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About This Book

This book, AIX Kernel Extensions and Device Support Programming Concepts for IBM RISC
System/6000, provides a conceptual introduction to the kernel programming environment
and writing kernel extensions. Possible types of kernel extensions include device drivers,
system calls, kernel services, or virtual file systems. In addition, conceptual information is
provided on existing kernel subsystems.

More detailed information on existing kernel services and interface requirements for kernel
extensions can be found in AlX Calls and Subroutines Reference for IBM RISC
System/6000, Volume 5.

Who Should Use This Book

This book is intended for systems programmers wishing to extend the AlX kernel. Readers
should be familiar with operating system concepts and kernel programming.

How to Use This Book

Overview of Contents
The Kernel Extensions and Device Support Programming Concepts contains two parts.
Part 1 contains information needed to write kernel extensions. This includes:

e An overview of the kernel programming environment
¢ Conceptual introductions to device drivers, system calls, and virtual file systems.

Part 2 gives an overview of AlX subsystems and describes the organization of each.
Conceptual information on the following AIX subsystems is provided:

e The communications /O subsystem. This chapter describes features common to all
communications device drivers.

» The configuration subsystem. This chapter includes an overview of the configuration
process, the routines and databases involved, and the requirements for configuring new
devices.

¢ The high function terminal (HFT) subsystem. This chapter describes the component
structure of the high function terminal and virtual terminal concepts.

¢ The printer addition management subsystem. This chapter briefly describes the steps
involved in adding a new type of printer to the system.

e The SCSI subsystem. This chapter briefly discusses SCSI subsystem architecture and
general comments about writing SCSI device drivers.

Highlighting
The following highlighting conventions are used in this book:
Bold Identifies commands, keywords, files, directories, and other items whose
names are predefined by the system.
Italics Identifies parameters whose actual names or values are to be supplied by
the user.
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Monospace ldentifies examples of specific data values, examples of text similar to what
you might see displayed, examples of portions of program code similar to
what you might write as a programmer, messages from the system, or
information you should actually type.

Related Publications

The following books contain information about or related to the kernel programming
environment and writing kernel extensions:

e AIX Calls and Subroutines Reference for IBM RISC System/6000, Order Number
SC23-2198.

o General Programming Concepts, Order Number SC23-2205-0.
o Communications Programming Concepts, Order Number SC23-2206-0.

o Graphics Programming Concepts, Order Number SC23-2208-0.

Ordering Additional Copies of This Book

To order additional copies of this book, use Order Number SC23-2207.
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Kernel Environment Programming

The following topics are available as guidance on programming in the kernel environment:

Kernel Extension Binding

Execution Environments

Kernel Processes

Accessing User-Mode Data while in Kernel Mode
Understanding Locking

Signal Handling

Exception Handling.

Introduction
The AIX kernel is a dynamically extendable kernel that can be expanded by adding device
drivers, system calls, kernel services, or private kernel routines. Extensions can be added at
system boot or while the system is in operation. The Types of Kernel Extensions diagram
illustrates the addition of extensions to the kernel environment.

COMMANDS

File System Interface System Calls
KERNEL INTERFACE
SYSTEM CALL INTERFACE
v v
VIRTUAL DEVICE EXTENDED EXTENDED
FILE DRIVERS SYSTEM KERNEL
SYSTEM CALLS SERVICES
PRIVATE
ROUTINES
EXTENDED KERNEL MODE EXPORTS

NUCLEUS SERVICES

Types of Kernel Extensions
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A process executing in user mode can customize the kernel by using the sysconfig
subroutine, if the process has appropriate privilege. In this way a user-mode process can
load, unload, initialize, or terminate kernel routines. Kernel configuration can also be altered
by changing tuneable system parameters.

Kernel extensions can also customize the kernel by using kernel services to load, unload,
initialize, and terminate dynamically loaded kernel routines; to create and initialize kernel
processes; and to define interrupt handlers. Binding of kernel extensions can be performed
at link-edit, load, or runtime.

Kernel routines execute in a privileged protection domain and can effect the operation and
integrity of the whole system.

Kernel Extension Binding

The AIX kerne! provides a set of base kernel services to be used by kernel extensions.
These services, which are described in the kernel services documentation, are made
available to a kernel extension by specifying the kernel export file, kernex.exp, as an import
file during the link-edit of the kernel extension. (The link-edit operation is performed by using
the Id command.)

A kernel extension provides additional kernel services and system calls by supplying an
export file when it is link-edited. This export file specifies the symbols to be added to the
/unix name space. Symbols that name system calls to be exported must specify the
SYSCALL keyword next to the symbol in the export file.

The kernel extension’s export file should also have #!/unix as its first entry so that the export
file may be used by other kernel extensions as an import file. The #!/unix as the first entry in
an import file specifies that the imported symbols are to come from the /unix name space,
which is the global kernel name space. This entry is ignored when used in an export file.
Thus, the same file can be used both as the export file for the kernel extension that provides
the symbols and as the import file for another kernel extension importing one or more of the
symbols.

When a new kernel extension is loaded by the sysconfig subroutine, any symbols that were
defined in the kernel extension’s export file at link-edit time are added to the kernel name
space, /unix. The loader can also load additional object files into the kernel in order to
resolve symbols referenced by the new kernel extension. These additional object files will
not have their own exported symbols added to the kernel name space, as these exported
symbols are only used to resolve references required during the load of the new kernel
extension.

In other words, the kernel name space cannot be expanded without the explicit loading of a
kernel object file specifying one or more exported symbols. The symbols that are added to
the kernel name space are available to any subsequently loaded kernel object file as an
imported symbol.

Obiject files explicitly loaded into the kernel that export symbols into the space are shared by
all kernel extensions, in that only one copy of the object file normally exists in the kernel.

Using System Calls

1-2

A restricted set of system calls can be used by kernel extensions. A kernel process can use
a larger set of system calls than a user process in kernel mode can. (The System Calls
Available in the Kernel specifies which system calls can be used by either.) User-mode
processes in kernel mode can only use system calls that have all parameters passed by
value. Kernel routines executing under user-mode processes cannot directly use a system
call having reference parameters.
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The latter restriction is imposed because when system calls with reference parameters
access a caller’s data, they are accessing storage across a protection domain. The
cross-domain memory services performing these cross-memory operations support kernel
processes (kprocs) as if they too were accessing storage across a protection domain.
However, these services have no way to determine that the caller is in the same protection
domain when the caller is a user-mode process in kernel mode.

System calls must not be used by kernel extensions executing in the interrupt handler
environment.

Kernel extensions can bind with a restricted set of base AlIX system calls. This is done by
specifying the system call export file syscalls.exp as an import file when the kernel
extension is link-edited. When loading object files into the kernel, the loader is aware that no
protection domain switch is required to access system calls from the kernel. It therefore
binds the system call imports to the function descriptor that provides direct access to the
system call routine. For user-mode programs, the loader binds system call reterences to a
set of function descriptors that invoke the system call handler to effect a switch of protection
domain.

Loading System Calls and Kernel Services
Kernel extensions providing new system calls or kernel services should normally place only
a single copy of the routine and its static data in the kernel. When this is the case, the
SYS_SINGLELOQAD option of the sysconfig subroutine should be used to load the kernel
extension. This option ensures that only a single copy is loaded, since it only loads a new
copy if one does not already exist in the kernel. For this type of kernel extension, an updated
version of the object file is loaded into the kernel only when the current copy has no users
and has been unloaded.

If a kernel extension can support multiple instances of itself (particularly its data), the
SYS_KLOAD option of the sysconfig subroutine can be used. This option loads a new copy
of the object file even when one or more copies are already loaded. When this mechanism is
used, currently loaded routines bound to the old copy of the object file continue to use the
old copy. Any new routines (loaded after the new copy was loaded) are bound to the most
recently loaded copy of the kernel extension.

Unloading System Calls and Kernel Services
Kernel extensions providing new system calls or kernel services can also be unloaded. For
each object file loaded, the loader maintains a usage count and a load count. The usage
count indicates how many other object files have referenced some exported symbol provided
by the kernel extension. The load count indicates how many explicit load requests have
been made for the object file.

When an explicit unload of a kernel extension is requested, the load count is decremented. If
the load count and the usage count are both 0, then the object file is unloaded. However if
either the load count or usage count is nonzero, the object file is not unloaded. When
programs are terminated or killed, the usage counts for kernel extensions that the programs
referenced are adjusted. However, no unload of these kernel extensions is performed when
the program terminates even if the load and usage counts become zero.

As a result, a situation could exist in which a kernel extension remains loaded, even though
its load count has been decremented to 0 (due to unload requests) and its usage count has
reached 0 (because of program terminations). In this case, the kernel extension’s exported
symbols are still available for load-time binding unless another unload request for any object
file is received. If an explicit unload request (for any program, shared library, or kernel
extension) is received, the loader unloads all object files that have both load and usage
counts of 0.
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The slibelean command, which unloads all object files with load and use counts of 0, can be
used to remove object files that are no longer used from both the shared library region and
the kernel. Periodically invoking this command reduces the effects of memory fragmentation
in the shared library and kernel text regions by removing object files that are no longer
required.

Using Private Routines

1-4

The previous discussions have been concerned with importing and exporting symbols from
and to the /unix common kernel name space. These symbols are global in the kernel and
can be referenced by any routine in the kernel.

Kernel extensions can also consist of several separately link-edited object files that are
bound at load time. This is particularly useful for device drivers, where one object file
contains the top (pageable) half of the driver, while the bottom (pinned) half of the driver is in
a second object file. This is also useful where several kernel extensions use common
routines provided in a separate object file.

In both cases, the symbols exported by the private object files should not be added to the
global kernel name space. If a kernel extension is to have certain symbols exported to the
global kernel name space and others used only to resolve references to other private object
files, it should be divided into separately link-edited object files. (One object file wouid
contain the symbols to be exported to the kernel name space, while the other would contain
the exported symbols that are considered private.)

For object files that reference each other’'s symbols, each should use the other’s export file
as its own import file during link-edit. The export file for the object file providing the services
should specify #! path/file as the first entry in the export file, where path specifies the
directory path to the object fife, which provides the exported symbols at load time. This entry
is ignored when used as an export file. When used as an import file, however, the entry tells
the loader where to find the object file resolving the imported symbols at load time.

The object file exporting symbols to the kernel name space should specify #!/unix as the
first entry in its export file. This allows the export file to be used as an import file by other
kernel extensions. The object file containing the symbols to be exported to the kernel name
space must be the one explicitly loaded into the kernel with the sysconfig subroutine. The
loader then loads other private object files, as necessary, to resolve imported symbols
required in the load.

When the loader encounters an imported symbol that is resolved by an object file already
loaded during the same explicit load request, the loader does not load a new copy. Instead, it
resolves the symbol to the copy of the object file already loaded. This allows for
cross-resolving symbols between two or more object files loaded as a result of the same
explicit load request.

Note: The loader hashes the path and file name of the object file to determine whether the
file has already been loaded during this explicit load request. Another copy of the
object file could be loaded if differing path names have been used for the same
object file and the two names do not hash to the same value.

Object files loaded automatically due to symbol resolution do not have their own exported
symbols added to the kernel name space. These symbols remain private to the two or more
object files loaded with an explicit load request. In this way, the kernel allows object files to
have cross-dependent symbol references, and the loader will correctly resolve them.

Note: When two separate explicit load requests have private symbols resolved by the same
object file, two copies of that object file are loaded into the kernel. Each explicit load
resolves its symbols to its own private copy of the object file. The private object files
can also be combined into libraries with the ar archive command.
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Using Libraries
A library is a collection of previously link-edited object files or import files and is created by
using the ar archive command. Each object file or import file within the archive (library) is
referred to as a member. AIX program management allows an object file or member to be
designated as shared when it is link-edited. Libraries either with or without shared objects
can be created and used by kernel extensions. However, library services provided for
user-mode applications should not generally be used by kernel extensions, due to the
different programming requirements in the kernel.

When the linkage editor (Id) resolves a symbol to a library member or object file not
designated as shared, it binds the required object file into the output object file in order to
resolve the references. However, when symbols are resolved to a library member or object
file designated as shared, the shared object file is not included in the output object file.
Instead, the linkage editor adds information to the loader section of the output object file.
The loader uses this information at load time to learn the location of the shared object file
that resolves the symbol.

When these shared object files (normally in libraries) are referenced by user-mode
programs, the loader checks the shared library region to determine if the object file is in the
shared library region. If it is, the references are resolved to the object file in the shared
library region. If the object file has not already been loaded, the loader will load it into the
shared library region if the file permissions permit it. In this way, common or shared object
files used by user-mode applications can be shared by all user-mode programs in the
system.

Unlike user mode, the kernel does not provide a shared library region. Therefore, when a
kernel extension that refers to a shared object file is loaded, the loader loads a new copy of
the shared object file into the kernel to be used to resolve all references to the object file
during the explicit kernel extension load request. However, within the same explicit load
request, all references to the same obiject file are resolved to the single copy of the object
loaded for the current load request.

AIX provides two libraries that can be used by kernel extensions. The libcsys library is a
subset of routines found in the user-mode libe library that can be used by kernel extensions
and consists of the following 25 routines:

¢ atoi
bemp
bcopy
bzero
memccepy
memchr
memcmp
memcpy
memmove
memset
ovbcopy
strcat
strchr
strcmp
strepy
strcspn
strien
strncat
strncmp
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Execution

strncpy
strpbrk
strrchr
strspn
strstr
strtok.

The memccpy, memcmp, memcpy, and memmove memory routines are low-level
routines that the bcmp, becopy and ovbcopy routines use and can be called directly where
path length is critical. These services are documented in the Base Programming
documentation as routines found in the libc library. The services can be bound to the kernel
export by specifying libcsys.a as a library in the link-edit of the kernel extension.

The libsys library provides a set of kernel services that must be bound with the kernel
extension to be used by the extension. These kernel services are documented in the Kernel
Services documentation and are described as being libsys services in their respective
descriptions. The 5 services are:

d_align
d_roundup
timeout
timeoutcf
untimeout.

These services can be bound to the kernel extension by specifying libsys.a as an import
library in the link-edit of the kernel extension.

Environments

There are two major environments under which a kernel extension can be executed. A
kernel extension is said to be executing in the process environment when invoked either by
a user process in kernel mode or by a kernel process. A kernel extension is executing in the
interrupt environment when invoked as part of an interrupt handler.

A kernel extension can determine which environment it is being called in by calling the
getpid kernel service. This service returns the process identifier of the current process, or a
value of -1 if called in the interrupt environment. Some kernel services can be called in both
environments, while others can only be called in the process environment.

Process Environment

A routine is said to be executing in the process environment when it is invoked by a
user-mode process or by a kernel process. Routines executing in this environment are
executed at an interrupt priority of INTBASE. A kernel extension executing in this
environment can cause page faults by accessing pageable code or data. It can also be
pre-empted by another process of equal or higher process priority.

Routines executing in the process environment can sleep or be interrupted by routines
executing in the interrupt environment. Kernel routines executed on the behalf of a
user-mode process can only invoke system calls that have no parameters passed by
reference. Kernel processes, however, can use all system calls in the System Calls Available
in the Kernel. Floating-point functions cannot be used in the kernel at all.

Interrupt Environment :

A routine executes in the interrupt environment when invoked on behalf of an interrupt
handler. A kernel routine executing in this environment cannot cause page faults by
accessing pageable code or data. In addition, it has a stack of limited size, is not
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pre-emptable by another process, and cannot perform any function that would cause it to
sleep.

Routines in this environment are only interruptable either by interrupts at a priority more
favored than the current priority or by exceptions. These routines may not use system calls
and can use only kernel services available in both the process and interrupt environments.

A process in kernel mode may also put itselfinto an environment very similiar to the interrupt
environment. This action, occurring when the interrupt priority is changed to a priority more
favored than INTBASE, can be accomplished by calling the i_disable kernel service. A
kernel-mode process is sometimes required to do this to serialize access to a resource
shared by a routine executing in the interrupt environment. When this is the case, the
process operates under most of the same restrictions as a routine executing in the interrupt
environment. However, the e_sleep, e_wait, e_sleepl, lockl, and unlockl services can be
used if the event word or lock word is pinned or if the process wishes to sleep or use locks.

Note: Locks should only be used when serializing access with respect to other processes.
They are not adequate when attempting to serialize access to a resource accessed
by a routine executing in the interrupt environment.

Routines executed in this environment can adversely affect system real-time performance
and are therefore limited to a specific maximum path length. Guidelines for the maximum
path length are determined by the interrupt priority at which the routines are executed.
Documentation on Understanding Interrupts provides more information.

No floating-point functions can be used in the kernel.

Kernel Processes
A kernel process (kproc) is a process that was created in the kernel protection domain and
always executes in the kernel protection domain. Kernel processes can be used in
subsystems, by complex device drivers, and by system calls. They can also be used by
interrupt handlers to perform asynchronous processing not available in the interrupt
environment. Kernel processes can also be used as device managers where asynchronous
1/0 and device management is required.

A kproc exists only in the kernel protection domain and differs from a user process in the
following ways:

* ltis created using the creatp and initp kernel services.

o It executes only within the kerne! protection domain and has all security privileges.

¢ It can call a restricted set of system calls and all applicable kernel services.

¢ It has access to the global kernel address space (including the kernel pinned and
pageable heaps), kernel code, and static data areas.

s It must poll for signals and can choose to ignore any signal delivered, including a kill
signal.

¢ ltis not preemptible by signals.

o Its text and data areas come from the global kernel heap.

¢ It cannot use shared libraries as such and has no shared library region.

¢ It has a process-private region containing only the u-block (user block structure) and
possibly the kernel stack.

¢ lts parent process is the process that issued the creatp kernel service to create the
process.

¢ It can change its parent process to the init process and can use interrupt disable
functions for serialization. _

¢ It can use locking in order to serialize process-time access to critical data structures.
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A kernel process inherits the environment of its parent process (the one calling the creatp
kernel service to create it), but with some exceptions. The kproc will not have a root directory
nor current directory when initialized. All uses of the file system functions must specify
absolute path names.

Kernel processes created during phase 1 of system boot must not keep any long-term opens
on files until phase 2 of boot or runtime has been reached. This is because the AIX
Operating System changes root file systems between phase 1 and phase 2 of system boot.
As a result, the system crashes if any files are open at root file system transition time.

Accessing Data from a Kernel Process

A kernel process can access data that user processes cannot because kernel processes
execute in the more privileged kernel protection domain. This applies to all kernel data, of
which there are three general categories:

¢ The user block data structure
The u-block (or u-area) structure exists for kernel processes and contains roughly the
same information for kernel processes as for user-mode processes. A kernel process
must use kernel services to query or manipulate data from the u-area structure in order
to maintain modularity and increase portability of code to other platforms.

e The stack for a kernel process '
The location of the stack for a kernel process is implementation-dependent. This stack
can be located in global memory or in the kernel process’s process-private segment. A
kernel process must not automatically assume that its stack is located in global memory.

¢ Global kernel memory
A kernel process can also access global kernel memory as well as allocate and
de-allocate memory from the kernel heaps. Because a kernel process executes in the
kernel protection domain, it can access any valid memory location within the global
kernel address space. Memory dynamically allocated from the kernel heaps by the
kernel process must be freed by the kernel process before exiting. Unlike user-mode
processes, memory dynamically allocated by a kernel process is not automatically freed
upon process exit.

Kernel processes must be provided with a valid cross-memory descriptor to access address
regions outside the kernel global address space or kernel process address space. For
example, if a kernel process is to access data from a user-mode process, the system call
using the kernel process must obtain a cross-memory descriptor for the user-mode region to
be accessed. This is done by calling the xmattach kernel service, which provides a
descriptor that can then be made available to the kernel process.

The kernel process should then use the xmemin and xmemout kernel services to access
the targeted cross-memory data area. When the kernel process has completed its operation
on the memory area, the cross-memory descriptor must be detached by using the

~ xmdetach kernel service.

Kernel Process Creation, Execution, and Termination

1-8

Kernel processes (kprocs) are created by a kernel-mode routine by calling the creatp kernel
service. This service allocates and initializes a process block for the kernel process and sets
the new process’s state to idle. This new kernel process does not execute until initialized by
the initp kernel service, which must be called in the same process that created the kernel
process (with the creatp service). The creatp kernel service returns the process identifier for
the new kernel process.

Once the initp kernel service has completed the kproc’s initialization, the kproc is placed on
the run queue. On the first dispatch of the newly initialized kernel process, the process
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begins execution at the entry point previously supplied to the initp kernei service with the
initialization parameters previously specified on the call to the initp kernel service.

A kernel process terminates when it executes a return from its main entry routine. A kernel
process should never exit without both freeing all dynamically allocated storage and
releasing all locks owned by the kernel process.

When kernel processes exit, the parent process (the one that called the creatp and initp
kernel services to create the kernel process) receives a death-of-child signal. However, it is
sometimes undesirable for the parent process to receive this death-of-child signal due to
kproc termination. In this case, the kproc can call the setpinit kernel service to redesignate
the init process as its parent. The init process cleans up the state of all its children
processes that have become zombies. A kernel process can also issue the setsid
subroutine call to change its session so that signals and job control affecting the parent
process’s session do not affect the kernel process.

Kernel Process Pre-emption
A kernel process is initially created with the same process priority as its parent. It can
therefore be pre-empted by a more favored kernel or user process. It does not have higher
priority just because it is a kernel process. Kernel processes can use the setpri or nice
subroutines to modify their execution priority.

The kernel process can use the kernel locking facilities (the lockl and unlockl kernel
services) to serialize access to critical data structures. This use of locks does not guarantee
that the process will not be pre-empted, but it does insure that other processes trying to
acquire the lock will wait until the kernel process owning the lock has released it.

Using locks, however, does not provide serialization if a kernel routine can access the critical
data while executing in the interrupt environment. Serialization with interrupt handlers must
be handled by using the interrupt-control facilities in the kernel (such as the i_disable and
i_enable kernel services). Kernel processes must ensure that no access to pageable code,
data, or stack is made while executing at an interrupt priority higher than INTBASE. Kernel
processes are not pre-empted by other processes while executing at an interrupt priority
higher than INTBASE. However, they can still be interrupted by interrupts that are more
favored than the current interrupt priority level.

Kernel processes must ensure that their maximum path lengths adhere to the specifications
for interrupt handlers when executing at an interrupt priority more favored than INTBASE.
This ensures that system real-time performance is not degraded.

Kernel Process Signal and Exception Handling
Kernel processes, unlike user processes, are not pre-emptible by signals, even the SIGKILL
signal. Kernel processes must poll for signals in order for them signals to be delivered.
Polling ensures the proper kernel-mode serialization, since signals to user-mode processes
are not delivered while in kernel mode, and kernel processes are always in kernel mode.

Signals that have action applied at generation time (rather than delivery time) have the same
effect regardless of whether the target is a kernel or a user process. Kernel processes can
poll for unmasked signals waiting to be delivered by calling the sig_chk kernel service. This
service returns the signal number of a pending signal that was not blocked or ignored. The
kernel process then uses the signal number to determine which action should be taken. The
kernel does not automatically invoke signal handlers for kernel processes as it does for user
processes.

Kernel processes should also use the exception-catching facilities available in kerne!l mode
to handle exceptions that can be caused during execution of the kernel process. Exceptions
received during the execution of a kernel process are handled the same as exceptions that
occur in any kernel-mode routine.
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Unhandled exceptions that occur in kernel mode (in any user process while in kernel mode,
in an interrupt handler, or in a kernel process) result in a system crash. To avoid crashing the
system due to unhandled exceptions, kernel routines should use the setjmpx, clrjmpx, and
longjmpx kernel services to handle exceptions that may possibly occur during execution.
Refer to Understanding Exception Handling for more details on handling exceptions.

Kernel Process Use of System Calls
System calls made by kernel processes do not result in a change of protection domain since
the kernel process is already within the kernel protection domain. Routines in the kernel
(including routines executing in a kernel process) are bound by the loader to the system call
function and not to the system call handler. When system calls use kernel services to access
user-mode data, these services recognize that the system call function is executing within a
kernel process instead of a user process and correctly handle the data accesses.

However, the error information returned from a system call made by a kernel process must
be accessed differently than for a user process. A kproc must use the getuerror kernel
service to retrieve the system call error information normally provided in the errno global
variable for user-mode processes. In addition, the kernel process can use the setuerror
kernel service to set the error information to 0 before calling the system call. The return code
from the system call is handled the same for all callers.

Kernel processes can use only a restricted set of the base system calls found in the
syscalls.exp export file. System calls available to kernel processes can be found in the List
of System Calls Available in Kernel Mode.

Accessing User-Mode Data while in Kernel Mode
Kernel extensions must use a set of kernel services to access data that is in the user-mode
protection domain. These services ensure that the caller has the authority to perform the
desired operation at the time of the data access. These services also prevent system
crashes in a system call when accessing user-mode data. These services can only be called
when executing in the process environment of the process containing the user-mode data.

User-mode data access primitives are:

e The subyte and suword services store either a byte or a word to user memory.

e The fubyte and fuword services fetch either a byte or a word from user memory.

o The copyin or copyout services copy data between user and kernel memory.

¢ The copyinstr service copies a null-terminated character string from the user-mode

address space into kernel memory. The copy is halted after the first null character is
encountered.

An addiitional set of services allow data transfer between user mode and kernel mode when
a uio stucture is used. - (This structure describes the user-mode data area to be accessed.)
These services, typically used between the file system and device drivers to perform device
I/O, are the following:

¢ The uiomove service
¢ The ureadc and uwritec services.

Using Cross-Memory Kernel Services
Occasionally, access to user-mode data is required when not in the environment of the
user-mode process that has addressability to the data. Such cases occur when the data is to
be accessed in an asynchronous fashion. Examples of this include:

» Direct memory access to the user data by 1/O devices
o Data access by interrupt handlers
¢ Data access by a kernel process.
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In these circumstances, the kernel cross-memory services are required to provide the
necessary access. The xmattach kernel service allows a cross-memory descriptor to be
obtained for the data area to be accessed. This service must be called:in the process
environment of the process containing the data area.

Once a cross-memory descriptor has been obtained, the xmemin and xmemout kernel
services can be used to access the data area outside of the process environment containing
the data. As soon as access to the data area is no longer required, the access must be
removed by calling the xmdetach kernel service. Kernel extensions should use these
services only when absolutely required. Their use increases the difficulty. of porting the
kernel extension to other machine platforms because of the machine dependencies of
cross-memory operations.

Understanding Locking
A conventional lock is used to serialize access to a predefined data structure. It is
conventional in that all users of the data structure must lock the data structure’s conventional
lock before accessing the data structure. When finished, the users must also unlock the data
structure’s conventional lock.

A conventional lock has two states: locked or unlocked. In the /ocked state, a process is
currently accessing the data structure associated with the conventional lock. This process is
referred to as the owner of the conventional lock. No other process that attempts to lock the
conventional lock can get the lock until the process that owns the conventional lock unlocks
it with the unlockl kernel service. In the unlocked state, no process accesses the data
structure or owns the conventional lock.

When a lower priority process owns a lock that a higher priority process is attempting to
acquire, the priority of the process owning the lock is raised to the process priority of the
highest priority process waiting to acquire the lock. When the process with boosted priority
releases the lock, the priority of that process is restored to its normal value.

Locking Strategy in Kernel Mode
A linear hierarchy of locks exists, within which the global kernel lock, kernel_lock, has the
the coarsest granularity. A kernel extension should not attempt to acquire the kernel lock if it
owns any other lock. This hierarchy is imposed by software convention and is not enforced.
The ordering of locks follows:

¢ The kernel_lock global kernel lock

¢ File system locks (private to file systems)

o Device driver locks (private to device drivers)
¢ Private fine-granularity locks.

Locks should be unlocked in the reverse order in which they were acquired.
Signal Handling

For information on signal handling for a user-mode process in kernel mode, see Handling
Signals While in a System Call on page 4-4.

For information on signal handling while in a kernel process, see Kernel Process Signal and
Exception Handling on page 1-9.
Exception Handling
' There is a basic distinction between interrupts and exceptions:

¢ Aninterrupt is an asynchronous event and is not associated with the instruction that is
executing when the interrupt occurred.
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¢ An exception is a synchronous event and is directly due to the instruction that is executing
when the exception occurs.

The computer hardware generally uses the same mechanism to report both interrupts and
exceptions: the machine saves and modifies some of its state and forces a branch to a
particular location. On decoding the reason for the machine interrupt, the interrupt handler
determines whether the event is an interrupt or an exception and performs different
processing accordingly.

Note: Ordinary page faults are treated more like interrupts than exceptions. The only
difference between a page-fault interrupt and other interrupts is that the interrupted
program is made nondispatchable until the page fault is resolved.

Exception Processing
When an exception occurs, the current instruction stream cannot continue. It is almost
never appropriate to simply ignore the exception. At the very least, the results of executing
the instruction are undefined and thus further execution of the program is effectively
meaningless. The AlX kernel provides an exception-handling mechanism by which an
executing instruction stream (a process- or interrupt-level program) can specify what action
is to be taken when an exception occurs. Exceptions are handled differently depending on
whether they occurred while executing in user mode or kernel mode.

Default Action
If no exception handler is currently defined when an exception occurs, then one of two things
usually happens:

o [f the exception occurs while a process is executing in user mode, the process is sent a
signal relevant to the type of exception.
o If the exception occurs while in kernel mode, the system halts.

Kernel-Mode Exception Handling
Exception handling in the AIX kernel mode extends the UNIX setjump/longjump
context-save-and-restore mechanism by providing setjmpx and longjmpx kernel services to
handle exceptions. The traditional UNIX mechanism is extended by allowing these exception
handlers or context-save checkpoints to be stacked on a per-process or per-interrupt handler
basis.

This stacking mechanism allows the execution point and context of a process or interrupt
handler to be restored to a point in the process or interrupt handler, at the point of return
from the setjmpx service. When execution returns to this point, the return code from
setjmpx service indicates the type of exception that occurred so that the process or interrupt
handler state can be fully restored. Appropriate retry or recovery operations are then invoked
by the software performing the operation.

When an exception occurs, the kerne!'s first level exception handler gets control. The first
level exception determines what type of exception has occurred and saves information
necessary for handling the specific type of exception. For an I/O exception, the first level
handler also performs the necessary re-enabling of the capability to perform programmed
I/0O operations.

The first level exception handler then modifies the saved context of the interrupted process
or interrupt handler to execute the longjmpx service when the first level exception handler
returns to the interrupted process or interrupt handler.

The longjmpx service executes in the environment of the code that caused the exception
and restores the current context from the topmost jump buffer on the stack of saved
contexts. As a result, the state of the process or interrupt handier that caused the exception
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is restored to the point of the return from the setjmpx service. (The return code,
nevertheless, indicates that an exception has occurred.)

The process or interrupt handler software should then check the return code and invoke
exception handling code to restore fully the state of the process or interrupt handler.
Additional information about the exception can be obtained by using the getexcept kernel
service.

User-Defined Actions
A typical exception handler should do the following:

» Perform any necessary clean-up, such as freeing storage or segment registers and
releasing other resources.

o lf the exception is recognized by the current handler and can be handled entirely within
this routine, the handler should re-establish itself by calling the setjmpx service. This
allows normal main-line processing to continue.

« If the exception is not recognized by the current handler, it must be passed along to the
previously stacked exception handler. The exception is passed along by calling the
longjmpx service, which either invokes the previous handler (if any) or takes the
system’s default action.

¢ If the exception is recognized by the current handler but cannot be handled, it is treated
as though it could not be recognized at all. The longjmpx service is called, which either
passes the exception along to the previous handler (if any) or takes the system’s default
action. '

When a kernel routine that has established an exception handler completes normally, it must
remove its exception handler from the stack (by using the clrjmpx service) before returning
to its caller. Note that when the longjmpx kernel service invokes an exception handler, that
handler’s entry is automatically removed from the stack.

Implementing Kernel Exception Handlers
The setjmpx kernel service provides a means of saving the following portions of a
program’s state at the point of a call:

Nonvolatile general registers
Stack pointer

TOC pointer

Interrupt priority number (intpri)
Ownership of kernel-mode lock.

This state can be restored at a later point by calling the longjmpx service, which
accomplishes the following:

¢ Reloads the registers (including TOC and stack pointers).

Enables or disables to the proper interrupt level.

¢ Conditionally acquires or releases the kernel-mode lock.

s Forces a branch back to the point of original return from the setjmpx service.

The setjmpx service takes the address of a jump buffer (a label_t structure) as an explicit
parameter. This structure can be defined anywhere including on the stack (as an automatic
variable). After filling in the state data in the jump buffer, the setjmpx kernel service pushes
the buffer onto the top of a stack maintained in the machine state save structure.

The longjmpx service is used to return to an earlier point in the code, namely the point at
which the setjmpx service was called. Specifically, the longjmpx service returns to the most
recently created jump buffer, as indicated by the top of the stack anchored in the machine
state save structure.
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The argument to the longjmpx service is an exception code that is passed to the resumed
program as the return code from the setjmp service. The resumed program tests this code
to determine the conditions under which the setjmpx service is returning. If the setjmpx
service has just saved its jump buffer, the return code is a value of 0. On the other hand, if
an exception has occurred, then the program has been re-entered by a call to the longjmpx
service, which has passed along a return code not equal to 0.

Note that only the resources listed above are saved by the setjmpx service and restored by
the longjmpx service. Other resources, in particular segment registers, are not restored. A
call to the longjmpx service, by definition, returns to an earlier point in the program. It is the
program’s responsibility to free any resources that may have been allocated between the call
to the setjmpx service and the call to the longjmpx service.

If the exception handler stack is empty when the longjmpx service is issued, there is no
place to jump to and the kernel's default action is taken. If the stack is non-empty, then the
context defined by the topmost jump bufifer is reloaded and resumed. The topmost buffer is
removed from the stack.

The clrjmpx service removes the top element from the stack as placed there by the
setjmpx service. The caller to the clrjmpx service is expected to know exactly which jump
buffer is being removed, as this should have been established earlier in the code by a call to
the setjmpx service. Accordingly, the address of the buffer is required as a parameter to the
clrjmpx service so that it can perform consistency checking by ASSERTing that the address
passed is indeed the address of the top stack element.

Exception Handler Environment
The stacked exception handlers run in the environment in which the exception occurs. That
is, an exception occurring in a process environment causes the next dispatch of the process
to run the exception handler on the top of the stack of exception handlers for that process.
An exception occurring in an interrupt handier causes the interrupt handler to return to the
context saved by the last setjmpx call made by the interrupt handler.

Note: An interrupt handler context is newly created each time the interrupt handler is
invoked. As a result, exception handlers for interrupt handlers must be registered (by
calling the setjmpx service) each time the interrupt handler is invoked. Otherwise,
an exception detected during execution of the interrupt handler will be handled by the
default handler.

Restrictions on Using the setjmpx Kernel Service
Process and interrupt handler routines registering exception handlers with the setjmpx
kernel service must not return to their caller before removing the saved jump buffer or
buffers from the list of jump buffers. A saved jump buffer can be removed by invoking the
clrjmpx service in the reverse order of the setjmpx calls. The saved jump buffer must be
removed before return because the routine's context no longer exists once the routine has
returned to its caller.

If, on the other hand, an exception does occur (that is, the return code from setjmpx service
is nonzero), the jump buffer is automatically removed from the list of jump buffers. In this
case, a call to the clrjmpx service for the jump buffer must not be performed.

Care must also be taken in defining variables that are used after the context save (the call to
the setjmpx service), and then again by the exception handler. Sensitive variables of this
nature must be restored to their correct value by the exception handler when an exception
occurs. Alternatively, if the last value of the variable is desired at exception time, the
variable must be declared as volatile.
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Exception handling is concluded in one of two ways. Either a registered exception handler
handles the exception and continues from the saved context, or the default exception
handler is reached by exhausting the stack of jump buffers.

Exception Codes
The <sys/except.h> header file contains a list of code numbers corresponding to the
various types of hardware exceptions. When an exception handler is invoked (the return
from the setjmpx service is not equal to 0), it is the responsibility of the handler to test the
code to ensure that the exception is one the routine can handle. If it is not an expected
code, the exception handler must:

+ Release any resources that would not otherwise be freed (buffers, segment registers,
storage acquired using the malloc kernel service).
 Call the longjmpx service, passing it the exception code as a parameter.

Thus, when an exception handler does not recognize the exception for which it has been
invoked, it passes the exception on to the next most recent exception handler. This
continues until an exception handler is reached that does recognize the code and can
handle it. Eventually, if no exception handler can handle the exception, the stack is
exhausted and the system default action is taken.

In this manner, a component can allocate resources (after calling the setjmpx service to
establish an exception handler) and be assured that the resources will later be released.
This is because no matter what events occur, the exception handler gets a chance to release
those resources before the instruction stream (a process- or interrupt-level code) is
terminated.

By coding the exception handler to recognize what exception codes it can process, (rather
than encoding this knowledge in the stack entries), a powerful and simple-to-use mechanism
is created. Each handler need only investigate the exception code that it receives (rather
than just assuming that it was invoked because a particular exception has occurred). In
order to implement this scheme, the set of exception codes used cannot have duplicates.

Exceptions generated by hardware use one of the codes in the <except.h> header file.
However, the longjmpXx service can be invoked by any kernel component, and any integer
can serve as the exception code. Thus a mechanism similar to the old-style setjmp and
longjmp services can be implemented on top of the setjmpx/longjmpx stack by using
exception codes outside the range of those used for hardware exceptions.

To implement this old-style mechanism, a unique set of exception codes is needed. These
codes must be guaranteed not to conflict with either the pre-assigned hardware codes or
codes used by any other component. A simple way to get such codes is to use the
addresses of unique objects as code values.

For example, a program that establishes an exception handler might compare the exception
code to the address of its own entry point {that is, by using its function descriptor). Later on
in the calling sequence, after any number of intervening calls to the setjmpx service by
other programs, a program can issue a longjmpx call and pass the address of the
agreed-on function descriptor as the code. This code is only recognized by a single
exception handler. All the intervening ones just clean up their resources and pass the code
to the longjmpx service again.

Addresses of function descriptors are not the only possibilities for unique code numbers. For
example, addresses of external variables can also be used. By using addresses that are
resolved to unique values by the binder and loader, the problem of code space collision is
tranformed into a problem of external name collision. This problem is not only much more
easily solved, but is also routinely solved whenever the system is buiit. By comparison,
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preassigning exception numbers by using #define statements in a header file is much more
cumbersome and error-prone.

Hardware Detection of Exceptions
Each of the exception types results in a hardware interrupt. For each such interrupt, a
first-level interrupt handler (FLIH) saves the state of the executing program and calls a
second-level handler (SLIH). The SLIH is passed a pointer to the machine state save
structure and a code indicating the cause of the interrupt.

When a SLIH determines that a hardware interrupt should actually be considered a
synchronous exception, it sets up the machine state save to invoke the longjmpx service,
and then returns. The FLIH then resumes the instruction stream at the entry to the
longjmpx service.

The longjmpx service then invokes the top exception handler on the stack or takes the
system default action as previously described.

User-Mode Exception Handling
Exceptions that occur in a user-mode process and are not automatically handled by the
kernel cause the user-mode process to be signaled. If the process is in a state in which it
cannot take the signal, it is terminated and the information logged. Kernel routines can install
user-mode exception handlers that catch exceptions before they are signaled to the
user-mode process.

The uexadd and uexdel kernel services allow systemwide user-mode exception handlers to
be added and removed.

The most recently registered exception handler is the first calied. If it cannot handle the
exception, the next most recent handler on the list is called, and this second handler
attempts to handle the exception. if this attempt fails, successive handlers are tried, until the
default handler is called, which generates the signal.

Additional information about the exception can be obtained by using the getexcept kernel
service.

Related Information
The setjmpx kernel service, longjmpx kernel service, clrjmpx kernel service, getexcept
kernel service, malloc kernel service, uexadd kernel service and uexdel kernel service.
Handling Signals While in a System Call on page 4-4.
Writing a Device Driver on page 2-1 .
Extending the Kernel with Device Drivers on page 3-1 .
Extending the Kernel with System Callson page 4-1 .
Kernel Services on page 6-1.
Alphabetical List ot Kernel Services on page A-1 .
Using the Kernel Debugger in General Programming Concepts.
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Writing a Device Driver

The following topics are provided as guidance for understanding how a device driver is
organized and how it fits into the operating system environment:

e Concepts Overview

o Device Driver Classes

¢ Device Driver Roles

o Device Driver Structure

¢ Understanding I/O Access Through Special Files

¢ Understanding the Device Switch Table

¢ Understanding Major and Minor Numbers for a Special File.

Concepts Overview
Device drivers are kernel extensions that control and manage specific devices used by the
operating system. The I/O subsystem, in conjunction with the device drivers, allows
processes to communicate with peripheral devices such as terminals, printers, disks, tape
units, networks. Device drivers may be installed into the kernel to support a class of devices
(such as disks) or a particular type of device (such as a specific disk drive model). Device
drivers shield the operating system from device-specific details and provide a common I/O
model for accessing the devices for which they provide support.

The operating system also supports and uses the concept of pseudo-devices.
Understanding Pseudo-Device Drivers on page 3—10 provides more information.

The system interface to devices, which is supported by device drivers, is through the file
system. Each device that is accessible to a user-mode application has a file name and can
be accessed as if it were an ordinary file. By convention, this device file name is found in
the /dev directory in the root file system. This device file name along with its associated
inode is known as a device special file.

Conceptual Organization of Device Drivers

Device drivers may be characterized by the class of /0 subsystem interfaces that they
provide. Device driver routines may be further characterized by the roles that they play in
supporting the device 1/O. Finally, the overall structure of the device driver is dictated by the
execution environment in which the routines execute.

Device Driver Classes
The AlX operating system supports two classes of device drivers: character and block.
These classes of device driver are distinguished by the types of devices they support and
the interfaces that are presented to the kernel.

The block device interface is suitable for random access storage devices with fixed-size
addressable data blocks. Devices supported by block device drivers can also potentially
support a mounted file system. User-mode access to these block device drivers is through a
block device special file.

The character device interface is more suitable to other types of devices (such as terminais,
printers, and networks) that do not have strict definitions of fixed-size addressable data
blocks. These devices cannot directly support mounted file systems. User-mode access to
these character device drivers is through a character device special file. Character device
drivers are not as highly structured as block device drivers.

Writing a Device Driver ~ 2—1



Block device drivers can provide character device interfaces and access to their block
devices by providing a character special file, as well as the block special file. Character
device access to block devices is called raw //O.

Comparison of Block and Character Device Drivers

Device drivers of both classes have entry points registered in the device switch table.
Character device drivers typically have read and write entry points defined in the device
switch table for providing data transfer operations. Block device drivers on the other hand
have a strategy entry point instead. Block device drivers providing raw I/O access typically
provide read, write, and strategy entry points for providing data transfer operations.

A major difference between block and character device support is in how their read and write
I/O requests are processed. Both types have entry points registered in the device switch
table and both perform I/O as a result of file system calls to their devices. However, read
and write requests directed to a block device are managed by a kernel buffering mechanism
not present on requests directed to character devices.

Read and write I/O access using character special files invokes corresponding entry points
in a character device driver. The same calls using block special files, however, do not
directly invoke corresponding block driver entry points. Instead, the file system processing
these calls invokes buffer management facilities provided by the kernel. These buffer
management routines then call the block device driver strategy routine (ddstrategy) when
required. The buffer management facilities determine when a data transfer is required and
call the correct block driver strategy routine at that time.

Device Driver Roles

Device Head
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Device drivers can play two roles in the AIX operating system: the device head role and the
device handler role. Character and block device drivers can provide one or both roles. A
particular entry point for a device driver is either a device head or a device handler entry
point.

Device driver routines performing the device head role are responsible for fielding the device
driver request generated by a user application. Such requests are submitted through the
use of file system calls or possibly by another kernel extension using the kernel file system
services.

Device head routines have their entry points installed in the device switch table. Examples
of these routines are the device driver ddconfig, ddopen, ddclose, ddread, ddwrite,
ddiocti, ddmpx, and ddrevoke routines. User applications can use file system calls in
conjunction with special files to access these routines, while kernel extensions can use the
file system services available in the kernel (the Logical File System fp_xxxx services).

Device head routines are responsible for the following functions:

* They convert the request from the form of the file I/O function call to a form that the
routines acting in the corresponding device handler role understand.

e They perform the appropriate data blocking and buffering.

e They manage the device. This includes such actions as maintaining queues of I/O
requests and handling error recovery and error logging.

Routines providing the device head role must conform to the programming model described
in System Call Kernel Extension Overview because they are called by system calls and
execute in the same environment.
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Device Handler
Device driver routines fulfilling the device handler role perform the actual I/O to and from the
device. User applications cannot directly access these routines without going through the
device head routines. Examples of device handler routines are the ddstrategy and
dddump device driver entry points, the interrupt handler, start I/0O, and 1/O exception
handling routines.

Support for some devices can be implemented using two separate device drivers. The first
driver acts in the device head role while the second mainly performs the device handler role.
However, this second (device handler) driver can also have its own set of small device head
routines, and these routines would be registered in the device switch table. The extra set of
device head routines is provided primarily to make system configuration and binding easier.
A device driver of this type can be completely inaccessible to application programs or can
provide a special file for diagnostic purposes.

Device Driver Structure
Device driver routines providing support for physical devices typically execute in two different
types of environment, thus leading to a two-part structure. One part, referred to as the top
half of the device driver, always executes in the process environment. Routines in this part
typically provide the device head role, because they are always executed in the environment
of the calling process.

The other part, referred to as the bottom half of the device driver, executes in the process or
interrupt environment. Routines in this part normally provide the device-handling role
because they deal with actual device I/O typically driven by hardware interrupts.

Additionally, for block devices, the strategy routine is found in the bottom half because it may
be called in the interrupt environment due to paging or other asynchronous requests.

DeVIce Drlver Top Half Routines
Because routines in the top half of a device driver are only called in the process
environment, the code and data accessed in this environment are normally pageable. The
AlX kernel is designed to allow large portions of kernel code and data to be pageable in
order to decrease the amount of physical memory required by the kernel. This is very
important for the AIX kernel because the design philosophy is to create fairly large data
structures in pageable virtual memory. These large data structures can then support a wide
range of system loads and configurations.

Preemption in the AIX Operating System

The AlX kernel is designed to allow preemption by other processes while executing in kernel
mode. This change to allow preemption was made in order to enhance support for real-time
processes and large multiuser systems.

Most existing UNIX device drivers do not expect this form of preemption. The effects of
preemption on the existing UNIX device drivers can be minimized by serializing the
execution of these types of device drivers. This can be done by using the unlockl kernel
service with the KERNEL_MODE lock. This does not disable preemption of the device
driver, but ensures that all device drivers of this type are serialized with respect to each
other. Understanding Locking provides more information on using locks.

Device Driver Bottom Half Routines
The second half of the device driver structure is referred to as the bottom half. This half of
the device driver typically consists of a routine that starts I/O operations (start I/0), an
interrupt handler, and (optionally) off-level interrupt handling and device time-out routines.
The device driver’s strategy and dump routines are also considered part of the bottom half.
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The start I/O routine is typically known only to other routines within the device driver, such as
the strategy and interrupt-handling routines. Interrupt handling routines are registered using
kernel services. The dump and strategy routines (the dddump and ddstrategy entry
points) are found in the device switch table.

Some character device drivers, particularly pseudo-device drivers, may have no bottom half
it they have no need to execute in the interrupt environment.

This part of the device driver executes in both the interrupt handler environment and in the
environment of the calling process. Both the code for this part of the device driver and the
data it accesses must be pinned so that page faults are not taken in the interrupt execution
environment. In addition, routines in the bottom half can use only kernel services that are
specified as callable in the interrupt environment.

Serialization and Preemption in the Bottom Half of the Device Driver

Execution serialization in bottom half routines is accomplished by using interrupt control
functions. Unlike top half routines, bottom half routines may not use locks for serialization
because their use may cause a page fault or an attempt to sleep while executing in the
interrupt environment.

The interrupt control functions provided by the kernel provide serialization by allowing a
routine to mask interrupt levels or disable interrupt priorities. These can be used by the
bottom half routine to prevent it from being interrupted by other routines for which
serialization is required. The kernel also provides associated interrupt level unmasking and
priority-enabling functions to resume previously disabled interrupt handling, once the critical
serialization section has been executed. Bottom half routines using these services should
only disable interrupts to the least favored priority that still provides the necessary
serialization.

Bottom half routines may also be executed in the process environment, which is
preemptible. The interrupt priority control functions used in the interrupt environment also
provide the necessary serialization when used in the process environment. This is due to
the fact that dispatching and process preemption are only performed at the least favored
interrupt priority, called INTBASE. The interrupt-level masking services do not provide
process serialization and should be used only when serialization is required in the interrupt
environment.

Understanding /0 Access Through Special Files
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The kernel contains many entry points into the file I/O subsystem. Common entry points are
invoked using the open, close, read, write, Iseek, and ioctl subroutines. The file I/O
subsystem determines whether the request is to gain access to an ordinary file, a block
special file, or a character special file. In the case of device special files, this subsystem
translates the file name into a major and minor number, which are used to select the device
driver and specific device.

Warning: Potential for data corruption or system crashes: Data corruption, loss of data,
or loss of system integrity will occur if devices supporting paging, logical volumes, or
mounted file systems are accessed using block special files. Block special files are provided
for logical volumes and disk devices on AlX and are solely for system use in managing file
systems, paging devices, and logical volumes. They should not generally be used for other
purposes.
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Access to Character Device Drivers
Character device drivers may only be accessed by performing file I/O associated with a
character special file. When processing an open or create request associated with a
character special file, the system always calls the device driver's ddopen entry point to
allow any special processing to occur (for example, device initialization or resource
allocation). The device driver’s ddclose entry point, however, is normally only called when
the last process having the special file open closes it.

When a read or write associated with a character special file occurs, the file system
constructs a uio structure containing the user’s arguments and file-table data to be passed
to the device driver’s ddread or ddwrite entry points. This uio structure describes:

¢ Address of the user’s buffer

o Data transfer count

» Current device data offset obtained from the file table entry

e Current open mode entry or file control information obtained from the file table.

This uio structure is then passed to the ddread or ddwrite entry point of the character
device driver, which performs the data transfer. As a result of this transfer, the fields in the
uio structure are updated to reflect the amount of data actually transferred and the new
device data offset.

Access to Multiplexed Character Device Drivers
Access to multiplexed character device drivers is similar to standard character device
drivers, except that the concept of channels has been added. A channel is typically
supported by a device driver as a resource subunit on a particular device. Each subunit can
be selected by an extra suffix on the special file path name.

As explained previously, the particular device is accessed using a character device special
file containing a device major and minor number. When an open or create request is made
involving a multiplexed character special file, the path name of the special file can be
followed by a character string specifying the name of the channel being requested. If no
name is provided when opening a multiplexed character driver, the device driver typically
assigns the next available channel.

For example, the special file for the high function terminal device is named /dev/hft. Virtual
terminals on that physical terminal are assigned channels. If an open of /dev/hft is
specified, the multiplexed device driver assigns the next available virtual terminal. However,
if an open of /dev/hft/n is specified, a specific virtual terminal is being requested and is
opened by the device driver.

Character device drivers may be supported as multiplexed if they provide and register a
ddmpx routine in the device switch table. When processing an open or create request
associated with a character special file, the system always determines if the associated
device driver has a ddmpx routine specified in the device switch table. If it does not,
standard character device open processing occurs.

If a ddmpx routine is found, the system calls the device driver's ddmpx routine and passes
it a pointer to a character string specified after the special file name. If the character device
driver can successfully allocate a channel, it returns a channel ID to the system. The system
then calls the device driver’s ddopen routine with the channel ID received from the ddmpx
routine to allow for any special processing such as device initialization or resource
allocation. This channel ID accompanies file I/0 requests associated with the particular open
or create call that assigned it.

Unlike a standard character device driver, a multiplexed driver’s ddclose routine is called
once for every close that had an associated open or create request. Once the file system
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has determined that the last close has been issued for a channel, the multiplexed driver’s
ddmpx routine is called with an indication that the channel should be deallocated.

For a multiplexed device driver, a count of the number of explicit opens can be maintained.
However, a count of the number of using processes (due to fork and dup subroutines)
cannot. Keeping a count should be required only in unusual circumstances, because the
last close for a channel can be recognized by the channel deallocation cali to the ddmpx
routine.

Channels offer the advantage of allowing access to a very large number of dynamically
allocated subunits without the need for a large number of special files. The availability of
channels may also be allowed to shrink or grow dynamically as the availability of resources
changes. Once a channel has been opened, its permissions and other security attributes
can be changed independently of other channels or the base special file.

Access to Block Device Drivers

When processing an open request associated with a block device driver, the system always
calls the device driver’s open routine to allow any special processing (such as device
initialization or resource allocation) to occur. However, the device driver’s close routine is
called only when the last process having it open closes the device.

Read and write requests to block device drivers are handled by several different
mechanisms in the AIX Base Operating System. In the following discussion, the first three
mechanisms all use the block interface of the device driver for data transfers and specify the
data transfer parameters in a buf structure passed to the strategy routine.

Access to Block Devices Designated as Paging Devices

The first mechanism involves a block device designated as an active paging device. In this
situation, the pager invokes the device driver ddstrategy entry point for page-out or page-in
data transfers. The pager supplies the necessary buf structures from its own pool and the
associated data buffers are memory pages.

Access to Block Devices By the File System and Virtual Memory Manager

Secondly, block device drivers can be accessed by the file system and virtual memory
manager. This may be due to user file I/O or to access of file system meta-data (internal file
system data). In this case, the file system, the virtual memory manager, and the pager
cooperate to provide buffer caching mechanisms using the underlying memory pages,
instead of providing a caching layer on top of page management.

File /O Access to Block Devices Using the Block Special File
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A third mechanism for access to block device drivers is through file I/O using the block
device special file. If read and write requests are directed to a device using a block special
file, the requests are managed by the block I/O buffer cache mechanism in the kernel. This
buffer cache mechanism attempts to increase efficiency by keeping in-memory copies of
frequently used blocks of data, thus reducing physical I/0 requests to the device. This buffer
cache mechanism also provides multiple processes with a consistent view of the data in the
block. This is true because when separate processes request I/O to the same block on the
same /O device, they all access the same buffer in the cache.

Potential Hazards of Block Special File Usage

Data corruption or loss of data and system integrity occur if devices supporting paging,
logical volumes, or mounted file systems are accessed using block special files. Unlike
previous UNIX operating systems, AlX file systems and paging support use the physical
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memory page management functions in the virtual memory manager to perform the buffer
caching traditionally supported by the block 1/O buffer cache management.

The block I/0 buffer cache is still used, however, tor buffer caching of operations directed to
block special files. Accessing these devices through the block special files can result in more
than one copy of the data existing in memory. The virtual memory manager can be
maintaining one copy while the block I/O buffer cache contains a second. This can lead to
potentially disastrous results.

When block devices are not used by the paging subsystem or file systems, all direct data
accesses transferring large blocks of data should use the raw /O character special file for
best performance. Using the block I/O bufter cache provides poorer performance due to the
small buffer cache size and the non-optimum scheduling of I/O to the device by the block I/O
buffer management support. The block I/O special files should only be used to perform 1/O
when small unaligned or odd-sized data transfers are being requested and performance is
not a concern.

Block special files are provided for logical volumes and disk devices on AlX solely for system
use in managing file systems, paging devices, and logical volumes. They should not
generally be used for other purposes.

Raw I/0O Access to Block Devices Using the Character Special File
A fourth way to access some block device drivers is through raw 1/O using a character
special file name. If a block device driver supports this type of access, the file system
invokes the device driver’s read and write routines for file I/O associated with the character
special file. (Raw I/O access is supported by providing a character special file and
read/write entry points in the device switch table.)

To the file system, this mechanism is identical to character device driver access
mechanisms. The block device driver however must provide raw /O read and write
processing routines. Because the block device driver converts the raw 1/O requests to block
requests, raw |/O typically has data transfer restrictions associated with the driver and
device that are not normally found with ordinary character device I/0O. For example, typical
restrictions are that data transfers must be in multiples of the block size or that data transfers
must start on a block boundary.

Understanding the Device Switch Table
The file system accesses character or block device driver routines through a table called the
device switch table. This table is kept in kernel storage and contains one element for each
configured device driver. Each element is itself a table of entry point addresses. There is
one address for each entry point provided by that device driver.

A device driver’s entry points are inserted in the device switch table at device driver
configuration time. The driver’s configuration routines call various kernel services to install
driver entry points into one or more entries (rows) of the table. Each table entry or row is
indexed by a major number.

Understanding Major and Minor Numbers for a Special File
Major numbers are assigned at device configuration time by the configuration management
routines used by device configuration methods (in particular, the genmajor configuration
library routine). The major number assigned to a device driver for its entry into the device
switch table is the same as the major number in the device special file associated with the
device.

Devices are generally identified in the kernel through major and minor numbers. Usually, a
major number identifies a particular device driver. Minor numbers identify various device
instances known to the device driver. However, a device driver may be assigned multiple
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major numbers. Also, minor numbers can be used to identify different modes of operation for
a device as well as different device instances.

Programs do not need to understand these major and minor numbers to access devices. A
program accesses a device as though it were a file by opening the device’s corresponding
special file located in the /dev directory. The special file’s inode contains a particular major
and minor number combination specified when the special file was created. This
relationship remains constant until the special file is deleted.

The major number uniquely identifies the relevant device driver and thus is used to index
into the device switch table maintained by the kernel. The interpretation of the minor number
is entirely dependent on the particular device driver. Most frequently, the minor number is
used to select one of multiple subdevices supported by the device driver. As a minor device
number, it usually serves as an index into a device driver-maintained array of information
about each of several devices or subdevices supported by the device driver.

Creation of Major Numbers
The first time a device is configured, its Configure method is responsible for determining the
major and minor numbers for the device and for creating the device's special files. When
subsequently configured, the device’s Configure method must ensure that the same major
and minor numbers are used to describe the device to the device driver. This consistency
guarantees that the previously created special file allows access to the same device as it did
previously.

Major numbers are allocated to device driver instances. When the genmajor routine is
invoked with a particular device driver instance name passed as a parameter, it will:

¢ Return the major number corresponding to the device driver instance name, if it has
already been ailocated, cr

* Assign the next available major number to the specified device driver instance and return
the newly assigned number.

Each time a device is configured, its Configure method should simply call the genmajor
routine with the device’s device driver instance name. If the device has not been assigned a
major number, the genmajor routine assigns one and returns it. Otherwise it returns the
previously assigned number.

A device's device driver instance name is obtained from the Device Driver Instance
descriptor of the device’'s CuDv object. This descriptor is usually filled in by the Define
method when the device is first customized. For most devices, the device driver instance
name is simply the device driver name. If the device driver for a device uses multiple major
numbers, a different device driver instance name must be assigned for each major number.

Creation of Minor Numbers
The allocation of device minor numbers is highly device-specific. A device’s Configure
method can determine minor number assignments on its own or it can use the genminor
and getminor routines. When the genminor routine is used to allocate minor numbers for a
device, information is stored in the Configuration database, which keeps track of what minor
numbers have been assigned for a particular major number, as well as the minor numbers
being assigned to the device. The getminor routine can be used to obtain a list of minor
numbers that have been assigned to a device.

Releasing Major and Minor Numbers ;
When a device is unconfigured, its special files and major and minor number assignments
typically remain intact. The Unconfigure method does not deallocate the assignments or
remove special files. This eliminates the need to reassign new values and rebuild special
files when the device is once again configured.
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The major and minor numbers are to be unassigned when the device is undefined. The
Undefine method will also delete the device’s special files. If the device’s minor numbers
were allocated with the genminor routine, the reldevno routine can be used to both delete
the major and minor number assignments and to delete the special files.

Related Information
The inode File.
The pin kernel service, pincode kernel service unpin kernel service, lockl kernel
service, unlockl kernel service.
The genmajor configuration subroutine, genminor configuration subroutine, getminor
configuration subroutine, reldevno configuration subroutine.
The ddconfig device driver entry point, ddopen device driver entry point, ddclose
device driver entry point, ddioctl device driver entry point, dddump device driver entry
point, ddread device driver entry point, ddwrite device driver entry point, ddselect
device driver entry point, ddmpx device driver entry point, ddrevoke device driver entry
point, ddstrategy device driver entry point.
The Device Configuration Subroutines.
Special File Overview in General Programming Concepts
Interrupt Management Services on page 6-7, Understanding Execution Environments
on page 1-6 .
Kernel Environment Programming on page 1-1.
Virtual File System Overview on page 5-1, Writing System Calls on page 4-1,
Extending the Kernel with Device Drivers on page 3-1, Block I/O Buffer Cache Kernel
Services: Overview on page 6-8.
Writing a Device Method on page 7-7.
The Configuration Subsystem on page 7-1.
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Extending the Kernel with Device Drivers

The following topics are provided as guidance for extending the kernel with device drivers:

Understanding Block 1/0 Device Drivers
Block I/O Processing

Understanding Character /O Device Drivers
Understanding Off-Level Processing
Understanding Pseudo-Device Drivers

1/0 Exception Handling Overview
Interfacing to the Hardware

Installing and Configuring Device Drivers.

Writing device drivers to extend the kernel has the following advantages over adding system
calls:

¢ Applications access device drivers through the file I/O subsystem. This subsystem
provides a uniform security mechanism for controlling access to objects.

¢ The file I/O subsystem presents a common set of interfaces for accessing the devices.
These interfaces provide a degree of device independence at the application level.

¢ The open and close file processing required by the file /O subsystem also allows device
drivers to maintain per-process information easily.

A disadvantage of device drivers over system calls is that they must conform to the
interfaces enforced by the file /O subsystem, while system calls do not.

Understanding Block I/O Device Drivers
A device driver in the block class supports asynchronous I/O transfers in fixed-size blocks,
as requested by the operating system. Block device drivers may be used by the operating
system’s block I/O buffer cache routines, the pager, file systems, and other device drivers.

Block 1/0 Device Driver Entry Points

The device switch table contains the entry point addresses of the interface routines for each

block device driver in the system, just as it does for character device drivers. Like character
device drivers, block device drivers supply both a config routine for configuration support
(the ddconfig device driver entry point) as well as open and close routines (ddopen and
ddclose) called on each open and on the final close of a device. Instead of having separate
read and write routines, as character device drivers do, each block device driver has a
strategy routine (ddstrategy). This routine is called with a pointer to a buffer header, known
as the buf structure, which contains the /O request parameters.

Block device drivers can also provide an ioctl routine (ddioctl), which is called when an ioctl
subroutine operation is directed to the device. However, the support of ioctl subroutine
operations by a block device driver is more restrictive than that of character device drivers.
An ioctl subroutine operation to a block device must not be required as a prelude to
strategy-routine processing of requests. Therefore, ioctl subroutine operations provided by
a block device driver should only provide optional control functions and must not be required
in order for the strategy routine to perform operations to or from the device. This is because
ioctl operations are typically device-dependent, and the block device interface must be
supported as a device-independent interface because it is being used as a generic interface
by the base operating system.
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Providing Raw /O in a Block I/O Device Driver
Block device drivers supporting raw 1/O can also provide read and write routines (ddread
and ddwrite) with entry points in the device switch table. These routines can be used to
provide a more character-like interface to the device. However, they do not provide the full
I/0 access capabilities provided by many character device drivers. Data blocking restrictions
not normally found with character device driver access are typically required for the
character read and write interface of block device drivers providing raw 1/0.

There are also other differences between character drivers and block drivers providing raw
I/0. Asynchronous open, read, and write requests are not normally supported by block
device drivers in the way that character device drivers may support them. In addition, device
event-notification functions provided by the poll and select subroutines are not provided by
biock device drivers. Finally, there is no multiplexed capability available to block device
drivers as there is for character device drivers.

Understanding Raw [/O Access to Block Device Drivers on page 3-4provides more
information about this dual interface to block devices. Understanding Raw I/0O Support on
page 3-5 explains how raw |/O requests are processed.

Optional System Dump Support
Block device drivers may also optionally support their device as a candidate target for
system memory dumps. The dddump entry point is provided in the device switch table for
this purpose. In the unlikely event of a system crash, the AIX kernel will initiate a system
dump request to a predesignated dump device. Because normal system processing and
resources should not be relied upon in this situation, the device driver’s dump routine must
provide special system dump support to the device.

Unsupported Entry Points ;
A block driver does not support all of the entry points found in the device switch table
because the table is used by both block and character device drivers. If the routine is not
provided and should not generate an error when called, the corresponding entry point in the
device switch table should specify the nulldev entry point. If the call should result in an
error return, the nodev entry point should be specified. These default routines are provided
as part of the base kernel.

Examples of device switch entry points that should be set to the nodev base kernel routine
are the ddmpx, ddrevoke, and ddselect entry points. If raw I/O is not supported, then the
ddread and ddwrite entry points should also be set to the nodev entry point in the device
switch table. If the driver does not provide ioctl or system dump support, the corresponding
ddioctl and dddump entry points should also be set to the nodev entry point.

Block I/0O Processing
A discussion of block 1/O processing encompasses the following topics:

Accepting the Request

Providing notification of /O completion
reordering of /O requests

Handling out of range block numbers
Queuing the request to the start I/0 Routine
Starting processing with the start I/O Routine.

Accepting the Request
When the strategy routine (the ddstrategy device driver entry point) is invoked, a pointer to
a buffer header (or chain of buffer headers) is used as a parameter for requesting device
I/0. The buffer header is in the format of a buf structure. The role of the strategy routine is
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to perform the operation as requested by the information in the buffer header or chain of
buffer headers. The buffer header contains the following information:

e Major and minor number of the device for which the I/O is intended
o Description of the memory buffer to be used in the data transfer

¢ Direction of the transfer

o Count of the amount of data to be transterred

¢ Block number on the device for which the /O is targeted

* Operation flags.

The strategy routine returns to the caller as soon as the buf headers have been queued to
the appropriate device queue. The strategy routine provides no return code to the caller and
never waits for I/O to complete before returning.

Providing Notification of /O Completion
The caller is notified of I/O completion (or of an error associated with the request) by the
device driver’s call to the iodone kernel service. A residual count of the number of
requested bytes not transferred by the operation is placed in the buffer header b_resid field
before the 1/0 is marked complete for the buffer header. If all requested bytes were
transterred, this count has a value of 0. Otherwise, it contains the number of bytes that were
not transferred.

The device driver indicates an error by setting the B_ERROR flag in the associated buf
header b_flags field and placing the error number in the b_error field. These fields must
have been set before calling the iodone kernel service.

The B_DONE flag in the buffer header must not be set by the device driver. The iodone
service sets this flag when called by the device driver and invokes the iodone routine
(specified in the buffer header) from the iodone interrupt handler. The address of the
iodone routine is placed in the buffer header by the caller of the strategy routine, before
calling the strategy routine. The device driver calls the iodone service for each buffer
header received by the strategy routine.

Reordering of 1/0O Requests
Multiple buffer headers can also be presented to the strategy routine, where the additional
buffer headers may be chained to the first by using the av_forw pointers. The buffers are
not typically back-linked using the av_back pointers. While the device driver strategy
routine is free to rearrange the buffers on its device queue with respect to the processing for
strategy requests, the ordering of the buffer headers provided in a chain to the strategy
routine cannot be modified. Therefore, although the device driver might, for optimization
purposes, reorder individual strategy requests, the ordering of the transfers within a
particular strategy request cannot be changed.

Besides reordering the strategy requests for performance, some strategy routines attempt to
coalesce requests into fewer and larger I/O requests. This is possible when the requests
can be ordered so that they specify contiguous blocks on the device within the limits of the
maximum transfer size of the hardware. See Spanned (Consolidated) Commands in the
Execution of SCSI /O Requests on page 12-5.

Handling Out of Range Block Numbers
The strategy routine also determines if the block number requested in the buffer header is
valid for the device. On read operations, a block number at the end-of-media is not
considered an error, but no data is transferred. For write operations, if the block number is
at the end-of-media, it is considered an error. In this case, the B_ERROR flag in the buf
structure should be set, and the b_error field should be set to contain the ENXIO value.
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For both reads and writes, a block number past the end-of-media is considered an error.
in this case, the B_ERROR flag should be set to on, and the b_error field should be set to
ENXIO. For both reads and writes, if the beginning block number is before the
end-of-media, and the transfer length causes the end-of-media to be reached, then no
error is indicated. The b_resid count is set to the number of requested bytes that were not
transferred because the end-of-media was reached. The end-of-media is defined as
the first block outside the capabilities of the device.

Queuing a Request to the Start I/O Routine

To maintain the state of the device and its /O requests, the device driver typlcally allocates a
private data structure in system memory associated with the device. Here the device status
flags are maintained along with device error information and device queue pointers. Some
device drivers maintain more than one queue of buffer headers: one queue for those that are
waiting for 1/0 to start and another for those that currently have I/O in progress.

The buffer headers on these device queues are chained together using the av_forw and
av_back fields in the buffer header. Generally, these fields are used by the caller of the
strategy routine to manage the free list of buffer headers. These fields can also be used by
the device driver because buffer headers handed to the strategy routine are no longer on a
free list.

The Start I/0 Routine

Once the strategy routine has queued the buffer headers, it calls the start I/O routine to start
processing the I/O requests if the queue had previously been empty. If the queue was not
empty, it simply queues the requests without calling the start I/O routine. Queuing the
requests is normally done in an interrupt-disabled condition to ensure serialization with the
device-handling routines executing in the interrupt environment. This maintains the
consistency of the I/0 queue.

Once the 1/0-handling routines have completed an I/O transfer and performed the
corresponding iodone processing (typically in the interrupt environment), the device 1/0
queue is checked to determine if any further requests are queued. If more work is found on
the device I/0O queue, the start I/O routine is then called from the completion-handling
routines.

The start I/O routine is responsible for splitting the 1/0O transfer requests into multiple I/O
transfers, if necessary, and for providing an interface to the hardware. This interface sets up
the system and device hardware for the command and data transfers. This can involve
preparing for direct memory access (DMA) transfers, performing programmed I/O to the
hardware, handling (and possibly retrying) I/O errors, and processing device interrupts.

Understanding Raw I/O Access to Block Device Drivers

3-4

While character device drivers can only be accessed by character special files, most block
device drivers provide a character as well as a block interface. A dual interface of this kind
requires conditions:

¢ The block device must have both a character and a block special file name so that it can
be referenced by either.

¢ The block driver must have read and write entry points as well as a strategy entry point.
The character entry points allow reading and writing of non-cached data.

A block device driver that provides character device entry points is said to provide raw l/O
support. For example, the first diskette drive is a block device with two special file names.
The drive can be accessed as either /dev/fd0 (block) or /dev/rfd0 (character). The rin the
name /dev/rfd0 stands for raw because character-oriented access to a block device is called

“raw I/O.
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Motivation for Providing a Raw I/O Interface to a Block Device

The raw interface to a block device is provided to avoid the buffering usually done for block
data transfers. When an /O request is issued to a block special file, the file system invokes
the buffer storage services provided by the kernel. An alternative is to issue the 1/O request
using the character special file name for the same block device. This circumvents the buffer
management services altogether.

Raw interfaces are typically used when a known amount of data is to be transferred.
Examples of such cases are when formatting devices or while performing backups (such as
backing up a disk to tape). In these cases the amount of data to be read from or written to
the device is known ahead of time. The data can be transferred out of the memory buffer
allocated by the user process and directly to the device. This transfer can be done without
the use of buffers and in blocks as large as the user requests.

Avoiding the buffer storage services used by the file system may result in better
performance. This is because the user’s buffer size is often more appropriate to the device
or operation being used. The raw interface to block device drivers also avoids making an
extra data copy when moving the data from user to kernel buffer storage (or vice versa).

Note: Applications should use the raw mode interface to a block device driver carefully.
Inconsistencies can arise if device data is accessed in raw mode while a separate
version of the data is already present in the kernel’s buffer cache. This situation can
arise either when a file system is mounted on the device or when access is made
through the block special file.

Understanding Raw 1/O Support
A mechanism is provided by which block device drivers can provide the ability to transfer
data directly between the user’s memory and the device. That is, data transfer does not use
the block I/O buffer cache and can occur in blocks as large as the caller requests. This
mechanism uses a character device special file to provide access to the raw device along
with ddread and ddwrite entry points provided by the block device driver. Instead of
sending the read and write requests through the block I/O buffer cache mechanism (as in the
case of I/O using the block special file), the requests are processed and sent to the device
driver in the same manner as for a character device driver. The device driver ddread and
ddwrite routines, however, are usually much different from the read and write routines
typically found in a true character device driver.

Processing a Raw I/O Request

The block device driver’s read and write routines typically convert the raw I/O request into a
block request that is sent to the device driver’'s own ddstrategy routine. To do this, one or
more buf headers must be allocated to contain the block requests. These buf headers can
be created from the kernel heap or allocated from the buf header pool used by the block /O
buffer cache.

The device driver routines then process the parameters for the raw 1/O data transfer, as
provided by the file system in the uio structure. Information taken from this structure is
transformed into block |/O parameters that are put in one or more buf headers. The device
driver’s own strategy routine is then called to process the 1/0 request, while the read and
write routines typically wait for I/O completion.

The major part of the effort described previously is in converting the raw 1/O request into a
block request and then making the data buffer in the user address space accessible to the
device driver’s device handling routines. Because the block I/O is asychronous, the user’s
buffer must be attached to and accessed using the cross memory services provided by the
kernel.
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Processing by the uphysio Kernel Service

The kernel provides the uphysio kernel service to help convert the request to a block format
and provide the cross-memory access. The device driver can indicate the number of buf
headers that the uphysio service is to use. The uphysio service then allocates this number
of headers, using them to send the requests to the strategy routine. Multiple buf headers
help maximize the 1/O redrive capability of the device’s strategy routine. Alternatively, the
driver can specify only a single buf header to make error handling and recovery simpler.

The device driver can also provide the uphysio service with a special parameter-adjusting
mincnt routine. This routine is called to handle device-dependent restrictions before the
uphysio service sends the buf header to the strategy routine.

Once I/O specified for the current use of the header has finished, the uphysio service
continues reusing buf headers until the entire I/0O operation has completed. Completion is
achieved when all the data requested in the uio structure has been transferred by the
strategy routine or when an error is detected. In either case, the uphysio routine will not
return to the caller until all the I/O transfers it initiated have been completed.

Understanding Character I/O Device Drivers

A device driver in the character class supports devices that do not fall into the block I/0
model. Character devices such as displays, keyboards, printers, terminals, communications
lines, and many pseudo-devices support character-at-a-time 1/0. Character device drivers,
however cannot support mounted file systems or paging devices. They are generally used
by user-mode application programs or device subsystems to access a device.

The device switch table contains the entry point addresses of the interface routines for each
character device driver in the system, just as it does for block device drivers. Like block
device drivers, character device drivers supply a config routine (the ddconfig entry point) for
configuration support as well as open and close routines (ddopen and ddclose) called on
each open and on the final close of a device.

If multiplexing is supported, an mpx routine (ddmpx) must also be included that is called
before the open routine and after the close routine. Character device drivers can also
provide an ioct! routine (ddioctl) to support special control requests and a revoke routine
(ddrevoke) if the supported device is considered to be in the Trusted Computing Path.
Unlike block device drivers, character device drivers provide read and write routines (ddread
and ddwrite) in the device switch table to process read and write requests directly.

Unsupported Entry Points

A character device driver need not provide all of these routines if they are net required for
the device being supported. If a routine is not provided and should not generate an error
when called, the corresponding entry point in the device switch table should specify the
nulldev entry point. If the call should result in an error return, the nodev entry point should
be specified. These default routines are provided as part of the base kernel. Because both
character and block device drivers use the same device switch table, character device
drivers should set the block device entry points, ddstrategy and dddump, to the nodev
entry point.

Non-multiplexed Support

3-6

For traditional, nonmuttiplexed character device drivers, the driver’s open routine is called for
each open of the device, with the device major and minor number and the open mode flags
sent as parameters. The close routine is called only when the device is closed for the last
time (that is, when the last process for which the device is open closes it). It is therefore not
possible for a nonmultiplexed device driver to maintain its own count of its users. The open
and close support for multiplexed character device drivers is somewhat different, however.
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Multiplexed Support
A multiplexed character device driver provides an mpx routine, whose ddmpx entry point is
specified in the device switch table. When a device open is processed, the kernel calls the
driver’s mpx routine before calling the open routine. This mpx routine is called to evaluate
any channel name specified with the character special file name. The mpx routine’s job is to
allocate a channel, associate it with the channel name, and return a channel identifier to the
kernel. The kernel then calls the driver’s open routine with device major and minor number,
control flags, and the supplied channel identifier. If any further device requests (read, write,
or ioctl operations, for example) specify this open channel, the kernel provides the
corresponding channel identifier to the device driver routine as a parameter.

Unlike a nonmultiplexed character device driver, the muitiplexed driver’s close routine is
called once for each close associated with an explicit open request. For close requests
resulting from inherited opens (due to fork or dup subroutine calls), the driver’s close
routine is not called. Once the last close for a channel has been processed by the device
driver’s close routine, the kernel calls the device driver’'s mpx routine with the channel
identifier, requesting that the channel be deallocated.

Read and Write Support
When the read or write routines (ddread and ddwrite) are called, they are supplied with the
device major and minor number, a channei identifier (if multiplexed) and a pointer to a user
1/0 structure containing the parameters of the read or write request. This Uio structure
contains the following information:

Number of characters to transfer

/0 mode flags

Address and length of one or more data buffers to be used in the /O

Address space identifier describing the address space in which the buffer(s) resides.

The address space identifier is provided because these routines can be called by other
device drivers. As a result, buffers can be either in system address space, the user’s
address space, or in a cross-memory address space.

Writing One Character at a Time

The driver's write routine (the ddwrite entry point) is responsible for copying characters from
the buffer or buffers specified in the uio structure to the device. (The number to copy is
specified by the uio_resid field in the uio structure.) For many drivers working with one
character at a time, the uwritec kernel service can be used for this purpose. This service
uses the uio structure to retrieve characters from the caller’s buffers, which are in the
address space designated by the uio_sedflg field. Successive calls to this service return
characters from these buffers until no more characters are available or until an error is
detected. The uwritec service updates the uio_resid field, which is used by the caller of the
write routine to determine how many characters were transferred.

Reading One Character at a Time

The driver’s read routine (the ddread entry point) is responsible for copying uio_resid
characters from the device to the buffers specified in the uio structure. For many drivers
working with one character at a time, the ureadc kernel service can be used for this
purpose. This service uses the uio structure to put characters into the caller’s buffers, which
are in the address space designated by the uio_segflg field. Each successive call to this
service writes characters into the next available buffer location described by the uio
structure. This can continue until the uio_resid character count is 0 or an error is detected.
The ureadc service updates the uio_resid field, which is used by the caller of the read
routine to determine how many characters were transferred.
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Moving Large Numbers of Characters at a Time

The uiomove kernel service is available for read and write routines that transfer large
numbers of characters between the caller’s buffer (described by the uio structure) and the
device (or a device driver buffer). When many characters must be transferred, the use of
this service provides much faster transfer of data than the character-at-a-time services. This
service either transfers as many characters as its n parameter specifies or keeps
transferring until the uio.uio_resid field becomes 0 (whichever comes first). The direction of
the move is specified by the setting of the rw parameter on the call to the service.

I/0 Control (ddioctl) Support

The 1/O control or ioctl routine (the ddioctl device driver entry point) is usually provided by a
character device driver providing special control functions. The ioctl routine is provided with
the device major and minor number, the channel identifier (if multiplexed), an 1/0 control
command parameter, and an argument parameter associated with the command. The
meanings of the command and argument parameters are by definition device-specific.
However, all device drivers in AIX should support the IOCINFO ioctl operation, which
provides general device information. In addition, tty device drivers generally support a base
set of /O control commands defined in the general terminal termio interface.

Select and Poll Support

3-8

Character device drivers can also support multiple 1/0 event notification by providing a select
routine (the ddselect device driver entry point) in the device switch table. This routine is
invoked in response to a select or poll subroutine call with the device major and minor
number, channel identifier (if multiplexed), a requested events parameter, and a returned
events parameter. Flags in the requested events parameter indicate which event is being
requested along with a synchronous request indication. The most commonly supported
events are data available for reading (POLLIN), device available for writing (POLLOUT), and
exceptional condition outstanding (POLLPRI).

The select routine should check the current state of the device and set the corresponding
tlag or flags in the returned events parameter. If at least one requested event is indicated as
true in the returned events parameter, or if the synchronous request flag is set in the
requested events parameter, the select routine should simply return from the call.

If none of the requested events are true and the synchronous request flag is not set, the
select routine should remember which events have been requested for this device (by
setting state flags in a private data area) and return to the caller. Other device driver
routines, typically interrupt handlers, should check the requested-event state flags and notify
the system if one or more of the events have become true for the device.

Notification of the event is achieved by calling the selnotify kernel service. This service
takes as input the device major and minor number, channel number (if multiplexed, or 0 if
not), and a returned events parameter indicating which events have become true for the
specified device. Unlike previous UNIX support for this capability, requesting-process
collisions and process identifiers do not have to be dealt with by the device driver. The
selnotify kernel service wakes up all processes still waiting on one or more of the events
now true for the device specified. After calling the selnotify kernel service, the device driver
should reset the requested state flags for the events that have become true.

Note: The synchronous request flag and the requested-event state flags are used and
maintained by the device driver for performance reasons. These fields are used to
prevent unnecessary calls to the selnotify kernel service, such as when events on a
device are no longer being waited for. Actually, the selnotify kernel service knows
not to perform notification in these cases and could be called even when the original
request was synchronous, or for devices and events that were not requested.
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Although calling the selnotify routine in all these cases might make device driver
programming simpler, it could have adverse effects on device and system performance.
This is because the selnotify routine must search a hash chain for events and devices not
present each time it is called. It is recommended that the programmer of this routine ensure
optimal device and system performance by using the synchronous request flag and
maintaining requested event state information.

Device drivers providing a select routine can also use other device drivers, perhaps as
device handlers. The kernel provides a cascading select kernel service called fp_select that
can be used to pass select requests from one device driver to another.

Trusted Computing Path Support
Device drivers supporting terminal (display or keyboard) I/O devices on the AIX Base
Operating System should provide a revoke routine (the ddrevoke entry point) in the device
switch table. When called by the kernel, this routine should terminate any processes
sleeping in the device driver (they are typically waiting on I/O) by issuing the signal
subroutine call with the SIGKILL signal. This should be done for each process put o sleep
by the device driver that is waiting on the designated device. The revoke routine is used by
the security services in the AIX Base Operating System.

Physical Device Support
Character device drivers supporting physical devices have device 1/O routines and device
interrupt handlers that provide an interface to the hardware. These routines are used by the
open, close, read, write, and 1/O control routines. The device-handling routines are
generally in the bottom half of the device driver, which can be executed in both the process
or interrupt handler environment.

Most device drivers use buffering mechanisms and queues between the device head
routines in the top half of the device driver and the device handler routines in the bottom
half. For relatively low data-rate devices, a character list (clist) buffering mechanism is
provided by the kernel's clist services, which can be used by device driver top and bottom
half routines. This kernel-provided set of character buffers is shared among all
character-oriented devices that use these clist services. Because a limited amount of
character buffer space is provided, device drivers should maintain a maximum character
queue depth. This avoids excessive use of the available space by one device.

For high data-rate devices, the device driver programmer can choose to implement a private
buffering scheme. This can be achieved by allocating memory from the kernel or pinned
kernel heap using the xmalloc kernel service. When this memory is no longer being used, it
must be returned using the xmfree service.

Alternately, some character device drivers of this type borrow bufters from the block /O
buffer cache pool provided by the kernel. The getebik kernel service can be used for this
purpose, but the resources of this pool are also limited. Overuse of these buffers can impair
the performance of block /O devices, because fewer buffers are available for block /0
device caching. When these borrowed buffers are no longer in use, they should be returned
to the buffer pool by using the brelse kernel service.

Understanding Off-Level Processing
A device’s interrupt priority is selected based on two criteria: its maximum interrupt /atency
requirements and the device driver’s interrupt execution time. The interrupt latency
requirement is the maximum time within which an interrupt must be serviced. (if it is not
serviced in this time, some event is lost or performance is degraded seriously.) The interrupt
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execution time is the number of machine cycles required by the device driver to service the
interrupt. Interrupts with a short interrupt latency time must have a short interrupt service
time. The general rule for interrupt service times is based on the following interrupt priority
table which depicts interrupt priority versus interrupt service times:

Priority Service Time (machine cycles)

INTCLASSO 200 cycles
INTCLASS1 400 cycles
INTCLASS2 600 cycles
INTCLASS3 800 cycles
INTOFFLO 1500 cycles
INTOFFL1 2500 cycles
INTOFFL2 5000 cycles
INTOFFL3 5000 cycles.

Off-Level Interrupts
The INTOFFLn interrupt priorities are for off-level interrupt processing. Typically, they are
used when the interrupt service time for an operation exceeds the time allowed at that
interrupt priority. The i_sched kernel service is used to schedule off-level processing. The
operation is then set up to be performed at an off-level interrupt priority. This allows other
device interrupts to preempt the operation of the off-level handler at a small cost of
additional system overhead.

Operations that do not meet the off-level service time requirements must be scheduled to be
performed under a kernel process in order to maintain adequate system real-time
performance.

Device driver routines providing the device handler role often include an off-level processing
routine. The kernel calls the off-level routine to perform device-specific processing after the
following events have taken place:

¢ The interrupt handler has completed its processing.
¢ The interrupt has been reset.

The processing associated with a device interrupt can be time-consuming. The off-level
routine allows a device to perform this processing at a less favored priority. This in turn
enables interrupt handlers to run as fast as possible by avoiding interrupt-processing delays
and device overrun conditions.

This routine must be part of the bottom half of the device driver when present.

Understanding Pseudo-Device Drivers
The AlX operating system supports and uses the concept of pseudo-devices. Device drivers
for pseudo-devices are used to access low-level system facilities that are not necessarily
true I/0 devices. These system facilities can be purely software functions for which there is
no associated physical device.

Pseudo-device drivers are accessed by special file path name, just as regular device drivers
are. As a result, access to particular system facilities can be controlled by the access
permission mode of the special file. Thus pseudo-device drivers are provided because the
I/0 subsystem model provides a convenient way to control access to these software
functions.
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For example, the mem and kmem pseudo-device drivers allow user applications access to
memory that is not ordinarily accessible in their protection domain or address space. (This
assumes that they do, however, have the required privilege).

The AIX Base Operating System provides the following special-purpose drivers among

others:

tty Allows a program to access its controlling terminal.

null Discards output written to it and indicates an end-of-file condition when
read.

bus Permits direct access to the 1/0 bus for memory-mapped I/O.

mem Provides access to system memory.

kmem Provides access to kernel memory.

trace Records data when tracing programs.

console Provides access to the system console.

dump Provides identification of dump devices and control of system dumps.

/0 Exception Handling Overview
The AIX Base Operating System handles errors caused by programmed I/O as synchronous
exceptions. This means that the error notification immediately follows the instruction with
which the error was associated.

Asynchronous errors, such as errors during DMA operations, do not generate exceptions.
Instead, these errors are detected when the processor performs a status check of the
operation. (For example, the d_complete kernel service performs such checks.)

Hardware error handling, logging, and recovery are very hardwareplatform-specific in nature.
However, the AIX kernel provides a general mechanism and structure that can be used for
error recovery on many hardware platforms.

Device Handler Error Recovery
Device handlers performing programmed I/O in an AIX environment are expected to set up
exception handlers to catch and log errors due to programmed I/O. Failure to catch an
exception of this nature generally causes the default exception handler to be invoked. This
default exception handler normally logs the error and crashes the system (if the error was
generated from kernel mode). A device handler must therefore register an exception handler
(by using the pio_assist or setjmpx kernel services) to catch I/O exceptions even if the
handler cannot recover the state of the device.

Device handlers supporting devices that never generate bus errors must also handle bus
errors that can occur while performing programmed I/O with their device. This is because
bus errors detected by other devices on the Micro Channel can generate an exception due
to detected errors on the bus, even though the device detecting the error is not itself the
target of the 1/0 operation.

The kernel's first-level exception handler obtains error information and invokes the most
recently registered exception handler. If recovery of the device is not possible, the device
handler should return an error indication to the routine requesting the failed /O operation.

Recoverable Hardware 1/0 Errors

The following errors are designated as generally recoverable on the RISC System/6000
platform for most adapters:

1/O Adapter activated Channel Check Line

Parity error occurred on bus controlier resources

Data Parity Error was detected on read from adapter
No Response from adapter was detected on read/write.
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Non-recoverable Hardware 1/O Errors

The following errors may occur on the RISC System/6000 but are not typically recoverable
by a device handler. Errors of this class usually indicate programming errors:

¢ 1/O Register access attempt without proper authority
o |/O Bus memory access attempt without proper authority
¢ 1/O Bus memory access caused Page Fault.

Typical device handler action when encountering an exception of this class is to log the
failure and provide an error code to the user of the device at the time of the error.

For device handiers not using the pio_assist kernel service, exception conditions due to I/O
bus exceptions cause a return from the setjmpx kernel service with a return code of
EXCEPT_IO. The getexcept kernel service returns a structure containing platform-specific
error information. This information is described in the definition of the pio_except structure
found in the <sys/except.h> header file for the appropriate platform.

For the RISC System/6000, this error information allows the user to determine the following:

Which of the previously mentioned errors above occurred
Whether the operation was a load or store

The bus unit ID used

The effective address used on the access.

Interfacing to the Hardware
The following discussion topics are provided as guidance for accessing and controlling 1/0
devices from a device driver:

¢ Processing Interrupts
* Understanding Direct Memory Access
¢ 1/O Exception Handling Overview.

Processing Interrupts
An interrupt level is the means by which a device notifies the system of the occurrence of an
event. How interrupt levels are assigned to an adapter depends on the type of bus to which
the adapter interfaces.

Some bus implementations allow interrupt levels to be assigned at system configuration
time. System configuration software determines which adapters are present and assigns an
interrupt level to the device adapter using special bus commands. System configuration
then sets the device configuration and initialization data to reflect this assignment.

However, some buses do not support programmable assignment of interrupt levels. The
assignment of these interrupt levels is usually hardwired or selected by a jumper on the
adapter. In the latter case, system configuration executes an adapter-specific command that
determines how the adapter is configured. The device’s configuration and initialization data
is then set to reflect the adapter’s configuration.

The RISC System/6000 supports I/O adapters attached to the Micro Channel Bus. This bus
and associated adapters support POS (a Programmable Option select capability). The POS
capability allows the adapters to be configured into the system using software instead of
hardware switches and jumpers.

Each time the System/6000 is booted, the Micro Channel Bus configuration method scans
the bus and creates a list of all adapter cards plugged into the slots. For each adapter
plugged into a slot, the method uses the adapter ID (sensed from the POS registers) to look
up the adapter’s assignable resources in the devices database.
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If the adapter uses one or more interrupt request lines, database adapter attributes describe
all possible interrupt level assignments to which the adapter can be programmed. A default
or preferred interrupt level is also given. An attribute associated with each interrupt request
line indicates which interrupt priority an interrupt line should be assigned. interrupt levels can
be shared by more than one adapter if and only if they all request the same interrupt priority.
The system does not support different priorities on the same interrupt level.

The bus configuration method selects a interrupt level assignment for each adapter using
interrupts in the system so that no interrupt level is assigned two different priorities. These
assigned interrupt levels are then written into the Customized Devices database object for
each adapter in a slot. interrupt priority assignments are assumed to be fixed and are never
modified by the configuration program.

When the adapter’s specific configuration method is called later in the configuration process,
it reads the assigned interrupt level and associated priority from the database for the specific
adapter being configured. The adapter’s method then puts this information in a
device-dependent structure used to initialize the device driver supporting the adapter.

When the device driver is initialized for the adapter in the specified slot, the information in
the device-dependent structure is written to the adapter’s POS registers. This action
properly configures the adapter.

Kernel Services for Managing Interrupts

The AIX kernel provides the following kernel services for managing interrupts.

i_init Allocates an interrupt level.
i_unmask Enables an interrupt level.
i_mask Disables an interrupt level.
i_clear Frees an interrupt level.
i_enable Enables interrupt priorities.
i_disable Disables interrupt priorities.
i_sched Schedules off-level processing.

The i_enable and i_disable services should be used to serialize the execution of device
driver code with its interrupt handler. The <sys/intr.h> header file defines the valid interrupt
priorities. |t also indicates the interrupt priorities that various kernel services use to serialize
their execution.

The i_sched service can be used to schedule some of a device driver’s interrupt processing
at a less favored interrupt priority.

Both bus and off-level interrupt handlers have guidelines for maximum pathlengths.
Understanding Interrupts on page 6-9 provides more information about interrupt priorities
and maximum path length. Understanding Off-Level Processing provides the guidelines for
off-level handler path length.

Early Power-Off Warning
Some machines detect that power is about to be lost and generate an early power-off
warning (EPOW). Some device drivers may need an early power-off warning to recover
gracefully from loss of power.

For example, the AlX file system on the RISC System/6000 requires that no sector be
damaged when power is lost. To avoid damage, devices containing file system data must be
stopped at a sector boundary when power is about to be lost.

A device driver can request that it be notified when an EPOW occurs. To make such a
request, the driver must call the i_init kernel service to define an interrupt handler for
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interrupt priority INTEPOW. The kernel calls all interrupt handlers thus defined at INTEPOW
priority when an EPOW occurs.

A device handler should register an EPOW handler if it is critical that data-write operations
be halted on specific boundaries for data integrity and recovery. However, the path length
and time to halt a device must be extremely short because the amount of time between the
early power-off warning and actual power loss is usually very short (a few milliseconds).
(This timing is hardwaredependent.} Only critical data devices such as disks should need to
register an EPOW handler.

The INIT_EPOW macro in the <sys/intr.h> header file can be used to initialize the handler
parameter passed to the i_init service for registering EPOW handlers.

The invocation of a registered EPOW interrupt handler is different from that for other
interrupt handiers registered by the i_init service. There are three conditions under which
registered EPOW handlers are called:

EPOW_SUSPEND Invocation is due to an Early Power Off Warning (EPOW) without
battery backup, or when the battery backup is exhausted. Critical
device operation should be suspended. Interrupt handlers are called
at INTEPOW priority. The EPOW_SUSPEND flag is set in the flags
field of the intr structure pointed to by the handler parameter when the
interrupt handler is called.

EPOW_BATTERY Invocation is due to an Early Power Off Warning (EPOW) resulting in a
switch-over to backup battery power. Devices not configured for
battery backup operation should be suspended. EPOW interrupt
handlers are called at INTEPOW priority. When calling the interrupt
handler, the kernel sets the EPOW_BATTERY flag in the flags field of
the intr structure pointed to by the handler parameter .

EPOW_RESUME Invocation is due to a restoration of power. Any operations suspended
due to previous EPOW_SUSPEND or EPOW_BATTERY conditions
should be resumed. This normally occurs when either of the following
is true:

e The early power off warning was a false one caused by a power
fluctuation that did not actually cause loss of power.

¢ The system was running on battery backup and primary power is
restored.

Interrupt handlers are called at the INTTIMER priority for this function.

Device handlers are responsible for ensuring the proper serialization of operation when
handling EPOW interrupts, normal device interrupts, and process level operations. Following
are possible complications.

An early power-off warning can prove to be a false alarm. If this happens, the EPOW
interrupt handlers are called to suspend device operation (at a high priority) and later called
at a lower priority to resume device operation. If power is actually lost, the EPOW_RESUME
operation does not occur.

A second early power-off warning can be detected while trying to resume from an earlier
one. When this situation arises, an EPOW interrupt handler can be reinvoked during the
course of an EPOW_RESUME call by the higher priority EPOW_SUSPEND or
EPOW_BATTERY calis. In this case, EPOW interrupt handlers may find that both the
EPOW_SUSPEND (or EPOW_BATTERY) and EPOW_RESUME flags are set in the flags
field within the intr structure. If this situation is detected, the suspend operation should
occur and the resume request should be ignored.
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The EPOW interrupt handlers should ensure that no timing window can occur in which
device operation is restarted after an EPOW_SUSPEND condition and before an
EPOW_RESUME condition. This must not happen even if a suspend operation interrupts a
resume. To prevent this situation, the EPOW handler should check the EPOW_SUSPEND
and EPOW_RESUME flags in the intr structure, and then determine if the device is already
in a suspended state. (A device driver flag should be maintained for this purpose.) If this is
a suspend call and the device is already in the suspended state, no operation should be
performed. If this is a resume request and the device is suspended, the
device-suspended flag should be reset and the device started.

The EPOW interrupt handlers should ensure that no timing window can occur in which
device operation is restarted after an EPOW_SUSPEND condition and before an
EPOW_RESUME condition has. This situation can arise when the suspend operation
interrupts the resume. To prevent this situation, the EPOW handler should check the
EPOW_SUSPEND and EPOW_RESUME flags in the intr structure, and then determine if
the device is already in a suspended state. (A device driver flag should be maintained for
this purpose.) If this is a suspend call and the device is already in the suspended state, no
operation should be performed. If this is a resume request and the device is suspended, the
device-suspended flag should be reset and the device started.

Note: The check for the EPOW_SUSPEND or EPOW_BATTERY flag and the checking
and clearing of the device-suspended flag should be made an atomic operation
by performing them at INTEPOW priority. Doing so ensures that an intervening
EPOW_SUSPEND or EPOW_BATTERY operation does not result in the device
being resumed during an EPOW_RESUME condition.

Such atomic operations also require that the device hardware support a state in which a
pending operation is not started. For a SCSI device, a SCSI Reset and resulting Unit
Attention provide this state. Other devices may require SUSPEND and RESUME hardware
commands.

Direct Memory Access (DMA) ,
The Micro Channel supports two types of DMA adapters. These are DMA slaves and DMA
masters. A DMA slave adapter is the simpler form of adapter. It requires extensive system
support to generate addresses and control the transfer length. The system hardware limits a
DMA slave adapter to performing only one sequential transfer at any one time.

A DMA master generates its own bus address and controls its own transfer length. A DMA
master adapter is therefore only limited by its own hardware in the number and type of
transfers that it can perform. For example, a DMA master disk adapter can support one or
more concurrent DMA transfers for each disk connected to it. A DMA master LAN adapter
can support having the header at one location in system memory and the data at another
location.

Block DMA Transfers

A block DMA transfer consists of transferring data between sequential locations on the
adapter and sequential locations in memory. All DMA slaves are essentially limited to this
type of transfer.

A DMA slave can have only one contiguous block transfer in progress at any one time. The
maximum size of this transfer is machine-dependent and is defined in the <sys/dma.h>
header file.

A DMA master can have one or more block transfers in progress at any one time. Each
transfer must be assigned part of that DMA master’s fixed-size window into system memory.
This window is assigned to the adapter during system configuration.
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The device driver can manage the use of this window in any way that is appropriate.
Typically, each active request is assigned part of this window through which to perform its
data transfer. Requests waiting to be processed are not yet assigned to a part of the
window.

Device drivers may also use part of their window to provide system memory access to their
adapter for control and status information.

A device driver must call either the d_slave service to set up a DMA slave transfer or the
d_master service to set up a DMA master transfer. The device driver should then set up the
device to perform the DMA transfer. The device transfers data when it is available and
interrupts the processor upon completion of the DMA transfer. The device driver then calls
the d_complete service to clean up after the DMA transfer. These steps are typically
repeated each time a DMA transfer is to occur.

DMA Management Kernel Services provides more information on using the DMA kernel
services.
DMA Processing

Direct memory access (DMA) allows a device to access memory without going through the
processor. Using DMA consists of the following steps:

Allocating a DMA channel.

Initializing the DMA channel.

Enabling the DMA channel.

Performing one or more DMA transfers.
Disabling the DMA channel.

Freeing the DMA channel.

I T

The DMA transfer itself, in Step 4 previously, consists of the following steps:
1. Arbitrating for the bus.

2. Generating an address.

3. Performing the data transfer.

The AIX kernel provides a set of services that assist in performing DMA operations. DMA
Management Kernel Services provides more information on using these services.

DMA Channels and How They Are Assigned

A DMA channel is the means by which DMA transfers for different adapters are
distinguished from each other. A DMA channel is a resource that cannot be shared
simultaneously by two adapters.

How DMA channels are assigned to an adapter depends on the type of bus to which the
adapter interfaces. The Micro Channel allows for assignment of DMA channels at system
configuration time. System configuration software determines which adapters are present
and assigns a DMA channel to the device adapter. System configuration then sets the
device configuration and initialization data to reflect this assignment.

However, some buses do not support programmable assigment of the DMA channel. DMA
channel numbers are hardwired or selected by a jumper on the adapter. In this case system
configuration executes an adapter-specific command that determines how the adapter is
configured. The device's configuration and initialization data is then set to reflect the
adapter’s configuration.
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The RISC System/6000 supports I/0O adapters attached to the Micro Channel Bus. This bus
and associated adapters support POS (a Programmable Option Select capability). The POS
capability allows the adapters to be configured into the system using software instead of
hardware switches and jumpers.

Each time the System/6000 is booted, the Micro Channel Bus configuration method scans
the bus and creates a list of all adapter cards plugged into the slots. For each adapter
plugged into a slot, the method uses the adapter ID (sensed from the POS registers) to look
up the adapter’s assignable resources in the devices database.

If the adapter uses the DMA channel, the database describes all possible DMA channels to
which the adapter can be programmed and a default or preferred choice. The bus
configuration method then selects a unique DMA channel for each adapter requiring DMA in
the system. The assigned DMA channel numbers are written into the Customized Devices
database object for each adapter in a slot.

When the adapter’s specific configuration method is called later in the configuration process,
it reads the assigned DMA channel or channels from the database for the specific adapter
being configured. The adapter’s configuration method then puts these channels in a
device-dependent structure used to initialize the device driver supporting the adapter.

When the device-driver for the adapter in the specified slot is initialized, the information in
the device-dependent structure is written to the adapter’s POS registers. This action
properly configures the adapter.

Kernel Services for Performing DMA Transfers

DMA Management Kernel Services provides more information on using these services.

Installing and Configuring Device Drivers
The following topics are available for guidance in installing and configuring device drivers:

e Program Installation and Update Compatibility Overview
¢ The Device Configuration Subsystem: Programming Introduction.

Files
<sys/dma.h>

<sys/intr.h>

Related Information
The open subroutine, close subroutine, read subroutine, write subroutine, Iseek
subroutine, ioctl subroutine, select subroutine, poll subroutine, signal subroutine.
The ddconfig device driver entry point, ddopen device driver entry point, ddclose
device driver entry point, ddread device driver entry point, ddwrite device driver entry
point, ddioct! device driver entry point, ddrevoke device driver entry point, ddmpx
device driver entry point, ddselect device driver entry point, ddstrategy device driver
entry point, dddump device driver entry point..
The uiomove kernel service, ureadc kernel service, uwritec kernel service, xmalloc
kernel service, xmfree kernel service, geteblk kernel service, brelse kernel service,
selnotify kernel service, iodone kernel service, i_sched kernel service, uphysio kernel
service, i_init kernel service, i_unmask kernel service, i_mask kernel service, i_clear
kernel service, i_enable kernel service, i_disable kernel service.
The mincnt routine.
The clist structure, uio structure, and buf structure.
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The d_init kernel service, d_unmask kernel service, d_mask kernel service, d_clear
kernel service, d_master kernel service, d_slave kernel service, d_complete kernel
service.
Device Driver Roles on page 2-2, Device Driver Structure on page 2-3,
Understanding I/O Access Through Special Files on page 2—4, Device Driver Classes on
page 2-1, Understanding the Device Switch Table on page 2—7, Understanding Major
and Minor Numbers on page 2-7.
Block /O Buffer Cache Kernel Services on page 6-8.

Kerne!l Environment Programming on page 1-1.

Device Driver System Dump Support in Files Reference
Device Driver Concepts Overview on page 2-1.
Special Files Overview in Files Reference.
Cross Memory Kernel Services on page 6-15.
DMA Management Kernel Services in The I/O Kernel Services.
Configuration Subsystem on page 7-1.
Adapter-Specific Considerations for the Predefined Attribute (PdAt) Object Class in Files
Reference.
ODM Device Configuration Object Classes in Files Reference.
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Writing System Calls

The topics below are provided as guidance in writing system calls. The first two articles
introduce system calls within the context of kernel architecture. The remaining subjects
detail aspects of the execution environment relevant to programming system calls.

The following introductory topics explain the relationship between system calls and user
functions in the kernel, as well as details of the system call handler and how system calis are
executed:

¢ Extending the Kernel with System Calls
¢ Understanding System Call Execution.

The following topics explain aspects of the kernel programming environment that the
programmer should consider when writing new system calls:

Accessing Kernel Data While in a System Call

Preempting a System Call

Handling Signals While in a System Call

Handling Exceptions While in a System Call

Understanding Nested System Calls and Kernel-Mode Use of System Calls
Page Faulting within System Calls

Returning Error Information from System Calls

o System Calls Available to Kernel Extensions.

Extending the Kernel with System Calis
Adding system calls is one of several ways to extend the functions provided by the AlX
Operating System kernel. System calls provide user-mode access to special kernel
functions. In the AIX operating system, a system call is nothing more than a call that crosses
a protection domain.

The distinction between a system call and an ordinary function call is oly important in the
kernel programming environment. User-mode application programs are not usually aware of
this distinction between system calls and ordinary function calls in the AIX operating system.

Operating system functions are made available to the application program in the form of
programming libraries. A set of library functions found in a library such as libe may have
functions that perform some user-mode processing and then internally invoke a system call.
In other cases, the system call can be directly exported by the library without a user-mode
layer.

In this way, operating system functions available to application programs may be split or
moved between user-mode functions and kernel-mode functions as required for different
releases or machine platforms. Such movement does not affect the application program.

Programming in the Kernel Environment provides more information on how to use system
calls in the kernel environment.

Differences between a System Call and a User Function
A system call differs from a user function in several key ways:

¢ A system call has more privilege than a normal subroutine. A system call executes with
kernel-mode privilege in the kernel protection domain.
e A system call's code and data are located in global kernel memory.
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o System call routines can create and use kernel processes to perform asynchronous
processing. Using Kernel Processes gives more information on creating and using kernel
processes.

e System calls are not interruptible by signals.

e System calls cannot use shared libraries or any symbols not found in the kernel protection
domain.

Understanding System Call Execution

The system call handler gains control when a user program executes a call to a system call.
The system call handler changes the protection domain from the caller’s protection domain,
user, to the system call’s protection domain, kernel, and switches to a protected stack.

The system call handler then calls the function supporting the system call. The loader
maintains a table of the currently defined system calls for this purpose.

The system call executes within the calling process, but with more privilege than the calling
process. This is because the protection domain has changed from user to kernel.

The system call function returns to the system call handler when it has performed its
operation. The system call handler then restores the state of the process and returns to the
user program.

There are two major protection domains in the AlX operating system: the user mode
protection domain and the kernel mode protection domain.

The User Protection Domain

Programs that execute in the user protection domain include those executing within user
processes and those within real-time processes. This protection domain implies that code
executes in user execution mode and has:

+ Read/write access to user data in the process private region
e Read access to the user text and shared text regions
» Access to shared data regions using the shared memory functions.

Programs executing in the user protection domain do not have access to the kernel or kernel
data segments except indirectly through the use of system calls. A program in this protection
domain can only affect its own execution environment and executes in the processor
unprivileged state.

The Kernel Protection Domain
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Programs that execute in the kernel protection domain include interrupt handlers, kernel
processes, the base kernel, and kernel extensions (device drivers, system calls, and file
systems). This protection domain implies that code executes in kernel execution mode and
has:

* Read/write access to the global kernel address space

¢ Read/write access to the kernel data in the process private region when executing within
a process.

User data within the process address space must be accessed using kernel services.
Programs executing in this protection domain can affect the execution environments of all
programs because they:

Can access global system data

Can use kernel services

Are exempt from all security restraints
Execute in the processor privileged state.
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Ali kernel extensions execute in the kernel protection domain as described above. The use
of a system call by a user-mode process allows a kernel function to be called from user
mode. Access to functions that directly or indirectly invoke system calls is typically provided
by programming libraries providing access to operating system functions.

Actions of the System Call Handler
When a call is made in user mode that invokes a system call, the system call handler is
invoked. This system call handler switches the protection domain from user to kernel and
performs the following steps:

1. Sets privileged access to the process private address region.

2. Sets privileged access to the kernel address regions.

3. Sets the u_uerror field in the u-block (the user structure) to 0 (zero).
4. Switches to the kernel stack.

5. Invokes the specified kernel function (the target of the system call).

On return from the specified kernel function, the system call handler performs the following
steps before returning to the caller:

. Switches back to the user’s stack.

. Updates the errno global variable if the u_error field is not equal to 0 (zero).
. Clears the privileged access to the kernel address regions.

. Clears the privileged access to the process private region.

Performs signal processing if a signal is pending.

aOR WO

The system call (and associated kernel function) executes within the context of the calling
process, but with more privilege than the user-mode caller. This is because the system call
handler has changed the protection domain from user state to kernel state. When the kernel
function that was the target of the system call has performed the requested operation (or
encountered an error), it returns to the system call handler. When this happens, the system
call handler restores the state and protection domain back to user mode and returns control
to the user program.

Accessing Kernel Data While in a System Call
A system call can access data that the caller cannot because the system call is executing in
a more privileged protection domain. This applies to all kernel data, of which there are three
general categories:

¢ The user block data structure

System calls should use the available kernel services and system calls to access or
modify data traditionally found in the u area (user structure). For example, the system call
handler uses the u.u_error system call error field to set the errno global variable before
returning to user mode. This field can be read or set by using the getuerror and
setuerror kernel services.

The current process 1D may be obtained by using the getpid kernel service.
¢ Global memory

System calls can also access global memory such as the kernel and kernel data regions.
These regions contain the code and static data for the system call as well as the rest of
the kernel.

e The stack for a system call

A system call routine executes on a protected stack that is located near the user block
data structure at the top of the process private segment. This stack allows the system
call handler to safely execute a system call even when the caller does not have a valid
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stack pointer initialized. It also allows system calls to access privileged information with
automatic variables without exposing the information to the caller.

Warning: Great care must be taken in writing system calls that modify fields in kernel or
user block data structures. Incorrect modifying of fields could cause unpredictable results
or system crashes while executing in the kernel protection domain.

Passing Parameters to System Calls

The fact that a system call does not execute on the same stack as the caller imposes one
limitation. System calls are limited in the number of parameters that they can use.

The AlX operating system linkage convention passes some parameters in registers and the
rest on the stack. The system call handler ensures that the first 8 words of the parameter list
are accessible to the system call. All other parameters are not accessible.

Also, care should be taken when defining the interface to a system call. For some
languages, various types of parameters may take more than one word in the parameter list.
The writer of a system call must be familiar with the way parameters are passed by his or
her compiler and conform to this 8-word limit.

Preempting a System Call

The AIX kernel allows a process to be preempted by a more favored process even when
executing a system call. This is not typical of most UNIX systems. The AIX kernel makes
this change to enhance support for real-time processes and large multiuser systems.

System calls should use the lockl and unlockl kernel services to serialize access to any
global data that they access. Remember that all of the system call’s static data is located in
global memory and therefore must be accessed serially.

The lockl kernel service ensures that the owner of a lock executes with the most favored
priority of any of the waiters of that lock. It does this by assigning to the lock owner the
process priority of the most favored waiter for the lock. This mechanism is similar to the
standard UNIX sleep priority. However, the process priority must be assigned when the
resource is allocated since the system call can be inactivated by preemption, as well as by
calling sleep. The unlockl service restores the process priority.

Note that a process can be preempted even when it owns a lock. The lock only ensures that
another process that tries to lock the resource will have to wait until the owner of the
resource unlocks it. A system call must never return with a lock locked. By convention, a
locking hierarchy is followed to prevent deadlocks. Understanding Locking provides more
information on locking.

Handling Signals While in a System Call
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Signals may be generated asynchronously or synchronously with respect to the process that
will receive the signal. An asynchronously generated signal is one that results from some
action external to a process. It is not directly related to the current instruction stream of that
process. Generally these are generated by other processes for interprocess communication
or by device drivers.

A synchronously generated signal is one that results from the current instruction stream of
the process. These signals cause interrupts. Examples of such cases are the execution of
an illegal instruction, or an attempted data access to nonexistent address space. These are
often referred to as exceptions.
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Delivery of Signals to a System Call
The kernel delays the delivery of all signals, including SIGKILL, when executing a system
call, device driver, or other kernel extension. The signal takes effect upon leaving the kernel
and returning from the system call. This happens when execution returns to the user
protection domain, just before executing the first instruction at the caller’s return address.
Signal delivery for kernel processes is described in Using Kernel Processes.

Asynchronous Signals and Wait Termination
An asynchronous signal can alter the operation of a system call or kernel extension by
terminating a long wait. Kernel services such as lockl, e_sleep, e_sleepl, and e_wait all
support terminating a wait by a signal. These services provide three options:

e The short-wait-option of not terminating the wait due to a signal.

¢ Terminating the wait by return from the kernel service with a return code of
interrupted-by-signal.

¢ Executing a longjmpx kernel service call to resume at a previously saved context in the
event of a signal.

The sleep kernel service, provided for compatibility, also supports the PCATCH and
SWAKEONSIG options to control the response to a signal during the sleep function.

Previously, AIX kernels automatically saved context on entry to the system call handler. As a
result, any long (interruptable) sleep not specifying the PCATCH option returned control to
the saved context when a signal interrupted the wait. The system call handler then set the
errno global variable to EINTR and returned a return code of —1 from the system call.

The AIX kernel, however, requires each system call that can directly or indirectly issue a
sleep call without the PCATCH option to set up a saved context using the setjmpx kernel
service. This is done to avoid overhead for system calls that handle waits terminated by
signals. Using the setjmpx service, the system can set up a saved context that will set the
system call's return code to a —1 and the u.u_error field to EINTR, if a signal interrupts a
long wait not specifying return-from-signal.

It is probably faster and more robust to specify return-from-signal on all long waits and
use the return code to control the system call return.

Stacking Saved Contexts for Nested setjmpx Calls
The kernel supports nested calls to the setjmpx kernel service. It implements the stack of
saved contexts by maintaining a linked list of context information anchored in the machine
state save area. This area is in the user block structure for a process. Interrupt handlers
have special machine state save areas.

An initial context is set up for each process by the initp kernel service for kernel processes
and by the fork subroutine for user processes. The process terminates if that context is
resumed.

Handling Exceptions while in a System Call
Exceptions are interrupts detected by the processor as a result of the current instruction
stream. They therefore take effect synchronously with respect to the current process.

The default exception handling normally generates a signal if the process is in a state where
signals are delivered without delay. If delivery of a signal may be delayed, however, default
exception handling causes a dump.
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Alternative Exception Handling Using the setjmpx Kernel Service

For certain types of exceptions, a system call may specify unique exception- handler routines
through calls to the setjmpx service. The exception handler routine is saved as part of the
stacked saved context. Each exception handler is passed the exception type as a
parameter.

The exception handler returns a value that may specify any of the following:

o Execution should resume with the instruction that caused the exception.
o Execution should return to the saved context that is on the top of the stack of contexts.
* The exception handler did not handle the exception.

In that case, the next exception handler in the stack of contexts is called. If none of the
stacked exception handlers handle the exception, the kernel performs default exception
handling. The setjmpx and longjmpx kernel services help implement exception handlers.

Understanding Nested System Calls and Kernel-Mode Use of System

Calls

The AIX Operating System supports nested system calls with some restrictions. System
calls (and any other kernel-mode routines executing under the process environment of a
user-mode process) can use system calls that pass all parameters by value. System calls
and other kernel-mode routines must not call system calls that have one or more parameters
passed by reference. Doing so may result in a system crash. This is because system calls
with reference parameters assume that the referenced data area is in the user protection
domain. As a result, these system calls must use special kernel services to access the data.
However, these services fail if the data area they are trying to access is not in the user
protection domain.

This restriction does not apply to kernel processes. User-mode data access services can
distinguish between kernel processes and user-mode processes in kernel mode. As a result,
these services can access the referenced data areas accessed correctly when the caller is a
kernel process.

Kernel processes may not call the fork or exec system calls, among others. A list of the
base AIX system calls available to system calls or other routines in kernel mode is provided
in the List of System Calls Available in the Kernel.

Page Faulting within System Calls
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Most data accessed by system calls is pageable by default. This includes the system call's
code, static data, dynamically allocated data, and stack. As a result, a system call can be
preempted in two ways:

e By a more favored process, or by an equally favored process when a time slice has been
exhausted

¢ By losing control of the processor when it page faults.
In the latter case, even less favored processes can execute while the system call is waiting
for the paging 1/0 to complete.

Warning: A page fault that occurs while external interrupts are disabled results in a system
crash. Therefore a system call should be very careful to ensure that its code, data, and stack
are pinned before it disables external interrupts.
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Returning Error Information from System Calls
System calls return error information slightly differently than is the convention for kernel
services that are not system calls. System calls typically provide a return code of 0 if no error
has occurred, or —1 if an error has occurred. In the latter case, the error value is placed in
the u.u_error field of the u area (user structure). In some cases, when data is returned by
the return code, a data value of —1 indicates error. Or alternatively, a value of NULL can
indicate error, depending on the interface and function definition of the system call.

In any case, when an error condition is to be returned, the u.u_error field should be updated
by the system call pror to returning from the system call function. The u_error field can be
accessed by using the getuerror and setuerror kernel services.

Before actually calling the system call function, the system call handler sets the u.u_error
field to 0. Upon return from the system call function, the system call handler copies the value
found in u.u_error into the errno global variable if u.u_error was nonzero. After setting the
errno variable, the system call handler returns to user mode with the return code provided
by the system call function.

Kernel-mode callers of system calls must be aware of this return code convention and use
the getuerror kerne! service to obtain the error value when an error indication is returned by
the system call. When system calls are nested, the system call function called by the system
call handler may choose to return the error value provided by the nested system call function
or may replace this value with a new one by using the setuerror kernel service.

System Calls Available to Kernel Extensions
System calls are available either to all kernel extensions or to kernel processes only. System
calls are never available to interrupt handlers. The following system calls are available to all
kernel extensions:

¢ getgidx
o gethostid
e getpgrp
o getppid
o getpri

¢ getpriority
e getuidx
¢ semget
o seteuid
¢ setgid

¢ setgidx
« sethostid
+ setpgid
e setpgrp
o setpri

o setpriority
o setreuid
» setsid

¢ setuid

o setuidx
o ulimit

e umask.
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The following system calls are available to kernel processes only:

o disclaim

e getdomainname
o getgroups

¢ gethostname
e getpeername
o getriimit

e getrusage

e getsockname
o getsockopt
o gettimer

s resabs

e resinc

o restimer

o semctl

e semop

o setdomainname
¢ setgroups

s sethostname
o setrlimit

o settimer

¢ shmat

¢ shmctl

e shmdt

o shmget

+ sigaction

¢ sigprocmask
e sigstack

o sigsuspend
e sysconfig

o times

e uname

e unamex

¢ usrinfo

o utimes.

Related Information
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The getuerror kernel service, setuerror kernel service, initp kernel service, lockl kernel
service, e_sleep kernel service, e_sleepl kernel service, e_wait kernel service, setjmpx
kernel service, longjmpx kernel service, and unlockl kernel service.

The fork subroutine.

Kernel Environment Programming on page 1-1.

Accessing User Mode Data While in Kernel Mode on page 1-10.

Using Kernel Processes on page 1-7, Using Libraries on page 1-5.

Writing a Device Driver on page 2-1.

Understanding Locking on page 1-11, Understanding Interrupts on page 6-9.
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Writing a Virtual File System

The following information is available in understanding virtual file systems:

o Virtual File System Kernel Extensions

¢ Logical File System Overview

¢ Virtual File System Overview

e Virtual Nodes (Vnodes)

¢ Generic Inodes (Gnodes)

¢ Understanding The Virtual File System Interface.

Virtual File System Kernel Extensions
There are two essential components in the file system:

Logical file system Provides support for the system call interface.
Physical file system Manages permanent storage of data.

The intertace between the physical and logical file systems is the virtual file system
interface. This interface allows support for multiple concurrent instances of physical file
systems, each of which is called a file system implementation. The file system
implementation can support storing the file data in the local node or at a remote node.

The virtual file system interface in usually referred to as the vnode interface. The vnode
structure is the key element in communication between the virtual file system and the layers
that call it.

Both the virtual and logical file system exist across all AIX family platforms.

Logical File System Overview
The logical file system is the level of the file system at which users can request file
operations by system call. This level of the file system provides the AIX kernel with a
consistent view of what may be multiple physical file systems and multiple file system
implementations. As far as the logical file system is concerned, file system types, whether
local, remote, or strictly logical, a