
SC23-2207 -00 





First Edition (March 1990) 

This edition of the AIX Kernel Extensions and Device Support Programming Concepts for 
IBM RISC System/6000 applies to Version 3 of the IBM AIX Base Operating System 
Licensed Program and to all subsequent releases of this product until otherwise indicated in 
new releases or technical newsletters. 

The following paragraph does not apply to the United Kingdom or any country where 
such provisions are inconsistent with local law: INTERNATIONAL BUSINESS 
MACHINES CORPORATION PROVIDES THIS MANUAL "AS IS" WITHOUT WARRANTY 
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, 
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied 
warranties in certain transactions; therefore, this statement may not apply to you. 

IBM does not warrant that the contents of this publication or the accompanying source code 
examples, whether individually or as one or more groups, will meet your requirements or that 
the publication of the accompanying source code examples are error-free. 

This publication could include technical inaccuracies or typographical errors. Changes are 
periodically made to the information herein; these changes will be incorporated in new 
editions of the publication. IBM may make improvements and/or changes in the product(s) 
and/or the program(s) described in this publication at any time. 

It is possible that this publication may contain reference to, or information about, IBM 
products (machines and programs), programming, or services that are not announced in 
your country. Such references or information must not be construed to mean that IBM 
intends to announce such IBM products, programming, or services in your country. Any 
reference to an IBM licensed program in this publication is not intended to state or imply that 
you can use only IBM's licensed program. You can use any functionally equivalent program 
instead. 

Requests for copies of this publication and for technical information about IBM products 
should be made to your IBM Authorized Dealer or your IBM Marketing Representative. 

A reader's comment form is provided at the back of this publication. If the form has been 
removed, address comments to IBM Corporation, Department 997,11400 Burnet Road, 
Austin, Texas 78758-3493. IBM may use or distribute whatever information you supply in 
any way it believes appropriate without incurring any obligation to you. 

IBM is a registered trademark of International Business Machines Corporation. 

© Copyright International Business Machines Corporation 1987, 1990. All rights reserved. 

Notice to U.S. Government Users - Documentation Related to Restricted Rights - Use, 
duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract 
with IBM Corporation. 



Trademarks and Acknowledgements 

The following trademarks and acknowledgements apply to this book: 

AIX is a trademark of International Business Machines Corporation. 

BSC is a trademark of BusiSoft Corporation. 

Hayes is a registered trademark of Hayes Microcomputer Products, Inc. 

IBM is a registered trademark of International Business Machines Corporation. 

Micro Channel is a trademark of International Business Machines Corporation. 

POSIX is a trademark of the Institute of Electrical and Electronic Engineers (IEEE). 

RISC System/6000 is a trademark of International Business Machines Corporation. 

Smartmodem 2400 is a trademark of Hayes Microcomputer Products, Inc. 

UNIX was developed and licensed by AT&T and is a registered trademark of AT&T 
Corporation. 

Trademarks iii 



iv Trademarks 



About This Book 

This book, AIX Kernel Extensions and Device Support Programming Concepts for IBM RISC 
Systeml6000, provides a conceptual introduction to the kernel programming environment 
and writing kernel extensions. Possible types of kernel extensions include device drivers, 
system calls, kernel services, or virtual file systems. In addition, conceptual information is 
provided on existing kernel subsystems. 

More detailed information on existing kernel services and interface requirements for kernel 
extensions can be found in AIX Calls and Subroutines Reference for IBM RISC 
Systeml6000, Volume 5. 

Who Should Use This Book 
This book is intended for systems programmers wishing to extend the AIX kernel. Readers 
should be familiar with operating system concepts and kernel programming. 

How to Use This Book 

Overview of Contents 
The Kernel Extensions and Device Support Programming Concepts contains two parts. 
Part 1 contains information needed to write kernel extensions. This includes: 

• An overview of the kernel programming environment 

• Conceptual introductions to device drivers, system calls, and virtual file systems. 

Part 2 gives an overview of AIX subsystems and describes the organization of each. 
Conceptual information on the following AIX subsystems is provided: 

• The communications liD subsystem. This chapter describes features common to all 
communications device drivers. 

• The configuration subsystem. This chapter includes an overview of the configuration 
process, the routines and databases involved, and the requirements for configuring new 
devices. 

• The high function terminal (HFT) subsystem. This chapter describes the component 
structure of the high function terminal and virtual terminal concepts. 

• The printer addition management subsystem. This chapter briefly describes the steps 
involved in adding a new type of printer to the system. 

• The SCSI subsystem. This chapter briefly discusses SCSI subsystem architecture and 
general comments about writing SCSI device drivers. 

Highlighting 
The following highlighting conventions are used in this book: 

Bold Identifies commands, keywords, files, directories, and other items whose 
names are predefined by the system. 

Italics Identifies parameters whose actual names or values are to be supplied by 
the user. 

About This Book V 



Monospace Identifies examples of specific data values, examples of text similar to what 
you might see displayed, examples of portions of program code similar to 
what you might write as a programmer, messages from the system, or 
information you should actually type. 

Related Publications 
The following books contain information about or related to the kernel programming 
environment and writing kernel extensions: 

• AIX Calls and Subroutines Reference for IBM RISC Systeml6000, Order Number 
SC23-2198. 

• General Programming Concepts, Order Number SC23-2205-0. 

• Communications Programming Concepts, Order Number SC23-2206-0. 

• Graphics Programming Concepts, Order Number SC23-2208-0. 

Ordering Additional Copies of This Book 
To order additional copies of this book, use Order Number SC23-2207. 

vi Kernel Extensions and Device Support 



Table of Contents 

Kernel Environment Programming ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 
Kernel Extension Binding .......................................... 1-2 

Using System Calls ............................................ 1-2 
Loading System Calls and Kernel Services ...... . . . . . . . . . . . . . . . . . . . . 1-3 
Unloading System Calls and Kernel Services ........................ 1-3 
Using Private Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 
Using Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 

Execution Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 
Process Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 
Interrupt Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 

Kernel Processes ................................................ 1-7 
Accessing Data from a Kernel Process ............................. 1-8 
Kernel Process Creation, Execution, and Termination . . . . . . . . . . . . . . . . . . 1-8 
Kernel Process Pre-emption ..................................... 1-9 
Kernel Process Signal and Exception Handling. . . . . . . . . . . . . . . . . . . . . . . 1-9 
Kernel Process Use of System Calls ....... . . . . . . . . . . . . . . . . . . . . . . . . 1-10 

Accessing User-Mode Data while in Kernel Mode ....................... 1-10 
Using Cross-Memory Kernel Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10 

Understanding Locking ........................................... 1-11 
Locking Strategy in Kernel Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11 

Signal Handling ................................................. 1-11 
Exception Handling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11 

Exception Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12 
Default Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12 
Kernel-Mode Exception Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12 
User-Defined Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13 
Implementing Kernel Exception Handlers ........................... 1-13 
Exception Handler Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14 
Restrictions on Using the setjmpx Kernel Service ..................... 1-14 
Exception Codes .............................................. 1-15 
Hardware Detection of Exceptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16 
User-Mode Exception Handling ................................... 1-16 

Writing a Device Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 
Concepts Overview .............................................. 2-1 

Conceptual Organization of Device Drivers . . . . . . . . . . . . . . . . . . . . . . . . 2-1 
Device Driver Classes ............................................ 2-1 

Comparison of Block and Character Device Drivers ................... 2-2 
Device Driver Roles .............................................. 2-2 

Device Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 
Device Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 

Device Driver Structure ........................................... 2-3 
Device Driver Top Half Routines .................................. 2-3 

Preemption in the AIX Operating System ......................... 2-3 
Device Driver Bottom Half Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 

Contents vii 



Serialization and Preemption in the Bottom Half of the Device Driver . . . . 2-4 
Understanding I/O Access Through Special Files ....................... 2-4 

Access to Character Device Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 
Access to Multiplexed Character Device Drivers ...................... 2-5 
Access to Block Device Drivers ................................... 2-6 

Access to Block Devices Designated as Paging Devices ............. 2-6 
Access to Block Devices By the File System and Virtual Memory Manager 2-6 

File liD Access to Block Devices Using the Block Special File ........... 2-6 
Potential Hazards of Block Special File Usage ..................... 2-6 

Raw I/O Access to 810ck Devices Using the Character Special File ....... 2-7 
Understanding the Device Switch Table ............................... 2-7 
Understanding Major and Minor Numbers for a Special File ............... 2-7 

Creation of Major Numbers ...................................... 2-8 
Creation of Minor Numbers ...................................... 2-8 
Releasing Major and Minor Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8 

Extending the Kernel with Device Drivers ............................. 3-1 
Understanding Block I/O Device Drivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 

Block I/O Device Driver Entry Points ............................... 3-1 
Providing Raw liD in a Block I/O Device Driver ....................... 3-2 
Optional System Dump Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 
Unsupported Entry Points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 

Block I/O Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 
Accepting the Request .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 
Providing Notification of liD Completion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 
Reordering of I/O Requests ...................................... 3-3 
Handling Out of Range Block Numbers ............................. 3-3 
Queuing a Request to the Start liD Routine. . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 

The Start liD Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 
Understanding Raw liD Access to Block Device Drivers ................ 3-4 

Motivation for Providing a Raw liD Interface to a Block Device. . . . . . . . . 3-5 
Understanding Raw liD Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 

Processing a Raw liD Request ................................. 3-5 
Processing by the uphysio Kernel Service. . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6 

Understanding Character liD Device Drivers ........................... 3-6 
Unsupported Entry Points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6 
Non-multiplexed Support ........................................ 3-6 
Multiplexed Support............. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7 
Read and Write Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7 

Writing One Character at a Time ................................ 3-7 
Reading One Character at a Time ............................... 3-7 
Moving Large Numbers of Characters at a Time .................... 3-8 

liD Control (ddioctl) Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8 
Select and Poll Support ......................................... 3-8 
Trusted Computing Path Support . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9 
Physical Device Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9 

Understanding Off-Level Processing ................................. 3-9 
Off-Level Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10 

Understanding Pseudo-Device Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10 
I/O Exception Handling Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11 

Device Handler Error Recovery ................................... 3-11 

viii Contents 



Recoverable Hardware 1/0 Errors ............................... 3-11 
Non-recoverable Hardware 1/0 Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12 

Interfacing to the Hardware ........................................ 3-12 
Processing Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12 

Kernel Services for Managing Interrupts .......................... 3-13 
Early Power-Off Warning ........................................ 3-13 
Direct Memory Access (DMA) .................................... 3-15 

Block DMA Transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15 
DMA Processing ............................................ 3-16 
DMA Channels and How They Are Assigned ...................... 3-16 
Kernel Services for Performing DMA Transfers. . . . . . . . . . . . . . . . . . . . . 3-17 

Installing and Configuring Device Drivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17 

Writing System Calls .............................................. 4-1 
Extending the Kernel with System Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 

Differences between a System Call and a User Function ............... 4-1 
Understanding System Call Execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 

The User Protection Domain ..................................... 4-2 
The Kernel Protection Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 
Actions of the System Call Handler ................................ 4-3 

Accessing Kernel Data While in a System Call ......................... 4-3 
Passing Parameters to System Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 

Preempting a System Call ......................................... 4-4 
Handling Signals While in a System Call .............................. 4-4 

Delivery of Signals to a System Call ............................... 4-5 
Asynchronous Signals and Wait Termination . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 
Stacking Saved Contexts for Nested setjmpx Calls . . . . . . . . . . . . . . . . . . . . 4-5 

Handling Exceptions While in a System Call ........................... 4-5 
Alternative Exception Handling Using the setjmpx Kernel Service. . . . . . . . . 4-6 

Understanding Nested System Calls and Kernel-Mode Use of System Calls .. 4-6 
Page Faulting within System Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 
Returning Error Information from System Calls ......................... 4-7 
System Calls Available to Kernel Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7 

Writing a Virtual File System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 
Virtual File System Kernel Extensions ................................ 5-1 
Logical File System Overview ....................... :.............. 5-1 

Component Structure of the Logical File System. . . . . . . . . . . . . . . . . . . . . . 5-2 
Virtual File System Overview ....................................... 5-2 
Virtual Nodes (Vnodes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 
Generic Inodes (Gnodes) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 
Understanding the Virtual File System Interface ........................ 5-4 

Requirements for a File System Implementation ...................... 5-4 
Important Data Structures for a File System Implementation . . . . . . . . . . . . . 5-4 
Data Structures and Header Files for Virtual File Systems .............. 5-5 
Configuring a Virtual File System ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 

Kernel Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1 
Device Queue and Ring Queue Management Kernel Services ............. 6-1 
Understanding Device Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 

Loading Device Queue Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 

Contents ix 



The Client/Server Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 
Queue Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 
Device Queue Management Kernel Services . . . . . . . . . . . . . . . . . . . . . . . . . 6-3 
Understanding Ring Queue Kernel Services ................ ,........ 6-4 

I/O Kernel Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4 
Block I/O Kernel Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4 
Buffer Cache Kernel Services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4 
Character I/O Kernel Services .................................... 6-5 
Memory Buffer (mbuf) Kernel Services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5 
DMA Management Kernel Services ................................ 6-6 

DMA Transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6 
Hiding DMA Data ............... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6 
Accessing Data While the DMA Operation Is in Progress ............. 6-7 

Interrupt Management Kernel Services ............................. 6-7 
Block I/O Buffer Cache Kernel Services: Overview ...................... 6-8 

Managing the Buffer Cache ...................................... 6-8 
Using the Buffer Cache write Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8 
Other Buffer Cache Services ..................................... 6-9 

Understanding Interrupts .......................................... 6-9 
Interrupt Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9 
Interrupt Services .......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10 

Kernel Extension/Device Driver Management Kernel Services ............. 6-10 
Kernel Extension Loading and Binding Services ...................... 6-10 
Other Functions for Kernel Extension/Device Driver Management Services . 6-11 
Kernel Extension/Device Driver Management Kernel Services ........... 6-11 

Logical File System Kernel Services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-12 
Other Considerations ........................................... 6-12 

Memory Kernel Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-13 
User Memory Access Kernel Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-14 
Virtual Memory Management Kernel Services . . . . . . . . . . . . . . . . . . . . . . . . 6-14 
Cross Memory Kernel Services ................................... 6-15 

Moving Data between Address Spaces ........................... 6-15 
Virtual Memory Manager Interfaces .................................. 6-16 

Virtual Memory Objects ......................................... 6-16 
Addressing Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-16 
Moving Data to or from a Virtual Memory Object .. . . . . . . . . . . . . . . . . . . . . 6-17 
Data Flushing ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-17 
Discarding Data ............................................... 6-17 
Protecting Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-17 
Executable Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-17 
Installing Pager Back Ends. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-17 
Referenced Routines ........................................... 6-18 

Message Queue Kernel Services Available from the Kernel ............... 6-19 
Message Queues Services Available from the Kernel .................. 6-19 

Network Kernel Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-19 
Address Family Domain/Network Interface Device Driver Kernel Services .. 6-19 
Routing and Interface Address Kernel Services. . . . . . . . . . . . . . . . . . . . . . . 6-20 
Loopback Kernel Services ....................................... 6-20 
Protocol Kernel Services ........................................ 6-21 
Communications Device Handler Interface Kernel Services ............. 6-21 

Process and Exception Management Kernel Services . . . . . . . . . . . . . . . . . . . . 6-21 

X Contents 



The Process and Exception Management Kernel Services . . . . . . . . . . . . . . 6-22 
RAS Kernel Services ............................................. 6-23 
Security Kernel Services .......................................... 6-23 
Timer and Time-of-Day Kernel Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-23 

Using Fine Granularity Timer Services and Structures ................. 6-24 
Timer Services Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-24 
Coding the Timer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-25 

Virtual File System (VFS) Kernel Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-25 

The Configuration Subsystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 
Scope of AIX Device Configuration Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 

General Structure of the Device Configuration Subsystem .............. 7-1 
High Level Perspective ....................................... 7-1 
Device Method Level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2 
Low Level Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4 

Device Configuration Database Overview ............................. 7-4 
Basic Device Configuration Procedures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4 
Device Configuration Manager. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5 

The Devices Graph .......................................... 7-5 
Configuration Rules ........................ . . . . . . . . . . . . . . . . . . 7-5 
Invoking the Configuration Manager ............................. 7-6 

Device Classes, Subclasses, and Types .............................. 7-7 
Writing a Device Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7 

Invoking Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-8 
Understanding Device Methods Interfaces .......................... 7-8 

The Configuration Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-8 
The Runtime Configuration Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9 

Understanding Device States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10 
Adding an Unsupported Device to the System. . . . . . . . . . . . . . . . . . . . . . . . 7-11 

Modifying the Predefined Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-11 
Adding Device Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-11 
Adding a Device Driver ....................................... 7-12 
Using installp Procedures ..................................... 7-12 

Understanding Device Dependencies and Child Devices ............... 7-12 
Accessing Device Attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-13 

Modifying an Attribute Value ................................... 7-13 
Understanding System Boot Processing .............................. 7-14 

The Communications I/O Subsystem .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1 
User-Mode Interface to a Communications PDH . . . . . . . . . . . . . . . . . . . . . . 8-1 
Kernel-Mode Interface to a Communications PDH .................... 8-1 

Communications Physical Device Handler Model Overview ............... 8-1 
Use of mbuf Structures in the Communications PHD .................. 8-2 
Common Communications Status/Exception Codes ................... 8-3 

Ethernet Device Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3 
Data Transmission for the Ethernet Device Handler ................... 8-4 
Data Reception for the Ethernet Device Handler . . . . . . . . . . . . . . . . . . . . . . 8-4 

Data Reception in Kernel Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4 
Data Reception in User Mode .................................. 8-5 

Return Values for the Ethernet Device Handler . . . . . . . . . . . . . . . . . . . . . . . 8-5 
Error Logging for the Ethernet Device Handler ....................... 8-5 

Contents xi 



Device Dependent Structure for the Ethernet Device Handler . . . . . . . . . . . . 8-6 
Receive Data Transfer Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6 
Alternate Ethernet Address .................................... 8-6 
Ethertype Field Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6 
Transmit Queue Size ......................................... 8-6 
Receive Queue Size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-7 
Status Block Queue Size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-7 
Enable Alternate Ethernet Address .............................. 8-7 
802.3 Ethertype Offset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-7 
Adapter Connector Select ..................................... 8-7 

Vital Product Data (VPD) Structure for the Ethernet Device Handler. . . . . . . 8-7 
Device Characteristics Structure for the Ethernet Device Handler . . . . . . . . . 8-8 
Ethernet Device Handler Hardware Characteristics Structure ............ 8-8 

Token-Ring Device Handler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-9 
Network Recovery Mode for the Token-Ring Device Handler ............ 8-10 
Data Transmission for the Token-Ring Device Handler ................. 8-10 

Kernel-Mode Data Transmission ................................ 8-10 
User-Mode Data Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-11 

Data Reception for the Token-Ring Device Handler. . . . . . . . . . . . . . . . . . . . 8-11 
Kernel-Mode Data Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-11 
User-Mode Data Reception .................................... 8-11 

Token-Ring Operation Results .................................... 8-11 
Error Logging for the Token-Ring Device Handler ..................... 8-12 

Multiprotocol (MPQP) Device Handler Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . 8-13 
Binary Synchronous Communication (BSC) with the MPQP Adapter ...... 8-14 

BSC Message Types Detected by the MPQP Adapter. . . . . . . . . . . . . . . . 8-14 
BSC Receive Errors Logged by the MPQP Adapter ................. 8-15 

Error Logging for the Multiprotocol (MPQP) Device Handler ............. 8-15 
DSR On Timeout ............................................ 8-15 
DSROffTimeout ...... ................. ..................... 8-16 
CTS Dropped on Transmit .... '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-16 
DSR Dropped.............................. ................. 8-16 
Receive Data Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-16 
Adapter Not Present or Not Functioning, Adapter IPL Timeout . . . . . . . . . 8-16 
DMA Buffer Not Allocated ..................................... 8-17 
Transmit Underrun, Receive Overrun. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-17 
Transmit Failsafe Timeout Expired . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-17 
X.21 Timeout............................................... 8-17 
X.21 Unexpected Clear During Call Establishment .................. 8-17 
X.21 Unexpected Clear During Data Phase. . . . . . . . . . . . . . . . . . . . . . . . 8-17 
X.21 Call Progress Signal ..................................... 8-17 

Description of the Multiprotocol (MPQP) Card ................ . . . . . . . . 8-18 
X.25 Device Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-20 

X.25 Programming Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-22 
X.25 Device Handler Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-23 
Sessions with the X.25 Device Handler ............................. 8-24 
Data Transmission and Reception for the X.25 Device Handler. . . . . . . . . . . 8-30 

Data Reception for the X.25 Device Handler . . . . . . . . . . . . . . . . . . . . . . . 8-30 
Common X.25 Device Handler Structures ........................... 8-30 

mbuf Structure .............................................. 8-30 
x25_buffer Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-31 

xii Contents 



x25_packet_data Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-31 
x25_calLdata Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-32 
x25_diag_mem Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-33 
x25_diag_io Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-33 
x25_diag_addr Structure ...................................... 8-33 

The High Function Terminal (HFT) Subsystem ..•.•.•....•..••.••••.•.• 9-1 
HFT Subsystem Component Structure ............................. 9-1 

The Screen Manager Ring ......................................... 9-2 
Screen Manager Operations ..................................... 9-2 
Screen Manager Operations ..................................... 9-2 

Activating the Virtual Terminal .................................. 9-2 
Hiding the Virtual Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2 
Setting the Command Virtual Terminal ........................... 9-3 
Restoring (Unhiding) the Presence of a Terminal in the Ring .......... 9-3 
Enabling the Command Virtual Terminal to Be Activated . . . . . . . . . . . . . . 9-3 
Disabling the Capability of the Command Virtual Terminal to Be Activated 9-3 
Disabling the Capability of a Virtual Terminal to Be Activated .......... 9-3 

Echo Maps ..................................................... 9-3 
Graphics Input/Output Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4 
Understanding the Virtual Display Device Driver ........................ 9-4 

ioctl Operation Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4 
write Operation Options ......................................... 9-4 

Understanding Virtual Terminals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4 
Virtual Terminal States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5 
Modes That Affect Virtual Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5 
Monitor Mode (MOM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5 

Valid ASCII Codes for MOM Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6 
MOM Mode Tasks ........................................... 9-6 

MOM Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6 
Reading Input Data from a Ring Buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7 

Steps for Reading from the Input Ring Buffer ........................ 9-7 
Detecting a Full Ring Buffer .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7 
Using the read Subroutine to Intercept Selected Keystrokes. . . . . . . . . . . . . 9-7 

Keyboard Send-Receive (KSR) Mode ................................ 9-7 
KSR Modes for Displaying Graphics ............................... 9-7 
Tasks in KSR Mode ............................................ 9-8 

Data Stream Modes .............................................. 9-8 
HFT Device Driver (HFTDD) User Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-9 

Understanding HFT Initial State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-9 
Default Values in the HFT ..................................... 9-9 

select Operation Support in HFT .................................. 9-11 
H FT Output write Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-11 
Reading Input with the read Operation. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 9-12 

Character Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-12 
Noncharacter Input .......................................... 9-12 

Protocol Modes............................................... 9-13 
Setting Protocol Mode .......... '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-13 
Types of Protocol Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-13 

How to Enter Monitor Mode ........................................ 9-14 
Prerequisite Tasks or Conditions .................................. 9-14 

Contents xiii 



Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-14 
How to Exit Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-14 

Prerequisite Tasks or Conditions .................................. 9-14 
Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-14 

Data Stream for HFT Virtual Terminals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-14 
Nonspacing Characters in the KSR Data Stream. . . . . . . . . . . . . . . . . . . . . . 9-15 

Valid Diacritic Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-15 
Multibyte Controls in Data Stream Data Overview . . . . . . . . . . . . . . . . . . . . . 9-15 

Invalid Multibyte Control Code Sequences ........................ 9-16 
Categories of Valid Multibyte Control Code Sequences . . . . . . . . . . . . . . . 9-16 

Single-Byte Controls in Data Stream Data Overview. . . . . . . . . . . . . . . . . . . 9-18 
Single-Byte Controls with Terminal Functions ...................... 9-18 
Single-Byte Controls with No Terminal Functions ................... 9-19 

Keyboards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-20 
Key States ................................................... 9-20 

Keys that Cannot be Remapped ................................ 9-21 
Available Software Keyboard ..................................... 9-21 
Key Sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-21 

List of Special Key Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-22 
Keyboard Position Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-22 
Keyboard States Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-23 

U.S. Keyboard .............................................. 9-23 
Japanese Keyboard ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-23 

Nonspacing Characters Overview ................................... 9-24 
Valid Nonspacing Character Sequences ............................ 9-25 
Invalid Nonspacing Character Sequences ........................... 9-25 

Logical Volume Subsystem ......................................... 10-1 
Physical Volumes and the Logical Volume Device Driver. . . . . . . . . . . . . . . . . . 10-1 

Direc~ Access Storage Devices (DASDs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1 
DASDs Device Block-Level Introduction .......................... 10-1 

Physical Volumes .. , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2 
Physical Volume Implementation Limitations . . . . . . . . . . . . . . . . . . . . . . . 10-3 

Physical Volume Layout ......................................... 10-3 
Reserved Sectors on a Physical Volume ........ . . . . . . . . . . . . . . . . . . 10-3 
Sectors Reserved for the Logical Volume Manager (LVM) . . . . . . . . . . . . . 10-3 

The Logical Volume Device Driver ................................... 10-4 
Data Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-5 
Top Half of Logical Volume Device Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-5 
Bottom Half of Logical Volume Device Driver . . . . . . . . . . . . . . . . . . . . . . . . . 10-6 

Strategy Layer .............................................. 1 0-6 
Scheduler Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-6 
Physical Layer .............................................. 10-7 

Interface to Physical Disk Device Drivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-7 
Logical Volumes and Bad Blocks .................................... 10-7 

Relocating Bad Blocks .......................................... 10-8 
Detecting and Correcting Bad Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-8 

Related Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-9 

Printer Addition Management Subsystem ............................. 11-1 
Printer Types Currently Supported by IBM. . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1 

xiv Contents 



Printer Types Currently Unsupported by IBM ........................ . 
Adding a New Printer Type to Your System ........................... . 

Adding a New Printer Definition .................................. . 
Additional Steps for Adding a New Printer Type ..................... . 

Adding a Printer Definition ........................................ . 
Adding a Printer Formatter to the Printer Backend ...................... . 

Subroutines for Print Formatters ................................. . 

The SCSI Subsystem ............................................. . 
Introduction .................................................... . 

Responsibilities of the SCSI Adapter Device Driver ................... . 
Responsibilities of the SCSI Device Driver ......................... . 
General Information ........................................... . 

The sc_buf Structure ............................................ . 
Fields in the sc_buf Structure .................................... . 

Execution of I/O Requests ........................................ . 
Spanned (Consolidated) Commands .............................. . 
Fragmented Commands ........................................ . 

SCSI Device Driver Internal Commands ............................. . 
SCSI Error Recovery ............................................ . 
Required SCSI Adapter Device Driver ioctl Commands .................. . 
A Typical SCSI Driver Transaction Sequence ......................... . 
Other SCSI Design Considerations ................................. . 

Responsibilities of the SCSI Device Driver ......................... . 
SCSI Options to the openx Subroutine ............................ . 
Using the SC_FORCED_OPEN Option ............................ . 
Using the SC_RETAIN_RESERVATION Option ..................... . 
Using the SC_DIAGNOSTIC Option .............................. . 
Closing the SCSI Device ....................................... . 
SCSI Error Processing ......................................... . 
Length of Data Transfer for SCSI Commands ....................... . 
Device Driver and Adapter Device Driver Interfaces .................. . 
Performing SCSI Dumps ....................................... . 

Appendix A. Alphabetical List of Kernel Services ...................... . 

Index .......................................................... . 

11-1 
11-1 
11-1 
11-2 
11-2 
11-2 
11-2 

12-1 
12-1 
12-1 
12-2 
12-2 
12-2 
12-2 
12-5 
12-6 
12-7 
12-7 
12-7 
12-8 

12-10 
12-10 
12-11 
12-11 
12-11 
12-11 
12-12 
12-13 
12-13 
12-13 
12-13 
12-14 

A-1 

X-1 

Contents XV 



xvi Contents 



Kernel Environment Programming 

The following topics are available as guidance on programming in the kernel environment: 

• Kernel Extension Binding 
• Execution Environments 
• Kernel Processes 
• Accessing User-Mode Data while in Kernel Mode 
• Understanding Locking 
• Signal Handling 
• Exception Handling. 

Introduction 
The AIX kernel is a dynamically extendable kernel that can be expanded by adding device 
drivers, system calls, kernel services, or private kernel routines. Extensions can be added at 
system boot or while the system is in operation. The Types of Kernel Extensions diagram 
illustrates the addition of extensions to the kernel environment. 

COMMANDS 

File System Interface System Calls 

KERNEL INTERFACE 

SYSTEM CALL INTERFACE 

• • VIRTUAL DEVICE EXTENDED EXTENDED 
FILE DRIVERS SYSTEM KERNEL 
SYSTEM CALLS SERVICES 

PRIVATE 
ROUTINES 

EXTENDED KERNEL MODE EXPORTS 

NUCLEUS SERVICES 

Types of Kernel Extensions 

Kernel Environment Programming 1-1 



A process executing in user mode can customize the kernel by using the sysconfig 
subroutine, if the process has appropriate privilege. In this way a user-mode process can 
load, unload, initialize, or terminate kernel routines. Kernel configuration can also be altered 
by changing tuneable system parameters. 

Kernel extensions can also customize the kernel by using kernel services to load, unload, 
initialize, and terminate dynamically loaded kernel routines; to create and initialize kernel 
processes; and to define interrupt handlers. Binding of kernel extensions can be performed 
at link-edit, load, or runtime. 

Kernel routines execute in a privileged protection domain and can effect the operation and 
integrity of the whole system. 

Kernel Extension Binding 
The AIX kernel provides a set of base kernel services to be used by kernel extensions. 
These services, which are described in the kernel services documentation, are made 
available to a kernel extension by specifying the kernel export file, kernex.exp, as an import 
file during the link-edit of the kernel extension. (The link-edit operation is performed by using 
the Id command.) 

A kernel extension provides additional kernel services and system calls by supplying an 
export file when it is link-edited. This export file specifies the symbols to be added to the 
/unix name space. Symbols that name system calls to be exported must specify the 
SYSCALL keyword next to the' symbol in the export file. 

The kernel extension's export file should also have #!/unix as its first entry so that the export 
file may be used by other kernel extensions as an import file. The #!/unix as the first entry in 
an import file specifies that the imported symbols are to come from the /unix name space, 
which is the global kernel name space. This entry is ignored when used in an export file. 
Thus, the same file can be used both as the export file for the kernel extension that provides 
the symbols and as the import file for another kernel extension importing one or more of the 
symbols. 

When a new kernel extension is loaded by the sysconfig subroutine, any symbols that were 
defined in the kernel extension's export file at link-edit time are added to the kernel name 
space, /unix. The loader can also load additional object files into the kernel in order to 
resolve symbols referenced by the new kernel extension. These additional object files will 
not have their own exported symbols added to the kernel name space, as these exported 
symbols are only used to resolve references required during the load of the new kernel 
extension. 

In other words, the kernel name space cannot be expanded without the explicit loading of a 
kernel object file specifying one or more exported symbols. The symbols that are added to 
the kernel name space are available to any subsequently loaded kernel object file as an 
imported symbol. 

Object files explicitly loaded into the kernel that export symbols into the space are shared by 
all kernel extensions, in that only one copy of the object file normally exists in the kernel. 

Using System Calls 
A restricted set of system calls can be used by kernel extensions. A kernel process can use 
a larger set of system calls than a user process in kernel mode can. (The System Calls 
Available in the Kernel specifies which system calls can be used by either.) User-mode 
processes in kernel mode can only use system calls that have all parameters passed by 
value. Kernel routines executing under user-mode processes cannot directly use a system 
call having reference parameters. 

1-2 Kernel Extensions and Device Support 



The latter restriction is imposed because when system calls with reference parameters 
access a caller's data, they are accessing storage across a protection domain. The 
cross-domain memory services performing these cross-memory operations support kernel 
processes (kprocs) as if they too were accessing storage across a protection domain. 
However, these services have no way to determine that the caller is in the same protection 
domain when the caller is a user-mode process in kernel mode. 

System calls must not be used by kernel extensions executing in the interrupt handler 
environment. 

Kernel extensions can bind with a restricted set of base AIX system calls. This is done by 
specifying the system call export file syscalls.exp as an import file when the kernel 
extension is link-edited. When loading object files into the kernel, the loader is aware that no 
protection domain switch is required to access system calls from the kernel. It therefore 
binds the system call imports to the function descriptor that provides direct access to the 
system call routine. For user-mode programs, the loader binds system call references to a 
set of function descriptors that invoke the system call handler to effect a switch of protection 
domain. 

Loading System Calls and Kernel Services 
Kernel extensions providing new system calls or kernel services should normally place only 
a single copy of the routine and its static data in the kernel. When this is the case, the 
SYS_SINGLELOAD option of the sysconfig subroutine should be used to load the kernel 
extension. This option ensures that only a single copy is loaded, since it only loads a new 
copy if one does not already exist in the kernel. For this type of kernel extension, an updated 
version of the object file is loaded into the kernel only when the current copy has no users 
and has been unloaded. 

If a kernel extension can support multiple instances of itself (particularly its data), the 
SYS_KLOAD option of the sysconfig subroutine can be used. This option loads a new copy 
of the object file even when one or more copies are already loaded. When this mechanism is 
used, currently loaded routines bound to the old copy of the object file continue to use the 
old copy. Any new routines (loaded after the new copy was loaded) are bou nd to the most 
recently loaded copy of the kernel extension. 

Unloading System Calls and Kernel Services 
Kernel extensions providing new system calls or kernel services can also be unloaded. For 
each object file loaded, the loader maintains a usage count and a load count. The usage 
count indicates how many other object files have referenced some exported symbol provided 
by the kernel extension. The load count indicates how many explicit load requests have 
been made for the object file. 

When an explicit unload of a kernel extension is requested, the load count is decremented. If 
the load count and the usage count are both 0, then the object file is unloaded. However if 
either the load count or usage count is nonzero, the object file is not unloaded. When 
programs are terminated or killed, the usage counts for kernel extensions that the programs 
referenced are adjusted. However, no unload of these kernel extensions is performed when 
the program terminates even if the load and usage counts become zero. 

As a result, a situation could exist in which a kernel extension remains loaded, even though 
its load count has been decremented to 0 (due to unload requests) and its usage count has 
reached 0 (because of program terminations). In this case, the kernel extension's exported 
symbols are still available for load-time binding unless another unload request for any object 
file is received. If an explicit unload request (for any program, shared library, or kernel 
extension) is received, the loader unloads all object files that have both load and usage 
counts of O. 

Kernel Environment Programming 1-3 



The slibclean command, which unloads all object files with load and use counts of 0, can be 
used to remove object files that are no longer used from both the shared library region and 
the kernel. Periodically invoking this command reduces the effects of memory fragmentation 
in the shared library and kernel text regions by removing object files that are no longer 
required. 

Using Private Routines 
The previous discussions have been concerned with importing and exporting symbols from 
and to the /unix common kernel name space. These symbols are global in the kernel and 
can be referenced by any routine in the kernel. 

Kernel extensions can also consist of several separately link-edited object files that are 
bound at load time. This is particularly useful for device drivers, where one object file 
contains the top (page able) half of the driver, while the bottom (pinned) half of the driver is in 
a second object file. This is also useful where several kernel extensions use common 
routines provided in a separate object file. 

In both cases, the symbols exported by the private object files should not be added to the 
global kernel name space. If a kernel extension is to have certain symbols exported to the 
global kernel name space and others used only to resolve references to other private object 
files, it should be divided into separately link-edited object files. (One object file would 
contain the symbols to be exported to the kernel name space, while the other would contain 
the exported symbols that are considered private.) 

For object files that reference each other's symbols, each should use the other's export file 
as its own import file during link-edit. The export file for the object file providing the services 
should specify #! path/file as the first entry in the export file, where path specifies the 
directory path to the object file, which provides the exported symbols at load time. This entry 
is ignored when used as an export file. When used as an import file, however, the entry tells 
the loader where to find the object file resolving the imported symbols at load time. 

The object file exporting symbols to the kernel name space should specify II/unix as the 
first entry in its export file. This allows the export file to be used as an import file by other 
kernel extensions. The object file containing the symbols to be exported to the kernel name 
space must be the one explicitly loaded into the kernel with the sysconfig subroutine. The 
loader then loads other private object files, as necessary, to resolve imported symbols 
required in the load. 

When the loader encounters an imported symbol that is resolved by an object file already 
loaded during the same explicit load request, the loader does not load a new copy. Instead, it 
resolves the symbol to the copy of the object file already loaded. This allows for 
cross-resolving symbols between two or more object files loaded as a result of the same 
explicit load request. 

Note: The loader hashes the path and file name of the object file to determine whether the 
file has already been loaded during this explicit load request. Another copy of the 
object file could be loaded if differing path names have been used for the same 
object file and the two names do not hash to the same value. 

Object files loaded automatically due to symbol resolution do not have their own exported 
symbols added to the kernel name space. These symbols remain private to the two or more 
object files loaded with an explicit load request. In this way, the kernel allows object files to 
have cross-dependent symbol references, and the loader will correctly resolve them. 

Note: When two separate explicit load requests have private symbols resolved by the same 
object file, two copies of that object file are loaded into the kernel. Each explicit load 
resolves its symbols to its own private copy of the object file. The private object files 
can also be combined into libraries with the ar archive command. 

1-4 Kernel Extensions and Device Support 



Using Libraries 
A library is a collection of previously link-edited object files or import files and is created by 
using the ar archive command. Each object file or import file within the archive (library) is 
referred to as a member. AIX program management allows an object file or member to be 
designated as shared when it is link-edited. Libraries either with or without shared objects 
can be created and used by kernel extensions. However, library services provided for 
user-mode applications should not generally be used by kernel extensions, due to the 
different programming requirements in the kernel. 

When the linkage editor (Id) resolves a symbol to a library member or object file not 
designated as shared, it binds the required object file into the output object file in order to 
resolve the references. However, when symbols are resolved to a library member or object 
file designated as shared, the shared object file is not included in the output object file. 
Instead, the linkage editor adds information to the loader section of the output object file. 
The loader uses this information at load time to learn the location of the shared object file 
that resolves the symbol. 

When these shared object files (normally in libraries) are referenced by user-mode 
programs, the loader checks the shared library region to determine if the object file is in the 
shared library region. If it is, the references ?re resolved to the object file in the shared 
library region. If the object file has not already been loaded, the loader will load it into the 
shared library region if the file permissions permit it. In this way, common or shared object 
files used by user-mode applications can be shared by all user-mode programs in the 
system. 

Unlike user mode, the kernel does not provide a shared library region. Therefore, when a 
kernel extension that refers to a shared object file is loaded, the loader loads a new copy of 
the shared object file into the kernel to be used to resolve all references to the object file 
during the explicit kernel extension load request. However, within the same explicit load 
request, all references to the same object file are resolved to the single copy of the object 
loaded for the current load request. 

AIX provides two libraries that can be used by kernel extensions. The libcsys library is a 
subset of routines found in the user-mode libc library that can be used by kernel extensions 
and consists of the following 25 routines: 

• atoi 
• bcmp 
• bcopy 
• bzero 
• memccpy 
• memchr 
• memcmp 
• memcpy 
• memmove 
• memset 
• ovbcopy 
• strcat 
• strchr 
• strcmp 
• strcpy 
• strcspn 
• strlen 
• strncat 
• strncmp 

Kernel Environment Programming 1-5 



• strncpy 
• strpbrk 
• strrchr 
• strspn 
• strstr 
• strtok. 

The memccpy, memcmp, memcpy, and memmove memory routines are low-level 
routines that the bcmp, bcopy and ovbcopy routines use and can be called directly where 
path length is critical. These services are documented in the Base Programming 
documentation as routines found in the libc library. The services can be bound to the kernel 
export by specifying libcsys.a as a library in the link-edit of the kernel extension. 

The libsys library provides a set of kernel services that must be bound with the kernel 
extension to be used by the extension. These kernel services are documented in the Kernel 
Services documentation and are described as being libsys services in their respective 
descriptions. The 5 services are: 

• d_align 
• d_roundup 
• timeout 
• timeoutcf 
• untimeout. 

These services can be bound to the kernel extension by specifying libsys.a as an import 
library in the link-edit of the kernel extension. 

Execution Environments 
There are two major environments under which a kernel extension can be executed. A 
kernel extension is said to be executing in the process environment when invoked either by 
a user process in kernel mode or by a kernel process. A kernel extension is executing in the 
interrupt environment when invoked as part of an interrupt handler. 

A kernel extension can determine which environment it is being called in by calling the 
getpid kernel service. This service returns the process identifier of the current process, or a 
value of -1 if called in the interrupt environment. Some kernel services can be called in both 
environments, while others can only be called in the process environment. 

Process Environment 
A routine is said to be executing in the process environment when it is invoked by a 
user-mode process or by a kernel process. Routines executing in this environment are 
executed at an interrupt priority of INTBASE. A kernel extension executing in this 
environment can cause page faults by accessing pageable code or data. It can also be 
pre-empted by another process of equal or higher process priority. 

Routines executing in the process environment can sleep or be interrupted by routines 
executing in the interrupt environment. Kernel routines executed on the behalf of a 
user-mode process can only invoke system calls that have no parameters passed by 
reference. Kernel processes, however, can use all system calls in the System Calls Available 
in the Kernel. Floating-point functions cannot be used in the kernel at all. 

Interrupt Environment 
A routine executes in the interrupt environment when invoked on behalf of an interrupt 
handler. A kernel routine executing in this environment cannot cause page faults by 
accessing pageable code or data. In addition, it has a stack of limited size, is not 

1-6 Kernel Extensions and Device Support 



pre-emptable by another process, and cannot perform any function that would cause it to 
sleep. 

Routines in this environment are only interruptable either by interrupts at a priority more 
favored than the current priority or by exceptions. These routines may not use system calls 
and can use only kernel services available in both the process and interrupt environments. 

A process in kernel mode may also put itself into an environment very similiar to the interrupt 
environment. This action, occurring when the interrupt priority is changed to a priority more 
favored than INTBASE, can be accomplished by calling the i_disable kernel service. A 
kernel-mode process is sometimes required to do this to serialize access to a resource 
shared by a routine executing in the interrupt environment. When this is the case, the 
process operates under most of the same restrictions as a routine executing in the interrupt 
environment. However, the e_sleep, e_wait, e_sleepl, lockl, and unlockl services can be 
used if the event word or lock word is pinned or if the process wishes to sleep or use locks. 

Note: Locks should only be used when serializing access with respect to other processes. 
They are not adequate when attempting to serialize access to a resource accessed 
by a routine executing in the interrupt environment. 

Routines executed in this environment can adversely affect system real-time performance 
and are therefore limited to a specific maximum path length. Guidelines for the maximum 
path length are determined by the interrupt priority at which the routines are executed. 
Documentation on Understanding Interrupts provides more information. 

No floating-point functions can be used in the kernel. 

Kernel Processes 
A kernel process (kproc) is a process that was created in the kernel protection domain and 
always executes in the kernel protection domain. Kernel processes can be used in 
subsystems, by complex device drivers, and by system calls. They can also be used by 
interrupt handlers to perform asynchronous processing not available in the interrupt 
environment. Kernel processes can also be used as device managers where asynchronous 
1/0 and device management is required. 

A kproc exists only in the kernel protection domain and differs from a user process in the 
following ways: 

• It is created using the creatp and initp kernel services. 
• It executes only within the kernel protection domain and has all security privileges. 
• It can call a restricted set of system calls and all applicable kernel services. 
• It has access to the global kernel address space (including the kernel pinned and 

pageable heaps), kernel code, and static data areas. 
• It must poll for signals and can choose to ignore any signal delivered, including a kill 

signal. 
• It is not preemptible by signals. 
• Its text and data areas come from the global kernel heap. 
• It cannot use shared libraries as such and has no shared library region. 
• It has a process-private region containing only the u-block (user block structure) and 

possibly the kernel stack. 
• Its parent process is the process that issued the creatp kernel service to create the 

process. 
• It can change its parent process to the init process and can use interrupt disable 

functions for serialization. 
• It can use locking in order to serialize process-time access to critical data structures. 

Kernel Environment Programming 1-7 



A kernel process inherits the environment of its parent process (the one calling the creatp 
kernel service to create it), but with some exceptions. The kproc will not have a root directory 
nor current directory when initialized. All uses of the file system functions must specify 
absolute path names. 

Kernel processes created during phase 1 of system boot must not keep any long-term opens 
on files until phase 2 of boot or runtime has been reached. This is because the AIX 
Operating System changes root file systems between phase 1 and phase 2 of system boot. 
As a result, the system crashes if any files are open at root file system transition time. 

Accessing Data from a Kernel Process 
A kernel process can access data that user processes cannot because kernel processes 
execute in the more privileged kernel protection domain. This applies to all kernel data, of 
which there are three general categories: 

• The user block data structure 
The u-block (or u-area) structure exists for kernel processes and contains roughly the 
same information for kernel processes as for user-mode processes. A kernel process 
must use kernel services to query or manipulate data from the u-area structure in order 
to maintain modularity and increase portability of code to other platforms. 

• The stack for a kernel process 
The location of the stack for a kernel process is implementation-dependent. This stack 
can be located in global memory or in the kernel process's process-private segment. A 
kernel process must not automatically assume that its stack is located in global memory. 

• Global kernel memory 
A kernel process can also access global kernel memory as well as allocate and 
de-allocate memory from the kernel heaps. Because a kernel process executes in the 
kernel protection domain, it can access any valid memory location within the global 
kernel address space. Memory dynamically allocated from the kernel heaps by the 
kernel process must be freed by the kernel process before exiting. Unlike user-mode 
processes, memory dynamically allocated by a kernel process is not automatically freed 
upon process exit. 

Kernel processes must be provided with a valid cross-memory descriptor to access address 
regions outside the kernel global address space or kernel process address space. For 
example, if a kernel process is to access data from a user-mode process, the system call 
using the kernel process must obtain a cross-memory descriptor for the user-mode region to 
be accessed. This is done by calling the xmattach kernel service, which provides a 
descriptor that can then be made available to the kernel process. 

The kernel process should then use the xmemin and xmemout kernel services to access 
the targeted cross-memory data area. When the kernel process has completed its operation 
on the memory area, the cross-memory descriptor must be detached by using the 
xmdetach kernel service. 

Kernel Process Creation, Execution, and Termination 
Kernel processes (kprocs) are created by a kernel-mode routine by calling the creatp kernel 
service. This service allocates and initializes a process block for the kernel process and sets 
the new process's state to idle. This new kernel process does not execute until initialized by 
the initp kernel service, which must be called in the same process that created the kernel 
process (with the creatp service). The creatp kernel service returns the process identifier for 
the new kernel process. 

Once the initp kernel service has completed the kproc's initialization, the kproc is placed on 
the run queue. On the first dispatch of the newly initialized kernel process, the process 

1-8 Kernel Extensions and Device Support 



begins execution at the entry point previously supplied to the initp kernel service with the 
initialization parameters previously specified on the call to the initp kernel service. 

A kernel process terminates when it executes a return from its main entry routine. A kernel 
process should never exit without both freeing all dynamically allocated storage and 
releasing all locks owned by the kernel process. 

When kernel processes exit, the parent process (the one that called the creatp and initp 
kernel services to create the kernel process) receives a death-ot-child signal. However, it is 
sometimes undesirable for the parent process to receive this death-of-child Signal due to 
kproc termination. In this case, the kproc can call the setpinit kernel service to redesignate 
the init process as its parent. The init process cleans up the state of all its children 
processes that have become zombies. A kernel process can also issue the setsid 
subroutine call to change its session so that signals and job control affecting the parent 
process's session do not affect the kernel process. 

Kernel Process Pre-emption 
A kernel process is initially created with the same process priority as its parent. It can 
therefore be pre-empted by a more favored kernel or user process. It does not have higher 
priority just because it is a kernel process. Kernel processes can use the setpri or nice 
subroutines to modify their execution priority. 

The kernel process can use the kernel locking facilities (the lockl and unlockl kernel 
services) to serialize access to critical data structures. This use of locks does not guarantee 
that the process will not be pre-empted, but it does insure that other processes trying to 
acquire the lock will wait until the kernel process owning the lock has released it. 

Using locks, however, does not provide serialization if a kernel routine can access the critical 
data while executing in the interrupt environment. Serialization with interrupt handlers must 
be handled by using the interrupt-control facilities in the kernel (such as the i_disable and 
i_enable kernel services). Kernel processes must ensure that no access to pageable code, 
data, or stack is made while executing at an interrupt priority higher than INTBASE. Kernel 
processes are not pre-empted by other processes while executing at an interrupt priority 
higher than INTBASE. However, they can still be interrupted by interrupts that are more 
favored than the current interrupt priority level. 

Kernel processes must ensure that their maximum path lengths adhere to the specifications 
for interrupt handlers when executing at an interrupt priority more favored than INTBASE. 
This ensures that system real-time performance is not degraded. 

Kernel Process Signal and Exception Handling 
Kernel processes, unlike user processes, are not pre-emptible by signals, even the SIGKILL 
signal. Kernel processes must poll for signals in order for them signals to be delivered. 
Polling ensures the proper kernel-mode serialization, since signals to user-mode processes 
are not delivered while in kernel mode, and kernel processes are always in kernel mode. 

Signals that have action applied at generation time (rather than delivery time) have the same 
effect regardless of whether the target is a kernel or a user process. Kernel processes can 
poll for unmasked signals waiting to be delivered by calling the siQ_chk kernel service. This 
service returns the signal number of a pending signal that was not blocked or ignored. The 
kernel process then uses the signal number to determine which action should be taken. The 
kernel does not automatically invoke signal handlers for kernel processes as it does for user 
processes. 

Kernel processes should also use the exception-catching facilities available in kernel mode 
to handle exceptions that can be caused during execution of the kernel process. Exceptions 
received during the execution of a kernel process are handled the same as exceptions that 
occur in any kernel-mode routine. 

Kernel Environment Programming 1-9 



Unhandled exceptions that occur in kernel mode (in any user process while in kernel mode, 
in an interrupt handler, or in a kernel process) result in a system crash. To avoid crashing the 
system due to unhandled exceptions, kernel routines should use the setjmpx, clrjmpx, and 
longjmpx kernel services to handle exceptions that may possibly occur during execution. 
Refer to Understanding Exception Handling for more details on handling exceptions. 

Kernel Process Use of System Calls 
System calls made by kernel processes do not result in a change of protection domain since 
the kernel process is already within the kernel protection domain. Routines in the kernel 
(including routines executing in a kernel process) are bound by the loader to the system call 
function and not to the system call handler. When system calls use kernel services to access 
user-mode data, these services recognize that the system call function is executing within a 
kernel process instead of a user process and correctly handle the data accesses. 

However, the error information returned from a system call made by a kernel process must 
be accessed differently than for a user process. A kproc must use the getuerror kernel 
service to retrieve the system call error information normally provided in the errno global 
variable for user-mode processes. In addition, the kernel process can use the setuerror 
kernel service to set the error information to 0 before calling the system call. The return code 
from the system call is handled the same for all callers. 

Kernel processes can use only a restricted set of the base system calls found in the 
syscalls.exp export file. System calls available to kernel processes can be found in the List 
of System Calls Available in Kernel Mode. 

Accessing User-Mode Data while in Kernel Mode 
Kernel extensions must use a set of kernel services to access data that is in the user-mode 
protection domain. These services ensure that the caller has the authority to perform the 
desired operation at the time of the data access. These services also prevent system 
crashes in a system call when accessing user-mode data. These services can only be called 
when executing in the process environment of the process containing the user-mode data. 

User-mode data access primitives are: 

• The subyte and suword services store either a byte or a word to user memory. 
• The fubyte and fuword services fetch either a byte or a word from user memory. 
• The copyin or copyout services copy data between user and kernel memory. 
• The copyinstr service copies a null-terminated character string from the user-mode 

address space into kernel memory. The copy is halted after the first null character is 
encou ntered. 

An addiitional set of services allow data transfer between user mode and kernel mode when 
a uio stucture is used. (This structure describes the user-mode data area to be accessed.) 
These services, typically used between the file system and device drivers to perform device 
liD, are the following: 

• The uiomove service 
• The ureadc and uwritec services. 

Using Cross-Memory Kernel Services 
Occasionally, access to user-mode data is required when not in the environment of the 
user-mode process that has addressability to the data. Such cases occur when the data is to 
be accessed in an asynchronous fashion. Examples of this include: 

• Direct memory access to the user data by liD devices 
• Data access by interrupt handlers 
• Data access by a kernel process. 

1-1 0 Kernel Extensions and Device Support 



In these circumstances, the kernel cross-memory services are required to provide the 
necessary access. The xmattach kernel service allows a cross-memory descriptor to be 
obtained for the data area to be accessed. This service must be called'in the process 
environment of the process containing the data area. 

Once a cross-memory descriptor has been obtained, the xmemin and xmemout kernel 
services can be used to access the data area outside of the process environment containing 
the data. As soon as access to the data area is no longer required, the access must be 
removed by calling the xmdetach kernel service. Kernel extensions should use these 
services only when absolutely required. Their use increases the difficulty of porting the 
kernel extension to other machine platforms because of the machine dependencies of 
cross-memory operations. 

Understanding Locking 
A conventional lock is used to serialize access to a predefined data structure. It is 
conventional in that all users of the data structure must lock the data structure's conventional 
lock before accessing the data structure. When finished, the users must also unlock the data 
structure's conventional lock. 

A conventional lock has two states: locked or unlocked. In the locked state, a process is 
currently accessing the data structure associated with the conventional lock. This process is 
referred to as the owner of the conventional lock. No other process that attempts to lock the 
conventional lock can get the lock until the process that owns the conventional lock unlocks 
it with the unlockl kernel service. In the unlocked state, no process accesses the data 
structure or owns the conventional lock. 

When a lower priority process owns a lock that a higher priority process is attempting to 
acquire, the priority of the process owning the lock is raised to the process priority of the 
highest priority process waiting to acquire the lock. When the process with boosted priority 
releases the lock, the priority of that process is restored to its normal value. 

Locking Strategy in Kernel Mode 
A linear hierarchy of locks exists, within which the global kernel lock, kerneLlock, has the 
the coarsest granularity. A kernel extension should not attempt to acquire the kernel lock if it 
owns any other lock. This hierarchy is imposed by software convention and is not enforced. 
The ordering of locks follows: 

• The kerneLlock global kernel lock 
• File system locks (private to file systems) 
• Device driver locks (private to device drivers) 
• Private fine-granularity locks. 

Locks should be unlocked in the reverse order in which they were acquired. 

Signal Handling 
For information on signal handling for a user-mode process in kernel mode, see Handling 
Signals While in a System Call on page 4-4. 

For information on signal handling while in a kernel process, see Kernel Process Signal and 
Exception Handling on page 1-9. 

Exception Handling 
There is a basic distinction between interrupts and exceptions: 

• An interrupt is an asynchronous event and is not associated with the instruction that is 
executing when the interrupt occurred. 

Kernel Environment Programming 1-11 



• An exception is a synchronous event and is directly due to the instruction that is executing 
when the exception occurs. 

The computer hardware generally uses the same mechanism to report both interrupts and 
exceptions: the machine saves and modifies some of its state and forces a branch to a 
particular location. On decoding the reason for the machine interrupt, the interrupt handler 
determines whether the event is an interrupt or an exception and performs different 
processing accordingly. 

Note: Ordinary page faults are treated more like interrupts than exceptions. The only 
difference between a page-fault interrupt and other interrupts is that the interrupted 
program is made nondispatchable until the page fault is resolved. 

Exception Processing 
When an exception occurs, the current instruction stream cannot continue. It is almost 
never appropriate to simply ignore the exception. At the very least, the results of executing 
the instruction are undefined and thus further execution of the program is effectively 
meaningless. The AIX kernel provides an exception-handling mechanism by which an 
executing instruction stream (a process- or interrupt-level program) can specify what action 
is to be taken when an exception occurs. Exceptions are handled differently depending on 
whether they occurred while executing in user mode or kernel mode. 

Default Action 
If no exception handler is currently defined when an exception occurs, then one of two things 
usually happens: 

• If the exception occurs while a process is executing in user mode, the process is sent a 
signal relevant to the type of exception. 

• If the exception occurs while in kernel mode, the system halts. 

Kernel-Mode Exception Handling 
Exception handling in the AIX kernel mode extends the UNIX setjump/longjump 
context-save-and-restore mechanism by providing setjmpx and longjmpx kernel services to 
handle exceptions. The traditional UNIX mechanism is extended by allowing these exception 
handlers or context-save checkpoints to be stacked on a per-process or per-interrupt handler 
basis. 

This stacking mechanism allows the execution point and context of a process or interrupt 
handler to be restored to a point in the process or interrupt handler, at the point of return 
from the setjrnpx service. When execution returns to this point, the return code from 
setjmpx service indicates the type of exception that occurred so that the process or interrupt 
handler state can be fully restored. Appropriate retry or recovery operations are then invoked 
by the software performing the operation. 

When an exception occurs, the kernel's first level exception handler gets control. The first 
level exception determines what type of exception has occurred and saves information 
necessary for handling the specific type of exception. For-an I/O exception, the first level 
handler also performs the necessary re-enabling of the capability to perform programmed 
I/O operations. 

The first level exception handler then modifies the saved context of the interrupted process 
or interrupt handler to execute the longjmpx service when the first level exception handler 
returns to the interrupted process or interrupt handler. 

The longjmpx service executes in the environment of the code that caused the exception 
and restores the current context from the topmost jump buffer on the stack of saved 
contexts. As a result, the state of the process or interrupt handler that caused the exception 

1-12 Kernel Extensions and Device Support 



is restored to the point of the return from the setjmpx service. (The return code, 
nevertheless, indicates that an exception has occurred.) 

The process or interrupt handler software should then check the return code and invoke 
exception handling code to restore fully the state of the process or interrupt handler. 
Additional information about the exception can be obtained by using the getexcept kernel 
service. 

User-Defined Actions 
A typical exception handler should do the following: 

• Perform any necessary clean-up, such as freeing storage or segment registers and 
releasing other resources. 

• If the exception is recognized by the current handler and can be handled entirely within 
this routine, the handler should re-establish itself by calling the setjmpx service. This 
allows normal main-line processing to continue. 

• If the exception is not recognized by the current handler, it must be passed along to the 
previously stacked exception handler. The exception is passed along by calling the 
longjmpx service, which either invokes the previous handler (if any) or takes the 
system's default action. 

• If the exception is recognized by the current handler but cannot be handled, it is treated 
as though it could not be recognized at all. The longjmpx service is called, which either 
passes the exception along to the previous handler (if any) or takes the system's default 
action. 

When a kernel routine that has established an exception handler completes normally, it must 
remove its exception handler from the stack (by using the clrjmpx service) before returning 
to its caller. Nole that when the longjmpx kernel service invokes an exception handler, that 
handler's entry is automatically removed from the stack. 

Implementing Kernel Exception Handlers 
The setjmpx kernel service provides a means of saving the following portions of a 
program's state at the point of a call: 

• Nonvolatile general registers 
• Stack pointer 
• TOC pointer 
• Interrupt priority number (intpri) 
• Ownership of kernel-mode lock. 

This state can be restored at a later point by calling the longjmpx service, which 
accomplishes the following: 

• Reloads the registers (including TOC and stack pointers). 
• Enables or disables to the proper interrupt level. 
• Conditionally acquires or releases the kernel-mode lock. 
• Forces a branch back to the point of original return from the setjmpx service. 

The setjmpx service takes the address of a jump buffer (a label_t structure) as an explicit 
parameter. This structure can be defined anywhere including on the stack (as an automatic 
variable). After filling in the state data in the jump buffer, the setjmpx kernel service pushes 
the buffer onto the top of a stack maintained in the machine state save structure. 

The longjmpx service is used to return to an earlier point in the code, namely the point at 
which the setjmpx service was called. Specifically, the longjmpx service returns to the most 
recently created jump buffer, as indicated by the top of the stack anchored in the machine 
state save structure. 

Kernel Environment Programming 1-13 



The argument to the longjmpx service is an exception code that is passed to the resumed 
program as the return code from the setjmp service. The resumed program tests this code 
to determine the conditions under which the setjmpx service is returning. If the setjmpx 
service has just saved its jump buffer, the return code is a value of O. On the other hand, if 
an exception has occurred, then the program has been re-entered by a call to the longjmpx 
service, which has passed along a return code not equal to O. 

Note that only the resources listed above are saved by the setjmpx service and restored by 
the longjmpx service. Other resources, in particular segment registers, are not restored. A 
call to the longjmpx service, by definition, returns to an earlier point in the program. It is the 
program's responsibility to free any resources that may have been allocated between the call 
to the setjmpx service and the call to the longjmpx service. 

If the exception handler stack is empty when the longjmpx service is issued, there is no 
place to jump to and the kernel's default action is taken. If the stack is non-empty, then the 
context defined by the topmost jump buffer is reloaded and resumed. The topmost buffer is 
removed from the stack. 

The clrjmpx service removes the top element from the stack as placed there by the 
setjmpx service. The caller to the clrjmpx service is expected to know exactly which jump 
buffer is being removed, as this should have been established earlier in the code by a call to 
the setjmpx service. Accordingly, the address of the buffer is required as a parameter to the 
clrjmpx service so that it can perform consistency checking by ASSERTing that the address 
passed is indeed the address of the top stack element. 

Exception Handler Environment 
The stacked exception handlers run in the environment in which the exception occurs. That 
is, an exception occurring in a process environment causes the next dispatch of the process 
to run the exception handler on the top of the stack of exception handlers for that process. 
An exception occurring in an interrupt handler causes the interrupt handler to return to the 
context saved by the last setjmpx call made by the interrupt handler. 

Note: An interrupt handler context is newly created each time the interrupt handler is 
invoked. As a result, exception handlers for interrupt handlers must be registered (by 
calling the setjmpx service) each time the interrupt handler is invoked. Otherwise, 
an exception detected during execution of the interrupt handler will be handled by the 
default handler. 

Restrictions on Using the setjmpx Kernel Service 
Process and interrupt handler routines registering exception handlers with the setjmpx 
kernel service must not return to their caller before removing the saved jump buffer or 
buffers from the list of jump buffers. A saved jump buffer can be removed by invoking the 
clrjmpx service in the reverse order of the setjmpx calls. The saved jump buffer must be 
removed before return because the routine's context no longer exists once the routine has 
returned to its caller. 

If, on the other hand, an exception does occur (that is, the return code from setjmpx service 
is nonzero), the jump buffer is automatically removed from the list of jump buffers. In this 
case, a call to the clrjmpx service for the jump buffer must not be performed. 

Care must also be taken in defining variables that are used after the context save (the call to 
the setjmpx service), and then again by the exception handler. Sensitive variables of this 
nature must be restored to their correct value by the exception handler when an exception 
occurs. Alternatively, if the last value of the variable is desired at exception time, the 
variable must be declared as volatile. 

1-14 Kernel Extensions and Device Support 



Exception handling is concluded in one of two ways. Either a registered exception handler 
handles the exception and continues from the saved context, or the default exception 
handler is reached by exhausting the stack of jump buffers. 

Exception Codes 
The <sys/exeept.h> header file contains a list of code numbers corresponding to the 
various types of hardware exceptions. When an exception handler is invoked (the return 
from the setjmpx service is not equal to 0), it is the responsibility of the handler to test the 
code to ensure that the exception is one the routine can handle. If it is not an expected 
code, the exception handler must: 

• Release any resources that would not otherwise be freed (buffers, segment registers, 
storage acquired using the malloe kernel service). 

• Call the longjmpx service, passing it the exception code as a parameter. 

Thus, when an exception handler does not recognize the exception for which it has been 
invoked, it passes the exception on to the next most recent exception handler. This 
continues until an exception handler is reached that does recognize the code and can 
handle it. Eventually, if no exception handler can handle the exception, the stack is 
exhausted and the system default action is taken. 

In this manner, a component can allocate resources (after calling the setjmpx service to 
establish an exception handler) and be assured that the resources will later be released. 
This is because no matter what events occur, the exception handler gets a chance to release 
those resources before the instruction stream (a process- or interrupt-level code) is 
terminated. 

By coding the exception handler to recognize what exception codes it can process, (rather 
than encoding this knowledge in the stack entries), a powerful and simple-to-use mechanism 
is created. Each handler need only investigate the exception code that it receives (rather 
than just assuming that it was invoked because a particular exception has occurred). In 
order to implement this scheme, the set of exception codes used cannot have duplicates. 

Exceptions generated by hardware use one of the codes in the <exeept.h> header file. 
However, the longjmpx service can be invoked by any kernel component, and any integer 
can serve as the exception code. Thus a mechanism similar to the old-style setjmp and 
longjmp services can be implemented on top of the setjmpx/longjmpx stack by using 
exception codes outside the range of those used for hardware exceptions. 

To implement this old-style mechanism, a unique set of exception codes is needed. These 
codes must be guaranteed not to conflict with either the pre-assigned hardware codes or 
codes used by any other component. A simple way to get such codes is to use the 
addresses of unique objects as code values. 

For example, a program that establishes an exception handler might compare the exception 
code to the address of its own entry point (that is, by using its function descriptor). Later on 
in the calling sequence, after any number of intervening calls to the setjmpx service by 
other programs, a program can issue a longjmpx call and pass the address of the 
agreed-on function descriptor as the code. This code is only recognized by a single 
exception handler. All the intervening ones just clean up their resources and pass the code 
to the longjmpx service again. 

Addresses of function descriptors are not the only possibilities for unique code numbers. For 
example, addresses of external variables can also be used. By using addresses that are 
resolved to unique values by the binder and loader, the problem of code space collision is 
tranformed into a problem of external name collision. This problem is not only much more 
easily solved, but is also routinely solved whenever the system is built. By comparison, 

Kernel Environment Programming 1-15 



preassigning exception numbers by using #define statements in a header file is much more 
cumbersome and error-prone. 

Hardware Detection of Exceptions 
Each of the exception types results in a hardware interrupt. For each such interrupt, a 
first-level interrupt handler (FLlH) saves the state of the executing program and calls a 
second-level handler (SLlH). The SLiH is passed a pointer to the machine state save 
structure and a code indicating the cause of the interrupt. 

When a SLiH determines that a hardware interrupt should actually be considered a 
synchronous exception, it sets up the machine state save to invoke the longjmpx service, 
and then returns. The FLiH then resumes the instruction stream at the entry to the 
longjmpx service. 

The longjmpx service then invokes the top exception handler on the stack or takes the 
system default action as previously described. 

User-Mode Exception Handling 
Exceptions that occur in a user-mode process and are not automatically handled by the 
kernel cause the user-mode process to be signaled. If the process is in a state in which it 
cannot take the signal, it is terminated and the information logged. Kernel routines can install 
user-mode exception handlers that catch exceptions before they are signaled to the 
user-mode process. 

The uexadd and uexdel kernel services allow systemwide user-mode exception handlers to 
be added and removed. 

The most recently registered exception handler is the first called. If it cannot handle the 
exception, the next most recent handler on the list is called, and this second handler 
attempts to handle the exception. If this attempt fails, successive handlers are tried, until the 
default handler is called, which generates the signal. 

Additional information about the exception can be obtained by using the getexeept kernel 
service. 

Related Information 
The setjmpx kernel service, longjmpx kernel service, elrjmpx kernel service, getexeept 
kernel service, malloe kernel service, uexadd kernel service and uexdel kernel service. 
Handling Signals While in a System Call on page 4-4. 
Writing a Device Driver on page 2-1 . 
Extending the Kernel with Device Drivers on page 3-1 . 
Extending the Kernel with System Callson page 4-1 . 
Kernel Services on page 6-1. 
Alphabetical List of Kernel Services on page A-1 . 

Using the Kernel Debugger in General Programming Concepts. 

1-16 Kernel Extensions and Device Support 



Writing a Device Driver 

The following topics are provided as guidance for understanding how a device driver is 
organized and how it fits into the operating system environment: 

• Concepts Overview 
• Device Driver Classes 
• Device Driver Roles 
• Device Driver Structure 
• Understanding liD Access Through Special Files 
• Understanding the Device Switch Table 
• Understanding Major and Minor Numbers for a Special File. 

Concepts Overview 
Device drivers are kernel extensions that control and manage specific devices used by the 
operating system. The liD subsystem, in conjunction with the device drivers, allows 
processes to communicate with peripheral devices such as terminals, printers, disks, tape 
units, networks. Device drivers may be installed into the kernel to support a class of devices 
(such as disks) or a particular type of device (such as a specific disk drive model). Device 
drivers shield the operating system from device-specific details and provide a common I/O 
model for accessing the devices for which they provide support. 

The operating system also supports and uses the concept of pseudo-devices. 
Understanding Pseudo-Device Drivers on page 3-10 provides more information. 

The system interface to devices, which is supported by device drivers, is through the file 
system. Each device that is accessible to a user-mode application has a file name and can 
be accessed as if it were an ordinary file. By convention, this device file name is found in 
the /dev directory in the root file system. This device file name along with its associated 
inode is known as a device special file. 

Conceptual Organization of Device Drivers 

Device drivers may be characterized by the class of liD subsystem interfaces that they 
provide. Device driver routines may be further characterized by the roles that they play in 
supporting the device I/O. Finally, the overall structure of the device driver is dictated by the 
execution environment in which the routines execute. 

Device Driver Classes 
The AIX operating system supports two classes of device drivers: character and block. 
These classes of device driver are distinguished by the types of devices they support and 
the interfaces that are presented to the kernel. 

The block device interface is suitable for random access storage devices with fixed-size 
addressable data blocks. Devices supported by block device drivers can also potentially 
support a mounted file system. User-mode access to these block device drivers is through a 
block device special file. 

The character device interface is more suitable to other types of devices (such as terminals, 
printers, and networks) that do not have strict definitions of fixed-size addressable data 
blocks. These devices cannot directly support mounted file systems. User-mode access to 
these character device drivers is through a character device special file. Character device 
drivers are not as highly structured as block device drivers. 

Writing a Device Driver 2-1 



Block device drivers can provide character device interfaces and access to their block 
devices by providing a character special file, as well as the block special file. Character 
device access to block devices is called raw 110. 

Comparison of Block and Character Device Drivers 
Device drivers of both classes have entry points registered in the device switch table. 
Character device drivers typically have read and write entry points defined in the device 
switch table for providing data transfer operations. Block device drivers on the other hand 
have a strategy entry point instead. Block device drivers providing raw 1/0 access typically 
provide read, write, and strategy entry points for providing data transfer operations. 

A major difference between block and character device support is in how their read and write 
1/0 requests are processed. Both types have entry points registered in the device switch 
table and both perform 1/0 as a result of file system calls to their devices. However, read 
and write requests directed to a block device are managed by a kernel buffering mechanism 
not present on requests directed to character devices. 

Read and write 1/0 access using character special files invokes corresponding entry points 
in a character device driver. The same calls using block special files, however, do not 
directly invoke corresponding block driver entry points. Instead, the file system processing 
these calls invokes buffer management facilities provided by the kernel. These buffer 
management routines then call the block device driver strategy routine (ddstrategy) when 
required. The buffer management facilities determine when a data transfer is required and 
call the correct block driver strategy routine at that time. 

Device Driver Roles 

Device Head 

Device drivers can play two roles in the AIX operating system: the device head role and the 
device handler role. Character and block device drivers can provide one or both roles. A 
particular entry point for a device driver is either a device head or a device handler entry 
point. 

Device driver routines performing the device head role are responsible for fielding the device 
driver request generated by a user application. Such requests are submitted through the 
use of file system calls or possibly by another kernel extension using the kernel file system 
services. 

Device head routines have their entry points installed in the device switch table. Examples 
of these routines are the device driver ddconfig, ddopen, ddclose, ddread, ddwrite, 
ddioctl, ddmpx, and ddrevoke routines. User applications can use file system calls in 
conjunction with special files to access these routines, while kernel extensions can use the 
file system services available in the kernel (the Logical File System fp_xxxx services). 

Device head routines are responsible for the following functions: 

• They convert the request from the form of the file 1/0 function call to a form that the 
routines acting in the corresponding device handler role understand. 

• They perform the appropriate data blocking and buffering. 
• They manage the device. This includes such actions as maintaining queues of 1/0 

requests and handling error recovery and error logging. 

Routines providing the device head role must conform to the programming model described 
in System Call Kernel Extension Overview because they are called by system calls and 
execute in the same environment. 

2-2 Kernel Extensions and Device Support 



Device Handler 
Device driver routines fulfilling the device handler role perform the actual 1/0 to and from the 
device. User applications cannot directly access these routines without going through the 
device head routines. Examples of device handler routines are the ddstrategy and 
dddump device driver entry points, the interrupt handler, start 1/0, and 1/0 exception 
handling routines. 

Support for some devices can be implemented using two separate device drivers. The first 
driver acts in the device head role while the second mainly performs the device handler role. 
However, this second (device handler) driver can also have its own set of small device head 
routines, and these routines would be registered in the device switch table. The extra set of 
device head routines is provided primarily to make system configuration and binding easier. 
A device driver of this type can be completely inaccessible to application programs or can 
provide a special file for diagnostic purposes. 

Device Driver Structure 
Device driver routines providing support for physical devices typically execute in two different 
types of environment, thus leading to a two-part structure. One part, referred to as the top 
half of the device driver, always executes in the process environment. Routines in this part 
typically provide the device head role, because they are always executed in the environment 
of the calling process. 

The other part, referred to as the bottom half of the device driver, executes in the process or 
interrupt environment. Routines in this part normally provide the device-handling role 
because they deal with actual device 1/0 typically driven by hardware interrupts. 
Additionally, for block devices, the strategy routine is found in the bottom half because it may 
be called in the interrupt environment due to paging or other asynchronous requests. 

Device Driver Top Half Routines 
Because routines in the top half of a device driver are only called in the process 
environment, the code and data accessed in this environment are normally pageable. The 
AIX kernel is designed to allow large portions of kernel code and data to be pageable in 
order to decrease the amount of physical memory required by the kernel. This is very 
important for the AIX kernel because the design philosophy is to create fairly large data 
structures in pageable virtual memory. These large data structures can then support a wide 
range of system loads and configurations. 

Preemption in the AIX Operating System 

The AIX kernel is designed to allow preemption by other processes while executing in kernel 
mode. This change to allow preemption was made in order to enhance support for real-time 
processes and large multiuser systems. 

Most existing UNIX device drivers do not expect this form of preemption. The effects of 
preemption on the existing UNIX device drivers can be minimized by serializing the 
execution of these types of device drivers. This can be done by using the unlockl kernel 
service with the KERNEL_MODE lock. This does not disable preemption of the device 
driver, but ensures that all device drivers of this type are serialized with respect to each 
other. Understanding Locking provides more information on using locks. 

Device Driver Bottom Half Routines 
The second half of the device driver structure is referred to as the bottom half. This half of 
the device driver typically consists of a routine that starts 1/0 operations (start 1/0), an 
interrupt handler, and (optionally) off-level interrupt handling and device time-out routines. 
The device driver's strategy and dump routines are also considered part of the bottom half. 

Writing a Device Driver 2-3 



The start I/O routine is typically known only to other routines within the device driver, such as 
the strategy and interrupt-handling routines. Interrupt handling routines are registered using 
kernel services. The dump and strategy routines (the dddump and ddstrategy entry 
points) are found in the device switch table. 

Some character device drivers, particularly pseudo-device drivers, may have no bottom half 
if they have no need to execute in the interrupt environment. 

This part of the device driver executes in both the interrupt handler environment and in the 
environment of the calling process. Both the code for this part of the device driver and the 
data it accesses must be pinned so that page faults are not taken in the interrupt execution 
environment. In addition, routines in the bottom half can use only kernel services that are 
specified as callable in the interrupt environment. 

Serialization and Preemption in the Bottom Half of the Device Driver 

Execution serialization in bottom half routines is accomplished by using interrupt control 
functions. Unlike top half routines, bottom half routines may not use locks for serialization 
because their use may cause a page fault or an attempt to sleep while executing in the 
interrupt environment. 

The interrupt control functions provided by the kernel provide serialization by allowing a 
routine to mask interrupt levels or disable interrupt priorities. These can be used by the 
bottom half routine to prevent it from being interrupted by other routines for which 
serialization is required. The kernel also provides associated interrupt level unmasking and 
priority-enabling functions to resume previously disabled interrupt handling, once the critical 
serialization section has been executed. Bottom half routines using these services should 
only disable interrupts to the least favored priority that still provides the necessary 
serialization. 

Bottom half routines may also be executed in the process environment, which is 
preemptible. The interrupt priority control functions used in the interrupt environment also 
provide the necessary serialization when used in the process environment. This is due to 
the fact that dispatching and process preemption are only performed at the least favored 
interrupt priority, called INTBASE. The interrupt-level masking services do not provide 
process serialization and should be used only when serialization is required in the interrupt 
environment. 

Understanding I/O Access Through Special Files 
The kernel contains many entry points into the file I/O subsystem. Common entry points are 
invoked using the open, close, read, write, Iseek, and ioctl subroutines. The file I/O 
subsystem determines whether the request is to gain access to an ordinary file, a block 
special file, or a character special file. In the case of device special files, this subsystem 
translates the file name into a major and minor number, which are used to select the device 
driver and specific device. 

Warning: Potential for data corruption or system crashes: Data corruption, loss of data, 
or loss of system integrity will occur if devices supporting paging, logical volumes, or 
mounted file systems are accessed using block special files. Block special files are provided 
for logical volumes and disk devices on AIX and are solely for system use in managing file 
systems, paging devices, and logical volumes. They should not generally be used for other 
purposes. 

2-4 Kernel Extensions and Device Support 



Access to Character Device Drivers 
Character device drivers may only be accessed by performing file lID associated with a 
character special file. When processing an open or create request associated with a 
character special file, the system always calls the device driver's ddopen entry point to 
allow any special processing to occur (for example, device initialization or resource 
allocation). The device driver's ddclose entry point, however, is normally only called when 
the last process having the special file open closes it. 

When a read or write associated with a character special file occurs, the file system 
constructs a uio structure containing the user's arguments and file-table data to be passed 
to the devie'e driver's ddread or ddwrite entry points. This uio structure describes: 

• Address of the user's buffer 
• Data transfer count 
• Current device data offset obtained from the file table entry 
• Current open mode entry or file control information obtained from the file table. 

This uio structure is then passed to the ddread or ddwrite entry point of the character 
device driver, which performs the data transfer. As a result of this transfer, the fields in the 
uio structure are updated to reflect the amount of data actually transferred and the new 
device data offset. 

Access to Multiplexed Character Device Drivers 
Access to multiplexed character device drivers is similar to standard character device 
drivers, except that the concept of channels has been added. A channel is typically 
supported by a device driver as a resource subunit on a particular device. Each subunit can 
be selected by an extra suffix on the special file path name. 

As explained previously, the particular device is accessed using a character device special 
file containing a device major and minor number. When an open or create request is made 
involving a multiplexed character special file, the path name of the special file can be 
followed by a character string specifying the name of the channel being requested. If no 
name is provided when opening a multiplexed character driver, the device driver typically 
assigns the next available channel. 

For example, the special file for the high function terminal device is named Idev/hft. Virtual 
terminals on that physical terminal are assigned channels. If an open of Idev/hft is 
specified, the multiplexed device driver assigns the next available virtual terminal. However, 
if an open of Idev/hftln is specified, a specific virtual terminal is being requested and is 
opened by the device driver. 

Character device drivers may be supported as multiplexed if they provide and register a 
ddmpx routine in the device switch table. When processing an open or create request 
associated with a character special file, the system always determines if the associated 
device driver has a ddmpx routine specified in the device switch table. If it does not, 
standard character device open processing occurs. 

If a ddmpx routine is found, the system calls the device driver's ddmpx routine and passes 
it a pointer to a character string specified after the special file name. If the character device 
driver can successfully allocate a channel, it returns a channel 10 to the system. The system 
then calls the device driver's ddopen routine with the channel ID received from the ddmpx 
routine to allow for any special processing such as device initialization or resource 
allocation. This channel 10 accompanies file lID requests associated with the particular open 
or create call that assig ned it. 

Unlike a standard character device driver, a multiplexed driver's ddclose routine is called 
once for every close that had an associated open or create request. Once the file system 

Writing a Device Driver 2-5 



has determined that the last close has been issued for a channel, the multiplexed driver's 
ddmpx routine is called with an indication that the channel should be deallocated. 

For a multiplexed device driver, a count of the number of explicit opens can be maintained. 
However, a count of the number of using processes (due to fork and dup subroutines) 
cannot. Keeping a count should be required only in unusual circumstances, because the 
last close for a channel can be recognized by the channel deallocation call to the ddmpx 
routine. 

Channels offer the advantage of allowing access to a very large number of dynamically 
allocated subunits without the need for a large number of special files. The availability of 
channels may also be allowed to shrink or grow dynamically as the availability of resources 
changes. Once a channel has been opened, its permissions and other security attributes 
can be changed independently of other channels or the base special file. 

Access to Block Device Drivers 
When processing an open request associated with a block device driver, the system always 
calls the device driver's open routine to allow any special processing (such as device 
initialization or resource allocation) to occur. However, the device driver's close routine is 
called only when the last process having it open closes the device. 

Read and write requests to block device drivers are handled by several different 
mechanisms in the AIX Base Operating System. In the following discussion, the first three 
mechanisms all use the block interface of the device driver for data transfers and specify the 
data transfer parameters in a buf structure passed to the strategy routine. 

Access to Block Devices Designated as Paging Devices 

The first mechanism involves a block device designated as an active paging device. In this 
situation, the pager invokes the device driver ddstrategy entry point for page-out or page-in 
data transfers. The pager supplies the necessary buf structures from its own pool and the 
associated data buffers are memory pages. 

Access to Block Devices By the File System and Virtual Memory Manager 

Secondly, block device drivers can be accessed by the file system and virtual memory 
manager. This may be due to user file liD or to access of file system meta-data (internal file 
system data). In this case, the file system, the virtual memory manager, and the pager 
cooperate to provide buffer caching mechanisms using the underlying memory pages, 
instead of providing a caching layer on top of page management. 

File I/O Access to Block Devices Using the Block Special File 
A third mechanism for access to block device drivers is through file liD using the block 
device special file. If read and write requests are directed to a device using a block special 
file, the requests are managed by the block liD buffer cache mechanism in the kernel. This 
buffer cache mechanism attempts to increase efficiency by keeping in-memory copies of 
frequently used blocks of data, thus reducing physical 110 requests to the device. This buffer 
cache mechanism also provides multiple processes with a consistent view of the data in the 
block. This is true because when separate processes request liD to the same block on the 
same liD device, they all access the same buffer in the cache. 

Potential Hazards of Block Special File Usage 

Data corruption or loss of data and system integrity occur if devices supporting paging, 
logical volumes, or mounted file systems are accessed using block special files. Unlike 
previous UNIX operating systems, AIX file systems and paging support use the physical 

2-6 Kernel Extensions and Device Support 



memory page management functions in the virtual memory manager to perform the buffer 
caching traditionally supported by the block I/O buffer cache management. 

The block I/O buffer cache is still used, however, for buffer caching of operations directed to 
block special files. Accessing these devices through the block special files can result in more 
than one copy of the data existing in memory. The virtual memory manager can be 
maintaining one copy while the block I/O buffer cache contains a second. This can lead to 
potentially disastrous results. 

When block devices are not used by the paging subsystem or file systems, all direct data 
accesses transferring large blocks of data should use the raw I/O character special file for 
best performance. Using the block I/O buffer cache provides poorer performance due to the 
small buffer cache size and the non-optimum scheduling of I/O to the device by the block I/O 
buffer management support. The block I/O special files should only be used to perform I/O 
when small unaligned or odd-sized data transfers are being requested and performance is 
not a concern. 

Block special files are provided for logical volumes and disk devices on AIX solely for system 
use in managing file systems, paging devices, and logical volumes. They should not 
generally be used for other purposes. 

Raw 1/0 Access to Block Devices Using the Character Special File 
A fourth way to access some block device drivers is through raw I/O using a character 
special file name. If a block device driver supports this type of access, the file system 
invokes the device driver's read and write routines for file I/O associated with the character 
special file. (Raw I/O access is supported by providing a character special file and 
read/write entry pOints in the device switch table.) 

To the file system, this mechanism is identical to character device driver access 
mechanisms. The block device driver however must provide raw I/O read and write 
processing routines. Because the block device driver converts the raw I/O requests to block 
requests, raw I/O typically has data transfer restrictions associated with the driver and 
device that are not normally found with ordinary character device I/O. For example, typical 
restrictions are that data transfers must be in multiples of the block size or that data transfers 
must start on a block boundary. 

Understanding the Device Switch Table 
The file system accesses character or block device driver routines through a table called the 
device switch table. This table is kept in kernel storage and contains one element for each 
configured device driver. Each element is itself a table of entry point addresses. There is 
one address for each entry point provided by that device driver. 

A device driver's entry points are inserted in the device switch table at device driver 
configuration time. The driver's configuration routines call various kernel services to install 
driver entry points into one or more entries (rows) of the table. Each table entry or row is 
indexed by a major number. 

Understanding Major and Minor Numbers for a Special File 
Major numbers are assigned at device configuration time by the configuration management 
routines used by device configuration methods (in particular, the genmajor configuration 
library routine). The major number assigned to a device driver for its entry into the device 
switch table is the same as the major number in the device special file associated with the 
device. 

Devices are generally identified in the kernel through major and minor numbers. Usually, a 
major number identifies a particular device driver. Minor numbers identify various device 
instances known to the device driver. However, a device driver may be assigned multiple 

Writing a Device Driver 2-7 



major numbers. Also, minor numbers can be used to identify different modes of operation for 
a device as well as different device instances. 

Programs do not need to understand these major and minor numbers to access devices. A 
program accesses a device as though it were a file by opening the device's corresponding 
special file located in the /dev directory. The special file's inode contains a particular major 
and minor number combination specified when the special file was created. This 
relationship remains constant until the special file is deleted. 

The major number uniquely identifies the relevant device driver and thus is used to index 
into the device switch table maintained by the kernel. The interpretation of the minor number 
is entirely dependent on the particular device driver. Most frequently, the minor number is 
used to select one of multiple subdevices supported by the device driver. As a minor device 
number, it usually serves as an index into a device driver-maintained array of information 
about each of several devices or subdevices supported by the device driver. 

Creation of Major Numbers 
The first time a device is configured, its Configure method is responsible for determining the 
major and minor numbers for the device and for creating the device's special files. When 
subsequently configured, the device's Configure method must ensure that the same major 
and minor numbers are used to describe the device to the device driver. This consistency 
guarantees that the previously created special file allows access to the same device as it did 
previously. 

Major numbers are allocated to device driver instances. When the genmajor routine is 
invoked with a particular device driver instance name passed as a parameter, it will: 

• Return the major number corresponding to the device driver instance name, if it has 
already been allocated, or 

• Assign the next available major number to the specified device driver instance and return 
the newly assigned number. 

Each time a device is configured, its Configure method should simply call the genmajor 
routine with the device's device driver instance name. If the device has not been assigned a 
major number, the genmajor routine assigns one and returns it. Otherwise it returns the 
previously assigned number. 

A device's device driver instance name is obtained from the Device Driver Instance 
descriptor of the device's CuDv object. This descriptor is usually filled in by the Define 
method when the device is first customized. For most devices, the device driver instance 
name is simply the device driver name. If the device driver for a device uses multiple major 
numbers, a different device driver instance name must be assigned for each major number. 

Creation of Minor Numbers 
The allocation of device minor numbers is highly device-specific. A device's Configure 
method can determine minor number assignments on its own or it can use the genminor 
and getminor routines. When the genminor routine is used to allocate minor numbers for a 
device, information is stored in the Configuration database, which keeps track of what minor 
numbers have been assigned for a particular major number, as well as the minor numbers 
being assigned to the device. The getminor routine can be used to obtain a list of minor 
numbers that have been assigned to a device. 

Releasing Major and Minor Numbers 
When a device is unconfigured, its special files and major and minor number assignments 
typically remain intact. The Unconfigure method does not deallocate the assignments or 
remove special files. This eliminates the need to reassign new values and rebuild special 
files when the device is once again configured. 

2-8 Kernel Extensions and Device Support 



The major and minor numbers are to be unassigned when the device is undefined. The 
Undefine method will also delete the device's special files. If the device's minor numbers 
were allocated with the genminor routine, the reldevno routine can be used to both delete 
the major and minor number assignments and to delete the special files. 

Related Information 
The inode File. 
The pin kernel service, pincode kernel service unpin kernel service, lockl kernel 
service, unlockl kernel service. 
The genmajor configuration subroutine, genminor configuration subroutine, getminor 
configuration subroutine, reldevno configuration subroutine. 
The ddconfig device driver entry point, ddopen device driver entry point, ddclose 
device driver entry point, ddioctl device driver entry point, dddump device driver entry 
point, ddread device driver entry point, ddwrite device driver entry point, ddselect 
device driver entry point, ddmpx device driver entry point, ddrevoke device driver entry 
point, ddstrategy device driver entry point. 
The Device Configuration Subroutines. 
Special File Overview in General Programming Concepts 
Interrupt Management Services on page 6-7, Understanding Execution Environments 
on page 1-6 . 
Kernel Environment Programming on page 1-1. 
Virtual File System Overview on page 5-1, Writing System Calls on page 4-1, 
Extending the Kernel with Device Drivers on page 3-1, Block I/O Buffer Cache Kernel 
Services: Overview on page 6-8. 
Writing a Device Method on page 7-7. 
The Configuration Subsystem on page 7-1. 

Writing a Device Driver 2-9 



2-1 0 Kernel Extensions and Device Support 



Extending the Kernel with Device Drivers 

The following topics are provided as guidance for extending the kernel with device drivers: 

• Understanding Block liD Device Drivers 
• Block liD Processing 
• Understanding Character liD Device Drivers 
• Understanding Off-Level Processing 
• Understanding Pseudo-Device Drivers 
• liD Exception Handling Overview 
• Interfacing to the Hardware 
• Installing and Configuring Device Drivers. 

Writing device drivers to extend the kernel has the following advantages over adding system 
calls: 

• Applications access device drivers through the file liD subsystem. This subsystem 
provides a uniform security mechanism for controlling access to objects. 

• The file liD subsystem presents a common set of interfaces for accessing the devices. 
These interfaces provide a degree of device independence at the application level. 

• The open and close file processing required by the file liD subsystem also allows device 
drivers to maintain per-process information easily. 

A disadvantage of device drivers over system calls is that they must conform to the 
interfaces enforced by the file liD subsystem, while system calls do not. 

Understanding Block I/O Device Drivers 
A device driver in the block class supports asynchronous I/O transfers in fixed-size blocks, 
as requested by the operating system. Block device drivers may be used by the operating 
system's block liD buffer cache routines, the pager, file systems, and other device drivers. 

Block 1/0 Device Driver Entry Points 
The device switch table contains the entry point addresses of the interface routines for each 
block device driver in the system, just as it does for character device drivers. Like character 
device drivers, block device drivers supply both a config routine for configuration support 
(the ddeonfig device driver entry point) as well as open and close routines (ddopen and 
ddelose) called on each open and on the final close of a device. Instead of having separate 
read and write routines, as character device drivers do, each block device driver has a 
strategy routine (ddstrategy). This routine is called with a pointer to a buffer header, known 
as the buf structure, which contains the liD request parameters. 

Block device drivers can also provide an ioctl routine (ddioetl), which is called when an ioetl 
subroutine operation is directed to the device. However, the support of ioetl subroutine 
operations by a block device driver is more restrictive than that of character device drivers. 
An ioetl subroutine operation to a block device must not be required as a prelude to 
strategy-routine processing of requests. Therefore, ioetl subroutine operations provided by 
a block device driver should only provide optional control functions and must not be required 
in order for the strategy routine to perform operations to or from the device. This is because 
ioetl operations are typically device-dependent, and the block device interface must be 
supported as a device-independent interface because it is being used as a generic interface 
by the base operating system. 

Extending the Kernel with Device Drivers 3-1 



Providing Raw I/O in a Block I/O Device Driver 
Block device drivers supporting raw 110 can also provide read and write routines (ddread 
and ddwrite) with entry points in the device switch table. These routines can be used to 
provide a more character-like interface to the device. However, they do not provide the full 
110 access capabilities provided by many character device drivers. Data blocking restrictions 
not normally found with character device driver access are typically required for the 
character read and write interface of block device drivers providing raw 1/0. 

There are also other differences between character drivers and block drivers providing raw 
1/0. Asynchronous open, read, and write requests are not normally supported by block 
device drivers in the way that character device drivers may support them. In addition, device 
event-notification functions provided by the poll and select subroutines are not provided by 
block device drivers. Finally, there is no multiplexed capability available to block device 
drivers as there is for character device drivers. 

Understanding Raw 110 Access to Block Device Drivers on page 3-4provides more 
information about this dual interface to block devices. Understanding Raw 1/0 Support on 
page 3-5 explains how raw 1/0 requests are processed. 

Optional System Dump Support 
Block device drivers may also optionally support their device as a candidate target for 
system memory dumps. The dddump entry point is provided in the device switch table for 
this purpose. In the unlikely event of a system crash, the AIX kernel will initiate a system 
dump request to a predesignated dump device. Because normal system processing and 
resources should not be relied upon in this situation, the device driver's dump routine must 
provide special system dump support to the device. 

Unsupported Entry Points 
A block driver does not support all of the entry points found in the device switch table 
because the.table is used by both block and character device drivers. If the routine is not 
provided and should not generate an error when called, the corresponding entry point in the 
device switch table should specify the nulldev entry pOint. If the call should result in an 
error return, the nodev entry point should be specified. These default routines are provided 
as part of the base kernel. 

Examples of device switch entry points that should be set to the nodev base kernel routine 
are the ddmpx, ddrevoke, and ddselect entry points. If raw 110 is not supported, then the 
ddread and ddwrite entry points should also be set to the nodev entry point in the device 
switch table. If the driver does not provide ioctl or system dump support, the corresponding 
ddioctl and dddump entry points should also be set to the nodev entry point. 

Block 1/0 Processing 
A discussion of block I/O processing encompasses the following topics: 

• Accepting the Request 
• Providing notification of I/O completion 
• reordering of 1/0 requests 
• Handling out of range block numbers 
• Queuing the request to the start I/O Routine 
• Starting processing with the start I/O Routine. 

Accepting the Request 
When the strategy routine (the ddstrategy device driver entry point) is invoked, a pointer to 
a buffer header (or chain of buffer headers) is used as a parameter for requesting device 
I/O. The buffer header is in the format of a buf structure. The role of the strategy routine is 

3-2 Kernel Extensions and Device Support 



to perform the operation as requested by the information in the buffer header or chain of 
buffer headers. The buffer header contains the following information: 

• Major and minor number of the device for which the I/O is intended 
• Description of the memory buffer to be used in the data transfer 
• Direction of the transfer 
• Count of the amount of data to be transferred 
• Block number on the device for which the I/O is targeted 
• Operation flags. 

The strategy routine returns to the caller as soon as the but headers have been queued to 
the appropriate device queue. The strategy routine provides no return code to the caller and 
never waits for I/O to complete before returning. 

Providing Notification of 1/0 Completion . 
The caller is notified of I/O completion (or of an error associated with the request) by the 
device driver's call to the iodone kernel service. A residual count of the number of 
requested bytes not transferred by the operation is placed in the buffer header b_resid field 
before the I/O is marked complete for the buffer header. If all requested bytes were 
transferred, this count has a value of O. Otherwise, it contains the number of bytes that were 
not transferred. 

The device driver indicates an error by setting the B_ERROR flag in the associated but 
header b_tlags field and placing the error number in the b_error field. These fields must 
have been set before calling the iodone kernel service. 

The B_DONE flag in the buffer header must not be set by the device driver. The iodone 
service sets this flag when called by the device driver and invokes the iodone routine 
(specified in the buffer header) from the iodone interrupt handler. The address of the 
iodone routine is placed in the buffer header by the caller of the strategy routine, before 
calling the strategy routine. The device driver calls the iodone service for each buffer 
header received by the strategy routine. 

Reordering of I/O Requests 
Multiple buffer headers can also be presented to the strategy routine, where the additional 
buffer headers may be chained to the first by using the av_torw pointers. The buffers are 
not typically back-linked using the av _back pointers. While the device driver strategy 
routine is free to rearrange the buffers on its device queue with respect to the processing for 
strategy requests, the ordering of the buffer headers provided in a chain to the strategy 
routine cannot be modified. Therefore, although the device driver might, for optimization 
purposes, reorder individual strategy requests, the ordering of the transfers within a 
particular strategy request cannot be changed. 

Besides reordering the strategy requests for performance, some strategy routines attempt to 
coalesce requests into fewer and larger I/O requests. This is possible when the requests 
can be ordered so that they specify contiguous blocks on the device within the limits of the 
maximum transfer size of the hardware. See Spanned (Consolidated) Commands in the 
Execution of SCSI I/O Requests on page 12-5. 

Handling Out of Range Block Numbers 
The strategy routine also determines if the block number requested in the buffer header is 
valid for the device. On read operations, a block number at the end-of-media is not 
considered an error, but no data is transferred. For write operations, if the block number is 
at the end-of-media, it is considered an error. In this case, the B_ERROR flag in the but 
structure should be set, and the b_error field should be set to contain the ENXIO value. 

Extending the Kernel with Device Drivers 3-3 



For both reads and writes, a block number past the end-of-media is considered an error. 
In this case, the B_ERROR flag should be set to on, and the b_error field should be set to 
ENXIO. For both reads and writes, if the beginning block number is before the 
end-of-media, and the transfer length causes the end-of-media to be reached, then no 
error is indicated. The b_resid count is set to the number of requested bytes that were not 
transferred because the end-of-media was reached. The end-of-media is defined as 
the first block outside the capabilities of the device. 

Queuing a Request to the Start I/O Routine 
To maintain the state of the device and its 1/0 requests, the device driver typically allocates a 
private data structure in system memory associated with the device. Here the device status 
flags are maintained along with device error information and device queue pointers. Some 
device drivers maintain more than one queue of buffer headers: one queue for those that are 
waiting for 1/0 to start and another for those that currently have 1/0 in progress. 

The buffer headers on these device queues are chained together using the av _forw and 
av_back fields in the buffer header. Generally, these fields are used by the caller of the 
strategy routine to manage the free list of buffer headers. These fields can also be used by 
the device driver because buffer headers handed to the strategy routine are no longer on a 
free list. 

The Start I/O Routine 

Once the strategy routine has queued the buffer headers, it calls the start 1/0 routine to start 
processing the 1/0 requests if the queue had previously been empty. If the queue was not 
empty, it simply queues the requests without calling the start I/O routine. Queuing the 
requests is normally done in an interrupt-disabled condition to ensure serialization with the 
device-handling routines executing in the interrupt environment. This maintains the 
consistency of the 1/0 queue. 

Once the I/O-handling routines have completed an 1/0 transfer and performed the 
corresponding iodone processing (typically in the interrupt environment), the device I/O 
queue is checked to determine if any further requests are queued. If more work is found on 
the device I/O queue, the start I/O routine is then called from the completion-handling 
routines. 

The start 1/0 routine is responsible for splitting the I/O transfer requests into multiple 1/0 
transfers, if necessary, and for providing an interface to the hardware. This interface sets up 
the system and device hardware for the command and data transfers. This can involve 
preparing for direct memory access (DMA) transfers, performing programmed 1/0 to the 
hardware, handling (and possibly retrying) 1/0 errors, and processing device interrupts. 

Understanding Raw I/O Access to Block Device Drivers 
While character device drivers can only be accessed by character special files, most block 
device drivers provide a character as well as a block interface. A dual interface of this kind 
requires conditions: 

• The block device must have both a character and a block special file name so that it can 
be referenced by either . 

• The block driver must have read and write entry points as well as a strategy entry point. 
The character entry points allow reading and writing of non-cached data. 

A block device driver that provides character device entry points is said to provide raw I/O 
support. For example, the first diskette drive is a block device with two special file names. 
The drive can be accessed as either /dev/fdO (block) or /dev/rfdO (character). The r in the 
name Idev/rfdO stands for raw because character-oriented access to a block device is called 
raw I/O. 

3-4 Kernel Extensions and Device Support 



Motivation for Providing a Raw 1/0 Interface to a Block Device 

The raw interface to a block device is provided to avoid the buffering usually done for block 
data transfers. When an 1/0 request is issued to a block special file, the file system invokes 
the buffer storage services provided by the kernel. An alternative is to issue the 1/0 request 
using the character special file name for the same block device. This circumvents the buffer 
management services altogether. 

Raw interfaces are typically used when a known amount of data is to be transferred. 
Examples of such cases are when formatting devices or while performing backups (such as 
backing up a disk to tape). In these cases the amount of data to be read from or written to 
the device is known ahead of time. The data can be transferred out of the memory buffer 
allocated by the user process and directly to the device. This transfer can be done without 
the use of buffers and in blocks as large as the user requests. 

Avoiding the buffer storage services used by the file system may result in better 
performance. This is because the user's buffer size is often more appropriate to the device 
or operation being used. The raw interface to block device drivers also avoids making an 
extra data copy when moving the data from user to kernel buffer storage (or vice versa). 

Note: Applications should use the raw mode interface to a block device driver carefully. 
Inconsistencies can arise if device data is accessed in raw mode while a separate 
version of the data is already present in the kernel's buffer cache. This situation can 
arise either when a file system is mounted on the device or when access is made 
through the block special file. 

Understanding Raw I/O Support 
A mechanism is provided by which block device drivers can provide the ability to transfer 
data directly between the user's memory and the device. That is, data transfer does not use 
the block 1/0 buffer cache and can occur in blocks as large as the caller requests. This 
mechanism uses a character device special file to provide access to the raw device along 
with ddread and ddwrite entry points provided by the block device driver. Instead of 
sending the read and write requests through the block I/O buffer cache mechanism (as in the 
case of 1/0 using the block special file), the requests are processed and sent to the device 
driver in the same manner as for a character device driver. The device driver ddread and 
ddwrite routines, however, are usually much different from the read and write routines 
typically found in a true character device driver. 

Processing a Raw 1/0 Request 

The block device driver's read and write routines typically convert the raw 1/0 request into a 
block request that is sent to the device driver's own ddstrategy routine. To do this, one or 
more buf headers must be allocated to contain the block requests. These buf headers can 
be created from the kernel heap or allocated from the buf header pool used by the block 1/0 
buffer cache. 

The device driver routines then process the parameters for the raw 1/0 data transfer, as 
provided by the file system in the uio structure. Information taken from this structure is 
transformed into block 1/0 parameters that are put in one or more buf headers. The device 
driver's own strategy routine is then called to process the I/O request, while the read and 
write routines typically wait for 1/0 completion. 

The major part of the effort described previously is in converting the raw 1/0 request into a 
block request and then making the data buffer in the user address space accessible to the 
device driver's device handling routines. Because the block 1/0 is asychronous, the user's 
buffer must be attached to and accessed using the cross memory services provided by the 
kernel. 

Extending the Kernel with Device Drivers 3-5 



Processing by the uphysio Kernel Service 
The kernel provides the uphysio kernel service to help convert the request to a block format 
and provide the cross-memory access. The device driver can indicate the number of but 
headers that the uphysio service is to use. The uphysio service then allocates this number 
of headers, using them to send the requests to the strategy routine. Multiple but headers 
help maximize the I/O red rive capability of the device's strategy routine. Alternatively, the 
driver can specify only a single but header to make error handling and recovery simpler. 

The device driver can also provide the uphysio service with a special parameter-adjusting 
minent routine. This routine is called to handle device-dependent restrictions before the 
uphysio service sends the but header to the strategy routine. 

Once I/O specified for the current use of the header has finished, the uphysio service 
continues reusing bufheaders until the entire I/O operation has completed. Completion is 
achieved when all the data requested in the uio structure has been transferred by the 
strategy routine or when an error is detected. In either case, the uphysio routine will not 
return to the caller until all the I/O transfers it initiated have been completed. 

Understanding Character 1/0 Device Drivers 
A device driver in the character class supports devices that do not fall into the block I/O 
model. Character devices such as displays, keyboards, printers, terminals, communications 
lines, and many pseudo-devices support character-at-a-time 1/0. Character device drivers, 
however cannot support mounted file systems or paging devices. They are generally used 
by user-mode application programs or device subsystems to access a device. 

The device switch table contains the entry point addresses of the interface routines for each 
character device driver in the system, just as it does for block device drivers. Like block 
device drivers, character device drivers supply a config routine (the ddcontig entry point) for 
configuration support as well as open and close routines (ddopen and ddclose) called on 
each open and on the final close of a device. 

If multiplexing is supported, an mpx routine (ddmpx) must also be included that is called 
before the open routine and after the close routine. Character device drivers can also 
provide an ioctl routine (ddioctl) to support special control requests and a revoke routine 
(ddrevoke) if the supported device is considered to be in the Trusted Computing Path. 
Unlike block device drivers, character device drivers provide read and write routines (ddread 
and ddwrite) in the device switch table to process read and write requests directly. 

Unsupported Entry Points 
A character device driver need not provide all of these routines if they are not required for 
the device being supported. If a routine is not provided and should not generate an error 
when called, the corresponding entry point in the device switch table should specify the 
nulldev entry point. If the call should result in an error return, the nodev entry point should 
be specified. These default routines are provided as part of the base kernel. Because both 
character and block device drivers use the same device switch table, character device 
drivers should set the block device entry points, ddstrategy and dddump, to the nodev 
entry point. 

Non-multiplexed Support 
For traditional, non multiplexed character device drivers, the driver's open routine is called for 
each open of the device, with the device major and minor number and the open mode flags 
sent as parameters. The close routine is called only when the device is closed for the last 
time (that is, when the last process for which the device is open closes it). It is therefore not 
possible for a nonmultiplexed device driver to maintain its own count of its users. The open 
and close support for multiplexed character device drivers is somewhat different, however. 

3-6 Kernel Extensions and Device Support 



Multiplexed Support 
A multiplexed character device driver provides an mpx routine, whose ddmpx entry point is 
specified in the device switch table. When a device open is processed, the kernel calls the 
driver's mpx routine before calling the open routine. This mpx routine is called to evaluate 
any channel name specified with the character special file name. The mpx routine's job is to 
allocate a channel, associate it with the channel name, and return a channel identifier to the 
kernel. The kernel then calls the driver's open routine with device major and minor number, 
control flags, and the supplied channel identifier. If any further device requests (read, write, 
or ioctl operations, for example) specify this open channel, the kernel provides the 
corresponding channel identifier to the device driver routine as a parameter. 

Unlike a nonmultiplexed character device driver, the multiplexed driver's close routine is 
called once for each close associated with an explicit open request. For close requests 
resulting from inherited opens (due to fork or dup subroutine calls), the driver's close 
routine is not called. Once the last close for a channel has been processed by the device 
driver's close routine, the kernel calls the device driver's mpx routine with the channel 
identifier, requesting that the channel be deallocated. 

Read and Write Support 
When the read or write routines (ddread and ddwrite) are called, they are supplied with the 
device major and minor number, a channel identifier (if multiplexed) and a pointer to a user 
1/0 structure containing the parameters of the read or write request. This uio structure 
contains the following information: 

• Number of characters to transfer 
• 1/0 mode flags 
• Address and length of one or more data buffers to be used in the 1/0 
• Address space identifier describing the address space in which the buffer(s) resides. 

The address space identifier is provided because these routines can be called by other 
device drivers. As a result, buffers can be either in system address space, the user's 
address space, or in a cross-memory address space. 

Writing One Character at a Time 

The driver's write routine (the ddwrite entry point) is responsible for copying characters from 
the buffer or buffers specified in the uio structure to the device. (The number to copy is 
specified by the uio_resid field in the uio structure.) For many drivers working with one 
character at a time, the uwritec kernel service can be used for this purpose. This service 
uses the uio structure to retrieve characters from the caller's buffers, which are in the 
address space designated by the uio_segflg field. Successive calls to this service return 
characters from these buffers until no more characters are available or until an error is 
detected. The uwritec service updates the uio_resid field, which is used by the caller of the 
write routine to determine how many characters were transferred. 

Reading One Character at a Time 

The driver's read routine (the ddread entry point) is responsible for copying uio_resid 
characters from the device to the buffers specified in the uio structure. For many drivers 
working with one character at a time, the ureadc kernel service can be used for this 
purpose. This service uses the uio structure to put characters into the caller's buffers, which 
are in the address space designated by the uio_segflg field. Each successive call to this 
service writes characters into the next available buffer location described by the uio 
structure. This can continue until the uio_resid character count is 0 or an error is detected. 
The ureadc service updates the uio_resid field, which is used by the caller of the read 
routine to determine how many characters were transferred. 

Extending the Kernel with Device Drivers 3-7 



Moving Large Numbers of Characters at a Time 

The uiomove kernel service is available for read and write routines that transfer large 
numbers of characters between the caller's buffer (described by the uio structure) and the 
device (or a device driver buffer). When many characters must be transferred, the use of 
this service provides much faster transfer of data than the character-at-a-time services. This 
service either transfers as many characters as its n parameter specifies or keeps 
transferring until the uio.uio_resid field becomes 0 (whichever comes first). The direction of 
the move is specified by the setting of the rw parameter on the call to the service. 

I/O Control (ddioctl) Support 
The 1/0 control or ioctl routine (the ddioctl device driver entry point) is usually provided by a 
character device driver providing special control functions. The ioctl routine is provided with 
the device major and minor number, the channel identifier (if multiplexed), an 1/0 control 
command parameter, and an argument parameter associated with the command. The 
meanings of the command and argument parameters are by definition device-specific. 
However, all device drivers in AIX should support the 10CINFO ioctl operation, which 
provides general device information. In addition, tty device drivers generally support a base 
set of 1/0 control commands defined in the general terminal termio interface. 

Select and Poll Support 
Character device drivers can also support multiple 1/0 event notification by providing a select 
routine (the ddselect device driver entry point) in the device switch table. This routine is 
invoked in response to a select or poll subroutine call with the device major and minor 
number, channel identifier (if multiplexed), a requested events parameter, and a returned 
events parameter. Flags in the requested events parameter indicate which event is being 
requested along with a synchronous request indication. The most commonly supported 
events are data available for reading (POLLlN), device available for writing (POLLOUT), and 
exceptional condition outstanding (POLLPRI). 

The select routine should check the current state of the device and set the corresponding 
flag or flags in the returned events parameter. If at least one requested event is indicated as 
true in the returned events parameter, or if the synchronous request flag is set in the 
requested events parameter, the select routine should simply return from the call. 

If none of the requested events are true and the synchronous request flag is not set, the 
select routine should remember which events have been requested for this device (by 
setting state flags in a private data area) and return to the caller. Other device driver 
routines, typically interrupt handlers, should check the requested-event state flags and notify 
the system if one or more of the events have become true for the device. 

Notification of the event is achieved by calling the selnotify kernel service. This service 
takes as input the device major and minor number, channel number (if multiplexed, or 0 if 
not), and a returned events parameter indicating which events have become true for the 
specified device. Unlike previous UNIX support for this capability, requesting-process 
collisions and process identifiers do not have to be dealt with by the device driver. The 
selnotify kernel service wakes up all processes still waiting on one or more of the events 
now true for the device specified. After calling the selnotify kernel service, the device driver 
should reset the requested state flags for the events that have become true. 

Note: The synchronous request flag and the requested-event state flags are used and 
maintained by the device driver for performance reasons. These fields are used to 
prevent unnecessary calls to the selnotify kernel service, such as when events on a 
device are no longer being waited for. Actually, the selnotify kernel service knows 
not to perform notification in these cases and could be called even when the original 
request was synchronous, or for devices and events that were not requested. 

3-8 Kernel Extensions and Device Support 



Although calling the selnotify routine in all these cases might make device driver 
programming simpler, it could have adverse effects on device and system performance. 
This is because the selnotify routine must search a hash chain for events and devices not 
present each time it is called. It is recommended that the programmer of this routine ensure 
optimal device and system performance by using the synchronous request flag and 
maintaining requested event state information. 

Device drivers providing a select routine can also use other device drivers, perhaps as 
device handlers. The kernel provides a cascading select kernel service called fp_seleet that 
can be used to pass select requests from one device driver to another. 

Trusted Computing Path Support 
Device drivers supporting terminal (display or keyboard) 110 devices on the AIX Base 
Operating System should provide a revoke routine (the ddrevoke entry point) in the device 
switch table. When called by the kernel, this routine should terminate any processes 
sleeping in the device driver (they are typically waiting on I/O) by issuing the signal 
subroutine call with the SIGKILL signal. This should be done for each process put to sleep 
by the device driver that is waiting on the designated device. The revoke routine is used by 
the security services in the AIX Base Operating System. 

Physical Device Support 
Character device drivers supporting physical devices have device I/O routines and device 
interrupt handlers that provide an interface to the hardware. These routines are used by the 
open, close, read, write, and I/O control routines. The device-handling routines are 
generally in the bottom half of the device driver, which can be executed in both the process 
or interrupt handler environment. 

Most device drivers use buffering mechanisms and queues between the device head 
routines in the top half of the device driver and the device handler routines in the bottom 
half. For relatively low data-rate devices, a character list (elist) buffering mechanism is 
provided by the kernel's clist services, which can be used by device driver top and bottom 
half routines. This kernel-provided set of character buffers is shared among all 
character-oriented devices that use these elist services. Because a limited amount of 
character buffer space is provided, device drivers should maintain a maximum character 
queue depth. This avoids excessive use of the available space by one device. 

For high data-rate devices, the device driver programmer can choose to implement a private 
buffering scheme. This can be achieved by allocating memory from the kernel or pinned 
kernel heap using the xmalloe kernel service. When this memory is no longer being used, it 
must be returned using the xmfree service. 

Alternately, some character device drivers of this type borrow buffers from the block I/O 
buffer cache pool provided by the kernel. The geteblk kernel service can be used for this 
purpose, but the resources of this pool are also limited. Overuse of these buffers can impair 
the performance of block I/O devices, because fewer buffers are available for block 110 
device caching. When these borrowed buffers are no longer in use, they should be returned 
to the buffer pool by using the brelse kernel service. 

Understanding Off-Level Processing 
A device's interrupt priority is selected based on two criteria: its maximum interrupt latency 
requirements and the device driver's interrupt execution time. The interrupt latency 
requirement is the maximum time within which an interrupt must be serviced. (If it is not 
serviced in this time, some event is lost or performance is degraded seriously.) The interrupt 

Extending the Kernel with Device Drivers 3-9 



execution time is the number of machine cycles required by the device driver to service the 
interrupt. Interrupts with a short interrupt latency time must have a short interrupt service 
time. The general rule for interrupt service times is based on the following interrupt priority 
table which depicts interrupt priority versus interrupt service times: 

Priority Service Time (machine cycles) 

INTCLASSO 200 cycles 
INTCLASS1 400 cycles 
INTCLASS2 600 cycles 
INTCLASS3 800 cycles 
INTOFFLO 1500 cycles 
INTOFFL 1 2500 cycles 
INTOFFL2 5000 cycles 
INTOFFL3 5000 cycles. 

Off-Level Interrupts 
The INTOFFLn interrupt priorities are for off-level interrupt processing. Typically, they are 
used when the interrupt service time for an operation exceeds the time allowed at that 
interrupt priority. The i_sched kernel service is used to schedule off-level processing. The 
operation is then set up to be performed at an off-level interrupt priority. This allows other 
device interrupts to preempt the operation of the off-level handler at a small cost of 
additional system overhead. 

Operations that do not meet the off-level service time requirements must be scheduled to be 
performed under a kernel process in order to maintain adequate system real-time 
performance. 

Device driver routines providing the device handler role often include an off-level processing 
routine. The kernel calls the off-level routine to perform device-specific processing after the 
following events have taken place: 

• The interrupt handler has completed its processing. 
• The interrupt has been reset. 

The processing associated with a device interrupt can be time-consuming. The off-level 
routine allows a device to perform this processing at a less favored priority. This in turn 
enables interrupt handlers to run as fast as possible by avoiding interrupt-processing delays 
and device overrun conditions. 

This routine must be part of the bottom half of the device driver when present. 

Understanding Pseudo-Device Drivers 
The AIX operating system supports and uses the concept of pseudo-devices. Device drivers 
for pseudo-devices are used to access low-level system facilities that are not necessarily 
true I/O devices. These system facilities can be purely software functions for which there is 
no associated physical device. 

Pseudo-device drivers are accessed by special file path name, just as regular device drivers 
are. As a result, access to particular system facilities can be controlled by the access 
permission mode of the special file. Thus pseudo-device drivers are provided because the 
I/O subsystem model provides a convenient way to control access to these software 
functions. 

3-1 0 Kernel Extensions and Device Support 



For example, the mem and kmem pseudo-device drivers allow user applications access to 
memory that is not ordinarily accessible in their protection domain or address space. (This 
assumes that they do, however, have the required privilege). 

The AIX Base Operating System provides the following special-purpose drivers among 
others: 

tty 
null 

bus 
mem 
kmem 
trace 
console 
dump 

Allows a program to access its controlling terminal. 
Discards output written to it and indicates an end-of-file condition when 
read. 
Permits direct access to the I/O bus for memory-mapped I/O. 
Provides access to system memory. 
Provides access to kernel memory. 
Records data when tracing programs. 
Provides access to the system console. 
Provides identification of dump devices and control of system dumps. 

1/0 Exception Handling Overview 
The AIX Base Operating System handles errors caused by programmed I/O as synchronous 
exceptions. This means that the error notification immediately follows the instruction with 
which the error was associated. 

Asynchronous errors, such as errors during DMA operations, do not generate exceptions. 
Instead, these errors are detected when the processor performs a status check of the 
operation. (For example, the d_complete kernel service performs such checks.) 

Hardware error handling, logging, and recovery are very hardwareplatform-specific in nature. 
However, the AIX kernel provides a general mechanism and structure that can be used for 
error recovery on many hardware platforms. 

Device Handler Error Recovery 
Device handlers performing programmed I/O in an AIX environment are expected to set up 
exception handlers to catch and log errors due to programmed I/O. Failure to catch an 
exception of this nature generally causes the default exception handler to be invoked. This 
default exception handler normally logs the error and crashes the system (if the error was 
generated from kernel mode). A device handler must therefore register an exception handler 
(by using the pio_assist or setjmpx kernel services) to catch I/O exceptions even if the 
handler cannot recover the state of the device. 

Device handlers supporting devices that never generate bus errors must also handle bus 
errors that can occur while performing programmed I/O with their device. This is because 
bus errors detected by other devices on the Micro Channel can generate an exception due 
to detected errors on the bus, even though the device detecting the error is not itself the 
target of the I/O operation. 

The kernel's first-level exception handler obtains error information and invokes the most 
recently registered exception handler. If recovery of the device is not possible, the device 
handler should return an error indication to the routine requesting the failed I/O operation. 

Recoverable Hardware I/O Errors 

The following errors are designated as generally recoverable on the RISC System/6000 
platform for most adapters: 

• I/O Adapter activated Channel Check Line 
• Parity error occurred on bus controller resources 
• Data Parity Error was detected on read from adapter 
• No Response from adapter was detected on read/write. 

Extending the Kernel with Device Drivers 3-11 



Non-recoverable Hardware I/O Errors 

The following errors may occur on the RISC System/6000 but are not typically recoverable 
by a device handler. Errors of this class usually indicate programming errors: 

• I/O Register access attempt without proper authority 
• I/O Bus memory access attempt without proper authority 
• I/O Bus memory access caused Page Fault. 

Typical device handler action when encountering an exception of this class is to log the 
failure and provide an error code to the user of the device at the time of the error. 

For device handlers not using the pio_assist kernel service, exception conditions due to I/O 
bus exceptions cause a return from the setjmpx kernel service with a return code of 
EXCEPT _10. The getexcept kernel service returns a structure containing platform-specific 
error information. This information is described in the definition of the pio_except structure 
found in the <sys/except.h> header file for the appropriate platform. 

For the RISC System/6000, this error information allows the user to determine the following: 

• Which of the previously mentioned errors above occurred 
• Whether the operation was a load or store 
• The bus unit 10 used 
• The effective address used on the access. 

Interfacing to the Hardware 
The following discussion topics are provided as guidance for accessing and controlling I/O 
devices from a device driver: 

• Processing Interrupts 
• Understanding Direct Memory Access 
• I/O Exception Handling Overview. 

Processing Interrupts 
An interrupt level is the means by which a device notifies the system of the occurrence of an 
event. How interrupt levels are assigned to an adapter depends on the type of bus to which 
the adapter interfaces. 

Some bus implementations allow interrupt levels to be assigned at system configuration 
time. System configuration software determines which adapters are present and assigns an 
interrupt level to the device adapter using special bus commands. System configuration 
then sets the device configuration and initialization data to reflect this assignment. 

However, some buses do not support programmable assignment of interrupt levels. The 
assignment of these interrupt levels is usually hardwired or selected by a jumper on the 
adapter. In the latter case, system configuration executes an adapter-specific command that 
determines how the adapter is configured. The device's configuration and initialization data 
is then set to reflect the adapter's configuration. 

The RISC System/6000 supports I/O adapters attached to the Micro Channel Bus. This bus 
and associated adapters support POS (a Programmable Option select capability). The POS 
capability allows the adapters to be configured into the system using software instead of 
hardware switches and jumpers. 

Each time the System/6000 is booted, the Micro Channel Bus configuration method scans 
the bus and creates a list of all adapter cards plugged into the slots. For each adapter 
plugged into a slot, the method uses the adapter 10 (sensed from the POS registers) to look 
up the adapter's assignable resources in the devices database. 

3-12 Kernel Extensions and Device Support 



If the adapter uses one or more interrupt request lines, database adapter attributes describe 
all possible interrupt level assignments to which the adapter can be programmed. A default 
or preferred interrupt level is also given. An attribute associated with each interrupt request 
line indicates which interrupt priority an interrupt line should be assigned. Interrupt levels can 
be shared by more than one adapter if and only if, they all request the same interrupt priority. 
The system does not support different priorities on the same interrupt level. 

The bus configuration method selects a interrupt level assignment for each adapter using 
interrupts in the system so that no interrupt level is assigned two different priorities. These 
assigned interrupt levels are then written into the Customized Devices database object for 
each adapter in a slot. Interrupt priority assignments are assumed to be fixed and are never 
modified by the configuration program. 

When the adapter's specific configuration method is called later in the configuration process, 
it reads the assigned interrupt level and associated priority from the database for the specific 
adapter being configured. The adapter's method then puts this information in a 
device-dependent structure used to initialize the device driver supporting the adapter. 

When the device driver is initialized for the adapter in the specified slot, the information in 
the device-dependent structure is written to the adapter's POS registers. This action 
properly configures the adapter. 

Kernel Services for Managing Interrupts 

The AIX kernel provides the following kernel services for managing interrupts. 

i_init 
i_unmask 
i_mask 
i_clear 
i_enable 
i_disable 
i_sched 

Allocates an interrupt level. 
Enables an interrupt level. 
Disables an interrupt level. 
Frees an interrupt level. 
Enables interrupt priorities. 
Disables interrupt priorities. 
Schedules off-level processing. 

The i_enable and i_disable services should be used to serialize the execution of device 
driver code with its interrupt handler. The <sys/intr.h> header file defines the valid interrupt 
priorities. It also indicates the interrupt priorities that various kernel services use to serialize 
their execution. 

The Lsched service can be used to schedule some of a device driver's interrupt processing 
at a less favored interrupt priority. 

Both bus and off-level interrupt handlers have guidelines for maximum pathlengths. 
Understanding Interrupts on page 6-9 provides more information about interrupt priorities 
and maximum path length. Understanding Off-Level Processing provides the guidelines for 
off-level handler path length. 

Early Power-Off Warning 
Some machines detect that power is about to be lost and generate an early power-off 
warning (EPOW). Some device drivers may need an early power-off warning to recover 
gracefully from loss of power. 

For example, the AIX file system on the RISC System/6000 requires that no sector be 
damaged when power is lost. To avoid damage, devices containing file system data must be 
stopped at a sector boundary when power is about to be lost. 

A device driver can request that it be notified when an EPOW occurs. To make such a 
request, the driver must call the Linit kernel service to define an interrupt handler for 

Extending the Kernel with Device Drivers 3-13 



interrupt priority INTEPOW. The kernel calls all interrupt handlers thus defined at INTEPOW 
priority when an EPOW occurs. 

A device handler should register an EPOW handler if it is critical that data-write operations 
be halted on specific boundaries for data integrity and recovery. However, the path length 
and time to halt a device must be extremely short because the amount of time between the 
early power-off warning and actual power loss is usually very short (a few milliseconds). 
(This timing is hardwaredependent.) Only critical data devices such as disks should need to 
register an EPOW handler. 

The INIT _EPOW macro in the <sys/intr.h> header file can be used to initialize the handler 
parameter passed to the i_init service for registering EPOW handlers. 

The invocation of a registered EPOW interrupt handler is different from that for other 
interrupt handlers registered by the Linit service. There are three conditions under which 
registered EPOW handlers are called: 

EPOW _SUSPEND Invocation is due to an Early Power Off Warning (EPOW) without 
battery backup, or when the battery backup is exhausted. Critical 
device operation should be suspended. Interrupt handlers are called 
at INTEPOW priority. The EPOW_SUSPEND flag is set in the flags 
field of the intr structure pOinted to by the handler parameter when the 
interrupt handler is called. 

EPOW _BATTERY Invocation is due to an Early Power Off Warning (EPOW) resulting in a 
switch-over to backup battery power. Devices not configured for 
battery backup operation should be suspended. EPOW interrupt 
handlers are called at INTEPOW priority. When calling the interrupt 
handler, the kernel sets the EPOW_BATTERY flag in the flags field of 
the intr structure pointed to by the handler parameter. 

EPOW _RESUME Invocation is due to a restoration of power. Any operations suspended 
due to previous EPOW_SUSPEND or EPOW_BATTERY conditions 
should be resumed. This normally occurs when either of the following 
is true: 

• The early power off warning was a false one caused by a power 
fluctuation that did not actually cause loss of power. 

• The system was running on battery backup and primary power is 
restored. 

Interrupt handlers are called at the INTTIMER priority for this function. 

Device handlers are responsible for ensuring the proper serialization of operation when 
handling EPOW interrupts, normal device interrupts, and process level operations. Following 
are possible complications. 

An early power-off warning can prove to be a false alarm. If this happens, the EPOW 
interrupt handlers are called to suspend device operation (at a high priority) and later called 
at a lower priority to resume device operation. If power is actually lost, the EPOW_RESUME 
operation does not occur. 

A second early power-off warning can be detected while trying to resume from an earlier 
one. When this situation arises, an EPOW interrupt handler can be reinvoked during the 
course of an EPOW_RESUME call by the higher priority EPOW_SUSPEND or 
EPOW_BATTERY calls. In this case, EPOW interrupt handlers may find that both the 
EPOW_SUSPEND (or EPOW_BATTERY) and EPOW_RESUME flags are set in the flags 
field within the intr structure. If this situation is detected, the suspend operation should 
occur and the resume request should be ignored. 

3-14 Kernel Extensions and Device Support 



The EPOW interrupt handlers should ensure that no timing window can occur in which 
device operation is restarted after an EPOW_SUSPEND condition and before an 
EPOW_RESUME condition. This must not happen even if a suspend operation interrupts a 
resume. To prevent this situation, the EPOW handler should check the EPOW _SUSPEND 
and EPOW_RESUME flags in the intr structure, and then determine if the device is already 
in a suspended state. (A device driver flag should be maintained for this purpose.) If this is 
a suspend call and the device is already in the suspended state, no operation should be 
performed. If this is a resume request and the device is suspended, the 
device-suspended flag should be reset and the device started. 

The EPOW interrupt handlers should ensure that no timing window can occur in which 
device operation is restarted after an EPOW_SUSPEND condition and before an 
EPOW_RESUME condition has. This situation can arise when the suspend operation 
interrupts the resume. To prevent this situation, the EPOW handler should check the 
EPOW_SUSPEND and EPOW_RESUME flags in the intr structure, and then determine if 
the device is already in a suspended state. (A device driver flag should be maintained for 
this purpose.) If this is a suspend call and the device is already in the suspended state, no 
operation should be performed. If this is a resume request and the device is suspended, the 
device-suspended flag should be reset and the device started. 

Note: The check for the EPOW_SUSPEND or EPOW_BATTERY flag and the checking 
and clearing of the device-suspended flag should be made an atomic operation 
by performing them at INTEPOW priority. Doing so ensures that an intervening 
EPOW_SUSPEND or EPOW_BATTERY operation does not result in the device 
being resumed during an EPOW_RESUME condition. 

Such atomic operations also require that the device hardware support a state in which a 
pending operation is not started. For a SCSI device, a SCSI Reset and resulting Unit 
Attention provide this state. Other devices may require SUSPEND and RESUME hardware 
commands. 

Direct Memory Access (DMA) . 
The Micro Channel supports two types of DMA adapters. These are DMA slaves and DMA 
masters. A DMA slave adapter is the simpler form of adapter. It requires extensive system 
support to generate addresses and control the transfer length. The system hardware limits a 
DMA slave adapter to performing only one sequential transfer at anyone time. 

A DMA master generates its own bus address and controls its own transfer length. A DMA 
master adapter is therefore only limited by its own hardware in the number and type of 
transfers that it can perform. For example, a DMA master disk adapter can support one or 
more concurrent DMA transfers for each disk connected to it. A DMA master LAN adapter 
can support having the header at one location in system memory and the data at another 
location. 

Block DMA Transfers 

A block DMA transfer consists of transferring data between sequential locations on the 
adapter and sequential locations in memory. All DMA slaves are essentially limited to this 
type of transfer. 

A DMA slave can have only one contiguous block transfer in progress at anyone time. The 
maximum size of this transfer is machine-dependent and is defined in the <sys/dma.h> 
header file. 

A DMA master can have one or more block transfers in progress at anyone time. Each 
transfer must be assigned part of that DMA master's fixed-size window into system memory. 
This window is assigned to the adapter during system configuration. 

Extending the Kernel with Device Drivers 3-15 



The device driver can manage the use of this window in any way that is appropriate. 
Typically, each active request is assigned part of this window through which to perform its 
data transfer. Requests waiting to be processed are not yet assigned to a part of the 
window. 

Device drivers may also use part of their window to provide system memory access to their 
adapter for control and status information. 

A device driver must call either the d_slave service to set up a DMA slave transfer or the 
d_master service to set up a DMA master transfer. The device driver should then set up the 
device to perform the DMA transfer. The device transfers data when it is available and 
interrupts the processor upon completion of the DMA transfer. The device driver then calls 
the d_complete service to clean up after the DMA transfer. These steps are typically 
repeated each time a DMA transfer is to occur. 

DMA Management Kernel Services provides more information on using the DMA kernel 
services. 

DMA Processing 

Direct memory access (DMA) allows a device to access memory without going through the 
processor. Using DMA consists of the following steps: 

1. Allocating a DMA channel. 

2. Initializing the DMA channel. 

3. Enabling the DMA channel. 

4. Performing one or more DMA transfers. 

5. Disabling the DMA channel. 

6. Freeing the DMA channel. 

The DMA transfer itself, in Step 4 previously, consists of the following steps: 

1. Arbitrating for the bus. 

2. Generating an address. 

3. Performing the data transfer. 

The AIX kernel provides a set of services that assist in performing DMA operations. DMA 
Management Kernel Services provides more information on using these services. 

DMA Channels and How They Are Assigned 

A DMA channel is the means by which DMA transfers for different adapters are 
distinguished from each other. A DMA channel is a resource that cannot be shared 
simultaneously by two adapters. 

How DMA channels are assigned to an adapter depends on the type of bus to which the 
adapter interfaces. The Micro Channel allows for assignment of DMA channels at system 
configuration time. System configuration software determines which adapters are present 
and assigns a DMA channel to the device adapter. System configuration then sets the 
device configuration and initialization data to reflect this assignment. 

However, some buses do not support programmable assigment of the DMA channel. DMA 
channel numbers are hardwired or selected by a jumper on the adapter. In this case system 
configuration executes an adapter-specific command that determines how the adapter is 
configured. The device's configuration and initialization data is then set to reflect the 
adapter's configuration. 

3-16 Kernel Extensions and Device Support 



The RISC System/6000 supports I/O adapters attached to the Micro Channel Bus. This bus 
and associated adapters support POS (a Programmable Option Select capability). The POS 
capability allows the adapters to be configured into the system using software instead of 
hardware switches and jumpers. 

Each time the System/6000 is booted, the Micro Channel Bus configuration method scans 
the bus and creates a list of all adapter cards plugged into the slots. For each adapter 
plugged into a slot, the method uses the adapter ID (sensed from the POS registers) to look 
up the adapter's assignable resources in the devices database. 

If the adapter uses the DMA channel, the database describes all possible DMA channels to 
which the adapter can be programmed and a default or preferred choice. The bus 
configuration method then selects a unique DMA channel for each adapter requiring DMA in 
the system. The assigned DMA channel numbers are written into the Customized Devices 
database object for each adapter in a slot. 

When the adapter's specific configuration method is called later in the configuration process, 
it reads the assigned DMA channel or channels from the database for the specific adapter 
being configured. The adapter's configuration method then puts these channels in a 
device-dependent structure used to initialize the device driver supporting the adapter. 

When the device-driver for the adapter in the specified slot is initialized, the information in 
the device-dependent structure is written to the adapter's POS registers. This action 
properly configures the adapter. 

Kernel Services for Performing DMA Transfers 

DMA Management Kernel Services provides more information on using these services. 

Installing and Configuring Device Drivers 

Files 

The following topics are available for guidance in installing and configuring device drivers: 

• Program Installation and Update Compatibility Overview 
• The Device Configuration Subsystem: Programming Introduction. 

<sys/dma.h> 

<sys/intr.h> 

Related Information 
The open subroutine, close subroutine, read subroutine, write subroutine, Iseek 
subroutine, ioctl subroutine, select subroutine, poll subroutine, signal subroutine. 
The ddconfig device driver entry point, ddopen device driver entry point, ddclose 
device driver entry point, ddread device driver entry point, ddwrite device driver entry 
point, ddioctl device driver entry point, ddrevoke device driver entry point, ddmpx 
device driver entry point, ddselect device driver entry point, ddstrategy device driver 
entry pOint, dddump device driver entry point.. 
The uiomove kernel service, ureadc kernel service, uwritec kernel service, xmalloc 
kernel service, xmfree kernel service, geteblk kernel service, brelse kernel service, 
selnotify kernel service, iodone kernel service, Lsched kernel service, uphysio kernel 
service, Linit kernel service, i_unmask kernel service, i_mask kernel service, Lclear 
kernel service, i_enable kernel service, Ldisable kernel service. 
The mincnt routine. 
The clist structure, uio structure, and buf structure. 

Extending the Kernel with Device Drivers 3-17 



The d_init kernel service, d_unmask kernel service, d_mask kernel service, d_clear 
kernel service, d_master kernel service, d_slave kernel service, d_complete kernel 
service. 
Device Driver Roles on page 2-2, Device Driver Structure on page 2-3, 
Understanding 1/0 Access Through Special Files on page 2-4, Device Driver Classes on 
page 2-1, Understanding the Device Switch Table on page 2-7, Understanding Major 
and Minor Numbers on page 2-7. 
Block 1/0 Buffer Cache Kernel Services on page 6-8. 
Kernel Environment Programming on page 1-1. 

Device Driver System Dump Support in Files Reference 
Device Driver Concepts Overview on page 2-1. 
Special Files Overview in Files Reference. 
Cross Memory Kernel Services on page 6-15. 
DMA Management Kernel Services in The 1/0 Kernel Services. 
Configuration Subsystem on page 7-1. 
Adapter-Specific Considerations for the Predefined Attribute (PdAt) Object Class in Files 
Reference. 
ODM Device Configuration Object Classes in Files Reference. 

3-18 Kernel Extensions and Device Support 



Writing System Calls 

The topics below are provided as guidance in writing system calls. The first two articles 
introduce system calls within the context of kernel architecture. The remaining subjects 
detail aspects of the execution environment relevant to programming system calls. 

The following introductory topics explain the relationship between system calls and user 
functions in the kernel, as well as details of the system call handler and how system calls are 
executed: 

• Extending the Kernel with System Calls 
• Understanding System Call Execution. 

The following topics explain aspects of the kernel programming environment that the 
programmer should consider when writing new system calls: 

• Accessing Kernel Data While in a System Call 
• Preempting a System Call 
• Handling Signals While in a System Call 
• Handling Exceptions While in a System Call 
• Understanding Nested System Calls and Kernel-Mode Use of System Calls 
• Page Faulting within System Calls 
• Returning Error Information from System Calls 
• System Calls Available to Kernel Extensions. 

Extending the Kernel with System Calls 
Adding system calls is one of several ways to extend the functions provided by the AIX 
Operating System kernel. System calls provide user-mode access to special kernel 
functions. In the AIX operating system, a system call is nothing more than a call that crosses 
a protection domain. 

The distinction between a system call and an ordinary function call is oly important in the 
kernel programming environment. User-mode application programs are not usually aware of 
this distinction between system calls and ordinary function calls in the AIX operating system. 

Operating system functions are made available to the application program in the form of 
programming libraries. A set of library functions found in a library such as libc may have 
functions that perform some user-mode processing and then internally invoke a system call. 
In other cases, the system call can be directly exported by the library without a user-mode 
layer. 

In this way, operating system functions available to application programs may be split or 
moved between user-mode functions and kernel-mode functions as required for different 
releases or machine platforms. Such movement does not affect the application program. 

Programming in the Kernel Environment provides more information on how to use system 
calls in the kernel environment. 

Differences between a System Call and a User Function 
A system call differs from a user function in several key ways: 

• A system call has more privilege than a normal subroutine. A system call executes with 
kernel-mode privilege in the kernel protection domain. 

• A system call's code and data are located in global kernel memory. 

Writing System Calls 4-1 



• System call routines can create and use kernel processes to perform asynchronous 
processing. Using Kernel Processes gives more information on creating and using kernel 
processes. 

• System calls are not interruptible by signals. 
• System calls cannot use shared libraries or any symbols not found in the kernel protection 

domain. 

Understanding System Call Execution 
The system call handler gains control when a user program executes a call to a system call. 
The system call handler changes the protection domain from the caller's protection domain, 
user, to the system call's protection domain, kernel, and switches to a protected stack. 

The system call handler then calls the function supporting the system call. The loader 
maintains a table of the currently defined system calls for this purpose. 

The system call executes within the calling process, but with more privilege than the calling 
process. This is because the protection domain has changed from userto kernel. 

The system call function returns to the system call handler when it has performed its 
operation. The system call handler then restores the state of the process and returns to the 
user program. 

There are two major protection domains in the AIX operating system: the user mode 
protection domain and the kernel mode protection domain. 

The User Protection Domain 
Programs that execute in the user protection domain include those executing within user 
processes and those within real-time processes. This protection domain implies that code 
executes in user execution mode and has: 

• Read/write access to user data in the process private region 
• Read access to the user text and shared text regions 
• Access to shared data regions using the shared memory functions. 

Programs executing in the user protection domain do not have access to the kernel or kernel 
data segments except indirectly through the use of system calls. A program in this protection 
domain can only affect its own execution environment and executes in the processor 
unprivileged state. 

The Kernel Protection Domain 
Programs that execute in the kernel protection domain include interrupt handlers, kernel 
processes, the base kernel, and kernel extensions (device drivers, system calls, and file 
systems). This protection domain implies that code executes in kernel execution mode and 
has: 

• Read/write access to the global kernel address space 
• Read/write access to the kernel data in the process private region when executing within 

a process. 

User data within the process address space must be accessed using kernel services. 
Programs executing in this protection domain can affect the execution environments of all 
programs because they: 

• Can access global system data 
• Can use kernel services 
• Are exempt from all security restraints 
• Execute in the processor privileged state. 

4-2 Kernel Extensions and Device Support 



All kernel extensions execute in the kernel protection domain as described above. The use 
of a system call by a user-mode process allows a kernel function to be called from user 
mode. Access to functions that directly or indirectly invoke system calls is typically provided 
by programming libraries providing access to operating system functions. 

Actions of the System Call Handler 
When a call is made in user mode that invokes a system call, the system call handler is 
invoked. This system call handler switches the protection domain from user to kernel and 
performs the following steps: 

1. Sets privileged access to the process private address region. 
2. Sets privileged access to the kernel address regions. 
3. Sets the u_uerror field in the u-block (the user·structure) to 0 (zero). 
4. Switches to the kernel stack. 
5. Invokes the specified kernel function (the target of the system call). 

On return from the specified kernel function, the system call handler performs the following 
steps before returning to the caller: 

1. Switches back to the user's stack. 
2. Updates the errno global variable if the u_error field is not equal to 0 (zero). 
3. Clears the privileged access to the kernel address regions. 
4. Clears the privileged access to the process private region. 
5. Performs signal processing if a signal is pending. 

The system call (and associated kernel function) executes within the context of the calling 
process, but with more privilege than the user-mode caller. This is because the system call 
handler has changed the protection domain from user state to kernel state. When the kernel 
function that was the target of the system call has performed the requested operation (or 
encountered an error), it returns to the system call handler. When this happens, the system 
call handler restores the state and protection domain back to user mode and returns control 
to the user program. 

Accessing Kernel Data While in a System Call 
A system call can access data that the caller cannot because the system call is executing in 
a more privileged protection domain. This applies to all kernel data, of which there are three 
general categories: 

• The user block data structure 

System calls should use the available kernel services and system calls to access or 
modify data traditionally found in the u area (user structure). For example, the system call 
handler uses the u.u_error system call error field to set the errno global variable before 
returning to user mode. This field can be read or set by using the getuerror and 
setuerror kernel services. 

The current process 10 may be obtained by using the getpid kernel service. 

• Global memory 

System calls can also access global memory such as the kernel and kernel data regions. 
These regions contain the code and static data for the system call as well as the rest of 
the kernel. 

• The stack for a system call 

A system call routine executes on a protected stack that is located near the user block 
data structure at the top of the process private segment. This stack allows the system 
call handler to safely execute a system call even when the caller does not have a valid 

Writing System Calls 4-3 



stack pointer initialized. It also allows system calls to access privileged information with 
automatic variables without exposing the information to the caller. 

Warning: Great care must be taken in writing system calls that modify fields in kernel or 
user block data structures. Incorrect modifying of fields could cause unpredictable results 
or system crashes while executing in the kernel protection domain. 

Passing Parameters to System Calls 
The fact that a system call does not execute on the same stack as the caller imposes one 
limitation. System calls are limited in the number of parameters that they can use. 

The AIX operating system linkage convention passes some parameters in registers and the 
rest on the stack. The system call handler ensures that the first a words of the parameter list 
are accessible to the system call. All other parameters are not accessible. 

Also, care should be taken when defining the interface to a system call. For some 
languages, various types of parameters may take more than one word in the parameter list. 
The writer of a system call must be familiar with the way parameters are passed by his or 
her compiler and conform to this a-word limit. 

Preempting a System Call 
The AIX kernel allows a process to be preempted by a more favored process even when 
executing a system call. This is not typical of most UNIX systems. The AIX kernel makes 
this change to enhance support for real-time processes and large multiuser systems. 

System calls should use the ,Iockl and unlockl kernel services to serialize access to any 
global data that they access. Remember that all of the system call's static data is located in 
global memory and therefore must be accessed serially. 

The lockl kernel service ensures that the owner of a lock executes with the most favored 
priority of any of the waiters of that lock. It does this by assigning to the lock owner the 
process priority of the most favored waiter for the lock. This mechanism is similar to the 
standard UNIX sleep priority. However, the process priority must be assigned when the 
resource is allocated since the system call can be inactivated by preemption, as well as by 
calling sleep. The unlockl service restores the process priority. 

Note that a process can be preempted even when it owns a lock. The lock only ensures that 
another process that tries to lock the resource will have to wait until the owner of the 
resource unlocks it. A system call must never return with a lock locked. By convention, a 
locking hierarchy is followed to prevent deadlocks. Understanding Locking provides more 
information on locking. 

Handling Signals While in a System Call 
Signals may be generated asynchronously or synchronously with respect to the process that 
will receive the signal. An asynchronously generated signal is one that results from some 
action external to a process. It is not directly related to the current instruction stream of that 
process. Generally these are generated by other processes for interprocess communication 
or by device drivers. 

A synchronously generated signal is one that results from the current instruction stream of 
the process. These signals cause interrupts. Examples of such cases are the execution of 
an illegal instruction, or an attempted data access to nonexistent address space. These are 
often referred to as exceptions. 

4-4 Kernel Extensions and Device Support 



Delivery of Signals to a System Call 
The kernel delays the delivery of all signals, including SIGKILL, when executing a system 
call, device driver, or other kernel extension. The signal takes effect upon leaving the kernel 
and returning from the system call. This happens when execution returns to the user 
protection domain, just before executing the first instruction at the caller's return address. 
Signal delivery for kernel processes is described in Using Kernel Processes. 

Asynchronous Signals and Wait Termination 
An asynchronous signal can alter the operation of a system call or kernel extension by 
terminating a long wait. Kernel services such as lockl, e_sleep, e_sleepl, and e_wait all 
support terminating a wait by a signal. These services provide three options: 

• The short-wai t-option of not terminating the wait due to a signal. 
• Terminating the wait by return from the kernel service with a return code of 

interrupted-by-signal. 
• Executing a longjmpx kernel service call to resume at a previously saved context in the 

event of a signal. 

The sleep kernel service, provided for compatibility, also supports the PCATCH and 
SWAKEONSIG options to control the response to a signal during the sleep function. 

Previously, AIX kernels automatically saved context on entry to the system call handler. As a 
result, any long (interruptable) sleep not specifying the PCATCH option returned control to 
the saved context when a signal interrupted the wait. The system call handler then set the 
errno global variable to EINTR and returned a return code of -1 from the system call. 

The AIX kernel, however, requires each system call that can directly or indirectly issue a 
sleep call without the PCATCH option to set up a saved context using the setjmpx kernel 
service. This is done to avoid overhead for system calls that handle waits terminated by 
Signals. Using the setjmpx service, the system can set up a saved context that will set the 
system call's return code to a -1 and the u.u_error field to EINTR, if a Signal interrupts a 
long wait not specifying return-from-signal. 

It is probably faster and more robust to specify return-from-signal on all long waits and 
use the return code to control the system call return. 

Stacking Saved Contexts for Nested setjmpx Calls 
The kernel supports nested calls to the setjmpx kernel service. It implements the stack of 
saved contexts by maintaining a linked list of context information anchored in the machine 
state save area. This area is in the user block structure for a process. Interrupt handlers 
have special machine state save areas. 

An initial context is set up for each process by the initp kernel service for kernel processes 
and by the fork subroutine for user processes. The process terminates if that context is 
resumed. 

Handling Exceptions while in a System Call 
Exceptions are interrupts detected by the processor as a result of the current instruction 
stream. They therefore take effect synchronously with respect to the current process. 

The default exception handling normally generates a signal if the process is in a state where 
signals are delivered without delay. If delivery of a signal may be delayed, however, default 
exception handling causes a dump. 

Writing System Calls 4-5 



Alternative Exception Handling Using the setjmpx Kernel Service 
For certain types of exceptions, a system call may specify unique exception-handler routines 
through calls to the setjmpx service. The exception handler routine is saved as part of the 
stacked saved context. Each exception handler is passed the exception type as a 
parameter. 

The exception handler returns a value that may specify any of the following: 

• Execution should resume with the instruction that caused the exception. 
• Execution should return to the saved context that is on the top of the stack of contexts . 
• The exception handler did not handle the exception. 

In that case, the next exception handler in the stack of contexts is called. If none of the 
stacked exception handlers handle the exception, the kernel performs default exception 
handling. The setjmpx and longjmpx kernel services help implement exception handlers. 

Understanding Nested System Calls and Kernel-Mode Use of System 
Calls 

The AIX Operating System supports nested system calls with some restrictions. System 
calls (and any other kernel-mode routines executing under the process environment of a 
user-mode process) can use system calls that pass all parameters by value. System calls 
and other kernel-mode routines must not call system calls that have one or more parameters 
passed by reference. Doing so may result in a system crash. This is because system calls 
with reference parameters assume that the referenced data area is in the user protection 
domain. As a result, these system calls must use special kernel services to access the data. 
However, these services fail if the data area they are trying to access is not in the user 
protection domain. 

This restriction does not apply to kernel processes. User-mode data access services can 
distinguish between kernel processes and user-mode processes in kernel mode. As a result, 
these services can access the referenced data areas accessed correctly when the caller is a 
kernel process. 

Kernel processes may not call the fork or exec system calls, among others. A list of the 
base AIX system calls available to system calls or other routines in kernel mode is provided 
in the List of System Calls Available in the Kernel. 

Page Faulting within System Calls 
Most data accessed by system calls is pageable by default. This includes the system call's 
code, static data, dynamically allocated data, and stack. As a result, a system call can be 
preempted in two ways: 

• By a more favored process, or by an equally favored process when a time slice has been 
exhausted 

• By losing control of the processor when it page faults. 

In the latter case, even less favored processes can execute while the system call is waiting 
for the paging 1/0 to complete. 

Warning: A page fault that occurs while external interrupts are disabled results in a system 
crash. Therefore a system call should be very careful to ensure that its code, data, and stack 
are pinned before it disables external interrupts. 

4-6 Kernel Extensions and Device Support 



Returning Error Information from System Calls 
System calls return error information slightly differently than is the convention for kernel 
services that are not system calls. System calls typically provide a return code of 0 if no error 
has occurred, or -1 if an error has occurred. In the latter case, the error value is placed in 
the u.u_error field of the u area (user structure). In some cases, when data is returned by 
the return code, a data value of -1 indicates error. Or alternatively, a value of NULL can 
indicate error, depending on the interface and function definition of the system call. 

In any case, when an error condition is to be returned, the u.u_error field should be updated 
by the system call pror to returning from the system call function. The u_error field can be 
accessed by using the getuerror and setuerror kernel services. 

Before actually calling the system call function, the system call handler sets the u.u_error 
field to O. Upon return from the system call function, the system call handler copies the value 
found in u.u_error into the errno global variable if u.u_error was nonzero. After setting the 
errno variable, the system call handler returns to user mode with the return code provided 
by the system call function. 

Kernel-mode callers of system calls must be aware of this return code convention and use 
the getuerror kernel service to obtain the error value when an error indication is returned by 
the system call. When system calls are nested, the system call function called by the system 
call handler may choose to return the error value provided by the nested system call function 
or may replace this value with a new one by using the setuerror kernel service. 

System Calls Available to Kernel Extensions 
System calls are available either to all kernel extensions or to kernel processes only. System 
calls are never available to interrupt handlers. The following system calls are available to all 
kernel extensions: 

• getgidx 
• gethostid 
• getpgrp 
• getppid 
• getpri 
• getpriority 
• getuidx 
• semget 
• seteuid 
• setgid 
• setgidx 
• sethostid 
• setpgid 
• setpgrp 
• setpri 
• setpriority 
• setreuid 
• setsid 
• setuid 
• setuidx 
• ulimit 
• umask. 

Writing System Calls 4-7 



The following system calls are available to kernel processes only: 

• disclaim 
• getdomainname 
• getgroups 
• gethostname 
• getpeername 
• getrlimit 
• getrusage 
• getsockname 
• getsockopt 
• gettimer 
• resabs 
• resinc 
• restimer 
• semctl 
• semop 
• setdomainname 
• setgroups 
• sethostname 
• setrlimit 
• settimer 
• shmat 
• shmctl 
• shmdt 
• shmget 
• sigaction 
• sigprocmask 
• sigstack 
• sigsuspend 
• sysconfig 

• times 
• uname 
• unamex 
• usrinfo 
• utimes. 

Related Information 
The getuerror kernel service, setuerror kernel service, initp kernel service, lockl kernel 
service, e_sleep kernel service, e_sleepl kernel service, e_wait kernel service, setjmpx 
kernel service, longjmpx kernel service, and unlockl kernel service. 
The fork subroutine. 
Kernel Environment Programming on page 1-1. 
Accessing User Mode Data While in Kernel Mode on page 1-10. 
Using Kernel Processes on page 1-7, Using Libraries on page 1-5. 
Writing a Device Driver on page 2-1. 
Understanding Locking on page 1-11, Understanding Interrupts on page 6-9. 

4-8 Kernel Extensions and Device Support 



Writing a Virtual File System 

The following information is available in understanding virtual file systems: 

• Virtual File System Kernel Extensions 
• Logical File System Overview 
• Virtual File System Overview 
• Virtual Nodes (V nodes) 
• Generic Inodes (Gnodes) 
• Understanding The Virtual File System Interface. 

Virtual File System Kernel Extensions 
There are two essential components in the file system: 

Logical file system Provides support for the system call interface. 

Physical file system Manages permanent storage of data. 

The interface between the physical and logical file systems is the virtual file system 
interface. This interface allows support for multiple concurrent instances of physical file 
systems, each of which is called a file system implementation. The file system 
implementation can support storing the file data in the local node or at a remote node. 

The virtual file system interface in usually referred to as the vnode interface. The vnode 
structure is the key element in communication between the virtual file system and the layers 
that call it. 

Both the virtual and logical file system exist across all AIX family platforms. 

Logical File System Overview 
The logical file system is the level of the file system at which users can request file 
operations by system call. This level of the file system provides the AIX kernel with a 
consistent view of what may be multiple physical file systems and multiple file system 
implementations. As far as the logical file system is concerned, file system types, whether 
local, remote, or strictly logical, and regardless of implementation, are indistinguishable. 

A consistent view of file system implementations is made possible by the virtual file system 
abstraction. This abstraction specifies the set of file system operations that an 
implementation must include in order to carry out logical file system requests. Physical file 
systems can differ in how they implement these predefined operations, but they must 
present a uniform interface to the logical file system. 

Each set of predefined operations implemented constitutes a virtual file system. As such, a 
single physical file system can appear to the logical file system as one or more separate 
virtual file systems. 

Virtual file system operations are available at the logical file system level through the virtual 
file system switch. This array contains one entry for each virtual file system, with each entry 
holding entry pOint addresses for separate operations. Each file system type has a set of 
entries in the virtual file system switch. 

The logical file system and the virtual file system switch support UNIX file-system access 
semantics. This does not mean that only UNIX file systems can be supported. It does mean, 
however, that a file system implementation must be designed to fit into the logical file system 
model. Operations or information requested from a file system implementation need be 
performed only to the extent possible. 

Writing a Virtual File System 5-1 



Logical file system can also refer to the tree of known path names in force while the system 
is running. A virtual file system that is mounted onto the logical file system tree itself 
becomes part of that tree. In fact, a single virtual file system can be mounted onto the logical 
file system tree at multiple points, so that nodes in the virtual subtree have multiple names. 
Multiple mount points allow maximum flexibility when constructing the logical file system 
view. 

Component Structure of the Logical File System 
The logical file system is divided into the following components: 

• System Calls 

Implement services exported to users. System calls that carry out file system requests do 
the following: 

- Map the user's parameters to a file system object. This requires that the system call 
component use the vnode (virtual node) component to follow the object's path name. In 
addition, the system call must resolve a file descriptor or establish implicit (mapped) 
references using the open file component. 

- Verify that a requested operation is applicable to the type of the specified object. 

- Dispatch a request to the file system implementation to perform operations. 

• Logical File System File Routines 

Manage open file table entries and per-process file descriptors. An open file table entry 
records the authorization of a process's access to a file system object. A user can refer to an 
open file table entry through a file descriptor or by accessing the virtual memory to which the 
file was mapped. The Logical File System routines are those kernel services, such as the 
fp_ioctl and fp_select routines, that begin with the prefix fp_. 

• vnodes 

Provide system calls with a mechanism for local name resolution. Local name resolution 
allows the logical file system to access multiple file system implementations through a 
uniform name space. 

Virtual File System Overview 
The AIX virtual file system is an abstraction of a physical file system implementation. It 
provides a consistent interface to multiple file systems, both local and remote. This 
consistent interface allows the user to view the directory tree on the running system as a 
single entity even when the tree is made up of a number of diverse file system types. The 
interface also allows the logical file system code in the kernel to operate without regard to 
the type of file system being accessed. 

A virtual file system can also be viewed as a subset of the logical file system tree: that part 
belonging to a single file system implementation. A virtual file system can be physical (the 
instantiation of a physical file system), remote, or strictly logical. In the latter case, for 
example, a virtual file system need not actually be a true file system or entail any underlying 
physical storage device. 

A virtual file system mount point grafts a virtual file system subtree onto the logical file 
system tree. This mount point ties together a mounted-over vnode (virtual node) and the root 

5-2 Kernel Extensions and Device Support 



of the virtual file system subtree. A mounted-over, or stub, vnode points to a virtual file 
system, and the mounted VFS points to the vnode it is mounted over. 

stub vnode 

Stub (mounted-over) 
vnode 

vfs 

mounted over 

vfs root vnode 

Yo.---root V-----,node ~ 
Virtual File System Mount Point 

Virtual Nodes (Vnodes) 
A virtual node (vnode) represents access to an object within a virtual file system. Vnodes are 
used only to translate a path name into a generic node (gnode). 

A vnode is either created or re-used for every reference made to a file by path name. Every 
time a user attempts to open or create a file, a list of existing vnodes is searched for the 
requested path name. (This list is accessed by consulting the vfs structure for the virtual file 
system that contains the vnode.) If a vnode already exists for the reference, a use count is 
incremented and the existing structure is used. Otherwise, a new vnode is created. 

Every path name known to the logical file system can be associated with, at most, one file 
system object. However, each file system object can have several names. Multiple names 
appear in the following cases: 

• The object can appear in multiple virtual file systems. 
• The name of the virtual file system itself is not unique. An ancestor, including the mount 

pOint, can have multiple names. 
• The object does not have a unique name within the virtual file system. (The file system 

implementation can provide synonyms. For example, the use of links causes files to have 
more than one name.) 

Generic Inodes (Gnodes) 
A generic inode (gnode) is the representation of an object in a file system implementation. 
There is a one-to-one correspondence between a gnode and an object in a file system 
implementation. Each gnode represents an object owned by the file system implementation. 

Each file system implementation is responsible for allocating and destroying gnodes. The 
gnode then serves as the interface between the logical file system and the file system 
implementation. Calls to the file system implementation serve as requests to perform an 
operation on a specific gnode. 

A gnode is needed, in addition to the file system inode, because some file system 
implementations may not include the concept of an inode. Thus the gnode structure 
substitutes for whatever structure the file system implementation may have used to uniquely 
identify a file system object. 

Writing a Virtual File System 5-3 



The logical file system relies on the file system implementation to provide valid data for the 
following fields in the gnode: 

Identifies the type of object represented by the gnode. 

Identifies the set of operations that can be performed on the object. 

Understanding The Virtual File System Interface 
Operations that can be performed upon a virtual file system and its underlying objects are 
divided into two categories. Operations upon a file system implementation as a whole (not 
requiring the existence of an underlying file system object) are called vfs operations. 
Operations upon the underlying file system objects are called vnode (virtual node) 
operations. Before writing specific virtual file system operations, it is important to note the 
requirements for a file system implementation. 

Requirements for a File System Implementation 
File system implementations differ in how they implement the predefined operations. 
However, the logical file system expects that a file system implementation meets the 
following criteria: 

• All vfs and vnode operations must supply a return value: 

- A return value of 0 (zero) indicates the operation was successful. 

- A nonzero return value is interpreted as a valid error number (taken from the 
<sys/errno.h> header file) and returned through the system call interface to the 
application program . 

• All vfs operations must exist for each file system type, but can return an error on 
invocation. The following are the necessary vfs operations: 

- vfs_cntl 

- vfs_mount 

- vfs_root 

- vfs_statfs 
- vfs_sync 

- vfs_unmount 

- vfs_vget. 

Important Data Structures for a File System Implementation 
There are two important data structures used to represent information about a virtual file 
system, the vfs structure and the vnode. Each virtual file system has a vfs structure in 
memory that describes its type, attributes, and position in the file tree hierarchy. Each file 
object within that virtual file system can be represented by a vnode. 

The vfs structure contains the following fields: 

Contains the state flags: 

Indicates whether the virtual file system has a 
physical mount structure underlying it. 

Indicates whether the virtual file system is 
mounted read-only. 

Specifies the type of lock. A lock is either shared or exclusive. During 
path-name resolution, the virtual file system for the current vnode is 
share-locked. During mounting and unmounting, the virtual file system is 

5-4 Kernel Extensions and Device Support 



exclusive-locked. To avoid deadlock, a vnode is held (using the vn_hold 
routine) when crossing a mount point and exclusive-locked during 
mounting and unmounting. 

vfs_type Identifies the type of file system implementation. Possible values for this 
field are described in the <syslvmount.h> header file. 

vfs_ops Points to the set of operations for the specified file system type. 

vfs_mntdover Points to the mounted-over vnode. 

vfs_data Points to the file system implementation data. The interpretation of this 
field is left to the discretion of the file system implementation. For 
example, the field could be used to point to data in the kernel extension 
segment or as an offset to another segment. 

vfs_mdata Records the user arguments to the mount call that created this virtual file 
system. This field has a time stamp. The user arguments are retained to 
implement the mntctl call, which replaces the letc/mnttab table. 

Data Structures and Header Files for Virtual File Systems 
These are the data structures used in implementing virtual file systems: 

• The vfs structure contains information about a virtual file system' as a single entity. 

• The vnode structure contains information about a file system object in a virtual file 
system. There can be multiple vnodes for a single file system object. 

• The gnode structure contains information about a file system object in a physical file 
system. There is only a single gnode for a given file system object. 

• The gfs structure contains information about a file system implementation. This is distinct 
from the vfs structure, which contains information about an instance of a virtual file 
system. 

The header files contain the structure definitions for the key components of the virtual file 
system abstraction. Understanding the contents of these files and the relationships between 
them is essential to an understanding of virtual file systems. The following are the necessary 
header files: 

• sys/vfs.h 

• sys/gfs.h 

• sys/vnode.h 

• sys/vmount.h. 

Configuring a Virtual File System 
The kernel maintains a table of active file system types. A file system implementation must 
be registered with the kernel before a request to mount a virtual file system (VFS) of that 
type can be honored. Two kernel services, the gfsadd and gfsdel kernel services, are 
supplied for adding a file system type to the gfs file system table. 

These are the steps that must be followed to get a file system configured. 

1. A user-level routine must call the sysconfig subroutine requesting that the code for the 
virtual file system be loaded. 

Writing a Virtual File System 5-5 



2. The user-level routine must then request, again by calling the syseonfig subroutine, that 
the virtual file system be configured. The name of a VFS-specific configuration routine 
must be specified. 

3. The virtual file system-specific configuration routine calls the gfsadd kernel service to 
have the new file system added to the gfs table. The gfs table that the configuration 
routine passes to the gfsadd kernel service contains a pointer to an initialization routine. 
This routine is then called to do any further virtual file system-specific initialization. 

4. The file system is then operational. 

Related Information 
The mount subroutine, mntetl subroutine, syseonfig subroutine. 
The gfsadd kernel service, gfsdel kernel service. 
The Logical File System Kernel Services on page 6-12. 

5-6 Kernel Extensions and Device Support 



Kernel Services 

Kernel services are routines that provide the runtime kernel environment to programs 
executing in kernel mode. Kernel services resemble library routines but are called by kernel 
extensions. Library routines are called by application programs. 

Callers of kernel services execute in kernel mode. They therefore share with the kernel the 
responsibility for ensuring that system integrity is not compromised. 

The Kernel Services Alphabetical Listing in Appendix A. provides access to individual 
services, as well as list the execution environment (process or interrupt) from which the 
service can be called. System Calls Available to Kernel Extensions on page 4-7 lists the 
systems calls that kernel extensions can call.The following are the 12 categories of kernel 
services: 

• Device Queue and Ring Queue Management Kernel Services 
• I/O Kernel Services 
• Kernel Program/Device Driver Management Kernel Services 
• Logical File System Kernel Services 
• Memory Kernel Services 
• Message Queue Services Available from the Kernel 
• Network Kernel Services 
• Process and Exception Management Kernel Services 
• RAS Kernel Services 
• Security Kernel Services 
• Timer and Time-of-Day Kernel Services 
• Virtual File System Kernel Services. 

Device Queue and Ring Queue Management Kernel Services 
The Device Queue and Ring Queue services aid in porting previous AIX/VRM device drivers 
to the AIX Version 3 operating system. These device queues can help maintain the overall 
structure of an existing set of device managers that were implemented as kernel processes 
within VRM on previous versions of the AIX operating system. 

The Device Queue services have, however, been streamlined and functionally reduced. 
Unlike the VRM device queue, these services are not part of the base operating system. 
They must be loaded into the kernel before use. 

These services do not support the queued device driver model that existed in previous 
versions of the AIX operating system. These services support only process communications. 
The support of virtual interrupt handlers has also been changed. They now call the virtual 
interrupt-handling routines directly since virtual interrupts as such are no longer supported 
on the AIX operating system. 

Note: It is strongly recommended that these functions be used only where quick, fairly 
straightforward porting of existing VRM device managers is required. Do not rely on 
either the Device Queue and Ring Queue services as a long-term model for kernel 
process communications. Other device management services and communications 
mechanisms should be investigated when developing new subsystems or when a 
considerable investment is required in porting previously implemented software. 

Kernel Services 6-1 



Understanding Device Queues It 

Device queues are provided for compatibility with previous AIX device drivers. Device 
queues in AIX can be viewed as a method of queuing requests to a kernel process 
performing the device manager role. Kernel processes can use device queues to 
communicate to other kernel processes. For more information on kernel processes refer to 
Using Kernel Processes. 

Loading Device Queue Management 
Device queues are supported as an AIX kernel extension and must be loaded into the kernel 
before loading any other kernel extension that references them. The Device Queue 
Management kernel extension must only be loaded into the kernel once, which can be 
accomplished by loading with the SYS_SINGLELOAD sysconfig subroutine operation. 

The Client/Server Model 
Device queues are based on a clienVserver model. The client sends requests to the server 
and the server processes these requests. 

A device queue server is a kernel process. The server consists of one or more routines 
providing the service. A device queue server that is part of a complex I/O subsystem is 
referred to as a device manager. Sophisticated device subsystems, such as those that 
involve virtualized devices, may require a device manager. For example, the SNA 
subsystem consists of several layers that interface to multiple devices including Ethernet 
and Token-Ring adapters. The device handlers are typically multiplexed character drivers 
that provide an interface to a logical link control layer. This control layer is most often a 
kernel process acting as a device manager. 

To use a server's device queue a client must first attach to the device queue with the attchq 
Queue Management service. This creates a path from the client to the device queue and 
determines how acknowledgments are processed. Once a path is created, a client can send 
queue elements to the server with the enque Queue Management service. When finished, 
the client deletes the path with the detchq Queue Management service. 

Queue Elements 
There are two basic types of queue elements supported by device queues. A queue 
element sent from the client to the server is referred to as a request and is sent with the 
enque service. A queue element sent from the server to the client is referred to as an 
acknowledgment and is typically sent with the deque Queue Management service. 
However, acknowledgments can also be sent with the ackque Queue Management service. 
The path that connects the client to the server describes how both of these queue element 
types are processed. 

Device queues can support more than one queue element priority. Priorities with 
numerically lower values are more favored than those with numerically higher values. More 
favored queue elements are processed before less favored queue elements. Queue 
elements with the same priority are processed in their arrival order. 

There are two states in the life of a queue element. The queue element can be either active 
or pending. There is at most one active queue element for any device queue. A queue 
element is always placed in the device queue in the pending state. The queue element is 
then changed from the pending to the active state when the process either waits for a queue 
element (with the waitq Queue Management service) or reads the device queue (with the 
readq Queue Management service). The active queue element is removed from the device 
queue with the deque service. Thus the server directly controls the state of each queue 
element in the device queue. 

6-2 Kernel Extensions and Device Support 



Kernel processes serving device queues typically provide the interface to a logical or virtual 
device. This type of server usually consists of a kernel process coded as a loop. In this loop 
the process waits for a request, performs the operation specified by the request, 
acknowledges the request, and then repeats the loop. A process can serve more than one 
device queue. The e_wait kernel service can be used to wait on one or more device queues. 

Device Queue Management Kernel Services 
The Device Queue Management kernel extension provides the following 19 device queue 
management kernel services to support kernel processes using device queues. This kernel 
extension must be loaded by the first user before queue management services can be used. 

Service 

ackque 
attchq 

canclq 

creatd 

creatq 

deque 

detchq 
dstryd 

dstryq 

enque 

peekq 
qryds 

queryd 

queryi 
queryp 

readq 

vec_clear 

vec_init 

waitq 

Purpose 

Sends an acknowledgment queue element. 

Creates a path to a device queue. 

Deletes all pending queue elements from a device queue. 

Assigns a global name to a device queue. 

Creates a device queue. 

Performs completion processing for the active queue element. 

Invalidates the path to a device queue. 

Deletes a global name from a device queue. 
Destroys the specified device queue. 

Sends a request queue element. 

Returns a pending qu~e element in the device queue. 
Returns information about the device manager. 
Returns the device identifier associated with the IODN. 

Provides information about device queues. 

Indicates whether a path exists to a device queue. 

Returns the active queue element in the device queue. 

Removes a registered virtual interrupt handler. 

Registers a virtual interrupt handler. 

Waits for a queue element. 

Warning: The device queue services assert that the object defined by an identifier is valid. 
The assert causes the system to crash. Therefore, the caller must ensure that the object on 
which it is performing an operation exists. This usually means that the caller needs to 
sequence its process termination carefully. 

Device queue management directly calls some routines provided by the user of queue 
management under certain conditions.The function pointers for these routines are provided 
when using the creatd and creatq queue management services. The following routines can 
be directly called by queue management services: 

• The attach routine initializes the server so that queued operations can be performed. 
• The detach routine cleans up the server after the completion of all queued operations. 
• The check-parameters routine verifies that each enque operation is valid before the 

operation is initiated. 
• The cancel-queue-element routine cleans up resources associated with a queue 

element. 
• The virtual-interrupt-handler routine handles virtual interrupts that are associated with 

the acknowledgement of a queue element. 

Kernel Services 6-3 



Understanding Ring Queue Kernel Services 
The 4 ring queue kernel services are also considered part of the device queue management 
services. They can be used in the process environment only. 

The ring queue kernel services are a light-weight method of interprocess communication. 
They are typically used as part of a complex I/O subsystem and permit a device driver to 
notify and pass data to a kernel process efficiently. Ring queue services are typically used in 
communications device handlers to notify a kernel process of the availability of received 
data. As part of the notification process, they also pass the address of the buffer containing 
the received data. 

The Ring Queue kernel services are: 

rqc 

rqd 
rqgetw 

rqputw 

Creates a ring queue. 

Deletse a ring queue. 
Gest the next element (word) from the ring queue. 

Puts a word into the next available element on the ring queue. 

When the rqputw service places a word in an empty ring, a server process is notified with a 
specified event control bit or a server notification routine is called. The method of server 
notification is established by the events parameter on the call to the rqc service to create the 
ring queue. The function routine specified by the func parameter (also on the call to the rqc 
service) is called without parameters and has no return code. 

1/0 Kernel Services 
The liD kernel services fall into six categories: Block liD services, Buffer Cache services, 
Character liD services, Memory Buffer!!(mbuf) services, DMA Management services, and 
Interrupt Management services. 

Block 1/0 Kernel Services 
Block liD device drivers are described in Understanding Block liD Device Drivers. The three 
Block liD kernel services are: 

iodone 

iowait 

uphysio 

Performs block liD completion processing. 

Waits for block liD completion. 

Performs character liD for a block device using a uio structure. 

Buffer Cache Kernel Services 
The Block liD Buffer Cache Kernel Services Overview describes how to manage the buffer 
cache with the Buffer Cache kernel services. The 14 Buffer Cache kernel services are: 

bawrite 

bdwrite 

bflush 

binval 

blkflush 

bread 

breada 
brelse 
bwrite 

clrbuf 

getblk 

Writes the specified buffer's data without waiting for liD to complete. 

Releases the specified buffer after marking it for delayed write. 

Flushes all write-behind blocks on the specified device from the buffer 
cache. 
Invalidates all of the specified device's blocks in the buffer cache. 

Flushes the specified block if it is in the buffer cache. 

Reads the specified block's data into a buffer. 
Reads in the specified block and then starts I/O on the read-ahead block. 

Frees the specified buffer. 
Writes the specified buffer's data. 

Sets the memory for the specified buffer structure's buffer to all zeros. 

Assigns a buffer to the specified block. 

6-4 Kernel Extensions and Device Support 



geteblk 

geterror 

purblk 

Allocates a free buffer. 

Determines the completion status of the buffer. 

Purges the specified block from the buffer cache. 

Character 1/0 Kernel Services 
Understanding Character 1/0 Device Drivers describes character device drivers. The 13 
Character 1/0 kernel services are: 

getc 
getcb 

getcbp 

getcf 

getcx 

pincf 

putc 

putcb 

putcbp 

putcf 

putcfl 

putcx 

waitcfree 

Retrieves a character from a character list. 
Removes the first buffer from a character list and returns the address of the 
removed buffer. 
Retrieves multiple characters from a character buffer and places them at a 
designated address. 
Retrieves a free character buffer. 

Returns the character at the end of a designated list. 

Manages the list of free character buffers. 

Places a character at the end of a character list. 

Places a character buffer at the end of a character list. 

Places several characters at the end of a character list. 

Frees a specified buffer. 

Frees the specified list of buffers. 

Places a character on a character list. 

Checks the availability of a free character buffer. 

Memory Buffer (mbuf) Kernel Services 
The Memory Buffer (mbuf) kernel services provide functions to obtain, release, and 
manipulate memory buffers, or mbufs. These mbuf services provide the means to easily 
work with the mbuf data structure, which is defined in the <sys/mbuf.h> header file. Data 
can be stored directly in a memory buffer's data portion or in an attached external cluster. 
Memory buffers can also be chained together by using the m_next field in the mbuf 
structure. This is particularly useful for communications protocols that need to add and 
remove protocol headers. 

The 15 Memory Buffer (mbuf) kernel services are: 

m_adj 

m_cat 

m_clget 

m_clgetx 

m_collapse 

m_copy 

m_copydata 
m_dereg 
m_free 

m_freem 

m_get 
m_getclr 

m_getclust 

Adjusts the size of an mbuf chain. 

Appends one mbuf chain to the end of another. 

Allocates a page-sized mbuf structure cluster. 

Allocates an mbuf structure whose data is owned by someone else. 
Guarantees that an mbuf chain contains no more than a given number of 
mbuf structures. 
Creates a copy of all or part of a list of mbuf structures. 

Copies data from an mbuf chain to a specified buffer. 

Deregisters expected mbuf structure usage. 

Frees an mbuf structure and any associated external storage area. 

Frees an entire mbuf chain. 
Allocates a memory buffer from the mbuf pool. 

Allocates and zeros a memory buffer from the mbuf pool. 

Allocates an mbuf structure from the mbuf buffer pool and attaches a 
page-sized cluster. 

Kernel Services 6-5 



Adjusts an mbuf chain so that a given number of bytes is in contiguous 
memory in the data area of the head mbuf structure. 

Registers expected mbuf usage. 

In addition to the mbuf kernel services, the following macros are available for use with 
mbufs: 

MTOCL 

MTOD 

Determines if an mbuf structure has an attached cluster. 

Converts an address anywhere within an mbuf structure to the head of that 
mbuf structure. 
Converts a pointer to an mbuf structure to a pointer to the head of an 
attached cluster. 
Converts a pointer to an mbuf structure to a pointer to the data stored in 
that mbuf structure. 

DMA Management Kernel Services 
The AIX operating system kernel provides 10 services for managing DMA channels and 
performing DMA operations. Understanding Direct Memory Access (DMA) describes DMA 
operations and channels. 

d_align 
d_clear 

d_complete 

d_init 
d_mask 

d_master 

d_move 

d_roundup 

d_slave 

d_unmask 

DMA Transfers 

Assists in allocation of DMA buffers. 

Frees a DMA channel. 

Cleans up after a DMA transfer. 
Initializes a DMA channel. 

Disables a DMA channel 

Initializes a block-mode DMA transfer for a DMA master. 

Provides consistent access to system memory that is accessed 
asynchronously by a device and by the processor on a RISC System/6000. 
Assists in allocation of DMA buffers. 

Initializes a block-mode DMA transfer for a DMA slave. 

Enables a DMA channel. 

A device driver must call the d_slave service to set up a DMA slave transfer or call the 
d_master service to set up a DMA master transfer. The device driver then sets up the 
device to perform the DMA transfer. The device transfers data when it is available and 
interrupts the processor upon completion of the DMA transfer. The device driver then calls 
the d_complete service to clean up after the DMA transfer. This process is typically 
repeated each time a DMA transfer is to occur. 

Hiding DMA Data 

In the RISC System/6000, data can be located in the processor cache, system memory, or a 
DMA buffer. The DMA services have been carefully written to ensure that data is moved 
between these three locations correctly. The d_master and d_slave services flush the data 
from the processor cache to system memory. They then hide the page, preventing data from 
being placed back into the processor cache. The hardware moves the data between system 
memory, the DMA buffers, and the device. The d_complete service flushes data from the 
DMA buffers to system memory and unhides the buffer. 

A count is maintained of the number of times a page is hidden for DMA. A page is not 
actually hidden except when the count goes from 0 to 1 and is not unhidden except when the 
count goes from 1 to O. Therefore, the users of the services must make sure to have the 
same number of calls to both the d_master and d_complete services. Otherwise, the page 

6-6 Kernel Extensions and Device Support 



can be incorrectly unhidden and data lost. This count is intended to support operations such 
as logical volume mirrored writes. 

Note: All pages containing user data must be hidden while DMA operations are being 
performed on them. This is required to ensure that data is not lost by being put in 
more than one of these locations. 

DMA operations can be carefully performed on kernel data without hiding the pages 
containing the data. The DMA_WRITE_ONLV flag, when specified to the d_master service, 
causes it not to flush the processor cache or hide the pages. The same flag when specified 
to the d_complete service causes it not to unhlde the pages. This flag requires that the 
caller has carefully flushed the processor cache using the vm_cflush service. Additionally, 
the caller must carefully allocate complete pages for the data buffer and carefully split them 
up into transfers. Transferred pages must each be aligned at the start of a DMA buffer 
boundary, and no other data can be in the same DMA buffers as the data to be transferred. 
The d_align and d_roundup services help ensure that the buffer allocation is correct. 

The d_align service (provided in libsys.a) returns the alignment value required for starting a 
buffer on a processor cache line boundary. The d_roundup service (also provided in 
libsys.a) can be used to round the desired DMA buffer length up to a value that is an integer 
number of cache lines. These two services allow buffers to be used for DMA operations to 
be aligned on a cache line boundary and allocated in whole multiples of the cache line size 
so that the buffer is not split across processor cache lines. This reduces the possibility of 
consistency problems because of DMA and also minimizes the number of cache lines that 
must be flushed or invalidated when used for DMA. For example these services can be used 
to provide alignment as follows: 

align = d_align(); 
buffer_length = d_roundup(required_length); 
buf_ptr = xmalloc(buffer_length, align, kernel_heap); 

Note: If the kernel heap is used for DMA buffers, the buffer must be pinned using the pin 
kernel service before being used for DMA operations. Alternately, the memory could 
be requested from the pinned heap. 

Accessing Data While the DMA Operation Is in Progress 

Data must be carefully accessed when a DMA operation is in progress. The d_move service 
provides a means of accessing the data while a DMA transfer is being performed on it. This 
service accesses the data through the same system hardware as that used to perform the 
DMA transfer. The d_move service, therefore, cannot cause the data to become 
inconsistent. This service can also access data hidden from normal processor accesses. 

Interrupt Management Kernel Services 
Using Interrupts briefly describes the Interrupt Management kernel services and interrupt 
priorities. The eight Interrupt Management services are: 

i_clear 

i_disable 
i_enable 
i_init 

i_mask 

Lreset 
i_sched 

Lunmask 

Removes an interrupt handler. 

Disables interrupt priorities. 
Enables interrupt priorities. 
Defines an interrupt handler. 

Disables a bus interrupt level. 

Resets a bus intenupt level. 

Schedules off-level processing. 

Enables a bus interrupt level. 

Kernel Services 6-7 



Block 1/0 Buffer Cache Kernel Services: Overview 
The Block 1/0 Buffer Cache services are provided to support user access to device drivers 
through block I/O special files. This access is required by the AIX file system for mounts and 
other limited activity, as well as for compatibility services required when other file systems 
are installed on AIX systems. These services are not used by the AIX JFS (Journal File 
System), NFS (Network File System), or CORFS (COROM File System) systems when 
processing standard file 1/0 data. Instead they use the virtual memory manager and pager to 
manage the system's memory pages as a buffer cache. 

For compatibility support of other file systems and blocK special file support, the buffer cache 
services serve two important purposes: 

• They ensure that multiple processes accessing the same block of the same device in 
multiprogrammed fashion maintain a consistent view of the data in the block. 

• They increase the efficiency of the system by keeping in-memory copies of blocks that are 
frequently accessed. 

The Buffer Cache services use the buf structure or buffer header as their main data-tracking 
mechanism. Each buffer header contains a pair of pointers that maintains a doubly linked list 
of buffers associated with a particular block device. An additional pair of pointers maintain a 
doubly linked list of blocks available for reuse on another operation. Buffers that have 110 in 
progress or that are busy for other purposes do not appear in this available list. 

Kernel buffers are discussed in more detail in Introduction to Kernel Buffers. 

Managing the Buffer Cache 
Fourteen kernel services provide management of this block 110 buffer cache mechanism. 
The getblk kernel service allocates a buffer header and a free buffer from the buffer pool. 
Given a device and block number, the getblk and bread kernel services both return a 
pointer to a buffer header for the block. But the bread service is guaranteed to return a 
buffer actually containing a current data for the block. In contrast, the getblk service returns 
a buffer that contains the data in the block only if it is already in memory. 

In either case, the buffer and the corresponding device block are made busy. Other 
processes attempting to access the buffer must wait until it becomes free. The getblk 
service is used when: 

• A block is about to be rewritten totally. 
• Its previous contents are not useful. 
• No other processes should be allowed to access it until the new data has been placed 

into it. 

The bread a kernel service is used to perform read-ahead 1/0 and is similar to the bread 
service except that an additional parameter specifies the number of the block on the same 
device to be read asynchronously after the requested block is available. The brelse kernel 
service makes the specified buffer available again to other processes. 

Using the Buffer Cache write Services 
There are three slightly different buffer cache write routines. All of them take a buffer pointer 
as a parameter and all logically release the buffer by placing it on the free list. The bwrite 
service puts the buffer on the appropriate device queue by calling the device's strategy 
routine. The bwrite service then waits for 110 completion and sets the caller's error flag, if 
required. This service is used when the caller wants to be sure that 110 takes place 
synchronously, so that any errors can be handled immediately. 

The bawrite service is an asynchronous version of the bwrite service and does not wait for 
110 completion. This service is normally used when the overlap of processing and device 1/0 
activity is desired. 

6-8 Kernel Extensions and Device Support 



The bdwrite service does not start any I/O operations, but merely marks the buffer as a 
delayed write and releases it to the free list. Later, when the buffer is obtained from the free 
list and found to contain data from some other block, the data is written out to the correct 
device before the buffer is used. The bdwrite service is used when there is doubt that the 
write is needed immediately. 

For example, the bdwrite service is called when the last byte of the write operation 
associated with a block special file falls short of the end of a block. The bdwrite service is 
called on the assumption that another write will soon occur that will use the same block 
again. On the other hand, as the end of a block is passed, the bawrite service is called, 
because it is assumed the block will probably not be accessed again soon. Therefore, the 
I/O processing can be started as soon as possible. 

Note that the getblk and bread services dedicated the specified block to the caller while 
making other processes wait, while the brelse, bwrite, bawrite, or bdwrite services must 
eventually be called to free the block for use by other processes. 

Other Buffer Cache Services 
The following buffer cache kernel services also exist: 

bflush 

blkflush 
binval 
clrbuf 
geterror 

purblk 

Flushes all write-behind blocks on the specified device from the buffer 
cache. 
Writes the data in a specified block to its device. 

Invalidates all of a specified device's data in the buffer cache. 
Zeroes out the data buffer associated with a specified buffer header. 

Returns the completion status of a buffer. 

Invalidates a specified block's data in the buffer cache. 

Understanding Interrupts 
Each hardware interrupt has an interrupt level and an interrupt priority. The interrupt level 
defines the source of the interrupt. There are basically two types of interrupt levels: system 
and bus. The RISC System/6000 bus interrupts are generated from the Micro Channel bus 
and system I/O. Examples of system interrupts are the timer and serial link interrupts. 

The interrupt level of a system interrupt is defined in the <sys/intr.h> header file. The 
interrupt level of a bus interrupt is one of the resources managed by the bus configuration 
methods. 

Interrupt Priorities 
The interrupt priority defines which of a set of pending interrupts is serviced first. INTMAX is 
the most favored interrupt priority and INTBASE is the least favored interrupt priority. The 
interrupt priorities for bus interrupts range from INTCLASSO to INTCLASS3. The rest of the 
interrupt priorities are reserved for the base kernel. Interrupts that cannot be serviced within 
the time limits specified for bus interrupts qualify as off-level interrupts. 

A device's interrupt priority is selected based on two criteria: its maximum interrupt latency 
requirements and the device driver's interrupt execution time. The interrupt latency 
requirement is the maximum time within which an interrupt must be serviced. (If it is not 
serviced in this time, some event is lost or performance is degraded seriously.) The interrupt 
execution time is the number of machine cycles required by the device driver to service the 

Kernel Services 6-9 



interrupt. Interrupts with a short interrupt latency time must have a short interrupt service 
time. The general rule for interrupt service times is based on the following interrupt priority 
table: 

Priority 

INTCLASSO 
INTCLASS1 
INTCLASS2 
INTCLASS3 

Service Time (machine cycles) 

200 cycles 
400 cycles 
600 cycles 
800 cycles. 

The valid interrupt priorities are defined in the <sys/intr.h> header file. Processing Interrupts 
provides more information about interrupt levels and Early Power-Off Warning (EPOW) 
handlers. 

Interrupt Services 
The AIX operating system provides the following set of kernel services for managing 
interrupts: 

i_clear 
i_reset 
i_sched 
i_mask 
i_unmask 
i_disable 

Defines an interrupt handler to the system, connects it to an interrupt level, 
and assigns an interrupt priority to the level. 
Removes an interrupt handler from the system. 

Resets the system's hardware interrupt latches. 

Schedules off-level processing. 

Disables an interrupt level. 

Enables an interrupt level. 

Disables all of the interrupt levels at a particular interrupt priority and all 
interrupt levels at a less-favored interrupt priority. 

Enables all of the interrupt levels at a particular interrupt priority and all 
interrupt levels at a more-favored interrupt priority. 

Kernel Extension/Device Driver Management Kernel Services 
The AIX kernel provides a relatively complete set of program and device driver management 
services. These services include general kernel extension loading and binding services and 
device driver binding services. Also provided are services that allow kernel extensions to be 
notified of base kernel configuration changes, user-mode exceptions, and systemwide 
process state changes. 

Kernel Extension Loading and Binding Services 
The kmod_load, kmod_entrypt, and kmod_unload services provide kernel extension 
loading and binding services. The sysconfig subroutine makes these services available to 
user-mode programs. However, kernel-mode callers executing in a kernel process 
environment can also use them. These services provide the same kernel object-file load, 
unload, and query functions provided by the sysconfig subroutine as well as the capability 
to obtain a module's entry point with the kernel module ID assigned to the module. 

The kmod_load, kmod_entrypt, and kmod_unload services can be used to dynamically 
alter the set of routines loaded into the kernel based on system configuration and application 
demand. Subsystems and device drivers can use these services to load large, seldom-used 
routines on demand. Device driver binding services include the devswadd, devswdel, and 
devswqry services, which are used to add or remove a device driver entry from the 
dynamically managed device switch table. They also query for information concerning a 
specific entry in the device switch table. 

6-1 0 Kernel Extensions and Device Support 



Other Functions for the Kernel Extension/Device Driver Management Services 
Some kernel extensions may be sensitive to the settings of base kernel runtime configurable 
parameters that are found in the var structure defined in the <sys/var.h>, header file. These 
parameters can be set during system boot or runtime by a privileged user performing system 
configuration commands that use the sysconfig subroutine to alter values in the var 
structure. Kernel extensions may register or remove a configuration notification routine with 
the cfgnadd and cfgndel kernel services. This routine is called each time the sysconfig 
subroutine is used to change base kernel tunable parameters found in the var structure. 

In addition, the prochadd and prochdel kernel services allow kernel extensions to be 
notified when any process in the system has a state transition, such as being created, 
exiting, being swapped in or swapped out. The uexadd and uexdel kernel services give 
kernel extensions the capability to intercept user-mode exceptions. These user-mode 
exception handlers may use this capability to dynamically reassign access to single-use 
resources or to clean up after some particular user-mode error. The associated uexblock 
and uexclear services can be used by these handlers to block and resume process 
execution when handling these exceptions. 

The pioassist and getexcept kernel services are typically used by device drivers to obtain 
detailed information about exceptions that occur during 1/0 bus access. The getexcept 
service can also be used by any exception handler requiring more information about an 
exception that has occurred. The selnotify kernel service replaces the traditional UNIX 
selwakeup kernel function and is used by device drivers supporting the poll or select 
functions when asynchronous event notification is requested. The iostadd and iostdel 
services are used by tty and disk device drivers to register device activity reporting 
structures to be used by the iostat and vmstat commands. 

Finally, the getuerror and setuerror services can be used by kernel extensions that provide 
or use system calls to access the u.u_error field for the current process. This is typically 
used by kernel extensions providing system calls to return error codes, and is used by other 
kernel extensions to check error codes upon return from a system call (since there is no 
errno global variable in the kernel). 

The Kernel Extension/Device Driver Management Kernel Services 
The 23 Kernel Program/Device Driver Management kernel services are: 

cfgnadd 

cfgndel 

devdump 
devstrat 
devswadd 
devswdel 
devswqry 
getexcept 

getuerror 
iostadd 

iostdel 

kmod_entrypt 

Registers a notification routine to be called when system-configurable 
variables are changed. 
Removes a notification routine for receiving broadcasts of changes to 
system configurable variables. 
Calls a device driver dump-to-device routine. 

Calls a block device driver's strategy routine. 
Adds a device entry to the device switch table. 
Deletes a device driver entry from the device switch table. 

Checks the status of a device switch entry in the device switch table. 

Allows kernel exception handlers to retrieve additional exception 
information. 
Allows kernel extensions to retrieve the current value of the u_error field. 

Registers an I/O statistics structure used for updating I/O statistics reported 
by the iostat subroutine. 
Removes the registration of an I/O statistics structure used for maintaining 
I/O statistics on a particular device. 
Returns a function pointer to a kernel module's entry point. 

Kernel Services 6-11 



kmod_unload 
pio_assist 

prochadd 
prochdel 
selnotify 

setuerror 
uexadd 

uexblock 

uexclear 
uexdel 

Loads an object file into the kernel or queries for an object file already 
loaded. 
Unloads a kernel object file. 
Provides a standardized programmed I/O exception handling mechanism for 
all routines performing programmed I/O. 
Adds a systemwide process state-change notification routine. 

Deletes a process state change notification routine. 

Wakes up processes waiting in a poll or select subroutine or the fp_poll 
kernel service. 
Allows kernel extensions to set the u_error field in the u area. 

Adds a systemwide exception handler for catching user-mode process 
exceptions. 
Makes a process non-runnable when called from a user-mode exception 
handler. 
Makes a process blocked by the uexblock service runnable again. 

Deletes a previously added systemwide user-mode exception handler. 

Logical File System Kernel Services 
The Logical File System services (also known as the fp_services) allow processes running 
in kernel mode to open and manipulate files in the same way that user-mode processes do. 
Data access limitations make it unreasonable to accomplish these tasks with system calls, 
so a subset of the file system calls has been provided with an alternate kernel-only interface. 

The Logical File System services are one component of the logical file system, which 
provides the functions required to map system call requests to virtual file system requests. 
The logical file system is responsible for resolution of file names and file descriptors. It tracks 
all open files in the system using the file table. The Logical File System services are lower 
level entry points into the system call support within the logical file system. 

Routines in the kernel that must access data stored in files or that must set up paths to 
devices are the primary users of these services. This occurs most commonly in device 
drivers, where a lower level device driver must be accessed or where the device requires 
microcode to be downloaded. Use of the Logical File System services is not, however, 
restricted to these cases. 

A process can use the Logical File System services to establish access to a file or device by 
calling: 

• The fp_open service with a path name to the file or device it must access. 
• The fp_opendev service with the device number of a device it must access. 
• The fp_getf service with a file descriptor for the file or device. If the process wants to 

retain access past the duration of the system call, it must then call the fp_hold service to 
acquire a private file pointer. 

These three services return a file pointer that is needed to call the other Logical File System 
services. The other services provide the functions that are provided by the corresponding 
system calls. 

Other Considerations 
The Logical File System services are available only in the process environment. In addition, 
calling the fp_open service at certain times can cause a deadlock. The lookup on the file 
name must acquire file system locks. If the process is already holding any lock on a 
component of the path, the process will be deadlocked. Therefore, do not use the fp_open 
service when the process is already executing an operation that holds file system locks on 

6-12 Kernel Extensions and Device Support 



the requested path. The operations most likely to cause this condition are those that create 
files.The following are the 17 Logical File System kernel services: 

fp_access 
fp_close 

fp_fstat 

fp_getdevno 

fp_getf 

fp_hold 

fp_ioctl 

fp_lseek 

fp_open 

fp_opendev 

fp_poll 

fp_select 

fp_write 

fp_writev 

Checks for access permission to an open file. 
Closes a file. 

Gets the attributes of an open file. 

Gets the device number and/or channel number for a device. 

Retrieves a pointer to a file structure. 
Increments the open count for a specified file pointer. 

Issues a control command to an open device or file. 

Changes the current offset in an open file. 

Opens a regular file or directory. 

Opens a device special file. 

Checks the I/O status of multiple file pointers/descriptors and message 
queues. 
Performs a read on an open file with argume,nts passed. 
Performs a read operation on an open file with arguments passed in iovec 
elements. 
Performs read and write on an open file with arguments passed in a uio 
structure. 
Provides for cascaded, or redirected, support of the select or poll request. 
Performs a write operation on an open file with arguments passed. 

Performs a write operation on an open file with arguments passed in iovec 
elements. 

Memory Kernel Services 
The Memory kernel services provide kernel extensions with the ability to: 

• Dynamically allocate and free memory 

• Pin and unpin code and data 

• Access user memory and transfer data between user and kernel memory 

• Create, reference, and change virtual memory objects. 

The Memory kernel services are divided into the Memory Management services, Memory 
Pinning services, User Memory Access services, Virtual Memory Management services, and 
Cross Memory services. 

The three Memory Management services are: 

init_heap 

xmalloc 
xmfree 

Initializes a new heap to be used with kernel memory management 
services. 
Allocates memory. 
Frees allocated memory. 

The six Memory Pinning services are: 

pin 

pincode 
pinu 

Pins the address range in the system (kernel) space. 

Pins the code and data associated with an object file. 
Pins the specified address range in user or system memory. 

Kernel Services 6-13 



unpin 
unpincode 
unpinu 

Unpins the address range in system (kernel) address space. 

Unpins the code and data associated with an object file. 
Unpins the specified address range in user or system memory. 

User Memory Access Kernel Services 
In a system call or kernel extension running under a user process, data in the user process 
can be moved in or out of the kernel using the copyin or copyout services. The uiomove 
service is used for scatter/gather operations. If user data is to be referenced 
asynchronously, such as from an interrupt handler or a kernel process, the cross memory 
services must be used. 

The 10 User Memory Access kernel services are: 

copyin 
copyinstr 

copyout 
fubyte 
fuword 
subyte 
suword 
uiomove 

ureadc 
uwritec 

Copies data between user and kernel memory. 

Copies a character string (including the terminating NULL character) from 
user to kernel space. 
Copies data between user and kernel memory. 

Fetches, or retrieves, a byte of data from user memory. 

Fetches, or retrieves, a word of data from user memory. 

Stores a byte of data in user memory. 

Stores a word of data in user memory. 

Moves a block of data between kernel space and a space defined by a uio 
structure. 
Writes a character to a buffer described by a uio structure. 

Retrieves a character from a buffer described by a uio structure. 

Virtual Memory Management Kernel Services 
These services are described in more detail in Understanding Virtual Memory Management 
Interfaces. The 22 Virtual Memory Management services are: 

getadsp 

vm_makep 
vm_mount 
vm_move 

Selects, allocates, and maps a region in the specified address space for the 
specified virtual memory object. 
U nmaps and deallocates a region in the specified address space that was 
mapped with the as_aU kernel service. 
Obtains a pointer to the current process's address space structure for use 
with the as_aU and as_det kernel services. 
Selects, allocates, and maps a region in the current address space for I/O 
access. 
Unmaps and deallocates the region in the current address space at the 
given address. 
Maps a specified virtual memory object to a region in the current address 
space. 
Flushes the processor's cache for a specified address range. 

Unmaps and deallocates the region in the current address space that 
contains a given address. 
Constructs a virtual memory handle for mapping a virtual memory object 
with specified access level. 
Makes a page in client storage. 
Adds a file system to the paging device table. 
Moves data between a virtual memory object and a buffer specified in the 
uio structure. 
Sets the page protection key for a page range. 

6-14 Kernel Extensions and Device Support 



vm_qmodify 
vm_release 
vm_releasep 
vm_umount 

vm_write 
vm_writep 
vms_create 
vms_delete 
vms_iowait 

Determines whether a mapped file has been changed. 

Releases virtual memory resources for the specified address range. 
Releases virtual memory resources for the specified page range. 
Removes a file system from the paging device table. 

Initiates page-out for a page range in the address space. 

Initiates page-out for a page range in a virtual memory object. 
Creates a virtual memory object of the type and size and limits specified. 

Deletes a virtual memory object. 
Waits for the completion of all page-out operations for pages in the virtual 
memory object. 

Cross Memory Kernel Services 
Moving Data between Address Spaces 

The cross memory services allow data to be moved between the kernel and an address 
space other than the current process address space. A data area within one region of an 
address space is attached by calling the xmattach service. As a result, the virtual memory 
object cannot be deleted while data is being moved in or out of pages belonging to it. A 
cross memory descriptor is filled out by the xmattach service. The attach operation must be 
done while under a process. When the data movement is completed, the xmdetach service 
can be called. The detach operation can be done from an interrupt handler. 

The xmemin service can be used to transfer data from an address space to kernel space. 
The xmemout service can be used to transfer data from kernel space to an address space. 
These routines may be called from interrupt handler level routines if the referenced buffers 
are in memory. 

Cross memory services provide the xmemdma service to prepare a page for DMA 
processing. The xmemdma service flushes any data from cache into memory and hides the 
page. A page is hidden by invalidating processor access to the page. Any processor 
references to the page result in page faults with the referencing process waiting on the page 
to be unhidden. The xmemdma service returns the real address of the page for use in 
preparing DMA address lists. When the DMA transfer is completed, the xmemdma service 
must be called again to unhide the page. 

Data movement by DMA or an interrupt handler requires that the pages remain in memory. 
This is ensured by pinning the data areas using the pinu service. This can only be done 
under a process, since the memory pinning services page-fault on pages not present in 
memory. 

The unpinu service unpins pinned pages. This can be done by an interrupt handler if the 
data area is the global kernel address space. It must be done under the process if the data 
area is in user process space. 

The five Cross Memory services are: 

xmattach 
xmdetach 
xmemin 

xmemout 

xmemdma 

Attaches to a user buffer for cross-memory operations. 
Detaches from a user buffer used for cross-memory operations. 
Performs a cross-memory move by copying data from the specified address 
space to kernel global memory. 
Performs a cross-memory move by copying data from kernel global memory 
to a specified address space. 
Prepares a page for DMA I/O or processes a page after DMA 110 is 
complete. 

Kernel Services 6-15 



Virtual Memory Manager Interfaces 
The AIX virtual memory manager supports functions that allow a wide range of kernel 
extension data operations. 

Several aspects of the virtual memory manager interface are discussed here: 

• Virtual memory objects 
• Addressing data 
• Moving data to or from the kernel address space 
• Moving data between address spaces 
• Moving data to or from a virtual memory object 
• Data flushing 
• Protecting data 
• Executable data 
• Installing pager back ends. 

Virtual Memory Objects 
A virtual memory object is an abstraction for the contiguous data that can be mapped into a 
region of an address space. As a data object, it is independent of any address space. The 
data it represents can be in memory or on an external storage device. The data represented 
by the virtual memory object can be shared by mapping the virtual memory object into each 
address space sharing the access, with the access capability of each mapping represented 
in that address space map. 

File systems use virtual memory objects so that the files can be referenced using a mapped 
file access method. The map file access method represents the data through a virtual 
memory object, and allows the virtual memory manager to handle page faults on the 
mapped file. When a page fault occurs, the virtual memory manager calls the services 
supplied by the service provider (such as a virtual file system) to get and put pages. A data 
provider (such as a file system) maintains any data structures necessary to map between 
the virtual memory object offset and external storage addressing. 

The data provider creates a virtual memory object when it has a request for access to the 
data. It deletes the virtual memory object when it has no more clients referencing the data in 
the virtual memory object. 

The vms_create service is called to create virtual memory objects. The vms_delete service 
is called to delete virtual memory objects. 

Addressing Data 
Data in a virtual memory object is made addressable in user or kernel processes through the 
shmat subroutine. A kernel extension uses the vm_att kernel service to select and allocate 
a region in the current (per-process kernel) address space. 

The per-process kernel address space initially sees only global kernel memory and the 
per-process kernel data. The vm_att service allows kernel extensions to allocate additional 
regions. However, this augmented per-process kernel address space does not persist across 
system calls. The additional regions must be re-allocated with each entry into the kernel 
protection domain. 

The vm_att service takes as an argument a virtual memory handle representing the virtual 
memory object and the access capability to be used. The vm_handle service constructs the 
virtual memory handles. 

When the kernel extension has finished processing the data mapped into the current 
address space, it should call the vm_det service to deallocate the region and remove 
access. 

6-16 Kernel Extensions and Device Support 



Moving Data to or from a Virtual Memory Object 
A data provider (such as a file system) can call the vm_makep service to cause a memory 
page to be instantiated. This permits a page of data to be moved into a virtual memory 
object page without causing the virtual memory manager to page in the previous data 
contents from an external source. This is an operation on the virtual memory object, not an 
address space range. 

The vm_move kernel service moves data between a virtual memory object and a buffer 
specified in a uio structure. This allows data providers (such as a file system) to move data 
to or from a specified buffer to a designated offset in a virtual memory object. This service is 
similar to uiomove service, but the trusted buffer is replaced by the virtual memory object, 
which need not be currently addressable. 

Data Flushing 
A kernel extension can initiate the writing of a data area to external storage with the 
vm_write kernel service, if it has addressability to the data area. The vm_writep kernel 
service can be used if the virtual memory object is not currently addressable. 

If the kernel extension needs to ensure that the data is moved successfully, it can wait on the 
I/O completion by calling the vms_iowait service, giving the virtual memory object as an 
argument. 

Discarding Data 
The pages specified by a data range can be released from the underlying virtual memory 
object by calling the vm_release service. The virtual memory manager deallocates any 
associated paging space slots. A subsequent reference to data in the range results in a 
page fault. 

A virtual memory data provider can release a specified range of pages in a virtual memory 
object by calling the vm_releasep service. The virtual memory object need not be 
addressable for this call. 

Protecting Data 
The vm_protectp service can change the storage protect keys in a page range in one client 
storage virtual memory object. This only acts on the resident pages. The pages are referred 
to through the virtual memory object. They do not need to be addressable in the current 
address space. A client file system data provider uses this protection to detect stores to 
in-memory data, so that mapped files can be extended by storing into them beyond their 
current end of file. 

Executable Data 
If the data moved is to become executable, any data remaining in processor cache must be 
guaranteed to be moved from cache to memory This is because the instruction fetch does 
not need to use the data cache. The vm_cflush service performs this operation. 

Installing Pager Back Ends 
. The kernel extension data providers must provide appropriate routines to be called by the 

virtual memory manager. These routines move a page-sized block of data into or out of a 
specified page. These services are also referred to as pager back ends. 

For a local device, the device strategy routine is required. A call to the vm_mount service is 
used to identify the device (through a dev_t value) to the virtual memory manager. 

For a remote data provider, the routine required is a strategy routine, which is specified in 
the vm_mount service. These strategy routines must run as interrupt level routines. They 
must not page fault and cannot sleep while waiting for locks. 

Kernel Services 6-17 



When access to a remote data provider or a local device is removed, the vm_umount 
service must be called to remove the device entry from the virtual memory manager's paging 
device table. 

Referenced routines 
The virtual memory manager exports the following types of routines to kernel extensions: 

• Services that manipulate memory objects 
• Services that support address space operations 
• Services that support the installation of pager back ends. 

Services that support cross-memory operations are also included in the above group and are 
listed on page 6-15. 

The following services manipulate virtual memory objects: 

vms_create 
vms_delete 
vm_det 

vms_iowait 
vm_makep 
vm_move 

vm_protectp 
vm_releasep 

Selects and allocates a region in the current address space for the specified 
virtual memory object. 
Creates virtual memory object of the specified type and size limits. 

Deletes a virtual memory object. 

Unmaps and deallocates the region at a specified address in the current 
address space. 
Constructs a virtual memory handle for mapping a virtual memory object 
with a specified access level. 
Waits all page-outs for the virtual memory object to complete. 

Makes a page in client storage. 

Moves data between the virtual memory object and buffer specified in the 
uio structure. 
Sets the page protection key for a page range. 

Releases page frames and paging space slots for pages in the specified 
range. 
Initiates page-out for a page range in a virtual memory object. 

The following services support address space operations: 

as_att Selects, allocates, and maps a region in the specified address space for the 
specified virtual memory object. 

as_det Unmaps and deallocates a region in the specified address space that was 
mapped with the as_att kernel service. 

getadsp Obtains a pointer to the current process's address space structure for use 
with the as_att and as_det kernel services. 

vm_cflush Flushes cache lines for a specified address range. 

vm_release Releases page frames and paging space slots for the specified address 
range. 

vm_write Initiates pageout for an address range. 

Four Memory-Pinning kernel services also support address space operations. They are the 
pin, pinu, unpin, and unpinu services. 

The following services support the installation of pager back ends: 

vm_mount Allocates an entry in the paging device table. 

vm_umount Removes a file system from the paging device table. 

6-18 Kernel Extensions and Device Support 



Message Queue Kernel Services Available from the Kernel 
The Message Queue kernel services provide the same message queue functions to a kernel 
extension as the msgctl, msgget, msgsnd, and msgxrcv subroutines make available to a 
program executing in user mode. Parameters have been added for moving returned 
information to an explicit parameter to free the return codes for error code usage. Instead of 
the error information available in the errno global variable (as in user mode), the Message 
Queue services use the service's return code. The error values are the same, except that a 
memory fault error (EFAULT) cannot occur because message buffer pointers in the kernel 
address space are assumed to be valid. 

The Message Queue services can be called only from the process environment because 
they prevent the caller from specifying kernel buffers. These services can be used as an IPC 
mechanism to other kernel processes or user-mode processes. For more information on 
functions provided by these services, see The Kernel Extension/Device Driver Management 
Kernel Services and The Device Queue and Ring Queue Management Kernel Services. 

Message Queues Services Available from the Kernel 
There are 4 Message Queue services available from the kernel: 

kmsgctl 
kmsgget 
kmsgrcv 

kmsgsnd 

Provides message-queue control operations. 
Obtains a message queue identifier. 

Reads a message from a message queue. 

Sends a message using a previously defined message queue. 

Network Kernel Services 
The Network kernel services are divided into the Address Family Domain and Network 
Interface Device Driver services, Routing and Interface services, Loopback services, 
Protocol services, and Communications Device Handler Interface services. 

Address Family Domain and Network Interface Device Driver Kernel Services 
The Address Family Domain and Network Interface Device Driver services enable address 
family domains (Protocols) and network interface drivers to add and remove themselves 
from network switch tables. 

The if_attach service and if_detach services add and remove network interfaces from the 
Network Interface List. Protocols search this list to determine an appropriate interface on 
which to transmit a packet. 

Protocols use the add_input_type and del_input_type services to notify network interface 
drivers that the protocol is available to handle packets of a certain type. The Network 
Interface Driver uses the find_input_type service to distribute packets to a protocol. 

The add_netisr and del_netisr services add and delete network software interrupt 
handlers. Address families add and delete themselves from the Address Family Domain 
switch table by using the add_domain_af and del_domain_af services. The Address 
Family Domain switch table is a list of all available protocols that can be used in the socket 
subroutine. The 13 Address Family Domain and Network Interface Device Driver services 
are: 

add_domain_af 
add_input_type 
add_netisr 

Adds an interface type to the Network ARP Switch Table Interface 
(NASTI). 
Adds an address family to the Address Family domain switch table. 
Adds a new input type to the Network Input table. 
Adds a network software interrupt service to the Network Interrupt 
table. 

Kernel Services 6-19 



del_input_type 
deLnetisr 

if_attach 
if_detach 
ifunit 
schednetisr 

Deletes an address family from the Address Family domain switch 
table. 
Deletes an input type from the Network Input table. 
Deletes a network software interrupt service routine from the Network 
Interrupt table. 
Finds an interface type in the Network ARP Switch Table Interface 
(NASTI). 
Finds the given packet type in the Network Input Interface switch table 
and distributes the input packet according to the table entry for that 
type. 
Adds a network interface to the network interface list. 
Deletes a network interface from the network interface list. 
Returns a pointer to the ifnet structure of the requested interface. 

Schedules or invokes a network software interrupt service routine. 

Routing and Interface Address Kernel Services 
The Routing and Interface Address services provide protocols with a means of establishing, 
accessing, and removing routes to remote hosts or gateways. Routes bind destinations to a 
particular network interface. 

The interface address services accept a destination address or network and return an 
associated interface address. Protocols can use these to determine if an address is on a 
directly connected network. The 10 Routing and Interface Address services are: 

ifa_ifwithaddr Locates an interface based on a complete address. 

ifa_ifwithdstaddr 
Locates the point-to-point interface with a given destination address. 

ifa_ifwithnet Locates an interface on a specific network. 

if_down Marks an interface as down. 

if_nostat Zeroes statistical elements of the interface array in preparation for an attach 
operation. 

rtalloc Allocates a route. 
rtfree Frees the routing table entry 
rtinit Sets up a routing table entry, typically for a network interface. 

rtredirect Forces a routing table entry with the specified destination to go through the 
given gateway. 

rtrequest Carries out a request to change the routing table . 

. Loopback Kernel Services 
The Loopback services enable networking code to be exercised without actually transmitting 
packets on a network. This is a useful tool for developing new protocols without introducing 
network variables. Loopback services can also be used to send packets to local addresses 
without using hardware loopback. 

The two Loopback services are: 

loifp 
looutput 

Returns the address of the software loopback interface structure. 

Sends data through a software loopback interface. 

-&-20 Kernel Extensions and Device Support 



Protocol Kernel Services 
Protocol kernel services provide a means of finding a particular address family as well as a 
raw protocol handler. The raw protocol handler basically passes raw packets up through 
sockets so that a protocol can be implemented in user space. 

The four Protocol kernel services are: 

pfctlinput 

pffindproto 
raw_input 

Invokes the ctlinput function for each configured protocol. 

Returns the address of a protocol switch table entry. 
Builds a raw_header structure for a packet and sends both to the raw 
protocol handler. 
Implements user requests for raw protocols. 

Communications Device Handler Interface Kernel Services 
The Communications Device Handler Interface services provide a standard interface 
between network interface drivers and AIX communications device handlers. The 
net_attach and net_detach services open and close the device handler. Once the device 
handler has been opened, the net_xmit service can be used to transmit packets. 
Asynchronous start done notifications are recorded by the net_start_done service. The 
net_error service handles error conditions. The 5 Communications Device Handler Interface 
services are: 

add_netopt 
del_netopt 

This macro adds a network option structure to the list of network options. 
This macro deletes a network option structure from the list of network 
options. 
Opens an AIX communications liD device handler. 

Closes an AIX communications liD device handler. 

net_attach 

net_detach 
net_error 

net_sleep 

net_start 

Handles errors for AIX communication network interface drivers. 

Sleeps on the specified wait channel. 

Starts network IDs on an AIX communications liD device handler. 

net_start_doneStarts the done notification handler for AIX communications liD device 
handlers. 

net_wakeup Wakes up all sleepers waiting on the specified wait channel. 

net_xmit Transmits data using an AIX communications liD device handler. 

Process and Exception Management Kernel Services 
The Process and Exception Management kernel services provided by the base AIX kernel 
provide the capability to: 

• Create kernel processes 
• Register exception handlers 
• Provide process serialization 
• Generate and handle signals 
• Support event waiting and notification. 

Kernel extensions can use the creatp and initp kernel services to create and intialize a 
kernel process. A kernel process can use the si9_chk kernel service to poll for signals that 
have been sent to the kernel process. The setpinit kernel service allow a kernel process to 
change its parent process from the one that created it to the init process, so that the 
creating process does not receive the death-of-child signal upon kernel process termination. 
Using Kernel Processes supplies additional information concerning use of these services. 

Kernel Services 6-21 



The setjmpx, clrjmpx, and longjmpx kernel services allow a kernel extension to register an 
exception handler by: 

• Saving the exception handler's context with the setjmpx kernel service 
• Removing its saved context with the clrjmpx kernel service if no exception occurred 
• Invoking the next registered exception handler with the longjmpx kernel service if it was 

unable to handle the exception. 

Refer to Handling Exceptions While in a System Call for additional information concerning 
use of these services. 

The lockl and unlockl kernel services allow kernel extensions executing in the process 
environment to acquire or release locks that are typically used to serialize access to a 
resource. The getpid kernel service can be used by a kernel extension in either the process 
or interrupt environment to determine the current execution environment and obtain the 
process ID of the current process if in the process environment. 

The event notification services provide support for primitive interprocess communications 
where there can be only one process waiting on the event or shared event interprocess 
communications where there can be multiple processes waiting on the event. The traditional 
sleep and wakeup kernel services are also provided for code that is being ported from other 
UNIX operating systems or previous versions of the AIX operating system. These 
compatibility services require that the caller have the global kerneLlock, which is released 
before waiting in the sleep routine and re-acquired upon wakeup. 

The e_wait and e_post kernel services support single waiter event notification by using 
mutually agreed upon event control bits for the process being posted. There are a limited 
number of control bits available for use by kernel extensions. If the kernel_lock is owned by 
the caller of the e_wait service, it is released and re-acquired upon wakeup. 

The e_wakeup, e_sleep and e_sleepl kernel services support a shared event notification 
mechanism that allows for multiple processes to be waiting on the shared event. These 
services support an unlimited number of shared events (by using caller-supplied event 
words). All processes waiting on the shared event are awakened by the e_wakeup service. 
If the caller of the e_sleep service owns the kernel lock, it is released before waiting and is 
reacquired upon wakeup. The e_sleepl service provides the same function as the e_sleep 
service except that a caller-specified lock is released and reacquired instead of the 
kerneLlock. 

The Process and Exception Management Kernel Services 
There are 19 Process and Exception Management kernel services: 

clrjmpx 

creatp 
e_post 
e_sleep 
e_sleepl 
e_wait 
e_wakeup 
getpid 
initp 
lockl 
longjmpx 

pdsignal 

Removes a saved context by popping the most recently saved jump buffer 
from the list of saved contexts. 
Creates a new kernel process. 
Notifies a process of the occurrence of one or more events. 

Forces a process to wait for the occurrence of a shared event. 

Forces a process to wait for the occurrence of a shared event. 

Forces a process to wait for the occurrence of an event. 

Notifies processes waiting on a shared event of the event's occurrence. 

Gets the process ID of the current process. 

Changes the state of a kernel process from idle to ready. 

Locks a conventional process lock. 

Allows exception handling by causing execution to resume at the most 
recently saved context. 
Sends a signal to a process group. 

6-22 Kernel Extensions and Device Support 



pidsig 

setjmpx 
setpinit 
sig_chk 

sleep 
unlockl 

wakeup 

RAS Kernel Services 

Sends a signal to a process. 

Allows saving the current execution state or context. 
Sets the parent of the current kernel process to the init process. 
Provides a kernel process the ability to poll for receipt of signals. 

Forces the calling process to wait on a specified channel. 

Unlocks a conventional process lock. 

Activates processes sleeping on the specified channel. 

The RAS kernel services are used to record the occurrence of hardware or software failures 
and to capture data about these failures. The recorded information can be examined using 
the errpt, trcrpt, or crash commands. 

The panic kernel service is called when a catastrophic failure occurs and the system can no 
longer operate. The panic service performs a system dump. The system dump captures 
.data areas that are registered in the Master Dump Table. The kernel and kernel extensions 
use the dmp_add kernel service to add an entry to the Master Dump Table and the 
dmp_del kernel service to remove an entry. 

The errsave kernel service is called to record an entry in the system error log when a 
hardware or software failure is detected. 

The trcgenk and trcgenkt kernel services are used along with the trchk subroutine to 
record selected system events in the event tracing facility. 

The RAS Kernel Services 
The 6 RAS kernel services are: 

Specifies data to be included in a system dump by adding an entry to the 
master dump table. 
Deletes an entry from the master dump table. dmp_del 

errsave 

panic 
trcgenk 

trcgenkt 

Allows the kernel and kernel extensions to write to the error log. 
Crashes the system. 

Records a trace event for a generic trace channel. 

Records a trace event, including a time stamp, for a generic trace channel. 

Security Kernel Services 
The Security kernel services provide methods for controlling the auditing system and for 
determining the access rights to objects for the invoking process. 

The following are the 4 Security kernel services: 

audit_svcbcopy 
Appends event information to the current audit event buffer. 

audit_svcfinis Writes an audit record for a kernel service. 

audit_svcstart Initiates an audit record for a system call. 
suser Determines the privilege state of a process. 

Timer and Time-of-Day Kernel Services 
The Timer and Time-of-Day kernel services provide kernel extensions with the ability to be 
notified when a period of time has passed. The tstart service supports a very fine granularity 
of time. The timeout service is built on the tstart service and is provided for compatibility 
with earlier versions of the AIX operating system. The w_start service provides a timer with 
less granularity, but much cheaper path-length overhead when starting a timer. 

Kernel Services 6-23 



The Timer and Time-of-Day kernel services are divided into the Time-of-Day services, Fine 
Granularity Timer services, Timer services for compatibility, and Watchdog Timer services. 
There is only one Time-of-Day kernel service: the curtime kernel service. 

The five Fine Granularity Timer kernel services are: 

delay 

talloc 

tfree 
tstart 
tstop 

Suspends the calling process for the specified number of timer ticks. 

Allocates a timer request block before starting a timer request. 

Deallocates a timer request block. 
Submits a timer request. 
Cancels a pending timer request. 

You can find additional information about using the Fine Granularity Timer services in Using 
Fine Granularity Timer Services and Structures. 

Three Timer kernel services are provided for compatibility: 

timeout 

timeoutcf 

untimeout 

Schedules a function to be called after a specified interval. 

Allocates or deallocates callout table entries for use with the timeout kernel 
service. 
Cancels a pending timer request. 

The following are the 4 Watchdog kernel services: 

w_init 

w_start 

w_stop 

Removes a watchdog timer from the list of watchdog timers known to the 
kernel. 
Registers a watchdog timer with the kernel. 

Starts a watchdog timer. 

Stops a watchdog timer. 

Using Fine Granularity Timer Services and Structures 
The tstart, Uree, talloc, and tstop services provide fine-resolution timing functions. These 
timer services should be used when the following conditions are required: 

• Timing requests for less than one second 

• Critical timing 

• Absolute timing. 

The watchdog timer services can be used for noncritical times having a one-second 
resolution. The timeout service can be used for noncritical times having a clock-tick 
resolution. 

Timer Services Data Structures 

The trb (timer request) structure is found in the <sys/timer.h> header file. The 
itimerstruc_t structure contains the second/nanosecond structure for time operations and is 
found in the <sys/time.h> header file. 

The itimerstruc_t t.it value substructure should be used to store time information for both 
absolute and incremental timers. The T _ABSOLUTE absolute request flag is defined in the 
<sys/timer.h> file. It should be ORed into the t->flag field if an absolute timer request is 
desired. 

The t->timeout and t-> flags fields must be set or reset before each call to the tstart kernel 
service. 

6-24 Kernel Extensions and Device Support 



Coding the Timer Function 

The t->func timer function should be declared as follows: 

void func (t) 
struct trb *t; 

The argument to the func completion handler routine is the address of the trb structure, not 
the contents of the t_union field. 

The t->func timer function is called on an interrupt level. Therefore, code for this routine 
must follow conventions for interrupt handlers. 

Virtual File System (VFS) Kernel Services 
The Virtual File System (VFS) kernel services are provided as fundamental building blocks 
for use when writing a virtual file system. These services present a standard interface for 
such functions as configuring !ile systems, creating and freeing vnodes, and looking up path 
names. 

Most functions involved in the writing of a file system are specific to that file system type. But 
a limited number of functions must be performed in a consistent manner across the various 
file system types to enable the logical file system to operate independently of the file system 
type. The six VFS kernel services are: 

Adds a file system type to the gfs table. 

Removes a file system type from the gfs table. 

gfsadd 
gfsdel 

vn_free 

vn_get 
Frees a vnode previously allocated by the vn_get kernel service. 

Allocates a virtual node and inserts it into the list of vnodes for the 
designated virtual file system. 
Points to a virtual file system structure. vfsrele 

lookupvp Retrieves the vnode that corresponds to the named path. 

Related Information 
The sysconfig subroutine. 
The e_wait kernel service. 
The iostat command, vmstat command. 
Understanding Block 1/0 Device Drivers on page, Understanding Character 1/0 Device 
Drivers on page 3-6, Direct Memory Access (DMA) on page 3-15. 
Device Driver Classes on page 2-1. 
The buf structure in Kernel Extensions and Device Support Programming Concepts. 
Processing Interrupts on page 3-12. 

The Virtual File System Interface on page 5-4 . 

Kernel Services 6-25 



6-26 Kernel Extensions and Device Support 



The Configuration Subsystem 

The following topics are discussed in the Device Configuration Subsystem: 

• Scope of AIX Device Configuration Support 
• Device Configuration Database Overview 
• Device Classes, Subclasses, and Types 
• Writing a Device Method 
• Understanding System Boot Processing. 

Scope of AIX Device Configuration Support 
In the AIX device configuration subsystem, the term device has a wider range of meaning 
than it does in traditional UNIX systems. 

In both AIX and UNIX systems, the term devices refers to hardware components such as 
disk drives, tape drives, printers, and keyboards. Pseudo-devices, such as the console, 
error, and the null special file, are also included. For AIX, all of these devices are referred to 
as the kernel devices, that is, the devices with device drivers and known to the system by 
major and minor numbers. 

However, in the AIX operating system, hardware components such as buses, adapters, and 
even enclosures (including racks, drawers, and expansion boxes) are also considered 
devices. 

The Devices Graph diagram on page 7-6 provides more information about the connections 
and dependencies between these components. 

Note: The system cannot use any device unless it is configured. 

General Structure of the Device Configuration Subsystem 
The Device Configuration Subsystem can be viewed from three different levels: the High 
Level Perspective, the Device Method Level, and the Low Level Perspective. The Overview 
of System Management of Devices diagram on page 7-2 illustrates the general structure 
of the Device Configuration Subsystem. 

High Level Perspective 

From a high level, user-oriented perspective, four basic tasks comprise device configuration: 

• Adding a device to the system 
• Deleting a device from the system 
• Changing the attributes of a device 
• Showing information about a device. 

A set of high level commands accomplish these tasks during runtime: chdev, mkdev, IsaUr, 
Isconn, Isdev, Isparent, rmdev, and cfgmgr. 

The Configuration Database stores all information relevant to support the device 
configuration process. It has two components: the Predefined Database and the Customized 
Database. The Predefined Database contains configuration data for all devices that could 
possibly be supported by the system. The Customized Database contains configuration data 
for the devices actually defined and configured in that particular system. 

Configuration Subsystem 7-1 



Boot I I SMIT/Shell Runtime 

....---- cfgmgr --~ 

~, ~, 

Configuration Manager I I High Level Commands 1-----1 

Device Methods 

n" 
u 

" ~, 

Configuration 
Database ' 
(ODM) 

~r 

Low Level Commands 
and Routines 

Examples 

Predefine 
Customize 
Config Rules 

Overview of System Management of Devices 

Examples 

mkdev 
rmdev 
chdev 
Isdev 

Examples 

Define 
Configure 
Undefine 
Unconfigure 
Change 
Start 
Stop 

Examples 

mknod 
genminor 
genmajor 
restbase 
loadext 

The Configuration Manager supervises the configuration of a system's devices when the 
system is booted. These components are illustrated in the Device Configuration Support 
diagram on page 7-3. 

Device Method Level 

Beneath the high-level devices commands or the Configuration Manager is a set of functions 
called device methods. These methods perform well-defined configuration steps, including 
these five functions: 

• Defining a device in the configuration database 
• Configuring a device to make it available 
• Changing a device to make a change in its characteristics 
• Unconfiguring a device to make it unavailable 
• Undefining a device from the configuration database. 

7-2 Kernel Extensions and Device Support 



1 ADF Configuration 
Files Manager I Device 

Methods 
.. ~ 

I Adapter 
Methods 

I Bus I--

adfutil Methods V 
System J 
Methods / f--

installp ~ Define :; -updatep Configure 
scripts Change 

I--... 
~~ 

i ~ 
UBODM 

~, 

ODM DATABASE 

Predefined Customized Device Objects 
Device (instance defined by the 
Objects Define method) 

Bus I busO I bus1 I ... 
Object 

""~ ~~~ 

SCSI I scsiO I scsi1 I ... 
Adapter "" r-~ ~ ~ 

Disk ~ hdiskO J hdisk1 I ... 
"":: ~~ ~f--

D I ... II ... II ... 

.. .... 

----

I 

I 

I 

I 

UBCFG I 

syscon figO 

~, 

I Ide vlnvram 

Ide v/busO 

J 
M achine 

vice 
ver 

De 
Dri 

Ker nel 

Components Involved in Device Configuration Support 

Device methods also provide two optional functions for devices that need them: 

• Starting a Device to take it from the Stopped state to the Available state 
• Stopping a Device to take it to the Stopped state. 

Understanding Device States contains a diagram illustrating all possible device states and 
how the various methods effect device state changes. 

Both the high-level device commands and the Configuration Manager can use the device 
methods. These methods are implemented to insulate higher level configuration programs 
from kernel-specific, hardware-specific, and device-specific configuration steps. 

Configuration Subsystem 7-3 



Low Level Perspective 

Beneath the device methods is a set of low-level device configuration commands and library 
routines that can be directly called by device methods as well as by higher level 
configuration programs. 

Device Configuration Database Overview 
For a device to be in the Defined state, the Configuration Database must contain a complete 
description of it. This information includes items such as the device driver name, the device 
major and minor numbers, the device method names, the device attributes, connection 
information, and location information. 

The Configuration Database is an object-oriented database. The Object Data Manager 
(ODM) provides facilities for accessing and manipulating it. 

There are actually two databases used in the configuration process: 

Predefined Database Contains information about all possible types of devices that 
can be defined for the system. 

Customized Database Describes all devices currently defined in the system. 

ODM Device Configuration Object Classes provides access to the object classes that make 
up the Predefined and Customized databases. 

Basic Device Configuration Procedures 
At system boot time, the Configuration Manager is automatically invoked to configure all 
devices detected and devices whose device information is stored in the Configuration 
Database. At runtime, you can configure a specific device by directly invoking, or indirectly 
invoking through a usability interface layer, high-level devices commands. This interface is 
illustrated by the General Structure of the Configuration Subsystem diagram. 

High-level devices commands invoke methods and allow the user to add, delete, show, and 
change devices and their associated attributes. 

When a specific device is defined through its Define method, the information from the 
Predefined database for that type of device is used to create the information describing the 
specific device instance. This specific device instance information is then stored in the 
Customized database. 

The process of configuring a device is often highly device-specific. The Configure method for 
a kernel device needs to: 

• Load the device's driver into the kernel 
• Pass the Device-Dependent structure (DDS) describing the device instance to the driver 
• Create a special file for the device in the /dev directory. 

Of course, many devices do not have device drivers. For this type of device the configured 
state is not as meaningful. However, it still has a Configure method that simply marks the 
device as configured or performs more complex operations to determine if there are any 
devices attached to it. 

The configuration process requires that a device be defined or configured before a device 
attached to it can be defined or configured. At system boot time, the Configuration Manager 
begins with the System device shown in the Devices Graph figure on page 7-6 and 
configures it. The remaining devices are then configured by traversing down the parent-child 
connections layer by layer. The Configuration Manager then configures any pseudo-devices 
that need to be configured. 

7-4 Kernel Extensions and Device Support 



Device Configuration Manager 
The Configuration Manager is a rule-driven program that automatically configures devices in 
the system during system boot and run time. When the Configuration Manager is invoked, it 
reads rules from the Configuration Rules object class and performs the indicated actions. 

Devices in the system are organized in clusters of tree structures known as nodes. Each tree 
is a logical subsystem by itself, for example, the System node consists of all the physical 
devices in the system. The top of the node is the System device. Below the bus are the 
adapters, which are connected to the bus. The bottom of the hierarchy contains the devices 
to which no other devices are connected. Most of the pseudo-devices, including HFT and 
PTY, are organized as separate tree structures or nodes. 

The Devices Graph 

The Devices Graph diagram on page 7-6 provides an example of connections and 
dependencies of devices in the system. Device Dependencies and Child Devices on page 
7-12 provides more information. 

Configuration Rules 

Each rule in the Configuration Rules (Config_Rules) Object Class specifies a program name 
that the Configuration Manager must execute. These programs are typically the 
configuration programs for the top of the nodes. In invoking these programs, the names of 
the next lower level devices that need to be configured are returned. 

The Configuration Manager configures the next lower level devices by invoking the 
configuration methods for those devices. In turn, those configuration methods return a list of 
to-be-configured device names. The process is repeated until no more device names are 
returned. As a result, all devices in the same node are configured in transverse order. There 
are three different types of rules: phase 1, phase 2, and service. 

The system boot process is divided into two phases. In each phase, the Configuration 
Manager is invoked. During Phase 1, the Configuration Manager is called with a -f option, 
which specifies that the phase = 1 rules are to be executed. This results in the configuration 
of base devices into the system, so that the root file system can be used. During Phase 2, 
the Configuration Manager is called with a -s option, which specifies that the phase = 2 rules 
are to be executed. This results in the configuration of the rest of the devices into the 
system. 

The Understanding System Boot Processing on page 7-14 contains diagrams that illustrate 
the separate step of system boot processing. 

The Configuration Manager invokes the programs in the order specified by the sequence 
value in the rule. In general, the lower the sequence number within a given phase, the higher 
the priority. Thus, a rule with a sequence number of 2 is executed before a rule with a 
sequence number of 5. An exception is made for sequence numbers of 0, which indicate a 
don't-care condition. Any rule with a sequence number of 0 is executed last. The 
Configuration Rules (Config_Rules) object class provides an example of this process. 

If devices names are returned from the program invoked, the Configuration Manager finishes 
traversing the node tree before it invokes the next program. Note that some program names 
may not be associated with any devices, but they must be done to configure the system. 

Configuration Subsystem 7-5 



SCSI Token-Ring 
adapter adapter 

-1 Tape I I tty 

-1 Disk I I Printer 

I TR-IF I 

I TCP/IP I 

System 
System Node 

l 
System 
Planar 

I 
I/O Planar 

I 
Bus 

I 
I I 

Rs232 Display SIO 
adapter adapter (Standard I/O) 

~ 

~ 

I 
Keyboard 
adapter 

I 
I Display I Keyboard I 

I 

I 

c=J Device 

Connectivity 

Dependence 

HFT 

I 
I 

Mouse 
adapter 

I 
Mouse 

J 

I 

Devices Graph: Examples of Connectivity and Dependence 

Invoking the Configuration Manager 

During system boot time, the Configuration Manager is run in two phases. In phase 1 it 
configures the base devices needed to successfully start-up the system. These devices 
include the root volume group, which permits the configuration database to be read in from 
the root file system. 

In phase 2 the Configuration Manager configures the remaining devices using the 
configuration database from the root file system. During this phase, different rules are used 

7-6 Kernel Extensions and Device Support 



depending on the key switch position on the front panel. If the key position is in service 
position, the rules for service mode are used. Otherwise, the phase 2 rules are used. 

The Configuration Manager can also be invoked during runtime to configure all the 
detectable devices that may have been turned off at system boot or added after the system 
boot. In this case, the Configuration Manager uses the phase 2 rules. 

Device Classes, Subclasses, and Types 
To manage its wide variety of devices more easily, the AIX operating system classifies them 
hierarchically. One advantage of this arrangement is that device methods and high level 
commands can operate against a whole set of similar devices. 

Devices are categorized into these three main groups: 

• Functional classes 

• Functional subclasses 

• Device types. 

Devices are organized into a set of functional classes at the highest level. From a user's 
point of view, all devices belonging to the same class perform the same functions. For 
example, all printer devices basically perform the same function of generating printed output. 

However, devices within a class can have different interfaces. A class can therefore be 
partitioned into a set of functional subclasses where devices belonging to the same subclass 
have similar interfaces. For example, serial printers and parallel printers form two 
subclasses of the class of printer devices. 

Finally, a device subclass is a collection of device types. All devices belonging to the same 
device type share the same manufacturer's model name and/or number. For example, IBM 
3812-2 (model 2 Pageprinter) and IBM 4201 (Proprinter II) printers comprise two types of 
printers. 

Devices of the same device type can be managed by different drivers if the type belongs to 
more than one subclass. For example, the IBM 4201 printer belongs to both the serial 
interface and parallel interface subclasses of the printer class, and there are different drivers 
for the two interfaces. But a device of a particular class, subclass, and type can be managed 
by only one device driver. 

Devices in the system are organized in clusters of tree structures known as nodes. For 
example, the system node consists of all the physical devices in the system. The top of the 
node is the System device. Below the bus are the adapters, which are connected to the bus. 
The bottom of the hierarchy contains the devices to which no other devices are connected. 
Most of the pseudo-devices, including HFT and PTY, are organized as separate nodes. 

The Devices Graph on page 7-6 illustrates this structure. 

Writing a Device Method 
Device methods are programs associated with a device that perform basic device 
configuration operations. These operations consist of defining, undefining, configuring, 
unconfiguring, and reconfiguring a device. Some devices also use optional start and stop 
operations. 

There are five basic device methods: 

Define Creates a device instance in the Customized database. 

Configuration Subsystem 7-7 



Configure Configures a device instance already represented in the Customized 
database. This method is responsible for making a device available for use 
in the system. 

Change Reconfigures a device by allowing device characteristics or attributes to be 
changed. 

Unconfigure Makes an configured device unavailable for use in the system. The device 
instance remains in the Customized database but must be reconfigured 
before it can be used. 

Undefine Deletes a device instance from the Customized database. 

Some devices also require these two optional methods: 

Stop The Stop method provides the ability to stop a device without actually 
unconfiguring it. For example, a command can be issued to the device 
driver telling it to stop accepting normal liD requests. 

Start This method is used to start a device that has been stopped with the stop 
method. This may simply be a command to the device driver informing it 
that it can now accept normal liD requests. 

Invoking Methods 
One device method can invoke another device method. For instance, a Configure method 
for a device may need to invoke the Define method for child devices. The Change method 
may invoke the Unconfigure and Configure methods. To ensure proper operation, a method 
that invokes another method must always use the odm_run_method subroutine. 

Understanding Device Methods Interfaces 
Device methods are not executed directly from the command line. They are only invoked by 
the Configuration Manager at boot time or by the cfgmgr, mkdev, chdev, and rmdev 
configuration commands at run time. As a result, it is important for device methods to meet 
well-defined interfaces. 

The parameters that are passed into the methods as well as the exit codes returned must 
both satisfy the requirements for each type of method. Additionally, some methods are 
required to write information to the stdout and stderr files. 

These interfaces are defined for each of the device methods in the individual articles on 
writing each method. 

To better understand how these interfaces work, one needs to understand, at least 
superficially, the flow of operations through the Configuration Manager and the run time 
configuration commands. 

The Configuration Manager 

The Configuration Manager begins by invoking a Node Configuration program listed in one 
of the rules in the Configuration Rules (Config_Rules) object class. A node is a group of 
devices organized into a tree structure representing the various interconnections of the 
devices. The Node Configuration program is responsible for starting the configuration 
process for a node. It does this by querying the Customized database to see if the device at 
the top of the node is represented in the database. If so, the program writes the logical 
name of the device to the stdout file and then returns to the Configuration Manager. 

The Configuration Manager intercepts the Node Configuration program's stdout file to 
obtain the name of the device that was written. It then invokes the Configure method for that 
device. The device's Configure method performs the steps necessary to make the device 
available. If the device is not an intermediate one, the Configure method simply returns to 
the Configuration Manager. However, if the device is an intermediate device that has child 

7-8 Kernel Extensions and Device Support 



devices, the Configure method must determine whether any of the children need to be 
configured. If so, the Configure method writes the names of the all the child devices to be 
configured to the stdout file and then returns to the Configuration Manager. 

The Configuration Manager intercepts the Configure method's stdout file to retrieve the 
names of the children. It then invokes, one at a time, the Configure methods for each child 
device. Each of these Configure methods operate as described for the parent device. For 
example, they might simply exit when complete, or write to their stdout file a list of 
additional device names to be configured and then exit. The Configuration Manager will 
continue to intercept the device names written to the stdout file and to invoke the Configure 
methods for those devices until the Configure methods for all the devices have been run and 
no more names are written to the stdout file. 

The Runtime Configuration Commands 

• The mkdev Command 

The mkdev command is invoked to define or configure, or define and configure, devices 
at run time. If just defining a device, the mkdev command invokes the Define method for 
the device. The Define method creates the customized device instance in the 
Customized Devices (CuDv) object class and writes the name assigned to the device to 
the stdout file. The mkdev command intercepts the device name written to the stdout 
file by the Define method to learn the name of the device. If user-specified attributes are 
supplied with the -a flag, the mkdev command then invokes the Change method for the 
device. 

If defining and configuring a device, the mkdev command invokes the Define method, 
gets the name written to the stdout file by the Define method, invokes the Change 
method for the device if user-specified attributes were supplied, and finally invokes the 
device's Configure method. 

If only configuring a device, the device must already exist in the CuDv object class and its 
name must be specified to the mkdev command. In this case, the mkdev command 
simply invokes the Configure method for the device. 

• The chdev Command 

The chdev command is used to change the characteristics, or attributes, of a device. 
The device must already exist in the CuDv object class, and the name of the device must 
be supplied to the chdev command. The chdev command simply invokes the Change 
method for the device. 

• The rmdev Command 

The rmdev command can be used to undefine or unconfigure, or unconfigure and 
undefine, a device. In all cases, the device must already exist in the CuDv object class 
and the name of the device must be supplied to the rmdev command. The rmdev 
command then invokes the Undefine method, the Unconfigure method, or the 
Unconfigure method followed by the Undefine method, depending on the function 
requested by the user. 

• The cfgmgr Command 

The cfgmgr command can be used to configure all detectable devices that did not get 
configured at boot time. This might occur if the devices had been powered off at boot 
time. The cfgmgr command is the Configuration Manager and operates in the same way 
at run time as it does at boot time. The boot time operation is described in Configuration 
Manager Overview. 

Configuration Subsystem 7-9 



Understanding Device States 
Device methods are responsible for changing the state of a device in the system. A device 
can be in one of four states as represented by the Device Status Flag descriptor in the 
device's object in the Customized Devices (CuDv) object class. 

The Device States diagram illustrates the possible states and the device methods that affect 
them. 

Unconfigu 
Method 

Defined 

Available 

Undefined 

Stopped 

~~ 

re 

Undefined 

~~ 

Undefine Define 
Method Method 

" 
Defined 

~~ 

Unconfigure Configure 
Method Method 

~, 

Stopped 

.. ~ 
Stop Start 
Method Method 

v 

Available 

Device States 

~, 

C onfigure 
Method 

Represented in the Customized database, but is not configured and not 
available for use in the system. 

Configured and available for use. 

Not represented in the Customized database. 

Configured, but not available for use by applications. (Optional state) 

The Define method is responsible for creating the device instance in the Customized 
database and setting the state to defined. The Configure method performs all operations 
necessary to make the device usable and then sets the state to available. 

The Change method usually does not change the state of the device. If the device is in the 
Defined state, the Change method applies all changes to the database and leaves the 
device Defined. If the device is Available, the Change method attempts to apply the 
changes to both the database and the actual device and again leave the device in the same 
state. However, if an error occurs when applying the changes to the actual device, the 
Change method may need to unconfigure the device, thus changing the state to def ined. 

The Unconfigure method must perform the operations necessary to make the device no 
longer usable. Basically, this is to undo the operations performed by the Configure method. 
It will set the device state to defined. Finally, the Undefine method actually deletes all 
information for a device instance from the Customized database, thus reverting the instance 
to the Undefined state. 

7-1 0 Kernel Extensions and Device Support 



The Stopped state is an optional state that some devices may need to use. A device that 
supports this state needs Start and Stop methods. The Stop method changes the state from 
available to stopped. The Start method changes it from stopped back to available. 

Adding an Unsupported Device to the System 
The AIX operating system provides support for a wide variety of devices that can be added 
to your system. However, some devices are not currently supported. You can add a 
currently unsupported device only if you also add the necessary software to support it. 

To add a currently unsupported device to your system, you may need to: 

• Modify the Predefined database 

• Write appropriate device methods 

• Write a device driver, in some cases 

• Use installp procedures. 

Modifying the Predefined Database 

To add a currently unsupported device to your system, you must modify the Predefined 
database. To do this, you must add information about your device to three Predefined object 
classes: 

• Predefined Devices (PdDv) object class 

• Predefined Attribute (PdAt) object class 

• Predefined Connection (PdCn) object class. 

To describe the device, you must add one object to the PdDv object class to indicate the 
class, subclass, and device type. You must also add one object to the PdAt object class for 
each device attribute, such as interrupt level or block size. Finally, you must add objects to 
the PdCn object class if the device is an intermediate device. If the device is an 
intermediate device, you must add an object for each different connection location on the 
intermediate device. 

You can use the odmadd ODM (Object Data Manager) command from the command line or 
in a shell script to populate the necessary Predefined object classes from stanza files. 

The Predefined database is shipped prepopulated for IBM-supported devices. For some 
IBM-supported devices such as serial and parallel printers and SCSI disks, the database has 
also been prepopulated with generic device objects. These generic device objects can be 
used to configure other similar devices that are not explicitly supported in the Predefined 
database. 

For example, if you have a serial printer that closely resembles a printer supported by the 
system, and you believe that the system's device driver for serial printers will work for your 
printer, you can add the device driver in as a printer of type osp (other serial printer). If 
these generic devices work for adding your device, you do not need to provide any additional 
system software. 

Adding Device Methods 

You must add device methods when adding system support for a new device. Five methods 
are needed to support a device: the Define, Configure, Change, Undefine, and Unconfigure 
methods. 

Configuration Subsystem 7-11 



When adding a device that closely resembles devices already supported, you might be able 
to use one of the methods of the already supported device. For example, if adding a new 
type of SCSI disk whose interfaces are identical to supported SCSI disks, the existing 
methods for SCSI disks may work for you. If so, you only need to do is to populate the 
Predefined database with information describing the new SCSI disk similar to the information 
describing a supported SCSI disk. 

If you need instructions on how to write a device method, see Writing a Device Method 
Overview. 

Adding a Device Driver 

If you add a new device, you will probably need to add a device driver. However, if you are 
adding a new device that closely resembles an already supported device, you might be able 
to use the existing device driver. For example, when adding a new type of SCSI disk whose 
interfaces are identical to supported SCSI disks, the existing SCSI disk device driver may 
work for you. Device Driver Kernel Extension Overview offers guidelines for writing your own 
device driver. 

Using installp Procedures 

The installp procedures provide a method of adding the software and Predefined 
information needed to support your new device. You may need to write shell scripts to 
perform tasks such as populating the Predefined database. Program Installation and Update 
Compatibility Overview has more information on using installp procedures. 

Understanding Device Dependencies and Child Devices 
The dependencies that one device has on another can be represented in the Configuration 
database in two ways. One way usually represents physical connections such as a keyboard 
device connected to a particular keyboard adapter. The keyboard device has a dependency 
on the keyboard adapter in that it cannot be configured until after the adapter is configured. 
This relationship is usually referred to as a parent-child relationship with the adapter as 
parent and the keyboard device as child. These relationships are represented with the 
Parent Device Logical Name and Location Where Device Is Connected descriptors in the 
Customized Devices (CuDv) objects. 

A device method can also add to the Customized Dependency (CuDep) object class an 
object identifying both a dependent device and the device upon which it depends. The 
dependent device is considered to have a dependency, and the depended-upon is 
considered to be a dependency. Customized Dependency objects are usually added to the 
database to represent a situation in which one device requires access to another device. 
For example, the hftO device depends upon a particular keyboard or display device. 

These two types of dependencies differ significantly. The configuration process uses 
parent-child dependencies at boot time to configure all devices that make up a node. The 
CuDep dependency is usually only used by a device's Configure method to retrieve the 
names of the devices on which it depends. The Configure method can then check to see if 
those devices exist. 

For device methods, the parent-child relationship is the more important. Parent-child 
relationships affect device-method activities in these ways: 

• A parent device cannot be unconfigured if it has a configured child. 

• A parent device cannot be undefined if it has a defined or configured child. 

• A child device cannot be defined if the parent is not defined or configured. 

7-12 Kernel Extensions and Device Support 



• A child device cannot be configured if the parent is not configured. 

• A parent device's configuration cannot be changed if it has a configured child. This 
guarantees that the information about the parent which the child's device driver may be 
using remains valid. 

However, when a device is listed as a dependency for another device in the CuDep object 
class, the only effect is to prevent the depended-upon device from being undefined. The 
name of the dependency is important to the dependent device. If the depended-upon device 
were allowed to be undefined, a third device could be defined and be assigned the same 
name. 

Writers of Unconfigure and Change methods for a depended-upon device need not worry 
about whether the device is listed as a dependency. If the depended-upon device is actually 
open by the other device, the Unconfigure and Change operations will fail because their 
device is busy. But if the depended-upon device is not currently open, the Unconfigure or 
Change operations can be performed without affecting the dependent device. 

The possible parent-child connections are defined in the PdCn object class. Each predefined 
device type that can be a parent device is represented in this object class. There is an object 
for each connection location (such as slots or ports) describing the subclass of devices that 
can be connected at that location. Subclass is used to identify the devices since it indicates 
the devices's connection type (for example, SCSI or RS-232). 

There is no corresponding Predefined object class describing the possible CuDep 
dependencies. A device method can be written so that it already knows what the 
dependencies are. If predefined data is required, it can be added as predefined attributes for 
the dependent device in the PdAt object class. 

The Devices Graph diagram on page 7-6 in provides an example of device dependencies 
and connections in the system. 

Accessing Device Attributes 
The predefined device attributes for each type of predefined device are stored in the 
Predefined Attribute (PdAt) object class. The objects in the PdAt object class identify the 
default values as well as other possible values for each attribute. The Customized Attribute 
(CuAt) object class contains only attributes for customized device instances that have been 
changed from their default values. 

When a customized device instance is created by a Define method, its attributes assume the 
default values. As a result, no objects are added to the CuAt object class for the device. If an 
attribute for the device is changed from the default value by the Change method, an object 
to describe the attribute's current value will be added to the CuAt object class for the 
attribute. If the attribute is subsequently changed back to the default value, the Change 
method deletes the CuAt object for the attribute. 

Any device methods that need the current attribute values for a device must access both the 
PdAt and CuAt object classes. If an attribute appears in the CuAt object class, then the 
associated object identifies the current value. Otherwise, the default value from the PdAt 
attribute object identifies the current value. 

Modifying an Attribute Value 

When modifying an attribute value, your methods must also obtain the objects for that 
attribute from both the PdAt and CuAt object classes. 

Configuration Subsystem 7-13 



Here are four scenarios that your methods must be able to handle when modifying attribute 
values: 

1. If the new value differs from the default value and no object currently exists in the CuAt 
object class, your method must add an object into the CuAt object class to identify the 
new value. 

2. If the new value differs from the default value and an object already exists in the CuAt 
object class, your method must update the CuAt object with the new value. 

3. If the new value is the same as the default value and an object exists in the CuAt object 
class, your method must delete the CuAt object for the attribute. 

4. If the new value is the same as the default value and no object exists in the CuAt object 
class, your method does not need to do anything. 

Your methods can use the getattr and putattr subroutines to get and modify attributes. 
The getattr subroutine checks both the PdAt and CuAt object classes before returning an 
attribute to you. It always returns the information in the form of a CuAt object even if 
returning the default value from the PdAt object class. 

To help in modifying attributes, the putattr routine handles these four cases. 

Understanding System Boot Processing 
The ROS/Kernel Init Phase diagram illustrates kernel initialization that takes place before 
Phase 1 of the system boot is started. 

ROS 

POST OJ 

RAM 

AIX kernel 1 
I Process 0 I 

Boot 
Device 4---+ 
Driver 

Boot 
Control 
Block 

System Boot 

ROS/Kernel Init Phase 

IPL DD 0 

sys init 01 
[IJ 

Process 1 ~ ... ..-
phase 1 init 

f--
RAM ... ----Disk 

----
...-

Base ~ 

Customize 

7-14 Kernel Extensions and Device Support 

Boot 
Device [IJ 

boot 
record -

7' 

!'-- ~ 
~, 

AIX 
kernel 

Boot 

---- Filesystem 
Image 

---- Base 
Customize 



In the illustration of the ROS/Kernel Init Phase on page 7-14 above, the machine begins 
executing in ROS and does the following: 

1. Checks that the machine is operation (POST). 
2. Locates the Boot Device, which is platform specific. 
3. Reads the Boot Record and locates the kernel and Boot Filesystem image. 
4. Loads the AIX kernel, boot filesystem and base customized information into RAM. 

The Kernel gets control from ROS with a pointer to the boot control block and the following 
occurs: 

1. System initialization starts. 
2. Process 1 executes phase 1 in it. 

The Phase 1 : Base Device Configuration diagram below illustrates the steps of system boot 
Phase 1. 

System Boot 

Phase 1: Base Device Configuration 

Phase 1 init 

L 
Boot Filesystem 

0 ... 
Configuration r- Configuration Rules 
Manager ~ 

Adapter Define ~ 
Base Device Predefined .... Base Device Customized 

1m <III 
.4~ / Phase 1 Database 

Sys Config / 1 Base Device Methods 
Base Device Drivers 

/ Base Device Microcode 
Bus Config t... 

~ / /etc/ ... 

m 1 restbase 
Command 

Adapter Configuration 
Methods - .4~ 

Base Device Special Files 

1 [fJ 
j /dev/ ... 

Device Configuration - Compressed I Methods Base 

1 
Customized 

Pseudo Device -Configuration 

m 1 
RVG Configuration 

I--
Method 

Configuration Subsystem 7-15 



In the illustration on page 7-15 above, the Init executes the configuration manager and the 
following occurs: 

1. The customized database is built from the packed base customize data. 
2. The Phase 1 Configuration Rules are accessed to run methods. 
3. The Sys, Bus, SCSI, Disk, Tape, Diskette, LVM/RVG, tty, and HFT methods are 

executed. 
4. The config methods load drivers, make the special files, and update customize data. 
5. The Root Volume group is varied on (normal boot). 

Phase 2 diagram illustrates the steps of system boot Phase 2. 

Process 0 Phase 1 init IT] 
newroot ... .... logredo 0 System Boot fork/exec init [I] defineps Phase 2 

1 
exit 

Phase 2 init 
config mgr 

1 
Root File System 

Configuration ~ Configuration Rules 
Manager m ~ Predefined Objects 

1 1/ 
Customized Objects 

/ 
Phase 2 Database 

Sys Config 

1 ~ Device Methods 

~ 0/ Device Drivers 
Bus Config Device Microcode 

_1 
Subsystems, etc 

mergebase 

I ~ i 
/etc/ ... 

Adapter Methods 

1 ' Base Device Special Files 
Customized 

I Device Methods ~ 
/dev entries 

/ /dev/ ... 

1 Boot Fi Ie System -----I Pseudo Device Methods~ 
In the illustration above the Normal Boot, Install/Maintenance, or Diagnostics are executed 
and the following 6 actions occur: 

1. A Logredo is run on the Root Filesystem. 
2. The pager is started. 
3. The Base Customized is added to the Phase 2 data base, and the Phase is started. 

7-16 Kernel Extensions and Device Support 



4. A New root is performed to switch from the Boot filesystem to the Root filesystem. 
5. The Config Manager is started for Phase 2 (configure using full predefined, customized 

database). 
6. All devices/subsystems not defined/configured in phase 1 are defined and configured as 

required. 

Related Information 
The odm_run_method subroutine. 
The cfgmgr command, mkdev command, chdev command, and rmdev command. 
The odmadd command, installp command. 
Writing a Define Method, Writing Optional Start and Stop Methods, Writing a Define 
Method, Writing a Undefine Method, Writing a Unconfigure Method, Writing a Configure 
Method, Writing Change Method in Calls and Subroutines Reference. 
Configuration Rules (Config_Rules) object class, Customized Devices (CuDv) object 
class, Customized Dependency (CuDep) object class,Predefined Connection (PdCn) 
object class, Predefined Attribute (PdAt) object class, Predefined Devices (PdDv) object 
class, Customized Attributes(CuAt) object class, ODM Device Configuration Object 
Classes. 
Device Methods For Adapter Cards, Handling Device Vital Product Data (VPD), Loading 
a Device Driver, Device Configuration Subroutines and Commands, Understanding 
Configure Method Errors, Machine Device Driver, in Calls and Subroutines Reference 
Special File Overview in AIX General Programming Concepts for IBM RISC 
Systeml6000. 
Device Dependent Structure (DDS) Overview on page 2-3. 
Kernel Extension Binding on page 1-2. 

Pseudo-Device Drivers on page 3-10. 
Kernel Environment Programming on page 1-1. 

Configuration Subsystem 7-17 



7-18 Kernel Extensions and Device Support 



The Communications I/O Subsystem 

The Communication 110 Subsystem consists of one or more physical device handlers 
(PDHs) that control various communication adapters. The interface to the physical device 
handlers can support any number of processes, the limit being device-dependent. 

A communications PDH is a special type of multiplexed character device driver. Information 
common to all the communications device handlers is discussed here. However, individual 
communications PDHs have their own adapter-specific sets of information: 

• Ethernet adapter 
• Multiprotocol adapter 
• Token-Ring adapter 
• X.25 adapter. 

Each adapter type requires a device driver. Each PDH can support one or more adapters of 
the same type. 

User-Mode Interface to a Communications PDH 
The user-mode process uses system calls to interface to the PDH to send or receive data. 
The poll or select subroutine is used to notify a user-mode process of available receive 
data, available transmit, and status and exception conditions. 

Kernel-Mode Interface to a Communications PDH 
The kernel-mode interface to a communications PDH differs from the interface supported for 
a user-mode process in these two ways: 

• Kernel services are used instead of system calls. This means that, for example, the 
fp_open kernel service is used instead of the open subroutine. The same holds true for 

the fp_close, fp_ioctl, and fp_write kernel services. 

• The ddread operation, Get Status ddioctl (CIO_GET _STAT) operation, and ddselect 
operation are not supported in kernel mode. Instead, kernel-mode processes specify at 
open time the addresses of their own procedures for handling receive data available, 
transmit available, and status or exception conditions. The PDH directly calls the 
appropriate pr<?cedure, whenever that condition arises. These kernel procedures must 
execute and return quickly since they are executing within a PDH's priority. 

Communications Physical Device Handler Model Overview 
A physical device handler (PDH) must be provided eight common entry points. An individual 
PDH names its entry points by placing a two- or three-letter unique designation in front of the 
command type supported. For example, the Ethernet open is named the entopen entry 
point. The following are the required eight communications PDH entry points: 

ddconfig 

ddmpx 

ddopen 

Performs configuration functions for a device handler. Supported the same 
way that the common ddconfig entry point is. 
Allocates or deallocates a channel for a multiplexed device handler. 
Supported the same way that the common ddmpx device handler entry 
pOint is. 
Performs data structure allocation and initialization for a communications 
PDH. Supported the same way that the common ddopen entry point is. 
Time-consuming tasks, such as port initialization and connection 
establishment, are deferred until the ddioctl (CIO_START) call is issued. A 
PDH can support multiple users of a single port. 

The Communications Subsystem 8-1 



ddclose 

ddwrite 

ddread 

ddselect 

ddioctl 

Frees up system resources used by the specified communications device 
until they are needed again. Supported the same way that the common 
ddclose entry point is. 
Queues a message for transmission or blocks until the message can be 
queued. The ddwrite entry can attempt to queue a transmit request 
(nonblocking) or wait for it to be queued (blocking), depending on the setting 
of the DNDELAV flag. The caller has the additional option of requesting an 
asynchronous acknowledgment when the transmission actually completes. 
Returns a message of data to a user-mode process. Supports blocking or 
nonblocking reads depending on the setting of the DNDELAV flag. A 
blocking read request does not return to the caller until data is available. A 
nonblocking read returns with a message of data if it is immediately 
available. Otherwise, it returns a length of 0 (zero). 
Checks to see if a specified event or events has occurred on the device. 
Supported the same way that the common ddselect entry point is. 
Performs the special 110 operations requested in an ioctl subroutine. 
Supported the same way that the common ddioctl entry point is. In 
addition, a communications PDH must support the following four additional 
options: 

• CIO_START 
• CIO_HALT 
• CIO_QUERY 
• CIO_GET _STAT. 

Individual PDHs can add additional commands. Hardware initialization and other 
time-consuming activities, such as call establishment, are performed during the CIO_START 
operation. 

Use of mbuf Structures in the Communications PHD 
PDHs use mbuf structures to buffer send and receive data. These structures allow the PDH 
to gather data when transmitting frames and scatter for receive operations. The mbuf 
structures are internal to the kernel and are used only by kernel-mode processes and PDHs. 

PDHs and kernel-mode processes require a set of utilities for obtaining and returning mbuf 
structures from a buffer pool. 

Kernel-mode processes use the Berkeley mbuf scheme for transmit and receive buffers. 
The structure for an mbuf is defined in the <sys/mbuf.h> file. 

The m_next field is used to chain mbuf structures together on linked lists. The m_act field 
allows lists of mbuf chains to be accumulated. By convention, the mbuf structures common 
to a single object are chained together with the m_next field, while groups of objects are 
linked together with the m_act field. Chains of mbuf structures tied together with the m_act 
field are not supported. 

Each mbuf structure has a small data area for storing information: the m_dat area. The 
m_len field indicates the amount of data, while the m_off field is an offset to the beginning 
of the data from the base address of the mbuf structure. 

Rather than storing data directly in the mbuf data area, data can instead be stored in a 
separate mbuf cluster. When the m_off field is less than 0 or greater than size indicated by 
the MSIZE value, then the data is in the mbuf-cluster buffer. 

Chained m_buf structures can contain an m_len field of o. If 0, the buffer is ignored. The 
chain must contain enough data to create a packet of minimum size. 

8-2 Kernel Extensions and Device Support 



Common Communications Status/Exception Codes 
In general, communication device-handlers return codes from a group of common exception 
codes. However, device handlers for specific communication devices may return 
device-specific exception codes. Common exception codes are defined in the 
<sys/comio.h> file and include these eleven codes: 

CIO_OK 
CIO_BUF _OVFLW 
CIO_HARD_FAIL 
CIO_NOMBUF 

CIO_TIMEOUT 
CIO_ TX_FULL 

CIO_NET_RCVRY_ENTER 

CIO_NET_RCVRY_EXIT 

CIO_NET_RCVRY_MODE 
CIO_INV_CMD 
CIO_BAD_MICROCODE 
CIO_NOT_DIAG_MODE 

CIO_BAD_RANGE 
CIO_NOT_STARTED 

CIO_LOST_DATA 
CIO_LOST_STATUS 

CIO_NETID_INV 
CIO_NETID_DUP 

Ethernet Device Handler 

Indicates that the operation was successful. 
Indicates that the data was lost due to buffer overflow. 
Indicates that a hardware failure was detected. 
Indicates that the operation was unable to allocate mbuf 
structures. 
Indicates that a time-out error occurred. 
Indicates that the Transmit queue is full. 

Enter network recovery. 

Indicates the device handler is exiting network recovery. 

Indicates the device handler is in Recovery mode. 
Indicates that an invalid command was issued. 
Indicates that the microcode download failed. 
Indicates that the command could not be accepted because 
the adapter is not open in Diagnostic mode. 
Indicates that the parameter values have failed a range check. 
Indicates that the command could not be accepted because 
the device has not yet been started by the first call to 
CIO_START operation. 
Indicates that the receive packet was lost. 
Indicates that a status block was lost. 

Indicates that the network ID was invalid. 
Indicates that the network 10 was a duplicate of an existing ID 
already in use on the network. 
Indicates that the network ID table is full. 

The Ethernet device handler is a component of the Communication liD Subsystem. The 
Ethernet device handler can handle one to four adapters simultaneously. It consists of the 
following eight entry points: 

entconfig 

entopen 

entclose 

entmpx 

entwrite 

entread 

entselect 

entioctl 

Provides functions for initializing, terminating, and querying the vital product 
data (VPD) of the Ethernet device handler. 
Initializes the Ethernet device handler and allocates the required system 
resources. 
Resets the Ethernet device to a known state and returns system resources 
back to the system. 
Provides allocation and deallocation of a channel. 

Provides the means for transmitting data from the Ethernet device. 

Provides the means for receiving data from the Ethernet device. 

Determines if a specified event has occurred on the Ethernet device. 

Provides various functions for controlling the Ethernet device. The entioctl 
entry points provides the following five common operations and an 
additional Ethernet specific operation: 

IOCINFO Returns some lID character information. 

The Communications Subsystem 8-3 



CIO_START 
CIO_HALT 
CIO_QUERY 
CIO_GET_STAT 
CCC_GET_VPD 
ENT_SET_MULTI 

Starts a session and registers a network 10. 
Halts a session and removes a registered network 10. 
Returns the current RAS Counter values. 
Returns current adapter and device handler status. 
Returns VPD about the Ethernet adapter. 
Sets or removes a multicast address. 

Note: The ent_stats structure defines the RAS Log structure for the Ethernet device 
handler and associated labels. The structure's counters are initialized to 0 (zero) on 
the first entopen entry point. The ent_stats structure is found in the 
<sys/entuser.h> file. 

Data Transmission for the Ethernet Device Handler 
Data transmission for the Ethernet device handler is dependent on the type of process. To 
transmit data in user-mode, an application issues a write, writev, writex, or writevx 
subroutine and specifies a buffer address. The Ethernet device handler copies the buffer to a 
kernel space mbuf structure. The device handler then gives the Ethernet adapter the packet 
for transmission. Once the write operation returns to the application, the user can then 
access the buffer. 

For kernel-mode data transmission, the kernel-mode process issues an fp_rwuio kernel 
service. A pointer to an mbuf structure is passed as a parameter. The data starting at a 
specified offset into the mbuf structure, for a length specified by the m_len field, is given to 
the Ethernet adapter for transmission. 

Note: Once the kernel-mode process has issued the fp_rwuio call, it must not access the 
mbuf structure or structures again. If the process has requested a transmit 
acknowledgment, the process can access the mbuf structure once the transmit 
acknowledgment has occurred. 

Depending upon the options specified with the fp_rwuio call, the device handler can call the 
tx_fn function. The tx_fn function is specified in the entopen entry point to notify the 
kernel-mode process of a completed transmission. Whether the device handler frees the 
mbuf structure depends upon the options specified in the fp_rwuio call. 

Data Reception for the Ethernet Device Handler 
Data reception for the Ethernet device handler depends on the type of process. When the 
address of a packet matches the address of one of the following: 

• Address of the adapter specified in the device-dependent structure (DDS) 
• Broadcast address 
• Multicast address. 

The adapter receives that packet and places it in the adapter receive buffer. 

Note: The Version 3 Ethernet device handler does not support promiscuous addressing. 

The adapter performs direct memory addressing of the data into the specified offset in the 
mbuf structure. This offset is calculated beforehand using the data_off field. Once the 

entire packet is in the mbuf the adapter interrupts the device handler. The device handler 
checks the netid and type field. If no match is found, the buffer is purged. 

Data Reception in Kernel Mode 

If the received data is for a kernel-mode caller, the device handler calls the rx_fnfunction 

that was specified at open time. The address of the mbuf structures that contain the 

8-4 Kernel Extensions and Device Support 



kernel-mode process data is passed in the rx_fn function call. The process is responsible for 
freeing the mbuf structures that contain the received data. 

Data Reception in User Mode 

If the application has an outstanding entselect entry point for available data, the device 
handler calls the selnotify kernel service to notify the application that data is available. 

If the application does not have an outstanding entselect entry point, the device handler 
queues up the data for the application upon receiving an entselect entry point. 

Once the application has been notified of available receive data, the application issues a 
read, readY, readx, or readvx subroutine to get the incoming data. The device handler 
moves the data in the kernel space mbuf structure to the buffer specified by the application 
in the read call. 

Return Values for the Ethernet Device Handler 
The return codes for the users of the Ethernet device handler can be found in the 
<sys/errno.h> file. The return codes are defined as follows: 

EACCES 

EAFNOSUPPORT 

EAGAIN 

EBUSV 

EEXIST 
EFAULT 
EINTR 
EINVAL 

EIO 
EMSGSIZE 
ENOBUFS 
ENOCONNECT 
ENODEV 
ENOENT 
ENOMEM 
ENOMSG 
ENOSPC 

ENOTREADV 

ENXIO 
EUNATCH 

Indicates that permission was denied because the device had not 
been initialized. Indicates that the Diagnostic mode open request was 
denied. Indicates that permission was denied because the call is from 
a kernel-mode process. 
Indicates that the address family was not supported by protocol or that 
the multicast bit in address was not set. 
Indicates that the transmit queue is full or that the maximum number of 
opens had been reached. 
Indicates that the open request was denied because the device was 
already open in Diagnostic mode or because the adapter was busy. 
Indicates that the DDS already exists. 
Indicates that an invalid address was specified. 
Indicates an interrupted system call. 
Indicates an invalid range or opcode or that the Ethernet device 
handler was not in Diagnostic mode. 
Indicates an lID error. 
Indicates that the data returned was too big. 
Indicates that no buffers were available. 
Indicates that no connection was established. 
Indicates that no such device exists. 
Indicates that there is no DDS. 
Indicates insufficient memory exists. 
Indicates that there was no message of desired type. 
Indicates that there was no space left on the device. (Multicast table is 
full.) 
Indicates that the device was not ready. (First CIO_START operation 
not issued and not completed.) 
Indicates that an attempt was made to use an unconfigured device. 
Indicates that the protocol driver was not attached. 

Error Logging for the Ethernet Device Handler 
The Ethernet device handler logs the following errors. 

ERRID_ENT_ERR1 Indicates a permanent Ethernet adapter hardware error. This 
error can occur for any of the following reasons: 

The Communications Subsystem 8-5 



• Mismatch between firmware version in microcode and ROS 
Level from the VPD. 

• First start command to the adapter failed to complete in a 
specified amount of time. 

• One or more of the fields in the VPD structure is invalid. 

Indicates a temporary Ethernet adapter hardware error. This error 
can occur for any of the following reasons: 

• Adapter detected a parity error and reported this error to the 
device driver. 

• One of these transmit errors has occurred: Maximum 
Collisions, FIFO Underrun, Carrier Sense Lost, Clear To Send 
Lost, Transmit Time out, Packet Too Short or Too Large. 

Indicates a permanent Ethernet adapter firmware error. 

• Adapter execute command returned with error bit set. 
• Adapter execute command (Report Configuration) returned 

invalid data. 

Indicates an unknown system error caught by Ethernet device 
driver. 

• DMA kernel facilities failed. 
• DMA region facilities failed. 
• Receive buffer facilities (the mbuf structure) failed. 

Indicates an ALERT for Transmit Carrier Detect Lost. 

Device Dependent Structure for the Ethernet Device Handler 
The Ethernet device driver provides a configuration method to the Ethernet adapter device 
handler. The ethernet configuration method allows for the changing of several 
Ethernet-specific parameters. Each of these parameters has a default value that should 
work for most applications. Each of these configuration parameters also has a specified 
range of valid values. The following are the configurable parameters for the Ethernet device 
driver: 

Receive Data Transfer Offset 

Indicates where in the receive buffer the packet data actually begins. Valid values range 
from 0 to 127. The default value of this field is 92. 

Alternate Ethernet Address 

Allows for changing the adapter unique address as it appears on the LAN network. This 
field is used in conjunction with the Enable Alternate Ethernet Address field. The address 
selected must be unique on the network. The default value is the hexidecimal value 
02 60 8C 00 00 01 . 

Ethertype Field Offset 

Indicates the offset in the packet where the Ethernet Type Field is located. Valid ranges are 
from 0 to 1513. The default value of this field is 12. 

Transmit Queue Size 

Indicates the number of transmit elements that can be queued up by the device handler. 
The default value of this field is 30. 

8-6 Kernel Extensions and Device Support 



Receive Queue Size 

Indicates the number of receives that can be queued up by the device handler for each user 
space open. The default value for this field is 30. 

Status Block Queue Size .. 

Indicates the number of status elements that can be queued up by the device handler for 
each open user space. The default value of this field is 30. 

Enable Alternate Ethernet Address 

Indicates whether the unique Ethernet adapter address is the address that is supplied with 
(burned in) the adapter or an address that is supplied by the alternate ethernet address. 
Valid values are 0 and 1, where 0 indicates the user of the burned-in address and 1 indicates 
the user of the alternate ethernet address. The default value of this field is o. 

802.3 Ethertype Offset 

Indicates the offset in the packet where the 802.3 ethertype field is located. Valid values 
range from 0 to 1513. The default value of this field is 14. 

Adapter Connector Select 

Indicates which one of the adapter's external connectors is being used. Valid values range 
from 0 to 1, where 0 indicates that the 15-pin DIX connector is selected and 1 indicates the 
BNC connector is selected. The default value of this field is 1 . 

Vital Product Data (VPD) Structure for the Ethernet Device Handler 
The Vital Product Data is read from the Ethernet adapter by the POS registers. Although 
there is no specific order for entries, the label_m, length_m, and data_m fields are required 
and the following fields must always appear first: 

• label 
• length_msb 
• length_lsb 
• crc_msb 
• crc_lsb. 

The generalized structure for the VPD is as follows: 

struct vpd { 
uchar label[3]; 
ushort length; 
ushort crc; 
uchar label_1[3]; 
uchar length_1; 
uchar data_1[X1-1]; 

uchar label_n[3]; 
uchar length_n; 
uchar data_n[Xn-1]; 

} dd_vpd; 

1* ascii string for "VPD" *1 
1* length of 1/2 the structure *1 
1* two bytes of CRC data *1 
1* ascii string for VPD label *1 
1* length of 1/2 this entry *1 
1* ascii string of entry data *1 

1* ascii string for VPD label *1 
1* length of 1/2 this entry *1 
1* ascii string of entry data *1 

The fields in this structure provide the following information: 

label Represents a three-byte ASCII string that always has the ASCII characters 
VPD. 

The Communications Subsystem 8-7 



length 

crc 

label_n 

length_n 

Indicates the length of the structure from the beginning of the string 
indicated by the /abeL1 parameter, to the end of the string indicated by the 
data_n parameter. This two-byte field represents the number of two-byte 
words. 
Represents the cyclic redundancy check (CRC) result that is performed on 
the entries starting at the string specified by the /abeL1 parameter and 
progressing to the end of the string, specified by the data_n parameter. 
This is a two-byte field. 
Describes the type of entry. This string starts with the ASCII character * 
(asterisk) character and ends with two predefined uppercase letters. This is 
a 3-byte ASCII string. 
Indicates the number of two-byte words that this entry consumes. This is a 
one-byte field. 
Represents the pertinent data for this entry. This is usually an ASCII string 
of characters of varying length. When specifying the network address, this 
field is hexadecimal. 

Note: The Ethernet VPD structure is stored in the <sys/ciouser.h> file. 

Device Characteristics Structure for the Ethernet Device Handler 
The ddi_cc_section_t structure specifies the device characteristics structure for the 
Ethernet device handler and associated labels. This structure is defined in the 
<sys/cioddi.h> file and contains the following fields. 

bus_type Specifies the bus type. This field is used by the i_init kernel service. 
bus_id Specifies the bus ID. This field is used by BUSACC, i_init kernel service. 
intr_level Specifies the interrupt level. This field is used by the i_init kernel service. 
intr_priority Specifies the interrupt priority. This field is used by the Linit kernel service. 
xmt_que_size Specifies the size of the transmit queue for this adapter that is shared by all 

opens. 
rec_que_size Specifies the size of the receive queue for each open process. 
sta_que_size Specifies the size of the status queue for each open process. 
rdto Specifies the receive data transfer offset. This is offset in the mbuf receive 

data buffer where the data begins. 

Ethernet Device Handler Hardware Characteristics Structure 
The ddi_ds_section_t structure defines the device-dependent structure (DDS) for the 
Ethernet device handler. This structure is defined in the <sys/entddi.h> file and contains 
the following fields. 

Iname Specifies the logical name of the device. This is an array of 4 ASCII 
characters that has the format of entx, where x is 0 to 3. 

bus_mem_addr 

bus_mem_size 

Indicates the memory base address (MBA). Addresses are specified by the 
POS register setup. The following addresses are valid: 

OxOOOCOOOO OxOOOC4000 OxOOOC8000 OxOOOCCOOO 
OxOOODOOOO OxOOOD4000 OxOOOD8000 OxOOODCOOO 

Specifies the memory base size (MBS). This field indicates the amount of 
bus-addressable RAM bytes contained on the adapter. This should normally 
be 16,384 (16K). 

tcw_bus_mem_addr 
Indicates the TCW bus memory address. This field points to the starting 
address of where DMA transfers can take place. 

8-8 Kernel Extensions and Device Support 



tcw_bus_mem_size 
Indicates the TCW bus memory size. Points to the size of the address 
space that DMA transfers can take place in. 

io_port Indicates the I/O base address. This field specifies addresses by the POS 
register setup. The following addresses are valid: 

Ox7280 Ox7290 Ox7680 Ox7690 
Ox7A80 Ox7A90 Ox7E80 Ox7E90 

slot Indicates the I/O bus slot number. This value is required for accessing the 
POS registers for configuration of the Ethernet adapter. 

dma_arbit_lvl Indicates DMA arbitration levels. Valid arbitration levels are 0 through 15. 
Level 15 always conflicts with the Micro Channel's host processor. This 
field accepts the following values: 

OxO Disabled 
Ox1 16-byte 
Ox2 32-byte 
Ox3 64-byte. 

bnc_select Indicates transceiver selection. This field selects either the DIX connector or 
BNC connector. A value of 0 selects the DIX connector. A value of 1 
selects the BNC connector. 

use_alt_addr Indicates which network address to use. A value of 0 indicates a burned-in 

alt_addr 
type_field_off 

address. A value of 1 indicates an alternate address. 
Specifies the alternate network address. This is a 6-byte array. 

Specifies the type field offset. This field indicates the position inside the 
receive data packet where the compare for the type field (network ID) is to 
be performed. 
Specifies the network 10 offset. This field indicates the position inside the 
receive data packet where the compare for the IEEE 802.3 DSAP is to be 
performed. 

Token-Ring Device Handler 
The Token-Ring device handler is a component of the Communication I/O Subsystem. The 
Token-Ring device handler can handle one of the values specified by 
TOK_MAK_ADAPTERS Token-Ring adapters at a time. 

The Token-Ring device handler interface consists of these 8 entry points: 

tokconfig 

tokopen 

tokclose 
tokmpx 

tokwrite 
tokread 
tokselect 
tokioctl 

Provides functions for initializing, terminating, and querying the VPD of the 
Token-Ring device handler. 
Initializes the Token-Ring device handler and allocates the required system 
resources. 
Resets the Token-Ring device to a known state and frees system resources. 

Provides allocation and deallocation of a channel for the Token-Ring device 
handler. 
Provides the means for transmitting data. 

Provides the means for receiving of data. 

Determines if a specified event has occurred on the Token-Ring device. 

Provides various functions for controlling the Token-Ring device handler. 

There are nine possible tokioctl operations: 

10CINFO Supplies I/O character information. 

The Communications Subsystem 8-9 



CIO_START 
CIO_HALT 
CIO_QUERY 
CIO_GET_STAT 
TOK_GRP _ADDR 
TOK_FUNC_ADDR 
TOK_QVPD 
TOK_RING_INFO 

Starts the device. 
Halts the device. 
Queries device statistics. 
Gets device status. 
Sets the group address. 
Sets functional addresses. 
Queries VPD. 
Queries Token-Ring Information. 

Network Recovery Mode for the Token-Ring Device Handler 
When the Token-Ring device handler detects a hardware failure (for example, a lobe wire 
fault), the device handler enters Network Recovery mode. In Network Recovery mode, the 
device handler recycles the Token-Ring adapter while trying to recover from failure. The 
Token-Ring device handler continues the recoyery logic until one of these three conditions 
occur: 

• The device handler succeeds. 
• An unrecoverable error is detected. 
• The last tokclose entry point is received. 

The user decides when to give up his recovery attempt. 

When the Token-Ring device handler enters Network Recovery mode, the device handler 
notifies the user with a CIO_ASYNC_STATUS status block. 

While in Network Recovery mode, the Token-Ring device handler is not fully functional. 
Operations that initiate activity on the Token-Ring device should not be issued, in particular, 
the tokwrite entry point. 

All other Token-Ring commands are acceptable. 

When the Token-Ring device handler leaves Network Recovery mode, the device handler 
notifies the user with a CIO_ASYNC_STATUS status block. 

Note: The network recovery scheme assumes that the upper layer protocols handle the 
functions of the data link layer. These functions are defined in the ISO Open 
Systems Interconnection model. For example, the transmission retries once the 
network error is cleared. 

Data Transmission for the Token-Ring Device Handler 
The Token-Ring device handler supports user- and kernel-mode transmission. 

Kernel-Mode Data Transmission 

For data transmission, the kernel-mode process issues an fp_rwuio kernel service. A 
pointer to an mbuf structure is passed as a parameter. The data starting at an offset of the 
m_off field into the mbuf structure, for the length of the m_len field, is given to the 
Token-Ring adapter for transmission. 

Note: Once the kernel-mode process has issued the fp_rwuio kernel service, the process 
must not access the mbuf structure again. If the kernel-mode process has 
requested a transmit acknowledgment, the process can access the mbuf structure 
once the transmit acknowledgment has occurred. 

Depending on which options the fp_rwuio kernel service specified, the device handler can 
kernel service the tx_fn function. This function was specified in the tokopen entry point to 
notify the kernel-mode process of transmit complete. The device handler's freeing of the 
mbuf structure depends on the options specified in the fp_rwuio kernel service. 

8-1 0 Kernel Extensions and Device Support 



User-Mode Data Transmission 

A user-mode caller issues a write, writev, writex, or writevx subroutine and then specifies 
a buffer address. The Token-Ring device handler copies the buffer to a kernel-space mbuf 
structure. The device handler then gives the TOken-Ring adapter the packet for transmission. 
Once the tokwrite entry point returns, the user can then access the buffer. 

Data Reception for the Token-Ring Device Handler 
The Token-Ring adapter receives a packet that contains one or more of these four items: 

• Address of the adapter (or address specified in the DDS) 
• Broadcast address 
• Group address 
• Functional address. 

The packet is placed in an adapter receive buffer. 

Note: The AIX Token-Ring device handler does not support promiscuous addressing. 

When a packet is placed in the device handier's receive buffer, an interrupt is generated. 
The packet is moved to an offset in the receive buffer as specified by the Receive Data 
Transfer Offset (ROTO) value contained in the ~OS. The device handler checks the netid 
field (DSAP) for a match in the Network 10 table. If the device handler does not find a match, 
the packet is purged from the device handler's receive buffer. 

Kernel-Mode Data Reception 

If the received data is for a kernel-mode process, the device handler calls the rx_fn function 
that was specified at open time. The address of the mbuf structures that contain the 
kernel-mode process's data is passed in the rx_fn function call. The kernel-mode process is 
responsible for freeing the mbuf structures that contain the received data. 

User-Mode Data Reception 

If a user-mode application has an outstanding tokselect entry point for data available, the 
device handler calls the selnotify kernel service to notify the application that data is 
available. 

If the application does not have an outstanding tokselect entry point, the device handler 
queues up the data for the application upon receiving a tokselect entry point. 

Once the application has been notified that receive data is available, the application issues a 
read, ready, readx, or readvx subroutine to retrieve the incoming data. The device handler 
moves the data in the kernel space mbuf structure to the buffer specified by the application 
in the read call. 

Token-Ring Operation Results 
Return codes for users of the Token-Ring device handler can be found in the 
<sys/tokuser.h> file. The return codes are defined as follows: 

TOK_ADAP _CONFIG 
TOK_ADAP _INIT_PARMS_FAIL 

TOK_ADAP _INIT_FAIL 
TOK_ADAP _INIT_TIMEOUT 
TOK_LOBE_MEDIA_ TST_FAIL 
TOK_PHYS_INSERT 
TOK_ADDR_ VERIFY_FAIL 
TOK_REQ_PARMS 

Adapter configuration failed. 
Adapter failed to take the adapter initialization 
parameters. 
Adapter initialization failed. 
Adapter initialization timed out. 
The Token-Ring adapter's Lobe Media test failed. 
Unable to insert on network. 
Address verification failed. 
Error in the request parameters sequence. 

The Communications Subsystem 8-11 



TOK_lOBE_WIRE_FAUlT 

TOK_AUTO_REMOVE 
TOK_REMOVED_RECEIVED 

TOK_SIGNAl_lOSS 
TOK_RING_STATUS 

TOK_ADAP _CHECK 
TOK_ CMD _FAil 
TOK_ TX_ERROR 
TOK_PIO_FAll 
TOK_RCVRY_THRESH 

TOK_NO_GROUP 

TOK_NO_PARMS 

TOK_NO_RING_INFO 

TOK_RING_BEACONING 

TOK_RING_POll 
TOK_RING_RECOVERED 

TOK_lOADER_FAll 
TOK_UCODE_FAll 
TOK_MC_ERROR 

The adapter has detected an open or short circuit in 
the lobe data path. 
Adapter has detected an internal hardware error. 
Remove adapter command from the LAN manager 
was received. 
Adapter detected an absence of a receive signal. 
The adapter returned a ring status indicating a 
Token-Ring error condition. 
An adapter check has occurred. 
Adapter command failure. 
An error occurred during transmission of the packet. 
Program 1/0 failure. 
Network Recovery mode entry threshold has been 
exceeded. , 
Group address is already specified. Unable to set 
group address. 
Device already started. Unable to set the adapter 
parameters. 
There is no TOken-Ring information currently 
available. 
The Token-Ring is experiencing a beacon condition. 

The Token-Ring adapter's ring poll test failed. 
The Token-Ring has recovered from the beaconing 
condition. 
The download of the loader program failed. 
The download of the microcode program failed. 
A Micro Channel error was detected by the 
Token-Ring device handler. 

Error Logging for the Token-Ring Device Handler 
The AIX Token-Ring device handler logs the following errors: 

ERRID_TOK_WRAP _TST 
Indicates that wrap test failed in the insertion process. 

ERRID_TOK_BEACON1 
Indicates beaconing during the insertion process. 

ERRID_TOK_DUP _ADDR 
Indicates a duplicate station address. 

ERRID _ TOK_RMV _ADAP1 
Indicates that a Remove Adapter command was received during the 
insertion process. 

ERRID_TOK_ERR5 
Indicates that an unknown adapter hardware error occurred during the 
insertion process. 

ERRID_TOK_WIRE_FAULT 
Indicates a wire-fault condition on the ring. 

ERRID_ TO K_AUTO_RMV 
Indicates an adapter autoremove error. 

ERRID_ TOK_RMV _ADAP2 
Remove adapter command from the LAN manager. 

ERRID _ TOK_BEACON2 
Indicates ring beaconing. 

8-12 Kernel Extensions and Device Support 



ERRID_ TOK_ERR1 0 
Indicates that the ring was in a beaconing condition for a time shorter than 
the hard-error detection timer. 

ERRID_TOK_BEACON3 
Indicates that ring beaconing occurred for less than 52 seconds. 

ERRID_TOK_ESERR 
Indicates excessive soft errors for the ring. 

ERRID_TOK_CONGEST 
Indicates that an adapter on the ring is experiencing excessive congestion. 

ERRID_TOK_ADAP _CHK 
Indicates that a Token-Ring adapter check has occurred. 

ERRID_TOK_NOMBUFS 
Indicates that a Token-Ring device handler request for an mbuf structure 
was denied. 

ERRID_TOK_DOWNLOAD 
Indicates that the microcode download failed. 

ERRID_ TOK_BAD_ASW 
Indicates an incompatible microcode and adapter. 

ERRID_ TOK_ERR15 
Indicates that the Token-Ring device handler caught an unknown system 
error. 

ERRID_ TOK_RCVRY _ENTER 
Indicates that the Token-Ring device handler has entered Network Recovery 
mode. 

ERRID_ TOK_RCVRY _EXIT 
Indicates that the Token-Ring device handler has exited Network Recovery 
mode. 

ERRID_ TOK_RCVRY _TERM 
Indicates that the TOken-Ring device handler has terminated Network 
Recovery mode. 

ERRID_TOK_MC_ERR 
Indicates that the Token-Ring device handler has detected a Micro Channel 
error. 

ERRID_TOK_TX_ERR 
Indicates that the Token-Ring device handler has detected a transmission 
error. 

ERRID_ TOK_PIO_ERR 

Indicates that the Token-Ring device handler has detected a program liD 
error. 

The error types listed above are defined in the <sys/errids.h> include file. 

Multiprotocol (MPQP) Device Handler Interface 
The Multiprotocol (MPQP) device handler is a component of the Communication liD 
Subsystem. The MPQP device handler interface is made up of the following seven entry 
pOints: 

mpclose 

mpconfig 

mpioctl 

Resets the MPQP device to a known state and returns system resources 
back to the system on the last close for that adapter. The port no longer 
transmits or receives data. 
Provides functions for initializing and terminating the MPQP device handler 
and adapter. 
Provides various functions for controlling the MPQP device. 

The Communications Subsystem 8-13 



mpopen 
mpmpx 
mpread 
mpselect 

mpwrite 

CIO_START Initiates a session with the MPQP device handler. 
CIO_HALT Ends a session with the MPQP device handler. 
CIO_QUERY Reads the counter values accumulated by the MPQP 

device handler. 
CIO_GET_STATUS 

Gets the status of the current MPQP adapter and device 
handler. 

MP _START_AR 
Puts the MPQP port into Autoresponse mode. 

MP _STOP _AR Permits the MPQP port to exit Autoresponse mode. 
MP _CHG_PARMS 

Permits the DLC to change certain profile parameters after 
the MPQP device has been started. 

Opens a channel on the MPQP device for transmitting and receiving data. 
Provides allocation and deallocation of a channel. 
Provides the means for receiving data to the MPQP device. 
Provides the means for determining which specified events have occurred 
on the MPQP device. 
Provides the means for transmitting data to the MPQP device. 

Binary Synchronous Communication (BSC) with the MPQP Adapter 
The Multiprotocol Quad Port (MPQP) adapter software performs low level BSC frame type 
determination to facilitate character parsing at the kernel-mode process level. Frames that 
are received without errors are parsed. A message type is returned in the status field of the 
extension block along with a pointer to the receive buffer. The message type indicates the 
type of frame that was received. 

For control frames that only contain control characters, the message type is returned and no 
data is transferred from the board. For example, if an ACKO was received, the message type 
MP_ACKO is returned in the status field of the extension block. In addition, a NULL pointer 
for the receive buffer is returned. If an error occurs, the error status is logged by the device 
driver. Buffer overrun errors that are not logged are an exception. 

Note: In BSC communcations, the caller receives either a message type or an error status. 

Read operations must be performed using the readx subroutine since the read_extension 
structure is needed to return BSC function results. 

asc Message Types Detected by the MPQP Adapter 

BSC message types are defined in the <sys/mpqp.h> file. The MPQP adapter can detect 
the following message types: 

• MP _ACKO 
• MP _ACK1 
• MP_WACK 
• MP_NAK 
• MP _ENQ 
• MP _EOT 
• MP _RVI 
• MP _DISC 
• MP _SOH_ITB 
• MP _SOH_ETB 
• MP _SOH_ETX 
• MP _SOH_ENQ 
• MP _STX_ITB 

8-14 Kernel Extensions and Device Support 



• MP _STX_ETB 
• MP _STX_ETX 
• MP _STX_ENQ 
• MP _DATA_ACKO 
• MP _DATA_ACK1 
• MP _DATA_NAK 
• MP _DATA_ENQ. 

BSC Receive Errors Logged by the MPQP Adapter 

The MPQP adapter detects many types of receive errors. As errors occur they are logged 
and the appropriate statistical counter is incremented. The kernel-mode process is not 
notified of the error. The following are the possible BSC receive errors logged by the MPQP 
adapter: 

• Receive overrun because the card did not keep up with line data. 
• Driver did not supply buffer in time for data. 
• A CRC or LRC framing error. 
• Parity error. 
• CTS time out while the adapter is in Autoresponse mode. 
• Data synchronization lost. 
• ID field greater than 15 bytes (BSC). 
• Invalid pad at end of frame (BSC). 
• Unexpected or invalid data (BSC). 

If status and data information are available but no extension block is provided, the read 
operation returns the data and but not the status information. 

Note: Errors, such as buffer overflow errors, can occur during the read data operation. In 
these cases, the return value is the byte count. Therefore, status should be checked 
even if no errno value is returned. 

Error Logging for the Multiprotocol (MPQP) Device Handler 
The large percent of errors logged by the AIX Multiprotocol (MPQP) device handler detect 
problems in the configuration or network equipment rather than software defects. The 
following errors are logged for the MPQP device handler: 

DSR On Timeout 

The DSR failed to come on. This error is a result of the modem failing to signal a ready 
condition. The following action is recommended: 

• Ensure that the configuration profiles match those of the actual modem configuration. 
• Check and make sure the following are true: 

- The cable is connected to the correct port on the fan-out box (FOB). 
- The modem is powered on. 
- The FOB connection on the back of the card is correct. 
- The correct cable is connected in the correct FOB. 

• If running switched line configurations, ensure that the modem is connecting to the line, 
the correct phone number is being used, and that the command stream is correct (if using 
autodial modems). 

• If running with null modems or cross-over cables, ensure that the data set read (DSR) is 
wrapped to DTR and clear to send (CTS) is wrapped to request to send (RTS). 

The Communications Subsystem 8-15 



DSR Off Timeout 

When running on a switched line, this error is caused by starting a call while the DSR is on. 
If the DSR is on before the adapter drives DTR, the adapter assumes the previous call is still 
in progress. 

Note: This is a security measure to ensure the previous session was terminated before the 
next call starts. 

The following action is recommended: 

• Ensure that the line is a switched line setup. If it is leased, check the profile parameters. 
• Check the modem setup. Ensure the modem specification to determine whether DSR is 

driven high all the time. If so, this modem is not compatible for switched line use with the 
MPQP adapter using the AIX provided software. 

CTS Dropped on Transmit 

The modem is dropping a CTS before the frame has been completely transmitted. The 
following action is recommended: 

• Check the modem to ensure it is operating properly. 
• If not running a multidrop line, the continuous carrier option causes an RTS to be driven 

continuously and may prevent the modem from dropping CTS. 

DSR Dropped 

The link went down during the session. This is a fatal error for the MPQP adapter. The 
application must re-initiate the session. The following action is recommended: 

• Use the modem specification to determine why the modem is dropping DSR. 
• Check the connection. 

Receive Data Error 

If the data is not received correctly, the driver logs an error and the application can recover 
by retransmitting. A certain amount of receive errors may be normal and is not cause for 
concern unless they errors become excessive and significantly degrade throughput. The 
following action is recommended: 

• Ensure that the local and remote modems are compatible and are configured in the same 
way. 

• Ensure that the local and remote computers are configured similarly. For example, if one 
station is sending SDLC NRZI data, the other machine must be configured to send SDLC 
NRZI data also. 

• Check the quality of the phone lines or connecting hardware. An excessive amount of 
receive errors can be a sign of line quality problems. 

• Ensure that the modem is running within specified range of valid baud rates. 
• Check the clocking options in the profile and the modem. If both the card and the modem 

try to provide the data clocks, data is received incorrectly. 

Adapter Not Present or Not Functioning, Adapter IPL Timeout 

The power-on-self test failed or the driver was unable to load the adapter software. The 
following action is recommended: 

• Make sure the board is seated properly in the slot. 
• Check the adapter diagnostics. 
• Check the integrity of the adapter software file. 

8-16 Kernel Extensions and Device Support 



DMA Buffer Not Allocated 

This error is usually caused by a resource outage in the system. The following action is 
recommended: 

• Increase the number of buffers in the pool. 
• Reduce unnecessary load on the machine. For example, disable unused tty ports or 

reduce simultaneous disk activity. 
• Check to see if the amount of main memory is adequate. 

Transmit Underrun, Receive Overrun 

This error indicates the card is not keeping up with the data rate. This error should not occur 
with the MPQP adapter as the data is buffered on the card. The following action is 
recommended: 

• Check the quality of the line. 
• Verify that the modem and the system are not both trying to provide data clocks. 

Transmit Failsafe Timeout Expired 

Transmit timeouts usually occur for one of two reasons: 

• The port is not detecting the transmit clock. The port is configured for modem clocking 
and no clock is provided is by the modem. The port is configured for DTE clocking and 
both the port and the modem are providing clocks. 

• The port does not detect CTS on by the modem. 

The following action is recommended: 

• Verify port configuration profiles and setup. 
• Ensure that the modem equipment and cables are functional. 

X.21 Timeout 

This error applies to X.21 protocol users only and is caused by a timeout while trying to 
establish a connection. This error can be caused by the X.21 failing to recognize the MPQP 
state change. The following action is recommended: 

• Ensure that the DCE is in service on both the modem and the network. 

X.21 Unexpected Clear During Call Establishment 

This error applies to X.21 protocol users only and is caused by the X.21 DCE asking the 
MPQP adapter to terminate. The following action is recommended: 

• Consult the X.21 specification form more information about the error. 

X.21 Unexpected Clear During Data Phase 

This error applies to X.21 protocol users only and indicates that after the call completed 
successfully data phase was entered and the call cleared. This may indicate a normal 
termination initiated by the network. The following action is recommended: 

• Determine whether a session was aborted or whether the clear was normal. 
• Consult the X.21 specification for more information about the error. 

X.21 Call Progress Signal 

This error applies to X.21 protocol users only and indicates the call did not complete or 
additional network information was received. The following action is recommended: 

The Communications Subsystem 8-17 



• Using the call progress signal value determine if an error scenario occurred. 

• Consult the X.21 specification for more information about the error. 

Description of the Multiprotocol (MPQP) Card 
The MPQP card is a four-port multiprotocol adapter that supports SSC and SOLC on the 
EIA232-0, EIA422-A, X.21, and V.35 physical interfaces. The MPQP card uses the 
microchannel bus and communicates with the adapter with programmed 1/0 (PIO) and first 
party OMA (bus master). 

The adapter has S12K bytes of RAM and an Intel 80C186 processor. There are 16 dedicated 
OMA channels between the RAM and the physical ports. The drivers and receivers for each 
of the electrical interfaces reside on a daughter board that is joined to the base card with two 
60-pin connectors. 

A shielded cable attaches to the 78-pin O-shell connector on the daughter board and routes 
all Signals to a fan-out box. The fan-out box has nine standard connectors that support each 
possible configuration on each port. Standard 1S-pin or 2S-pin cables are used between the 
fanout box and the modem for each electrical interface. 

The following are the interfaces available on each port: 

Port Configurations 

Number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Port 0 

Port 1 
Port 2 

Port 3 

Port·O Port·1 Port·2 Port·3 

EIA-232D EIA-232D EIA-232D EIA-232D 

EIA-422A EIA-232D EIA-232D EIA-232D 

V.35 EIA-232D EIA-232D EIA-232D 
EIA-232D V.3S EIA-232D EIA-232D 

X.21 EIA-232D EIA-232D EIA-232D 

EIA-422A V.3S EIA-232D EIA-232D 

V.35 V.3S EIA-232D EIA-232D 

X.21 V.3S EIA-232D EIA-232D 

EIA-232D EIA-232D EIA-422A EIA-232D 

EIA-422A EIA-232D EIA-422A EIA-232D 

V.35 EIA-232D EIA-422A EIA-232D 
EIA-232D V.3S EIA-422A EIA-232D 

X.21 EIA-232D EIA-422A EIA-232D 

EIA-422A V.3S EIA-422A EIA-232D 

V.35 V.3S EIA-422A EIA-232D 

X.21 V.3S EIA-422A EIA-232D 

EIA232-D, EIA422-A, X.21 , and V.3S. This port has the highest DMA 
priority. The EIA-422A interface on this port has data and clock signals. 
EIA232-D and V.3S. 
EIA232-D and EIA422-A (data only). The EIA-422A interface on Port 2 
only has data signals. 
EIA232-D. This port has the lowest priority. 

* Adheres to CelTT X.21 dial specific~tions. 

8-18 Kernel Extensions and Device Support 



The following depicts the mapping of physical interfaces to the fan-out box connectors: 

Block Diagram 

~~-------- 4-port EIB ---------.14..-- Fan-out --.J 
box/cable I 

Connection 0 

Base L.. ... Port 0: V.35 ..... ... 15-pin ... ... 
Drivers/receivers/buffers 

... .. 
D-shel\ card 

connection 
Connection 1 

~ Port 0: EIA-232D ... ... 25-pin 
Drivers/receivers/buffers 

.... ... 
D-shel\ 

Connection 2 

~ Port 0: EIA-422A/X21 
... ... 15-pin ... ... 

D-shel\ 
Drivers/receivers 
X.21 bit pattern 

Connection 3 recognition logic 
3 PALS 
Surge protection c.-. _ ... 25-pin ... ... 

D-shel\ 

Connection 4 

.... ... Port 1: EIA-232D ... .. 25-pin ... .. 
Drivers/receivers/buffers 

.... .. 
D-shel\ 

Connection 5 

~ Port 1: V.35 ... ... 15-pin 
Drivers/receivers/buffers 

.... ... 
D-shell 

Connection 6 

..... ... Port 3: EIA-232D ..... ... 25-pin ... .... 
Drivers/receivers 

... ... 
D-shell 

Connection 7 

.... --.. Port 2: EIA-232D .L --.. 25-pin ... .. 
Drivers/receivers/buffers 

... .. 
D-shel\ 

Connection 8 

L-..fI. Port 2: EIA-422A ... ... 25-pin 
Drivers/receivers (data only) 

... ... 
D-shel\ 

Surge protection 

The Communications Subsystem 8-19 



The following modem interfaces are supported by each physical interface: 

Call Establishment Protocol 

Physical Interface Leased Manual Autodial 
Switched 

EIA232-D X X X 

EIA422-A X 

V.3S X 

X.21 X X* 

X.25 Device Handler 
The AIX operating system uses special files to refer to specific hardware devices and device 
drivers. Special files are used like other files. They have path names that appear in a 
directory and access protection like ordinary files. 

When a user program requests I/O using system calls, control is transferred to the kernel. If 
the call is to a special file, the kernel transfers control to the corresponding device driver. 
Similarly, when the IBM X.2S Interface Co-Processor/2 signals an interrupt, the kernel 
passes the interrupt to the X.2S device handler's interrupt handler, which processes it and 
returns to the kernel. 

The X.2S device handler must conform to these system interfaces by offering a standard set 
of entry points. Entry points are called by the AIX kernel, not directly by the user program. 

How the X.25 Device Handler Fits into the AIX System 

User Applications 

----t------------------- Kernel 

TCP/IP COMMS 

BUFFER 

POOL 

Hardware 

The X.2S device handler, /dev/x25sn is a multiplexed device driver. A multiplexed device 
driver permits multiple open subroutines. The minor device number, n, specifies which port 

8-20 Kernel Extensions and Device Support 



or adapter is referred to. In addition, the port supports multiple X.25 connections on each 
multiplexed channel. Each X.25 connection is associated with one CIO_START operation. 

The following is a list of the X.25 device handler entry points: 

x25sopen 
x25smpx 

Initializes a channel into the X.25 device handler. 

Provides the means to allocate and deallocate a channel into the X.25 
device handler. 

x25sclose 
x25sselect 
x25sread 
x25swrite 
x25sioctl 

Closes an X.25 device handler channel. 
Determines if a specified event occurred on a device. 

Provides the means to receive data from the X.25 adapter. 

Provides the means to send data to the X.25 adapter. 

Provides various functions for controlling the X.25 device. 

The following is a list of the X.25 ioctl operations: 

10CINFO 

CIO_DNLD 

CIO_START 

CIO_HALT 

CIO_QUERY 

CIO_GET_STAT 

X25_REJECT 

X25_QUERY _SESSION 

X25_ADD_ROUTER_ID 

X25_DELETE_ROUTER_ID 

X25_QUERY _ROUTER_ID 

X25_LlNK_CONNECT 

X25_LlNK_DISCONNECT 

X25_LlNK_STATUS 

X25_LOCAL_BUSY 

X25_COUNTER_GET 

.X25_COUNTER_WAIT 

X25_COUNTER_READ 

X25_COUNTER_REMOVE 

X25_DIAG_10_WRITE 

X25_DIAG_10_READ 

X25_DIAG_MEM_WRITE 

X25_DIAG_MEM_READ 

Identifies a device. 

Downloads a task. 

Starts a session. 

Halts a session. 

Queries a device. 

Gets device statistics. 

Rejects a call. 

Queries a session. 

Adds a router 10. 

Deletes a router 10. 

Queries a router ID. 

Connects a link. 

Disconnects a link. 

Returns the status of the link. 

Enables or disables receiving of data packets on a port. 

Gets a counter 

Waits for the contents of a counter to change. 

Reads the contents of a counter. 

Removes a counter from the system. 

Writes to an 1/0 register on the IBM X.25 Interface 
Co-Processor/2. 
Reads to an 1/0 register on the IBM X.25 Interface 
Co-Processor/2. 
Writes memory to the IBM X.25 Interface Co-Processor/2 
from a user's buffer. 
Reads memory from the IBM X.25 Interface Co-Processor/2 
into a user's buffer. 
Provides the means to download the diagnostics task on to 
the card. 

The Communications Subsystem 8-21 



X.25 Programming Interfaces 
How the interface between the X.25 device handler and the AIX kernel is presented depends 
on the process using the device handler. Two types of processes use the device handler, 
user-mode processes and kernel-mode processes. In both cases, the kernel itself does 
some processing before passing the call to the device handler. 

For example, consider the x25sioctl entry point. A user-mode process sees this call in one 
of two ways: 

• int ioctl (fildes, cmd, arg) 
• int ioctlx (fildes, cmd, arg, ext) 

The fildes parameter is a pOinter to a file descriptor returned by the open subroutine. A 
return code of -1 indicates an unsuccessful operation, a 0 (zero) value indicates success. If 
-1 is returned, the kernel sets the errno global variable. 

A kernel-mode process sees the x25sioctl entry pOint in the following manner: 

int fp_ioctl (fp, cmd, arg, ext) 

The fp parameter is a pointer to a file structure, set on return from the fp_open kernel 
subroutine. The return value is either 0 (OK) or the error code itself. 

Whether a process is a user mode or kernel-mode process, the X.25 device handler entry 
point that the kernel actually called is: 

int x25sioctl (devno, cmd, arg, devflag, chan, ext) 

where 

cmd, arg Specify the values passed by the user-mode process or kernel-mode 
process. 

ext Specifies the value passed to the ioctlx subroutine or fp_ioctl kernel 
service. This parameter is NULL if the ioctl subroutine was called. 

devno, chan Identifies the major and minor device numbers and multiplexed channel 
number. These values are mapped in the kernel to < pid, fildes > for a 
user-mode process, or < pid, fp> for a kernel-mode process. 

devflag Identifies a flag word supplied by the kernel. This word indicates how the 
channel was opened, and whether the call was from a user-mode process 
or a kernel-mode process. 

The x25sioctl entry point returns either 0 (OK), or -1 (error). If there is an error, it places the 
error code in u.u_error in the calling process's user block. 

Note: The kernel can reject a system or subroutine call before it ever reaches the device 
handler. In that case, the kernel can return values of the errno global values other 
than those listed in this document. 

The other entry points can be mapped to system calls or kernel subroutine calls in a similar 
fashion. A noteworthy special case is that of the x25smpx entry point. There is no mpx or 
devmpx call available directly to the calling process. The x25smpx entry point is called by 
the kernel in response to either of the following: 

• An open subroutine or fp_open kernel service before calling the x25sopen entry point 
• A close subroutine or fp_close kernel service after calling the x25sclose entry point. 

8-22 Kernel Extensions and Device Support 



X.25 Device Handler Modes 
Four modes are provided for running the X.25 device handler. These modes are indicated 
by extensions added to the special device name on the x25sopen entry point. The following 
are the three available extensions: 

Idev/x25sn 

Idev/x25snlD 
Starts the device handler on the next available port. 

Opens the device handler in Diagnostic mode. The X.25 device handler 
provides a set of ioctl operations for running diagnostics on the adapter. 
These operations can be used by any program that opens the Idev/x25snlD 
special file. Opening this special file is restricted as follows: 

• Only one process per minor device number can open the file at a time. 
• The file cannot be opened while there are any other open channels on 

that minor device number (as the microcode on the adapter must be 
changed to run diagnostics). The diagnostics cannot coexist with the 
X.2S microcode. 

• Only processes that have appropriate permission can open the file. 

Note: It is not possible to open a session on a channel opened in 
Diagnostic mode. It follows, opening the device in diagnostic 
mode does not require that a user start a session with the 
CIO_START operation. 

Idev/x25snlM Opens the device handler for reading and writing data to the monitor 
facilities on the IBM X.2S Interface Co-Processor/2. The /dev/x2Ssn/M 
special file can be used to read and write data to the monitor facilities of the 
adapter. Opening this special file is restricted as follows: 

• Only one process per minor device number at a time can open the file . 
• Only processes that have appropriate permission can open the file. 

/dev/x25snIR Opens the device handler for updating the routing table. The X.25 device 
handler routes incoming call packets to listening applications according to 
its current routing table. The routing table can be managed by any program 
that opens the Idev/x25snlR special file. Access to this special file is 
restricted as follows: 

• Only one process at a time can open the file (the minor device number is 
ignored). 

• Only processes that have both NET _CONFIG and appropriate 
permission can open the file. 

The routing process can use x25sioctl operations to add or delete 
routing table entries, and to query the ID of the process listening for a 
specified routing table entry. Other processes can listen for incoming calls 
by specifying which entry in the routing table they are listening for. 

Note: Although a routing table entry is not restricted to one minor 
device number, an individual listen request must be issued for 
each minor device on which a user wishes to listen for that 
specification. 

While the /dev/x2SsnIR file is open, other users are not permitted to start 
listening for incoming calls (using any minor device number). Any 
CIO_START operation with a session of type SESSION_SVC_LlSTEN is 
rejected. 

The Communications Subsystem 8-23 



Sessions with the X.25 Device Handler 
A session with the X.25 device handler lasts from a CIO_START operation to a CIO_HALT 
operation. A session must be established before a process can issue calls to the x25sread 
or x25swrite entry points. A session can be used for several purposes, identified by the 
associated session types: 

SESSION_PVC The session is used for a permanent virtual circuit. 
SESSION_SVC_OUT The session is used for a switched virtual circuit (SVC) initiated 

by the local DTE. 
SESS'ON_SVC_'N The session is used for a SVC initiated by the remote DTE. 
SESSION_SVC_LlSTEN The session is used to receive incoming calls from remote DTEs. 

When an incoming call is received, it can either be rejected on 
this session or a new session (of type SESSION_SVC_IN) must 
be started to accept the call. The call is then associated with the 
new session, and the listening session continues to receive 
incoming calls. 

SESSION_MONITOR The session is used to receive and transmit packet monitor 
information. 

When establishing an X.25 session the following sequences may occur: 

• A session of type SESSION_SVC_OUT is started and accepted. 
• A session of type SESSION_SVC_OUT is started and rejected. 
• A session of type SESSION_SVC_ LISTEN is started. 
• A session of type SESSION_SVC_IN is started to accept the incoming call or an 

X25_REJECT operation rejects the call on the session. 
• A session of type SESSION_PVC is started for a permanent virtual circuit. 
• A session of type SESSION_MONITOR is started to receive and transmit packet monitor 

information. 

SESSION_ SVC_ OUT, accepted 

calling process device head 

x25sioctl (CIO_START, call_request_data) .., 

Distance from User 

X.25 network 

X.2S call request 

Time 

X.2S call connected 

status_block (CIO_START ..;..DONE, 
sessionjd, caILconnected_data) 

8-24 Kernel Extensions and Device Support 



Time 

Time 

calling process device head 

x25sioctl (CIO_START, call_request_data) 
~ 

Distance from User 

X.25 network 

X.25 call request 

X.25 clear indication 

X.25 clear confirm 

status_block (CIO_START_DONE, 
session_id, clear _indication_data) 

calling process device head 

x25sioctl (CIO_START, listen_name) 
~ 

Distance from User 

X.2S network 

X.25 incoming call 

The Communications Subsystem 8-25 



Time 

Time 

Distance from User 

calli ng process device head X.25 network 

x25sioctl (CIO~START, cal'-id, call_accept_data) 
~ 

sessionjd 

X.25 call accept 

status_block (Cia START DONE, session_id) 
4 

Distance from User 

calling process device head X.25 network 

x25sioctl 
(X25_REJECT, sessionjd, calljd, clear_request_data) 

~ 

X.25 clear request 

X.25 clear confirm 

8-26 Kernel Extensions and Device Support 



Distance from User 

calling process device head X.25 network 

x25sioctl (CIO_START) 

Time 

SESSION_MONITOR 

Distance from User 

calling process device head X.25 network 

x25sioctl (CIO_START) 

Time 

When terminating an X.25 session the following sequences may occur: 

• A session of type SESSION_SVC_ LISTEN is halted. 
• The session is cleared locally. 
• The session is cleared remotely. 
• A session of type SESSION_PVC is halted for a permanent virtual circuit. 
• A session of type SESSION_MONITOR is halted. 

The Communications Subsystem 8-27 



Time 

calling process device head 

x25sioctl (CIO_HALT, session_id) .. 

SESSION_SVCJN, SESSION_SVC_OUT, 
locally-initiated clear 

calling process device head 

Distance from User 

X.25 network 

Distance from User 

X.25 network 

x25sioctl (CIO_HALT, session_id, clear_request_data) .. 

X.25 clear request 

X.25 clear confirm 

Time 

8-28 Kernel Extensions and Device Support 



SESSION_SVC_IN, SESSION_SVC_OUT, 
remotely-initiated clear 

calling process device head 

Distance from User 

X.25 network 

X.25 clear indication 

X.25 clear confirm 

read_data (sessionjd, clearjnd_data) 
If 

Time 

Time 

x25sioctl (CIO_HALT, sessionjd) 

• 

calling process device head 

x25sioctl (CIO_HALT, sessionjd) 

• 

Distance from User 

X.25 network 

The Communications Subsystem 8-29 



SESSION_MONITOR 

Time 

calling process device head 

x25sioctl (CIO ..... HALT, session_id) .. 

Data Transmission and Reception for the X.25 Device Handler 

Distance from User 

X.25 network 

To transmit data the kernel-mode process issues an fp_rwuio kernel service. A pointer to an 
mbuf is passed as a parameter. Once the kernel-mode process has issued the fp_rwuio 
call, it must not access the mbuf(s) again. If the process has requested a transmit 
acknowledgment, the kernel-mode process can access the mbuf once the acknowledgment 
has occurred. 

Depending on the options specified with the fp_rwuio kernel service, the device handler can 
call the tx_fn function specified by the x25sopen entry point to notify the kernel-mode 
process of transmit complete. The device handler's freeing of the mbuf depends on the 
options specified in the fp_rwuio call. 

To transmit data for user-mode processes, an application uses a writex or writevx 
subroutine and specifies a buffer address. The device handler copies the buffer to a kernel 
space mbuf. Once the write returns to the application, the user can then access the buffer. 

Data Reception for the X.25 Device Handler 

For data reception, kernel-mode processes do not call an fp_rwuio subroutine. Instead, 

when data is received for a kernel-mode process's session, its rx_fn kernel procedure 
(specified at x25sopen time) is called, with each mbuf of data. It is the responsibility of the 
kernel-mode process to free the mbufs that contain the received data. 

If a user mode application has an outstanding x25sselect entry point for Data Available, the 
device handler calls the selnotify kernel service to notify the application that data is 
available. 

Common X.25 Device Handler Structures 
The following structures are common to several X.25 device handler functions: 

mbuf Structure 

The mbuf structure is used by kernel-mode processes to transmit and receive buffers. The 
mbuf structure is defined in the <sys/mbuf.h> file. This structure contains the following 
fields: 

Points to the next mbuf structure in a chain. 

Identifies the offset data. 

8-30 Kernel Extensions and Device Support 



m_len Identifies the length of the data. 

m_type Identifies the type of mbuf structure. 
m_dat[MLEN] Describes data storage on the buffer. 

Links in a higher level list of mbuf structures. 

Depending on the value of MLEN (the length of the mbuf data), the mbuf structure is used 
in one of the following ways: 

• The amount of data required is less than MLEN. In this case, the m_off field contains the 
address of the m_dat field, and the m_len field contains the length of data in the m_dat 
field. 

Note: The m_len field must be in the range 0 to MLEN . 

• The amount of data is larger than MLEN. In this case, the m_off field contains the 
address of a separate mbuf page cluster, the m_len field contains the length of that data, 
and the m_dat field is reserved. 

If more buffers are required to hold the data, a series of mbuf structures can be chained 
together using the m_next pointer. 

x25_buffer Structure 

When an mbuf structure contains X.25 data, the m_dat field or the associated page cluster 

is defined by an x25_buffer structure. This structure is found in the <sys/x25user.h> file 
and contains the following fields: 

pd 

cd 

Contains an x25_packet_data structure. This is the only field in the mbuf 
that contains data if the packet type is any of the following: 

• PKT _RESET_REO 
• PKT _RESET _IND 
• PKT_RESET_CONFIRM 
• PKT_D_BIT_ACK 
• PKT _INT _CONFIRM. 

Contains an x25_call_data structure. This is valid only for clear-and-reset 
packets. 
Identifies unformatted user data. This is valid for PKT _DATA, PKT _I NT, or 
PKT _MONITOR packet types. 

x25_packet_data Structure 

The x25_packet_data structure contains information about the X.25 packets being sent or 

received. This structure is found in the <sys/x25user.h> file and contains the following 
fields: 

packet_type Defines the type of X.25 packet. The following are the available packet 
types: 

• PKT _CALL_REO 
• PKT _INCOMING_CALL 
• PKT_CALL_ACCEPT 
• PKT_CALL_CONNECTED 
• PKT _CLEAR_REO 
• PKT_CLEAR_IND 
• PKT_CLEAR_CONFIRM 

The Communications Subsystem 8-31 



cause 

diagnostic 

flags 

• PKT_RESET_REQ 
• PKT _RESET _IND 
• PKT_RESET_CONFIRM 
• PKT_DATA 
• PKT _D_BIT _ACK 
• PKT_INT 
• PKT _INT _CONFIRM 
• PKT_MONITOR. 

Specifies the X.2S cause code. This is meaningful only for clear and reset 
packets. 
Specifies the X.2S diagnostic code. This is meaningful only for clear and 
reset packets. 
Contains a bitwise OR of one of following values: 

X25_Q_BIT Qualifier bit. This bit is meaningful only for PKT_DATA 
packets. The qualifier bit is set to indicate the use of a 
higher level protocol within the data packet. 

X25_D_BIT The X.2S delivery-confirmation bit. This bit is set in a data 
packet to indicate that an end-to-end acknowledgment to 
the packet sequence is required. The delivery conformation 
bit should be set in the call-establishment packets to 
indicate that the D-bit may be used during this session. 

X25_M_BIT The X.2S more-data bit. This bit is meaningful only for data 
packets. For write operations, this bit is set by the caller to 
indicate that the block is a non-final element in a series of 
data blocks. In this case, the number of data bytes to 
transmit must be a multiple of the packet size. 

For the x25sread entry point, the more Data bit is set if the buffer area supplied by the caller 
is too small for the complete packet sequence. Further data is returned in subsequent reads, 
until the final packet of the sequence is read. When the file packet is read, the more Data bit 

is cleared. 

Note: The size of the buffers supplied by the caller need have no relationship to the X.2S 
packet size. 

When the session protocol is PROTOCOL_ VBTS, packetizing and packet assembly are 
done by the calling program, not by the X.2S device handler. 

x25_calLdata Structure 

The x25_call_data structure is used to pass information about X.2S call setup and 
termination packets. This structure contains the following fields: 

calling_address Specifies a string of ASCIIZ decimal digits representing the calling 
X.2S address. 

called_address Specifies a string of ASCIIZ decimal digits representing the called X.2S 
address. 

faCilities_length Specifies the number of bytes of optional data used for X.2S facilities. 
This cannot exceed 109. 

user_data_length Specifies the number of bytes of optional data used for user data. This 
cannot exceed 16. 

optional_data Contains the X.2S facilities and user data. 

8-32 Kernel Extensions and Device Support 



x25_diag_mem Structure 

The x25_diag_mem structure is used for diagnostic reads and writes from the IBM X.25 
Interface Co-Processor/2. This structure is found in the <sys/x25user.h> file and contains 
the following fields: 

ca rd _offset 
length 

Points to the user buffer that is either going to be read from or written to. 

Identifies the initial page of card memory that the read or write takes place 
from. 
Identifies the initial offset within the page. 
Specifies the length of the user buffer. 

x25_diaQ_io Structure 

The x25_diaQ_io structure is used for diagnostic reads and writes from and to the I/O 
registers of the IBM X.25 Interface Co-Processor/2. This structure has the following fields: 

register 

value 
Identifies the register that is to be written to or read from. 

Specifies, in the case of a write, the value to be written. On a read, the 
value read is stored. 

x25_diag_addr Structure 

The x25_diaQ_addr structure is used to return the load page and offset that the diagnostic 
task is loaded at. This structure is found in the <sys/x25user.h> file and contains the 
following fields: 

page 
offset 

Related Information 

Identifies the page in the card's memory that the task was loaded into. 

Specifies the offset of the page the task was loaded into. 

The fp_close kernel service, fp_open kernel service, fp_ioctl kernel service, fp_rwuio 
kernel service, and selnotify kernel service. 
The write, writev, writex, or writevx subroutine, read, ready, readx or readvx 
subroutine, open subroutine, ioctl subroutine. 
Kernel Environment Programming on page 1-1. 
POWERstation and POWERserver Hardware Technical Reference - Options and 
Devices. 
SNA Services and the Receive Data Transfer Offset field in Communications 
Programming Concepts. 
The 4-Port Multiprotocollnterface Adapter Technical Reference S33F-5337 

The Communications Subsystem 8-33 



8-34 Kernel Extensions and Device Support 



The High Function Terminal (HFT) Subsystem 

The High Function Terminal (HFT) subsystem is a collection of terminal-related device 
drivers unified around the concept of the virtual terminal. There are three device drivers in 
the HFT subsystem: the KTSM device driver, which controls the keyboard, tablet, sound 
device and mouse devices; the graphics input/output (GIO) device driver; and the virtual 
display device (VDD) driver. This chapter discusses the following topics: 

• Screen Manager Ring 
• Echo Maps 
• Graphics Input/Output Devices 
• Understanding the Virtual Display Device Driver 
• Understanding Virtual Terminals 
• Reading Input Data from a Ring Buffer 
• Keyboard Send-Receive (KSR) Mode 
• Data Stream Modes 
• HFT Device Driver (HFTDD) User Interface 
• How to Enter Monitor Mode 
• How to Exit Monitor Mode 
• Data Stream for HFT Virtual Terminals 
• Keyboards 
• Nonspacing Characters. 

The HFT special file describes the read, write, and ioctl structures required to program the 
HFT subsystem. 

HFT Subsystem Component Structure 
A High Function Terminal (HFT) subsystem consists of several components: 

• A screen manager, which keeps a list of open virtual terminals linked together in a group 
called the Screen Manager Ring. 

• Virtual display drivers (VDDs). A VDD supports one particular type of display. An HFT 
subsystem can include up to four physical displays of various types. 

• Virtual terminals (VTs). A virtual terminal supports the illusion that more devices exist 
than are physically present. Virtual terminals are logically independent of each other, but 
share physical resources over time. In other words, the HFT device driver is a 
multiplexed device. Currently, an HFT subsystem can support a maximum of 32 virtual 
terminals. 

• The keyboard, tablet, sound, and mouse (KTSM) devices. A maximum of one of each 
device type can be attached with the keyboard/tablet/sound/mouse (KTSM) device driver. 

• Software keyboards for keyboard-to-display symbol mapping. 
• The graphics input/output (GIO) device driver, which supports lighted programmable 

function keys (LPFKs) and valuator, or dial, devices. A maximum of one of each device 
type can be attached with this device driver. 

The High Function Terminal (HFT) Subsystem 9-1 



The Screen Manager Ring 
Virtual terminals are linked together in a group called the screen manager ring. The screen 
manager places an entry in the ring for each virtual terminal opened. The terminal that is 
currently active is called the head of the ring. The last terminal on the ring is called the tail. 
When a new terminal is opened, that terminal becomes the head of the ring. 

Three key sequences are used to switch between virtual terminals and to control which 
terminal is currently active. The active terminal is the terminal that accepts data from the 
input devices. Pressing the Alt + Action key sequence makes the next virtual terminal in the 
ring active. Pressing the Shift + Action key sequence on the active terminal makes the last 
virtual terminal active. When a command virtual terminal is set, pressing the command 
virtual terminal hot key activates the designated command virtual terminal. The command 
virtual terminal hot key is: 

• The Control + Action key sequence on the keyboard 
• Button four on the tablet 
• The right and left buttons on the mouse. 

Note that with three entries in the ring, any terminal can be accessed from any other with a 
single key sequence. With four or more entries, however, terminals may have to be skipped 
in order to activate a desired terminal. For example, in a ring with four terminal entries, the 
second terminal cannot be accessed directly from the fourth terminal (assuming that the 
fourth terminal is active). You must first skip to the first or third terminal. 

Screen Manager Operations 
These seven screen manager operations are available: 

• Activating the virtual terminal. 
• Hiding the virtual terminal. 
• Setting the command virtual terminal. 
• Restoring, or removing from hiding, the presence of a terminal in the ring. 
• Enabling the command virtual terminal to be activated. 
• Disabling the capability of the command virtual terminal. 
• Disabling the capability of a virtual terminal to be activated. 

Screen Manager Operations 
There are seven screen manager operations. 

Activating the Virtual Terminal 

This operation places the virtual terminal specified by the hf_vtid field at the head of the 
screen manager ring. This position in the ring makes the virtual terminal the active terminal. 
The terminal's hidden flag is also cleared. 

The screen manager cannot activate the specified virtual terminal if the currently active 
virtual terminal cannot be deactivated. The screen manager does not activate an untrusted 
terminal if the active terminal is trusted. 

Hiding the Virtual Terminal 

This operation logically removes terminals from the ring. Hiding a terminal causes it to be 
bypassed when its position in the ring would ordinarily make it the active terminal. 

This operation marks the terminal identified by the hf_vtid field so that the screen manager 
does not activate it. This does not affect the terminal's position in the ring. When the hidden 
flag is set, the screen manager ignores the terminal's presence in the ring until an 
SMUNHIDE command is issued. 

9-2 Kernel Extensions and Device Support 



If the virtual terminal is active when the hide command is issued, the screen manager makes 
the terminal inactive (if possible). However, this does not prevent communication between 
the virtual terminal and the application running on it. 

Hiding the active virtual terminal has the same effect that the last-window function does. 
That is, the previous terminal in the ring becomes active. If all virtual terminals are hidden, 
then the physical display continues to show the contents of the last virtual terminal that was 
hidden. 

If the active terminal or the object terminal is trusted, the screen manager does not hide the 
object terminal. 

Setting the Command Virtual Terminal 

This operation designates a terminal as the command virtual terminal. The command virtual 
terminal is the terminal that is activated using the command window hot key: pressing the 
left and right buttons on the mouse simultaneously, pressing the number four button on the 
tablet puck, or pressing the Ctrl + Action key sequence. 

Restoring (Unhiding) the Presence of a Terminal in the Ring 

This operation restores the presence of the terminal in the screen manager ring. However, 
this action does not affect the ring position of the terminal or make it active. If the virtual 
terminal happens to be at the head of the ring when this command is issued, then it 
becomes visible and active. If the active terminal or the object terminal is trusted, the screen 
manager does not unhide the object terminal. 

The hf_vtid field must contain the mpx of the virtual terminal where the command should be 
sent. The hf_vtid field is reserved. 

Enabling the Command Virtual Terminal to Be Activated 

This operation enables the command virtual terminal to be activated when the command 
window hot key is received. This is the default setting. Since all virtual terminals are affected, 
programs that change this setting should restore it as soon as the locator is no longer 
needed. 

Disabling the Capability of the Command Virtual Terminal to Be Activated 

This operation disables activation for a command virtual terminal when the command 
window hot key is received. The data reported is similar to that reported when a single 
button is pressed. 

Disabling the Capability of a Virtual Terminal to Be Activated 

This operation disables activation for a specific virtual terminal resulting from a hot key 
sequence. This virtual terminal is skipped in the ring as though it were hidden. However, it 
can be visible. 

Echo Maps 
An echo map is an array of bits that contains one bit for each possible keyed input. When 
keyboard input is entered, a keyboard translation process interprets the input as a particular 
display symbol or a particular control function. 

The term echo can refer to either of two actions: 

• Sending the character associated with a keystroke to the display screen. 
• Performing the function associated with a control, and sending that information to the 

application. 

The High Function Terminal (HFT) Subsystem 9-3 



The echo map is used to decide whether the result of this keyboard translation should be 
echoed (as defined above) or not. If the translation yields a display symbol, and the 
corresponding bit in the echo map is set to one, then the display symbol should be sent to 
the display screen. Alternatively, if the keyboard translation process yields a control 
function, (and the echo map bit is set), this function should be executed as if it were received 
in the data stream from the host. 

For example, if you enter the character a, and its echo bit is 1, the character a is displayed 
at the current cursor position of the display screen. An echo bit set to 0 (zero) indicates the 
keyed display symbol or control is not echoed directly to the display until the information is 
received in an output data stream. 

The structure of the echo map is described in Echo and Break Map Structure. 

Graphics Input/Output Devices 
The graphics input/output devices are lighted programmable function keys (LPFKs) and 
valuator, or dial, devices. Only one of each device type can be attached with the graphics 
input/output (GIODD) device driver. 

Understanding the Virtual Display Device Driver 
A Virtual Display Driver (VDD) supports one particular type of display. Up to four physical 
displays of specified types can be included in a High Function Terminal (HFT) subsystem. 

The Virtual Display Driver is a software component containing a standard AIX operating 
system device driver plus routines that the HFT calls directly. These routines provide the 
HFT with a device-independent way of communicating with the display hardware. 

You can perform the following display-related tasks with the ioctl and write operations: 

ioctl Operation Options 
• Adding a font: Use the Reconfigure (HFRCONF) ioetl Operation . 

• Returning information about physical display IDs: Use the Query (HFQUERY) ioetl 

Operation. 

• Returning information about a physical display: Use the Query (HFQUERY) ioetl 
Operation. 

• Returning an ASCII data stream image of the current display screen: Use the Query 
(HFQUERY) ioetl Operation. 

write Operation Options 
• Redefining a virtual terminal's font palette: Use the Change Font Palette write Operation. 

• Redefining a virtual terminal's cursor representation: Use the Redefine Cursor 
Representation write Operation. 

• Redefining a virtual terminal's color palette: Use the Set KSR Color Palette write 
Operation. 

Understanding Virtual Terminals 
The virtual terminal concept supports the illusion that more devices exist than are physically 
present. Devices in a virtual terminal subsystem have characteristics and features not 
necessarily limited to those offered by the actual physical devices. 

Virtual terminals are logically independent of each other but share physical resources over 
time. The virtual terminal that can accept physical input at a given time is called the active 
virtual terminal. 

9-4 Kernel Extensions and Device Support 



Virtual Terminal States 
A virtual terminal can assume any of these six states: 

Active The virtual terminal that can accept input from the physical devices. When a 
virtual terminal becomes active, it becomes the head of the screen manager 
ring. If it is in KSR mode, it displays the cursor. You can use the Activate 
the Virtual Terminal ioctl operation to activate a virtual terminal. 

Pseudoactive A virtual terminal that is visible on a display screen but cannot take input 
from input devices. Output can be sent to this terminal. 

Inactive A virtual terminal that is not visible on any display screen and cannot take 
input from the input devices. 

Command This is the virtual terminal that is to be activated when a command window 
hot key is entered. You can use the Set the Command Virtual Terminal ioctl 
operation to designate a terminal as the command virtual terminal. 

Trusted The process that opened this virtual terminal is running a trusted shell, 
which restricts access to a virtual terminal by other processes. 

Hidden The virtual terminal is marked so that the screen manager does not activate 
it. This does not affect the terminal's position in the ring. However, the 
screen manager ignores the virtual terminal until it is changed from hidden. 

Modes That Affect Virtual Terminals 
There are three types of modes in the HFT subsystem: 

Virtual Terminal modes 
Virtual terminal modes define the type of terminal interface the application 
uses to access the device. There are two virtual terminal modes: KSR 
mode and MOM mode. 

Data Stream modes 
Data stream modes, relevant only in KSR mode, permit you to modify the 
display's presentation space. Protocol modes include display characteristics 
such as cursor placement after a line feed and echoing of keyboard input to 
the display. 

Protocol modes 
Protocol modes determine how the virtual terminal interprets, translates, 
and returns data. These modes also allow you to enable mouse, tablet, 
dial, or Lighted Programmable Function Key (LPFK) input, or to request 
untranslated keyboard input. 

A virtual terminal in an HFT subsystem can be in either of two primary modes: 

KSR Mode Keyboard send-receive mode. In KSR mode, the virtual terminal emulates 
an ASCII terminal using ASCII data stream. In this mode, the virtual 
terminal has a presentation space (PS) of a fixed number of lines and 
columns. KSR mode is the default mode. 

Monitor Mode Monitor mode (MOM). In Monitor mode, applications have a direct output 
path to the display hardware and a shortened input path. Users can directly 
manipulate terminal display characteristics while in MOM mode. 

Monitor Mode (MOM) 
Monitor (MOM) mode of the virtual terminal is used to operate the display in 
alls-points-addressable mode. In MOM, the program sends output directly to the display 
adapter through a range of the memory-mapped I/O bus. Consequently, the program avoids 
write calls when updating the display screen. 

The High Function Terminal (HFT) Subsystem 9-5 



A program can also read data from a circular buffer and avoid read operations. Some 
execution speed is gained by operating in MOM mode, but portability is sacrificed because 
the program depends on specific display adapters. 

Notes: i=or Use of Monitor Mode 

1. Do not leave the terminal open in Monitor mode. 

2. Do not allow more than one process manipulating the request or grant to be open 
to a virtual terminal in Monitor mode. 

You must use the specified write operation to switch from normal KSR mode to Monitor 
mode. The user program in Monitor mode participates in the next-window function by using 
subroutines to release the display temporarily. While the user program is active to the 
display, it performs output operations directly to the display hardware with memory-mapped 
1/0 ports. 

Valid ASCII Codes for MOM Mode 

Only a subset of ASCII codes are valid for the write operation while in Monitor mode. All 
other codes are ignored. The valid operations are: 

• Set Keyboard LEOs write Operation. 
• Set LPFKs write Operation. 
• Set Dial Granularities write Operation. 
• Send Sound write Operation. 
• Cancel Sound write Operation. 
• Set Protocol Mode write Operation. 
• Screen Request write Operation. 
• Screen Release write Operation. 

MOM Mode Tasks 

The following procedures are available for working in MOM mode: 

• How to Enter Monitor Mode. 
• Requesting Screen Control. 
• Reading Input Data from a Ring Buffer. 
• Requesting Screen Release and Specifying an Input Ring Buffer. 
• How to Exit Monitor Mode. 

MOM Signals 
These four signals are used in MOM mode: 

SIGGRANT Informs the user program that the display hardware can be- directly 
accessed. This signal is sent following a Monitor mode Screen Request 
write call. It is also sent after the user has used the Next Window key to 
activate a Monitor mode terminal. 

SIGRETRACT Informs the user program that the display hardware must be released for 
use by another program. This signal is sent when a display screen is to be 
made inactive with the Next Window key. The proper response for the user 
program is to issue a Screen Release write call. 

SIGKILL Terminates all processes associated with a virtual terminal for which there 
has been no response to a SIGRETRACT signal within 30 seconds. The 
SIGKILL signal also closes the virtual terminal. 

SIGMSG Informs the user program that data has been placed into a previously empty 
input ring buffer. 

9-6 Kernel Extensions and Device Support 



Reading Input Data from a Ring Buffer 
The input ring buffer is represented by the hfmomring structure, which is defined in the 
<sys/hft.h> file. The fields in the hfmomring structure are variables contained in the 
hfmomring structure. These fields are defined in hft.h File Structure for MOM write 
Operations. 

Steps for Reading from the Input Ring Buffer 
When a user program wants to read ring buffer input, it should first initialize the hf_source 
and hf_sink offset fields to make them equal. Initialization must occur before the screen 
request is issued. This indicates a buffer-empty condition. The program should then issue 
the pause subroutine and wait for input. 

When the buffer goes from empty to not empty, the user program receives a SIGMSG 
signal. When this happens, characters can be extracted from the ring buffer, and the user 
should increment the hf_sink offset for each character extracted. It should also make sure 
to wrap around after reaching the end of the buffer. 

Care should be taken to ensure that the buffer empty condition is properly detected. The 
program should test the equality of the offsets after each update of the hf_sink offset. 
Therefore, the order of operation is: 

1. Extract a character. 

2. Update the offset in its memory location. 

3. Test the equality of offsets. If the offsets are equal, then set the hf_intreq field to OxFF. 
(This resets the signal request.) 

Detecting a Full Ring Buffer 
If the value in the hf_source field equals the value (hf_sink -1 (modulo ring size)), then the 
ring buffer is full. An overflow condition also exists if the value in the hf_ovflow field is OxFF. 
The overflow condition indicates input data has been lost. The application can reset the 
overflow condition by clearing the hf_ovflow field. 

Using the read Subroutine to Intercept Selected Keystrokes 
Certain keys can be deSignated so they can be obtained using the read operation. The 
method for designating such keys is to set the break map bits for them to On. The Set Break 
Map (HFTSBREAK) ioctl Operation gives information on setting these break map bits. 

Keyboard Send-Receive (KSR) Mode 
A virtual terminal is in KSR mode by default. In this mode, it has a presentation space (PS) 
of a fixed number of columns and lines. A symbol can be placed at any column on any line 
in this presentation space. Graphics from the KSR data stream are placed in the PS relative 
to the cursor position. Keyboard input is also echoed relative to cursor position. 

KSR Modes for Displaying Graphics 
Two common modes for displaying graphics in KSR mode are Replace and Insert. An 
additional mode, AUTONL mode, determines cursor movement after the last column position 
of a line. The following are the three KSR modes: 

Replace In Replace mode, a graphic character sent to a KSR terminal is placed at 
the cursor, replacing the symbol already there. 

Insert In Insert mode, a graphic character sent to a KSR terminal is also placed at 
the cursor, but the symbol at the cursor and all symbols on the same line 
are shifted right one column position on the line. Characters shifted from 
the last column on the line are discarded. 

The High Function Terminal (HFT) Subsystem 9-7 



AUTONL Automatic new line mode (AUTONl) determines cursor movement after the 
last column position of a line. The AUTONl mode determines if the cursor 
wraps around to the first column position of the next line or stays at the last 
column on the current line. 

If AUTONl mode is set, the cursor moves to the first column position of the following line. If 
the cursor is at the bottom line of the presentation space, the presentation space scrolls up 
one line. If AUTONl mode is reset, the cursor stays on the last column of the current line. 

Blank lines in the presentation space and erased character positions are displayed in the 
active background color with normal attributes. 

Tasks in KSR Mode 
The following operations are available in KSR mode only: 

• Specifying the KSR color palette to associate with specified display adapters: Set KSR 
Color Palette write operation. 

• Redefining a virtual terminal's cursor representation: Redefine Cursor Representation 
write operation. 

• Redefining a virtual terminal's font p~lette: Change Font Palette write operation. 

Data Stream Modes 
When a virtual terminal is in KSR mode, you can set the presentation space, or data stream 
mode, in either of two ways by: 

• Issuing the SM (set mode) and RM (reset mode) multibyte controls. 
• Setting the ds_mode field (data stream mode) of a vtmdef structure and issuing a 

Reconfigure (Default) ioetl Operation. 

There are six types of presentation modes: 

LNM Linefeed/newline mode. If lNM mode is set, the line feed moves the cursor 
position to the first position of the next line. If LNM mode is reset, the line 
feed moves the cursor position down one line. 

IRM Insert/replace mode. If IRM mode is set, a graphic character sent to the 
display is placed at the cursor, replacing the symbol already there. If IRM 
mode is reset, a graphic character sent to the display is also placed at the 
cursor. However, all symbols at and to the right of the cursor on the same 
line are shifted right one column position. Characters shifted from the last 
column on the line are discarded. 

SRM Send/receive mode. If SRM mode is set, the virtual terminal does not echo 
the translated keyboard input. If SRM mode is reset and the echo map has 
been set correctly, then the virtual terminal echoes the translated keyboard 
input. 

In most instances, echoing is done by the line discipline that the user 
selects. However, a provided echo map permits the HFT subsystem to echo 
specific characters. The echo map is a bit map with 512 bits corresponding 
to code points. If a bit is on, the code point is echoed. 

The application should turn off the bits for the code points it does not want 
the HFT subsystem to echo. These characters usually include the escape 
character and the characters defined for Intr, Quit, and Erase. It can also 
include the characters defined for kill, EOF (end of file), EOl (end of line), 
pacing, and others. 

9-8 Kernel Extensions and Device Support 



TSM 

CNM 

AUTONL 

Tabulation stop mode. If TSM mode is reset, then horizontal tabulation 
changes affect all lines. If TSM mode is set, horizontal tabulation changes 
affect only the line indicated by the cursor. 
Carriage return/newline mode. If CNM mode is set, the carriage return 
causes the cursor to move to the first position of the next line. If CNM mode 
is reset, the carriage return moves the cursor position to the first character 
of the line indicated by the cursor. 
Wrap to the next line when the end of line reached. If AUTONL mode is set, 
the cursor moves to the first column position of the following line. If 
AUTONL mode is reset, the cursor remains on the last column of the current 
line. 

HFT Device Driver (HFTDD) User Interface 
The High Function Terminal device driver (HFTDD) is the application/user interface to the 
High Function Terminal Subsystem (HFTSS). The following topics address HFT device 
driver user interface facilities: 

• Understanding HFT Initial State 
• Understanding select Support in the HFT 
• HFT ioctl Operations 
• Understanding HFT Output write Operations 
• Reading Input with the read Operation 
• Understanding Keyboard-Send (KSR) Mode 
• ' Understanding Monitor (MOM) Mode. 

Understanding HFT Initial State 
The High Function Terminal (HFT) supplies default values for the following virtual terminal 
facilities: 

• Keyboard-to-character mapping supplies a mechanism to take input from the keyboard 
device driver. The mapping then translates it to a character or ASCII control. 

• Character-to-display symbol mapping supplies a default font used by the display to echo 
characters on the screen. 

• Echo/break specification supplies a default map used by the HFT to echo characters on 
the screen and to break on none. 

• Tab rack supplies default tabs at the first and last positions in the presentation space and 
every eighth position. 

• Protocol mode flags supply a default of translating all keyboard input from the keyboard 
position to a character or ASCII control instead of sending the keyboard position to the 
operating system. 

Default Values in the HFT 

When a new terminal in the HFT subsystem is opened, it is initialized to a known state. 
These default values hold unless a redefinition is received from the application. The initial 
terminal state is the following: 

Mode 

Echo Map 
Keyboard Send-Receive (KSR) 

Echo all characters. 

The High Function Terminal (HFT) Subsystem 9-9 



Although the echo map is set to echo all characters, the ASCII control SAM determines 
whether or not the HFT echoes characters. The default setting is to leave character echoing 
to the line discipline. 

Break Map Break for no characters. 
Tab Rack The first, every eighth, and the last position of every line. 

The following are the available ASCII Controls: 

- LNM Not set 
-IRM Not set 
-SRM Set 
- TSM Not set 
- elM Not set 
- AUTONl Set. 

The following are ASCII controls available in Protocol mode: 

-HFWRAP Set 
- HFMOUSE Not set 
- HFTABlET Not set 
- HFXlATKBD Set 
- HFHOSTS Not set 
- HFlPFKS Not set 
- HFDIALS Not set 
- HFJKANA Not set. 

Mouse Thresholds 

Mouse Resolution 
Mouse Sample Rate 
Mouse Scaling Factor 

Tablet Dead Zones 

Tablet Resolution 

Tablet Sample Rate 
Tablet Origin 

Tablet Conversion 

Font 

2.75 millimeters horizontal, 5.5 millimeters vertical 

4 counts per millimeter 
60 samples per second 

1 :1 
a millimeters horizontal, a millimeters vertical 

500 lines per inch 

1 sample per second 
Lower left of the tablet 

English (versus Metric) 
Initially, and whenever the physical display device is 
changed, this is set to the default font for that display. All 
alternate fonts are initialized to the same default font. 

The following is the default KSA Mode Color Palette: 
Entry Color 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Black 
Red 
Green 
Yellow 
BJue 
Magenta 
Cyan 
White 
Gray 
Light red 
Light green 
Light yellow 
Light blue 

9-1 0 Kernel Extensions and Device Support 



Entry Color 

13 Ughlmage~a 

14 Ught cyan 
15 High intensity white. 

select Operation Support in HFT 
The High Function Terminal (HFT) device driver supports select operations in the following 
ways: 

• Read select operations are satisfied when input data is available. 
• Write select operations are always satisfied immediately. 
• Exception select operations are never satisfied, or hang indefinitely if no time-out value is 

specified. 

HFT Output write Operations 
In the HFT Subsystem, the write operation can be used for both normal output and for 
control operations directed at the device. Using the write operation, ASCII data of any 
length can be sent to the virtual terminal. Virtual terminal control structures can also be sent 
to the virtual terminal using the write operation. 

Each control structure is introduced by a virtual terminal data (VTO) character sequence. 
The VTO prefix consists of the ASCII codes ESC, [ (left square bracket), and the x character 
(Ox185878). This prefix is followed by a 4-byte length (the hf_len field) and a 2-byte 
operation type code (the hf_typehi and hf_typelo fields). The data that follows this 
structure depends on the type of control. 

The hfintro structure has the following format: 

{ 
char hf _esc; 
char hf lbr; -
char hf ex; 
char hf _len[4]; 
char hf_typehi; 
char hf _typelo; 

} ; 

The hf_len [4] field is the total number of bytes in the header and associated data, 
excluding the 3-character VTO control sequence. The values of the hf_typehi and 
hf_typelo fields are described in: 

• hft.h File Structures for General Output write Operations 

• hft.h File Structures for KSR write Operations 
• hft.h File Structures for MOM write Operations. 

These three articles are discussed in the Files Reference. 

8ecause the hfintro structure is an odd number of bytes in length, it is designated as the 
character array hf_intro[HFINTROSZ] in the structures that define the various operation 
requests. This prevents the C compiler from inserting bytes into the hfintro structure to align 
the subsequent fields on word boundaries. The hf_typehi and hf_typelo fields are 
sometimes referred to as the hf_intro.hf_typehi and hf_intro.hf_typelo fields. 

All reserved and unused fields must be set to 0 (zero). 

The High Function Terminal (HFT) Subsystem 9-11 



The three types of HFT write operations are as follows: 

• General Output write Operations 

- Set Protocol Mode write Operation 
- Set Keyboard LEDs write Operation 

Set LPFKs write Operation 
Set Dial Granularities write Operation 
Send Sound write Operation 
Cancel Sound write Operation 
Change Physical Display write Operation. 

• KSR write Operations 
- Change Font Palette write Operation 
- Set KSR Color Palette write Operation 
- Redefine Cursor Representation write Operation. 

• MOM write Operations 
- Screen Request write Operation 
- Screen Release write Operation. 

Reading Input with the read Operation 
Data read from an HFT device with the read operation can contain both character and 
noncharacter input. 

Character Data 

Character data is entered from the keyboard. The keyboard device driver processes keys 
pressed on the keyboard. If an application has requested untranslated keystrokes, the HFT 
subsystem reports them in an untranslated keystroke structure. 

An untranslated keystroke structure contains all three of the following fields for each 
keystroke: 

• The key position on the keyboard 
• A scan code 
• A status code containing the state of special keys (including Shift, Control, and Alternate 

Shift). 

The untranslated keystroke structure (also called the hfunxlate structure) is described in 
hft.h File Structures for General write Operations. 

Noncharacter Input 

Noncharacter input can be read from several other sources in the HFT device. These 
sources are: 

• Mouse 
• Valuator dials 
• Tablet 
• Lighted Programmable Function Keys (LPFKs). 

Data from non-keyboard devices is passed back from the read operation in the form of 
special control sequences. The input device control sequence reports input data from these 
devices. 

9-12 Kernel ~xtensions and Device Support 



Note: These control sequences contain binary data. To prevent the binary data from being 
misinterpreted as ASCII control codes, set the terminal's canonical processing to Off 
in the line discipline. You must also disable all signals. 

To set the terminal's canonical· processing to Off, you must set the c_lflag field to ISIG. For 
information about setting the c_lflag field to ISIG, see ISIG in termio.h File for AIX Version 
2 compatibility and ISIG in termios.h File for POSIX compatibility. 

The following input operations with the read operation are available: 

• Untranslated Key Control read Operation . 
• Input Device Report read Operation. 

Protocol Modes 
HFT protocol modes determine how the virtual terminal interprets, translates, and returns 
data. They allow the reporting of keyboard events such as shift key depression and input 
translation. In addition, they can enable non-keyboard devices, such as the mouse or tablet, 
to send data. 

Setting Protocol Mode 

You can set protocol modes in either of two ways by: 

• Issuing a Set Protocol Mode write operation. 

• Setting the hf_select field of a vtmdef structure and issuing a Reconfigure (Default) ioctl 
Operation. 

Protocol modes are valid for both KSR and MOM mode unless otherwise indicated. If the 
mode is set to On (1 bit), the function is enabled. If the mode is set to Off (0 bit), the 
function is disabled. 

Types of Protocol Modes 

The following table lists the eight protocol modes in HFT. The mode-name literals are 
defined in the <sys/hft.h> file. The use of these literals with the hfprotocol structure is 
described in hft.h File Structures for General write Operations. 

Mode Valid 

HFHOSTS KSR 

HFXLATKBD KSR, MOM 

HFWRAP KSR 

HFMOUSE KSR, MOM 

Meaning 

A 0 (zero) bit (default) means not to report Shift-key 
depressions. A 1 bit means report Shift-key de­
pressions. HFHOSTS mode specifies whether to 
report keyboard status changes. If HFHOSTS 
mode is set, the keyboard status information is re­
turned in the KSI private ANSI control. 

A 1 bit (default) specifies that the keyboard input is 
translated. A 0 bit indicates send key data as un­
translated key controls. 

A 1 bit (default) causes the cursorto wrap when the 
presentation space boundary is exceeded. A 0 bit 
specifies that the cursor should not wrap. 

A 0 bit (default) disables the mouse from sending 
data. A 1 bit enables the mouse to send data. 

The High Function Terminal (HFT) Subsystem 9-13 



Mode Valid 

HFTABLET KSR, MOM 

HFLPFKS KSR, MOM 

HFDIALS KSR, MOM 

HFJKANA KSR, MOM 

Meaning 

A 0 bit (default) disables the tablet from sending 
data. A 1 bit enables the tablet to send data. 

A 0 bit (default) disables LPFK input. A 1 bit en­
ables LPFK input. 

A 0 bit (default) disables dial (valuator) input. A 1 bit 
enables dial input. 

A 0 bit (default) disables Kana shift state. A 1 bit 
enables Kana input (for use with Japanese license 
program only). 

How to Enter Monitor Mode 
Prerequisite Tasks or Conditions 

Procedure 

1. The user must have a valid open file descriptor for a virtual terminal in Monitor mode 
(MOM). 

Entering MOM mode is a two-step process: 

1. Issue the Enter Monitor Mode (HFSMON) ioetl operation to enter MOM mode. This step 
enables the SIGGRANT and SIGRETRACT Monitor mode signals. Issuing this operation 
also specifies the method by which processes are to receive the signals. 

2. The program should set the preferred Monitor protocol modes. Only the following 
protocol modes are valid in MOM mode. Other modes are ignored. 

• HFXLATKBD 
• HFMOUSE 
• HFTABLET 
• HFLPFKS 
• HFDIALS. 

How to Exit Monitor Mode 
Prerequisite Tasks or Conditions 

Procedure 

1. The user must have a valid file descriptor of a virtual terminal in MOM mode. 

1. Write a screen release control (using the Screen Release write operation) and follow it 
with a KSR protocol control (the Set Protocol Modes write operation). This step is 
particularly important if the virtual terminal has been opened by another process. If the 
program is certain that no other processes have the terminal open, it can issue a close 
call to remove that virtual terminal. 

2. Issue an Exit Monitor Mode ioetl operation to ensure that no Monitor mode signals have 
been sent to this process or other process in the terminal group in error. 

Data Stream for HFT Virtual Terminals 
Data stream includes all information that is sent to the HFT device driver with a write 
operation and is used in KSR mode only. 

The data stream is composed of these three components: 

• Code points (224 displayable) 

9-14 Kernel Extensions and Device Support 



• Single-byte control codes 
• Multibyte control codes. 

The AIX operating system native displays can address 256 distinct, displayable characters. 
The first 32 code points are reserved for control codes that do not have graphic 
representations. The remaining 224 code points denote distinct graphic characters. See 
Code Page for a schematic description of code points in the HFT data stream. 

Nonspacing Characters in the KSR Data Stream 
A nonspacing character sequence in the KSR data stream is a two-key sequence consisting 
of one of the 7 available diacritics followed by an alphabetic character or a space. This 
nonspacing or dead character facility is provided for convenience when typing diacritic 
(accented) characters. The H FT converts this two-key sequence into a single code point. 
The resulting character is the alphabetic character with the specified diacritic mark. A 
diacritic mark followed by a space translates to the diacritic character itself. 

Valid Diacritic Characters 

There are 7 valid diacritic characters: 

Symbol Function Code Value 
, 

Acute Accent or Apostrophe OxEF or Ox27 
I Grave Accent Ox60 
1\ Circumflex Accent Ox5E 
.. 

Umlaut Accent OxF9 

- Tilde Accent Ox7E 
0 Overcircle Accent OxF8 

C; Cedilla Accent OxF7 

Note: A cedilla accent is a curved accent that is suspended from a letter. In the preceding 
table, it is suspended from the letter C. 

If a nonspacing character and the subsequent character do not combine to form a diacritic 
character in the set of predefined graphic symbols, then the diacritic mark is treated as a 
separate character code. For example, -Q is treated as two characters: - and Q. 

Multibyte Controls in Data Stream Data Overview 
There are 52 basic multibyte sequences recognized by the virtual terminal in KSR mode. All 
of them begin with the ESC code (Ox1 8) although in control sequences, the ESC code is 
followed by a [ (Ox58). These controls include all subsequent bytes up to and including the 
first code in the range Ox40 to Ox7F. In escape sequences, the ESC code is not followed by 
an [(Ox58). These controls include all subsequent bytes up to and including the first code in 
the range Ox30 to Ox7F. 

Numeric parameters in control sequences contain no more than three digits. The numeric 
value of the parameter may be incorrect if more than three digits are used, and the numeric 
value never exceeds 255. 

Controls affect a virtual terminal's presentation space (PS) and its related cursor (pointer into 
the PS). The presentation space is a logical array of display symbols and is N columns by M 
lines. 

The High Function Terminal (HFT) Subsystem 9-15 



All multibyte sequences flow from the operating system or application to the terminal, with 
the following exceptions: 

• KSI (Keyboard Status Information), PFK (Program Function Key report), VTL (Virtual 
Terminal Locator report), VTR (Virtual Terminal Raw keyboard report), VTK (Virtual 
Terminal Kanji status report), and VTA (Virtual Terminal Adapter report) all flow from the 
virtual terminal to the operating system or application. 

• DSR (Device Status Report) and CPR (Cursor Position Report) can flow in either 
direction. The meaning of these controls depends upon the direction. 

Invalid Multibyte Control Code Sequences 

Invalid multibyte control sequences return an error Device Status Report to the program. 
Multibyte control sequences of more than 16 codes are considered invalid upon receipt of 
the 17th code. The 18th code is not considered a part of that sequence. 

Categories of Valid Multibyte Control Code Sequences 

There are six categories of valid multibyte control code sequences: 

• Erasing Areas, Displays, Lines, and Fields 
• Inserting and Deleting Lines and Characters 
• Controlling Cursor Movement 
• Clearing and Setting Tab Controls 
• Performing Miscellaneous Tasks 
• Scrolling. 

Any multibyte control sequences not defined in these categories is ignored. 

• Erasing Areas, Displays, Fields, or Lines 

Mnemonic 

EA 
ED 
EF 
EL 

Code Value 

Erase to end of the area, or from start of area, or all of area. 

Erase to end of display, or from start of the display, or all of the display. 

Erase to end of the field, or from start of the field, or all of the field. 

Erase to end of the line, or from start of the line, or all of the line. 

• Inserting and Deleting Lines and Characters 

Mnemonic Code Value 

DCH Delete Character. 
DL Delete Line. 
ECH Erase Character. 
ICH Insert Character. 
IL Insert Line. 

• Controlling Cursor Movement 

Mnemonic 

CBT 
CHA 
CHT 
CNL 
CPL 

Code Value 

Cursor Back Tab. 

Cursor Horizontal Absolute. 

Cursor Horizontal Tab. 

Cursor Next Line. 

Cursor Preceding Line. 

9-16 Kernel Extensions and Device Support 



CPR 
CUB 
CUD 
CUF 
CUP 
CUU 
CVT 
HVP 
INO 
NEL 
RCP 
RI 
SCP 

Cursor Position Report. 

Cursor Backward. 
Cursor Down. 

Cursor Forward. 

Cursor Position. 

Cursor Up. 

Cursor Vertical Tab. 

Horizontal and Vertical Position. 

Index. 

Next Line. 

Restore Cursor Position. 

Reverse Index. 

Save Cursor Position. 

• Clearing and Setting Tab Controls 

Mnemonic Code Value 

CTC 
HTS 
TBC 
VTS 

Cursor Tab Stop Control. 

Set Tab. 

Clear Tab. 

Set Tab. 

• Performing Miscellaneous Tasks 

Mnemonic Code Value 

OSR 
OMI 
EMI 
KSI 
PFK 
RIS 
RM 
SGR 
SGOA 
SG1A 
SM 
VTA 
VTO 
VTL 
VTR 

• Scrolling 

Mnemonic 

SO 
SL 
SR 
SU 

Device Status Report Request. 

Disable Manual Input. 

Enable Manual Input. 

Keyboard Status Information. 

PF Key Report. 

Reset to Initial State. 

Reset Mode. 

Set Graphic Rendition. 

Set GO Character Set. 

Set G1 Character Set. 

Set Mode. 

Virtual Terminal Addressability. 

Virtual Terminal Data. 

Virtual Terminal Device Input. 

Virtual Terminal Raw Keyboard Input. 

Code Value 

Scroll Down. 

Scroll Left. 

Scroll Right. 

Scroll Up. 

The High Function Terminal (HFT) Subsystem 9-17 



Single-Byte Controls in Data Stream Data Overview 
Single-byte controls, also called control characters and control codes, have character values 
from 0 to 31 (OxOO to Ox1 F). There are 25 single-byte controls that have no terminal 
functions. Eight single-byte controls have terminal functions. 

Single-Byte Controls with Terminal Functions 

Mnemonic Function 

BS Backspace. 
CR Carriage Return. 
DC1 Resume Output. 
DC3 Suspend Output. 

ESC Escape. 
FF Form Feed. 
HT Horizontal Tab. 
LF Line Feed. 
VT Vertical Tab. 

This table lists the mnemonic, code value, and function of each single-byte control code. 

Table 

Mnemonic Code Values Function Description 

BEL Ox07 Bell Causes an audible alarm to sound. 

BS Ox08 Backspace Moves the cursor position to the left one col-
umn unless the cursor is at the left boundary 
of the presentation space. If the cursor is at 
the left boundary, the cursor position does 
not change. 

CR OxOD Carriage Return If the CNM mode is reset (default), the car-
riage return moves the cursor position to the 
first character of the line indicated by the 
cursor. If the CNM mode is set, the carriage 
return is treated as a NEL control code. It 
causes the cursor position to move to the 
first position of the next line. In this case, if 
the cursor is already on the last line of the 
PS, the PS lines scroll up one line. The top 
line of the PS disappears and a blank line is 
inserted as the new bottom line. 

DC1 Ox11 Resume Output Resumes output that was suspended by an 

ASCII DC3 control. 

DC3 Ox13 Suspend Output Temporarily suspends output. 

ESC Ox1B Escape Defines the beginning of a multibyte control 
sequence. 

FF OxOC Form Feed Treated asa line end. 

9-18 Kernel Extensions and Device Support 



Table cont. 

Mnemonic Code Values Function Description 

HT Ox09 Horizontal Tab Moves the cursor position forward to the 
next tab stop. If the cursor is already in the 
last column of a line, then the cursor position 
does not change. The CHT (Cursor Hori-
zontal Tab) multibyte control performs a 
similar operation, but also performs line 
wrapping. 

LF OxOA Line Feed If the LNM mode is reset, the line feed 
moves the cursor position down one line. If 
the LNM mode is set (default), the line feed 
is treated as a N EL control code and moves 
the cursor position to the first position of the 
next line. In either case, if the cursor is al-
ready on the last line of the PS, the PS lines 
scroll up one line. The top line of the PS dis-
appears and a blank line is inserted as the 
new bottom line. 

VT OxOB Vertical Tab Moves the cursor position down to the next 
line that is defined as a vertical tab stop. 
Tabs stops are always set at the first and last 
lines of the PS. If the cursor is already on 
the last line of the PS and HFWRAP mode is 
not set, the cursor stays on the last line in 
the PS. If HFWRAP mode is set, the cursor 
moves to the top line in the PS. The column 
position does not change. 

Single-Byte Controls with No Terminal Functions 

The following 23 single-byte controls have no terminal functions: 

Mnemonic Code Value Function 

NUL OxOO Null 

SOH Ox01 Start of Header 

STX Ox02 Start of Text 

ETX Ox03 End of Text 

EOT Ox04 End of Transmission 

ENQ Ox05 Enquiry 

ACK Ox06 Acknowledge 

SO OxOE Shift Out 

SI OxOF Shift In 

OLE Ox10 Data Link Escape 

DC2 Ox12 Device Control 2 

The High Function Terminal (HFT) Subsystem 9-19 



Mnemonic Code Value Function 

DC4 Ox14 Device Control 4 

NAK Ox15 Negative Acknowledgement 

SYN Ox16 Synchronous 

ETB Ox17 End of Block 

CAN Ox18 Cancel 

EM Ox19 End of Medium 

SUB Ox1A Substitute 

SS4 Ox1C Single Shift 4 

SS3 Ox1D Single Shift 3 

SS2 Ox1E Single Shift 2 

SS1 Ox1F Single Shift 1 

DEL Ox7F Delete 

Keyboards 

Key States 

The AIX operating system supports these three natively attached keyboards: 

• The 1 01-key keyboard 
• The 1 02-key keyboard 
• The 1 06-key keyboard. 

Each of these keyboards differs slightly in its layout and function. 

A software keyboard mapping table is maintained for each virtual terminal. This table maps 
a key position to an ASCII character, function, or string of characters. Each key on the 
keyboard has a numeric position code that is combined with the keyboard state when the, 
key position is reported. 

Available key states are: 

• Base 
• Shift 
• Control 
• Alternate 
• Alternate Graph ics 
• Kana Base 
• Kana Shift. 

Each of the hardware keyboards can produce some, but not all, of these states. 

One default software keyboard is selected at installation. Each virtual terminal that is 
opened operates with the selected mapping. A customized keyboard can be used as the 
system default after keyboard r~configuration. You can use the HFSKBD ioctl subroutine to 
give each virtual terminal a different mapping. 

9-20 Kernel Extensions and Device Support 



Keys that Cannot be Remapped 

The following keys are not redefinable because their function is predefined at the 
device-driver level. 

Key Position Function States that Cannot be Remapped 

30 Caps Lock key All states 

44 Left Shift key All states 

57 Right Shift key All states 

58 Control key All states 

60 Left Alternate key All states 

62 Right Alternate key All states 

64 Action key Shift, Control, Alternate, and Alternate 
Graphics 

90 Num Lock key Base and Shift states 

133 Hiragana All states. 

Available Software Keyboard 
There are 15 available software keyboards: 

• Belgian-French/Dutch 
• Canadian-French 
• Danish 
• Finnish/Swedish 

• French 
• German 
• Italian 
• Japanese 
• Norwegian 
• Portuguese 
• Spanish 
• Swiss-French/German 
• UK English 
• US English. 

All keyboards, except the US English keyboard and the Japanese keyboard, have 102 keys. 
The US English keyboard has 101 keys, and the Japanese keyboard has 106 keys. The 
differences in the keyboards occur because each country requires a specific set of graphic 
characters (display set) for the native language as well as a specific keyboard layout 
(graphic key arrangement) on the keyboard. 

Keyboard tables are shipped with the Base Operating System (BOS), and a keyboard table 
is installed during BOS installation. 

Key Sequences 
Most keying is done with either one-key or two-key sequences. For example, the a 
character is most often produced by one key (the A key) and the A character by two keys 
(Shift + A keys). If more than one state key is depressed when a character is keyed, (for 
example, Ctrl + Shift + A) only one state key affects the translation of the character. With the 
Ctrl + Shift + A sequence, the control state takes precedence over the shift state. 

The High Function Terminal (HFT) Subsystem 9-21 



Three-key sequences have special meanings in the AIX operating system. The following 
keystroke combinations initiate the indicated system function. The notation Padn, where n is 
a digit, indicates the n key on the numeric keypad to the right of the main keyboard area. 

Note: Unless otherwise noted, the functions initiated by a three-key Ctrl + Alt + key 
sequence require the Alt key on the left side of the keyboard. Functions initiated with 
the Alt + key (or Shift + key) can be selected with either the left or right Alt key (or 
Shift key). 

List of Special Key Sequences 

There are three types of key sequences that have special meaning for the AIX operating 
system: 

• Kernel Debugger 

Ctrl + Alt + Pad4 I nvokes the kernel debugger. 

• System Dump Key Sequences 

Note: Before attempting to use any of the following system dump key sequences, see 
Problem Determination Tips and Techniques. 

Ctrl + Alt + Pad1 Performs a system dump to the primary device .. 
Ctrl + Alt + Pad2 Performs a system dump to the secondary device. Supports dumping 

to a logical volume or tape. Requires user intervention. 

Keyboard Position Codes 
These diagrams depict the key position codes for the 1 01-key US English keyboard and the 
102-key keyboard. 

75 80 85 90 95 100 105 

76 81 86 91 96 101 106 
107) 

92 97 102 

93 98 103 108 
109} 

(94) 99 104 1 
US 101 Key Position Layout 

Figure 48. 1 01-Key US English Keyboard Position Codes 

9-22 Kernel Extensions and Device Support 



75 80 85 90 95 100 105 

76 81 86 91 96 101 106 
107) 

92 97 102 

93 98 103 108 
109 

(94) 99 104 

WT 102 Key Position Layout 

Figure 49. 102-Key Keyboard Position Codes 

Keyboard States Overview 
Each key on the keyboard has 7 potential states: 

• Base 
• Shift 
• Ctrl (Control) 
• Alt (Alternate) 
• Alt Gr (Alternate Graphic) 
• Kana Base 
• Kana Shift. 

U.S. Keyboard 

For the US 1 01-key keyboard, the Alt Gr state is identical to the Alt state. The Kana base 
and Kana shift states are also identical to the base state. As a result, the US keyboard 
appears to have only four states: 

• Base 
• Shift 
• Ctrl 
• Alt. 

The 102-key keyboard has these preceding states as well as Alt Gr. 

Some of these keys are also governed by the Caps Lock key. 

Japanese Keyboard 

The Japanese keyboard does not have an Alt Gr key. Only the right Alt key is available. The 
Japanese keyboard has six states: 

• Base 
• Shift 
• Control 

• Alt 
• Kana Base 
• Kana Shift. 

On keyboards that support Caps Lock, Caps Lock affects only keys whose Shift state yields 
the uppercase character (A, 8, C) of the Base state lower-case character (a, b, c) of the key. 

The High Function Terminal (HFT) Subsystem 9-23 



On keyboards that support Shift Lock, Shift Lock has the same effect as pressing a key while 
the Shift key is pressed. 

Each key on the keyboard is assigned a unique 8-bit scan code that is sent when the key is 
pressed. The following table depicts key positions and their scan codes for the international 
character keyboards: 

Key Positions and Their Scan Codes 

1 OxOe 23 Ox3c 45 Ox13 67 N/A 89 Ox6a 111 N/A 
2 Ox16 24 Ox43 46 Ox1a 68 N/A 90 Ox76 112 Ox07 

3 Ox1e 25 Ox44 47 Ox22 69 N/A 91 Ox6c 113 OxOf 

4 Ox26 26 Ox4d 48 Ox21 70 N/A 92 Ox6b 114 Ox17 

5 Ox25 27 Ox54 49 Ox2a 71 N/A 93 Ox69 115 Ox1f 

6 Ox2e 28 Ox5b 50 Ox32 72 N/A 94 Ox68 116 Ox27 

7 Ox36 29 Ox5c 51 Ox31 73 N/A 95 Ox77 117 Ox2f 

8 Ox3d 30 Ox14 52 Ox3a 74 N/A 96 Ox75 118 Ox37 

9 Ox3e 31 Ox1c 53 Ox41 75 Ox67 97 Ox73 119 Ox3f 

10 Ox46 32 Ox1b 54 Ox49 76 Ox64 98 Ox72 120 Ox47 

11 Ox45 33 Ox23 55 Ox4a 77 N/A 99 Ox70 121 Ox4f 

12 Ox4e 34 Ox2b 56 Ox51 78 N/A 100 Ox7e 122 Ox56 

13 Ox55 35 Ox34 57 Ox59 79 Ox61 101 Ox7d 123 Ox5e 

14 Ox5d 36 Ox33 58 Ox11 80 Ox6e 102 Ox74 124 Ox57 

15 Ox66 37 Ox3b 59 N/A 81 Ox65 103 Ox7a 125 Ox5f 

16 OxOd 38 Ox42 60 Ox19 82 N/A 104 Ox71 126 Ox62 

17 o-x15 39 Ox4b 61 Ox29 83 Ox63 105 Ox84 127 N/A 

18 Ox1d 40 Ox4c 62 Ox39 84 Ox60 106 Ox7c 128 N/A 

19 Ox24 41 Ox52 63 N/A 85 Ox6f 107 Ox7b 129 N/A 

20 Ox2d 42 Ox53 64 Ox58 86 Ox6d 108 Ox79 130 N/A 

21 Ox20 43 Ox5a 65 N/A 87 N/A 109 Ox78 131 Ox20 

22 Ox35 44 Ox12 66 N/A 88 N/A 110 Ox08 132 Ox28 

133 Ox30 

Nonspacing Characters Overview 
A nonspacing character sequence is a two-key sequence consisting of one of the 7 available 
diacritical characters followed by an alphabetic character. 

Among the available 224 graphic characters, 7 diacritics are used to construct diacritical, or 
accented, characters. The constructed diacritical characters yield a set of characters that 
exceed those engraved on any specific country-dependent keyboard. 

9-24 Kernel Extensions and Device Support 



Valid Nonspacing Character Sequences 
Valid nonspacing character sequences are restricted to combinations of diacritical characters 
and alphabetic characters. 

When the Virtual Terminal Mode Processor is running in translate mode, valid nonspacing 
character sequences are always folded into a single character before passing the keyboard 
input to the application. 

A special case exists when the nonspacing character sequence consists of a diacritic 
followed by a space. In this case, the diacritic character itself is displayed and/or sent to the 
application. 

A valid nonspacing character sequence causes a single accented character to be returned. 
A nonspacing character followed by a space character is a valid nonspacing character 
sequence. It returns the accent itself as a single character. 

An example of a valid nonspacing character follows: 

1 st Key Pressed 

Grave 

Grave 

2nd Key Pressed 

z 
Space 

Invalid Nonspacing Character Sequences 

Returned 

e Grave (Ox8a) - 1 character 

Grave Accent (Ox60) - 1 character 

If the nonspacing character sequence is invalid, the HFT subsystem passes the nonspacing 
character to the application followed by the second character of the sequence. Invalid 
nonspacing character sequences include sequences that start with one of these three 
options: 

• A nonspacing character followed by an alphabetic character (the resulting diacritical 
character does not exist in the system) 

• A nonspacing character followed by a nonalphabetic character (numeric, control, function 
key) 

• A nonspacing character followed by another nonspacing character. 

An invalid nonspacing character sequence causes the accent character to be returned, 
followed by the code for the key pressed after the nonspacing key. 

An example of an invalid nonspacing character follows: 

1st Key Pressed 2nd Key Pressed 

Grave z 

Acute PF1 

Returned 

Grave Accent (Ox60) - 2 characters z 
(Ox7a) 

Acute Accent (Oxef) - 1 character PF1 
(Ox1 b5b00000171) 

An invalid nonspacing character sequence (nonspacing character - nonspacing charactet) 
causes the first nonspacing character of the sequence to be passed to the application. The 
next nonspacing character starts a new nonspacing character sequence. 

The High Function Terminal (HFT) Subsystem 9-25 



File 
lusr/include/sys/hft.h 

Related Information 
Query Screen Manager (HFTQSMGR) ioctl Operation, Request Screen Manager 
(HFTCSMGR) ioctl Operation, Set Echo Map (HFTSECHO) ioctl Operation, Reconfigure 
ioctl Operation, Enter Monitor Mode (HFSMON) ioctl Operation, Exit Monitor Mode ioctl 
Operation, Set Keyboard Map HFSKBD ioctl Operation. 
The tty Special File and the tty Subsystem Overview in Files Reference. 
The hft.h File Structures for Query ioctl Operations, hft.h File Structures for Special 
ioctl Operations, hft.h File Structures for read Operations, hft.h File Structures for 
General write Operations, hft.h File Structures for KSR write Operations, hft.h File 
Structures for MOM write Operations in Files Reference. 
Screen Request write Operation, Screen Release write Operation, Set Protocol Modes 

write Operation. 
The tsh Command. 
The select subroutine. 
termio.h File for compatibility with AIX Version 2 in Files Reference. 
HFT Special File in Files Reference. 

9-26 Kernel Extensions and Device Support 



Logical Volume Subsystem 

The following topics are available as guidance in understanding the logical volume 
subsystem: 

• Physical volumes and the logical volume device driver 
• The logical volume device driver 
• Logical volumes and bad blocks. 

Physical Volumes and the Logical Volume Device Driver 
In a discussion of how the logical volume device driver (LVDD) interacts with physical 
volumes the following topics are relevant: 

• Direct access storage devices (DASDs) 
• Physical volumes 

- Implementation limitations 
- Reserved Sectors 

• The logical volume device driver structure 
• Interface to physical disk device drivers 
• Logical volumes and bad blocks. 

Direct Access Storage Devices (DASDs) 
Direct access storage devices (DASDs) are fixed or removable storage devices. Typically, 
these devices are (hard) disks. A fixed-storage device is any storage device defined by the 
person who administers your system during system configuration to be an integral part of the 
system DASDs. The AIX Base Operating System detects an error if a fixed-storage device is 
not available at some time during normal operation. 

A removable storage device is any storage device defined by the person who administers 
your system during system configuration to be an optional part of the system DASD. The 
removable storage device can be removed from the system at any time during normal 
operation. As long as the device is logically unmounted first, the AIX operating system will 
not detect an error. 

The following types of devices are notconsidered DASDs and are not supported by the 
logical volume manager (LVM): 

• Diskettes 
• CD-ROM (compact disk read-only memory) 
• WORM (write once read mostly). 

DASDs Device Block-Level Introduction 

The DASD device block (or sectot) level is the level at which a processing unit may request 
low-level operations on a device block address basis. Typical low-level operations for DASD 
are read-sector, write-sector, read-track, write-track, and format-track. 

A DASD stores data in a way that allows for its rapid retrieval from random addresses as a 
stream of one or more blocks. Many DASDs perform best when the blocks to be retrieved 
are close (in physical address) to each other. 

DASDs consist of a set of flat, circular, rotating platters. Each platter has one or two sides 
on which data is stored. Platters are read by a set of nonrotating, but positionable, read or 

Logical Volume Subsystem 10-1 



read/write heads that move together as a unit. The following are terms used when 
discussing DASD device block operations: 

sector 

track 

head 

cylinder 

Physical Volumes 

A contiguous, fixed-size block of data on a DASD. To maintain compatibility 
with the traditional UNIX(TM) model of DASD, every sector of every AIX 
DASD is defined to be exactly 512 bytes. 
A track is a contiguous set of sectors on a single DASD. A track 
corresponds to the surface area of a single platter swept out by a single 
head while the head remains stationary. 

An AIX DASD contains at least 17 sectors per track. Otherwise, the number 
of sectors per track is not defined architecturally and is device-dependent. 
A typical AIX DASD track can contain 17,35, or 75 sectors. 

An AIX DASD might contain 1024 tracks. The number of tracks per DASD is 
not defined architecturally and is device-dependent. 

A head is a positionable entity that can read and write data from a given 
track located on one side of a platter. Usually a DASD has a small set of 
heads that move from track to track as a unit. 

There must be at least 4 heads on a DASD. Otherwise, the number is not 
defined architecturally and is device-dependent. A typical DASD might have 
8 heads. 

The path swept out on the entire set of platters that can be read or written 
by the set of heads (when stationary). This path is called a cylinder. If a 
DASD has n number of vertically aligned heads, a cylinder is composed of n 
number of vertically aligned tracks. 

A physical volume is a DASD structured for physical level requests. The physical level is the 
level at which a processing unit can request device-independent operations on a physical 
block address basis. A physical volume is composed of the following: 

• A device-dependent reserved area 
• A variable number of physical blocks that serve as DASD descriptors 
• An integral number of partitions, each containing a fixed number of physical blocks. 

When performing I/O at a physical level, no bad-block relocation is supported. Bad blocks 
are not hidden at this level as they are at the logical level. Typical operations at the physical 
level are read-physical-block and write-physical-block. 

The following are terms used when discussing DASD volumes: 

block 

partition 

A contiguous, 512-byte region of a physical volume that corresponds in size 
to a DASD sector. . 

A set of blocks (with sequential cylinder, head, and sector numbers) 
contained within a single physical volume. 

The number of blocks in a partition as well as the number of partitions in a given physical 
volume are both fixed when the physical volume is installed in a volume group. Every 
physical volume in a volume group has exactly the same partition size. There is no 
restriction on the types of DASD devices (for example, SCSI, ESDI, or IPI) that may be 
placed in a given volume group. 

Note: A given physical volume must be assigned to a volume group before that physical 
volume may be used by the AIX Base Operating System. 

1 0-2 Kernel Exte~sions and Device Support 



Physical Volume Implementation Limitations 

When composing a physical volume from a DASD, the following implementation restrictions 
apply to DASD characteristics: 

• 1 to 32 physical volumes per volume group 
• 1 to 1016 physical partitions per physical volume 
• The partition size is restricted to 2** n bytes, for 20 <= n <= 28. 
• The physical block size is restricted to 512 bytes. 

Physical Volume Layout 
A physical volume consists of a logically contiguous string of physical sectors. Sectors are 
numbered 0 through LPSN, where LPSN is the last physical sector number on the physical 
volume. The total number of physical sectors on a physical volume is LPSN + 1. The actual 
physical location and physical order of the sectors is transparent to the sector numbering 
scheme. 

Note: Sector numbering applies to user-accessible data sectors only. Spare sectors and 
customer engineer (CE) sectors are not included. (CE sectors are reserved for use 
by diagnostic test routines or microcode.) 

Reserved Sectors on a Physical Volume 

A physical volume reserves the first 128 sectors to store various types of DASD 
configuration and operation information. The <sys/hd_psn.h> file describes the information 
stored on the reserved sectors. In this file, the locations of the items in the reserved area 
are expressed as physical sector numbers and the lengths of those items are in number of 
sectors. 

The 128-sector reserved area of a physical volume includes a boot record, the bad-block 
directory, and the L VM record. The boot record consists of one sector containing 
information that allows the read-only system (ROS) to boot the system. A description of the 
boot record can be found in the <sys/bootrecord.h> file. 

The boot record also contains the pv Jd field. This field is a 64-bit number uniquely 
identifying a physical volume. This identifier is assigned by the manufacturer of the physical 
volume. However, if a physical volume is part of a volume group the pv_id field may be 
assigned by the LVM. 

The bad-block directory records the blocks on the physical volume that have been 
diagnosed as unusable. The structure of the bad-block directory and its entries can be found 
in the <sys/bbdir.h> file. 

The LVM record consists of one sector and contains information used by the LVM when the 
physical volume is a member of the volume group. The LVM record is described in the 
<Ivmrec.h> file. 

Sectors Reserved for the Logical Volume Manager (LVM) 

If a physical volume is part of a volume group, the physical volume is used by the LVM and 
contains two additional reserved areas. One contains the volume group descriptor 
area/volume group status area and follows the first 128 reserved sectors. The other is an 
area at the end of the physical volume reserved as a relocation pool for bad blocks that must 
be software-relocated. Both of these areas are described by the LVM record. The space 
between these last two reserved areas is divided into equal-sized partitions. 

The volume group descriptor area (VGDA) is divided into the following: 

• The volume group header 

Logical Volume Subsystem 10-3 



This header contains general information about the volume group and a time stamp used 
to verify the consistency of the VGDA. 

• A list of logical volume entries 

The logical volume entries describe the states and policies of logical volumes. This list 
defines the maximum number of logical volumes allowed in the volume group. The 
maximum is specified when a volume group is created. 

• A list of physical volume entries 

The size of the physical volume list is variable because the number of entries in the 
partition map can vary for each physical volume. For example, a 200 M-byte physical 
volume with a partition size of 1 M-byte has 200 partition map entries. 

• A name list 

This list contains the the special file names of each logical volume in the volume group. 

• A volume group trailer 

This trailer contains an ending timestamp for the volume group descriptor area. 

When a volume group is varied online, at least two readable copies of the volume group 
descriptor area are necessary in order to perform recovery operations. (The vary-on 
operation, performed by using the varyonvg command, makes a volume group available to 
the system.) 

A volume group with only one physical volume must contain two copies of the physical 
volume group descriptor area. For any volume group containing more than one physical 
volume, there are at least three on-disk copies of the volume group descriptor area. The 
default placement of these areas on the physical volume is as follows: 

• For the first physical volume installed in a volume group, two copies of the volume group 
descriptor area are placed on the physical volume. 

• For the second volume installed in a volume group, one copy of the volume group 
descriptor area is placed on the physical volume. 

• For the third physical volume installed in a volume group, one copy of the volume group 
descriptor area is placed on the physical volume. The second copy is removed from the 
first volume. 

• For additional physical volumes installed in a volume group, one copy of the volume 
group descriptor area is placed on the physical volume. 

When a vary-on operation is performed, a majority of all volumes containing a volume group 
descriptor area must be able to come online before the vary-on operation is considered 
successful. A majority ensures that at least one copy of the volume group descriptor areas 
used to perform recovery was also one of the volume group descriptor areas used during the 

previous vary-off operation. If this is not the case, the consistency of the volume group 
descriptor area cannot be insured. 

The Logical Volume Device Driver 
The logical volume device driver (LVOD) is a pseudo-device driver that operates on logical 
volumes through the /dev/lvn special file. Like the physical disk device driver, this pseudo 
device driver provides character and block entry pOints with compatible arguments. Each 
volume group has an entry in the kernel device switch table. Each entry contains entry 
points for the device driver and a pointer to the volume group data structure. The logical 
volumes of a volume group are distinguished by their minor numbers. 

1 0-4 Kernel Extensions and Device Support 



Character I/O requests are performed by issuing a read or write on a /dev/rlvn character 
special file for a logical volume. The read or write is processed by the file system SVC 
handler, which calls the LVDD ddread or ddwrite entry point. The ddread or ddwrite entry 
point transforms the character request into a block request. This is done by building a buffer 
for the request and calling the LVDO ddstrategy entry point. 

Block I/O requests are performed by issuing a read or write on a block special file /dev/lvn 
for a logical volume. These requests go through the SVC handler to the bread or bwrite 
block I/O kernel services. These services build buffers for the request and call the LVDD 
ddstrategy entry pOint. The LVDO ddstrategy entry pOint then translates the logical 
address to a physical address (handling mirroring and bad-block relocation) and calls the 
appropriate physical disk device driver. 

On completion of the I/O, the physical disk device driver calls the iodone kernel service on 
the device interrupt level. This service then calls the LVDD I/O completion-handling routine. 
Once this is completed, the LVDD calls the iodone service again to notify the requester that 
the I/O is completed. 

The LVDD is logically split into top and bottom halves. The top half contains the ddopen, 
ddclose, ddread, ddwrite, ddioctl, and ddconfig entry points. The bottom half contains 
the ddstrategy entry pOint, which contains block read and write code. This is done to 
isolate the code that must run fully pinned and has no access to user process context. The 
bottom half of the device driver runs on interrupt levels and is not permitted to page fault. 
The top half runs in the context of a process address space and can page fault. 

Data Structures 
The interface to the ddstrategy entry point is one or more logical buf structures in a list. 

The logical bUf structure is defined in the <sys/buf.h> file and contains all needed 
information about an I/O request, including a pointer to the d.ata buffer. The ddstrategy 

entry point associates one or more (if mirrored) physical buf structures (or pbufs) with each 
logical buf structure and passes them to the appropriate physical device driver. 

The physical buf structure (pbuf) is defined in the <sys/dasd.h> file. It is a standard buf 
structure with some additional fields. These fields are used by the LVDD to track the status 
of the physical requests that correspond to each logical I/O request. A pool of pinned pbuf 
structures is allocated and managed by the LVDD. 

There is one device switch entry for each volume group defined on the system. Each 
volume group entry contains a pointer to the volume group data structure describing it. 

Top Half of Logical Volume Device Driver 
The top half of the LVDD contains the code that runs in the context of a process address 
space and can page fault. It contains the following entry points: 

ddopen 

ddclose 

ddconfig 

ddread 

Called by the file system when a logical volume is mounted, to open the 
logical volume specified. 
Called by the file system when a logical volume is unmounted, to close the 
logical volume specified. 
Initializes data structures for the logical volume device driver. 

Called by the read subroutine to translate character I/O requests to block 
I/O requests. This entry point verifies that the request is on a 512-byte 
boundary and is a multiple of 512 bytes in length. 

When a character request spans partitions or logical tracks (32 - (4K 
pages)), the LVDD ddread routine breaks it into multiple requests. The 

Logical Volume Subsystem 10-5 



ddwrite 

ddioctl 

routine then builds a buffer for each request, and passes it to the LVOO 
ddstrategy entry point, which handles logical block I/O requests. 

If the ext parameter is set (called by read x subroutine), the ddread entry 
point passes this parameter to the LVOO ddstrategy routine in the 
b_options field of the buffer header. 

Called by the write subroutine to translate character I/O requests to block 
I/O requests. The LVOO ddwrite routine performs the same processing for 
a write request as the LVOO ddread routine does for read requests. 
Supports the 10CINFO and XLATE operations, which return LVM 
configuration information. 

Bottom Half of Logical Volume Device Driver 
The bottom half of the device driver supports the ddstrategy entry point. This entry point 
processes all logical block requests and performs the following functions: 

• Validates I/O requests. 
• Checks requests for conflicts (such as overlapping block ranges) with requests currently 

in progress. 
• Translates logical addresses to physical addresses. 
• Handles mirroring and bad-block relocation. 

The bottom half of the LVOO runs on interrupt levels and, as a result, is not permitted to 
page fault. The bottom half of the LVDO is divided into three layers as follows: 

• Strategy 
• Scheduler 
• Physical. 

Each logical I/O request passes down through the bottom three layers before reaching the 
physical disk device driver. Once the I/O is complete, the request returns back up through 
the layers to handle the I/O completion processing at each layer. Finally, control returns to 
the original requestor. 

Strategy Layer 

The strategy layer deals only with logical requests. The ddstrategy entry point is called with 
one or more logical buf structures. A list of buf structures for requests that are not blocked 
are passed to the second layer, the scheduler. 

Scheduler Layer 

The scheduler layer schedules physical requests for logical operations and handles mirroring 
and the mirror write consistency cache. For each logical request the scheduler layer 
schedules one or more physical requests. This involves translating logical addresses to 
physical addresses, handling mirroring, and calling the LVDD physical layer with a list of 
physical requests. 

When a physical I/O operation is complete for one phase or mirror of a logical request, the 
scheduler initiates the next phase (if there is one). If no more I/O operations are required for 
the request, the scheduler calls the strategy termination routine. This routine notifies the 
originator that the request has been completed. 

The scheduler also handles the mirror write consistency cache for the volume group. If a 
logical volume is using mirror write consistency (MWC), then requests for this logical volume 
are held within the scheduling layer until the MWC cache blocks can be updated on the 
target physical volumes. 

1 0-6 Kernel Extensions and Device Support 



Physical Layer 

The physical layer of the LVDD handles startup and termination of the physical request. The 
physical layer calls a physical disk device driver's ddstrategy entry point with a list of buf 
structures linked together. In turn, the physical layer is called by the iodone kernel service 
when each physical request is completed. 

This layer also performs bad-block relocation and detection/correction of bad blocks, when 
necessary. These details are thus hidden from the other two layers. 

Interface to Physical Disk Device Drivers 
Physical disk device drivers should adhere to the following criteria if they are to be accessed 
by the logical volume device driver: 

• Disk block size must be 512 bytes. 
• The physical disk device driver needs to accept a list of requests defined by buf 

structures which are linked together by the av_forw field in each buf structure. 
• For unrecoverable media errors, physical disk device drivers need to set the following: 

- The B_ERROR flag on (defined in the <sys/buf.h> file) in the b_flags field. 
- The b_error field to E_MEDIA (defined in the <sys/errno.h> file). 
- The b_resid field to contain the number of bytes in the request that were not read or 

written successfully. The b_resid field is used to determine the block in error. 

Note: For write requests, the LVDD attempts to hardware-relocate the bad block. If 
this fails, then the block is software-relocated. For read requests, the 
information is recorded and the block is relocated on the next write request to 
that block. 

• For a successful request that generated an excessive number of retries, the device driver 
can return good data. To indicate this situation it should set the following: 

- The b_error field should be set to ESOFT (defined in the <sys/errno.h> file). 
- The b_flags field should have the B_ERROR flag set on 
- The b_resid field should be set to a count indicating the first block in the request that 

had excessive retries. This block is then relocated. 

• The physical disk device driver needs to accept a request of one block with HWRELOC 
(defined in the <sys/lvdd.h> file) set on in the b_options field. This indicates that the 
device driver is to do a hardware relocation on this request. If the device driver does not 
support hardware relocation the following should be set: 

- The b_error field should be set to EIO (defined in the <sys/errno.h> file). 
- The b_flags field should have the B_ERROR flag set on. 
- The b_resid field should be set. 

• The physical disk device driver should support the system dump interface as defined. 
• The physical disk device driver must support write verification on an I/O request. 

Requests for write verification are made by setting the b_options field to WRITEV. This 
value is defined in the <sys/lvdd.h> file. 

Logical Volumes and Bad Blocks 
The physical layer of the LVDD initiates all bad-block processing and isolates all of the 
decision making from the physical disk device driver. This is done so that the physical disk 
device driver does not need to know anything about mirroring. Mirroring is the duplication of 
a physical partition that contains data. 

Logical Volume Subsystem 10-7 



Relocating Bad Blocks 
The physical layer of the logical volume device driver (LVDD) checks each physical request 
to see if there are any known software-relocated bad blocks in the request. The LVDD 
determines if a request contains known software-relocated bad blocks by hashing the 
physical address. Then, a hash chain of the LVOD defects directory is searched to see if 
any bad-block entries are in the address range of the request. 

If bad blocks exist in a physical request, the request is split into three separate pieces. The 
first piece contains any blocks up to the bad block. The second contains the relocated block 
(the relocated address is specified in the bad-block entry) of the defects directory. The third 
piece contains any blocks after the bad block to the end of the request. These separate 
pieces are processed sequentially. 

Once the I/O for the first of the separated pieces has completed, the iodone kernel service 
calls the LVOD physical layer's termination routine (specified in the b_done field of the buf 

structure). The termination routine initiates I/O for the second piece of the original request 
(containing the relocated block), and then for the remaining (third) piece. Once the entire 
physical operation is completed, the appropriate scheduler's policy routine (in the second 
layer of the LVDD) is called to start the next phase of the logical operation. 

Detecting and Correcting Bad Blocks 
If a logical volume is mirrored, a newly detected bad block is fixed by relocating the block, 
reading the mirror, and writing the contents of the good mirror to the relocated block. With 
mirroring, the user need not even know when bad blocks are found. However, the physical 
disk device driver does in fact log permanent I/O errors so the user can determine the rate of 
media surface errors. 

When a bad block is detected during I/O, the physical disk device driver sets the error fields 
in the buf structure to indicate that there was a media surface error. The physical layer of 
the LVDD then initiates any bad-block processing that must be done. 

If the operation was a non-mirrored read, the block is not relocated because the data in the 
relocated block is not initialized until a write is performed to the block. To support this 
delayed relocation, an entry for the bad block is put into the LVOD defects directory and into 
the bad-block directory on disk. These entries contain no relocated block address and the 
status for the block is set to indicate that relocation is desired. 

On each I/O request the physical layer checks whether there are any bad blocks in the 
request. If the request is a write and it contains a block that is in a relocation-desired 
state, the request is sent to the physical disk device driver with safe hardware relocation 
requested. If the request is a read, an I/O error is returned to the original requestor. 

If the operation was for a mirrored read, a request to read one of the other mirrors is 
initiated. If the second read is successful, then the read is turned into a write request and 
the physical disk device driver is called with safe hardware relocation specified to fix the bad 
mirror. 

If the hardware relocation fails or the device does not support safe hardware relocation, the 
physical layer of the LVDD attempts software relocation. At the end of each volume is a 
reserved area used by the LVDD as a pool of relocation blocks. When a bad block is 
detected and the disk device driver is unable to relocate the block, the LVOD picks the next 
unused block in the relocation pool and writes to this new location. A new entry is added to 
the LVOO defects directory in memory (and to the bad-block directory on disk) that maps the 
bad-block address to the new relocation block address. Any subsequent I/O requests to the 
bad-block address are routed to the relocation address. 

1 0-8 Kernel Extensions and Device Support 



Related Information 
The buf structure. 
The Ivdd special file. 
The write subroutine, readx subroutine. 
The iodone kernel service, the bread kernel service, bwrite kernel service. 
Communication 110 Subsystem on page 8-1. 
SCSI Subsystem on page 12-1. 
Bad Block Relocation Policy in General Programming Concepts. 
The Vary-On and Vary-Off Process in General Programming Concepts. 
Understanding Volume Groups in General Programming Concepts. 
Device Driver Classes on page 2-1,and Device Driver Roles on page 2-2, Device 
Driver Structure on page 2-3. 
Logical Volume Storage Overview in General Programming Concepts. 

Logical Volume Subsystem 10-9 





Printer Addition Management Subsystem 

If you are configuring a printer for your system, there are basically two types of printers: 
printers already supported by the AIX operating system and new printer types. Printers 
Provided with AIX Version 3 lists printers that are already supported. This chapter covers the 
following topics: 

• Adding a New Printer Type to Your System 
• Adding a Printer Definition 
• Adding a Printer Formatter to the Printer Backend. 

Printer Types Currently Supported by IBM 
To configure a supported type of printer, you need only to run the mkvirprt command to 
create a Customized printer file for your printer. This Customized printer file, which is in the 
lusr/lpd/pio/custom directory, describes the specific parameters for your printer. 

Printer Overview for System Management discusses how to add, delete, and change 
printers and print queues in the system. 

Printer Types Currently Unsupported by IBM 
To configure a currently unsupported type of printer, you must develop and add a Predefined 
printer definition for your printer. This new option is then entered in the list of available 
choices when the user selects a printer to configure for the system. The actual data used by 
the printer subsystem comes from the Customized printer definition created by the mkvirprt 
command. 

Refer to these two examples: 

• Example of the Simple Addition of a New Printer describes how to add a printer that is 
similar to an already supported printer. 

• Example of the Complex Addition of a New Printer describes how to add a printer that 
does not closely resemble an already defined printer type. 

Adding a New Printer Type to an AIX System outlines generic instructions for adding either 
type of printer. How to Add an Undefined Printer lists specific steps for adding a new type of 
printer to your RISC System/6000. 

Adding an Unsupported Device to the System offers an overview of the major steps required 
to add an unsupported device of any type to your system. 

Adding a New Printer Type to Your System 
To add an unsupported printer to your system, you must add a new Printer definition to the 
printer directories. For more complicated scenarios, you might also need to add a new 
printer-specific formatter to the printer backend. 

Adding a New Printer Definition 
There are two ways of adding a new Printer definition to the Predefined printer directory. If 
you are making only relatively simple modifications, you can edit an existing printer definition 
to create a Customized Printer definition for your new printer. See How to Add an Undefined 
Printer for information about making these minor changes. 

Kernel Extensions and Device Support 11-1 



Additional Steps for Adding a New Printer Type 
However, if you want the new Printer definition to carry the name of the new printer, you 
must develop a new Predefined definition to carry the new printer information besides 
adding a new Printer definition. Use the piopredef command to do this. 

Steps for adding a new printer-specific formatter to the printer backend are discussed in 
Adding a Printer Formatter to the Backend. 

Note: These instructions apply to the addition of a new printer definition to the system, not 
to the addition of physical printer device itself. For information on adding a new 
printer device, refer to device configuration and management. If your new printer 
requires an interface .other than the parallel or serial interface provided by the AIX 
operating system, you must also provide a new device driver. Device Driver 
Introduction provides guidance on writing your own device driver. 

Adding a Printer Definition 
To add a new printer to the system, you must first create a description of the printer by 
adding a new Printer definition to the printer definition directories. 

Typically, to add a new Printer definition to the database, you first modify an existing printer 
definition and then create a Customized Printer definition in the Customized printer directory. 

Once you have added the new Customized printer definition to the directory, the mkvirprt 
command uses it to present the new printer as a choice for printer addition and selection. 
Since the new printer definition is a Customized printer definition, it appears in the list of 
printers under the name of the original printer from which it was customized. 

A totally new printer must be added as a Predefined printer definition in the 

/usr/lpd/pio/predef directory. If the user chooses to work with printers once this new 
Predefined printer definition is added to the predefined printer directory, the mkvirprt 
command can then enumerate all the printers in that directory. The added printer appears 
on the list of printers given to the user as if it had been supported by IBM all along. Specific 
information about this printer can then be extended, added, modified, or deleted, as 
necessary. 

Printers Provided with AIX Version 3 lists the supported printer types and names of 
representative printers. 

Adding a Printer Formatter to the Printer Backend 
If your new printer's data stream differs significantly from one of the numerous printer data 
streams currently handled by the AIX operating system, you must define a new backend 
formatter. 

Adding a new formatter does not require the addition of a new backend. Instead, all you 
typically need are modifications to the formatter commands associated with that printer 
under the supervision of the existing printer back end. If a new backend is required, see 
Understanding the Printer Backend. 

Subroutines for Print Formatters 
The pioformat formatter driver provides these six subroutines for the print formatters that it 
loads, links, and drives: 

piocmdout 

pioexit 

piogetstr 

11-2 The Printer Subsystem 

Outputs an attribute string for a printer formatter. 

Exits from a printer formatter. 

Retrieves an attribute string for a printer formatter. 



piogetopt 

piogetvals 

piomsgout 

Used by printer formatters to overlay default flag values from the database 
with override values from the command line. 

Initializes a copy of the database variables for a printer formatter. 

Sends a message from a printer formatter. 

The pioformat formatter driver requires a print formatter to contain these five function 
routines: 

initialize 

lineout 

passthru 

restore 

setup 

Related Information 

Performs printer initialization. 

Formats a print line. 

Passes through the input data stream without modification or formats the 
input data stream without assistance from the formatter driver. 

Restores the printer to its default state. 

Performs setup processing for the print formatter. 

The mkvirprt command. 
Printer Overview for System Management in General Concepts and Procedures. 
Writing a Device Driver on page 2-1. 
Printers Provided with AIX Version 3, Printer Overview for System Management, 
Understanding the Printer Backend, How to Add an Undefined Printer in General. 
Concepts and Procedures. 

Kernel Extensions and Device Support 11-3 



11-4 The Printer Subsystem 



The SCSI Subsystem 

The following topics are available as guidance in understanding the SCSI subsystem: 

• The sc_buf Structure 
• Execution of I/O Requests 
• SCSI Device Driver Internal Commands 
• SCSI Error Recovery 
• Required SCSI Adapter Device Driver ioctl Commands 
• A Typical SCSI Driver Transaction Sequence 
• Other SCSI Design Considerations. 

The following information about SCSI device and adapter device drivers is available in the 
Calls and Subroutines Reference: 

• The SCSI cdrom Device Driver 
• The SCSI scdisk Device Driver 
• The SCSI rmt Device Driver 
• The SCSI Adapter Device Driver. 

Introduction 
This section is intended to describe the AIX interface between a SCSI device driver and a 
SCSI adapter device driver. The primary audience for this section consists of those wishing 
to design and write a SCSI device driver that interfaces successfully with an existing AIX 
SCSI adapter device driver. A second audience consists of those wishing to design and 
write a SCSI adapter device driver that interfaces successfully with existing SCSI device 
drivers. 

Terminology 

This section frequently refers to both a SCSI device driver and a SCSI adapter device driver. 
These are two distinct AIX device drivers working together in a layered approach to support 
attachment of a range of SCSI devices. The SCSI adapter device driver is the lower device 
driver of the pair, and the SCSI device driver is the upper device driver. 

Responsibilities of the SCSI Adapter Device Driver 
The purpose of the SCSI adapter device driver (the lower layer) is to provide the software 
interface to the system hardware. This hardware includes the SCSI bus hardware and any 
other system I/O hardware required to execute an I/O request. The SCSI adapter device 
driver should hide the details of the I/O hardware from the SCSI device driver, allowing the 
upper driver to be written with as little knowledge of the system hardware as possible. The 
software interface to this layer of code is designed with this in mind. 

The SCSI adapter device driver handles everything related to managing the SCSI bus, but 
has only general knowledge of SCSI devices. For example, it knows what a SCSI command 
is, and how to send it, but knows nothing of the contents of the SCSI command being sent. 
Knowledge of device specifics are left to the upper layer. This interface allows the upper 
driver to talk with different SCSI bus adapters without requiring special code paths for each 
adapter. The SCSI adapter device driver also provides recovery and logging for errors 
related to the SCSI bus and system I/O hardware. 

SCSI Subsystem 12-1 



Responsibilities of the SCSI Device Driver 
The purpose of the SCSI device driver (the upper layer) is to provide the rest of the AIX 
operating system with the software interface to a given SCSI device (or class of SCSI 
devices). It knows what SCSI commands are required to control a particular SCSI device or 
device class. The SCSI device driver builds I/O requests containing device SCSI commands 
and sends them to the SCSI adapter device driver in the sequence needed to operate the 
device successfully. However, the SCSI device driver knows nothing about how to manage 
adapter resources or how to give the SCSI command to the adapter. Knowledge of adapter 
and system specifics are left to the lower layer. 

The SCSI device driver also provides recovery and logging for errors related to the SCSI 
device it controls. 

The AIX operating system provides several kernel services that allow the SCSI device driver 
to make calls to SCSI adapter device driver entry points without knowing about the actual 
name or address of those entry pOints. The logical file system kernel services can provide 
more information. 

General Information 
The interface between the SCSI device driver and the SCSI adapter device driver is 
accessed through calls to the SCSI adapter device driver open, close, ioctl, and strategy 
routines. I/O requests are queued to the SCSI adapter device driver through calls to its 
strategy entry pOint. 

Communication between the SCSI device driver and the SCSI adapter device driver for a 
particular I/O request is made through the sc_buf structure, which is passed to and from the 
strategy routine in the same way a standard driver uses a struct buf structure. 

Further information about the interface between SCSI device and adapter device drivers is 
available: 

• The sc_buf Structure 
• Execution of Spanned and Unspanned SCSI I/O Requests 
• SCSI Error Recovery 
• SCSI Device Driver Internal Commands 
• Requirements for SCSI ioctl Operations 
• A Typical SCSI Driver Transaction Sequence 
• Other SCSI Design Considerations. 

Information about the following SCSI device and adapter device drivers is available: 

• The SCSI cdrom device driver 
• The SCSI scdisk device driver 
• The SCSI rmt device driver 
• The SCSI adapter device driver. 

The sc buf Structure 
- The sc_buf structure is used for communication between the SCSI device driver and the 

SCSI adapter device driver for a particular I/O request. This structure is passed to and from 
the strategy routine in the same way a standard driver uses a struct buf structure. 

Fields in the sc buf Structure 

12-2 

The-sc_buf structure contains certain fields used to pass a SCSI command and associated 
parameters to the SCSI adapter device driver. Other fields within this structure are used to 
pass returned status back to the SCSI device driver. The sc_buf structure is defined in the 
<sys/scsi.h> header file. 

Kernel Extensions and Device Support 



Fields in the sc_buf structure are to be used as follows: 

• Reserved fields should be set to a value of 0, except where noted otherwise. 
• The bufstruct field contains a copy of the AIX standard buf buffer structure that 

documents the I/O request. Included in this structure, for example, are the buffer 
address, byte count, and transfer direction. The b_work field in the buf structure is 
reserved for the use of the SCSI adapter device driver, if needed. The current definition of 
the buf structure can be found in the <sys/buf.h> include file. 

• The bp field points to the original buffer structure received by the SCSI Device Driver 
from the caller, if any. This can be a chain of entries in the case of spanned transfers 
(SCSI commands that transfer data from or to more than one system memory buffer). A 
NULL pointer indicates a non-spanned transfer. A NULL value specifically tells the SCSI 
adapter device driver that all the information needed to perform the DMA data transfer is 
contained in the bufstruct fields of the sc_buf structure. 

• The scsi_command field, defined as a scsi structure, contains the SCSI 10, SCSI 
command length, SCSI command, and a flag variable: 
- The scsLlength field is the number of bytes in the actual SCSI command. This is 

normally decimal 6,10, or 12. 
- The scsLid field is the SCSI physical unit 10. 
- The scsLflags field contains the following bit flags: 

SC_NODISC Do not allow the target to disconnect during this command. 
SC_ASYNC Do not allow the adapter to negotiate for synchronous transfer to the 

SCSI device. 

For normal use, the SC_NODISC bit should not be set, as it allows a device, while 
executing commands, to monopolize the SCSI bus, possibly to the detriment of other 
devices and the system. The SC_NODISC bit may be set when it is desirable for a 
particular device to keep control of the bus once it has successfully arbitrated for it. 
This may be true when this is the only device on the SCSI bus (or the only device that 
will be in use for a period of time). For performance reasons, it may not be desirable 
to go through SCSI re-selections to save SCSI bus overhead on each command. 

For normal use, the SC_ASYNC bit must not be set. It should be set only in cases 
where a previous command to the device ended in an unexpected SCSI bus free 
condition. This condition is noted as SC_SCSI_BUS_FAULT in the 
generaLcard_status field of the sc_cmd structure. Since other errors may also 
result in the SC_SCSLBUS_FAULT flags being set, the SC_ASYNC bit should only 
be set on the last retry of the failed command. 

- The sc_cmd structure contains the physical SCSI command block. The 6 to 12 bytes 
of a single SCSI command are stored in consecutive bytes, with the opcode and logical 
unit identified individually. The sc_cmd structure contains the following fields: 

• The scsLop_code field is the standard SCSI opcode for this command. 
• The lun field is the standard SCSI logical unit (0-7) for this physical SCSI device 

controller. Typically, there will be one LUN per controller (LUN=O) for devices with 
imbedded controllers. Note that the actual LUN 10 is only the upper three bits of 
this byte. 

• The scsi_bytes field is the remaining command-unique field of the SCSI command 
block. The actual number of bytes in this field depends on the vaule in the 
scsLop_code field. 

• The timeout_value field is the timeout limit (in seconds) to be used for completion of this 
command. A timeout value of 0 means no timeout should be applied to this I/O request. 

• The status_validity field contains the following bit flags: 

SCSI Subsystem 12-3 



12-4 

The scsi_status field is valid. 

The generaLcard_status field is valid. 

Note: The following order of precedence should be followed by SCSI device drivers 
when analyzing the returned status: 

- If the sc_buf.bufstruct.b_flags field has the B_ERROR flag set, then some error has 
occurred and the sc_buf.bufstruct.b_error field contains a valid errno value. 

If the b_error field contains the ENXIO value, two interpretations are possible. Either 
the command simply needs to be restarted, or it was canceled at the request of the 
SCSI device driver. 

If the b_error field is found to contain the EIO value, then either one or no flag will be 
set in the sc_buf.status_validity field. If some flag has been set, then an error in 
either the scsLstatus or generaLcard_status field is being reported. 

If the status_validity field is zero, then the sc_buf.bufstruct.b_resid field should be 
examined to see if this command was, in fact, in error. There are many cases where 
the b_resid field is nonzero and no error has occurred. The SCSI device driver must 
evaluate the b_resid field with regard to the SCSI command being sent and the SCSI 
device being driven to decide whether an error has occurred. 

- If the sc_buf.bufstruct.b_flags field does not have the B_ERROR flag set, then no 
error is being reported. However, even in this case, the SCSI device driver should 
examine the b_resid field to check for cases where less data was transferred than 
expected. For some SCSI commands, this occurrence may still not represent an error. 
In this case, the SCSI device driver must decide if an error has occurred. 

If a nonzero b_resid field is found to represent an error condition, the SCSI device 
driver must be aware that the device queue has not been halted by the SCSI adapter 
device driver. Note that here it is possible for one or more succeeding queued 
commands to be sent to the adapter (and possibly the device). Recovering this 
situation is the responsibility of the SCSI device driver. 

- In any of the above cases, if sc_buf.bufstruct.b_flags has the B_ERROR flag set, 
then the queue of the device in question has been halted. The first sc_buf structure 
sent to recover the error (or to continue operations) must have SC_RESUME set in the 
sc_buf.flags field . 

• The scsi_status field (in the sc_buf structure) provides valid SCSI command completion 
status when its status_validity bit is nonzero. The sc_buf.bufstruct.b_error field should 
be set to EIO any time the scsi_status is valid. Typical status values include: 

SC_GOOD_STATUS The target successfully completed the command. 
SC_CHECK_CONDITION 

The target is reporting an error, exception, or other conditions. 
SC_BUSY _STATUS The target is currently busy and cannot accept a command now. 
SC_RESERVATION_CONFLICT 

The target is reserved by another initiator and cannot be 
accessed . 

• The generaLcard_status field is valid when its status_validity bit is nonzero. The 
sC_buf.bufstruct.b_error field should be set to EIO any time the general_card_status 
field is valid. This field contains generic SCSI adapter card status and is intentionally 
general in coverage so that it can report error status from any typical SCSI adapter. Some 

Kernel Extensions and Device Support 



of these error conditions are indicative of a SCSI device failure. Others are SCSI bus- or 
adapter-related. 

If an error is detected during execution of a SCSI command, and the error prevented the 
SCSI command from actually being sent to the SCSI bus by the adapter, then it should 
generally be processed or recovered, or both, by the SCSI adapter device driver. 

If the error is recovered successfully by the SCSI adapter device driver, then the error is 
logged, as appropriate, but is not reflected in the generaLcard_status byte. If the error 
cannot be recovered by the SCSI adapter device driver, then the appropriate 
general_card_status bit is set and the sc_buf structure is returned to the SCSI device 
driver for further processing. 

If an error is detected after the command was actually sent to the SCSI device, then it 
should generally be processed or recovered, or both, by the SCSI device driver. 

For error logging, the SCSI adapter device driver logs SCSI bus- and adapter-related 
conditions while the SCSI device driver logs SCSI device-related errors. In the following 
description, a capital letter A after the name indicates that the SCSI adapter device driver 
handles error logging. A capital letter H indicates that the SCSI device driver handles 
error logging. 

SC_HOST_IO_BUS_ERR (A) The system I/O bus has generated or detected an 
error during a DMA transfer. 

SC_SCSI_BUS_FAULT (H) The SCSI bus protocol or hardware has failed. 
SC_CMD_TIMEOUT (H) The command involved timed out before completion. 
SC_NO_DEVICE_RESPONSE (H) The target device would not respond to selection 

phase.S 
C_ADAPTER_HDW_FAILURE (A)The adapter is indicating an onboard hardware 

failure. 
SC _ADAPTER_SFW _FAILURE (A) 

The adapter is indicating microcode failure. 
SC_FUSE_OR_ TERMINAL_PWR (A) 

The adapter is indicating a blown terminator fuse or 
bad termination. 

SC_SCSI_BUS_RESET (A) The adapter is indicating that the SCSI Bus has been 
reset. 

• The flags field contains bit flags sent from the SCSI device driver down to the SCSI 
adapter device driver. The following flags are defined: 

SC_RESUME When set, means the SCSI adapter device driver should resume 
transaction queuing for this ID/LUN. Error recovery is complete after a 
SCIOHALT transaction, check condition, or severe SCSI bus error. This 
flag is used to restart the SCSI adapter device driver following a reported 
error. 

SC_DELAY_CMD 

When set, means the SCSI adapter device driver should delay sending 
this command following a SCSI reset or BDR to this device by at least the 
number of seconds specifed to the SCSI adapter device driver in its 
configuration information. For SCSI devices that do not require this 
function, this flag should not be set. 

Execution of I/O Requests 
During normal processing, many transactions are queued in the SCSI device driver. As the 
SCSI device driver processes these transactions and passes them down to the SCSI 
adapter device driver, the SCSI device driver moves them to the in-process queue. When 
the SCSI adapter device driver returns through the iodone service with one of these 

SCSI Subsystem 12-5 



transactions, the SCSI device driver will either recover any errors on the transaction or 
return through iodone to the calling level. 

The SCSI device driver must send only one sc_buf structure per call to the SCSI adapter 
device driver. Thus, the sC_buf.bufstruct.av_forw pOinter should be NULL when given to 
the SCSI adapter device driver, which indicates that this is the only request. The SCSI 
device driver can queue multiple sc_buf requests by making multiple calls to the SCSI 
adapter device driver strategy routine. 

When the transactions are passed from the SCSI device driver down to the SCSI adapter 
device driver, they are placed in the SCSI adapter device driver's own queues. As they are 
processed, the SCSI adapter device driver returns the transaction through the iodone kernel 
service to the SCSI device driver. The SCSI adapter device driver must always process 
requests in the order received. 

Spanned (Consolidated) Commands 

12-6 

Some kernel operations may be composed of sequential operations to a device. One 
example would be writing consecutive blocks to disk. These mayor may not be in physically 
consecutive buffer pool blocks. 

To enhance SCSI bus performance, the SCSI device driver should consolidate multiple 
queued requests when possible into a single SCSI command. To allow the SCSI adapter 
device driver the ability to handle the scatter/gather operations required, sc_buf.bp should 
always point to the first buf structure entry for the spanned transaction. A NULL-terminated 
list of additional struct buf entries should be chained from the first (through the buf.av_forw 
field), giving the SCSI adapter device driver enough information to perform the DMA 
scatter/gather required. This includes at least the buffer starting address, its length, and the 
buffer's cross memory descriptor. 

The spanned requests should always be for requests in either the read or write direction, 
but, of course, not both, as the SCSI adapter device driver must be given a single SCSI 
command to handle the requests. The spanned request should always be made up of 
complete I/O requests (the additional struct bufs). The SCSI device driver should not 
attempt to use partial requests to reach the maximum transfer size. 

The maximum transfer size is actually adapter dependent. The 10CINFO ioctl operation can 
be used to discover the SCSI adapter device driver's maximum a"owable transfer size. To 
ease the design, implementation, and testing of components that may need to interact with 
multiple SCSI adapter device drivers, a required minimum size has been established that all 
SCSI adapter device drivers must be capable of supporting. The value of this minimum 
maximum transfer size is defined as the following value in the <sys/scsi.h> header file. 

SC_MAXREQUEST /* maximum transfer request for a single */ 
/* SCSI command (in bytes) */ 

If a transfer size larger than the supported maximum is attempted, the SCSI adapter device 
driver returns a value of EINVAL in the sc_buf.bufstruct.b_error field. 

Due to system hardware requirements, the SCSI device driver should only consolidate 
commands that are memory page aligned at both their starting and ending addresses. 
Specifically, this applies to the consolidation of inner memory buffers. That is, the ending 
address of the first buffer, and the starting address of a" subsequent buffers should be 
memory page aligned. However, the starting address of the first memory buffer and the 
ending address of the last need not be memory page aligned. 

The purpose of consolidating transactions is to decrease the number of SCSI commands 
and bus phases required to perform the required operation. The time required to maintain 
the simple chain of buf structure entries is significantly less than the overhead of multiple 
(even two) SCSI bus transactions. 

Kernel Extensions and Device Support 



Fragmented Commands 
Single I/O requests larger than the maximum size must be broken up by the SCSI device 
driver. Note that for this case, known as a fragmented command, the sc_buf.bp should be 
NULL so that the SCSI adapter device driver knows it should use only the information in the 
sc_buf structure to prepare for the DMA operation. 

SCSI Device Driver Internal Commands 
During initialization, error recovery, and open or close operations, SCSI device drivers 
initiate some transactions not directly related to an operating system request. These 
transactions are called internal commands and are relatively simple to handle. 

Internal commands differ from operating system-initiated transactions in several ways. The 
primary difference is that the SCSI device driver is required to generate a struct buf that is 
not related to a specific request. Also, the actual SCSI commands are typically more 
control-oriented than data transfer-related. 

There are no special requirements for commands with short data phase transfers (less than 
or equal to 256 bytes), other than that the SCSI device driver must have pinned the memory 
being transferred into or out of. However, due to system hardware conSiderations, additional 
precautions must be taken for data transfers into system memory pages when the transfers 
are larger than 256 bytes. The consideration is that any system memory area with a DMA 
data operation in progress causes the entire memory page that contains it to become 
inaccessible. 

As a result of this consideration, a SCSI device driver that initiates an internal command with 
more than 256 bytes must have preallocated and pinned an area of some multiple of the 
system page size. It must not then place in this area any other data areas that it may need to 
access while I/O is being performed into or out of that page. Memory pages so allocated 
must be avoided by the device driver from the moment the transaction is passed to the 
adapter device driver until the device driver's iodone routine is called for the transaction 
(and any other transactions to those pages). 

SCSI Error Recovery 
If an error such as a check condition or hardware failure occurs, transactions queued within 
the SCSI adapter device driver are terminated abnormally with iodone calls. The transaction 
active during the error is returned with the sC_buf.bufstruct.b_error field set to EIO. Other 
transactions in the queue are returned with the sC_buf.bufstruct.b_error field set to 
ENXIO. The SCSI device driver should process or recover the condition, rerunning any 
mode selects or device reservations to properly recover from this condition. After this 
recovery, it should reschedule the transaction that had the error. In many cases, the SCSI 
device driver need only retry the failed operation. 

The SCSI adapter device driver should never retry a SCSI command on error after the 
command has successfully been given to the adapter. Certain devices's commands cannot 
be retried immediately after a failure (for example, tapes and other sequential access 
devices). If such an error occurs, the command should be failed with appropriate error status 
and returned through an iodonecall to the SCSI device driver for error recovery. Only the 
SCSI device driver that originally issued the command knows if the command can be retried 
on the device. The SCSI adapter device driver must only retry commands that were never 
successfully transferred to the adapter. In this case, if retries are successful, the sc_buf 
status should not reflect an error. However, the SCSI adapter device driver should perform 
error logging on the retried condition. 

The first transaction passed to the SCSI adapter device driver during error recovery must 
include a special flag. This SC_RESUME flag in the sc_buf.flags field must be set to inform 
the SCSI adapter device driver that the SCSI device driver has recognized the fatal error 

SCSI Subsystem 12-7 



and is beginning recovery operations. Any transactions passed to the SCSI adapter device 
driver, after the fatal error occurs and before the SC_RESUME transaction is issued, should 
be flushed; that is, returned with an error type of ENXIO through an iodone call. 

Note: If a SCSI device driver continues to pass transactions to the SCSI adapter device 
driver after the SCSI adapter device driver has flushed the queue, these transactions 
are also flushed with an error return of ENXIO through the iodone service. This 
gives the SCSI device driver a positive indication of all transactions flushed. 

Required SCSI Adapter Device Driver ioctl Commands 

12-8 

Various ioctl operations must be performed for proper operation of the SCSI adapter device 
driver. The ioctl operations described here are the minimum set of commands the SCSI 
adapter device driver must implement to support SCSI device drivers. Other operations may 
be required in the SCSI adapter device driver to support, for example, system management 
facilities and diagnostics. 

Every SCSI adapter device driver must support the IOCINFO ioctl operation. The structure 
to be returned to the caller is the devinfo structure, including the scsi union definition for the 
SCSI adapter, which can be found in the <sys/devinfo.h> header file. The SCSI device 
driver should request the IOCINFO ioctl operation (probably during its open routine) to get 
the adapter's maximum transfer size. 

For each of the ioctl operations described here, the arg parameter must contain a long 
integer. In this field, the least significant byte is the SCSI LUN and the next least significant 
byte is the SCSIID value. (The upper 2 bytes are reserved and should be set to zero.) This 
provides the information required to allocate or deallocate resources and perform SCSI bus 
operations for the ioctl operation requested. 

The following SCIOSTART and SCIOSTOP operations must be sent by the SCSI device 
driver (for the open and close routines, respectively) for each device. They cause the SCSI 
adapter device driver to allocate and initialize internal resources. The SCIOHALT ioctl is 
used to abort pending or running commands, usually after signal processing by the SCSI 
device driver. This might be used by a SCSI device driver to abort an operation instead of 
waiting for completion or timeout. The SCIORESET command is provided for clearing device 
hard errors and competing initiators's reservations during open processing by the SCSI 
device driver. 

Note: The SCSI adapter device driver ioctl operations can only be called from the process 
level. They cannot be executed from a call on any more favored priority level. 
Attempting to call them from a more favored priority level can result in a system 
crash. 

The following information is provided on the various operations: 

• SCIOSTART 

This operation allocates and initializes SCSI device-dependent information local to the 
SCSI adapter device driver. This should be run only on the first open of an ID/LUN 
device. Subsequent SCIOSTART commands to the same ID/LUN will fail unless an 
intervening SCIOSTOP command is issued. 

The following values for the errno global variable should be supported: 

o Indicates successful completion. 

EIO 

EINVAL 

Indicates lack of resources or other error preventing device allocation. 

Indicates that the selected SCSIID and LUN are already in use, or are 
the same SCSIID as the adapter's. 

Kernel Extensions and Device Support 



ETIMEDOUT Indicates that the command did not complete. 

• SCIOSTOP 

This operation deallocates resources local to the SCSI adapter device driver for this 
SCSI device. This should be run on the last close of an ID/LUN device. If an SCIOSTART 
operation has not been previously issued, this command will fail. 

The following values for the errno global variable should be supported: 

o Indicates successful completion. 

EIO Indicates error preventing device deallocation. 

EINVAL Indicates that the selected SCSI 10 and LUN have not been started. 

ETIMEDOUT Indicates that the command did not complete. 

• SCIOHALT 

This operation halts outstanding transactions to this ID/LUN device and causes the SCSI 
adapter device driver to stop accepting transactions for this device. This situation 
remains in effect until the SCSI device driver sends another transaction with the 
SC_RESUME flag set (in the sc_buf.flags field) for this ID/LUN combination. The 
SCIOHALT causes the SCSI adapter device driver to fail the command in progress, if 
any, as well as all queued commands for the device with ENXIO in the 
sc_buf.bufstruct.b_error field. If an SCIOSTART operation has not been previously 
issued, this command fails. 

The following values for the errno global variable should be supported: 

o Indicates successful completion. 

EIO Indicates an unrecovered lID error occurred. 

EINVAL Indicates that the selected SCSI 10 and LUN have not been started. 

ETIMEDOUT Indicates that the command did not complete. 

• SCIORESET 

This operation causes the SCSI adapter device driver to send a SCSI Bus Device Reset 
(BOR) message to the selected SCSI 10. Note that for this command, the LUN in the arg 
parameter should be set by the SCSI device driver to the LUN 10 of a LUN on this SCSI 
10, which has been successfully started using the SCIOSTART operation. 

It is intended that the SCSI device driver only use this command when directed to do a 
forced open, which occurs in two possible situations. One is when it is desirable to force 
the device to drop a SCSI reservation. The other is when the device needs to be reset in 
order to clear an error condition (for example, when running diagnostics on this device). 

In normal system operation, this command should not be issued, as it would force the 
device to drop a SCSI reservation another initiator (and, hence, another system) may 
have. If an SCIOSTART operation has not been previously issued, this command fails. 

The following values for the errno global variable should be supported: 

o Indicates successful completion. 

EIO Indicates an unrecovered I/O error occurred. 

EINVAL Indicates that the selected SCSI 10 and LUN have not been started. 

ETIMEDOUT Indicates that the command did not complete. 

SCSI Subsystem 12-9 



A Typical SCSI Driver Transaction Sequence 
A simplified sequence of events for a transaction between a SCSI device driver and a SCSI 
adapter device driver follows. In this sequence, routine names preceded by a dd_ are part of 
the SCSI device driver, while those preceded by a sc_ are part of the SCSI adapter device 
driver. 

1. The SCSI device driver receives a call to its dd_strategy routine and any internal 
queuing that may be required occurs in this routine. The dd_strategy entry pOint then 
triggers the operation by calling the dd_start entry point. The dd_start routine merely 
invokes the sc_strategy entry point by calling the devstrategy kernel service with the 
relevant sc_buf structure as a parameter. 

2. The sc_strategy entry point initially checks the sc_buf structure for validity. These 
checks include validating the devno field, matching the SCSIID/LUN to internal tables 

for configuration purposes, and validating the request size. 

3. Although the SCSI adapter device driver cannot re-order transactions, it does perform 
queue chaining. If no other transactions are pending for the requested device, the 
sc_strategy routine immediately calls the sc_start routine with the new transaction. If 
there are other transactions pending, this transaction is added to the tail of the device 
chain. 

4. At each interrupt, the sC_intr interrupt handler verifies the current status. The SCSI 
adapter device driver fills in the sc_buf status_validity field, updating the scsi_status 
and generaLcard_status fields as required. The SCSI adapter device driver also fills in 
the bufstruct.b_resid field with the number of bytes not transferred from the request. If 
all the data was transferred, the b_resid field should be set to a value of zero. When a 
transaction completes, the sc_intr routine causes the sc_buf entry to be removed from 
the device queue and invokes the iodone kernel service, passing the just dequeued 
sc_buf structure for the device as the parameter. The sc_start routine is then re-invoked 
to process the next transaction on the device queue. The iodone kernel service then 
invokes the SCSI device driver dd_iodone entry point, signalling to the SCSI device 
driver that the particular transaction has completed. 

5. The SCSI device driver dd_iodone routine investigates the I/O completion codes in the 
sc_buf status entries and performs error recovery, if required. If the operation completed 
correctly, the SCSI device driver dequeues the original buffer structure (or structures). It 
then calls the iodone kernel service with the original buffer pOinter (or pointers) to notify 
the request's originator. 

Other SCSI Design Considerations 
The following pOints should be considered in the design of SCSI device and adapter device 
drivers: 

• Responsibilities of the SCSI device driver 
• SCSI options to the openx subroutine 
• Using the SC_FORCED_OPEN option 
• Using the SC_RETAIN_RESERVATION option 
• Using the SC_DIAGNOSTIC option 
• Closing the SCSI device 
• SCSI error processing 
• Length of data transfer for scsi commands 
• Device driver and adapter device driver interfaces 
• Performing SCSI dumps. 

12-1 0 Kernel Extensions and Device Support 



Responsibilities of the SCSI Device Driver 
SCSI device drivers are responsible for the following actions: 

• Interfacing with block I/O and logical volume device driver code in the AIX Base Operating 
System. 

• Translating 1/0 requests from the AIX Base Operating System into SCSI commands 
suitable for the particular SCSI device. These commands are then given to the SCSI 
adapter device driver for execution. 

• Issuing any and all SCSI commands to the attached device. The SCSI adapter device 
driver sends no SCSI commands except those it is directed to send by the calling SCSI 
device driver. 

• Managing SCSI device reservations and releases. In the AIX Base Operating System, it is 
assumed that other SCSI initiators may be active on the SCSI bus. Usually, the SCSI 
device driver reserves the SCSI device at open time, and releases it at close time (except 
when told to do otherwise through parameters in the SCSI device driver interface). Once 
the device is reserved, the SCSI device driver must be prepared to reserve the SCSI 
device again whenever a Unit Attention condition is reported through the SCSI request 
sense data. 

SCSI Options to the openx Subroutine 
SCSI device drivers in the AIX Base Operating System must support some defined extended 
options in their open routine (that is, an openx subroutine). Additional extended options to 
the open are also allowed, but must not conflict with predefined open options. The defined 
extended options are bit flags in the ext open parameter. These options may be specified 
singly, or in combination with each other. The required ext options have the following values 
and are defined in the <sys/scsi.h> file: 

SC_FORCED_OPEN 

SC_RETAIN_RESERVATION 

SC_DIAGNOSTIC 

SC_RESV_04 

SC_RESV_05 

SC_RESV_06 

SC_RESV_07 

SC_RESV_08 

Using the SC_FORCED_OPEN Option 

Do not honor device reservation conflict status. 

Do not release SCSI device on close. 

Enter Diagnostic mode for this device. 

Reserved for future expansion. 

Reserved for future expansion. 

Reserved for future expansion. 

Reserved for future expansion. 

Reserved for future expansion. 

The SC_FORCED_OPEN option causes the SCSI device driver to call the SCSI adapter 
device driver's Bus Device Reset ioctl (SCIORESET) operation on first open. This forces 
the device to release another initiator's reservation. After the SCIORESET completes, other 
SCSI commands are sent as in a normal open. If any of the SCSI commands fail due to a 
reservation conflict, the open should be failed with the EBUSY status. This is also the result 
if a reservation conflict occurs during a normal open. The SCSI device driver should require 
the caller to have appropriate authority to request the SC_FORCED_OPEN option since this 
request can force a device to drop a SCSI reservation. If the caller attempts to execute this 
system call without the proper authority, the SCSI device driver should return a value of -1, 
with the errno global variable set to EPERM. 

Using the SC_RETAIN_RESERVATION Option 
The SC_RETAIN_RESERVATION option causes the SCSI device driver to not issue the 
SCSI release command during the close of the device. This guarantees a calling program 
control of the device (using SCSI reservation) through open and close cycles. Note that for 
shared devices (for example, disk or CD-ROM), the SCSI device driver should OR together 
this option for all opens to a given device. Thus, if any caller requests this option, the close 

SCSI Subsystem 12-11 



routine skips issuing the release even if other opens to the device do not set 
SC_RETAIN_RESERVATION. The SCSI device driver should require the caller to have 
appropriate authority to request the SC_RETAIN_RESERVATION option since this request 
can allow a program to monopolize a device (for example, if this is a non-shared device). If 
the caller attempts to execute this system call without the proper authority, the SCSI device 
driver should return a value of -1, with the errno global variable set to EPERM. 

Using the SC_DIAGNOSTIC Option· 
The SC_DIAGNOSTIC option causes the SCSI device driver to enter Diagnostic mode for 
the given device. This option directs the SCSI device driver to perform only minimal 
operations to open a logical path to the device. No SCSI commands should be sent to the 
device in the open or close routine when in Diagnostic mode. It is intended that one or more 
ioctl operations be provided by the SCSI device driver to allow the caller to issue SCSI 
commands to the attached device for diagnostic purposes. 

The SC_DIAGNOSTIC option gives the caller an exclusive open to the selected device. This 
option requires appropriate authority to execute. If the caller attempts to execute this system 
call without the proper authority, the SCSI device driver should return a value of -1 with the 
errno global variable set to the value EPERM. The SC_DIAGNOSTIC option may only be 
executed if the device is not already opened for normal operation. If this ioctl operation is 
attempted when the device is already opened, or if an openx call with the SC_DIAGNOSTIC 
option is already in progress, a return value of -1 should be passed, with the errno global 
variable set to EACCES. Once successfully opened with the SC_DIAGNOSTIC flag, the 
SCSI device driver is placed in Diagnostic mode for the selected device. 

The remaining options for the ext parameter are reserved for future requirements. 

Implementation note: The following chart shows how the various combinations of ext 
options should be handled in the SCSI device driver. 

EXT OPTIONS 

openx ext option Device Driver Action 

none Open: normal 
Close: normal 

diag Open: no SCSI cmds 
Close: no SCSI cmds 

retain Open: normal 
Close: no RELEASE 

force Open: normal, except 
SCIORESET issued prior to 
any SCSI commands 

diag + retain Open: no SCSI cmds 
Close: no SCSI cmds 

diag + force Open: issue SCIORESET 
otherwise, no SCSI cmds issued 
Close: no SCSI cmds 

12-12 Kernel Extensions and Device Support 



EXT OPTIONS 

openx ext option Device Driver Action 

force + retain Open: normal, except 
SCIORESET issued prior to 
any SCSI commands 
Close: no RELEASE 

diag + force +retain Open: issue SCIORESET 
otherwise, no SCSI cmds issued 
Close: no SCSI cmds 

Closing the SCSI Device 
When a SCSI device driver is preparing to close a device through the SCSI adapter device 
driver, it must insure that all transactions are complete. When the SCSI adapter device driver 
receives an SCIOSTOP ioctl operation, if there are pending 1/0 requests, the ioctl operation 
does not return until they have all completed. New requests received during this time are 
rejected from the adapter device driver's ddstrategy routine. 

SCSI Error Processing 
It is the responsibility of the SCSI device driver to process SCSI check conditions and other 
returned errors properly. The SCSI adapter device driver knows nothing about particular 
SCSI commands, and is not responsible for device error recovery. 

, Length of Data Transfer for SCSI Commands 
Commands initiated by the SCSI device driver internally or as subordinates to a transaction 
from above must have data phase transfers of 256 bytes or less to prevent DMA/CPU 
memory conflicts. A length of 256 or less indicates to the SCSI adapter device driver that 
data phase transfers are to be handled internally (in its address space).This is required to 
prevent DMA/CPU memory conflicts for the SCSI device driver. The SCSI adapter device 
driver specifically interprets a byte count of 256 or less as an indication that it may not 
perform data phase DMA transfers directly to or from the destination buffer. 

The actual DMA transfer goes to a dummy buffer inside the SCSI adapter device driver and 
then is block-copied to the destination buffer. Internal SCSI device driver operations that 
typically have small data transfer phases are SCSI control-type commands such as mode 
select, mode sense, and request sense. However, the comments of this discussion apply to 
any command received by the SCSI adapter device driver that has a data phase size of 256 
bytes or less. 

Internal commands with data phases larger than 256 bytes require the SCSI device driver to 
specifically allocate the required memory on the process level. The memory pages 
containing this memory may not be accessed by the CPU (that is, the SCSI device driver) in 
any way from the time the transaction is passed to the SCSI adapter device driver until the 
SCSI device driver receives the iodone call for the transaction. 

Device Driver and Adapter Device Driver Interfaces . 
The SCSI device drivers can have both character (raw) and block special files in the Idev 
directory. The SCSI adapter device driver has only character (raw) special files in the Idev 
directory and has only the ddconfig, ddopen, ddclose, dddump, and ddioctl entry points 
available to AIX operating system programs. (The ddread and ddwrite entry pOints are not 
implemented. ) 

SCSI Subsystem 12-13 



Internally; the devsw table has entry pOints for the ddconfig, ddopen, ddclose, dddump, 
ddioctl, and ddstrategy routines. The SCSI device drivers pass their SCSI commands to 
the SCSI adapter device driver by calling the SCSI adapter device driver ddstrategy routine. 
(This routine is unavailable to other AIX operating system programs due to the lack of a 
block device special file). 

Access to the SCSI adapter device driver's ddconfig, ddopen, ddclose, dddump, ddioctl, 
and ddstrategy entry pOints by the SCSI device drivers is performed through the kernel 
services provided. (These include such services as fp_open, fp_close, fp_ioctl, devdump, 
and devstrategy.) 

Performing SCSI Dumps . 
A SCSI adapter device driver must have a dddump entry pOint if it is used to access a 
system dump device. A SCSI device driver must have a dddump entry pOint if it drives a 
dump device. Examples of dump devices are disks and tapes. 

SCSI adapter device driver writers should be aware that system services that provide 
interrupt and timer services are unavailable for use in the dump routine. Kernel DMA 
services are assumed to be available for use by the dump routine. The SCSI adapter device 
driver should be designed to ignore extra DUMPINIT and DUMPSTART commands to the 
dddump entry point. 

The DUMPQUERY option should return a minimum transfer size of 0 bytes, and a maximum 
transfer size equal to th~ maximum transfer size supported by the SCSI adapter device 
driver. 

Calls to the SCSI adapter device driver DUMPWRITE option should use the arg parameter 

as a pOinter to the sc_buf to be processed. Using this interface, a SCSI write command can 
be executed on a previously started (opened) target device. The uiop parameter is ignored 
by the SCSI adapter device driver during the DUMPWRITE command. Spanned, or 
consolidated, commands are not supported using the DUMPWRITE option. No queuing of 
sc_buf structures is supported during dump processing, since the dump routine executes 
essentially as a subroutine call from the caller's dump routine. Control is returned when the 
entire sc_buf has been processed. 

Also, both adapter device driver and device driver writers should be aware that any error 
occurring during the DUMPWRITE option is considered fatal. Therefore, no error recovery is 
employed during the DUMPWRITE. Return values from the call to the dddump routine 
indicate the failure. 

Successful completion of the selected operation is indicated by a zero return value to the 
subroutine. Unsuccessful completion is indicated by a return code set to one of the following 
values for the errno global variable. Note that the various sc_buf status fields, including the 

b_error field, are not set by the SCSI adapter device driver at completion of the 
DUMPWRITE command. Error logging is, of necessity, not supported during the dump. 

An errno value of EINVAL indicates that the SCSI adapter device driver was passed an 
invalid request, such as attempting a DUMPSTART before successfully executing a 
DUMPINIT. 

An errno value of EIO indicates that the SCSI adapter device driver was unable to complete 
the command due to a lack of required resources or an liD error. 

An errno value of ETIMEDOUT indicates that the adapter did not respond with a status 
before the passed command timeout value expired. 

12-14 Kernel Extensions and Device Support 



Related Information 
Logical Volume Subsystem on page 10-1. 
Communication 1/0 Subsystem on page 8-1. 
Kernel Environment Programming on page 1-6. 
The Logical File System Kernel Kervices on page 6-12 
Device Driver Concepts Overview on page 2-1. 
Understanding Block 1/0 Device Drivers on page 3-1. 

SCSI Subsystem 12-15 



12-16 Kernel Extensions and Device Support 



Appendix A. Alphabetical List of Kernel Services 

This list provides the names of all kernel services and the execution environment from which 
each can be called. A kernel service can either be called in both the process and the 
interrupt environments, or only in the process environment. 

ackque 

add_arp_iftype 

add_domain_af 

add_input_type 

add_netisr 

add_netopt 

as_aU 

as_det 

attchq 

audit_svcbcopy 

audit_svcfinis 

aUdit_svcstart 

bawrite 

bdwrite 

bflush 

binval 

blkflush 

bread 

breada 

brelse 

bwrite 

canclq 

cfgnadd 

cfgndel 

clrbuf 

clrjmpx 

copyin 

copyinstr 

copyout 

Available in the process environment only. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in both the process and interrupt environments. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in both the process and interrupt environments. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Appendix A. Alphabetical List of Kernel Services A-1 



creatd 

creatp 

creatq 

curtime 

d_align 

d_clear 

d_complete 

d_init 

d_mask 

d_master 

d_move 

d_roundup 

d_slave 

d_unmask 

del_arp_iftype 

del_domain_af 

del_input_type 

deLnetisr 

deLnetopt 

delay 

deque 

detchq 

devdump 

devstrat 

devswadd 

devswdel 

devswqry 

dmp_add 

dmp_del 

dstryd 

dstryq 

DTOM macro 

e_post 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt emiironments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in the process environment only. 

Available in the process environment only. 

Available in both the process and interrupt environments. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

A-2 Kernel Extensions and Device Support 



e_sleep 

e_sleepl 

e_wait 

e_wakeup 

enque 

errsave 

find_arp_iftype 

find_input_af 

find_input_type 

fp_access 

fp_close 

fp_fstat 

fp _getdevno 

fp_getf 

fp_hold 

fp_ioctl 

fp_lseek 

fp_open 

fp_opendev 

fp_poll 

fp_read 

fp_readv 

fp_rwuio 

fp_select 

fp_write 

fp_writev 

fubyte 

fuword 

getadsp 

getblk 

getc 

getcb 

getcbp 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in both the process and interrupt environments. 

Available in the process environment only. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Appendix A. Alphabetical List of Kernel Services A-3 



getcf 

getcx 

geteblk 

geterror 

getexcept 

getpld 

getuerror 

gfsadd 

gfsdel 

Lclear 

i_disable 

i_enable 

i_init 

i_mask 

i_reset 

Lsched 

i_unmask 

if_attach 

if_detach 

if_down 

if_nostat 

ifa_ifwithaddr 

ifajfwithdstaddr 

ifa_ifwithnet 

ifunit 

init_heap 

initp 

.io_att 

io_det 

iodone 

iostadd 

iostdel 

iowait 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in the process environment only. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in the process environment only. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in the process environment only. 

Available in the process environment only 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in the process environment only. 

Available in the process environment only 

Available in the process environment only. 

A-4 Kernel Extensions and Device Support 



kmod_entrypt 

kmod_load 

kmod_unload 

kmsgctl 

kmsgget 

kmsgrcv 

kmsgsnd 

lockl 

loifp 

longjmpx 

lookupvp 

looutput 

m_adj 

m_cat 

m_clget 

m_clgetx 

m_collapse 

m_copy 

m_copydata 

m_dereg 

m_free 

m_freem 

m_get 

m_getclr 

m_getclust 

M_HASCL macro 

m_pullup 

m_reg 

MTOCL macro 

MTOD macro 

net_attach 

net_detach 

net_error 

Available in the process environment only 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environmenf only. 

Available in the process environment only. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in the process environment only. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in the process environment only. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in the process environment only. 

Available in both th~ process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in the process environment only. 

Available in the process environment only 

Available in both the process and interrupt environments. 

Appendix A. Alphabetical List of Kernel Services A-5 



net_sleep 

net_start 

net_start_done 

net_wakeup 

net_xmit 

panie 

peekq 

pfetlinput 

pffindproto 

pidsig 

pgsignal 

pin 

pinef 

pineode 

pinu 

pio_assist 

proehadd 

proehdel 

purblk 

pute 

puteb 

putebp 

putef 

putefl 

putex 

qryds 

queryd 

queryi 

queryp 

raw_input 

raw_usrreq 

readq 

rqe 

Available in the process environment only. 

Available in the process environment only. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in the process environment only. 

Available in both the process and interrupt environments. 

Available in the process environment only. 

Available in the process environment only. 

Available in both the process and interrupt environments. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. ' 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments 

Available in both the process and interrupt environments. 

Available in the process environment only. 

Available in the process environment only. 

Available in both the process and interrupt environments. 

Available in the process environment only. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in the process environment only 

Available in the process environment only 

A-6 Kernel Extensions and Device Support 



rqd 

rqgetw 

rqputw 

rtalloc 

rtfree 

rtinit 

rtredirect 

rtrequest 

schednetisr 

selnotify 

setjmpx 

setpinit 

setuerror 

sig_chk 

sleep 

subyte 

suser 

suword 

talloc 

tfree 

timeout 

timeoutcf 

trcgenk 

trcgenkt 

tstart 

tstop 

uexadd 

uexblock 

uexclear 

uexdel 

uiomove 

unlockl 

unpin 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in the process environment only. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in the process environment only. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in both the process and interrupt environments. 

Appendix A. Alphabetical List of Kernel Services A-7 



unpincode 

unpinu 

untimeout 

uphysio 

ureadc 

uwritec 

vec_clear 

vec_init 

vfsadd 

vfsdel 

vfsrele 

vm_att 

vm_cflush 

vm_det 

vm_handle 

vm_makep 

vm_mount 

vm_move 

vm_protectp 

vm_qmodify 

vm_release 

vm_releasep 

vm_umount 

vm_write 

vm_writep 

vms_create 

vms_delete 

vms_iowait 

vn_free 

vn_get 

w_clear 

w_init 

w....;start 

Available in the process environment only. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Avai!able in the process environment only. 

Available in both the process and interrupt environments. 

Available in the process environment only 

Available in both the process and interrupt environments 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only. 

Available in the process environment only 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

A-8 Kernel Extensions and Device Support 



w_stop 

waitcfree 

waitq 

wakeup 

xmalloc 

xmattach 

xmdetach 

xmemdma 

xmemin 

xmemout 

xmfree 

Available in both the process and interrupt environments. 

Available in the process environment only. 

Available in the process environment only. 

Available in both the process and interrupt environments. 

Available in the process environment only 

Available in the process environment only. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in both the process and interrupt environments. 

Available in the process environment only. 

Appendix A. Alphabetical List of Kernel Services A-9 



A-1 0 Kernel Extensions and Device Support 



Index 

A 
adding a device. See configuring devices 

B 
block, 10-2 
block device driver 

See a/so device drivers; kernel extensions 
accessto,2-6 
device switch table, 2-7 
entry points, unsupported, 3-2 
file I/O, access to, 2-6 
file system, access by, 2-6 
I/O processing, block, 3-2 

accepting requests, 3-2 
block numbers, handling, 3-3 
completion notification, providing, 3-3 
queueing requests, 3-4 
starting I/O, 3-4 

introduction, 3-1 
entry points, 3-1 

raw I/O access to, 2-7 
introduction, 3-4 

raw I/O access to, 3-2 
system dump support, 3-2 
virtual memory manager, access by, 2-6 

block I/O buffer cache kernel service 
managing the buffer cache, 6-8 
miscellaneous services, 6-9 
overview, 6-8 
write services, 6-8 

block I/O processing. See block device drivers 
block I/O, understanding, 3-1 
buffer cache kernel services, 6-4 
buffer, communications, 8-2 

C 
character device driver 

See a/so device drivers 
accessto,2-5 
characters 

moving large numbers at a time, 3-8 
reading one character at a time, 3-7 
writing one character at a time, 3-7 

device switch table, 2-7 
entry points, unsupported, 3-6 
introduction, 3-6 
multiplexed support, 3-7 
multiplexed, access to, 2-5 
non-multiplexed support, 3-6 
poll support, 3-8 
read support, 3-7 
select support, 3-8 

write support, 3-7 
character I/O kernel services, 6-5 
child devices, 7-12 
communications device handler interface kernel 

services, 6-21 
Communications Device Handlers 

communication buffers (mbuf), use of, 8-2 
mbuf structures, use of, 8-2 
overview, list of common entry pOints, 8-1 
status/exception codes, common, 8-3 

communications I/O subsystem, 8-1 
configuration manager. See configuring devices 
configuring devices 

See a/so device configuration subsystem 
adding, unsupported 

database, modifying, 7-11 
device driver, adding, 7-12 
device methods, adding, 7-11 
installp procedures, 7-12 
odmadd command, 7-11 
overview, 7-11 

child devices, 7-12 
configuration manager 

commands 
cfgmgr, 7-9 
chdev, 7-9 
mkdev, 7-9 
rmdev, 7-9 

introduction, 7-8 
device attributes 

accessing, 7-13 
modifying, 7-13 

device dependencies, 7-12 
device method interface, device methods, types 

of, 7-7 
device methods interface 

device methods 
device states, 7-10 
invoking, 7-8 
writing a device method, 7-7 

introduction, 7-8 
control characters. See HFT single-byte controls 
control codes. See HFT single-byte controls 
cylinder, 10-2 

D 
data stream modes . 

See a/so HFT 
understanding, 9-8 

device attributes 
See a/so configuring devices 
accessing, 7-13 
modifying, 7-13 

Index X-1 



device configuration. See configuring devices 
device configuration database. See device 

configuration subsystem 
device configuration subsystem, 7-1 

classes, device, 7-7 
database 

basic procedures, 7-4 
overview, 7-4 

manager, device configuration 
configuration rules, 7-5 
devices graph, 7-5 
invoking, 7-6 
overview, 7-5 

structure of, 7-1 
device method level, 7-2 
high level perspective, 7-1 
low level perspective, 7-4 

subclasses, device, 7-7 
support, scope of, 7-1 
types, devices, 7-7 

device driver management kernel services, 6-10 
device driver, adding, 7-12 
device drivers 

See a/so block device driver; character device 
driver; special files 

introduction, 2-1 
classes of, 2-1 

kernel extension overview, 3-1 
block I/O device drivers, 3-1 

list of concepts, 2-1 
roles, 2-2 

device handler, 2-3 
device head, 2-2 

structure of, 2-3 
bottom half, 2-3 
operating system, pre-emption of, 2-3, 2-4 
serialization in, 2-4 
top half routines, 2-3 

device handlers. See X.25 device handler 
device methods 

device states, 7-10 
overview, 7-7 
types of, 7-7 

device methods interface. See configuring devices 
device methods, adding, 7-11 
device queue management kernel services, 6-1 

loading, 6-2 
device queues 

client-server model, 6-2 
kernel extension support, 6-2 

elements of, 6-2 
management kernel services, 6-1 
understanding, 6-2 

device states 
See a/so configuring devices 
overview, 7-10 

diagnostic mode, X.25, 8-23 
direct access storage device (DASD) 

cylinder, 10-2 

X-2 Kernel Extensions and Device Support 

device block addressing, 10-1 
head,10-2 
sector, 1 0-2 
track, 10-2 

direct memory access, understanding, 3-15 
DMA management kernel services, 6-6 

accessing data with, 6-7 
hiding DMA data, 6-6 
transfers of DMA, 6-6 

DMA, processing. See direct memory access, 
processing 

E 
echo maps, 9-3 
Ethernet device handler 

data reception, 8-4 
data transmission, 8-4 
define device structure, 8-6 
device characteristics structure, 8-8 
error logging, 8-5 
hardware characteristics, 8-8 
overview, 8-3 
return values, 8-5 
vital product data, VPD, 8-7 

exception management kernel services, 6-21 

F 
file system 

data structures for implementations, 5-4 
logical file system, 5-1 
overview, 5-1 
requirements for, 5-1 
requirements for implementations, 5-4 
virtual file system, 5-2 
virtual file system interface, 5-4 

file systems, configuring a virtual file system, 5-5 
fine granularity timer services, using, 6-24 
fixed storage. See direct access storage device 

(DASD) 

G 
generiC nodes, understanding, 5-3 
getattr subroutine, 7-14 
gnodes, understanding, 5-3 

H 
hardware, interfacing, 3-12 
head, device, 10-2 
HFT 

areas, erasing, 9-16 
color palette, KSR mode, 9-10 
cursor movement, controlling, 9-16 
data stream, nonspacing characters in, 9-15 
data stream modes, 9-8 

presentation, 9-8 
displays, erasing, 9-16 
echo maps, introduction, 9-3 
fields, erasing, 9-16 



graphics input/output devices, understanding, 
9-4 

intial state, 9-9 
default values, 9-9 

kernel debugger, 9-22 
keyboard 

introduction, 9-20 
Japanese, 9-23 
position codes, 9-22 
predefined keys, 9-21 
sequences, key, 9-21 
software, list of available, 9-21 
states, key, 9-20 
states, overview, 9-23 
U.S., 9-23 

keyboard send-receive (KSR) mode, 9-7 
lines, erasing, 9-16 
lines, inserting and deleting, 9-16 
miscellaneous tasks, performing, 9-17 
modes, 9-5 
monitor mode, signals, 9-6 
monitor mode (MOM), understanding, 9-5 
multibyte controls, 9-15 
nonspacing characters, 9-24 

data stream, sequence in, 9-15 
invalid sequences, 9-25 
valid, understanding, 9-25 

read operations, 9-12 
character data, 9-12 
noncharacter input, 9-12 

ring buffer input, reading, 9-7 
screen 

manager operations, 9-2 
activating the virtual terminal, 9-2 
disabling the command virtual terminal, 

9-3 
enabling the command virtual terminal, 

9-3 
hiding the virtual terminal, 9-2 
restoring a virtual terminal, 9-3 
setting the command virtual terminal, 

9-3 
manager ring, understanding, 9-2 

scrolling, controlling, 9-17 
single-byte controls, 9-18, 9-19 
subsystem component structure overview, 9-1 
system dump key sequence, 9-22 
tab controls, clearing and setting, 9-17 
terminal functions, controlling, 9-18 
user interface, 9-9 

protocol m.odes, 9-13 
select operation, 9-11 
write operations, 9-11 

general output, 9-12 
KSR write, 9-12 
MOM write, 9-12 

virtual display device driver 
introduction, 9-4 
ioctl operations, 9-4 

write operations, 9-4 
virtual terminals 

states, 9-5 
understanding, 9-4 

how to 
enter monitor mode, 9-14 
exit monitor mode, 9-14 

1/0 kernel services, 6-4 
block 1/0, 6-4 

buffer cache, 6-4 
character 1/0, 6-5 

input ring buffer 
full buffer, detecting. See HFT 
input, reading, 9-7 
keystrokes, intercepting. See HFT 

installp procedures, 7-12 
interface address kernel services, 6-20 
interfacing to the hardware, 3-12 
interrupts 

K 

See a/so kernel extensions 
priorities, 6-9 
services, 6-10 
understanding, 6-9 

kernel environment 
cross-memory kernel services, using, 1-10 
exception handlers 

codes, exception, 1-16 
environment, 1-14 
hardware detection of exceptions, 1-17 
implementing, 1-13 
setjmpx kernel service, restrictions on 

using, 1-14 
user-mode exceptions, 1-17 

exception handling, 1-11 
exception processing 

default action, 1-12 
introduction, 1-12 
kernel mode, in, 1-12 
kernel services, exception and process, 

6-21 
user-defined actions, 1-13 

kernel processes 
creating, 1-8 
data, accessing, 1-8 
exception handling, 1-9 
executing, 1-8 
overview, 1-7 
pre-emption of, 1-9 
signal handling, 1-9 
system calls, use of, 1-10 
terminating, 1-8 

locking, 1-11 
locking, conventional, locking, strategy in 

kernel mode, 1-11 

Index X-3 



programming 
/unix name space, 1-2 
base kernel services, 1-2 
execution environment 

interrupt, 1-6 
process, 1-6 

kernel services, loading, 1-3 
kernel services, unloading, 1-3 
libraries, using, 1-5 
list of topics, 1-1 
overview, 1-1 
private routines, using, 1-4 
system calls, loading, 1-3 
system calls, unloading, 1-3 
using system calls, introduction, 1-2 

signal handling, 1-11 
user-mode data, accessing in kernel-mode, 

1-10 
kernel extension kernel services, 6-10 
kernel extensions 

See a/so block device driver; device drivers 
block device drivers 

raw I/O access, motivation for, 3-5 
raw I/O access, processing, 3-5 
uphysio kernel service, 3-6 

block I/O device drivers. See 
block I/O processing, 3-2 
character device driver, 3-6 

entry points, unsupported, 3-6 
I/O control support, 3-8 
multiplexed support, 3-7 
non-multiplexed support, 3-6 
poll support, 3-8 
read support, 3-7 
select support, 3-8 
write support, 3-7 

I/O control support, 3-8 
interrupt priority 

criteria for, 3-1 0 
off-level processing, 3-10 
service times, 6-10 

introduction. See device drivers 
loading and binding services, 6-10 
physical device, support, 3-9 
pseudo-device drivers, 3-10 
system calls, extending with 

error information, returning, 4-7 
exception handling, 4-5 

alternatives, 4-6 
setjmpx kernel service, 4-6 

execution, system call, 4-2 
handler, system call, 4-3 
introduction, 4-1 
kernel protection domain, 4-2 
kernel-mode use, 4-6 
nested system calls, 4-6 
page faulting, 4-6 
parameters, passing, 4-4 
pre-empting, 4-4 

X-4 Kernel Extensions and Device Support 

signal handling, 4-4 
delivery, 4-5 
setjmpx kernel service, 4-5 
stacking saved contexts, 4-5 
wait termination, 4-5 

user functions, differences, 4-1 
user protection domain, 4-2 

system dump support. See 
trusted computing path, support, 3-9 

kernel extensions, block device driver, entry points, 
unsupported,3-2 

kernel processes. See kernel environment 
kernel services 

See a/so kernel environment; kernel extensions 
alphabetical list, with calling environment, A-1 
categories 

block 1/0, 6-4 
block I/O buffer cache, 6-8 
buffer cache, 6-4 
character I/O, 6-5 
cross memory, 6-15 
device driver management, 6-10 
DMA management, 6-6 
exception management, 6-21 
interrupt, 6-10 
interrupt managment, 6-7 
kernel extension, 6-10 
logical file system, 6-12 
memory buffer, 6-5 
memory management, 6-13 
memory pinning, 6-13 
message queue, 6-19 
network, 6-19 
process management, 6-21 
RAS, 6-23 
time-of-day, 6-23 
timer 

compatibility, 6-24 
fine granularity, 6-24 
watchdog, 6-24 

user memory access, 6-14 
virtual file system, 6-25 
virtual memory management, 6-14 

device queue management, loading, 6-2 
extension loading and binding services, 6-10 
fine granularity timer service, 6-24 
1/0,6-4 

block 1/0,6-4 
buffer cache, 6-4 
character 1/0,6-5 

interrupts, understanding, 6-9 
introduction, categories 

device queue management, 6-1 
list of, 6-1 
ring queue management, 6-1 

secu rity, 6-23 
setjmpx, 1-13 
timer, 6-23 

keyboard send-receive mode. See KSR mode 



KSR mode 

L 

displaying graphics, 9-7 
tasks, 9-8 
understanding, 9-7 

logical file system kernel services, 6-12 
logical file system, overview, 5-1 

component structure, 5-2 
file routines, 5-2 
system calls, 5-2 
vnodes, 5-2 

logical volume device driver 
direct access storage devices (DASDs), 10-1 
physical volume layout 

implementation limitations, 10-3 
logical volume manager, sectors for, 10-3 

physical volume layout, introduction, 10-1 
logical volume device driver (LVOO) 

bad blocks, 10-7 
detecting and correcting, 10-8 
relocating, 10-8 

ddstrategy entry pOint, 10-6 
/dev/lvn special file, 10-4 
division of, 1 0-5 
entry points, 10-5 
interface to physical device drivers, 10-7 
logical block requests, 10-6 
physical layers, 10-7 
scheduler layer, 10-6 
strategy layer, 1 0-6 

logical volume manager, reserved sectors, 10-3 
logical volume subsystem 

introduction, 10-1 
physical volume layout 

OASO structure for,1 0-2 
reserved sectors, 1 0-3 

loopback kernel services, 6-20 

M 
mbuf kernel services, 6-5 

macros, 6-6 
mbuf structures, 8-2 
memory management kernel services, 6-13 
message queue kernel services, 6-19 
MOM. See monitor mode 
monitor mode (MOM) 

signals, 9-6 
tasks, 9-6 
understanding, 9-5 
valid ASCII codes for, 9-6 

monitor mode, X.25, 8-23 
MPQP device handler. See Multiprotocol device 

handler 
Multiprotocol device handler 

binary synchronous communication, 8-14 
message types, 8-14 

error logging, 8-15 

overview, 8-13 

N 
network kernel services, 6-19 

address family domain services, 6-19 
communications device handler interface 

services, 6-21 
interface address services, 6-20 
loopback services, 6-20 
network interface device driver services, 6-19 
protocol services, 6-21 
routing services, 6-20 

o 
object data manager (OOM), odmadd command, 

7-11 
OOM. See object data manager 
odmadd command, 7-11 
off-level interrupts, 3-10 

P 
partition, 1 0-2 
POH. See physical device handler 
physical device, 3-9 

See a/so kernel extensions 
physical device drivers, interface with logical device 

driver, 10-7 
physical device handler, 8-1 
physical volumes, 10-2 

See a/so logical volume subsystem 
block, partition, 10-2 
implementation limitations. See logical volume 

subsystem 
sector layout on. See logical volume subsystem 

print formatter, 11-2 
printer addition management, 11-1 

adding a new printer, 11-1 
adding a printer object, 11-2 
printer format, adding to printer backend, 11-2 

printers 
supported,11-1 
unsupported types, 11-1 

process management kernel services, 6-21 
processing interrupts, 3-12 
protocol kernel services, 6-21 
protocol modes 

setting, 9-13 
types of, 9-13 
understanding, 9-13 

pseudo-device drivers, 3-10 
See a/so device drivers; kernel extensions 

putattr subroutine, 7-14 

R 
RAS kernel services, 6-23 
raw I/O support, understanding, 3-5 
read operations, HFT interface, 9-12 

Index X-5 



removable storage. See direct access storage device 
(DASD) 

reserved sectors, physical volume, 10-3 
ring queue management kernel services, 6-1 
router mode, X.25, 8-23 
routing kernel services, 6-20 

S 
screen manager ring, 9-2 
SCSI subsystem 

adapter device driver, introduction, 12-1 
device driver, responsibilities of, 12-2 
device driver, SCSI 

execution of I/O requests, 12-5 
interface to SCSI adapter device driver, 

12-1 
transaction sequence, 12-10 

error recovery, 12-7 
fragmented commands, 12-7 
internal commands, 12-7 
ioctl commands, required for adapter device 

driver, 12-8 
sc buf structure, 12-2 
spanned (consolidated) commands, 12-6 

SCSI subsystem, introduction, 12-1 
sector, 10-2 
security kernel service, 6-23 
selnotify kernel service, 3-8 
setjmpx kernel service, 4-5 
special files 

See a/so device drivers 
block device drivers, access to, 2-6 
character device drivers, access to, 2-5 
device switch table, 2-7 
I/O access, through special files, 2-4 
major number of, 2-7 
minor numbers of, 2-7 
multiplexed character device drivers, access to, 

2-5 
raw I/O access to block devices, 2-7 
usage hazards, potential in block special files, 
2-6 

status/exception codes, communications, 8-3 
system call kernel extensions, introduction, 4-1 
system calls. See kernel extensions 

T 
time-of-day kernel services, 6-23 
timer kernel services, 6-23 
timer services, fine granularity, using, 6-24 
Token-Ring device handler, overview, 8-9 
Token-Ring device handler 

data reception, 8-11 
data transmission, 8-10 
error logging, 8-12 
network recovery mode, 8-10 
operation results, 8-11 

track, 10-2 

X-6 Kernel Extensions and Device Support 

trusted computing path, 3-9 
See a/so kernel extensions 

u 
U.S. keyboard, 9-23 

Japanese, 9-23 
uphysio kernel service, 3-6 

V 
virtual display device driver, 9-4 
Virtual File System, introduction, 5-1 
Virtual File System (VFS) 

configuring, 5-5 
data structures, understanding, 5-5 
file system, overview, 5-1 
gnodes (generic nodes), 5-3 
header files for, 5-5 
interface, VFS, 5-4 
logical file system, overview, 5-1 
mount points, 5-3 
objects within, 5-3 
overview, 5-2 
requirements for, 5-4 

data structures for, 5-4 
vnodes (virtual nodes), 5-3 

virtual file system kernel service, 6-25 
virtual nodes, understanding, 5-3 
virtual terminals 

See a/so HFT 
activating, 9-2 
command terminal, disabling, 9-3 
command terminal, enabling, 9-3 
HFT modes, 9-5 
hiding, 9-2 
restoring, 9-3 
setting the command virtual terminal, 9-3 
states, 9-5 
understanding, 9-4 

vnodes, understanding, 5-3 

W 
write subroutine, HFT interface, 9-11 

X 
X.25 Device Handler, data transmission, 8-30 
X.25 device handler 

common structures, 8-30 
mbuf, 8-30 
x25 buffer, 8-31 
x25 -call data, 8-32 
x25=diag_addr, 8-33 
x25_diag_io, 8-33 
x25_diag_mem, 8-33 
x25_packet_data, 8-31 

data reception, 8-30 
diagnostics; 8-23 
ioctl operations, list of, 8-21 



kernel-mode process, interface with, 8-22 
modes overview, 8-23 
overview, 8-20 
programming interfaces, 8-22 
sessions, 8-24 

establishment, 8-24 

termination, 8-27 
updating the routing table, 8-23 
user-mode process, interface with, 8-22 

X.25 device handler, entry pOints, list of, 8-21 

Index X-7 



X-8 Kernel Extensions and Device Support 



Reader's Comment Form 
Kernel Extensions and Device Support Programming Concepts 
SC23-2207 -0 

Please use this form only to identify publication errors or to request changes in publications. Your 
comments assist us in improving our publications. Direct any requests for additional publications, technical 
questions about IBM systems, changes in IBM programming support, and so on, to your IBM representative 
or to your IBM-approved remarketer. You may use this form to communicate your comments about this 
publication, its organization, or subject matter, with the understanding that IBM may use or distribute 
whatever information you supply in any way it believes appropriate without incurring any obligation to you. 

o If your comment does not need a reply (for example, pointing out a typing error), check 
this box and do not include your name and address below. If your comment is 
applicable, we will include it in the next revision of the manual. 

o If you would like a reply, check this box. Be sure to print your name and address 
below. 

Page Comments 

Please contact your IBM representative or your IBM-approved remarketer to request additional publications. 

Please print 

Date -----

Your Name ------------------------------Company Name __________________________________ __ 

Mailing Address -----------------------------

PhoneNo.~--~-----------------
Area Code 

No postage necessary if mailed in the U.S.A 



111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK 

POSTAGE WILL BE PAID BY ADDRESSEE 

International Business Machines Corporation 
Department 997, Building 997 
11400 Burnet Rd. 
Austin, Texas 78758-3493 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 

-~-------------------------~-----~-~-~~-------------------
I PIO:! PIO:! 

I 
I 
I 
I 
b c ::; 

~ 
.2 
< 
:2 
If ... o 
'S 
(J 

-~--------------------------------------------------------
adel pue PIO:! aldelS lON 00 asesld adel pue PIO:! 



---------- - ---- ---- - ---- - - ----------_ .-
i; IBM Corp. 1990 

International Business Machines 
Corporation 
11400 Burnet Road 
Austin, Texas 78758-3493 

Printed in the 
United States of America 
All Rights Reserved 

SC23-2207-00 

5[23-2207-00 


