-operation).

The host message rejected is always the last message received from the host.

If you specify TYPE=LUSTAT, you must supply the status codes to be sent
to the host. The first two bytes of the area are the status value. The next
two bytes are the status extension field.

The control operation to be performed. Code one of the following:

RECV Receive status information from the host. The return code indicates
the type of status information received. If applicable, the area
specified in the BUFF operand receives data associated with the
status. RECV is the default.

ACCEPT Send the host a message acceptance, if necessary, for the message
received.

REJECT Send the host a message rejection for the message received. The
sense code, containing the reason for the rejection, is returned in the
area specified in the BUFF operand.

CANCEL Cancel a partially transmitted message.

QEC Ask the host to temporarily stop transmitting messages after the
current message.

RELQ

SIG

Ask the host to resume sending messages. This operand is valid
only if you have previously issued TYPE=QEC.

Ask the host to give the right-to-send to the Series/1 SNA
application.

0·, : ._ ,.,,1

o

o

NETCTL
NETCTL - Controlling SNA message exchange (continued)

EXIT =

Px=

Syntax Examples

LUSTAT Send status information to the host. The 4-byte status code to be
sent is contained in the area you specified with the BUFF operand.

RTR Notify the host that the SNA application is ready to receive the next
message.

The BUFF parameter is required if TYPE=RECV, REJECT, or
LUSTAT.

The label of the error-processing routine for your program. Control passes to
this label if any return code other than -1 is returned to your program.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

The examples presented here illustrate various ways in which you can use the NETCTL
instruction to control the exchange of messages.

1) Receiving Status from Host

This example shows the use of a NETCTL instruction to receive status information from the
host program. The location STATUS receives the status data (if any).

NETLU
STATUS

NETCTL

DATA
DATA

LU=NETLU, TYPE=RECV,BUFF=STATUS

F'1 '
F'6'

2) Rejecting a Message

This example shows a NETCTL instruction that rejects a message received from the host
program.

NETCTL LU=NETLU, TYPE=REJECT

NETLU DATA F'1 '

Chapter 2. Instruction and Statement Descriptions LR-287

NETCTL
NETCTL - Controlling SNA message exchange (continued)

Return Codes

3) Sending Status to Host

In this example, a NETCTL instruction sends status information to the host program. The
location STATUS receives the status data.

NETLU
STATUS

NETCTL

DATA
DATA

LU=NETLU, TYPE=LUSTAT, BUFF=STATUS

F'1 '
F'6'

The NETCTL return codes are placed in the first word of the task control block ($TCBCO) of
the task that issued the instruction.

The positive return codes from NETCTL TYPE=RECV contain bit-significant values to allow
for efficient analysis in the Series/1 SNA application. The bit positions have the following
meaning:

............... 1 End of transaction received

.............. 1. Right-to-send received

The following values are returned in combination with the above bit-significant information:

X'0010'
·X~020'~~·

X'0030'
X'0050'
X'0060'
X'0070'

Status message received
Messag6being~-received from host-canceled
Session termination request received
Request for right-to-send received
Host permission to resume sending received
Message sent to host rejected

LR-288 SC34-0643

C,,··· \. ___ ,1-

c

o

o

o

NETCTL
NETCTL - Controlling SNA message exchange (continued)

The valid combinations of the values and bit positions are listed in the following decimal return
codes.

Code

112
096
080
048
034
033
032
018
017
016
002
001
-1
-09
-10
-11

-12
-13
-14
-15
-16
-17
-18
-19
-20
-21
-22
-25
-26

Condition

Negative response received
RELQ received
SIGNAL received
SH UTDOWN received
CANCEL with CD received
CANCEL with EB received
CANCEL received
LUSTAT with CD received
LUSTAT with EB received
LUSTAT received
CHANGE DIRECTION received
END BRACKET received
Operation successful
LU is busy with another operation
Session does not exist
I nstruction must be issued under program
linked to $NETCMD

Invalid LU number
I nvalid request
SNA system error
NETTERM in progress
Session abnormally ended by host
Status available
Session quiesced
$SNA never loaded
UNBIND HOLD received
More than two tasks already running under this LU
Session reset; CLEAR and STD commands received.
Not right-to-send
No status available

Chapter 2. Instruction and Statement Descriptions LR-289

NETGET
NETGET - Receive messages from the SNA host

LR-290 SC34-0643

The NET GET instruction allows your application to receive messages from the host application
program. Before you can use the NET GET instruction, you must establish a
logical-unit-to-Iogical-unit session.

When you issue the NET GET instruction, Series/l SNA passes messages received from the
host's application program into a buffer area provided by NETGET. If the buffer area is not
large enough to contain the complete message, you can issue additional NET GET instructions.

NET GET supplies a return code when it receives the complete message.

Syntax:

label N ETG ET LU=, BU FF=, BYTES=, RECLEN=,
EXIT=, P1 =, P2=, P3=, P4=

Required: LU,BUFF,BYTES,RECLEN
Defaults: none
Indexable: none

Operand Description

LU=

BUFF=

BYTES =

RECLEN=

EXIT =

Px=

Identifies the session logical unit (LU) number (from 1-32).

The buffer area where the message or partial message is to be received.

A word value containing the length, in bytes, of the buffer area you specified in
the BUFF operand.

A word value to receive the actual length, in bytes, of the message or partial
message received.

The label of the error-processing routine for your program. Control passes to
this label if a return code other than -1 is returned to your application.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

()

o

c

o

(" .)

o

NETGET
NETGET - Receive messages from the SNA host (continued)

Syntax Example

Return Codes

This example issues a NETGET instruction to receive a message or partial message stored at
address INBUFF. In addition:

The LU is number 1 at location NETLU.

The length of the input area is at location INBLEN.

The length of the message or partial message received is stored at location COUNT.

NETLU
INBUFF
INBLEN
COUNT

NETGET LU=NETLU, BUFF=INBUFF , BYTES=INBLEN,
RECLEN=COUNT

DATA F'1'
DATA XL80
DATA F'80'
DATA F'O'

C

The NETGET return codes are placed in the first word of the task control block ($TCBCO) of
the task that issued the instruction.

The positive return codes from NET GET contain bit-significant values to allow for efficient
analysis in the Series/1 SNA application. The bit positions have the following meaning:

............... 1

.............. 1.

............. 1 ..

............ 1 .. .

........... 1

.... 1

Function management header received
End of message received
Right-to-send received
Response to message requested
End of transaction received
Start of transaction received

•
Chapter 2. Instruction and Statement Descriptions LR-291

NETGET
NETGET - Receive messages from the SNA host (continued) o

The valid combinations of the bit positions are listed in the following decimal return codes:

Code Condition
059 Start and end of transaction, end of message

and FMH received, response requested
058 Start and end of transaction, and end of

message received response requested
051 Start and end of transaction, end of message

and FMH received
050 Start and end of transaction, and end of

message received
047 Start of transaction, end of message, FMH,

and right-to-send received, response requested
046 Start of transaction, end of message,

and right-to-send received, response requested
043 Start of transaction, end of message,

and FMH received, response requested
042 Start of transaction, end of message,

and response requested
039 Start of transaction, end of message,

FMH, and right-to-send received
038 Start of transaction, end of message,

and right-to-send received
035 Start of transaction, end of message,

and FMH received
034 Start of transaction and end of message

received
033 Start of transaction and FM H received 0 032 Start of transaction received

(,I

o
LR:..292 SC34.,0643

o

o

o

NETGET - Receive messages from the SNA host (continued)

NET GET Return Codes (Continued)

Return
Code

027

026

019

018
015

014

011

010
007

006
003
002
001
-1
-09
-10
-11

-12
-13
-14
-15
-16
-17
-19
-20
-21

-22
-25
-26

Condition

End of transaction, end of message and FMH
received, response requested
End of transaction and end of message received,
response requested
End of transaction, end of message and
FMH received
End of transaction and end of message received
End of message, FMH, and right-to-send
received, response requested
End of message, and right-to-send received,
response requested
End of message, and FMH received,
response requested
End of message received, response requested
End of message, FMH, and right-to-send
received
End of message and right-to-send received
End of message and FM H received
End of message received
FMH received
Operation successful
LU is busy with another operation
Session does not exist
Instruction must be issued under program
linked to $NETCMD
Invalid LU number
Invalid request
SNA system error
NETTERM in progress
Session abnormally ended by host
Status available
$SNA never loaded
UNBIND HOLD received
More than two tasks already running
under this LU
Session reset; CLEAR and STD commands received.
No messages available
Host initiated transaction

NETGET

Chapter 2. Instruction and Statement Descriptions LR-293

NETHOST
NETHOST - Build an SNA host 10 data list

LR-294 SC34-0643

The NETHOST instruction generates an assembly-time host ID data list that defines logical unit
(LV) requirements and session resources.

Certain operands in the NETHOST instruction can affect the performance of other LV
operations. You may, therefore, need the help of the host system programmer when coding the
instruction. You also may require the host system programmer's knowledge of SNA protocols.

Syntax:

label

Required:
Defaults:

Indexable:

Operand

ISAPPID=

NETHOST ISAPPI D=, ISMODE=, ISPASWD=, ISOU EUE=,
ISROI D=, ISUSFLD=,SSCPI D=

ISAPPI D=, ISMODE=
ISPASWD=,ISROID=,ISUSFLD= (all default to 8 blanks)
ISOUEUE=NO,SSCPID=6X'QQ' (bytes)
none

Description

A 1-8 character name that identifies the host user program identification
(APPLID) to be used for a session. Trailing blanks are ignored by NETINIT.

ISMODE= A 1-8 character name that identifies the set of rules and protocol for a session.
The system services control point (SSCP) also uses the name to build the CINIT
request.

ISPASWD= A password of 1-8 characters used to verify the identity of a Series/1 user. The
default of eight blanks causes NETINIT to generate a null (zero length) field in
the INITSELF command. NETINIT ignores trailing blanks.

ISQUEUE= YES, to place the ITITSELF request in a queue if it cannot be executed
immediately.

ISRQID=

NO (the default), to prevent the request from being held in a queue.

The 1-8 character name that identifies the Series/l user initiating a request.
You can also use ISRQID to establish authority for you to use a particular
resource. The default of eight blanks causes NETINIT to generate a null (zero
length) field in the INITSELF command. NETINIT ignores trailing blanks.

o

o

o

o

o

NETHOST
NETHOST - Build an SNA host 10 data list (continued)

ISUSFLD = A 1-20 character string for carrying data you specify. Network services request
processors do not process this data. The Series/1 SNA support passes the data
to the primary logical unit (PLU). The default of eight blanks causes NETINIT
to generate a null (zero length) field in the INITSELF command. NETINIT
ignores trailing blanks.

SSCPID= The system services control point (SSCP) identification for the network to be
attached. You can code this operand using 0-12 hexadecimal digits. A 0 value
specifies the session is to be opened with any SSCP attached.

Specify any 6-byte binary value. However, to be meaningful, the bit
representation must match the identification of the attached SSCP. The default
is 6 bytes of zeros.

Chapter 2. Instruction and Statement Descriptions LR-295

NETINIT
NETINIT - Establish an SNA session

LR-296 SC34-0643

The NETINIT instruction initiates a request for establishing a session with the host application
program. The established session remains in effect until you end it by issuing a NETTERM
instruction.

Note: In coding your program, you can (if the system resources are available) establish multiple
sessions for each task. All tasks using these sessions must be within the same program.

Syntax:

label NETINIT LU= I HOLDLU=,HOSTID=,MSGDATA=,
SESSPRM=,ATTN EV=, RDSCB=, ERRCOD E=,
FU LLDPX=,ACQU I RE=, RESYNC=, RTYPE=,
EXIT=, P1 =, P2=, P3=, P4=, P5=, P6=

Required:
Defaults:
Indexable:

Operand

LU=

LU= I HOLDLU=,HOSTID=
ACQUIRE=YES,RESYNC=YES,RTYPE=DISK,FULLDPX=NO
none

Description

Identifies the session logical unit (LU) number. You must code the label of a
value from 0-32.

If you code a value of zero, the Series/l SNA support assigns the next available
logical LU number and places the number in the second word of the task control
block ($TCBC02) for your SNA application.

If you specify this operand, you cannot specify the HOLDLU operand on this
instruction.

HOLDLU = The session LU number to be reestablished after receiving an UNBIND HOLD.
You must code the label of a value from 0-32. If you specify this operand, you
cannot specify the LU operand on this instruction.

HOSTID= The label of the NETHOST data definition.

MSGDATA= The label of a 6-byte data area where the SNA support stores information about
messages exchanged during the session.

If RESYNC= YES or INIT, the following considerations apply:

If RTYPE=DISK, MSGDATA is ignored.

o

o

o

o

o

NETINIT
NETINIT - Establish anSNA session (continued)

If RTYPE=STG, MSGDATA is required. SNA uses the data area you
specify with MSGDATA for resynchronization data. SNA returns the
resynchronization data on successful completion of an SNA operation. The
resynchronization data is reserved for SNA use only and must be supplied on
the NETINIT instruction when the session is restarted.

If RESYNC=NO, MSGDATA is optional. When you specify MSGDATA, SNA
uses the area to hold message data. When a NETPUT LAST = YES operation is
successful, SN A stores the number assigned to the message sent to the host in
the first and second bytes of the data area. The remaining bytes of the area are
reserved for SNA use only.

SESSPRM= The label of a data area where SNA stores session-establishment parameters
(BIND) received from the host. The area contains the parameters after the
NETINIT operation completes successfully. This area must be 256 bytes.

ATTNEV= The address of an event control block (ECB) to be posted when an attention
event occurs while no SNA operations are active. You should issue a NETGET
instruction to determine whether the event is for status information or data.

RDSCB= The address of an opened data set control block (DSCB) to be used by SNA
resynchronization processing. Code this operand only if you specify
RTYPE=DISK.

ERRCODE= The label of a 4-byte data area where SNA stores extended error information. If
you code this operand and the SNA operation returns a negative return code
(other than -1), this data field identifies the SNA instruction and the related SNA
function that failed, plus the return code of the SNA function. A breakdown of
the data area follows:

Byte 1- The SNA operation in progress when the error was encountered:

00 - NETINIT
Ol-NETPUT
02 - NETGET
03 - NETCTL
05 - NETTERM

Byte 2- The Event Driven Executive or SNA base function that reported
the error. The following hexadecimal codes are returned:

01-NETOPEN
02 - NETRECV
03 - NETSEND
04 - NETCLOSE
05 - NETBIND
06-NETUBND
08 - BIND event post code

Chapter 2. Instruction and Statement Descriptions LR-297

NETINIT
NETINIT - Establish an SNA session (continued)

OA-READ
OB - WRITE
OC - Session termination

Note: Refer to IBM Series/l Event Driven Executive Systems Network
Architecture and Remote Job Entry Guide, SC34-0402, for additional
information on the return codes for these functions.

• Bytes 3 and 4- The error return code from the Event Driven Executive or
SNA base function.

FULLDPX= NO (the default), to establish a session in a transmission mode of half duplex.

YES, to establish a session in a transmission mode of duplex.

Note: If you code FULLDPX= YES, you cannot use message resynchronization
and attention event processing.

ACQUIRE= YES (the default), to cause SNA to initiate the session for your application
program.

RESYNC=

RTYPE=

EXIT=

Px=

LR-298 SC34-0643

NO, to indicate that the host is to initiate the session.

NO, to disable session resynchronization.

YES (the default), to use the contents of the resynchronization data set during
session establishment.

INIT, to initialize the contents of the resynchronization data set during session
establishment.

DISK (the default), to save session resynchronization data on disk. You must
code the RDSCB operand if you specify this parameter.

STG, to save session resynchronization data in storage. You must code the
MSGDAT A operand if you specify this parameter.

This operand is ignored if you code RESYNC=NO.

Note: Your program must open and close the 256-byte resynchronization data
set.

The label of the error-processing routine for the Series/1 application. Control
passes to this label if a return code other than -1 is returned to your program.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR -12 for a detailed description of how to code these operands.

~O

()

o

o

o

o

NETINIT
NETINIT - Establish an SNA session (continued)

Syntax Examples

The examples presented here illustrate various ways in which you can use the NETINIT
instruction to establish a session.

1) Session with Resynchronization Data to Disk

This example illustrates establishing a session where the resynchronization data resides on a
disk. In addition:

The LV is number 1 at location NETLV.

Series/1 SNA initiates the session with the host. SNA saves the extended error information
at location SA VERC.

The resynchronization data set RDSCB is RESTART.

NETLU
SAVERC
RESTART
SNAID

NETINIT LU=NETLU,HOSTID=SNAID,ACQUIRE=YES,
ERRCODE=SAVERC,RESYNC=YES,RTYPE=DISK,
RDSCB=RESTART

DATA
DATA
DSCB
NETHOST

F'1 '
4F'O'
DS#=RSYNC, DSNAME=RSYNDSCB
ISAPPID=IMS,ISMODE=INQUIRY

2) Session with Resynchronization Data to Storage

This example illustrates establishing a session where the resynchronization data resides in
storage. In addition:

Series/1 SNA support waits for the host to initiate the session.

SNA initializes the contents of the resynchronization data set when the session starts.

• SNA saves the resynchronization data at address RDATA.

NETLU
RDATA
SNAID

NETINIT LU=NETLU, HOSTID=SNAID ,ACQUIRE=NO ,
RESYNC=INIT,RTYPE=STG,MSGDATA=RDATA

DATA
DATA
NETHOST

F'1 '
6F'O'
ISAPPID=CICS, ISMODE=INQUIRY

C
C

C

Chapter 2. Instruction and Statement Descriptions LR-299

NETINIT
NETINIT - Establish an SNA session (continued)

3) Session without Resynchronization

This example illustrates establishing a session without resynchronization support. SNA saves the
message numbers at address MDAT A.

NETLU
MDATA
SNAID

LR-300 SC34-0643

NETINIT LU=NETLU,HOSTID=SNAID,ACQUIRE=NO,
RESYNC=NO,MSGDATA=MDATA

DATA
DATA
NETHOST

F'1 '
6F'O'
ISAPPID=JES2,ISMODE=RMT26

C

o

o

o

o

o

o

NETINIT
NETINIT - Establish an SNA session (continued)

Return Codes

NETINIT return codes are placed in the first word of the task control block ($TCBCO) of the
task that issued the instruction.

If you code the ERRCODE operand on the NETINIT instruction, additional error information is
returned, when appropriate, to the area you specified. Refer to IBM Series/l Event Driven
Executive Systems Network Architecture and Remote Job Entry Guide, SC34-0402 for a
description of this extended error code information.

The positive return codes from NETINIT contain bit-significant values to allow for efficient
analysis in the Series/l SNA application. For a description of the bit-significant values, refer to
IBM Series/l Event Driven Executive Systems Network Architecture and Remote Job Entry
Guide, SC34-0402.

The decimal return codes that could be returned from a NETINIT operation follow.

Code

081

049

032
019

017

004
002
-1
-12
-14
-15
-16
-19
-26
-27
-30
-31
-32

Condition

Message flow to host cold-started,
message to host possibly lost
Message flow from host cold-started,
no messages from host lost
Message flow to host cold-started,
message to host lost
Message flow from host cold-started,
no messages from host lost
Message to host lost
Message flow to host cold-started
Message flow from host cold-started,
message from host lost
Message flow to host cold-started,
no messages to host lost.
Message flow from host cold-started,
no messages from host lost
Partially presented message from host lost
U npresented message from host lost
Operation successful
Invalid LU number
S NA system error
NETTERM in progress
Session abnormally ended by host
$SNA never loaded
Logical unit already open
No logical unit available
BIN D from host rejected
STSN error
No NETTERM HOLD=YES issued

Chapter 2. Instruction and Statement Descriptions LR-301

NETPUT
NETPUT - Send messages to the SNA host

LR-302 SC34-0643

The NETPUT instruction transmits messages from a Series/1 application program to the host
application program. You can issue a NETPUT instruction only after establishing a session
successfully.

You can send a complete message to the host with one NETPUT operation, or, if necessary, you
can send a single message with multiple NETPUT operations.

You must have the right-to-send for the NETPUT operation to be successful. If you are
receiving and need to send, issue the NETCTL instruction with TYPE=SIG to request the
right-to-send. When no transaction is active on the session, both you and the host have the
right-to-send.

You can cancel a message during transmission to the host by issuing a NETCTL instruction with
TYPE=CANCEL. The host discards any part of the message it has already received. See the
NETCTL instruction for more coding information.

Syntax:

label

Required:
Defaults:

NETPUT LU=,BUFF=, BYTES=,EOT=,FMH=,INVITE=,
LAST=,VERI FY=,EXIT=,P1 =,P2=,P3=

LU=,BUFF=,BYTES=
EOT=NO,FMH=NO,INVITE=YES,
LAST=YES,VERIFY=NO

Indexable: none

Operand Description

LU = Identifies the session logical unit (LU) number. You must code the label of a
value from 1-32.

BUFF= The message, or partial message, to be sent.

BYTES = A word containing the number of bytes in the message or partial message to be
sent.

EOT= YES, to end the transaction after the message is sent.

FMH=

NO (the default), to avoid ending the transaction after the message is sent.

This operand is only recognized on the first NETPUT instruction you issue for a
message.

YES, if the message contains function management (FM) headers.

o

o

o

o

c

o

NETPUT
NETPUT - Send messages to the SNA host (continued)

Syntax Examples

INVITE =

LAST=

VERIFY =

EXIT =

Px=

NO (the default), if the message does not contain FM headers.

This operand is oilly recognized on the first NETPUT instruction you issue for a
message.

YES (the default), to give the host the right-to-send after this message is
transmitted.

NO, if you do not want to give the host the right-to-send.

This operand is ignored unless you specify LAST= YES (see the LAST operand).

YES (the default), if this is the last NETPUT operation for the message.

NO, if this is not the last NETPUT operations for the message.

YES, if the host should verify that it received the message.

NO (the default), if you do require verification.

This operand is ignored if you do not specify LAST= YES.

The label of the error-processing routine for the Series/1 application. Control
passes to this label if any return code other than -1 is returned to your
application.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

The examples presented here illustrate various ways you can use the NETPUT instruction to
send messages.

1) Sending a Message with a Single NETPUT

This example illustrates sending a message to the host using one NETPUT instruction. In
addition:

The LU is number 1 at location NETLU.

The message to be sent is at location OUTBUFF.

• The length of the message to be sent is at location BYTECNT.

The data is to be sent as a complete message.

Chapter 2. Instruction and Statement Descriptions LR-303

NETPUT
NETPUT - Send messages to the SNA host (continued)

The host receives the right-to-send .

.
Function management headers are included in the data.

NETLU
OUTBUFF
BYTECNT

NETPUT LU=NETLU, BUFF=OUTBUFF, BYTES=BYTECNT,
INVITE=YES,FMH=YES,LAST=YES

DATA
DATA
DATA

F'1 '
CL80'MESSAGE'
F'80'

2) Sending a Message with Multiple NETPUT Operations

C

This example illustrates one message being sent to the host with three NETPUT instructions. In
addition:

LR-304 SC34-0643

The lengths of the "partial messages" to be sent are at locations BYTECNTl, BYTECNT2,
and BYTECNT3.

The host should verify that it received the message.

The transaction ends after sending the message.

NETLU
OUTBUFF1
OUTBUFF2
OUTBUFF3
BYTECNT1
BYTECNT2
BYTECNT3

NETPUT LU=NETLU,BUFF=OUTBUFF1,BYTES=BYTECNT1,
EOT=YES,LAST=NO

NETPUT LU=NETLU,BUFF=OUTBUFF2,BYTES=BYTECNT2,
LAST=NO

NET PUT LU=NETLU,BUFF=OUTBUFF3,BYTES=BYTECNT3,
VERIFY=YES,LAST=YES

DATA F'1 '
DATA CL40'MESSAGE PART 1 '
DATA CL20'MESSAGE PART 2'
DATA CL20'MESSAGE PART 3 '
DATA F'40'
DATA F'20'
DATA F'20'

C

C

C

o

()

o

o

o

o

NETPUT
NETPUT - Send messages to the SNA host (continued)

Return Codes

NETPUT return codes are placed in the first word of the task control block ($TCBCO) of the
task that issued the instruction.

The positive return codes from NETPUT contain bit-significant values to allow for efficient
analysis in the Series/! SNA application. The bit positions have the following meaning:

............... 1 Host attempted to start a transaction

The valid combinations of the bit positions are listed in the following decimal return codes:

Return
Code

001
-1
-09
-10
-11

-12
-13
-14
-15
-16
-17
-18
-19
-20
-21

-22
-25

Condition

Host attempted to start transaction
Operation successful
LU is busy with another operation
Session does not exist
Instruction must be issued under program
linked to $NETCMD
Invalid LU number
Invalid request
SNA system error
NETTERM in progress
Session abnormally ended by host
Status available
Session quiesced
$SNA never loaded
UNBIND HOLD received
More than two tasks already running under this LU.
Limit is two tasks.
Session reset; CLEAR and STD commands received.
Not right-to-send

Chapter 2. Instruction and Statement Descriptions LR-305

NETTERM
NETTERM - End an SNA session

Syntax Example

LR-306 SC34-0643

The NETTERM instruction releases the logical communications path previously established
between session partners with the NETINIT instruction. NETTERM ends the session and
releases the Series/l resources used for the session.

You can use the system resources freed with the NETTERM instruction to establish other
sessions.

At any time, either the host program or your application program can end the session.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

LU=

HOLD=

EXIT =

Px=

NETTERM LU=,HOLD=,EXIT=,P1 =

LU=
HOLD=NO
none

Description

Identifies the session logical unit (LU) number. You must code a label pointing
to a value from 1-32.

YES, to keep session resources if the host issues a BIND command following the
NETTERM instruction.

NO (the default), to end the session and release all session resources.

Code this operand only when the host issues an UNBIND HOST command.

The label of the error-processing routine for your program. Control passes to
this label if any return code other than -1 is returned to your application.

Parameter naming operand. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

The following example shows the use of the NETTERM instruction to end a session. The LU
address for the ended session is at address NETLU.

o

c

o

o

NETTERM
NETTERM - End an SNA session (continued)

Return Codes

NETTERM LU=NETLU

NETLU DATA F'1 '

The NETTERM return codes are placed in the first word of the task control block ($TCBCO)
of the task that issued the instruction.

The positive return codes from NETTERM contain bit-significant values to allow for efficient
analysis in the Series/l SNA application. The bit positions have the following meaning:

............... 1

.............. 1.

............. 1 ..

............ 1 ...

Message from host rejected during termination
Message to host rejected during termination
Message to host aborted during termination
Message from host aborted during termination

The valid combinations of the bit positions are listed in the following decimal return codes:

Return
Code

009

008
007

006

005
004
003

002
001
-1
-10
-11

-12
-14
-15
-16
-19
-20
-25

Condition

CANCEL received during NETTERM and negative response
sent during NETTERM
CANCEL received during NETTERM
CANCEL sent during NETTERM and negative response
received during NETTERM and negative response sent

during NETTERM
CANCEL sent during NETTERM and
negative response received during NETTERM

CANCEL sent during NETTERM and negative response sent
CANCEL sent during NETTERM
Negative response received during NETTERM
and negative response sent during NETTERM
Negative response received during NETTERM
Negative response sent during NETTERM
Operation successful
Session does not exist
Instruction must be issued under program
linked to $NETCMD

Invalid LU number
SNA system error
NETTERM in progress
Session abnormally ended by host
$SNA never loaded
UNBIND HOLD received
No UNBIND HOLD received

Chapter 2. Instruction and Statement Descriptions LR-307

NEXTQ
NEXTQ - Add entries to a queue

LR-308 SC34-0643

The NEXTQ instruction allows you to add entries to a queue defined with the DEFINEQ
statement. The system removes a queue entry from the free chain of the queue and places the
entry in the queue's active chain.

Syntax:

label

Required:
Default:
Indexable:

Operand

qname

loe

FULL =

Px=

NEXTQ qname,loc,FULL=,P1=,P2=

qname,loc
none
qname,loc

Description

The name of the queue in which to place the entry. The queue name is the label
of the DEFINEQ statement that creates the queue.

The label of a word of storage which will become an entry in the queue. This
might be a single word of data or the address of an associated data area. If loc is
coded as #1 or #2 then the contents of the selected register will become the entry
in the queue.

The label of the first instruction of the routine to be invoked if a "queue full"
condition is detected during the execution of this instruction. If you do not
specify this operand, control returns to the next instruction after the NEXTQ. A
return code of -1 in the first word of the task control block indicates that the
operation completed successfully. A return code of + 1 indicates that the queue
is full.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

o

o

o

C)

o

NEXTQ
NEXTQ - Add entries to a queue (continued)

Coding Examples

1) The following example uses each of the queuing instructions. The program defines a queue
area that contains four six-word buffers. The FIRSTQ instruction obtains the oldest entry in
TIMEBUF. The GETTIME instruction obtains the date and time and updates the contents of
the entry obtained by FIRSTQ. The program stores the new time and date in TIMEQ1 and
TIMEQ2. When all buffers are allocated, the queue entries are printed on a first-in-first-out
basis, then on a last-in-first-out basis, and the buffers used are freed. Each queue instruction
executes 8 times.

QTEST PROGRAM START
START 'FIRSTQ TIMEBUF,LOC

IF (QTEST,EQ,1) ,GOTO,EMPTY
GETTIME *,DATE=YES,P1=LOC
NEXTQ TIMEQ1,LOC,FULL=ERROR1
NEXTQ TIMEQ2,LOC,FULL=ERROR1
ADD CTR,1
GO TO START

*
EMPTY FIRSTQ TIMEQ1,OUTADDR1,EMPTY=CHKCTR

LASTQ TIMEQ2,OUTADDR2,EMPTY=CHKCTR
ENQT $SYSPRTR
PRINTEXT SKIP=1
PRINTNUM *,6,6,P1=OUTADDR1
PRINTEXT SPACES=5
PRINTNUM *,6,6,P1=OUTADDR2
DEQT
NEXTQ TIMEBUF,OUTADDR1
GOTO EMPTY

*
CHKCTR IF (CTR,GE,8) ,GOTO,DONE

GOTO START
ERROR 1 PRINTEXT '@TIMEQ PREMATURELY FULL@'
DONE PROGSTOP
*
* DATA AREA
*
TIMEBUF DEFINEQ COUNT=4,SIZE=12
TIMEQ1 DEFINEQ COUNT=10
TIMEQ2 DEFINEQ COUNT=10
CTR DATA F'O'

ENDPROG
END

Chapter 2. Instruction and Statement Descriptions LR-309

NEXTQ
NEXTQ - Add entries to a queue (continued)

Return Codes

2) In this example, index register 1 points to a block of storage in a buffer area. The NEXTQ
instruction places the address of that location (contained in register #1) into the queue defined
by the QUE 1 label. If the queue is full, the program branches to the FULLQUE1label.

" Otherwise, the MOVE instruction places 32 bytes of data, beginning at the address labeled
DATAREC, into the buffer area. The ADD instruction updates #1 so that it points to the next
sequential block of storage in the buffer.

SUBROUT NEXTQUE1

*
NEXTQ QUE1,#1,FULL=FULLQUE1
MOVE (0,#1) ,DATAREC, (32,BYTES)
ADD #1,32
RETURN

*
FULLQUE1 EQU *

PRINTEXT '@QUE1 QUEUE BUFFER FULL'
GOTO ENDIT

QUE1 DEFINEQ COUNT=8

ENDIT EQU *
PROGSTOP

DATAREC DATA 16F'0'

The return codes are returned in the first word of the task control block (TCB) of the program
or task issuing the instruction. The label of the TCB is the label of your program or task
(taskname) .

Code Description

-1 Successful completion
1 Queue is full

LR-310 SC34-0643

o

o

o

o

o

o

NOTE
NOTE - Store next-record pointer

The NOTE instruction causes the value of a data set's next-record-pointer, which is maintained
by the system, to be stored in your program. The next-record-pointer is the relative record
number that will be retrieved by the next sequential READ or WRITE instruction.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

DSx

loe

PREC=

P2=

NOTE

DSx,loc
PREC=S
loc

Description

DSx,loc, PREC=, P2=

Code DSx, where "x" is the relative position (number) of a data set in the list of
data sets you define on the PROGRAM statement. The first data set is DS 1, the
second is DS2, and so on. A DSCB name defined by a DSCB statement can be
used in place of DSx.

This operand specifies the address of a fullword or doubleword of storage that
will contain the next-record-pointer as the result of executing a NOTE
instruction. This value can be used as the relative record number (relrecno) in a
subsequent POINT or direct READ or WRITE operation.

When this operand is coded as an index able value or as an address label, the
PREC operand can be used to further define whether relrecno is to be a
single-word or double-word value.

If the PREC operand is coded as PREC=D, then the range of relrecno is
extended beyond the 32767 value to the limit of a double-word value.

This optional operand further defines the relrecno operand only when relrecno is
coded as an address or as an indexable value. The default value is S and has the
same effect on relrecno as coding PREC=S. That effect is to limit the value of
relrecno to single-word precision or a value of X'7FFF' (32767).

Coding PREC=D gives a double-word precision attribute to the relrecno
operand and, therefore, extends its maximum value range to a double-word
value.

Parameter naming operand. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code this operand.

Chapter 2. Instruction and Statement Descriptions LR-311

NOTE
NOTE -Store next-record pointer (continued)

Syntax Examples

1) The following NOTE instruction is valid for records that do not exceed a length of 32,767.

NOTEL1 NOTE DS2,LOCS

LOCS DATA F'O'

2) The NOTE instruction in this example is valid for records that exceed 32,767 because the
variable LOCD is double-word precision.

NOTEL2 NOTE DS3,LOCD,PREC=D

LOCO DATA 0'0'

LR-312 SC34-0643

o

o

o

o

o

o

PLOTGIN
PLOTGIN - Enter scaled cursor coordinates

The PLOTGIN instruction allows you to specify scaled cursor coordinates interactively. The
instruction uses the coordinates you specify to plot curves. PLOT GIN rings the bell and
displays the cross-hair cursor. It waits for you to position the cross-hairs and enter a single
character. The cursor coordinates you enter are scaled with the use of the plot control clock
(PLOTCB). A description of the control block follows this instruction.

Syntax:

label PLOTGIN x,y,char,pcb,P1=,P2=,P3=,P4=

Required: x,y,pcb
Defaults:
Indexable:

no character returned
none

Operand

x

y

char

pcb

Px=

Plot Control Block (PLOTCB)

Description

The location where the x cursor coordinate value is to be stored.

The location where the y cursor coordinate value is to be stored.

The location where the character you select is to be stored. The character is
stored in the rightmost byte. The left byte is set to zero. If you do not code this
operand, the instruction does not store the selected character.

Label of an 8-word plot-control block.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR -12 for a detailed description of how to code these operands.

\

The plot control block defines the size and position of the plot area on the screen and the data
values associated with the edges of the plot area. The PLOTCB consists of eight words of data
defined by DATA statements.

You must build a PLOTCB in your graphics program when using the PLOTGIN, XYPLOT or
YTPLOT instructions. The format of the control block is:

label DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

F'xls'
F'xrs'
F'xlv'
F'xrv'
F'ybs'
F'yts'
F'ybv'
F'ytv'

Chapter 2. Instruction and Statement Descriptions LR-313

PLOTGIN
PLOTGIN - Enter scaled cursor coordinates (continued)

Syntax Example

LR-314 SC34-0643

You must specify an explicit value for all eight statements. The required values are defined
below:

xls x screen location at left edge of plot area

xrs x screen location at right edge of plot area

xlv x data value plotted at left edge of plot

xrv x data value plotted at right edge of plot

ybs y screen location at bottom edge of plot

yts x screen location at top edge of plot

ybv y data value plotted at bottom edge of plot

ytv y data value plotted at top edge of plot

Read x and y cursor coordinates and store them in X and Y, respectively. Store characters in
the data area labeled CHAR. The plot control block is at label PCB.

PLOTGIN X,Y,CHAR,PCB

PCB DATA F'500'
DATA F' 1000'
DATA F'O'
DATA F' 10'
DATA F' 100'
DATA F'600'
DATA F'-5'
DATA F'5'

o

o

o

o

o

POINT
POINT - Set next-record pointer

The POINT instruction causes the value of a data set's next-record-pointer, which is maintained
by the system, to be set to a new value. The system uses this new value in later sequential
READ or WRITE operations.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

DSx

relrecno

PREC=

P2=

POINT DSx,relrecno, PREC=, P2=

DSx,relrecno
PREC=S
relrecno

Description

Code DSx, where "x" is the relative position (number) of the data set in the list
of data sets you define on the PROGRAM statement. The first data set is DS 1,
the second is DS2, and so on. A DSCB name defined by a DSCB statement can
be substituted for DSx.

This operand sets a new value in the system-maintained next-record-pointer.
This parameter can be either a constant or the label of the value to be used.

If this value is coded as a self -defining term, or an equated value which is
preceded by a plus sign (+), then it is assumed to be a single-word value and is,
therefore, generated as an inline operand. Because this is a one-word value, it is
limited to a range of 1 to 32767.

When this operand is coded as an indexable value or as an address, the PREC
operand can be used to further define whether relrecno is to be a single-word or
double-word value.

If the PREC operand is coded as PREC=D, then the range of relrecno is
extended beyond the 32767 value to the limit of a double-word value
(2147483647).

This operand further defines the relrecno operand when you code an address or
an indexable value for relrecno.

PREC=S (the default) limits the value of the relrecno operand to a
single-precision value of 32767 (X'7FFF').

PREC=D extends the maximum range for the relrecno operand to a double word
value of 2147483647 (X'7FFFFFFF').

Parameter naming operand. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code this operand.

Chapter 2. Instruction and Statement Descriptions LR -315

POINT
POINT - Set next-record pointer (continued)

Syntax Examples

LR-316 SC34-0643 .

1. The following POINT instruction is valid for records that do not exceed a length of 32767.

POINTL1 POINT DS2,LOCS

LaCS DATA F'O'

2. This POINT instruction is valid for records that exceed 32767 because the variable LOCD is
double-word precision.

POINTL2 POINT DS3,LOCD,PREC=D

LOCD DATA D'O'

o

o

o

o

o

o

POST
POST - Signal the occurrence of an event

The POST instruction signals the occurrence of an event.

A POST instruction normally assumes the event is in the same partition as the executing
program. However, it is possible to POST an event in another partition using the cross-partition
capability of POST. See Appendix C, "Communicating with Programs in Other Partitions
(Cross-Partition Services)" on page LR-559 for an example of posting an event in another
partition. You can find more information on cross-partition services in the Event Driven
Executive Language Programming Guide.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

event

code

Px=

POST

event
code=-1
event

Description

event,code, P1 =,P2=

The label of an event control block (ECB) that defines the event. You must
code an ECB statement in your program if you compile the program under
$EDXASM.

$SIASM and the S/370 host assembler generate the ECB for the event named
in the POST instruction. You do not need to code an ECB statement when using
either of these macro assemblers.

Process interrupts are special events that can be simulated with a POST. This is
useful when one task is waiting for a process interrupt and a second task wishes
to start the first, as in a program termination sequence. In this case, issue a
POST PIx, where "x" is a process interrupt number from 1-99 as specified in an
IODEF statement.

A value, other than zero, to be inserted into the control block for the event. You
may want to use this value as a flag that indicates a certain condition or status.
To check the code value, refer to the label of the ECB statement.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

Chapter 2. Instruction and Statement Descriptions LR-317

POST
POST - Signal the occurrence of an event (continued)

Coding Ex~mples

LR-318 SC34-0643

1) The POST instruction in the following example posts the event control block labeled ECBl
when TASK 1 is finished processing. TASK 1 reads a record from the data set MYFILE and
places the record in the buffer labeled BUF. The primary task, PRINTOUT, waits for ECBl to
be posted before it continues processing. When the POST instruction posts ECBl, the primary
task enqueues the system printer and prints the first 50 bytes of the record.

PRINTOUT
START

BUF
ECB1
REC

PROGRAM
EQU
ATTACH
WAIT
ENQT
MOVE
PRINTEXT

PROGSTOP
BUFFER
ECB
TEXT

START,DS=((MYFILE,EDX40))
*
TASK1
ECB1
$SYSPRTR
REC,BUF,25
REC,SKIP=1

256,WORD

LENGTH=50

TASK1
NEXT

TASK
READ
POST
ENDTASK
ENDPROG
END

NEXT
DS 1 , BUF, 1
ECB1

2) The following example posts an ECB labeled ECBl which is declared as external to the
assembly module.

EXTRN

MOVEA
POST

END

ECB1

B,ECB1
*,P1=B

o

o

o

o

o

PRINDATE
PRINDATE - Display the date on a terminal

The PRINDATE instruction prints the date on a terminal. The system prints the date in the
form MM/DD/YY or DD/MM/YY, depending on the optiqn coded on the SYSTEM
statement when the supervisor was generated.

Note: You must include timer support in the system and have timer hardware installed to use
the PRINDATE instruction. Otherwise, a program check will occur.

The supervisor places a return code in the first word of the task control block (taskname)
whenever a PRINDATE instruction causes a terminal I/O operation to occur. If the return code
is not a -1, the address of this instruction will be placed in the second word of the task control
block (taskname+2). The terminal I/O return codes are described at the end of the
PRINTEXT and READTEXT instructions in this manual and also in the Messages and Codes.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

none

3101 Display Considerations

PRINDATE

none
none
none

Description

none

If you are using a 3101 in block mode, it will display the output from a PRINDATE instruction
according to the SET ,ATTR and SET ,STREAM operands of a TERMCTRL statement
currently in effect. For details on these operands see "TERMCTRL - Request special terminal
functions" on page LR-446.

Chapter 2. Instruction and Statement Descriptions LR-319

PRINDATE
PRINDATE· Display the date on a terminal (continued)

Coding Example

The following example prints the date and a message on the system printer.

ENQT $SYSPRTR
PRINTEXT '@ THE DATE IS '
PRINDATE
DEQT

The data appears in one of two formats, depending on the option coded on the DATEFMT
keyword of the SYSTEM statement during system generation.

If the SYSTEM statement has DATEFMT=MMDDYY (the default), the PRINDATE
instruction in the above example would produce the following result on February 25, 1984:

THE DATE IS 02/25/84.

If the SYSTEM statement has DATEFMT=DDMMYY, the result of the PRINDATE operation

o

would be: ~.
'~I

THE DATE IS 25/02/84.

LR-320 SC34-0643

o

0

o

PRINT
PRI NT - Control printing of a compiler listing

The PRINT statement controls the printing of the compiler listing. Because no instructions or
constants are generated in the object program by this statement, it can be placed between
executable instructions in your source statement data set.

A program can contain any number of PRINT statements. Each PRINT statement controls the
printing of the compiler listing until another PRINT statement is encountered.

The GEN/NOGEN option is not supported by $EDXASM.

Syntax:

blank

Required:
Defaults:
Indexable:

Operand

ON

OFF

GEN

NOGEN

DATA

NODATA

PRINT ON/OFF,GEN/NOGEN,DATA/NODATA

none
(Initially) ON,GEN,NODATA
none

Description

A listing is printed.

No listing is printed, except for the PRINT OFF statement itself.

The listing includes all object code generated by the compiler.

No object code appears with the instructions in the listing. Error messages
appear regardless of NOGEN. The PRINT instruction also appears in the listing.

Constants are printed out in full in the listing.

Only the leftmost 8 bytes of constants are printed on the listing.

Chapter 2. Instruction and Statement Descriptions LR-321

PRINT
PRINT - Control printing of a compiler listing (continued)

Coding example

LR-322 SC34-0643

The following sample program is compiled under $EDXASM using the formatting aids PRINT,
TITLE, SPACE, and EJECT. The TITLE statement places the program title, "Compiler Listing
Control Demonstration," at the top of each page of the listing. PRINT OFF stops the printing
of the listing, which is resumed when the system encounters the PRINT ON statement. In this
case, the MOVE instruction between two PRINT statements is omitted.

The SPACE statement inserts a specified number of blank lines between instructions, improving
the readability of the listing. When the EJECT statement is reached, the printer ejects the page
and begins printing the next line of the listing at the top of a new page. PRINT DATA causes
the hexadecimal value of the first TEXT statement to be printed out in full in the left-hand
column of the listing. When the default, PRINT NODAT A, is coded before the second TEXT
statement, the system prints only the leftmost 8 bytes of constants.

Sample Program:

DEMO
START

LOOP

TITLE
PROGRAM
EQU
PRINT
MOVE
PRINT
EQU
ADD
SPACE
IF

'COMPILER LISTING CONTROL DEMONSTRATION'
START

*
OFF
COUNT, 0
ON

*
COUNT, 1
5
(COUNT,LE,10)

PRINTEXT MESSAGE1
PRINTNUM COUNT

SPACE 2
ELSE

IF (COUNT,LE,20)
PRINTEXT MESSAGE2
PRINTNUM COUNT

ENDIF
ENDIF
SPACE 4
IF (COUNT,GT,20)

PRINTEXT '@TERTIARY TEST MESSAGE NUMBER'
PRINTNUM COUNT
PROGSTOP

ELSE
GOTO LOOP
ENDIF
EJECT

COUNT DATA F'O'
PRINT DATA

MESSAGE 1 TEXT '@PRIMARY TEST MESSAGE NUMBER'
PRINT NODATA

MESSAGE2 TEXT '@SECONDARY TEST MESSAGE NUMBER'
ENDPROG
END

, \ c,
--~

o

·0

0

o

PRINT
PRINT - Control printing of a compiler listing (continued)

Compiler Usting:

LO'

0000 0001 0709 06C7 09(1 ~.o
OOOA 0000 OOEI 01 .. 0000 0000
001. 016C 0000 0000 0000 0100
OOlE 016A 0000 0000 0000 0000
0021 0000 0000 0000 0000 0000
0032 0000
003.

003A
003A 1032 OOAit 0001

001tO 90A2 OOAit OOOA 0056
0048 0026 OOAI
004C 0021 OOAit 0001

0052 OOAO 0066
0056 90A2 OOA. 0014 0068
005E 0026 00C8
0062 0021 OOAit 0001
0068
0061

0068 EOA2 OOAit 001. OOAO
0070 1026 lElE 7(E3 C5D9 E3C9
OOlA (109 E8ltO E3C5 E2E3 400lt
001-\ C5E2 E2(1 (7(5 .005 HOlt
OOeE C2(5 O~O
0092 0021 OOAit 0001
0091 0022 FFFF
009C OOAO 00A4
OOAO OOAO 003A
OOAit

LO(+0 ~Z +4 +6 +8

OOAIt 0000

DOA6 1ElO 7e07 D9C9 04C1 09E8
OOBO 40E3 C5E~ E340 04C5 E2EZ
DOBA C1C7 (540 05E4 04(2 C509
00(4 4040

00(6 201F 7CE2 C5C3 0605 (ItC 1
00E8 0000 0000 0000 0234 0000

COMPILER LISTING .CONTROL DEMONSTRATION

SOORCE STATEMENT

DEMO

START

LOOP

PROGRAM

EQU
PIlINT
EQU
ADO

IF
PRINTExr
PRINTNUM

ElSE
IF

START

•
OFF

•
COUNT.1

(COUNT.LE.10)
MESSAGEl
COUNT

(COUNT.LE.20)
PRINTEn MESSAGE2
PRINTNUM COUNT

ENDIF
ENOIF

IF (COUNT.GT,20)
PRINTEXT • alERT IARY TEST

PRINTNUM COUNT
PROGSTOP

ElSE
GOTO lOOP
ENOIF

COMPILER LISTING (ONTROL DEMONSTRATION

SOURCE STATEMENT

COUNT DATA F"O"
PRINT DATA

MESSAGE NUMBER •

MESSAGE 1 TEXT '~PRI~ARY TEST MESSAGE NUMBER •

PR I NT NODAl A
'1ESSAGE2 TEXT 'QlSE(ONOARY TEST ~ESSAGF. NUMBER'

ENDPROG
END

Chapter 2. Instruction and Statement Descriptions LR-323

PRINTEXT
PRINTEXT - Display a message on a terminal

LR-324 SC34-0643

The PRINTEXT instruction allows you to print or display a message on any enqueued terminal,
not only the loading terminal. As the default terminal, the loading terminal requires no ENQT
instruction to perform a PRINTEXT. The PRINTEXT instruction also allows you to control
cursor or forms movement.

The PRINTEXT instruction generally does cursor or forms movement before writing the
message to the terminal.

Output for the terminal normally accumulates in the system buffer (or user buffer, if provided).
The system writes this output to the terminal when it encounters a new line character (@), a
forms control operand (SKIP, LINE, or SPACES), a PROGSTOP instruction, or a DEQT
instruction for a terminal.

The supervisor places a return code in the first word of the task control block (taskname)
whenever a PRINTEXT instruction causes a terminal I/O operation to occur. If the return code
is not a -1, the address of this instruction will be placed in the second word of the task control
block (taskname+2). The terminal I/O return codes are described at the the end of this
instruction and the READ TEXT instruction and also in the Messages and Codes.

Syntax:

label PRI NTEXT msg,SKIP=, LI N E=,SPACES=,XLATE=,
MODE=, PROTECT=,CAPS=, P1 =

Required: At least one operand from the following
list: SKIP, LINE, SPACES, or msg

Defaults: SKIP=O,L1NE=(current line),SPACES=O,
XLA TE=YES, PROTECT=NO

Indexable: msg,L1NE,SKIP,SPACES

Operand Description

msg The label of a TEXT statement which defines the message to be displayed or
printed, or the actual message enclosed in apostrophes. You can also code the
label of a BUFFER statement. When using a BUFFER statement, you must:

• Code the buffer label on the BUFFER= operand of the 10CB statement for
the terminal your program enqueues.
Move the number of characters to be printed into the index field of the
BUFFER statement (msg-4). ,

When you use a BUFFER statement, the system does not recognize the new line
character (@), and the operation executes immediately.

The maximum line size for a terminal depends on how the TERMINAL
definition statement was coded during system generation. Refer to the

o

o

o

o

PRINTEXT
PRINTEXT - Display a message on a terminal (continued)

SKIP =

LINE =

SPACES =

TERMINAL statement in the Installation and System Generation Guide for
information on default sizes.

The number of lines to be skipped before the system does an I/O operation. For
example, if your cursor is at line 2 on a display screen and you code SKIP=6, the
system does the I/O operation on line 8. For a printer, the SKIP operand
controls the movement of forms.

The SKIP operand causes the system to display or print the contents of the
system buffer.

If you specify a value greater than or equal to the logical page size, the system
divides this value by the page size and uses the remainder in place of the value
you specify. For roll screens, the logical page size equals the screen's bottom
margin minus the number of history lines and the screen's top margin.

The line number on which the system is to do an I/O operation. Code a value
between zero and the number of the last usable line on the page or logical
screen. The line count begins at the top margin you defined for the printer or
display screen. LINE=O positions the cursor at the top line of the page or screen
you defined; LINE = 1 positions the cursor at the second line of the page or
screen. For roll screens line 0 equals the screen's top margin plus the number of
history lines.

For printers and roll screens, if you code a value less than or equal to the current
line number, the system does the I/O operation at the specified line on the next
page or logical screen. For static screens, if you code a value within the limits of
the logical screen, the system does the I/O operation on the line you specified.

If you code a value greater than the last usable line number, the system divides
this value by the logical page size and uses the remainder as the line number on
which to do the I/O operation. For example, if you code LINE=22 and your
roll screen has a logical page size of 20, the I/O operation occurs on the second
line of the logical screen.

The LINE operand causes the system to print or display the contents of the
system buffer.

The number of spaces to indent before the system does an I/O operation.
SP ACES=O, the default, positions the cursor at the beginning of the left side of
the page or screen. If the value you specify is beyond the limits of the logical
screen or page, the system indents the next line by the excess number of spaces.

When you code the LINE or SKIP operands with SPACES, the system begins
indenting from the left margin of the page or screen. If you specify SPACES
without coding LINE or SKIP, the system begins indenting from the last cursor
position on the line.

Chapter 2. Instruction and Statement Descriptions LR-325

PRINTEXT
PRINTEXT - Display a message on a terminal (continued)

LR-326 SC34-0643

XLATE=

MODE=

NO, to send the message to the device as is, without translation. This option
might be used, for example, to send graphic control characters and data.

YES (the default), to cause translation of characters from EBCDIC to the code
the terminal uses to display the message.

With a 3101 in block mode, XLATE=NO also prevents the system from
inserting the attribute byte and escape sequences into the message and overrides
the effects of TERMCTRL SET,STREAM= YES.

Note: For a description of 3101 escape sequences refer to IBM 3101 Display
Terminal Description, GA18-2033.

If the terminal requires that characters be sent in mirror image and you code
XLATE=NO, it is your responsibility to provide the proper bit representation.
For more details on mirror image, see the Communications Guide.

LINE, to prevent the system from interpreting each @ character it finds in the
text as a request for a new line.

For 4978, 4979, and 4980 screens accessed in STATIC mode, the coding of
MODE=LINE and the SPACES operand causes protected fields to be skipped
over as the data is transferred to the screen ("scatter write" operation).
Protected positions do not contribute to the count. For a 3101 in block mode
with a static screen, the protected fields are overwritten.

Do not code this operand if you want the system to recognize @ as a new line
character.

PROTECT= YES, to write protected characters to a static screen device that supports this
feature, such as an IBM 4978, 4979, 4980 and 3101 in block mode. Protected
characters are displayed and cannot be typed over.

CAPS =

NO (the default), not to write protected characters to a static screen.

When the PRINTEXT instruction is being coded for a Series/1-to-Series/1
operation, it is recommended that this operand be coded PROTECT = YES.

Code this operand to convert a PRINTEXT message to uppercase characters.
This operand is valid only for EBCDIC data that is defined by a TEXT or
BUFFER statement.

Code CAPS= Y to convert all data defined by a TEXT or BUFFER statement to
uppercase characters. When specifying CAPS= Y, you must link edit your
program using the autocall feature of $EDXLINK.

To convert a specific number of bytes to uppercase, code that number with the
CAPS operand. Capitalization starts from the first byte of the message text. For

o

o

o

o

o

PRINTEXT
PRINTEXT - Display a message on a terminal (continued)

Px=

Buffer Considerations

example, CAPS=3 capitalizes the first three bytes of data defined by the TEXT
or BUFFER statement.

The count you specify should not exceed the length of the TEXT or BUFFER
statement that defines the message. If the length is exceeded, the operation is
still performed, but data beyond the TEXT or BUFFER statement may be
modified.

When you code a value with the CAPS operand, the system does an inclusive OR
(lOR) of an X'40' byte to each EBCDIC byte. (See Coding Example 3 at the
end of this section). A lower-case "a" (X'81 '), for example, is converted to an
uppercase "A" (X'Cl'). Characters already capitalized remain unchanged. The
lOR operation is done before the PRINTEXT instruction executes. The data is
converted to uppercase in the application program.

Notes:

1. Only CAPS = Y is valid when you use the PI = operand with this instruction.
2. Coding XLATE=NO and the CAPS operand causes an assembly error.
3. When using the 4975 printer, do not code the CAPS operand if you are using

the spacing character and a space modifier to increase the spacing between
printed characters. See "4975 Spacing Capabilities" on page LR-328 for
details on how to use the spacing character and the space modifier. This
note does not refer to the 4975-01A ASCII printer.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

When a buffer overflow condition occurs, what happens to accumulated data depends on how
the system definition TERMINAL statement or 10CB statement is coded. If the TERMINAL
or 10CB statement contains OVFLINE= YES, the system writes the data in the buffer to the
terminal and then uses the available buffer space for overflow data.

If the TERMINAL or 10CB statement contains OVFLINE=NO, any data following a buffer
overflow condition is lost. Until the system writes the buffer data to the terminal, an imbedded
@ will not be recognized following a buffer overflow condition. (For details on the
TERMINAL definition statement, refer to the Installation and System Generation Guide.)

When your program issues a PRINTEXT instruction to devices other than a 4973 or 4974, and
the buffer size is equal to the line size, an extra line space can occur.

When using direct I/O or when the keyword XLATE=NO is coded, the output to a terminal is
written immediately.

Chapter 2. Instruction and Statement Descriptions LR-327

PRINTEXT
PRINTEXT - Display a message on a terminal (continued)

3101 Display Considerations

If you are using a 3101 in block mode, it will normally write an attribute byte before the output
data. The attribute byte controls the characteristics of the field that it precedes. One such
characteristic, intensity, can be either HIGH or LOW and the field can be either blinking or
nonblinking, depending on how the SET,ATTR operand was coded on the TERMCTRL
statement in effect. If no attribute byte is desired, such as when writing to an ~xisting formatted
screen, code TERMCTRL ATTR=NO before using the PRINTEXT instruction. TERMCTRL
ATTR= YES should then be coded to restore the writing of attribute bytes.

When the TERMCTRL statement that is in effect is coded STREAM=NO or is allowed to
default to NO by not coding this operand, terminal I/O support provides the attribute byte for
you. Terminal I/O also provides escape sequences for you under this condition. For a
description of 3101 escape sequences, see IBM 3101 Display Terminal Description, GAI8-2033.

If the last TERMCTRL statement was coded SET,STREAM=YES, then the SET,ATTR
operand is not considered. Under this condition, terminal I/O support does not provide any
attribute bytes or escape sequences.

With either STREAM = YES or NO, translation of data from EBCDIC will be performed. See
the XLA TE operand description.

If you are using a 3101 in block mode, the system does not recognize a new line character (@).

Note: Do not press the SEND key on a 3101 terminal while the system is doing a PRINTEXT
operation to that terminal. The SEND key can affect the data being displayed.

4975 Spacing Capabilities

The following information refers to spacing capabilities only on the 4975 printer. It does not
refer to such capabilities on the 4975-01A ASCII nor any other model printer.

When using the 4975 printer in draft mode, you can increase the amount of space left between
printed characters on a line by inserting special spacing characters into the TEXT or BUFFER
statement that defines the PRINT EXT message.

To insert additional space between characters you must include the spacing character X'27'
followed by a space modifier. The space modifier defines the percentage of additional space to
be included. It is a hexadecimal value in the form 'Fx', where "x" is a number from 0 to 9. The
space modifier 'FO' adds no additional space, 'PI' adds 10 percent additional space, and 'F2'
adds 20 percent additional space. 'F9' adds 90 percent additional space and is the maximum
value that you can specify.

You must insert the spacing character and the space modifier into the TEXT or BUFFER
statement at each point where you want additional space. The second coding example at the
end of this section shows one way to do this operation.

LR-328 SC34-0643

0·.·'··'
, '

o

o

o

o

PRINTEXT
PRINTEXT - Display a message on a terminal (continued)

Syntax Examples

All printers with the exception of the 497S-01A ASCII Printer treat X'OO' as a blank. The
497S-01A ASCII Printer ignores X'OO' and treats it as a null character. This may cause a
spacing difference if you send X'OO' in your PRINTEXT instruction.

1) Print the contents of a TEXT statement at label TEXTl.

PRINTEXT TEXT1

2) Print the text message within quotes on a new line (the new line character @ is not printed).

PRINTEXT '@START OF PROGRAM'

3) Add four to the current cursor position and print the contents of a text statement at label
TEXT2.

PRINTEXT TEXT2,SPACES=4

4) If not currently at the first line of a page or screen, skip to a new page and then skip two
lines and print the contents of a text statement at TEXT3.

PRINTEXT TEXT3,LINE=1,SKIP=2

5) Skip one line. If any output is residing in the system buffer or the terminal 110 buffer, the
system prints it before doing the SKIP operation.

PRINTEXT SKIP=1

6) Write out the contents of the text statement at the label CODES and do not translate the
data.

PRINTEXT CODES,XLATE=NO

Chapter 2. Instruction and Statement Descriptions LR-329

PRINTEXT
PRINTEXT - Display a message on a terminal (continued)

Coding Examples

1) The PRINTEXT instruction at label Pl sends an untranslated message to an ASCII terminal
indicating that a program has begun processing. The example then uses a set of PRINTEXT
instructions to print the title of a report on the system printer.

TERMMSG EQU *
ENQT ASCI ITEM

P1 PRINTEXT UNXLATED,XLATE=NO
DEQT

* HEADER EQU *
ENQT $SYSPRTR GET EXCLUSIVE ACCESS TO PRINTER

PRINTEXT COMPANY,LINE=3,SPACES=39
PRINTEXT 'ANNUAL INVENTORY REPORT' ,SPACES=40,SKIP=2
PRINTEXT 'SCHEDULE D',SPACES=46,SKIP=1

*
PROCESS EQU *

DC X'1F1F' DEFINE LENGTH/COUNT BYTES
UNXLATED DC X'53434845'

DC X'44554C45'
DC X'20442050'
DC X'524F4345'
DC X'5353494E'

* DC X'47204841,
DC X'53204245'
DC X'47554E'

*
COMPANY TEXT , SMITH & JONES CORPORATION'
ASCIITEM IOCB ACCA64

The message written to the ASCII terminal would be displayed as:

SCHEDULE D PROCESSING HAS BEGUN

The sequence of lines issued to the enqueued printer would appear as:

SMITH & JONES CORPORATION

ANNUAL INVENTORY REPORT
SCHEDULE D

(line 0)
(line 1)
(line 2)
(line 3)
(line 4)
(line 5)
(line 6)
(line 7)
(line 8)

Note that the line numbers at the right are for reference purposes only and are not part of the
printed output.

LR-330 SC34-0643

o

r~\

U

o

o

o

o

PRINTEXT
PRINTEXT - Display a message on a terminal (continued)

2) This example shows how to print a message using the character spacing capabilities of the
4975 printer. The MOVE instruction at M1 moves the number of bytes in the PRINTEXT
message into CNT + 1. After index registers #1 and #2 are set to zero, a DO loop moves the
first character of the text message into the buffer BUF. The MOVE instruction at label M2
inserts the spacing character (X'27') and the space modifier (X'F5') into the buffer. The ADD
instructions update the pointers. The loop continues until it moves the entire text message into
the buffer. The spacing character and the space modifier are inserted between each character in
the message.

After the loop completes, the message in the buffer is printed. The spacing between characters
in the printed message has increased by 50 percent.

SPACING PROGRAM
START EQU
M1 MOVE

*

MOVE
MOVE

START

*
CNT+1,MSG-1, (1,BYTE)
1 ,0
#2,0

FIND NUMBER OF BYTES IN MESSAGE
INITIALIZE #1
INITIALIZE #2

* THE FOLLOWING LOOP INSERTS SPACING CHARACTERS INTO THE DATA STREAM

*

M2

*

*

* FRACT

*
MSG
BUF

ENQT
DO
MOVE
MOVE

ADD
ADD
ENDDO
MOVE

$SYSPRTR ENQUEUE 4975 PRINTER
0,TIMES,P1=CNT DO FOR NUMBER OF MESSAGE BYTES
(BUF,#2), (MSG,#1), (1,BYTE) MOVE THE MESSAGE CHARACTER
(BUF+1,#2) ,FRACT, (2,BYTE) INSERT SPACING CHARACTER

AND SPACE MODIFIER
#1,1 INCREMENT POINTERS
#2,3 INCREMENT POINTERS

CNT,#2 GET TOTAL NUMBER OF CHARACTERS
TO PRINT

MOVE BUF-1,CNT+1, (1,BYTE)
PRINTEXT BUF,SKIP=1 PRINT THE MESSAGE
DEQT
PROGSTOP

DATA

TEXT
TEXT
ENDPROG
END

X'27F5' THE SPACING CHARACTER AND
SPACE MODIFIER

'THIS IS A TEST MESSAGE'
LENGTH=230

Chapter 2. Instruction and Statement Descriptions LR-331

PRINTEXT
PRINTEXT - Display a message on a terminal (continued/

The message, after the spacing operation, appears as follows:

THIS IS A TEST MESSAGE

If no additional spacing were added, the message would have been printed as follows:

THIS IS A TEST MESSAGE

3) When you code a value with the CAPS operand, the system generates an lOR instruction to
capitalize the specified data. The example below shows the use of the CAPS operand and how
you can achieve the same results by coding an lOR instruction directly in your application
program.

With the CAPS operand

PRlNTEXT A,CAPS=5

A TEXT LENGTH=5

Without the CAPS operand

lOR A,X'40', (5,BYTES)
PRlNTEXT A

A TEXT LENGTH=5

LR-332 SC34-0643

o

o

c

PRINTEXT o PRINTEXT - Display a message on a tenninal (continued)

o

o

4) The following example shows how you can use the PRINTEXT instruction to highlight
characters in printed output.

SAMPLE
START

PROGRAM START
EQU *
ENQT $SYSPRTR
PRINTEXT 'THIS IS AN EXAMPLE SHOWING' ,MODE=LINE
PRINTEXT 'HIGHLIGHTING OF CHARACTERS' ,MODE=LINE
TERMCTRL DISPLAY
PRINTEXT 'HIGHLIGHTING OF CHARACTERS' ,MODE=LINE,

SPACES=27
TERMCTRL DISPLAY
PRINTEXT 'ON THE PRINTER',MODE=LINE,SPACES=54
PROGSTOP
ENDPROG
END

The highlighted characters appear in bold in the sample below:

THIS IS AN EXAMPLE SHOWING HIGHLIGHTING OF CHARACTERS ON THE PRINTER

Chapter 2. Instruction and Statement Descriptions LR -333

PRINTEXT
PRINTEXT - Display a message on a terminal (continued)

Request Special Terminal Function (4975-01 A)

To request special terminal control function on the 4975-01A ASCII Printer, it is necessary to
use the DATA STREAM. The data stream provides terminal control capabilities for the
4975-01A ASCII Printer similar to those provided by the TERMCTRL statement. Unlike the
TERMCTRL statement, however, the data stream requires that you code terminal control
statements called 'code extension sequences.' These sequences of hexadecimal control
characters provide print control function. The printer interprets these characters and prints text
accordingly.

This section contains some of the basic sequences required in a data stream on the 4975-01A
ASCII Printer. For more information on code extension sequences used with the 4975-01A
ASCII printer, refer to the IBM 4975 Printer Model OlA (7 Bit Code) Description, GA34-1595.

Do not confuse the 4975-01A ASCII printer with other 4975 printers. The 4975-01A ASCII
Printer uses the International Standards Organization Standard 7-Bit Coded Character Set for
Information Processing Interchange (lSO-7). Other 4975 printers may not use this character
set. The 4975 printer device uses TERMCTRL statements, not the data stream. See "4975
Printer" on page LR-459 for information about TERMCTRL statements for that model printer.

Although most existing programs will generate output on the 4975-01A ASCII Printer, it will
ignore TERMCTRL statements.

Code Extension Sequences

Code extension sequences inform the 4975-01A ASCII printer how to interpret data that will
follow. You send such sequences from the system to the printer. Among sequences your printer
interprets is one which indicates the type of unit spacing. That is the Positioning Unit Mode
(PUM) sequence. There are two choices for unit spacing possible. One produces lines and
characters per inch. The other makes it possible for you to space units of text precisely within a
fraction of an inch called a decipoint. A decipoint is one tenth of a point. A point is 1/12 of a
pica. A pica is 1/6 of an inch. There are 720 decipoints in one inch. The two Positioning Unit
Modes (PUM) are called:

• Lines and Characters PUM
Decipoint PUM

To Set Lines and Characters Positioning Unit Mode (PUM)

LR-334 SC34-0643

The PUM code is necessary because spacing increments can be interpreted by the 4975-01A
Printer as either lines and characters or decipoints. This code makes the distinction.

o

o

o

o

o

o

PRINTEXT
PRINTEXT - Display a message on a terminal (continued)

The 4975-01A ASCII Printer prints text in lines and characters PUM when you code the stream
of hexadecimal characters, IB5B31316C. Since lines and characters per inch is the system
default, however, it is not always necessary to include this PUM code. Unless decipoint PUM
was previously requested, parameters will automatically be interpreted as lines and characters
per inch. Therefore, only your intention to reset spacing on the 4975-01A Printer to lines and
characters from decipoints is necessary. The meaning of each portion of this code follows.

Byte Hex Field

0 18 Control Sequence Introducer
1 58 Control Sequence Introducer
2 31 Numeric Parameter for PUM
3 31 Numeric Parameter for PUM
4 6C Final Character

This sequence causes interpretation of all subsequent numeric parameters (np) in the formatting
operations that will follow as units of lines and characters. If the last positioning unit request
made of your 4975-01A ASCII Printer was decipoint positioning, include the code
IB5B31316C in your data stream before indicating actual lines and characters spacing
increments.

To Set Spacing Increment (SPI)

In order to set spacing increments in lines and or characters or decipoints on the 4975-01A
ASCII Printer, include SPI code in the data stream after either PUM code. The SPI code used
for indicating lines and characters or decipoints is "IB5Bnp3Bnp204 7." The "np" position in
the data stream is reserved for numeric parameter coding. The first numeric parameter indicates
vertical spacing or lines per inch. Use the second indicates horizontal positioning or characters
per inch.

Whether indicating lines and characters or decipoint positioning, numeric parameters in a data
stream are simply code equivalents for decipoint spacing values. Numeric parameter values for
each digit of a decipoint value range from 30 to 39 for 0 to 9 respectively. For example, the np
value 35 equals 5 decipoints. The np value 313230 equals 120 decipoints or 12 points. Request
the number of lines and characters per inch in the data stream by using the coded equivalent
value for the associated numerical parameter.

Decipoint values allowed in a data stream range from 1 to 120. Numerical parameter equivalents
range from 31 to 313230. When specifying lines and characters per inch, it is helpful to regard
decipoint values as points. For example, 12 decipoints are equal to 12-point type spacing.

Note from the following table that a request for 12-point vertical type spacing results in 6 lines
per inch. A request for 9-point vertical type spacing allows 8 lines per inch. Character spacing
can also be more easilly understood in points. Horizontal spacing of 7.2 points results in 10
characters per inch. A smaller spacing increment, 4.8 points, allows more characters per inch,
15. There are no vertical nor horizontal lines and characters per inch spacing options available
on the 4975-01A Ascii Printer in lines and characters PUM besides these.

Chapter 2. Instruction and Statement Descriptions LR -335

PRINTEXT
PRINTEXT - Display a message on a terminal (continued)

The following table illustrates the meaning of code valid in the lines and characters positioning
unit mode.

Numeric Parameter

120
90
72
48

Coded Equivalent

313230
3930
3732
3438

Inch Equivalent

6 lines per inch*
8 lines per inch
10 characters per inch*
15 characters per inch

The default number of lines per inch for the ASCII printer is 6. The default number of
characters per inch is 10. Specific coding is not required to indicate defaults for lines and
characters per inch. They may, however, be coded by numeric parameter equivalents.

If you wish to use any of these parameters code in hexadecimal:

Notes:

Coded SPI Parameter

185839303834382047
1858*3834382047
1858393038*2047
1858*38*2047
18583132303837322047

Inch Equivalent

8 Ipi, 15 cpi
6lpi, 15 cpi
8lpi, 10 cpi
6 Ipi, 10 cpi
6lpi, 10 cpi

1. Asterisks in the tables above indicate that the printer will use the default values. Do not code
asterisks in a data stream.

LR-336 SC34-0643

2. Abbreviations "cpi." and "lpi." represent characters and lines per inch respectively.

The meanings of contents of this code are:

Byte Hex Field

0 18 Control Sequence Introducer
1 58 Control Sequence Introducer
+n 30-39 Numeric Parameter (vertkal)
+1 38 Separator
+n 30-39 Numeric Parameter (horizontal)
+1 20 Intermediate Character
+1 47 Final Character

In this table +n refers to whatever number happens to be the coded equivalent for the numeric
parameter you are requesting. It can be four or six digits.

o

()

o

o

o

o

PRINTEXT
PRINTEXT - Display a message on a terminal (continued)

To Set Decipoint PUM

If you want to space text more precisely than lines and characters PUM will allow, consider
using decipoint parameters. Issue decipoint PUM code IB5B313168 in your data stream before
introducing specific decipoint horizontal and vertical spacing numeric parameters. SPI code
following this PUM code allows data to be positioned in any increment of decipoints. The
meaning of each portion of this code follows.

Byte Hex Field

0 18 Control Sequence Introducer
1 58 Control Sequence Introducer
2 31 Numeric Parameter for PUM
3 31 Numeric Parameterfor PUM
4 68 Final Character

This sequence causes interpretation of all subsequent numeric parameters (np) in the following
formatting operations as units of decipoints. When submitting information in numerical
parameters for interpretation as decipoints, consider each standard numerical parameter unit a
decipoint. The following table indicates equivalent (np) code for several decipoint values.

Decipoint Value

120
110
90
80
70
30

To Reset to Initial State (RIS)

Coded (np) Equivalent

313230
313130
3930
3830
3730
3330

This sequence, IB63, resets the printer to its initial state. The initial state is the printer's state
after turned on. This sequence may replace coding for printer defaults.

Data Stream Example

Byte

o
1

Hex

18
63

Field

Escape Character
Final Character

The following program example demonstrates how to change print density on the 4975-01A
ASCII Printer.

Once enqueued, the printer prints text in lines and characters per inch PUM, the default
positioning unit mode. Lines and characters will automatically print with a density of 6 lines and
10 characters per inch. The ASCII printer retains any print density information you specify
until you request new values by numeric parameter specification or the RIS sequence.

The XLATE= NO operand used in this example sends our message to the device without
translation. Results of the program follow the example.

Chapter 2. Instruction and Statement Descriptions LR -337

PRINTEXT
PRI~TEXT - Display a message on a terminal (continued)

PGM

* START

*

*
*

*

*

*
ASCIPRNT

*
P815

*
*
*
P615

*

*

PROGRAM

EQU

ENQT
PRINTEXT
PRINTEXT
PRINT EXT

START

*
ASCIPRNT ENQT ON THE PRINTER

'THIS IS 6 LINES/INCH, 10 CHARACTERS/INCH (DEFAULT)'
SKIP=1

'THIS IS 6 LINES/INCH, 10 CHARACTERS/INCH (DEFAULT)'

PRINTEXT P815,XLATE=NO CHANGE PRINT DENSITY TO 8 LPI 15 CPI

PRINTEXT
PRINTEXT

PRINTEXT
PRINTEXT
PRINTEXT

DEQT
PROGSTOP

IOCB

DC
DC
DC
DC
DC
DC

ALIGN

DC

DC

DC
DC
DC

ENDPROG
END

'THIS IS 8 LINES/INCH, 15 CHARACTERS/INCH' ,SKIP=1
'THIS IS 8 LINES/INCH, 15 CHARACTERS/INCH',SKIP=1

P615,XLATE=NO CHANGE PRINT DENSITY TO 8 LPI 15 CPI
'THIS IS 6 LINES/INCH, 15 CHARACTERS/INCH',SKIP=1
'THIS IS 6 LINES/INCH, 15 CHARACTERS/INCH' ,SKIP=1

$SYSPRT2

X'0909'
X' 1B5B'
x'3930'
x' 3B'
X'3438'
X'2047'

WORD

X'0707'

X' 1B5B'

x' 3B'
X'3438'
X'2047'

DEQT THE PRINTER

IOCB FOR THE 4975-01A

DATA TO DEFINE TEXT
BEGINNING SEQUENCE
SPECIFIES 8 LPI
SEPARATOR
SPECIFIES 15 CPI
ENDING SEQUENCE

ALIGN DATA STREAM

STRING LENGTH

DATA TO DEFINE TEXT STRING LENGTH

BEGINNING SEQUENCE
NO PARAMETER, MEANS 6 LPI (DEFAULT)
SEPARATOR
SPECIFIES 15 CPI
ENDING SEQUENCE

The following output results from the preceding program example:

T H I ~::. I ~::. 6 1000 I NEb / INC H " :I. 0 C H tl F;~ (~C T E H S / I ~000! C H (It E F (.011...11... or)
THIS IS 6 LINES/INCH} 10 CHARACTERS/INCH (DEFAULT)
THIS IS 8 LINES/INCH, 15 CHARACTERS/INCH
THIS IS 8 LINES/INCH, 15 CHARACTERS/INCH
THIS IS 6 LINES/INCH, 15 CHARACTERS/INCH
THIS IS 6 LINES/INCH, 15 CHARACTERS/INCH

LR-338 SC34~0643

o

o

o

o

o

PRINTEXT
PRINTEXT - Display a message on a terminal (continued)

Terminal I/O Return Codes

The terminal I/O return codes are all listed here and following the READTEXT instruction. A
complete list of all return codes can also be found in the Messages and Codes. You must select
the group of codes that represents the particular device type you are using. A list of the terminal
I/O return code groups follows:

General Terminal I/O

Virtual Terminal

ACCA Devices

Interprocessor Communication

General Purpose Interface Bus

Series/ 1-to-Series/ 1 Adapter.

Chapter 2. Instruction and Statement Descriptions LR-339

PRINTEXT
PRINTEXT .. Display a message on a terminal (continued)

General Terminal I/O Return Codes

The return codes are returned in the first word of the task control block of the program issuing
the instruction.

LR-340 SC34-0643

Return
Code
-1
1
2
3
4
5
6
7
a

>10

Notes:

Condition
Successful completion.
Device not attached.
System error (busy condition).
System error (busy after reset).
System error (command reject).
Device not ready.
Interface data check.
Overrun received.
Printer power has been switched off and switched
back on or a power failure has occurred.

A code greater than 10 can indicate
multiple errors. To determine the errors,
subtract 10 from the code and express the result
as an a-bit binary value. Each bit (numbering
from the left) represents an error as follows:

Bit 0 - Unused
1 - System error (command reject)
2 - Not used
3 - System error (DeB specification check)
4 - Storage data check
5 - Invalid storage address
6 - Storage protection check
7 - I nterface data check

1. If the return code is for devices supported by IOS2741 (2741, PROC) and a code greater
than 128 is returned, subtract 128; the result then contains status word 1 of the ACCA.
Refer to the IBM Series/l Communications Features Description, GA34-0028 for
determination of the special error condition.

2. If your program receives a return code of 5 while attempting to do a PRINTEXT operation
on a 4975 printer, the program should retry the operation a maximum of three times.

c

o

C~~\
,)/

o

PRINTEXT
PRINTEXT - Display a message on a terminal (continued)

Virtual Terminal Return Codes

The return codes are returned in the first word of the task control block of the program issuing
the instruction.

Return
Code

X'8Fnn'
X'8Enn'

-2
-1

1
5
8

Transmit
Condition

Not applicable.
Not applicable.
NA
Successful completion.
Not attached.
Disconnect.
Break.

Receive
Condition

LlNE=nn received.
SKIP=nn received.
Line received (no CR).
New line received.
Not attached.
Disconnect.
Break.

A further description of each of the virtual terminal return codes follows:

LINE=nn (X I8Fnn l

): Returned for a READTEXT or GETVALUE instruction if the other
program issued an instruction with a LINE= operand. This operand tells the system to do an
110 operation on a certain line of the page or screen. The return code allows the receiving
program to reproduce on an actual terminal the output format intended by the sending program.

SKIP=nn (XIBEnn l

): The other program issued an instruction with a SKIP= operand. This
operand tells the system to skip several lines before doing an 110 operation.

Line Received (-2): Indicates that an instruction (usually READ TEXT or GETVALUE) has
sent information but has not issued a carriage return to move the cursor to the next line. The
information is usually a prompt message.

New Line Received (-1): Indicates transmission of a carriage return at the end of the data.
The cursor is moved to a new line. This return code and the Line Received return code help
programs to preserve the original format of the data they are transmitting.

Not attached (1): A virtual terminal does not or cannot refer to another virtual terminal.

Disconnect (5): The other virtual terminal program ended because of a PROGSTOP or an
operator command.

Break (8): Indicates that both virtual terminal programs are attempting to do the same type of
operation. When one program is reading (READTEXT or GETVALUE), the return code
means the other program has stopped sending and is waiting for input. When one program is
writing (PRINTEXT or PRINTNUM), the return code means the other program is also
attempting to write.

If you defined only one virtual terminal with SYNC= YES, then that task always receives the
break code. If you defined both virtual terminals with SYNC = YES, then the task that last
attempted the operation receives the break code.

Chapter 2. Instruction and Statement Descriptions LR-341

PRINTEXT
PRINTEXT - Display a message on a terminal (continued)

ACCA Return Codes

The return codes are returned in the first word of the task control block of the program issuing
the instruction.

Return
Code

-1
1-08

11
12

14,15

Condition

Successful completion.
Return code for last operation
placed in information status byte (lSB).
Refer to the hardware description
manual for status on the device
you are using.
Write operation (I/O complete).
Read operation (I/O complete).
Condition code +1 after I/O start or
condition code after I/O complete.

Interprocessor Communication Return Codes

The return codes are returned in the first word of the task control block of the program issuing
the instruction.

CODTYPE=

EBCDIC
EBCDIC
EBCDIC
EBCD/CRSP
EBCD/CRSP
EBCD/CRSP

Return Code
FDFF
FEFF
FCFF
1F
5B
(none)

General Purpose Interface Bus Return Codes

Condition
End of transmission (EaT).
End of record (NL).
End of subrecord (EOSR).
End of transmission (EaT).
End of record (NL).
End of subrecord (EOSR).

The return codes are returned in the first word of the task control block of the program issuing
the instruction.

LR-342 SC34-0643

Return
Code

-1
1
2
3
4
6

256 + ISB
512 + ISB
1024

Condition

Successful completion.
Device not attached.
busy condition.
busy after reset.
command reject.
Interface data check.
Read exception.
Write exception.
Attention received during an operation
(may be combined with an exception
condition).

o

()

o

o

C)

o

PRINTEXT
PRINTEXT - Display a message on a terminal (continued)

Series/1-To-Series/1 Return Codes

The return codes are returned in the first word of the task control block of the program issuing
the instruction.

Return
Code
-1
1
2
3
4
5
6
7
138, 154

1002
1004
1006
1008
1010
1012

1014
1016
1050

1052
1054

Condition

Successful.
Device not attached.
System error (busy condition).
System error (busy after reset).
System (command reject).
Device not ready (not reported for S / 1 - S /1).
Interface data check.
Overrun recieved (not reported for S/1 - S/1).
An error has occurred that can only be
determined by displaying the device cycle
steal status word with the TERMCTRL STATUS
function and checking the bits to determine
the cause of the error.
Other system not active.
Checksum error detected.
Invalid operation code or sequence.
Timeout on data transfer.
TERMCTRL ABORT issued by responding processor.
Device reset (TERMCTRL RESET) issued by the other
processor.
Microcode load to attachement failed during IPL.
Invalid or unsolicited interrupt occurred.
TERMCTRL ABORT issued and no operation
pending.
TERMCTRL IPL attempted by slave processor.
Invalid data length.

Chapter 2. Instruction and Statement Descriptions LR-343

PRINTIME
PRINTIME -Display the time on a terminal

The PRINTIME instruction prints the time of day on the currently enqueued terminal. The
system prints the time in the form HH:MM:SS (hours, minutes, seconds), according to a
24-hour clock. You set the 24-hour clock with the $T command.

Note: To use the PRINTIME instruction, you must have installed timer hardware and included
timer support in the system during system generation. A program check will occur if you try to
use this instruction without the proper hardware or software support.

The supervisor places a return code in the first word of the task control block (taskname)
whenever a PRINTIME instruction causes a terminal I/O operation to occur. If the return code
is not a -1, the address of this instruction will be placed in the second word of the task control
block (taskname+2). The terminal I/O return codes are described at the end of the
PRINTEXT and READTEXT instructions in this manual and also in the Messages and Codes.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

PRINTIME

none
none
none

Description

none none

3101 Display Considerations

If you use a 3101 in block mode, the current TERMCTRL command in effect will control the
output. For details on the TERMCTRL SET,ATTR and SET,STREAM operands, see the
discussion under "TERMCTRL - Request special terminal functions" on page LR-446.

LR-344 SC34-0643

o

o

o

o

o

o

PRINTIME
PRINTIME - Display the time on a terminal (continued)

Coding Example

The following coding example prints a message on the system printer, followed by the current
time of day.

ENQT $SYSPRTR
PRINTEXT '@ THE TIME IS '
PRINTIME
DEQT

If, for example, the PRINTIME instruction executes at 10 minutes and 13 seconds past 2
o'clock in the afternoon, the instruction prints the following message on the system printer:

THE TIME IS 14:10:13

Chapter 2. Instruction and Statement Descriptions LR-345

PRINTNUM
PRINTNUM - Display a number on a terminal

The PRINTNUM instruction displays or prints a floating-point value or one or more integer
values on a terminal in the format that you specify. The output can appear in decimal or
hexadecimal form.

If the PRINTNUM output is too large for the system buffer, the system first fills the buffer,
prints that data, and then stores the excess data in the buffer area. The next I/O operation
forces the excess data to be printed or displayed before any other output.

The supervisor places a return code in the first word of the task control block (taskname)
whenever a PRINTNUM instruction causes a terminal I/O operation to occur. If the return
code is not a -1, the address of this instruction will be placed in the second word of the task
control block (taskname+2). However, if an I/O error occurs during this instruction, terminal
I/O will not pass control to any terminal error routine. The terminal I/O return codes are
described at the end of the PRINTEXT and READTEXT instructions in this manual and also in
the Messages and Codes.

Syntax:

label PRINTNUM loc,count,nline,nspace,MODE=,FORMAT=

Required:
Defaults:

Indexable:

Operand

loc

count

nline

nspace

LR .. 346 SC34-0643

loc

TVPE=,SKI P=, LI N E=,SPACES=, PROTECT=
P1 =, P2=, P3=, P4=

count=1,nspace=1, MODE=DEC, PROTECT=NO,
FORMAT=(6,O,I), TYPE=S,
SKIP=O,LlNE=current line,SPACES=O
If nline is not specified, then it is
determined by the terminal margin settings.
loc,SKI P,LI N E,SPACES

Description

The label of the first value to be printed or displayed. Successive values are
taken from successive words or doublewords.

The number of values to be printed or displayed. You can substitute a precision
for the count, in which case the count defaults to 1. The valid precisions are
WORD (the default) and DWORD (doubleword). You can also express the
count in the form: (count,precision).

The number of values to be printed or displayed on each line.

The number of spaces left between values. Code the nline operand before
coding this operand.

o

o

o

o

PRINTNUM
PRINTNUM - Display a number on a terminal (continued)

MODE= HEX, for hexadecimal output.

DEC, the default, for decimal output.

FORMAT = The format of the value to be printed or displayed.
(w,d,t) If you code this operand, the system ignores the count, nline, nspace, and

MODE= operands. The format is as follows:

TYPE =

SKIP=

w

d

f

An integer value equal to the width of the data field to be printed or
displayed. If the data contains a decimal point or sign character (+ or -),
include it in the count.

The number of digits to the right of the decimal point. For the integer
format, this value must be zero; for the floating-point F format, it must
be less than or equal to w-2, and for the floating-point E format, less
than or equal to w-6.

Format of the output data. Code I for integer data, F for floating-point
data (XXXX.XXX), or E for floating-point data in E notation. See the
value operand under the DATA/DC statement for a description of E
notation format.

Note: You can use the floating-point format for data even if you do not
have floating-point hardware installed in your system. Floating-point
hardware is required, however, to do floating-point arithmetic.

The first FORMAT operand to execute generates a work area which all
subsequent FORMAT operands also use. The generated work area is
nonreentrant in a multitasking environment, and all tasks must use the ENQ and
DEQ instructions to acquire serial access to it.

The type of variable that contains the data you want to print or display. Code
this operand only when you code the FORMAT operand.

S - Single-precision integer (1 word)
D - Double-precision integer (2 words)
F - Single-precision floating-point (2 words)
L - Extended-precision floating-point (4 words)

The number of lines to be skipped before the system does an I/O operation. For
example, if your cursor is at line 2 on a display screen and you code SKIP=6, the
system does the I/O operation on line 8. For a printer, the SKIP operand
controls the movement of forms.

The SKIP operand causes the system to display or print the contents of the
system buffer.

Chapter 2. Instruction and Statement Descriptions LR-347

PRINTNUM
PRINTNUM - Display a number on a terminal (continued)

LR-348 SC34-0643

LINE =

SPACES =

If you specify a value greater than or equal to the logical page size, the system
divides this value by the page size and uses the remainder in place of the value
you specify. For roll screens, the logical page size equals the screen's bottom
margin minus the number of history lines and the screen's top margin.

The line number on which the system is to do an 110 operation. Code a value
between zero and the number of the last usable line on the page or logical
screen. The line count begins at the top margin you defined for the printer or
display screen. LINE=O positions the cursor at the top line of the page or screen
you defined; LINE= 1 positions the cursor at the second line of the page or
screen. For roll screens, line 0 equals the screen's top margin plus the number of
history lines.

For printers and roll screens, if you code a value less than or equal to the current
line number, the system does the 110 operation at the specified line on the next
page or logical screen. For static screens, if you code a value within the limits of
the logical screen, the system does the I/O operation on the line you specified.

If you code a value greater than the last usable line number, the system divides
this value by the logical page size and uses the remainder as the line number on
which to do the I/O operation. For example, if you code LINE=22 and your
roll screen has a logical page size of 20, the I/O operation occurs on the second
line of the logical screen.

The LINE operand causes the system to print or display the contents of the
system buffer.

The number of spaces to indent before the system does an I/O operation.
SP ACES=O, the default, positions the cursor at the beginning of the left side of
the page or screen. If the value you specify is beyond the limits of the logical
screen or page, the system indents the next line by the excess number of spaces.

When you code the LINE or SKIP operands with SPACES, the system begins
indenting from the left margin of the page or screen. If you specify SPACES
without coding LINE or SKIP, the system begins indenting from the last cursor
position on the line.

PROTECT= Code PROTECT=YES to write protected characters to a device for which this
feature is supported.

Px= Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR -12 for a detailed description of how to code these operands.

()

c

o

o

PRINTNUM
PRINTNUM - Display a number on a terminal (continued)

3101 Display Considerations

Syntax Examples

If you use a 3101 in block mode, the most recent TERMCTRL command will control the
output. For details on the discussion under TERMCTRL SET,ATTR and SET,STREAM
operands, see "TERMCTRL - Request special terminal functions" on page LR-446.

1) Print the first value in A in integer format.

PRINTNUM A

2) Print the first 10 values in BUF1 in integer format.

PRINTNUM BUF1,10

3) Print the first value in AX in hexadecimal form.

PRINTNUM AX,MODE=HEX

4) Print the first 10 values in BUF2, put five values on each line, and
print three spaces between each value.

PRINTNUM BUF2,10,5,3

5) Print the first 10 doublewords of BZ in hexadecimal form.

PRINTNUM BZ, (10,DWORD),MODE=HEX

6) Print 8 numbers, four in a line, with 5 spaces between the numbers.

PRINTNUM NUMBERS,8,4,5

Chapter 2. Instruction and Statement Descriptions LR-349

PRINTNUM
PRINTNUM - Display a number on a terminal (continued)

Coding Example

The following example uses the PRINTNUM instruction to display a floating-point value and an
integer value on a terminal. The system displays the values on the terminal you use to load the
program.

The program first asks you to enter a floating-point number. The GETVALUE instruction
places the number you enter in FLCOUNT. At label LOOPl, the program begins a loop that
adds the floating-point number in FLCOUNT to the contents of FLSUM ten times. The second
GETV ALUE instruction asks you to enter an integer. It places the value you enter in
INTCOUNT. The DO loop at label LOOP2 adds the integer value in INTCOUNT to the
contents of INTSUM ten times.

The PRINTNUM instruction at PRINTl displays the contents of FLSUM in floating-point
format. The PRINTNUM instruction at PRINT2 displays the contents of INTSUM in integer
format.

PROG1
START

LOOP 1

LOOP2

PRINT1

PRINT2

INTCOUNT
FLCOUNT
FLSUM
INTSUM

PROGRAM START,FLOAT=YES
EQU *
GETVALUE FLCOUNT,'ENTER FLOATING POINT NUMBER: '

TYPE=F,FORMAT=(4,3,F)
DO

FADD
ENDDO
GETVALUE
DO

ADD
ENDDO
PRINTEXT
PRINTNUM
PRINTEXT
PRINTNUM
PROGSTOP
DATA
DATA
DATA
DATA
ENDPROG
END

10,TIMES
FLSUM,FLCOUNT

INTCOUNT, 'ENTER INTEGER NUMBER: '
10,TIMES

INTSUM,INTCOUNT

'@FLOATING POINT RESULT= '
FLSUM,FORMAT=(5,2,F) , TYPE=F
'@INTEGER RESULT= '
INTSUM

F'O'
E'O.OOO'
E'OO.OO'
F'O'

x

LR-350 SC34-0643

o

()

o

o

o

o

PROGRAM
PROGRAM - Define your program

The PROGRAM statement defines the primary task of your program and the resources your
program uses. PROGRAM is the first statement you code in every application program
assembled using $EDXASM or $S1ASM.

You can only omit the PROGRAM statement when you are compiling a subprogram under
$EDXASM. (See the MAIN operand for a definition of a subprogram.) When program
assembly is to be done by the Host or Series/1 macro assemblers, you must code a PROGRAM
statement even for subprograms.

Syntax:

taskname

Required:
Defaults:

Indexable:

Operand

taskname

start

priority

EVENT =

PROGRAM start,priority,EVENT=,
DS=(dsname1, ... ,dsname9),PARM=n,
PG MS=(pgmname1, ... ,pgmname9)' TERM ERR=,
FLOAT=, MAl N=, ERRXIT=,STORAG E=

taskname,start (except when MAIN=NO)
priority=150,PARM=O,FLOAT=NO,MAIN=YES,

STORAGE=O
none

Description

The label you assign to the primary task of the program.

The system generates a control block for each task in the program. This control
block is known as a task control block (TCB). The system generates the TCB
when it encounters an ENDPROG statement.

The label of the primary task's TCB is the label you specify with this operand.
The supervisor uses the TCB to store instruction return codes. By referring to
the TCB (the taskname) in your program, you can determine if an operation
completed successfully.

The label of the first instruction to be executed in your program. The instruction
must be on a fullword boundary.

The priority of the program's primary task. The system uses priorities to
establish the order in which it executes tasks. Tasks with high priorities are
executed before tasks with low priorities. The range is from 1 (highest priority)
to 510 (lowest priority). Priorities 1-255 imply foreground operation and are
executed on hardware interrupt level 2. Priorities 256-510 imply background
operation and are executed on interrupt level 3.

The label of the event to be posted when the system detaches the primary task.
Use this operand only if another task will issue a WAIT for this event. Do not

Chapter 2. Instruction and Statement Descriptions LR -351

PROGRAM
PROGRAM -Define your program (continued)

code an event control block (ECB) with this label because the system generates
the ECB for you. An error message appears at the end of the program compiler
listing if this event is defined more than once.

DS= Names of 1-9 disk, diskette, or tape data sets to be used by this program. Each
name is composed of 1-8 alphameric characters, the first of which must be
alphabetic. Only one tape data set for each tape volume can be specified.

LR-352 SC34-0643

If your program retrieves formatted messages from a disk or diskette data set,
you must specify the data set name with this operand. The COMP statement in
your program provides the location of the message by referring to the data set
list on the PROGRAM statement.

The system automatically generates one data set control block (DSCB) in the
program header for each data set you specify on the DS operand of the
PROGRAM statement. The system gives each DSCB the name DSx, where x is
the position of a data set in the list of data sets you code on this operand. The
DSCB named DS1, for example, corresponds to the first data set in the DS= list.
You can refer to fields within a DSCB with the expression DSx+name, where
"name" is a label defined in the DSCB equate table, DSCBEQU. You must
include the following statement in your source program when you refer to DSCB
fields:

COpy DSCBEQU

If the special characters ## are found in a program header in place of a volume
name, the name of the volume from where the main program was loaded is
substituted for the ## characters. This allows data sets specified in the program
header to reside on the same volume as the main program.

All tape data sets are of the form (DSN,VOLUME). The specification of tape
data sets is dependent on the type of label processing being done.

For standard label (SL) processing the DSN is the data set name as it is specified
in the HDRllabel. VOLUME is the volume serial as it is specified in the VOL1
label.

When doing no label (NL) processing or bypass label processing (BLP) the
volume must be specified as the 1-6 digits that represent the tape unit ID. The
tape unit ID was assigned at system generation time. The DSN is ignored during
NL or BLP processing, but it must be supplied for syntax checking purposes. It
also provides identification of the data set for things such as error logging.

If more than one disk or diskette logical volume is being used, a volume label
mu.st be specified if the data set resides on other than the IPL volume. The data
set name and volume are separated by a comma and enclosed in parentheses. In
addition, the entire list of data set/volume names is enclosed in a second set of
parentheses. For example:

o

o

o

o

PROGRAM
PROGRAM - Define your program (continued)

... , DS= ((MYDS, MYVOL))

refers to the data set MYDS on volume MYVOL. In the following example:

... ,DS=((ACTPAY,EDX001), (DSDATA2,EDX003))

DS= refers to the data set ACTPAY on volume EDX001 and to DSDATA2 on
volume· EDX003.

If you do not specify a volume, the default is the IPL volume. When one data set
is used and it is in the IPL volume, no parentheses are required. For example:

... ,DS=CUSTFIL

When more than one data set is used and they reside in the IPL volume, the
data set names are separated by commas and enclosed in parentheses. For
example:

... ,DS=(CUSTFIL,VENDFIL)

Four special data set names are recognized: ??, $$EDXLIB, and $$ or
$$EDXVOL. A data set control block (DSCB) is created just as for any other
data set name. However, special processing occurs when the program is loaded
for execution.

If the sequence "??" is used as a data set name, the final data set name and
volume specification is done at program load time. If the program is loaded by
another program, this information must be contained in the DS operand of the
LOAD instruction. If the program is loaded using the system command "$L",
the system will query the operator for these names. If the specified sequence is
of the form,

... DS=((string,??)):

where "string" is 1-8 alphanumeric characters, you will receive the following
prompt message:

string(NAME,VOLUME)

If the specified sequence is of the form,

... DS=??

you will receive the prompt message,

Chapter 2. Instruction and Statement Descriptions LR-353

PROGRAM
PROGRAM .. Define your program (continued)

PARM=

PGMS=

LR .. 354 SC34-0643

DSn(NAME,VOLUME):

where "n" is a digit from 1 to 9.,

If $$EDXLIB or $$ is used as a data set name with disks, the entire volume is
opened for processing as if it were a single data set. The library directory and
any data sets on the volume are accessible. Symbol $$ also can be used to
reserve a DSCB in the program header so that it can be filled in and opened
(using DSOPEN) after execution begins.

With diskettes, $$EDXVOL only references records on cylinder O. If a
-single-density diskette is used, $$EDXVOL references records 1 to 26. With a
double-density diskette, $$EDXVOL references records 1 to 39. Symbol $$ and
$$EDXLIB reference diskette records beginning with cylinder 1.

A word count specifying the length of a parameter list to be passed to this
program at load time. Each word in the list can be referred to by the name
$PARMx, where "x" is the position or number of the word in the list beginning
with 1. The maximum length of this list is 762 words less 33 for each data set
name you specified in the DS operand and each overlay program name you
specified in the PGMS operand.

This operand is valid for programs to be loaded by a LOAD instruction. The list
address is specified as an operand of that instruction. The list would be filled in
by the loading program and there are no restrictions on its contents. If a
program is loaded using $L and it has a P ARM specification, the parameters will
be initialized to zero.

The names of 1-9 programs that can be loaded as overlay programs during the
execution of this program. Programs are specified by name only if they reside on
the IPL volume or by (name,volume) if they reside elsewhere. The same coding
rules that apply to the DS operand apply to this operand.

The system reserves space within this program for the largest of the overlay
programs identified in this list, thus ensuring that space will be available for the
overlays when the program is executed.

You invoke program overlays with the LOAD instruction. Only one overlay
program can execute at a time because each uses the same storage area. See the
description of the LOAD instruction for additional information.

Note: You can only code this operand in a main program and not on the
PROGRAM statement of an overlay program. In addition, you cannot code this
operand for tape data sets.

The system automatically generates one DSCB in the program header for each
overlay program you specify on the PGMS operand of the PROGRAM

o

o

o

o

o

PROGRAM
PROGRAM - Define your program (continued)

statement. The system gives each DSCB the name PGMx, where "x" is the
position of an overlay in the list of overlay programs you code on this operand.
The DSCB named PGM1, for example, corresponds to the first data set in the
PGMS= list. You can refer to fields within a DSCB with the expression
PGMx+name, where "name" is a label defined in the DSCB equate table,
DSCBEQU. You must include the following statement in your source program
when you refer to DSCB fields:

COpy DSCBEQU

If the special characters ## are found in a program header in place of a volume
name, the name of the volume from where the main program was loaded is
substituted for the ## characters. This allows overlays specified in the program
header to reside on the same volume as the main program.

TERMERR= The label of the routine to receive control if an unrecoverable terminal I/O error
occurs.

FLOAT=

MAIN =

If such an error occurs, the first word of the task control block (TCB) contains
the return code indicating the error. The second word of the TCB contains the
address of the instruction that was executing when the error occurred.

If TERMERR is not coded, the return code is available in the task code word.
Use of TERMERR, however, is the recommmended method for detecting errors
because the task code word is subject to modification by numerous system
functions. It may not, therefore, always reflect the true status of terminal I/O
operations.

YES, if the primary task uses floating-point instructions.

NO (the default), if the primary task does not use floating-point instructions.

YES, if this program contains the primary task.

NO, if this program does not contain the primary task. For example, code
MAIN=NO if this program is a subroutine or any other section of a program
which is being prepared separately and will later be link-edited to a main
program. Such a program is called a subprogram. When a subprogram is to be
assembled by $EDXASM, the PROGRAM statement may be omitted entirely.

You link-edit program modules with the $EDXLINK utility. For information on
the $EDXLINK utility, refer to the Operator Commands and Utilities Reference

Note: Subprograms must not contain TASK, ENDT ASK, 10DEF, or
ATTNLIST statements.

MAIN=NO suppresses the generation of the program header and the task
control block, thereby reducing the storage size of the subprogram. If

Chapter 2. Instruction and Statement Descriptions LR -355

PROGRAM
PROGRAM - Define your program (continued)

MAIN=NO is specified, then none o~ the other operands of the PROGRAM
statement are meaningful.

ERRXIT= The label of a 3-word area that points to a routine which is to receive control if a
hardware error or program exception occurs while the primary task is executing.
This task error exit routine must be prepared to completely handle any type of
program or machine error. See the Event Driven Executive Language
Programming Guide for additional information on the use of task error exit
routines.

LR-356 SC34-0643

If the primary task is part of a program which shares resources such as QCBs,
ECBs, or Indexed Access Method update records with other programs, it is often
necessary to release these resources even though your program cannot continue
because of an error. The supervisor does not release resources for you, but the
task error exit facility allows you to take whatever action is appropriate.

The format of the task error exit area is:

WORD t The count of the number of parameter words which follow (always
F'2').

WORD 2 The address of your error exit routine.

WORD 3 The address of a 24-byte area in which the Level Status Block
(LSB) and Processor Status Word (PSW) from the point of error are
placed before the exit routine is entered. Refer to a Series/l
processor description manual for a description of the LSB and PSW.

A default task error exit routine is available to aid in problem diagnosis and
correction. (Refer to the Event Driven Executive Language Programming Guide
for a detailed description of this routine and how to use it in your application
program.)

STORAGE= The number of bytes of additional storage the system should allocate for this
program when the program is loaded for execution. This provides a dynamic
increment of storage at load time. This value may be overridden by a parameter
on the LOAD instruction, thus dynamically altering the space available to the
program. The address and length of the additional storage is contained in the
variables $STORAGE and $LENGTH, respectively, and may be referred to by
your program during execution. Do not use this operand if you are loading the
program as an overlay.

The amount of storage is rounded up to a multiple of 256 bytes. $LENGTH
contains the number of 256-byte pages that are available for current execution.
If no dynamic area is specified, $LENGTH contains 0 and $STORAGE contains
the address of the program's primary task.

o

()

0\

o

PROGRAM
PROGRAM - Define your program (continued)

Syntax Examples

Storage can be any value from 0 to 65,535 minus the size of the program itself.
If the storage required is not available at LOAD time, the program will not be
loaded.

The amount of storage required by a program for such things as buffers, queues,
or data often varies depending on its input. Dynamic storage provides a way to
adjust the amount of storage available without recompiling your program. The
PROGRAM statement can be used to define the amount of dynamic storage for
either minimal or typical processing requirements and the LOAD instruction can
be used to expand the work space when processing will require more storage.
For example, on a daily basis a program may have to read about 1000 bytes of
data into storage, analyze it and format it into a report. Once a month it may be
required to process 30 days worth of data (30,000 bytes) in the same way.
Instead of wasting 29,000 bytes of storage every day, dynamic storage can be
used to adjust the size to meet requirements.

1) TASK1 is the label of the primary task and the label of the first executable instruction is
START. The priority of TASK1 is the default priority, 150.

TASK1 PROGRAM START

2) The primary task, TASK2, has a priority of 300 and starts at the label BEGIN. The program
uses floating-point instructions.

TASK2 PROGRAM BEGIN,300,FLOAT=YES

3) The primary task, TASK3, starts at GOPROG. One data set, NAME 1 , is defined and is
located in the volume from which the main program will be loaded. Disk 110 instructions in the
program refer to NAME1 by the symbolic name DSl.

TASK3 PROGRAM GOPROG,DS=((NAME1,##))

4) The primary task, TASK4, starts at START4 and uses one tape data set. The data set is on a
standard labeled tape where the VOL1label contains 110011 as the volume serial number and
the HDR1labei contains MYDATA as the data set name. You write such labels using the
INITIALIZE function of the $TAPEUT1 utility.

TASK4 PROGRAM START4,DS=((MYDATA,110011))

5) The primary task, TASKS, starts at STARTS and uses one tape data set. The tape data set is
either on a no label tape or bypass label processing is being used and the tape device ID is
TU088.

TASKS PROGRAM STARTS,DS=(($$EDXVOL,TU088))

Chapter 2. Instruction and Statement Descriptions LR-357

PROGRAM
PROGRAM ... Define your program (continued)

6) The primary task, TASK6, starts at START6. Two data sets are defined. The name of the
first data set will be specified at program load time. The second data set has the name NAME2
and resides on the logical volume named EDX002. Two overlays are defined, OLA Yl and
OLA Y2. A 1000-byte area will be appended to the program and its address placed in
$ STORAGE.

TASK6 PROGRAM START6,DS=(??, (NAME2,EDX002»,
PGMS=(OLAY1,OLAY2),STORAGE=1000

7) The primary task, TASK7, starts at START7 and uses 4 data sets. MYDSI is a disk or
diskette data set on the IPL volume. MYDS2 is a tape data set on standard labeled tape number
100001. The program prompts the operator for the last two data sets. The prompt for the third
data set appears as OUTPUT(NAME,VOLUME); the prompt for the fourth data set appears as
DS4(NAME,VOLUME). The operator can specify the third and fourth data sets as disk,
diskette, or tape data sets.

TASK7

LR-358 SC34-0643

PROGRAM START7,DS=(MYDS1, (MYDS2,100001),
(OUTPUT,??) ,??)

10' \ I __ .~ l,

c·

o

o

o

PROGSTOP
PROGSTOP - Stop program execution

The PROGSTOP instruction ends program execution and releases the storage allocated to the
program. You can have more than one PROGSTOP instruction in a program. You are
responsible for ensuring that any secondary tasks in a program are inactive before a
PROGSTOP statement is executed by the primary task. The results of executing a PROGSTOP
in a program with multiple active tasks are unpredictable.

You are also responsible for assuring that no asynchronous events remain outstanding. If your
program contains an ECB for an event that has not yet occurred, you must WAIT on the event
before issuing a PROGSTOP. The following instructions can generate asynchronous events:
READ, WRITE, STIMER, LOAD, ENQ, and ENQT. Also, if another program can post your
program, you must wait for the post or prohibit the other program from posting before the
PROGSTOP executes.

PROGSTOP does a close (CONTROL CLSOFF) for any open tape data set that was defined
by the PROGRAM statement or passed by another program.

PROGSTOP will do a DEQT of the terminal currently in use by the program.

When coding the PROGSTOP instruction, you can include a comment which will appear with
the instruction on your compiler listing. If you include a comment, you must specify at least one
operand with the instruction. The comment must be separated from the operand field by one or
more blanks and it may not contain commas.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

code

PROGSTOP code,LOGMSG=,P1 = comment

none
code = -1, LOGMSG=YES
none

Description

The posting code to be inserted in the EVENT named in the associated LOAD
instruction. The PROGSTOP instruction causes the system to post the ECB for
this event, following the post code rules.

This operand must be a self-defining term other than O.

Chapter 2. Instruction and Statement Descriptions LR-359

PROGSTOP..; Stop program execution (continued)

LOGMSG= Code either YES or NO to show whether a "PROGRAM ENDED" message is
to be displayed on the terminal being used by this program.

Pl=

LR-360 SC34-0643

Notes:

1. Programs loaded by the virtual terminal facility do not recognize the
LOGMSG operand. Therefore, if a program is loaded by a virtual terminal,
the "program ended" message is never displayed.

2. If you coded LOGMSG= YES, but another task has control of the terminal
when your program ends, the system does not display the "program ended"
message.

Parameter naming operand. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code this operand.

o

o

o

()

o

PUTEDIT
PUTEDIT - Collect and store data from a program

The PUTEDIT instruction obtains data from variables within a program, converts the data to a
character string, and either stores the data in a storage area or sends it to a terminal.

PUTEDIT uses the specified FORMAT statement and the data list to convert and move
elements one by one into a storage area.

When you use the PUTEDIT instruction in your program, you must link-edit your program using
the "autocall" option of $EDXLINK. Refer to the Event Driven Executive Language
Programming Guide for information on how to link-edit programs.

The superV'isor places a return code in the first word of the task control block (taskname)
whenever a PUTEDIT instruction causes a terminal 110 operation to occur. If the return code
is not a -1, the address of this instruction will be placed in the second word of the task control
block (taskname+2).

The system will not pass control to a terminal error routine if an 110 error occurs while this
instruction is executing. The terminal 110 return codes are described at the end of the
PRINTEXT and READ TEXT instructions in this manual and also in the Messages and Codes.

Syntax:

label PUTEDIT format,text,(list},(format list),
ERROR=,ACTION=,SKI P=, LI N E=,SPACES=,
PROTECT=,MODE=

Required: text, (list), and either format
or (format list)

Defaults: ACTION=IO,PROTECT=NO,MODE=none
Indexable: none

Operand Description

format The label of a FORMAT statement or the name to be attached to the format list
optionally included within this instruction. This statement or list will be used to
control the conversion of the data. This operand is required if the program is
compiled with $EDXASM.

text The label of a TEXT statement defining a storage area for character data. If
data is moved to a terminal, this area stores the data (as an EBCDIC character
string) after it is converted from the variables and before it is sent to the
terminal.

Note: The TEXT statement must be large enough to contain all the EBCDIC
characters generated by this instruction.

Chapter 2. Instruction and Statement Descriptions LR -361

PUTEDIT
PUTEDIT -Collect and store data from a program (continued)

list

format
list

LR-362 SC34-0643

A description of the variables or locations which contain the input data, having
the form:

«variable,count,type), ...)

or

(variable, ...)

or

((variable,count), ...)

or

((variable,type), ...)

where:

variable is the label of a variable or group of

count

variables that are to be converted to EBCDIC.

is the number of variables that are to be
converted.

type is the type of variable to be converted

S - Single-precision integer (Default)
D - Double-precision integer
F - Single-precision floating-point
L - Extended-precision floating-point

Type defaults to S for integer format data
and to F for floating-point format data.

A FORMAT list. If you want to refer to this format statement
from another PUTEDIT instruction, then both the format and format list
operands must be coded. Refer to the FORMAT statement for coding
instruction operands which are to be referred to by PUTEDIT instructions.

This operand is not allowed if the program is assembled with $EDXASM.

o

o

C,";
I,'

o

PUTEDIT
PUTEDIT - Collect and store data from a program (continued)

ERROR =

ACTION=

SKIP=

LINE =

The label of the first instruction of the routine to receive control if an error
occurs during the PUTEDIT operation. The' system returns a return code to the
task even if you do not code this operand.

Errors that might cause the system to invoke the error routine are:

Use of incorrect format list

Not enough space in text buffer to satisfy the data list.

10 (the default), causes a PRINTEXT to be executed following the data
conversion. If output is being directed to a 3101 in block mode, refer to the
"PRINTEXT - Display a message on a terminal" on page LR-324 for special
considerations.

STG, causes the conversion and movement of data into a text buffer. No I/O
takes place.

The number of lines to be skipped before the system does an I/O operation. For
example, if your cursor is at line 2 on a display screen and you code SKIP=6, the
system does the I/O operation on line 8. For a printer, the SKIP operand
controls the movement of forms.

The SKIP operand causes the system to display or print the contents of the
system buffer.

If you specify a value greater than or equal to the logical page size, the system
divides this value by the page size and uses the remainder in place of the value
you specify. For roll screens, the logical page size equals the screen's bottom
margin minus the number of history lines and the screen's top margin.

The line number on which the system is to do an I/O operation. Code a value
between zero and the number of the last usable line on the page or logical
screen. The line count begins at the top margin you defined for the printer or
display screen. LINE=O positions the cursor at the top line of the page or screen
you defined; LINE = 1 positions the cursor at the second line of the page or
screen. For roll screens, line 0 equals the screen's top margin plus the number of
history lines.

For printers and roll screens, if you code a value less than or equal to the current
line number, the system does the I/O operation at the specified line on the next
page or logical screen. For static screens, if you code a value within the limits of
the logical screen, the system does the I/O operation on the line you specified.

Chapter 2. Instruction and Statement Descriptions LR-363

PUTEDIT
PUTEDIT - Collect and store data from a program (continued)

SPACES =

If you code a value greater than the last usable line number, the system divides
this value by the logical page size and uses the remainder as the line number on
which to do the I/O operation. For example, if you code LINE=22 and your
roll screen has a logical page size of 20, the I/O operation occurs on the second
line of the logical screen.

The LINE operand causes the system to print or display the contents of the
system buffer.

The number of spaces to indent before the system does· an I/O operation.
SPACES=O, the default, positions the cursor at the beginning of the left side of
the page or screen. If the value you specify is beyond the limits of the logical
screen or page, the system indents the next line by the excess number of spaces.

When you code the LINE or SKIP operands with SPACES, the system begins
indenting from the left margin of the page or screen. If you specify SPACES
without coding LINE or SKIP, the system begins indenting from the last cursor
position on the line.

PROTECT= YES, to write protected characters to a static screen device that supports this
feature, such as an IBM 4978, 4979, 4980, or 3101 in block mode. Protected
characters cannot be typed over nor displayed.

MODE=

NO (the default), to inhibit writing protected characters to a static screen device.

Tells the system whether you want imbedded @ characters interpreted as
new-line designators. Code LINE if the text includes imbedded @ characters
which are not to be interpreted as new-line designators.

For 4978, 4979, and 4980 screens accessed in static mode, the coding of
MODE=LINE and the spaces parameter (SPACES=) causes the system to skip
over protected fields as the data is transferred to the screen. (Protected fields do
not contribute to the count.)

For a 3101 in block mode with a static screen, the system overwrites protected
fields.

Do not code this parameter if you want the system to interpret @ characters as
new line designators.

3101 Display Considerations

LR-364 SC34-0643

When using a 3101 in block mode, the output will be controlled by the most recent
TERMCTRL command. For details on the discussion under TERMCTRL SET,ATTR and
SET,sTREAM operands, see "TERMCTRL - Request special terminal functions" on page
LR-446.

o

o

o

o

PUTEDIT
PUTEDIT - Collect and store data from a program (continued)

Syntax Example

Coding Example

This example converts the integer A into the first four positions of TEXT 1 followed by a
carriage return command. Then, the next six positions will contain the variable B followed by
two spaces. The literal 'DAT A=' then follows with the extended-precision variable C converted
into the last lO positions.

TEXT1
FM

PUTEDIT

TEXT
FORMAT

FM, TEXT 1 , {A, (B, F) , (C, L))

LENGTH=28
(I4/F6.2,2X,'DATA=' ,E10.4)

The program issues a PRINTEXT instruction that requests the model year and serial numbers
for the automobile of interest. The first GETEDIT reads the two requested numbers into a
TEXT statement labeled TEXTl.

The GETEDIT instruction searches the TEXTl data and converts the first entry to a
single-precision variable called LISTl. The second entry is converted to a double-precision
variable called LIST2. The first PUTEDIT instruction, using the FORMAT statement labeled
PElFMT, converts LISTl and LIST2 back to EBCDIC and displays these values on the screen
or printer. The PUTEDIT and FORMAT statements determine the layout of the data as it is
displayed.

The GETEDIT instruction after label GE2 takes the data already entered into TEXTl with the
preceding READ TEXT and converts it into the two binary variables called LIST 1
(single-precision) and LIST2 (double-precision). Because ACTION=STG, a READTEXT
must be issued before executing the GETEDIT.

The PUTEDIT instruction at label PE2 converts the two variables back to EBCDIC and places
them into the TEXT2 statement as formatted by the PE2FMT FORMAT statement. Again the
keyword ACTION =STG prevents the data from being displayed until the following PRINTEXT
instruction is executed.

Chapter 2. Instruction and Statement Descriptions LR-365

PUTEDIT
PUTEDIT - Collect and store data from a program (continued)

Return Codes

LR-366 SC34-0643

GE1 EQU *

* PE1

*

PRINTEXT '@ENTER MODEL YEAR AND SERIAL NUMBER@'
GETEDIT GE1FMT,TEXT1, (LIST1, (~IST2,D)) ,ACTION=IO,ERROR=ERR1

EQU
ENQT
PUTEDIT
DEQT

*
$SYSPRTR
PE1FMT,TEXT2, (LIST1, (LIST2,D)) ,ACTION=IO

GE2 EQU *

*

*

READTEXT TEXT1, '@ENTER YOUR DEPT. AND SYSTEM ID NUMBER@'

GETEDIT GE2FMT,TEXT1,(LIST1, (LIST2,D)),
ACTION=STG,ERROR=ERR1

PE2 EQU *

*

ERR1

* ERR2

*
ERROROUT

GE1FMT
PE1FMT
GE2FMT
PE2FMT
LIST1
LIST2
TEXT1
TEXT2

PUTEDIT PE2FMT,TEXT2, (LIST1, (LIST2,D)) ,ACTION=STG

ENQT $SYSPRTR
PRINTEXT TEXT2
DEQT

EQU *
PRINTEXT '@GETEDIT
GOTO ERROROUT

EQU *
PRINTEXT '@GETEDIT
GOTO ERROROUT

FORMAT (I4,1X,I8)
FORMAT ('MDL. YR.
FORMAT (I3,1X,I6)
FORMAT ('DEPT. =
DATA F'O'
DATA D'O'
TEXT LENGTH=13
TEXT LENGTH=42

GE1 HAS FAILED@'

GE2.HAS FAILED@'

= ',I4,6X, 'SER. NO. = , ,18)

, ,I3,4X,'SYST. ID. =
, ,16)

x

The return codes are returned in the first word of the task control block (TCB) of the program
or task issuing the instruction. The label of the TCB is the label of your program or task
(taskname) .

Code Description

-1 Successful completion
3 Conversion error

o

to

o

o

o

o

aCB
aCB - Create a queue control block

The QCB statement generates a 5-word queue control block (QCB) for use with the ENQ and
DEQ instructions.

Normally this statement will not be needed in application programs if the program is to be
assembled by the Host or Series/l macro assemblers. In this case queue control blocks are
automatically generated for you as a consequence of naming a QCB in a DEQ instruction.
However, it can be used for special purposes such as controlling their location within a program.
You must code any necessary QCBs in programs you compile with $EDXASM.

A program can contain a maximum of 25 QCB statements. If more than 25 QCBs are required,
you must create them with the DATA statement. For example:

QCB1 QCB

is equivalent to coding,

QCB1 DATA
DATA
DATA

F' -1 '
2F'O'
2F'O'

When coding the QCB statement, you can include a comment which will appear with the
statement on your compiler listing. If you include a comment, you must also specify the code
operand. The comment must be separated from the operand field by at least one blank and it
may not contain commas.

Syntax:

label QCB code comment

Required: label
Defaults: code = -1
Indexable: none

Operand Description

label The label of the QCB statement. The ENQ and DEQ instructions refer to this
label.

code Initial value of the code field (word O. If this word is nonzero, the resource this
QCB refers to is available for use by a program or task.

Chapter 2. Instruction and Statement Descriptions LR-367

aCB
aCB - Create a queue control block (continued)

Coding Example

The QCB statement labeled SBRTNQCB generates a 5-word queue control block (QCB). The
ENQ instruction checks the QCB to see if the subroutine named SUBRTN is being used by
another program or task. The initial value of the QCB is 99, indicating that the resource is
initially available for use.

ENQ SBRTNQCB
CALL SUBRTN
DEQ SBRTNQCB

SUBROUT SUBRTN

RETURN

SBRTNQCB QCB 99

LR-368 SC34-0643

o

o

o

o

o

QUESTION
QUESTION - Ask operator for input

The QUESTION instruction allows the terminal operator to choose the direction of a
conditional branch in a program. The prompt message (normally in the form of a question) is
printed unconditionally, after which the operator may enter Y (or any string beginning with Y)
for yes, or N (or any string beginning with N) for no. Note that advance input may accompany
the response. If an invalid response is entered, the operator is prompted until a Y or N is
entered. The QUESTION instruction must be issued only to terminals which have input
capability for response to the prompt.

The supervisor places a return code in the first word of the task control block (taskname)
whenever a QUESTION instruction causes a terminal I/O operation to occur. If the return code
is not a -1, the address of this instruction will be placed in the second word of the task control
block (taskname+2). The terminal I/O return codes are described at the end of the
PRINTEXT and READTEXT instructions in this manual and also in the Messages and Codes.

Syntax:

label au ESTION pmsg, YES=, NO=,SKI P=, LI N E=,SPACES=,

Required:
Defaults:

Indexable:

Operand

pmsg

YES=

NO=

COM P=, PARMS=(parm1 , ... ,parm8),
MSGID=,P1=

pmsg and either YES= or NO=
If the operator enters a response and you have
not coded a keyword for that response (YES= or NO=),
the system executes the next instruction in the program.
MSGID=NO
pmsg,SKI P, LI N E,SPACES

Description

The prompt message. Code either the label of a TEXT statement or an explicit
text message enclosed in single quotes.

To retrieve a prompt message from a data set or module containing formatted
program messages, code the number of the message you want displayed or
printed. You must code a positive integer or a label preceded by a plus sign (+)
that is equated to a positive integer. If you retrieve a prompt message from
storage, you must also code the COMP= operand. See Appendix E, "Creating,
Storing, and Retrieving Program Messages" on page LR-615 for more
information.

The label of the instruction at which execution will continue if the answer is
YES.

The label at which execution will continue if the answer is NO.

Chapter 2. Instruction and Statement Descriptions LR-369

QUESTION
QUESTION .. Ask operator for input (continued)

SKIP;:::

LINE =

SPACES =

COMP=

LR-370 SC34-0643

The number of lines to be skipped before the system does an I/O operation. For
example, if your cursor is at line 2 on a display screen and you code SKIP=6, the
system does the I/O operation on line 8. For a printer, the SKIP operand
controls the movement of forms.

The SKIP operand causes the system to display or print the contents of the
system buffer.

If you specify a value greater than or equal to the logical page size, the system
divides this value by the page size and uses the remainder in place of the value
you specify. For roll screens, the logical page size equals the screen's bottom
margin minus the number of history lines and the screen's top margin.

The line number on which the system is to do an I/O operation. Code a value
between zero and the number of the last usable line on the page or logical
screelIl. The line count begins at the top margin you defined for the printer or
display screen. LINE=O positions the cursor at the top line of the page or screen
you defined; LINE::;::: 1 positions the cursor at the second line of the page or
screen. For roll screens, line ° equals the screen's top margin plus the number of
history lines.

For printers and roll screens, if you code a value less than or equal to the current
line number, the system does the I/O operation at the specified line on the next
page or logical screen. For static screens, if you code a value within the limits of
the logical screen, the system does the I/O operation on the line you specified.

If you code a value greater than the last usable line number, the system divides
this value by the logical page size and uses the remainder as the line number on
which to do the I/O operation. For example, if you code LINE=22 and your
roll screen has a logical page size of 20, the I/O operation occurs on the second
line of the logical screen.

The LINE operand causes the system to print or display the contents of the
system buffer.

The number of spaces to indent before the system does an I/O operation.
SPACES=O, the default, positions the cursor at the beginning of the left side of
the page or screen. If the value you specify is beyond the limits of the logical
screen or page, the system indents the next line by the excess number of spaces.

When you code the LINE or SKIP operands with SPACES, the system begins
indenting from the left margin of the page or screen. If you specify SPACES
without coding LINE or SKIP, the system begins indenting from the last cursor
position on the line.

The label of a COMP statement. You must specify this operand if the
QUESTION instruction is retrieving a prompt message from a data set or module
containing formatted program messages. The COMP statement provides the

o

o

o

o

o

o

QUESTION
QUESTION - Ask operator for input (continued)

PARMS=

MSGID=

Pl=

location of the message. (See the COMP statement description for more
information.)

The labels of data areas containing information to be included in a message you
are retrieving from a data set or module containing formatted program messages.
You can code up to eight labels. If you code more than one label, you must
enclose the list in parentheses.

Note: To use this operand, you must have included the FULLMSG module in
your system during system generation. Refer to Installation and System
Generation Guide for a description of this module.

YES, if you want the message number and four-character prefix to be printed at
the beginning of the message you are retrieving from a data set or module
containing formatted program messages. See the COMP statement operand
'idxx' for a description of the four-character prefix.

NO (the default), to prevent the system from printing or displaying this
information at the beginning of the message.

Note: To use this operand, you must have included the FULLMSG module in
your system during system generation. Refer to Installation and System
Generation Guide for a description of this module.

Parameter naming operand. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code this operand.

Special Considerations

3101 Terminals

To use the QUESTION instruction with a static screen, you must create an unprotected input
area for the answer to the QUESTION prompt. The QUESTION instruction regards the first
nonblank character following the QUESTION prompt as the answer to the prompt message.
One or more blanks can precede the answer, but they are not required.

If you use a 3101 in block mode, the most recent TERMCTRL SET,ATTR will control the
attribute bytes used for the prompt and response.

Neither a TERMCTRL SET,ATTR=BLANK nor SET,STREAM=YES should be in effect
when a QUESTION instruction executes.

Chapter 2. Instruction and Statement Descriptions LR -371

QUESTION
QUESTION - Ask operator for input (continued)

Syntax Examples

Coding Example

LR-372 SC34-0643

1) Ask the operator if he or she wants to start a second routine. If the operator answers "yes",
branch to the label ROUTINE2. If the operator answers "no", execute the next instruction.

QUESTION TEXT3,YES=ROUTINE2 NO = NEXT STATEMENT

ROUTINE2 EQU *

TEXT3 TEXT 'GO TO SECOND ROUTINE?'

2) Ask the operator if he or she wants to do an operation again. If the operator answers "no",
branch to the label EXIT. If the operator answers "yes", execute the next instruction.

QUESTION 'DO IT AGAIN?' ,NO=EXIT YES = NEXT STATEMENT

EXIT EQU *
PROGSTOP

3) Ask the operator if he or she wants to restart an operation. If the operator answers "yes",
branch to the label INITIAL. If the operator answers "no", branch to the label END.

INITIAL EQU *

QUESTION 'RESTART?' ,YES=INITIAL,NO=END

END EQU *
PROGSTOP

In the following example, the QUESTION instruction displays a prompt message contained in
MSGMOD, a storage-resident message area. Because +MSG77 equals 77, the system retrieves
message 77 in MSGMOD.

QUESTION +MSG77,COMP=MSGSTMT,YES=OKAY

OKAY EQU * PROGSTOP

MSG77 EQU 77
MSGSTMT COMP 'SRCE' ,MSGMOD,TYPE=STG

o

o

o

o

o

QUESTION
QUESTION - Ask operator for input (continued)

Message Return Codes

The system issues the following return codes when you retrieve a prompt message from a data
set or module containing formatted program messages. The return codes are returned in the
first word of the task control block (TCB) of the program or task issuing the instruction. The
label of the TCB is the label of your program or task (taskname).

Code

-1
301-316

326
327
328
329
330
331
332
333
334
335

Description

Message successfully retrieved
Error while reading message from disk. Subtract
300 from this value to get the actual return code. See
the disk return codes following the READ or WRITE instruction
for a description of the code.
Message number out of range
Message parameter not found
Instruction does not supply message parameter(s)
Invalid parameter position
Invalid type of parameter
Invalid disk message data set
Disk message read error
Storage-resident module not found
Message parameter output error
Disk messages not supported (MINMSG support only)

Chapter 2. Instruction and Statement Descriptions LR-373

RDCURSOR
RDCURSOR - Store static screen cursor position

LR-374 SC34-0643

The RDCURSOR instruction stores the cursor position in a set of data areas you specify. The
cursor position is defined as the line number and the number of spaces the cursor is indented
from the left margin of the logical screen. RDCURSOR is only valid for terminals with a static
screen. For information on defining a static screen see the SCREEN = operand of the lOCB
statement or refer to the Event Driven Executive Language Programming Guide.

The supervisor places a return code in the first word of the task control block (taskname)
whenever a RDCURSOR instruction causes a terminal I/O operation to occur. If the return
code is not a -1, the address of this instruction will be placed in the second word of the task
control block (taskname + 2). The terminal I/O return codes are described at the end of the
PRINTEXT and READ TEXT instructions in this manual and also in the Messages and Codes.

If you code RDCURSOR after a WAIT KEY instruction for a 3101 in block mode, use a PF key
and not the SEND key to end the wait. If you use the SEND key, it positions the cursor at the
beginning of the next line and RDCURSOR cannot capture the screen coordinates.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

line

indent

RDCURSOR

line/indent
none
line, indent

Description

line, indent

The label of the variable in which the cursor position, relative to the top margin
of the logical screen, is to be stored. If the cursor lies outside the line range of
the logical screen, then a value of -1 is stored.

The label of the variable in which the cursor position, relative to the left margin
of the logical screen, is to be stored. If the cursor position is not within the left
and right margins of the logical screen, then a value of -1 is stored.

o

o

c

o

C~J

o

RDCURSOR
RDCURSOR - Store static screen cursor position (continued)

Coding Example

This example defines a terminal with an IOCB statement, then issues an ENQT instruction to
that terminal. The terminal name is DISP2. An ERASE instruction clears the screen. The
example uses the RDCURSOR instruction to find the cursor position. RDCURSOR puts the
relative line position of the logical screen in the the variable labeled LN. It puts the spaces value
or column position in the variable labeled COL. Because the exact position of the cursor is
known, any terminal I/O issued to this terminal can position the cursor using the LN and COL
values as a reference point.

After additional processing, index register #1 is set to a value of 2 with a MOVE instruction. A
second RDCURSOR instruction is issued and #1 is used to increase the storage locations by a
value of 2 where the new locations are to be stored. This RDCURSOR places the cursor line
number and spaces in variables NEXT1 and NEXT2, respectively. NEXT1 and NEXT2 then
become the new reference point of the cursor for any additional I/O operations.

TUBE

*

*
*
*
*

*
*

*

LN
NEXT1
COL
NEXT2

IOCB DISP2,SCREEN=STATIC DEFINE THE TERMINAL TO BE
USED

ENQT GET EXCLUSIVE ACCESS OF
DISP2

ERASE MODE=SCREEN,TYPE=ALL CLEAR THE SCREEN

RDCURSOR LN,COL GET CURSOR POSITION AND PUT
LINE NUMBER IN LN AND SPACES
IN COL

MOVE # 1 ,2 SET #1 TO 2
RDCURSOR (LN, # 1) , (COL, # 1) GET CURSOR POSITION AND PUT

VALUES IN NEXT1 AND NEXT2
COL

DEQT RELEASE EXCLUSIVE CONTROL OF
THE TERMINAL

DATA F'O'
DATA F'O'
DATA F'O'
DATA F'O'

When the first RDCURSOR is issued, if the cursor is on the third line of the logical screen and
ten spaces from the left margin, then, following the execution of the RDCURSOR, variable LN
will contain 3 and variable COL will contain 10.

When the second RDCURSOR is executed, if the cursor is outside the logical screen, then both
NEXT 1 and NEXT2 will be set to a value of -1.

Chapter 2. Instruction and Statement Descriptions LR-3 7 5

READ
READ - Read records from a data set

The READ instruction retrieves one or more records from a disk, diskette, or tape data set and
places them in a buffer area you define. You must allocate enough buffer space for the
operation.

You can read disk or diskette data sets either sequentially or directly. These data sets are read
in 256-byte record increments. The Operator Commands and Utilities Reference describes the
format of a record created with the text editor, $FSEDIT. (For information on using
1024-byte-per-sector diskettes, see the Installation and System Generation Guide.) You can only
read tape data sets sequentially. A READ operation for tape can retrieve a record from 18 to
32767 bytes long.

You have the option to place a disk read request at the top of the disk 110 chain. Such requests
are made with the disk immediate read option. A disk immediate read request will be serviced
before others in the chain. A coding example follows in this section. (Refer to "Coding
Example - Disk Immediate Read" on page LR-381)

The READ instruction can take advantage of the cross-partition capability that enables your
program to share data with a program or task in another partition. Appendix
C, "Communicating with Programs in Other Partitions (Cross-Partition Services)" on page
LR-559 contains an example of a cross-partition READ operation. You can find more
information on cross-partition services in the Event Driven Executive Language Programming
Guide.

Syntax:

label

Required:
Defaults:

Indexable:

Operand

DSx

loe

LR-376 SC34-0643

READ

DSx,loc

DSx,loc,count,relrecno I blksize,END=,
ERROR=, WAIT=, PREC=, P1 =, P2=, P3=, P4=

count=1,relrecno=Q or blksize=256,
WAIT=YES, PREC=S
loc,count,relrecno or blksize

Description

The data set from which you are reading. Code DSx, where "x" is a positive
integer that indicates the relative position (number) of the data set in the list of
data sets you defined on the PROGRAM statement. The value can range from 1
to the maximum number of data sets defined in the list. The maximum range is
from 1-9.

You can substitute a DSCB name defined by a DSCB statement for DSx.

The label of the buffer area where the data is to be placed. When reading disk or
diskette data sets, you must make sure that this area is a multiple of 256 bytes.

o

o

o

READ
READ - Read records from a data set (continued)

count

relrecno

When reading tape data sets, this area must equal or exceed the value you code
for the blksize operand.

READ normally assumes the buffer is in the same partition as the currently
executing program. You can read records into a buffer in another partition,
however, by using the cross-partition capability of the READ instruction.

The number of contiguous records to be read. If the program sets the field to 0,
no 110 operation is performed. A count of the actual number of records read is
returned in the second word of the task control block if WAIT = YES is coded.
Note, however, if the incorrect blocksize is specified, the correct blocksize is
stored in the second word of the TCB, not the number of records transferred. If
an end-of-data condition occurs (fewer records remaining in the data set than
specified by the count field), the system reads the remaining records and returns
an end-of-data return code to the program.

The number of the record that is to be read from a disk or diskette data set. The
record number is relative to the first record in the data set, and the numbering
starts with 1. You can code a positive integer or the label of a data area
containing the value.

You can request a sequential read operation by coding a 0 or by allowing this
operand to default. If an end-of-data (EOD) indicator was previously set, an
EOD is returned when the logical EOD is encountered. If the EOD indicator has
not been set, the EOD returned represents the physical end-of -data.

A value other than 0 indicates that a direct READ is requested. An EOD
indication is returned if an attempt is made to access a record outside the
physical data set.

If you code a self -defining term, or an equated value indicated by a plus sign
(+), then 'it is assumed to be a single-word value and is, therefore, generated as
an inline operand. Because this is a one-word value, it is limited to a range of 1
to 32767 (X'7FFF').

If you code an indexable value or an address for this operand, the PREC
operand can be used to further define whether relrecno is to be a single-word or
double-word value.

PREC=D extends the maximum range of relrecno beyond the 32767 value to
the limit of a double-word value (2147483647 or X'7FFFFFFF').

A sequential READ starts with relative record number 1 or the record number
specified by a POINT instruction. The supervisor keeps track of sequential
READ instructions and increments an internal next-record-pointer for each
record read in sequential mode (relrecno is 0). Direct READ operations
(relrecno is not 0) can be intermixed with sequential operations, but this does not
change the next-record-pointer used by sequential operations.

Chapter 2. Instruction and Statement Descriptions LR-377

READ
READ - Read records from a data set (continued)

blksize

PREC=

END=

ERROR=

LR-378 SC34-0643

The number of bytes to be read from a tape data set. The range is from 18 to
32767. You can code a self-defining term or the label of a data area containing
the value. The default for this operand is 256 bytes of data. If you code 0 or do
not code this operand, the instruction reads the default number of bytes.

The first word of the TCB contains the return code for the READ operation. If
the specified blksize does not equal the actual blksize, the ERROR path will be
taken and the second word of the TCB will contain the actual blksize. Note,
however, that the blksize is stored only in the second word of the TCB if you
code WAIT = YES or allow the WAIT= operand to default to YES. If you code
WAIT=NO and the blksize specification is incorrect, you can check the
$DSCBR3 field in the DSCB for the actual number of records read or the actual
blksize.

Do not code this operand in a READ instruction containing the relrecno
operand.

This operand further defines the relrecno operand when you code an address or
an indexable value for that operand. PREC=S (the default) limits the value of
relrecno to single-word precision or to a value of 32767 (X'7FFF').

Coding PREC=D gives the relrecno operand a double word precision and
extends the range of its maximum value to a double word value of 2147483647
(X'7FFFFFFF') .

Do not code this operand in a READ instruction containing the blksize operand.

The label of the first instruction of the routine to be invoked if an end-of-data
set condition is detected during the READ operation (return code= 10). If you
do not code this operand, the system treats an end-of-data set condition as an
error.

For tape data sets, if END is not coded, the system treats reading a tapemark as
an error. The physical position of the tape, under this condition, is the
read/write head position immediately following the tapemark. See the
CONTROL instruction close functions for repositioning of the data set.
Remember also that the count field might not be decremented to zero.

Do not code this operand if you code WAIT=NO.

You can set or change the end-of-data by using the SE command of $DISKUTl.
See Operator Commands and Utilities Reference for additional information.

The label of the first instruction of the routine to be invoked if an error condition
occurs during the execution of this operation. If you do not specify this operand,
control passes to the instruction following the READ instruction and you must
test the return code in the first word of the task control block for errors.

o

o

c

o

o

READ
READ - Read records from a data set (continued)

Syntax Examples

WAIT =

Px=

Do not code this operand if you code WAIT=NO.

YES (the default), to suspend the current task until the operation is complete.

NO, to return control to the current task after the operation is initiated. Your
program must issue a subsequent WAIT DSx to determine when the operation is
complete.

You cannot code the END and ERROR operands if you code WAIT=NO. You
must subsequently test the return code in the Event Control Block (ECB) named
DSx or in the first word of the task control block (TCB). The label of the TCB
is the label of your program or task.

Two codes are of special significance. A -1 indicates a successful end of
operation. A + 10 indicates an "End of Data Set" and may be of logical
significance to the program rather than being an error. For programming
purposes, any other return codes should be treated as errors.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

1) The following READ instruction reads a single 327-byte record from a standard label (SL)
tape. If an end-of-data set tape mark is detected, control passes to the statement named ENDl.
If an error occurs, control passes to the statement named ERR.

ABC PROGRAM START1,DS=((MYDATA,234567»
START 1 READ DS1,BUFF,1,327,END=END1,ERROR=ERR,WAIT=YES

2) The following READ instruction does the same as in the previous example except that two
records are read into your storage buffer (BUFF2). BUFF2 must be at least 654 bytes long.

ABCD PROGRAM START2,DS=((MYDATA,234567»
START2 READ DS1,BUFF2,2,327,END=END1,ERROR=ERR,WAIT=YES

Chapter 2. Instruction and Statement Descriptions LR-379

READ
READ - Read records from a data set (continued)

Coding Example - Read

The READ instruction in this example reads the next sequential record from the first relative
data set specified in the list of data sets in the PROGRAM statement. If end-of-file is
encountered during the read, the program passes control to the NOTFOUND label. If an
unrecoverable I/O error is encountered, the program passes control to the label DSKRDERR.
Otherwise, the instruction reads the record and places the data in the 256-byte buffer area
labeled DISKBUFF.

LR-380 SC34-0643

READ
LOOKUP

*

PROGRAM
EQU
READ
MOVEA
DO

IF
ENDIF
ADD

END DO
GOTO

LOOKUP,DS=(CHART1,CHART2)

*
DS1,DISKBUFF,1,0,ERROR=DSKRDERR,END=NOTFOUND
#1,DISKBUFF
16,TIMES

((0,#1) ,EQ,$NAME, (16,BYTE)) ,GOTO,GOTNAME

1 , 16

LOOKUP

NOT FOUND EQU *

*

PRINTEXT '@EMPLOYEE FILE DOES NOT CONTAIN EMPLOYEE NAME'
PRINTEXT $NAME
GOTO ENDIT

DSKRDERR EQU *
PRINTEXT '@UNRECOVERABLE DISK READ ERROR ON EMPLOYEE FILE'
GOTO ENDIT

*
GOTNAME EQU *
ENDIT PROGSTOP
DISKBUFF BUFFER 265,BYTES

ENDPROG
END

o

o

o

READ
READ - Read records from a data set (continued)

Coding Example - Disk Immediate Read

There are situations in which you have 1 or more applications already active on a Series/land
desire to perform a disk read without having to wait for the completion of active programs. Use
the disk immediate read option to make such requests. This special READ request is placed at
the top of a disk I/O chain and serviced before other requests.

The following coding example illustrates how to code $DSCBPRI to set the priority read bit in
the DSCB. Any READ request made directly after $DSCBPRI is set executes immediately.
The bit resets automatically to continue operations normally as soon as that instruction
prioritized for immediate execution is effected.

PROG1 PROGRAM
COpy

START
DSCBEQU

START EQU

BUF

lOR INDATA+$DSCBFLG,+$DSCBPRI SET PRIORITY READ BIT IN DSCB
READ INDATA,BUF,1,1 READ A RECORD

ENDPROG
DC
DSCB
END

128F'O'
DS#=INDATA,DSNAME=TEST

Chapter 2. Instruction and Statement Descriptions LR-381

READ
READ - Read records from a data set (continued)

Disk and Tape Return Codes

LR-382 SC34-0643

Disk and tape I/O return codes are returned in two places:

• The first word of the DSCB (either DSn or DSCB name) named DSn, where "n" is the
number of the data set.

• The first word of the task control block (TCB). The label of the TCB is the label of your
program or task (taskname).

The possible return codes and their meaning for disk and tape are shown in tables later in this
section.

If a tape error occurs, the read/write head positions itself immediately following the record in
which the error occurred. This indicates that a retry has been attempted, but was unsuccessful.
The count field, in the READ instruction, mayor may not have been set to zero under this
condition.

You can get detailed information on an error by using the $LOG utility to capture the I/O error.
Refer to the Problem Determination Guide for information on how to use $LOG.

Note: If an error is encountered during a sequential I/O operation, the relative record number
for the next sequential request is not updated. This can cause errors on all following sequential
I/O operations.

o

c!

o

0

o

READ
READ - Read records from a data set (continued)

Disk/Diskette Return Codes

Return
Code
-1
1

2
3
4
5
6
7

8

9
10

11

12
13

14

15

16

17

18

24
30

Condition
Successful completion.
I/O error and no device status present
(this code may be caused by the I/O area
starting at an odd byte address).
I/O error trying to read device status.
I/O error retry count exhausted.
Read device status I/O instruction error.
Unrecoverable I/O error.
Error on issuing I/O instruction.
A no record found condition occurred,
a seek for an alternate sector was performed,
and another no record found occurred,
for example, no alternate is assigned.
A system error occurred while processing
an I/O request for a 1024-byte sector diskette.
Device was offline when I/O was requested.
Record number out of range of data set--may
be an end-of-file (data set) condition.
Data set not open or device marked unusable
when I/O was requested.
DSCB was not OPEN; DDB address = O.
If extended deleted record support was requested
($DCSBFLG bit 3 on), the referenced sector was not
formatted at 128 bytes / sector or the request was
for more than one 256-byte sector.
If extended deleted record support was not
requested ($DSCBFLG bit 3 off), a deleted sector
was encountered during I/O.
The first sector of the requested record
was deleted.
The second sector of the requested record
was deleted.
The first and second sectors of the requested
record were deleted.
Cache fetch error. Contact your IBM customer
engineer.
Bad cache error. Contact your IBM customer
engineer.
End of tape.
Device not a tape.

Chapter 2. Instruction and Statement Descriptions LR-383

READ
READ - Read records from a data set (continued)

Tape Return Codes and Tape Post Codes

Return
Code
-1
1
2
3
4
6
10
21
22
23
24
25
26
27
28
29
30
31
32
33

Condition
Successful completion.
Exception but no status.
Error reading cycle steal status.
I/O error; retry count exhausted ..
Error issuing READ CYCLE STEAL STATUS.
I/O error issuing I/O operations.
End of data; a tape mark was read.
Wrong length record.
Device not ready.
File protected.
End of tape.
Load point.
Unrecoverable I/O error.
SL data set not expired.
Invalid blocksize.
Offline, in-use, or not open.
Incorrect device type.
Close incorrect address.
Block count error during close.
Close detected on EOV1.

The following post codes are returned to the event control block (ECB) of the calling program.

LR-384 SC34-0643

Post
Code
-1
101
102
103
104

Condition

Function successful.
TAPEID not found.
Device not offline.
Unexpired data set on tape.
Cannot initialize BLP tapes.

C
-"

I" . I .'

o
READTEXT

READTEXT - Read text entered at a terminal

The READTEXT instruction reads an alphameric character string entered by the terminal
operator.

The instruction can also print or display a prompt message to request input.

The supervisor places a return code in the first word of the task control block (taskname)
whenever a READTEXT instruction causes a terminal I/O operation to occur. If the return
code is not a -1, the address of this instruction will be placed in the second word of the task
control block (taskname+2). The terminal I/O return codes are described under "Terminal I/O
Return Codes" on page LR-394 and also in the Messages and Codes.

Syntax:

label

Required:
Defaults:

Indexable:

Operand

loe

READTEXT loc,pmsg, PROM PT=, ECHO=,TYPE=, MODE=,
XLATE=, S KI P=, LI N E=, S PAC ES=, CAPS=,
COM P=, PARMS=(parm1 , ... ,parm8), MSG I D=, P1 =, P2=

loc
PROMPT=UNCOND,ECHO=YES,TYPE=DATA,MODE=WORD,
XLA TE=YES,SKI P=Q, LI N E=current line,SPACES=Q
MSGID=NO
loc,pmsg,SKI P, LI N E,SPACES

Description

This operand is normally the label of a TEXT statement defining the storage area
which is to receive the data. The storage area can be defined by DATA or DC
statements, but you must adhere to the format of the TEXT statement. To
satisfy the length specification, the input is either truncated or padded to the
right with blanks, as necessary. The TEXT statement count field is also updated.
If a static screen is in use, null characters are not translated into blanks.

If the length specification is greater than the system buffer size, then the length is
limited to the buffer size. If a user buffer is specified on an 10CB instruction
and you have issued an ENQT to the corresponding terminal, then the user
buffer size will apply to the input length.

The loc operand may also be the label of a BUFFER statement referred to by an
10CB instruction. If this is the case, the input is direct; that is, the maximum
input count is taken from the word at loc-2, imbedded blanks are allowed, and
the final input count is placed in the buffer index word at loc-4.

The maximum line size for the terminal is established by the TERMINAL
statement used to define the terminal during system generation. Refer to the
TERMINAL statement in the Installation and System Generation Guide for
information on the default sizes.

Chapter 2. Instruction and Statement Descriptions LR-385

READTEXT
READTEXT - Read text entered at a terminal (continued)

pmsg The prompt message. Code the label of a TEXT statement or an explicit text
message enclosed in single quotes. The READTEXT instruction issues this
prompt according to the parameter you code for the PROMPT keyword.

To retrieve a prompt message from a data set or module containing formatted
program messages, code the number of the message you want displayed or
printed. You must code a positive integer or a label preceded by a plus sign (+)
that is equated to a positive integer. If you retrieve a prompt message from
storage, you must also code the COMP= operand. See Appendix E, "Creating,
Storing, and Retrieving Program Messages" on page LR-615 for more
information.

PROMPT = COND (conditional), to prevent the system from displaying the prompt message
if you enter text before the prompt.

ECHO=

MODE=

LR-386 SC34-0643

UNCOND (unconditional), to have the system display the prompt message
without exception. UNCOND is the default.

If you code PROMPT=COND without specifying a prompt message, the
instruction does not wait for input if advance input is not presented; instead, the
receiving TEXT buffer is filled with blanks and its input count is set to o.

NO, if the input text is not to be printed on the terminal. This operand is
effective only for devices which require the processor to echo input data for
printing.

Note: The ECHO operand in READ TEXT is equivalent to PROTECT= YES in
other terminal 110 instructions.

YES (the default), to allow the input text to be printed on the terminal.

WORD (the default), to end the READ TEXT operation when the system
encounters a blank character (space). Leading blanks, however, are ignored.
Lowercase input characters, including terminal control characters, are
automatically converted to uppercase. The 3101 in block mode with a static
screen separates all fields by blanks.

LINE, if the string to be read can include imbedded blanks. Any lowercase
characters entered are left in lowercase.

For a 3101 in block mode with a static screen and with TYPE=ALL coded, a
blank will precede each field.

Any portion of the. input which extends beyond the count indicated in the
receiving TEXT statement will be ignored and will not be retained as advance
input.

o

o

o

o

o

READTEXT
READTEXT - Read text entered at a terminal (continued)

TYPE =

XLATE=

For a 4978, 4979, or 4980 with a static screen, the READTEXT operation
normally ends when the instruction fills the entire text field, when it reaches a
protected field, or when it reaches the end of the logical line.

For 3101 in block mode, the READTEXT operation normally ends when the
instruction fills the entire text field, or when it reaches the end of the screen.
However, the TYPE operand determines what fields are read in.

The input operation may continue beyond the logical screen boundary to the end
of the physical screen. In this case, input continues from the end of each
physical screen line to the beginning of the next line.

The type of data to be transferred from a 4978, 4979, 4980, or a 3101 in block
mode with a static screen.

When a READTEXT has Seen issued to a 3101 in block mode, any changed
fields are reset to a unmodified condition.

Code TYPE=DATA (the default) to transfer only data fields.

Code TYPE=ALL to transfer both protected and data (unprotected) fields.

Code TYPE=MODDATA to transfer only those data fields which have been
changed by the terminal operator (4978,4980, or 3101 in block mode) for static
screens.

Code TYPE=MODALL to transfer, along with each changed data field, the
protected fields which precede it.

If coded for a 3101 in block mode with a static screen, TYPE=MODALL
defaults to TYPE=MODDATA.

NO, if the input line is not to be translated to EBCDIC. The character-delete
and line-delete codes lose their special functions under this option, and
MODE=LINE is implied. (See the Communications Guide for an explanation of
3101 Internal Code Representations.)

For a 3101 in block mode, terminal I/O support does not remove the escape
sequences or attribute bytes from the data stream. Also, the TERMCTRL
SET,ATTR or TERMCTRL SET,STREAM operands are ignored while the
instruction executes.

Note: For a description of 3101 escape seq:uences, see IBM 3101 Display
Terminal Description,. GA18-2033.

If the terminal transmits characters in mirror image format and XLATE=NO is
coded, the characters will be placed in storage in the terminal's native format.

Chapter 2. Instruction and Statement Descriptions LR-387

READTEXT
READTEXT - Read text entered at a terminal (continued)

SKIP =

LINE =

SPACES =

LR-388 SC34-0643

YES (the default), causes the supervisor to translate the terminal's binary code to
EBCDIC, the standard Series/l representation of data. Code XLATE=YES
when you are coding a READ TEXT instruction for Series/l-to-Series/l
communication.

The number of lines to be skipped before the system does an I/O operation. For
example, if your cursor is at line 2 on a display screen and you code SKIP=6, the
system does the I/O operation on line 8. For a printer, the SKIP operand
controls the movement of forms.

The SKIP operand causes the system to display or print the contents of the
system buffer.

If you specify a value greater than or equal to the logical page size, the system
divides this value by the page size and uses the remainder in place of the value
you specify. For roll screens, the logical page size equals the screen's bottom
margin minus the number of history lines and the screen's top margin.

The line number on which the system is to do an I/O operation. Code a value
between zero and the number of the last usable line on the page or logical
screen. The line count begins at the top margin you defined for the printer or
display screen. LINE=O positions the cursor at the top line of the page or screen
you defined; LINE= 1 positions the cursor at the second line of the page or
screen. For roll screens, line ° equals the screen's top margin plus the number of
history lines.

For printers and roll screens, if you code a value less than or equal to the current
line number, the system does the I/O operation at the specified line on the next
page or logical screen. For static screens, if you code a value within the limits of
the logical screen, the system does the I/O operation on the line you specified.

If you code a value greater than the last usable line number, the system divides
this value by the logical page size and uses the remainder as the line number on
which to do the I/O operation. For example, if you code LINE=22 and your
roll screen has a logical page size of 20, the I/O operation occurs on the second
line of the logical screen.

The LINE operand causes the system to print or display the contents of the
system buffer.

The number of spaces to indent before the system does an I/O operation.
SPACES=O, the default, positions the cursor at the beginning of the left side of
the page or screen. If the value you specify is beyond the limits of the logical
screen or page, the system indents the next line by the excess number of spaces.

When you code the LINE or SKIP operands with SPACES, the system begins
indenting from the left margin of the page or screen. If you specify SPACES

o

o

c'

READTEXT
READTEXT - Read text entered at a tenninal (continued)

CAPS =

COMP=

PARMS=

without coding LINE or SKIP, the system begins indenting from the last cursor
position on the line.

For an IBM 3101 in block mode, if no prompt message is specified, a
READTEXT instruction will read data from the beginning of the screen and will
ignore any cursor positioning by this operand.

Converts EBCDIC data received in a READTEXT operation to uppercase
characters. This operand is valid only for data that is defined by a TEXT or
BUFFER statement.

Code CAPS= Y to convert all the data defined by a TEXT or BUFFER
statement to uppercase characters. When specifying CAPS= Y, you must
link-edit your program using the autocall feature of $EDXLINK.

To convert a specified number of bytes to uppercase, code that number with the
CAPS operand. Capitalization starts from the first byte of the data received.
For example, CAPS=3 capitalizes the first three bytes of data defined by the
TEXT or BUFFER statement.

The count you specify should not exceed the length of the TEXT or BUFFER
statement that contains the data. If the length is exceeded, the operation is still
performed, but data beyond the TEXT or BUFFER statement may be modified.

When you code a value with the CAPS operand, the system does an inclusive OR
(lOR) ofaX'40' byte to each EBCDIC byte. (See Coding Example 2 at the end
of this section.) A lowercase "a" (X'81 '), for example, is converted to an
uppercase "A" (X'Cl'). Characters already capitalized remain unchanged. The
lOR operation is done after the READTEXT instruction reads in the data.

Notes:

1. Coding XLATE=NO and the CAPS operand causes an assembly error.

2. If you specify MODE= WORD with the CAPS operand, the CAPS operand
has no effect. MODE= WORD automatically converts lowercase input
characters to uppercase.

The label of a COMP statement. You must specify this operand if the
READTEXT instruction is retrieving a prompt message from a data set or
module containing formatted program messages. The COMP statement provides
the location of the message. (See the COMP statement description for more
information.)

The labels of data areas containing information to be included in a message you
are retrieving from a data set or module containing formatted program messages.
You can code up to eight labels. If you code more than one label, you must
enclose the list in parentheses.

Chapter 2. Instruction and Statement Descriptions LR-389

READTEXT
READTEXT - Read text entered at a terminal (continued)

MSGID=

Px=

Note: To use this operand, you must have included the FULLMSG module in
your system during system generation. Refer to Installation and System
Generation Guide for a description of this module.

YES, if you want the message number and four-character prefix to be printed at
the beginning of the message you are retrieving from a data set or module
containing formatted program messages. See the COMP statement operand
'idxx' for a description of the four-character prefix.

NO (the default), to prevent the system from printing or displaying this
information at the beginning of the message.

Note: To use this operand, you must have included the FULLMSG module in
your system during system generation. Refer to Installation and System
Generation Guide for a description of this module.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

Advance Input Considerations

Input that you enter before a program requests it (advance input) normally resides in the system
buffer. When your program issues a READ TEXT instruction, the instruction immediately reads
the advance input from the buffer. If a terminal output operation takes place just before the
READTEXT operation, however, the READTEXT instruction does not read in the advance
input. The instruction does not read the correct advance input because the terminal output
operation has used the system buffer.

An example of implicit terminal output would be the SPACES operand coded on a READ TEXT
statement. This could be the same READ TEXT instruction for which you intended the advance
input.

3101 Display Considerations

LR-390 SC34-0643

When using a 3101 in block mode, special considerations are required. The most recent
TERMCTRL SET,ATTR or its default value determines both the attribute byte to be used for a
prompting message and the field to be read. The TERMCTRL SET,ATTR, or its default value
allows the fields for the prompt, if used, and the response to be programmed according to one of
the attributes allowed by the 3101. After the data is read from the device, terminal 110 support
will remove all the escape sequences from the 3101 data stream before transferring it to your
application program. (For a description of 3101 escape sequences refer to the IBM 3101
Display Terminal Description, GAI8-2033.)

In static screen mode, if there is no prompt message, the read will start from the beginning of
the screen, regardless of any SKIP, LINE, or SPACES parameters in effect, because the 3101 in
block mode does not have a direct read capability.

If a TERMCTRL SET, STREAM = YES is in effect, the data read is converted to EBCDIC.
However, the escape sequences and attribute bytes are not removed from the data stream.

()

ro',", I,
\ '

o

o

o

READTEXT
READTEXT - Read text entered at a terminal (continued)

Syntax Examples

Coding Examples

A TERMCTRL SET,ATTR=NO, has no effect on input data.

1) Read text into the data area labeled OPTION. The prompt, 'ENTER OPTION' is
conditional.

READTEXT OPTION,'ENTER OPTION: ',PROMPT=COND

OPTION TEXT LENGTH=2

2) Read text into the data area labeled NAME. The prompt, 'ENTER YOUR NAME', is
unconditional.

READTEXT NAME, 'ENTER YOUR NAME: '

NAME TEXT LENGTH=44

3) Read text into the data area labeled PASSWORD. The prompt, 'ENTER PASSWORD', is
unconditional.

READTEXT PASSWORD,'ENTER PASSWORD: ',PROTECT=YES

PASSWORD TEXT LENGTH=8

4) Read text into the data area labeled NEXTLINE. The text string can include imbedded
blanks because MODE=LINE.

READTEXT NEXTLINE,MODE=LINE

NEXTLINE TEXT LENGTH=80

1) The following example uses a series of READ TEXT instructions to set up a logon sequence
for employees using an online time-sharing system.

The WELCOME message is displayed on the third line of the screen. This message is followed
on the fifth line of the screen by a prompt message requesting entry of a LOGON command.
The LOGMSG2 prompt always appears because PROMPT defaults to unconditional. An
unconditional PROMPT is then displayed requesting entry of an employee number. If a blank is
entered the logon process ends. Otherwise, the code verifies that the employee number is six
digits long. If the employee number is not six digits, a branch to EMPLOYEE causes a retry.

Chapter 2. Instruction and Statement Descriptions LR-391

READTEXT
READTEXT - Read text entered at a terminal (continued)

LR-392 SC34-0643

The READ TEXT for the password is conditional so that the prompt is not displayed if there is
advanced input accompanying a proper length I.D. number. The READTEXT contains the
MODE=LINE keyword so that the text can contain embedded blanks.

A proper match of I.D. and password is made by calling subroutine CHKPASS. A correct
match causes a branch to the GOODP ASS label; otherwise, the next sequential instruction is
executed which is the beginning of an error routine. A maximum of four incorrect passwords
are examined for each logon attempt. If logon is not successful by the fourth attempt, the
process ends.

If the logon is accepted, a READ TEXT is issued for a title line. This title line is used on system
reports which are produced during the current logon session.

LOGON

*

EQU *
PRINTEXT LOGMSG1,LINE=3,SPACES=35
READTEXT LOGCMD,LOGMSG2,LINE=5,SPACES=35

EMPLOYEE EQU *
READTEXT EMPNUM, '@ENTER YOUR EMPLOYEE NUMBER'
IF (EMPNUM,EQ,BLANK, (1,BYTE)) ,GOTO,LOGON
IF (EMPNUM-1,NE,6),GOTO,EMPLOYEE

*
GETPASS EQU *

*

READTEXT PASSWORD, '@ENTER PASSWORD' ,PROMPT=COND,MODE=LINE,
TYPE=ALL

* VERIFY I.D. NUMBER & PASSWORD

*
CALL CHKPASS
IF (PASSCHK,EQ,-1) , GOTO,GOODPASS

*
BADPASS EQU * PRINTEXT 'INVALID PASSWORD FOR USERID' ,SKIP=1

PRINTEXT EMPNUM
ADD BADWORD,1
IF (BADWORD,LT,4) ,GOTO,GETPASS
MOVE BADWORD,O
GOTO LOGON

SUBROUT CHKPASS

MOVE PASSCHK,-1
RETURN

GOODPASS EQU *
READTEXT TITLE,TITLEMSG,SKIP=1,MODE=LINE

LOGMSG1 TEXT , WELCOME TO ONLINE TIME SHARING'
LOGMSG2 TEXT , PLEASE ENTER YOUR LOGON COMMAND'
LOGCMD TEXT LENGTH=2
EMPNUM TEXT LENGTH=6
PASSWORD TEXT LENGTH=3

x

o

o

o

o

o

o

READTEXT
READTEXT - Read text entered at a terminal (continued)

TITLE TEXT LENGTH=60
TITLEMSG TEXT 'ENTER A 60 CHARACTER TITLE FOR X

YOUR REPORTS'
BADWORD DATA F'O'
BLANK DATA C' ,
PASSCHK DATA F'O' CODE WORD TO INDICATE

* VALIDITY OF PASSWORD

2) When you code a value with the CAPS operand, the system generates an lOR instruction to
capitalize the specified data. The following example shows the use of the CAPS operand and
how you can achieve the same results by coding an lOR instruction directly in your application
program.

With the CAPS operand

READTEXT A,CAPS=5,MODE=LlNE

A TEXT LENGTH=5

Without the CAPS operand

READTEXT A
lOR A,X'40', (5,BYTES)

A TEXT LENGTH=5

3) In this example, the READTEXT instruction displays a prompt message contained in
MSGMOD, a storage-resident message area. Because +MSG8 equals 8, the system retrieves
the eighth message in MSGMOD.

READTEXT NAME,+MSG8,PROMPT=COND,COMP=MSGSTMT

MSG8 EQU 8

PROGSTOP
NAME TEXT LENGTH=8
MSGSTMT COMP 'SRCE' ,MSGMOD,TYPE=STG

Chapter 2. Instruction and Statement Descriptions LR-393

READTEXT
READTEXT - Read text entered at a terminal (continued)

Message Return Codes

The system issues the following return codes when you retrieve a prompt message from a data
set or module containing formatted program messages. The return codes are returned in the
first word of the task control block (TCB) of the program or task issuing the instruction. The
label of the TCB is the label of your program or task (taskname).

Code

-1
301-316

326
327
328
329
330
331
332
333
334
335

Terminal I/O Return Codes

Description

Message successfully retrieved
Error while reading message from disk. Subtract
300 from this value to get the actual return code. See
the disk return codes following the READ or WRITE instruction
for a description of the code.
Message number out of range
Message parameter not found
Instruction does not supply message parameter(s)
Invalid parameter position
Invalid type of parameter
Invalid disk message data set
Disk message read error
Storage-resident module not found
Message parameter output error
Disk messages not supported (MINMSG support only)

The terminal I/O return codes are all listed here and following the PRINTEXT instruction. A
complete list of all return codes also can be found in the Messages and Codes. You must select
the group of codes that represents the particular device type you are using. A list of the terminal
I/O return code groups follows:

• General Terminal I/O

Virtual Terminal

ACCA Devices

Interprocessor Communication

• General Purpose Interface Bus

• Series/ I-to-Series/ 1 Adapter

LR-394 SC34-0643

o

o

o

o

o

o

READTEXT
READTEXT - Read text entered at a terminal (continued)

General Terminal I/O Return Codes

The return codes are returned in the first word of the task control block of the program issuing
the instruction.

Return
Code
-1
1
2
3
4
5
6
7
a

>10

Condition

Successful completion.
Device not attached.
System error (busy condition).
System error (busy after reset).
System error (command reject).
Device not ready.
Interface data check.
Overrun received.
Printer power has been switched off and switched
back on or a power failure has occurred.

A code greater than 10 can indicate
multiple errors. To determine the errors,
subtract 10 from the code and express the result
as an a-bit binary value. Each bit (numbering
from the left) represents an error as follows:

Bit 0 - Unused
1 - System error (command reject)
2 - Not used
3 - System error (DeB specification check)
4 - Storage data check
5 - Invalid storage address
6 - Storage protection check
7 - Interface data check

If the return code is for devices supported by IOS2741 (2741, PROC) and a code greater than
128 is returned, subtract 128; the result then contains status word 1 of the ACCA. Refer to the
IBM Series/l Communications Features Description, GA34-0028 for determination of the
special error condition.

Chapter 2. Instruction and Statement Descriptions LR-395

READTEXT
READTEXT - Read text entered at a terminal (continued)

Virtual Terminal Return Codes

LR-396 SC34-0643

The return codes are returned in the first word of the task control block of the program issuing
the instruction.

Return Transmit Receive
Code Condition Condition

X'8Fnn' Not applicable. LlNE=nn received.
X'8Enn' Not applicable. SKIP=nn received.

-2 NA Line received (no CR).
-1 Successful completion. New line received.

1 Not attached. Not attached.
5 Disconnect. Disconnect.
8 Break. Break.

A further description of the virtual terminal return codes follows:

LINEnn (X'8Fnn'): Returned for a READTEXT or GETVALUE instruction if the other
program issued an instruction with a LINE= operand. This operand tells the system to do an
110 operation on a certain line of the page or screen. The return code enables the receiving
program to reproduce on an actual terminal the output format intended by the sending program.

SKIPnn (X'8Enn'): The other program issued an instruction with a SKIP= operand. This
operand tells the system to skip several lines before doing an 110 operation.

Line Received (-2): Indicates that an instruction (usually READTEXT or GETVALUE) has
sent information but has not issued a carriage return to move the cursor to the next line. The
information is usually a prompt message.

New Line Received (-1): Indicates transmission of a carriage return at the end of the data.
The cursor is moved to a new line. This return code and the Line Received return code help
programs to preserve the original format of the data they are transmitting.

Not attached (1): A virtual terminal does not or cannot refer to another virtual terminal.

Disconnect (5): The other virtual terminal program ended because of a PROGSTOP or an
operator command.

Break (8): Indicates that both virtual terminal programs are attempting to do the same type of
operation. When one program is reading (READTEXT or GETV ALUE) , the return code
means the other program has stopped sending and is waiting for input. When one program is
writing (PRINTEXT or PRINTNUM), the return code means the other program is also
attempting to write.

If you defined only one virtual terminal with SYNC = YES, then that task always receives the
break code. If you defined both virtual terminals with SYNC= YES, then the task that last
attempted the operation receives the break code.

o

o

o

C·',
.J

.READTEXT
READTEXT - Read text entered at a terminal (continued)

ACCA Return Codes

The return codes are returned in the first word of the task control block of the program issuing
the instruction.

Return
Code

-1
1-08

11
12

14,15

Condition

Successful completion.
Return code for last operation
placed in information status byte (lSB).
Refer to the hardware description
manual for status on the device
you are using.
Write operation (I/O complete).
Read operation (I/O complete).
Condition code +1 after I/O start or
condition code after I/O complete.

Interprocessor Communication Return Codes

The return codes are returned in the first word of the task control block of the program issuing
the instruction.

CODTYPE=

EBCDIC
EBCDIC
EBCDIC
EBCD/CRSP
EBCD/CRSP
EBCD/CRSP

Return Code

FDFF
FEFF
FCFF
1F
5B
(none)

Condition

End of transmission (EOT).
End of record (NL).
End of subrecord (EOSR).
End of transmission (EOT).
End of record (NL).
End of subrecord (EOSR).

General Purpose Interface Bus Return Codes

The return codes are returned in the first word of the task control block of the program issuing
the instruction.

Return
Code

-1
1
2
3
4
6

256 + ISB
512 + ISB
1024

Condition

Successful completion.
Device not attached.
busy condition.
busy after reset.
command reject.
I nterface data check.
Read exception.
Write exception.
Attention received during an operation
(may be combined with an exception
condition).

Chapter 2. Instruction and Statement Descriptions LR-397

READTEXT
READTEXT - Read text entered at a tenninal (continued)

Series/1-To-Series/1 Return Codes

LR-398 SC34-0643

The return codes are returned in the first word of the task control block of the program issuing
the instruction.

Return
Code
-1
1
2
3
4
5
6
7
138, 154

1002
1004
1006
1008
1010
1012

1014
1016
1050

1052
1054

Condition
Successful.
Device not attached.
System error (busy condition).
System error (busy after reset).
System (command reject).
Device not ready (not reported for S/1 - S/1).
I nterface data check.
Overrun recieved (not reported for S/1 - S/1).
An error has occurred that can only be
determined by displaying the device cycle
steal status word with the TERMCTRL STATUS
function and checking the bits to determine
the cause of the error.
Other system not active.
Checksum error detected.
Invalid operation code or sequence.
Timeout on data transfer.
TERMCTRL ABORT issued by responding processor.
Device reset (TERMCTRL RESET) issued by the other
processor.
Microcode load to attachement failed during IPL.
Invalid or unsolicited interrupt occurred.
TERMCTRL ABORT issued and no operation
pending.
TERMCTRL IPL attempted by slave processor.
Invalid data length.

o

o

o

o

o

RESET
RESET - Reset an event or process interrupt

The RESET instruction resets an event or a Process Interrupt.

When an event occurs for which a task is waiting, the task will again become active. If the task
subsequently issues another WAIT instruction for the same event, without taking any special
action, the event is still defined as having occurred and no wait would be performed. It is
necessary to define the event as not occurred to cause a new wait. This is the function of the
RESET instruction.

The RESET instruction need not be used for the event defined by the EVENT operand of either
a PROGRAM or a TASK statement. RESET must not be used for this event before executing
the ATTACH instruction, since RESET will cause the ATTACH to operate as though the task
were already attached.

Events are named logical entities which are represented in storage by a system control block
called an Event Control Block (ECB). Resetting an event is done physically by setting the first
word of its ECB to O.

Note: Specify the address key of an event to be reset with the task target address key,
$TCBADS.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

event

Pl=

RESET event, P1 =

event
none
event

Description

The label of the event being reset. For process interrupt, use PIx, where x is a
user process interrupt number in the range 1-99.

Parameter naming operand. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code this operand.

Chapter 2. Instruction and Statement Descriptions LR-399

RESET
RESET - Reset an event or process interrupt (continued)

Coding Example

The RESET instruction at label RES 1 refers to a specific ECB and can operate only on the ECB
labeled ECB 1.

The RESET instruction at label RES2 uses the parameter naming operand, Pl=, to supply the
address of the ECB on which RESET is to operate. The application program then ensures that
the address of the ECB that is to be cleared is moved to the label named by the PI = operand in
the RESET instruction.

RES1 RESET ECB1
WAIT ECB1

MOVEA ANYECB,WAITECB
RES2 RESET ECB1,P1=ANYECB

ECB1 ECB
WAITECB ECB

LR -400 SC34-0643

o

o

o

o

o

RETURN
RETURN - Return to the calling program

Coding Example

The RETURN instruction provides linkage back to a calling program from a subroutine. Each
subroutine must contain at least one RETURN instruction.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

none

RETURN

none
none
none

Description

none

In the example, each of the three RETURN instructions at labels RETl, RET2, and RET3
causes task execution to resume at the instruction following the RETURNllabel. This occurs
because each of the instructions passes control to the instruction following the subroutine call.

CALL
RETURN 1 EQU

DISKERR,MSGNUMBR

*

SUBROUT DISKERR,MSGNO
IF (MSGNO,EQ, 1)

PRINTEXT '@ DISK DATA SET HAS REACHED END-OF-FILE'
RET1 RETURN

ELSE
IF (MSGNO,EQ,2)

PRINTEXT '@ DISK DATA SET IS NOT CATALOGUED'
RET2 RETURN

ELSE
PRINTEXT '@ DISK DATA SET IS READ-ONLY'

ENDIF
ENDIF

RET3 RETURN

Chapter 2. Instruction and Statement Descriptions LR-40l

S810
8810 - Specify a sensor-based I/O operation

The SBIO instruction specifies the sensor-based I/O operation you want to perform.

The instruction has a separate format for analog input, analog output, digital input, and digital
output operations. Each of these formats is shown on the following pages.

Options available with the SBIO instruction allow you to:

Automatically index using a previously defined BUFFER statement.

Automatically update a buffer address after each operation.

Use a short form of the instruction, omitting the "loc" operand (data location), to imply a
data address within the SBIO control block.

You can also provide PULSE output and manipulate portions of the 16-bit I/O group with the
BITS=(u,v) keyword.

The SBIO instruction refers to a three-to-four-character device label assigned with an 10DEF
statement. The 10DEF statement contains the actual hardware address and the attributes you
defined for the I/O device. (See 10DEF for a description of how to code the statement.)

S810 Control Block

LR-402 SC34-0643

Each 10DEF statement you code creates a sensor-based input/output control block (SBIOCB)
in your application program. The SBIOCB acts as a link between the SBIO operation and the
device information contained in the 10DEF statement. The SBIOCB, which contains a data
I/O area and an event control block (ECB), also serves as a location where the supervisor can
either store data (for AI and DI operations) or can fetch data (for AO and DO operations).

When your program executes an SBIO instruction, the supervisor either reads or writes data
from or to a location in the 10CB with the label of a specified I/O point (for example, All, D12,
D033, AOl). An application program can refer to these locations in the same way it refers to
any other variable. This fad allows you to use the short form of the SBIO instruction (for
example, SBIO DIl) and to refer to the label (DIl) in other instructions. You can equate device
labels with more descriptive labels. For example, you could equate the device label DIl5 with
the label SWITCH as follows:

SWITCH EQU DI15

You must code the device label, however, in the SBIO instruction.

Each control block also contains an ECB to be used by those operations that require the
supervisor to respond to an interrupt and to "post" an operation as complete. Such operations
include analog input (AI), process interrupt (PI), and digital I/O with external synchronization
(DI/DO). For process interrupt, the label on the ECB is the same as the symbolic I/O point
(PI3, for example). For analog and digital I/O, the label is the same as the symbolic I/O point
with the suffix "END" (for example, DlxEND).

o

o

o

S810 (Analog Input)
o S810 - Specify a sensor-based I/O operation (continued)

5810 Analog Input

Syntax:

label

label

label

label

Required:
Defaults:
Indexable:

Operand

c Alx

loe

EOB=

opnd3

o

S810
or

S810
or

S810
or

S810

Alx

Alx, ERROR=, P1 =

Alx,loc, ERROR=, P1 =, P2=

Alx,loc,INDEX,E08=,ERROR=,P1=,P2=

Alx,loc,opnd3,SEQ=, ERROR=, P1 =, P2=, P3=

no indexing, SEQ=NO
loc

Description

The label you assigned to an analog input device on the associated IODEF
statement. AIx acts as the label of a single data storage location if you do not
specify the loc operand.

Buffer address or location where the system will store analog input. If you do
not code the loc operand, the supervisor stores data from the operation in the
SBIOCB created for the instruction.

You can use this operand for buffer operations with automatic indexing. Code
the label of a branch to be taken if:

1. The SBIO operation uses the last element of the buffer you defined. A
return code of $OK is placed in the task name.

2. The buffer is full when the SBIO operation begins. The branch occurs
without executing the SBIO instruction and the system places a return code
of $BFRPFE in the task name.

Note: If your program branches to the label you defined, you must reset the
buffer count.

Code INDEX to specify that the system is to do automatic indexing of a buffer
you defined. You must define the buffer with a BUFFER statement.

If you code a label or a constant for opnd3, the operand is the number of
consecutive AI points to be used in the operation or the number of times to

Chapter 2. Instruction and Statement Descriptions LR -403

S810 (Analog Input)
S810 - Specify a sensor-based I/O operation (continued)

Coding Example

Return Codes

LR -404 SC34-0643

SEQ=

ERROR =

Px=

repeat the operation on the same point. The SEQ operand determines the
function of the operand.

NO (the default), to repeat the operation on the same point the number of times
indicated by opnd3.

YES, to use the number of consecutive AI points indicated by opnd3 in the
operation.

The input voltage converted by the analog-to-digital converter (ADC) is
represented in a 16-bit data word by 11 binary bits plus a sign bit, depending on
the amplifier range you select. Bits 13 - 15 of this word contain the binary
number representing the range of the AI reading. Bit 12 is zero. (Refer to the
IBM Series/l 4982 Sensor Input/Output Unit Description, GA34-0027 for a
detailed discussion of the analog-to-digital conversion.)

The label of the instruction to be executed if the SBIO instruction is unsuccessful
after two retries. If you do not code ERROR=, execution proceeds sequentially.
In either case, the first word of the task control block contains the return code.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

This example shows a sensor-based I/O operation using the SBIO instruction and an IODEF
statement to read analog input.

*

*
*

IODEF AI1,ADDRESS=72,POINT=5

SBIO
SBIO
SBIO
SBIO
SBIO

AI1
AI1,DAT
AI1,BUF,INDEX
AI1 , (BUF, # 1)
AI1,BUF,2,SEQ=YES

SBIO AI1,BUF,2,SEQ=NO

DATA INTO LOCATION AI1
DATA INTO LOCATION DAT
AI1 INTO NEXT LOC OF 'BUF'
AI1 INTO LOCATION (BUF,#1)
READ 2 SEQUENTIAL AI POINTS INTO
NEXT 2 LOCATIONS OF 'BUF'

READ THE SAME POINT TWO TIMES
AND PUT THE INFORMATION IN TWO
LOCATIONS OF 'BUF'

The return codes for all SBIO instruction formats are listed under "SBIO (Digital Output)" on
page LR-410.

o

()

o

8810 (Analog Output) o S810 - Specify a sensor-based I/O operation (continued)

5810 (Analog Output)

Syntax:

label

label

label

Required:
Defaults:
Indexable:

Operand

AOx

()
loc

EOB=

opnd3

ERROR =

o

S810
or

S810
or

S810

AOx
no indexing
loc

Description

AOx, ERROR=, P1 =

AOx,loc, ERROR=, P1 =, P2=

AOx,loc,INDEX,E08=,ERROR=,P1=,P2=

The label you assigned to an analog output device on the associated IODEF
statement. AOx acts as the label of a single data storage location if you do not
specify the lac operand.

An explicit constant or the address of the location of the output data. If you do
not code the lac operand, the supervisor fetches data from the SBIOCB created
for the instruction.

You can use this operand for buffer operations with automatic indexing. Code
the label of a branch to be taken if:

1. The SBIO operation uses the last element of the buffer you defined. A
return code of $OK is placed in the task name.

2. The buffer is logically empty when the SBIO operation begins. The branch
occurs without executing the SBIO instruction and the system places a code
of $BFRPFE in the task name.

Note: If your program branches to the label you defined, you must reset the
buffer count.

Code INDEX to specify that the system is to do automatic indexing of a buffer
you defined. You must define the buffer with a BUFFER statement.

The label of the instruction to be executed if the SBIO instruction is unsuccessful
after two retries. If you do not code ERROR=, execution proceeds sequentially.
In either case, the first word of the task control block contains the return code.

Chapter 2. Instruction and Statement Descriptions LR-405

S810 (Analog Output)
S810 - Specify a sensor-based I/O operation (continued)

Coding Example

Return Codes

LR -406 SC34-0643

Px= Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

This example shows a sensor-based I/O operation using the SBIO instruction and an 10DEF
statement to write analog output.

rODEF A01,ADDRESS=63

* SBIO A01 SET A01 TO VALUE IN 'A01 '
SBIO A01,DATA SET A01 TO VALUE IN 'DATA'
SBIO A01,1000 SET A01 TO 1000
SBrO AO 1 , (0, # 1) SET A01 TO VALUE IN (0, # 1)
SBrO AO 1 , BUF , INDEX SET A01 TO VALUE IN NEXT

The return codes for all SBIO instruction formats are listed under "SBIO (Digital Output)" on
page LR-410.

o

o

8810 (Digital Input) o 5810 - Specify a sensor-based I/O operation (continued)

5810 (Digital Input)

Syntax:

label

label

label

label

label

Required:
Defaults:
Indexable:

o Operand

DIx

loe

EOB=

opnd3

o

S810
or

S810
or

S810
or

S810
or

S810

Dlx

Dlx, ERROR=, P1 =

Dlx,loc,ERROR=,P1 =,P2=

Dlx,loc,INDEX,E08=,ERROR=,P1=,P2=

Dlx,loc,8ITS=(u,v),LSB=,ERROR=,P1 =,P2=

Dlx,loc,opnd3, ERROR=, P1 =, P2=, P3=

no indexing,LSB=15
loc

Description

The label you assigned to a digital input device on the associated IODEF
statement. DIx acts as the label of a single data storage location if you do not
specify the loc operand.

Buffer address or location where the system will store digital input. If you do not
code the loc operand, the supervisor stores data from the operation in the
SBIOCB created for the instruction.

You can use this operand for buffer operations with automatic indexing. Code
the label of a branch to be taken if:

1. The SBIO operation uses the last element of the buffer you defined. A
return code of $OK is placed in the task name.

2. The buffer is full when the SBIO operation begins. The branch occurs
without executing the SBIO instruction and the system places a code of
$BFRPFE in the task name.

Note: If your program branches to the label you defined, you must reset the
buffer count.

Code INDEX to specify that the system is to do automatic indexing of a buffer
you defined. You must define the buffer with a BUFFER statement.

Chapter 2. Instruction and Statement Descriptions LR -407

8810 (Digital Input)
S810 - Specify a sensor-based I/O operation (continued)

Coding Example

If opnd3 is the label of a variable or a constant representing the count of external
synchronization read cycles, you must specify EXTSYNC (external
synchronization) in the associated 10DEF statement. Specifying EXTSYNC
also provides a latched DI operation. The system reads the entire 16-bit group.

If you specify EXTSYNC on the 10DEFstatement but do not code opnd3, the
system does a single unsynchronized 110 operation.

BITS=(u,v) The portion of a DI group to be read starting at bit u, for a length v. Bits are
numbered from 0 - 15. Bit u is the relative bit number starting at 0, within the
group or subgroup defined in the 10DEF statement.

LSB= Input data is right justified to this bit with all unused bits set to O. Code this
operand only if you coded BITS=. The default is bit 15.

ERROR = The label of the instruction to be executed if the SBIO instruction is unsuccessful
after two retries. If you do not code ERROR=, execution proceeds sequentially.
In either case, the first word of the task control block contains the return code.

Px= Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

This example shows a sensor-based I/O operation using the SBIO instruction and three 10DEF
statements to read digital input.

*

*

IODEF DI1,TYPE=GROUP,ADDRESS=49
IODEF DI2,TYPE=SUBGROUP,ADDRESS=48,BITS=(7,3)
IODEF DI3,TYPE=EXTSYNC,ADDRESS=62

SBIO
SBIO
SBIO
SBIO
SBIO

SBIO
SBIO
SBIO
SBIO
SBIO

SBIO

DI1
DI1,DATA
DI1,(0,#1)
DI1,BUF,INDEX
DI1,BDAT,BITS=(3,5)

DI2
DI2,DAT2
DI2,D,BITS=(0,3)
DI2,E,BITS=(0,1)
DI2,F,BITS=(2,1) ,LSB=7

DI3,G,128

DATA INTO LOC 'DI1'
DI1 INTO LOC 'DATA'
DI1 INTO LOC (0,#1)
DI1 INTO NEXT LOC OF 'BUF'
BITS 3 TO 7 OF DI1 INTO 'BDAT'

BITS 7-9 OF DI2 INTO 'DI2'
BITS 7 TO 9 OF DI2 INTO 'DAT2'
BITS 7-9 OF DI2 INTO 'D'
BIT 7 OF DI2 INTO 'E'
BIT 9 OF DI2 INTO

LOCATION F BIT 7
READ 128 WORDS INTO 'G'

USING EXTERNAL SYNC

LR-408 SC34-0643

o

o

o

o

o

S810 (Digital Input)
5810 - Specify a sensor-based I/O operation (continued)

Return Codes

The return codes for all SBIO instruction formats are list~d under "SBIO (Digital Output)" on
page LR-410.

Chapter 2. Instruction and Statement Descriptions LR-409

S810 (Digital Output)
S810 - Specify a sensor-based I/O operation (continued)

S810 (Digital Output)

Syntax:

label

label

label

label

label

label

Required:
Defaults:
Indexable:

Operand

DOx

loe

EOB=

LR -410 SC34-0643

5BI0
or

5BI0
or

5BI0
or

5BI0
or

5BI0
or

5BI0

DOx

DOx,ERROR=,P1 =

DOx,loc,ERROR=,P1 =,P2=

DOx,loc,INDEX, EOB=,ERROR:=, P1 =,P2=

DOx,loc, BIT5=(u,v)' L5B=, ERROR=, P1 =, P2=

DOx,loc,opnd3, ERROR=, P1 =, P2=, P3=

DOx,(PUL5E,dir), ERROR=

no indexing,L5B=15
loc

Description

The label you assigned to a digital output device on the associated IODEF
statement. DOx acts as the label of a single data storage location if you do not
specify the loc operand.

An explicit constant or the address of the location of the output data. If you do
not code the loc operand, the supervisor fetches data from the SBIOCB created
for the instruction.

You can use this operand for buffer operations with automatic indexing. Code
the label of a branch to be taken if:

1. The SBIO operation uses the last element of the buffer you defined. A
return code of $OK is placed in the task name.

2. The buffer is logically empty when the SBIO operation begins. The branch
occurs without executing the SBIO instruction and the system places a code
of $BFRPFE in the task name.

Note: If your program branches to the label you defined, you must reset the
buffer count.

o

o

o

o

o

8810 (Digital Output)
S810 - Specify a sensor-based I/O operation (continued)

Coding Examples

opnd3 Code INDEX to specify that the system is to do automatic indexing of a buffer
you defined. You must define the buffer with a BUFFER statement.

If you specify a label or constant for opnd3, external synchronization is used.

BITS=(u,v) Indicates that the specified value is to be written into a portion of the DO group
starting at bit u for a length of v. This does not affect the condition of the other
bits in the group. Bits are numbered from 0 - 15. Bit u is the relative bit
number starting at 0, within the group or subgroup defined in the IODEF
statement.

LSB= Output data is taken from the output word with this bit being the least significant
bit. Use this operand only if you coded BITS=. The default is bit 15.

(PULSE,dir) Code this operand to generate a pulse on the digital output group or subgroup
you specified. Allowable directions (dir) are ON (or UP) and OFF (or DOWN).

ERROR= The label of the instruction to be executed if the SBIO instruction is unsuccessful
after two retries. If you do not code ERROR = , execution proceeds sequentially.
In either case, the first word of the task code block contains the return code.

Px= Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

1) This example uses the SBIO instruction and three IODEF statements to write digital output.

*

*

*

IODEF D03,TYPE=GROUP,ADDRESS=4B
IODEF D012,TYPE=SUBGROUP,ADDRESS=4A,BITS=(5,4)
IODEF D013,TYPE=EXTSYNC,ADDRESS=4F

SBIO
SBIO
SBIO
SBIO
SBIO

D03
D03,DODATA
D03,1023
D03, (DATA, # 1)
D03,7,BITS=(3,3)

SBIO D012,15
SBIO D012,X,BITS=(0,4),

SBIO D012,1,BITS=(O,1)
SBIO D013,Y,80

VALUE OF LOCATION 'D03' to D03
VALUE OF 'DODATA' TO D03
SET D03 TO 1023
VALUE AT (DATA,#1) TO D03
SET BITS 3 TO 5 OF D03 TO 7

SET BITS 5 TO 8 OF D012 TO 15
SET BITS 5 TO 8 OF D012

TO VALUE IN 'x'
SET BIT 5 OF D012 TO 1
WRITE 80 LOCATIONS OF 'Y'

TO D013 EXTERNAL SYNC

Chapter 2. Instruction and Statement Descriptions LR-411

S810 (Digital Output)
S810 - Specify a sensor-based I/O operation (continued)

Return Codes

2) This example shows pulse digital output.

*
*
*

IODEF D013,TYPE=SUBGROUP,BITS=(3,1)
IODEF D014,TYPE=SUBGROUP,BITS=(7,4)

SBIO D013, (PULSE,UP)

SBIO D014, (PULSE,DOWN)

PULSE D013 BIT 3 TO ON
AND THEN OFF

PULSE D014 BITS 7-10
OFF AND THEN ON

You can find the return code for an SBIO operation by referring to the first word in the task
control block (TCB). The label of the TCB is the label of your program or task (taskname).

Each condition shown below has a return code and an equate for that condition. If you refer to
the equate in your program rather than the actual return code, your source code will always be
current. You can obtain these equates when using $EDXASM by coding COPY ERRORDEF
before the ENDPROG statement in your program.

Code

-1
90
91
92
93
94
95
96
97
98
100
101
102
104

EQU

$OK
$DNA
$DNU
$BAR
$CMDREJ
$INVREQ
$IDC
$CTLBSY
$OVRVOLT
$INVRG
$INVCHA
$INVCNT
$BFRPFE
$DCMDREJ

Description

Command successful
Device not attached
Busy or in exclusive use
Busy after RESET
Command reject
Invalid request
I nterface data check
Controller busy
AI over voltage
AI invalid range
AI invalid channel (point)
AI invalid count field (AI/DI/DO count)
Buffer previously full or empty (indexing)
Delayed command reject

In the following example, the program branches to label REDO if the condition "AI over
voltage" occurs. The program refers to the equate $OVRVOLT. Note the use of the leading
plus sign (+) with the equate to specify that it is a constant.

SBIO All,ERROR=AIERR

AIERR IF (taskname,EQ,+$OVRVOLT) ,GOTO,REDO

LR -412 SC34-0643

o

o

SCREEN o SCREEN - Convert graphic coordinates to a text string

o

Syntax Example

o

The SCREEN instruction converts the x and y coordinates that represent a point on ,a screen to
a four-character text string that becomes the graphic address of the point.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

text

x,y

SCREEN text,x,y,CONCAT=,ENHGR=,P1=,P2=,P3=

text,x,y
CONCAT=NO,ENHGR=NO
none

Description

Location of a text string at least four characters long.

Screen coordinates of a point to be translated. The range is 0 -1023 for the full
width of the screen and 0 - 779 for the screen height. You can extend this
range by coding the ENHGR operand.

Operands x and y can be locations containing data or explicit values, but both
must be of the same type.

CONCAT= Code CONCAT=YES to concatenate the results of the operation to the
contents in text. The text string length is increased by four or by five if you code
ENHGR=YES.

ENHGR=

Px=

The length of the text string is set to five if you code CONCAT=NO and
ENHGR= YES. If you code CONCAT=NO and ENHGR=NO, the length of
the text string is set to four.

YES, to extend the range for the full width of the screen to 0 - 4095 and to
extend the range for the screen height to 0 - 3120. When you code
ENHGR= YES, a five-character graphic instruction is compiled.

NO (the default), not to extend the range for the screen width or height.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

Convert coordinates 520 and 300 to a text string. Concatenate the string to the contents of
TEXTl.

SCREEN TEXT1,520,300,CONCAT=YES

Chapter 2. Instruction and Statement Descriptions LR -413

SETBIT
SETBIT - Set the value of a bit

LR -414 SC34-0643

The SETBIT instruction sets the value of a bit to 1 or O. The bit is "on" if it contains a 1 and
"off" if it contains a O.

You can test to see if a bit is "on" or "off" with the IF instruction. The DO instruction allows
your program to do a loop while or until a certain bit is "on" or "off".

Syntax:

label SETBIT data1,data2,ON IOFF,P1=,P2=

Required: data1,data2,ON or OFF
Defaults: none
Indexable: data1,data2

Operand Description

datal The label of a data string that contains the bit to be set to 1 or o.

data2 The location in datal of the bit to be changed. You can code:

An integer or the label of an integer from 1 to 32767.

A hexadecimal value or the label of a hexadecimal value from 1 to 65535
(X'FFFF').

Bit 0 is the left-most bit of the data area.

ON Sets the value of the bit to 1.

OFF Sets the value of the bit to O.

o

SETBIT

o SETBIT - Set the value of a bit (continued)

Syntax Examples

1) Turn on the fifth bit in CONTROL.

SETBIT CONTROL,BIT,ON

BIT DATA F'4'

2) Turn off the third bit in CONTROL.

SETBIT CONTROL,2,OFF

3) Turn on bit 15 in STATUS.

SETBIT STATUS,BIT,ON

BIT DATA X'OOOE'

o

' ·l~, 0 ,

Chapter 2. Instruction and Statement Descriptions LR -415

SHIFTL
SHIFTL - Shift data to the left

The SHIFTL instruction shifts the contents of operand 1 to the left by the number of bit
positions specified in operand 2. Vacated positions on the right are filled with zeroes. If
operand 2 is a variable, it is assumed to be single-precision, and the shift count is its value.

Note: The precision of opnd2 should not exceed the precision of opnd1.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

opndl

opnd2

SHIFTL opnd1,opnd2,count,RESULT=,
P1=,P2=,P3=

opnd1,opnd2
count=1,RESUL T=opnd1
opnd1,opnd2,RESUL T

Description

The label of a data area containing the data to be shifted left. You cannot code a
self-defining term.

The value by which the first operand is shifted. Code a self -defining term or the
label of a data area.

count The number of consecutive values in opnd 1 on which the operation is to be
performed. The maximum value allowed is 32767.

RESULT =

Px=

LR-416 SC34-0643

The count operand can include the precision of the data. Because these
operations are parallel (the two operands and the result are implicitly of like
precision) only one precision specification is required. That specification can
take one of the following forms:

BYTE -- Byte precision
WORD -- Word precision
DWORD -- Doubleword precision

The label of a data area or vector in which the result is to be placed. If you code
this operand, opnd 1 is not modified.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

o

o

o

o

SHIFTL
SHIFTL - Shift data to the left (continued)

Syntax Example

The SHIFTL instruction in this example changes the value in the data area labeled A from
X'82F1' to X'OBC4' by shifting the bit string two positions to the left.

SHIFTL A,2

PROGSTOP
A DATA x' 82F1 ' binary 1000 0010 1111 0001

After the operation, A equals:

Hexadecimal -- X'OBC4'

Binary -- 0000 1011 11000100

Chapter 2. Instruction and Statement Descriptions LR -417

SHIFTR
SHIFTR - Shift data to the right

The SHIFTR instruction shifts the contents of operand 1 to the right by the number of bit
positions specified in operand 2. Vacated positions on the left are filled with zeros. If operand
2 is a variable, it is assumed to be single-precision, and the shift count is its value.

Note: The precision of opnd2 should not exceed the precision of opndl.

Syntax:

label SHIFTR opnd1 ,opnd2,count,RESUL T=,

Required:
Defaults:
Indexable:

Operand

opndl

opnd2

count

RESULT =

Px=

LR -418 SC34-0643

P1=,P2=,P3=

opnd1,opnd2
count= 1, RESU L T=opnd 1
opnd1,opnd2,RESULT

Dt!SCription

The label of the data area to be shifted. You cannot code a self -defining term.

The value by which the first operand is shifted. Code a self -defining term or the
label of a data area.

The number of consecutive values in opnd1 on which the operation is to be
performed. The maximum value allowed is 32767.

The count operand can include the precision of the data. Because these
operations are parallel (the two operands and the result are implicitly of like
precision) only one precision specification is required. That specification can
take one of the following forms:

BYTE -- Byte precision
WORD -- Word precision
DWORD -- Doubleword precision

The label of a data area or vector in which the result is to be placed. If you code
this operand, opnd 1 is not modified.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

o

o

SHIFTR o SHIFTR - Shift data to the right (continued)

Syntax Example

o

o

The SHIFTR instruction in this example shifts the contents of C 24 bits to the right and stores
the result of the operation in the data area labeled E. The value in C remains the same.

SHIFTR C,24,DWORD,RESULT=E

PROGSTOP
C DATA X'A794B109'
E DATA x'OOOOOOOO'

Before:

C = X'A794B109'
or

binary 1010 0111 1001 0100 1011 0001 0000 1001

E = X'OOOOOOOO'
or

binary 0000 0000 0000 0000 0000 0000 0000 0000

After:

C = X'A794B109'
or

binary 1010 0111 1001 0100 1011 0001 0000 1001

E = X'OOOOOOA7'
or

binary 0000 0000 0000 0000 0000 0000 10 1 a 0111

Chapt~r 2. Instruction and Statement Descriptions LR -419

SPACE
SPACE - Insert blank lines in a compiler listing

Coding Example

LR-420 SC34-0643

The SPACE statement inserts one or more blank lines in a compiler listing.

Because this statement does not generate code or constants in the object program, it c~n be
placed between executable instructions in your source statement data set.

Syntax:

blank SPACE value

Required: none
Defaults: value = 1

Operand Description

value A positive integer specifying the number of blank lines to be inserted. If no
value is entered, the system inserts one blank. If the value exceeds the number
of lines remaining on the page, the statement has the same effect as an EJECT
statement.

See the PRINT statement for an example using SPACE.

o

" O
-'--~'

o

o

o

o

SPECPIRT
SPECPIRT - Return from Process Interrupt Routine

The SPECPIRT instruction returns control to the supervisor from a special process interrupt
(SPECPI) routine that you provide. If the routine is in partition 1, control returns to the
supervisor with a branch instruction. To return to the supervisor from another partition, your
routine must execute a Series/l assembler SELB instruction after registers RO and R3 are saved
in the level status block (LSB) you select.

You can use SPECPIRT only when you specify TYPE=BIT on the IODEF (Process Interrupt)
statement.

label

Required:
Defaults:
Indexable:

Operand

none

SPECPIRT

none
none
none

Description

none

Chapter 2. Instruction and Statement Descriptions LR-421

SQRT
SQRT - Find the square root

Syntax Example

LR -422 SC34-0643

The SORT instruction finds the square root of a double-precision integer variable. The
instruction is implemented through the USER instruction facility. It is not included in the
supervisor. To use the SORT instruction you must link-edit your program with $EDXLINK and
specify $$SORT,ASMLIB on an INCLUDE statement.

Syntax:

label SQRT rsq,root,rem,P1 =,P2=,P3=

Required: rsq,root,rem
Defaults: none
Indexable: none

Operand Description

rsq The label of a double-precision integer that the square root routine is to use.
This value must be between 0 and 1,073,741,823 inclusive.

root The label of a I-word data area where the square root is to be stored.

rem The label of a I-word data area where the remainder is to be stored.

Px= Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

Calculate the square root of the integer value in VALUE.

GETSQRT EQU *
SQRT VALUE, ROOT, REMAIN

VALUE DATA D'O'
ROOT DATA F'O'
REMAIN DATA F'O'

If the data area labeled VALUE contains the number 18611 (X'00004863'), the SORT
instruction would place a result of 136 (X'0088') in ROOT and a remainder of 115 (X'0073') in
REMAIN.

o

o

o

o

o

o

STATUS
STATUS - Set fields to check host status data set

Coding Example

The STATUS instruction defines the fields required to refer to a record in the "System Status
Data Set" on the host computer.

TP SET, TP FETCH, and TP RELEASE refer to the label of the STATUS instruction. See the
Communications Guide for information on how to use the System Status Data Set.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

index

key

length

Pl=

STATUS index,key,length,P1=,P2=,P3=

label, index, key
length=Q
none

Description

A 1 - 8 alphameric character string. This defines an index in the status data set.
One or more entries may be associated with this index, each with a unique key
field. We suggest that a unique index be specified for each Series/I, but this is
not a requirement.

A 1 - 8 alphameric character string. The index and key together define a unique
status data set entry. A different key might be used for each application program
on a Series/1 which communicates to a host.

Specifies the length of an optional buffer to be used in the SET, FETCH, and
RELEASE functions of the TP instruction.

The maximum buffer length, which may be specified in bytes, is 256. If this
operand is omitted, no buffer is defined. If a buffer is specified with a length
greater than 0, then it may be named by using the Px= operand.

The contents of the buffer can be stored in the System Status data set with a TP
SET instruction. For a TP FETCH or TP RELEASE, this buffer will serve as an
input area.

Parameter naming operand. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code this operand.

The following coding example shows a use of the STATUS instruction. The host
communications facility (HCF) is required to execute the TP instructions that are used in this
example.

Chapter 2. Instruction and Statement Descriptions LR-423

STATUS
STATUS - Set fields to check host status data set (continued)

In this example, a Series/1 program (PROGA) creates a message and sends it to the host
computer. The sending Series/1 then waits for another Series/1 program (PROGB, possibly
from a different Series/ 1) to receive the message and acknowledge the receipt by deleting the
message.

The STATUS instruction in PROGA, at label ST ATUSA, defines the index and key needed to
refer to a record. The TP SET instruction at label BEGINA makes an entry in the system status
data. After creating the entry, PROGA goes into a loop of TP FETCH instructions that ends
when the entry is not found.

The STATUS instruction in PROGB, at label STATUSB, defines the same index and key
defined in PROGA. PROGB executes a TP FETCH instruction, at label TPB 1, in an attempt to
fetch the'system status data set entry which it defined by the STATUS instruction parameters at
label ST ATUSB.

If PROGA has not yet created the entry (through execution of the TP SET instruction at label
BEGINA), an error occurs and PROGB will loop through the TP FETCH instruction until it
does find an entry with the required index and key. After finding the entry, the TP RELEASE
instruction deletes it and executes a PROGSTOP.

Deleting the entry causes the TP FETCH instruction in PROGA to take the error exit. PROGA
then executes a PROGSTOP and ends.

PROGA
STATUSA
BEGINA

TPLOOPA

ENDIT

LR-424 SC34-0643

PROGB
STATUSB
TPLOOP
TPB1
TPB2
END ALL

PROGRAM
STATUS
EQU
TP
EQU
TP
GO TO
PROGSTOP

ENDPROG
END

PROGRAM
STATUS
EQU
TP
TP
EQU
PROGSTOP

ENDPROG
END

BEGINA
PROGID,KEYSTRNG

*
SET,STATUSA

*
FETCH,STATUSA,ERROR=ENDIT
TPLOOPA

TPLOOP
PROGID,KEYSTRNG

*
FETCH,STATUSB,ERROR=TPLOOPB
RELEASE,STATUSB

*

o

o

o

o

o

STIMER
STIMER - Set a system timer

The STIMER instruction sets the system timer for the number of seconds or milliseconds that
you specify. You can use the instruction to:

Delay program execution

Post an event control block (ECB) in your program after a certain interval has elapsed

Produce a return code after a certain interval has elapsed.

To avoid unnecessary program delays, you can code the STIMER instruction before instructions
that request input, such as READ TEXT or GETV ALUE. When the instruction prompts an
operator for data, the STIMER instruction gives the operator a specific amount of time to
respond. If the operator does not respond to the prompt within the interval you specify, your
program can continue processing. The STIMER instruction also prevents a program from tying
up a terminal indefinitely while waiting for a response.

Syntax:

label

label

Required:
Defaults:

STI M ER count,action,SEeS, P1 =, P2=
or

STIMER RESET

count or RESET
count in milliseconds

I ndexable: count

Operand Description

count A positive integer or the label of a positive integer (a word value) that specifies
the timer setting in milliseconds or seconds.

action

The minimum timer setting is either 1 millisecond or second. The maximum
setting is either 65,535 milliseconds or seconds.

Note: When using a model 4952, 4954 or 4956 processor, the minimum setting
should not be less than 3 milliseconds.

Specifies how the system timer operates. You can code one of three options:
WAIT, TIO or ecbad. If you omit this operand, you must code a comma in its
place to show that you have left the positional operand blank. In addition, if you
do not code one of the three options, you must code a subsequent WAIT
instruction with the keyword TIMER specified as the event for which you are
waiting.

Chapter 2. Instruction and Statement Descriptions LR-425

STIMER
STIMER - Set a system timer (continued)

SEes

RESET

Px=

LR-426 SC34-0643

The timer options are as follows:

WAIT Suspends program execution until the interval you specified on the
count operand has expired.

TIO Provides a return code of -5 in the task control block of the task
containing the STIMER instruction when the interval you specified on
count operand has expired. The first word of the task control block
will contain the return code.

ecbad

Use this option when you want to set a time limit on an instruction that
requests operator input.

Code the label of an event control block (ECB) that the system posts
when the interval you specified on the count operand has expired. The
system places a value of -5 in the ECB.

Note: If the ECB to be posted is in another partition, you must move
the address space of the ECB into $TCBADS before executing the
STIMER instruction. The address space is equal to the partition
number minus 1. An ECB in partition 2, for example, is in address
space 1.

Specifies that the value of the count operand is in seconds rather than
milliseconds.

Cancels the timer if the event the program is waiting for occurs before the
interval on the timer has expired. You must code STIMER with RESET when
you have specified TIO or ecbad on a previous STIMER instruction.

When you specify TIO, code an STIMER with RESET following the instruction
that has the time limit on it. When you specify ecbad, code an STIMER with
RESET following the WAIT instruction that waits for the ECB to be posted.
Both uses of the RESET operand are shown in the coding examples for this
instruction.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

o

0,,' 1,1 , ~

o

o

c

o

STIMER
STIMER - Set a system timer (continued)

Special Considerations

Syntax Examples

The following are some special considerations to keep in mind when you code the STIMER
instruction:

If you code an error exit routine that your program can invoke while a timer is set, you must
reset the timer in your routine.

Two STIMER instructions without an intervening WAIT will cause the interval specified by
the first STIMER instruction to be replaced by the interval specified by the second STIMER
instruction.

With a 2741 terminal, if you use the TIO option of STIMER to set a timer for an instruction
that requests input (for example, a READTEXT), normal program execution can be
affected if the interval on the timer is allowed to expire. When the timer expires, the 2741
will be in a transmit state. For this reason, the device will be unable to do any output
operations, such as a PRINTEXT. In this case, your program must reissue the instruction
that requested input and an operator must respond to it by pressing the attention or
RETURN key.

1) The STIMER instruction starts a 20-second timer. The WAIT instruction suspends task
execution until the 20-second interval has elapsed. The WAIT instruction is required because
the STIMER instruction does not specify one of the timer options.

S1 STIMER 20"SECS

WAIT TIMER

2) The STIMER instruction sets a timer for 30,000 milliseconds. Execution does not resume
until after that interval has elapsed.

S2 STIMER 30000,WAIT

3) The MOVE instruction moves a value of 100 into SECONDS. The parameter naming
operand on the STIMER instruction, PI =, receives the value for the count operand. The
STIMER instruction halts task execution for 100 seconds, then passes control to the instruction
following the S3 label.

S3
MOVE
STIMER

SECONDS, 100
0,WAIT,SEC$,P1=SECONDS

Chapter 2. Instruction and Statement Descriptions LR-427

STIMER
STIMER - Set a system timer (continued)

Coding Examples

LR-428 SC34-0643

1) In the following example, the STIMER instruction at label SI sets a timer for 120 seconds.
If the operator does not enter his name within that period, the system places a return code of -5
in the task control block of the task. If the operator enters his name within the time limit, the
STIMER with RESET following the READ TEXT instruction cancels the portion of time
remaining on the timer.

S1
ENQT
STIMER
READTEXT
STIMER
DEQT

120,TIO,SECS
INPUT, 'ENTER YOUR NAME' ,SKIP=1
RESET

2) In this example, the STIMER instruction at the label TIME sets a timer for 60 seconds.
Because the instruction contains the label of the event control block TIMEOUT, the system will
post TIMEOUT if the 60-second interval expires before an event occurs. The STIMER with
RESET following the WAIT instruction will cancel any time remaining on the timer if the
system posts the ECB being waited on before the 60 seconds have elapsed.

TIME

RESET

STIMER

WAIT
STIMER

PROGSTOP
TIMEOUT ECB

TIMEOUT

60,TIMEOUT,SECS

TIMEOUT
RESET

()

o

o

o

o

STIMER
STIMER - Set a system timer (continued)

Return Code

3) The STIMER instruction at label TIME 1 , in the following example, sets a timer for 180
seconds. When the interval expires, the system will post ECBl unless the ECB is posted before
that event. If the ECB is posted before the interval expires, the STIMER instruction at TIME2
prevents the system from posting the ECB again.

TIME1

TIME2

RESET
MOVE
MOVEA
STIMER
WAIT
STIMER
IF

ECB1
TIME,180
ECBADDR,ECB1
0,*,SECS,P1=TIME,P2=ECBADDR
ECB1
RESET
(ECB1,EQ,-5) ,GOTO,TIMEOUT

TIMEOUT PRINTEXT 'TIMER HAS EXPIRED'
PROGSTOP

ECB1 ECB

4) In the following example, the STIMER instruction at label SET sets a timer for 600
milliseconds. If the operator does not respond to the prompt message within the time interval,
the system places a return of -5 in the first word of the task control block (TCB). The STIMER
instruction at label RESET cancels any remaining time on the timer if the operator responds to
the prompt message within 600 milliseconds. The IF instruction tests the return code to see if
the interval has expired.

DATA PROGRAM START

SET STIMER 600,TIO
READTEXT HOLD, 'ENTER YOUR WEIGHT' ,SKIP=1

RESET STIMER RESET
IF (DATA,EQ,-5),GOTO,TIMEOUT

TIMEOUT PRINTEXT 'TIMER HAS EXPIRED'

The return code is returned in the first word of the task control block (TCB) of the program or
task issuing the instruction. The label of the TCB is the label of your program or task
(taskname) .

Code Description

-5 Interval has expired

Chapter 2. Instruction and Statement Descriptions LR-429

STORBLK
STORBLK - Define mapped and unmapped storage areas

LR-430 SC34-0643

The STORBLK statement defines the size and number of the storage areas your program can
obtain with the GETSTG instruction. The SWAP instruction uses the mapped storage area
which you define with this statement to gain access to the unmapped storage areas that you
define.

Note: "Mapped storage" is the physical storage you defined on the SYSTEM statement during
system generation. "Unmapped storage" is any physical storage that you did not include on the
SYSTEM statement.

The STORBLK statement also creates a storage control block that:

• Contains the address of the mapped storage area your program acquires with GETSTG.

Contains the location of and entries for the unmapped storage areas your program acquires
with the GETSTG instruction.

Records which unmapped storage area your program is using.

Your program can refer to the various fields in the storage control block by using the equates
contained in the STOREQU module. To use these equates, code

COpy STOREQU

in your program. The STOREQU equates that may be of most use to you when coding your
program are shown following the instruction operands.

The system releases the mapped and unmapped storage areas you defined with a STORBLK
statement if the program containing the statement issues a PROGSTOP, if a program check
occurs, or if you cancel the program with the $C command. You can also release storage areas
with the FREESTG instruction.

Syntax:

label

Required:
Defaults:
Indexable:

STORBLK TWOKBLK=,MAX=,EXT=

labeI,TWOKBLK=,MAX=
EXT=(points to an address in the storage control block)
none

o

o

o

o

STORBLK
STORBLK - Define mapped and unmapped storage areas (continued)

Operand Description

TWOKBLK= The size of the mapped storage area in 2K-byte blocks. Each 2K-byte block is
equal to 2048 bytes of storage. Code a positive integer. The unmapped storage
areas you define with the MAX= operand will also be this size.

MAX =

EXT =

STOREQU Equates

The maximum value you can specify for this operand is 32.

The number of unmapped storage areas your program requires. The GETSTG
instruction obtains these unmapped storage areas for your program.

The label of an optional area outside the storage control block where the values
that point to the unmapped storage areas can reside. The word size of this area
must be equal to twice the value of the TWOKBLK parameter times the MAX
parameter. For example, if you specify TWOKBLK=2 and MAX=8, the
extension area would have to be 32 words long.

You must initialize each word of the extension area to -1 (X'FFFF')

If you do not code this operand, the STORBLK statement generates an area to
store the values that point to the unmapped storage areas that your program
obtains.

You may find the following equates helpful when coding a program that uses unmapped storage:

Syntax Examples

$STORMAP Address of the mapped storage area.

$STORMPK Address space of the mapped storage area (partition number minus one).

1) Defines a mapped storage area of 40K bytes and two unmapped storage areas of 40K bytes
each.

BLOCK STORBLK TWOKBLK=20,MAX=2

2) Defines a mapped storage area of 20K bytes and four unmapped storage areas of 20K bytes
each.

BLOCK1 STORBLK TWOKBLK=1 ° ,MAX=4

Chapter 2. Instruction and Statement Descriptions LR-431

STORBLK
STORBLK - Define mapped and unmapped storage areas (continued)

Coding example

3) Defines a mapped storage area of 4K bytes and eight unmapped storage areas of 4K bytes
each. The values that point to these unmapped storage areas reside in A. Note that the
extension area is 32 words long because your program specifies TWOKBLK=2 and MAX=8.
You must initialize the extension area to '-1'.

BLOCK2
A

STORBLK
DC

TWOKBLK=2,MAX=8,EXT=A
32F'-1'

4) Defines a mapped storage area of 2K bytes and 20 unmapped storage areas of 2K bytes
each. The values that point to these unmapped storage areas reside in HOLD.

BLOCK2
HOLD

STORBLK
DC

TWOKBLK=1,MAX=20,EXT=HOLD
40F'-1'

See the SWAP instruction for a coding example that contains the STORBLK statement.

LR-432 SC34-0643

o

o

o

o

SUBROUT
SUBROUT - Define a subroutine

The SUBROUT statement defines a callable subroutine. You can pass up to five parameters, or
arguments, to the subroutine. The subroutine must include a RETURN instruction to provide
linkage back to the calling task. Nested subroutines are allowed, and a maximum of 99
subroutines are permitted in each Event Driven Executive program. If a subroutine is to be
assembled as an object module which can be link-edited, an ENTRY statement must be coded
for the subroutine entry point name.

You can call a subroutine from more than one task. When called, the subroutine executes as
part of the calling task. Because subroutines are not reentrant, you should ensure serial use of
the subroutine with the ENQ and DEQ instructions.

Note: Do not code a TASK statement within a subroutine.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

name

part, ...

SUBROUT name,par1, ... ,par5

name
none
none

Description

N arne of the subroutine.

Names used within the subroutine for arguments or parameters passed from the
calling program. These names must be unique to the complete program. All
parameters defined outside the subroutine are known within the subroutine.
Thus, only parameters which may vary with each call to a subroutine need to be
defined in the SUBROUT statement. These parameters are defined
automatically as single-precision values.

For instance, assume you have two calls to the same subroutine. At the first,
parameters A and C are to be passed, while at the second, Band C are to be
passed. Because C is common to both, it need not be defined in the SUBROUT
statement. However, a new parameter D would be specified to account for
passing either A or B.

Chapter 2. Instruction and Statement Descriptions LR-433

SUBROUT
SUBROUT - Define a subroutine (continued)

Coding Example

The CALL instruction in this example calls the subroutine named CHKBUFF. The calling
program passes two parameters to the CHKBUFF subroutine. The first parameter, BUFFLEN,
is a variable containing the maximum allowable buffer count. The second parameter,
BUFFEND, is the address of the next instruction to be executed if the buffer is full.

*

*
* MAX

CALL CHKBUFF, BLEN, BEND

SUBROUT CHKBUFF,BUFFLEN,BUFFEND

SUBTRACT BUFFLEN,1
IF (BUFFLEN,GE,MAX)

GOTO (BUFFEND)
ENDIF
ADD BUFFLEN,1
RETURN

DATA F'2S6'

LR-434 SC34-0643

c

o

o

o

SUBTRACT
SUBTRACT - Subtract integer values

The SUBTRACT instruction subtracts an integer value in operand 2 from an integer value in
operand 1. The values can be positive or negative. (See the DATA/DC statement for a
description of the various ways you can represent integer data.) To subtract floating-point
values, use the FSUB instruction.

You can abbreviate this instruction as SUB.

EDX does not indicate an overflow condition for this instruction.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

opndl

SUBTRACT opnd1 ,opnd2,count,RESULT=,PREC=,
P1=,P2=,P3=

opnd1,opnd2
count=1 ,RESULT=opnd1 ,PREC=S
opnd1,opnd2,RESULT

Description

The label of the data area from which opnd2 is subtracted. Opnd 1 cannot be a
self-defining term. The system stores the result of the SUBTRACT operation in
opnd 1 unless you code the RESULT operand.

opnd2 The value subtracted from opndl. You can specify a self-defining term or the
label of a data area. The value of opnd2 does not change during the operation.

count The number of consecutive values in opndl on which the operation is to be
performed. The maximum value allowed is 32767.

RESULT = The label of a data area or vector in which the result is placed. Opnd 1 is not
changed if you specify RESULT. This operand is optional.

PREC=xyz Specify the precision of the operation in the form xyz, where x is the precision
for opndl, y is the precision for opnd2, and z is the precision of the result
("Mixed-Precision Operations" on page LR-436 shows the precision
combinations allowed for the SUBTRACT instruction). You can specify
single-precision (S) or double-precision (D) for each operand. Single-precision is
one word in length; double-precision is two words in length. The default for
opnd 1, opnd2, and the result is single-precision.

If you code a single letter for PREC, the letter applies to opnd1 and the result.
Opnd2 defaults to single precision. If, for example, you code PREC=D, opnd1
and the result are double-precision and opnd2 defaults to single-precision.

Chapter 2. Instruction and Statement Descriptions LR-435

SUBTRACT
SUBTRACT - Subtract integer values (continued)

Px=

If you code two letters for PREC, the first letter applies to opndl and the result,
and the second letter applies to opnd2. With PREC=DD, for example, opndl
and the result are double-precision and opnd2 is double-precision.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

Mixed-Precision Operations

Syntax Examples

LR-436 SC34-0643

The following table lists the precision combinations allowed for the SUBTRACT instruction:

opnd1 opnd2 Result Precision Remarks

S S S S default
S S 0 SSD -
0 S 0 0 -
0 0 0 DO -

1) Subtract 2 from 5 and place the result of the operation in C.

SUB A,B,RESULT=C SINGLE-PRECISION SUBTRACT

A
B
C

PROGSTOP
DATA F'S'
DATA F'2'
DATA F'O'

2) Subtract the value at the address defined by 2 plus the contents of #2 from the value in data
area A. Replace the contents of A with the results of the operation.

SUB A, (2,#2) SUBTRACT DATA AT (2,#2) FROM A

PROGSTOP
A DATA F'10'

o

o

o

o

o

SWAP
SWAP - Gain access to an unmapped storage area

The SW AP instruction gains access to an unmapped storage area you obtained with the
GETSTG instruction. Your program gives up the use of a block of mapped storage you
obtained with GETSTG to gain access to one or more blocks of unmapped storage. ___ _

Note: "Mapped storage" is the physical storage you defined on the SYSTEM statement during·
.system generation. "Unmapped storage" is any physical storage that you did not include on the
SYSTEM statement.

Refer to Event Driven Executive Language Programming Guide for more information on how to
code programs that use unmapped storage.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

name

number

ERROR =

Px=

SWAP name, number,ERROR=, P1 =, P2=

name
value of 0 for number
none

Description

The label of a STORBLK statement that defines the mapped and unmapped
storage areas this instruction uses.

The number of the unmapped storage area that you want to use. Your program
has access to this area until it issues another SW AP instruction. The number
must be between 0 and the maximum number of unmapped storage areas you
defined on the STORBLK statement. You can code a positive integer or the
label of a positive integer.

By coding 0 for this operand, your programs regains access to the mapped
storage area.

It is your responsibility to keep track of the contents of each unmapped storage
area.

The label of the first instruction of the routine to receive control if an error
condition occurs while this instruction is executing.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

Chapter 2. Instruction and Statement Descriptions LR-437

SWAP
SWAP - Gain access to an unmapped storage area (continued)

Syntax Examples

Coding Example

LR-438 SC34-0643

1) Get access to the second unmapped storage area defined in the STORBLK statement,
BLOCK.

SWAP BLOCK, 2

2) Get access to the fourth unmapped storage area defined in the STORBLK statement,
BLOCK.

SWAP BLOCK,A

A DATA F'4'

The following program reads payroll data into three unmapped storage areas, updates the data,
and writes the data back to a disk data set. The program begins by acquiring a mapped storage
area of 2K bytes and three unmapped storage areas of 2K bytes apiece. The STORBLK
statement at label A defines the size of the mapped storage area and the number of unmapped
storage areas to be acquired.

The MOVE instruction at label M1 moves the address of the mapped storage area into register
1. The MOVE instruction uses the STOREQU equate $STORMAP to find the address. The
MOVE instruction at label M2 moves the number of the first unmapped storage area the
program uses into the COUNT field. The DO loop beginning at label LOOP1 executes a SWAP
instruction that gives up access to the mapped storage area and uses its segmentation register to
get access to the first unmapped storage area. The READ instruction reads 8 records into the
first unmapped storage area. The program updates the COUNT field and reads 8 records into
the next unmapped storage area.

When the program reads the payroll records into each of the unmapped storage areas, the
COUNT field is reset to 1, and the loop at label LOOP2 begins. This DO loop moves the data
in P A YCODE into the P A YCODE field of each record in the unmapped storage area. The
WRITE instruction then writes the records back to the disk data set. The loop continues until
the program has updated the records in each unmapped storage area.

The FREESTG instruction releases the mapped and unmapped storage areas acquired with the
GETSTG instruction. This instruction also restores the segmentation register values for the
mapped storage area.

o

;r-""""',
\lJ)

c

o

o

o

SWAP
SWAP - Gain access to an unmapped storage area (continued)

Return Codes

PAYROLL
START

M1

* M2

*
LOOP 1
SWAP 1

LOOP2
SWAP2
LOOP3

A
COUNT
PAY COD
PYCD

*

PROGRAM
EQU
GETSTG
MOVE

MOVE

DO
SWAP
READ
ADD

ENDDO
MOVE
DO

SWAP
DO

MOVE
ADD

ENDDO
MOVE
WRITE

ADD
ENDDO
FREESTG
PROGSTOP
STORBLK
DATA
DATA
EQU

COpy
ENDPROG

END

START,DS=(PAYROLL)

*
A, TYPE=ALL
#1,A+$STORMAP

COUNT, 1

3
A, COUNT
DS 1 , (0, # 1) , 8
COUNT, 1

COUNT, 1
3

A, COUNT

GET MAPPED AND UNMAPPED AREAS
GET MAPPED AREA ADDRESS FROM
STORAGE CONTROL BLOCK
FIRST UMMAPPED AREA

FOR EACH UNMAPPED AREA
SUBSTITUTE UNMAPPED AREA
READ IN DATA FROM DISK
GET NEXT UNMAPPED AREA

FIRST UNMAPPED AREA
FOR EACH UNMAPPED AREA

8 FOR RECORDS IN UNMAPPED AREA
(+PYCD,#1) ,PAYCODE UPDATE PAYCODE
#1,256 NEXT RECORD

#1,A+$STORMAP
DS 1 , (0, # 1) , 8

COUNT, 1

A, TYPE=ALL

TWOKBLK=1,MAX=3
F'O'
F'O'
10

STOREQU

GET MAPPED AREA ADDRESS
WRITE BACK TO DISK
GET NEXT UNMAPPED AREA

PAYCODE FIELD IS 10 BYTES
INTO RECORD

Return codes are returned in the first word of the task control block (TCB) of the program or
task issuing the instruction. The label of the TCB is the label of your program or task
(taskname) .

Code Description

-1 Successful completion
1 The number of the unmapped storage area you request

is beyond the number of areas defined on the STORBLK
statement

2 SWAP area is not initialized
100 No unmapped storage support in the system

Chapter 2. Instruction and Statement Descriptions LR-439

TASK
TASK - Define a program task

The TASK statement defines a task that executes asynchronously with the task that starts or
"attaches" it. The system executes tasks according to their priority. Use the PROGRAM
statement to define the primary task or main program.

Each task in a program, except the primary task, begins with a TASK statement and must end
with an ENDT ASK statement.

If you want to link-edit your program, place all TASKS you wish to attach using the ATTACH
instruction in the same module. The assembler will only chain TASKS within the module it
assembles. Your application program will have to chain the TASKS together if they are not
within the same module. Modify the correct field in the TCB to chain tasks across modules.

LR -440 SC34-0643

Code TASK statements only within main programs, not within subprograms (MAIN=NO on the
PROGRAM statement).

Syntax:

taskname

Required:
Defaults:
Indexable:

Operand

taskname

start

priority

TASK start, priority, EVENT=, TERM ERR=, FLOAT=,
ERRXIT=

taskname,start
priority=150, FLOAT=NO
none

Description

The label you assign to the task.

The system generates a control block for each task in the program. Refer to this
control block as the task control block (TCB). The system generates the TCB
when it encounters an ENDPROG statement.

The label of the .task's TCB is the label you specify with this operand. The
supervisor uses the TCB to store instruction return codes. By referring to the
TCB (the taskname) in your program, you can determine if an operation
completed successfully.

The label of the first instruction you want the system to execute when the task
first attaches.

The priority you assign to the task. The range is from 1 (highest priority) to 510
(lowest priority). Tasks with priorities 1-255 run on hardware interrupt level 2
and those with 256-510 run on hardware interrupt level 3.

I,£.'I.-.-.~',
l"J!

o

o

o

TASK
TASK - Define a program task (continued)

EVENT =

Priorities rank tasks according to their realtime needs for processor time. Priority
assignments must, therefore, account for other programs expected to be
executing simultaneously.

Name of an end event. This event will be posted as complete at the end of this
task. The attaching task can, if desired, synchronize its operation by issuing a
WAIT for this event. Do not define this event name explicitly by an ECB since
your system generates it automatically.

TERMERR= The label of the routine to receive control if an unrecoverable terminal I/O error
occurs.

FLOAT =

ERRXIT=

If such an error occurs, the first word of the task control block (TCB) contains
the return code indicating the error. The second word of the TCB contains the
address of the instruction that was executing when the error occurred. If you do
not code TERMERR, the return code is available in the task code word. You
should use TERMERR for detecting errors because the task code word is subject
to modification by numerous system functions. Therefore, It may not always
reflect the true status of terminal I/O operations.

YES, if this task uses floating-point instructions.

NO (the default), if this task does not use floating-point instructions.

Specifies the label of a three-word list. That list points to a routine which is to
receive control if a hardware error or program exception occurs while this task is
executing. Prepare the task error exit routine to handle any type of program or
machine error completely. See the Event Driven Executive Language
Programming Guide for additional information on the use of task error exit
routines. It is often necessary to release resources even though your program
cannot continue because of an error. This is the case if the primary task is part
of a program which shares resources with other programs. These resources may
be, for example, QCBs, ECBs, or Indexed Access Method update records. The
supervisor does not release resources for you, but the task error exit facility
allows you to take whatever action is appropriate.

The format of the task error exit list is:

WORD 1 The count of the number of parameter words which follow (always
F'2').

WORD 2 The address of the user's error exit routine.

WORD 3 The address of a 24-byte area. Two types of informational code are
placed here from the point where an error occurred before the exit
routine is entered. These are the Level Status Block (LSB) and the
Processor Status Word (PSW). Refer to a Series/1 processor
description manual for a description of the LSB and PSW.

Chapter 2. Instruction and Statement Descriptions LR -441

TASK
TASK - Define a program task (continued)

Coding Example

A default task error exit routine is available to aid in problem diagnosis and
correction. (Refer to Event Driven Executive Language Programming Guide for a
detailed description of this routine and how to use it in your application
program.)

The following example shows the use of the TASK statement in a program with mUltiple tasks.
The program reads a record from the data set MYFILE and prints the first 8 bytes of that
record. The program begins by attaching TASKI. TASK1 is the label of a TASK statement.
TASKI prints the message at label PI and reads a record from MYFILE into the buffer BUF.
The MOVE instruction moves the first 8 bytes of BUF into the text buffer labeled REC. When
TASK 1 ends, it signals the event by posting the ECB at label ECB 1.

The main program attaches the task at label TASK2. The WAIT instruction at label WI checks
ECB I to see if TASK 1 has completed. T ASK2 then enqueues the printer and prints the
contents of REC. When T ASK2 ends, it posts the event specified on the EVENT = operand of
the TASK statement. The main program receives control and the WAIT instruction at label W2
checks to see if TASK2 has ended. The PRINTEXT instruction at label P4 prints the message
"PROGRAM COMPLETE" and the program ends.

READTASK
START

W2
P4

ECB1
BUF
REC

PROGRAM
EQU
ATTACH
ATTACH
WAIT
PRINTEXT
PROGSTOP
ECB
BUFFER
TEXT

START,DS=«MYFILE,EDX40))

*
TASK1
TASK2
EVENT
'PROGRAM COMPLETE',SKIP=2

256,BYTES
LENGTH=8

TASK1
NEXT
P1

TASK
ENQT
PRINTEXT
READ
MOVE
POST
DEQT
ENDTASK

NEXT
$SYSPRTR
'@TASK1 ATTACHED'
DS 1 , BUF, 1
REC,BUF, (8,BYTES)
ECB1
$SYSPRTR

TASK2
W1

P2
P3

TASK
WAIT
ENQT
PRINTEXT
PRINTEXT
DEQT
ENDTASK

W2,EVENT=EVENT
ECB1
$SYSPRTR
'@TASK2 ATTACHED' ,SKIP=1
REC,SKIP=1
$SYSPRTR

ENDPROG
END

LR-442 SC34-0643

o

o

o

o

o

TCBGET
TCBGET - Get task control block data

The TCBGET instruction obtains data from a specified field in the task control block (TCB) of
the currently executing task.

Syntax:

label TCBGET opnd1,opnd2,P1=

Required:
Defaults:
Indexable:

Operand

opndl

opnd2

Pl=

opnd1
$TCBVER (opnd2)
opnd1

Description

The label of a one-word data area where the system stores the specified TCB
field.

This operand determines which TCB field the system will copy. If you do not
code this operand, the default $TCBVER will be used. $TCBVER contains the
address of the current TCB.

Code this operand using any of the TCB equate names. Some examples are:

$TCBCO - first word of the TCB

$TCBC02 - second word of the TCB

$TCBADS - current address key

$TCBVER - address of the current TCB

You will find a complete list of TCB equates in the Internal Design.

Note: Spell entries for this operand as specified in the TCB equates. The EDX
assembler may not flag some you spell incorrectly.

Parameter naming operand. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code this operand.

Chapter 2. Instruction and Statement Descriptions LR-443

TCBGET
TCBGET - Get task control block data (continued)

Syntax Examples

LR -444 SC34-0643

1) The following example does not include code for opnd2. Therefore, it defaults to $TCBVER.
The system stores the contents of $TCBVER (current TCB address) at variable A.

LABEL 1 TCBGET A

A DATA F'O'

2) In this example, the contents of the TCB field $TCBCO are stored in software register 1.

LABEL2 TCBGET #1,$TCBCO

o

C·'
., .. !

o

o

o

TCBPUT
TCBPUT - Store data in a task control block

Syntax Examples

The TCBPUT instruction stores a value in the specified field of the task control block (TCB) of
the currently executing task.

Syntax:

label TCBPUT opnd1 ,opnd2,P1 =

Required:
Defaults:
Indexable:

Operand

opndl

opnd2

opnd1
$TCBCO (opnd2)
opnd1

Description

The TCB field opnd2 points to and the data your system stores in opndl. You
can specify the label of a one-word data area containing the data to be stored or
you can specify a self -defining term.

This operand specifies which TCB field the system will modify. Use the
following names and corresponding fields in opnd2:

$TCBCO - first word of the TCB

$TCBC02 - second word of the TCB

$TCBADS - current address key

A complete list of TCB equates is in the Internal Design.

Note: Spell entries for this operand as specified in the TCB equates. The EDX
assembler may not flag some you spell incorrectly.

PI = Parameter naming operand. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code this operand.

1) The following program example moves the value 7 into the first word of the TCB. It allows
opnd2 to default to $TCBCO.

LABEL 1 TCBPUT +7

2) Your system adds 6 to the contents of the word at the address to which #2 points. It then
stores the result in the $TCBADS field of the current TCB.

LABEL2 TCBPUT (6;#2) ,$TCBADS

Chapter 2. Instruction and Statement Descriptions LR-445

Instruction and Statement Descriptions
TCBPUT - Store data in a task control block (continued)

TERMCTRL - Request special terminal functions

The TERMCTRL instruction requests the execution of special terminal-control functions. The
functions available with the TERMCTRL instruction vary depending on the device you are
using. The "TERMCTRL Functions Chart" shows the devices to which you can issue a
TERMCTRL instruction, and the functions that you can select for these devices. You will find
the syntax of the TERMCTRL instruction for each of these devices following the chart.

The supervisor places a return code in the first word of the task control block (taskname)
whenever a TERMCTRL instruction causes a terminal I/O operation to occur. If the return
code is not a -1, your system places the address of this instruction in the second word of the task
control block (taskname + 2). The terminal I/O return codes are described at the end of the
PRINTEXT and READ TEXT instructions in this book and also in the Messages and Codes.

TERMCTRL Functions Chart

LR-446 SC34-0643

The chart on the following pages shows the devices to which you can issue a TERMCTRL
instruction, and the various functions available with each device. The device names appear
across the top of the chart and the functions for these devices are listed down the left side of the
chart. The 4975 terminal device described on this chart is not the 4975-01A ASCII Printer.
The 4975-01A ASCII Printer uses data streams and notTERMCTRL statements to control
printer operations. ("Request Special Terminal Function (4975-01A)" on page LR-334
explains data streaming on the 4975-01A ASCII Printer.)

C'I-'

I .. , .~

C'
. ,- ~

c'

o

C., "'1;

, -; ..

o

TERMCTRL
TERMCTRL - Request special terminal functions (continued)

DEVICE TYPES
4980/

FUNCTIONS I 2741 3101C 3101B 4013 4973 4974 4975 4978 4979

BLINK cursor X

BLINK field X

UNBLINK X

BLANK screen X X X

BLANK field X

DISPLAY X X X X X X X X X

ENABLE

ENABLEA

ENABLET

ENABLEAT

DISABLE

GETS TORE X X

HIGH/LOW intensity X

LOCK/UNLOCK keyboard X X X

PF

PUTS TORE X X

RING

RINGT

SET attention X X X X X

SET 1 i nes per inch X X X

TONE X X

Special functions X

Note: Device 3101B refers to a 3101 in block mode. Device 3101C refers to a 3101 in
character mode. Device 4975 does not refer to the 4975-01R or the 4975-01A ASCII printer.
(See. "Request Special Terminal Function (4975-01A)" on page LR-334 for information about
data streaming on the 4975-01A ASCII printer.)

Chapter 2. Instruction and Statement Descriptions LR -447

TERMCTRL
TERMCTRL - Request special terminal functions (continued) o

DEVICE TYPES

5219/ ACCA/
FUNCTIONS I 5224 5225 MODEM ACCA TTY VIRT GPIB Sl/Sl

BLINK cursor

BLINK field

UNBLINK

BLANK screen

BLANK field

DISPLAY X X X X X

ENABLE X

ENABLEA X

ENABLET X

ENABLEAT X

DISABLE X

GETSTORE

HIGH/LOW intensity

LOCK/UNLOCK keyboard

PF X

PUTSTORE

RING X

RINGT X

SET attention X X X X

SET lines per inch X X

TONE

Special functions X X X X

Note: ACCA and ACCA with MODEM are listed as devices in this chart.

o
LR-448 SC34-0643

TERMCTRL (2741)

o TERMCTRL - Request special terminal functions (continued)

2741 Communications Terminal

Syntax:

label TERMCTRL DISPLAY

Required: DISPLAY
Defaults: none
Indexable: none

Operand Description

DISPLAY Causes any buffered output to be written to the 2741.

Coding Example

The following example displays the contents of the buffer on a 2741 terminal.

TERMCTRL DISPLAY DISPLAY BUFFER

C"l
,I

O"~'
"

Chapter 2. Instruction and Statement Descriptions LR-449

TERMCTRL (3101)
TERMCTRL - Request special terminal functions (continued)

3101 Display Terminal (Block Mode)

A 3101 in block mode uses an attribute byte at the beginning of a data field. The attribute byte
defines the characters of a field as protected, unprotected, modified, or not modified. The
attribute byte also defines the display mode as high intensity, low intensity, blinking, or
nondisplay. The field extends up to the next attribute byte or the end-of-screen, whichever
occurs first. The attribute byte appears as a protected blank on the screen.

In general an I/O operation directed to a 3101 in block mode, results in a 3101 data stream
being transferred between the 3101 and processor storage. The 3101 data stream consists of
escape sequences, attribute characters, and data. With input, the 3101 transfers a 3101 data
stream into processor storage. With output, a 3101 data stream must be built in processor
storage to be transferred to the 3101. The 3101 interprets the escape sequences as control
commands. The attribute bytes appear on the screen as protected blanks and the data is
displayed on the screen in a manner controlled by the attribute bytes.

Terminal I/O allows you to write messages in any display mode to a 3101 in block mode. The
3101 block mode support conditionally inserts the correct attribute bytes in the 3101 data
stream for you before the write operation.

For a roll screen read operation, terminal I/O also allows you to enter data in any display mode.
The 3101 block mode support places the correct attribute byte at the beginning of the input
field. The data you enter takes on the display mode defined by the attribute byte.

You set the display mode for input and output operations with the ATTR operand. You must
code the SET function with the ATTR operand (SET ,ATTR=). Do not include other operands
in the instruction when you are establishing the attribute byte. Once set from a program with
TERMCTRL SET,ATTR= instruction, the attribute byte set will remain in effect. There are
two ways to change it for the 3101 terminal in block mode. One is to issue another
TERMCTRL SET,ATTR= instruction from an application program. The other is to request a
new attribute byte for the terminal with the $TERMUTI utility.

When you code STREAM = YES, the system ignores the attribute byte you specified with the
ATTR operand. Neither the system nor a DEQT or PROGSTOP instruction resets the attribute
byte in this case. The attribute byte remains set even after the program has ended.

The STREAM operand gives you control over whether terminal I/O will remove or insert 3101
special characters during input or output operations. You must code the SET function with the
STREAM operand (SET,STREAM=). Once a program issues the TERMCTRL
SET,STREAM= instruction to a 3101 in block mode, it remains in effect until the program
issues another TERMCTRL SET,STREAM= instruction to the terminal or until you change the
STREAM option with the $TERMUTI utility. A DEQT or PROGSTOP instruction does not
reset the option you select with the STREAM operand and it remains in effect even after the
program has ended.

LR ... 45 0 SC34-0643

The ACCA TERMCTRL functions are also applicable to a 3101 in block mode. For a
description of those functions see "ACCA Attached Devices" on page LR-483.

o

o

o

o

o

TERMCTRL (3101)
TERMCTRL - Request special terminal functions (continued)

Syntax:

label TERMCTRL function,ATTN=,ATTR=,STREAM=

Required: function
Defaults:STREAM=NO
Indexable:none

Operand

function:

ATTN =

ATTR=

Description

TONE Causes the 3101 in block mode to sound the audible alarm.

DISPLAY Causes the system to write to the device any buffered output. In
addition, for 3101 block mode, the cursor position is updated
accordingly.

LOCK Locks the keyboard for a 3101 in block mode.

UNLOCK Unlocks the keyboard for a 3101 in block mode.

SET The action of the SET function for a 3101 in block mode depends
on how you code the ATTN =, ATTR=, and STREAM= operands.

YES, to enable the attention and PF key functions.

NO, to disable the attention and PF key functions.

HIGH (the default), for a display mode of high intensity for both input and
output.

LOW, for a display mode of low or normal intensity for both input and output.

BLINK, causes a blinking display for both input and output.

BLANK, prevents the display of input or output characters. This mode is useful
for reading data, such as a password, that should not be displayed on the screen.
Change this option when you no longer require it. The terminal is unable to
display data while ATTR=BLANK is in effect.

NO, for output, specifies that no attribute byte is to be placed in the data stream.
For input, the attribute byte depends on the current TERMCTRL SET,ATTR=
in effect. If a SET ,ATTR= has not been issued, the system uses the default,
ATTR=HIGH.

Chapter 2. Instruction and Statement Descriptions LR-451

TERMCTRL (3101)
TERMCTRL - Request special terminal functions (continued)

LR-452 SC34-0643

YES, clears a previous TERMCTRL SET,ATTR=NO instruction. This operand
has no effect if the previous TERMCTRL SET,ATTR= instruction does not
contain ATTR=NO.

For a roll screen read operation, terminal I/O also allows you to enter data in
any display mode. The 3101 block mode support places the correct attribute
byte at the beginning of the input field. The data you enter takes on the display
mode defined by the attribute byte.

STREAM = YES, for output operations, shows that you have already supplied in the text or
buffer area the attribute bytes and escape sequences the terminal needs to do an
output operation. For input operations, it allows you to receive the entire 3101
data stream in processor storage exactly as it is transmitted by the device.

Note: Certain terminal I/O instructions, such as GETEDIT, GETV ALUE, and
QUESTION, are not recommended for use with STREAM=YES. You also
should be familiar with the 3101 device and terminal I/O internals to use this
option effectively.

NO, for output operations, shows that the system should insert the required
escape sequences and attribute bytes in the text or buffer area before displaying
data on the 3101 screen.

F or input operations, it allows the system to remove 3101 special characters
from the 3101 data stream before returning control to your program.

The default is STREAM=NO.

If you code STREAM = YES in your application program, issue a TERMCTRL
SET,STREAM=NO before a PROGSTOP or DETACH instruction to restore
the default.

For either YES or NO, conversion to and from EBCDIC takes place for both
input and output. The only exception to this occurs when you code
XLATE=NO on a READ TEXT or PRINTEXT instruction. Then, for the
duration of that instruction, the system ignores the STREAM option you coded
and no EBCDIC conversion takes place, nor does the system insert or remove
any 3101 special characters.

o

o

o

o

o

TERMCTRL (4013)
TERMCTRL - Request special terminal functions (continued)

4013 Graphics Terminal

Coding Example

Syntax:

label TERMCTRL function,ATTN=

Required: function
Defaults: none
Indexable: none

Operand Description

function:

ATTN =

SET Enables the attention function for the device (when ATTN=YES)
or disables the attention function for the device (when
ATTN=NO).

DISPLAY Causes the system to write to the 4013 any buffered output.

NO, to disable the attention function.

YES, to enable the attention function.

This operand is required when function is SET.

The following example displays the contents of the buffer on a 4013 terminal. The program
then disables the attention key and loads an application program named PAYROLL. When the
PAYROLL program returns control to the loading program, the instructions at ENABLE 1 ,
enables the attention key before the program stops.

DISABLE1

ENABLE 1

TERMCTRL
TERMCTRL
LOAD

DISPLAY DISPLAY BUFFER
SET,ATTN=NO DISABLE ATTENTION FUNCTION
PAYROLL,DS=(EMPFILE,ADDRFILE)

TERMCTRL SET,ATTN=YES
PROGSTOP

ENABLE ATTENTION FUNCTION

Chapter 2. Instruction and Statement Descriptions LR-453

TERMCTRL (4973)
TERMCTRL - Request special terminal functions (continued)

4973 Printer

LR-454 SC34-0643

Syntax:

label TERMCTRL function,LPI=,DCB=

Required: function
Defaults: none
Indexable: none

Operand Description

function:

LPI=

DCB=

SET Sets the number of lines per inch and causes any buffered output to
be printed. The system also resets the current output position to the
beginning of the left margin.

When you specify SET, you must also specify LPI.

DISPLAY Causes the system to write to the 4973 any buffered output.

The number of lines per inch (either 6 or 8) the 4973 is to print. This operand is
required when the SET function is specified.

The label of an 8-word device control block you define with the DCB statement.
The 4973 support code provides an IDCB that points to this DCB and issues a
START 110 instruction to the device. The system does a wait operation and
control returns to you after the interrupt is received from the device.

If the post-cursor bit is set on in word 0 of the DCB, the terminal support
updates the internal cursor position according to word 1 of the DCB. If an error
occurs, an error return is made according to normal terminal 110 conventions.

Do not code any other operands when you specify this operand on the
TERMCTRL statement. You cannot have another DCB chained to the one
specified by the DCB operand. You should be familiar with the 4973 hardware
and terminal 110 internals when you use this operand.

o

1~
(I.

V

o

o

c

o

TERMCTRL (4973)
TERMCTRL - Request special terminal functions (continued)

Syntax Examples

1) Print the contents of the buffer.

WRITEPTR TERMCTRL DISPLAY

2) Set printer to print eight lines per inch.

TERMCTRL SET,LPI=8

3) Set printer to print six lines per inch.

TERMCTRL SET,LPI=6

Chapter 2. Instruction and Statement Descriptions LR-455

TERMCTRL (4974)
TERMCTRL - Request special terminal functions (continued)

4974 Printer

Syntax:

label

Required:
Defaults:
Indexable:

Operand

function:

opndl

opnd2

count

LR-456 SC34-0643

TERMCTRL function,opnd1,opnd2,count, TYPE=, LPI=,
DCB=

function
none
opnd1,opnd2

Description

SET Sets the number of lines per inch and causes any buffered output
to be printed. The system also resets the current output position
to the beginning of the left margin.

When you specify SET, you must also specify LPI.

DISPLAY Causes the system to write to the 4974 any buffered output.

PUTSTORE Transfers control data from the processor to the 4974 wire image
buffer. If PUTSTORE is specified, operands opndl, opnd2,
count, and TYPE are required.

GETSTORE Transfers control data from the 4974 wire image buffer to the
processor. If GETSTORE is specified, opndl, opnd2, count, and
TYPE are required.

The address in the processor from which or to which the information is to be
transferred. Required with function PUTSTORE or GETSTORE.

The address in the 4974 wire image buffer to which or from which the
information is to be transferred. Required with function PUTSTORE or
GETSTORE.

The number of bytes to be transferred. Required with function PUTSTORE or
GETSTORE.

O.-.--~) "

C"'·\)

o

o

TERMCTRL (4974)
TERMCTRL - Request special terminal functions (continued)

TYPE =

LPI=

DCB=

The type of PUTSTORE or GETSTORE operation to be performed.

1, to transfer data between the processor and the 4974 wire image buffer. If 1 is
specified, function must be either PUTSTORE or GETSTORE.

2, to show that the 4974 wire image buffer is to be initialized with the standard
64-character EBCDIC set. If the count operand is zero, no data is transferred.
If the count is 8 or less, each bit of the data string shows replacement (1) or
nonreplacement (0) of the corresponding character in the standard set with the
alternate character as defined in the attachment. If 2 is specified, function must
be PUTSTORE.

The number of lines per inch, either 6 or 8, the 4974 is to use for printing. This
operand is required when the SET function is coded.

The label of an 8-word device control block you define with the DCB statement.
The 4974 support code provides an IDCB that points to this DCB and issues a
START I/O instruction to the device. The system performs a wait operation and
control returns to you after the interrupt is received from the device.

If the post-cursor bit is set on in word 0 of the DCB, the terminal support
updates the internal cursor position according to word 1 of the DCB. If an error
occurs, an error return is made according to normal terminal I/O conventions.

Do not code any other operands when you specify this operand on the
TERMCTRL statement. You cannot have another DCB chained to the one
specified by the DCB operand. You should be familiar with the 4974 hardware
and terminal I/O internals when you use this operand.

Chapter 2. Instruction and Statement Descriptions LR-457

TERMCTRL (4974)
TERMCTRL - Request special terminal functions (continued)

Coding Examples

1) This example initializes the 4974 wire image buffer to the standard EBCDIC character set.
The example also replaces the standard dollar sign ($) with its alternate, the English sterling
symbol (hex code 5B), and replaces the standard cent sign (¢) with its alternate, the dollar sign
($) (hex code 4A).

REPLACE
PTR1

ENQT PTR1 ENQUEUE PRINTER

TERMCTRL PUTSTORE,REPLACE,0,2,TYPE=2

DATA
IOCB

X' 1200'
T4974

2) If RDWRFLAG in the following example equals zero, the TERMCTRL instruction transfers
768 bytes of control data from the processor to the 4974 wire image buffer. If the
RDWRFLAG is not zero,the instruction transfers 768 bytes of control data from from the 4974
wire image buffer to the processor.

BUFF
PTR1

ENQT

SUBROUT
IF

TERMCTRL
ELSE
TERMCTRL

ENDIF
RETURN
DATA
IOCB

PTR1 ENQUEUE PRINTER

SETPRNTR,RDWRFLAG
(RDWRFLAG,EQ,O) IF WRITE WIRE IMAGE OPERATION
PUTSTORE,BUFF,0,768,TYPE=1

ELSE READ WIRE IMAGE BUFFER
GETSTORE,BUFF,0,768,TYPE=1

768H'0'
T4974

BUFFER AREA FOR 4974 WIRE IMAGE

LR-458 SC34-0643

o

o

o

c

o

TERMCTRL (4975)
TERMCTRL - Request special terminal functions (continued)

4975 Printer

Syntax:

label

Required:
Defaults:
Indexable:

Operand

function:

LPI=

DCB=

TERMCTRL function,LPI= or print operand,DCB=

function
none
C HARSET, PDEN, PMO D E

Description

SET Sets the number of lines per inch and causes any buffered output to
be printed. The system also resets the current output position to the
beginning of the left margin.

If you do not specify the the LPI operand, you must code the SET
function along with one of four print operands that allow you to set
and control the special print functions available with the 4975
Modell and Model 2 printers. (See "SET Function Operands" on
page LR-460 for a description of each of the print operands.)

Note: You must code the SET function along with either the LPI
operand or one of the print operands.

DISPLAY Causes the system to write to the 4975 any buffered output. No
operands are valid with this function.

The number of lines per inch (either 6 or 8) the 4975 is to print. Use this
operand only with the SET function.

The label of an 8-word device control block you define with the DCB statement.
The 4975 support code provides an IDCB that points to this DCB and issues a
START 110 instruction to the device. The system does a wait operation and
control returns to you after the interrupt is received from the device.

If the post-cursor bit is set on in word 0 of the DCB, the terminal support
updates the internal cursor position according to word 1 of the DCB. If an error
occurs, an error return is made according to normal terminal 110 conventions.

Do not code any other operands when you specify this operand on the
TERMCTRL statement. You cannot have another DCB chained to the one
specified by the DCB operand. You should be familiar with the 4975 hardware
and terminal 110 internals when you use this operand.

Chapter 2. Instruction and Statement Descriptions LR-459

TERMCTRL (4975)
TERMCTRL - Request special terminal functions (continued)

SET Function Operands

The four SET function operands allow you to:

• Specify the print mode on a 4975 Model 2 printer (PMODE).

Specify the density of printed characters (PDEN).

• Specify the language character set (CHARSET).

• Restore the default values for the printer (RESTORE).

You can code only one print operand on each TERMCTRL statement. When specifying
parameters on the PMODE, PDEN, and CHARSET operands, you can code the parameter
name, an indexed value, or an address. A given address must not have the same name as the
allowable parameters.

To simplify the coding of addresses and indexed values, the system provides an equate table,
EQU4975. The parameter equate is the parameter name preceded by a "$" sign. For example,
the parameter equate for the Italian character set, IT AL, is $IT AL. Before using addresses or
indexed values with the TERMCTRL statement, you must copy the equate module (EQU4975)
into your application program with a COpy statement.

Note: To use the SET function operands, you must link-edit your program with $EDXLINK
and specify an autocall to $AUTO,ASMLIB. Refer to the Operator Commands and Utilities
Reference for details on the AUTO CALL option of $EDXLINK.

Operand

PMODE=

PDEN=

LR-460 SC34-0643

Description

Specifies the print mode to be used on a 4975 model 2 printer.

PMODE=DRAFT - Print in draft-processing mode (all characters are equal in
width). The 4975 Modell printer prints only in draft-processing mode.

PMODE=TEXT - Print in text-processing mode with two passes of the print
head (character width is variable).

PMODE=TEXTl - Print in text-processing mode with a single pass of the
print head. This option produces characters that do not have a full complement
of dots. It can be used to check the format of printed output.

Specifies the density of printed characters on each line. You can select
compressed, "normal," and expanded character density for the 4975 Model 2
printer. The 4975 Modell printer supports "normal" or expanded character
density. If you code compressed for the 4975 Modell printer, the density
defaults to expanded.

()

o

o

o

()

o

TERMCTRL (4975)
TERMCTRL - Request special terminal functions (continued)

In draft mode, the compressed density is 20 characters per inch, the "normal"
density is 15 characters per inch, and the expanded density is 10 characters per
inch.

In text mode (PMODE=TEXT or TEXTl), the size of individual characters
varies (the letter "i", for example, is narrower than the letter "m"), and the
number of characters per inch depends on the mix of characters in the data
stream.

PDEN=NORM - Print in "normal" or typewriter-like characters. In draft
mode, you can print up to 198 characters on a line.

PDEN=COMP - Print in compressed characters. In draft mode, you can print
up to 230 characters on a line.

PDEN = EXPD - Print in expanded characters. In draft mode, you can print up
to 132 characters on a line.

When you code the PDEN = operand, be sure the line length of your TEXT or
BUFFER statement does not exceed the maximum line length for the density
you choose.

CHARSET = Specifies the language character set to be used. The CHARSET operand
changes the default character set specified during system generation. (See the
TERMINAL statement for the 4975 printer in the Installation and System
Generation Guide.)

The character set coded with the CHARSET operand becomes the new default
for the printer. You can change the default character set with another
TERMCTRL statement or with the $TERMUTI utility. (See the Operator
Commands and Utilities Reference for details on how to use the $TERMUTI
utility.)

The following character sets are available on the 4975 printer:

AUGE
BELG
BRZL
DNNR
FRAN
FRCA
INTL
ITAL
JAEN
KANA

Austrian and German
Belgian
Brazilian
Danish and Norwegian
French
French Canadian
International (multinational)
Italian
Japanese and English
Japanese Katakana

Chapter 2. Instruction and Statement Descriptions LR-461

TERMCTRL (4975)
TERMCTRL - Request special terminal functions (continued)

Syntax Examples

LR -462 SC34-0643

RESTORE

Notes:

PORT
SPAN
SPNS
SWFI
UKIN
USCA

Portugese
Spanish (Spain)
Spanish (other)
Swedish and Finnish
English (United Kingdom)
English (United States and Canada).

Allows the printer to return to the default values previously defined in the
TERMCTRL statement. These operands include PDEN, PMODE, CHARSET,
and LPI. When altered, each causes a permanent change to the defaults
established for the 4975 printer. The system restores the default values to those
set with the last CT command of the $TERMUT1 utility or, if the CT command
has not been used, to values specified at system generation.

When you change printer functions with a TERMCTRL statement, code the
RESTORE option on another TERMCTRL statement to restore the original
default values before your program ends.

1. If any of the print operands are issued to devices other than the 4975, 5219, 5224 or 5224
printers, they will be ignored, and a return code of -1 will be returned to the issuing
program.

2. Do not confuse the 4975-01A ASCII printer with the 4975 printer. The 4975-01A ASCII
printer uses data streaming and not TERMCTRL statements in operation. (See "Request
Special Terminal Function (4975-01A)" on page LR-334 for information about data
streaming on the 4975-01A ASCII printer.)

1) Print the contents of the buffer.

WRITEPTR TERMCTRL DISPLAY

2) Set printer to print eight lines per inch.

TERMCTRL SET,LPI=8

3) Set printer to print six lines per inch.

TERMCTRL SET,LPI=6

(-"
I •• ,)

o

o

o

0 ",'
, ,

()

TERMCTRL (4975)
TERMCTRL - Request special terminal functions (continued)

Coding Example

Return Codes

The following example shows three ways in which you can specify a parameter on one of the
SET function print operands. In the TERMCTRL instruction labeled Tl, the CHARSET
operand is coded with the parameter name of the Italian character set (ITAL). In the
TERMCTRL instruction labeled T2, the CHARSET operand is coded with an address which
contains the equate value for the Italian character set. The MOVEA instruction at label INDEX
moves the equate value contained in TABLE into register #1. The CHARSET operand on the
TERMCTRL instruction labeled T3 points to a character set at the address defined by the
contents of register #1 plus 2.

COpy EQU4975

T1 TERMCTRL SET,CHARSET=ITAL CODING THE PARAMETER NAME
T2 TERMCTRL SET,CHARSET=ITALIAN CODING AN ADDRESS
INDEX MOVEA #1,TABLE
T3 TERMCTRL SET,CHARSET=(2,#1) CODING AN INDEXED VALUE

TABLE
ITALIAN

DATA
DATA

A(+$AUGE)
A(+$ITAL)

NOTE THAT $AUGE AND $ITAL
ARE EQUATE VALUES

Return codes are returned in the first word of the task control block (TCB) of the program or
task issuing the instruction. The label of the TCB is the label of your program or task
(taskname). The supervisor places the address of the instruction that produced the return code
in the second word of the TCB (taskname+2).

Code Description

301 Invalid TERMCTRL statement. Returned for SET function
operands PDEN, PMODE, and CHARSET. No terminal error exit
is taken.

302 PRINTEXT message exceeds line width. Terminal error exit
is taken.

Chapter 2. Instruction and Statement Descriptions LR-463

TERMCTRL (4978)
TERMCTRL - Request special terminal functions (continued)

4978 Display

Syntax:

label

Required:
Defaults:
Indexable:

Operand

function:

opndl

LR-464 SC34-0643

TERMCTRL function,opnd1 ,opnd2,count, TVPE=,ATTN=,
DCB=

function
none
opnd 1 ,opnd2

Description

BLANK

DISPLAY

TONE

Prevents displaying input or output characters on the 4978
screen. The contents of the internal buffer remain unchanged. If
you specify BLANK, no other operands are required.

Causes the system to display the screen contents if previously
bianked by the BLANK function, to display any buffered output,
and to update the cursor position accordingly.

Causes the system to sound the audible alarm if it is installed.

BLINK Sets the cursor to the blinking state.

UN BLINK Sets the cursor to the nonblinking state.

LOCK Locks the keyboard.

UNLOCK Unlocks the keyboard.

SET Enables the attention function for the device (when
ATTN = YES) or disables the attention function for the device
(when ATTN=NO).

PUTSTORE Transfers data from the processor to storage in the 4978. If this
function is specified, opndl, opnd2, count, and TYPE= are
required.

GETSTORE Transfers data from storage in the 4978 to the processor. If this
function is specified, operands opnd 1, opnd2, count, and TYPE
are required.

The address in the processor from which or to which the data is to be
transferred.

c

o

o

o

TERMCTRL (4978)
TERMCTRL - Request special terminal functions (continued)

opnd2

count

ATTN =

TYPE =

The address in 4978 storage to which or from which data is to be transferred.

The number of bytes to be transferred.

NO, to disable the attention function.

YES, to enable the attention function.

This operand must be used with the SET function.

1, to indicate access to the character image buffer (a 2048-byte table, 8 bytes for
each of the EBCDIC codes).

2, to indicate access to the control store (4096 bytes). The end condition
(required when writing the control store) may be indicated by setting bit 0 on in
the second operand. For example, to write the last 1024 bytes of the control
store (#2 contains the control store address), code the following:

TERMCTRL PUTSTORE,BUFFER, (X'8000' ,#2) ,1024,TYPE=2

4, to indicate transfer of the field table from the device to the processor. If this
option is specified, function must be GETSTORE. The input area must be
defined with a BUFFER statement. At completion of the operation, the number
of field addresses stored (addresses of unprotected fields) is placed in the control
word at BUFFER-4.

5, to indicate transfer of the field table from the device to the processor. If this
option is specified, function must be GETSTORE. A field table is transferred as
for TYPE=4, but the addresses are those of the protected fields.

6, to indicate that the field table transferred contains only the addresses of
changed fields. If this option is specified, function must be GETSTORE.

7, to indicate that the field table transferred contains the addresses of the
protected portions of changed fields. If this option is specified, function must be
GETSTORE.

Chapter 2. Instruction and Statement Descriptions LR-465

TERMCTRL (4978)
TERMCTRL - Request special terminal functions (continued)

DCB=

LR-466 SC34-0643

The label of an 8-word device control block you define with the DCB statement.
The 4978 support code provides an IDCB that points to this DCB and issues a
START 110 instruction to the device. The system does a wait operation and
control returns to you after the interrupt is received from the device.

If the post-cursor bit is set on in word 0 of the DCB, the terminal support
updates the internal cursor position according to word 1 of the DCB. If an error
occurs, an error return is made according to normal terminal 110 conventions.

Do not code any other operands when you specify this operand on the
TERMCTRL statement. You cannot have another DeB chained to the one
specified by the DCB operand. You should be familiar with the 4978 hardware
and terminal 110 internals when you use this operand.

o

o

o

c

o

TERMCTRL (4978)
TERMCTRL - Request special terminal functions (continued)

Coding Examples

1) The first TERMCTRL instruction prevents the displaying of characters on the 4978 screen.
The second TERMCTRL instruction restores the displaying of characters on the screen.

The third TERMCTRL instruction transfers data from storage in the 4978 to the processor.

*

TERMCTRL BLANK

PRINTEXT LINE=A,SPACES=B
TERMCTRL DISPLAY

BLANK SCREEN

MODIFY DISPLAY

DEFINE CURSOR POSITION
ENABLE DISPLAY

TERMCTRL GETSTORE,BUFFER,O,2048,TYPE=1 READ 4978
IMAGE STORE

2) The following example shows several uses for the TERMCTRL instruction.

GETID

*
GETPASS

*
*

*
ENDIT

TXT1
TXT2

TERMCTRL TONE ISSUE TONE TO ALERT OPERATOR
TERMCTRL
TERMCTRL
READTEXT
IF
TERMCTRL

PRINTEXT
TERMCTRL
WAIT
READTEXT
CALL

UNLOCK UNLOCK KEYBOARD
BLINK SET CURSOR TO BLINK MODE
TXT1, '@ PLEASE ENTER YOUR ID #,LINE=3
(TXT1-1,EQ,O),GOTO,GETID

UNBLINK RESET CURSOR TO UNBLINK

'@ PLEASE
BLANK
KEY
TXT2
CHKPASS

ENTER YOUR PASSWORD'
INHIBIT DISPLAY OF PASSWORD
WAIT FOR ENTER KEY
GET USER'S ENTRY
CALL PASSWORD VERIFY ROUTINE

IF (PASSCHK,NE,-1),GOTO,ENDIT IF PASSWORD
DOES NOT MATCH USER ID, EXIT

TERMCTRL SET,ATTN=NO DISABLE ATTENTION KEY

TERMCTRL DISPLAY CLEAR THE BUFFER

PRINTEXT '@ SESSION IS ENDING'
PRINTEXT '@ SYSTEM IS AVAILABLE AT 7 AM MON - FRI'
TERMCTRL SET ATTN=YES ENABLE THE ATTENTION
TERMCTRL LOCK LOCK THE KEYBOARD

SUBROUT CHKPASS,PASSCHK

RETURN

TEXT LENGTH=30
TEXT LENGTH=30

KEY

Chapter 2. Instruction and Statement Descriptions LR -467

TERMCTRL (4979)
TERMCTRL - Request special terminal functions (continued)

4979 Display

LR-468 SC34-0643

Syntax:

label TERMCTRL function,ATTN=,DCB=

Required: function
Defaults: none
Indexable: none

Operand Description

function:

ATTN =

DCB=

BLANK Prevents displaying input or output characters on the 4979 screen.
The contents of the internal buffer remain unchanged. If you
specify BLANK, no other operands are required.

DISPLAY Causes the system to display the screen contents if previously
blanked by the BLANK function, to display any buffered output,
and to update the cursor position accordingly.

LOCK Locks the keyboard.

UNLOCK Unlocks the keyboard.

SET Enables the attention function for the device (when ATTN=YES)
or disables the attention function for the device (when
ATTN=NO).

NO, to disable the attention function.

YES, to enable the attention function.

This operand must be used with the SET function.

The label of an 8-word device control block you define with the DCB statement.
The 4979 support code provides an IDCB that points to this DCB and issues a
START I/O instruction to the device. The system does a wait operation and
control returns to you after the interrupt is received from the device.

If the post-cursor bit is set on in word 0 of the DCB, the terminal support
updates the internal cursor position according to word 1 of the DCB. If an error
occurs, an error return is made according to normal terminal I/O conventions.

o

o

o

o

o

TERMCTRL (4979)
TERMCTRL - Request special terminal functions (continued)

Coding Example

Do not code any other operands when you specify this operand on the
TERMCTRL statement. You cannot have another DCB chained to the one
specified by the DCB operand. You should be familiar with the 4979 hardware
and terminal 110 internals when you use this operand.

The first TERMCTRL instruction prevents the displaying of characters on the 4979 screen.
The second TERMCTRL instruction restores the displaying of characters on the screen.

TERMCTRL BLANK

PRINTEXT LINE=A,SPACES=B
TERMCTRL DISPLAY

BLANK SCREEN

MODIFY DISPLAY

DEFINE CURSOR POSITION
ENABLE DISPLAY

Chapter 2. Instruction and Statement Descriptions LR-469

TERMCTRL (4980)
TERMCTRL - Request special terminal fun"ctions (continued)

4980 Display

Syntax:

label

Required:
Defaults:
Indexable:

Operand

function:

opndl

LR-470 SC34-0643

TERMCTRL function,opnd1,opnd2,count, TYPE=,ATTN=,
DCB=

function
none
opnd 1,opnd2

Description

BLANK

DISPLAY

TONE

Prevents displaying input or output characters on the 4980
screen. The contents of the internal buffer remain unchanged. If
you specify BLANK, no other operands are required.

Causes the system to display the screen contents if previously
blanked by the BLANK function, to display any buffered output,
and to update the cursor position accordingly.

Causes the system to sound the audible alarm if it is installed.

BLINK Sets the cursor to the blinking state.

UNBLINK Sets the cursor to the nonblinking state.

LOCK Locks the keyboard.

UNLOCK Unlocks the keyboard.

SET Enables the attention function for the device (when
ATTN = YES) or disables the attention function for the device
(when ATTN=NO).

PUTSTORE Transfers data from the processor to storage in the 4980. If you
specify PUTSTORE, opndl, opnd2, count, and TYPE are
required.

GETSTORE Transfers data from storage in the 4980 to the processor. If you
specify GETSTORE, operands opndl, opnd2, count, and TYPE
are required.

The address in the processor from which or to which the data is to be
transferred.

o

o

o

o

o

o

TERMCTRL (4980)
TERMCTRL - Request special terminal functions (continued)

opnd2

count

ATTN =

TYPE =

The address in 4980 storage to which or from which data is to be transferred.

The number of bytes to be transferred.

NO, to disable the attention function.

YES, to enable the attention function.

This operand must be used with the SET function.

You may want to change the image and/or control stores on a 4980 terminal
from an application program. For information on doing so, refer to "$RAMSEC
- Replace Terminal Control Block (4980)" on page LR-594

1, to show access to the character image buffer (a 4096-byte table, 8 bytes for
each of the EBCDIC codes).

2, to show access to the control store.

4, to show transfer of the field table from the device to the processor. If this
option is specified, function must be GETSTORE. The input area must be
defined with a BUFFER statement. At completion of the operation, the number
of field addresses stored (addresses of unprotected fields) is placed in the control
word at BUFFER-4.

5, to show transfer of the field table from the device to the processor. If this
option is specified, function must be GETSTORE. A field table is transferred as
for TYPE=4, but the addresses are those of the protected fields.

6, to show that the field table transferred contains only the addresses of changed
fields. If this option is specified, function must be GETSTORE.

7, to show that the field table transferred contains the addresses of the protected
portions of changed fields. If this option is specified, function must be
GETSTORE.

8, to show that transfer of the microcode from the processor to the device is in
progress.

9, to show that the last segment of the microcode is being sent from the
processor to the device.

10, to show that the last segment of the control store is being sent from the
processor to the device.

Chapter 2. Instruction and Statement Descriptions LR-471

TERMCTRL (4980)
TERMCTRL - Request special terminal functions (continued)

DCB=

LR-472 SC34-0643

For example, to write the last 1024 bytes of the control store (#2 contains the
control store address), code the following:

TERMCTRL PUTSTORE,BUFFER, (O,#2),1024,TYPE=10

The label of an 8-word device control block you define with the DCB statement.
The 4980 support code provides an IDCB that points to this DCB and issues a
START I/O instruction to the device. The system does a wait operation and
control returns to you after the interrupt is received from the device.

If the post-cursor bit is set on in word 0 of the DCB, the terminal support
updates the internal cursor position according to word 1 of the DCB. If an error
occurs, an error return is made according to normal terminal I/O conventions.

Do not code any other operands when you specify this operand on the
TERMCTRL statement. You cannot have another DCB chained to the one
specified by the DCB operand. You should be familiar with the 4980 hardware
and terminal I/O internals when you use this operand.

o

o

o

o

o

o

TERMCTRL (5219)
TERMCTRL - Request special terminal functions (continued)

5219 Printer

Syntax:

label

Required:
Defaults:
Indexable:

Operand

function:

TERMCTRL function,STREAM=,LPI= or print operand,
DCB=

function
STREAM=NO
CHARSET, PDEN

Description

SET Sets the number of lines per inch when coded with the LPI operand.
If you do not specify the LPI operand, you must code the SET
function along with one of the three print operands that allow you
to set and control the special print functions available with the 5219
printer. (See "SET Function Operands" on page LR-474 for a
description of each of the print operands.)

Note: You must code the SET function along with either the LPI
operand or one of the print operands.

DISPLAY Causes the system to write any buffered output to the printer. No
operands are valid with this function.

STREAM = YES, to show that you have already coded the escape sequences the printer
needs to do an output operation in the buffer area. For the required escape
sequences, refer to the IBM 52]9 Printer Models DO] and D02 Programmer's
Reference Guide, GA23-1025.

LPI=

DCB=

NO (the default), to show that the 5219 is in a mode that emulates the 4975
printer.

The number of lines per inch (either 6 or 8) the printer is to print. Use this
operand with the SET function only.

The label of an 8-word device control block you define with the DCB statement.
The printer support code provides an IDCB that points to this DCB and issues a
START 110 instruction to the device. The system does a wait operation and
control returns to you after the interrupt is received from the device.

Chapter 2. Instruction and Statement Descriptions LR -473

TERMCTRL (5219)
TERMCTRL - Request special terminal functions (continued)

SET Function Operands

If the post-cursor bit is set on in word 0 of the DCB, the terminal support
updates the internal cursor position according to word 1 of the DCB. If an error
occurs, an error return is made according to normal terminal 110 conventions.

Do not code any other operands when you specify this operand on the
TERMCTRL statement. You cannot have another DCB chained to the one
specified by the DCB operand. You should be familiar with the printer hardware
and terminal 110 internals to use this operand.

The three SET function operands allow you to:

• Select the density of printer characters on a line (PDEN).

• Select a language character set (CHARSET).

• Restore the default values for the printer (RESTORE).

You can code only one print operand on each TERMCTRL statement. When specifying
parameters on the PDEN and CHARSET operands, you can code the parameter name, an
indexed value, or the label of a data area that contains the parameter name. A label must not
have the same name as the allowable parameters.

To simplify the coding of labels and indexed values, the system provides an equate table,
EQU4975. The parameter equate is the parameter name preceded by a "$" sign. For example,
the parameter equate for the Italian character set, IT AL, is $IT AL. Before coding labels or
indexed values with the TERMCTRL statement, you must copy the equate module (EQU4975)
into your application program with a COpy statement.

LR-474 SC34-0643

Note: To change the print density and character set on a 5219, you must physically change the
print wheel. When the PDEN, CHARSET, or RESTORE operands are coded on the
TERMCTRL instruction, they cause the 5219 printer to stop printing and signal the operator.
At that time, the operator can change the print wheel. The operator must then press the start
buttonto resume printing. Refer to the IBM Series/] 52]9 Printer Models DO] and D02 Setup
Procedures/Operator Guide, GA23-1019, for information on how to change the print wheel.

Operand

PDEN=

Description

Specifies the density of printed characters on each line. You can select "normal" or
expanded character density.

Note: All printed characters are of equal width.

NORM - Print in "normal" or typewriter-like characters. You can print up to 198
characters on a line (15 characters per inch).

o

o

o

o

o

TERMCTRL (5219)
TERMCTRL - Request special terminal functions (continued)

EXPD - Print in expanded characters. You can print up to 132 characters on a
line (10 characters per inch).

When you code the PDEN operand, be sure the line length of your TEXT or
BUFFER statement does not exceed the maximum line length for the density you
choose.

CHARSET = Specifies the language character set the printer uses. The CHARSET operand
changes the default character set you specified during system generation. (Refer to
the Installation and System Generation Guide for the 5219 TERMINAL statement.)

The character set coded with the CHARSET operand becomes the new default for
the printer. You can change the default character set with another TERMCTRL
statement or with the $TERMUT1 utility. (See the Operator Commands and
Utilities Reference for details on how to use the $TERMUT1 utility.)

The following character sets are available on the printer:

AUGE Austrian and German
BELG Belgian
BRZL Brazilian
DNNR Danish and Norwegian
FRAN French
FRCA French Canadian
INTL International (multinational)
IT AL Italian
JAEN Japanese and English
KANA Japanese Katakana
PORT Portugese
SP AN Spanish (Spain)
SPNS Spanish (other)
SWFI Swedish and Finnish
UKIN English (United Kingdom)
USCA English (United States and Canada).

RESTORE The PDEN, CHARSET, and LPI operands all cause a permanent change to the
defaults established for the printer. The RESTORE operand allows you to restore
the default values to the values set with the last CT command of the $TERMUT1
utility or, if the CT command has not been used, to the values specified at system
generation time.

When you change printer functions with a TERMCTRL statement, code the
RESTORE option on another TERMCTRL statement to restore the original
default values.

Chapter 2. Instruction and Statement Descriptions LR -4 75

TERMCTRL (5219)
TERMCTRL - Request special terminal functions (continued)

Syntax Examples

Coding Example

LR-476 SC34-0643

1) Print the contents of the buffer.

WRITEPTR TERMCTRL DISPLAY

2) Set printer to print eight lines per inch.

TERMCTRL SET,LPI=8

3) Set printer to print six lines per inch.

TERMCTRL SET,LPI=6

The following example shows how you can specify the escape sequences for a 5219 printer and
turn on data streaming. In the example, the labels M 1 through M7 supply the requested printer
commands into the buffer. Label M8 is the test message. The forms feed command at label FF
is moved into the buffer by the instruction at label MI. This command ejects the printer page.
The instruction at label M9 contains the number of words being placed in the buffer. The
STREAM operand on the TERMCTRL instruction at label M10 is coded STREAM=YES to
show that you have supplied the required escape sequences. If STREAM=NO were coded, the
system would supply the default escape sequences. The instructions at labels MIl through M14
reset the printer and turn off data streaming.

Note: The labels M1 through M14 are shown for explanation purposes only and should not be
coded in an actual program.

M1
M2

M3
M4
M5
M6
M7
M8
M9

M10

MOVEA
MOVE
MOVE

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
ENQT
TERMCTRL
PRINTEXT

#1,BUFF
(0, # 1) , FF, (1 , BYTE)
(1 , # 1) , SICWP, (5, BYTES)

(6 , # 1) , SHF, (4, BYTES)
(1 a , # 1) , SVF, (4, BYTES)
(14, # 1) , SCD, (6, BYTES)
(2 a , # 1) , SLD, (4, BYTES)
(24,#1) ,PPM, (11,BYTES)
(35,#1) ,TESTMSG, (14,BYTES)
BUFFINDX,49
P5219
SET,STREAM=YES
BUFF

GET BUFFER ADDRESS
FORMS FEED
SET INITIAL CONDITION

FOR WORD PROCESSING
SET HORIZONTAL FORMAT
SET VERTICAL FORMAT
SET CHARACTER DENSITY
SET LINE DENSITH
PAGE PRESENTATION
MOVE MESSAGE INTO BUFFER
SET NO. OF BYTES TO PRINT
ENQT ON 5219
TURN ON DATA STREAMING
PRINT

o

o

o

o

()

o

TERMCTRL (5219)
TERMCTRL - Request special terminal functions (continued)

Return Codes

M11 MOVE (0 , # 1) , FF, (1 , BYTE) FORMS FEED
M12 MOVE (1,#1,SICDP, (S,BYTES) RE-SET INITIAL CONDITION

M13

M14

*
FF
SICWP

SHF
SVF
SCD

SLD
PPM

*
*

MOVE BUFFINDX.6
PRINTEXT BUFF
TERMCTRL SET,STREAM=NO

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA

X'OC'
X'2BD2034S'
X'01 '
X'2BC10284'
X'2BC2023C'
X'2BD20429'
X'OOOA'
X'2BC6020C'
X'2BD20948'
X'00000102'

1----------
1--------

X'000102'

TO DATA PROCESSING
SET NO. OF BYTES TO PRINT
PRINT
TURN OFF DATA STREAMING

FORMS FEED
INITIAL CONDITION FOR WORD PROCESSING

HORIZONTAL FORMAT OF 132 COLS PER LINE
VERTICAL FORMAT OF 60 LINES PER PAGE
CHARACTER DENSITY OF 10 PER INCH

LINE DENSITY OF 6 LINES PER INCH
PAGE PRESENTATION MEDIA:

PAPER
SOURCE DRAWER 2

*
*
SICDP

1------------ DESTINATION DRAWER
1---------- STANDARD QUALITY

DATA
DATA

X'2BD2034S' INITIAL CONDITION FOR DATA PROCESSING
X'FF'

PS219 IOCB PS219,BUFFER=BUFF
BUFF BUFFER 1024,BYTES
BUFFINDX EQU BUFF-4
BUFFADDR DATA A(BUFF)
TESTMSG DATA CL14'THIS IS A TEST'

Return codes are returned in the first word of the task control block (TCB) of the program or
task issuing the instruction. The label of the TCB is the label of your program or task
(taskname). The supervisor places the address of the instruction that produced the return code
in the second word of the TCB (taskname+2).

Code Description

301 Invalid TERMCTRL statement. Returned for SET function
operands PDEN and CHARSET. No terminal error exit
is taken.

302 PRINTEXT message exceeds line width. Terminal error exit
is taken.

Chapter 2. Instruction and Statement Descriptions LR-477

TERMCTRL (5224,5225)
TERMCTRL - Request special terminal functions (continued)

5224 or 5225 printer

Syntax:

LR -478 SC34-0643

label

Required:
Defaults:

TERMCTRL function,STREAM=,LPI= or print operand,
DCB=

Indexable:

function
STREAM=NO
CHARSET,PDEN

Operand

function:

Description

SET Sets the number of lines per inch when coded with the LPI operand. If
you do not specify the LPI operand, you must code the SET function
along with one of three print operands that allow you to set and
control the special print functions available with the 5224 and 5225
printers. (See "SET Function Operands" on page LR-479 for a
description of each of the print operands.)

Note: You must code the SET function along with either the LPI
operand or one of the print operands.

DISPLAY Causes the system to write to the printer any buffered output. No
operands are valid with this function.

STREAM= YES, to show that you have already coded the escape sequences the printer needs
to do an output operation in the text or buffer area., For the required escape
sequences, refer to the IBM Series/l Printer Attachment 5220 Series Description,
GA34-0242 or the IBM Series/l Data streaming Instructions for the 5220 Series
Printer Attachment, GA34-0269.

LPI=

NO (the default), to show that the system should insert the required escape
sequences in the text or buffer area before the printer does an output operation.

The number of lines per inch (either 6 or 8) the printer is to print. Use this
operand only with the SET function.

o

o

o

o

C)

o

TERMCTRL (5224,5225)
TERMCTRL - Request special terminal functions (continued)

DCB=

SET Function Operands

The label of an 8-word device control block you define with the DCB statement.
The printer support code provides an IDCB that points to this DCB and issues a
START 1/0 instruction to the device. The system does a wait operation and
control returns to you after the interrupt is received from the device.

If the post-cursor bit is set on in word 0 of the DCB, the terminal support updates
the internal cursor position according to word 1 of the DCB. If an error occurs, an
error return is made according to normal terminal 110 conventions.

Do not code any other operands when you specify this operand on the
TERMCTRL statement. You cannot have another DCB chained to the one
specified by the DCB operand. You should be familiar with the printer hardware
and terminal 110 internals when you use this operand.

The three SET function operands allow you to:

Select the density of printed characters on a line (PDEN).

Select a language character set (CHARSET).

Restore the default values for the printer (RESTORE).

You can code only one print operand on each TERMCTRL statement. When specifying
parameters on the PDEN and CHARSET operands, you can code the parameter name, an
indexed value, or the label of a data area that contains the parameter name. A label must not
have the same name as the allowable parameters.

To simplify the coding of labels and indexed values, the system provides an equate table,
EQU4975. The parameter equate is the parameter name preceded by a "$" sign. For example,
the parameter equate for the Italian character set, IT AL, is $ITAL. Before coding labels or
indexed values with the TERMCTRL statement, you must copy the equate module (EQU4975)
into your application program with a COpy statement.

Operand

PDEN=

Description

Specifies the density of printed characters on each line. You can select "normal"
or expanded character density.

Note: All print characters are of equal width.

NORM - Print in "normal" or typewriter-like characters. You can print up to
198 characters on a line (15 characters per inch).

EXPD - Print in expanded characters. You can print up to 132 characters on a
line (10 character per inch).

Chapter 2. Instruction and Statement Descriptions LR -479

TERMCTRL (5224,5225)
TERMCTRL - Reqljest special terminal functions (continuf!cJ)

LR-480 SC34-0643

When you code the PDEN = operand, be sure the line length of your TEXT or
BUFFER statement does not exceed the maximum line length for the density
you choose.

CHARSET = Specifies the language character set the printer uses. The CHARSET operand
changes the default character set you specified during system generation. (Refer
to the TERMINAL statement for the 5224 and 5225 printers in the &isg).

RESTORE

The character set coded with the CHARSET operand becomes the new default
for the printer. You can change the default character set with another
TERMCTRL statement or with the $TERMUTI utility. (See the Operator
Commands and Utilities Reference for details on how to use the $TERMUTI
utility.)

The following character sets are available on the printer:

AUGE
BELG
BRZL
DNNR
FRAN
FRCA
INTL
ITAL
JAEN
PORT
SPAN
SPNS
SWFI
UKIN
USCA

Austrian and German
Belgian
Brazilian
Danish and Norwegian
French
French Canadian
International (multinational)
Italian
Japanese and English
Portugese
Spanish (Spain)
Spanish (other)
Swedish and Finnish
English (United Kingdom)
English (United States and Canada).

The PDEN, CHARSET, and LPI operands all cause a permanent change to the
defaults established for the printer. The RESTORE operand allows you to
restore the default values to the values set with the last CT command of the
$TERMUTI utility. If the CT command has not been used, it enables
restoration to the values specified at system generation time.

When you change printer functions with a TERMCTRL statement, code the
RESTORE option on another TERMCTRL statement to restore the original
default values before your program ends.

o

o

o

o

TERMCTRL (5224,5225)
TERMCTRL - Request special terminal functions (continued)

Syntax Examples

Coding Example

1) Print the contents of the buffer.

WRITEPTR TERMCTRL DISPLAY

2) Set printer to print eight lines per inch.

TERMCTRL SET,LPI=8

3) Set printer to print six lines per inch.

TERMCTRL SET,LPI=6

The following example shows three ways in which you can specify a parameter on one of the
SET function print operands. In the TERMCTRL instruction labeled T1, the CHARSET
operand is coded with the parameter name of the Italian character set (ITAL). In the
TERMCTRL instruction labeled T2, the CHARSET operand is coded with the label that points
to the equate value for the Italian character set. The MOVEA instruction at label INDEX
moves the equate value contained in TABLE into register #1. The CHARSET operand on the
TERM CTRL instruction labeled T3 points to a character set at the address defined by the
contents of register #1 plus 2.

T1
T2
INDEX
T3

TABLE
ITALIAN

COpy EQU4975

TERMCTRL
TERMCTRL
MOVEA
TERMCTRL

DATA
DATA

SET,CHARSET=ITAL
SET,CHARSET=ITALIAN
#1,TABLE
SET,CHARSET=(2,#1)

A(+$AUGE)
A(+$ITAL)

CODING THE PARAMETER NAME
CODING AN ADDRESS

CODING AN INDEXED VALUE

NOTE THAT $AUGE AND $ITAL
ARE EQUATE VALUES

Chapter 2. Instruction and Statement Descriptions LR-481

TERMCTRL - Request. spetialterminal, functions (continuedj'

Return Codes

Return codes are returned in the first word of the task control block (TCB) of the program or
task issuing the instruction. The label of the TCB is the label of your program or task
(taskname). The supervisor places the address of the instruction that produced the return code
in the second word of the TCB (taskname+2).

Code Description

301 Invalid TERMCTRL statement. Returned for SET function
operands PO EN and CHARSET. No terminal error exit
is taken.

302 PRINTEXT message exceeds line width. Terminal error exit
is taken.

LR-482 SC34-0643

,.I 0"','

rf~,
,-)

o

o

o

o

TERMCTRL (ACCA)
TERMCTRL - Request special terminal functions (continued)

ACCA Attached Devices

When your program issues a TERMCTRL instruction to a device attached to an ACCA card,
the functions available to your program depend on whether the device uses a modem. If the
device uses a modem, you can code all the functions and the ATTN operand.

If a 3101 in block mode is attached to the ACCA card, additional 3101 TERMCTRL functions
are available. For a description of those functions see "3101 Display Terminal (Block Mode)"
on page LR-450.

Syntax:

label TERMCTRL function,ATTN=

Required: function
Defaults: none
Indexable: none

Operand Description

function:

SET Enables the attention function for the device (when
ATTN = YES) or disables the attention function for the device
(when ATTN=NO).

RING Waits until the modem presents the Ring Indicator (RI) to the
Series/I. It provides no timeout.

RINGT Waits until the modem presents the Ring Indicator (RI) to the
Series/I. If no Ring Indicator (RI) occurs after 60 seconds, this
instruction ends and returns an error condition. That information
returns to your application program in the first word of the task
control block (TCB).

ENABLE Activates Data Terminal Ready (DTR) if not jumpered on and
waits for the modem to return Data Set Ready (DSR). No
timeout is provided.

ENABLET Activates Data Terminal Ready (DTR) if not jumpered on and
waits for the modem to return Data Set Ready (DSR). If Data
Set Ready (DSR) is not returned within 15 seconds, this
instruction terminates and returns an error condition. That
information returns to your application program in the first word
of the task control block (TCB).

Chapter 2. Instruction and Statement Descriptions LR-483

TERMCTRL ,(ACCA)
TERMCTRL - Request special terminal functions (continued)

Coding Example

LR-484 SC34~0643

ATTN =

ENABLEA Activates Data Terminal Ready (DTR}if not jumpered on and
waits for the modem to return Data Set Ready (DSR). When
Data Set Ready (DSR) is returned, an answer tone activates for
three seconds. The modem must allow for the control of the
answer tone.

ENABLEAT Combines the functions of ENABLET and ENABLEA.

DISABLE Disables Data Terminal Ready (DTR) if not jumpered on and
waits for 15 seconds. This function is used to disconnect (hang
up) the modem.

NO, to disable the attention and PF key functions.

YES, to enable the attention and PF key functions.

This operand must be used with the SET function.

The TERMCTRL instruction at label Tl waits until the Series/l receives the Ring Indicator
from the modem. At label T2, the TERMCTRL instruction waits for the Data Set Ready
indicator. The TERMCTRL instruction at label T3 disconnects the modem. ,

T1

T2

*

T3

DIALTYPE
ANSWER
LINETYPE
SWITCHED
ACCATERM

ENQT
IF

ACCATERM ENQUEUE TARGET TERMINAL

IF
(LINETYPE,EQ,+SWITCHED) IF SWITCHED
(DIALTYPE,EQ,+ANSWER) IF CPU TO ANSWER
TERMCTRL RING WAIT FOR RING INTERRUPT

ENDIF
TERMCTRL ENABLET

ENDIF

IF (LINETYPE,EQ,+SWITCHED)
TERMCTRL DISABLE

ENDIF
DEQT
PROGSTOP
DATA F'-1'
EQU 0
DATA F'O'
EQU -1
IOCB $SYSLOGA

THEN WAIT FOR DATA SET
READY

IF SWITCHED LINE
DISABLE LINE

RELEASE THE TERMINAL

o

o

0

o

TERMCTRL (GPIB)
TERMCTRL - Request special terminal functions (continued)

General Purpose Interface Bus

The Event Driven Executive provides support for the General Purpose Interface Bus (GPIB)
Adapter, RPQ D02118. This support allows an application program to control and access a set
of interconnected devices attached to the adapter by a single cable or "bus." These devices
could include printers, plotters, graphics display units, and programmable laboratory equipment.

The I/O operations directed to the attached devices and the GPIB bus control are the
responsibilities of the application program. The application must, for example, do device
selection and polling, and begin all data transfer operations.

For additional details on the GPIB, see the Communications Guide.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

function:

command:

TERMCTRL function,command,options,data

command
none
data

Description

DISPLAY

GPIB

CON

Causes the system to write to the adapter any buffered output. No
other operands should be coded with DISPLAY.

Indicates a GPIB function. The operation is determined by other
operands coded on the TERMCTRL instruction.

The Configure bus command is used to assign talker/listener roles
to devices and can be used to transfer up to 100 bytes of
configuration information from programming information. The data
delimiter is a double quote and comma (" ,) and can be used to
separate segments of configuration or programming information.
The combination double quote and semicolon (":) characters will
end the data transfer.

DCL The Device Clear command causes the system to initialize all
devices. The initialized state is device dependent.

Chapter 2. Instruction and Statement Descriptions LR-485

TERMCTRL(GPIB)
TERMCTRL - Request special terminal functions (continued)

LR-486 SC34-0643

GET

GTL

IFC

LLO

MON

The Group Execute Trigger command. causes the specified listener
devices to have their predefined basic operation initiated (device
dependent).

The Go To Local command causes the specified listener devices to
respond to both the interface message and panel controls.

The Interface Clear command causes the bus to enter an inactive
state. The timer override option cannot be specified with this
command.

The Local Lock Out command causes the specified listener devices
to respond to interface control messages but not device panel
controls.

The Monitor command allows the transfer of data between devices
on the bus. One device must have been previously addressed as a
talker and at least one as a listener by a configure operation.

PPD The Parallel Poll Disable command selectively disables the specified
listener devices and prevents them from participating in a parallel
poll sequence.

PPE

PPU

READ

REN

RPPL

RSB

RSET

The Parallel Poll Enable command places the specified listener
devices in a response mode.

The Parallel Poll Unconfigure forces into a parallel poll idle state all
devices which are currently able to respond to a parallel poll.

The Read command allows the transfer of data into storage from a
device on the bus. The device must previously have been assigned
as a talker. Any listener devices will receive the data, also.

The Remote Enable command allows specified listener devices to
respond to further operations.

The Parallel Poll Results command reads the result of the latest
parallel poll into storage. The address specified in the data operand
contains the results and is returned as one byte.

The read adapter Residual Status Block operation retrieves an
adapter status block after an operation which requested suppress
exception (SE). The status information is returned in the location
specified by the data operand of the TERMCTRL instruction.

The Reset Adapter command resets the GPIB adapter and clears
any pending interrupts.

!'~~\

Vi'

c

o

o

o

TERMCTRL (GPIB)
TERMCTRL - Request special terminal functions (continued)

options:

SDC The Selected Device Clear command causes the system to reset the
specified listener devices.

SPD The Serial Poll Disable command disables the serial poll status
reporting ability of the devices previously enabled.

SPE The Serial Poll Enable command initializes the specified talker
devices to present status in response to a parallel poll.

SPL Serial Poll Status reads the results of the latest serial poll into
storage.

STAT

WPPL

WRIT

Read Adapter Cycle Steal Status returns the GPIB adapter cycle
steal status resulting from a previous operation. The status
information is returned in the storage location indicated by the data
operand of this command.

The Write Parallel Poll command does a parallel poll of the devices
that were previously enabled by a PPE command.

A Write Data operation places device programming information or
data on the bus for those devices specified as listeners.

When using more than one option, separate them with commas and enclose them
all in parentheses.

EOI The end-or-identity terminator is a signal used by a talker to
indicate the last byte of a block of data. The adapter ends a read
operation with fewer than the specified number of characters if a
talker signals an end-or-identity condition. The adapter can
establish an EOI condition by requesting the EOI option. EOI is
valid for the following commands: CON, MON, READ, and WRIT.
You may not specify EOI together with the end-of-string (EOS)
option.

EOS Encountering an end-of-string terminator ends a read operation
immediately. EOS is valid only for the MON and READ
commands, but it cannot be coded in the same instruction with the
EOIoption.

SE The Suppress Exception prevents the reporting of exception
conditions because of incorrect length records (ILR). An ILR
exception occurs when a GPIB read is ended with fewer than the
specified number of characters read. The contents of the residual
status block (RSB) is meaningful only for this condition. SE is valid
only for the commands MON and READ.

Chapter 2. Instruction and Statement Descriptions LR-487

TERMCTRL (GPIB)
TERMCTRL - Request special terminal,functions(continuedl

TO The Timer Override option causes the adapter to wait for an
operation to complete. All GPIB commands can specify TO except
for RSET, RSB, STAT, IFC, WPPL, RPPL, and SPL.

data Use this operand to specify additional information for the commands STAT,
RSB, or RPPL, or for the option EOS.

LR-488 SC34-0643

Use it to specify the label of an address where a program will store status data
when you code it with commands STAT, RSB, or RPPL.

Specify either the EOS character or the address of a word which contains, in bits
8 - 15, the EOS character when you use it with the EOS option.

o

o

o

o

o

TERMCTRL (5/1 - 5/1)
TERMCTRL - Request special terminal functions (continued)

Series/1-to-Series/1

The Event Driven Executive provides support for the Series/1-to-Series/1 Attachment, RPQ
D02241 and RPQ D02242. This attachment allows an application to communicate with two or
more Series/1 processors over a communications link.

Either Series/1 processor can begin a data transfer operation. To complete data transfer
operations, issue a read (READTEXT), write (PRINTEXT), or control (TERMCTRL)
instruction through an application program. Call the issuing processor the "initiating" processor.
Call the processor that must respond with the opposite instruction the "responding" processor.

For TERMCTRL operations, the required state of the "other" processor (initiating or
responding) depends on the particular type of TERMCTRL operation you want to perform.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

function:

TERMCTRL function,opnd 1 ,opnd2,count, WAIT=

function
WAIT=NO
opnd1,opnd2

Description

ABORT Causes a Write ABORT operation. The responding processor will
cause the operation on the beginning processor to end the last
operation. A return code of 1010 is returned in the task code word.
If the operation is attempted but no request is pending from the
initiating processor, an error code is returned.

Both the initiating and responding processors must have active
Series1-to-Series/1 application programs for this request to be
meaningful. The ABORT function is only valid for the responding
processor.

IPL Causes the initiating processor to send an IPL request to the
responding processor. The processor initiating the IPL transfers
from the address opnd1 indicates, the number of bytes its count
operand specifies. Opnd2 indicates the the address key from which
the storage load will be sent.

The responding processor receives a system reset from the
attachment then enters load mode and receives the storage load.

Chapter 2. Instruction and Statement Descriptions LR-489

TERMCTRL (5/1 - S/1)
TERMCTRL - Request special terminal functions (continued)

opndl

LR-490 SC34-0643

RESET Causes a device reset to the attachment specified by the most recent
ENQT instruction. This will clear any pending interrupt or busy
condition.

RESET can be issued anytime, by either processor, regardless of the
state of the other processor.

STATUS Obtains status information from the responding processor. Opndl
specifies the address of a two-word block of storage which will
receive the header data. The header data represents requests the
initiating processor issues. If you code opnd2, it is the target
address of the diagnostic jumper word plus the 11 cycle steal status
words. Read cycle steal status words only following an error.
Normally, the contents will be zero.

Use this operand with the IPL and STATUS functions. When you use it with
IPL, it specifies the address from which you wish to send the storage load to the
responding processor.

When you use opnd 1 with the ST A TUS function, it specifies an address where
the two-word header is to be stored.

You can use the contents of the 2-word header to determine the attached
processor operations as follows:

Word 1

Word 2

bits 0 - 1
bit 2

bits 4 - 7
bits 8 - 15

=0
= 0 The responding processor

has issued a READTEXT
= 1 The responding processor

has issued a PRINTEXT
Checksum value

=0

Specifies the number of bytes to be transferred.

o

o

o

TERMCTRL (5/1 - S/1) o TERMCTRL - Request special terminal functions (continued)

opnd2

'\ O~,~

count

WAIT

o

Use this operand with the IPL and STATUS functions. When ypu use it with IPL,
it specifies the address key for the storage load. Code an integer ,specifying the
address key (the partition number minus 1).

When you use this operand with the STATUS function, it specifies two addresses.
One is the address in which to place the I-word jumper status. The other is the
II-word cycle steal status information.

The status words can be used to determine the status of the attachments as follows:

Word 0 jumper word
bits 0 - 7

bit 8
bit 9

= 00000000 = RPQ D02242
00000001 = RPQ D02241
00000010 = RPQ D02241
00000011 = invalid

= RPQ D02241 is active
= RPQ D02242 is active

Words 1-12 contain the attachment cycle steal status.
These words will be zero unless an error has occurred on the device.

Note: IBM Series/ i-to-Series/ i Attachment RPQs D0224i & D02242 Custom
Feature, GA34-1561 provides further descriptions of the bit settings and the
contents of words 1 - 12.

The count operand is used with the IPL function to specify the number of bytes
to be sent to the processor receiving the IPL.

This operand, when coded WAIT = YES, prevents control from being returned to
the initiating processor until the responding processor issues a successful
READTEXT or PRINTEXT operation. Note that neither a TERMCTRL
ABORT nor TERMCTRL RESET can override this operand when it is coded
WAIT= YES. The default for this operand is WAIT=NO.

Chapter 2. Instruction and Statement Descriptions LR-491

TERMCTRL (Teletypewriter)
TERMCTRL - Request special terminal functions (continued)

Teletypewriter Attached Devices

Syntax Examples

This can be a teletypewriter-equivalent device such as a 3101 operated in character mode or an
ASR 33/35 connected to a teletypewriter adapter.

Syntax:

label TERMCTRL function,ATTN=

Required: function
Defaults: none
Indexable: none

Operand Description

function:

SET Enables the attention function for the device (when ATTN=YES)
or disables the attention function for the device (when
ATTN=NO).

DISPLAY Causes any buffered output to be written to the teletypewriter.

ATTN = NO, to disable the attention function.

YES, to enable the attention function.

This operand must be used with the SET function.

1) Display the contents of the buffer.

TERMCTRL DISPLAY DISPLAY THE BUFFER

2) Disable the attention key function.

TERMCTRL SET,ATTN=NO

3) Enable the attention key function.

TERMCTRL SET,ATTN=YES

LR-492 SC34-0643

o

{)

o

o

o

o

TERMCTRL (Virtual)
TERMCTRL - Request special terminal functions (continued)

Virtual Terminal

Virtual terminal support uses the PRINTEXT and READTEXT instructions to communicate
between programs. It requires two TERMINAL configuration statements and the supervisor
module IOSVIRT. Virtual terminal support provides synchronization logic. For details on
virtual terminal other than TERMCTRL operands, refer to the Communications Guide.

Syntax:

label TERMCTRL function,code,ATTN=

Required: function
Defaults: none
Indexable: none

Operand Description

function:

code

DISPLAY Causes any buffered output to be transmitted across the virtual
channel.

PF Causes a simulated attention interrupt or program function key
interrupt to be presented if the program is communicating with
another program in the same processor (DEVICE=VIRT) or with a
program in another processor (DEVICE=PROC).

If the code is not specified or is zero, the keyboard task responds to
the next READTEXT with ">" and waits for an attention list code
to be returned. If code has a nonzero value, "x", the attention list
code $PFx is automatically generated and the ">" response does
not occur.

The code may be a self -defining term or a variable containing the
desired value.

SET Enables the attention function for the device (when ATTN = YES)
or disables the attention function for the device (when
ATTN=NO).

The attention or PF key value to be presented when using the PF function. This
operand determines the attention or function key value.

Chapter 2. Instruction and Statement Descriptions LR-493

TERMCTRL (Virtual)
TERMCTRL - Request special terminal functions (continued)

Coding Examples

ATTN = NO, disables attention function acknowledgement by the system.

YES, enables attention function acknowledgement by the system.

A systems ability to send attention interrupts is not affected in either case. Each
setting of this operand controls terminal operations until reset.

This operand must be used with the SET function.

1) The following example may be used for program communication using virtual terminal
support when attention list processing is implemented with the PF key evaluation.

The TERMCTRL instruction at label Tl disables the attention key for the virtual terminal
device. At label T2, the TERMCTRL instruction presents a program function key interrupt.

T1

*

*
T2

ENTRCMD

ENQT
LOAD
ENQT
TERMCTRL
READTEXT
TCBGET
DEQT
IF

B
PGM4,LOGMSG=NO
A
SET,ATTN=NO
LINE,MODE=LINE
RETURNCD,$TCBCO
A
(RETURNCD,EQ,S) ,GOTO,ENDIT

GET VIRTUAL CHANNEL B
LOAD COMMUNICATING PGM
GET VIRTUAL CHANNEL A
DISABLE ATTENTION KEY
GET OUTPUT FROM PGM4
GET RETURN CODE
RELEASE CHANNEL A

IF PGM4 ENDED, STOP
IF (LINE,EQ,ENTRCMD, (13,BYTE)) IF PGM4

REQUESTS INPUT COMMAND
TERMCTRL PF,4 SEND PF4 (SEARCH VOLUME)

ENDIF

PROGSTOP
DATA C'ENTER COMMAND'

LR-494 SC34-0643

o

o

o

o

o

o

TERMCTRL (Virtual)
TERMCTRL - Request special terminal functions (continued)

2) The following example may be used for program communication using virtual terminal
support when attention list processing is implemented with the PF key evaluation.

Consider the following main program example for ease of coding. In it, two subroutines manage
the virtual terminal on the companion side of the channel which will be referred to as the B side.

TASK
START

PROGRAM START
EQU *
ENQT
LOAD
ENQT
MOVE

*

VIRTB
(PGM4,EDX003) , LOGMSG=NO
VIRTA
MESSAGE, TST, (4,BYTES)

ENQUEUE ON B SIDE OF CHANNEL
LOAD PROGRAM
ENQUEUE ON A SIDE OF CHANNEL
INITIALIZE ATTENTION LIST CMD.

CALL SENDCMD GO SEND COMMAND TO B SIDE
CMD FOR THE B SIDE

VIRTA
VIRTB
MESSAGE
TST
BUFFER
CARET

PROGSTOP
IOCB CDRVTA
IOCB CDRVTB
TEXT LENGTH=8
TEXT C' $A 3'
TEXT LENGTH=80
DATA C'>'

OF CHANNEL.

3) The following subroutine handles transmission of attention list processing commands
destined for the B side of the channel.

SUBROUT SENDCMD
TERMCTRL PF,O
READTEXT BUFFER,MODE=LINE

IF
(TASK,EQ,5)

CALL
ENDIF
IF

PLACE

(TASK,EQ,-1) ,OR, (TASK,EQ,-2)
(BUFFER,EQ,CARROT)

MESSAGE
IF

PRINTEXT

DO
READTEXT

ENDDO
ELSE

UNTIL, (TASK,EQ,5)
BUFFER, MODE=LINE

ERROR PROCESS

ENDIF
ELSE

ERROR PROCESS

ENDIF
RETURN

SEND ATTENTION TO B SIDE
READ RESPONSE FROM B SIDE

IF THIS IS AN END OF
ATTENTION OR PROGSTOP
GO CORRECT PARTITION

IF RETURN CODE GOOD
AND GOT THE I>' SIGN
SEND THE ATTENTION LIST
COMMAND TO THE B SIDE
CHECK FOR THE B SIDE
ATTENTION LIST PROCESSING

RETURN TO CALLING PROGRAM.

Chapter 2. Instruction and Statement Descriptions LR-495

TERMCTRL (Virtual)
TERMCTRL - Request special terminal functions (continued)

4) The following subroutine handles recovery of the address space for the keyboard task on the
B side of the channel. This occurs at a progstop as a result of secondary and tertiary program
loads.

LR-496 SC34-0643

PLACE SUBROUT
IF (BUFFER,EQ,CARROT) IF RESPONSE IS I>'

PRINTEXT "$CP X"
TERMCTRL DISPLAY
DO UNTIL, (TASK,EQ,5)
READTEXT BUFFER,MODE=LINE
ENDDO
TERMCTRL
READTEXT

ENDIF
RETURN
ENDPROG
END

PF,O
BUFFER, MODE=LINE

RECOVER THE PARTITION
SEND COMMAND
CHECK FOR THE END OF
ATTENTION LIST PROCESSING

SEND ATTENTION TO THE B SIDE
READ RESPONSE

RETURN TO THE CALLER

o

o

o

o

o

o

TEXT
TEXT - Define a text message or text buffer

The TEXT statement defines a message or a storage area for character data. You can store
character data in either EBCDIC or ASCII code.

You can use the PRINTEXT instruction to print or display a message on a terminal. The
READTEXT instruction can be used to read a character string from a terminal into the storage
area defined by the TEXT statement.

READTEXT and GETEDIT instructions described in this manual may be used to modify the
TEXT statement. PRINTEXT and PUTEDIT instructions, also described in this manual, use
the TEXT statement to determine the number of values to print.

In storage, the first word of each TEXT statement contains a length byte and a count byte. The
length byte (byte 0) contains the size of the storage area in bytes. The count byte (byte 1)
shows the actual number of characters in the storage area.

Figure 10 on page LR-499 shows the structure of the TEXT statement.

Syntax:

label

Required:
Defaults:

TEXT 'message', LENGTH=,CODE=

'message' or LENGTH=
CODE=E EBCDIC is the standard internal

representation of all character
data

Indexable: none

Operand Description

label The label of the first byte of text. The GETEDIT, PUTEDIT, READTEXT, and
PRINTEXT instructions refer to this label.

'message' Any character string defined between apostrophes. The count field will equal the
actual number of characters between apostrophes.

If you do not code this operand, you must code LENGTH, and the storage area
is filled with EBCDIC blanks. You should not code this operand if you use the
storage area initially for input.

If the LENGTH operand is not coded and the count value is even, then
LENGTH = count. However, if the count value is odd, then
LENGTH=count+ 1.

Use two apostrophes to represent each printable apostrophe.

Chapter 2. Instruction and Statement Descriptions LR-497

TEXT
TEXT - Define a text message or text buffer (continued)

Syntax Examples

The symbol "@" causes a carriage return or line feed to occur on roll screen
terminals.

LENGTH = The size (in bytes) of the storage area. The maximum value you can code is 254.

CODE=

If you do not code this operand, you must code the 'message' operand, and
LENGTH equals the number of characters between the apostrophes.

The system truncates messages that exceed the length of the storage area. If the
message does not fill the storage area, the system pads the area to the right of
message with EBCDIC blanks.

Note: With $SlASM, TEXT has a maximum length of 98 and a default length
of 64.

If you do not code the 'message' operand, the system fills the storage area with
EBCDIC blanks and the count byte is equal to the length byte.

Defines the data type. Code E for EBCDIC or A for ASCII. E is the default.

1) The PRINTEXT instruction displays the phrase "A MESSAGE" on a terminal.

PRINTEXT MSG1

MSG1 TEXT 'A MESSAGE'

2) The PRINTEXT instruction displays the phrase "ABC " on a terminal. Because the text
buffer length is 10 bytes and the message is only 3 bytes long, the system fills the buffer space
to the right of the message with blanks. CODE=A sets the character date type to ASCII.

PRINTEXT MSG2

PROGSTOP
MSG2 TEXT 'ABC' ,LENGTH=10,CODE=A

LR-498 SC34-0643

o

c

o

0

o

TEXT
TEXT - Define a text message or text buffer (continued)

3) The READTEXT instruction waits for a response entered from a terminal. The system will
place the response in the TEXT statement labeled MSG#. If the response has fewer than 30
characters, the system pads the storage area to a length of 30 bytes. If the response is more
than 30 characters, the system truncates it after reading 30 bytes.

READTEXT MSG#,'ENTER YOUR HOMETOWN'

PROGSTOP
MSG# TEXT LENGTH=30

label TEXT 'message',LENGTH = length,CODE =

I

L length

count

label m
e

s

s count -

a
g

e

blank

blank

blank

Figure 10. TEXT Statement

ASCII
or
EBCDIC

} 2 bytes

Length in bytes

Chapter 2. Instruction and Statement Descriptions LR-499

TITLE
TITLE - Place a title on a compiler listing

Coding Example

LR-SOO SC34-0643

The TITLE statement places a title at the top of each page of the compiler listing. A program
can contain more than one TITLE statement. Each statement generates a new title on the page
that follows it. The system repeats this title on each page until it encounters another TITLE
statement.

Syntax:

blank TITLE message

Required: message
Defaults: none

Operand Description

message For the macro and host assemblers, you can code an alphameric character string
up to 100 characters in length. The string must be enclosed in apostrophes.

The $EDXASM compiler will accept an alphameric string of up to 48 characters.
The string must be enclosed in apostrophes and must be all on one line.

See the PRINT statement for an example using TITLE.

o

o

o

TP o TP Instruction - Perform Host Communications Facility Operations

()

o

The Host Communications Facility instruction (TP) can do the following operations:

• Write to a host data set (TP WRITE)

• Read from a host data set (TP READ)

• Submit a background job to the host system (TP SUBMIT)

• Get the time and date from the host system (TP TIMEDATE)

• Set the occurrence of a Series/ 1 event so it can be tested by a program running on the host
system (TP SET)

Test for the occurrence of an event set by the host system (TP FETCH)

• Erase the record, on the host system, of an event that occurred on either the Series/ 1 or the
host system (TP RELEASE.)

You do each operation using a different format of the TP instruction. Other TP instruction
formats prepare the Series/l to do an operation (TP OPENIN/TP OPENOUT) or end an
operation (TP CLOSE). Each of the TP formats is described in the following section. Refer to
the Communications Guide for sample programs using the TP instruction formats.

Chapter 2. Instruction and Statement Descriptions LR-50l

TP (CLOSE)
TP Instruction - Perform Host Communications Facility
Operations (continued)

TP (CLOSE) - End a transfer operation

Return Codes

TP CLOSE ends a transfer operation. Use this instruction to end an operation begun with TP
OPENOUT or with TP OPENIN.

Notes:

1. If an error occurs, the system automatically closes an open data set. The only time you must
issue a TP CLOSE is when a data set transfer is being ended and no errors have occurred.
This situation would occur, for instance, if only 10 records were being written to or read
from a data set capable of containing 20 records.

2. Always test the return code after you issue a TP CLOSE because some errors are only
detected at this time (return codes 50 and 51, for example).

3. While you have an open data set, no one else is able to use the facility.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

CLOSE

ERROR=

TP

CLOSE
none
none

Description

CLOSE,ERROR=

Code as shown.

The label of the first instruction of the routine to be invoked if an error condition
occurs during this operation. If you do not code this operand, control passes to
the next sequential instruction and you must test for errors.

All return codes for the TP instruction are listed under TP (WRITE).

LR-502 SC34-0643

o

o

o

o

o

o

TP (FETCH)
TP Instruction - Perform Host Communications Facility
Operations (continued)

TP (FETCH) - Test for a record in the system-status data set

Return Codes

TP FETCH tests for the existence of a specific record in the System-Status Data Set on the host
system and, optionally, reads in the associated data record.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

FETCH

stloc

length

ERROR=

Px=

TP FETCH,stloc,length, ERROR=, P2=, P3=

FETCH,stloc
length=O
stloc,length

Description

Code as shown.

The label of a STATUS instruction. See the STATUS instruction for more
details.

Specify the length, in bytes, of the data portion of the status record to be
received. A count of zero indicates that no data is to be received. The maximum
value of this field is 256.

The first instruction of the routine to be invoked if an error condition occurs
during this operation. If you do not code this operand, control is returned to the
next sequential instruction and you must test for errors.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

All return codes for the TP instruction are listed under TP (WRITE).

Chapter 2. Instruction and Statement Descriptions LR-503

TP (OPENIN)
TP Instruction - Perform Host Communications Facility
Operations (continued)

TP (OPENIN) - Prepare to read data from a host data set

TP OPENIN prepares the Series/1 to read data from a host data set.

Syntax:

label TP OPEN I N,dsnloc, ERROR=, P2=

Required: OPENIN,dsnloc
Defaults: none
Indexable: dsnloc

Operand Description

OPENIN Code as shown.

dsnIoc The label of a TEXT statement that specifies the name of a host data set of
standard format.

0'· .. '·' , ,

The data set can be a sequential data set or a partitioned data set with member
name included. 0

ERROR =

P2=

Return Codes

The first instruction of the routine to be invoked if an error condition occurs
during this operation. If you do not code this operand, control is returned to the
next sequential instruction and you must test for errors.

Parameter naming operand. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code this operand.

All return codes for the TP instruction are listed under TP (WRITE).

LR-S04 SC34-0643

o

o

(~)

o

TP (OPENOUT)
TP Instruction - Perform Host Communications Facility
Operations (continued)

TP (OPENOUT) - Prepare to transfer data to a host data set

Return Codes

TP OPENOUT prepares the Series/Ito transfer data to a host data set.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

OPENOUT

dsnloc

ERROR=

P2=

TP OPENOUT,dsnloc, ERRO R=, P2=

OPENOUT,dsnloc
none
dsnloc

Description

Code as shown.

The label of a TEXT statement that specifies the name of a host data set of
standard format.

The data set can be a sequential data set or a partitioned data set with member
name included.

The first instruction of the routine to be invoked if an error condition occurs
during this operation. If you do not code this operand, control is returned to the
next sequential instruction and you must test for errors.

Parameter naming operand. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code this operand.

All return codes for the TP instruction are listed under TP (WRITE).

Chapter 2. Instruction and Statement Descriptions LR-505

TP (READ)
TP Instruction - Perform Host Communications Facility
Operations (continued)

TP (READ) - Read a record from the host

Return Codes

LR-506 SC34-0643

TP READ reads a data record from the host system.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

READ

buffer

count

END =

ERROR=

Px=

TP READ,buffer,count, EN D=, ERROR=, P2=, P3=

READ,buffer
count=256
buffer,count

Description

Code as shown.

The label of the data buffer where the record is to be stored. This bufferAshould
be generated with, or should conform to the specifications of, a BUFFER
statement specifying TPBSC.

The maximum number of bytes to be read. For variable-length records, this
count includes the 4-byte Record Descriptor Word (RDW). Refer to the
Communications Guide for more details on variable-length records.

The first instruction of the routine to be invoked if an "end-of-data-set"
condition is detected (return code 300). If you do not specify this operand, the
system treats the end of data set condition as an error.

The first instruction of the routine to be invoked if an error condition occurs
during the execution of this operation. If you do not specify this operand,
control is returned to the next sequential instruction and you must test for errors.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR -12 for a detailed description of how to code these operands.

All return codes for the TP instruction are listed under TP (WRITE).

o

Ci

o

o

o

TP (RELEASE)
TP Instruction - Perform Host Communications Facility
Operations (continued)

TP (RELEASE) - Delete a record in the system-status data set

Return Codes

TP RELEASE deletes a specific record in the System-Status Data Set on the host system and,
optionally, reads the associated data record.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

RELEASE

stloc

length

ERROR=

Px=

TP RELEASE,stloe,length, ERROR=, P2=, P3=

RELEASE,stloe
length=O
stloe, length

Description

Code as shown.

The label of a STATUS instruction. See the STATUS instruction for more
details.

Specify the length, in bytes, of the data portion of the status record to be
received. A count of zero indicates that no data is to be received. The maximum
value of this field is 256.

The first instruction of the routine to be invoked if an error condition occurs
during this operation. If you do not code this operand, control is returned to the
next sequential instruction and you must test for errors.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

All return codes for the TP instruction are listed under TP (WRITE).

Chapter 2. Instruction and Statement Descriptions LR-507

TP (SET)
TP Instruction - Perform Host Communications Facility
Operations (continued)

TP (SET) - Write a record in the system-status data set

Return Codes

TP SET writes a record in the System-Status Data Set on the host system.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

SET

stloc

length

ERROR =

Px=

TP SET,stloc,length, ERROR=, P2=, P3=

SET,stloc
length=Q
stloc,length

Description

Code as shown.

The label of a STATUS instruction. See the STATUS instruction for more
details.

Specify the length, in bytes, of the data portion of the status record to be
transmitted. A count of zero indicates that no data is to be transmitted. The
maximum value of this field is 256.

The first instruction of the routine to be invoked if an error condition occurs
during this operation. If you do not code this operand, control is returned to the
next sequential instruction and you must test for errors.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

All return codes for the TP instruction are listed under TP (WRITE).

LR-508 SC34-0643

o

o

o

o TP Instruction - Perform Host Communications Facility
Operations (continued)

TP (SUBMIT) - Submit a job to the host

TP (SUBMIT)

TP SUBMIT submits a job from the Series/Ito the host batch job stream.

Syntax:

label TP SUBM IT,dsnloc, ERROR=, P2=

Required: SUBMIT,dsnloc
Defaults: none
Indexable: dsnloc

Operand Description

SUBMIT Code as shown.

dsnloc The label of a TEXT statement that specifies the name of a host data set
containing the job (JCL and optional data) to be submitted. You can code
either:

o TEXT "dsname" for a sequential data set, or

ERROR =

P2=

o

• TEXT "dsname(membername)" for a partitioned data set.

In systems with a HASP/Host Communications Facility interface, specifying
DIRECT for dsnloc allows immediate transmission of data records to the job
stream without using an intermediate host data set. To use this facility, code the
following:

*

TP SUBMIT, DIRECT
TP WRITE,buffer,80

* Code one TP WRITE,buffer,80 for each job stream record

* TP CLOSE

The first instruction of the routine to be invoked if an error condition occurs
during this operation. If you do not code this operand, control is returned to the
next sequential instruction and you must test for errors.

Parameter naming operand. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code this operand.

Chapter 2. Instruction and Statement Descriptions LR-509

TP (SUBMIT)
TP Instruction - Perform Host Communications Facility
Operations (continued)

Return Codes

All return codes for the TP instruction are listed under TP (WRITE).

LR-SI0 SC34-0643

o

o

o

o

o

o

TP (TIMEDATE)
TP Instruction - Perform Host Communications Facility
Operations (continued)

TP (TIMEDATE) - Get time and date from the host

Return Codes

TP TIMED ATE obtains the time of day (hours, minutes, and seconds) and the date (month,
day, and year) from the host system.

Syntax:

label TP TIMEDATE,loc,ERROR=,P2=

Required: TIMEDATE,loc
Defaults: none
Indexable: loc

Operand Description

TIMEDATE Code as shown.

loe The label of a 6-word data area where time of day and date are stored in the
order: hours, minutes, seconds, month, day, and year.

ERROR=

P2=

The label of the first instruction of the routine to be invoked if an error condition
occurs during this operation. If you do not code this operand, control passes to
the next sequential instruction and you must test for errors.

Parameter naming operand. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code this operand.

All return codes for the TP instruction are listed under TP (WRITE).

Chapter 2. Instruction and Statement Descriptions LR -511

TP (WRITE)
TP Instruction - Perform Host Communications Facility
Operations (continued)

TP (WR ITE) - Write a record to the host

TP WRITE sends a data record to the host system.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

WRITE

buffer

count

END =

ERROR=

Px=

LR-S12 SC34-0643

TP WRITE,buffer,cQunt, EN D=, ERROR=, P2=, P3=

WRITE,buffer
cQunt=256
buffer,cQunt

Description

Code as shown.

The label of the data buffer that contains the record to be transmitted. This
buffer should be generated with, or should conform to the specifications of, a
BUFFER statement specifying TPBSC.

The number of Series/l bytes to be transferred. For variable-length records,
this includes the 4-byte Record Descriptor Word (RDW).

The label of the first instruction of the routine to be invoked if the system detects
an "end of data set" (EOD) condition (return code 400). If this operand is not
specified, the system treats an EOD as an error.

The label of the first instruction of the routine to be invoked if an error condition
occurs during the execution of this operation. If this operand is not specified,
control passes to the next sequential instruction and you must test for errors.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

o

o

o

o

0

0 1,

"

TP (WRITE)
TP Instruction - Perform Host Communications Facility
Operations (continued)

Return Codes

Return codes are returned in the first word of the task control block (TCB) of the program or
task issuing the instruction. The label of the TCB is the label of your program or task
(taskname). Because program execution halts until the operation is complete, your program
must test the return code to determine if the operation is successful.

Note: If an error is detected, an open data set is automatically closed for you.

Code Description Module
-1 Successful completion Supervisor
1 Illegal command sequence Supervisor
2 TP I/O error Supervisor
3 TP I/O error on host HCFCOMM
4 Looping bidding for the line Supervisor
5 Host acknowledgement to Supervisor

request code was neither ACKO,
ACK1, WACK, or a NACK

6 Retry count exhausted - last Supervisor
error was a timeout: the host
must be down

7 Looping while reading data from Supervisor
the host

8 The host responded with other Supervisor
than an EOT or an ENQ when an
EOT was expected

9 Retry count exhausted - last error Supervisor
was a modem interface check

10 Retry count exhausted - last error Supervisor
was not a timeout, modem check,
block check, or overrun

11 Retry count exhausted - last error Supervisor
was a transmit overrun

50 I/O error from last I/O in DSWRITE DSCLOSE
51 I/O error when writing the last DSCLOSE

buffer

100 Length of DSNAME is zero HCFCOMM
101 Length of DSNAME exceeds 52 HCFCOMM
102 Invalid length specified for I/O HCFINIT

Chapter 2. Instruction and Statement Descriptions LR -513

Instruction and Statement Descriptions
TP Instruction - Perform Host Communications Facility
Operations (continued)

Code Condition
200 Data set not on volume specified

for controller
201 Invalid member name specification
202 Data set in use by another job
203 Data set already allocated to

this task
204 Data set is not cataloged
205 Data set resides on multiple

volumes
206 Data set is not on a direct access

device
207 Volume not mounted (archived)
208 Device not online
209 Data set does not exist
211 Record format is not supported
212 Invalid logical record length
213 Invalid block size
216 Data set organization is partitioned

and no member name was specified
217 Data set organization is sequential

and a member name was specified
218 Error during OS/ OPEN
219 The specified member was not found
220 An I/O error occurred during a

directory search
221 Invalid data set organization
222 Insufficient I/O buffer space

available

300 End of an input data set
301 I/O error during an OS/ READ
302 Input data set is not open
303 A previous error has occurred

LR-S14 SC34-0643

o
Module
HCFINIT

DSOPEN
DSOPEN

DSOPEN
DSOPEN

DSOPEN

DSOPEN
DSOPEN
DSOPEN
DSOPEN
DSOPEN
DSOPEN
DSOPEN

DSOPEN

DSOPEN
DSOPEN
DSOPEN

DSOPEN
DSOPEN C· DSOPEN

DSREAD
DSREAD
DSREAD
DSREAD

c

0

o

TP Instruction - Perform Host Communications Facility
Operations (continued)

Code Condition

400 End of an output data set
401 I/O error during an OS/ WRITE
402 Output data set is not open
403 A previous error has occurred
404 Partitioned data set is full

700 Index, key,and status record added
701 Index exists, key and status added
702 Index and key exist, status replaced
703 Error - Index full
704 Error - Data set full
710 I/O Error

800 Index and key exist
801 Index does not exist
802 Key does not exist
810 I/O error

900 Index and/or key released
901 Index does not exist
902 Key does not exist
910 I/O error
1 xxx An error occurred in a subordinate

module during SUBMIT. 'xxx' is
the code returned by that module.

Module

DSWRITE
DSWRITE
DSWRITE
DSWRITE
DSCLOSE

SET
SET
SET
SET
SET
SET

FETCH
FETCH
FETCH
FETCH

RELEASE
RELEASE
RELEASE
RELEASE

S7SUBMIT

Chapter 2. Instruction and Statement Descriptions LR -515

USER
USER - Use assembler code in an EDL program

The USER instruction allows you to use Series/1 assembler code within an EDL program.

Do not use Series/1 Assembler routines to issue input/output instructions to Series/1 standard
devices. Use only standard Event Driven Language input/output instructions.

Your Series/1 assembler routine uses a set of hardware registers to do operations. You should
save the contents of these registers on entry into the routine. You must restore the register
contents before returning control to the EDL program. Details of the conven;iohs that must be
followed are described under "Considerations when Coding Assembler Routines."

Syntax:

label USER

Required: name
Defaults: none
I ndexable: none

Operand Description

name, PARM=(parm1 , ... ,parmn),
P=(name1, ... ,namen)

name The entry point name of your Series/1 assembler routine.

PARM= A list of parameters that, are to be passed to your routine.

P= A list of names to be attached to the P ARM operands.

Considerations when Coding Assembler Routines

LR-516 SC34-0643

On entry to the Series/1 assembler routine, hardware register 1 points to your first parameter.
If no parameters are passed to the routine, register 1 points to the address of the next instruction
following the USER instruction. Hardware register 2 contains the address of the current task's
TCB. Your routine must preserve the contents of register 2 for eventual return to the
supervisor. The routine must also provide in register 1 the address of the next Event Driven
Language instruction to be executed when returning to the supervisor.

If parameters are passed to the routine, register 1 must be increased within your routine by
double the number of parameters used before returning to the supervisor. If you want to return
to an instruction other than the instruction following the USER instruction, you can set register
1 to the address of the desired instruction. In all cases, the assembly language routine must exit
by a branch to the label RETURN.

o

C\
)

o

o

o

o

USER
USER - Use assembler code in an EDL program (continued)

Rl

R1 -..

The USER instruction requires one of the following:

• Allowing the RETURN = operand on the ENDPROG statement in your program to default
to RETURN = YES

• $EDXLINK used to include the $$RETURN and the $$SVC object modules.

The autocall feature of $EDXLINK also can be used. Refer to the Event Driven Executive
Language Programming Guide for additional information on $EDXLINK.

Figure 11 shows the control flow to and from a Series/l assembler routine.

No parameters

• name1 EOU *

• •
USER name1 •

+ DC X'OOAE' Series/1 assembler instructions
+ DC A (name1) •

EDX-instruction •
• MVA NEXTEDL,R1

• MVA TCB,R2
B RETURN

i......- RETURN interface routine

With parameters

• r name1 EOU*

• •
USER name1 ,PARM = (a,b) •

+ DC X'OOAE' Series/1 assembler instructions
+ DC A (name1) •
+ DC A (a) •
+ DC A (b) ABI4R1

EDX-instruction B RETURN

• I R ETU R N interface routine
•

Note: + indicates statements generated by $S1 ASM.

Figure 11. Calling a Series/1 Assembler Routine and Returning

You can pass parameters as constants, which will be stored in the calling list, or pass the
symbolic names (addresses) of the parameters. In the latter case, the address of the parameter is
contained in the calling list.

Chapter 2. Instruction and Statement Descriptions LR-517

USER
USER - Use assembler code in an EDL program (continued)

LR -518 SC34-0643

If the parameter is a constant, it may be addressed through hardware register 1, which points to
the first parameter on entry to the user routine. The instruction,

MVW (R1 ,0) ,R3

will load the parameter into Register 3.

o

I, 0·.-·'"

o

o

C' II "I

0·
'·,

"

USER
USER - Use assembler code in an EDL program (continued)

The second parameter also can be loaded by:

MVW (R1 ,2) ,R3

The following instruction shows how to acquire a parameter (in this case, the second) whose
address is passed in the calling sequence.

MVW (R 1 ,2) *, R3

Your routine is free to use all the registers if registers 1 and 2 are set properly for return to the
supervisor. The last instruction of your routine must branch to RETURN which is an entry
point in the interface module $$RETURN. You must link-edit this module to the assembler
routine with the $EDXLINK utility.

In the following example, an EDL program passes control to a Series/l assembler routine with
USER *+2. The routine passes control back to the EDL program with BAL RETURN,Rl.

MOVE A,B STANDARD INSTRUCTION EXAMPLE
ADD A, 10 ANOTHER INSTRUCTION

*
USER *+2 ENTRY TO ASSEMBLER CODE
MVW R2,SAVER2 SAVE HARDWARE REGISTER 2 (TCB)

ASSEMBLER CODE

OK EQU *
MVW SAVER2,R2 RESTORE HARDWARE REGISTER 2 (TCB)
BAL RETURN,R1 SET HARDWARE REGISTER 1 AND RETURN

*
MOVE B,A NOW BACK INTO THE EDL PROGRAM
SUB B, 10

If your EDL program contains assembler code, you must assemble the program using the
Series/l Macro or host assemblers. $EDXASM does not allow mixing Series/l code with the
Event Driven Language instructions. If your assembler routine is in a separate module, you
must assemble the routine using one of the macro assemblers and link-edit that module to the
EDL program with $EDXLINK.

For information regarding use of the USER command in logging errors refer to "$USRLOG -
Log Specific Errors From a Program" on page LR-599.

Chapter 2. Instruction and Statement Descriptions LR-519

WAIT
WAIT - Wait for an event to occur

The WAIT instruction allows your program to wait for an event to occur, such as an I/O
operation or a process interrupt. An event has an associated name specified by: you. The initial
status of any event defined by you is "event occurred" unless you explicitly reset the event with
the RESET instruction before issuing the WAIT or reset the event in the WAIT instruction.

WAIT normally assumes the event is in the same partition as the currently executing program.
However, it is possible to wait on an event in another partition using the cross-partition
capability of the WAIT instruction. See Appendix C, "Communicating with Programs in Other
Partitions (Cross-Partition Services)" on page LR-559 for an example that waits for an event to
occur in another partition. For more information on cross-partition services, refer to the Event
Driven Executive Language Programming Guide.

When compiling programs with $SlASM or the host assembler, ECBs are generated
automatically by the POST instruction when needed. When using $EDXASM, ECBs must be
explicitly coded unless one of the system event names previously described is used (PIx, TIMER,
DSn, and so on). When the WAIT is satisfied with a POST instruction, the post code is stored
in both the ECB and the waiting task's TCB code location.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

event

LR-520 SC34-0643

WAIT event,RESET,P1 =

event
event not reset before wait
event

Description

The label of the event for which the system is waiting.

For process interrupt, use PIx, where "x" is a user process interrupt number in
the range 1-99.

For intervals set by STIMER, use TIMER as the event name. Do not, however,
code RESET with TIMER. The system always resets the ECB associated with
the TIMER option.

For disk I/O events, use DSn or the DSCB name from a DSCB statement as the
event name.

For terminals, use KEY to cause the task to wait for an operator to press the
enter key or any PF key.

WAIT KEY suspends the issuing task until the enter key or a PF key is pressed.
Pressing one of these keys ends the WAIT condition and execution resumes with
the instruction following the WAIT KEY. There is no automatic transfer to an

o

(-"\
(J

./

o

o

o

o

WAIT
WAIT - Wait for an event to occur (continued)

RESET

Pl=

attention routine. The WAIT KEY instruction enqueues the currently active
terminal and temporarily inhibits the A TTNLIST capability while the task is
suspended by the WAIT instruction.

The key that has been pressed can be identified by the value stored in the second
word of the task control block (taskname+2). The program function keys
generate values as follows: PFI generates a value of 1, PF2 generates a value of
2, and so on. The enter key generates a value of O.

For a 3101 in block mode, pressing the SEND key to satisfy a WAIT KEY will
reset changed data tags.

If a READTEXT with TYPE=MODDAT A is to be executed after the WAIT
KEY, one of the PF keys must be pressed to satisfy the WAIT KEY instruction.

Any terminal I/O operation that takes place as a result of pressing the enter key
to satisfy aWAIT KEY instruction will cause a return code to be placed in the
first word of the task control block (taskname). If the return code is not a -1,
the address of this instruction will be placed in the second word of the task
control block (taskname+2). The terminal I/O return codes are described at the
end of the PRINTEXT and READTEXT instructions in this manual and also in
the Messages and Codes.

Reset (clear) the event before waiting. Using RESET will force the wait to occur
even if the event has occurred and been posted as complete.

Do not code this operand when you want the system to wait for an event you
specified on the EVENT operand of either a PROGRAM or a TASK statement.

Parameter naming operand. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code this operand.

Chapter 2. Instruction and Statement Descriptions LR-521

WAIT
WAIT - Wait for an event to occur (continued)

Coding Example

LR-S22 SC34~0643

The WAIT instruction, at label WI, suspends execution of the primary task until the loaded task,
PROG 1, signals its completion by posting the ECB labeled LOADECB.

The WAIT instruction at W2 suspends task execution until the operator presses a PF 1 key, PF2
key, or the enter key. When one of those keys has been pressed, the task uses the key number,
stored in task word 1, to determine what action to take.

The WAIT at label W3 suspends task execution until a 60-second timer has elapsed (it was set
by the preceding STIMER instruction).

TASK
LOADECB
BEGIN

W1

W2

PROGRAM BEGIN
ECB
EQU *

LOAD PROG1,EVENT=LOADECB
WAIT LOADECB

PRINTEXT '@HIT PF KEY 1 OR 2 TO INDICATE YOUR SELECTION'
WAIT KEY
IF (TASK+2,EQ,1)

GO TO RTN1
ELSE

IF (TASK+2,EQ,2)

STIMER 60000
W3 WAIT TIMER

o

o

WAITM
WAITM - Wait for one or more events in a list

The W AITM instruction waits for one or more events to occur from a list of events that you
specify with an MECB statement. Up to 20 W AITM operations can be active in the system at
anyone time.

See "MECB - Create a list of events" on page LR-269 for information on how to code the
MECB statement.

WAIT normally assumes the event is in the same partition as the currently executing program.
However, it is possible to wait on an event in another partition using the cross-partition
capability of the WAIT instruction. See Appendix C, "Communicating with Programs in Other
Partitions (Cross-Partition Services)" on page LR-559 for an example that waits for an event to
occur in another partition. For more information on cross-partition services, refer to the Event
Driven Executive Language Programming Guide.

Notes:

1. To use the W AITM instruction, you must have included the SW AITM module in your
system and modified the MECBLST keyword on the SYSTEM statement during system
generation (See thelnstallation and System Generation Guide for additional information.)

2. The W AITM instruction uses 1024 bytes of storage in partition 1.

3. The system processes the W AITM instruction in the same manner as the WAIT instruction.

label

Required:
Defaults:
Indexable:

Operand

mecb

RESET

Pl=

WAITM

mecb
none
mecb

Description

mecb,RESET,P1 =

The label of the MECB statement that defines the list of events.

Reset (clear) the events before waiting. Using RESET forces the wait to occur
even if the events have occurred and have been posted complete.

Parameter naming operand. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code this operand.

Chapter 2. Instruction and Statement Descriptions LR-523

WAITM
WAITM - Wait for one or more events in a list (continued)

Syntax Example

Post Codes

LR-S24 SC34-0643

Wait with reset on a list labeled MECB 1.

WAITM MECB1,RESET

The following post codes are returned in the first word of the MECB.

Code

X'FFFF
X'BADO'
X'BAD1'
X'BAD2'
X'BAD3'

Description

Successful completion
WAITM instruction not supported (SWAITM module not in system)
Too many WAITM operations active in system (maximum is 20)
Cannot reset MECB because another program is using it
Invalid number of events specified

o

0'.-.·"·:: II

c

o

WHERES
WHERES - Locate an executing program

The WHERES instruction locates another program executing elsewhere in the system. Note
that it is not operable with programs you are unable to cancel. These programs are those for
which names in storage have been changed. As a result, they do not cartcel with the $C
command. To locate another program, WHERES searches each partition in ascending order
from partition number 1 to determine if the program is contained in that partition. It indicates
results of that search by placing a return code in the first word of the task control block. If more
than one copy of the program exists, the system reports only the first copy found.

The WHERES instruction does the cross-partition service communication among independently
loaded programs. The address key value can be used as input to the cross-partition options of
WAIT, POST, READ, WRITE, ATTACH, ENQ, DEQ, BSCREAD, BSCWRITE, and MOVE.
The address can be used with an application-defined convention to gain addressability to data or
code routines within another program. One such technique is to get the contents of the
$STORAGE word from the located program's header and use that to address data which the
program has previously placed in its dynamic area. WHERES also can be used to determine if a
particular program is already loaded, thereby avoiding the need to load another copy. See
Appendix C, "Communicating with Programs in Other Partitions (Cross-Partition Services)" on
page LR-559 for examples using the WHERES instruction.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

progname

address

KEY =

WH ERES progname,address, KEY=, P1 =, P2=, P3=

progname, address
none
none

Description

The label of an 8-byte area containing the 1-8 character program name of the
program to be located. If the label has fewer than eight characters, the program
name must be left-justified and padded with blanks on the right. the program
name must begin on a full-word boundary.

The label of a word in which the load-point address of the located program will
be returned if the program is found. This address is the first byte of the program
and is also the beginning of the program header.

If the program is not located, a -1 is stored at this location.

The label of a word in which the address key of the partition containing the
located program will be returned if the program is found. The address key is one
less than the partition number.

Chapter 2. Instruction and Statement Descriptions LR-525

WHERES
WHERES - Locate an executing program (continued)

Coding Example

LR-526 SC34-0643

Px= Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.
P3 is the name of the KEY operand.

The following example demonstrates a use of the cross-partition service WHERES instruction.

$TCBADS is not changed by the WHERES instruction.

GETNAME EQU *
READTEXT PGMNAME,'@ENTER THE PROGRAM X

NAME TO BE FOUND'
IF (PGMNAME-1,EQ,O,BYTE),GOTO,GETNAME

FINDNAME EQU *
WHERES PGMNAME,ADDRESS,KEY=ADDRKEY IF THE PROGRAM IS

* FOUND, ADDRESS WILL CONTAIN THE
* ENTRY POINT ADDRESS AND ADDRKEY
* WILL CONTAIN THE ADDRESS KEY

*
NOPGM

*

IF (TASKNAME,NE,-1) ,GOTO,NOPGM
ADD ADDRKEY,1,RESULT=PARTNUM
PRINTEXT '@PROGRAM ',SKIP=2
PRINTEXT PGMNAME
PRINTEXT ' WAS FOUND IN PARTITION # '
PRINTNUM PARTNUM
PRINTEXT ' (ADDRESS SPACE '
PRINTNUM ADDRKEY
PRINTEXT ') AT LOAD POINT'
PRINTNUM ADDRESS
GOTO TRYAGAIN

EQU *
PRINTEXT PGMNAME
PRINTEXT ' WAS NOT FOUND IN ANY ADDRESS SPACE'

TRYAGAIN EQU *

* ENDIT

*
* PGMNAME
ADDRESS
ADDRKEY
PARTNUM

PRINT EXT PGMNAME
QUESTION '@DO YOU WISH TO TRY ANOTHER SEARCH' ,YES=GETNAME

EQU
GOTO

TEXT
DATA
DATA
DATA

* STOPPER

LENGTH=8
F'O'
F'O'
F'O'

STORE AREA FOR PROGRAM NAME
PROGRAM'S PARTITION LOAD POINT
ADDRESS SPACE KEY
PARTITION NUMBER (ADDRKEY + 1)

The READTEXT acquires the name of the program for which you are searching. If the Enter
key is pressed without typing a response to the READ TEXT instruction, the READ TEXT and
its PROMPT are issued again.

If the program is found, the program name, the address space in which it was located, and the
partition number are displayed on the terminal. Otherwise, the system displays a not found
message.

o

o

C)

o

WHERES
WHERES - Locate an executing program (continued)

Return Codes

You are always queried by the QUESTION instruction as to whether you wish to try another
search. If your reply is no, the program ends. If your reply is yes, the program branches to
GETNAME and the program executes again.

Return codes are returned in the first word of the task control block (TCB) of the program or
task issuing the instruction. The label of the TCB is the label of your program or task
(taskname) .

Code Description
-1 Program found
a Program not found

Chapter 2. Instruction and Statement Descriptions LR-527

WRITE
WRITE - Write records to a data set

The WRITE instruction transfers one or more records from a a buffer area to a disk, diskette, or
tape data set.

You can transfer (write) data sets to disk or diskette either sequentially or directly by relative
record. Records are 256 bytes long. The Operator Commands and Utilities Reference describes
the format of a record created with the text editor of $FSEDIT.

For tape data sets, you can write data sequentially only. Tape records can be from 18 to 32767
bytes long.

The WRITE instruction can take advantage of the cross-partition capability that enables your
program to share data with a program or task in another partition. Appendix
C, "Communicating with Programs in Other Partitions (Cross-Partition Services)" on page
LR-559 contains an example of the cross-partition WRITE operation. You can find more
information on cross-partition services in the Event Driven Executive Language Programming
Guide.

Syntax:

label WRITE DSx,loc,count,relrecno I blksize,PREC=,
EN D=, ERROR=, WAIT=, P1 =, P2=, P3=, P4=

Required:
Defaults:

DSx,loc
count=1, relrecno=Q or blksize=256,
WAIT=YES, PREC=S

Indexable: loc, count, relrecno or blksize

Operand Description

DSx The data set to which you are writing. Code DSx, where "x" is a positive integer
that indicates the relative position (number) of the data set in the list of data sets
you defined on the PROGRAM statement. The value can range from 1 to the
maximum number of data sets defined in the list. The maximum range is from
1-9.

loc

You can substitute a DSCB name defined by a DSCB statement for DSx.

The label of the buffer area from which data is to be transferred.

WRITE normally assumes the buffer is in the same partition as the currently
executing program. You can transfer records from a buffer in another partition,
however, by using the cross-partition capability of the WRITE instruction.

count The number of contiguous records you want written. The maximum value for
this field is 255. If you code 0 for this field, no I/O operation will be performed.
A count of the actual number of records transferred will be returned in the

LR-528 SC34-0643

o

o

o

o

o

WRITE
WRITE - Write records to a data set (continued)

relrecno

blksize

PREC=

second word of the task control block. If an end-of-data-set condition occurs
(fewer records remaining in the data set than specified by the count field), the
system writes as many records as will fit in the space remaining on the disk data
set and returns an end-of-data-set return code to the program.

The location, by relative record number, where the system is to write a record.
The record number is relative to the first record in the data set and the
numbering starts with 1. You can code a positive integer or the label of a data
area containing the value.

You can request a sequential write operation by coding a 0 or by allowing this
operand to default. Sequential WRITE instructions start with relative record 1 or
the relative record number specified by a POINT instruction. The supervisor
keeps track of sequential WRITE instructions and increments an internal
next-record-pointer for each record written in sequential mode (relrecno is 0).
Direct WRITE operations (relrecno is not 0) can be intermixed with sequential
operations, but this does not change the next-record-pointer used by sequential
operations.

If you code a self-defining term for this operand, or an equated value indicated
by a plus sign (+), then it is assumed to be a single-word value and is generated
as an inline operand. Because this is a one-word value, it is limited to a range of
1 to 32767 (X'7FFF').

If you code an indexable value or an address for this operand, the PREC
operand can be used to further define whether relrecno is to be a single-word or
double-word value.

If the PREC operand is coded as PREC=D, then the range of relrecno is
extended beyond the 32767 value to the limit of a double-word value
(2147483647 or X'7FFFFFFF').

The size, in bytes, of the record the system is to write to a tape data set. The
range is from 18 to 32767. You can code a self-defining term or the label of a
data area containing the value. If you do not code this operand or code a 0, the
system uses the default value of 256 bytes.

Do not code this operand in a WRITE instruction containing the relrecno
operand.

This operand further defines the relrecno operand when you specify an address
or indexable value for that operand. PREC=S (the default) limits the value of
relrecno to single-word precision or to a maximum value of 32767 (X'7FFF').

Coding PREC=D gives the relrecno operand a doubleword precision and
extends the range of its maximum value to a doubleword value of 2147483647
(X'7FFFFFFF').

Chapter 2. Instruction and Statement Descriptions LR-529

WRITE
WRITE - Write records to a data set (continued)

END =

ERROR =

WAIT =

LR-530 SC34-0643

Do not code this operand in a WRITE instruction containing tJIe blksize operand.

The label of the first instruction of the routine to be invoked if an
end-of-data-set condition is detected during the WRITE operation (return
code = 10). If you do not code this operand, the system treats an end-of-data-set
(EOD) condition as an error.

For tape, if an end-of-tape (EOT) condition is detected, the EOT path will be
taken with return code 24, even though the block was successfully written. See
the CONTROL instruction for setting the proper end-of-data (EOD) indicators
for an output tape. Multiple blocks (if specified by the count field) might not
have been successfully written. The second word of the TCB contains the actual
number of blocks written.

Do not code this operand if you code W AIT=NO.

You can set or change the end-of-data by using the SE command of $DISKUTI.
See Operator Commands and Utilities Reference for additional information.

The label of the first instruction of the routine to be invoked if an error condition
occurs during the execution of this operation. If you do not code this operand,
control passes to the instruction following the WRITE instruction and you must
test for any errors.

For tape, if END is not coded, the system treats an EOT as an error and returns
an EOT return code. The ERROR path is taken for all return codes other than
EOT or a -1. An attempt to write to a tape which has an unexpired date is also
an error.

Do not code this operand if you code WAIT=NO

YES (the default), to suspend the current task until the operation is complete.

NO, to return control to the current task after the operation is initiated. Your
program must issue a subsequent WAIT DSx to determine when the operation is
complete.

You cannot code the END and ERROR operands if you code WAIT=NO. You
must subsequently test the return code in the Event Control Block (ECB) named
DSx or in the first word of the task control block (TCB). The label of the TCB
is the label of the program or task (taskname).

Two codes are of special significance. A -1 indicates a successful end of
operation. A + 10 indicates an End-of-Data-Set and may be of logical
significance to the program rather than an error. For programming purposes,
any other return codes should be treated ,as errors.

o

o

o

o

o

WRITE
WRITE - Write records to a data set (continued)

Px= Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

Special Considerations

If your program is writing data to a diskette and you remove the diskette between write
operations and replace it with another diskette, the system writes data to the second diskette
before detecting an error.

Syntax Examples for Tape WRITE

1) This WRITE instruction writes a single 1000-byte record from location BUFF 1 to a tape data
set named OUTDATA. OUTDATA is on a standard-label (SL) tape that has volume serial
number 1025.

TASK1 PROGRAM START1,DS=((OUTDATA,1025))

START 1 WRITE DS1,BUFF1,1,1000,ERROR=ERR

2) This WRITE instruction writes two records to the tape data set. Each record is 502 bytes in
length. Record 1 is located at BUFF2, record 2 is located at BUFF2 + 502 bytes.

TASK2 PROGRAM START2,DS=((OUTDATA,1025))

START2 WRITE DS1,BUFF2,2,502,ERROR=ERR

Chapter 2. Instruction and Statement Descriptions LR -531

WRITE
WRITE - Write records to a data set (continued)

Coding Example

The WRITE instruction writes 256 bytes of data, beginning at the location labeled DISKBUFF,
into the next sequential record of the first data set specified in the PROGRAM statement. If an
end-of-file condition occurs during the write attempt, the program passes control to the label
EOFILE. If an unrecoverable I/O error is encountered during the WRITE operation, the
program will branch to the DSKWRERR label.

SAMPLE PROGRAM DS=(CHART1,CHART2)

NXTEMPLY EQU *

*

MOVEA
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
WRITE
GOTO

#1,DISKBUFF
(000,#1) ,NAME, (50,BYTE)
(050,#1) ,STRTADDR, (50,BYTE)
(100,#1) ,CITY, (50,BYTE)
(150,#1) ,ZIP, (6,BYTE)
(200,#1) ,JOBTITLE, (50,BYTE)
(250,#1) ,JOBDESC, (50,BYTE)
DS1,DISKBUFF,1,0,END=EOFILE,ERROR=DSKWRERR
NXTEMPLY

EOFILE EQU *
PRINTEXT '@** EMPLOYEE FILE HAS EXCEEDED AVAILABLE DISK SPACE'
GOTO ENDIT

*
DSKWRERR EQU *

PRINTEXT '@UNRECOVERABLE DISK WRITE ERROR ON EMPLOYEE FILE'
GOTO ENDIT
PROGSTOP

DISKBUFF BUFFER 256,BYTES
ENDPROG
END

Disk and Tape Return Codes

LR-532 SC34-0643

Disk and tape I/O return codes are returned in two places:

• The first word of the DSCB (either. DSn or DSCB name) named DSn, where n is the number
of the data set to which you are referring.

The first word of the task control block (TCB). The label of the TCB is the label of your
program or task (taskname).

The possible return codes and their meaning for disk and tape are shown in tables later in this
section.

If a tape error occurs, the read/write head positions itself immediately following the record in
which the error occurred. This indicates that a retry has been attempted but was unsuccessful.
The count field, in the WRITE instruction, mayor may not have been set to zero under this
condition.

0,
, I

o

o

o

o

o

WRITE
WRITE - Write records to a data set (continued)

You can get detailed information on an error by using the $LOG utility to capture the I/O error.
Refer to the Problem Determination Guide for information on how to use $LOG.

Note: If an error is encountered during a sequential I/O operation, the relative record number
for the next sequential request is not updated. This will cause errors on all following sequential
I/O operations.

Disk/Diskette Return Codes

Return
Code

-1
1

2
3
4
5
6
7

8

9
10

11

12
13

14

15

16

17

18

24
30

Condition

Successful completion.
I/O error and no device status present
(this code may be caused by the I/O area
starting at an odd byte address).
I/O error trying to read device status.
I/O error retry count exhausted.
Read device status I/O instruction error.
Unrecoverable I/O error.
Error on issuing I/O instruction.
A no record found condition occurred,
a seek for an alternate sector was performed,
and another no record found occurred,
for example, no alternate is assigned.
A system error occurred while processing
an I/O request for a 1024-byte sector diskette.
Device was offline when I/O was requested.
Record number out of range of data set- - may
be an end-of-file (data set) condition.
Data set not open or device marked unusable
when I/O was requested.
DSCB was not OPEN; DDB address = O.
If extended deleted record support was requested
($DCSBFLG bit 3 on), the referenced sector was not
formatted at 128 bytes / sector or the request was
for more than one 256- byte sector.
If extended deleted record support was not
requested ($DSCBFLG bit 3 off), a deleted sector
was encountered during I/O.
The first sector of the requested record
was deleted.
The second sector of the requested record
was deleted.
The first and second sectors of the requested
record were deleted.
Cache fetch error. Contact your IBM customer
engineer.
Bad cache error. Contact your IBM customer
engineer.
End of tape.
Device not a tape.

Chapter 2. Instruction and Statement Descriptions LR -5 3 3

WRITE
WRITE - Write records to a data set (continued)

Tape Return Codes and Post Codes

LR-534 SC34-0643

Return
Code
-1
1
2
3
4
6
10
21
22
23
24
25
26
27
28
29
30
31
32
33

Condition

Successful completion.
Exception but no status.
Error reading cycle steal status.
I/O error; retry count exhausted.
Error issuing READ CYCLE STEAL STATUS.
I/O error issuing I/O operations.
End of data; a tape mark was read.
Wrong length record.
Device not ready.
File protected.
End of tape.
Load point.
Unrecoverable I/O error.
SL data set not expired.
Invalid blocksize.
Offline, in-use, or not open.
Incorrect device type.
Close incorrect address.
Block count error during close.
Close detected on EOV1.

The following post codes are returned to the event control block (ECB) of the calling program.

Post
Code Condition

-1 Function successful.
101 TAPEID not found.
102 Device not offline.
103 Unexpired data set on tape.
H~4 Cannot initialize BLP tapes.

o

o

o

WXTRNjEXTRN o WXTRN - Resolve weak external reference symbols

o

o

The WXTRN and EXTRN statements identify labels that are not defined within an object
module. These labels reside in other object modules that will be link-edited to the module
containing the WXTRN or EXTRN statements. The system resolves the reference to an
WXTRN or EXTRN label when you link-edit the object module containing the WXTRN or
EXTRN statement with the module that defines the label. The module that defines the label
must contain an ENTRY statement for that label. (See the ENTRY statement for more
information.)

If the system cannot resolve a label during the link-edit, it assigns the label the same address as
the beginning of the program. You can include up to 255 WXTRN and EXTRN symbols in
your program.

WXTRN labels are resolved only by labels that are contained in modules included by the
INCLUDE statement in the link-edit process or by labels found in modules called by the
AUTO CALL function. However, WXTRN itself does not trigger AUTOCALL processing.

Only labels defined by EXTRN statements are used as search arguments during the
AUTOCALL processing function of $EDXLINK. Any additional external labels found in the
module found by AUTO CALL are used to resolve both WXTRN and EXTRN labels. Refer to
the description of $EDXLINK in the Event Driven Executive Language Programming Guide for
further information.

The main difference between the WXTRN and EXTRN statements is that you must resolve an
EXTRN label at link-edit time. It is not necessary to resolve a WXTRN label at link-edit time.
The unresolved label coded as an EXTRN receives an error return code from the link process.
The same unresolved label coded as a WXTRN receives a warning return code. Both the error
and the warning codes indicate unresolved labels. If you know that your application program
does not need a label resolved, code it as a WXTRN and your program should execute
successfully. Your application will not execute correctly, however, if you try to reference an
unresolved label coded in your application program as a WXTRN.

Syntax:

blank
blank

WXTRN
EXTRN

Required: One label
Defaults: none
Indexable: none

Operand Description

label
label

label An external label. You can code up to 10 labels, separated by commas, on a '
single WXTRN or EXTRN statement.

Chapter 2. Instruction and Statement Descriptions LR-535

Instruction and Statement Descriptions
WXTRN - Resolve weak external reference symbols (continued)

Coding Example

The following coding example shows a use of the WXTRN statement.

The labels DATAl, DATA2, LABELl, and LABEL2 are defined outside this module. The
ADD instruction adds the values at DATAl and DATA2 although the values are defined outside
the module where they are being added. The GOTO instructions also can pass control to the
the two externally defined labels, LABELl and LABEL2.

Each of the external labels could have been entered on a separate line or all three of the
EXTRN labels could have been coded on a single EXTRN statement.

EXTRN DATA 1 , DATA2
EXTRN LABEL 1
WXTRN LABEL2

ADD DATA1,DATA2,RESULT=INDEX
IF (INDEX, GT, 6)

GOTO LABEL 1
ELSE

GOTO LABEL2
ENDIF

INDEX DATA F'O'

LR-536 SC34-0643

o

0

o

o

o

o

XYPLOT
XYPLOT - Draw a curve

Syntax Example

The XYPLOT instruction draws a curve that connects points defined by arrays of x and y
values. Data values are scaled to screen addresses according to the plot control block. (See the
PLOTGIN instruction for a description of the plot control block.) Points outside the plot area
are placed on the nearest boundary.

Syntax:

label XYPLOT x, y,pcb,n, P1 =, P2=, P3=, P4=

Required: x,y,pcb,n
Defaults: none
Indexable: none

Operand Description

x The label of a data area containing an array of x data values.

y The label of a data area containing an array of y data values.

pcb The label of an eight-word plot control block.

n

P:x=

The label of a data area that contains the number of points to be drawn.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a detailed description of how to code these operands.

Draw a curve connecting the points specified by an x array at Y AXISX and a y array at
YAXISY. The data area labeled TWO contains the number of points to be drawn.

XYPLOT YAXISX,YAXISY,PCB,TWO

Chapter 2. Instruction and Statement Descriptions LR-537

YTPLOT
YTPLOT - Draw a curve

Syntax Example

The YfPLOT instruction draws a curve connecting points that are equally spaced horizontally
and that have heights specified by an array of y values. Data values are scaled to screen
addresses according to the plot control block. (See the PLOTGIN instmction for a description
of the plot control block.) Points outside the range are placed on the boundary of the plot area.

Syntax:

label YTPLOT y,x1 ,pcb,n,inc,P1 =,P2=,P3=,P4=,P5=

Required: y,x1,pcb,n,inc
Defaults: none
Indexable: none

J The label of a data area containing an array of y data values.

xl The label of a data area containing the x data value cmmciated with the first
point.

The label of an eight-word plot control block.

n The label of a data area containing the number of points to be drawn.

inc The amount of space between points. This operand must be an explicit integer
value greater than zero.

Px= Parameter naming operands. See ~~Using The Parameter Naming Operands
(Px= l'''' on page LR-12 for a detailed description of how to code these operands.

Draw a curve with the heights specified by an array of y values at label YDATA. The data area
labeled NPTS contains the number of points to be drawn. The instruction leaves one space
between each point.

IDATA, X 11 , PCB , JtilIP'TS, 11

LR-538 SC34-0643

o

o

o

o

0

o

Appendix A. Formatted Screen Subroutines

You can create and save formatted screen images using the $IMAGE utility. The formatted
screen subroutines retrieve and display these images. This appendix describes each of the
following subroutines and its operands:

$IMDATA

• $IMDEFN

• $IMOPEN

• $IMPROT

• $PACK

$UNPACK.

You can use the formatted screen subroutines with the 4978 and 4979 terminals and with the
3101 terminal in block mode. In addition, by calling these subroutines, you can use screen
images created on a 4978 or 4979 terminal on a 3101, and images created on a 3101 terminal
on a 4978 or 4979. Refer to the $IMAGE description in Operator Commands and Utilities
Reference for more information on exchanging terminal screen images.

You must code an EXTRN statement for each subroutine name to which your program refers.
You also must link-edit the subroutines with your application program. Specify
$AUTO,ASMLIB as the auto call library to include the screen formatting subroutines. Refer to
the Operator Commands and Utilities Reference for details on the AUTO CALL option of
$EDXLINK.

Appendix A. Formatted Screen Subroutines LR-539

Formatted Screen Subroutines

LR-540 SC34-0643

You call the formatted screen subroutines using the CALL instruction. The following section
shows the CALL instruction syntax for each subroutine.

If an error occurs, the terminal 110 return code is in the first word of the task control block
(TCB). These errors can come from instructions such as PRINTEXT, READTEXT, and
TERMCTRL.

o

o

o

$IMDATA o $IMDATA Subroutine

o

The $IMDAT A subroutine displays the initial data values for an image which is in disk storage
format. Use $IMDATA:

To display the unprotected data associated with a screen image, if the buffer contains a
screen format retrieved with $IMQPEN.

To "scatter write" the contents of a user buffer to the input fields of a displayed screen
image.

If the buffer is retrieved with $IMOPEN, the buffer begins with either the characters "IMAG"
or "IM31" and the buffer index (buffer-4) equals the data length excluding the characters
"IMxx."

You can specify a user buffer containing application-generated data. Set the first four bytes of
the buffer to USER and set the buffer index (buffer-4) to the data length excluding the
characters USER.

All or portions of the screen may be protected after $IMDAT A executes. Because the operator
cannot key data into protected fields, subsequent read instructions (such as QUESTION,
GETV ALUE, and READTEXT) should be directed to unprotected areas of the screen, or the
protected areas should be erased.

Notes:

1. To use $IMDATA, you must code an EXTRN statement in your program. You must also
link-edit the program with $EDXLINK and specify an autocall to $AUTO,ASMLIB.

2. Do not call both $IMDATA and $IMPROT by separate tasks to operate simultaneously.
Problems will occur because both call the $IMDTYPE subroutine.

Syntax:

label CALL $1 M DATA, (buffer), (ftab), P2=, P3=

Required: buffer, ftab (see note)
Defaults: none
Indexable: none

Operand Description

buffer The label of an area containing the image in disk-storage format.

Appendix A. Formatted Screen Subroutines LR-S41

$IMDATA
$IMDATA Subroutine (continued)

ftab

Px=

The label of a field table constructed by $IMPROT giving the location
(lines,spaces) and size (characters) of each unprotected data field of the image.

Note: The ftab operand is required only if the application executes on a 3101 in
block mode or if a user buffer is used in $IMDATA.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px::;::)" on page LR-12 for a description of how to use these operands.

$IMDATA Return Codes

LR-S42 SC34-0643

The return codes are returned in the second word of the task control block (TCB) of the
program or task calling the subroutine. The label of the TCB is the label of your program or
task (taskname). Refer to taskname+2.

Code Description

-1 Successful completion
9 Invalid format in buffer

o

o

$IMDEFN o $IMDEFN Subroutine

o

o

The $IMDEFN subroutine creates an lOeB for the formatted screen image. You can code the
lOeB directly, but the use of $IMDEFN allows the image dimensions to be modified with the
$IMAGE utility without requiring a change to the application program. $IMDEFN updates the
lOeB to reflect OVFLINE= YES. Refer to the TERMINAL configuration statement in the
Installation and System Generation Guide for a description of the OVFLINE parameter.

Once you define an lOeB for the static screen, the program can then acquire that screen
through ENQT. Once the screen has been acquired, the program can call the $IMPROT
subroutine to display the image and the $IMDAT A subroutine to display the initial nonprotected
fields.

Note: To use $IMDEFN, you must code an EXTRN statement in your program. You must also
link-edit the program with $EDXLINK and specify an autocall to $AUTO,ASMLIB.

Syntax:

label CALL $IMDEFN,(iocb),(buffer),topm,leftm,
P2=, P3=, P4=, P5=

Required: iocb,buffer
Defaults: none
Indexable: none

Operand

iocb

buffer

topm

leftm

Px=

Description

The label of an lOeB statement defining a static screen. The lOeB need not
specify the TOPM, BOTM, LEFTM, nor RIGHTM parameters; these are "filled
in" by the subroutine. The following lOeB statement would normally suffice:

label lOCB SCREEN=STATlC

The label of an area containing the screen image in disk storage format. The
format is described in the Event Driven Executive Language Programming Guide.

This parameter indicates the screen position at which line 0 will appear. If its
value is such that lines would be lost at the bottom of the screen, then it is forced
to zero. This parameter must equal zero for all 3101 terminal applications. The
default is also zero.

This parameter indicates the screen position at which the left edge of the image
will appear. If its value is such that characters would be lost at the right of the
screen, then it is forced to zero. This parameter must equal zero for all 3101
terminal applications. The default is also zero.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a description of how to use these operands.

Appendix A. Formatted Screen Subroutines LR-543

$IMD.EFN
$IMDEFN Subroutine (continued) o
Syntax Example

CALL $lMDEFN, (lMGlOCB), (lMGBUFF),O,O

ENQT lMGlOCB

PROGSTOP
lMGlOCB lOCB SCREEN=STATlC
lMGBUFF BUFFER 1024,BYTES

o

o
LR-544 SC34-0643

o

o

o

$IMOPEN
$IMOPEN Subroutine

The $IMOPEN subroutine reads a formatted screen image from disk or diskette into your
program buffer. You can also perform this operation by using the DSOPEN subroutine or by
defining the data set at program load time and issuing the disk READ instruction. Refer to the
Event Driven Executive Language Programming Guide for a description of buffer sizes.
$IMOPEN updates the index word of the buffer with the number of actual bytes read. To refer
to the index word, code buffer-4.

Note: To use $IMOPEN, you must code an EXTRN statement in your program. You must also
link-edit the program with $EDXLINK and specify an autocall to $AUTO,ASMLIB.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

dsname

buffer

type

Px=

CALL $1 MOP EN, (d sn a me), (buffer), (type),
P2=, P3=, P4=

dsname,buffer
type=C' 4978'
none

Description

The label of a TEXT statement which contains the name of the screen image
data set. You can include a volume label, separated from the data set name by a
comma.

The label of a BUFFER statement that defines the storage area into which the
image data will be read. Allocate the storage in bytes, as in the following
example:

label BUFFER 1024,BYTES

The label of a DATA statement that reserves a 4-byte area of storage and
specifies the type of image data set to be read. The data statement must be on a
full word boundary. Specify one of the following types:

C'497S'

C'3101'

C'

An image data set with a 4978/4979 terminal format is read. If
type is not specified, C'4978' is the default.

An image data set with a 3101 terminal format is read.

An image data set is read whose format corresponds with the type
of terminal enqueued. If neither a 4978/4979 nor 3101 is
enqueued (ENQT), a 4978 image format is assumed.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a description of these operands.

Appendix A. Formatted Screen Subroutines LR-545

$IMOPEN
$IMOPEN Subroutine (continued)

$IMOPEN Return Codes

The return codes are returned in the second word of the task control block (TCB) of the
program or task calling the subroutine. The label of the TCB is the label of your program or
task (taskname). Refer to taskname+2.

Code Description

-1 Successful completion
1 Disk I/O error
2 Invalid data set name
3 Data set not found
4 Incorrect header or data set length
5 Input buffer too small
6 Invalid volume name
7 No 3101 image available
8 Data set name longer than eight bytes

LR-546 SC34-0643

o

o

o

o

$IMPROT
$IMPROT Subroutine

The $IMPROT subroutine uses an image created by the $IMAGE utility to prepare the defined
protected and blank nonprotected fields for display. At the option of the calling program, a field
table can be constructed. The field table gives the location (LINE and SPACES) and length of
each unprotected field.

Upon return from $IMPROT, your program can force the protected fields to be displayed by
issuing a TERMCTRL DISPLAY. This is not required if a call to $IMDATA follows because
$IMDATA forces the display of screen data.

All or portions of the screen may be protected after $IMPROT executes. Because the operator
cannot key data into protected fields, subsequent read instructions (such as QUESTION,
GETV ALUE, and READTEXT) should be directed to unprotected areas of the screen, or the
protected areas should be erased.

Notes:

1. To use $IMPROT, you must code an EXTRN statement in your program. You must also
link-edit the program with $EDXLINK and specify an autocall to $AUTO,ASMLIB.

2. Do not call both $IMPROT and $IMDATA by separate tasks to operate simultaneously.
Problems will occur because both call the $IMDTYPE subroutine.

Syntax:

label CALL $1 M PROT, (buffer),(ftab), P2=, P3=

Required: buffer, ftab (see note)
Defaults: none
Indexable: none

Operand Description

buffer The label of an area containing the screen image in disk storage format: The
format is described in the Event Driven Executive Language Programming Guide.

ftab The label of a field tal,Jle constructed by $IMPROT giving the location (lines,
spaces) and size (characters) of each unprotected data field of the image.

Px=

Note: The ftab operand is required only if the application executes on a 3101 in
block mode or if a user buffer is used in $IMDATA.

Parameter naming operands. See "Using The Parameter Naming Operands
(Px=)" on page LR-12 for a description of how to use these operands.

Appendix A. Formatted Screen Subroutines LR-547

$IMPROT
$IMPROT Subroutine (continued)

The field table has the following form:

label-4
label-2
label

label+6

label+6(n-1)

number of fields
number of words
line * FIELD 1
spaces
size
line * FIELD 2
spaces
size

line * FIELD n
spaces
size

(one word)
(one word)
(one word)

The field numbers correspond to the following ordering: left to right in the top line, left to right
in the second line, and so on to the last field in the last line. Storage for the field table should be
allocated with a BUFFER statement specifying the desired number of words using the WORDS
parameter. The buffer control word at label-2 is used to limit the amount of field information
stored, and the buffer index word at buffer-4 is set with the number of fields for which
information was stored, the total number of words being three times that value. If the field table
is not desired, code zero for this parameter.

$IMPROT Return Codes

LR-548 SC34-0643

The return codes are returned in the second word of the task control block (TCB) of the
program or task calling the subroutine. The label of the TCB is the label of your program or
task (taskname). Refer to taskname+2.

Code Description

-1 Successful completion
9 Invalid format in buffer
10 Ftab truncated due to insufficient buffer

size
11 Error in building ftab from 3101 format;

partial ftab created

o

o

o

o

o

$PACK
$PACK Subroutine

The $P ACK subroutine moves a byte string and translates it into compressed form.

Note: To use $P ACK, you must code an EXTRN statement in your program. You must also
link-edit the program with $EDXLINK and specify an autocall to $AUTO,ASMLIB.

Syntax:

label CALL $PACK,source,dest, P2=, P3=

Required: source,dest
Defaults: none
Indexable: none

Operand Description

source The label of a fullword containing the address of the string to be compressed.

dest

The length of the string is taken from the byte preceding this location, and the
string could, therefore, be the contents of a TEXT buffer.

The label of a fullword containing the address at which the compressed string is
to be stored. At completion of the operation, this parameter is incremented by
the length of the compressed string.

Appendix A. Formatted Screen Subroutines LR-549

SPACK
$PACK Subroutine (continued)

Compressed Data Format for $PACK/$UNPACK

• • • Fn X'OO'

Each F1 ... Fn is either:

I
L I ~ 1 I ~ 2 I ••• I en I (L is greater than zero and represents

1.-. _......L._--'-. _~. _____L... _--I. the length of chars (C) that follow)

or

(L is less than zero and represents
L repetitions of C)

Land C are one byte in length.

LR-550 SC34-0643

o

(
-~

J

o

o

o

o

$UNPACK
$UNPACK Subroutine

The $UNP ACK subroutine moves a byte string and translates it to noncompressed form.

Note: To use $UNP ACK, you must code an EXTRN statement in your program. You must
also link-edit the program with $EDXLINK and specify an autocall to $AUTO,ASMLIB.

Syntax:

label CALL $UN PACK,source,dest, P2=, P3=

Required: source,dest
Defaults: none
Indexable: none

Operand Description

source The label of a fullword containing the address of a compressed byte string (see
Appendix D for the compressed format). At completion of the operation, this
parameter is increased by the length of the compressed string.

dest The label of a fullword containing the address at which the expanded string is to
be placed. The length of the expanded string is placed in the byte preceding this
location. The $UNP ACK subroutine can, therefore, conveniently be used to
move and expand a compressed byte string into a TEXT buffer.

For $UNPACK compressed data format see Figure 12 on page LR-550.

Appendix A. Formatted Screen Subroutines LR-551

Notes

o

o

o
LR-552 SC34-0643

o

o

o

Appendix B. Program Communication Through
Virtual Terminals

A "virtual terminal" is a logical EDX device that simulates the actions of a physical terminal.
An EDL application program can acquire control of, or enqueue, a virtual terminal just as it
would an actual terminal. By using virtual terminals, however, programs can communicate with
each other as if they were terminal devices. One program (the primary) loads another program
(the secondary) and takes on the role of an operator entering data at a physical terminal. The
secondary program can be an application program or a system utility, such as $COPYUTI. You
can use virtual terminals, for example, to provide simplified menus for running system utilities.
An operator could load a virtual terminal program, select a utility to run, and allow the program
to pass predefined parameters to the utility.

Virtual terminals simulate roll screen devices. The terminals communicate through EDL
terminal 110 instructions contained in the virtual terminal programs. The programs use a set of
virtual terminal return codes to synchronize communication. These return codes are shown
under "Virtual Terminal Communication" on page LR-555 and following the READ TEXT and
PRINTEXT instructions.

Requirements for Defining Virtual Terminals

You must define virtual terminals in pairs. You must include a TERMINAL definition statement
for each virtual terminal in your system during system generation. Refer to Installation and
System Generation Guide for details on how to code the TERMINAL statements for virtual
terminals. You must also include the supervisor module IOSVIRT in your system during system
generation.

Appendix B. Program Communication Through Virtual Terminals LR-553

Program Communication Through Virtual Terminals

The DEVICE operand of the TERMINAL statement defines a terminal as a virtual terminal.
The ADDRESS operand of the TERMINAL statement contains the label of the other virtual
terminal in the pair. The two TERMINAL statements must refer to each other in one of the
following ways:

1) The TERMINAL statements below define a pair of virtual terminals. The SYNC=YES
operand on the first TERMINAL statement (CDRVTA), indicates that the task enqueuing this
virtual terminal will receive the return codes that provide program synchronization.

CDRVTA
CDRVTB

TERMINAL DEVICE=VIRT,ADDRESS=CDRVTB,SYNC=YES
TERMINAL DEVICE=VIRT,ADDRESS=CDRVTA

2) The TERMINAL statements that follow both contain SYNC= YES. In this case, the task
that last attempted an operation will receive a return code for program synchronization.

CDRVTA
CDRVTB

TERMINAL DEVICE=VIRT,ADDRESS=CDRVTB,SYNC=YES
TERMINAL DEVICE=VIRT,ADDRESS=CDRVTA,SYNC=YES

Considerations for Coding a Virtual Terminal Program

LR-554 SC34-0643

When coding a program that enqueues a virtual terminal you should remember the following:

The primary virtual terminal program loads· the secondary program or system utility with a
LOAD instruction.

The primary virtual terminal program can only communicate with one secondary program or
system utility at a time.

The primary virtual terminal program must include the following COPY statement if you are
compiling the program with $EDXASM:

COpy PROGEQU

Your program enqueues a virtual terminal with an ENQT instruction. The primary program
should enqueue the virtual terminal for the secondary program, load the secondary program,
and enqueue a virtual terminal for itself.

The IOCB statements to which the ENQT instructions refer can be in your primary program
or in a secondary application program. The following example shows how a primary
program would load the $TERMUTI utility.

o

c. ') i

o

o

o

PRIMARY
SECOND

ENQT
LOAD
ENQT

PROGSTOP

SECOND
$TERMUT1,LOGMSG=NO,EVENT=ENDWAIT
PRIMARY

IOCB CDRVTA NAME OF THE PRIMARY VIRTUAL TERMINAL
NAME OF THE SECONDARY VIRTUAL TERMINAL IOCB CDRVTB

Virtual Terminal Communication

To send and receive data through the virtual terminals, application programs use terminal I/O
instructions: READTEXT, PRINTEXT, GETVALUE, and PRINTNUM. Virtual terminals do
not affect the operation of these instructions. Your program can also generate attention
interrupts using TERMCTRL PF, which is described in this book under TERMCTRL
(VIRTUAL).

Virtual terminal programs can use a set of return codes to synchronize their operations.
Programs or tasks receive the virtual terminal return codes in the first word of their task control
block. A program can obtain a return code by referring to the label on the PROGRAM
statement.

The virtual terminal return codes and their descriptions follow:

Value

X'8Fnn'
X'8Enn'
-2
-1
1
5
8

Figure 12. Virtual Terminal Return Codes

Transmit Receive

NA LlNE=nn received
NA SKIP=nn received
NA Line received (no CR)
Normal completion New line received
Not attached Not attached
Disconnect Disconnect
Break Break

LINErJrIn (XIBFnn'): Returned for a READTEXT or GETVALUE instruction if the other
program issued an instruction with a LINE= operand. This operand tells the system to perform
an I/O operation on a certain line of the page or screen. The return code enables the receiving
program to reproduce on an actual terminal the output format intended by the sending program.

SKll1nn (X'BEnn l
): The other program issued an instruction with a SKIP= operand. This

operand tells the system to skip a number of lines before performing an I/O operation.

Appendix B. Program Communication Through Virtual Terminals LR-555

Program Communication Through Virtual Terminals

Line Received (-2): Indicates that an instruction (usually READ TEXT or GETV ALUE) has
sent information but has not issued a carriage return to move the cursor to the next line. The
information is usually a prompt message.

New Line Received (-1): Indicates transmission of a carriage return at the end of the data.
The cursor is moved to a new line. This return code and the Line Received return code help
programs to preserve the original format of the data they are transmitting.

Not attached (1): A virtual terminal does not or cannot refer to another virtual terminal.

Disconnect (5): The other virtual terminal program ended. This is because you specified a
PROGSTOP or an attention list process is complete.

Break (8): Indicates that both virtual terminal programs are attempting to perform the same
type of operation. When one program is reading (READTEXT or GETVALUE), the return
code means the other program has stopped sending and is waiting for input. When one program
is writing, (PRINTEXT or PRINTNUM), the return code means the other program is also
attempting to write.

If you defined only one virtual terminal with SYNC= YES, then that task always receives the
break code, whether or not it attempted the operation first. If you defined both virtual terminals
with SYNC= YES, then the task that last attempted the operation receives the break code.

Sample Virtual Terminal Programs

The sample programs that follow show two types of virtual terminal communication. Both
programs assume that the following TERMINAL statements were included during system
generation:

CDRVTA
CDRVTB

TERMINAL DEVICE=VIRT,ADDRESS=CDRVTB,SYNC=YES
TERMINAL DEVICE=VIRT,ADDRESS=CDRVTA

1) In this example, the program named SENDER transmits data to the program named
RECEIVER. RECEIVER prints the data it received on $SYSPRTR. SENDER is the primary
program; RECEIVER is the secondary program.

The SENDER program begins by requesting data from an operator with a READ TEXT
instruction. SENDER then enqueues the first virtual terminal, loads RECEIVER, and enqueues

. the second virtual terminal. The DO loop at label CHECK! issues a READ TEXT instruction to
determine if RECEIVER is ready to receive data. The instruction

LR-556 SC34-0643

READTEXT LINE,MODE=LINE

gets the next line from the RECEIVER program. The loop continues until SENDER receives a
return code of 8.

()

o

o

o

o

RECEIVER issues a PRINTEXT instruction and then a READ TEXT instruction to indicate
that it is ready to receive data. When RECEIVER executes the READTEXT, SENDER
receives a return code of 8 that indicates both programs are attempting to perform the same
operation. SENDER checks the first word of the TCB, finds the return code, exits the DO loop,
and executes a PRINTEXT that transmits the operator data to RECEIVER. SENDER then
enters a second DO loop at label CHECK2. In this loop, SENDER checks the TCB until it
finds a return code of 5. The return code indicates that RECEIVER has printed the data and
has completed.

SENDER

A
B
START

CHECK1

CHECK2

DONE
RC
DATA
LINE

PROGRAM
PRINT
PRINT
IOCB
IOCB
EQU
READTEXT
ENQT
LOAD
ENQT
DO

READ TEXT
TCBGET

ENDDO
PRINTEXT
DO

READ TEXT
TCBGET

ENDDO
WAIT
PROGSTOP
ECB
DATA
TEXT
TEXT
ENDPROG
END

START
OFF
ON

CDRVTA
CDRVTB
*

SYNC TERMINAL

DATA, 'ENTER DATA TO TRANSMIT' , MODE=LINE
B
RECEIVER, LOGMSG=NO, EVENT=DONE
A
UNTIL, (RC,EQ,8) DO UNTIL BREAK

LINE,MODE=LINE
RC,$TCBCO

DATA
UNTIL, (RC,EQ,S)

LINE,MODE=LINE
RC,$TCBCO

DONE

F'O'
LENGTH=80
LENGTH=80

SEND INPUT TO OTHER PROGRAM
DO UNTIL DISCONNECT

RECEIVER
START

DATA

PROGRAM
EQU
PRINTEXT
READTEXT
ENQT
PRINTEXT
PRINTEXT
DEQT
PROGSTOP
TEXT
ENDPROG
END

START

* SKIP=1 SIGNAL TO SEND INPUT
DATA, MODE=LINE
$SYSPRTR
'THE DATA YOU SENT WAS
DATA
$SYSPRTR

LENGTH=80

Appendix B. Program Communication Through Virtual Terminals LR-557

Program Communication Through Virtual Terminals

LR-558 SC34-0643

2) This example shows how an application can use virtual terminals to process the prompt/reply
sequence of the $INITDSK utility. The program initializes volume EDX003.

The replies to $INITDSK prompts begin at label REPLIES+2; each reply is 8 bytes in length
(text plus length/count bytes). The program issues a READTEXT until $INITDSK requests
input. The program then issues a PRINTEXT to send the reply to the $INITDSK prompt.
After $INITDSK ends, the program sends a completion message to the terminal.

INIT

A
B
DEND
BEGIN

*
*
*
RETCODE
LINE
REPLIES

PROGRAM
PRINT
PRINT
IOCB
IOCB
ECB

BEGIN
OFF
ON
A
B

EQU *
ENQT B

SYNC TERMINAL

LOAD $INITDSK, LOGMSG=NO, EVENT=DEND
ENQT A GET SYNC TERMINAL
MOVEA #1,REPLIES+2
DO 6,TIMES

DO UNTIL, (RETCODE,EQ,8)
READTEXT LINE,MODE=LINE
TCBGET RETCODE,$TCBCO

ENDDO
PRINTEXT (0,#1)
ADD #1,8

ENDDO
READTEXT LINE,MODE=LINE
WAIT DEND
DEQT
PRINTEXT 'EDX003 INITIALIZED'
PROGSTOP

DATA AREA

DATA F'O'
TEXT LENGTH=80
EQU *
TEXT ' IV
DATA CL4' ,
TEXT 'EDX003'
TEXT 'y
DATA CL5' ,
TEXT '60
DATA CL4' ,
TEXT 'N
DATA CL5' ,
DATA CL5' ,
TEXT 'EN
DATA CL4' ,
ENDPROG
END

REPLY TO PROMPTS
BREAK CODE
LOOP FOR PROMPT MESSAGES
SAVE RETURN CODE

SEND REPLY
NEXT REPLY

PROGRAM END MESSAGE
WAIT FOR END EVENT

RETURN CODE

COMMAND?
4 BYTE FILLER
VOLUME?
CONTINUE?
5 BYTE FILLER
NUMBER OF DATA SETS?
4 BYTE FILLER
VERIFY?
5 BYTE FILLER
5 BYTE FILLER
COMMAND?
4 BYTE FILLER

C'·'
.. ,i

o

o

o

Appendix C. Communicating with Programs in
Other Partitions (Cross-Partition Services)

EDL programs can communicate with other programs in the system through the use of the
following instructions: LOAD, MOVE, STIMER, ATTACH, ENQ, DEQ, WAIT, POST,
READ, and WRITE. These instructions enable your program to communicate with another
program in the same partition or with a program in another partition. Communication between
programs in different partitions is referred to as "cross-partition services".

To communicate with another program, your program must use the WHERES instruction to find
the load-point address of the program and the partition where the program resides.

This appendix contains examples of how to communicate with programs in other partitions
under the headings:

"Transferring Data Across Partitions" on page LR-560

• "Starting a Task in Another Partition (ATTACH)" on page LR-566

"Synchronizing Tasks and the Use of Resources in Different Partitions" on page LR-568

Refer to the Event Driven Executive Language Programming Guide for more information on the
use of cross-partition services in application programs.

When the system attaches a task, it updates the task control block (TCB) of the task to include
the number of the address space where the task is executing. The address space value refers to a
partition, and is equal to the partition number minus one. Address space 0, for example, is
partition 1. The address space value is also known as the hardware address key. In most of the
examples, the system uses the address key and an address your program supplies to provide

Appendix C. Communicating with Programs in Other Partitions (Cross-Partition Services) LR-559

Communicating with Programs in Other Partitions
(Cross-Partition Services)

communication across partitions. The equate that points to the address key in the TCB is
$TCBADS.

Note: After issuing a cross-partition service request using $TCBADS, your program should
immediately restore $TCBADS to its original value. This procedure can prevent unexpected or
unpredictable results such as overlaying other applications with data or having a program wait
indefinitely because an ECB was never posted or a DEQ instruction was never issued.

Transferring Data Across· Partitions

You can transfer data across partitions using the cross-partition capabilities of the LOAD,
MOVE, READ, and WRITE instructions.

Load and Pass Parameters to a Program in Another Partition (LOAD)

In the following example, PROGA loads PROGB into partition 2 and passes PROGB the
parameters beginning at the label PROGASW1. After loading PROGB, PROGA waits for the
event ENDWAIT, which the system posts when the loaded program ends.

The PARM= operand on PROGB's PROGRAM statement specifies the length of the parameter
list that PROGB receives from PROGA. The system recognizes each word in the parameter list
by the label $PARMx, where "x" indicates the position of the word in the list. $PARM1 refers
to the first word in the list (PROGASW1) and $PARM2 refers to the second word in the list
(PROGAKEY).

At the label PROMPT in PROGB, the program displays a prompt message that tells the
operator how to cancel PROGB. The MOVEA instruction at label M1 moves the address of
CANCELSW into PROGA WRK. The MOVE instruction at label M2 moves the first parameter
(the address of PROGASW1) into software register 1. At label M2, PROGB moves the
contents of PROGAWRK to the address (0,#1) in PROGA. The TKEY operand of the MOVE
instruction supplies the address key of PROGA. PROGB begins a loop at label LOOP until the
operator cancels the program.

When the operator presses the attention key and enters "CA", the attention-interrupt-handling
routine at label CANCEL in PROGA begins executing. At label M4, the routine moves a value
of 1 to the address (0,#1) in PROGB. The TKEY operand on the MOVE instruction supplies
the address key for PROGB. The address (0,#1) points to the address of CANCELSW. In
PROGB, the IF instruction at label LOOP checks CANCELSW and finds that the variable
contains a 1. The instruction passes control to the label STOP and PROGB ends. Control
returns to PROGA because the system posts the event ENDW AIT when PROGB ends.

LR-560 SC34-0643

o

o

o

o

PROGA
COMMAND
CANCEL

M4

START

*

ENDWAIT
PROGASW1
PROGAKEY

PROGRAM START,1,MAIN=YES
ATTNLIST (CA,CANCEL)
EQU *
MOVE #1,PROGASW1
MOVE (0, # 1) , 1 , TKEY=1 CROSS-PARTITION MOVE
ENDATTN
EQU *
TCBGET PROGAKEY,$TCBADS GET PROGA ADDRESS KEY

LOAD
IF

PROGB,PROGASW1,EVENT=ENDWAIT,LOGMSG=YES,PART=2
(PROGA,EQ,-1) ,THEN

WAIT
ELSE

PRINTEXT
ENDIF

PROGSTOP
ECB

ENDWAIT

'LOAD FAILED' ,SKIP=1

DATA A(PROGASW1)
DATA F'O'
ENDPROG
END

PROGB
START

PROMPT

M1
M2
M3
LOOP

STOP

PROGAWRK
CANCELSW

PROGRAM START,509,PARM=2
EQU *

PRINTEXT
PRINTEXT
MOVEA
MOVE
MOVE
IF
GOTO
EQU
PROGSTOP
DATA
DATA
ENDPROG
END

'TO CANCEL, ENTER: > CA' ,SKIP=1
SKIP=1
PROGAWRK,CANCELSW
#1,$PARM1
(0,#1) , PROGAWRK,TKEY=$PARM2 CROSS-PARTITION MOVE
(CANCELSW,EQ,1) ,GOTO,STOP
LOOP

* -1,LOGMSG=NO
F'O'
F'O'

Appendix C. Communicating with Programs in Other Partitions (Cross-Partition Services) LR-561

Communicating with Programs in Other Partitions
(Cross-Partition Services)

Move Data Across Partitions (MOVE)

The following example shows how to move data to a program in another partition. PROGA
finds the program PROGB in storage, stores PROGB's address and address key, and moves data
to the dynamic storage area of PROGB.

PROGA uses the WHERES instruction to find the load-point address and address key of
PROGB. The WHERES instruction places the load-point address of PROGB in ADDRB and
the address key of the program in KEYB.

The READ TEXT instruction in PROGA asks the operator to enter up to 30 characters of data.
The instruction stores the data in MSG. The MOVE instruction at label M1 moves the address
key of PROGB into software register 2. The TCBGET instruction places the address of
PROGA's task control block (TCB) in software register 1.

At label M2, the MOVE instruction moves the address of PROGB's dynamic storage area.into
the data area PROGBBUF in PROGA. The STORAGE= operand on the PROGRAM
statement of PROGB causes the system to acquire a 256-byte storage area when it loads the
program. The address of this storage area is in PROGB's program header (at $PRGSTG).

At label M3, PROGA saves it's address key in SA VEKEY. The MOVE instruction at M4
moves PROGB's address key to the address key field ($TCBADS) of the TCB. At M5, the
MOVE instruction moves the address in PROGB's dynamic storage area to software register 2.
PROGA, at M6, moves the data in MSG into PROGB's dynamic storage area. The TKEY
operand on the MOVE instruction supplies the address key of PROGB. At M7, PROGA
restores its address key from SA VEKEY.

LR-562 SC34-0643

Once PROGB receives the data, it moves the address of the dynamic storage area (contained in
$STORAGE) to software register 1. The program moves 30 bytes of data from the dynamic
storage area into MSG2, and prints the data it received.

o

o

o

o

o

o

PROGA

START

M1

M2
M3
M4
M5
M6
M7
DONE
MSG
PROGBBUF
PROGB
PROGBUF
SAVEKEY
ADDRB
KEYB

PROGRAM START
COpy PROGEQU
COpy TCBEQU
EQU *
WHERES PROGB,ADDRB,KEY=KEYB FIND PROGB'S LOCATION
IF (PROGA,EQ,O),THEN

PRINTEXT 'PROGRAM NOT FOUND' ,SKIP=1
GOTO DONE

ENDIF
READTEXT
MOVE
TCBGET
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
PROGSTOP
TEXT
DATA
DATA
DATA
DATA
DATA
DATA
ENDPROG

MSG, '@ENTER UP TO 30 CHARACTERS' , MODE=LINE
#2,ADDRB

END

#1, $TCBVER
PROGBBUF, ($PRGSTG,#2) ,FKEY=KEYB
SAVEKEY, ($TCBADS,#1)
($TCBADS,#1) ,KEYB
#2,PROGBBUF
(0,#2) ,MSG, (30,BYTE) ,TKEY=KEYB
($TCBADS,#1),SAVEKEY

LENGTH=30
F'O'
C'PROGB
F'O'
F'O'
F'O'
F'O'

SAVE PROGA'S KEY

RESTORE PROGA'S KEY

**

PROGB
START

MSG2

PROGRAM START,STORAGE=256
EQU *

MOVE
MOVE
PRINTEXT
PRINTEXT
PROGSTOP

#1,$STORAGE GET STORAGE AREA ADDRESS
MSG2, (0,#1) , (30,BYTE)
'@THE DATA THAT WAS PASSED IS :'
MSG2

TEXT LENGTH=30
ENDPROG
END

Appendix C. Communicating with Programs in Other Partitions (Cross-Partition Services) LR-563

Communicating with Programs in Other Partitions
(Cross-Partition Services)

Read Data to or Write Data from a Program in Another Partition

The following example reads data from a data set and stores that data in a buffer in another
partition. The data set ACCOUNTS is in PROGA. The buffer is in PROGB. You could use
the same coding techniques to write data to a program in another partition (WRITE).

PROGA uses the WHERES instruction to find the load-point address and address key of
PROGB. The WHERES instruction places the load-point address of PROGB in ADDRB and
the address key of the program in KEYB.

The MOVE instruction at label MI moves the address key of PROGB into software register 2.
The TCBGET instruction places the address of PROGA's task control block (TCB) in software
register 1. At label M2, the MOVE instruction moves the address of PROGB's dynamic storage
area into PROGBBUF in PROGA. The STORAGE= operand on the PROGRAM statement of
PROGB causes the system to acquire a 256-byte storage area when it loads the program. The
address of this storage area is in PROGB's program header (at $PRGSTG). At label M3,
PROGA saves it's address key in SA VEKEY.

The MOVE instruction at M4 moves PROGB's address key to the address key field
($TCBADS) of the TCB. The READ instruction reads one record from the data set
ACCOUNTS into PROGBBUF. Because PROGBBUF is the label of the P2= operand on the
READ instruction, the system uses the contents of PROGBBUF as the location where the data
is to be stored. After the cross-partition read operation, PROGA restores its address key from
SAVEKEY.

LR-564 SC34-0643

Once PROGB receives the data, it moves the address of the dynamic storage area (contained in
$STORAGE) to software register I. The program moves 50 bytes of data from the dynamic
storage area into OUTPUT and prints that data.

o

o

o

o

C~I;

o

PROGA

START

M1

M2
M3
M4

DONE
SAVEKEY
PROGB
ADDRB
KEYB

PROGRAM START, DS=ACCOUNTS
COPY PROGEQU
COpy TCBEQU
EQU *
WHERES PROGB,ADDRB,KEY=KEYB FIND PROGB'S LOCATION
IF (PROGA,EQ,O),THEN

PRINTEXT 'PROGRAM NOT FOUND' ,SKIP=1
GOTO DONE

ENDIF
MOVE
TCBGET
MOVE
MOVE
MOVE
READ
MOVE
PROGSTOP
DATA
DATA
DATA
DATA
ENDPROG
END

#2,ADDRB
#1,$TCBVER
PROGBBUF, ($PRGSTG,#2) ,FKEY=KEYB
SAVEKEY, ($TCBADS,#1)
($TCBADS,#1) ,KEYB
DS1,*,P2=PROGBBUF
($TCBADS,#1) ,SAVEKEY

F'O'
C'PROGB
F'O'
F'O'

SAVE PROGA'S KEY

CROSS-PARTITION READ
RESTORE PROGA'S KEY

PROGB PROGRAM START,STORAGE=256
START EQU *

MOVE #1,$STORAGE
MOVE OUTPUT, (0,#1), (50,BYTE)
PRINTEXT '@THE DATA RECEIVED FROM PROGA IS . ,
PRINTEXT OUTPUT,SKIP=1

OUTPUT TEXT LENGTH=50
ENDPROG
END

Appendix C. Communicating with Programs in Other Partitions (Cross-Partition Services) LR-565

Communicating with Programs in Other Partitions
(Cross-Partition Services)

Starting a Task in Another Partition (ATTACH)

The following example shows how you can use the ATTACH instruction to start, or "attach", a
task in another partition. PROGA starts the task labeled T ASKADDR in PROGB.

PROGB begins by printing the message "PROGB STARTED". The program then waits for an
operator to press the enter key. (This example assumes that the operator will not press the enter
key until the task labeled TASKADDR in PROGB has executed.)

PROGA uses the WHERES instruction to find the load-point address and address key of
PROGB. The WHERES instruction places the load-point address of PROGB in ADDRB and
the address key of the program in KEYB.

The TCBGET instruction places the address of PROGA's task control block (TCB) in software
register 1. The MOVE instruction at label Ml saves PROGA's address key. At label M2, the
MOVE instruction moves PROGB's address key to the address key field ($TCBADS) of the
TCB.

o

The ADD instruction adds X'34' to the load-point of PROGB. This address points to the first
word following PROGB's program header. The ADD instruction places the result of the
operation in TASKADDR. Because TASKADDR is the label of the Pl= operand on the
ATTACH instruction, the system uses the contents of TASKADDR as the address of the task to
be attached. After the cross-partition attach operation, PROGA restores its address key from 04 - "
SAVEKEY.

LR-566 SC34-0643

In PROGB, the task labeled TASKADDR is at the first word following the program header
generated by the PROGRAM statement. When TASKADDR is attached, it enqueues the
system printer, $SYSPRTR, and prints the message "SUBTASK IS ATTACHED". After
TASKADDR ends, PROGB waits until an operator presses the enter key.

o

0

o

o

PROGA PROGRAM START
COpy PROGEQU
COpy TCBEQU

START EQU *
WHERES PROGB,ADDRB,KEY=KEYB FIND PROGB'S LOCATION
IF (PROGA,EQ,O) ,THEN

PRINTEXT 'PROGRAM NOT FOUND' ,SKIP=1
GOTO DONE

ENDIF
TCBGET #1,$TCBVER

M1 MOVE SAVEKEY, ($TCBADS,#1) SAVE PROGA'S KEY
M2 MOVE ($TCBADS,#1) ,KEYB

ADD ADDRB,X'34' ,RESULT=TASKADDR POINT TO TASK ADDRESS
ATTACH *,P1=TASKADDR CROSS-PARTITION ATTACH

M3 MOVE ($TCBADS,#1) ,SAVEKEY RESTORE PROGA'S KEY

DONE PROGSTOP
SAVEKEY DATA F'O'
PROGB DATA C'PROGB
ADDRB DATA F'O'
KEYB DATA F'O'

ENDPROG
END

PROGB PROGRAM START
**
TASKADDR TASK NEXT *
NEXT ENQT $SYSPRTR *

PRINTEXT '@SUBTASK IS ATTACHED' *

DEQT
ENDTASK

*
*
*
*
*

**
START EQU *

PRINTEXT '@PROGB STARTED'
WAIT KEY

PROGSTOP
ENDPROG
END

Appendix C. Communicating with Programs in Other Partitions (Cross-Partition Services) LR-567

Communicating with Programs in Other Partitions
(Cross-Partition Services)

Synchronizing Tasks and the Use of Resources in Different Partitions

You can synchronize the execution of two or more tasks in different partitions by using the
WAIT and POST instructions. The ENQ and DEQ instructions allow you to synchronize the
use of a resource by tasks in different partitions.

Post an ECB in Another Partition (POST)

In the following example, PROGA posts an event control block (ECB) in another partition.
PROGB contains the ECB that is posted. You could use the same coding techniques to wait for
an event in another partition (WAIT).

PROGB begins by waiting for the event labeled ECB 1 to be posted. PROGA uses the
WHERES instruction to find the load-point address and address key of PROGB. The
WHERES instruction places the load-point address of PROGB in ADDRB and the address key
of the program in KEYB.

The TCBGET instruction places the address of PROGA's task control block (TCB) in software
register 1. The MOVE instruction at label M1 saves PROGA's address key. At label M2, the
MOVE instruction moves PROGB's address key to the address key field ($TCBADS) of the
TCB.

The ADD instruction adds X'34' to the load-point of PROGB. This address points to the first
word following PROGB's program header. The ADD instruction places the result of the
operation in PROGBECB. Because PROGBECB is the label of the P1= operand on the POST
instruction, the system uses the contents of PROGBECB as the address of the ECB to be
posted. After the cross-partition post operation, PROGA restores its address key from
SAVEKEY.

In PROGB, the ECB labeled ECB1 is at the first word following the program header generated
by the PROGRAM statement. When PROGA posts ECB1, PROGB continues processing.

LR-568 SC34-0643

o

o

o

o

o

0'1"
, ,

PROGA

START

M1
M2

M3

DONE
SAVEKEY
PROGB
ADDRB
KEYB

PROGRAM START
COpy TCBEQU
EQU *
WHERES PROGB,ADDRB,KEY=KEYB FIND PROGB'S LOCATION
IF (PROGA,EQ,O) ,THEN

PRINTEXT 'PROGRAM NOT FOUND' ,SKIP=1
GOTO DONE

ENDIF
TCBGET
MOVE
MOVE
ADD
POST
MOVE

PROGSTOP
DATA
DATA
DATA
DATA
ENDPROG
END

#1,$TCBVER
SAVEKEY, ($TCBADS,#1)
($TCBADS,#1) ,KEYB

ADDRB,X'34' ,RESULT=PROGBECB
*,-1,P1=PROGBECB
($TCBADS,#1) ,SAVEKEY

F'O'
C'PROGB
F'O'
F'O'

SAVE PROGA'S KEY

POINT TO PROGB ECB
CROSS-PARTITION POST
RESTORE PROGA'S KEY

PROGB
ECB1
START

PROGRAM START
ECB
EQU *
WAIT ECB1

PROGSTOP
ENDPROG
END

WAIT FOR ECB1 TO BE POSTED

Appendix C. Communicating with Programs in Other Partitions (Cross-Partition Services) LR-569

Communicating with Programs in Other Partitions
(Cross-Partition Services)

Enqueue a Resource in Another Partition (ENQ)

PROGA, in this example, attempts to enqueue a queue control block (QCB) in another
partition. The QCB is located in PROGB. PROGA must enqueue the QCB before it can call
the subroutine labeled COMMON, which is link-edited to the program. The COMMON
subroutine, which is also link-edited to other programs in the system, can only be used by one
program at a time.

PROGB begins by waiting for an operator to press the enter key. The program contains the
QCB and should remain active while other programs in the system are using the COMMON
subroutine.

PROGA uses the WHERES instruction to find the load-point address and address key of
PROGB. The WHERES instruction places the load-point address of PROGB in ADDRB and
the address key of the program in KEYB. The TCBGET instruction places the address of
PROGA's task control block (TCB) in software register 1. The MOVE instruction at label Ml
saves PROGA's address key. At label M2, the MOVE instruction moves PROGB's address key
to the address key field ($TCBADS) of the TCB.

The ADD instruction adds X'34' to the load-point of PROGB. This address points to the first
word following PROGB's program header. The ADD instruction places the result of the

o

operation in PROGBQCB. Because PROGBQCB is the label of the Pl= operand on the ENQ O----~-
instruction, the system uses the contents of PROGBQCB as the address of the QCB to be
enqueued.

LR-570 SC34-0643

If the first word of the QCB in PROGB contains a zero, the COMMON subroutine is being
used by another program. PROGA, in this case, would pass control to the label CANTHA VE.
The busy routine at CANTHA VE would begin by displaying the message "RESOURCE
BUSY" and restoring PROGA's address key. If the first word of PROGB's QCB is not a zero,
PROGA can call the COMMON subroutine by executing a CALL instruction. When
COMMON finishes executing, PROGA dequeues the subroutine. After the cross-partition
enqueue operation, PROGA restores its address key from SAVEKEY.

In PROGB, the QCJ3 labeled QCB 1 is at the first word following the program header generated
by the PROGRAM statement. PROGB remains active until an operator presses the enter key
on the terminal.

o

o

o

o

PROGA PROGRAM START
COPY TCBEQU
EXTRN ROUTINE

START EQU *
WHERES PROGB,ADDRB,KEY=KEYB
IF (PROGA,EQ,O),THEN

PRINTEXT 'PROGRAM NOT FOUND' ,SKIP=1
GOTO DONE

ENDIF
TCBGET #1,$TCBVER

M1 MOVE SAVEKEY,($TCBADS,#1)
M2 MOVE ($TCBADS,#1),KEYB

ADD ADDRB,X'34' ,RESULT=PROGBQCB
ENQ *,BUSY=CANTHAVE,P1=PROGBQCB
CALL ROUTINE
DEQ

M3 MOVE ($TCBADS,#1) ,SAVEKEY
GOTO DONE

CANTHAVE EQU *

DONE
SAVEKEY
PROGB
ADDRB
KEYB

PRINTEXT '@RESOURCE BUSY'
MOVE ($TCBADS,#1),SAVEKEY

PROGSTOP
DATA F'O'
DATA C'PROGB
DATA F'O'
DATA F'O'
ENDPROG
END

The subroutine link-edited with PROGA looks like:

SUBROUT ROUTINE
ENTRY ROUTINE
PRINTEXT '@SUBROUTINE HAS BEGUN'

RETURN
END

FIND PROGB'S LOCATION

SAVE PROGA'S KEY

POINT TO PROGB QCB
CROSS-PARTITION ENQUEUE

BUSY ROUTINE

**

PROGB PROGRAM START
QCB1 QCB
START EQU *

WAIT KEY
PROGSTOP
ENDPROG
END

Appendix C. Communicating with Programs in Other Partitions (Cross-Partition Services) LR-571

Notes

o

o

o
LR-572 SC34-0643

o

o

o

Appendix D. EDX Programs, Subroutines, and
Inline Code

This appendix describes EDX programs, subroutines, and inline code that you can execute.

EDX Programs

This section describes the following EDX programs:
'j

$DISKUT3

$PDS

$RAMSEC

$SUBMITP

$USRLOG.

Appendix D. EDX Programs, Subroutines, and Inline Code LR-573

EDX Programs, Subroutines, and Inline Code
EDX Programs (continued)

$DISKUT3 - Manage Data from an Application Program

LR-574 SC34-0643

The $DISKUT3 program enables you to perform the following operations for disks and diskettes
from your application program:

Allocate a data set

Open a data set

Delete a data set

Release unused space in a data set

Rename a data set

Set end-of -data indicator in a data set.

You can specify one or more of these operations at the same time. For example, you can open
two data sets and allocate two other data sets with one request. Multiple operations save
execution time.

You load $DISKUT3 with the LOAD instruction and pass it the address of a list of request
block addresses. The request blocks define the operation the system is to perform. This
relationship is shown in Figure 13. A word of zeros indicates the end of the request block
address list.

r----{List Addressl

Request Block 1

~ Request Block Address .. Word 1

Request Block Address I-- Word 2

End of List (0) Word 3

Word 4

Word 5

~Re q uest Block 2

Figure 13. Request Block Example

o

o

o

o

EDX Programs (continued)

Request Block Contents

A request block consists of five words as follows:

Word 1: The value in the rightmost byte indicates the operation to be performed. The values
are:

Value

1
2
3
4
5
6

Operation

Open a data set (OPEN)
Allocate a new data set (ALLOCATE)
Rename a data set (RENAME)
Delete a data set (DELETE)
Release unused space in a data set (RELEASE)
Set end-of-data indicator in a data set (SETEOD)

The eight leftmost bits are reserved for use as special-purpose flags, as follows:

Bit Function

00 1 - Indicates that the system should wait if the requested volume is
in use.

o - Indicates that the system should not wait if the requested
volume is in use

01 Reserved

02 Reserved

03 Reserved

04 Reserved

05 Reserved

06 Reserved

07 Reserved

For example, if word 1 contains X'8004', the system should delete a data set, but wait if the
requested volume is in use.

Word 2: Contains the address of an associated data set control block (DSCB). The DSCB
describes the volume and data set you are using. You must specify a DSCB for each operation
you request. In addition, you must fill in the data set name ($DSCBNAM) and volume
($DSCBVOL) fields of the DSCB.

Appendix D. EDX Programs, Subroutines, and Inline Code LR-575

EDX Programs, Subroutines, and Inline Code
EDX Programs (continued)

LR-576 SC34-0643

Words 3 and 4: The contents of these words vary according to the operation you request. The
contents for each operation follows:

Operation Contents

ALLOCATE Number of records to be allocated (must be in the range of ° to 231 - 1).

DELETE Nothing required.

OPEN Nothing required.

RELEASE The new size of the data set in records (must be greater than zero and less than
the current size.)

RENAME Word 4 contains the address of a 1-8 byte field containing the new data set
name.

SETEOD Word 4 contains the number of bytes in the last record if it is not yet full;
otherwise this word is 0.

$DISKUT3 places the value in request block word 4 into bytes 24-25 of the
directory member entry (DME). If this value is non-zero, it represents the
number of bytes in the last record that is considered not completely full. Bytes
20-23 of the DME are set to the value of $DSCBNEX minus 2. If this value is
zero, the last record is considered to be full and bytes 20-23 of the DME are set
to the value of $DSCBNEX minus 1.

Word 5: Specifies the data set type. The valid types are:

Code Type

0 Undefined
1 Data
3 Program
-1 Unspecified

Code 0, 1, or 3 when you allocate a data set. Code -1 when you open, rename, or delete a data
set. Upon return from $DISKUT3, the system sets word 5 to 0, 1, or 3, depending upon the
type of the data set you specified. If the system sets this word to a value other than -1,
$DISKUT3 compares the data set type you specified with the type of the existing data set. If
the data sets are not alike, $DISKUT3 returns a return code of 17 and ends.

The system returns the DSCB in an open condition except when it deletes a data set. When you
allocate a data set, you do not need to perform an open operation or use DSOPEN.

o

o

o

o

o

o

EDX Programs (continued)

Special Considerations

Consider the following when using $DISKUT3:

If you use $DISKUT3 to process data sets that occupy the same volume as your program,
you can retrieve the volume name from the $PRGVOL field of the program header. To
refer to $PRGVOL, you must include a COpy PROGEQU statement in your program.

An attempt to delete a data set that does not exist is considered a successful operation.

An attempt to allocate an existing data set is considered a successful operation if:

The existing data set is of the same type as the data set you specified for the operation.

The size of the existing data set is the same as size you requested in the operation.

If you attempt to allocate an existing data set and the data set types match but not the sizes,
your program receives a return code indicating whether the data set you requested is smaller
or larger than the one that exists.

The OPEN and SETEOD operations are valid for tape data sets.

Appendix D. EDX Programs, Subroutines, and Inline Code LR-S77

EDX Programs, Subroutines, and Inline Code
EDX Programs (continued)

$DISKUT3 Example

LR-578 SC34-0643

The following example uses three of the $DISKUT3 operations (OPEN, ALLOCATE, and
RENAME) in an application program.

The LOAD instruction loads $DISKUT3 to open data set (DATA3,) allocate a new data set
(DATA4,) and rename an existing data set (DATAL) DSK3EVNT, the label on the EVENT=
operand, is the label of the event control block (ECB) to be posted when $DISKUT3 completes.
LISTPTR 1 is the label that points to the address of the list of request block addresses. The
WAIT instruction waits for the system to post the completion of $DISKUT3.

o

c

c

o

o

o

EDX Programs (continued)

TASK

GO

PROGRAM GO,DS=((DATA1,EDX002), (DATA2,EDX003))
COpy DSCBEQU
EQU *

LOAD
WAIT

PROGSTOP

$DISKUT3,LISTPTR1,EVENT=DSK3EVNT
DSK3EVNT

DSK3EVNT ECB
LISTPTR1 DC

o
A(LIST1)

SET ECB TO ZERO
ADDRESS OF LIST OF REQUEST

BLOCK ADDRESSES *
LIST1 DC A(REQUEST1)

DC A (REQUEST2)
DC A(REQUEST3)
DC F'O' END OF LIST FLAG

REQUEST 1 DC F'1' REQUEST: 'OPEN' A DATA SET
DC A(DSY) DSCB FOR 'DATA3'
DC 0'0' UNUSED FOR OPEN REQUESTS
DC F'-1' UNUSED FOR OPEN REQUESTS

REQUEST2 DC F'2' REQUEST: 'ALLOCATE' A DATA SET
DC A(DSX) DSCB FOR 'DATA4'
DC 0'50' ALLOCATE 50 RECORDS
DC F'1' DATA SET TYPE IS 'DATA'

REQUEST3 DC F'3' REQUEST: 'RENAME' A DATA SET
DC A(DS1) DSCB FOR 'DATA1'
DC F'O' UNUSED FOR RENAME REQUEST
DC A (NEWNAME) ADDRESS OF NEW DATA SET NAME
DC F'-1' FOR RENAME REQUESTS
DSCB DS#=DSY,DSNAME=DATA3
DSCB DS#=DSX,DSNAME=DATA4

NEWNAME DC CL8'RENAMED' NEW DATA SET NAME
ENDPROG
END

Appendix D. EDX Programs, Subroutines, and Inline Code LR-579

EDX Programs, Subroutines, and Inline Code
EDX Programs (continued)

$DISKUT3 Return Codes

LR-580 SC34-0643

$DISKUT3 return codes are returned to the first word of the data set control block (DSCB).
When you specify more than one operation, $DISKUT3 performs the operations in the order
you specify. The system returns a return code for each operation attempted.

Note: If you load $DISKUT3 and request more than one operation that refers to the same
DSCB, the return code reflects the results of the last operation the system attempted using that
DSCB.

Code
-1
1
2
4
5
6

7
8

9

10
11

12

13
14
15
16
17

Condition

Successful completion
Invalid request code parameter (not 1-6)
Volume does not exist (All functions)
Insufficient space in library (ALLOCATE)
Insufficient space in directory (ALLOCATE)
Data set already exists - smaller than the
requested allocation
Insufficient contiguous space (ALLOCATE)
Disallowed data set name, ego $$EDXVOL or
$$EDXLlB (all functions except OPEN)
Data set not found
(OPEN, RELEASE, RENAME)
New name pointer is zero (RENAME)
Disk is busy
(ALLOCATE, DELETE, RELEASE, RENAME)
I/O error writing to disk
(ALLOCATE, DELETE, RELEASE, RENAME)
I/O error reading from disk (All functions)
Data set name is all blanks (ALLOCATE, RENAME)
Invalid size specification (ALLOCATE)
Invalid size specification (RELEASE)
Mismatched data set type
(DELETE, OPEN, RELEASE, RENAME)

18 Data set already exists - larger than the
requested allocation

19 SETEOD only valid for data set of type 'data'
20 Load of $DISKUT3 failed ($RMU only)
21 Tape data sets are not supported
23 Volume not initialized or Basic Exchange Diskette has

been opened

o

o

o

o

o

o

EDX Programs (continued)

$PDS - Use Partitioned Data Sets

The display data base utility ($DIUTIL) uses a utility program, $PDS, to make partitioned data
sets available for its use. Your programs also can use $PDS to get access to the members of a
partitioned data set (such as report data members and realtime data members). You also can
use any of the other functions of $PDS in your programs.

Use the LOAD instruction to execute $PDS in your program. $PDS can be used as an overlay
program as well as a a program loaded by another program.

$PDS allows you to:

Open a member

Allocate a member for a fixed number of records

Allocate a member for the maximum number of records

Release unused space from a member

Delete a member

Store the next record

Store a record

Fetch a record.

The types of members and their member codes are as follows:

Type of member
Report member
Graphic member
Graphic member 3D
Report data member
Plot curve data member
Realtime data member
Data members you define
You define

Member code

1
2
3
4
5
6

7,8,9
10-n

Member types 1,2, and 3 store commands that are used by $DIINTR to create a display.
Member types 4, 5, and 6 contain data that is saved by your application program. Member
types 7, 8, and 9 have the same format as member types 4, 5, and 6 but are for use by
application programs. Member types 10 and up are for use by application programs.

Appendix D. EDX Programs, Subroutines, and Inline Code LR-581

EDX Programs, Subroutines, and Inline Code
EDX Programs (continued)

Member types 4 through 9 are special members because they contain multiple records with a
length of 1 to 32767 bytes. This feature allows the application program to Fetch and Store data
by record number within a member. This technique could be used by an application program to
update data members defined with the Display Utility Program Set.

You may create members in the following ways:

Use $DIUTIL utility

Data member, member codes 4,5,6

User data members, member codes 7,8,9

User defined members, member codes 10 and up

Member codes 1,2,3 cannot be created by $DIUTIL

Use $DICOMP program

Report member, member code 1

Graphic member, member code 2

Graphic 3D member, member code 3

Use $PDS

All member types

Allocating a Data Set

LR-582 SC34-0643

A data set that is to be used by $PDS must be allocated using $DISKUTI. Records should be
allocated for the directory as well as members. Each record in the directory of a partitioned
data set can contain sixteen directory entries except the first record which can contain fifteen.
For example, if space is required for 40 members each with five records of space, you should
allocate 203 records, 200 for members and three for the directory.

After a data set has been defined by $DISKUT1, it must be formatted for use by $PDS.
$DIUTIL functions IN (Initialize), AL (Allocate), and BU (Build Data) are used for this
purpose. $PDS can also be used to allocate members. Once members are allocated, they can be
used by the application program. The $DIUTIL program is used to maintain the data set.

The data set to be used with $PDS consists of:

Directory area

Member area.

o

o

o

o

EDX Programs (continued)

Directory Area Format

The first entry in the directory describes the data set and has the following format:

Byte Usage

0-1 Next available record number for member

2-3 Total size of data set in records

4-5 Number of next directory entry

6-7 Total available directory entries allocated and unallocated

8-15 Unused space

Each succeeding directory entry is 16 bytes with the following format:

Byte Usage

EBCDIC member name 0-7
8-9 First record number (relative to start of

data set)
10-11
12-13
14-15

Number of records in member
Member code
Your code or clear screen indicator

Member Code (bytes 12-13)

-1 Deleted member
o Available space
1 Report member
2 Graphic member
3 Reserved
4 Report data member
5 Plot curve data member
6 Realtime data member

7 -9 Data member you define
10-n Members you define

Your code (bytes 14-15)

Defined by you and stored by $PDS allocate or a value of 1
if clear screen (ESC,FF) is not to be sent on $DlINTR invocation.

$DIUTIL can be used to display this data for reference.

Appendix D. EDX Programs, Subroutines, and Inline Code LR-583

EDX Programs, Subroutines, and Inline Code
EDX Programs (continued)

Member Area Format

LR-584 SC34-0643

Each member type has a unique format.

Member types 1-3 Display Control Member

No specific format is defined. The data is generated by the
$DICOMP Utility Program. See Display Control Member format
for information about the content of these members.

Member Type 4

Byte

0-7
8-9
10-11
12-13
14-15
16-n

Member Type 5

Byte

0-1
2-3
4-5
6-7
8-9
10-11
12-13
14-15
16-n

Report Data Member

Usage

Unused
Number of records
Record length in bytes (1-132)
Number of records available
Unused
Data Area

Plot Curve Data Member

Usage

X Axis Range
Y Axis Range
X Base Line Value
Y Base Line Value
Number of records
Record length in bytes (1-32767)
Number of records available
Unused
Data Area

Note: Each record can be larger than 4 bytes, however relative bytes 0,1 must contain the
X-coordinate value and bytes 2,3 must contain the Y-coordinate value.

Member Type 6

Byte

0-7
8-9
10-11
12-13
14-15
16-n

Realtime Data Member

Usage

Unused
Number of records
Record length in bytes (must be 16)
Number of records available
Unused
Data Area

o

o

o

o

C~

o

EDX Programs (continued)

Member Type 7,8,9

Byte

0-7
8-9
10-11
12-13
14-15
16-n

Member type 10-n

Display Control Member Format

Data Member You Define

Usage

Unused
Number of records
Record length in bytes (1-32767)
Number of records available
Unused
Data Area

Member You Define

Each of the display profile elements contained in the control members, type codes (1,2,3), is
shown in this section. You may wish to use $PDS to access a control member. The application
program could then generate a display profile command string and use $DIINTR to display the
results. Following is the format of each of the display profile elements.

LB Display Characters

Byte Bits Value Content

0 0-3 1 Display characters code
0 4-7 0 Unused
1 0-7 1-72 Number of characters to display
2-n 0-7 EBCDIC EBCDIC data to display

MP Move Position

Byte Bits Value Content

0 0-3 2 Move Position Code
0-1 4-7/0-7 0-1023 X Coordinate Value
2-3 0-7 0-1023 Y Coordinate Value

For 3D Members:

Byte Bits Value Content

0 0-3 2 Move Position Code
0-1 4-15 0 Unused
2-3 0-15 -32768 - +32767 X Coordinate Value
4-5 0-15 -32768 - +32767 Y Coordinate Value
6-7 0-15 -32768 - +32767 Z Coordinate Value

Appendix D. EDX Programs, Subroutines, and Inline Code LR-585

EDX Programs, Subroutines, and Inline Code
EDX Programs (continued)

LR-586 SC34-0643

II Draw Line

Byte Bits Value
0 0-3 3
0-1 4-7/0-7
2-3 0-7 0-1023

For 3D members:

Byte Bits Value

0 0-3 3
0-1 4-15 0
2-3 0-15 -32768 - +32767
4-5 0-15 -32768 - +32767
6-7 0-15 -32768 - +32767

DR Draw Symbol

Byte Bits

0 0-3
0 4-7
1 0-7
2-3 0-7

OR

2 0-5
2 6
2-3 7/0-7

VA Display Variable

Byte

o
o
1
1
2-3
4
5

Bits

0-3
4-7
0-3
4-7
0-7
0-7
0-7

Value
4
1-15
0-255
0-32767

0
0-1
0-508

Value

5
0-7
0-15
0-3
1-32767
1-40
0-39

Content

Draw Line Code
0-1023 X Coordinate Value
Y Coordinate Value

Content

Move Position Code
Unused

X Coordinate Value
Y Coordinate Value
Z Coordinate Value

Content
Draw Symbol Code
SymbollD
Symbol Modifier
Users Symbol Number

Unused
Start top (0) or bottom (1) for Arc
of Y units in Arc

Content

Display Variable Code
Word Number within record
Function Code
Type Code
Record number in Realtime Data Member
Field Width
Number of Decimals

o

0

o

o

0

o

EDX Programs (continued)

JP

Byte

0
0

2-3
4-5

DI

Byte

0
0
1
2-9

PC

Byte

0
0

2-9

**
Byte

o
o
1
2-9

Jump

Bits

0-3
4-7
0-7

0-7
0-7

Value

6
0-7
0-2

1-32767
0-32767

Content

Jump Code
Word number within record
Jump Modifier
Q=Unconditional
1=Zero
2=Non Zero
Record number in Realtime Data Member
Jump to Address (offset in words from
beginning of Control Member)

Direct Output to Another Device

Bits Value Content

0-3 8 Direct Output Code
4-7 0 Unused
0-7 0 Unused
0-7 EBCDIC 8 character name of output device

Refer to ENQT instruction.

Plot Curve from Plot Curve Data Member

Bits Value

0-3 9
4-7 0
0-7 o or EBCDIC

0-7 EBCDIC

Display Report Line Items
Bits

0-3
4-7
0-7
0-7

Value

10
o
o
EBCDIC

Content

Plot Curve Code
Unused
EBCDIC character for plot

if character plot
8 character member name of
a plot data member

Content

Display Report Line Items
Unused
Unused
8 character member name of
a report data member

Appendix D. EDX Programs, Subroutines, and Inline Code LR-587

EDX Programs, Subroutines, and Inline Code
EDX Programs (continued)

AD Advance X,V

Byte Bits

0 0-3
0-1 4-7/0-7
2-3 0-7

For 3D Members:

Byte Bits

o 0-3
0-1 4-7/0-7
2-3 0-7
4-5 0-7

1M Insert Member

Byte Bits

0 0-3
0 4-7
1 0-7
2-9 0-7

Value

11
0-1023
0-1023

Value

11
0-1023
0-1023
0-1023

Value

12
0
0
EBCDIC

LR Draw Line Relative

Byte Bits Value

0 0-3 13
0-1 4-7/0-7 0-1023
2-3 0-7 0-1023

LR-588 SC34-0643

Content

Advance X,V code
X advance value (adjusted by +512)
V advance value (adjusted by +512)

Content

Advance X, Y,Z Code
X Advance Value (adjusted by +512)
Y Advance Value (adjusted by +512)
Z Advance Value (adjusted by +512)

Content

Insert Member Code
Unused
Unused
8 character member name of
a central member

Content

Draw Line relative code
Delta X Value (adjusted by +512)
Delta Y Value (adjusted by +512)

o

0

o

o

o

o

EDX Programs (continued)

For 3D Members:

Byte Bits

o 0-3
0-1 4-7/0-7
2-3 0-7
4-5 0-7

Value

13
0-1023
0-1023
0-1023

Content

Draw Line Relative Code
Delta X Value (adjusted by +512)
Delta Y Value (adjusted by +512)
Delta Z Value (adjusted by +512)

RT Change Realtime Data Member Name

Byte Bits Value Content

o 0-3 14 Change Realtime Data Member Code
o 4-7 0 Unused
1 0-7 0 Unused
2-9 0-7 EBCDIC 8 character member name of

a new realtime data member
(for VA and +P codes)

TD

Byte

o
o

Display Time and Data

Bits Value

0-3
4-7
0-7

15
o
o

Content

Display time and data code
Unused
Unused

Appendix D. EDX Programs, Subroutines, and Inline Code LR-589

EDX Programs, Subroutines, and Inline Code
EDX Programs (continued)

$PDS Example

LR-590 SC34-0643

You get access to $PDS by loading it with the LOAD instruction. The following example shows
how to open a member.

XYZ
START

PROGRAM
EQU

READ TEXT

LOAD

WAIT
IF

START, DS=(??)

*
#MCB, 'ENTER MEMBER NAME@'.

$PDS,$MCB,DS=(DS1),EVENT=#PDS,LOGMSG=NO

#PDS
(#PDS,NE,-1),GOTO,ERROR

* NORMAL PROCESSING OF OPENED MEMBER *

READ

WRITE

PROGSTOP

BUFF DATA
$MCB DATA

#MCB TEXT
#MCBCMD DATA
#MCBDSA DATA
#MCBDTO DATA
#MCBDTl DATA
#MCBDT2 DATA
#MCBDT3 DATA

DSCB

ENDPROG
END

MBR,BUFF

MBR,BUFF

128F'O'
A(#MCB)

LENGTH=8
F'l '
A(MBR)
F'O'
F'O'
F'O'
F'O'

DISK I/O BUFFER
POINTER TO MEMBER CONTROL BLOCK

MEMBER NAME
$PDS COMMAND (OPEN)
ADDRESS OF DSCB
Data Field 0
Data Field 1
Data Field 2
Data Field 3

DS#=MBR,DSNAME=DUMMY,VOLSER=DUMMY

o

o

o

o

o

o

EDX Programs (continued)

Member Control Block

The 20-byte member control block (MCB) is passed to the $PDS utility program by the PARM
facility. The member control block (MCB) is filled in by your application program.

The format of the MCB is as follows:

Byte

0-7
8-9
10-11
12-19

Usage

EBCDIC Member Name
$PDS Command (see below)
Address of Callers DSCB
Data field 0 through 3 (see below)

$PDS Commands (bytes 8-9)

Command

1
2
3
4
5
6
7
8

Command Descriptions

Function

Open Member
Allocate Member
Allocate Member (Maximum Space)
Release Space
Delete Member
Store Next Record
Store Record
Fetch Record

Open Member

The member specified in bytes 0-7 of the MCB is located and the DSCB specified
in bytes 10-11 is filled in to point to the member.

Allocate Member

The member specified in bytes 0-7 of the MCB is dynamically allocated with the
parameter specified in bytes 14-19.

Allocate Member (maximum space)

The member specified in bytes 0-7 of the MCB is dynamically allocated with the
parameter specified in bytes 16-19. Maximum space is allocated.

Appendix D. EDX Programs, Subroutines, and Inline Code LR-591

EDX Programs, Subroutines, and Inline Code
EDX Programs (continued)

Release Space

The member specified in bytes 0-7 of the MCB is located and unused space is
returned to the available space in the data set. Bytes 14-15 must contain the
number of records that the member will contain.

Delete Member

The member specified in bytes 0-7 of the MCB is located and marked for deletion.

Note: The space occupied by the deleted member is NOT returned to the available
space in the data set. Use the utility $DIUTIL to reclaim deleted space.

Store Next Record

The member specified in bytes 0-7 of the MCB is located. The member header is
used to determine which record is next and data is stored in that record. Your data
buffer address is located in bytes 14-15 of the MCB.

Store Record

The member specified in bytes 0-7 of the MCB is located. The record specified in
bytes 12-13 is located and the data is stored in that record. Your data buffer
address is located in bytes 14-15 of the MCB.

Fetch Record

The member specified in bytes 0-7 of the MCB is located. The record specified in
bytes 12-13 is located. All the data is retrieved and stored in your data buffer. The
data buffer address is located in bytes 14-15 of the MCB.

Data fields 0 through 3 must contain modifier information for the various $PDS commands.
Also, these areas contain data following the action taken by the $PDS program. The following
tables show the data required before executing $PDS and the data returned after $PDS has
executed.

LR-592 SC34-0643

011\
I 1

o

o

o EDX Programs (continued)

Before $PDS Executes:

Data Data Data Data
Command Word 0 Word 1 Word 2 Word 3

Open N/A N/A N/A N/A

Allocate N/A Records Member Your
Type Code
Code

Al'locate Max N/A N/A Member Your
Type Code
Code

Release N/A Records N/A N/A

Delete N/A N/A N/A N/A

Store Next N/A Data Buffer N/A N/A
Address

Store Record Data Buffer N/A N/A
Address

Fetch Record Data Buffer N/A N/A
Address

Note: N/ A = Not Applicable

After $PDS Executes:

Data Data Data Data
Command Word 0 Word 1 Word 2 Word 3

o Open 1 st Records Member Your
Record Type Code

Code

Allocate 1 st Records Member Your
Record Type Code

Code

Allocate Max 1 st Records Member Your
Record Type Code

Code

Release N/A N/A N/A N/A

Delete N/A N/A N/A N/A

Store Next Record Data Buffer Records N/A
Address in

Member

Store Record Data Buffer Records N/A
Address in

Member

Fetch Record Data Buffer Records N/A

Note: N/ A = Not Applicable

o
Appendix D. EDX Programs, Subroutines, and Inline Code LR-593

EDX Programs, Subroutines, and Inline Code
EDX Programs (continued)

$RAMSEC - Replace Terminal Control Block (4980)

$RAMSEC enables you to replace the current image and/or control stores in the terminal
control block (CCB) from an application program by changing the data set names.
Replacement data set names are held in the CCB to govern 4980 terminal operations requested
after power off and on. They are held until a new $RAMSEC load or IPL occurs.

When you load $RAMSEC from a program, The LOAD instruction passes parameters that
indicate the new data set names. You can load your own data sets in combination with any of
the two data sets loaded by the initial control store program. The names of the system data sets
are:

Image store: $49801S0

Control store: $4980CSO.

In the following data sets, 'x' represents any letter or special character that is allowed in a data
set name. The characters 0 through 9 are reserved by EDX. These data sets must appear on the
IPL volume. Required names for replacement data sets are:

Image store: $49801Sx

Control store: $4980CSx.

Meaning of the Parameter Listings

PARMI

C'OY'

X'OOOO'

X'OOOl'

X'FFFF'

LR-594 SC34-0643

Meaning

When 'Y' is the last character of the image store data set name, the
system loads $49801SY to the terminal. The system modifies the CCB
to reflect the current data set.

The system loads $4980IS0, the system default image store, to the
terminal. The system modifies the CCB to reflect the current image
store data set.

The system loads the image store name currently in the CCB. It does
not modify the CCB.

The system loads no image store nor does it modify the CCB.

o

o

o

o

o

o

EDX Programs (continued)

PARM2

C'OY'

X'OOOO'

X'OOOl'

X'FFFF'

PARM3

2F'-1'

Meaning

When 'Y' is the last character of the control store data set name, the
system loads $4980ISY to the terminal. The system does not modify
the CCB to reflect this data sets name.

The system loads $4980CSO, the system default control store, to the
terminal. The system modifies the CCB to reflect the current data set.

The system loads the control store name in the CCB. It does not
modify the CCB.

The system loads no control store, nor does it modify the CCB.

Meaning

Reserved. Must be coded as indicated.

Note: The characters 'X' above indicate hexadecimal numbers. The other character 'Y' in the
list above represents any character except the numbers 0 through 9 which are reserved by EDX.

Special Considerations

Consider the following when using $RAMSEC:

• To load a 4980 terminal other than the terminal on which your application is running, you
must ENQT the other terminal before loading $RAMSEC.

Do not specify DEQT=NO on the load instruction, even if you have had to ENQT on a
terminal before loading $RAMSEC.

• You cannot replace the default image and control stores at IPL. The system always loads
the default image and control stores.

Appendix D. EDX Programs, Subroutines, and Inline Code LR-595

EDX Programs, Subroutines, and Inline Code
EDX Programs (continued)

$RAMSEC Example

The following examples load $RAMSEC to change the image store. In either case, the system
loads only the image store, $4980ISY, to the terminal. You can code the parameters as either
binary values or characters. Only the rightmost byte, -1, is used by $RAMSEC. The leftmost
byte is ignored for all data sets.

PARM1
PARM2
PARM3

MOVE
LOAD
WAIT

DC
DC
DC

PARM1+1,C'Y' ,BYTE MOVE IN LAST CHAR. OF IMAGE STORE
$RAMSEC,PARM1,EVENT=ECB1,PART=ANY
ECB1 WAIT FOR COMPLETION OF $RAMSEC

X'FFFF'
X'FFFF'
2F' -1 '

IMAGE STORE PARM
CONTROL STORE PARM
RESERVED - MUST BE -1

Equivalent code would be:

PARM1
PARM2
PARM3

LOAD
WAIT

DC
DC
DC

$RAMSEC,PARM1,EVENT=ECB1,PART=ANY
label WAIT FOR COMPLETION OF $RAMSEC

ClOY'
X'FFFF'
2F' -1 '

IMAGE STORE PARM
CONTROL STORE PARM
RESERVED - MUST BE -1

$RAMSEC Return Codes

LR-596 SC34-0643

A PROGSTOP statement in $RAMSEC issues the following return codes to the application.

Return
Code

-1
1
2
3
4
5
6
7

8
9

Condition

Successful operation.
Image store load failed.
Control store load failed.
Image store and control store load failed.
PARM3 (two words) was not coded as -1.
PARM3 was not coded as -1 and image store load failed.
PARM3 was not coded as -1 and control store load failed.
PARM3 was not coded as -1 and control store and image
store load failed.
You did not enqueue 4980.
System not able to ENQT 4980 before loading $RAMSEC.

o

()

o

o

()

o

EDX Programs (continued)

$SUBMITP - Submit a Job for Execution

The $SUBMITP program enables you to submit a job to the job queue processor, $JOBQ, from
an application program. You load $SUBMITP from your program with the LOAD instruction
and pass it a list of parameters. $SUBMITP can execute two job queue processor commands:
SJ and SH. The SJ command submits a job for execution. The SH command submits a job and
holds it until you release the job for execution using the RJ command. The RJ command is
available under the $SUBMIT utility. (See the Operator Commands and Utilities Reference for
more information on $SUBMIT.)

You must pass the $SUBMITP program the following parameters (in the order shown):

1. The command name (SJ or SH)

2. The job priority (0-3; 0 is the highest priority)

3. Name of data set containing $JOBUTIL statements

4. Data set volume

5. Address (label) of word containing the job number.

The $SUBMITP program attempts to load the job queue processor if it is not already running.
The program places the number of the job at the address of the label you specify in the
parameter list.

You must code the EVENT= operand on a LOAD instruction that loads $SUBMITP. The
system posts the label on the EVENT= operand when the $SUBMITP program ends. Coding a
WAIT instruction following the LOAD instruction enables you to test to see if $SUBMITP
submitted the job successfully. You can load $SUBMITP in another partition by specifying the
PART= operand on the LOAD instruction.

Appendix D. EDX Programs, Subroutines, and Inline Code LR-597

EDX Programs, Subroutines, and Inline Code
EDX Programs (continued)

$SUBMITP Example

The following example loads $SUBMITP to submit a job for execution.

ERROR

PARMS

JOB
FINISH

LOAD $SUBMITP, PARMS,LOGMSG=NO, EVENT=FINISH
WAIT END
IF (END,NE,-1) ,GOTO,ERROR

EQU

EQU
DATA
DATA
DATA
DATA
DATA

DATA
ECB

*

* C'SJ'
X'OOO2'
CL8'COMPILE'
CL6'EDXOO2'
A(JOB)

F'O'

COMMAND NAME
JOB PRIORITY
DATA SET NAME
VOLUME NAME
ADDRESS OF JOB NUMBER

JOB NUMBER RETURNED TO THIS WORD

$SUBMITP Return Codes

LR-598 SC34-0643

$SUBMITP return codes are returned to the first word of the event control block you specify
with the EVENT= operand of the LOAD instruction.

Code Condition

-1 Job submitted successfully
1 Job queue is full
2 Invalid data found in job queue data set
3 Disk I/O error is updating queue data set
4 Cannot load $JOSQ
5 Invalid command

o

o

o

o EDX Programs (continued)

o

o

$USRLOG - Log Specific Errors From a Program

The USER instruction allows you to use Series/l assembler code within an EDL program. See
"USER - Use assembler code in an EDL program" on page LR-516 for information on use of
this instruction. Through this instruction, the $USRLOG subroutine enables you to log specific
program errors from an application program. Use of this subroutine is explained below.

Syntax:

label USER $USRLOG,PARM=(Iogtype,datatype,
dataaddr,datakey,devaddr),
P=(logtype,datatype,dataddr,
datakeY,devaddr)

Required: logtype, datatype, data add r, data key, devaddr
Defaults: none
Indexable: none

Operand Description

logtype

datatype

dataaddr

datakey

devaddr

The type of log record. Use one of the following values:

1 - Soft error (device recoverable)

2 - Hard (unrecoverable) error

3 - Software recoverable error.

The type of control block data being logged. Values 0 to 127 are used by the
supervisor; values 128 to 255 are reserved for your use. The actual hexadecimal
value must be coded.

The address of the log data.

The address space key of the log data address.

The device address.

Appendix D. EDX Programs, Subroutines, and Inline Code LR-599

EDX Programs, Subroutines, and Inline Code
EDX Programs (continued)

$USRLOG Example

LR-600 SC34-0643

The following program example logs a buffer of ones (1s) with $USRLOG.

Define both $DEVLOG and $USRLOG as EXTRNs in programs invoking $USRLOG so as not
to incur assembler errors. Also, before executing the $USRLOG subroutine you must link-edit
your application program with $$SVC, $$RETURN and $DEVLOG object modules.

**
* WHEN LINKING THIS LOG INVOKING PROGRAM USE THE *
* FOLLOWING LINK CONTROL *
* AUTOCALL $AUTO,ASMLIB *
* IN LOGS,OBJLIB *
* IN $$SVC,ASMLIB *
* IN $DEVLOG,ASMLIB *
* LINK $LOGS,SRCLIB REP END *
**

START

ERRTYPE1
DATYPE1
DATADR1
ADRSPACE
DEVADR1
BUFFER
ADSO

EXTRN
EXTRN
EQU
TCBGET
MOVE
USER
PROGSTOP
DC
DC
DC
DC
DC
DC
DC
ENDPROG
END

$DEVLOG
$USRLOG

ADSO,$TCBADS
ADRSPACE,ADSO
$USRLOG

F'3'
X'0080'
A (BUFFER)
F'O'
X'0068'
2S6C'1 '

F'O'

GET USER ADDRESS SPACE KEY
MOVE INTO LOG PARM. LIST
LOG RECORD

LOGTYPE
DATATYPE
DATA ADDRESS
ADDRESS SPACE OF BUFFER
DEVICE ADDRESS
BUFFER OF ONES

To make $USRLOG code reentrant, you may need to disable the system while your program is
modifying the parameter list. Note that the logging routine disables the system for a short time.
The system is enabled after logging functions are complete. At that time $USRLOG passes
control back to the invoking program.

o

o

o

o

o

EDX Programs (continued)

EDX Subroutines

This section describes the following EDX subroutines:

DSOPEN

Formatted Screen Subroutines (syntax only)

• Indexed Access Method (syntax only)

• Multiple Terminal Manager (syntax only)

SETEOD

• UPDTAPE.

You call these subroutines in your application program with the CALL instruction.

The following syntax conventions are used for the subroutines listed in this appendix.

Operands shown in brackets [] are optional

Operands not shown in brackets are required

Default values are italicized

The OR symbol I indicates mutually exclusive operands or parameters: .

Appendix D. EDX Programs, Subroutines, and Inline Code LR-601

,EDX Programs, Subroutines, and Inline Code
EDX Subroutines (continued)

DSOPEN - Open a data set

You may open a data set from an application program with the DSOPEN copy code. By
initializing a DSCB, DSOPEN opens a disk, diskette, or tape data set for input and/or output
operations. The results of DSOPEN processing are identical to the implicit open performed by
$L or LOAD for data sets specified in the PROGRAM statement.

Note: Only one DSCB can be open to a tape at a time. If a tape has been opened, a close must
be issued before another open can be requested.

DSOPEN performs the following functions:

• Verifies that the specified volume is online
Verifies that the specified data set is in the volume
Initializes the DSCB

To use DSOPEN, you must first copy the source code into your program by coding:

COpy DDODEF
COpy TCBEQU
COpy PROGEQU
COPY DDBEQU
COpy DSCBEQU

COPY DSOPEN

Note: You must code the equates in the order given.

During execution, DSOPEN is invoked with the CALL instruction as follows:

CALL DSOPEN, (dscb)

LR -602 SC34-0643

o

(-.~
J

()

o

o

EDX Subroutines (continued)

DSOPEN Error Exit Labels

The DSOPEN subroutine contains labels for a number of error exits. By moving the address of
your error routine into the area defined by the DSOPEN label, the subroutine will perform the
error routine you supply. The routine you supply can not be another subroutine. If you move a
zero into the area defined by the DSOPEN label (except for $$EXIT), the subroutine passes
control to the first instruction following the CALL instruction for DSOPEN. The labels are as
follows:

Label Description

$DSNFND Data set name not found in directory If DSOPEN can not find the data set, then
it does not fill in the DSCB.

$DSBVOL Volume not found in disk directory. The system set the DDB pointer in the
DSCB to 0 ($DSCBVDE does not equal 0).

$DSIOERR Read error occurred while DSOPEN was searching the directory. See the READ
instruction return codes for more information.

$$EXIT

$DSDCEA

DSOPEN Considerations

Exit address. If $$EXIT is 0 and $DSCBNAME equals '$$' or '$$EDXVOL',
then DSOPEN initializes the DSCB to the first record (first recond in the library)
of the volume specified in the $DSCBVOL. If $$EXIT is 0 and $DSCBNAME
is '$$EDXVOL', then DSOPEN initializes the DSCB to the first record of the
device where the volume specified on $DSCBVOL resides.

Address of area for DSOPEN to store the DCE (Directory Control Entry). This
label contains a 0 if this area does not exist.

You must have a 256-byte work area labeled DISKBUFR in your program as follows:

DISKBUFR DC 128F'O'

The DSCB to be opened can be DS 1 to DS9 or a DSCB defined in your program with a DSCB
statement. The DSCB must be initialized with a six-character volume name in $DSCBVOL and
an eight-character data set name in $DSCBNAM. The volume name can be specified as six
blanks, which causes the IPL volume to be searched for the data set.

After DSOPEN processing, #1 contains the number of the directory record containing the
member entry and #2 contains the displacement within DISKBUFR to the member entry. The
fields $DSCBEND and $DSCBEDB contain the next available logical record data, if any, placed
in the directory by SETEOD.

Appendix D. EDX Programs, Subroutines, and Inline Code LR-603

EDX Programs, Subroutines, and Inline Code
EDX Subroutines (continued)

Only one data set on any tape volume may be open at anyone time. Multiple data sets, in a
program header, or if opened by DSOPEN, cannot refer to more than one data set per tape
volume. If this is attempted, the second open attempt will fail and take the Invalid VOLSER
error exit.

DSOPEN Example

LR-604 SC34-0643

The following is an example using of the DSOPEN subroutine. The name of the subroutine that
calls DSOPEN is USROPEN.

USROPEN opens a data set and returns information about the data set to a 10-word area in the
program. Figure 14 on page LR-606 shows the information that USROPEN will return if the
DSOPEN subroutine successfully opens the data set.

The call to the USROPEN subroutine would appear as follows:

CALL USROPEN, (label)

where (label) is the address of the 10-word area.

At entry to USROPEN, #1 equals A (the DSCB to be opened). This DSCB must have the fields
$DSCBNAM and $DSCBVOL filled with the name of the opened data set and the name of the
data set volume, respectively.

In order not to receive information about the opened data set after the DSOPEN operation, the
call to USROPEN would be coded as follows:

CALL USROPEN,O

When USROPEN completes, #1 and #2 are at they were on entry. If DSOPEN takes an error
exit during the operation, USROPEN will return the appropriate return code. The return codes
set up for USROPEN are as follows:

-1 Operation completed successfully. Data set is open, and if requested, the DM parameters
were transferred to a specified area.

2 Data set not found. The data set requested was not found on the volume specified.

3 Volume not found. The volume that the data set is supposed reside on does not exist or is
not on line.

6 While DSOPEN was attempting to open the data set, an unrecoverable 110 error
occurred on the volume directory.

18 Directory not initialized or is not in correct format.

o

o

0

o

EDX Subroutines (continued)

SUBROUT USROPEN,OPNDMEP 1o-WORD DATA AREA

MOVE OPNS#1,#1 SAVE #1
MOVE OPNS#2,#2 SAVE #2

* SET UP DSOPEN ERROR EXITS *

*

*
*

OPNXIT

*
OPNDNF

*
OPNVNF

*
OPNLIB

* OPNIOE

MOVEA $DSNFND,OPNDNF DATA SET NAME NOT FOUND
MOVEA $DSBVOL,OPNVNF VOLUME NOT FOUND
MOVEA $DSIOERR,OPNIOE ERROR READING DIRECTORY
MOVEA $DSBLIB,OPNLIB VOLUME NOT INITIALIZED
MOVE $$EXIT,O ALLOW $$, $$EDXLIB, $$EDXVOL

CALL
IF

MOVE
MOVE

ENDIF
MOVE
MOVE
MOVE
RETURN

MOVE
GOTO

MOVE
GOTO

MOVE
GOTO

MOVE
GOTO
END

DSOPEN,OPNS#1
(OPNDMEP,NE,O)

#1,OPNDMEP

CALL DSOPEN
IF ADDRESS OF DME PARAMETER AREA

IS PASSED. TRANSFER DM PARAMETER
INFORMATION FROM DISKBUFFR

(0,#1), (DISKBUFR+$$FPMT,#2),8

#1,0,P2=OPNS#1
(0,#1) ,#2
#2,0,P2=OPNS#2

#2,2
OPNXIT

#2,3
OPNXIT

#2,18
OPNXIT

#2,6
OPNXIT

RESTORE #1
#2 INTO DSCB
RESTORE #2

DATA SET NOT FOUND CODE
CLEAN UP AND RETURN

VOLUME NOT FOUND CODE
CLEAN UP AND RETURN

VOLUME NOT INTIALIZED CODE
CLEAN UP AND RETURN

DIRECTORY I/O ERROR CODE
CLEAN UP AND RETURN

Appendix D. EDX Programs, Subroutines, and Inline Code LR-605

EDX Programs, Subroutines, and Inline Code
EDX Subroutines (continued)

LR -606 SC34-0643

After DSOPEN opens the data set, USROPENfills in the 10-word data area at label
OPNDMEP with the following information about the opened data set.

Offset

o

2

4

8

10

12

Contents

DMEKIND -- Data set type:
0- Unspecified
1 - Date member (sequential or direct)
3 - Program member

DMELA -- The load address, if the data set is a program
(0 - relocatable)

DMERL -- The logical record length, if the data set contains data
(usually 256).

DMEMS -- If the member is a data set, its size in bytes (doubleword)
DMEER -- If the data set contains data, the number of the physical

record that contains the last logical record (doubleword)
DMEEP -- If the data set is a program, its entry point.
DMEEO -- If the data set contains data, the offset in the EOD

physical record of the first byte that is not in
a logical record.

DMERS -- If the data set is a program, the size of its
relocation dictionary in bytes. This field is reserved
if the data set is not a program

DMEEOF -- For data sets containing data, bit 0 equals 1 if DMEER
is valid. This field is reserved for programs.

Figure 14. Information Returned from DSOPEN

o

o

o

o

0

EDX Subroutines (continued)

Formatted Screen Subroutines (Syntax Only)

See Appendix A, "Formatted Screen Subroutines" on page LR-539 for a description of each
subroutine and its operands.

All parameters coded in these subroutines must be labels.

label CALL

label CALL

label CALL

label CALL

label CALL

label CALL

$IMOPEN,(dsname,volume),(buffer),
[(type. C'4978'I C'31 01' I C' '),]
[P2=,P3=,P4=]

$IMDEFN,(iocb),(buffer) [,topm,leftm,P2=,P3=, P4=]

$IMPROT,(buffer) [,(ftab)'P2=,P3=]

$1 M DATA, (buffer),(ftab) [, P2=, P3=]

$PACK,source,dest[,P2=,P3=]

$UN PACK,source,dest [, P2=, P3=]

Appendix D. EDX Programs, Subroutines, and Inline Code LR-607

EDX Programs, Subroutines, and Inline Code
EDX Subroutines (continued)

Indexed Access Method (Syntax Only)

See the IBM Series/1 Event Driven Executive Indexed Access Method (5719-AM3) for a
description of each of the following subroutines.

label CALL IAM,(DELETE I DELETC),iacb,(key)

label CALL IAM,(DISCON N),iacb

label CALL IAM,(ENDSEQ),iacb

label CALL lAM, (EXTRACT), iacb, (buff), (size), (type)

label CALL IAM,(GET I GETC I GETR I GETCR),iacb,(buff),(key),(mode/krel)

label CALL IAM,(GETSEQ I GETSEQC I GETSEQCR I GETSEQR),iacb,(buff),
(key),(mode/krel)

label CALL IAM,(LOAD),iacb,(dscb),(opentab),(mode)

label CALL IAM,(PROCESS),iacb,(dscb),(opentab),(mode)

label CALL IAM,(PUT I PUTC),iacb,(buff)

label CALL IAM,(PUTDE I PUTDEC),iacb,(buff)

label CALL IAM,(PUTUP I PUTUPC),iacb,(buff)

label CALL IAM,(RELEASE),iacb

LR-608 SC34-0643

o

0

o

o EDX Subroutines (continued)

0

o

Multiple Terminal Manager (Syntax Only)

See the Multiple Terminal Manager Guide and Reference for a description of each of the
following subroutines.

Note: All parameters passed in Multiple Terminal Manager functions must be labels of either
values, tables, buffers, or text strings.

label CALL ACTION, [(buffer},(length),(crlf)]

label CALL ASYNCH

label CALL BEEP

label CALL BLINK

label CALL C DATA, (type), (userid), (userclass), (term name), (buffersize)

label CALL CHALT

label CALL CHGPAN

lable CALL CRECVE

label CALL CSEND

label CALL CYCLE

Appendix D. EDX Programs, Subroutines, and Inline Code LR-609

EDX Programs, Subroutines, and Inline Code
EDX Subroutines (continued) 0

Multiple Terminal Manager (continued)

label CALL FAN

label CALL FI LEIO,{FCA),{buffer),{return code)

label CALL FTAB,{table),{size),{return code)

label CALL GETCUR,{row),{column)

label CALL LlNK,{pgmname)

label CALL LlNKON,{pgmname)

label CALL MENU

label CALL PSEUDO

label CALL SETCU R,{row},{column}

label CALL SETFMT,{dsname),{rc}

label CALL SETPAN,{dsname),{return code) 0
label CALL WRITE,{buffer),(length),{crlf)

o
LR -610 SC34-0643

o EDX Subroutines (continued)

o

0 '" ,'I

SETEOD - Set the logical end-of-file on disk

The copy code routine SETEOD allows you to indicate the logical end of file on disk. If your
program does not use SETEOD when creating or overwriting a file, the READ end-of-data
exception occurs at either the physical or logical end that was set by some previous use of the
data set.

SETEOD places the relative record number of the last full physical record in the $$FPMF field
of the directory member entry (DME).

Notes:

1. If the $DSCBEDB field is zero, the $$FPMF field is set to the next record pointer field
($DSCBNEX) minus one.

2. If the $DSCBEBD field is not zero, the $$FPMF field is set to the $DSCBNEX minus two.

If the last physical record is partially filled, the number of bytes contained in this record is
placed in the $$FPMD of the DME. Otherwise, a zero is placed in this field. (This is done by
copying the $DSCBEDB field of the DSCB directly into the DME.) (Further information on
the DME can be found in Internal Design.)

If the next record pointer field ($DSCBNEX) in the DSCB is 1 when SETEOD is executed, the
DME is set to indicate that the data set is empty and $DSCBEND is set to X'-l', indicating that
the data set is empty. If $DSCBEOD is zero, the data set is unused.

You can use SETEOD before, during or after any READ or WRITE operation. It does not
inhibit further 110 and can be used more than once. The only requirement is that the DSCB
passed as input must have been previously opened.

The POINT instruction modifies the $DSCBNEX field. If SETEOD is used after a POINT
instruction, the new value of $DSCBNEX is used by SETEOD.

Appendix D. EDX Programs, Subroutines, and Inline Code LR-611

EDX Programs, Subroutines, and Inline Code
EDX Subroutines (continued)

LR-612 SC34-0643

SETEOD requires that the DSOPEN copy code, PROGEQU, TCBEQU, DDBEQU, and
DSCBEQU be copied in your program.

To use SETEOD, copy the source code into your program and allocate a work data set as
follows:

COpy TCBEQU
COpy PROGEQU
COPY DDBEQU
COPY DSCBEQU

COpy
COPY

DISKBUFR DC

DSOPEN
SETEOD
128F'O' WORK AREA FOR DSOPEN

You invoke SETEOD with the CALL instruction and pass it the DSCB and an 110 error exit
routine pointer as parameters. In the following example,

CALL SETEOD, (DS1), (IOERROR)

DSl points to a previously opened DSCB and IOERROR is the label of the program routine
that receives control if an 110 error occurs.

o

o

o

o

o

o

EDX Subroutines (continued)

UPDTAPE - Add Records to a Tape File

The copy code routine UPDTAPE allows you to add records to an existing (or new) tape file.
The records added are placed after existing records on the file. On standard label tapes, the
routine updates the block count counters in the EOFllabel.

To use UPDT APE, you must copy the source code into your program by coding:

COPY UPDTAPE

You invoke UPDTAPE with the CALL instruction and pass it the DSCB as a parameter. In the
following example,

CALL UPDTAPE, (DS1)

DS 1 points to a previously opened DSCB.

After the CALL, you must check the return code in the first word of the DSCB for the tape
return code. A -1 return code indicates that the tape is positioned correctly for writing records.
(See the CONTROL instruction for a list of tape return codes.)

Appendix D. EDX Programs, Subroutines, and Inline Code LR-613

EDX Programs, Subroutines, and Inline Code
Inline Code (EXTRACT)

LR-614 SC34-0643

This section describes how to find a device type by including the inline copy code routine
EXTRACT in your program. EXTRACT determines the device type from the device descriptor
block. This routine can be useful for programs that perform operations on a variety of devices.
For example, a program may not have to allocate a data set if the data set will reside on a tape.
The program can use the EXTRACT routine, in this case, to determine if the device it will use is
a tape device.

To use EXTRACT, you must copy the source code into your program. The routine requires the
address of a DSCB in #1 and returns the address of a DSCB in #1.

The following example copies the EXTRACT code into the program and checks to see if the
device is a tape unit. X'3186' is the device identifier of an IBM 4969 Magnetic Tape unit.

MOVEA #1,DS1
COpy EXTRACT
IF (#1,EQ,X'3186') ,GOTO,TAPEDS

o

c

o

o

o

o

Appendix E. Creating, Storing, and Retrieving
Program Messages

When designing EDL programs, place prompt messages and other message text in a separate
message data set. You save storage space and coding time by doing so. The message utility,
$MSGUT1, formats the messages in such a data set. The formatted messages can reside on
disk, diskette, or in a module that you link-edit with your application program. The MESSAGE,
GETV ALUE, READTEXT, and QUESTION instructions enable your program to retrieve and
print the appropriate message text when the program executes.

By placing messages in a separate data set, you also can change the text of a message without
having to alter and recompile each program that uses that message. For more information on
how to build and store program messages, refer to the Event Driven Executive Language
Programming Guide.

Creating and using your own messages involves the following steps:

1. Creating a data set for source messages

2. Entering the source messages into the data set

3. Formatting and storing the source messages using the message utility, $MSGUTI

4. Retrieving and printing the formatted messages.

The following section covers each of these steps.

Appendix E. Creating, Storing, and Retrieving Program Messages LR-615

Creating, Storing, and Retrieving Program Messages

Creating a Data Set for Source Messages

You create a data set for source messages with one of the text editors described in the Operator
Commands and Utilities Reference. You can create one or more source message data sets and
can store them on any volume. Messages can be simple statements or questions. They can also
include any variable fields necessary to contain parameters supplied by your program.

Entering Source Messages into a Data Set

After creating a source message data set, enter your source messages using the following syntax
rules:

• Begin each message in column 1.

• Precede each variable field with two less than symbols « <) and follow each variable field
with two greater than symbols (> >).

LR-616 SC34-0643

• End messages with the characters: / *

• Begin and end comments with double slashes (/ /comment/ I). A comment must be
associated with a message.

• Use the at sign (@) to cause the message to skip to the next line.

• Continue a message on a new line by coding any nonblank character in column 72. Begin
the continued line in column 1.

Source messages can be a maximum length of 250 bytes. You can calculate the length of a
message by allowing one byte for each character in the text and one byte for each variable field.

The system identifies each message by its position in the source message data set. For example,
the system assigns a message number of 3 to the third message in the source message data set.
Once you format source messages with the $MSGUTI utility, add any new messages you have
to the end of the source message data set. Leave messages no longer needed in the source
message data set or replace them with new messages to preserve the numbering scheme.

o

o

o

o

o

Coding Messages with Variable Fields

You may want to construct a message that can return information supplied or generated by your
program. To do this, you can code a message with one or more variable fields. When you
execute your program, the system inserts the appropriate parameters in these variable fields and
prints a complete message. For example, to construct a message that tells a program operator
how many records are in a particular data set on a particular volume, code the following:

THERE ARE «SIZE>S> RECORDS IN «DATA SET NAME>T> ON «VOLUME>T>/*

The variable fields in the previous example are the number of records in the data set (SIZE), the
data set name, and the volume name. The variable field names do not need to correspond with
names in a program.

Note: To print or display a message with variable fields, you must have included the FULLMSG
module in your system during system generation.

Set the variable fields off from the message text with two less than and two greater than symbols
(< < > >). The symbols should enclose a description of the field. The system treats the field
description as a comment. You can include up to 8 variable fields within a single message.

All variable fields must also contain a control character that describes the type of parameter your
program will pass to the variable field. The previous example illustrates this point. "s" is the
control character in the field < < SIZE> S >; "T" is the control character in the field
< <VOLUME> T>. The following is a list of the valid control characters and their descriptions:

C Character data. Specify the number of characters allowed in the field by coding a value
from 1 to 250 before the "c" (for example, < <NAME>8C». There is no default.

T Text. No length is necessary. This control character is similar to "C", but you cannot
specify the size of the variable field.

H Hexadecimal data. The length is four EBCDIC characters.

S Single-word integer. Specify a length for the data by coding a value from 1 to 6 before
the "S." The default is six EBCDIC characters. The valid range for a single-word integer
value is from -32768 to 32767.

D Double-word integer. Specify a length for the data by coding a value from 1 to 11 before
the "D." The default is six EBCDIC characters. The valid range for a double-word
integer value is from -2147483648 to 2147483647.

Appendix E. Creating, Storing, and Retrieving Program Messages LR-617

Creating, Storing, and Retrieving Program Messages

Your program passes parameters to a message in the order you specified the parameters in the
EDL instruction. The following example shows a MESSAGE instruction with a parameter list
(PARMS=):

SAMPLE

ID
SIZE
DSNAME
VOLUME

PROGRAM

MESSAGE

COMP
DC
TEXT
TEXT

START,DS=((MSGSET,EDX003))

2,COMP=ID,PARMS=(DSNAME,VOLUME,SIZE)

'SRCE',DS1,TYPE=DSK
F' 100'
'DATA SET l'
'EDX002'

The MESSAGE instruction retrieves message number 2. The source message for message
number 2 is:

«DATA SET NAME>T> ON «VOLUME>T> IS ONLY «SIZE>S> RECORDS/*

When the MESSAGE instruction executes, the system places the first parameter (DSNAME) in
the first variable field. It places the second parameter (VOLUME) in the second field, and the
third parameter (SIZE) in the third field.

You may, however, want to alter or reword the message in the previous example. It is possible
to change the order of variable fields in a source message without changing the order of the
parameter list in the program. To do so, code an additional number after the control character.
This number, from 1 to 8, points to the parameter that the system should insert into the variable
field. The number corresponds to the position of the parameter in the parameter list. For
example, «NAME>C3> tells the system to retrieve the third parameter in the parameter list.

LR-618 SC34-0643

The order of the variable fields in message number 2 has been switched in the following
example. Note that a number following the control character, however, points to the correct
parameter for the variable field:

THERE ARE ONLY «SIZE>S3> RECORDS IN «DATA SET NAME>T1> ON

«VOLUME>T2>/*

X

"S3" points to the third parameter in the list (SIZE), "Tl" points to the first parameter in the
list (DSNAME), and "T2" points to the second parameter in the list (VOLUME).

o

o

o

o

o

o

Sample Source-Message Data Set

The following is a sample of a source-message data set:

THIS IS A SAMPLE MESSAGE //THIS IS A SAMPLE COMMENT// /*
OUTPUT TO SYSTEM PRINTER? /*
ENTER «TYPE OF VALUE>T1> VALUE LESS THAN «VALUE>S2> /*
THE PROGRAM HAS PROCESSED THE INPUT DATA./*
ENTER YOUR «FIRST/LAST/FULL NAME>10C>/*
«NUMBER>3S> RECORDS HAVE BEEN RECEIVED FROM «SOURCE>8C>./*
THE ANSWER IS : «VALUE>D> /*
SORRY, THE DATA YOU ENTERED IS «ERROR>T>/*
THE DEVICE AT ADDRESS «DEVICE ADDRESS>H1> IS X
IN USE/*

Formatting and Storing Source Messages (using $MSGUT1)

Once you have created a source-message data set, you must use the message utility, $MSGUTl,
to convert the source messages into a form the system can use. The utility copies the source
messages, formats them, and stores the formatted messages. (Refer to the Operator Commands
and Utilities Reference for a detailed explanation of how to use the message utility.)

You can store the formatted messages on disk or diskette or in a module. If you choose to store
your formatted messages in a module, you must link-edit the module containing the messages to
your application programs.

Each time you add new messages to the source-message data set, you must reformat the data set
with $MSGUTI.

Note: If you included MINMSG in your system during system generation, your program can
only retrieve formatted messages from a module.

Retrieving and Printing Formatted Messages

To retrieve a message from storage and include it in your program, you must code a CaMP
statement and anyone of the following instructions: MESSAGE, GETVALUE, QUESTION,
and READTEXT. (See the CaMP statement and each of the instructions for information on
how to retrieve and print formatted messages.)

The system retrieves program messages from the data set or module you allocated with
$MSGUTI. If you store formatted messages on disk or diskette, you must include the data set
that contains the messages on the PROGRAM statement for your program. The CaMP
statement must point to this message data set. If you store formatted message in a module, you
must link-edit that module to your program. The CaMP must also contain the name of this
module.

Appendix E. Creating, Storing, and Retrieving Program Messages LR-619

Notes

o

o

o
LR-620 SC34-0643

o

o

Appendix F. Conversion Table

The following conversion table shows the hexadecimal, binary, EBCDIC, and ASCII equivalents
of decimal values. The table also contains transmission codes for communications devices.

Appendix F. Conversion Table LR-621

Conversion Table

ASCII EBASC*
(see Notes 1 (see Notes 2

Decimal Hex Binary EBCDIC and 3) and 3) EBCD CRSP

0 00 00000000 NUL NUL NUL
1 01 0001 SOH SOH NUL space space
2 02 0010 STX STX @ 1 1,]
3 03 0011 ETX ETX @

4 04 0100 PF EaT space 2 2
5 05 0101 HT ENQ space
6 06 0110 LC ACK
7 07 0111 DEL BEL 3
8 08 1000 BS DLE 4 5
9 09 1001 RLF HT DLE

10 OA 1010 SMM LF P
11 OB 1011 VT VT P 5 7
12 OC 1100 FF FF 0
13 OD 1101 CR CR 0 6 6
14 OE 1110 SO SO p 7 8
15 OF 1111 SI SI p
16 10 0001 0000 DLE DLE BS 8 4
17 11 0001 DC1 DC1 BS
18 12 0010 DC2 DC2 H
19 13 0011 TM DC3 H 9 0
20 14 0100 RES DC4 (

21 15 0101 NL NAK (0 Z
22 16 0110 BS SYN h @ (EOA) @ (EOA),9
23 17 0111 IL ETB h
24 18 1000 CAN CAN CAN
25 19 1001 EM EM CAN o
26 1A 1010 CC SUB X RS RS
27 1B 1011 CU1 ESC X
28 1C 1100 IFS FS 8 upper case upper case
29 ID 1101 IGS GS 8 A
30 1E 1110 IRS RS x
31 1F 1111 IUS US x © (EaT) © (EaT)
32 20 00100000 DS space EaT @ t
33 21 0001 SOS ! EaT
34 22 0010 FS " D
35 23 0011 # D / x
36 24 0100 BYP $ $
37 25 0101 LF % $ 5 n
38 26 0110 ETB & d t u
39 27 0111 ESC d
40 28 1000 (DC4
41 29 1001) DC4 u e
42 2A 1010 SM * T v d
43 2B 1011 CU2 + T
44 2C 1100 4 w k
45 2D 1101 ENQ 4
46 2E 1110 ACK t
47 2F 1111 BEL / t x c
48 30 0011 0000 0 form feed
49 31 0001 1 form feed y I
50 32 0010 SYN 2 L z h

*The no-parity TWX code for any given character is the code that has the rightmost bit position off.

o
LR-622 SC34-0643

o
ASCII EBASC*
(see Notes 1 (see Notes 2

Decimal Hex Binary EBCDIC and 3) and 3) EBCD CRSP

51 33 0011 3 L
52 34 0100 PN 4
53 35 0101 RS 5
54 36 0110 UC 6 1 SOA
55 37 0011 0111 EOT 7 1 ~ (SOA),comma b
56 38 1000 8 FS
57 39 1001 9 FS
58 3A 1010 : \
59 3B 1011 CU3 ; \ index index
60 3C 1100 DC4 < <
61 3D 1101 NAK = < ® (EOB)
62 3E 1110 > I
63 3F 1111 SUB ? I
64 40 01000000 space @ STX ® (NAK),- !
65 41 0001 A STX
66 42 0010 B B
67 43 0011 C B i m
68 44 0100 D "
69 45 0101 E " k
70 46 0110 F b I v
71 47 0111 G b
72 48 1000 H DC2
73 49 1001 I DC2 m

() 74 4A 1010 ¢ J R n r
75 4B 1011 K R
76 4C 1100 < L 2 0 i
77 4D 1101 (M 2
78 4E 1110 + N r
79 4F 1111 1 0 r p a
80 50 0101 0000 & P line feed
81 51 0001 Q line feed q 0

82 52 0010 R J r s
83 53 0011 S J
84 54 0100 T *
85 55 0101 U *
86 56 0110 V j
87 57 0111 W j $ w
88 58 1000 X SUB
89 59 1001 y SUB
90 5A 1010 ! Z Z
91 5B 1011 $ [Z CRLF CRLF
92 5C 1100 * \ :
93 5D 1101) 1 : backspace backspace
94 5E 1110 ; /\ z idle idle
95 5F 1111 --, - z
96 60 01100000 - , ACK
97 61 0001 / a ACK & j
98 62 0010 b F a 9
99 63 0011 c F
100 64 0100 d & b
101 65 0101 e &
102 66 0110 f f
103 67 0111 9 f c f

o
Appendix F. Conversion Table LR-623

Conversion Table

o
ASCII EBASC*
(see Notes 1 (see Notes 2

Decimal Hex Binary EBCDIC and 3) and 3) EBCD CRSP

104 68 1000 h SYN d p
105 69 1001 i SYN
106 6A 1010 I

j V I

107 6B 1011 k V e
108 6C 1100 % 1 6
109 6D 1101 m 6 f q

110 6E 1110 > n v 9 comma
111 6F 1111 ? 0 v
112 70 0111 0000 p shift out h /
113 71 0001 q shift out
114 72 0010 r N
115 73 0011 s N i y
116 74 0100 t
117 75 0101 u

~ 118 76 0110 v n (YAK),period
119 77 0111 w n
120 78 1000 x RS
121 79 1001 Y RS
122 7A 1010 : z 1\ horiz tab tab
123 7B 1011 # j 1\
124 7C 1100 @ I > lower case lower case
125 7D 1101 ~ >
126 7E 1110 = "-' "v

127 7F 1111 " DEL "v delete
128 80 10000000 NUL SOH
129 81 0001 a SOH SOH space space
130 82 0010 b STX A = ±,[
131 83 0011 c ETX A
132 84 0100 d EOT ! < @

133 85 0101 e ENQ !
134 86 0110 f ACK a
135 87 0111 9 BEL a ; #
136 88 1000 h BS DC1 : %
137 89 1001 i HT DC1
138 8A 1010 LF Q
139 8B 1011 VT Q % &
140 8C 1100 FF 1
141 8D 1101 CR 1 ¢
142 8E 1110 SO q > *
143 8F 1111 SI q
144 90 1001 0000 DLE horiz tab * $
145 91 0001 j DC1 horiz tab
146 92 0010 k DC2 I
147 93 0011 I DC3 I ()
148 94 0100 m DC4)
149 95 0101 n NAK)) Z
150 96 0110 0 SYN i D (EOA)," (
151 97 0111 p ETB i
152 98 1000 q CAN EM
153 99 1001 r EM EM
154 9A 1010 SUB Y
155 9B 1011 ESC Y
156 9C 1100 FS 9 upper case upper case

C;,

LR-624 SC34-0643

o
ASCII EBASC*
(see Notes 1 (see Notes 2

Decimal Hex Binary EBCDIC and 3) and 3) EBCD CRSP

157 9D 1101 GS 9
158 9E 1110 RS y
159 9F 1111 US y C (EOT) C (EOT)
160 AO 10100000 Space ENQ ¢ T
161 Al 0001 ! ENQ
162 A2 0010 s " E
163 A3 0011 t # E ? X
164 A4 0100 u $ %
165 A5 0101 v % % S N
166 A6 10100110 w & e T U
167 A7 0111 x e
168 A8 1000 y (NAK
169 A9 1001 z) NAK U E
170 AA 1010 * U V 0
171 AB 1011 + U
172 AC 1100 , 5 W K
173 AD 1101 - 5
174 AE 1110 u
175 AF 1111 / u X C
176 BO 1011 0000 0 return
177 Bl 0001 1 return y L
178 B2 0010 2 M Z H
179 B3 0011 3 M
180 B4 0100 4 -
181 B5 0101 5 -
182 B6 0110 6 m
183 B7 0111 7 m ® (SOA),I B
184 B8 1000 8 GS
185 B9 1001 9 GS
186 BA 1010 :]
187 BB 1011 ; 1 index index
188 BC 1100 < =

189 BO 1101 = = ® (EOB),ETB
190 BE 1110 > I
191 BF 1111 ? I
192 CO 11000000 l @ ETX @ (NAK),-
193 Cl 0001 A A ETX
194 C2 0010 B B C
195 C3 0011 C C C J M
196 C4 0100 0 0 #
197 C5 0101 E E # K
198 C6 0 0110 F F c L V
199 C7 0111 G G c
200 C8 1000 H H OC3
201 C9 1001 I I OC3 M "
202 CA 1010 J S N R
203 CB 1011 K S
204 CC 1100 J L 3 0 I
205 CO 1101 M 3
206 CE 1110 Lf N s
207 CF 1111 0 s P A
208 DO 1101 0000 ~ P vertical tab
209 01 0001 J Q vertical tab Q 0

Appendix F. Conversion Table LR-625

Conversion Table

o
j

ASCII EBASC*
(see Notes 1 (see Notes 2

Decimal Hex Binary EBCDIC and 3) and 3) EBCD CRSP

210 D2 0010 K R K R S
211 D3 0011 L S K
212 D4 0100 M T +
213 D5 0101 N U +
214 D6 0110 0 V k
215 D7 0111 P W k ! W
216 D8 1000 Q X ESC
217 D9 1001 R Y ESC
218 DA 1010 Z [
219 DB 1011 [[CRLF CRLF
220 DC 1100 \ ;
221 DD 1101 1 ; backspace backspace
222 DE 1110 /\ I idle idle
223 DF 1111 - {
224 EO 11100000 \ bell
225 E1 0001 a bell + J
226 E2 0010 S b G A G
227 E3 0011 T c G
228 E4 0100 U d B +
229 E5 0101 V e
230 E6 0110 W f 9
231 E7 0111 X 9 9 C F
232 E8 1000 Y h ETB D P
233 E9 1001 Z i ETB
234 EA 1010 j W
235 EB 1011 k W E
236 EC 1100 r1 I 7

o
237 ED 1101 m 7 F Q
238 EE 1110 n w G comma
239 EF 1111 0 w
240 FO 1111 0000 0 p shift in H ?
241 F1 0001 1 q shift in
242 F2 0010 2 r 0
243 F3 0011 3 s 0 I Y
244 F4 0100 4 t /
245 F5 0101 5 u /
246 F6 0110 6 v 0 G) (YAK), ---,
247 F7 0111 7 w 0

248 F8 1000 8 x US
249 F9 1001 9 y US
250 FA 1010 LVM z - horiz tab tab
251 FB 1011 { -
252 FC 1100 I ? lower case lower case
253 FD 1101 ~ ?
254 FE 1110 ,...., DEL
255 FF "1111 DEL DEL delete

Notes:

1. ASCII terminals attached via #1310, #7850, #2095 with #2096, or #2095 with RPQ D02350.
2. ASCII terminals attached via #1610 or #2091 with #2092.
3. There are two entries for each character, depending on whether the parity is odd or even.

o
LR-626 SC34-0643

o

o

o

Glossary of Terms and Abbreviations

This glossary defines terms and abbreviations used in the Series/1 Event Driven Executive software publications. All software and
hardware terms pertain to EDX. This glossary also serves as a supplement to the IBM Data Processing Glossary, GC20-1699.

$SYSLOGA, $SYSLOGB. The name of the alternate system
logging device. This device is optional but, if defined, should be
a terminal with keyboard capability, not just a printer.

$SYSLOG. The name of the system logging device or operator
station; must be defined for every system. It should be a terminal
with keyboard capability, not just a printer.

$SYSPRTR. The name of the system printer.

abend. Abnormal end-of-task. Termination of a task prior to its
completion because of an error condition that cannot be resolved
by recovery facilities while the task is executing.

ACCA. See asynchronous communications control adapter.

address key. Identifies a set of Series/1 segmentation registers
and represents an address space. It is one less than the partition
number.

address space. The logical storage identified by an address key.
An address space is the storage for a partition.

application program manager. The component of the Multiple
Terminal Manager that provides the program management
facilities required to process user requests. It controls the
contents of a program area and the execution of programs within
the area.

application program stub. A collection of subroutines that are
appended to a program by the linkage editor to provide the link
from the application program to the Multiple Terminal Manager
facilities.

asynchronous communications control adapter. An ASCII
terminal attached via #1610, #2091 with #2092, or #2095 with
#2096 adapters.

attention key. The key on the display terminal keyboard that, if
pressed, tells the operating system that you are entering a
command.

attention list. A series of pairs of 1 to 8 byte EBCDIC strings
and addresses pointing to EDL instructions. When the attention
key is pressed on the terminal, the operator can enter one of the
strings to cause the associated EDL instructions to be executed.

backup. A copy of data to be used in the event the original data
is lost or damaged.

base record slots. Space in an indexed file that is reserved for
based records to be placed.

base records. Records are placed into an indexed file while in
load mode or inserted in process mode with a new high key.

basic exchange format. A standard format for exchanging data
on diskettes between systems or devices.

binary synchronous device data block (BSCDDB). A control
block that provides the information to control one Series/1
Binary Synchronous Adapter. It determines the line
characteristics and provides dedicated storage for that line.

Glossary of Terms and Abbreviations LR-627

Glossary of Terms and Abbreviations

block. (1) See data block or index block. (2) In the Indexed
Method, the unit of space used by the access method to contain
indexes and data.

block mode. The transmission mode in which the 3101 Display
Station transmits a data data stream, which has been edited and
stored, when the SEND key is pressed.

BSCAM. See binary synchronous communications access
method.

binary synchronous communications access method. A form
of binary synchronous I/O control used by the Series/1 to
perform data communications between local or remote stations.

BSCDDB. See binary synchronous device data block.

buffer. An area of storage that is temporarily reserved for use in
performing an input/output operation, into which data is read or
from which data is written. See input buffer and output buffer.

bypass label processing. Access of a tape without any label
processing support.

CCB. See terminal control block.

central buffer. The buffer used by the Indexed Access Method
for all transfers of information between main storage and indexed
files.

character image. An alphabetic, numeric, or special character
defined for an IBM 4978 Display Station. Each character image
is defined by a dot matrix that is coded into eight bytes.

character image table. An area containing the 256 character
images that can be defined for an IBM 4978 Display Station.
Each character image is coded into eight bytes, the entire table of
codes requiring 2048 bytes of storage.

character mode. The transmission mode in which the 3101
Display Station immediately sends a character when a keyboard
key is pressed.

cluster. In an indexed file, a group of data blocks that is pointed
to from the same primary-level index block, and includes the
primary-level index block. The data records and blocks
contained in a cluster are logically contiguous, but are not
necessarily physically contiguous.

COD (change of direction). A character used with ACCA
terminal to indicate a reverse in the direction of data movement.

cold start. Starting the spool facility by erasing any spooled jobs
remaining in the spool data set from any previous spool session.

command. A character string from a source external to the
system that represents a request for action by the system.

common area. A user-defined data area that is mapped into the
partitions specified on the SYSTEM definition statement. It can

LR-628 SC34-0643

be used to contain control blocks or data that will be accessed by
more than one program.

completion code. An indicator that reflects the status of the
execution of a program. The completion code is displayed or
printed on the program's output device.

constant. A value or address that remains unchanged thoughout
program execution.

controller. A device that has the capability of configuring the
GPIB bus by designating which devices are active, which devices
are listeners, and which device is the talker. In Series/1 GPIB
implementation, the Series/1 is always the controller.

conversion. See update.

control station. In BSCAM communications, the station that
supervises a multipoint connection, and performs polling and
selection of its tributary stations. The status of control station is
assigned to a BSC line during system generation.

cross-partition service. A function that accesses data in two
partitions.

cross-partition supervisor. A supervisor in which one or more
supervisor modules reside outside of partition 1 (address space
0).

data block. In an indexed file, an area that contains control
information and data records. These blocks are a multiple of 256
bytes.

data record. In an indexed file, the records containing customer
data.

data set. A group of records within a volume pointed to by a
directory member entry in the directory for the volume.

data set control block (DSCB). A control block that provides
the information required to access a data set, volume or directory
using READ and WRITE.

data set shut down. An indexed data set that has been marked
(in main storage only) as unusable due to an error.

DCE. See directory control entry.

device data block (DDB). A control block that describes a disk
or diskette volume.

direct access. (1) The access method used to READ or WRITE
records on a disk or diskette device by specifying their location
relative the beginning of the data set or volume. (2) In the
Indexed Access Method, locating any record via its key without
respect to the previous operation. (3) A condition in terminal I/O
where a READTEXT or a PRINTEXT is directed to a buffer which
was previously enqueued upon by an 10CB.

o

o

o

o

o

o

directory. (1) A series of contiguous records in a volume that
describe the contents in terms of allocated data sets and free
space. (2) A series of contiguous records on a device that
describe the contents in terms of allocated volumes and free
space. (3) For the Indexed Access Method Version 2, a data set
that defines the relationship between primary and secondary
indexed files (secondary index support).

directory control entry (DCE). The first 32 bytes of the first
record of a directory in which a description of the directory is
stored.

directory member entry (DME). A 32-byte directory entry
describing an allocated data set or volume.

display station. An IBM 4978, 4979, or 3101 display terminal or
similar terminal with a keyboard and a video display.

DME. See directory member entry.

DSCB. See data set control block.

dynamic storage. An increment of storage that is appended to a
program when it is loaded.

end-of-data indicator. A code that signals that the last record of
a data set has been read or written. End-of-data is determined
by an end-of-data pointer in the DME or by the physical end of
the data set.

ECB. See event control block.

EDL. See Event Driven Language.

emulator. The portion of the Event Driven Executive supervisor
that interprets EDL instructions and performs the function
specified by each EDL statement.

end-of-tape (EOT). A reflective marker placed near the end of a
tape and sensed during output. The marker signals that the tape
is nearly full.

enter key. The key on the display terminal keyboard that, if
pressed, tells the operating system to read the information you
entered.

event control block (ECB). A control block used to record the
status (occurred or not occurred) of an event; often used to
synchronize the execution of tasks. ECBs are used in conjunction
with the WAIT and POST instructions.

Event Driven Language (EDL). The language for input to the
Event Driven Executive compiler ($EDXASM), or the Macro and
Host assemblers in conjunction with the Event Driven Executive
macro libraries. The output is interpreted by the Event Driven
Executive emulator.

EXIO (execute input or output). An EDL facility that provides
user controlled access to Series/1 input/output devices.

external label. A label attached to the outside of a tape that
identifies the tape visually. It usually contains items of
identification such as file name and number, creation data,
number of volumes, department number, and so on.

external name (EXTRN). The 1- to 8-character symbolic
EBCDIC name for an entry point or data field that is not defined
within the module that references the name.

FCA. See file control area.

FCB. See file control block.

file. A set of related records treated as a logical unit. Although
file is often used interchangeably with data set, it usually refers to
an indexed or a sequential data set.

file control area (FCA). A Multiple Terminal Manager data area
that describes a file access request.

file control block (FCB). The first block of an indexed file. It
contains descriptive information about the data contained in the
file.

file control block extension. The second block of an indexed
file. It contains the file definition parameters used to define the
file.

file manager. A collection of subroutines contained within the
program manager of the Multiple Terminal Manager that provides
common support for all disk data transfer operations as needed
for transaction-oriented application programs. It supports
indexed and direct files under the control of a single callable
function.

floating point. A positive or negative number that can have a
decimal point.

formatted screen image. A collection of display elements or
display groups (such as operator prompts and field input names
and areas) that are presented together at one time on a display
device.

free pool. In an indexed data set, a group of blocks that can be
used for either data blocks or index blocks. These differ from
other free blocks in that these are not initially assigned to specific
logical positions in the file.

free space. In an indexed file, records blocks that do not
currently contain data, and are available for use.

free space entry (FSE). An 8-byte directory entry defining an
area of free space within a volume or a device.

FSE. See free space entry.

general purpose interface bus. The IEEE Standard 488-1975
that allows various interconnected devices to be attached to the
GPIB adapter (RPQ 002118).

Glossary of Terms and Abbreviations LR-629

Glossary of Terms and Abbreviations

GPIB. See general purpose interface bus.

group. A unit of 100 records in the spool data set allocated to a
spool job.

H exchange format. A standard format for exchanging data on
diskettes between systems or devices.

host assembler. The assembler licensed program that executes
in a 370 (host) system and produces object output for the
Series/1. The source input to the host assembler is coded in
Event Driven Language or Series/1 assembler language. The
host assembler refers to the System/370 Program Preparation
Facility (5798- N NQ).

host system. Any system whose resources are used to perform
services such as program preparation for a Series/1. It can be
connected to a Series/1 by a communications link.

IACB. See indexed access control block.

IAR. See instruction address register.

ICB. See indexed access control block.

liB. See interrupt information byte.

image store. The area in a 4978 that contains the character
image table.

immediate data. A self-defining term used as the operand of an
instruction. It consists of numbers, messages or values which
are processed directly by the computer and which do not serve as
addresses or pointers to other data in storage.

index. In an indexed file, an ordered collection of pairs of keys
and pointers, used to sequence and locate records.

index block. In an indexed file, an area that contains control
information and index entries. These blocks are a multiple of 256
bytes.

indexed access control block (lACB/ICB). The control block
that relates an application program to an indexed file.

indexed access method. An access method for direct or
sequential processing of fixed-length records by use of a
record's key.

indexed data set. Synonym for indexed file.

indexed file. A file specifically created, formatted and used by
the Indexed Access Method. An indexed file is sometimes called
an indexed data set.

index entry. In an indexed file, a key-pointer pair, where the
pointer is used to locate a lower-level index block or a data block.

LR-630 SC34-0643

index register (#1, #2). Two words defined in EDL and
contained in the task control block for each task. They are used
to contain data or for address computation.

input buffer. (1) See buffer. (2) In the Multiple Terminal
Manager, an area for terminal input and output.

input output control block (lOCB). A control block containing
information about a terminal such as the symbolic name, size and
shape of screen, the size of the forms in a printer, or an optional
reference to a user provided buffer.

instruction address register (lAR). The pointer that identifies
the machine instruction currently being executed. The Series/1
maintains a hardware IAR to determine the Series/1 assembler
instruction being executed. It is located in the level status block
(LSB).

integer. A positive or negative number that has no decimal
point.

interactive. The mode in which a program conducts a
continuous dialogue between the user and the system.

internal label. An area on tape used to record identifying
information (similar to the identifying information placed on an
external label). Internal labels are checked by the system to
ensure that the correct volume is mounted.

interrupt information byte (lIB). In the Multiple Terminal
Manager, a word containing the status of a previous input/ output
request to or from a terminal.

invoke. To load and activate a program, utility, procedure, or
subroutine into storage so it can run.

job. A collection of related program execution requests
presented in the form of job control statements, identified to the
jobstream processor by a JOB statement.

job control statement. A statement in a job that specifies
requests for program execution, program parameters, data set
definitions, sequence of execution, and, in general, describes the
environment required to execute the program.

job stream processor. The job processing facility that reads job
control statements and processes the requests made by these
statements. The Event Driven Executive job stream processor is
$JOBUTIL.

jumper. (1) A wire or pair of wires which are used for the
arbitrary connection between two circuits or pins in an
attachment card. (2) To connect wire(s) to an attachment card or
to connect two circuits.

key. In the Indexed Access Method, one or more consecutive
characters used to identify a record and establish its order with
respect to other records. See also key field.

o

a

o

o

o

o

key field. A field, located in the same position in each record of
an indexed file, whose content is used for the key of a record.

level status block (LSB). A Series/1 hardware data area that
contains processor status. This area is eleven words in length.

library. A set of contiguous records within a volume. It contains
a directory, data sets and / or available space.

line. A string of characters accepted by the system as a single
input from a terminal; for example, all characters entered before
the carriage return on the teletypewriter or the ENTER key on the,
display station is pressed.

link edit. The process of resolving external symbols in one or
more object modules. A link edit is performed with $EDXLlNK
whose output is a loadable program.

listener. A controller or active device on a GPIB bus that is
configured to accept information from the bus.

load mode. In the Indexed Access Method, the mode in which
records are loaded into base record slots in an indexed file.

load module. A single module having cross references resolved
and prepared for loading into storage for execution. The module
is the output of the $UPDATE or $UPDATEH utility.

load point. (1) Address in the partition where a program is
loaded. (2) A reflective marker placed near the beginning of a
tape to indicate where the first record is written.

lock. In the Indexed Access Method, a method of indicating that
a record or block is in use and is not available for another request.

logical screen. A screen defined by margin settings, such as the
TOPM, BOTM, LEFTM and RIGHTM parameters of the
TERMINAL or IOCB statement.

LSB. See level status block.

mapped storage. The processor storage that you defined on the
SYSTEM statement during system generation.

member. A term used to identify a named portion of a
partitioned data set (PDS). Sometimes member is also used as a
synonym for a data set. See data set.

menu. A formatted screen image containing a list of options.
The user selects an option to invoke a program.

menu-driven. The mode of processing in which input consists of
the responses to prompting from an option menu.

message. In data communications, the data sent from one
station to another in a single transmission. Stations
communication with a series of exchanged messages.

multifile volume. A unit of recording media, such as tape reel or
disk pack, that contains more than one data file.

multiple terminal manager. An Event Driven Executive licensed
program that provides support for transaction-oriented
applications on a Series/1. It provides the capability to define
transactions and manage the programs that support those
transactions. It also manages multiple terminals as needed to
support these transactions.

multivolume file. A data file that, due to its size, requires more
than one unit of recording media (such as tape reel or disk pack)
to contain the entire file.

new high key. A key higher than any other key in an indexed
file.

nonlabeled tapes. Tapes that do not contain identifying labels
(as in standard labeled tapes) and contain only files separated by
tapemarks.

null character. A user-defined character used to define the
unprotected fields of a formatted screen.

option selection menu. A full screen display used by the
Session Manager to point to other menus or system functions,
one of which is to be selected by the operator. (See primary
option menu and secondary option menu.)

output buffer. (1) See buffer. (2) In the Multiple Terminal
Manager, an area used for screen output and to pass data to
subsequent transaction programs.

overlay. The technique of reusing a single storage area allocated
to a program during execution. The storage area can be reused
by loading it with overlay programs that have been specified in
the PROGRAM statement of the program or by calling overlay
segments that have been specified in the OVERLAY statement of
$EDXLlNK.

overlay area. A storage area within a program reserved for
overlay programs specified in the PROG RAM statement or
overlay segments specified in the OVERLAY statement in
$EDXLlNK.

overlay program. A program in which certain control sections
can use the same storage location at different times during
execution. An overlay program can execute concurrently as an
asynchronous task with other programs and is specified in the
EDL PROGRAM statement in the main program.

overlay segment. A self-contained portion of a program that is
called and sequentially executes as a synchronous task. The
entire program that calls the overlay segment need not be
maintained in storage while the overlay segment is executing. An
overlay segment is specified in the OVERLAY statement of
$EDXLlNK or $XPSLlNK (for initialization modules).

overlay segment area. A storage area within a program or
supervisor reserved for overlay segments. An overlay segment
area is specified with the OVLAREA statement of $EDXLlNK.

Glossary of Terms and Abbreviations LR-631

Glossary of Terms and Abbreviations

parameter selection menu. A full screen display used by the
Session Manager to indicate the parameters to be passed to a
program.

partition. A contiguous fixed-sized area of storage. Each
partition is a separate address space.

performance volume. A volume whose name is specified on
the DISK definition statement so that its address is found during
I PL, increasing system performance when a program accesses
the volume.

physical timer. Synonym for timer (hardware).

polling. In data communications, the process by which a
multipoint control station asks a tributary if it can receive
messages.

precision. The number of words in storage needed to contain a
value in an operation.

prefind. To locate the data sets or overlay programs to be used
by a program and to store the necessary information so that the
time required to load the prefound items is reduced.

primary file. An indexed file containing the data records and
primary index.

primary file entry. For the Indexed Access Method Version 2,
an entry in the directory describing a primary file.

primary index. The index portion of a primary file. This is used
to access data records when the primary key is specified.

primary key. In an indexed file, the key used to uniquely identify
a data record.

primary-level index block. In an indexed file, the lowest level
index block. It contains the relative block numbers (RBNs) and
high keys of several data blocks. See cluster.

primary menu. The program selection screen displayed by the
Multiple Terminal Manager.

primary option menu. The first full screen display provided by
the Session Manager.

primary station. In a Series/1-to-Series/1 Attachment, the
processor that controls communication between the two
computers. Contrast with secondary station.

primary task. The first task executed by the supervisor when a
program is loaded into storage. It is identified by the PROGRAM
statement.

priority. A combination of hardware interrupt level priority and a
software ranking within a level. Both primary and secondary
tasks will execute asynchronously within the system according to
the priority assigned to them.

LR-632 SC34-0643

process mode. In the Indexed Access Method, the mode in
which records can be retrieved, updated, inserted, or deleted.

processor status word (PSW). A 16-bit register used to (1)
record error or exception conditions that may prevent further
processing and (2) hold certain flags that aid in error recovery.

program. A disk- or diskette-resident collection of one or more
tasks defined by a PROGRAM statement; the unit that is loaded
into storage. (See primary task and secondary task.)

program header. The control block found at the beginning of a
program that identifies the primary task, data sets, storage
requirements and other resources required by a program.

program/storage manager. A component of the Multiple
Terminal Manager that controls the execution and flow of
application programs within a single program area and contains
the support needed to allow multiple operations and sharing of
the program area.

protected field. A field in which the operator cannot use the
keyboard to enter, modify, or erase data.

PSW. See processor status word.

QCB. See queue control block.

QD. See queue descriptor.

QE. See queue element.

queue control block (QCB). A data area used to serialize access
to resources that cannot be shared. See serially reusable
resource.

queue descriptor (QD). A control block describing a queue built
by the DEFINEQ instruction.

queue element (QE). An entry in the queue defined by the
queue descriptor.

quiesce. To bring a device or a system to a halt by rejection of
new requests for work.

quiesce protocol. A method of communication in one direction
at a time. When sending node wants to receive, it releases the
other node from its quiesced state.

record. (1) The smallest unit of direct access storage that can be
accessed by an application program on a disk or diskett~ using
READ and WRITE. Records are 256 bytes in length. (2) In the
I ndexed Access Method, the logical unit that is transferred
between $IAM and the user's buffer. The length of the buffer is
defined by the user. (3) In BSCAM communications, the portions
of data transmitted in a message. Record length (and, therefore,
message length) can be variable.

recovery. The use of backup data to re-create data that has
been lost or damaged.

o

o

o

o

o

o

reflective marker. A small adhesive marker attached to the
reverse (nonrecording) surface of a reel of magnetic tape.
Normally, two reflective markers are used on each reel of tape.
One indicates the beginning of the recording area on the tape
(load point), and the other indicates the proximity to the end of
the recording area (EOT) on the reel.

relative block address (RBA). The location of a block of data on
a 4967 disk relative to the start of the device.

relative record number. An integer value identifying the
position of a record in a data set relative to the beginning of the
data set. The first record of a data set is record one, the second
is record two, the third is record three.

relocation dictionary (RLD). The part of an object module or
load module that is used to identify address and name constants
that must be adjusted by the relocating loader.

remote management utility control block (RCB). A control
block that provides information for the execution of remote
management utility functions.

reorganize. The process of copying the data in an indexed file to
another indexed file in a manner that rearranges the data for more
optimum processing and free space distribution.

restart. Starting the spool facility w the spool data set contains
jobs from a previous session. The jobs in the spool data set can
be either deleted or printed when the spool facility is restarted.

return code. An indicator that reflects the results of the
execution of an instruction or subroutine. The return code is
usually placed in the task code word (at the beginning of the task
control block).

roll screen. A display screen which is logically segmented into
an optional history area and a work area. Output directed to the
screen starts display at the beginning of the work area and
continues on down in a line-by-line sequence. When the work
area gets full, the operator presses ENTER/SEND and its contents
are shifted into the optional history area and the work area itself
is erased. Output now starts .again at the beginning of the work
area.

SBIOCB. See sensor based I/O control block.

second-level index block. In an indexed data set, the
second-lowest level index block. It contains the addresses and
high keys of several primary-level index blocks.

secondary file. See secondary index.

secondary index. For the Indexed Access Method Version 2, an
indexed file used to access data records by their secondary keys.
Sometimes called a secondary file.

secondary index entry. For the Indexed Access Method
Version 2, this an an entry in the directory describing a secondary
index.

secondary key. For the Indexed Access Method Version 2, the
key used to uniquely identify a data record.

secondary option menu. In the Session Manager, the second in
a series of predefined procedures grouped together in a
hierarchical structure of menus. Secondary option menus provide
a breakdown of the functions available under the session
manager as specified on the primary option menu.

secondary task. Any task other than the primary task. A
secondary task must be attached by a primary task or another
secondary task.

secondary station. In a Series/1-to-Series/1 Attachment, the
processor that is under the control of the primary station.

sector. The smallest addressable unit of storage on a disk or
diskette. A sector on a 4962 or 4963 disk is equivalent to an
Event Driven Executive record. On a 4964 or 4966 diskette, two
sectors are equivalent to an Event Driven Executive record.

selection. In data communications, the process by which the
multipoint control station asks a tributary station if it is ready to
send messages.

self-defining term. A decimal, integer, or character that the
computer treats as a decimal, integer, or character and not as an
address or pointer to data in storage.

sensor based I/O control block (SBIOCB). A control block
containing information related to sensor I/O operations.

sequential access. The processing of a data set in order of
occurrence of the records in the data set. (1) In the Indexed
Access Method, the processing of records in ascending collating
sequence order of the keys. (2) When using READ/WRITE, the
processing of records in ascending relative record number
sequence.

serially reusable resource (SRR). A resource that can only be
accessed by one task at a time. Serially reusable resources are
usually managed via (1) a QCB and ENQ/DEO statements or (2) an
ECB and WAIT/POST statements.

service request. A device generated signal used to inform the
GPIB controller that service is required by the issuing device.

session manager. A series of predefined procedures grouped
together as a hierarchical structure of menus from which you
select the utility functions, program preparation facilities, and
language processors needed to prepare and execute application
programs. The menus consist of a primary option menu that
displays functional groupings and secondary option menus that
display a breakdown of these functional groupings.

shared resource. A resource that can be used by more than one
task at the same time.

Glossary of Terms and Abbreviations LR-633

Glossary of Terms and Abbreviations

shut down. See data set shut down.

source module/program. A collection of instructions and
statements that constitute the input to a compiler or assembler.
Statements may be created or modified using one of the text
editing facilities.

spool job. The set of print records generated by a program
(including any overlays) while engueued to a printer designated as
a spool device.

spool session. An invocation and termination of the spool
facility.

spooling. The reading of input data streams and the writing of
output data streams on storage devices, concurrently with job
execution, in a format convenient for later processing or output
operations.

SRQ. See service request.

stand-alone dump. An image of processor storage written to a
diskette.

stand-alone dump diskette. A diskette supplied by IBM or
created by the $DASDI utility.

standard labels. Fixed length aO-character records on tape
containing specific fields of information (a volume label
identifying the tape volume, a header label preceding the data
records, and a trailer label following the data records).

static screen. A display screen formatted with predetermined
protected and unprotected areas. Areas defined as operator
prompts or input field names are protected to prevent accidental
overlay by input data. Areas defined as input areas are not
protected and are usually filled in by an operator. The entire
screen is treated as a page of information.

station. In BSCAM communications, a BSC line attached to the
Series/1 and functioning in a point-to-point or multipoint
connection. Also, any other terminal or processor with which the
Series/1 communicates.

subroutine. A sequence of instructions that may be accessed
from one or more points in a program.

supervisor. The component of the Event Driven Executive
capable of controlling execution of both system and application
programs.

system configuration. The process of defining devices and
features attached to the Series/ 1.

SYSGEN. See system generation.

system generation. The processing of defining I/O devices and
selecting software options to create a supervisor tailored to the
needs of a specific Series/1 hardware configuration and
application.

LR-634 SC34-0643

system partition. The partition that contains the root segment
of the supervisor (partition number 1, address space 0).

talker. A controller or active device on a GPIB bus that is
configured to be the source of information (the sender) on the
bus.

tape device data block (TOB). A resident supervisor control
block which describes a tape volume.

tapemark. A control character recorded on tape used to
separate files.

task. The basic executable unit of work for the supervisor. Each
task is assigned its own priority and processor time is allocated
according to this priority. Tasks run independently of each other
and compete for the system resources. The first task of a
program is the primary task. All tasks attached by the primary
task are secondary tasks.

task code word. The first two words (32 bits) of a task's TCB;
used by the emulator to pass information from system to task
regarding the outcome of various operations, such as event
completion or arithmetic operations.

task control block (TeB). A control block that contains
information for a task. The information consists of pointers, save
areas, work areas, and indicators required by the supervisor for
controlling execution of a task.

task supervisor. The portion of the Event Driven Executive that
manages the dispatching and switching of tasks.

TeB. See task control block.

terminal. A physical device defined to the EDX system using the
TERMINAL configuration statement. EDX terminals include
directly attached IBM displays, printers and devices that
communicate with the Series/1 in an asynchronous manner.

terminal control block (eeB). A control block that defines the
device characteristics, provides temporary storage, and contains
links to other system control blocks for a particular terminal.

terminal environment block (TEB). A control block that
contains information on a terminal's attributes and the program
manager operating under the Multiple Terminal Manager. It is
used for processing requests between the terminal servers and
the program manager.

terminal screen manager. The component of the Multiple
Terminal Manager that controls the presentation of screens and
communications between terminals and transaction programs.

terminal server. A group of programs that perform all the
input/ output and interrupt handling functions for terminal devices
under control of the Multiple Terminal Manager.

o

o

()

o

o

o

terminal support. The support provided by EDX to manage and
control terminals. See terminal.

timer. The timer features available with the Series/1 processors.
Specifically, the 7840 Timer Feature card (4955 only) or the native
timer (4952, 4954, and 4956). Only one or the other is supported
by the Event Driven Executive.

trace range. A specified number of instruction addresses within
which the flow of execution can be traced.

transaction oriented applications. Program execution driven by
operator actions, such as responses to prompts from the system.
Specifically, applications executed under control of the Multiple
Terminal Manager.

transaction program. See transaction-oriented applications.

transaction selection menu. A Multiple Terminal Manager
display screen (menu) offering the user a choice of functions,
such as reading from a data file, displaying data on a terminal, or
waiting for a response. Based upon the choice of option, the
application program performs the requested processing
operation.

tributary station. In BSCAM communications, the stations
under the supervision of a control station in a multipoint
connection. They respond to the control station's polling and
selection.

unmapped storage. The processor storage in your processor
that you did not define on the SYSTEM statement during system
generation.

unprotected field. A field in which the operator can use the
keyboard to enter, modify or erase data. Also called
non-protected field.

update. (1) To alter the contents of storage or a data set. (2) To
convert object modules, produced as the output of an assembly
or compilation, or the output of the linkage editor, into a form that
can be loaded into storage for program execution and to update
the directory of the volume on which the loadable program is
stored.

user exit. (1) Assembly language instructions included as part of
an EDL program and invoked via the USER instruction. (2) A
point in an IBM-supplied program where a user written routine
can be given control.

variable. An area in storage, referred to by a label, that can
contain any value during program execution.

vary offline. (1) To change the status of a device from online to
offline. When a device is offline, no data set can be accessed on
that device. (2) To place a disk or diskette in a state where it is
unknown by the system.

vary online. To place a device in a state where it is available for
use by the system.

vector. An ordered set or string of numbers.

volume. A disk, diskette, or tape subdivision defined using
$INITDSK or $TAPEUT1.

volume descriptor entry (VDE). A resident supervisor control
block that describes a volume on a disk or diskette.

volume label. A label that uniquely identifies a single unit of
storage media.

Glossary of Terms and Abbreviations LR-635

o

o

o
LR-636 SC34-0643

o

o

o

Index

The following index contains entries for this book only. See the Library Guide and Common Index for a Common
Index to all Event Driven Executive books.

Special Characters

$$ LR-353
$$EDXLlB LR-353
$$EDXVOL system name LR-353
$DICOMP utility

create partitioned data set member LR-582
$DISKUT1 utility

create partitioned data set LR-582
$DISKUT3 program

description LR-574
input to LR-574
request blocks LR-575
return codes LR-580

$DIUTIL utility
build data member LR-582

$1 D statement
$IMAGE subroutines

See formatted screen subroutines
$IMDATA subroutine

description LR-541
retu rn codes LR - 542

$IMDEFN subroutine
description LR-543
syntax example LR-544

$IMOPEN subroutine
description LR-545
return codes LR-546

$IMPROT subroutine
description LR-547
field table format LR-548
return codes LR-548

$PACK subroutine
description LR-549

$PDS utility program
AD command LR-588
allocating a data set LR-582
command descriptions LR-591
description LR-581
DI function LR-587
DR function LR-586
example LR-590
1M function LR-588
JP command LR-587
LB function LR-585
LI function LR-586
LR function LR-588
MP function LR-585
PC function LR-587
RT function LR-589
TD command LR-589
VA function LR-586

$RAMSEC program
description LR-594
example LR-596
parameter listings LR-594
return codes LR-596

$SUBMITP program
description LR-597
example LR-598
return codes LR-598

$UNPACK subroutine
description LR-551

$USRLOG program

Index LR-637

Index

$USRLOG subroutine
description LR-599
example LR-600

#1 index register 1 LR-10
#2 index register 2 LR-10

A

A-conversion LR-198
A/I

See analog input
A/O

See analog output
ACCA

TERMCTRL instruction LR-483
add

floating point LR-177
integer data LR-22
vectors LR-25

ADD instruction
coding example LR-24
description LR-22
valid precisions, table LR-23

address move LR-281
ADDV instruction

coding example LR-27
description LR-25
index register use LR-25
syntax example LR-26
valid precisions, table LR-26

advance input LR-390
ALIGN statement

coding example LR-29
description LR-29

aligning data on a boundary LR-29
alphabetic string, rules for LR-7
alphameric string, rules for LR-7
analog input

10DEF statement LR-251
SBIO statement LR-403

analog output
10DEF statement LR-252
SBIO LR-405

AN D instruction
description LR-30
syntax examples LR-31

anding, performing LR-30
AO

See analog output
application, identifying host LR-294
arithmetic

comparison LR-237
operators LR-9

arrays, adding LR-25
assembler code, use in EDL program LR-516
attach

task LR-32
ATTACH instruction

coding example LR-33

LR-638 SC34-0643

description LR-32
attention interrupt handling LR-34, LR-141
attention list

See ATTN LIST statement
ATTN LIST statement

coding example LR-36
description LR-34
syntax example LR-35

attribute bytes (3101) LR-328

B

base SNA function codes LR-297
binary

converting to LR-97
to EBCDIC LR-93

binary synchronous communications (BSC)
close BSC line (BSCCLOSE) LR-38
define I/O control block (BSCIOCB) LR-39
line address, specifying LR-39
open BSC line (BSCOPEN) LR-41
read data (BSCREAD) LR-44
write data (BSCWRITE) LR-48

bit-string comparisons
AND LR-30

bits

EOR LR-155
lOR LR-259

loop while on or off LR-127
set value of LR -414
test setting LR-237

boundary
alignment LR-29
requirement, fullword (PROGRAM) LR-351

branch .
to an instruction LR-231

BSC
See binary synchronous communications (BSC)

BSC buffers, specifying LR-39
BSC instructions

See binary synchronous communications (BSC)
BSCCLOSE instruction

description LR-38
return codes LR-54

BSCEQU equates, description LR-103
BSCIOCB statement

buffers for BSCREAD/BSCWRITE LR-40
description LR-39

BSCOPEN instruction
description LR-41
return codes LR-54

BSCREAD instruction
description LR-44
required buffers for LR-40
return codes LR-54
types of BSC read operations LR-45

BSCWRITE instruction
coding description LR-48
required buffer for LR-40

o

o

o

o

o

o

return codes LR-54
types of BSC write operations LR -49

BSF (backward space file) LR-87
BSR (backward space record) LR-87
buffer

collect data from LR-211
defining LR-55

buffer address, update (SBIO) LR-402
buffer overflow condition LR-327
BUFFER statement

buffer index LR-56
coding example LR-58
description LR-55

c
CACLOSE instruction

description LR-59
return and post codes LR-60
syntax examples LR-59

CAIOCB (channel attach I/O control block) statement
description LR-61
syntax example LR-61

CALL instruction
coding example LR-63
description LR-62
parameter passing LR-62
syntax examples LR-63

CALLFORT instruction
description LR-65
syntax examples LR-66

calling a FORTRAN subroutine or program LR-65
calling a subroutine LR-62
CAOPEN instruction

description LR-67
return and post codes LR-68
syntax examples LR-67

CAPCB (channel attach port control block)
capital letters

convert data during READTEXT LR-389
printing in LR-326

CAPRINT instruction
description LR-69
return codes LR-70
syntax examples LR-70

CAREAD instruction
description LR-71
return and post codes LR-73
syntax examples LR-72

CASTART instruction
description LR-74
return and post codes LR-75
syntax example LR-74

CASTOP instruction
description LR-76
return and post codes LR-77
syntax example LR-77

CATRACE instruction
description LR - 78

return codes LR-79
syntax examples LR-78

CAWRITE instruction
description LR-80
return and post codes LR-81
syntax examples LR-80

CCBEQU equates, description LR-103
channel attach

close a port (CACLOSE) LR-59
create I/O control block LR-61
open a port (CAOPEN) LR-67
print trace data (CAPRINT) LR-69
read from a port (CAREAD) LR-71
start device (CASTART) LR-74
stop a device (CASTOP) LR-76
turn traCing on/off (CATRACE) LR-78
write to a port (CAWRITE) LR-80

character search LR-183, LR-185
character string

condense LR-233
characters, highlighting LR-333
close

BSC line LR-38
channel attach port LR-59
EXIO device LR-168

CLSOFF function, CONTROL instruction LR-87
CLSRU close tape data set LR-87
CMDEQU equates, description LR-103
code extension sequence LR-334
communication between programs LR-559

in separate partitions LR-559
in the same partition LR-559
through virtual terminals LR-553

COMP statement
description LR-82
syntax examples LR-83

comparing bit-strings
AND instruction LR-30
exclusive-OR LR-155
inclusive-OR LR-259
with the IF instruction LR-237

compiler listing
control printing of LR-321
eject page LR-138
inserting blank lines LR-420
titling LR-500

completion codes
See post codes, return codes

compressed byte string LR-549
CONCAT instruction

description LR-84
syntax examples LR-85

concatenate graphics data strings LR-84
conditional statements LR-243
connection data set

BSCOPEN parameter LR-41
constant, definition of LR-7
continuation line LR-8
control blocks

getting information from LR-102

Index LR-639

Index

CONTROL IDCB command LR-235
CONTROL instruction

coding example LR-90
description LR-86
syntax examples LR-89
tape return and post codes LR-92

control operations, NETCTL LR-286
conversion, specifying format of data LR-192
convert

binary to EBCDIC LR-93
data LR-192, LR-203
EBCDIC to binary LR-97

CONVTB instruction
coding example LR-95
description LR-93
return codes LR-96
syntax examples LR-94

CONVTD instruction
coding example LR-100
description LR-97
return codes LR-101
syntax examples LR-l00

copy
source code into source program LR-l02

COpy instruction
coding example LR-105
description LR-l02
system equates LR-102

cross-partition services
DEQ LR-119
description and examples LR-559
ENQ LR-148
loading a program LR-560
MOVE LR-276
moving data across partitions LR-562
POST LR-317
READ LR-376
reading data across partitions LR-564
sharing resources LR-570
starting a task LR-566
synchronizing tasks LR-568
WAIT LR-520
WHERES LR-525
WRITE LR-528

CSECT statement
coding example LR-l07
descri ption LR -106

cursor position, storing LR-374
curves, drawing LR-537, LR-538

D

D/I
See digital input

D/O
See digital output

data
adding LR-22, LR-177
collect LR-192

LR-640 SC34-0643

convert data to character string LR-361
converting LR-192, LR-203, LR-211
defining LR-l08
dividing LR-124, LR-180
moving LR-276
multiplying LR-189, LR-282
reading LR-376
shift left LR-416
shift right LR-418
subtracting LR-208, LR-435
translated LR-273, LR-325, LR-387
writing LR-528

data set
allocate from program LR-574
delete from program LR-574
for program messages LR-615
format with $PDS LR-583
open from a program LR-574
partitioned

with $PDS LR-581
release space from program LR-574
rename from program LR-574
set end-of-data from program LR-574
specifying LR-352
use with $PDS LR-582

data set control block (DSCB)
creating LR-134
generated by system LR - 352

DATA statement
considerations LR-109
conversion specifications

See conversion
description LR-l08
syntax examples LR -110

data stream
code extension sequence LR-334
control sequence LR-335
example LR-337
final character LR-335
intermediate character LR-336
numeric parameter (np) LR-335
positioning unit mode (PUM) LR-334
Reset to Initial State(RIS) LR-337
set decipoint PUM LR-337
set spacing increment (SPI) LR-335
4975-01A ASCII printer LR-334

data, boundary alignment LR-29
date

GETTIME instruction LR-220
obtain from host system LR-511
PRINDATE instruction LR-319

DC statement
considerations LR -109
description LR-108
syntax examples LR-110

DC B statement
coding example LR-114
description LR-112
syntax examples LR-114

DDBEQU equates, description LR-103

o

o

o

c

o

DDODEFEQ equates, description LR-103
define

buffer LR-55
data LR-108

DEFINEQ statement
description LR-115
queue layout LR-116
syntax examples LR-118

density
setting for tape LR-87

DEQ instruction
coding example LR-149
description LR-119

DEQT instruction
description LR-120
syntax examples LR-121

dequeue
logical resource LR-119
terminal I/O device LR-120

detach
a task LR-122

DETACH instruction
coding example LR -123
description LR-122

device
find type from program LR-614

device busy, resetting LR -169
device control block LR-112
DI

See digital input
digital input

10DEF statement LR-253
SBIO LR-407

digital output
10DEF statement LR-254
SBIO LR-410

direct
output to another device, $PDS utility LR-587

direct I/O
Series/1-to-Series/1 LR-489
with 10CB LR-246
with PRINTEXT LR-324

directory entries LR-583
directory member entry (DME)

updated by SETEOD LR-611
disk immediate read, coding LR-376
display

control member LR-584
control member format LR-585
display LR-344
number LR-346
report line items LR-587
time LR-344
time and data ($PDS) LR-589
variable LR-586

display profile elements, $PDS LR-585
display screen, erase LR-162
divide

arithmetic operator (/) LR-9
floating-point numbers LR-180

integers LR-124
DIVIDE instruction

DO

arithmetic operator LR-9
coding example LR-126
description LR-124
syntax example LR-125
valid precisions, table LR-125

See digital output
DO instruction

coding example LR-133
description LR-127
operators LR-128
syntax examples LR-130

draw
curve (XYPLOT) LR-537
curve (YTPLOT) LR-538
line relative LR-588

DSCB (data set control block) statement
description LR-134
syntax example LR-135

DSCBEQU equates, description LR-104
DSOPEN subroutine

description LR-602
example LR-604

dynamic storage, specifying LR-356

E

E-conversion LR-195
EBCDIC-to-binary conversion LR-97
ECB (Event Control Block)

address (SNA) LR-297
create LR -1 36
post LR-317
reset LR-399

ECB statement
description LR -136
syntax example LR-137

EDL (Event Driven Language)
instructions, definition of LR-1
purpose LR-1
statements, definition of LR-1

EJ ECT statement
coding example LR-322
description LR-138

ELSE instruction

end

description LR-139
syntax examples LR-239

attention-interrupt-handling routine LR-141
IF-ELSE structure LR-143
program LR-144
program execution LR-359
program loop LR-142
SNA session LR-306
source statements LR-140
task LR-146
transfer operation (HCF) LR-502

Index LR -641

~ I:r'j;; ihd' ex til I:! U'

END statement
coding example LR-140
description LR -140

end-of-data, setting LR-611
end-of-file, indicating with SETEOD LR-611
ENDATTN instruction

coding example LR-36
description LR -141

EN DDO instruction
coding example LR-133
description LR -142
syntax examples LR-130

ENDIF instruction
description LR-143
syntax examples LR-239

EN DPROG statement
description LR -144
syntax example LR-145

ENDTASK instruction
coding example LR-146
description LR-146

ENQ instruction
coding example LR-149
description LR-148

ENQT instruction
coding example LR-152
description LR-150
special considerations LR-151
syntax examples LR-152

enqueue
a logical resource LR-148
a terminal (I/O device) LR-150

entry point, defining LR-153
ENTRY statement

coding example LR-154
description LR-153

EOR instruction
description LR-155
syntax examples LR-156

EQU statement
coding example LR-161
description LR-158
special considerations LR-158
syntax examples LR-159

equate tables
access to LR -1 02

erase
display screen LR-162
tape LR-88

ERASE instruction
coding examples LR-165
description LR-162
syntax examples LR-165
3101 display considerations LR -164

error codes
See return codes

error handling
PROGRAM statement LR-355
TASK statement LR-441

ERRORDEF equates, description LR-104

LR-642 SC34-0643

event
reset LR-399
signal occurrence of LR-317
specify attention LR-297
wait for LR-520

event control block
address (SNA) LR-297
creating LR -136
creating list LR-269
post LR-317
reset LR-399

Event Driven Language (EDL)
See EDL (Event Driven Language)

events, wait for multiple LR-523
EXCLOSE instructiOn

description LR -168
syntax example LR-168

exclusive-OR operation LR-155
execute I/O

See EXIO device support
execution, delaying LR-425
EXIO device support

close a device LR-168
execute a command LR-169
open a device LR-173

EXIO instruction
coding description LR-169
coding example LR-170
return codes LR-171

EXOPEN instruction
coding example LR-174
description LR-173
interrupt codes LR-172
return codes LR-171

exponent (E) notation, definition of LR-109
refid=char.defining LR-109

EXT= operand example LR-432
extended error information, requesting LR-297
external labels or references LR-175
EXTRN statement

coding example LR -176
description LR-175

F

F-conversion (Fw.d) LR-194
FADD instruction

description LR- l-77
index registers LR-178
return codes LR-179
syntax examples LR-178

false condition
code a path for LR -139
test for LR-237

FCBEQU equates, description LR-104
FDIVD instruction

description LR-180
index registers LR -181
return codes LR-182

o

o

o

o

o

o

file
syntax examples LR-181

backward space file (BSF) LR-87
forward space file (FSF) LR-86
tape control commands LR-86

FIND instruction
coding example LR-184
description LR -183
syntax examples LR-183

FINDNOT instruction
coding example LR-186
description LR -185
syntax examples LR -185

FI RSTQ instruction
coding example LR-187
description LR -187
return codes LR-188

floating-point
addition LR-177
conversion LR-203
division LR -180
E notation definition LR-109
multiplication LR-189
requirements to use instructions LR-355, LR -441
subtraction LR-208

FMULT instruction
description LR -189
index registers LR-190
return codes LR-191
syntax examples LR-190

format
instructions (general) LR-2
statements (general) LR-2

FORMAT statement
A-conversion LR-198
alphameric data LR-197
blank lines in output LR-199
coding example LR-201
conversion of alphameric data LR-198
conversion of numeric data LR-193
description LR -192
E-conversion LR-195
F-conversion LR-194
H-conversion LR-197
I-conversion LR-194
multiple field format LR-200
numeric data LR -193
repetitive specification LR-200
storage considerations LR-201
using multipliers LR-200
X-type format LR -198

formatted program messages LR-615
formatted screen subroutines

$IMOPEN LR-545
description LR-539

FORTRAN
calling a program or subroutine LR-65

FPCONV instruction
coding example LR-205

description LR-203
syntax examples LR-204

FREESTG instruction
coding example LR-438
description LR-206
return codes LR-207
syntax examples LR-207

FSF (forward space file) LR-86
FSR (forward space record) LR-87
FSUB instruction

description LR-208
index registers LR-209
return codes LR-210
syntax examples LR-209

fullword boundary requirement LR-351

G

General Purpose Interface Bus
TERMCTRL coding description LR-485

GETEDIT instruction
coding example LR-215
description LR-211
return codes LR-216
syntax example LR-214
3101 display considerations LR-214

GETSTG instruction
coding example LR-438
description LR-218
return codes LR-219
syntax examples LR-219

G ETTI M E instruction
coding example LR-221
description LR-220
syntax example LR-221

GETVALUE instruction
coding examples LR-227
description LR-222
message return codes LR-229
syntax examples LR-226
3101 considerations LR-225

GIN instruction
description LR-230
syntax example LR-230

GLOBAL ATTN LIST LR-35
GOTO instruction

description LR-231
syntax example LR-232

GPIB
See General Purpose Interface Bus

graphics
concatenate data strings (CONCAT) LR-84
convert coordinates to a text string (SCREEN) LR-413
draw a curve (XYPLOT) LR-537
draw a curve (YTPLOT) LR-538
enter scaled cursor coordinates LR-313
enter unsealed cursor coordinates LR-230

Index LR-643

Index

H

H-conversion LR-197
HASHVAL instruction

description LR-:233
syntax examples LR-234

HCF
See Host Communications Facility

highlight characters LR-333
host (HCF)

get date and time from LR-511
read a record from LR-506
submit job to LR-509
write record to LR-512

Host Communications Facility
delete record in system-status data set LR-507
end a transfer operation (TP CLOSE) LR-502
get time and date from host LR-511
prepare to read from host data set LR-504
prepare to write data to host data set LR-505
read a record from the host LR-506
set fields to check host status data set LR-423
submit job to host LR-509
test for record in system-status data set LR-503
TP instruction operations LR-501
write a record to a host LR-512
write record in system-status data set LR-508

host data set, HCF
prepare to read LR-504
prepare to write to LR-505
read a record from LR-506

host ID data list, build LR-294
host status data set

set fields to refer to LR-423

I-conversion LR-193
I/O direct

Series/1-to-Series/1 LR-489
with 10CB LR-246
with PRINTEXT LR-324
with READTEXT LR-385

IAMEQU equates, description LR-104
ID data list, build LR-294
ID statement

See identify
I DCB statement

description LR-235
IDCB command LR-235
syntax examples LR-236

identify
description LR-20
host program LR-294
syntax examples LR-21
system release level LR-20

I F instruction
description LR-237
I F- ELSE structure, ending LR-143

LR-644 SC34-0643

operators LR-238
sample conditional statements LR-243
syntax examples LR-239

immediate data LR-7
immediate device control block

creating LR-235
execute a command in LR-169

INCLUDE statement (EXTRN) LR-175
inclusive-OR LR-259
index registers

considerations when using LR-12
description LR-11

index, automatically (SBIO) LR-402
indexing with software registers LR-11
input

area, defining LR-55, LR-108, LR-497
operations

GETVALUE LR-222
QUESTION LR-369
READ LR-376
READTEXT LR-385

input/ output control block
See 10CB instruction

instructions
definition of LR-1
listing by use LR-17

integer
adding LR-22
converting from EBCDIC LR-97
converting from floating-point LR-203
converting to EBCDIC LR-93
converting to floating-point LR-203
dividing LR-124
multiplying LR-282
subtracting LR-435

inter partition services LR-559
interrupt

servicing
reset interrupt processing LR-399

types
interrupt, process LR-256

INTIME instruction
coding example LR-245
description LR-244

10CB instruction
coding example LR-249
description LR-246
direct I/O considerations LR-248
using PRINTEXT LR-324
using READTEXT LR-385

IODEF statement
analog input LR-251
analog output LR-252
description LR-250
digital input LR-253
digital output LR-254
process interrupt LR-256

lOR instruction
description LR-259
syntax examples LR-260

o

o

o

o

o

. ,,' 0 ,

IPL, time elapsed since last LR-244

J

job queue processor
submit job from program LR-597

K

keyword operand
definition of LR-2

L

label
assign a value to LR-158
definition LR-2
syntax description LR-7

LASTQ instruction
description LR-262
return codes LR-262

level status block (LSB)
for digital input LR-408
with digital output LR-411
with SPECPIRT instruction LR-421

line continuation, source LR-8
listing control instructions

load

EJECT LR-138
PRINT LR-321
SPACE LR-420
TITLE LR-500

overlay programs LR-263
program LR-263
virtual terminal LR-553

LOAD instruction
description LR-263
passing data sets LR-264
return codes LR-268

LOCAL ATTN LIST LR-35
locate

executing program LR-525
log specific errors from a program LR-599
logical comparison

AND instruction LR-30
description LR-237
EOR instruction LR-155
lOR instruction LR-259

logical end-of-file on disk LR-611
loops LR-127, LR-142

M

MCB (member control block) LR-591
MECB statement

description LR-269
syntax example LR-270
WAITM instruction LR-523

member area LR-584
member control block (MCB) LR-591
message

SNA
receiving from SNA host LR-290
requesting verification LR-303
specifying length LR-302

MESSAGE instruction
coding examples LR-274
description LR-271
return codes LR-275
syntax examples LR-274

messages, program
adding to data set LR-616
creating

coding variable fields LR-617
data set for LR-615
sample messages LR-619
syntax rules LR-616

define location of message text LR-82
formatting LR-619
GETVALUE instruction LR-222
MESSAGE instruction LR-271
QUESTION instruction LR-369
READTEXT instruction LR-386
retrieving LR-619

minus (-), arithmetic operator LR-9
move

an address LR-281
data LR-276

MOVE instruction
description LR-276
syntax examples LR-279

MOVEA instruction
description LR - 281
syntax examples LR-281

multiply
floating point LR-189
integers LR-282

mUltiply (*), arithmetic operator LR-9
MULTIPLY instruction

coding example LR-284
description LR - 282
syntax examples LR-283
valid precisions, table LR-283

Index LR-645

Index

N

N ETCTL instruction
description LR-285
return codes LR-288
syntax examples LR-287
types of control operations LR-286

N ETG ET instruction
description LR-290
return codes LR-291
syntax example LR-291

NETHOST instruction
description LR-294

NETINIT instruction
description LR-296
return codes LR-301
syntax examples LR-299

N ETPUT instruction
coding description LR-302
description LR-302
return codes LR-305
syntax examples LR-303

N ETIERM instruction
coding description LR-306
description LR-306
return codes LR-307
syntax example LR-306

next-record pointer
set LR-315
store LR-311
syntax examples LR-316

N EXTQ instruction
coding examples LR-309
description LR-308
return codes LR-310

noncompressed byte string LR-551
NOTE instruction

description LR-311
syntax examples LR-312

number strings, adding LR-25

o
object module segments, identifying LR-106
OFF function, CONTROL instruction LR-87
open

BSC line LR-41
channel attach port LR-67
EXIO device LR-173
host data set to read data (HCF) LR-504
host data set to write data (HCF) LR-505

operand
definition LR-2
keyword LR-2
parameter naming (Px) LR-12
positional LR-2

operators, arithmetic LR-9
output

area, defining LR-55, LR-108, LR-497

LR-646 SC34-0643

operations
COMP statement LR-82
MESSAGE instruction LR-271
PRINDATE instruction LR-319
PRINTEXT instruction LR-324
PRINTIME instruction LR-344
PRINTNUM instruction LR-346
TERMCTRL instruction LR-446
WRITE instruction LR-528

overlay program loading
See LOAD instruction

overlay program, $EDXASM
specifying LR-354

overprint characters LR-333

p

parameter list, defining LR-354
parameter naming operands in instruction format LR-12
parameter passing

with the CALL instruction LR-62
with the CALLFORT instruction LR-65

parameters
definition of LR-2
in the LOAD instruction LR-264

partial messages (SNA), sending LR-304
partition

locating an executing program LR-525
perform operations across LR - 559

partitioned data sets LR-581
passing parameters

PI

to FORTRAN programs LR-65
to subroutines LR-62
with the LOAD instruction LR-264

See process interrupt
plot control block (graphics) LR-313
plot curve data member, $PDS utility LR-584
PLOTeB control block LR-313
PLOTGIN instruction

description LR-313
plot control block LR-313
syntax example LR-314

plus (+), arithmetic operator LR-9
POI NT instruction

description LR-315
positional operand

definition of LR-2
post codes

See also return codes
CACLOSE instruction LR-60
CAOPEN instruction LR~68
CAREAD instruction LR-73
CASTART instruction LR-75
CASTOP instruction LR-77
CAWRITE instruction LR-81
tape CONTROL LR-92
tape READ LR-384
tape WRITE LR-534

o

, I O~"'.'

c

o

c

POST instruction
coding example LR-318
description LR-317

PREPARE IDCB command LR-235
PRINDATE instruction

coding example LR-320
description LR-319
3101 considerations LR-319

print
a number LR-346
date LR-319
text LR-324
time LR-344
trace data, Channel Attach LR-69

PRINT statement
coding example LR-322
description LR-321

printers
data stream on 4975-01 A LR-334

PRINTEXT instruction
buffer considerations LR-327
coding examples LR-330
description LR-324
return codes LR-339
syntax examples LR-329
uppercase characters (CAPS=) LR-326
3101 considerations LR-328
4975 spacing capability LR-328

PRINTIME instruction
coding example LR-345
description LR-344
3101 considerations LR-344

PRINTNUM instruction
coding example LR-350
description LR-346
syntax examples LR-349
3101 considerations LR-349

priority
program LR-351
task LR-440

process interrupt
IODEF statement LR-256
resetting LR-399
return from routine LR-421
SPECPI= operand LR-257

PROGEQU equates, description LR-104
program

communication LR-559
defining LR-351
ending LR-144
entry LR-351
entry point, defining LR-153
execution

delaying LR-425
stopping LR-359

locate during execution LR-525
loops, coding LR-127, LR-142

program messages
See messages, program

PROGRAM statement

description LR-351
specifying data sets LR-352
specifying overlays LR-354
syntax examples LR-357

PROGSTOP instruction
description LR-359

PUTEDIT instruction
coding example LR-365
description LR-361
return codes LR-366
syntax example LR-365
3101 considerations LR - 364

Px= parameter naming operand LR-12

Q

QCB statement
coding example LR-368
description LR-367

QD queue descriptor LR-116
QUESTION instruction

coding example LR-372
description LR-369
return codes LR-373
special considerations LR-371
syntax example LR-372
3101 terminals LR-371

queue control block
create LR-367
obtain control of LR-148
release control of LR-119

queue descriptor LR-116
queue processing

add entries LR-308
define a queue LR-115
get first queue entry LR-187
get last queue entry LR-262
queue layout LR-116

R

RDCURSOR instruction
coding example LR-375
description LR-374

read
data

from a BSC line LR-44
from disk LR-376
from diskette LR-376
from tape LR-376

disk immediate LR-381
from a channel attach port LR-71
from disk(ette), priority request LR-381
record from the host (HCF) LR-506
text entered at a terminal LR-385

READ IDCB command LR-235
READ instruction

coding example LR-380, LR-381

Index LR-647

Index

description LR-376
disk immediate LR-376
disk/ diskette return codes LR-382, LR-383
requesting a priority read LR-376
syntax examples LR-379
tape post codes LR-382, LR-384
tape return codes LR-382, LR-384

READID IDCB command LR-235
READTEXT instruction

advance input LR-390
coding example LR-391
description LR-385
return codes LR-339, LR-394
syntax examples LR-391
uppercase characters (CAPS=) LR-389
3101 considerations LR-390

READ1 IDCB command LR-235
realtime data member

change name LR-589
format LR-584

receive
messages from SNA host LR-290

recording
system release level LR-20

records
read disk/ diskette LR-376
read from host LR-506
read tape LR-376
write disk/diskette LR-528
write tape LR-528
write to host LR-512

reduction, EDL and Boolean LR-129
registers

index LR-11
software LR-1O

release
resource (DEQ) LR-119
terminal LR-120

release level, recording LR-20
report data member ($PDS) LR-584
reserved labels LR-9
reset

event or process interrupt LR-399
timer LR-399

RESET instruction
description LR-399

resources
defining serial LR-367

resynchronization support, specifying LR-298
retrieve

program messages LR-271
return

from a subroutine LR-401
from process interrupt routine LR-421

return codes
See also post codes
$DISKUT3 LR-580
$IMDATA subroutine LR-542
$IMOPEN subroutine LR-546

LR-648 SC34-0643

$IMPROT subroutine LR-548
BSC instructions LR-54
CACLOSE LR-60
CAOPEN LR-68
CAPRINT LR-70
CAREAD LR-73
CASTART LR-75
CASTOP LR-77
CATRACE LR-79
CAWRITE LR-81
checking LR-4
CONVTB LR-96
CONVTD LR-101
disk/diskette LR-383
EXIO LR-171
EXIO interrupt LR-172
FADD LR-179
FDIVD LR-182
FIRSTQ LR-188
FMULT LR-191
FREESTG LR-207
FSUB LR-210
general LR-340, LR-394
GETEDIT LR-216
GETSTG LR-219
GETVALUE LR-229
LASTQ LR-262
LOAD LR-268
MESSAGE LR-275
NETCTL LR-288
NETGET LR-291
NETINIT LR-301
NETPUT LR-305
NETTERM LR-307
NEXTQ LR-310
PRINTEXT LR-339, LR-394
PUTEDIT LR-366
QUESTION LR-373
READ LR-382
READ tape LR-384
READTEXT LR-339, LR-394
STIMER LR-429
SWAP LR-439
tape LR-92
TERMCTRL LR-339, LR-394
terminal I/O LR-394
TP instruction LR-513
virtual terminals LR-555
WHERES LR-527
WRITE disk/diskette LR-532, LR-533
WRITE tape LR-532, LR-534

RETURN instruction
coding example LR-401
description LR-401

REW (rewind tape) LR-87
right-to-send, granting LR-303
ROFF (rewind offline) LR-87
RSTATUS IDCB command LR-235

o

()

o

o

o

o

s
save

session parameters LR-297
SBIO instruction

analog input
coding example LR-404
description LR-403
return codes LR-412

analog output
coding example LR-406
description LR-405
return codes LR-412

control block LR-402
description LR-402
digital input

coding example LR-408
description LR-407
return codes LR-412

digital output
coding examples LR-411
description LR -410
return codes LR-412

return codes LR-412
scatter write operation LR-326, LR-541
screen

description LR-413
syntax example LR-413

screen image subroutines
See formatted screen subroutines

SCREEN instruction
erase portions of LR-162
images
retrieving and displaying LR-539

SCSS IDCB command LR-235
search a character string LR-183, LR-185
self-defining terms LR-7
send

messages to SNA host LR-302
partial messages (SNA) LR-304
record to host, Host Communications Facility LR-512
records to a data set LR-528

sensor-based I/O
assign a symbolic device name LR-250
specify I/O operation LR-402

serially reusable resource (SRR)
defining LR-367
obtain control of LR-148
release control of LR-119

Series/1-to-Series/1 Attachment
TERMCTRL statement LR-489

session (SNA)

set

end LR-306
establish LR-296
saving parameters LR-297

next-record pointer LR-315
value of a bit LR-414

SETBIT instruction
description LR-414

syntax examples LR-415
SETEOD subroutine LR-611
SHIFTL instruction

description LR-416
syntax example LR-417

SH I FTR instruction
description LR-418
syntax example LR-419

SNA
See System Network Architecture (SNA)

software registers
description LR-10
indexing with LR-11

source code, copy LR-102
source statements, end of LR -140
SPACE statement

coding example LR-322
description LR-420

special process interrupt routine
executing LR-256, LR-257
return control to supervisor LR-421

specifications, data conversion LR-192
SPECPI RT instruction

description LR-421
SQRT instruction

description LR-422
syntax example LR-422

square root, obtain a LR-422
start

Channel Attach device LR-74
task LR-32

START, IDCB command LR-235
START, PROGRAM statement operand LR-351
statement label LR-8
statements

conditional LR-237, LR-243
definition of LR-1
listing by use LR-17

statements, logically connected LR -129
STATUS statement

coding example LR-423
description LR-423

STIMER instruction
description LR-425
return code LR-429

stop

special considerations LR-427
syntax examples LR-427

Channel Attach device LR-76
storage

area, defining LR-55, LR-108, LR-497
mapped

define areas LR-430
obtain LR-218
release LR - 206

releasing allocated storage LR-359
specifying dynamic storage LR-356
unmapped

define areas LR-430
gain access to LR-437

Index LR-649

Index

obtain LR-218
release LR-206

storage control block, creating LR-430
STO R B LK statement

coding example LR-438
descri ption LR -430
STOREOU equates LR-431
syntax examples LR-431

STOREOU equates, description LR-l04
strings, conditional statement LR-243
submit

job to host, Host Communications Facility LR-509
jobs from a program LR-597

subprogram, defining a LR-351
SUBROUT statement

coding description LR-433
coding example LR-434

subroutines
calling LR-62
defining LR-433
DSOPEN LR-602
EXTRACT LR-614
formatted screen LR-539
Indexed Access Method (syntax) LR-608
Multiple Terminal Manager (syntax) LR-609
returning control LR-401
SETEOD LR-611
UPDTAPE LR-613

subtract
floating-point data LR-208
integers LR-435

SUBTRACT instruction
description LR-435
syntax example LR-436
valid precisions, table LR-436

SWAP instruction
coding example LR-438
description LR-437
return codes LR-439
syntax examples LR-438

symbol
assign a value to LR-158
resolving (EXTRN) LR-175
resolving (WXTRN) LR-535

syntax
rules LR-7

system
release level, recording LR-20

system control blocks
See control blocks

System Network Architecture (SNA)
build host 10 data list LR-294
control message exchange LR-285
establish a session LR-296
identify host program LR-294
receive messages from host LR-290
send messages to host LR-302

system reserved labels LR-9
system status data set, HCF

delete a record from LR-507

LR-650 SC34-0643

test for a record LR - 503
write a record to LR-508

System/370 Channel Attach instructions
See channel attach

tape

task

T

CONTROL instruction LR-86
density, setting LR-87
post codes LR-92
READ instruction LR-376
return codes LR-92
tapemark LR-86
WRITE instruction LR-528, LR-532

attaching LR-32
defining LR-440
detaching LR-122
ending LR-146
error exit routine LR-356, LR-441
priority LR-440

task control block (TCB)
description of LR-351
obtain data from LR-443
store data in fields LR-445

TASK statement

TCB

coding example LR-442
description LR-440
priority LR-440

See task control block (TCB)
TCBEOU equates, description LR-104
TCBGET instruction

description LR-443
syntax examples LR-444

TCBPUT instruction
description LR-445
syntax examples LR-445

teletypewriter
TERMCTRL instruction LR-492

TERMCTRL instruction
ACCA attached devices

coding example LR-484
description LR-483

description LR-446
General Purpose Interface Bus LR-485
return codes LR-394
Series/l-to-Series/1 LR-489
Teletypewriter attached devices

description LR-492
syntax example LR-492

terminal function chart LR-446
virtual terminal

coding example LR-494, LR-495
description LR-493

2741 communications terminal
coding example LR-449
description LR-449

o

o

c

o

c

o

3101 display (block mode)
ATTR= operand LR-451
description LR-450
STREAM= operand LR-452

4013 graphics terminal
coding example LR-453
description LR-453

4973 printer
description LR-454
syntax example LR-455

4974 printer
coding example LR-458
description LR-456

4975 printer
coding example LR-463
description LR-459
return codes LR-463
syntax examples LR-462

4978 display
coding examples LR-467
description LR-464

4979 display
coding example LR-469
description LR-468, LR-473

4980 display
description LR-470

5219 printer
coding example LR-476
return codes LR-477
syntax examples LR-476

5224 printer
coding example LR-481
description LR-478
return codes LR-482
syntax examples LR-481

5225 printer
coding example LR-481
description LR-478
return codes LR-482
syntax examples LR-481

TERM ERR operand
PROGRAM statement LR-355
TASK statement LR-440

terminal
ACCA support LR-483
collect data from LR-211
define characteristics LR-246
erase screen LR-162
handling unrecoverable errors LR-355, LR-441
print

read

date LR-319
number LR-346
text LR-324
time LR-344

text entered at terminal LR-385
value entered at terminal LR-222

request special functions (TERMCTRL) LR-446
return codes LR-339, LR-394
virtual LR-553

text
defining LR-497
read from a terminal LR-385

TEXT statement
description LR-497
syntax examples LR-498

time and date
GETIIME instruction LR-220
obtain from host system LR-511
PRINTIME instruction LR-344

time since last IPL LR-244
timer

setting system timer LR-425
TITLE statement

coding example LR-322
description LR-500

TP instruction
CLOSE LR-502
FETCH LR-503
OPENIN LR-504
OPEN OUT LR-505
overview LR-501
READ LR-506
RELEASE LR-507
return codes LR-513
SET LR-508
SUBMIT LR-509
TIMEDATE LR-511
WRITE LR-512

trace
Channel Attach LR-78
print Channel Attach trace data LR-69

transfer
records to a data set LR-528

transfer operation (HCF), end LR-502
translated data LR-273, LR-325, LR-387
true or false condition, test for LR-237
turn a bit off LR -414
turn a bit on LR-414

u

unmapped storage
defining storage areas LR-430
gain access to storage LR-437
obtaining LR-218
releasing LR-206
STOREQU equates LR-431

untranslated data LR-273, LR-325, LR-387
uppercase characters

with PRINTEXT LR-326
with READTEXT LR-389

USER instruction
description LR-516
effect on ENDPROG LR-144
hardware register conventions LR-516
Log Specific Errors From a Program LR-599
to call $USRLOG LR-600

user-defined data member, $PDS utility LR-585

Index LR-651

Index

v
variable names LR-8
variable, definition of LR-7
vectors, adding LR-25
virtual terminals

coding considerations LR-554
communication by return codes LR-555
defining LR-553
definition of LR-553
return codes LR-555
sample programs LR-556
TERMCTRL instruction LR-493

w
wait for multiple events LR-523
WAIT instruction

coding example LR-522
description LR-520

WAITM instruction
description LR-523
MECB statement LR-269
post codes LR-524
syntax example LR-524

weak external reference (WXTRN) LR-535
WHERES instruction

coding example LR-526
descrip~on LR-525
return codes LR-527

word boundary requirement
PROGRAM LR-351

write
data to BSC line LR-48
record in system-status data set LR-508
record to host, Host Communications Facility LR-512
records to a data set LR-528
to a channel attach port LR-80

WRITE instruction
coding example LR-532
description LR-528
IDCB command LR-235
post codes LR-532, LR-534
return codes LR-532
special considerations LR-531
syntax examples (tape) LR-531
WRITE tape LR-534

WRITE1 IDCB command LR-235
WTM (write tapemark) LR-87
WXTR N statement

coding example LR-536
description LR-535

LR-6S2 SC34-0643

x
X.21 circuit switched network

BSCOPEN parameter LR-41
coding BSCOPEN data area LR-42

X-type format LR-198
XYPLOT instruction

description LR-537
syntax example LR-537

y

YTPLOT instruction
description LR-538
syntax example LR-538

2

2741 Communications Terminal
TERMCTRL statement LR-449

3

3101 Display Terminal
TERMCTRL instruction LR-450

4

4013 graphics tetminal (TERMCTRL) LR-453
4973 Line Printer

TERMCTRL instruction LR-454
4974 Matrix Printer

TERMCTRL instruction LR-456
4975 Printer

spacing with PRINTEXT LR-328
TERMCTRL instruction LR-459

4975-01A ASCII printer LR-334
4978 Display Station

TERMCTRL instruction LR-464
4979 Display Station

TERMCTRL instruction LR-468
4980 Display Station

Replace Terminal Control Block (CCB) LR-594
TERMCTRL instruction LR-470

5

5219 Printer
TERMCTRL instruction LR-473

5224 Printer
TERMCTRL instruction LR-478

5225 Printer
TERMCTRL instruction LR-478

c

o

c

o

o

o
Index LR-653

o

c
LR-6S4 SC34-0643 •

o

()

E : :~~ Series/1 Event Driven Executive

Publications Order Form

Instructions:

1. Complete the order form, supplying all of the
requested information. (Please print or type.)

2. If you are placing the order by phone, dial
1-S00-IBM-246S.

3. If you are mailing your order, fold the order
form as indicated, seal with tape, and mail.
We pay the postage.

Ship to:

Name:

Address:

City:

State: Zip:

Bill to:

Customer number:

Name:

Address:

City:

State: Zip:

Your Purchase Order No.:

Phone: (

Signature:

Date:

Order:

Description

Reference books:

Communications Guide

Extended Address Mode and
Performance Analyzer User Guide

Installation and System Generation Guide

Language Reference

Library Guide and Common Index

Messages and Codes

Operator Commands and Utilities Reference

Guides and reference cards:

Customization Guide

Event Driven Language Programming Guide

Operation Guide

Problem Determination Guide

Language Reference Card

Operator Commands and Utilities

Reference Card

Conversion Charts Reference Card

Reference Card Envelope

Binders:

3-ring easel binder with 1 inch rings

3-ring easel binder with 2 inch rings

Standard 3-ring binder with 1 inch rings

Standard 3-ring binder with 1 1/2 inch rings

Standard 3-ring binder with 2 inch rings

Diskette binder (Holds eight 8-inch diskettes.)

Order
number

SC34-0638

SC34-0591

SC34-0646

SC34-0643

SC34-0645

SC34-0636

SC34-0644

SC34-0635

SC34-0637

SC34-0642

SC34-0639

SX34-0165

SX34-0164

SX34-0163

SX34-0166

SR30-0324

SR30-0327

SR30-0329

SR30-0330

SR30-0331

S830-0479

Oty.

Publications Order Form

Fold and tape Please Do Not Staple Fold and tape

I
I
I
I
~
I:
~
II
o
ii
l>
o
::l
1.0

r
5'
~

.. ~

"""

BUSINESS REPLY' MAIL
FIRST CLASS PERMIT NO, 40 ARMONK. N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

I BM Corporation
1 Culver Road
Dayton, New Jersey 08810

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

1
I
I
I
I

.••••••••••••••••••••••••••••••••••••.•••••••••••.••••.••.••••...•••••••••••••.•.••••••••.••••.•••.•.•••••••.•.••.••••••••.••.•••.•.••.•.••••••••••••.•••.•••••••.•••••••••••••••• J
Fold and tape Please Do Not Staple Fold and tape

--------- - ------- - ---- - - -----------,-
®

International Business Machines Corporation

o

o

~
c
Q)

E
Q.

::::l
0-
Q)

C'l
C

'';:::;

0
Vl

'co
E

"0
(l)
+-'
ro
E
0
+-'
::::l

C~
C'O

..c
+-'
'~

Vl

E
(l)

::0
0

Q.
~
::::l
ro
u
c
ro
u
Vl
(l)

0..
ro
+-'
(./)

Q)
+-'
0

Z

c

E
0

'f-

Vl

..c
+-'

co
Q)
Vl

0
+-'
(l)

Q.
ro
+-'

"0
(l)

E
E
::::l
C'l
'-
(l)

..c
+-'
0

0
(l)

>
'';:::;
'v;
c
(l)
Vl

~
::::l
~
(l)

Q.
(l)
Vl
::::l
(l)
Vl
co
(l)

c:

IBM Series/1 Event Driven Executive
Language Reference

Order No. SC34-0643-0

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers, and
operators of IBM systems, You may use this form to communicate your comments about this publication,
its organization, or subject matter, with the understan'ding that IBM may use or distribute whatever
information you supply in any way it believes appropriate without incurring any obligation to you.
Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate,

Note: Copies ofIBllt publications are not stocked at the location to which this form is addressed.
Please direct any requests fc)r copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

Thank you for your cooperation, No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the title page.)

SC34-0643-0
Printed in U.S.A.

Reader's Comment Form

Fold and tape

Fold and tape

--------- - ------- - ---- - - ----------_.-
®

Please Do Not Staple

III " I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Information Development, Department 28B
P.O. Box 1328
Boca Raton, Florida 33432

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

I

I
I
I
h
c

o

·C'.' -

o

~
c
Q)

E
Q.

:J
cr
Q)

C'l
C
.~

0
(J)

ro
E

"0
Q)
+-' ro
E
0
+-'
:J

C
ro
.c
+-'
.~

(J)

E
Q)

..0
0

Q.
Q)
(J)

::i
ro
u
c
ro
u
(J)

Q)

0.
ro
+-'
(/)

Q)
+-'
0
Z

E
0

'+-
(J)

.c
+-'

ro
Q)
(J)

0
+-'
Q)

Q.
ro
+-'

"0
Q)

E
E
:J
C'l
l...
Q)

.c
+-'
0

0
Q)

>
.~

. iii
c
Q)
(/)

~
::i
(J)
(J)

Q)

Q.
Q)
(/)

::i
Q)
(J)

ro
Q)

0:

IBM Series/1 Event Driven Executive
Language Reference

Order No. SC34-0643-0

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers, and
operators of IBM systems. You may use this form to communicate your comments about this publication,
its organization, or subject matter, with the understan'ding that IBM may use or distribute whatever
information you supply in any way it believes appropriate without incurring any obligation to you:
Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate.

Note: Copies of I Bll! publicatiofls are !lot stocked at the location to which this form is addressed.
Please direct allY requests fc)r copies of pub licati OilS, or for assistallce ill using your IBM system, to
your IEllf represelltative or to the IBM branch office serving your locality.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the title page.)

SC34-0643-0
Printed in U.S.A.

Reader's Comment Form

Fold and tape Please Do Not Staple Fold and tape

..

Fold and tape

----~ - - ----------- - -----------,-

®

I" II

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Information Development, Department 28B
P.O. Box 1328
Boca Raton, Florida 33432

Please Do Not Staple

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

I

I
I
I
I
()
c
~

" o
0:
~
o
:J
LC

c:
:J
(1)

o

1

o

o

Ei : :::Ei,;,~/TeChnical Newsletter

IBM Series/1
Event Driven Executive

Language Reference

This Newsletter No.
Date·

Base Publication No.
File No.

Previous Newsletters

Program Numbers: 5719-XS5, 5719-AM4, 5719-CX1,
5719-MS2, 5719-SX1, 5719-XX9

©mM Corp. 1984, 1985, 1986

SN34-0938
4 June 86

SC34-0643-1
SI-35

None

This Technical Newsletter, a part of Version 5 Modification Level 2 of the Event Driven Executive,
provides replacement pages for the subject publication. These replacement pages remain in effect
for subsequent levels unless specifically altered. Pages to be inserted and/or removed are:

iii, iv
LR-127, LR-128
LR-239, LR-240
LR-488.1, LR-488.2 (added)
LR-493, LR-494
LR-523 through LR-528
LR-613 through LR-622

A technical change to the text is indicated by a vertical line to the left of the change.

Summary of Amendments

This Technical Newsletter contains the following additions or modifications to text:

• The TERMCTRL section has been updated with information on the 4201 printer's operation
after you power it off and then on again.

• The TERMCTRL section has been updated with information on the 4224 printer's operation
after you power it off and then on again.

• The $IMAGE subroutines in Appendix A, "Formatted Screen Subroutines", have been updated
with information for coding static screen images on the 3161, 3163, and 3164 display terminals.

• Miscellaneous editorial updates.

Note: Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Information Development (3405), Department 28B, P.O. Box 1328, Boca Raton, Florida
33429-1328

Printed in U.S.A.

c

c

I

o

o

0

o

TN L SN34-0938 (4 June 86) to SC34-0643-1

Summary of Changes For Version 5.2

This document contains the following changes.

•

•

•

"READTEXT - Read text entered at a terminal" on page LR-401 has been updated to
include information about 3161,3163, and 3164 terminals operating in block mode.

One new and several updated SNA instructions, their syntax and descriptions appear in
Chapter 2, "Instruction and Statement Descriptions" beginning on page LR-299.

Information on coding TERMCTRL instructions for terminal models 3161, 3163, and 3164
appears in this edition. Refer to "3101, 3161, 3163, and 3164 Display Terminals (Block
Mode)" on page LR-470 for details.

• Information on coding TERMCTRL instructions for the 4224 and 4201 Printers also
appears in this edition. Details are located under "4201 Printer" on page LR-475 and"4224
Printer" on page LR-489.

• Information on the 4201 and 4224 printer operations after you power them off and then on
again has been included in this edition. Refer to "Special Considerations" on page LR-522
and"Special Considerations" on page LR-488 respectively for details.

• The $IMAGE section has been updated with information on coding static screen images for
the terminal models 3161, 3163, and 3164. Refer to Appendix A, "Formatted Screen
Subroutines" on page LR-613 for information.

Summar. of Changes For Version 5.2 iii

TNL SN34-0938 (4 June 86) to SC34-0643-1

Summary of Changes For Version 5.2

iv SC34-0643

• A sample Tape Source Dump Utility program has been added to Appendix D. Refer to
"Tape Source Dump Program Example" on page LR-676 for information.

• The "Glossary of Terms and Abbreviations" for this document is now located in the Library
Guide and Common Index.

A vertical line in the left margin indicates new or changed material.

c

c

o

o

j

o

o

DO
DO - Perfonn a program loop

The DO instruction begins a program loop. A loop is a set of one or more instructions that
executes repeatedly until a condition you specify in the DO instruction is satisfied. You must
end the DO loop with an ENDDO instruction.

You can code a loop within another loop. This technique is called "nesting. " You can include
up to 20 nested loops within your initial DO-ENDDO structure.

There are three forms of the DO instruction. DO UNTIL and DO WHILE provide a means of
looping until or while a condition is true. The third form of the DO instruction causes a loop to
be executed a specific number of times. In all of these forms, a branch out of the loop is
allowed.

You also can use the DO instruction to perform a loop while or until a certain bit is 'on' (set to
1) or 'off' (set to 0).

The syntax box shows the DO UNTIL and DO WHILE forms of the DO instruction with a
single conditional statement. You can specify several conditional statements, however, by using
the AND and OR keywords. These keywords allow you to join conditional statements. The
keywords are described in the operands list and examples using the keywords are shown under
"Syntax Examples with DO and ENDDO" on page LR-130.

Syntax:

label
label
label

Required:

Defaults:
Indexable:

Operand

count

TIMES

INDEX =

DO
DO
DO

count, TI M ES, I N DEX=, P1 =
U NTI L, (data 1 ,condition,data2, width)
WHILE,(data1,condition,data2,width)

count or one conditional statement
with UNTIL or WHILE
width is WORD
count or data1 and data2 in each statement

Description

The number of times the loop is to be executed. You can specify a constant or
the label of a variable. The maximum value is 32767. The system completes one
loop each time it encounters the ENDDO instruction.

Note: If count=O, the system executes the loop one time.

This optional operand serves only as a comment for the count operand.

The label of a data area that the system resets to 0 before starting the DO loop
and increases by 1 each time the instruction following the DO instruction
executes. The first time the DO loop executes, the index has a value of 1.

Chapter 2. Instruction and Statement Descriptions LR -127

TNL SN34-0938 (4 June 86) to SC34-0643-1

DO
DO - Perfonn a program loop (continued)

LR -128 SC34-0643

UNTIL

WHILE

datal

condition

data2

This operand defines a loop that executes until the condition you specify is true.
The loop executes at least once, even if the condition is initially true.

This operand defines a loop that executes as long as the condition you specify is
true. The loop does not execute if the condition is initially false.

The label of a data item to be compared to data2 or the label of the data area
that contains the bit to be tested. This operand is valid only in a conditional
statement with UNTIL or WHILE.

An operator that indicates the relationship or condition to be tested. Only code
this operand in a conditional statement with UNTIL or WHILE. The valid
operators for the DO instruction are as follows:

EO - Equal to
NE - Not equal to
GT - Greater than
LT ..; Less than
GE - Greater than or equal to
LE - Less than or equal to

ON - Bit is 'on'
OFF - Bit is 'off'

The data to be compared to datal or the position, in datal, of the bit to be
tested. Only code this operand in a conditional statement with UNTIL or
WHILE. You can specify immediate data or the label of a variable. Immediate
data can be an integer between 1 and 32768 or a hexadecimal value between 1
and 65535 (X'FFFF').

Bit 0 is the left-most bit of the data area.

width Specifies an integer number of bytes or one of the following:

BYTE
WORD
DWORD
FLOAT
DFLOAT

- Byte (8 bits)
- Word (16 bits)
- Doubleword (32 bits)
- Single-precision floating-point (32 bits)
- Extended-precision floating-point (64 bits)

Code this operand only in a conditional statement using UNTIL or WHILE. The
default is WORD.

AND Enables you to join conditional statements when you code DO UNTIL or DO
WHILE. Code the operand between the conditional statements you want to
join. With DO UNTIL, the AND indicates that the loop should execute until all
the conditional statements that the operand joins are true. With DO WHILE,

o

c

c

o

o

t

o

IF
IF - Test if a condition is true or false

The IF instruction determines whether a conditional statement is true or false and, based on its
decision, determines the next instruction to execute.

A conditional statement can compare two data items or ask whether a bit is "on" (set to 1) or
"off" (set to 0). The instruction syntax shows the general format of conditional statements used
with the IF instruction.

You can compare data in two ways: arithmetically or logically. When you compare data
arithmetically, the system interprets each number as a positive or negative value. The system,
for example, interprets X'OFFF' as 4095. It interprets X'FFFF', however, as a -1. Though
X'FFFF' seems to be a larger hexadecimal number than X'OFFF', the system recognizes the
former as a negative number and the latter as a positive number. X'FFFF'is a negative number
to the system because the left-most bit is "on."

When you compare data logically, the system compares the data areas byte by byte. The system
interprets X'FFFF' not as a -1 but as a string of 2 bytes with all bits "on."

With EBCDIC or ASCII character data, the system makes a logical comparison of the
characters byte by byte. In a logical comparison of a capital 'A' (X'C1') with a capital 'H'
(X'C8'), the system recognizes the capital A to be "less than" the capital H. By comparing
character data logically, you can use the IF instruction to sort items alphabetically ('a' is less
than 'c' which is greater than 'b').

The syntax box shows the IF instruction with a single conditional statement. You can specify
several conditional statements on a single IF instruction, however, by using the AND and OR
keywords. These keywords allow you to join conditional statements. "Rules for Evaluating
Statement Strings Using AND and OR" on page LR..;129 provides additional information
regarding use of the IF instruction. The keywords are described in the operands list and
examples using the keywords are shown following the instruction description.

Syntax:

label

label

Required:
Defaults:
Indexable:

IF (data1,condition,data2,width)

IF (data1,condition,data2,width},GOTO,loc

one conditional statement
width is WORD for arithmetic comparison
data1 and data2 in each statement

Chapter 2. Instruction and Statement Descriptions LR -239

TNL SN34-0938 (4 June 86) to SC34-0643-1

IF
IF - Test if a condition is true or false (continued)

Operand

datal

condition

data2

Description

The label of a data item to be compared to data2 or the label of the data area
that contains the bit to be tested.

An operator that indicates the relationship or condition to be tested. The valid
operators for the IF instruction are as follows:

Arithmetic and Logical
Comparisons

EQ - Equal to
NE - Not equal to
GT - Greater than
LT - Less than
GE - Greater than or equal to
LE - Less than or equal to

Testing a Bit
Setting

ON or OFF

The label of a data item to be compared to datal or the label of the data area
that contains the bit in datal to be tested. For an arithmetic comparison, specify
immediate data or the label of a data area. Immediate data can be an integer
from 0 to 32767, or a hexadecimal value from 0 to 65535 (X'FFFF'). For a
logical comparison, specify the label of a data area. For a bit comparison,
specify immediate data.

When you check a bit setting, remember that bit 0 is the leftmost bit of the data
area.

width Specify an integer number of bytes in the range of I to 65535 for a logical
comparison (no default). For a bit comparison, specify an immediate data area
in words. This form specifies that both DATAl and DATA2 are storage
locations; an immediate operand is not permitted.

GOTO

LR-240 SC34-0643

For an arithmetic comparison, you can specify one of the following:

BYTE - Byte (8 bits)
WORD - Word (16 bits), the default
DWORD - Doubleword (32 bits)
FLOAT - Single-precision floating-point (32 bits)
DFLOAT - Extended-precision floating-point (64 bits)

If the statement is true and GOTO is coded, control passes to the instruction at
the address specified in the loc operand. If the statement is false, execution
proceeds sequentially.

If GOTO is not coded, THEN is assumed and the next instruction is determined
by the IF-ELSE-ENDIF structure. If the condition is true, execution proceeds

c

o

•

o

o

o

o

TNL SN34-0938 (4 June 86) to SC34-0643-1

TERMCTRL (4201)
TERMCTRL - Request special tenninal function (continued)

• If you power off and then power on the 4201, the printer resets the following functions as
shown:

Function

BOLD
DSTRIKE
DWIDE
LPI
OVER
PDEN
SETFONT
SUBSCRIPT
SUPERSCRIPT
UNDER

Hardware Default

Off
Off
Off
6 LPI
Off
10CPI
Data Processing
Off
Off
Off

Chapter 2. Instruction and Statement Descriptions LR ... 488.1

o

This page intentionally left blank. o

LR-488.2 SC34-0643

o

o

o

TERMCTRL (4224)
TERMCTRL - Request special tenninal function (continued)

Syntax:

label

Required:
Defaults:

Indexable:

Operand

BARCODE

ORIENT =

TERMCTRL BARCODE,loc,count,XCOORD=,YCOORD=,
ORIENT=,BARTYPE=,MOD=,HEIGHT=,WIDTH=,.
P2=, P3=, P4=, P5=, P6=, P7=, P8=, P9=, P1 0=

BARCODE,loc,count,XCOORD=,YCOORD=,MOD=
ORIENT=HORZ,BARTYPE=CODE3#9,HEIGHT=0
WIDTH=NARROW
loc,count

Description

Causes the 4224 to print a bar code. The printer defers the actual printing of the
bar code until other data being printed causes the print head to reach the
specified "X" and "Y" coordinates. Issue the BARCODE command at the top
of a page to be sure the printer receives it before the print head reaches the point
where the bar code is to be placed.

If the bar code is sent to the printer after the print head has passed the starting
point of the desired print location, the 4224 may try to print what it can of the
bar code and will generate a hardware error indicating an invalid request for
backward movement of the print head. For this reason, applications must issue a
BARCODE command before the print head reaches the point on the physical
page where the bar code is to begin.

Since bar code printing is completely independent of immediate (normal)
printing, the application must anticipate where the bar code will be placed and
skip the appropriate number of spaces and lines to avoid overwriting. Select the
location of a bar code on a page with the XCOORD= and YCOORD=
operands.

The 4224 prints bar codes in black only, regardless of the currently active color.

Orientation of the bar code. Allowable values are:

Parameter

HORZ
VERT

Description

Orient the bar code horizontally, the default.
Orient the bar code vertically.

Chapter 2. Instruction and Statement Descriptions LR-493

TNL SN34-0938 (4 June 86) to SC34-0643-1

TERMCTRL (4224)
TERMCTRL - Request special tenninal function (continued)

loc The label of characters the system will encode and print in the bar code you
selected. The system does not translate this data before sending it to the printer.

count Count of characters the system will encode and print in the bar code you
selected. Valid counts are listed below for each bar code type under
BARTYPE=.

XCOORD= Word value in 1/1440 inch units specifying the location on the current page
where the bar code will be printed (upper left corner of the bar code). The
printer resolves the coordinates to the nearest increment it supports (1/144
inch). Specify the X coordinate relative to the left edge of the physical page.

YCOORD= Word value in 1/1440 inch units specifying the location on the current page
where the bar code will be printed (upper left corner of the bar code). The
printer resolves the coordinates to the nearest increment it supports (1/144
inch). Specify the Y coordinate relative to the top of the page.

BARTYPE= Word value specifying the type of bar code desired.

LR-494 SC34-0643

Mnemonic

CODE3#9
MSI
UPC#A
UPC#E
UPC#2
UPC#S
EAN#8
EAN#13
INDUST
MATRIX
LEAVED

Count (Bytes)

1-50
1-50
11
10
2
5
7
12
1-50
1-50
1-50

Bar Code Description

Code 3 of 9
MSI (MSI Data Corporation)
Uniform Product Code - Type A
Uniform Product Code - Type E
UPC - Magazine and Paperback - two digit
UPC - Magazine and Paperback - five digit
European Article Number - Type 8
European Article Number - Type 13
Two of Five Industrial
Two of Five Matrix
Two of Five Interleaved.

Note: You may select supplemental encoding EAN#2 and EAN#5 by specifying
bartypes UPC#2 and UPC#5 respectively.

o

.j.

o

o

o

o

o

TNL SN34-0938 (4 June 86) to SC34-0643-1

TERMCTRL (4224)
TERMCTRL - Request special tenninal function (continued)

Applications that currently run on the 4975-02L printer will run on the 4224 printer without
reassembly with the exceptions noted in this section. However, a new system generation is
required and applications must be rellnked to include the modified $4975 module.

To take advantage of any new function provided by the 4224 printer, you must modify and
reassemble your 4975-02L printer applications. If you decide to modify your applicatioq, you
can avoid relinking with module $4975 by replacing the TERMCTRL SET instructions in your
program with corresponding TERMCTRL instructions for the 4224 printer as follows:

4975-02L Instruction

SET,LPI=
SET,PMODE=
SET,PDEN=
SET,CHARSET=
SET,RESTORE

4224 Instruction

LPI,HEIGHT=
SETFONT, FONTI 0=
PDEN,DENSITY=
(OFFLINE TEST 303)
RESTORE

If you decide not to reassemble your application, note the following:

• PMODE=TEXT on the 4224 printer produces near letter quality, proportionally-spaced
characters with a single pass of the print head (FONTID=5). PMODE=TEXT directs the
4224 to reset the print density to large and to redefine horizontal densities. See
TERMCTRL SET for more information. PMODE=TEXT on the 4975-02L printer
produces TEXT quality, proportionally-spaced characters with two passes of the print head.
PMODE=TEXT directs the 4975-02L to select the appropriate density for the
proportionally-spaced characters.

• PMODE=TEXTI on both the 4975-02L and the 4224 printer produces TEXT quality
proportionally-spaced characters with a single pass of the print head (FONTID=4 on the
4224). PMODE=TEXT1 directs the 4975-02L to select the appropriate density for the
proportionally-spaced characters. PMODE=TEXTI directs the 4224 to reset the print
density to large and to redefine horizontal densities. See TERMCTRL SET for more
information.

PMODE=DRAFT on both the 4975-02L and the 4224 produces data processing quality,
monospaced characters with a single pass of the print head.

Note: Near letter quality is a higher quality type than text quality.

• The TERMCTRL DCB= operand of the 4975-02L is not supported on the 4224 printer.

• TERMCTRL SET,CHARSET= is a null operation on the 4224 printer. You may select a
character set for languages other than English by running offline test 303. Refer to
TERMCTRL SET,CHARSET= for additional information.

• TERMCTRL SET,PMODE=TEXT or TEXT1 on the 4975-02L printer produces
approximately 5 CPI. TERMCTRL SET,PMODE=TEXTor TEXT1 on the 4224 printer,
however, produces approximately 8, 10 or, 12 CPI (depending on the density selected).

Chapter 2. Instruction and Statement Descriptions LR-523

TNl SN34-0938 (4 June 86) to SC34-0643-1

TERMCTRL (4224)
TERMCTRL - Request special tenninal function (continued)

LR-524 SC34-0643

To produce approximately 5 CPI on the 4224 printer, simulating the 4975-02L, issue
TERMCTRL DWIDE and TE~CTRL PDEN,DENSITY=NORMAL after issuing
TERMCTRL SET,PMODE=TEXT or TEXTl.

• TERMCTRL SET,PDEN= values (print densities in characters per inch) for the 4975-02L
and 4224 printers differ in the following manner:

Density

Compressed
Normal
Expanded

4975-02l Printer

COMP=20
NORM=15
EXPD=10

4224 Printer

COMP=15
NORM=15
EXPD=10

• If you power off and then power on the 4224, the printer resets the following functions as
follows:

Function Hardware Default

BARCODE Deleted (if pending)
BOLD Off
CHARSET Offline test 303 value
DSTRIKE Off
DWIDE Off
ITALICS Off
loaded fonts Deleted
lPI Offline test 302 value
OVER Off
PCOlOR Black
PDEN Offline test 302 value
SETFONT Offline test 302 value
SUBSCRIPT Off
SUPERSCRIPT Off
UNDER Off

• Data streaming mode is supported to allow the user access to features of the 4224 printer
not implemented. Issuing a PRINTEXT with XLATE=NO activates data streaming mode.

Text data to be sent to the 4224 printer is not translated when XLATE=NO is coded. Each
PRINTEXT, XLATE=NO is counted by the printer support as a single line even though
multiple physical lines may be printed. Therefore, when switching from untranslated mode
to translated mode, you may want to issue a PRINTEXT LINE=O before issuing translated
commands in order to synchronize the hardware and the software. For details on the
printer data stream, refer to the IBM 4224 Printer Product and Programming Description
Manual, GC31-2550.

o

0

c

o

o

o

TNL SN34-0938 (4 June 86) to SC34-0643-1

TERMCTRL (4224)
TERMCTRL - Request special tenninal function (continued)

Additional 4224 Printer Information

• The 4224 printer can only be attached locally. Remote attachment of the 4224 printer,
unlike the 4975-02L, is not possible.

• Not all $TERMUTI and $TERMUT2 utility functions of the 4975-02L printer are directly
available on the 4224 printer. Refer to information on the use of these utilities with the
4224 and 4975-02L printers in the Operator Commands and Utilities Reference.

• The 4224 printer maintains physical page size in inches. You select the initial physical page
size using offline test 302. The 4224 printer maintains logical page size as a line count.
Whenever you change logical page size with ENQT, DEQT, or $TERMUTl, be sure to
alter line height so that: (physical page size in inches) x (lines per inch) = (logical page
size).

• The 4224 printer supports both ASCII and EBCDIC character sets.

The different models of the 4224 are indistinguishable to the EDX printer support.
Variations among the printer models follow:

Model 301 - runs at 200 characters per second (top speed). It has only one color
(black).

Model 302 - runs at 400 characters per second (top speed). It has only one color
(black).

Model3C2 - runs at 400 characters per second (top speed). It supports up to eight
colors depending on which ribbon is installed.

• If the green light on the 4224 flashes after you have cancelled your application, you may
empty the printer's buffer as follows:

1. Press the "STOP" button on the 4224 printer.
2. Press the "ALT" and "CANCEL" buttons to clear the 4224 print buffer.
3. Press the "START" button on the 4224 printer.

• PRINTEXT instructions issued to the 4224 printer return the ACCA return codes listed
under "PRINTEXT - Display a message on a terminal" on page LR-339.

• To interpret the ISB after an I/O completion error, refer to the hardware manual of the
Series/l attachment being used to drive the 4224 printer (MFA or 2095/2096). To
interpret the ISB after an error is reported as an attention interrupt, refer to the mM 4224
Printer Product and Programming Description Manual, GC3l-2550.

Chapter 2. Instruction and Statement Descriptions LR-525

TNL SN34-0938 (4 June 86) to SC34-0643-1

TERMCTRL (4224)
TERMCTRL - Request special tenninal function (continued)

• If you have issued an ENQT with an 10CB and provided a local buffer to be used instead of
the terminal control block (CCB) buffer, remember the following.

Programming Aids

Do not alter the buffer in any way (except for direct I/O) during the time when the
buffer is in use as a system buffer.

The printer support issues additional I/O operations because the same buffer must be
used for both application data and TERMCTRL data. This degrades performance.

The right margin on the 4224 printer is automatically set to buffer size + left margin -1,
regardless of the value you specify for RIGHTM=. If you exceed the physical right
margin of the 4224, the extra data is printed on the next line.

All mnemonics have associated equates that can be used to generate values during execution.
The equate is the same as the mnemonic, but it has a # in front of it. You can find the equates
in the copy code module EQU4224.

The bar code orientation mnemonics have the following equates:

Mnemonic

HORZ
VERT

Equate

#HORZ
#VERT

The BARTYPE= mnemonics have the following equates:

Mnemonic Equate

CODE3#9 #CODE3#9
MSI #MSI
UPC#A #UPC#A
UPC#E #UPC#E
UPC#2 #UPC#2
UPC#5 #UPC#5
EAN#8 #EAN#8
EAN#13 #EAN#13
INDUST #INDUST
MATRIX #MATRIX
LEAVED #LEAVED

The WIDTH= mnemonics have the following equates:

LR-S26 SC34-0643

Mnemonic

NARROW
WIDE

Equate

#NARROW
#WIDE

Equate Value

o
1

Equate Value

1
2
3
5
6
7
8
9
10
11
12

Equate Value

14
21

o

o

o

o

0

o

TNL SN34-0938 (4 June 86) to SC34-0643-1

TERMCTRL (4224)
TERMCTRL - Request special tenninal function (continued)

Coding Example

The CHARID= mnemonics have the following equates:

Mnemonic Equate Equate Value

KANA #KANA 0
PC1 #PC1 1
PC2 #PC2 2
INT1 #INT1 3
INT5 #INT5 4
APL #APL 5

The DENSITY = mnemonics have the following equates:

Mnemonic Equate Equate Value

LARGE #LARGE 0
NORMAL #NORMAL 1
DENSE #DENSE 2

The PCOLOR= mnemonics have the following equates:

Mnemonic Equate Equate Value

BLUE #BLUE 1
RED #RED 2
MAGENTA #MAGENTA 3
GREEN #GREEN 4
CYAN #CYAN 5
YELLOW #yELLOW 6
BLACK #BLACK 8
BROWN #BROWN 16

Equate values should never be hard-coded. Either the mnemonic should be used (when the
value is known at assembly time), or the equate should be used (for run time recognition).

Examples of accessing a color at run time are:

SKYBLUE

MOVE
TERMCTRL

TERMCTRL

MOVEA
TERMCTRL

DATA

#1,+#BLUE USE COLOR BLUE
PCOLOR,COLOR=#1 SET DESIRED COLOR

PCOLOR,COLOR=SKYBLUE SET COLOR BLUE

#1,SKYBLUE POINT TO BLUE
PCOLOR,COLOR=(O,#1) SET DESIRED COLOR

A (+#BLUE) COLOR BLUE

All equates for the 4224 printer are word values. Be sure to define them as such in storage with
the data definition A(+equate).

Chapter 2. Instruction and Statement Descriptions LR -527

TERMCTRL (4973)
TERMCTRL - Request special tenninal function (continued)

4973 Printer

Syntax:

label TERMCTRL function,LPI=,DCB=

Required: function
Defaults: none
Indexable: none

Operand Description

function:

LPI=

DCB=

SET Sets the number of lines per inch and causes any buffered output to
be printed. The system also resets the current output position to the
beginning of the left margin.

When you specify SET, you must also specify LPI.

DISPLAY Causes the system to write to the 4973 any buffered output.

The number of lines per inch (either 6 or 8) the 4973 is to print. This operand is
required when the SET function is specified.

The label of an 8-word device control block you define with the DCB statement.
The 4973 support code provides an IDCB that points to this DCB and issues a
START 110 instruction to the device. The system does a wait operation and
control returns to you after the interrupt is received from the device.

If the post-cursor bit is set on in word 0 of the DCB, the terminal support
updates the internal cursor position according to word 1 of the DCB. If an error
occurs, an error return is made according to normal terminal 110 conventions.

Do not code any other operands when you specify this operand on the
TERMCTRL statement. You cannot have another DCB chained to the one
specified by the DCB operand. You should be familiar with the 4973 hardware
and terminal 110 internals when you use this operand.

LR-528 SC34-0643

o

o

o

o

o

o

TNL SN34-0938 (4June 86) to SC34-0643-1

Appendix A. Formatted Screen Subroutines

You can create, save, and modify formatted screen images using the $IMAGE utility. Refer to
the $IMAGE description in the Operator Commands and Utilities Reference for information on
creating or exchanging terminal screen images for various terminals. The formatted screen
subroutines retrieve and display these images. This appendix describes each of the following
subroutines and its operands:

• $IMDATA
• $IMDEFN
• $IMOPEN
• $IMPROT
• $PACK
• $UNPACK.

You can use the formatted screen subroutines with the following terminals:

• 4978 terminals
• 4979 terminals
• 4980 terminals
• 3101 terminals in block mode
• 3161 terminals in block mode
• 3163 terminals in block mode
• 3164 terminals in block mode.

You can also use scre.en images created on a 4978,4979, or 4980 on any of the terminals listed
above by calling subroutines described in this appendix.

Appendix A. Formatted Screen Subroutines LR-613

TNL SN34-0938 (4 June 86) to SC34-0643-1

Formatted Screen Subroutines

You must code an EXTRN statement for each subroutine name to which your program refers.
You also must link -edit the subroutines with your application program. Specify
$AUTO,ASMLIB as the auto call library to include the screen formatting subroutines. Refer to
the Operator Commands and Utilities Reference for details on the AUTO CALL option of
$EDXLINK.

You call the formatted screen subroutines using the CALL instruction. The following section
shows the CALL instruction syntax for each subroutine.

If an error occurs, the terminal 110 return code is in the first word of the task control block
(TCB). These errors can come from instructions such as PRINTEXT, READTEXT, and
TERMCTRL.

LR-614 SC34-0643

o

o

o

o

o

o

TNL SN34-0938 (4 June 86) to SC34-0643-1

$IMDATA
$IMDATA Subroutine

The $IMDATA subroutine displays the initial data values for an image which is in disk storage
format. Use .$IMDATA:

• To display the unprotected data associated with a screen image, if the buffer contains a
screen format retrieved with $IMOPEN.

• To "scatter write" the contents of a user buffer to the input fields of a displayed screen
image.

Note: You must call $IMDATA if any of your unprotected fields have the right justify or must
enter characteristics.

If the buffer is retrieved with $IMOPEN, the buffer begins with the characters "IMAG," or
"IM31," and the buffer index (buffer-4) equals the data length excluding the characters
"IMxx."

You can specify a user buffer containing application-generated data. Set the first four bytes of
the buffer to the characters "USER" and set the buffer index (buffer-4) to the data length
excluding the characters USER.

All or portions of the screen may be protected after $IMDAT A executes. Because the operator
cannot key data into protected fields, subsequent read instructions (such as QUESTION,
GETV ALUE, and READTEXT) should be directed to unprotected areas of the screen, or the
protected areas should be erased.

Notes:

1. To use $IMDATA, you must code an EXTRN statement in your program. You must also
link-edit the program with $EDXLINK and specify an autocall to $AUTO,ASMLIB.

2. Do not call both $IMDATA and $IMPROT by separate tasks to operate simultaneously.
Problems will occur because both call the $IMDTYPE subroutine.

Syntax:

label CALL $IMDATA,(buffer),(ftab),P2=,P3=

Required: buffer, ftab (see note)
Defaults: none
Indexable: none

Appendix A. Formatted Screen Subroutines LR-615

TNL SN34-0938 (4 June 86) to SC34-0643-1

$IMDATA
$IMDATA Subroutine (continued)

Operand

buffer

ftab

Description

The label of an area containing the image in disk-storage format.

The label of a field table constructed by $IMPROT giving the location
(lines,spaces) and size (characters) of each unprotected data field of the image.

Note: The ftab operand is required only if the application executes on a 3101,
3161, 3163, or 3164 terminal in block mode, or if a user buffer is used in
$IMDATA.

Px= Parameter naming operands. See "Using the Parameter Naming Operands
(Px=)" on page LR-12 for a description of how to use these operands.

$IMDATA Return Codes

The return codes are returned in the second word of the task control block (TCB) of the
program or task calling the subroutine. The label of the TCB is the label of your program or
task (taskname). Refer to taskname+2.

LR -616 SC34-0643

Code
-1
9
12

Description

Successful completion
Invalid format in buffer
Invalid terminal type

o

o

o

o

o

o

TNL SN34-0938 (4 June 86) to SC34-0643-1

$IMDEFN
$IMDEFN Subroutine

The $IMDEFN subroutine creates an lOeB for the formatted screen image. You can code the
lOeB directly, but the use of $IMDEFN allows the image dimensions to be modified with the
$IMAGE utility without requiring a change to the application program. $IMDEFN updates the
lOeB to reflect OVFLINE=YES. Refer to the TERMINAL configuration statement in the
Installation and System Generation Guide for a description of the OVFLINE parameter.

Once you define an lOeB for the static screen, the program can then acquire that screen
through ENQT. Once the screen has been acquired, the program can call the $IMPROT
subroutine to display the image and the $IMDATA subroutine to display the initial nonprotected
fields.

Note: To use $IMDEFN, you must code an EXTRN statement in your program. You must also
link-edit the program with $EDXLINK and specify an autocall to $AUTO,ASMLm.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

iocb

buffer

topm

leftm

Px=

CALL $IMDEFN,(iocb),(buffer),topm,leftm,
P2=, P3=, P4=, P5=

iocb, buffer
topm=O,leftm=O
none

Description

The label of an lOeB statement defining a static screen. The lOeB need not
specify the TOPM, BOTM, LEFTM, nor RIGHTM parameters; these are "filled
in" by the subroutine. The following lOeB statement would normally suffice:

label lOCB SCREEN=STATlC

The label of an area containing the screen image in disk storage format. The
format is described in the Event Driven Executive Language Programming Guide.

This parameter indicates the screen position at which line 0 will appear. If its
value is such that lines would be lost at the bottom of the screen, then it is forced
to zero. This parameter must equal zero for all 3101, 3161, 3163, or 3164
terminal applications. The default is also zero.

This parameter indicates the screen position at which the left edge of the image
will appear. If its value is such that characters would be lost at the right edge of
the screen, then it is forced to zero. This parameter must equal zero for all 3101,
3161,3163, or 3164 terminal applications. The default is also zero.

Parameter naming operands. See "Using the Parameter Naming Operands
(Px=)" on page LR-12 for a description of how to use these operands.

Appendix A. Formatted Screen Subroutines LR-617

$IMDEFN
$IMDEFN Subroutine (continued) o
Coding Example

CALL $lMDEFN,(lMGlOCB),(lMGBUFF),O,O

ENQT lMGlOCB

.
PROGSTOP

lMGlOCB lOCB SCREEN=STATlC
lMGBUFF BUFFER 1024,BYTES

o

o
LR-618 SC34-0643

o

o

o

TNL SN34-0938 (4 June 86) to SC34-0643-1

$IMOPEN
$IMOPEN Subroutine

The $IMOPEN subroutine reads a formatted screen image from disk or diskette into your
program buffer. You can also perform this operation by using the DSOPEN subroutine or by
defining the data set at program load time, and issuing the disk READ instruction. Refer to the
Event Driven Executive Language Programming Guide for a description of buffer sizes.
$IMOPEN updates the index word of the buffer with the number of actual bytes read. To refer
to the index word, code buffer-4.

Note: To use $IMOPEN, you must code an EXTRN statement in your program. You must also
link-edit the program with $EDXLINK and specify an autocall to $AUTO,ASMLffi.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

dsname

buffer

CALL $IMOPEN,(dsname),(buffer),(type),
P2=,P3=,P4=

dsname,buffer
type=C'4978'
none

Description

The label of a TEXT statement which contains the name of the screen image
data set. You can include a volume label, separated from the data set name by a
comma.

The label of a BUFFER statement that defines the storage area into which the
image data will be read. Allocate the storage in bytes, as in the following
example:

label BUFFER 1024,BYTES

type The label of a DATA statement that reserves a 4-byte area of storage and
specifies the type of image data set to be read. The DATA statement must be on
a full word boundary. Specify one of the following types:

C'4978'

C'3101'

C'3161'

The system reads an image data set for a 4978 terminal with a
4978/4979/4980 terminal format. This is the default terminal
format.

The system reads an image data set for a 3101 terminal with a 31xx
terminal format.

The system reads an image data set for a 3161 terminal with a 31xx
terminal format.

Appendix A. Formatted Screen Subroutines LR-619

TNL SN34-0938 (4 June 86) to SC34-0643-1

$IMOPEN
$IMOPEN Subroutine (continued)

Px=

$IMOPEN Return Codes

C'3163'

C'3164'

The system reads an image data set for a 3163 terminal with a 31xx
terminal format.

The system reads an image data set for a 3164 terminal with a 31xx
terminal format.

Note: The 31xx terminal format is the format used for a 3101,
3161,3163, and 3164 terminal.

C' The system reads an image data set whose format corresponds with
the type of terminal enqueued. If neither a 4978,4979,4980,3101,
3161,3163, nor 3164 is enqueued (ENQT), the system assumes the
default 4978 image format.

If you use this option, $IMOPEN will try to use the format that
corresponds with the device. If that is not available, $IMOPEN will
use a 4978/4979/4980 screen image. This is the default condition
when you do not code this parameter. For example, if you are
enqueued on a 3161 terminal, $IMOPEN will attempt to open a
31xx screen image. If it does not exist, it will use the 4978 screen
image.

Parameter naming operands. See "Using the Parameter Naming Operands
(Px=)" on page LR-12 for a description of these operands.

The return codes are returned in the second word of the task control block (TCB) of the
program or task calling the subroutine. The label of the TCB is the label of your program or
task (taskname). Refer to taskname+2.

Code Description
-1 Successful completion
1 Disk I/O error
2 Buffer too small for 3101,3161,3163,

or 3164 terminal information (31xx screen image)
3 Data set not found
4 Incorrect header or data set length
5 Input buffer too small
6 Invalid volume name
7 No 3101 image available
8 Data set name longer than eight bytes

LR-620 SC34-0643

o

o

o

o

o

-
TNt SN34-0938(4 June 86) to SC34-0643-1

$IMPROT
$IMPROT Subroutine

The $IMPROT subroutine uses an image created by the $IMAGE utility to prepare the defined
protected and blank nonprotected fields for display. At the option of the calling program, a field
table can be constructed. The field table gives the location (LINE and SPACES) and length of
each unprotected field.

Upon return from $IMPROT, your program can force the protected fields to be displayed by
issuing a TERMCTRL DISPLAY. This is not required if a call to $IMDATA follows because
$IMDATA forces the display of screen data.

All or portions of the screen may be protected after $IMPROT executes. Because the operator
cannot key data into protected fields, subsequent read instructions (such as QUESTION,
GETV ALUE, and READTEXT) should be directed to unprotected areas of the screen, or the
protected areas should be erased.

Notes:

1. To use $IMPROT, you must code an EXTRN statement in your program. You must also
link-edit the program with $EDXLINK and specify an autocall to $AUTO,ASMLIB.

2. Do not call both $IMPROT and $IMDATA by separate tasks to operate simultaneously.
Problems will occur because both call the $IMDTYPE subroutine.

Syntax:

label CALL $1 M PROT, (buffer), (ftab), P2=, P3=

Required: buffer, ftab (see note)
Defaults: none
I ndexable: none

Operand Description

buffer The label of an area containing the screen image in disk storage format. The
format is described in the Event Driven Executive Language Programming Guide.

ftab The label of a field table constructed by $IMPROT giving the location (lines,
spaces) and size (characters) of each unprotected data field of the image.

Note: The ftab operand is required only if the application executes on a 3101,
3161, 3163, or 3164 terminal in block mode, or if a user buffer is used in
$IMDATA.

Px= Parameter naming operands. See "Using the Parameter Naming Operands
(Px=)" on page LR-12 for a description of how to use these operands.

Appendix A. Formatted Screen Subroutines LR-621

TNL SN34-0938 (4 June 86) to SC34-0643-1

$IMPROT
$IMPROT Subroutine (continued)

The field table has the following form:

label-4
label-2
label

label+6

number of fields
number of words
line * FIELD 1
spaces
size
line * FIELD 2
spaces
size

label+6(n-1) line * FIELD n
spaces
size

(one word)
(one word)
(one word)

The field numbers correspond to the following ordering: left to right in the top line, left to right
in the second line, and so on to the last field in the last line. Storage for the field table should be
allocated with a BUFFER statement specifying the desired number of words using the WORDS
parameter. The buffer control word at label-2 is used to limit the amount of field information
stored, and the buffer index word at buffer-4 is set with the number of fields for which
information was stored, the total number of words being three times that value. If the field table
is not desired, code zero for this parameter.

$1 M PROT Return Codes

The return codes are returned in the second word of the task control block (TCB) of the
program or task calling the subroutine. The label of the TCB is the label of your program or
task (taskname). Refer to taskname+2.

LR-622 SC34-0643

Code Description
-1 Successful completion
9 Invalid format in buffer
10 Ftab truncated due to insufficient buffer size
11 Error in building ftab from 31xx

terminal format; partial ftab created
12 Invalid terminal type

c

o

o

I ,

--------- - ------- - ---- - - ----------- ,-
IJ)

.. ~

International Busi ness Machines Corporat ion

SC34-0643-0
Program Numbers: 5719-SX4,5719-AM4,
5719-CX1 , 5719-MS2, 5719-SX1
File Number : Sl-35
Printed in U .S.A.

SC34-0643-0

