
--------- ----- ---- - ---- - - ----------_ .- 'Series/1

SC34-0591 -0

Event Driven Executive
Extended Address Mode and Performance
Analyzer User Guide
Version 5.0

library Guide and
Common Index

SC34·0645

language
Reference

SC34·0643

Operation Guide

SC34-0642

Problem
Determination
Guide

SC34·0639

Installation and
System Generation
Guide

SC34·0646

Communications
Guide

SC34·0638

Event Driven
language
Programming Guide

SC34·0637

Customization
Guide

SC34·0635

Operator Commands
and
Utilities Reference

SC34·0644

Messages and
Codes

SC34-0636

Reference
Cards

SBOF·1625

Internal
Design

LY34·0354

--------- -------- - ---- - - ----------_.- Series/1

SC34-0591 -0

Event Driven Executive
Extended Address Mode and Performance
Analyzer User Guide
Version 5.0

o

o

Instalbitionand
System· Generation
Guide

.~ator.cemmands

First Edition (December 1984)

Use this publication only for the purposes stated in the following section entitled
"About This Book."

Changes are made periodically to the information herein; any such changes will be
reported in subsequent revisions or Technical Newsletters.

This material may contain reference to, or information about, IBM products
(machines and programs), programming, or services that are not announced in your
country. Such references or information must not be construed to mean that IBM
intends to announce such IBM products, programming, or services in your country.

Publications are not stocked at the address given below. Requests for copies of IBM
publications should be made to your IBM representative or the IBM branch office
serving your locality.

This publication could contain technical inaccuracies or typographical errors. A form
for readers' comments is provided at the back of this publication. If the form has
been removed, address your comments to IBM Corporation, Information
Development, Department 28B, P. O. Box 1328, Boca Raton, Florida 33432. IBM
may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever. You may, of course, continue
to use the information you supply.

© Copyright International Business Machines Corporation 1984

o

o

c

o

Audience

About This Book

This book describes the Event Driven Executive Extended Address Mode support and the EDX
Performance Analyzer. It contains information on installation and system generation, problem
determination, customization, error messages and return codes, how to load and use the
Performance Analyzer, and how to improve system performance.

This book is intended for users of the 4956 Model E or the 4956-60E processors with the
Extended Address Mode support or for anyone who wants to monitor and improve his system's
performance with the EDX Performance Analyzer. Readers should have knowledge about
system programming and the optimum performance of an operating system.

How This Book Is Organized

The book is divided into two parts. Partl contains five chapters relating to the Extended
Address Mode. Part 2 contains four chapters relating to the EDX Performance Analyzer.

Part 1. Extended Address Mode

Chapter 1. Planning for System Generation contains the information you need before
installing and generating your system.

• Chapter 2. Generate a Tailored Operating System describes how to generate a tailored
operating system with the Extended Address Mode support.

About This Book iii

About This Book
How This Book Is Organized (continued)

Chapter 3. Partition Status and Problem Determination describes the functions available for
determining problems that occur while using the Extended Address Mode support.
Chapter 4. Supervisor Module Names (CSECTS) lists the names of the modules you must
include in your supervisor in order to use the EDX Extended Address Mode support.
Chapter 5. Customizing Your System explains ways to increase the mapped area within a
partition.

Part 2. EDX Performance Analyzer

Chapter 6. System Analyzer provides step-by-step procedures for monitoring your system's
performance and generating a report.
Chapter 7. Program Analyzer provides step-by-step procedures for monitoring program
performance and generating a report.
Chapter 8. Improving System Performance provides information on improving the
performance of your system and monitoring the changes you make to your system.
Chapter 9. Performance Analyzer Error Messages provides an alphabetical list of error
messages for both the System Analyzer and the Program Analyzer.

Aids to Using This Book

This book contains the following aids to using the information it presents:

A table of contents that lists the major headings in this book.
• An index of the topics covered in this book.

A glossary that defines terms and acronyms used in this book and in other EDX library
publications.

In the step-by-step procedures, several utilities are used and the interactive display screens are
shown. Any responses you must make in answer to a prompt are shown in red.

A Guide to the Library

Refer to the Library Guide and Common Index, SC34-0645 for information on the design and
structure of the Event Driven Executive, Version 5 library, for a bibliography of related
publications, and for an index to the entire library.

Contacting IBM about Problems

iv SC34-0591

You can inform IBM of any inaccuracies or problems you find when using this book by
completing and mailing the Reader's Comment Form provided in the back of the book.

.r

f

o

c

o

Contacting IBM about Problems (continued)

If you have a problem with the Series/l Event Driven Executive services, fill out an authorized
program analysis report (APAR) form as described in the IBM Series/l Software Service Guide,
GC34-0099.

About This Book v

vi SC34-0591

(

f
! ,

c

c
Part 1. Extended Address Mode UG-l

Chapter 1. Planning for System Generation UG-3
Application Programs UG-3
Assigning Static and Dynamic Partitions UG-4
Coding the LOAD Instruction UG-5

Chapter 2. Generate a Tailored Operating System UG-7
Step 1 - Edit $EDXDEF to Match Hardware Configuration UG-8

Changing the SYSTEM Statement UG-8
Changing the TERMINAL Statement UG-9

Step 2 - Edit $LNKCNTL to Include Software Support UG-9
Including SRMGR UG-9

Step 3 - Edit $JOBUTIL Procedure File UG-IO
Step 4 - Execute $SUPPREP UG-IO
Step 5 - Edit $SRPROF - IPL Configuration Profile Data Set UG-ll
Step 6 - Using Your Tailored Operating System UG-15
Step 7 - Verify the System Generation Process (Optional) UG-15

Chapter 3. Partition Status and Problem Determination UG-17
Determining the Status of Partitions UG-17
Monitor the Status of System Control Blocks UG-18
$DUMP UG-18
Program Checks UG-18
Stop Codes UG-19
Error Messages UG-20

Chapter 4. Supcni~or :\lodulc ~ame~ (CSECTS) UG-25

Contents

Contents vii

Contents

viii SC34-0591

Chapter 5. Customizing Your System UG-27
Map Supervisor Area for I/O Using SUPVIO UG-27
Map Supervisor Area for I/O Using DYNSTART and DYNEND UG-31

Edit $LINKCNTL to Include DYNSTART or DYNEND UG-33

Part 2. EDX Performance Analyzer UG-35

Chapter 6. Analyzing System Performance UG-37
Using the System Analyzer UG-37

$SlPSYS Requirements UG-37
Loading the System Analyzer ($SlPSYS) UG-38

Generating a Report UG-40
$SlPSYSR Commands UG-41

Chapter 7. Analyzing Program Performance UG-53
Using the Program Analyzer UG-53

Loading the Program Analyzer ($SlPPRG) UG-53
$SlPPRG Commands UG-55
Controlling $S IPPRG Execution UG-58

Generating a Report UG-58
$SlPPRGR Commands UG-59

Chapter 8. Improving System Performance UG-65
Set Up Controls UG-65
Improvement Techniques UG-66

Analyzing System Reports UG-66
Reducing Program Load Time UG-67
Analyzing Individual Programs UG-71

Chapter 9. Performance Analyzer Error Messages UG-73

Glossary of Terms and Abbreviations UG-77

Index UG-87

f
i ,

c

Figures

1. Partial $LNKCNTL Data Set for Extended Address Mode UG-lO
2. SUPVIO in Dynamic Partitions. UG-29
3. SUPVIO in Static Partitions. UG-29
4. Partial $LNKCNTL Data Set Showing SUPVIO UG-30
5. Unmapped Supervisor Areas for Static Partitions. UG-31

c 6. DYNST ART in Static Partitions. UG-32
7. DYNEND in a Static Partition. UG-32
8. DYNST ART and DYNEND in a Static Partition. UG-33

Figures ix

x SC34-0591

f
\

c

c

o

Part 1. Extended Address Mode

Part 1 contains five chapters about the EDX Extended Address Mode support. Only the IBM
Series/l 4956 Model E and the 4956-60E processors support this extended address 4-bit
architecture (16 partitions).

Part 1. Extended Address Mode U G-l

Notes

(

UG-2 SC34-0591

c

c

c

Chapter 1. Planning for System Generation

This chapter describes the requirements for using the EDX Extended Address Mode. The
Extended Address Mode provides up to sixteen partitions of 64K bytes each; that is, 1024K
bytes of mapped storage (addressable) with an additional 1024K bytes of unmapped storage.
You can perform I/O operations into any of the addressable storage, but you can map only
512K bytes of addressable storage for I/O at anyone time. You must install Version 5
according to the instructions in the Installation and System Generation Guide and Chapter 2 of
this manual.

.~pplication Programs

The following is a list of considerations for application programs for Extended Address Mode:

If you use the hardware 010 instruction for I/O, you must direct the I/O to a static area or
you will get unpredictable results.

All DCBs must reside in partition 1 in a static area.

You cannot use $TCBO as an Event Control Block (ECB).

Communications applications will run faster in static partitions.

Chapter 1. Planning for System Generation UG-3

Planning for System Generation
Assigning Static and Dynamic Partitions

UG-4 SC34-0591

In static partitions, the system maps all user and common areas for I/O at initialization time. In
dynamic partitions, the system must allocate I/O segmentation registers for each I/O request
you issue and deallocate them when the I/O operation completes. A static 64K-byte partition
requires 32 I/O segmentation registers unless part of a supervisor occupies the partition.
Partition 1 must be static and does not require 32 I/O segmentation registers. Even if you
specify partition 1 as dynamic, the system maps it as static. The system maps it for I/O from
address 0000 to the end of the system definition statements ($EDXDEF). The system also
maps the user area at the end of partition 1 for I/O.

Partitions 9 through 16 must be dynamic, and partitions 2 through 8 can be either static or
dynamic. (See "Step 5 - Edit $SRPROF - IPL Configuration Profile Data Set" on page UG-ll
for information on defining partitions with the PARTS= operand.)

I/O operations to a static partition are faster than I/O operations to a dynamic partition since
the system does not have to allocate and deallocate I/O segmentation registers. However, the
more partitions that you assign as static, the fewer dynamic segmentation registers the system
has available for I/O operations. If you assign too many partitions as static and programs that
perform considerable I/O are executed in the dynamic areas, then those programs can fail to
execute because there are no I/O segmentation registers available. They go into a wait state or
the system terminates the programs then issues an error message to $SYSLOG (depending on
what you code for the WAITIOSR operand in the $SRPROF data set).

Note: See Chapter 5, "Customizing Your System" on page UG-27 for information on changing
the mapped area in each partition.

You can change the mixture of static and dynamic partitions by editing the IPL configuration
profile data set, $SRPROF and performing an initial program load (IPL) of the system. Then
load $STGUTI to see how the system is using the dynamic segmentation registers (see "Monitor
the Status of System Control Blocks" on page UG-18).

You can assign 7 static partitions, but then you would have only the supervisor area within the
partitions available for dynamic allocation. Consequently, tasks performing I/O to dynamic
partitions would be either "waiting" continually or the system would terminate them (depending
on what you specify in $SRPROF). If a task tries to perform I/O to a dynamic partition and the
size of the I/O buffer is larger than any block of segmentation registers that will ever be
available, the system terminates the program and issues an error message to $SYSLOG.

If some of your programs perform loads with PART=ANY (see "Coding the LOAD
Instruction" on page UG-5 for an example of the LOAD instruction) you can load these
programs into static partitions only by taking the default of "S" for the first operand on the
LOADER statement in the IPL configuration profile data set, $SRPROF. However, then your
static partitions will fill up with programs that do not need to run in static partitions. Change
the loads with PART=ANY to PART=STATIC for programs you want to run in static
partitions and PART=DYNAMIC for programs you want to run in dynamic partitions.

{ ~ ,

(

c

c

c

Assigning Static and Dynamic Partitions (continued)

If you do not want to change the PART=ANY operand, assign the static partitions that you
need in sequential order starting with partition 2 and going up. You then force all the loads with
PART=ANY to try to load in all the dynamic partitions first before trying the static partitions,
leaving the static partitions available for the programs that you want to run in static partitions.

Coding the LOAD Instruction

When you use the LOAD instruction with the Extended Address Mode, you have several
options for the PART= operand. The PART= operand indicates the number of the partition in
which you want to load the program. The system loads the program in the same partition in
which the main program resides if you do not code this operand.

Note: Do not use the PART= operand if the main program loads an overlay program

You can code one of the following for the PART= operand:

A partition number from 1 to 16.

PART =ANY to load the program into any available partition. If you specified
LOADER=(S,) in the $SRPROF data set, then the loader will try to load the program into
one of the static partitions only.

PART=DYNAMIC to load the program in any available dynamic partition. This option
overrides the LOADER=(S,) option in the $SRPROF data set.)

PAR T = ST A TI C to load the program in any available static partition.

The label of a I-word data area that contains the partition number. If the data area contains
a zero, the system loads the program into any available partition depending on what you
specified in ($SRPROF).

In the following example, the system tries to load program PGMA into any available static
partition.

Example:

LOAD PG MA, PART=ST ATIC

Note: If you specify the PART= operand as ANY, STATIC, or DYNAMIC, then the order of
the partitions into which the system attempts to load a program depends on the LOADER=
statement in the IPL configuration data set, $SRPROF.

Chapter 1. Planning for System Generation UG-S

Notes

UG-6 SC34-0591

(\. ,

c

c

c

Chapter 2. Generate a Tailored Operating
System

This chapter provides step-by-step procedures for generating a tailored operating system that
supports the EDX Extended Address Mode. The following is a summary of the steps you must
perform to generate a tailored operating system with the Extended Address Mode:

Step 1: Edit $EDXDEF on volume ASMLIB to specify the system definition statements to
match your hardware requirements.

Step 2: Edit $LNKCNTL on volume ASMLIB to include object module SRMGR in your
supervisor.

Step 3: Edit $JOBUTIL procedure data set ($SUPPREP on volume ASMLIB).

Step 4: Execute $SUPPREP.

Step 5: Edit $SRPROF on volume ASMLIB to specify the IPL configuration profile.

• Step 6: Using your tailored operating system.

Step 7: Verify the system generation process (optional).

Chapter 2. Generate a Tailored Operating System UG-7

Generate a Tailored Operating System
Step 1 - Edit $EDXDEF to Match Hardware Configuration

$EDXDEF is a data set on volume ASMLIB containing the system definition statements used in
generating the starter system. You must modify $EDXDEF to match your system definition
statements. Refer to the IBM Series/l Event Driven Executive Installation and System
Generation Guide, SC34-0646, for information on how to edit $EDXDEF to match your
hardware configuration.

You also need to edit $EDXDEF to make changes to the SYSTEM and TERMINAL statements
for Extended Address Mode support. You can specify up to 16 partitions for the MAXPROG,
PARTS, and COMMON operands on the SYSTEM statement. You must specify at least 9
partitions to use Extended Address Mode. You can specify any of the 16 partitions for the
INITPRT operand to use for loading $INITIAL.

Changing the SYSTEM Statement

UG-8 SC34-0591

The first four operands of the SYSTEM statement (MAXPROG, PARTS, COMMON, and
INITPRT) have the same meaning as described in the Installation and System Generation Guide
except that for the Extended Address Mode, you can specify up to 16 partitions. For example:

SYSTEM MAXPROG= (10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10), X
PARTS=(32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32), X
COMMON=(EDXSVCX,O,1) ,INITPRT=16

The example above defines a 16-partition system with 10 concurrent programs in each partition.
The system defines each partition as 64K bytes in size. The system maps the common area into
partitions 1 and 3 and tries to load $INITIAL from the IPL volume into partition 16.

(~

(

Step 1 - Edit $EDXDEF to Match Hardware Configuration (continued)

Changing the TERMINAL Statement

With Extended Address Mode, the partition with which a terminal is normally associated can be
from 1 to 16. Therefore, the partition number in the PART= operand can be from 1 to 16 for
the following devices:

• 2741
4013
4978
4979
4980
ACCA
TTY
GPIB

The following example defines the device as a 4979 at address X '04'. Partition 16 is the
partition with which the terminal is associated.

TERM04 TERMINAL DEVICE=4979,ADDRESS=04,PART=16

C Step 2 Edit $Lr;J KCf\iTL to Include Software Support

c

The $LNKCNTL data set contains all the supervisor object modules needed to generate an
operating system. Refer to the Installation and System Generation Guide for information on how
to edit $LNKCNTL to include the object modules you need.

including SRMGR

You must include the object module SRMGR if you intend to use Extended Address Mode. If
you include SRMGR, the system automatically includes RLOADER and EDXTIMR2 (if you
have not included EDXTIMER). If you do not include SRMGR when you generate your
system, then the system will use the current 3-bit architecture (8 partitions) which does not
support Extended Address Mode.

You can include SRMGR in partitions 1 through 8.

Chapter 2. Generate a Tailored Operating System UG-9

Generate a Tailored Operating System
Step 2 - Edit $lNKCNTl to Include Software Support (continued)

The following is a partial listing of the $LNKCNTL data set showing the module that pertains to
Extended Address Mode:

... --
* EXTENDED ADDRESS MODE - MAY BE INCLUDED IN PARTITION 1 TO 8 ... --
*PART 1
*INCLUDE SRMGR ...

...

29 INCLUDE FOR EXTENDED ADDRESS MODE SUPPORT

--
* PROGRAMMING NOTES ... --

29 INCLUDE FOR EXTENDED ADDRESS MODE SUPPORT. IF INCLUDED, RLOADER
WILL AUTOMATICALLY BE INCLUDED; EDXTIMR2 WILL ALSO BE INCLUDED
AUTOMATICALLY IF EDXTIMER IS NOT INCLUDED. FOR MORE INFORMATION
REFER TO THE I IBM SERIES/1 EVENT DRIVEN EXECUTIVE EXTENDED ADDRESS
MODE AND PERFORMANCE ANALYZER USER GUIDE ' , SC34-0591.

Figure 1. Partial $LNKCNTL Data Set for Extended Address Mode

Step 3 - Edit $JOBUTIL Procedure File

Refer to the Installation and System Generation Guide for information on how to set up the
procedure data set, $SUPPREP, to generate your tailored operating system.

Step 4 - Execute $SUPPREP

UG-IO SC34-0591

Refer to the Installation and System Generation Guide for information on how to execute
$SUPPREP.

c

c

c

Step 5 - Edit $SRPROF - IPL Configuration Profile Data Set

You can edit the $SRPROF configuration profile data set at any time to change the status of a
partition, for example, from static to dynamic.

At IPL time, the system reads in $SRPROF and sets up the tables required for managing and
performing the dynamic I/O segmentation register allocation and de allocation requests on
behalf of the EDX device handlers.

You can edit the $SRPROF data set with the $FSEDIT operator command. Read in $SRPROF
from volume ASMLIB, edit it to meet your system's requirements, then write it out to
$SRPROF on volume EDX002 using the following rules:

Each line can contain only one operand.

An operand must be the first entry on the line.

An operand can start in any column.

You can place comments after the operand or you can comment out a line by placing an asterisk
in column 1.

If errors occur when the system tries to read this data set or if you fail to edit the data set, the
system takes the defaults listed in the example on the following page.

Chapter 2. Generate a Tailored Operating System UG-ll

Generate a Tailored Operating System
Step 5 - Edit $SRPROF -IPl Configuration Profile Data Set (continued)

UG-12 SC34-0591

*
*

*

EVENT DRIVEN EXECUTIVE
EXTENDED ADDRESS MODE SUPPORT

$SRPROF - IPL CONFIGURATION FILE
VERSION 5 - MODIFICATION LEVEL 0

~ THE FOLLOWING DEFINES THE DEFAULT CONFIGURATION FILE FOR EDX
~ EXTENDED ADDRESS MODE SUPPORT. FOR A COMPLETE DESCRIPTION OF
* THESE STATEMENTS REFER TO THE' IBM SERIES/1 EVENT DRIVEN EXECUTIVE

*
*

*
*
*

~ EXTENDED ADDRESS MODE AND PERFORMANCE ANALYZER USER GUIDE' SC34-0591 ~

* STATEMENTS WITH AN ASTERISK (*) IN COLUMN 1 ARE IGNORED. *
*

**
* MAY BE'S', 'D', OR 'L'. BEARS A ONE-TO-ONE CORRELATION TO THE PARTS ~
~ OPERAND ON THE SYSTEM STATEMENT FOR PARTITIONS 1 TO 8. INDICATES ~
~ WHETHER THE PARTITION IS STATIC '5' OR DYNAMIC 'D'. PARTITION ONE *
~ MUST BE STATIC. ONE AND ONLY ONE OF THE PARTITION'S BANKS OF SEG *
~ REGS MUST BE RESERVED FOR THE LOADER 'L' (THE DEFAULT IS PARTITION 8)*
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" 

12345678 
PARTS=SDDDDDDL 

~ SPECIFY TWO SUB ITEMS RELATIVE TO THE EDX LOADER: 
~ 1) 's' OR 'A' FOR PART=ANY. ON THE LOAD INSTRUCTION, WILL ATTEMPT TO * 
~ LOAD IN JUST 'STATIC' PARTITIONS OR IN 'ANY' OF THE ~ 
~ PARTITIONS (STATIC OR DYNAMIC). * 
~ 2) I F I OR I R I FOR PART=ANY, STAT I C, OR DYNAM I C. ON THE LOAD * 
* INSTRUCTION, WILL ATTEMPT TO LOAD GOING IFORWARD) ~ 
~ (PARTITIONS 1-16) OR IN 'REVERSE' (PARTITIONS 16-1). * 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.~~~~ 

"""n""

* LOADER= (S, F)

~ MAY BE 'y' OR 'N'. SPECIFIES WHETHER THE I/O SEG REG MANAGER *
~ ROUTINE "SRMGR" WILL WAIT FOR I/O SEG REG ALLOCATION OR TERMINATE IF
.... THERE ARE NO seB OR NOT ENOUGH CONTINUOUS SEG REGS AVAILABLE FOR AN
* AN 1/9 REQUEST. *
" (Y) WAIT FOR 1/0 SEG REG ALLOCATION *
~ (N) DON'T WAIT, TAKE THE TASK ERROR EXIT IF CODED, OR THE TASK WILL*
.... BE TERMINATED IF NOT CODED. *
**

*
WAITIOSR=Y

*

t ~ , ;

(

c

c

c

Step 5 - Edit $SRPROF - IPL Configuration Profile Data Set (continued)

The operands are described as follows:

Operand

PARTS =

Description

Can be an S (static), D (dynamic), or L (loader). You can specify only
partitions 1 through 8 as static, but partition 1 must be static. You can specify
only one partition for the loader. If you do not specify a partition for the loader,
the system uses partition 8. Partitions 9-16 can be dynamic only.

The default is PARTS=SDDDDDDL.

LOADER= Specifies two subitems relative to the EDX loader. The first subitem can be S
(static) or A (any). The EDL LOAD instruction with PART=ANY operates
according to what you code for this subitem. If you specify S, the loader
attempts to load programs into static partitions only. If you specify A, the EDX
loader attempts to load programs into any partition, static or dynamic.

The second subitem may be F (forward) or R (reverse). If you specify F, the
loader attempts to load programs starting with partition 1. If you specify R, the
loader attempts to load programs starting with partition 16.

The default is LOADER=(S,F).

WAITIOSR= May be Y (yes) or N (no). If you specify Y, the I/O segmentation register
manager routine (SRMGR) waits for I/O segmentation register allocation. This
option will cause long waits if I/O segmentation registers or any I/O resources
are unavailable. If you specify N, the manager does not wait but terminates the
task and issues an error message to $SYSLOG.

The default is WAITIOSR= Y.

The following example specifies partitions 1-4 as static and partitions 5-7 as dynamic.
Partition 8's bank of I/O segmentation registers is reserved for the loader, which makes
partition 8 a dynamic partition.

Example: $SRPROF data set.

PARTS=SSSSDDDL
LOADER=(A,R)
WAITIOSR=N

Chapter 2. Generate a Tailored Operating System UG-13

Generate a Tailored Operating System
Step 5 - Edit $SRPROF -IPl Configuration Profile Data Set (continued)

UG-14 SC34-0S91

You can set flags in the $TCBFLGS word which will override whatever is coded for
W AITIOSR. The following example shows bit settings for $TCBFLGS. An explanation of the
numbered items follows the example.

Note: An x indicates that the system ignores the value of the bit. It only checks the ° and 1 bits
indicated below.

Example:

D
XXXX XXX1 XXXX XXXX
XXXX XXXo xxxx XXXX

XXXX XXXX !XX XXX X
XXXX XXXX 1XXX XXX X

DEFAULTS
XXX X XXX1 OXXX XXX X

CHECK IF I/O IS TO/FROM DYNAMIC/STATIC PARTITION
DON'T CHECK; ISSUE I/O

WAIT FOR ALLOCATION
DON'T WAIT; TASK REMOVED FROM SYSTEM. ERROR
MESSAGE IN $SYSLOG.

4-bit mode

D Indicates the $TCBCHK flag. When it is set to 1, the system checks to see if the I/O is to
or from a static or dynamic partition. When it is set to 0, the system does not check, it issues the
I/O.

II Indicates the $TCBW AIT flag. When it is set to 0, the system waits until segmentation
registers are available to issue I/O. When it is set to 1, the system removes the task and issues
an error message to $SYSLOG.

Copy in the TCB equates as follows:

I COpy TCBEOU

The list of equates will include the following four:

$TCBCHK EQU X'0100'
$TCBWAIT EQU X'0080'

$TCBCHKB EQU 7
$TCBWAIB EQU 8

Read in $TCBFLGS, turn off the check bit, and put it back into $TCBFLGS as follows:

TCBGET
SETBIT
TCBPUT

FLAGWORD,$TCBFLGS
FLAGWORD, OFF, +$TCBCHKB
FLAGWORD,$TCBFLGS

(

c

c

Step 6 - Using Your Tailored Operating System

Refer to the Installation and System Generation Guide for information on how to use your
tailored operating system.

Step 7 - Verify the System Generation Process (Optional)

Refer to the Installation and System Generation Guide for information on how to verify that the
system generation has been successful.

Chapter 2. Generate a Tailored Operating System UG-IS

Notes

(.

UG-16 SC34-0591

c

c

c

Chapter 3. Partition Status and Problem
Determination

This chapter contains examples of problem determination tools, return codes, and error
messages which pertain to Extended Address Mode support.

Determining the Status of Partitions

You can use the $A operator command to determine whether a partition is static or dynamic.
Then use the $CP operator command to change to the partition you need.

For example, if you want to load an application program into a static partition, press the
attention key and enter $A to determine if the partition you are in is static. If it isn't, you can
press the attention key and enter $A ALL to locate a static partition. Then press the attention
key and enter $CP n where n is the number of the static partition you want.

Refer to the Operator Commands and Utilities Reference for information on how to use these
operator commands.

Chapter 3. Partition Status and Problem Determination U G-l 7

Partition Status and Problem Determination
Monitor the Status of System Control Blocks

$DUMP

You can use the $STGUTI utility to display all the segmentation registers and monitor the
status of the system control blocks. Refer to the Operator Commands and Utilities Reference for
information on how to use this utility.

You can use $DUMP to dump all the CPU segmentation registers and the I/O segmentation
registers. Consequently, your stand-alone dump may require four diskettes if you dump to
diskette. If you want to avoid having to switch diskettes, you can dump to disk. Refer to the
Operator Commands and Utilities Reference for information on how to use this utility.

Program Checks

UG-18 SC34-0591

A program check message may appear when you are trying to run a program. The following is
an example of a program check:

PROGRAM CHECK:
PLP rCB PSW IAR AKR LSR RO Rl R2 R3 R4 RS R6 R7
3AOO 0120 8102 2A06 OBBO 8000 0064 3BOA 3B20 3A37 3A34 01SC 00s8 0000

If you receive an invalid function program check and the IAR (instruction address register)
contains the address of CMDSETUP (an entry point in the supervisor module EDXALU), refer
to the IBM Series/l 4956 Processor Model E and Processor Features Description, GA34-0289,
for problem determination information.

"

(

c Stop Codes

c

c

The stop codes for extended address support and their meanings are listed below:

CODE MEANING

BA LOADBUFR SUPERVISOR MODULE MUST BE INCLUDED IN A MAPPED
I/O SEG REG AREA (STAT I C) I N THE SYSGEN

BA TPCOM1 SUPERVISOR MODULE MUST BE INCLUDED IN A MAPPED
I/O SEG REG AREA (STAT I C) I N THE SYSGEN

BA EDXDEFS SUPERVISOR MODULE MUST BE INCLUDED IN A MAPPED
I/O SEG REG AREA (STAT I C) I N THE SYSGEN

BB DISK ERROR READING $SRPROF DATA SET; RETURN CODE nnn;
INFORMATION BEFORE ERROR IS TAKEN, THE REST IS DEFAULTED.

BC LESS THAN 9 PARTITIONS SPECIFIED; 3-BIT MODE OPERATION TAKEN
BD COMMON AND/OR SUPERVISOR AREA CAN NOT BE STATIC FOR LOADER BANK;

THE ENTIRE PARTITION # IS DEFINED TO BE DYNAMIC
BE TIMER SUPPORT NOT INCLUDED IN THE SUPERVISOR
BF LOADER SUPPORT NOT INCLUDED IN THE SUPERVISOR SYSGEN
CO THIS IS NOT AN EXTENDED MODE 4-BIT PROCESSOR
C1 INVALID WAITIOSR PARAMETER; DEFAULT TAKEN: Y
C2 INVALID LOADER PARAMETER; DEFAULT TAKEN: (S,F)
C3 INVALID PARTS PARAMETER; DEFAULT TAKEN: SDDDDDDL

Chapter 3. Partition Status and Problem Determination UG-19

Partition Status and Problem Determination
Error Messages

UG-20 SC34-0591

The following are error messages that the Extended Address Mode function might issue:

$SRPROF PARAMETER IS INVALID: (S,O)
$SRPROF DATA SET ERROR - INVALID LOADER PARAMETER
DEFAULT TAKEN: (S,F)

Issued by: SRINITI

Explanation: The LOADER= operand in the $SRPROF data set is invalid.

System Action: The system uses the default.

User Response: See "Step 5 - Edit $SRPROF - IPL Configuration Profile Data Set" on
page UG-II for information on how to code the LOADED operand for the $SRPROF data
set.

$SRPROF PARAMETER IS INVALID: SSSSSSSS
$SRPROF DATA SET ERROR - INVALID PARTS PARAMETER
DEFAULT TAKEN: SDDDDDDL

Issued by: SRINITI

Explanation: The PARTS= operand in the $SRPROF data set is invalid.

System Action: The system uses the default.

User Response: See "Step 5 - Edit $SRPROF - IPL Configuration Profile Data Set" on
page UG-II for information on how to code the PARTS operand for the $SRPROF data
set.

c

c

c

Error Messages (continued)

$SRPROF PARAMETER IS INVALID: Q
$SRPROF DATA SET ERROR - INVALID WAITIOSR PARAMETER
DEFAULT TAKEN: Y

Issued by: SRINITI

Explanation: The WAITIOSR operand in the $SRPROF data set is invalid.

System Action: The system uses the default.

User Response: See "Step 5 - Edit $SRPROF - IPL Configuration Profile Data Set" on
page UG-ll for information on how to code the WAITIOSR operand for the $SRPROF
data set.

COMMON AND/OR SUPERVISOR AREA CANNOT BE STATIC FOR
LOADER BANK
REDEFINE THE $SRPROF DATA SET PARTS PARAMETER

Issued by: SRINITI

Explanation: The loader bank on the PARTS= statement cannot be included in a dynamic
partition that has SUPVIO included in the link-control data set.

System Action: The system makes the entire partition DYNAMIC.

User Response: See "Step 5 - Edit $SRPROF - IPL Configuration Profile Data Set" on
page UG-ll for information on how to code the $SRPROF data set operands.

DYNAMIC I/O SEG REGS ARE NEEDED FOR 4-BIT MODE
REDEFINE THE $SRPROF DATA SET PARTS= PARAMETER

Issued by: SRINIT2

Explanation: There are no I/O segmentation registers available to the system because
there are no dynamic partitions available.

System Action: The system comes up in 3-bit address mode.

User Response: Redefine the PARTS= operand in the $SRPROF data set to include
dynamic partitions. See "Step 5 - Edit $SRPROF - IPL Configuration Profile Data Set" on
page UG-l1 for information on how to code the $SRPROF data set operands.

Chapter 3. Partition Status and Problem Determination UG-21

Partition Status and Problem Determination
Error Messages (continued)

UG-22 SC34-0591

EDXDEFS SUPERVISOR MODULE MUST BE INCLUDED BEFORE
DYNSTART

Issued by: SRINIT1

Explanation: EDXDEFS module was not included in the system generation and is required
for extended address support.

System Action: The system comes up in 3-bit address mode.

User Response: Perform another system generation and include EDXDEFS module
before the DYNSTART module in the link control data set.

ERROR: THIS IS NOT A 4-BIT ADDRESS MODE PROCESSOR

Issued by: SRINIT1

Explanation: The processor you're trying to IPL with Extended Address Mode support is
not a 4-bit processor.

System Action: The system comes up in 3-bit address mode.

User Response: Must use a 4956 model E or 4956-60E processor. To save storage, you
should perform another system generation for your current 3-bit processor without SRMGR
included.

LESS THAN NINE PARTITIONS DEFINED

Issued by: SRINIT1

Explanation: Fewer than 9 partitions were specified on the PARTS= operand for the
SYSTEM statement.

System Action: The system comes up in 3-bit address mode.

User Response: Perform another system generation with 9 to 16 partitions specified on
the PARTS= operand of the SYSTEM statement if you want extended address support.

I

{ ,-

c

c

c

Error Messages (continued)

LOADBUFR SUPERVISOR MODULE MUST BE INCLUDED BEFORE
DYNSTART

Issued by: SRINITI

Explanation: LOADBUFR was not included in the system generation and is required for
extended address support.

System Action: The system comes up in 3-bit address mode.

User Response: Perform another system generation and include LOADBUFR module
before the DYNSTART module in the link-control data set.

PART= MUST BE BETWEEN 1 AND 16

Issued by: $EDXASM

Explanation: The PARTS= operand value for the LOAD instruction is not between 1 and
16.

System Action: The error is flagged and compilation continues.

User Response: Recode the PART= operand using a valid partition number.

RLOADER IS NOT INCLUDED

Issued by: SRINITI

Explanation: RLOADER was not included and is required for extended address support.

System Action: The system issues stop code BF and comes up in 3-bit address mode.
(See "Stop Codes" on page UG-19.)

User Response: Perform another system generation and include RLOADER.

Chapter 3. Partition Status and Problem Determination UG-23

Partition Status and Problem Determination
Error Messages (continued)

UG-24 SC34-0591

THE SUPERVISOR HAS A COMMON AREA LARGER THAN THE SIZE OF
PARTITION 1

Issued by: SRINITI

Explanation: Partition 1 is smaller than the size of the common area.

System Action: The system comes up in 3-bit address mode.

User Response: Redefine $EDXDEF to reduce the size of the common area or increase
the size of partition I.

TIMER SUPPORT IS NOT INCLUDED

Issued by: SRINITI

Explanation: EDXTIMR2 was not included and is required for extended address support.

System Action: The system issues stop code BE and comes up in 3-bit address mode.
(See "Stop Codes" on page UG-19.)

User Response: Perform another system generation and include EDXTIMR2.

TPCOM1 SUPERVISOR MODULE MUST BE INCLUDED BEFORE
DYNSTART

Issued by: SRINITI

Explanation: TPCOMI was not included in the system generation and is required for
extended address support.

System Action: The system comes up in 3-bit address mode.

User Response: Perform another system generation with TPCOMI included in the
link -control data set.

c

c

Chapter 4. Supervisor Module Names (CSECTS)

This chapter contains the names of all the object modules you need to include in your supervisor
for Extended Address Mode support. The first column lists the names of entry points into
specific object modules. The second column lists the names of the object module to which the
entry point is associated. Other object modules within your supervisor can refer to each entry
point. For more information and listings of other EDX CSECTS, refer to the Installation and
System Generation Guide.

After you generate your supervisor, check the $XPSLINK link map to see if you have any
unresolved EXTRNs. An unresolved EXTRN is caused by a supervisor object module referring
to an entry point within another supervisor object module that is not included in your supervisor.
Locate the entry point that corresponds to the unresolved EXTRN. The associated module
name indicates whether or not you must modify the EDXDEFS or LINKCNTL data set. A
module name of $EDXDEF signifies that you must correct an existing definition statement or
that you failed to code a required definition statement in the EDXDEFS data set. All other
module names signify which supervisor object module must be included in the LINKCNTL data
set. Modify the appropriate data set and run the $JOBUTIL procedure again to regenerate your
supervisor.

Note: Following each occurrence of $EDXDEF is the name of the definition statement that is
either in error or missing.

Chapter 4. Supervisor Module Names (CSECTS) UG-2S

Supervisor Module Names (CSECTS)

(!
Entry Object Entry Object
Point Module Point Module

$SRTBL $SRMGR LASTACC $SRMGR
#ALLSCB SRMGR LOADADS DSKCHK
#BMES $SRMGR LOAD BANK $SRMGR
#DEQLBNK LDRCHK LOADFLAG $SRMGR
#DELSCB SRMGR LOADQCB2 $SRMGR
#ENQLBNK LDRCHK LOOPCNT $SRMGR
#2K $SRMGR MAXWSCB $SRMGR
BMETBL $SRMGR MAXWSEG $SRMGR
BMEO $SRMGR MAX2K $SRMGR
BME1 $SRMGR MGRADS $SRMGR
BME2 $SRMGR PARTFLAG $SRMGR
BME3 $SRMGR SCBO SCBTBL
BME4 $SRMGR SEGCNT $SRMGR
BME5 $SRMGR SEGCNTX $SRMGR
BME6 $SRMGR SEGMAX $SRMGR
BME7 $SRMGR SEGREG $SRMGR
BSCGSCB BSCCHK SHIFTCNT $SRMGR
CURWSCB $SRMGR SRINIT1 SRINIT1
CURWSEG $SRMGR SRINIT2 SRINIT2
DEQLBNK LDRCHK SRMGRFLG $SRMGR
DISP $SRMGR SROPEN SROPEN
DSKCHKA DSKCHK START2K $SRMGR
DSKCHKD DSKCHK SUPVIO SUPVIO
DYNEND DYNEND WAITECB $SRMGR
DYNSTART DYNSTART WORKSCB SRMGR
DYNSTRT1 DYNSTRT1 WRKSCBA $SRMGR
ENQLBNK LDRCHK :of
FRSTSCB $SRMGR

" T

UG-26 SC34-0591

c

c

c

Chapter 5. Customizing Your System

Map Supervisor Area for I/O Using SUPVIO

If you include the module SUPVIO in a partition, then the system maps the common area and
supervisor area for I/O for both STATIC and DYNAMIC partitions (this overrides the defaults
listed below). If you have a supervisor module that performs I/O operations into itself and,
therefore, needs to be mapped, you may want to use this feature. If you include the supervisor
and SUPVIO modules in a static partition, the I/O operation will work the same way as it did
for Version 4.0. If you include them in a dynamic partition, however, you must reset the bits on
the task issuing the 1/ 0 for it to work the same way as it did for Version 4.0 (see "Step 5 - Edit
$SRPROF - IPL Configuration Profile Data Set" on page UG-ll).

For a DYNAMIC partition, the system maps the common area, supervisor area, and user area as
dynamic. For a STATIC partition, the system maps the common area and the user area as static
and the supervisor area as dynamic. The one exception is for partition 1 where the system maps
the supervisor (up to the end of the system definition statements) as static.

The following table shows the mapping if you include SUPVIO and the defaults when you do
not include SUPVIO. An explanation of the numbered items follows the example.

Chapter 5. Customizing Your System U G-2 7

Customizing Your System
Map Supervisor Area for I/O Using SUPVIO (continued)

UO-28 SC34-0591

MAPPING DEFAULTS WITHOUT SUPVIO:

Part # Part Type Common Area Supervisor Area User Area
--------- ----------- ----------------- ---------

0 1 STATIC STATIC II STATIC/DYNAMIC STATIC
2 - 8 STATIC STATIC DYNAMIC STATIC

II 2 - 8 DYNAMIC DYNAMIC DYNAMIC DYNAMIC
9 - 16 DYNAMIC DYNAMIC DYNAMIC DYNAMIC

MAPPING WITH SUPVIO INCLUDED:

Part # Part Type Common Area Supervisor Area User Area
--------- ----------- --------------- ---------

1 - 8 STATIC STATIC STATIC STATIC
112 - 8 DYNAMIC STATIC STATIC DYNAMIC

o Partition 1 must be STATIC and you cannot use it for the LOADER.

II The supervisor area is STATIC up to the end of the system definition statements in
partition 1.

II You can reserve only one partition for the LOADER, and the partition must be between
2 and 8.

II If you include SUPVIO in a partition, you cannot reserve that same partition for the
LOADER. If you try to do this, the system issues a stop code and sends an error message to
$SYSLOO, and the entire partition is dynamic.

The following figures illustrate what happens to a dynamic or static partition in which you have
included SUPVIO. The shaded portions illustrate areas that are not mapped for I/O
segmentation registers.

Map Supervisor Area for I/O Using SUPVIO (continued)

Partition 3 Partition 2

Common
Common

Supervisor

Figure 2. SUPVIO in Dynamic Partitions.

Partition 4

User

Figure 3. SUPVIO in Static Partitions.

c
Chapter S. Customizing Your System UG-29

Customizing Your System
Map Supervisor Area for I/O Using SUPVIO (continued)

UG-30 SC34-0591

The following is a partial listing of the $LNKCNTL data set showing the modules that pertain to
SUPVIO:

.... --
* SUPERVISOR SUPPORT - MUST BE FIRST AND IN PARTITION 1
*--

*INCLUDE SUPVIO *28* MAKE SUPERVISOR AND COMMON AREA STATIC
....

*--

.... --
* SUPERVISOR CODE BEING MOVED OUT OF
.... PARTITION 1 MUST BE MOVED TO HERE
* --
*PART 2
*INCLUDE SUPVIO *28* MAKE SUPERVISOR AND COMMON AREA STATIC
*PART 3
*INCLUDE SUPVIO *28* MAKE SUPERVISOR AND COMMON AREA STATIC
*PART 4
*INCLUDE SUPVIO *28* MAKE SUPERVISOR AND COMMON AREA STATIC
*PART 5
*INCLUDE SUPVIO *28* MAKE SUPERVISOR AND COMMON AREA STATIC
*PART 6
*INCLUDE SUPVIO *28* MAKE SUPERVISOR AND COMMON AREA STATIC
*PART 7
*INCLUDE SUPVIO *28* MAKE SUPERVISOR AND COMMON AREA STATIC
*PART 8
*INCLUDE SUPVIO *28* MAKE SUPERVISOR AND COMMON AREA STATIC
*
*--
* PROGRAMMING NOTES
*--

28 MAKES ALL THE COMMON AND SUPERVISOR AREA OF EACH PARTITION THAT
* SUPVIO IS INCLUDED IN STATIC (ONLY VALID FOR EXTENDED ADDRESS
.... MODE SUPPORT).

Figure 4. Partial $LNKCNTL Data Set Showing SUPVIO

"

"

c

c

c

Map Supervisor Area for I/O Using DYNSTART and DYNEND

DYNSTART and DYNEND are two additional modules you can include in the $LNKCNTL
data set (see "Edit $LINKCNTL to Include DYNSTART or DYNEND" on page UG-33 for an
example). You can use these modules, either together or separately, to make part of the
supervisor in a static partition mapped for I/O segmentation registers. You can include
DYNSTART in partitions 2 - 8 and DYNEND in partitions 1 - 8. However, if you include
DYNEND in conjunction with DYNSTART in any partition, then you must include DYNEND in
every partition.

Notes:

1. If you limit the size of the unmapped I/O segmentation register area within your static
partitions, you limit the number of I/O segmentation registers that the system can use for
the partitions you defined as static in the $SRPROF data set.

2. If you include SUPYIO in a partition, it overrides DYNST ART or DYNEND.

Figure 5 illustrates two static partitions (which you defined as such in the $SRPROF data set).
The figure on the left does not include DYNSTART; the shaded region shows that the entire
supervisor area is unmapped. The figure on the right shows the same partition with
DYNSTART included; the shaded region shows that only the supervisor area following
DYNSTART remains unmapped.

Partition 3 Partition 3

Mapped (
supervisor
area

~DYNSTART

User User

Figure 5. Unmapped Supervisor Areas for Static Partitions.

Chapter 5. Customizing Your System UG-31

Customizing Your System
Map Supervisor Area for I/O Using DYNSTART and DYNEND (continued)

UG-32 SC34-0591

Figure 6 illustrates two additional static partitions. The one on the left does not include
DYNST ART; the shaded region shows that the entire supervisor area is unmapped. The figure
on the right shows the same partition with DYNSTART included; the shaded region shows that
only the supervisor area following DYNSTART remains unmapped.

Partition 2

Common

User

Mapped {
supervisor
area

Figure 6. DYNST ART in Static Partitions.

Partition 2

Common

User

Figure 7 illustrates two static partitions. The figure on the left does not include DYNSTART or
DYNEND; the shaded region shows that the entire supervisor area is unmapped. The figure on
the right shows the same partition with DYNEND included by the user; the shaded region shows
that only the supervisor area preceding DYNEND remains unmapped. Figure 8 on page UG-33
shows the same partition with both DYNSTART and DYNEND included by the user; the
shaded region shows that now only the supervisor area between DYNST ART and DYNEND
remains unmapped.

Partition 4 Partition 4

Mapped {
supervisor
area

~----------------~

User User

Figure 7. DYNEND in a Static Partition.

(. \

j

I

c

c

c

!\llap Supervisor Area for '-/0 Using DYf'JSTART and DYI\IEND (continued)

Partition 4

Mapped {
supervisor
area DYNSTART

Mapped {
supervisor
area 1------------1

User

Figure 8. DYNST ART and DYNEND in a Static Partition.

The following three examples show partition 2 in the $LINKCNTL data set. Example 1
illustrates partition 2 without DYNST ART included. Example 2 illustrates partition 2 with
DYNSTART included. Example 3 illustrates partition 2 with DYNST ART and DYNEND
included. Partition 2 is defined as static in the PARTS= operand of $SRPROF.

Example 1: Partition 2 without DYNSTART included.

PART 2
INCLUDE DISKIO
INCLUDE D49624
INCLUDE D4963A
INCLUDE D4966A

*INCLUDE D1024
-'-INCLUDE D4969A
:~ INCLUDE D4969A

BASIC DISKETTE SUPPORT
4962/4964 DISK(ETTE) SUPPORT
4963/4967/DDSK-30 DISK SUPPORT
4965/4966 DISKETTE SUPPORT
1024 BYTES/SECTOR DISKETTE SUPPORT
BASIC TAPE SUPPORT
BASIC TAPE SUPPORT

Chapter 5. Customizing Your System UG-33

Customizing Your System
Map Supervisor Area for I/O Using DYNSTART and DYNEND (continued)

UG-34 SC34-0591

Example 2: Partition 2 with DYNSTART included.

PART 2
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE

*INCLUDE
*INCLUDE
*INCLUDE

DISKIO
D49624
MYBUFF1
DYNSTART
D4963A
D4966A
D1024
D4969A
D4969A

BASIC DISKETTE SUPPORT
4962/4964 DISK(ETTE) SUPPORT
THIS WILL BE I/O SEG REG MAPPED AREA
START OF I/O SEG REG UNMAPPED AREA
4963/4967/DDSK-30 DISK SUPPORT
4965/4966 DISKETTE SUPPORT
1024 BYTES/SECTOR DISKETTE SUPPORT
BASIC TAPE SUPPORT
BASIC TAPE SUPPORT

Example 3: Partition 2 with DYNSTART and DYNEND included.

PART 2
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE

*INCLUDE
*INCLUDE
*INCLUDE

Notes:

DISKIO
D49624
MYBUFF1
DYNSTART
D4963A
D4966A
DYNEND
MYBUFF2
D1024
D4969A
D4969A

BASIC DISKETTE SUPPORT
4962/4964 DISK(ETTE) SUPPORT
THIS MODULE WILL BE MAPPED
START OF I/O SEG REG UNMAPPED AREA
(UNMAPPED) 4963/4967/DDSK-30 DISK SUPPORT
(UNMAPPED) 4965/4966 DISKETTE SUPPORT
END OF I/O SEG REG UNMAPPED AREA
THIS MODULE WILL BE MAPPED

3,21 1024 BYTES/SECTOR DISKETTE SUPPORT
3 BASIC TAPE SUPPORT
3 BASIC TAPE SUPPORT

1. MYBUFFI and MYBUFF2 are illustrations of statically-defined user I/O buffer areas.

2. Since you are using DYNEND in conjunction with DYNST ART in partition 2, you have to
include DYNEND in all other partitions as well.

I

c

c

c

Part 2. EDX Perforll1ance Analyzer

Part 2 contains information about the EDX Performance Analyzer. The Performance Analyzer
is divided into two functions: The System Analyzer, covered in Chapter 6, and the Program
Analyzer, covered in Chapter 7. You can use these two functions to identify the major
performance problem areas on your system and to monitor any modifications you make to try to
improve that performance.

Chapter 8 contains information on ways to improve your system's overall performance once you
have analyzed the problem areas.

Chapter 9 contains a list of the error messages for both the System Analyzer and the Program
Analyzer.

Note: The numbers that appear in the generated reports are not necessarily exact.

Part 2. EDX Performance Analyzer UG-35

Notes

UG-36 SC34-0591

(~

.,
\

(J

c

c

Chapter 6. Analyzing System PerformanC(3

Using the System Analyzer

You can use the System Analyzer to monitor how your system uses I/O resources for any time
period. $S 1 PSYS is the main system monitor. You can use it to track all task dispatches, I/O
interrupts, and wait states and record them in a data set.

$S 1 PSYSR is the report generator for the System Analyzer. It sorts the data gathered by
$S 1 PSYS and generates the vari0ils reports that you specify (see "Generating a Report" on
page UG-40).

$51 PSY5 Requirements

$S 1 PSYS has three requirements:

You must allocate a data set to be used as a statistics file for storing the information
gathered by the monitor program.

You must have EDX timer support.

You must have disk support.

The size of your data set depends on the amount of activity on your system and the length of
time you specify for the data to be collected while the analyzer is running. The information that
the analyzer gathers is saved in 50-byte logical records within its internal buffers. The system
creates a 50-byte record each time a task ends and another 50-byte record for each data set the
task accesses. At checkpoint time the analyzer groups these 50-byte records together by fives
into a 2S6-byte physical record, then writes the physical records to the data set.

Chapter 6. Analyzing System Performance UG-37

Analyzing System Performance
Using the System Analyzer (continued)

loading the System Analyzer ($S1 PSYS)

UG-38 SC34-0591

You can load $S IPSYS into any partition as follows:

> $L $SlPSYS
DSNAME(NAME,VOLUME): DS1,EDX002

LOADING $SlPSYS 57P,00:00:29, LP= 7EOO, PART=l

You can include the statistics data set name and the volume on the same line when you load
$SIPSYS. If you don't, the system prompts you for the data set name and volume. If you do
not specify a volume, the system automatically uses the IPL volume.

If $SIPSYS is using the data set for the first time, the system displays the following message.
Respond Y if you want $SIPSYS to use the data set or N if you want to end $SIPSYS:

OS HAS NOT PREVIOUSLY BEEN USED
AS AN SlPSYS DATA SET.
IS IT OK TO USE IT NOW (YIN)? Y
--- INITIALIZING STATISTICS FILE; PLEASE STAND BY. ---

Once you have loaded $SIPSYS successfully, you receive the following message:

EDX SYSTEM MONITOR
--- MONITOR ACTIVE ---

You control the analyzer by using the following attention commands:

Command

> #ACI

Description

Specifies the interval (in minutes) at which to take checkpoints (when the
analyzer writes all current data to the statistics data set). The valid range is
1-30 inclusive. The default is 15 minutes. If you do not enter a value on the
same line as the #ACI command, the system prompts you to set an interval. If
you enter an interval, the system then displays the interval you set. If you do not
enter an interval, the system displays the current interval.

> #ACI
AUTO-CHECKPO I NT INTERVAL (M I NUTES) : 10
AUTO-CHECKPOINT INTERVAL SET TO - 10 MINUTES

o

I

" '

c

c

c

Using the System Analyzer (continued)

>#AOV Specifies whether or not your statistics data set will overflow automatically when
the monitor program encounters the end of the data set.

If you set auto-overflow to ON, $SlPSYS does not warn you when an overflow
occurs but starts back at the beginning of your data set and continues
monitoring. The data already existing previous to the overflow is lost as the
analyzer writes new data.

> #AOV
AUTO-OVERFLOW ON/OFF? ON
--- AUTO-OVERFLOW SET ON ----

If you set auto-overflow to OFF, the default, $SlPSYS does warn you when an
overflow condition exists:

*** DISK DATA SET OVERFLOW ***
WOULD YOU LIKE TO CONTINUE MONITORING (YIN)?

If you respond Y, $S 1 PSYS will start back at the beginning of your data set and
continue monitoring. Once again, the data already existing previous to the
overflow will be lost. If you want to obtain a copy of that data before it is lost,
load $SlPSYSR (the report generator) on another terminal and print out the
data set contents bdore r~sponding Y to the overflow prompt.

If you respond N to the prompt, $S 1 PSYS asks if you want to generate a report
(see #END explanation).

> #CKP Performs a checkpoint immediately and displays the following message:

>#END

~ --- CHECKPOINT COMPLETE --- ~
Ends $SlPSYS ($C operator command will not work). After you enter the
command, the system prompts you as follows:

;> !fEND
WOULD YOU LIKE TO GENERATE A REPORT (YIN)?

I
j

Chapter 6. Analyzing System Performance UG-39

Analyzing System Performance
Using the System Analyzer (continued)

If you respond N, the monitor operation ends. If you respond Y, as in the
example, the system ends $SlPSYS and loads the $SlPSYS report generator:

$SlPSYS ENDED AT 00:03:36

$SlPSYS REPORT GENERATOR

COMMAND (?):

Generating a Report

UG-40 SC34-0591

$SlPSYSR, the report generator, formats and prints the data that $SlPSYS records.

Note: The numbers in the generated reports are not necessarily exact.

You can load $SlPSYSR with the #END command or with the $L operator command as shown
below:

> $L $SlPSYSR
DSNAME(NAME,VOLUME):

LOADING $SlPSYSR
DS1,EDX002

20P,00:41:54, LP=OOOO, PART=2

$SlPSYS REPORT GENERATOR

COMMAND (?):

The example above uses the default value for the dynamic storage parameter. This parameter
determines the amount of storage that $S 1 PSYSR uses for sorting the data from the $SlPSYS
statistics data set (DSI in this case). The amount of dynamic storage you need depends on the
amount of activity on the system when the analyzer stored its information and the length of
time the analyzer ran.

The default for dynamic storage is 2048 bytes (256 bytes = 1 page). If you want to allocate
less or more dynamic storage, you must specify it when you load $S 1 PSYSR. The format is:

> $L $SlPSYSR,volume,dynamic-storage dsname

For example, to specify 1024 bytes of dynamic storage, load $SIPSYSR as follows:

l..~ $L $SIPSYSR,EDXD02,1024 DSI)

c

c

c

Generating a Report (continued)

If your dynamic storage area is too small, $SlPSYSR issues the following message:

*** INSUFFICIENT DYNAMIC STORAGE FOR SORT ***
DO YOU WISH TO USE A WORK DATA SET (Y/N)?

If you respond N, the operation is cancelled. If you respond Y, the system prompts you for
DSNAME (NAME,YOLUME), then resumes sorting using the work data set that you specify.

$51 PSY5R Commands

To display the $S 1 PSYSR commands at your terminal, enter a question mark in response to the
prompting message COMMAND (?).

COMMAND (?):

DATA SELECTION COMMANDS:

LL SPECIFY LOWER DATE/TIME LIMIT
UL SPECIFY UPPER DATE/TIME LIMIT
LCP SPECIFY LOWER CHECKPOINT LIMIT
UCP SPECIFY UPPER CHECKPOINT LIMIT
RUN INCLUDE RECORDS FROM LAST SlPSYS RUN (DEFAULT)
ALL INCLUDE ALL RECORDS IN STATFILE

PRO
PRDG
PRONG
CPT
CPP
PRS
DSS

REPORT SELECTION COMMANDS:

SELECT PROGRAM DETAIL REPORT (DEFAULT)
PROGRAM DETAIL REPORT -- GENERIC PROGRAM NAME
PROGRAM DETAIL REPORT -- NONGENERIC PROGRAM NAME
SELECT CHECKPOINT SUMMARY REPORT ON USER TERMINAL
SELECT CHECKPOINT SUMMARY REPORT ON PRINTER
SELECT PROGRAM SUMMARY REPORT
SELECT DATA SET SUMMARY REPORT

PROGRAM CONTROL:

LIST -- SPECIFY OUTPUT DEVICE NAME
EN TERMINATE PROGRAM EXECUTION l COMMAND (?):

After $SlPSYSR displays the commands, it prompts you again for the command of your choice.
The Data Selection Commands allow you to specify how much of the gathered data will be used
in the analyzer reports. For example, you might load $SlPSYS and let it run two hours. During
the two-hour period, the analyzer monitors your system and saves the information in the
statistics data set. After you stop the monitoring and end the analyzer, load $SlPSYSR (the
report generator). If you decide you are only interested in the data gathered in the last hour that
the monitor ran, use the LL command and set the lower limit for the reporting period to one
hour after the monitor started. Until you enter another data selection command, $SlPSYSR will
produce reports that use only the data from the last hour.

Chapter 6. Analyzing System Performance UG-41

Analyzing System Performance
Generating a Report (continued)

Each command and its explanation is presented on the following pages in the order it appears on
your screen.

LL - Specify Lower Date/Time Limit

Use the LL command to specify a lower limit for the date and time of the reporting period.

Note: If you use LL in conjunction with LCP, the one you specify liBt will be the one that
$SlPSYS uses in selecting data.

Example: Set the lower limit for the reporting period.

COMMAND (7): LL
DATE(M/D/Y OR MID): 07/23184
TIME(H.M): 10:00
LOWER DATE/TIME LIMIT IS 07/23/84 10:00:00

If you do not set the date but you do set the time, the system uses "today's" date and the time
you set. If you do not set the time, the system uses 00:00. If you do not set the date and the
time, the system uses 00/00/00 for the date and 00:00 for the time.

UL - Specify Upper Date/Time Limit

UG-42 SC34-0591

Use the UL command to specify an upper limit for the date and time of the reporting period. If
you do not specify a limit, the system uses the time and date when you ended $S 1 PSYS.

Note: If you use UL in conjunction with UCP, the one you specify liBt will be the one that
$S 1 PSYS uses in selecting data.

Example: Set the upper limit for the reporting period.

COMMAND (7): UL
DATE(M/D/Y OR MID): 07/24184
TIME(H.M): 10:00
UPPER DATE/TIME LIMIT IS 07/24/84 10:00:00

If you do not set the date but you do set the time, the system uses "today's" date and the time
you set. If you do not set the time, the system uses 23:59. If you do not set the year, the system
uses the current year.

()

c:

c

c

c

Generating a Report (continued)

LCP - Specify Lower Checkpoint Limit

Use the LCP command to specify the lower limit for the checkpoint number. For instance, if
you did not want the period of time between checkpoints 1 - 5 listed on the final report, you
could set the lower limit to 6. If you do not specify a limit, the system includes the period of
time starting with the first checkpoint. Zero (0) is not a valid limit.

Note: If you use LL in conjunction with LCP, the one you specify lost will be the one that
$S 1 PSYS uses in selecting data.

Example: Set the lower checkpoint interval.

COMMAND (?): LCP
CHECKPOINT NUMBER: b

LOWER CHECKPOINT LIMIT SET TO 6

COMMAND (?):

You can list the checkpoints by using the CPT or CPP commands.

UCP -- Specify Upper Checkpoint limit

Use the UCP command to specify the upper limit for the checkpoint number. For instance, if
the system made 100 checkpoints but you do not want the period of time after checkpoint 56
listed on the final report, specify 56 as the upper limit. If you do not specify a limit, the system
includes the period of time up to the last checkpoint. Zero (0) is not a valid limit.

Note: If you use UL in conjunction with UCP, the one you specify lost will be the one that
$S 1 PSYS uses in selecting data.

Example: Set the upper checkpoint interval.

COMMAND (?): uCP I'
CHECKPOINT NUMBER: 56

I
UPPER CHECKPOINT LIMIT SET TO 56 j
COMMAND (?):

~~--------------------------------.~------.----------------------------/

Chapter 6. Analyzing System Performance UG-43

Analyzing System Performance
Generating a Report (continued)

RUN - Include Records from last Run

Use the RUN command to specify that the report include data from the last execution of
$SlPSYS only. This is the default.

Example: Include data from the last execution of $SlPSYS only.

l..COMMAND (1): RUN

ALL - Include All Records in the Statistics File

Use the ALL command to specify that the report include data from all the records contained in
the statistics data set. For example, you can run the system analyzer one hour a day for a week
and save all the data in the same statistics data set. However, unless you specify the ALL
command when you generate a report, you will only get the data from the last run of $S 1 PSYS.
If you specify ALL, the report will contain the entire week's data.

Example: Include data from all records in the data set.

~COMMANO (1), ALL

PRD - Select Program Utilization Detail Report

UG-44 SC34-0591

Use the PRD command to specify that you want a program utilization detail report for all
programs. This report is a combination of two other types of reports: the program summary
and the data set summary (see the PRS and DSS command explanations). If you want to list
only specific programs, use the generic (PRDG) or nongeneric (PRDNG) commands.

Example: Select and print the program utilization detail report.

COMMAND (?): PRD

SORTING FOR REPORT; PLEASE STAND BY. ---

REPORT PRINTING
REPORT COMPLETE

The system prints the report on your system printer unless you specify otherwise with the LIST
command.

(~-

I

c

c

c

Generating a Report (continued)

The following is an example of the program utilization detail report. Some of the field headings
in this example are abbreviated. An explanation of the report fields follows the example.

DSNAME: DS1,EDX002

EOX PERFORMANCE ANALYZER - SYSTEM REPORT

START
DATE TIME

EDX PROGRAM UTILIZATION DETAIL 10/05/84 12:35:36 to 10/05/84 12:48:56

AVG.
ACC.

PROGRAM TCB ELAPS. INT. DS VOLUME TIME
P NAME #PGS ADDR CPU TIME TIME %CPU %CPU NAME NAME DA CNT (MS)

10/05/84 12:35:36 PXRAM 8 OFDE 0:04:865 0: 16 12.6 0.0 DSI VOLOOI 03 1535 23.50
DSA VOL002 03 1683 24.31
DSB VOL003 03 1923 30.44

10/05/84 12:37:43 7 PXMENU 79
10/05/84 12:39:07 5 $DISKUT2 89
10/05/84 12:41:45 8 $DISKUTI 86

09B8 0:14:038
13BO 0:13:043
CC6C 0:10:622

12:23 1.8
1: 51 11.8

:42 25.

0.0
0.0
0.0

DS2
DS3
Ds4

VOL 116 03 1515 31.15
VOLOOI 02 1602 84.70
MYVOL 03 1738 26.66

<CHECKPOINT OVHD.>
<SYSTEM WAIT TIME>
<INTERRUPT SERVICE>

0:00.028
12:40.014
0:00.385

0.0
99.9
0.0

13: 20. 154 99.9

Report Field Description

Start Date/Time

p

Program Name

#Pgs

TeD Addr

The starting date and time of the program. If the program started before the
reporting period started, this field shows the start of the reporting period.

The number of the partition into which the program was loaded.

The name of the program that was executing. The name <SYSTEM> indicates
a system program with a TCB but no name, such as the EDX load~r.

The size of the program in pages (1 page = 256 bytes). The <OV> indicates an
EDX overlay program. The <ST> indicates an EDX subtask associated with
the program.

The task control block address for the data on this line. Multiple copies of the
same program or multiple tasks within a program produce separate TCB
addresses and separate report lines.

Chapter 6. Analyzing System Performance UG-45

Analyzing System Performance
Generating a Report (continued)

UG-46 SC34-0591

CPU Time The total CPU time used by this execution of the task.

Elaps. Time The elapsed time (hh:mm:ss), within the reporting period, for this task. A "+"
following the time indicates that the task did not end during the reporting period.

0/0 CPU The program's CPU utilization expressed as a percentage of the program's
elapsed time. If the time is too small, the field will be blank.

Int. % CPU The program's CPU utilization expressed as a percentage of the machine's
potential CPU time used by this task during the reporting interval.

Ds Name The name of each data set accessed by the task. A data set name $$ indicates
EDX loader accesses to the volume directory.

Volume Name The name of the volume where the data set resides.

Da The device address for each data set.

Cnt The total count of accesses to each data set.

Avg. Ace. Time
The average access time for all accesses to the data set, expressed in milliseconds
(ms).

<CHECKPOINT OVHD.>
CPU Time The CPU time required by the monitor to take checkpoints.

Int. % CPU Percentage of the total CPU time represented by this overhead.

<SYSTEM WAIT TIME>
CPU Time The total wait time during the reporting interval. Although this total is displayed

under CPU time, it is wait time, not CPU time.

Int. % CPU Percentage of total interval the system was in a wait state.

<INTERRUPT SERVICE>
CPU Time CPU time assigned to the system overhead to handle interrupts that cannot be

assigned to a particular task.

Int. % CPU The percentage of CPU time used for interrupt services.

I , '

()

c

Generating a Report (continued)

PRDG - Print Program Detail Report (Generic Name)

Use the PRDG command to print only programs beginning with the generic name that you
specify.

Example: Print only the programs beginning with a dollar sign ($).

COMMAND (1): PRDG

GENERIC NAME:

SORTING FOR REPORT; PLEASE STAND BY. ---

REPORT PRINTING
REPORT COMPLETE

The report prints on your system printer unless you specify otherwise with the LIST command.

PRDNG - Print Program Detail Report (Nongeneric Name)

Use the PRONG command to print programs that do not begin with the generic name that you
specify.

Example: Print only the programs that do not begin with a dollar sign ($).

COMMAND (1): PRDNG

NONGENERIC NAME:

SORTING FOR REPORT; PLEASE STAND BY. ---

REPORT PRINTING
REPORT COMPLETE

The report prints on your system printer unless you specify otherwise with the LIST command.

Chapter 6. Analyzing System Performance UG-47

Analyzing System Performance
Generating a Report (continued)

CPT - Display Checkpoint Summary Report on Terminal

Use the CPT command to display the checkpoints on your terminal screen.

Example: Display checkpoint information on the terminal.

COMMAND (1): CPT

--- SCANNING FOR CHECKPOINT RECORDS; PLEASE STAND BY. ---

CP # DATE AND TIME

1 07/23/84 00:02:58
2 07/23/84 00:03:28

COMMAND (1):

cpp -~- Print Checkpoint Summary Report on Printer

Use the CPP command to print the checkpoints on your printer.

Example: Print checkpoint information on the printer.

COMMAND (1): cpp

--- SCANNING FOR CHECKPOINT REtORDS; PLEASE STAND BY. ---

CP # DATE AND TIME

1 07/23/84 00:02:58
2 07/23/84 00:03:28

COMMAND (1):

PRS - Print Program Summary Report

UG-48 SC34-0591

Use the PRS command to print the program summary report. The report is a summary of all the
programs that executed during a specified period of time. It lists and summarizes each program
on a separate line.

Example: Print the program summary report.

C OMMAN 0 (?): P R S

SORTING FOR REPORT; PLEASE STAND BY. ---

REPORT PRINTING
REPORT COMPLETE

COMMAND (1):

c

c

c

Generating a Report (continued)

The report prints on your system printer unless you specify otherwise with the LIST command.

The following is an example of the program summary report. An explanation of the report fields
follows the example.

DSNAME: DS1,EDX002

EDX PERFORMANCE ANALYZER - SYSTEM REPORT

EDX PROGRAM SUMMARY
05/13/84 12:35:38 TO 05/14/84 12:35:56

PROGRAM # OF ELAPSED I/O
NAME #PGS RUNS CPU TIME TIME %CPU COUNT

$DISKUT2 45 10 5:34:241 2:54 1.3 4342
STRESS 33 4 0:44:836 6.29 10.5 11345

MYPROG 57 6 4:29: 133 1: 23 3.9 59

Heading Description

Program Name
The name of the program.

#Pgs The size of the program in pages (1 page = 256 bytes).

of Runs The number of times this program ran during the recording period.

CPU Time The total CPU time used by all executions of the program.

Elapsed Time The total of the elapsed times for all executions of the program within the
reporting period.

0/0 CPU

I/O Count

The percentage of the elapsed time that the program was using the CPU. The
total will not always add up to 100% because of rounding.

The number of disk I/O operations performed by all the executions of the
program.

Chapter 6. Analyzing System Performance UG-49

Analyzing System Performance
Generating a Report (continued)

DSS - Print Data Set Summary Report

VG-50 SC34-0591

Use the DSS command to print the data set summary report. The data set summary report is a
summary by data set and volume of all accesses performed to each data set.

Example: Print the data set summary report.

COMMAND (?): DSS

--- SORTING FOR REPORT; PLEASE STAND BY. ---

• --- REPORT PRINTING --- JI
l--- REPORT COMPLETE ---

COMMAND (?):

'"'"'-------------"'

The report prints on your system printer unless you specify otherwise with the LIST command.
The following is an example of the data set summary report. An explanation of the report fields
follows the example.

DSNAME: DS 1 ,EDX002

EDX PERFORMANCE ANALYZER - SYSTEM REPORT

EDX DATA SET SUMMARY
05/13/84 23: 16:55 TO 05/14/84 23:25:58

VOLUME DATA SET % OF ACCESS AVG. ACC.
DA NAME NAME COUNT VOLUME DEVICE T I ME (MS)

44 DISK04 DATA01 433 21.0 20.2 67.92
44 DISK04 DATA02 432 21.0 20.2 68.45
44 DISK04 DATA03 701 34.0 32.7 41. 55
44 DISK04 DATA04 495 24.0 23.7 47.16

TOTAL FOR VOLUME DISK04 2061 96.2 54.08

44 EDX002 OSl 4 100.0 0.2 35.00

TOTAL FOR VOLUME EDX002 4 0.2 35.00

44 OlSK04 12 15.6 0.6 47.66
44 $$ 65 84.4 3.0 21.70

TOTAL FOR VOLUME 77 3.6 25.75

TOTAL FOR DEVICE 44 2142 53.02

f

'-

c

o

Generating a Report (continued)

Report Field Description

DA Device address.

Volume Name The name of the volume where the data set resides.

Data Set Name
The name of the data set. The $$ that appears in this field usually refers to
accesses made to the volume directories. When the volume field is blank and the
data set name field contains the volume name, that volume's directory was
accessed.

Count The total number of accesses to the data set.

0/0 of Access Volume
The number of accesses to the data set expressed as a percentage of all accesses
to the volume.

0/0 of Access Device
The number of accesses to the data set expressed as a percentage of all accesses
to the disk device.

Avg. Acc. Time
The average access time for all accesses to the data set, expressed in milliseconds
(ms).

Use the LIST command to specify the output device where you want your data printed.

Example: Specify MYPRNT as the output device.

I COMMAND (?): ~!ST
OUTPUT DEVICE NAME:

COMMAND (?):
'\",

MYPRNT

EN .- End the Report Generator Program

Use the EN command to end the report generator program.

COMMAND (?): EN

$SlPSYSR ENDED AT 00:19:47

J
/

Chapter 6. Analyzing System Performance UG-Sl

Notes

UG-S2 SC34-0591

t ~ , ,

c

c

c

Chapter 7. Analyzing Program Performance

Using the Program Analyzer

You can use the Program Analyzer to monitor and analyze the use of resources within a
program. $S 1 PPRG is the main program monitor. You must allocate a data set (using the
$DISKUTI utility) that $SlPPRG can use to store the information it gathers. You can include
that data set name and the volume on the same line when you load $SlPPRG. If you don't, the
system prompts you for the data set name and volume. If you do not specify a volume, the
system automatically uses the IPL volume.

Loading the Program Analyzer ($51 PPRG)

You can load $S 1 PPRG into any partition as follows:

1 > $L $SlPPRG
DSNAME (NAME,vOLuME): D~-1,EDX002

LOADING $SlPPRG 33P,OO:31:13, LP=7EOO, PART=l

EDX PROGRAM ANALYZER

The example above uses the default value for the dynamic storage parameter. This parameter
determines the amount of storage that $SlPPRG uses for program monitoring. The default for
dynamic storage is 256 bytes (256 bytes = 1 page). If you want to allocate less or more
dynamic storage, you must specify it when you load $SlPPRG.

Chapter 7. Analyzing Program Performance UG-53

Analyzing Program Performance
Using the Program Analyzer (continued)

UG-54 SC34-0591

The format for specifying dynamic storage is:

> $L $SlPPRG,volume,dynamic-storage dsname

For example, to specify 512 bytes of dynamic storage, load $SIPPRG as follows:

~, Sl $SlPPRG,EDX002,512 DFl)
After the system loads $SIPPRG, it prompts you for the name of the program you want to
monitor, the partition where you want the program loaded, and the terminal where you want the
program displayed. In the following example, the system loads your program into partition 4
and uses $SYSLOG as the display terminal. You can continue to use the terminal where you
loaded $SIPPRG.

PROGRAM NAME: MYPROG
PARTITION (DEFAULT IS CURRENT PARTITION): 4
TERMINAL (DEFAULT IS CURRENT TERMINAL): $SYSLOG
MYPROG 75P WILL BE LOADED WHEN SCANNING STARTS.

COMMAND (?):

If the target program is already loaded in partition 4, the system displays the following message
(after the PARTITION prompt) and lists the load point(s):

ALREADY LOADED AT 4300 5400
DO YOU WANT TO LOAD ANOTHER COPY (YIN)?

If you respond Y to the prompt, the system prompts for the terminal. If you respond N and the
program has only one load point, the system will use the copy that is already loaded. If you
respond N and there is more than one load point listed (as in the example -- 4300 and 5400),
the system prompts you for which load point you want:

PROGRAM LOAD POINT: 5400

I
\ '

c

c

Using the Program Analyzer (continued)

$S1 PPRG Commands

To display the commands at your terminal, enter a question mark in response to the prompting
message COMMAND (?).

COMMAND (1):

GO INITIATE PROGRAM SCANNING
INT SPECIFY SCAN INTERVAL (DEFAULT = 100 MS.)
AT SPECIFY SCAN RANGE (DEFAULT = ENTIRE PROGRAM)
RNG DISPLAY CURRENTLY SELECTED SCAN RANGE
INC INCLUDE PROGRAM WAIT TIME IN REPORT GRAPH
SEP SEPARATE WAIT TIME FROM REPORT GRAPH (DEFAULT)
EN TERMINATE PROGRAM EXECUTION

COMMAND (1):

After the system displays the commands, it prompts you again for the command of your choice.
Each command and its explanation is presented on the following pages in alphabetical order.

AT - Specify Scan Range

Use the AT command to specify the range of addresses that the system monitors within the
target program. Each address is 1 to 4 hexadecimal digits, indicating an address relative to the
start of the target program. Odd numbers round down to even ones. The default range is the
entire program.

Since dynamic storage is divided into double-word count bins (256 bytes of dynamic storage =
64 count bins), each count bin is associated with one of the address ranges in the target
program. Each time $SIPPRG scans the target program, it determines the address range where
the target program is executing and increments the corresponding count bin. (The count bin
values are used for the report generator.)

In the following example, the specified address range is from address 0100 to 0500. $SIPPRG
scans the entire target program, but the area from 0100 to 0500 is much more detailed.

Example: Set the scanning address range.

COMMAND (1):
FROM ADDR:

TO ADDR:
RANGE 1:
RANGE 2:
RANGE 3:

COMMAND (1):

AT
0100
0500

FROM 0000
FROM 0100
FROM 0502

TO OOFE
TO 0500
TO 4AFE

BY 0100
BY 0010
BY 45FE

Chapter 7. Analyzing Program Performance UG-55

Analyzing Program Performance
Using the Program Analyzer (continued)

EN - End Program Execution

Use the EN command to end the report generator sampling program.

Example: End sampling program.

COMMAND (?): EN

DO YOU WANT TO GENERATE A REPORT (YIN)?

If you specify N to the "DO YOU WANT TO GENERATE A REPORT" prompt, the program
ends. If you specify Y, $SlPPRG loads the report generator and then ends.

$SlPPRG ENDED AT 00:22:57

$SlPPRG REPORT GENERATOR

COMMAND (?):

See "Generating a Report" on page UG-58 for a description of how to use the report generator.

GO - Initiate Program Scanning

Use the GO command to start the monitoring operation for the program you specified when you f

UG-56 SC34-0591

loaded $SlPPRG. This command deletes any previous sampling results from the data set. , '

Example: Load MYPROG and start sampling.

COMMAND (?): GO
LOADING MYPROG 75P,00:39:05, LP= 1000, PART= 4
SCANNING STARTED AT 00:39:05. ENTER ATTN (» #END TO END SCANNING.

If the terminal you specified is busy, the system prompts you as follows:

TERMINAL BUSY. WOULD YOU LIKE TO WAIT (YIN)?

If you respond Y, the system waits for that terminal and starts scanning only when the terminal
is no longer busy. If you respond N, the system uses the terminal where you loaded $SlPPRG.

Note: Once you specify GO, you can use only the attention commands to control the
monitoring operation (see "Controlling $SlPPRG Execution" on page UG-58).

c

c

C··" -- .~

Using the Program Analyzer (continued)

INC - Include Program Wait Time in the Report

Use the INC command to include CPU time and non-CPU wait times in the counting and on the
report graph (see example under LP command).

Example: Include CPU time and non-CPU wait times on report.

lCOMMAND (?): INC J
COMMAND (?):

""----'---------"'"

INT - Specify Scan Interval

Use the INT command to specify the scanning interval in milliseconds. Valid interval values
range from 1 to 2000 inclusive. The default is 100 milliseconds.

Example: Set the scanning interval.

COMMAND (?): I NT
SAMPLE INTERVAL: 7
SCANNING INTERVAL SET TO - 7 MS.

COMMAND (?):

RNG - Display Currently Selected Scan Range

Use the RNG command to display the target address range and the size of the locations for
which the analyzer is currently taking sample counts.

Example: Display the current scan range.

COMMAND (?):
RANGE 1:
RANGE 2:
RANGE 3:

lCOMMAND (?):

RNG
FROM 0000
FROM 0100
FROM 0502

TO OOFE
TO 0500
TO 4AFE

BY 0100
BY 0010
BY 45FE

)

Chapter 7. Analyzing Program Performance UG-S7

Analyzing Program Performance
Using the Program Analyzer (continued)

SEP - Separate Wait Time from the Report

Use the SEP command to include only the CPU time in the counting and on the report. This is
the default.

Example: Include only CPU time on the report.

l COMMAND (?): SEP J
COMMAND (?):

~--'~

Controlling $S1 PPRG Execution

UG-58 SC34-0591

You control execution of $SlPPRG with the following attention commands:

> #STOP

>#END

Stops sampling. The system displays the message SCANNING STOPPED AT
hh:mm and prompts you for another command.

Ends the program. The system gives you the option of generating a report (see
EN command description above).

Note: The data that the analyzer gathers remains in the dynamic storage area
until either you enter the attention #END command or the program you are
monitoring ends. Then the analyzer writes the data to the disk data set.

$SlPPRGR, the report generator, formats and prints the data that the analyzer records.

Note: The numbers in the generated reports are not necessarily exact.

You can load $SlPPRGR in three ways: With the EN or attention #END commands of
$SlPPRG, or with the $L operator command. The following example shows how to load it with
the $L operator command:

> SL $SlPPRGR,EOX002,512 OFl
LOADING $SlPPRGR 20P,00:41:54, LP= 1000, PART= 2

$SlPPRG REPORT GENERATOR

COMMAND (?):

c

c

c

c

Generating a Report (continued)

The parameters are the same as for the analyzer. The dynamic storage value (512 in the above
example) must be at least equal to the value you specified when you loaded the analyzer. The
default is 256 bytes.

$S1PPRGR Commands

To display the report generator commands at your terminal, enter a question mark in response to
the prompting message COMMAND (?).

COMMAND (?):

OUTPUT DEVICE CONTROL

LP GENERATE REPORT ON PRINTER
LT GENERATE REPORT ON TERMINAL

REPORT FORMAT CONTROL

HS SPECIFY HORIZONTAL SCALING VALUE (DEFAULT = 100%)
ZS SET ZERO SUPPRESSION ON OR OFF (DEFAULT = ON)

PROGRAM CONTROL

LIST SPECIFY OUTPUT DEVICE NAME
EN TERMINATE PROGRAM EXECUTION

COMMAND (1):

After the system displays the commands, it prompts you again for the command of your choice.
Each command and its explanation is presented on the following pages in the order it appears on
your screen.

lP - Generate Report on the Printer

Use the LP command to print the report on either the default output device ($SYSPRTR) or an
output device you specified with the LIST command.

Example: Generate the repori on the sysiem prinier.

COMMAND (?): LP
--- REPORT PRINTING
--- REPORT COMPLETE

COMMAND (?):

Chapter 7. Analyzing Program Performance UG-59

Analyzing Program Performance
Generating a Report (continued)

UG-60 SC34-0591

The following example of the report shows the default horizontal scale of 1000/0 on the graph.
It also shows the default "zero suppression ON" (ZS command). With ZS on, instead of listing
all the addresses from 0000 to 036E separately, the system groups them together (indicated by
the> sign) to save considerable space.

PROGRAM NAME: MYPROG (2 TASKS)
SCANNED FROM 05/18/84 10:15:05 UNTIL 05/18/84 10:18:41
SCANNING INTERVAL WAS 100 MS. 1712 SCANS WERE DONE.
OSNAME: OF1, EDX003

15.7% TIME SPENT WAITING FOR CPU
70.1% TIME SPENT IN NON-CPU WAITS IN PRIMARY TASK
75.7% TIME SPENT IN NON-CPU WAITS IN TASK #2
38.5% TIME SPENT IN EXECUTION (INCLUDED IN GRAPH)

0000 > 036E
0370 - 0376
0378 - 037E
0380 0386
0388 - 038E
0390 - 0396
0398 > 04CE
0400 - 04D6
0408 > 05D6
05D8 - 050E
05EO > 179E
17AO - 17A6
17A8 - 1836
1838 - 183E
1840 - 1846
1848 - 184E
1850 - 1856
1858 - 185E
1860 1866
1868 - lBFE

0.0%
3.6%
3.7%
2.8%
3.9%
1. 2%
0.0%
0.4%
0.0%
0.2%
0.0%
4.1%
0.0%
2.7%
0.0%
3.6%
5.1%
4.2%
3.0%
0.0%

38.5%

--100%

**

*

*
*

*

**

--100%

I

\

c

Generating a Report (continued)

Interpreting the Report

With this report you can see the results of monitoring MYPROG, a program with two tasks.
The scanning started at 10:15:05 on 05/18/84. MYPROG executed for 3 minutes 36 seconds
(subtract the beginning and ending scan times). 15.7% of that time was delays caused by
higher-priority tasks using the processor when MYPROG was trying to run.

All percentages are based on the total elapsed time, that is, on the total number of scans. The
primary task spent 70.1 % of the total execution time in wait instructions (I/O delays, terminal
waits, ENQs, and so on), while Task #2 spent 75.7% of the total execution time in wait
instructions. Both tasks were simultaneously in wait instructions most of the time. Between the
two tasks, a total of 38.5% of the elapsed time was spent executing instructions.

The report graph breaks down the execution time by instruction location. If you look at the
graph in the example, you can see that 14.00/0 of the total elapsed time was spent executing
instructions between 0370 and 038E (3.6 + 3.7 + 2.8 + 3.9 = 14.0). Since no single address
location accounted for more than 5.1 % of the total CPU time, you might find it useful to
specify a smaller horizontal scale and regenerate the report (see the HS command explanation
for an example).

The example graph does not show wait time. If you specified the INC command, the graph
would include the wait times (shown in the upper part of the report) broken done by location.

l T - Generate Report on the Terminal

Use the L T command to list the report at your terminal. The output will look exactly the same
as it does when you specify the LP command.

HS - Specify Horizontal Scaling Value

Use the HS command to control the horizontal scale of the report graph for greater clarity. You
can specify a value from 0% - 100% (the default).

Example: Specify a horizontal scale of 6%.

COMMAND (1): HS
% VALUE: 6

COMMAND (1):

Chapter 7. Analyzing Program Performance UG-61

Analyzing Program Performance
Generating a Report (continued)

If you specify the LP command, the output appears as follows:

Note: If you specify 0% for the horizontal scale, the report lists a number representing a
percentage of the actual number of scans for that address range.

ZS - Set Zero Suppression On or Off

UG-62 SC34-0591

Use the ZS command to control how the graph groups adjacent instruction locations that do not
contain sample counts (0.00/0 on the graph). Specify ON (the default) to group the addresses
together. Specify OFF to separate the addresses on the graph. (See the explanation of the LP
command for an example.)

Example: Specify zero suppression off.

COMMAND (1): ZS
ON/OFF: OF F

COMMAND (1):

, '

c

c

c

Generating a Report (continued)

LIST - Specify Output Device Name

Use the LIST command to control where the LP command will list your report output. You
must specify the device name.

Example: Specify MYPRNTR as the output device.

COMMAND (7): LIST
OUTPUT DEVICE NAME: MYPRNTR

COMMAND (7):

EN - End Program Execution

Use the EN command to end the report generator program.

Example: End the report generator.

COMMAND (7): EN

$SlPPRGR ENDED AT 00:29:43

Chapter 7. Analyzing Program Performance UO-63

Notes

UG-64 SC34-0591

c

c

c

Chapter 8. Improving System Performance

Once you have used the system and program analyzers to identify performance problems, you
can use the information you gathered to improve your system's performance. Improving
performance may be as simple as finding and eliminating the one major bottleneck on your
system. However, you may find that you need a detailed analysis, extensive reprogramming, or
even a change to the architecture of your system. A thorough understanding of the application
you are monitoring is essential.

Set Up Controls

When you do performance tuning, you must establish a "control" group. Then you can
determine if your efforts are actually improving the performance of your system.

For example, if you have a transaction-based system, you can set up a control group of ten
transactions of a particular t)rpc. Using the Performance Anal)Tzcr,)IOU V\rould then monitor the
group for data set access speeds, response times, and number of disk I/O operations. Then each
time you change something on your system, monitor the same group to see the improvement
those changes made.

Chapter 8. Improving System Performance UG-65

Improving System Performance
Improvement Techniques

Chapter 8 of the Customization Guide contains several techniques for improving your system's
performance. The chapter describes how to:

Get faster access to data sets and volumes

Define your DISK statements

Specify fixed-head volumes

Improve disk and tape I/O performance

Speed up the $COMPRES and $COPYUT 1 utilities

Decrease $EDXASM compilation time

Reduce program load time

Analyzing System Reports

You can use the various reports generated by the System Analyzer and change your system
accordingly.

1. Analyze your "Data Set Summary Report" (see the DSS command description in
"$SlPSYSR Commands" on page UG-41 for an example of the report) to determine the (

UG-66 SC34-0591

volume which has the most disk activity. Put that volume in the center of the disk. Put the \.
next most heavily used volume on one side and the third most heavily used volume on the
other side, and so on.

For instance, you normally allocate volume EDX002 first after initializing a disk. That
places EDX002 at the far end of the disk, but in most cases you use this volume more
heavily than any other. To improve access time, place this volume in the center of the disk
as follows.

a. Before allocating EDX002, allocate a volume that is one half the size of your disk.

b. Allocate EDX002. (You might also consider making this volume large enough to hold
the required system modules only.)

c. Delete the volume you allocated initially.

c

c

c

c

Improvement Techniques (continued)

You can also use the Data Set Summary Report to analyze data set activity. Then you
should rearrange the data sets on each volume so that the most heavily used data sets are
side by side. If the average time required to access data sets on one volume is significantly
higher than on another volume, you may have initialized the disk with "write verify" on.
Write verify doubles the time required for each write operation.

If your system contains more than one disk drive, place the most heavily used volume in the
center of one disk drive, the second most heavily used volume in the center of another disk
drive, and so on. You can also place your program-type data sets on one drive and your
data-type data sets on another.

2. Instead of putting all your application programs and data sets on your IPL volume, try
keeping only EDX functions on that volume. Create a separate volume for your application
programs, another for application job streams, another for menus, and as many as you need
for data.

3. You can make all your volumes "performance" volumes to achieve the best processing
speeds. The Data Set Summary Report contains the number of attempts the system made to
open volumes other than performance volumes. Under the totals for each volume is a
reference to a volume name $$DDyy (yy is the device address) and a data set $$. If the
system accesses only performance volumes, $$ does not appear on the report. If it does
appear, you know that the system is accessing nonperformance volumes. The number of
times $$ is refer to is an indication of your performance degradation.

You can use the Data Set Summary Report to determine the frequency of program loads. Every
time you load an application program, the system reads $LOADER into storage. If you place
$LOADER and executable programs onto the volume MEMDSK (created with the $MEMDISK
utility), you can reduce your load times as described below.

Reducing Program Load Time

The $MEMDISK utility enables you to use unmapped storage as a disk. It creates a volume in
storage named MEMDSK. By placing data or programs on this volume, you can reduce access
time. Keep in mind, however, that since MEMDSK is part of the memory system, you will lose
the volume in the event of a power failure or when you TPL.

By placing the EDX loader ($LOADER) on this "disk," $LOADER also becomes
storage-resident, which decreases program load time. Normally, you would have to run the
$MEMDISK and $COPYUTI utilities interactively to perform this function. However, through
the use of a $INITIAL program and virtual terminals, you can perform this same function as
part of the IPL process. The following virtual terminal sample program shows how this is done.

Chapter 8. Improving System Performance UG-67

Improving System Performance
Improvement Techniques (continued)

UG-68 SC34-0591

The following program first loads $MEMDISK and allocates a disk volume (MEMDSK) in
unmapped storage. Then the program loads $COPYUTI and copies the loader to the storage
disk just created. Finally, the program loads $MEMDISK again to indicate that the loader now
resides on MEMDSK.

Example:

MDISK
START

PROGRAM
EQU
ENQT

START

*
B

**
* *
*
*
*

LOAD $MEMDISK AND ISSUE THE COMMANDS TO ALLOCATE THE
STORAGE-RESIDENT DISK. ANSWER1 CONTAINS THE COMMANDS.

*
*
*

**

PASS1

LOAD
TCBGET
IF
ENQT
MOVEA
DO

$MEMDISK, PARM,LOGMSG=NO, EVENT=ECB
RC,$TCBCO
(RC,NE,-1) ,GOTO,ERR

A
#1,ANSWER1+2
4,TIMES

DO UNTIL, (RC,EQ,8)
READTEXT LINE,MODE=LINE
TCBGET RC,$TCBCO

ENDDO
PRINTEXT
ADD

ENDDO
READTEXT
WAIT
ENQT

(0, # 1)
1 ,6

LINE,MODE=LINE
ECB
B

LOAD OK?
SYNC SIDE

SEND REPLY
POINT TO NEXT

PGM ENDED MSG

**
* * * LOAD $COPYUT1 AND ISSUE THE COMMANDS TO COPY $LOADER *
* FROM DISK TO STORAGE. ANSWER2 CONTAINS THE COMMANDS. *
* *
**

PASS2

LOAD $COPYUT1,LOGMSG=NO,EVENT=ECB
TCBGET
IF
ENQT
MOVEA
DO

RC,$TCBCO
(RC,NE,-1) ,GOTO,ERR

A
#1,ANSWER2+2
8,TIMES

DO UNTIL, (RC,EQ,8)
READTEXT LINE,MODE=LINE
TCBGET RC,$TCBCO

ENDDO
PRINTEXT
ADD

ENDDO
READTEXT
WAIT
ENQT

(0, # 1)
1 ,10

LINE,MODE=LINE
ECB
B

LOAD OK?
SYNC SIDE

SEND REPLY
POINT TO NEXT

PGM ENDED MSG

()

(

"

c

c

o

Improvement Techniques (continued)

**
* * * LOAD $MEMDISK AND ISSUE THE COMMANDS TO SET THE LOADER *
* AS STORAGE RESIDENT. ANSWER3 CONTAINS THE COMMANDS. *
* *
**

PASS3

ERR

DONE
PARM
RC
ECB
A
B
ANSWER1

ANSWER2

ANSWER3

LINE

LOAD
TCBGET
IF
ENQT
MOVEA
DO

$MEMDISK, PARM, LOGMSG=NO, EVENT=ECB
RC,$TCBCO
(RC,NE,-1) ,GOTO,ERR

A
#1,ANSWER3+2
2,TIMES

DO UNTIL, (RC,EQ,8)
READTEXT LINE,MODE=LINE
TCBGET RC,$TCBCO

ENDDO
PRINTEXT
ADD

ENDDO
READTEXT
WAIT
DEQT
GOTO
EQU
DEQT
PRINTEXT
PRINTNUM
PRINTEXT
PROGSTOP
DATA
DATA
ECB
IOCB
IOCB
EQU
TEXT
TEXT
TEXT
TEXT
EQU
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
EQU
TEXT
TEXT
TEXT
ENDPROG
END

(0, # 1)
1 ,4

LINE,MODE=LINE
ECB

DONE

*
'ERROR ON LOAD, RC= '
RC
SKIP=1

F'O'
F'O'

CDRVTA
CDRVTB

*
, IV' ,LENGTH=4
, 500' , LENGTH=4
, 100' , LENGTH=4
, EN' ,LENGTH=4

*
'y' , LENGTH=8
'N' , LENGTH=8
'MEMDSK' ,LENGTH=8
, y' , LENGTH=8
I eM I , LENGTH=ti
'$LOADER' ,LENGTH=8
, * ' , LENGTH=8
, EN' , LENGTH=8

*
'SL' ,LENGTH=2
'EN' , LENGTH=2
LENGTH=80

LOAD OK?
SYNC SIDE

SEND REPLY
POINT TO NEXT

PGM ENDED MSG

RETURN CODE

SYNC=YES

ALLOCATE MEMDSK
SIZE
NBR DATA SETS

EDX002 SOURCE?
EDX002 TARGET?
TARGET VOLUME
SOURCE/TARGET OK?
CUP'i M.t;MB.t;!{
SOURCE MEMBER
TARGET MEMBER

SET LOADER

I/O CHANNEL

After you compile this program, you must name the program $INITIAL if you want it loaded at
IPL. (Refer to Customization Guide for the procedure.)

Chapter 8. Improving System Performance UG-69

Improving System Performance
Improvement Techniques (continued)

UO-70 SC34-0591

Note: To use $MEMDISK, you must include the module STORMGR in your supervisor during
system generation (refer to the Installation and System Generation GUide). (For more
information on the $MEMDISK utility, refer to the Operator Commands and Utilities Reference;
for information and examples on the use of virtual terminals, refer to the Event Driven Executive
Language Programming Guide and the Language Reference.)

The $MEMDISK utility temporarily requires 28 pages (7K) of storage in the partition where
you load the utility. In addition, as long as the MEMDSK volume is defined to the system,
$MEMDISK support acquires and holds the following storage resources:

Two pages in partition one (1 page = 256 bytes).

One page in the partition containing your disk I/O support modules.

A 2K block of storage (on a 2K boundary) in the highest partition from which the system
can obtain it or from the partition you specify as the fifth parameter in the example below.

You can load $MEMDISK with the $L operator command and use it interactively as with many
other EDX utilities. You can also load $MEMDISK by using the EDL LOAD instruction with a
command passed as a parameter, but you will not be able to copy $LOADER as in the previous
example. However, if you do not have virtual terminals or if you want to be able to specify the
partition for the required 2K block of storage, you may want to use the LOAD instruction.

The following example shows the "allocate" function: the IV command of $MEMDISK. The IV ,f

command is the only command for which all five parameters apply. All other commands need, "
only the first parameter. An explanation of the five parameters follows the example:

Example:

LOAD $MEMDISK, PARM, LOGMSG=NO, EVENT=ECB

PARM DC C'IV 00 800 0100 06'

c

Improvement Techniques (continued)

Parameter

IV

00

800

0100

06

Description

The command to be issued (in this case, ALLOCATE). Valid commands are IV,
DV, SL, RL, SD, RD.

The system attempts to allocate MEMDSK with the number of records you
specify in the third parameter (in this example, 800). If this is not possible,
$MEMDISK does not allocate any records and the system issues a return code of
100.

If you code 01 for this second parameter, the system attempts to allocate
MEMDSK with the number of records you specify in the third parameter. If this
is not possible, $MEMDISK allocates the volume MEMDSK as large as possible.

If you code 01 for this second parameter and 0 for the third parameter,
$MEMDISK allocates the volume MEMDSK as large as possible.

The number of records requested for the MEMDSK volume.

The number of data sets you want the MEMDSK volume to accommodate.

The partition from which the system will take the 2K block of storage. If you
don't specify this parameter, the system takes storage from the highest partition
where it is available.

Analyzing Individual Programs

The Program Analyzer provides you with information that you can use in individual program
tuning. By reviewing the Program Analyzer reports, you can see where a certain program
spends most if its time in execution. This information is used differently for each program. For
instance, if an EDL program performs several I/O operations to disk, the Program Analyzer
shows that the program spent more time performing these operations than for other operations
(which is normal). However, if a particular READ or WRITE operation takes longer to execute
than other READ/WRITE operations, you might have a resource conflict between this program
and another program running on the s}rstcm. Both programs majT be tr:{ing to g~in exclusi'le use
of the disk, and one has to wait for the other to release the disk.

You can use these reports differently for each application. Therefore, it is important that you
have thorough knowledge of what the applications are designed to do before you use the
Program Analyzer.

Chapter 8. Improving System Performance UG-71

Notes

UG-72 SC34-0591

c

c

c

Chapter 9. Performance Analyzer Error
Messages

The following are error messages that the System Analyzer and Program Analyzer may produce.
They are listed in alphabetical order only.

ADDRESS RANGE SPECIFICATION ERROR

Issued by: $SlPPRGR

Explanation: Data set contains invalid data.

System Action: Ends the analysis operation.

User Response: Reload $SlPPRG and $SlPPRGR.

EOF ENCOUNTERED BEFORE THE END OF DATA

Issued by: $SlPPRGR

Explanation: Data set contains invalid data.

System Action: Ends the analysis operation.

User Response: Reload $SlPPRG and $SlPPRGR.

Chapter 9. Performance Analyzer Error Messages UG-73

Performance Analyzer Error Messages

UG-74 SC34-0591

INSUFFICIENT DYNAMIC STORAGE ALLOCATED

Issued by: $SlPPRGR

Explanation: You failed to allocate enough dynamic storage on the $SlPPRGR load.

System Action: Ends the report program.

User Response: Reload $SlPPRGR with storage amount at least equal to that specified
when you loaded $SlPPRG.

INSUFFICIENT SPACE ON WORKFILE

Issued by: $SlPSYSR

Explanation: The specified work data set was too small.

System Action: Cancels current operation. Returns to COMMAND (?).

User Response: Use a larger work data set or restart the program with more dynamic
storage.

INVALID OPTION -- XX

Issued by: $SlPPRGR

Explanation: You specified a nonexistent command.

System Action: Reprompts you to select another command.

User Response: Reenter a valid command or a question mark (?) for a list of the valid
commands.

c

c

c

c

NO DYNAMIC STORAGE ALLOCATED

Issued by: $S 1 PPRGR

Explanation: You failed to allocate dynamic storage when you loaded $SlPPRGR.

System Action: Ends the report program.

User Response: Reload $SlPPRGR with storage amount at least equal to that specified
when you loaded $SlPPRG.

NO RECORDS ON FILE IN THE SPECIFIED TIME INTERVAL

Issued by: $SlPSYSR

Explanation: The statistics data set contains no records.

System Action: No report will be produced. Returns to COMMAND (?).

User Response: Rerun the monitor program and then the report program; correctly
specify the reporting time interval.

<OVERFLOW>

Issued by: $SlPSYSR

Explanation: Indicates that the monitoring program ran out of buffer space while collecting
data.

System Action: Ends monitoring operation. Returns to COMMAND (?).

User Response: Set a lower checkpoint interval next time you run the System Analyzer
($SlPSYS).

Chapter 9. Performance Analyzer Error Messages UG-75

Performance Analyzer Error Messages

UO-76 SC34-0591

TIMER SUPPORT NOT PRESENT ON THIS SYSTEM

Issued by: $SlPSYS

Explanation: Either your system does not have timer support or you failed to include timer
support.

System Action: $SlPSYS ends.

User Response: Include timer support for your system.

c

o

c

Glossary of Terms and Abbreviations

This glossary defines terms and abbreviations used in the Series/1 Event Driven Executive software publications. All software and
hardware terms pertain to EDX. This glossary also serves as a supplement to the IBM Data Processing Glossary, GC20-1699.

$SYSLOGA, $SYSLOGB. The name of the alternate system
logging device. This device is optional but, if defined, should be
a terminal with keyboard capability, not just a printer.

$SYSLOG. The name of the system logging device or operator
station; must be defined for every system. It should be a terminal
with keyboard capability, not just a printer.

$SYSPRTR. The name of the system printer.

abend. Abnormal end-of-task. Termination of a task prior to its
completion because of an error condition that cannot be resolved
by recovery facilities while the task is executing.

ACCA. See asynchronous communications control adapter.

address key. Identifies a set of Series/ 1 segmentation registers
and represents an address space. It is one less than the partition
number.

address space. The logical storage identified by an address key.
An address space is the storage for a partition.

application program manager. The component of the Multiple
Terminal Manager that provides the program management
facilities required to process user requests. It controls the
contents of a program area and the execution of programs within
the area.

application program stub. A collection of subroutines that are
appended to a program by the linkage editor to provide the link
from the application program to the Multiple Terminal Manager
facilities.

asynchronous communications control adapter. An ASCII
terminal attached via #1610, #2091 with #2092, or #2095 with
#2096 adapters.

attention key. The key on the display terminal keyboard that, if
pressed, tells the operating system that you are entering a
command.

attention list. A series of pairs of 1 to 8 byte EBCDIC strings
and addresses pointing to EDL instructions. When the attention
key is pressed on the terminal, the operator can enter one of the
strings to cause the associated EDL instructions to be executed.

backup. A copy of data to be used in the event the original data
is lost or damaged.

base record slots. Space in an indexed file that is reserved for
based records to be placed.

base records. Records are placed into an indexed file while in
load mode or inserted in process mode with a new high key.

basic exchange format. A standard format for exchanging data
on diskettes between systems or devices.

binary synchronous device data block (BSCDDB). A control
block that provides the information to control one Series/1
Binary Synchronous Adapter. It determines the line
characteristics and provides dedicated storage for that line.

Glossary of Terms and Abbreviations UG-77

Glossary of Terms and Abbreviations

block. (1) See data block or index block. (2) In the Indexed
Method, the unit of space used by the access method to contain
indexes and data.

block mode. The transmission mode in which the 3101 Display
Station transmits a data data stream, which has been edited and
stored, when the SEND key is pressed.

BSCAM. See binary synchronous communications access
method.

binary synchronous communications access method. A form
of binary synchronous I/O control used by the Series/1 to
perform data communications between local or remote stations.

BSCOOB. See binary synchronous device data block.

buffer. An area of storage that is temporarily reserved for use in
performing an input/ output operation, into which data is read or
from which data is written. See input buffer and output buffer.

bypass label processing. Access of a tape without any label
processing support.

CCB. See terminal control block.

central buffer. The buffer used by the Indexed Access Method
for all transfers of information between main storage and indexed
files.

character image. An alphabetic, numeric, or special character
defined for an IBM 4978 Display Station. Each character image
is defined by a dot matrix that is coded into eight bytes.

character image table. An area containing the 256 character
images that can be defined for an IBM 4978 Display Station.
Each character image is coded into eight bytes, the entire table of
codes requiring 2048 bytes of storage.

character mode. The transmission mode in which the 3101
Display Station immediately sends a character when a keyboard
key is pressed.

cluster. In an indexed file, a group of data blocks that is pointed
to from the same primary-level index block, and includes the
primary-level index block. The data records and blocks
contained in a cluster are logically contiguous, but are not
necessarily physically contiguous.

COO (change of direction). A character used with ACCA
terminal to indicate a reverse in the direction of data movement.

cold start. Starting the spool facility by erasing any spooled jobs
remaining in the spool data set from any previous spool session.

command. A character string from a source external to the
system that represents a request for action by the system.

common area. A user-defined data area that is mapped into the
partitions specified on the SYSTEM definition statement. It can

UG-78 SC34-0591

be used to contain control blocks or data that will be accessed by
more than one program.

completion code. An indicator that reflects the status of the
execution of a program. The completion code is displayed or
printed on the program's output device.

constant. A value or address that remains unchanged thoughout
program execution.

controller. A device that has the capability of configuring the
GPIB bus by designating which devices are active, which devices
are listeners, and which device is the talker. In Series/1 GPIB
implementation, the Series/ 1 is always the controller.

conversion. See update.

control station. In BSCAM communications, the station that
supervises a multipoint connection, and performs polling and
selection of its tributary stations. The status of control station is
assigned to a BSC line during system generation.

cross-partition service. A function that accesses data in two
partitions.

cross-partition supervisor. A supervisor in which one or more
supervisor modules reside outside of partition 1 (address space
0).

data block. In an indexed file, an area that contains control
information and data records. These blocks are a multiple of 256
bytes.

data record. In an indexed file, the records containing customer
data.

data set. A group of records within a volume pointed to by a
directory member entry in the directory for the volume.

data set control block (OSCB). A control block that provides
the information required to access a data set, volume or directory
using READ and WRITE.

data set shut down. An indexed data set that has been marked
(in main storage only) as unusable due to an error.

DCE. See directory control entry.

device data block (OOB). A control block that describes a disk
or diskette volume.

direct access. (1) The access method used to READ or WRITE
records on a disk or diskette device by specifying their location
relative the beginning of the data set or volume. (2) In the
I ndexed Access Method, locating any record via its key without
respect to the previous operation. (3) A condition in terminal I/O
where a READTEXT or a PRINTEXT is directed to a buffer which
was previously enqueued upon by an 10CB.

(

c

c

directory. (1) A series of contiguous records in a volume that
describe the contents in terms of allocated data sets and free
space. (2) A series of contiguous records on a device that
describe the contents in terms of allocated volumes and free
space. (3) For the Indexed Access Method Version 2, a data set
that defines the relationship between primary and secondary
indexed files (secondary index support).

directory control entry (DCE). The first 32 bytes of the first
record of a directory in which a description of the directory is
stored.

directory member entry (DME). A 32-byte directory entry
describing an allocated data set or volume.

display station. An IBM 4978, 4979, or 3101 display terminal or
similar terminal with a keyboard and a video display.

DME. See directory member entry.

DSCB. See data set control block.

dynamic storage. An increment of storage that is appended to a
program when it is loaded.

end-of-data indicator. A code that signals that the last record of
a data set has been read or written. End-of-data is determined
by an end-of-data pointer in the DME or by the physical end of
the data set.

ECB. See event control block.

EDl. See Event Driven Language.

emulator. The portion of the Event Driven Executive supervisor
that interprets EDL instructions and performs the function
specified by each EDL statement.

end-of-tape (EOT). A reflective marker placed near the end of a
tape and sensed during output. The marker signals that the tape
is nearly full.

enter key. The key on the display terminal keyboard that, if
pressed, tells the operating system to read the information you
entered.

event control block (ECB). A control block used to record the
status (occurred or not occurred) of an event; often used to
synchronize the execution of tasks. ECBs are used in conjunction
with the WAIT and POST instructions.

Event Driven Language (EDL). The language for input to the
Event Driven Executive compiler ($EDXASMl, or the Macro and
Host assemblers in conjunction with the Event Driven Executive
macro libraries. The output is interpreted by the Event Driven
Executive emulator.

EXIO (execute input or output). An EDL facility that provides
user controlled access to Series!1 input! output devices.

external label. A label attached to the outside of a tape that
identifies the tape visually. It usually contains items of
identification such as file name and number, creation data,
number of volumes, department number, and so on.

external name (EXTRN). The 1- to 8-character symbolic
EBCDIC name for an entry point or data field that is not defined
within the module that references the name.

FCA. See file control area.

FCB. See file control block.

file. A set of related records treated as a logical unit. Although
file is often used interchangeably with data set, it usually refers to
an indexed or a sequential data set.

file control area (FCA). A Multiple Terminal Manager data area
that describes a file access request.

file control block (FCB). The first block of an indexed file. It
contains descriptive information about the data contained in the
file.

file control block extension. The second block of an indexed
file. It contains the file definition parameters used to define the
file.

file manager. A collection of subroutines contained within the
program manager of the Multiple Terminal Manager that provides
common support for all disk data transfer operations as needed
for transaction-oriented application programs. It supports
indexed and direct files under the control of a single callable
function.

floating point. A positive or negative number that can have a
decimal point.

formatted screen image. A collection of display elements or
display groups (such as operator prompts and field input names
and areas) that are presented together at one time on a display
device.

free pool. In an indexed data set a group of blocks that can be
used for either data blocks or index blocks. These differ from
other free blocks in that these are not initially assigned to specific
logical positions in the file.

free space. In an indexed file, records blocks that do not
currently contain data, and are available for use.

free space entry (FSE). An 8-byte directory entry defining an
area of free space within a volume or a device.

FSE. See free space entry.

general purpose interface bus. The IEEE Standard 488-1975
that allows various interconnected devices to be attached to the
GPIB adapter (RPa D02118).

Glossary of Terms and Abbreviations UG-79

Glossary of Terms and Abbreviations

GPIB. See general purpose interface bus.

group. A unit of 100 records in the spool data set allocated to a
spool job.

H exchange format. A standard format for exchanging data on
diskettes between systems or devices.

host assembler. The assembler licensed program that executes
in a 370 (host) system and produces object output for the
Series/1. The source input to the host assembler is coded in
Event Driven Language or Series/ 1 assembler language. The
host assembler refers to the System/370 Program Preparation
Facility (5798-NNQ).

host system. Any system whose resources are used to perform
services such as program preparation for a Series/ 1. It can be
connected to a Series /1 by a communications link.

IACB. See indexed access control block.

IAR. See instruction address register.

ICB. See indexed access control block.

liB. See interrupt information byte.

image store. The area in a 4978 that contains the character
image table.

immediate data. A self-defining term used as the operand of an
instruction. It consists of numbers, messages or values which
are processed directly by the computer and which do not serve as
addresses or pointers to other data in storage.

index. In an indexed file, an ordered collection of pairs of keys
and pointers, used to sequence and locate records.

index block. In an indexed file, an area that contains control
information and index entries. These blocks are a multiple of 256
bytes.

indexed access control block (lACB/ICB). The control block
that relates an application program to an indexed file.

indexed access method. An access method for direct or
sequential processing of fixed-length record~ by use of a
record's key.

indexed data set. Synonym for indexed file.

indexed file. A file specifically created, formatted and used by
the Indexed Access Method. An indexed file is sometimes called
an indexed data set.

index entry. In an indexed file, a key-pointer pair, where the
pointer is used to locate a lower-level index block or a data block.

UG-80 SC34-0591

index register (#1, #2). Two words defined in EDL and
contained in the task control block for each task. They are used
to contain data or for address computation.

input buffer. (1) See buffer. (2) In the Multiple Terminal
Manager, an area for terminal input and output.

input output control block (lOCB). A control block containing
information about a terminal such as the symbolic name, size and
shape of screen, the size of the forms in a printer, or an optional
reference to a user provided buffer.

instruction address register (tAR). The pointer that identifies
the machine instruction currently being executed. The Series/ 1
maintains a hardware IAR to determine the Series/ 1 assembler
instruction being executed. It is located in the level status block
(LSB).

integer. A positive or negative number that has no decimal
point.

interactive. The mode in which a program conducts a
continuous dialogue between the user and the system.

internal label. An area on tape used to record identifying
information (similar to the identifying information placed on an
external label). Internal labels are checked by the system to
ensure that the correct volume is mounted.

interrupt information byte (liB). In the Multiple Terminal
Manager, a word containing the status of a previous input/ output
request to or from a terminal.

invoke. To load and activate a program, utility, procedure, or
subroutine into storage so it can run.

job. A collection of related program execution requests
presented in the form of job control statements, identified to the
jobstream processor by a JOB statement.

job control statement. A statement in a job that specifies
requests for program execution, program parameters, data set
definitions, sequence of execution, and, in general, describes the
environment required to execute the program.

job stream processor. The job processing facility that reads job
control statements and processes the requests made by these
statements. The Event Driven Executive job stream processor is
$JOBUTIL.

jumper. (1) A wire or pair of wires which are used for the
arbitrary connection between two circuits or pins in an
attachment card. (2) To connect wire(s) to an attachment card or
to connect two circuits.

key. In the Indexed Access Method, one or more consecutive
characters used to identify a record and establish its order with
respect to other records. See also key field.

(,

()

c

c

key field. A field, located in the same position in each record of
an indexed file, whose content is used for the key of a record.

level status block (LSB). A Series/ 1 hardware data area that
contains processor status. This area is eleven words in length.

library. A set of contiguous records within a volume. It contains
a directory, data sets and / or available space.

line. A string of characters accepted by the system as a single
input from a terminal; for example, all characters entered before
the carriage return on the teletypewriter or the ENTER key on the
display station is pressed.

link edit. The process of resolving external symbols in one or
more object modules. A link edit is performed with $EDXLlNK
whose output is a loadable program.

listener. A controller or active device on a G PI B bus that is
configured to accept information from the bus.

load mode. In the Indexed Access Method, the mode in which
records are loaded into base record slots in an indexed file.

load module. A single module having cross references resolved
and prepared for loading into storage for execution. The module
is the output of the $UPDATE or $UPDATEH utility.

load point. (1) Address in the partition where a program is
loaded. (2) A reflective marker placed near the beginning of a
tape to indicate where the first record is written.

lock. In the Indexed Access Method, a method of indicating that
a record or block is in use and is not available for another request.

logical screen. A screen defined by margin settings, such as the
TOPM, BOTM, LEFTM and RIGHTM parameters of the
TERMINAL or IOCB statement.

LSB. See level status block.

mapped storage. The processor storage that you defined on the
SYSTEM statement during system generation.

member. A term used to identify a named portion of a
partitioned data set (PDS). Sometimes member is also used as a
synonym for a data set. See data set.

menu. A formatted screen image containing a list of options.
The user selects an option to invoke a program.

menu-driven. The mode of processing in which input consists of
the responses to prompting from an option menu.

message. In data communications, the data sent from one
station to another in a single transmission. Stations
communication with a series of exchanged messages.

multifile volume. A unit of recording media, such as tape reel or
disk pack, that contains more than one data file.

multiple terminal manager. An Event Driven Executive licensed
program that provides support for transaction-oriented
applications on a Series/ 1. It provides the capability to define
transactions and manage the programs that support those
transactions. It also manages multiple terminals as needed to
support these transactions.

multivolume file. A data file that, due to its size, requires more
than one unit of recording media (such as tape reel or disk pack)
to contain the entire file.

new high key. A key higher than any other key in an indexed
file.

nonlabeled tapes. Tapes that do not contain identifying labels
(as in standard labeled tapes) and contain only files separated by
tapemarks.

null character. A user-defined character used to define the
unprotected fields of a formatted screen.

option selection menu. A full screen display used by the
Session Manager to point to other menus or system functions,
one of which is to be selected by the operator. (See primary
option menu and secondary option menu.)

output buffer. (1) See buffer. (2) In the Multiple Terminal
Manager, an area used for screen output and to pass data to
subsequent transaction programs.

overlay. The technique of reusing a single storage area allocated
to a program during execution. The storage area can be reused
by loading it with overlay programs that have been specified in
the PROGRAM statement of the program or by calling overlay
segments that have been specified in the OVERLAY statement of
$EDXLlNK.

overlay area. A storage area within a program reserved for
overlay programs specified in the PROGRAM statement or
overlay segments specified in the OVERLAY statement in
$EDXLlNK.

overlay program. A program in which certain control sections
can use the same storage location at different times during
execution. An overlay program can execute concurrently as an
asynchronous task with other programs and is specified in the
EDL PROGRAM statement in the main program.

overlay segment. A self-contained portion of a program that is
called and sequentially executes as a synchronous task. The
entire program that calls the overlay segment need not be
maintained in storage while the overlay segment is executing. An
overlay segment is specified in the OVERLAY statement of
$EDXLlNK or $XPSLlNK (for initialization modules).

overlay segment area. A storage area within a program or
supervisor reserved for overlay segments. An overlay segment
area is specified with the OVLAREA statement of $EDXLlNK.

Glossary of Terms and Abbreviations UG-81

Glossary of Terms and Abbreviations

parameter selection menu. A full screen display used by the
Session Manager to indicate the parameters to be passed to a
program.

partition. A contiguous fixed-sized area of storage. Each
partition is a separate address space.

performance volume. A volume whose name is specified on
the DISK definition statement so that its address is found during
I PL, increasing system performance when a program accesses
the volume.

physical timer. Synonym for timer (hardware).

polling. In data communications, the process by which a
multipoint control station asks a tributary if it can receive
messages.

precIsion. The number of words in storage needed to contain a
value in an operation.

prefind. To locate the data sets or overlay programs to be used
by a program and to store the necessary information so that the
time required to load the prefound items is reduced.

primary file. An indexed file containing the data records and
primary index.

primary file entry. For the Indexed Access Method Version 2,
an entry in the directory describing a primary file.

primary index. The index portion of a primary file. This is used
to access data records when the primary key is specified.

primary key. In an indexed file, the key used to uniquely identify
a data record.

primary-level index block. In an indexed file, the lowest level
index block. It contains the relative block numbers (RBNs) and
high keys of several data blocks. See cluster.

primary menu. The program selection screen displayed by the
Multiple Terminal Manager.

primary option menu. The first full screen display provided by
the Session Manager.

primary station. In a Series/1-to-Series/1 Attachment, the
processor that controls communication between the two
computers. Contrast with secondary station.

primary task. The first task executed by the supervisor when a
program is loaded into storage. It is identified by the PROGRAM
statement.

priority. A combination of hardware interrupt level priority and a
software ranking within a level. Both primary and secondary
tasks will execute asynchronously within the system according to
the priority assigned to them.

UG-82 SC34-0591

process mode. In the Indexed Access Method, the mode in
which records can be retrieved, updated, inserted, or deleted.

processor status word (PSW). A 16-bit register used to (1)
record error or exception conditions that may prevent further
processing and (2) hold certain flags that aid in error recovery.

program. A disk- or diskette-resident collection of one or more
tasks defined by a PROGRAM statement; the unit that is loaded
into storage. (See primary task and secondary task.)

program header. The control block found at the beginning of a
program that identifies the primary task, data sets, storage
requirements and other resources required by a program.

program/storage manager. A component of the Multiple
Terminal Manager that controls the execution and flow of
application programs within a single program area and contains
the support needed to allow multiple operations and sharing of
the program area.

protected field. A field in which the operator cannot use the
keyboard to enter, modify, or erase data.

PSW. See processor status word.

aCB. See queue control block.

aD. See queue descriptor.

QE. See queue element.

queue control block (aCB). A data area used to serialize access
to resources that cannot be shared. See serially reusable
resource.

queue descriptor (aD). A control block describing a queue built
by the DEFINEQ instruction.

queue element (aE). An entry in the queue defined by the
queue descriptor.

quiesce. To bring a device or a system to a halt by rejection of
new requests for work.

quiesce protocol. A method of communication in one direction
at a time. When sending node wants to receive, it releases the
other node from its quiesced state.

record. (1) The smallest unit of direct access storage that can be
accessed by an application program on a disk or diskette using
READ and WRITE. Records are 256 bytes in length. (2) In the
Indexed Access Method, the logical unit that is transferred
between $IAM and the user's buffer. The length of the buffer is
defined by the user. (3) In BSCAM communications, the portions
of data transmitted in a message. Record length (and, therefore,
message length) can be variable.

recovery. The use of backup data to re-create data that has
been lost or damaged.

I
\

c

c

reflective marker. A small adhesive marker attached to the
reverse (nonrecording) surface of a reel of magnetic tape.
Normally, two reflective markers are used on each reel of tape.
One indicates the beginning of the recording area on the tape
(load point)' and the other indicates the proximity to the end of
the recording area (EOT) on the reel.

relative block address (RBA). The location of a block of data on
a 4967 disk relative to the start of the device.

relative record number. An integer value identifying the
position of a record in a data set relative to the beginning of the
data set. The first record of a data set is record one, the second
is record two, the third is record three.

relocation dictionary (RLD). The part of an object module or
load module that is used to identify address and name constants
that must be adjusted by the relocating loader.

remote management utility control block (RCB). A control
block that provides information for the execution of remote
management utility functions.

reorganize. The process of copying the data in an indexed file to
another indexed file in a manner that rearranges the data for more
optimum processing and free space distribution.

restart. Starting the spool facility w the spool data set contains
jobs from a previous session. The jobs in the spool data set can
be either deleted or printed when the spool facility is restarted.

return code. An indicator that reflects the results of the
execution of an instruction or subroutine. The return code is
usually placed in the task code word (at the beginning of the task
control block).

roll screen. A display screen which is logically segmented into
an optional history area and a work area. Output directed to the
screen starts display at the beginning of the work area and
continues on down in a line-by-line sequence. When the work
area gets full, the operator presses ENTER/SEND and its contents
are shifted into the optional history area and the work area itself
is erased. Output now starts again at the beginning of the work
area.

SBIOCB. See sensor based I/O control block.

second-level index block. In an indexed data set, the
second-lowest level index block. It contains the addresses and
high keys of several primary-level index blocks.

secondary file. See secondary index.

secondary index. For the Indexed Access Method Version 2, an
indexed file used to access data records by their secondary keys.
Sometimes called a secondary file.

secondary index entry. For the Indexed Access Method
Version 2, this an an entry in the directory describing a secondary
index.

secondary key. For the Indexed Access Method Version 2, the
key used to uniquely identify a data record.

secondary option menu. In the Session Manager, the second in
a series of predefined procedures grouped together in a
hierarchical structure of menus. Secondary option menus provide
a breakdown of the functions available under the session
manager as specified on the primary option menu.

secondary task. Any task other than the primary task. A
secondary task must be attached by a primary task or another
secondary task.

secondary station. In a Series/ 1-to-Series/ 1 Attachment, the
processor that is under the control of the primary station.

sector. The smallest addressable unit of storage on a disk or
diskette. A sector on a 4962 or 4963 disk is equivalent to an
Event Driven Executive record. On a 4964 or 4966 diskette, two
sectors are equivalent to an Event Driven Executive record.

selection. In data communications, the process by which the
multipoint control station asks a tributary station if it is ready to
send messages.

self-defining term. A decimal, integer, or character that the
computer treats as a decimal, integer, or character and not as an
address or pointer to data in storage.

sensor based I/O control block (SBIOCB). A control block
containing information related to sensor I/O operations.

sequential access. The processing of a data set in order of
occurrence of the records in the data set. (1) In the Indexed
Access Method, the processing of records in ascending collating
sequence order of the keys. (2) When using READ/WRITE, the
processing of records in ascending relative record number
sequence.

serially reusable resource (SRR). A resource that can only be
accessed by one task at a time. Serially reusable resources are
usually managed via (1) a OCB and ENO/DEO statements or (2) an
ECB and WAIT /POST statements.

service request. A device generated signal used to inform the
GPIB controller that service is required by the issuing device.

session manager. A series of predefined procedures grouped
together as a hierarchical structure of menus from which you
select the utility functions, program preparation facilities, and
language processors needed to prepare and execute application
programs. The menus consist of a primary option menu that
displays functional groupings and secondary option menus that
display a breakdown of these functional groupings.

shared resource. A resource that can be used by more than one
task at the same time.

Glossary of Terms and Abbreviations UG-83

Glossary of Terms and Abbreviations

shut down. See data set shut down.

source module/program. A collection of instructions and
statements that constitute the input to a compiler or assembler.
Statements may be created or modified using one of the text
editing facilities.

spool job. The set of print records generated by a program
(including any overlays) while engueued to a printer designated as
a spool device.

spool session. An invocation and termination of the spool
facility.

spooling. The reading of input data streams and the writing of
output data streams on storage devices, concurrently with job
execution, in a format convenient for later processing or output
operations.

SRQ. See service request.

stand-alone dump. An image of processor storage written to a
diskette.

stand-alone dump diskette. A diskette supplied by IBM or
created by the $DASDI utility.

standard labels. Fixed length aO-character records on tape
containing specific fields of information (a volume label
identifying the tape volume, a header label preceding the data
records, and a trailer label following the data records).

static screen. A display screen formatted with predetermined
protected and unprotected areas. Areas defined as operator
prompts or input field names are protected to prevent accidental
overlay by input data. Areas defined as input areas are not
protected and are usually filled in by an operator. The entire
screen is treated as a page of information.

station. In BSCAM communications, a BSC line attached to the
Series/1 and functioning in a point-to-point or multipoint
connection. Also, any other terminal or processor with which the
Series/1 communicates.

subroutine. A sequence of instructions that may be accessed
from one or more points in a program.

supervisor. The component of the Event Driven Executive
capable of controlling execution of both system and application
programs.

system configuration. The process of defining devices and
features attached to the Series / 1.

SYSGEN. See system generation.

system generation. The processing of defining I/O devices and
selecting software options to create a supervisor tailored to the
needs of a specific Series/ 1 hardware configuration and
application.

UG-84 SC34-0591

system partition. The partition that contains the root segment
of the supervisor (partition number 1, address space 0).

talker. A controller or active device on a GPIB bus that is
configured to be the source of information (the sender) on the
bus.

tape device data block (TDB). A resident supervisor control
block which describes a tape volume.

tapemark. A control character recorded on tape used to
separate files.

task. The basic executable unit of work for the supervisor. Each
task is assigned its own priority and processor time is allocated
according to this priority. Tasks run independently of each other
and compete for the system resources. The first task of a
program is the primary task. All tasks attached by the primary
task are secondary tasks.

task code word. The first two words (32 bits) of a task's TCB;
used by the emulator to pass information from system to task
regarding the outcome of various operations, such as event
completion or arithmetic operations.

task control block (TCB). A control block that contains
information for a task. The information consists of pointers, save
areas, work areas, and indicators required by the supervisor for
controlling execution of a task.

task supervisor. The portion of the Event Driven Executive that
manages the dispatching and switching of tasks.

TCB. See task control block.

terminal. A physical device defined to the EDX system using the
TERMINAL configuration statement. EDX terminals include
directly attached I BM displays, printers and devices that
communicate with the Series/ 1 in an asynchronous manner.

terminal control block (CCB). A control block that defines the
device characteristics, provides temporary storage, and contains
links to other system control blocks for a particular terminal.

terminal environment block (TEB). A control block that
contains information on a terminal's attributes and the program
manager operating under the Multiple Terminal Manager. It is
used for processing requests between the terminal servers and
the program manager.

terminal screen manager. The component of the Multiple
Terminal Manager that controls the presentation of screens and
communications between terminals and transaction programs.

terminal server. A group of programs that perform all the
input/ output and interrupt handling functions for terminal devices
under control of the Multiple Terminal Manager.

c

c

c

terminal support. The support provided by EDX to manage and
control terminals. See terminal.

timer. The timer features available with the Series/ 1 processors.
Specifically, the 7840 Timer Feature card (4955 only) or the native
timer (4952, 4954, and 4956). Only one or the other is supported
by the Event Driven Executive.

trace range. A specified number of instruction addresses within
which the flow of execution can be traced.

transaction oriented applications. Program execution driven by
operator actions, such as responses to prompts from the system.
Specifically, applications executed under control of the Multiple
Terminal Manager.

transaction program. See transaction-oriented applications.

transaction selection menu. A Multiple Terminal Manager
display screen (menu) offering the user a choice of functions,
such as reading from a data file, displaying data on a terminal, or
waiting for a response. Based upon the choice of option, the
application program performs the requested processing
operation.

tributary station. In BSCAM communications, the stations
under the supervision of a control station in a multipoint
connection. They respond to the control station's polling and
selection.

unmapped storage. The processor storage in your processor
that you did not define on the SYSTEM statement during system
generation.

unprotected field. A field in which the operator can use the
keyboard to enter, modify or erase data. Also called
non-protected field.

update. (1) To alter the contents of storage or a data set. (2) To
convert object modules, produced as the output of an assembly
or compilation, or the output of the linkage editor, into a form that
can be loaded into storage for program execution and to update
the directory of the volume on which the loadable program is
stored.

user exit. (1) Assembly language instructions included as part of
an EDL program and invoked via the USER instruction. (2) A
point in an IBM-supplied program where a user written routine
can be given control.

variable. An area in storage, referred to by a label, that can
contain any value during program execution.

vary offline. (1) To change the status of a device from online to
offline. When a device is offline, no data set can be accessed on
that device. (2) To place a disk or diskette in a state where it is
unknown by the system.

vary online. To place a device in a state where it is available for
use by the system.

vector. An ordered set or string of numbers.

volume. A disk, diskette, or tape subdivision defined using
$INITDSK or $TAPEUT1.

volume descriptor entry (VDE). A resident supervisor control
block that describes a volume on a disk or diskette.

volume label. A label that uniquely identifies a single unit of
storage media.

Glossary of Terms and Abbreviations UG-85

(~

{
-
./

UG-86 SC34-0591

o

c

Index

The following index contains entries for this book only. See the Library Guide and Common Index for a Common
Index to all Event Driven Executive books.

Special Character,

$A - list partition
use UG-17

$CP - change partition
$DISKUT1 utility

allocate a statistics file data set for $Sl PSYS UG-37
$DUMP utility
$EDXDEF data set

edit to match hardware configuration UG-8
system definition statement UG-8
terminal statement UG-9

$LNKCNTL data set
edit to include software support UG-9
listing UG-10, UG-30

$MEMDISK Iltility
use to reduce program load time UG-67

$SRPROF IPL configuration data set
default configuration listing UG-12
edit I PL configuration profile data set UG -11
example UG-13
operands UG-13

$STGUT1 utility
monitor system control blocks UG-18

$Sl PPRG program analyzer monitor
commands UG-55
error messages UG-73
interpreting the report UG-61
loading UG-53

$Sl PPRGR program report generator
commands UG-59

loading UG-58
$Sl PSYS system analyzer monitor

commands UG-38
defined UG-37
error messages UG-73
loading UG-38
requirements UG-37

$S 1 PSYSR system report generator
commands UG-41
defined UG-40
loading UG-40

$TCBFLGS
example bit settings UG -14

#ACI attention command
description UG-38

#CKP attention command
description UG-38

#END attention command
description UG-38

#STOP attention command
description UG-38

A

allocate
data set for $Sl PPRG UG-53
statistics file data set for $Sl PSYS UG-37

Index UG-87

Index

c

CSECTS listing UG-25

D

data set
allocate for $S1 PPRG UG-53
allocate for a statistics file ($S1 PSYS) UG-37

display I/O segmentation registers for extended address
support UG-18

dynamic partition
description UG-4

DYNEND module
description UG-31
example UG-32

DYNSTART module
description UG-31
example UG-32

E

EDXTIMR2 module
include for 4-bit architecture UG-9

error messages for extended address support UG-20
extended address mode support

defined UG-3
requirements UG-3

I/O segmentation registers
display UG-18

IPL configuration profile data set
default configuration listing UG-12
edit $SRPROF UG-11
example UG-13
operands UG-13

L

link control data set
edit $LNKCNTL to include software support UG-9
listing UG-10, UG-30

LOAD instruction
example UG-5
PART= operand example UG-5

monitor system control blocks for extended address
support UG-18

UG-88 SC34-0591

o

operator commands
$A - list partition

syntax U G-17
$CP - change partition

p

partition
changing status with $SRPROF UG-13
dynamic UG-4
static UG-4

performance
program UG-71
reduce program load time UG-67
system UG-66
tuning techniques UG-66

problem determination
error messages UG-20
program checks UG -18
stop codes UG-19

program analyzer
commands UG-55
error messages UG-73
interpreting the report UG-61
loading UG-53

program checks for extended address support UG-18

R

reduce program load time using $MEMDISK UG-67
report generator

program UG-58
system ($S1 PSYSR) UG-40

report types
data set summary UG-50
program summary UG-48
program utilization detail UG-44

RLOADER module
include for 4-bit architecture UG-9

s

SRMGR module
include for 4-bit architecture UG-9

static partition
calculate minimum required UG-4
description UG-4

stop codes for extended address support UG-19
supervisor module names
supervisor module names (CSECTS) UG-25
SUPVIO module

description UG-27
examples UG-28
mapping example UG-27

·0: 1

I
\.

c

c

c

c

system analyzer
commands UG-38
defined UG-37
error messages UG-73
loading UG-38
requirements UG-37

system generation
application programs UG-3

system performance
controls UG-65
improvement techniques UG-66

reduce program load time UG-67
static vs. dynamic partitions UG-4

SYSTEM statement
example UG-8

T

TERMINAL statement
example UG-9

Index UG-89

(,

, fr

c
UG-90 SC34-0591

o

c

o

:::: =:=: -=-= :: - -~~~ Series/1 Event Driven Executive

Publications Order Form

Instructions:

1. Complete the order form. supplying all of the
requested information. (Please print or type.)

2. If you are placing the order by phone. dial

1-800-18M-24G8.

3. If you are mailing your order. fold the order
form as indicated. seal with tape. and mail.
We pay the postage.

Ship to:

Name:

Address:

City:

State: Zip:

Bill to:

Customer number:

Name:

Address:

City:

State: Zip:

Your Purchase Order No.:

Phone: (

Signature:

Date:

Order:

Description

Reference books:

Set of the following six books. To order
individual copies, use the following order

numbers.

Communications Guide

Extended Address Mode and
Performance Analyzer User Guide

Installation and System Generation Guide

Language Reference

Library Guide and Common Index

Messages and Codes

Operator Commands and Utilities Reference

Guides and reference cards:

Set of the following four books and reference
cards. To order individual copies, use the
following order numbers.

Customization Guide

Event Driven Language Drogramming Guide

Operation Guide

Problem Determination Guide

Language Reference Card

Operator Commands and Utilities

Reference Card

Conversion Charts Reference Card

Reference Card Envelope

Set of three reference cards and storage
envelope. (One set is included with order

number SBOF-1627)

Binders:

3-ring easel binder with 1 inch rings

3-ring easel binder with 2 inch rings

Standard 3-ring binder with 1 inch rings

Standard 3-ring binder with 1 1/2 inch rings

Standard 3-ring binder with 2 inch rings

Diskette binder (Holds eight 8-inch diskettes.)

Order
number

SBOF-1627

SC34-0638

SC34-0591

SC34-0646

SC34-0643

SC34-0645

SC34-0636

SC34-0644

SBOF-1628

SC34-0635

SC34-0637

SC34-0642

SC34-0639

SX34-0165

SX34-0164

SX34-0163

SX34-0166

SBOF-1629

SR30-0324

SR30-0327

SR30-0329

SR30-0330

SR30-0331

SB30-0479

Oty.

Publications Order Form

Fold and tape Please Do Not Staple Fold and tape

I
I
I
I
h
c:

io
::l
\C

C
::l
(!)

.. ~

"""

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

I BM Corporation
1 Culver Road
Dayton, New Jersey 08810

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

... J
Fold and tape Please Do Not Staple Fold and tape

--------- - ------- - ---- - - -----------,-
®

International Business Machines Corporation

c

c

....;
C
<lJ

E
0.
:::J
cr
<lJ
C)

C
';:;

~
co
E
"0

<lJ
+-'
co
E
0
+-'
:::J

Ci
Vl

E
<lJ

..0
0

0.
<lJ
Vl
:::J
co
U

c
co
u
Vl
<lJ

0.
co
+-'
(f)

<lJ
+-'
0

Z

c

§
-2
Vl

~
+-'

ro
<lJ
Vl

0
+-'

<lJ
0..
co
+-'

"0
<lJ

E
E
:::J
C) ...
<lJ
~
+-'
0

0
<lJ
>

';:;
'Vi
C
<lJ
Vl

~
~
Vl
<lJ

0.
3;
:::J
<lJ
Vl
co
<lJ

a::

IBM Series/l Event Driven Executive Extended Address Mode
and Performance Analyzer User Guide

Order No. SC 34-0591-0

READER'S
COMMENT
FORM

This manual is part of a library that serves as a re ference source for systems analysts, programmers, and
operators of IBM systems, You may use this form to communicate your comments about this pUblication,
its organization, or subject matter. with the lInderstan'ding that IBM may use or distribute whatever
information you supply in any way it believes appropriate without incurring any obligation to you,
Your comments will he sent to the author's department for whatever review and action, if any, are deemed
appropria te,

Note: GJ/)ies of 1811f {lllhlicari(}lls arc lIot srocked at the locatioll to which this form is addressed.
Please dircct allY rC(lucsts ./(Jr ('()!)ics ofpuhlicatiolls. or./(Jr assistance illllsing your IB1\1 system, to
your IBIIf rC!Jrcsclltativc or I() thc IBM hranch o.t./icc scn'ingyour locality,

Thank you for your cooperation, No postage stamp necessary if mailed in the U.S,A, (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on tbe back of the title page,)

SC34-0591-0

Printed in U.S.A.

Reader's Comment Form

Fold and tape

Fold and tape

--------- - ------- - ---- - - ----------_.-
®

Please Do Not Staple

"""
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation

Information Development, Department 28B

P.O. Box 1328

Boca Raton, Florida 33432

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

I
I
I
I
I
()
c

--------- - ------- - ---- - - ----------_ .-
(!)

International Busi ness Machines Corporation

SC34-0591 -0

Program Number 5719-SX5
File No. Sl -34
Pr inted in U.S.A .

SC34-0591-0

