

First Edition (March 1990)

This edition of the AIX Calls and Subroutines Reference for IBM RISC System/6000 applies to IBM AIX
Version 3 for RISC System/6000, Version 3 of IBM AlXwindows Environment/6000, IBM AIX System
Network Architecture Services/6000, IBM AIX 3270 Host Connection Program/6000, IBM AIX 3278/79
Emulation/6000, IBM AIX Network Management/6000, and IBM AIX Personal Computer Simulator/6000 and
to all subsequent releases of these products until otherwise indicated in new releases or technical
newsletters. '

The following paragraph does not apply to the United Kingdom or any couniry where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS MANUAL “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied
warranties in certain transactions; therefore, this statement may not apply to you.

IBM does not warrant that the contents of this publication or the accompanying source code exampies,
whether individually or as one or more groups, will meet your requirements or that the publication or the
accompanying source code examples are error—free.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time.

Itis possible that this publication may contain reference to, or information about, IBM products (machines
and programs), programming, or services that are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce such IBM products, programming,
or services in your country. Any reference to an IBM licensed program in this publication is not intended to
state or imply that you can use only IBM’s licensed program. You can use any functionally equivalent
program instead.

Requests for copies of this publication and for technical information about IBM products should be made to
your IBM Authorized Dealer or your IBM Marketing Representative.

A reader’s comment form is provided at the back of this publication. If the form has been removed, address
comments to IBM Corporation, Department 997, 11400 Burnet Road, Austin, Texas 78758-3493. IBM may
use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

® Copyright Adobe Systems, Inc., 1984, 1987

® Copyright X’Open Company Limited, 1988. All Rights Reserved.

© Copyright IXI Limited, 1989. All rights reserved.

© Copyright AT&T, 1984, 1985, 1986, 1987, 1988, 1989. All rights reserved.
® Silicon Graphics, Inc., 1988. All rights reserved.

Use, duplication or disclosure of the SOFTWARE by the Government is subject to restrictions as set
forth in FAR 52.227-19(c)(2) or subparagraph (c)(1)(li) of the Rights in Technical Data and Computer
SOFTWARE clause at SFARS 252.227-7013, and/or in similar or successor clauses in the FAR, or
the DOD or NASA FAR Supplement. Unpublished rights reserved under the Copyright Laws of the
United States. Contractor/manufacturer is SILICON GRAPHICS, INC., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

® Copyright Carnegie Mellon, 1988. All rights reserved.
® Copyright Stanford University, 1988. All rights reserved.

Permission to use, copy, modify, and distribute this program for any purpose and without fee is
hereby granted, provided that this copyright and permission notice appear on all copies and
supporting documentation, the name of Carnegie Mellon and Stanford University not be used in
advertising or publicity pertaining to distribution of the program without specific prior permission, and
notice be given in supporting documentation that copying and distribution is by permission of
Carnegie Mellon and Stanford University. Carnegie Mellon and Stanford University make no
representations about the suitability of this software for any purpose. It is provided “as is” without
express or implied warranty.

® Copyright Sun Microsystems, Inc., 1985, 1986, 1987, 1988. All rights reserved.
The Network File System (NFS) was developed by Sun Microsystems, Inc.

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license
from The Regents of the University of California. We acknowledge the following institutions for their role in its
development: the Electrical Engineering and Computer Sciences Department at the Berkeley Campus.

The Rand MH Message Handling System was developed by the Rand Corporation and the University of
California.

Portion of the code and documentation described in this book were derived from code and documentation
developed under the auspices of the Regents of the University of California and have been acquired and
modified under the provisions that the following copyright notice and permission notice appear:

© Copyright Regents of the University of California, 1986, 1987. All rights reserved.

Redistribution and use in source and binary forms are permitted provided that this notice is
preserved and that due credit is given to the University of California at Berkeley. The name of the
University may not be used to endorse or promote products derived from this software without
specific prior written permission. This software is provided “as is” without express or implied
warranty.

Portions of the code and documentation described in this book were derived from code and documentation
developed by Massachusetts Institute of Technology, Cambridge, Massachusetts, and Digital Equipment
Corporation, Maynard, Massachusetts, and have been acquired and modified under the provision that the
following copyright notice and permission notice appear:

©® Copyright Digital Equipment Corporation, 1985, 1988. All rights reserved.
©® Copyright 1985, 1986, 1987, 1988 Massachusetts Institute of Technology. All rights reserved.

Permission to use, copy, modify, and distribute this program and its documentation for any purpose
and without fee is hereby granted, provided that this copyright, permission, and disclaimer notice
appear on all copies and supporting documentation; the name of M.L.T. or Digital not be used in
advertising or publicity pertaining to distribution of the program without specific prior permission.
M.LT. and Digital makes no representations about the suitability of this software for any purpose. It is
provided “as is” without express or implied warranty.

© Copyright INTERACTIVE Systems Corporation 1984. All rights reserved.

© Copyright 1989, Open Software Foundation, Inc. All rights reserved.

© Copyright 1987, 1988, 1989, Hewlett—Packard Company. All rights reserved.

® Copyright 1988 Microsoft Corporation. All rights reserved.

© Copyright Graphic Software Systems Incorporated, 1984, 1990. All rights reserved.
©® Copyright Micro Focus, Ltd., 1987, 1990. All rights reserved.

© Copyright Paul Milazzo, 1984, 1985. All rights reserved.

© Copyright EG Pup User Process, Paul Kirton, and ISI, 1984. All rights reserved.

@ Copyright Apolio Computer, Inc., 1987. All rights reserved.
©® Copyright TITN, Inc., 1984, 1989. All rights reserved.

This software is derived in part from the ISO Development Environment (ISODE). IBM acknowledges source
author Marshall Rose and the following institutions for their role in its development: The Northrup
Corporation and The Wollongong Group.

However, the following copyright notice protects this documentation under the Copyright laws of the United
States and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying,
and making derivative works.

® Copyright International Business Machines Corporation 1987, 1990. Ali rights reserved.

Notice to U.S. Government Users — Documentation Related to Restricted Rights — Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

Trademarks and Acknowledgements

The following trademarks and acknowledgements apply to this information:
AlX is a trademark of International Business Machines Corporation.

AIX/RT is a trademark of International Business Machines Corporation.
AlXwindows is a trademark of International Business Machines Corporation.
HP is a trademark of Hewlett Packard Inc.

HP-GL is a trademark of Hewlett—Packard Company.

IBM is a registered trademark of International Business Machines Corporation.

Operating System/2 and OS/2 are trademarks of International Business Machines
Corporation.

OSF and OSF/Motif are trademarks of Open Software Foundation, inc.
PAL is a trademark of International Business Machines Corporation.

Personal Computer AT and AT are trademarks of International Business Machines
Corporation.

RISC System/6000 is a trademark of international Business Machines Corporation.
RT is a trademark of International Business Machines Corporation.

UNIX was developed and licensed by AT&T and is a registered trademark of AT&T
Corporation.

Xstation Manager is a trademark of International Business Machines Corporation.
X Window System is a trademark of Massachusetts Institute of Technology.
X/OPEN is a trademark of XOPEN Company Limited.

Preface V

Vi User Interface Reference

About This Book

This book provides information on AlXwindows classes, subroutines, and resource sets;
Enhanced X-Windows subroutines, events, extensions, protocols and toolkit subroutines,
and Curses and Extended Curses for use on the Advanced Interactive Executive Operating
System (referred to in this text as AlX) for use on the IBM RISC System/6000.

This book is part of AlX Calls and Subroutines Reference for IBM RISC System/6000,
SC23-2198. AlX Calls and Subroutines Reference is divided into the following four major
sections:

Volumes 1 and 2, Calls and Subroutines Reference: Base Operating System, contains
reference information about the system calls, subroutines, functions, macros, and
statements associated with AIX base operating system runtime services, communications
services, and device services.

Volumes 3 and 4, Calls and Subroutines Reference: User Interface, contain reference
information about the AlXwindows widget classes, subroutines, and resource sets; the
AlXwindows Desktop resource sets; the Enhanced X—Windows subroutines, macros,
protocols, extensions, and events; the X—Window toolkit subroutines and macros; and the
curses and extended curses subroutine libraries.

Volume 5, Calls and Subroutines Reference: Kernel Reference, contains reference
information about kernel services, device driver operations, file system operations
subroutines, the configuration subsystem, the communications subsystem, the high
function terminal (HFT) subsystem, the logical volume subsystem, the printer subsystem,
and the SCSI subsystem.

Volumes 6, Calls and Subroutines Reference: Graphics, contains reference information
and example programs for the Graphics Library (GL) and the AlXwindows Graphics
Support Library (XGSL) subroutines.

Who Should Use This Book
This book is intended for experienced programmers who understand the basic functions of
the IBM RISC System/6000. To use this book effectively, you should be familiar with AIX or
UNIX System V commands and subroutines, AIXwindows subroutines, and Enhanced
X-Windows subroutines. If you are not already familiar with AIX or UNIX System V, refer to
AIX General Concepts and Procedures.

How to Use This Book

Overview of Contents
This book contains the following alphabetically arranged sections on AlXwindows, Enhanced
X-Windows, Curses and Extended Curses.

AlXwindows

— Classes

Subroutines

Resource Sets

Desktop Resource Sets
Window Management

Enhanced X-Windows

— Subroutines
— Toolkit Subroutines

Preface Vii

- Protocols
- Extensions
- Events

e Curses

o Extended Curses

Highlighting .
The following highlighting conventions are used in this book:
Bold Identifies commands, keywords, files, directories, and other items whose
names are predefined by the system.
Italics Identifies parameters whose actual names or values are to be supplied by
the user.

Monospace ldentifies examples of specific data values, examples of text similar to what
you might see displayed, examples of portions of program code similar to
what you might write as a programmer, messages from the system, or
information you should actually type.

Related Publications
The following books contain information about or related to application programming
interfaces:

e AIX General Programming Concepts for IBM RISC System/6000, Order Number
SC23-2205.

e AIX Communication Programming Concepts for IBM RISC System/6000, Order Number
SC23-2206.

o AIX Kernel Extensions and Device Support Programming Concepts for IBM RISC
System/6000, Order Number SC23-2207.

e AIX Files Reference for IBM RISC System/6000, Order Number SC23-2200.

o AIX User Interface Programming Concepts for IBM RISC System/6000, Order Number
SC23-2209.

e IBM RISC System/6000 Problem Solving Guide, Order Number SC23-2204.

* XL C Language Reference for IBM AlX Version 3 for RISC System/6000, Order Number
SC09-1260.

e XL C User’s Guide for IBM AIX Version 3 for RISC System/6000, Order Number
SC09-1259.

Ordering Additional Copies of This Book
To order additional copies of this book, use Order Number SC23-2198.

viii User Interface Reference

Contents

AIXWINdOWS Classescuciiiiininneenenanronasnenasnnsanns 1-1
AlXwindows Subroutines it i i i 2-1
AIXWINAOWS RESOUICE SETS - .« - v e v eeeneeneneeneeaneeaneeanens 3-1
AlXwindows Desktop ResourceSets oot 4-1
AlXwindow Window Managementcc0nn EEREERRPRY 5-1
Enhanced X-Windows Toolkit Subroutines, 6-1
Enhanced X-Windows Subroutinesoiiiiiiiiiia., 7-1
Enhanced X-Windows Protocolscciiiiiiiininnn... 8-1
Enhanced X-Windows Extensionscciiiviiiiiiiiiiinnn, 9-1
Enhanced X-Windows Eventso iiiiiiiiiiririiennnen 10-1
Curses Subroutine Library ittt 111
Extended Curses SubroutineLibraryc.cviiiiiiinian.. 121
Appendix A. Enhanced X-Windows Xlib Data Structures A-1
Appendix B. Enhanced X-Windows Toolkit Data Structures B-1
Appendix C. Enhanced X-Windows Extension Data Structures Cc-1
4T - X-1

Preface ix

X User Interface Reference

AlXwindows Classes

AlXwindows Classes 1-1

1-2 User Interface Reference

ApplicationShell

ApplicationShell Widget Class

Purpose
Library

Syntax

Children

The ApplicationShell widget class.

AlXwindows Library (libXm.a)

#include <Xm/Xm.h>
#include <X11/Shell.h>

ArrowButton Widget
BulletinBoard Widget
CascadeButtonGadget Gadget
DialogShell Widget
DrawnButton Widget
Form Widget

Label Widget

List Widget

MenuShell Widget
PushButton Widget
RowColumn Widget
ScrollBar Widget
SelectionBox Widget
SeparatorGadget Gadget
ToggleButton Widget

Description
The ApplicationShell widget class serves as the main top—level window for a client
application. An application should only have more than one ApplicationShell if it

implements multiple logical applications.

ArrowButton Gadget Gadget
CascadeButton Widget
Command Widget
DrawingArea Widget
FileSelectionBox Widget
Frame Widget

LabelGadget Gadget
MainWindow Widget
PanedWindow Widget
PushButtonGadget Gadget
Scale Widget
ScrolledWindow Widget
Separator Widget

Text Widget
ToggleButtonGadget Gadget

The ApplicationShell widget class inherits behavior and resources from the Core,
Composite, Shell, WMShell, VendorShell, and TopLevelShell classes. The class pointer
is applicationShellWidgetClass. The class name is ApplicationShell.

New Resources
Setting the resource values for the inherited classes also sets resources for this widget. To
reference a resource by name or by class in an .Xdefaults file, remove the XmN or XmC
prefix and use the remaining letters. To specify one of the defined values for a resource in an
Xdefaults file, remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but including any underscores between words). The codes in the access column
indicate whether the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A). The
following resource set lists the resources of the ApplicationShell class:

¢ ApplicationShell Resource Set

AlXwindows Classes 1-3

ApplicationShell

Inherited Resources
The following resource sets list all of the resources inherited by the ApplicationShell widget
class:

¢ TopLevelShell Resource Set

¢ VendorShell Resource Set

e WMSheli Resource Set

o Shell Resource Set

o Composite Resource Set

o Core Resource Set
Implementation Specifics

This subroutine is part of AIXwindows Development Environment in AIXwindows
Environment/6000.

Files
/usr/include/Xm/Xm.h
/usr/include/X11/Shell.h

Related Information
The Core widget class, Shell widget class, WMShell widget class, VendorShell widget
class, TopLevelShell widget class.

14 User Interface Reference

Composite

Composite Widget Class

Purpose

The Composite widget class.
Library

AlXwindows Library (libXm.a)
Syntax

#include <Xm/Xm.h>
Children

No children are supported.
Description

Composite widgets are intended to be containers for other widgets; they can have an
arbitrary number of children. Their responsibilities (either implemented directly by the widget
class or indirectly by the Enhanced X-Windows subroutines) include:

¢ QOverall management of children from creation to destruction.
¢ Destruction of descendants when the Composite widget is destroyed.

e Physical arrangement (geometry management) of a displayable subset of managed
children.

* Mapping and unmapping of a subset of the managed children. Instances of the
Composite widgets need to specify about the order in which their children are kept. For
example, an application may require a set of command buttons in some logical order
grouped by function, and it may need buttons that represent file names to be kept in
alphabetical order.

The XmComposite widget class inherits behavior and resources from the Core class. The
class pointer is the xmcompositeWidgetClass. The class name is XmComposite.

New Resources
Setting the resource values for the inherited classes also sets resources for this widget. To
reference a resource by name or by class in an .Xdefaults file, remove the XmN or XmC
prefix and use the remaining letters. To specify one of the defined values for a resource in an
Xdefaults file, remove the Xm prefix and use the remaining letters (in either lowe case or
uppercase, but include any underscores between words). The codes in the access column
indicate if the given resource can be set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable (N/A).

Inherited Resources

The following resource sets contain a complete description of the resources inherited by the
XmCascadeButton widget:

¢ Composite Resource Set

e Core Resource Set

AlXwindows Classes 1-5

Composite

The following procedure pointer in an XmComposite widget class instance is of the type
XtOrderProc:

Cardinal (*XtOrderProc) (widget)
Widget w
w Specifies the widget.

The Composite widgets that allow clients to order their children (usually homogeneous
boxes) can call their widget instance insert_position procedure from the class insert_child
procedure to determine where a new child should go in its children array. A client application
can apply different sorting criteria to widget instances of the composite class, passing in a
different insert_position procedure when it creates each Composite widget instance.

The return value of the insert_position procedure indicates how many children should go
before the widget. Returning zero indicates that the widget should go before all other
children; returning num_children indicates that it should go after all other children. The
default insert_position subroutine returns num_children and can be overridden by a
specific Composite widget resource list or by the parameter list provided when the
Composite widget is created.

Implementation Specifics

File

Related Inf

This subroutine is part of AIXwindows Development Environment in AIXwindows
Environment/6000.
/usr/include/Xm/Xm.h

ormation
The Core widget class.

1-6 User Interface Reference

Constraint

Constraint Widget Class

Purpose

The Constraint widget class.
Library

AlXwindows Library (libXm.a)
Syntax

#include<Xm/Xm.h>
Children

No children are supported.
Description

The Constraint widget class maintains additional state data for each child. For example,
client—defined constraints on the geometry of the child can be specified.

When a constrained composite widget defines Constraint resources, all children of the
widget inherit those resources as their own. These Constraint resources are set and read
the same way that other resources are defined for the child. This resource inheritance
extends exactly one generation down; only the first-generation children of a constrained
composite widget inherit the parent widget Constraint resources.

Because the Constraint resources are defined by the parent widgets and not the children,
the child widgets never directly use the constraint resource data. Constraint resource data
is instead used by the parents to attach child—specific data to children.

The Constraint widget class inherits behavior and resources from the Composite and Core
classes. The class pointer is constraintWidgetCiass. The class name is Constraint.

New Resources
The Constraint widget class defines no new resource sets.

Inherited Resources
Setting the resource values for the inherited classes also sets resources for this widget. To
reference a resource by name or by class in an .Xdefaults file, remove the XmN or XmC
prefix and use the remaining letters. To specify one of the defined values for an resource in
an .Xdefaults file, remove the Xm prefix and use the remaining letters (in either lower case
or upper case, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A). The
Constraint widget inherits behavior and resources from Composite and Core. The
following resource set lists the resources of the Constraint class:

e Core Resource Set

Implementation Specifics
This subroutine is part of AIXwindows Development Environment in AIXwindows
Environment/6000.

AlXwindows Classes 1-7

Constraint

File

/usr/include/Xm/Xm.h

Related Information
The Composite widget class, Core widget class.

1-8 User Interface Reference

Core

Core Widget Class
Purpose

The Core widget class.
Library

AlXwindows Library (libXm.a)
Syntax

#include <Xm/Xm.h>
Children

No children are supported.
Description

The Core widget class serves as the Enhanced X—Windows Toolkit base class for windowed
widgets. To add support for the windowless widgets known as gadgets, three additional
classes have been added above the Core widget in the class hierarchy. They are the
Object, RectObj, and WindowObj classes. The WindowObj class is a synonym of the
Core widget class that provides no added functionality, but was necessary for
implementation reasons.

All widgets are built from the Core widget class. The class pointer is widgetClass. The
class name is Core.

New Resources
Setting the resource values for the inherited classes also sets resources for this widget. To
reference a resource by name or by class in an .Xdefaults file, remove the XmN or XmC
prefix and use the remaining letters. To specify one of the defined values for a resource in an
.Xdefaults file, remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access column
indicate whether the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A). The
following resource set lists the resources of the Core class:

o Core Resource Set

Implementation Specifics
This subroutine is part of AIXwindows Development Environment in AIXwindows
Environment/6000.

File

/usr/include/Xm/Xm.h

Related Information
The WindowObj widget class, Object widget class, RectObj widget class.

AlXwindows Classes 1-9

Object

Object Widget Class

Purpose
The Object widget class.

Library
AlXwindows Library (libXm.a)

Syntax

#include <Xm/Xm.h>

Description
The Object widget class is never instantiated. The sole purpose of this widget class is to act
as a supporting superclass for other widget classes. The class pointer is objectClass. The
class name is Object.

New Resources
Setting the resource values for the inherited classes also sets resources for this widget. To
reference an resource by name or by class in an .Xdefaults file, remove the XmN or XmC
prefix and use the remaining letters. To specify one of the defined values for an resource in
an .Xdefaults file, remove the Xm prefix and use the remaining letters (in either lower case
or upper case, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A). The
following resource set lists the resources of the Object widget class:

e Object Resource Set

Implementation Specifics
This subroutine is part of AIXwindows Development Environment in AiXwindows
Environment/6000.

File

/usr/include/Xm/Xm.h

Related Information
The XtGetValues subroutine, XtSetValues subroutine.

1=10 User Interface Reference

OverrideShell

OverrideShell Widget Class

Purpose
The OverrideShell widget class.

Library
AlXwindows Library (libXm.a)

Syntax
#include <Xm/Xm.h>
#include <X11/Shell.h>

Children
ArrowButton Widget ArrowButtonGadget Gadget
BulletinBoard Widget CascadeButton Widget
CascadeButtonGadget Gadget DrawnButton Widget
Label Widget LabelGadget Gadget
List Widget PushButton Widget
PushButtonGadget Gadget ScrollBar Widget
Separator Widget SeparatorGadget Gadget
Text Widget ToggleButton Widget
ToggleButtonGadget Gadget

Description

The OverrideShell widget class applies to shell windows (such as PopupMenu shells) that
completely bypass the AlXwindows window manager.

The OverrideShell widget class inherits behavior and resources from the Core,
Composite, and Shell classes. The pointer is overrideShellWidgetClass. The class name
is OverrideShell.

New Resources

The OverrideShell widget class defines no new resources, but overrides the
XmNoverrideRedirect and XmNsaveUnder resources in the Shell widget class.

Inherited Resources

Setting the resource values for the inherited classes also sets resources for this widget. To
reference an resource by name or by class in an .Xdefaults file, remove the XmN or XmC
prefix and use the remaining letters. To specify one of the defined values for a resource in an
.Xdefaults file, remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access column
indicate whether the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A). The
following resource sets list all the resources inherited by the OverrideShell widget class:

« Shell Resource Set
¢ Composite Resource Set

e Core Resource Set

AlXwindows Classes 1-11

OverrideShell

Implementation Specifics

This subroutine is part of AIXwindows Development Environment in AIXwindows
Environment/6000.

Files

/usr/include/Xm/Xm.h
/usr/include/X11/Shell.h

Related Information
The Core widget class, Shell widget class, Composite widget class.

1—=12 User Interface Reference

RectObj

RectObj Widget Class
Purpose

The RectObj widget class.
Library

AlXwindows Library (libXm.a)
Syntax

#include <Xm/Xm.h>
Children

No children are supported.
Description

The RectObj widget class serves as a supporting superclass for other widget classes. It is
never instantiated.

The RectObj widget class is built from the Object widget class. The class pointer is
rectObjClass. The class name is RectObj.

New Resources
Setting the resource values for the inherited classes also sets resources for this widget. To
reference a resource by name or by class in an .Xdefaults file, remove the XmN or XmC
prefix and use the remaining letters. To specify one of the defined values for a resource in an
.Xdefaults file, remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access column
indicate whether the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A). The
following resource set lists the resources of the RectObj widget class.

¢ RectObj Resource Set

Inherited Resources
The RectObj widget class inherits behavior and an resource from the Object widget. The
following resource set lists the inherited behavior and resource:

e Object Resource Set

Implementation Specifics
This subroutine is part of AIXwindows Development Environment in AIXwindows
Environment/6000.

File

/usr/include/Xm/Xm.h

Related Information
The Object widget class.

AlXwindows Classes 1-13

Shell

Shell Widget Class

Purpose

Library

Syntax

Children

The Shell widget class.

AlXwindows Library (libXm.a)

#include <Xm/Xm.h>
#include <X11/Shell.h>

ArrowButton Widget
BulletinBoard Widget
CascadeButton Widget
DrawnButton Widget
FormDialog
LabelGadget Gadget
MessageDialog
PopupMenu
PushButton Widget
QuestionDialog
SelectionDialog
SeparatorGadget Gadget
ToggleButton Widget
WarningDialog

Description
The Shell widget class acts as a top—level widget (with only one managed child) that
encapsulates the interaction with the AlXwindows window manager.

ArrowButtonGadget Gadget
BulletinBoardDialog
CascadeButtonGadget Gadget
ErrorDialog

Label Widget

List Widget

OptionMenu

PulldownMenu
PushButtonGadget Gadget
ScrollBar Widget

Separator Widget

Text Widget
ToggleButtonGadget Gadget
WorkingDialog

The Shell widget class inherits behavior and resources from the Composite and Core
classes. The class pointer is shellWidgetClass. The class name is Shell.

New Resources
Setting the resource values for the inherited classes also sets resources for the Shell
widget. To reference a resource by name or by class in an .Xdefaults file, remove the XmN
or XmC prefix and use the remaining letters. To specify one of the defined values for an
resource in an .Xdefaults file, remove.the Xm prefix and use the remaining letters (in either
lower case or upper case, but include any underscores between words). The codes in the
access column indicate whether the given resource can be set at creation time (C), set by
using XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A). The
following resource set lists the resources of the Shell widget class:

e Shell Resource Set

1-14 User Interface Reference

Shell

Inherited Resources
The following resource sets list all of the resources inherited by the Shell widget class:

e Composite Resource Set

o Core Resource Set

Implementation Specifics
This subroutine is part of AIXwindows Development Environment in AIXwindows
Environment/6000.

Files
/usr/include/Xm/Xm.h
/usrf/include/X11/Shell.h

Related Information
The Composite widget class, Core widget class.

AlXwindows Classes 1-15

TopLevelShell

TopLevelShell Widget Class

Purpose
The TopLevelShell widget class.

Library
AlXwindows Library (libXm.a)

Syntax

: #include <Xm/Xm.h>

#include <X11/Shell.h>

Children
ApplicationShell Widget Class ArrowButton Widget
ArrowButtonGadget Gadget BulletinBoard Widget
BulletinBoardDialog CascadeButton Widget
CascadeButtonGadget Gadget DrawnButton Widget
ErrorDialog FormDialog
Label Widget LabelGadget Gadget
List Widget MessageDialog
OptionMenu OverrideShell Widget Class
PopupMenu PulldownMenu
PushButton Widget PushButtonGadget Gadget
QuestionDialog ScroliBar Widget
SelectionDialog Separator Widget
SeparatorGadget Gadget Shell Widget Class
Text Widget ToggleButton Widget
ToggleButtonGadget Gadget TransientShell Widget Class
VendorShell Widget Class WarningDialog
WMShell Widget Class WorkingDialog

Description

The TopLevelShell widget class applies to normal top—level windows such as any additional
top—level widgets that an application needs.

The class pointer is topLevelShellWidgetClass. The class name is TopLevelShell.

New Resources
Setting the resource values for the inherited classes also sets resources for this widget. To
reference an resource by name or by class in an .Xdefaults file, remove the XmN or XmC
prefix and use the remaining letters. To specify one of the defined values for an resource in
an .Xdefaults file, remove the Xm prefix and use the remaining letters (in either lower case
or upper case, but include any underscores between words). The codes in the access
column indicate whether the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A). The
following resource set lists the resources of the TopLevelShell widget:

+ TopLevelShell Resource Set

1-16 User Interface Reference

TopLevelShell

Inherited Resources

The following resource sets list all the resources inherited by the TopLevelShell widget
class:

e VendorShell Resource Set
¢ WMShell Resource Set

e Shell Resource Set

e Composite Resource Set
e Core Resource Set

Implementation Specifics

This subroutine is part of AIXwindows Development Environment in AlXwindows
Environment/6000.

Files

/usri/include/Xm/Xm.h
/usri/include/X11/Shell.h

Related Information

The Composite widget class, Core widget class, Shell widget class, WMShell widget class,
VendorShell widget class,

AlXwindows Classes 1-17

TransientShell

TransientShell Widget Class

Purpose

Library

Syntax

Children

The TransientShell widget class.

AlXwindows Library (libXm.a)

#include <Xm/Xm.h>
#include <X11/Shell.h>

ApplicationShell Widget Class
ArrowButtonGadget Gadget
CascadeButtonGadget Gadget
DrawnButton Widget
FormDialog

LabelGadget Gadget
MessageDialog

OverrideShell Widget Class
PulildownMenu
PushButtonGadget Gadget
ScrollBar Widget

Separator Widget

Shell Widget Class
ToggleButton Widget
TransientShell Widget Class
WarningDialog

WorkingDialog

Description
The TransientShell widget class applies to shell windows that can be manipulated by the
AlXwindows window manager, but are not allowed to be iconified separately. For example,
Dialog boxes make no sense without their associated application. They are iconified by the
window manager only if the main application shell is iconified.

ArrowButton Widget
BulletinBoard Widget
CascadeButton Widget
ErrorDialog

Label Widget

List Widget

OptionMenu

PopupMenu

PushButton Widget
QuestionDialog
SelectionDialog
SeparatorGadget Gadget
Text Widget
ToggleButtonGadgetGadget
VendorShell Widget Class
WMShell Widget Class

The TransientShell widget class inherits behavior and resources from the Core,
Composite, Shell, WMShell, and VendorShell classes. The class pointer is
transientShellWidgetClass. The class name is TransientShell.

New Resources
The TransientShell widget class defines no new resources, but overrides the
XmNsaveUnder resource in the Shell widget class and the XmNtransient resource in the

WMShell widget class.

Inherited Resources
Setting the resource values for the inherited classes also sets resources for this widget. To
reference a resource by name of by class in a .Xdefaults file, remove the XmN or XmC
prefix and use the remaining letters. To specify one of the defined values for a resource in a

1-18 User Interface Reference

TransientShell

Xdefaults file, remove the Xm prefix and use the remaining letters (in either lower case or
upper case, but include any underscores between words). The codes in the access column
indicate if the given resource can be set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable (N/A). The following resource sets
contain a complete description of the resources inherited by the TransientShell widget
class:

e Core Resource Set

e Composite Resource Set
¢ Shell Resource Set

¢ VendorShell Resource Set
¢ WMShell Resource Set

Implementation Specifics
This subroutine is part of AIXwindows Development Environment in AIXwindows
Environment/6000.

Files

/usr/include/Xm/Xm.h
/usr/include/X11/Shell.h

Related Information

The Composite widget class, Core widget class, Shell widget class, VendorShell widget
class, WMShell widget class.

AiXwindows Classes 1-19

VendorShell

VendorShell Widget Class

Purpose

The VendorShell widget class.

Library

AlXwindows Library (libXm.a)

Syntax

#include <Xm/Xm.h>

#include <X11/Shell.h>

Children
ArrowButton Widget

BulletinBoard Widget
CascadeButtonGadget Gadget

DialogShell Widget
DrawnButton Widget
Form Widget

Label Widget

List Widget
MenuShell Widget
PushButton Widget
RowColumn Widget
ScroliBar Widget
SelectionBox Widget

SeparatorGadget Gadget

ToggleButton Widget

Description

ArrowButtonGadget Gadget
CascadeButton Widget
Command Widget
DrawingArea Widget
FileSelectionBox Widget
Frame Widget

LabelGadget Gadget
MainWindow Widget
PanedWindow Widget
PushButtonGadget Gadget
Scale Widget
ScrolledWindow Widget
Separator Widget

Text Widget
ToggleButtonGadget Gadget

The VendorShell widget class is used as a supporting superclass for all shell classes that
are visible to the AIXwindows window manager and that do not have the
XmNoverrideRedirect resource. This widget class contains the resources that maintain the
AlXwindows window manager “look and feel.” It also manages the AIXwindows window
manager-specific communication needed by all VendorShell widget subclasses.

The VendorShell widget class inherits behavior and resources from the Core, Composite,
Shell, and WMShell classes. The class pointer is vendorShellClass. The class name is

VendorShell.

Subroutines

e XmActivateProtocol
o XmAddProtocolCallback

¢ XmAddProtocols

o XmbDeactivateProtocol

¢ XmAtomToName

e XminternAtom

1-20 User Interface Reference

VendorShell

o XmlsMotifWMRunning
¢ XmRemoveProtocolCallback
¢ XmRemoveProtocols

¢ XmSetProtocolHooks

New Resources
Setting the resource values for the inherited classes also sets resources for this widget. To
reference a resource by name or by class in a .Xdefaults file, remove the XmN or XmC
prefix and use the remaining letters. To specify one of the defined values for an resource in a
.Xdefaults file, remove the Xm prefix and use the remaining letters (in either lower case or
upper case, but include any underscores between words). The codes in the access column
indicate whether the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A). The
following resource sets list the resources of the VendorShell widget class:

e VendorShell Resource Set

Inherited Resources

The following superclasses contain a complete description of resources inherited by the
VendorShel! widget class:

e WMShell Resource Set
e Shell Resource Set
o Composite Resource Set

e Core Resource Set

Implementation Specifics
This subroutine is part of AIXwindows Development Environment in AIXwindows
Environment/6000.

Files

/usr/include/Xm/Xm.h
/usr/include/X11/Shell.h

Related Information
The Composite widget class, Core widget class, Shell widget class, WMShell widget class,
XmActivateProtocol subroutine, XmAddProtocolCallback subroutine, XmAddProtocols
subroutine, XmDeactivateProtocol subroutine, XmAtomToName subroutine,
XminternAtom subroutine, XmisMotifWMRunning subroutine,
XmRemoveProtocolCallback subroutine, XmRemoveProtocols subroutine,
XmSetProtocolHooks subroutine.

AlXwindows Classes 1-21

WMShell

WMShell Widget Class

Purpose
The WMShell widget class.

Library
AlXwindows Library (libXm.a)

Syntax
#include <Xm/Xm.h>
#include <X11/Shell.h>

Children :
ArrowButton Widget ArrowButtonGadget Gadget
BulletinBoard Widget CascadeButton Widget
CascadeButtonGadget Gadget DrawnButton Widget
Label Widget LabeliGadget Gadget
List Widget PushButton Widget
PushButtonGadget Gadget ScroliBar Widget
Separator Widget SeparatorGadget Gadget
Text Widget ToggleButton Widget
ToggleButtonGadget Gadget

Description

The WMShell widget class serves as a top—level widget that encapsulates the interaction
with the AlXwindows window manager.

The WMShell widget class inherits behavior and resources from the Core, Composite, and
Shell classes. The class pointer is wmShellWidgetClass. The class name is WMShell.

New Resources

Setting the resource values for the inherited classes also sets resources for this widget. To
reference a resource by name or by class in a .Xdefaults file, remove the XmN or XmC
prefix and use the remaining letters. To specify one of the defined values for an resource in a
.Xdefaults file, remove the Xm prefix and use the remaining letters (in either lower case or
upper case, but include any underscores between words). The codes in the access column
indicate whether the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A). The
following resource set lists the resources of the WMShell widget class:

e WMShell Resource Set

Inherited Resources

The following superclasses contain a complete description of resources inherited by the
WMShell widget class:

e Shell Resource Set
e Composite Resource Set

e Core Resource Set

1—-22 User Interface Reference

WMShell

Implementation Specifics
This subroutine is part of AIXwindows Development Environment in AlXwindows
Environment/6000.

Files

/usr/include/Xm/Xm.h
/usr/include/X11/Shell.h

Related Information
The Core widget class, Composite widget class, Shell widget class.

AlXwindows Classes 1-23

WindowObj

WindowObj Widget Class

Purpose

The WindowObj widget class.
Library

AlXwindows Library (libXm.a)
Syntax

#include <Xm/Xm.h>
Children

No children are supported.
Description

The WindowObj widget class is an internal Enhanced X-Windows widget class. This
widget class is a synonym of the Core widget class that provides no added functionality but
was necessary for implementation reasons.

The WindowObj widget class inherits behavior and resources from the Object and RectObj
classes. The class pointer is windowObjClass. The class name is WindowObj.

Implementation Specifics
This subroutine is part of AIXwindows Development Environment in AIXwindows
Environment/6000.

File

/usr/include/Xm/Xm.h

Related Information
The Object widget class, Core widget class, RectObj widget class.

1-24 User Interface Reference

XmArrowButton

XmArrowButton Widget Class

Purpose
The ArrowButton widget class.

Library
AlXwindows Library (libXm.a)

Syntax
#include <Xm/ArrowB.h>

Children
No children are supported.

Description
An ArrowButton widget consists of a directional arrow surrounded by a border shadow.
When the widget is selected, the shadow moves to give the appearance that the
ArrowButton widget has been pressed in. When the ArrowButton widget is unselected,
the shadow moves to give the appearance that the ArrowButton widget is released, or out.
The XmArrowButton widget class inherits behavior and resources from the Core and
XmPrimitive classes. The class pointer is xmArrowButtonWidgetClass. The class name
is XmArrowButton.

Subroutines

e XmCreateArrowButton

¢ XtCreateWidget subroutine

New Resources
Setting the resource values for the inherited classes to also sets resources for this widget.
To reference a resource by name or by class in an .Xdefaults file, remove the XmN or XmC
prefix and use the remaining letters. To specify one of the defined values for an resource in
an .Xdefaults file, remove the Xm prefix and use the remaining letters (in either lower case
or upper case, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S). retrieved by using XtGetValues (G), or is not applicable (N/A). The
following resource set lists the resources of the ArrowButton widget:

o XmArrowButton Resource Set

Inherited Resources

The following resource sets contain a complete description of the resources inherited by the
ArrowButton widget:

o XmPrimitive Resource Set

¢ Core Resource Set

AlXwindows Classes 1-25

XmArrowButton

Callback Information

Behavior

The following structure is returned with each callback:

typedef struct

int reason,
XEvent * event;
} XmAnyCallbackStruct;

reason Indicates why the callback was invoked.

event Points to the XEvent that triggered the callback. This event will be NULL for
the XmNactivateCallback if the callback was triggered when the Primitive
resource XmNtraversalOn was True or if the callback was accessed
through the ArmAndActivate action routine.

<Btn1Downs: This action causes the arrow to be armed, and the shadow to be drawn in the
selected state. The callbacks for XmNarmCallback are called.

<Btn1Up>: If the mouse button release occurs when the pointer is within the ArrowButton
widget, the arrow shadows are redrawn in the unselected state. The callbacks for
XmNactivateCallback are called, followed by callbacks for XmNdisarmCallback.

If the mouse button release occurs when the pointer is outside the ArrowButton widget, the
callbacks for XmNdisarmCallback are called.

<Leave Windows: If the mouse button is pressed and the cursor leaves the widget window,
the arrow shadow is redrawn in its unselected state.

<Enter Windows: If the mouse button is pressed and the cursor leaves and re—enters the

widget window, the arrow shadow is drawn in the same manner as when the button was first
armed.

Default Translations

<Btn1Down>: Arm()

<Btn1Up>: Activate()
Disarm()

<Key>Return: ArmAndActivate()

<Key>Space: ArmAndActivate()

<EnterWindows>: Enter()

<LeaveWindows: Leave()

Keyboard Traversal

For information on keyboard traversal, see XmPrimitive and its sections on behavior and
default translations.

Implementation Specifics

File

This subroutine is part of AIXwindows Development Environment in AIXwindows
Environment/6000.

/usr/include/Xm/ArrowB.h

1-26 User Interface Reference

XmArrowButton

Related Information
The Core widget class, XmCreateArrowButton subroutine, XmPrimitive widget class,
XtCreateWidget subroutine.

AlXwindows Classes 1-27

XmArrowButtonGadget

XmArrowButtonGadget Gadget Class

Purpose
The ArrowButtonGadget gadget class.

Library
AlXwindows Library (libXm.a)

Syntax
#include <Xm/ArrowBG.h>

Children
No children are supported.

Description
An ArrowButtonGadget gadget consists of a directional arrow surrounded by a border
shadow. When the gadget is selected, the shadow moves to give the appearance that the
ArrowButtonGadget gadget has been pressed in. When it is unselected, the shadow
moves to give the appearance that the button is released, or out.
The ArrowButtonGadget gadget class inherits behavior and resources from the Object,
RectObj, and XmGadget classes. The class pointer is xmArrowButtonGadgetClass. The
class name is XmArrowButtonGadget.

‘Subroutines

¢ XmCreateArrowButtonGadget
o XtCreateWidget

New Resources
Setting the resource values for the inherited classes also sets resources for this widget. To
reference a resource by name or by class in an .Xdefaults file, remove the XmN or XmC
prefix and use the remaining letters. To specify one of the defined values for a resource in an
.Xdefaults file, remove the Xm prefix and use the remaining letters (in either lower case or
upper case, but include any underscores between words). The codes in the access column
indicate if the given resource can be set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable (N/A). The following resource set
lists the resources of the XmArrowButtonGadget gadget class:

¢ XmArrowButtonGadget Resource Set
Inherited Resources

The following resource sets contain a complete description of the resources inherited by the
ArrowButtonGadget gadget class:

¢ XmGadget Resource Set
* RectObj Resource Set

e Object Resource Set

1-28 User Interface Reference

XmArrowButtonGadget

Callback Information

Behavior

The following structure is returned with each callback:

typedef struct {
int reason;
XEvent ‘“event,
} XmAnyCallbackStruct;

reason Indicates why the callback was invoked.

event Points to the XEvent that invoked the callback. This event is NULL
for the XmNactivateCallback resource if the callback was triggered
when the XmNtraversalOn resource of the Primitive was True or if
the callback was accessed through the ArmAndActivate action
routine.

<Btn1Down>: This action causes the arrow to be armed, and the shadow to be drawn in the
selected state. The callbacks for the XmNarmCallback resource are called.

<Btn1Up>: If the mouse button release occurs when the pointer is within the
ArrowButtonGadget gadget, the arrow shadows are redrawn in the unselected state. The
callbacks for the XmNactivateCallback resource are called, followed by callbacks for the
XmNdisarmCallback resource.

If the mouse button release occurs when the pointer is outside the ArrowButtonGadget
gadget, the callbacks for the XmNdisarmCallback resource are called.

<Leave Windows: If the mouse button is pressed and the cursor leaves the widget window,
the arrow shadow is redrawn in its unselected state.

<Enter Windows: If the mouse button is pressed and the cursor leaves and re—enters the
widget window, the arrow shadow is drawn in the same manner as when the button was first
armed.

Default Translations
<Btn1Down>: Arm()
<Btn1Up>: Activate()
Disarm()
<EnterWindows>: Enter()
<LeaveWindows>: Leave()

Keyboard Traversal

For information on keyboard traversal, see XmGadget and its sections on behavior and
detfault translations.

Implementation Specifics

File

This subroutine is part of AIXwindows Development Environment in AIXwindows
Environment/6000.

/usr/include/Xm/ArrowBG.h

AlXwindows Classes 1-29

XmArrowButtonGadget

Related Information
The Object widget class, RectObj widget class, XmCreateArrowButtonGadget
subroutine, XtCreateWidget subroutine, XmGadget gadget class.

1-30 User interface Reference

XmBulletinBoard

IBM Confidential

XmBulletinBoard Widget Class

Purpose

Library

Syntax

Children

The BulletinBoard widget class.

AlXwindows Library (libXm.a)

#include <Xm/BulletinB.h>

ArrowButton Widget
BulletinBoard Widget
CascadeButtonGadget Gadget
DialogShell Widget
DrawnButton Widget
Form Widget

Label Widget

List Widget

MenuShell Widget
PushButton Widget
RowColumn Widget
ScroliBar Widget
SelectionBox Widget
SeparatorGadget Gadget
ToggleButton Widget

Description
A BulletinBoard widget is a composite widget that provides simple geometry management
for children widgets. This widget does not force positioning on its children, but can be set to
reject geometry requests that would result in overlapping children. The BulletinBoard
widget is the base widget for most dialog widgets, and is also used as a general container

widget.

ArrowButtonGadget Gadget
CascadeButton Widget
Command Widget
DrawingArea Widget
FileSelectionBox Widget
Frame Widget

LabelGadget Gadget
MainWindow Widget
PanedWindow Widget
PushButtonGadget Gadget
Scale Widget
ScrolledWindow Widget
Separator Widget

Text Widget
ToggleButtonGadget Gadget

Modal and modeless dialogs are implemented as coliections of widgets including
DialogShell widgets, BulletinBoard widgets (or subclass children of the shell), and various
dialog components (such as buttons and labels) that are children of the BulletinBoard
widget. The BulletinBoard widget defines callback routines useful for dialogs (focus, map,
unmap). If its parent is a DialogShell widget, the BulletinBoard widget passes title and
input mode (based on dialog style) information to the parent, which is responsible for

appropriate communication with the window manager.

The XmBulletinBoard widget class inherits behavior and resource from the Core,
Composite, Constraint, and XmManager classes.The class pointer is
xmBulletinBoardWidgetClass. The class name is XmBulletinBoard.

AlXwindows Classes 1-31

XmBulletinBoard

Subroutines

The following subroutines create an instance of a BulletinBoard widget and return the
associated widget ID:

¢ XmCreateBulletinBoard

¢« XmCreateBulletinBoardDialog

New Resources

Setting the resource values for the inherited classes also sets resource for this widget. To
reference an resource by name or by class in an .Xdefaults file, remove the Xm prefix and
use the remaining letters. To specify one of the defined values for a resource in an
.Xdefaults file, remove the Xm prefix and use the remaining letters (in either lower case or
upper case, but include any underscores between words). The codes in the access column
indicate if the given resource can be set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable {N/A). The following resource set
lists the resource of the XmBulletinBoard class:

o XmBulietinBoard Resource Set

Inherited Resources

The following resource sets contain a complete description of the resource inherited by the
BulletinBoard widget:

¢ XmManager Resource Set
e Composite Resource Set

e Core Resource Set

Callback Information

Behavior

The following structure is returned with each callback routine:

typedef struct
{

iriyt reason,
XEvent *event,
} XmAnyCalibackStruct;

reason Is set to the value that corresponds to the type of selection that invoked this
callback routine.

event Points to the XEvent that invoked the callback routine.

The BulletinBoard widget behavior is summarized below:

<Cancel Button Activated>: When the Cancel button is pressed, the “activate” callback
routines of the Cancel pushbutton are invoked.

<Default Button Activated> or <Key>Return: When the Default button is pressed, the
“activate” callback routines of the Default pushbutton are invoked.

<Help Button Activated> or <Key>F1: When the help button or Function key 1 is
pressed, the callback routines for XmNhelpCallback are invoked.

<Focusin>: When a Focusln eventis generated on the widget window, the callback
routines for XmNfocusCallback are invoked.

1-32 User interface Reference

XmBulletinBoard

<MapWindow>: When a BulletinBoard widget that is the child of a DialogShell widget is
mapped, the callback routines for XmNmapCatlback are invoked. When a BulletinBoard
widget that is not the child of a DialogShell widget is mapped, the callback routines are not
invoked.

<UnmapWindow>: When a BulletinBoard widget that is the child of a DialogShell widget
is unmapped, the callback routines for XmNunmapCallback are invoked. When a
BulletinBoard widget that is not the child of a DialogShell widget is unmapped, the
callback routines are not invoked.

Default Translations

The default translations defined for XmBulletinBoard widgets are:
<EnterWindows>: Enter()

<Focusin>: Focusin()

<Btn1iDown>: Arm()

<Btn1Up>: Activate()

<Key>F1: Help()

<Key>Return: Return()

<Key>KP_Enter: Return()

Default Accelerators

The default accelerator translations added to descendants of a BulletinBoard widget (if the
parent of the BulletinBoard widget is a DialogShell widget) are:

#override

<Key>F1: Help()
<Key>Return: Return()
<Key>KP_Enter: Return()

Keyboard Traversal

By default, if the parent of a BulletinBoard widget is a DialogShel! widget, the
BulletinBoard widget uses the Return key to activate the Default button. 1t installs
accelerators on all descendant widgets to make this possible. These accelerators disable the
normal keyboard traversal behavior of the Return key. This traversal behavior can be
restored (and the Default button behavior disabled) by replacing the BulletinBoard widget
default accelerators with an alternate set of translations which do not specify the Return
action. The description of the Manager widget has more information on keyboard traversal.

Implementation Specifics

This subroutine is part of AIlXwindows Development Environment in AiXwindows
Environment/6000.

/usrfinclude/Xm/BulletinB.h

Related Information

The Core widget class, Constraint widget class, Composite widget class,
XmCreateBulletinBoard subroutine, XmCreateBulletinBoardDialog subroutine,
XmDialogShell widget class, XmManager widget class.

AlXwindows Classes 1-33

XmCascadeButton

XmCascadeButton Widget Class

Purpose

The CascadeButton widget class.
Library

AlXwindows Library (libXm.a)
Syntax

#include <Xm/CascadeB.h>
Children

No children are supported.
Description

A CascadeButton widget links two MenuPane widgets or a MenuBar widget to a
MenuPane widget.

This widget is used in menu systems and must have a RowColumn widget with its
XmNrowColumnType resource set to the XmMENU_BAR, XmMENU_POPUP,
XmMENU_PULLDOWN, or XmMENU_OPTION value.

It is the only widget that can have a Pulldown MenuPane attached to it as a submenu. The
submenu is displayed when this widget is activated within a MenuBar, a PopupMenu, or a

PulldownMenu. Its visuals can include a label or pixmap and a cascading indicator when it
is in a Popup or Pulldown MenuPane; when it is in a MenuBar, its visuals are limited to a

label or a pixmap.

The default behavior associated with a CascadeButton widget depends on the type of
menuing system in which it resides. By default, controls the behavior of the CascadeButton
widget if it resides in a PulldownMenu or a MenuBar; mouse button two controls the
behavior of the CascadeButton widget if it resides in a PopupMenu. The actual mouse
button used is determined by its RowColumn parent widget.

A CascadeButton widget's visuals differ from most other button widgets. When the button
becomes armed, its visuals change from a two—dimensional appearance to a
three—dimensional appearance, and it displays the submenu that has been attached to it. If
no submenu is attached, it simply changes its visuals.

When a CascadeButton widget within a Pulldown or Popup MenuPane is armed as the
result of the user moving the mouse pointer into the widget, it does not immediately display
its submenu. Instead, it waits a short amount of time to see if the arming was temporary (i.e.,
the user was simply passing through the widget), or whether the user really wanted the
submenu posted. This time delay is configurable through the XmNmappingDelay resource.

The CascadeButton widget provides a single mechanism for activating the widget from the
keyboard. This mechanism is referred to as a keyboard mnemonic. If a mnemonic has been
specified for the widget, the user can activate the CascadeButton widget by typing the
mnemonic while the CascadeButton widget is visible. If the CascadeButton widget is in a
MenuBar, the meta key must be pressed with the mnemonic. Mnemonics are typically used
to interact with a menu through the keyboard interface.

1-34 User Interface Reference

XmCascadeButton

If the CascadeButton widget is in a Pulldown or Popup Menupane and a submenu is
attached, the XmNmarginBottom, XmNmarginRight, and XmNmarginTop resources
enlarge to accommodate the XmNcascadePixmap resource. The XmNmarginWidth
resource defaults to six if this resource is in a Menubar; otherwise, it takes the defaults of
Label, which is two.

The CascadeButton widget inherits behavior and resources from Core, XmPrimitive, and
XmLabel classes. The class pointer is xmCascadeButtonWidgetClass. The class name is
the XmCascadeButton.

Subroutines
o XmCreateCascadeButton

o XmCascadeButtonHighlight
¢ XmCreateMenuBar

» XmCreatePulldownMenu

¢ XmCreatePopupMenu

¢ XtCreateWidget

New Resources
Setting the resource values for the inherited classes also sets resources for this widget. To
reference a resource by name or by class in an .Xdefaults file, remove the XmN or XmC
prefix and use the remaining letters. To specify one of the defined values for a resource in an
Xdefaults file, remove the Xm prefix and use the remaining letters (in either lower case or
upper case, but include any underscores between words). The codes in the access column
indicate if the given resource can be set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable (N/A). The following resource set
lists the resources of the CascadeButton widget:

o XmCascadeButton Resource Set

Inherited Resources
The following resource sets contain a complete description of the resources inherited by the
CascadeButton widget:

e XmLabel Resource Set
¢ XmPrimitive Resource Set

o Core Resource Set

Callback Information
The following structure is returned with each callback:

typedef struct
{

int reason;
XEvent * event,
} XmAnyCallbackStruct;

reason Is set to the value that corresponds to the type of selection that invoked this
callback.

AlXwindows Classes 1-35

XmCascadeButton

Behavior

event Points to the XEvent that invoked the callback or is NULL if this callback
was not triggered due to an XEvent.

The default behavior associated with a CascadeButton widget depends on whether the
button is part of a PopupMenu system, a PulldownMenu system or an OptionMenu
system. The RowColumn widget parent determines the mouse button that is used through
its XmNrowColumnType and XmNwhichButton resources.

Default PopupMenu System

Btn3Down<EnterWindow>: This action arms the CascadeButton widget and posts the
associated submenu after a short delay.

Btn3Down<LeaveWindows: The action that takes place depends on whether the mouse
pointer has moved into the submenu associated with this CascadeButton widget. If the
mouse pointer has moved into the submenu, this event is ignored. If not, the
CascadeButton widget is disarmed and its submenu is unposted.

<Btn3Up>: This action posts the submenu attached to the CascadeButton widget and
enables keyboard traversal within the menu. If the CascadeButton widget does not have a
submenu attached, this event activates the CascadeButton widget and unposts the menu.

<Btn3Down>: This action disables traversal for the menu and returns the user to drag mode
in which the menu is manipulated using the mouse. The submenu associated with this
CascadeButton widget is posted.

<Key>Return: This event posts the submenu attached to the CascadeButton widget if
keyboard traversal is enabled in the menu. If the CascadeButton widget does not have a
submenu attached, this event activates the CascadeButton widget and unposts the menu.

Default MenuBar

<Btn1Down>: This event arms both the CascadeButton widget and the MenuBar and
posts the associated submenu. If the menu is already active, this event disables traversal for
the menu and returns the user to the mode where the menu is manipulated using the
mouse.

Btn1Down<EnterWindows: This event unposts any visible MenuPanes if they are
associated with a different MenuBar entry, arms the CascadeButton widget, and posts the
associated submenu.

Btn1Down<LeaveWindows: This event disarms the CascadeButton widget if the ,
submenu associated with it is not currently posted or if there is no submenu associated with
this CascadeButton widget. Otherwise, this event is ignored.

<Btn1Ups>: This event posts the submenu attached to the CascadeButton widget and
enables keyboard traversal within the menu. If the CascadeButton widget does not have a
submenu attached, this event activates the CascadeButton widget and unposts the menu.

<Key>Return: This event posts the submenu attached to the CascadeButton widget if
keyboard traversal is enabled in the menu. If the CascadeButton widget does not have a
submenu attached, the CascadeButton widget is activated, and the menu is unposted.

Default PulldownMenu System from a MenuBar

Btn1Down<EnterWindows: This event arms the CascadeButton widget, and after a short
delay, posts the associated submenu.

1-36 User Interface Reference

XmCascadeButton

Btn1Down<LeaveWindows: The event is ignored if the mouse pointer has moved into the
submenu. In all other cases, the CascadeButton widget is disarmed and its submenu
unposted.

<Btn1Up>: This event posts the submenu attached to the CascadeButton widget and
enables keyboard traversal within the menu. If the CascadeButton widget does not have a
submenu attached, this event selects the CascadeButton widget and unposts the menu.

<Btn1Down>: This event disables traversal for the menu and returns the user to the drag
mode. The submenu associated with this CascadeButton widget is posted.

<Key>Return: This event posts the submenu attached to the CascadeButton widget if
keyboard traversal is enabled in the menu. If the CascadeButton widget does not have a
submenu attached, this event activates the CascadeButton widget and unposts the menu.

Default Option Menu System

<Btn2Down>: This event arms the CascadeButton widget and posts the associated
submenu.

<Key>Return: This event posts the associated submenu and enables traversal within the
menu.

Default Translations

Keyboard Traversal

Default translations for CascadeButton in a MenuBar are:
<BtnDowns>: MenuBarSelect()
<EnterWindow>: MenuBarEnter()
<LeaveWindow>: MenuBarLeave()

<BtnUp>: DoSelect()

<Key>Return: KeySelect()

<Key>Escape: CleanupMenuBar()

Default translations for CascadeButton in a Popup or Pulldown MenuPane are:
<BtnDown>: StartDrag()
<EnterWindows: DelayedArm()
<LeaveWindow>: CheckDisarm()

<BtnUp>: DoSelect()

<Key>Return: KeySelect()

<Key>Escape: MenuShellPopdownDone()
Default transiations for CascadeButton in an OptionMenu are:
<BtnDowns: CheckArmAndPost()
<Key>Return: KeySelect()

<Unmap>: Unmap()

<FocusOut>: FocusOut()

<Focusin>: Focusin()

<Key>space: Noop()

<Keys>Left: MenuTraverseLeft()
<Key>Right: MenuTraverseRight()
<Key>Up: MenuTraverseUp()
<Key>Down: MenuTraverseDown()
<Key>Home: Noop()

AlXwindows Classes 1-37

XmCascadeButton

Implementation Specifics

This subroutine is part of AIXwindows Development Environment in AIXwindows
Environment/6000.

File

/usr/include/Xm/CascadeB.h

Related Information
The Core widget class, XmCreateCascadeButton subroutine,
XmCascadeButtonHighlight subroutine, XmCreateMenuBar subroutine,
XmCreatePulldownMenu subroutine, XmCreatePopupMenu subroutine, XmLabel widget

class, XmPrimitive widget class, XmRowColumn widget class, XtCreateWidget
subroutine.

1-38 User Interface Reference

XmCascadeButtonGadget

XmCascadeButtonGadget Gadget Class

Purpose

The CascadeButtonGadget gadget class.
Library

AlXwindows Library (libXm.a)
Syntax

#include <Xm/CascadeBG.h>
Children

No children are supported.
Description

An XmCascadeButtonGadget gadget class links two MenuPane widgets or an
OptionMenu widget to a MenuPane widget.

This gadget is used in menu systems and must have a RowColumn parent with its
XmNrowColumnType resource set to the XmMENU_POPUP value, the
XmMENU_PULLDOWN value, or the XmMENU_OPTION value.

This is the only gadget that can have a Pulldown MenuPane attached to it as a submenu.
The submenu is displayed when this gadget is activated within a PopupMenu, a
PulldownMenu, or a OptionMenu. When this gadget is in an XmPopupMenu widget or an
XmPulldownMenu widget, its visuals can include a label or pixmap and a cascading
indicator. When it is in an XmOptionMenu widget, its visuals can include only a label or a
pixmap.

The default behavior associated with a CascadeButtonGadget gadget depends on the type
of menu system in which it resides. By default, controls the behavior of the
CascadeButtonGadget when it resides in a PulldownMenu or an OptionMenu; controls
the behavior of the CascadeButtonGadget gadget when it resides in a PopupMenu. The
actual mouse button used is determined by its RowColumn parent.

A CascadeButtonGadget gadget’s visuals differ from the visuals of most other button
widgets. When the button becomes armed, its visuals change from a two—dimensional to a
three—dimensional look, and it displays the submenu that has been attached to it. If no
submenu is attached, it simply changes its visuals.

When a CascadeButtonGadget gadget within a PulldownMenu or a PopupMenu is
armed as a result of the user moving the mouse pointer into the widget, it does not
immediately display its submenu. Instead, it waits a short amount of time to see if the arming
was temporary (in other words, the user was simply passing through the widget), or whether
the user really wanted the submenu posted. This time delay is configurable through the
XmNmappingDelay resource.

The CascadeButtonGadget gadget provides a single mechanism for activating the gadget
from the keyboard. This mechanism is referred to as keyboard mnemonic. if a mnemonic
has been specified for the gadget, the user can activate it by simply typing the mnemonic
while the CascadeButtonGadget gadget is visible. Mnemonics are typically used to interact
with a menu through the keyboard interface.

AlXwindows Classes 1-39

XmCascadeButtonGadget

If the CascadeButtonGadget gadget is in a Pulldown or a Popup MenuPane and there is
a submenu attached, the XmNmarginBottom, XmNmarginRight, and XmNmarginTop
resources enlarge to accommodate the XmNcascadePixmap resource.

The XmCascadeButtonGadget gadget class inherits behavior and resources from the
XmObject, XmRectObj, XmGadget, and XmLabelGadget classes. The class pointer is
xmCascadeButtonGadgetClass. The class name is XmCascadeButtonGadget.

Subroutines
o XmCascadeButtonHighlight

* XmCreateCascadeButtonGadget
¢ XmCreatePulldownMenu
¢ XmCreatePopupMenu

¢ XmCreateOptionMenu

New Resources
Setting the resource values for the inherited classes also sets resources for this widget. To
reference a resource by name or by class in an Xdefaults file, remove the XmN or XmC
prefix and use the remaining letters. To specify one of the defined values for a resource in an
.Xdefaults file, remove the Xm prefix and use the remaining letters (in either lower case or
upper case, but include any underscores between words). The codes in the access column
indicate if the given resource can be set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable (N/A). The following resource set
lists the resources of the XmCascadeButtonGadget gadget class:

¢ XmCascadeButtonGadget Resource Set

Inherited Resources
The following resource sets contain a complete description of the resources inherited by the
XmCascadeButtonGadget gadget class:

 XmLabelGadget Resource Set
¢ XmGadget Resource Set
¢ RectObj Resource Set

¢ Object Resource Set

Callback Information
The following structure is returned with each callback:

typedef struct
{

int reason;,
XEvent * event,
} XmAnyCaIIbackStruct;

reason Indicates why the callback was invoked.

event Points to the XEvent that triggered the callback or is NULL if this callback
was not triggered due to an XEvent within a widget.

1-40 User Interface Reference

Behavior

XmCascadeButtonGadget

The default behavior associated with a CascadeButtonGadget gadget depends on whether
the button is part of a PopupMenu system, a Pulldown MenuPane in a MenuBar, or an
OptionMenu system. The RowColumn widget determines the mouse button used through
its XmNrowColumnType and XmNwhichButton resources.

Default PopupMenu System

Btn2Down <EnterWindows: This action arms the CascadeButtonGadget gadget and
posts the associated submenu after a short delay.

Btn2Down <LeaveWindows: The action that takes place depends on whether the mouse
pointer has moved into the submenu associated with this CascadeButtonGadget gadget. if
the mouse pointer has moved into the submenu, this event is ignored. If not, the
CascadeButtonGadget gadget is disarmed and its submenu unposted.

<Btn2Up>: This action posts the submenu attached to the CascadeButtonGadget gadget
and enables keyboard traversal within the menu. If the CascadeButtonGadget gadget does
not have a submenu attached, this event selects the CascadeButtonGadget gadget and
unposts the menu.

<Btn2Down>: This action disables traversal for the menu and returns the user to drag mode
in which the menu is manipulated using the mouse. The submenu associated with this
CascadeButtonGadget gadget is posted.

<Key> Return: This event posts the submenu attached to the CascadeButtonGadget
gadget if keyboard traversal is enabled in the menu. If the CascadeButtonGadget gadget
does not have a submenu attached, this event activates the CascadeButtonGadget gadget
and unposts the menu.

Default Pulldown MenuPane System from a MenuBar or from an OptionMenu

Btn1Down <EnterWindows: This event arms the CascadeButtonGadget gadget and
posts the associated submenu after a short delay.

Btn1Down <LeaveWindow>: The event is ignored if the mouse pointer has moved into the
submenu. In all other cases, the CascadeButtonGadget gadget is disarmed and its
submenu unposted

<Btn1Up>: This event posts the submenu attached to the CascadeButtonGadget gadget
and enables keyboard traversal within the menu. If the CascadeButtonGadget gadget does
not have a submenu attached, this event activates the CascadeButtonGadget gadget and
unposts the menu.

<Btn1Downs>: This event disables traversal for the menu and returns the user to the drag
mode. The submenu associated with this CascadeButtonGadget gadget is posted.

<Key> Return: This event posts the submenu attached to the CascadeButtonGadget
gadget if keyboard traversal is enabled in the menu. If the CascadeButtonGadget gadget
does not have a submenu attached, then this event selects the CascadeButtonGadget
gadget and unposts the menu.

Default OptionMenu System

<Btn1Down>: This event arms the CascadeButtonGadget gadget and posts the
associated submenu.

<Key> Return: This event posts the associated submenu and enables traversal within the
menu.

AlXwindows Classes 1-41

XmCascadeButtonGadget

Keyboard Traversal

The XmRowColumn widget and its sections on behavior and default translations contain
information on keyboard traversal.

Implementation Specifics

This subroutine is part of AIXwindows Development Environment in AIXwindows
Environment/6000.

File
fusr/include/Xm/CascadeBG.h

Related Information

The RectObj widget class, Object widget class, XmCascadeButtonHighlight subroutine,
XmCreateCascadeButtonGadget subroutine, XmCreatePulldownMenu subroutine,
XmCreatePopupMenu subroutine, XmCreateOptionMenu subroutine, XmGadget widget
class, XmLabelGadget widget class, XmRowColumn widget class.

1—-42 User Interface Reference

XmCommand

XmCommand Widget Class

Purpose
The Command widget class.

Libraries
AlXwindows Library (libXm.a)
AlXwindows Library (libIM.a)

Syntax
#include <Xm/Command.h>

Children
ArrowButton Widget ArrowButtonGadget Gadget
BulletinBoard Widget CascadeButton Widget
CascadeButtonGadget Gadget Command Widget
DialogShell Widget DrawingArea Widget
DrawnButton Widget FileSelectionBox Widget
Form Widget Frame Widget
Label Widget LabelGadget Gadget
List Widget MainWindow Widget
MenuShell Widget PanedWindow Widget
PushButton Widget PushButtonGadget Gadget
RowColumn Widget Scale Widget
ScrollBar Widget ScrolledWindow Widget
SelectionBox Widget Separator Widget
SeparatorGadget Gadget Text Widget
ToggleButton Widget ToggleButtonGadget Gadget

Description

A Command widget is a special-purpose composite widget for command entry that
provides a built-in command history mechanism. The Command widget includes a
command line text input field, a command line prompt, and a command history list region.

Note: You should be aware of the proper usage of the XmText widget class before using
this widget class.

One additional WorkArea child widget can be added to the Command widget after creation.

As each command is entered, it is automatically added to the end of the command history
list and made visible. This does not change the selected item in the list, if there is one.

Many of the new resources specified for the Command widget are actually
XmSelectionBox resources that have been renamed for clarity and ease of use.

- The XmCommand widget class inherits behavior and resources from the Core, Composite,

Constraint, XmManager, XmBulletinBoard, and XmSelectionBox classes. The class
pointer is xmCommandWidgetClass. The class name is XmCommand.

AlXwindows Classes 1-43

XmCommand

Subroutines
¢ XmCreateCommand

o XmCommandAppendValue
¢ XmCommandError
¢ XmCommandGetChild

¢ XmCommandSetValue

New Resources
Setting the resource values for the inherited classes also sets resources for this widget. To
reference a resource by name or by class in an .Xdefaults file, remove the XmN or XmC
prefix and use the remaining letters. To specify one of the defined values for an resource in
an .Xdefaults file, remove the Xm prefix and use the remaining letters (in either lower case
or upper case, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A). The
following resource set lists the resources of the XmCommandWidget widget class:

¢ XmCommand Resource Set

Inherited Resources .
The following resource sets contain a complete description of the resources inherited by the
XmCommand widget class:

» XmSelectionBox Resource Set
+ XmBulletinBoard Resource Set
 XmManager Resource Set

o Composite Resource Set

e Core Resource Set

Callback Information
The following structure is returned with each callback routine:

typedef struct

{
int reason;
XEvent * event,
XmString value;

int /ength;
} XmCommandCalibackStruct
reason Indicates why the callback routine was invoked.
event Points to the XEvent that triggered the callback routine.
value Specifies the XmString in the CommandArea.
length Specifies the size of the command in XmString.

Behavior
Command behavior is summarized as follows:

1—-44 User Interface Reference

XmCommand

<Key>: When any change is made to the text edit widget, the callback routines for the
XmNcommandChangedCallback resource are invoked.

<Key>Return: When the Return key is pressed, the callback routines for the
XmNcommandEnteredCallback resource and the XmNcommandChangedCallback
resource are invoked. -

<Key>Up or <Key>Down: When the up or down key is pressed within the Text subwidget of
the XmCommand subroutine, the text value is replaced with the previous or next item in the
List subwidget. The selected item in the list is also changed to the previous or the next item.
The callback routines for the XmNcommandChangedCallback resource are invoked.

<DoubleClick>: When an item in the List subwidget is double~clicked, that item is selected
and added to the end of the list in one action. The callback routines for the
XmNcommandEnteredCallback resource and the XmNcommandChangedCallback
resource are invoked.

<Key>F1: When the Function Key 1 is pressed, the callback routines for the
XmNhelpCallback resource are invoked.

<Focusin>: When a Focusin event is generated on the widget window, the callback
routines for the XmNfocusCallback resource are invoked.

<MapWindows>: When a Command widget that is the child of a DialogShell widget is
mapped, the callback routines for the XmNmapCaliback resource are invoked. When a
Command widget that is not the child of a DialogShell widget is mapped, the callback
routines are not invoked.

<UnmapWindows>: When a Command widget that is the child of a DialogShell widget is
unmapped, the callback routines for the XmNunmapCallback resource are invoked. When
a Command widget that is not the child of a DialogShell widget is unmapped, the callback
routines are not invoked.

Default Translations
The Command widget inherits default translations from the SelectionBox widget.

Default Accelerators
The default accelerators added to descendants of a BulletinBoard widget if the parent of
the BulletinBoard widget is a DialogShell are as follows:

#override

<Key>F1: Help()
<Key>Return: Return()
<Key>KP_Enter: Return()

Default Text Accelerators
The default text accelerators inherited from the SelectionBox widget are:

#override

<Keys: UpOrDown(0)
<Key>Down: UpOrDown(1)
<Key>F1: Help()
<Key>Return: Return()
<Key>KP_Enter: Return()

AlXwindows Classes 1-45

XmCommand

Keyboard Traversal

For information on keyboard traversal, see XmManager and its sections on behavior and
default translations.

Implementation Specifics

This subroutine is part of AIXwindows Development Environment in AlXwindows
Environment/6000.

File

/usr/include/Xm/Command.h

Related Information
The XmCreateCommand subroutine, XmCommandAppendValue subroutine,
XmCommandError subroutine, XmCommandGetChild subroutine,
XmCommandSetValue subroutine, XmDialogShell widget class, XmSelectionBox widget
class, XmBulletinBoard widget class, XmManager widget class, Constraint widget class,
Composite widget class, Core widget class.

1-46 User Interface Reference

XmDialogShell

XmbDialogShell Widget Class

Purpose
The DialogShell widget class.

Library
AlXwindows Library (libXm.a)

Syntax
#include <Xm/DialogS.h>

Children
ArrowButton Widget BulletinBoard Widget
BulletinBoardDialog CascadeButton Widget
Command Widget DrawingArea Widget
ErrorDialog Form Widget
FormDialog Frame Widget
informationDialog Label Widget
MenuShell Widget MessageBox Widget
MessageDialog PanedWindow Widget
PushButton Widget QuestionDialog
RowColumn Widget Scale Widget
ScrollBar Widget ScrolledWindow Widget
SelectionBox Widget SelectionDialog
Separator Widget Text Widget
ToggleButton Widget WarningDialog
WorkingDialog

Description
Modal and modeless dialogs use the DialogShell widget as the Shell parent. The
DialogShell widgets cannot be iconified. Instead, all secondary DialogShell widgets
associated with an ApplicationShell widget are iconified and de—iconified as a group with
the primary widget.
The client indirectly manipulates the DialogShell widget by the convenience interfaces
during creation, and it can directly manipulate its BulletinBoard widget—derived child. Much
of the functionality of the DialogShell widget assumes its child is a BulletinBoard subclass,
although it can potentially stand alone.
The DialogShell widget inherits behavior and resources from the Core, Composite, Shell,
WMShell, VendorShell, and TransientShell classes. The class pointer is
xmDialogShellWidgetClass. The class name is XmDialogShell.

Subroutine

» XmCreateDialogShell

New Resources

The DialogShell widget defines no new resources, but overrides the XmNdeleteResponse
resource in the VendorShell class.

AlXwindows Classes 1-47

XmDialogShell

Inherited Resources
Setting the resource values for the inherited classes also sets resources for this widget. To
reference a resource by name or by class in a .Xdefaults file, remove the XmN or XmC
prefix and use the remaining letters. To specify one of the defined values for a resource in a
Xdefaults file, remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access column
indicate if the given resource can be set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable (N/A). The following resource sets
list the resources of the DialogShell widget:

¢ VendorShell Resource Set
o WMShell Resource Set

+ Shell Resource Set

e Core Resource Set

File
/usr/include/Xm/DialogS.h

Implementation Specifics :
This subroutine is part of AiXwindows Development Environment in AIXwindows
Environment/6000.

Related Information
The TransientShell widget class, Composite widget class, VendorShell! widget class,
WMShell widget class, Shell widget class, Core widget class, XmBulletinBoard widget
class, XmCreateDialogShell subroutine.

1-48 User Interface Reference

IBM Confidential XmDrawingArea

XmDrawingArea Widget Class

-Purpose

The DrawingArea widget class.

Library
AlXwindows Library (libXm.a)

Syntax
#include <Xm/DrawingA.h>

Children
ArrowButton Widget BulletinBoard Widget
CascadeButton Widget Command Widget
DrawnButton Widget Form Widget
Frame Widget Label Widget
MenuShell Widget MessageBox Widget
PanedWindow Widget PushButton Widget
RowColumn Widget Scale Widget
ScrollBar Widget ScrolledWindow Widget
SelectionBox Widget Separator Widget
Text Widget ToggleButton Widget

Description
The DrawingArea widget is an empty widget that is easily adaptable to a variety of
purposes. It does no drawing and defines no behavior except for invoking callback routines,
which notify the application when graphics need to be drawn (exposure events or widget
resize) and when the widget receives input from the keyboard or mouse. Client applications
are responsible for defining appearance and behavior as needed in response to the
DrawingArea widget callback routines.
The DrawingArea widget is also a composite widget that supports minimal geometry
management for multiple widget or gadget children.
The DrawingArea widget inherits behavior and resources from the Core, Composite,
Constraint, and XmManager widget classes. The class pointer is
xmDrawingAreaWidgetClass. The class name is XmDrawingArea.

Subroutine

o XmCreateDrawingArea

New Resources

Setting the resource values for the inherited classes also sets resources for this widget. To
reference a resource by name or by class in an .Xdefaults file, remove the XmN or XmC
prefix and use the remaining letters. To specify one of the defined values for a resource in an
Xdefaults file, remove the Xm prefix and use the remaining letter (in either lower case or
upper case, but include any underscores between words). The codes in the access column
indicate if the given resource can be set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable (N/A). The following resource set
lists resources of the XmDrawingArea widget class:

AlXwindows Classes 1-49

XmDrawingArea

o XmDrawingArea Resource Set

Inherited Resources

The following resource sets contain a complete description of the resources inherited by the
XmDrawingArea widget class:

o XmManager Resource Set
e XmPrimitive Resource Set

e Core Resource Set

Callback Information
The following structure is returned with each callback:

typedef struct

{

int reason;

XEvent * event,

Window window,
}XmDrawingAreaCallbackStruct;

reason Indicates why the callback was invoked.
event Points to the XEvent that invoked the callback.
window Is set to the widget window.

Behavior
The XmDrawingArea behavior is summarized below.

<KeyDown>, <KeyUp>, <BtnDowns, <BtnUp>: The callback routines for

XmNinputCaliback are invoked when a keyboard key or mouse button is pressed or
released.

<Exposes>: The callback routines for XmNexposeCallback are invoked when the widget
receives an exposure event.

<Widget Resize>: The callback routines for XmNresizeCallback are invoked when the
widget is resized.

Default Translations
The following are XmDrawingArea default translations:

<Btn1Downs: Arm()
<Btn1Up>: Activate()
<EnterWindows>: Enter()
<Focusin>: Focusin()

Keyboard Traversal
The description of the Manager widget contains information on keyboard traversal.

Implementation Specifics

This subroutine is part of AIXwindows Development Environment in AlXwindows
Environment/6000.

1-50 User Interface Reference

XmDrawingArea

File

/usr/include/Xm/DrawingA.h
Related Information

The Composite widget class, Constraint widget class, Core widget class,
XmCreateDrawingArea subroutine, XmManager widget class.

AlXwindows Classes 1-51

XmDrawnButton

XmDrawnButton Widget Class

Purpose
The DrawnButton widget class.

Library
AlXwindows Library (libXm.a)

Syntax
#include <Xm/DrawnB.h>

Children
No children are supported.

Description
A DrawnButton widget consists of an empty widget window surrounded by a shadow
border. It provides a graphics area that can have XmPushButton input semantics.
Callback routines are defined for widget exposure and resize to allow the client application to
redraw or reposition its graphics. If the DrawnButton widget has a highlight and shadow
thickness, the application should not draw in that area. To avoid drawing in the highlight and
shadow area, create the graphics context with a clipping rectangle for drawing in the widget.
The clipping rectangle takes into account the size of the widget's highlight thickness and
shadow.
The DrawnButton widget inherits behavior and resources from the Core, XmPrimitive, and
XmLabel widget classes. The class pointer is xmDrawnButtonWidgetClass. The class
name is XmDrawnButton.

Subroutines

¢ XmCreateDrawnButton

o XtCreateWidget

New Resources
Setting the resource values for the inherited classes also sets resources for this widget. To
reference a resource by name or by class in an .Xdefaults file, remove the XmN or XmC
prefix and use the remaining letters. To specity one of the defined values for a resource in an
.Xdefaults file, remove the Xm prefix and use the remaining letters (in either lower case or
upper case, but include any underscores between words). The codes in the access column
indicate if the given resource can be set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable (N/A). The following resource set
lists the resources of the XmDrawnButton widget class:

¢ XmDrawnButton Resource Set

1-52 User Interface Reference

XmDrawnButton

Inherited Resources

The following resource sets contain a complete description of the resources inherited by the
XmDrawnButton widget class.

e XmLabel Resource Set
o XmPrimitive Resource Set

e Core Resource Set

Callback Information

Behavior

The following structure is returned with each callback:

typedef struct

{
int reason,
XEvent * event,
Window window;

} XmDrawnButtonCallbackStruct;

reason Indicates why the callback was invoked.

event Points to the XEvent that triggered the callback. NULL is returned by the
event for the XmNresizeCallback resource. This event will be NULL for the
XmNactivateCallback resource if the callback was triggered when the
XmPrimitive resource XmNtraversalOn was True or if the callback was
accessed through the ArmAndActivate action routine.

window Is set to the window ID in which the event occurred.

<Btn1Down>: A selection on the DrawnButton widget causes its shadow to be drawn in
the selected state if the XmNpushButtonEnabled resource is set to True. The callbacks for
the XmNarmCallback resource are also called.

<Btn1Up>: If <Btn1Up> occurs when the pointer is within the DrawnButton, the shadows
are redrawn in the unselected state if the XmNpushButtonEnabled resource is set to True.
The callbacks for the XmNactivateCallback resource are called, followed by callbacks for
the XmNdisarmCallback resource.

If <Btn1Up> occurs when the pointer is outside the DrawnButton, the cailbacks for the
XmNdisarmCallback resource are called.

<Leave Windows: If the mouse button is pressed and the cursor leaves the DrawnButton
window, the shadow is redrawn to its unselected state if the XmNpushButtonEnabled
resource is set to True.

<Enter Windows: If the mouse button is pressed and the cursor reenters the DrawnButton
window, the shadow is drawn in the same manner as when the button was first selected.

AlXwindows Classes ~ 1-53

XmDrawnButton

Default Translations

<Btn1Down>: Arm()

<Btn1Up>: Activate()
Disarm()

<Key>Return: ArmAndActivate()

<Key>space: ArmAndActivate()

<EnterWindow>: Enter()

<LeaveWindow>: Leave()

Keyboard Traversal
Button assignments are: Left Button is Button 1; Left Button AND Right Button are Button 2;
and Right Button is Button 3.

For information on keyboard traversal, refer to the Primitive widget and its sections on
behavior and default translations.

Implementation Specifics
This subroutine is part of AIXwindows Development Environment in AIXwindows
Environment/6000.

File

/usr/include/Xm/DrawnB.h

Related Information
The Core widget class, XmCreateDrawnButton subroutine, XmLabel widget class,

XmPrimitive widget class, XmPushButton widget class, XmSeparator widget class,
XtCreateWidget subroutine.

1-54 User Interface Reference

XmFileSelectionBox

XmFileSelectionBox Widget Class

Purpose

Libraries

Syntax

Children

The FileSelectionBox widget class.

AlXwindows Library (libXm.a)
AlXwindows Library (libiM.a)

#include <Xm/FileSB.h>

ArrowButton Widget
CascadeButton Widget
DrawingArea Widget
Frame Widget
MenuShell Widget
PanedWindow Widget
RowColumn Widget
ScrollBar Widget
SelectionBox Widget
Text Widget

Description
A FileSelectionBox widget traverses through directories, views the files in them, and then

selects a file.

BulletinBoard Widget
Command Widget

Form Widget

Label Widget
MessageBox Widget
PushButton Widget
Scale Widget
ScrolledWindow Widget
Separator Widget
ToggleButton Widget

Note: You should be aware of the proper usage of the XmText widget class before using

this widget class.

A FileSelectionBox widget has four main areas:

¢ A directory mask that includes a filter label and a directory mask input field used to

specify the directory that is to be examined.

¢ A scrollable list of file names.

o A text input field for directly typing in a file name.

¢ A group of PushButton widgets, labeled Fiiter, OK, Cancel, and Help.

One additional WorkArea child may be added to the FileSelectionBox widget after

creation.

The user can select a file by scrolling through the list of file names and selecting the desired
file or by entering the file name directly into the text edit area. Selecting a file from the list
causes that file name to appear in the file selection text edit area.

The user may select a new file as many times as desired. The client application is not
notified until the user selects the OK PushButton widget or presses the return key while the
selection text edit area has the keyboard focus.

The FileSelectionBox widget initiates a file search when any of the following occurs:

AlXwindows Classes 1-55

XmFileSelectionBox

The XtSetValues subroutine is used to change the directory mask.

The user activates the Filter PushButton widget.

The client application calls the XmFileSelectionDoSearch subroutine.

The user presses the Return key while the directory mask input field has the keyboard
focus.

This can be useful when an application creates a new file and wants to incorporate it into the
file list.

The XmFileSelectionBox widget class inherits behavior and resources from the Core,
Composite, Constraint, XmManager, XmBulletinBoard, and XmSelectionBox classes.
The class pointer is xmFileSelectionBoxWidgetClass. The class name is
XmFileSelectionBox.

Subroutines
¢ XmCreateFileSelectionBox

e XmFileSelectionBoxGetChild
o XmFileSelectionDoSearch

¢ XmCreateFileSelectionDialog
¢ XtCreateWidget

New Resources
Setting the resource values also sets the resource values for this widget. To reference a
resource in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining letters.
To specify one of the defined values for a resource in a .Xdefaults file, remove the Xm
prefix and use the remaining letters (in either lower case or upper case, but include any
underscores between words). The codes in the access column indicate if the given resource
can be set at creation time (C), set by using XtSetValues (S), retrieved by using
XtGetValues (G), or is not applicable (N/A). The following resource set lists the resources
of the XmFileSelectionBox widget class:

o XmFileSelectionBox Resource Set

Inherited Resources
The following resource sets contain a complete description of the resources inherited by the
XmFileSelectionBox widget class:

* XmSelectionBox Resource Set
e XmBulletinBoard Resource Set
o XmManager Resource Set

o Composite Resource Set

e Core Resource Set

Callback Information
The following structure is returned with each callback:

typedef struct
{

1-56 User Interface Reference

Behavior

XmFileSelectionBox

int reason;
XEvent event,
XmString value;

int length;
XmString mask;
int mask_length;
}XmFileSelectionBoxCallbackStruct;
reason Indicates why the callback was invoked.
event Points to the XEvent that triggered the callback.
value Specifies the value of the current XmNdirSpec.
length Specifies the number of bytes of the structure pointed to by value.
mask Specifies the current value of XmNdirMask.
mask_length Specifies the number of bytes of the structure pointed to by mask.

The XmFileSelectionBox widget class inherits behavior from the XmSelectionBox widget
class and the XmBulletinBoard widget class; below is an addition to that behavior:

<Apply Button Activateds:
A new file search begins when the apply button is activated.

Default Translations

The XmFileSelectionBox widget class inherits the XmSelectionBox widget class default
translations.

Default Accelerators

The following are the default accelerator translations added to descendants of a
BulletinBoard widget if the parent of the BulletinBoard widget is a DialogShell widget:

#override
<Key>F1: Help()
<Key>Return: Return()

<Key>KP_Enter: Return()

Default Text Accelerators

The following are the default text accelerators inherited from the XmSelectionBox widget
class:

#override

<Key>Up: UpOrDown(0)
<Key>Down: UpOrDown(1)
<Key>F1: Help()
<Key>Return: Return()

<Key>KP_Enter: Return()

Keyboard Traversal

File

The XmManager widget class and its sections on behavior and default translations contain
information on keyboard traversal.

/usr/include/Xm/FileSB.h

AlXwindows Classes 1-57

XmFileSelectionBox

Implementation Specifics
This subroutine is part of AIXwindows Development Environment in AIXwindows
Environment/6000.

Related Information
The Composite widget class, Constraint widget class, Core widget class,
XmBulletinBoard widget class, XmCreateFileSelectionBox subroutine,
XmCreateFileSelectionDialog subroutine, XmFileSelectionBoxGetChild subroutine,
XmFileSelectionDoSearch subroutine, XmManager widget class, XmSelectionBox widget
class, XtCreateWidget subroutine.

1-58 User Interface Reference

XmForm

XmForm Widget Class

Purpose
The Form widget class.

Library
AlXwindows Library (libXm.a)

Syntax
#include <Xm/Form.h>

Children
ArrowButton Widget BulletinBoard Widget
CascadeButton Widget Command Widget
DrawingArea Widget Frame Widget
Label Widget MenuShell Widget
MessageBox Widget PanedWindow Widget
PushButton Widget RowColumn Widget
Scale Widget ScrollBar Widget
ScrolledWindow Widget SelectionBox Widget
Separator Widget Text Widget
ToggleButton Widget

Description
A Form widget is a container widget with no input semantics of its own. Constraints are
placed on children of the Form widget to define attachments for each of the four sides of
each child widget. These attachments can be to the Form widget, to another child widget or
gadget, to a relative position within the Form widget, or to the initial position of the child. The
attachments determine the layout behavior of the Form widget when resizing occurs.
The Form widget class inherits behavior and resources from the Core, Composite,
Constraint, XmManager, and XmBulletinBoard classes. The class pointer is
xmFormWidgetClass. The class name is XmForm.

Subroutines

e XmCreateForm

o XmCreateFormDialog

New Resources

Setting the resource values for the inherited classes also sets resources for this widget. To
reference a resource by name or by class in an .Xdefaults file, remove the XmN or XmC
prefix and use the remaining letters. To specify one of the defined values for a resource in an
-Xdefaults file, remove the Xm prefix and use the remaining letters (in either lower case or
upper case, but include any underscores between words). The codes in the access column
indicate if the given resource can be set at creation time (C), set by using XtSetValues (S).
retrieved by using XtGetValues (G), or is not applicable (N/A). The following resource sets
list the resources of the XmForm widget class:

o XmForm Resource Set

AlXwindows Classes 1-59

XmForm

o XmForm Constraint Resource Set

Inherited Resources
The following resource sets contain a complete description of the resources inherited by the
XmForm widget class:

XmBulletinBoard Resource Set

XmManager Resource Set

Core Resource Set

Composite Resource Set

Behavior
The XmForm widget class inherits the XmBulletinBoard widget class behavior.

Default Translations
The XmForm widget class inherits the XmBulletinBoard widget class default translations.

Default Accelerators
The default accelerator translations added to descendants of a BulletinBoard widget if the
parent of the BulletinBoard widget is a DialogShell widget are:

#override
<Key>F1: Help()
<Key>Return: Return()

<Key>KP_Enter: Return()

Keyboard Traversal
For information on keyboard traversal, refer to the XmManager widget class and its sections
on behavior and default translations.

Implementation Specifics

This subroutine is part of AIXwindows Development Environment in AIXwindows
Environment/6000.

File

/usr/include/Xm/Form.h

Related Information
The XmBulletinBoard widget class, Core widget class, Composite widget class,

Constraint widget class, XmCreateForm subroutine, XmCreateFormDialog subroutine,
XmManager widget class.

1-60 User Interface Reference

XmFrame

XmFrame Widget Class
Purpose
The Frame widget class.
Library
AlXwindows Library (libXm.a)
Syntax
#include <Xm/Frame.h>
Children
ArrowButton Widget BulletinBoard Widget
CascadeButton Widget Command Widget
DrawingArea Widget Form Widget
Label Widget MenuShell Widget
MessageBox Widget PanedWindow Widget
PushButton Widget RowColumn Widget
Scale Widget ScroliBar Widget
ScrolledWindow Widget SelectionBox Widget
Separator Widget Text Widget
ToggleButton Widget
Description
A Frame widget is a very simple manager used to enclose a single child widget in a border
drawn by the Frame widget. It uses the XmManager widget class resources for border
drawing and performs geometry management such that its size always matches the size of
the child widget plus the margins defined for it.
The Frame widget is most often used to enclose other managers when the manager is
supposed to have the same border appearance as the primitive widgets. The Frame widget
can also be used to enclose primitive widgets that do not support the same type of border
drawing. This provides visual consistency when applications are developed using diverse
widget sets. _
If the Frame widget’s parent is a Shell widget, the XmNshadowType resource is set by
default to XmSHADOW_OUT, and the Manager widget's XmNshadowThickness resource
is setto 1.
The XmFrame widget class inherits behavior and resources from the Core and XmManager
classes. The class pointer is xmFrameWidgetClass. The class name is XmFrame.
Subroutine

¢ XmCreateFrame

New Resources

Setting the resource values for the inherited classes also sets resources for the XmFrame
widget class. To reference a resource in an .Xdefaults file, remove the XmN or XmC prefix
and use the remaining letters. To specify one of the defined values for a resource in an

.Xdefaults file, remove the Xm prefix and use the remaining letters (in either lower case or
upper case, but include any underscores between words). The codes in the access column

AlXwindows Classes 1-61

XmFrame

indicate if the given resource can be set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable (N/A). The following resource set
lists the resources of the XmFrame widget class:

o XmFrame Resource Set

Inherited Resources

The following resource sets contain a complete description of the resources inherited by the
XmFrame widget class:

o XmManager Resource Set
¢ Composite Resource Set

o Core Resource Set

Default Translations
<EnterWindows: Enter()
<Focusin>: Focusin()
<Btn1Down>: Arm()
<Btn1Up>: Activate()

Implementation Specifics
This subroutine is part of AIXwindows Development Environment in AlXwindows
Environment/6000.

File

/usr/include/Xm/Frame.h
Related Information

The Composite widget class, Constraint widget class, Core widget class,
XmCreateFrame subroutine, XmManager widget class.

1-62 User Interface Reference

XmGadget

XmGadget Gadget Class

Purpose
The Gadget gadget class.
Library
AlXwindows Library (libXm.a)
Syntax
#include <Xm/Xm.h>
Children
ArrowButtonGadget Gadget CascadeButtonGadget Gadget
LabelGadget Gadget PushButtonGadget Gadget
SeparatorGadget Gadget ToggleButtonGadget Gadget
Description .
The XmGadget gadget class is used as a supporting superclass for other gadget classes.
This gadget handles shadow border drawing and highlighting, traversal activation and
deactivation, and various lists of callback routines needed by gadgets.
The color and pixmap resources defined by the XmManager widget class are directly used
by gadgets. If the XtSetValues subroutine is used to change one of the resources for a
Manager widget, all of the gadget children within the manager also change.
The Gadget gadget is built from the RectObj widget class. The class pointer is
xmGadgetClass. The class name is XmGadget.
urces

New Reso

Setting the resource values for the inherited classes also sets resources for this widget. To
reference a resource by name or by class in a .Xdefaults file, remove the XmN or XmC
prefix and use the remaining letters. To specify one of the defined values for a resource in a
.Xdefaults file, remove the Xm prefix and use the remaining letters (in either lower case of
upper case, but include any underscores between words). The codes in the access column
indicate if the given resource is set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable (N/A). The following resource set
lists the resources of the XmGadget widget class:

o XmGadget Resource Set

Inherited Resources

Behavior

The following resource sets contain a complete description of resources inherited by the
XmGadget widget class:

¢ RectObj Resource Set

e Object Resource Set

Gadget widgets cannot have translations associated with them. Because of this, gadget
behavior is determined by the Manager widget into which the Gadget gadget is placed. The

AlXwindows Classes 1—63

XmGadget

following types of events are caught by a Manager widget and forwarded to a Gadget
gadget:

¢ ButtonPress

o ButtonRelease

o EnterNotify

¢ LeaveNotify

* Focusln

o FocusOut

o MotionNotify

The XmManager widget class defines the translations supported by all Manager widgets.

File

/usr/include/Xm/Xm.h

Implementation Specifics
This subroutine is part of AIXwindows Development Environment in AIXwindows
Environment/6000.

Related Information
The Object widget class, RectObj widget class, XmManager widget class.

1—64 User Interface Reference

XmLabel

XmLabel Widget Class

Purpose
The Label widget class.

Library
AlXwindows Library (libXm.a)

Syntax

#include <Xm/Label.h>

Children
ArrowButton Gadget CascadeButton Widget
CascadeButtonGadget Gadget DrawnButton Widget
Label Widget PushButton Widget
PushButtonGadget Gadget ToggleButton Widget
ToggleButtonGadget Gadget

Description
The XmLabel widget is never instantiated; it is used as a superclass for other button
widgets, such as XmPushButton and XmToggleButton. The Label widget does not accept
any button or key input, and the help callback routine is the only callback routine defined.
XmLabel widgets also receive enter and leave events.

A Label widget can contain either text or a pixmap. The Label text should be a compound
string.The text can be multidirectional, multiline, and/or multifont. When a Label widget is
insensitive, its text is stippled, or the user supplied insensitive pixmap is displayed.

The XmLabel widget class supports both accelerators and mnemonics primarily for use in
the Label subclass widgets that are contained in menus. Mnemonics are available in a
menu system when the button is visible. Accelerators in a menu system are accessible even
when the button is not visible. The Label widget displays the mnemonic by underlining the
first matching character in the text string. The accelerator is displayed as a text string to the
right of the label text or pixmap.

The Label widget consists of many margin fields surrounding the text or pixmap. These
margin fields are resources that can be set by the user, but the Label widget subclasses
also modify some of these fields. The subclasses tend to modify the XmNmarginLeft,
XmNmarginRight, XmNmarginTop, and XmNmarginBottom resources and leave the
XmNmarginWidth and XmNmarginHeight resources as set by the application.

The XmLabel widget class inherits behavior and resources from Core and XmPrimitive

widget classes. The class pointer is xmLabelWidgetClass. The class name is XmLabel.
Subroutines

o XmCreatelLabel

o XmFontListCreate

¢ XmStringCreate

e XmStringCreateLtoR

AlXwindows Classes 1-65

XmLabel

o XtCreateWidget

New Resources
Setting the resource values for the inherited classes also sets resources for this widget. To
reference a resource by name or by class in an .Xdefaults file, remove the XmN or XmC
prefix and use the remaining letters. To specify one of the defined values for a resource in an
Xdefaults file, remove the Xm prefix and use the remaining letters (in either lower case or
upper case, but include any underscores between words). The codes in the access column
indicate if the given resource can be set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable (N/A). The following resource set
lists the resources of the Label class:

e XmLabel Resource Set

Inherited Resources

The following resource sets contain a complete description of the resources inherited by the
Label widget:

¢ XmPrimitive Resource Set

e XmCore Resource Set

Callback Information
The following structure is returned with each callback:

typedef struct
{
int reason,
XEvent * event;
} XmAnyCallbackStruct

reason Indicates why the callback was invoked. For this callback, reason is set to
XmCR_HELP.
event Points to the XEvent that triggered the callback.

| Behavior Default Translations

<EnterWindows: Enter()
<LeaveWindows>: Leave()

<Unmaps>: Unmap()

FocusOut>: FocusOut()
<Focusin>: Focusin()
<Key>space: Noop()

<Keys>Left: MenuTraverseleft()
<Key>Right: MenuTraverseRight()
<Key>Up: MenuTraverseUp()
<Key>Down: MenuTraverseDown()
<Key>Home: Noop()

Keyboard Traversal
For information on keyboard traversal, refer to the XmPrimitive widget class and its sections
on behavior and default translations.

1-66 User Interface Reference

XmLabel

Implementation Specifics
This subroutine is part of AIXwindows Development Environment in AlXwindows
Environment/6000.

File

/usr/include/Xm/Label.h

Related Information
The Core widget class, XmPrimitive widget, XmCreatelLabel subroutine,
XmFontListCreate subroutine, XmStringCreate subroutine, XmStringCreateLtoR
subroutine, XtCreateWidget subroutine.

AlXwindows Classes 1-67

XmLabelGadget

XmLabelGadget Gadget Class

Purpose

Library

Syntax

Children

The LabelGadget gadget class.

AlXwindows Library (libXm.a)

#include <Xm/LabelG.h>

CascadeButtonGadget Gadget PushButtonGadget Gadget
ToggleButtonGadget Gadget

Description

The XmlLabelGadget gadget class is never instantiated; it is used as a superclass for other
button gadgets, such as a PushButtonGadget gadget and a ToggleButtonGadget gadget.
The LabelGadget gadget does not accept any button or key input, and the help callback
routine is the only callback routine defined. The LabelGadget gadget also receives enter
and leave events.

A LabelGadget gadget can contain either text or a pixmap. LabelGadget text is a
compound string. Refer to the XmString widget class for more information on compound
strings. The text can be multidirectional, multiline, and/or multifont. When a LabelGadget
gadget is insensitive, its text is stippled, or the user supplied insensitive pixmap is displayed.

A LabelGadget gadget supports both accelerators and mnemonics primarily for use in the
LabelGadget subclass gadgets that are contained in menus. Mnemonics are available in a
menu system when the button is visible. Accelerators in a menu system are accessible even
when the button is not visible. The XmLabelGadget gadget displays the mnemonic by
underlining the first matching character in the text string. The accelerator is displayed as a
text string to the right of the label text or pixmap.

A LabelGadget gadget consists of many margin fields surrounding the text or pixmap.
These margin fields are resources that can be set by the user, but the LabelGadget
subclasses also modify some of these fields. The subclasses tend to modify the margin
XmNmarginLeft, XmNmarginRight, XmNmarginTop and XmNmarginBottom resources
and leave the XmNmarginWidth and XmNmarginHeight resources as set by the client
application.

The LabelGadget gadget class inherits behavior and resources from the Object, RectObj
and XmGadget classes. The class pointer is xmLabelGadgetClass. The class name is
XmLabelGadget.

Subroutines

¢ XmCreateLabelGadget
e XmFontListCreate

e XmStringCreate

¢ XmStringCreateLtoR

1—68 User Interface Reference

XmLabelGadget

o XiCreateWidget

New Resources
Setting the resource values for the inherited classes also sets resources for this widget. To
reference a resource by name or by class in an .Xdefaults file, remove the XmN or XmC
prefix and use the remaining letters. To specify one of the defined values for a resource in an
Xdefaults file, remove the Xm prefix and use the remaining letters (in either lower case or
upper case, but include any underscores between words). The codes in the access column
indicate if the given resource can be set at creation time(C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable (N/A). The following resource set
lists the resources of the XmLabelGadget widget class:

o XmLabelGadget Resource Set

Inherited Resources
The following resource sets contain a complete description of the resources inherited by the
XmLabelGadget widget class:

e XmGadget Resource Set
¢ Object Resource Set

¢ RectObj Resource Set

Keyboard Traversal
For information on keyboard traversal, refer to the XmGadget widget class and its sections
on behavior and default translations.

Implementation Specifics
This subroutine is part of AIXwindows Development Environment in AlXwindows
Environment/6000.

File
/usr/include/Xm/LabelG.h

Related Information
The Object widget class, RectObj widget class, XmCreatel.abelGadget subroutine,
XmFontListCreate subroutine, XmGadget widget class, XmStringCreate subroutine,
XmStringCreateLtoR subroutine, XtCreateWidget subroutine.

AlXwindows Classes 1-69

XmList

XmList Widget Class

Purpose
The List widget class.

Library
AlXwindows Library (libXm.a)

Syntax
#include <Xm/List.h>

Children
No children are supported.

Description
A List widget allows a user to select one or more items from a group of choices. ltems are
selected from the list in a variety of ways, using both the pointer and the keyboard.
The List widget operates on an array of strings that are defined by the client application.
Each string becomes an item in the List widget, with the first string becoming the item in
position one, the second string becoming the item in position two, and so on.
The visual size of the List widget is set by specifying the number of items that are visible. If
the ability to scroll through a large set of choices is desired, use the XmCreateScrolledList
convenience subroutine.
To select items, move the pointer or cursor to the desired item and press the mouse button
or the key defined as select. There are several styles of selection behavior, and they all
highlight the selected item or items by displaying them in inverse colors. An appropriate
callback routine is invoked to notify the application of the user’s choice. The application then
takes whatever action is required for the specified selection.
The XmList widget class inherits behavior and resources from Core and XmPrimitive
classes. The class pointer is xmListWidgetClass. The class name is XmList.

Subroutines

¢ XmCreatel.ist

+ XmCreateScroiledList

o XmlListAdditem

e XmListAdditemUnselected
e XmListDeleteltem

¢ XmListDeletePos

o XmListDeselectAllltems

o XmListDeselectitem

o XmListitemExists

e XmListSelectitem

1-70 User Interface Reference

XmList

o XmListSelectPos

¢ XmListSetBottomitem
¢ XmListSetBottomPos
¢ XmListSetHorizPos
¢ XmListSetitem

o XmListSetPos

o XtCreateWidget

New Resources
Setting the resource values for the inherited classes also sets resources for this widget. To
reference a resource by name or by class in an .Xdefaults file, remove the XmN or XmC
prefix and use the remaining letters. To specify one of the defined values for a resource in an
.Xdefaults file, remove the Xm prefix and use the remaining letters (in either lower case or
upper case, but include any underscores between words). The codes in the access column
indicate if the given resource can be set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable (N/A). The following resource sets
list the resources of the XmList widget class:

e XmList Resource Set

e XmScrolledList Resource Set

Inherited Resources
The following resource sets contain a complete description of the resources inherited by the
XmList widget class:

o XmPrimitive Resource Set

o Core Resource Set

Callback Information
The XmList widget class defines a new callback structure. The client application must first
look at the reason field and only use the structure members that are valid for that particular
reason, because not all of the fields are relevant for every possible reason. The callback
structure is defined as follows:

typedef struct

{
int reason,
XEvent * event;
XmString iterm;
int item_length;
int item_position,
XmString * selected_items;
int selected_item_count,
int selection_type;

} XmListCalibackStruct;

reason Indicates why the caliback was invoked.

AiXwindows Classes 1-71

XmList

event Points to the XEvent that invoked the callback. It can be
NULL.
item Is the item selected by this action. selected_iterns points to

a temporary storage space that is reused after the callback
is finished. Therefore, if an application needs to save the
selected list, it should copy the list into its own data space.

item_length Is the length of the item when the selection action occurred.
item_position Is the position in the List widget of the selected item.
selected_items Points to the list of items selected at the time of the event

that caused the callback. selected_items points to a
temporary storage space that is reused after the callback is
finished. Therefore, if an application needs to save the
selected list, it should copy the list into its own data space.

selected_items_count Is the number of items in the selected_items list.

selection_type Indicates that the most recent extended selection was either
the initial selection (XmINITIAL), a modification of an
existing selection (XmMODIFICATION), or an additional
non—contiguous selection (XmADDITION).

The following table describes the reasons for which the individual callback structure fields
are valid:

Reason Valid Fields

Behavior

XmCR_SINGLE_SELECT reason, event, Item, item_length, item_position
XmCR_DEFAULT_ACTION reason, event, Item, item_length, item_position
XmCR_BROWSE_SELECT reason, event, Item, item_length, item_position
XmCR_MULTIPLE_SELECT reason, event, ltem,selected_items,
selected_item_count
XmCR_EXTENDED_SELECT reason, event, ltem, selected_items,

selected_item_count, selection_type

The XmList widget class provides several methods for selecting its items. The general
selection model is as follows:

The user moves the pointer to the item that is desired to be selected, either by using the
mouse to move the pointer over the desired item, or, in keyboard traversal mode, moving the
active highlight to the desired item with the up and down arrow keys. The item is selected by
clicking the select button on the mouse (usually the left mouse button), or by pressing the
select key on the keyboard (usually defined to be the Space key). Each of the selection
modes provides some variation of the above behavior.

Note that the keyboard selection interface is only active when traversal is enabled for the
List widget.

The selection mode is set by the XmNselectionPolicy resource and is modified by the
XmNautomaticSelection resource. The behavior of the various modes are defined below:

XmSINGLE_SELECT (Single Selection): Move the mouse pointer or keyboard highlight
until it is over the desired item and press the select button or key. The item inverts its
foreground and background colors to indicate that it is to be the selected object. Any

1—72 User Interface Reference

XmList

previously selected items are unselected (returned to their normal visual state). When the
button or key is released, the XmNsingleSelectionCallback resource is invoked.

XmBROWSE_SELECT (Browse Selection): When using the mouse, press the select
button; the item under the pointer is highlighted. While the button is held down, drag the
selection by moving the pointer. When the select button is released, the object under the
pointer becomes the selected item and the XmNbrowseSelectionCallback resource is
invoked.

If the XmNautomaticSelection resource is True, the XmNbrowseSelectionCallback
resource invokes when the select button is pressed. For each subsequent item entered while
the select button is held down, the callback is invoked when the pointer moves into the item.
No selection callback is invoked when the button is released.

When selecting through the keyboard and the XmNautomaticSelection resource is False,
browse selection is no different from single—selection mode. However, when the
XmNautomaticSelection resource is True, the callback is invoked for each element that is
selected. Both the keyboard highlight and the selection highlight move as the user moves
through the list.

XmMULTIPLE_SELECT (Multiple Selection): Move the mouse pointer or keyboard
highlight until it is over the desired item and press the select button or key. The item inverts
its foreground and background colors to indicate that it is a selected object. Any previously
selected items are not affected by this action. When the button or key is released, the
XmNmultipleSelectionCallback resource is invoked. To unselect an item in this mode,
move to a selected item and press the select button or key. The
XmNmultipleSelectionCallback resource invokes with the updated selection list.

XmEXTENDED_SELECT (Extended Selection): This mode selects a contiguous range of
objects with one action. Press the select button on the first item of the range. This begins a
new selection process, which deselects any previous selection in the list. That item inverts to
show its inclusion in the selection. While depressing the button, drag the cursor through
other items in the List. As the pointer moves through the list, all items between the initial
item and the item currently under the pointer are inverted to show that they are included in
the selection. When the button is released, the XmNextendedSelectionCallback resource
is invoked and contains a list of all selected items. The selection_type field is set to the
XmINITIAL value.

Modify a selection by pressing and holding the shift key, moving to the new endpoint, and
pressing the select button. The items between the initial start point and the new end point
are selected. The rest of the selection process proceeds as above. Any previous selections
are not unselected. When the select button is released, the
XmNextendedSelectionCallback resource is invoked and contains a list of all selected
items, both new and previous. The selection_type field is set to the XmMODIFICATION
value.

ltems can be added to or deleted from a selected range by using the CTRL key. To add an
additional range to an existing selection, move to the first item of the new group, press and
hold the CTRL key, and then press the Select button. The item under the pointer inverts; any
previous selections are unaffected. This item becomes the initial item for the new selection
range. If the pointer is dragged through additional items while the CTRL key and select
button are held down, those items invert as described above. When the Select button is
released, the XmNextendedSelectionCallback resource is invoked and contains a list of all
selected items, both new and previous. The selection_type field is set to the XmADDITION
value. ~

AlXwindows Classes 1-73

XmList

To delete an item or a range of items from an existing selection, move to the first item to be
deselected, press and hold the CTRL key, and then press the select button. The item under
the pointer returns to its normal visual state to indicate that it is no longer in the selection.
This item becomes the initial item for the range to be deselected. If the pointer is dragged
through additional selected items while the CTRL key and select button are held down,
those items are deselected. Any other selection are unaffected. When the select button is
released, the XmNextendedSelectionCallback resource is invoked and contains a list of all
remaining selected items, both new and previous. The selection_type field is set to the
XmADDITION value.

A range of items can also be deselected by setting the initial item for the range as described
above, then moving to the end of the range, and pressing the select button while holding the
Shift key down. All items between the two endpoints are deselected. When the button is
released, the XmNextendedSelectionCallback resource is issued as described above.

If the XmNautomaticSelection resource is set to True, the
XmNextendedSelectionCallback resource is invoked when the select button is pressed.
For each subsequent item the user selects or deselects, the callback is invoked when the
pointer is moved into the item. The selection_type field is set to reflect the current action. No
selection callback is invoke when the button is released.

Keyboard selection in extended selection mode is accomplished by moving the keyboard
highlight to the start of the desired range and pressing the select key. The selection callback
is invoked with a selection_type value of the XmINITIAL value. Then, using the arrow keys,
move the keyboard highlight to the end of the range, depress the Shift key, and press the
Select key. This invokes the XmNextendedSelectionCallback resource with a value of the
XmMODIFICATION value. Select additional ranges by moving to the beginning of a range,
pressing the select key while depressing the CTRL key, and then moving to the end of the
range and pressing the select key while holding the Shift key. Erase previously selected
elements by moving to them and pressing the select key while holding down the CTRL key.
In all cases, callbacks are issued as described above.

When using the keyboard with the XmNautomaticSelection resource set to True, the
XmNextendedSelectionCallback resource is invoked when the select button is pressed.
For each subsequent item the user selects, the callback is invoked when the pointer is
moved into the item if there are modifier keys in use. For example, start the selection by
pressing the select key, and then extend it by using the arrow keys while holding down the
Shift key. The selection_type field is set to reflect the current action. There is no selection
callback invoked when the button is released.

XmDEFAULT_ACTION (Double Click): If an object is clicked twice within the interval
defined by the XmNdoubleClickinterval resource, the List widget interprets that as a
double click and invokes the XmNdefaultActionCallback resource. The item inverts to
indicate its selection.

Default Translations

The following are the default translations for the List widget:

Button1<Motion>: ListButtonMotion()

Shift Ctrl ~Meta<Btn1Downs>: ListShiftCtriSelect()

Shift Ctrl ~Meta<Btn1Up>: ListShiftCtriUnSelect()
Shift Ctrl ~Meta<KeyDowns>space: ListKbdShiftCtriSelect()
Shift Ctrl ~Meta<KeyUp>space: ListKbdShiftCtrilUnSelect()
Shift Ctrl ~Meta<KeyDown>Select: ListKbdShiftCtriSelect()
Shift Ctrl ~Meta<KeyUp>Select: ListkKbdShiftCtriUnSelect()
Shift ~Ctrl ~Meta<Btn1Downs>: ListShiftSelect()

1-74 User Interface Reference

Shift ~Ctrl ~Meta<Btn1Up>:

Shift ~Ctrl ~Meta<KeyDown>space:
Shift ~Ctrl ~Meta<KeyUp>space:
Shift ~Ctrl ~Meta<KeyDown>Select:
Shift ~Ctrl ~Meta<KeyUp>Select:
Ctri ~Shift ~Meta<Btn1Down>Down:
Ctrl ~Shift ~Meta<Btn1Up>:

Ctrl ~Shift ~Meta<KeyDown>space:
Ctrl ~Shift ~Meta<KeyUp>space:
Ctrl ~Shift ~Meta<KeyDown>Select:
Ctrl ~Shift ~Meta<KeyUp>Select:
~Shift ~Ctrl ~Meta<Btn1Downs>;
~Shift ~Ctrl ~Meta<Btn1Up>:

~Shift ~Ctrl ~Meta<KeyDown>space:

~Shift ~Ctrl ~Meta<KeyUp>space:

~Shift ~Ctrl ~Meta<KeyDown>Select:

~Shift ~Ctrl ~Meta<KeyUp>Select:
Shift Ctrl ~Meta<Key>Up:

Shift Ctrl ~Meta<Key>Down:
Shift ~Ctrl ~Meta<Key>Up:
Shift ~Ctrl ~Meta<Key>Down:
~Shift Ctrl ~Meta<Key>Up:
~Shift Ctrl ~Meta<Key>Down:
~Shift ~Ctrl ~Meta<Key>Up:
~Shift ~Ctrl ~Meta<Key>Down:
<Enter>:

<Leave>:

<Focuslin>:

<FocusOut>:

<Unmap>:

Shift<Key>Tab:

<Key>Tab:

<Key>Home:

Keyboard Traversal

XmList

ListShiftUnSelect()
ListKbdShiftSelect()
ListKbdShiftUnSelect()
ListKbdShiftSelect()
ListKbdShiftUnSelect()
ListCtriSelect()
ListCtrlUnselect()
ListKbdCtriSelect()
ListKdbCtrlUnselect()
ListKbdCtriSelect()
ListKbdCtriUnselect()
ListElementSelect()
ListElementUnSelect()
ListKbdSelect()
ListKbdUnSelect()
ListKbdSelect()
ListKhdUnSelect()
ListShiftCtriIPrevElement()
ListShiftCtriINextElement()
ListShiftPrevElement()
ListShiftNextElement()
ListCtriPrevElement()
ListCtriNextElement()
ListPrevElement()
ListNextElement()
ListEnter()

ListLeave()
ListFocusin()
ListFocusOut()
PrimitiveUnmap()
PrimitivePrevTabGroup()
PrimitiveNextTabGroup()
PrimitiveTraverseHome()

For those actions not inherited from the XmPrimitive widget class, keyboard traversal is
described in the behavior section shown previously in this widget.

Implementation Specifics

This subroutine is part of AIXwindows Development Environment in AlXwindows

Environment/6000.

/usr/include/Xm/List.h

Related Information

The Core widget class, XmPrimitive widget class, XmCreatelList subroutine,
XmCreateScrolledList subroutine, XmFontListCreate subroutine, XmListAdditem
subroutine, XmListAdditemUnselected subroutine, XmListDeleteltem subroutine,
XmListDeletePos subroutine, XmListDeselectitem subroutine, XmListDeselectAllltems
subroutine, XmListSelectltem subroutine, XmListSetHorizPos subroutine, XmListSetltem
subroutine, XmListSetPos subroutine, XmListSetBottomitem subroutine,
XmListSetBottomPos subroutine, XmListSelectPos subroutine, XmListDeselectPos
subroutine, XmListitemExists subroutine, XmStringCreate subroutine, XtCreateWidget

subroutine.

AlXwindows Classes ~ 1-75

XmMainWindow

XmMainWindow Widget Class

Purpose
The MainWindow widget class.
Library
AlXwindows Library (libXm.a)
Syntax
#include <Xm/MainW.h>
Children
ArrowButton Widget ArrowButtonGadget Gadget
BulletinBoard Widget CascadeButton Widget
CascadeButtonGadget Gadget Command Widget
DrawingArea Widget DrawnButton Widget
Form Widget Frame Widget
Label Widget LabelGadget Gadget
MenuShell Widget MessageBox Widget
PushButton Widget PushButtonGadget Gadget
RowColumn Widget Scale Widget
ScroliBar Widget ScrolledWindow Widget
SelectionBox Widget Separator Widget
SeparatorGadget Gadget Text Widget
ToggleButton Widget ToggleButtonGadget Gadget
Description

The XmMainWindow widget class provides a standard layout for the primary window of a
client application. This layout includes a MenuBar widget, a CommandWindow widget, a
work region, and ScrollBar widgets. Any or all of these areas are optional. The work region
and ScrollBar widgets in the MainWindow widget behave identically to the work region and
ScrollBar widgets in the ScrolledWindow widget. The user can think of the MainWindow
widget as an extended ScrolledWindow widget with an optional MenuBar widget and
optional a CommandWindow widget.

In a fully-loaded MainWindow widget, the MenuBar widget spans the top of the window
horizontally. The CommandWindow widget spans the MainWindow widget horizontally just
below the MenuBar widget, and the work region lies below the CommandWindow widget.
The space remaining below the CommandWindow widget, if any, is managed in a manner
identical to the ScrolledWindow widget. The behavior of a ScrolledWindow widget can be
controlled by the ScrolledWindow resources. To create a MainWindow widget, create a
MenuBar widget, a CommandWindow widget, a horizontal ScrollBar widget, and a vertical
ScrollBar widget to use as the work region, and then call the MainWindowSetArea
subroutines with those widget IDs.

The MainWindow widget can also create two XmSeparator widgets that provide a visual
separation of the MainWindow widget’s three components.

The MainWindow widget inherits behavior and resources from Core, Composite,
Constraint, XmManager, and XmScrolledWindow classes. The class pointer is
xmMainWindowWidgetClass. The class name is XmMainWindow.

1-76 User Interface Reference

XmMainWindow

Subroutines

¢ XmCreateMainWindow subroutine
¢ XmMainWindowSep1 subroutine
¢ XmMainWindowSep2 subroutine

¢ XmMainWindowSetAreas subroutine

New Resources

Setting the resource values for the inherited classes also sets resources for this widget. To
reference a resource in an .Xdefaults file, remove the XmN or XmC prefix and use the
remaining letters. To specify one of the defined values for a resource in an .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lower case or upper case, but
include any underscores between words). The codes in the access column indicate if the
given resource can be set at creation time (C), set by using XtSetValues (S). retrieved by
using XtGetValues (G), or is not applicable (N/A). The following resource set lists the
resources of the XmMainWindow widget class:

¢ XmMainWindow Resource Set

Inherited Resources

Behavior

The following resource sets contain a complete description of the resources inherited by the
XmMainWindow widget class:

e XmScrolledWindow Resource Set
¢ XmManager Resource Set
¢ Composite Resource Set

o Core Resource Set

The XmMainWindow widget class inherits behavior from the XmScrolledWindow widget
class.

Keyboard Traversal

For information on keyboard traversal, refer to the XmManager widget class and its sections
on behavior and default translations.

Implementation Specifics

_File

This subroutine is part of AIXwindows Development Environment in AIXwindows
Environment/6000.

/usr/include/Xm/MainW.h

Related Information

The Constraint widget class, Composite widget class, Core widget class,
XmCreateMainWindow subroutine, XmMainWindowSetAreas subroutine,
XmMainWindowSep1 subroutine, XmMainWindowSep2 subroutine, XmManager widget
class, XmScrolledWindow widget class.

AlXwindows Classes 1-77

XmManager

XmManager Widget Class

Purpose
Library
Syntax

Children

The Manager widget class.

AlXwindows Library (libXm.a)

#include <Xm/Xm.h>

ArrowButton Widget
BulletinBoard Widget
CascadeButtonGadget Gadget
DialogShell Widget
DrawnButton Widget

Form Widget

Label Widget

List Widget

MenuShell Widget
PanedWindow Widget
PushButtonGadget Gadget
Scale Widget
ScrolledWindow Widget
Separator Widget

Text Widget
ToggleButtonGadget Gadget

Description
The XmManager widget class is used as a supporting superclass for other widget classes.
This widget class supports the visual resources, graphics contexts, and traversal resources

necessary for the graphics and traversal mechanisms.

ArrowButtonGadget Gadget
CascadeButton Widget
Command Widget
DrawingArea Widget
FileSelectionBox Widget
Frame Widget
LabelGadget Gadget
MainWindow Widget
MessageBox Widget
PushButton Widget
RowColumn Widget
ScroliBar Widget
SelectionBox Widget
SeparatorGadget Gadget
ToggleButton Widget

The XmManager widget class is built from the Core, Composite, and Constraint classes.
The class pointer is xmManagerWidgetClass. The class name is XmManager.

New Resources
The XmManager widget defines a set of widget resources that are used to specify data.
Setting the resource values for the inherited classes also sets resources for this widget. To
reference a resource by name or by class in a .Xdefaults file, remove the XmN or XmC
prefix and use the remaining letters. To specify one of the defined values for a resource in a
Xdefaults file, remove the Xm prefix and use the remaining letters (in either lower or upper
case, but include any underscores between words). The codes in the access column
indicate if the given resource can be set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable (N/A). The following superclass
contains a complete description of resources defined by the XmManager widget class:

¢ XmManagerResource Set

1-78 User Interface Reference

XmManager

Dynamic Color Defaults

The foreground, background, top shadow, and bottom shadow resources are dynamically
defaulted. If no color data is specified, the colors are automatically generated. On a
monochrome system, a black and white color scheme is generated. On a color system, a set
of four colors are generated which display the correct shading for the three—dimensional
visuals.

If the background is the only color specified for a widget, the top shadow, bottom shadow,
and foreground colors are generated to give the three—dimensional appearance. The color

generation works best with non—saturated colors. Using pure red, green, or blue yields poor
results.

Colors are generated at creation only. Resetting the background through XtSetValues does
not regenerate the other colors.

Inherited Resources

Behavior

The following superclass resource sets contain a complete description of the resources
inherited by the XmManager widget class:

e Composite Resource Set

o Core Resource Set

The following set of translations are used by Manager widgets that have Gadget children.
Since Gadgets cannot have translations associated with them, it is the responsibility of the

Manager widget to intercept the events of interest and pass them to the appropriate Gadget
child.

Shift <Key> Tab:

Moves the focus to the first item contained within the previous tab group. If
the beginning of the tab group list is reached, it wraps to the end of the tab
group list.

<Key> Tab or <Key> F6:

Moves the focus to the first item contained within the next tab group. If the
current tab group is the last entry in the tab group list, it wraps to the
beginning of the tab group list.

<Key> Up or <Key> Letft:

Moves the keyboard focus to the previous Manager widget or gadget within
the current tab group. The previous widget or gadget is the one that is the
previous entry in the tab group’s list of children. Wrapping occurs, if
necessary.

<Key> Down or <Key> Right:

Moves the keyboard focus to the next Manager widget or gadget within the
current tab group. The next widget or gadget is the one that is the next entry
in the tab group’s list of children. Wrapping occurs, if necessary.

<Key> Home:

Moves the keyboard focus to the first Manager widget or gadget in the
current tab group.

AlXwindows Classes 1-79

XmManager

Default Translations
The following are translations used by all Manager widgets:

<EnterWindow>: ManagerEnter()
<FocusOut>: ManagerFocusOut()
<Focusin>: ManagerFocusin()

The following are the translations necessary to provide gadget event processing:

<Key> space: ManagerGadgetSelect()

<Key> Return: ManagerGadgetSelect()

Shift <Key> Tab: ManagerGadgetPrevTabGroup()
<Key> Tab: ManagerGadgetNextTabGroup()
<Key> F6: ManagerGadgetNextTabGroup()
<Key> Up: ManagerGadgetTraversePrev()
<Key> Down: ManagerGadgetTraverseNext()
<Key> Left: ManagerGadgetTraversePrev()
<Key> Right: ManagerGadgetTraverseNext()
<Key> Home: ManagerGadgetTraverseHome()

Implementatlon Specifics
This subroutine is part of AIXwindows Development Environment in AIXwindows
Environment/6000.

File

/usr/include/Xm/Xm.h
Related Information

The Composite widget class, Constraint widget class, Core widget class, XmGadget
gadget class.

1—-80 User Interface Reference

XmMenuShell

XmMenuShell Widget Class

Purpose
The MenuShell widget class.

Library
AlXwindows Library (libXm.a)

Syntax
#include <Xm/MenuShell.h>

Children
ArrowButton Widget ArrowButtonGadget Gadget
CascadeButton Widget CascadeButtonGadget Gadget
MenuBar OptionMenu
PopupMenu PulldownMenu
PushButton Widget PushButtonGadget Gadget
RowColumn Widget Separator Widget
SeparatorGadget Gadget ToggleButton Widget
ToggleButtonGadget Gadget

Description

The MenuShell widget is a custom OverrideShell widget. An OverrideShell widget
bypasses the window manager when displaying itself. It is designed specifically to contain
Popup or Pulldown MenuPanes.

This widget is rarely encountered because the convenience subroutines
XmCreatePopupMenu or XmCreatePulldownMenu are generally used to create a Popup.
or Pulldown MenuPane. The convenience subroutines automatically create a MenuShell
widget as the parent of the MenuPane. However, if the convenience subroutines are not
used, the required MenuShell widget must be created. In this case, it is important to note
that the parent of the MenuShell widget depends on the type of menu system being built.

e If the MenuShell widget is for the top—level Popup MenuPane, the MenuShell widget
must be created as a child of the widget from which the MenuShell widget is popped up.

¢ [f the MenuShell widget is for a MenuPane that is pulled down from a Popup or another
Pulldown MenuPane, the MenuShell widget must be created as a child of the Popup or
Pulidown MenuPane’s parent MenuShell.

o [f the MenuShell widget is for a MenuPane that is pulled down from a MenuBar, the
MenuShell widget must be created as a child of the MenuBar.

e |f the MenuShell widget is for a Pulidown MenuPane in an OptionMenu, the
MenuShell widget must have the same parent as the OptionMenu.

The XmMenuShell widget class inherits resources from Core, Composite, and

OverrideShell classes. The class pointer is xmMenuShellWidgetClass. The class name is
XmMenuShell.

AlXwindows Classes 1-81

XmMenuShell

Subroutines
e XmCreateMenuShell

e XmCreatePopupMenu

e XmCreatePulldownMenu

New Resources
The XmMenuShell defines no new resources, but overrides the XmNallowShellResize
resource in the Shell widget class.

Inherited Resources
Setting the resource values for the inherited classes also sets resources for this widget. To
reference a resource by name or by class in a .Xdefaults file, remove the XmN or XmC
prefix and use the remaining letters. To specify one of the defined values for a resource in a
.Xdefaults file, remove the Xm prefix and use the remaining letters (in either lower or upper
case, but include any underscores between words). The codes in the access column
indicate if the given resource can be set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable (N/A). The following resource sets
contain a complete description of resources inherited by the XmMenuShell widget class:

¢ Shell Resource Set
o Composite Resource Set

e Core Resource Set

Behavior
The specific mouse button that is used depends upon the resources XmNrowColumnType
and XmNwhichButton in the menu’s top—level RowColumn widget

Default PopupMenu System
<Btn2Down>: If this event has not already been processed by another menu

component, keyboard traversal is disabled for the menus and the user
is returned to drag mode.

<Btn2Up>: If this event has not already been processed by another menu
component, all visible MenuPanes are unposted.

<Key> Escape: If this event has not already been processed by another menu
component, all visible MenuPanes are unposted.

Default PulldownMenu System or OptionMenu System
<Btn1Downs>: If this event has not already been processed by another menu

component, keyboard traversal is disabled for the menus and the user
is returned to drag mode.

<Btn1Up>: If this event has not already been processed by another menu
component, all visible MenuPanes are unposted.

<Key> Escape: If this event has not already been processed by another menu
component, all visible MenuPanes are unposted.

Default Translations
The default translations for the MenuShell widget are:

1—82 User interface Reference

XmMenuShell

<BtnDown>: ClearTraversal()
<Key> Escape: MenuShellPopdownDone()
<BtnUp>: MenuShellPopdownDone()

Implementation Specifics
This subroutine is part of AIXwindows Development Environment in AIXwindows
Environment/6000.

File
/usr/include/Xm/MenuShell.h

Related Information
The Composite widget class, Core widget class, OverrideShell widget class, Shell widget
class, XmCreateMenuShell subroutine, XmCreatePopupMenu subroutine,
XmCreatePulldownMenu subroutine, XmRowColumn widget class.

AlXwindows Classes 1-83

XmMessageBox

XmMessageBox Widget Class

Purpose

Library

Syntax

Children

The MessageBox widget class.

AlXwindows Library (libXm.a)

#include <Xm/MessageB.h>

ArrowButton Widget
BulletinBoard Widget
CascadeButtonGadget Gadget
DialogShell Widget
DrawnButton Widget

Form Widget

Label Widget

List Widget

MenuShell Widget
PanedWindow Widget
PushButtonGadget Gadget
Scale Widget
ScrolledWindow Widget
Separator Widget

Text Widget
ToggleButtonGadget Gadget

Description
The XmMessageBox widget class is a dialog class used for creating simple message
dialogs. Convenience dialogs based on the MessageBox widget are provided for several
common interaction tasks including giving information, asking questions, and notifying about

errors.

ArrowButtonGadget Gadget
CascadeButton Widget
Command Widget
DrawingArea Widget
FileSelectionBox Widget
Frame Widget
LabelGadget Gadget
MainWindow Widget
MessageBox Widget
PushButton Widget
RowColumn Widget
ScroliBar Widget
SelectionBox Widget
SeparatorGadget Gadget
ToggleButton Widget

A MessageBox widget dialog is transient in nature; it is displayed for the duration of a single
interaction. The XmMessageBox widget class is a subclass of the XmBulletinBoard widget
class and depends on it for much of its general dialog behavior.

A MessageBox widget can contain a message symbo!, a message, and up to three
standard default PushButtons: OK, Cancel, and Help. It is laid out with the symbol in the
top left, the message in the top and center—to—right side, and the PushButtons on the
bottom. The Help button is positioned to the far right of the other PushButtons. Default
symbols and button labels for the XmMessageBox widget convenience dialogs are

localizable.

The Button label defaults are easily modified by including the new values in any of the
app_defaults file locations supported by Enhanced X-Windows toolkit. Changing the
defaults for the MessageBox widget symbols is more complicated, since the Enhanced
X-Windows toolkit does not support specification of pixmaps by name in resource files.

1-84 User Interface Reference

XmMessageBox

At initialization, the MessageBox widget looks for a bitmaps subdirectory that includes the
following bitmap files:

e Xm_error

o xm_information
¢ xm_question

o xm_working

e Xm_warning

A description of what paths are searched for these files is contained in XmGetPixmap
subroutine.

The XmMessageBox widget class inherits behavior and resources from the Core,
Composite, Constraint, XmManager, and XmBulletinBoard classes. The class pointer is
xmMessageBoxWidgetClass. The class name is XmMessageBox.

Subroutines

o XmCreateErrorDialog

¢ XmCreatelnformationDialog
¢ XmCreateMessageBox

* XmCreateMessageDialog

o XmCreateQuestionDialog
¢ XmCreateWarningDialog

e XmCreateWorkingDialog

e XmMessageBoxGetChild

New Resources
Setting the resource values for the inherited classes also sets resources for this widget. To
reference a resource by name or by class in an .Xdefaults file, remove the XmN or XmC
prefix and use the remaining letters. To specify one of the defined values for a resource in an
.Xdefaults file, remove the Xm prefix and use the remaining letters (in either lower case or
upper case, but include any underscores between words). The codes in the access column
indicate if the given resource can be set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable (N/A). The following resource set
lists the resources of the XmMessageBox widget class:

¢ XmMessageBox Resource Set
Inherited Resources

The following resource sets contain a complete description of the resources inherited by the
XmMessageBox widget class:

e XmBulletinBoard Resource Set
¢ XmManager Resource Set
e Composite Resource Set

e Core Resource Set

AlXwindows Classes 1-85

XmMessageBox

Callback Information

Behavior

The following structure is returned with each callback:

typedef struct
{
int reason,
XEvent * event,
} XmAnyCallbackStruct;

reason Is set to the value that corresponds to the type of selection that invoked this
callback.
event Points to the XEvent that invoked the callback.

Following is a summary of the behavior of the MessageBox widget:

<OK Button Activated>: When the OK PushButton is activated, the callbacks for the
XmNokCallback resource are called.

<Cancel Button Activated>: When the cancel PushButton is activated, the callbacks for
the XmNcancelCallback resource are called.

<Help Button Activated> or <Key>F1: When the help button or subroutine key 1 is
pressed, the callbacks for the XmNhelpCallback resource are called.

<Default Button Activated>: When the default button is pressed, the activate callbacks of
the default PushButton are called.

<Focusin>: When a Focusln event is generated on the widget window, the callbacks for the
XmNfocusCallback resource are called.

<MapWindows>: When a MapWindow event is generated on the widget window, the
callbacks for the XmNmapCallback resource are called.

<UnmapWindow>: When a UnmapWindow event is generated on the widget window, the
callbacks for the XmNunmapCallback resource are called.

Default Accelerators

The default accelerator translations added to descendants of a BulletinBoard widget if the
parent of the BulletinBoard widget is a DialogShell widget are:

#override
<Key>F1: Help()
<Key>Return: Return()

<Key>KP_Enter: Return()

Keyboard Traversal

Information on keyboard traversal is contained in the Manager widget and its sections on
behavior and default translations.

Implementation Specifics

This subroutine is part of AIXwindows Development Environment in AIXwindows
Environment/6000.

1-86 User Interface Reference

XmMessageBox

File

/usr/include/Xm/MessageB.h

Related Information

The Composite widget class, Constraint widget class, Core widget class,
XmBulletinBoard widget class, XmCreateErrorDialog subroutine,
XmCreatelnformationDialog subroutine, XmCreateMessageDialog subroutine,
XmCreateQuestionDialog subroutine, XmCreateWarningDialog subroutine,
XmCreateWorkingDialog subroutine, XmManager widget class,
XmMessageBoxGetChild subroutine.

AlXwindows Classes 1-87

XmPanedWindow

XmPanedWindow Widget Class

Purpose
The PanedWindow widget class.
Library
AlXwindows Library (libXm.a)
Syntax
#include <Xm/PanedW.h>
Children
ArrowButton Widget ArrowButtonGadget Gadget
BulletinBoard Widget CascadeButton Widget
CascadeButtonGadget Gadget Command Widget
DrawingArea Widget DrawnButton Widget
Form Widget Frame Widget
Label Widget LabelGadget Gadget
MenuShell Widget MessageBox Widget
PushButton Widget PushButtonGadget Gadget
RowColumn Widget Scale Widget
ScrollBar Widget ScrolledWindow Widget
SelectionBox Widget Separator Widget
SeparatorGadget Gadget Text Widget
ToggleButton Widget ToggleButtonGadget Gadget
Description
A PanedWindow widget is a composite widget that lays out child widgets in a vertically-tiled
format. Child widgets appear in top—to—bottom fashion: the first child is inserted at the top of
the PanedWindow widget and the last child is inserted at the bottom. The PanedWindow
widget grows to match the width of its widest child and all other children are forced to this
width. The height of the PanedWindow widget is equal to the sum of the heights of all its
child widgets, the spacing between them, and the size of the top and bottom margins.
A mouse can be used to adjust the size of the individual panes. To facilitate this adjustment,
a pane control sash is created for most children. The sash appears as a square box
positioned on the bottom of the pane it controls.
The PanedWindow widget is a constraint widget, which means that it creates and manages
a set of constraints for each child. A minimum and maximum size can be specified for each
pane. The PanedWindow widget does not allow a pane to be resized below its minimum
size nor beyond its maximum size. When the minimum size of a pane is equal to its
maximum size, no control sash is presented for that pane or for the lowest pane.
Subroutine

o XmCreatePanedWindow

1—-88 User Interface Reference

XmPanedWindow

New Resources

Setting the resource values for the inherited classes also sets resources for this widget. To
reference a resource by name or by class in a .Xdefaults file, remove the XmN or XmC
prefix and use the remaining letters. To specify one of the defined values for a resource in a
Xdefaults file, remove the Xm prefix and use the remaining letters (in either lower case or
upper case, but include any underscores between words). The codes in the access column
indicate if the given resource can be set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable (N/A). The following resource sets
list the resources of the XmPanedWindow widget class:

o XmPanedWindow Resource Set

o XmPanedWindow Constraint Resource Set

Inherited Resources

Behavior

The following resource sets contain a complete description of the resources inherited by the
XmPanedWindow widget class.

¢ XmManager Resource Set
o Composite Resource Set

e Core Resource Set

Shift<Btn1Down>: (in sash): Activates the interactive placement of the pane’s borders.
Changes the pointer cursor from a crosshair to an upward pointing arrow to indicate that the
upper pane is adjusted (usually the pane to which the sash is attached). All panes below the
sash that can be adjusted, are adjusted.

<Btn1Downs: (in sash): Activates the interactive placement of the pane's borders.
Changes the pointer cursor from a crosshair to a double—headed arrow to indicate that the
pane to be adjusted is the pane to which the sash is attached. Also indicates that the first
pane below the sash can be adjusted. Unlike pane adjustment using ShiftBtn1Down or
CTRLBtn1Down, only two panes is affected. If one of the panes reaches its minimum or
maximum size, adjustment stops, and the next adjustable pane is not identified.

CTRL <Btn1Downs>: (in sash): Activates the interactive placement of the pane's borders.
Changes the pointer cursor from a crosshair to a downward—pointing arrow to indicate that
the lower pane will be adjusted (usually the pane below the pane to which the sash is
attached). All panes above the sash that can be adjusted, are adjusted.

Shift Button1 <PtrMoveds>: If the mouse button is pressed while the pointer is within the
sash, the motion events draw a series of track lines to illustrate what the heights of the
panes would be if the Commit action were invoked. This action determines which pane
below the upper pane can be adjusted, and then makes the appropriate adjustments.

Button1 <PtrMoveds>: If the mouse button is pressed while the pointer is within the sash,
the motion events draw a series of track lines to illustrate what the heights of the panes
would be if the Commit action were invoked. This action adjusts as needed (and as possible)
the upper and lower panes selected when the Btn1Down action was invoked.

AlXwindows Classes 1-89

XmPanedWindow

CTRL Button1 <PtrMoved>: If the mouse button is pressed while the pointer is within the
sagh, the motion events draw a series of track lines to illustrate what the heights of the
panes would be if the Commit action were invoked. This action determines which pane
above the lower pane can be adjusted, and then makes the appropriate adjustments.

Any <BtnUp>: Commits to any action taken since the interactive placement was activated.
The sashes and the pane boundaries are moved to the committed positions of the panes.

Implementation Specifics

This subroutine is part of AIXwindows Development Environment in AIXwindows
Environment/6000.

File
{usr/include/Xm/PanedW.h

Related Information

The Composite widget class, Constraint widget class, Core widget class, XmManager
widget class, XmCreatePanedWindow subroutine.

1-90 User Interface Reference

XmPrimitive

XmPrimitive Widget Class

Purpose

The Primitive widget class.
Library

AlXwindows Library (libXm.a)
Syntax

#include <Xm/Xm.h>
Children

No children are supported.
Description

The XmPrimitive widget class is used as a supporting superclass for other widget classes.
This widget handles border drawing and highlighting, traversal activation and deactivation,
and various callback lists needed by the Primitive widgets.

The XmPrimitive widget class inherits behavior and resources from the Core widget class.
The class pointer is xmPrimitiveWidgetClass. The class name is XmPrimitive.

New Resources

Setting the resource values for the inherited classes also sets resources for this widget. To
reference a resource by name or by class in a .Xdefaults file, remove the XmN or XmC
prefix and use the remaining letters. To specify one of the defined values for a resource in a
Xdefaults file, remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access column
indicate if the given resource can be set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable (N/A). The following resource set
lists the resources of the XmPrimitive widget class:

¢ XmPrimitive Resource Set

Inherited Resources

Behavior

The following resource set contains a complete description of resource inherited by
XmPrimitive.

e Core Resource Set

Shift<Key>Tab: Moves the focus to the first item contained within the previous tab group. If
the beginning of the tab group list is reached, it wraps to the end of the tab group list.

<Key>Tab or <Key>F6: Moves the focus to the first item contained within the next tab

group. If the current tab group is the last entry in the tab group list, it wraps to the beginning
of the tab group list.

<Key>Up or <Key>Left: Moves the keyboard focus to the previous Primitive widget or
gadget within the current tab group. The previous widget or gadget is the one that is the
previous entry in the tab group’s list of children. Wrapping occurs, if necessary.

AlXwindows Classes 1-91

XmPrimitive

<Key>Down or <Key>Right: Moves the Keyboard focus to the next Primitive widget or
gadget within the current tab group. The previous widget or gadget is the one that is the next
entry in the tab group’s list of children. Wrapping occurs, if necessary.

<Key>Home: Moves the keyboard focus to the first Primitive widget or gadget in the
current tab group.

Default Translations
The following are the default translations for the Primitive widget:

<Focusin>: PrimitiveFocusin()
<FocusOut>: PrimitiveFocusOut()
<Unmaps>: PrimitiveUnmap()
Shift<Key>Tab: PrimitivePrevTabGroup()
<Key>Tab: PrimitiveNextTabGroup()
<Key>F6: PrimitiveNextTabGroup()
<Key>Up: PrimitiveTraversePrev()
<Key>Down: PrimitiveTraverseNext()
<KeysLeft: PrimitiveTraversePrev()
<Key>Right: PrimitiveTraverseNext()
<Key>Home: PrimitiveTraverseHome()

Implementation Specifics
This subroutine is part of AIXwindows Development Environment in AIXwindows
Environment/6000.

File

/usr/include/Xm/Xm.h

Related Information
The Core widget class.

1-92 User Interface Reference

XmPushButton

XmPushButton Widget Class

Purpose
The PushButton widget class.

Library
AlXwindows Library (libXm.a)

Syntax
#include <Xm/PushB.h>

Children

No children are supported.

Description
The PushButton widget issues commands within an application. It consists of a text label or
pixmap surrounded by a border shadow. When the PushButton widget is selected, the
shadow moves to give the appearance that it has been pressed in. When the PushButton
- widget is unselected, the shadow moves to give the appearance that it is out.

The behavior of the PushButton widget differs, depending on the active mouse button. The
active mouse button may be determined by the parent widget. Normally, mouse button one
is used to arm and activate the PushButton widget. However, if the PushButton widget
resides within a menu, the mouse button used is determined by the RowColumn widget
resources XmNrowColumnType and XmNwhichButton.

Thickness for a second shadow can be specified by using the XmNshowAsDefault
resource. If it has a nonzero value, the Label widget resources XmNmarginLeft,
XmNmarginRight, XmNmarginTop, and XmNmarginBottom can be modified to
accommodate the second shadow.

The XmPushButton widget class inherits behavior and resources from the Core,
XmPrimitive, and XmLabel classes. The class pointer is xmPushButtonWidgetClass. The
class name is XmPushButton.

Subroutines
¢ XmCreatePushButton

o XtCreateWidget

New Resources
Setting the resource values for the inherited classes also sets resources for this widget. To
reference a resource by name or by class in an .Xdefaults file, remove the XmN or XmC
prefix and use the remaining letters. To specify one of the defined values for a resource in an
.Xdefaults file, remove the Xm prefix and use the remaining letters (in either lower case or
upper case, but include any underscores between words). The codes in the access column
indicate if the given resource can be set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable (N/A). The following resource set
lists the resources for the PushButton widget class:

¢ XmPushButton Resource Set

AlXwindows Classes 1-93

XmPushButton

Inherited Resources

The following resource sets contain a complete description of the resources inherited by the
XmPushButton widget class:

e XmLabel Resource Set
e XmPrimitive Resource Set

e Core Resource Set

Callback Information

Behavior

The following structure is returned with each callback:

typedef struct

{

int reason,
XEvent * event;

} XmAnyCalibackStruct;

reason Is set to the value that corresponds to the type of selection that invoked this
callback.
event Points to the XEvent that invoked the callback. This event is NULL for the

XmNactivateCallback if the callback was triggered when Primitive’s
resource XmNtraversalOn was True or if the callback was accessed
through the ArmAndActivate action routine.

The PushButton widget is associated with the default behavior unless it is part of a menu
system. In a menu system, the RowColumn parent determines which mouse button is used.

Default Behavior

<Btn1Down>: This action causes the PushButton to be armed. The shadow is drawn in
the armed state, and the button is filled with the color specified by XmNarmColor if
XmNfillOnArm is set to True. The callbacks for XmNarmCallback are also called.

<Btn1Up>: (in button): This action redraws the shadow in the unarmed state. The
background color will revert to the unarmed color if XmNfillOnArm is set to True. The
callbacks for XmNactivateCallback are called, followed by callbacks for
XmNdisarmCallback.

(outside of button): This action causes the callbacks for XmNdisarmCallback to be called.

<Leave Windows: If the button is pressed and the cursor leaves the widget window, the
shadow is redrawn in its unarmed state, and the background color reverts to the unarmed
color if XmNfillOnArm is set to True.

<Enter Windows: If the button is pressed and the cursor leaves and reenters the widget
window, the shadow is drawn in the armed state, and the button is filled with the color
specified by XmNarmColor if XmNfillOnArm is set to True.

Default PopupMenu System and OptionMenu System

<Btn2Downs>: This action disables keyboard traversal for the menu and returns the user to
drag mode, which is the mode in which the menu is manipulated by using the mouse. The
shadow is drawn in the armed state, and the callbacks for XmNarmcCallback are called.

1-94 User Interface Reference

XmPushButton

<Btn2Up>: This action causes the PushButton widget to be activated and the menu to be
unposted. The callbacks for XmNactivateCallback are called, followed by callbacks for
XmNdisarmCallback.

<Leave Windows: If button two is pressed and the cursor leaves the widget window, the
PushButton widget is redrawn with no shadow. The callbacks for XmNdisarmCallback are
called. If keyboard traversal is enabled in the menu, then this event is ignored.

<Enter Windows: If button two is pressed and the cursor enters the widget window, the
shadow is drawn in the armed state. The callbacks for XmNarmCallback are called. If
keyboard traversal is enabled in the menu, this event is ignored.

<Key>Return: If keyboard traversal is enabled in the menu, this event causes the
PushButton widget to be activated and the menu to be unposted. The calibacks for
XmNactivateCallback are called, followed by callbacks for XmNdisarmCallback.

Default Pulldown Menu System

<Btn1Downs>: This action disables keyboard traversal for the menu and returns the user to
drag mode, which is the mode in which the menu is manipulated by using the mouse. The
shadow is drawn in the armed state, and the callbacks for XmNarmCallback are called.

<Btn1Up>: This action causes the PushButton widget to be activated and the menu to be
unposted. The callbacks for XmNactivateCallback are called, followed by callbacks for
XmNdisarmCallback.

<Leave Window>: If mouse button one is pressed and the cursor leaves the widget window,
the PushButton widget is redrawn with no shadow. The callbacks for XmNdisarmCallback
are called. If keyboard traversal is enabled in the menu, this event is ignored.

<Enter Windows: If mouse button one is pressed and the cursor enters the widget window,
the shadow is drawn in the armed state. The callbacks for XmNarmCallback are called. If
keyboard traversal is enabled in the menu, this event is ignored.

<Key>Return: If keyboard traversal is enabled in the menu, this event causes the
PushButton to be activated and the menu to be unposted. The callbacks for
XmNactivateCallback are called, followed by callbacks for XmNdisarmCallback.

Default Translations
The default translations for the PushButton widget when not in a menu system are:
<Btn1Downs>: Arm()
<Btn1Up>: Activate()
Disarm()
<Key>Return: ArmAndActivate()
<Key>space: ArmAndActivate()
<EnterWindows: Enter()
<LeaveWindows: Leave()

The default translations for the PushButton widget when in a menu system are:

<BtnDown>: BtnDown()

<BtnUp>: BtnUp()

<EnterWindows>: Enter()

<LeaveWindows>: Leave()

<Key>Return: KeySelect()

<Key>Escape: MenuShellPopdownDone()

AlXwindows Classes 1-95

XmPushButton

Keyboard Traversal
Information on keyboard traversal when not in a menu system is contained in the Primitive
widget and its sections on behavior and default translations. When in a menu system, the
following keyboard traversal translations are defined:

<Unmap>: Unmap()
<FocusOuts: FocusOut()
<Focusin>: Focusin()
<Key>space: Noop()

<Key>Left: MenuTraverseleft()
<Key>Right: MenuTraverseRight()
<Key>Up: MenuTraverseUp()
<Key>Down: MenuTraverseDown()
<Key>Home: Noop()

Implementation Specifics
‘This subroutine is part of AIXwindows Development Environment in AIXwindows
Environment/6000.

File
/usr/include/Xm/PushB.h

Related Information

The Core widget class, XmCreatePushButton subroutine, XmLabel widget class,
XmPrimitive widget class, XmRowColumn widget class, XtCreateWidget subroutine.

1-96 User Interface Reference

XmPushButtonGadget

XmPushButtonGadget Gadget

Purpose
The PushButtonGadget gadget class.

Library
AlXwindows Library (libXm.a)

Syntax
#include <Xm/PushBG.h>

Children
No children are supported.

Description
A PushButtonGadget gadget issues commands within a client application. This widget
consists of a text label or icon surrounded by a border shadow. When the
PushButtonGadget gadget is selected, the shadow moves to give the appearance that the
PushButtonGadget gadget has been pressed in. When the PushButtonGadget gadget is
deselected, the shadow moves to give the appearance that the PushButtonGadget gadget
is out.
The behavior of the PushButtonGadget gadget differs, depending on the active mouse
button. The active mouse button is determined by the parent widget. Normally, is used to
arm and activate the PushButtonGadget gadget. However, if the PushButtonGadget
gadget resides within a menu, mouse button use is determined by two RowColumn widget
resources: XmNrowColumnType and XmNwhichButton.
Thickness for a second shadow can be specified by using the XmNshowAsDefault
resource. If the resource has a nonzero value, the Label widget resources XmNmarginLeft,
XmNmarginRight, XmNmarginTop, and XmNmarginBottom can be modified to
accommodate the second shadow.
The XmPushButtonGadget gadget class inherits behavior and resources from the Object,
RectObj, XmGadget, and XmLabelGadget classes. The class pointer is
xmPushButtonGadgetClass. The class name is XmPushButtonGadget.

Subroutine

o XmCreatePushButtonGadget

New Resources
Setting the resource values for Object, RectObj, XmGadget, and XmLabelGadget classes
also sets resources for the XmPushButtonGadget gadget class. To reference a resource in
an .Xdefaults file, remove the XmN or XmC prefix and use the remaining letters. To specify
one of the defined values for a resource in an .Xdefaults file, remove the Xm prefix and use
the remaining letters (in either lowercase or uppercase, but include any underscores
between words). The codes in the access column indicate if the given resource can be set at
creation time(C), set by using XtSetValues (S), retrieved by using XtGetValues (G), or is
not applicable (N/A). The following resource set lists the resources of the
XmPushButtonGadget widget class:

AlXwindows Classes 1-97

XmPushButtonGadget

¢ XmPushButtonGadget Resource Set

Inherited Resources

The following resource sets contain a complete description of the resources inherited by the
XmPushButtonGadget gadget class:

» XmLabelGadget Resource Set
o XmGadget Resource Set
¢ RectObj Resource Set

e Object Resource Set

Callback Information

Behavior

typedef struct
{
int reason;
XEvent * event;
} XmAnyCallbackStruct;

reason Is set to the value that corresponds to the type of selection that invoked this
callback routine.

event Points to the XEvent that invoked the callback routine. This event is NULL
for the XmNactivate resource if the callback routine was triggered when the
Primitive resource XmNtraversalOn was True or if the callback routine
was accessed through the ArmAndActivate action routine.

The PushButtonGadget gadget is associated with the default behavior unless it is part of a
Popup menu system, a Pulldown menu system, or an OptionMenu system. In each menu
system, the RowColumn parent determines which mouse button is used.

Default Behavior

<Btn1Downs: This action causes the PushButtonGadget gadget to be armed. The
shadow is drawn in the armed state, and the button is filled with the color specified by the
XmNarmColor resource if the XmNfillOnArm resource is set to True. The callback routines
for the XmNarmCallback resource are also invoked.

<Btn1Up> (in button): This action redraws the shadow in the unarmed state. The
background color reverts to the unarmed color if the XmNfillOnArm resource is set to True.
The callback routines for the XmNactivateCallback resource are invoked, followed by
callback routines for the XmNdisarmCallback resource.

<Btn1Up> (outside of button): This action causes the callback routines for the
XmNdisarmCallback resource to be invoked.

<Leave Windows: If the button is pressed and the cursor leaves the widget window, the
shadow is redrawn in its unarmed state, and the background color reverts to the unarmed
color if the XmNfillOnArm resource is set to True.

<Enter Windows: If the button is pressed and the cursor leaves and reenters the widget
window, the shadow is drawn in the armed state, and the button is filled with the color
specified by the XmNarmColor resource if the XmNfillOnArm resource is set to True.

1-98 User Interface Reference

XmPushButtonGadget

Default PopupMenu System and OptionMenu System

<Btn2Downs>: This action disables keyboard traversal for the menu and returns the user to
drag mode (the mode in which the menu is manipulated by using the mouse). The shadow is
drawn in the unarmed state, and the callback routines for the XmNarmCallback resource
are invoked.

<Btn2Up>: This action causes the PushButtonGadget gadget to be activated and the
menu to be unposted. The callback routines for the XmNactivateCallback are invoked,
followed by callback routines for the XmNdisarmCallback resource.

<LeaveWindows: If is pressed and the cursor leaves the widget window, the
PushButtonGadget gadget is redrawn without a shadow. The callback routines for the
XmNdisarmCallback resource are invoked. If keyboard traversal is enabled in the menu,
this event is ignored.

<Enter Windows: If is pressed and the cursor enters the widget window, the shadow is
drawn in the armed state. The callbacks for the XmNarmCallback resource are called If
keyboard traversal is enabled in the menu, this event is ignored.

<Key> Return: If keyboard traversal is enabled in the menu, this event causes the
PushButtonGadget gadget to be activated and the menu to be unposted. The callback
routines for the XmNactivateCallback resource are invoked, followed by callback routines
for the XmNdisarmCallback resource.

Default Pulldown Menu System

<Btn1Down>: This action disables keyboard traversal for the menu and returns the user to
drag mode (the mode in which the menu is manipulated by using the mouse). The shadow is
drawn in the armed state, and the callback routines for the XmNarmCallback resource are
invoked.

<Btn1Up>: This action causes the PushButtonGadget gadget to be activated and the
menu to be unposted. The callback routines for the XmNactivateCallback are invoked,
followed by callback routines for the XmNdisarmCaliback resource.

<Leave Windows: If is pressed and the cursor leaves the widget window, the
PushButtonGadget gadget is redrawn without a shadow. The callback routines for the
XmNdisarmCallback resource are invoked. If keyboard traversal is enabled in the menu,
this event is ignored.

<Enter Windows: If is pressed and the cursor enters the widget window, the shadow is
drawn in the armed state. The callback routines for the XmNarmCallback resource are
invoked. If keyboard traversal is enabled in the menu, this event is ignored.

<Key> Window: If keyboard traversal is enabled in the menu, this event causes the
PushButtonGadget gadget to be activated and the menu to be unposted. The callback
routines for the XmNactivateCallback resource are invoked, followed by callback routines
for the XmNdisarmCallback resource.

Keyboard Traversal
The XmGadget gadget class and its sections on behavior and default translations contain
information on keyboard traversal.

Implementation Specifics

This subroutine is part of AIXwindows Development Environment in AIXwindows
Environment/6000.

AlXwindows Classes 1-99

XmPushButtonGadget

File
/usr/include/Xm/PushBG.h

Related Information
- The XmCreatePushButtonGadget subroutine, XmLabel widget class, XmLabelGadget
gadget class, XmGadget gadget class, RectObj widget class, Object widget class,
XmRowColumn widget class.

1-100 User Interface Reference

XmRowColumn

XmRowColumn Widget Class

Purpose
The RowColumn widget class.

Library
AlXwindows Library (libXm.a)

Syntax
#include <Xm/RowColumn.h>

Children
ArrowButton Widget BulletinBoard Widget
CascadeButton Widget Command Widget
DrawingArea Widget DrawnButton Widget
Form Widget Frame Widget
Label Widget MenuShell Widget
MessageBox Widget PanedWindow Widget
PushButton Widget Scale Widget
ScrollBar Widget ScrolledWindow Widget
SelectionBox Widget Separator Widget
Text Widget ToggleButton Widget

Description

The RowColumn widget is a general-purpose RowColumn widget manager capable of
containing any widget type as a child. It requires no special knowledge about how its
children function and provides nothing beyond support for several different layout styles. If it
is configured as a menu, it expects only certain children widgets, and it configures to a
particular layout. The menus supported are: MenuBar, Pulldown or Popup MenuPanes,
and OptionMenu.

The type of menu system is controlled by how the client application has set the various
layout resources. It can be configured to lay out its children in either rows or columns. in
addition, the application can specify whether the children should be packed tightly together
(not into organized rows and columns), or whether each child should be placed in an
identically—sized box (producing a symmetical look), or whether specific layout should be
done (the current x and y positions of the children control their location).

In addition, the client application has contro!l over the spacing that occurs between each row
and column and the margin spacing present between the edges of the RowColumn widget
and any children that are placed against it.

in most cases, the RowColumn widget has no three—dimensional visuals associated with it;
if an application wishes to have a three—dimensional shadow placed around this widget, it
can create the RowColumn widget as a child of a Frame widget.

The XmRowColumn widget class inherits behavior and resources from the Core,
Composite, Constraint, and XmManager classes. The class pointer is
xmRowColumnWidgetClass. The class name is XmRowColumn.

AlXwindows Classes 1—101

XmRowColumn

Subroutines
e XmCreateRowColumn

¢ XmGetMenuCursor

¢ XmMenuPosition

¢ XmOptionButtonGadget
e XmOptionLabelGadget

¢ XmSetMenuCursor

New Resources
Setting the resource values for the inherited classes also sets resources for this widget. To
reference a resource by name or by class in an .Xdefaults file, remove the XmN or XmC
prefix and use the remaining letters. To specify one of the defined values for a resource in an
.Xdefaults file, remove the Xm prefix and use the remaining letters (in either lower case or
upper case, but include any underscores between words). The codes in the access column
indicate if the given resource can be set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable (N/A). The following resource sets
list the resources of the XmRowColumn widget class:

« XmRowColumn Resource Set

o XmRowColumn Special Menu Resource Set

Inherited Resources
The following resource sets contain a complete description of the resources inherited by the
RowColumn widget:

¢ XmManager Resource Set
¢ Composite Resource Set

e Core Resource Set

Callback Information |
The following structure is returned with each callback:

typedef struct

{
int reason,
XEvent * event,
Widget widget,

char * data;
char * callbackstruct,
} XmRowColumnCallbackStruct;
reason Indicates why the callback routine was invoked.
event Points to the XEvent that invoked the callback routine.

The following fields apply only when the callback reason is XmCR_ACTIVATE; for all other
callback reasons, these fields are set to NULL. The XmCR_ACTIVATE callback reason is
only generated when the application has supplied an entry callback routine, which overrides
any activation callback routines registered with the individual RowColumn widget items.

1—-102 User Interface Reference

Behavior

XmRowColumn

widget Is set to the widget ID of the RowColumn widget item that has
been activated.

data Contains the client—data value supplied by the client application
when the RowColumn widget item activation callback routine was
registered.

callbackstruct Points to the callback structure generated by the RowColumn

widget item activation callback.

The behavior associated with a RowColumn widget depends on its type (such as MenuBar
and Popup MenuPane) and the type of menu system in which it resides (Pulldown,
Popup, or Option). The specific mouse button depends on the XmNwhichButton resource.

Default MenuBar

<Btn1Downs: If the button event occurs within one of the MenuBar buttons, the MenuBar
is armed (if not already armed) and the submenu associated with the selected button is
posted. Mouse provides access to the MenuPanes attached to the MenuBar.

If the button event does not occur within one of the MenuBar buttons and if the MenuBar is
already armed, it is disarmed, and any visible MenuPanes are unposted; if the MenuBar is
not already armed, nothing occurs.

<Btn1Up>: If the MenuBar is armed, this event unposts all visible MenuPanes and then
disarms the menubar.

Default OptionMenu

<Btn1Down>: When this event occurs within the selection area, the Pulldown MenuPane
is posted. If this event occurs outside of the selection area and the MenuPane is already
posted, the Pulldown MenuPane is unposted.

<Btn1Up>: When this event occurs while the Pulldown MenuPane is posted, then it is
unposted.

<Returns>: If this key is pressed while the focus is set to the selection area, then the
Pulldown MenuPane is posted.

Default Pulldown MenuPane from a Popup MenuPane

<Btn3Down>: When this event occurs, the menu system disables traversal mode, and
re—enters drag mode. Depending upon where the button—down event occurs, certain
portions of the visible set of MenuPanes are unposted.

<Btn3Up>: When this event occurs within a gadget child of the MenuPane, the indicated
child is activated. If the child is not a CascadeButton (widget or gadget), this also results in
all visible MenuPanes being unposted. If the child is a CascadeButton (widget or gadget),
the associated submenu is posted and traversal is enabled. When this event occurs outside
of a gadget child, all visible MenuPanes are unposted.

<Return>: If this key is pressed while the focus is set to a gadget child of the MenuPane,
the indicated child is activated. If the child is not a CascadeButton (widget or gadget), then
this also results in all visible MenuPanes being unposted. If the child is a CascadeButton
(widget or gadget), this results in the associated submenu being posted and traversal being
enabled.

AlXwindows Classes 1-103

XmRowColumn

<Escape>: This event unposts all visible MenuPanes.

<Rights>: If the current focus item is a CascadeButtonGadget, then this posts the
associated Pulldown MenuPane and highlights the first accessible item within the
Pulldown MenuPane.

<Left>: If this occurs within a MenuPane that is a submenu of another MenuPane, this
causes the last MenuPane to be unposted and the focus to move to the previous
MenuPane.

<Up>: This moves the focus to the previous menu item; the previous menu item is defined
as the widget created prior to the one that currently has the focus. Wrapping occurs, if
necessary.

<Down>: This moves the focus to the next menu item; the next menu item is defined as the
widget created after the one that currently has the focus. Wrapping occurs, if necessary.

Default Pulidown MenuPane from a MenuBar or from an OptionMenu

<Btn1Downs: When this event occurs, the menu system disables traversal mode and
re—enters drag mode. Depending upon where the button down event occurs, certain portions
of the visible set of MenuPanes are unposted.

<Btn1Up>: When this event occurs within a gadget child of the MenuPane, the indicated
child is activated. If the child is not a CascadeButton (widget or gadget), this also results in
all visible MenuPanes being unposted. If the child is a CascadeButton (widget or gadget),
this is results in the associated submenu being posted and traversal being enabled. When
this event occurs outside of a gadget child, then all visible MenuPanes are unposted.

<Returns: If this key is pressed while the focus is set to a gadget child of the MenuPane,
then the indicated child is activated. If the child is not a CascadeButton (widget or gadget),
this also results in all visible MenuPanes being unposted. If the child is a CascadeButton
(widget or gadget), then this results in the associated submenu being posted and traversal
being enabled.

<Escape>: This event unposts all visible MenuPanes.

<Right>: If the current focus item is a CascadeButtonGadget, this posts the associated
Pulldown MenuPane and highlights the first accessible item within the Pulldown
MenuPane. If the current focus item is not a CascadeButton, then the visible set of
MenuPanes are unposted, and the top level Pulldown MenuPane associated with the next
MenuBar is posted.

<Left>: if this occurs within a MenuPane that is a submenu of another MenuPane, this
event causes the last MenuPane to be unposted and the focus to move to the previous
MenuPane. If this occurs within a MenuPane that is connected directly to the MenuBar,
then the visible set of MenuPanes are unposted, and the top level Pulldown MenuPane
associated with the previous menubar item is posted.

<Up>: This moves the focus to the previous menu item; the previous menu item is defined
as the widget created prior to the one that currently has the focus. Wrapping occurs, if
necessary.

<Down>: This moves the focus to the next menu item; the next menu item is defined as the
widget created after the one that currently has the focus. Wrapping occurs, if necessary.

<Btn1Downs: If the button press occurred in a gadget child, it is dispatched to it.

<Btn1Up>: If the button press occurred in a gadget child, it is dispatched to it.

1-104 User Interface Reference

XmRowColumn

Default Translations
For an OptionMenu, the default translations are:
<BtnDowns>: PopupBtnDown()
<BtnUp>: PopupBtnUp()
<Key>Return: MenuGadgetReturn()
For a Popup MenuPane, the default translations are:
<BtnDown>: PopupBtnDown()
<BtnUp>: PopupBtnUp()
<Key>Return: MenuGadgetReturn()
<Key>Escape: MenuGadgetEscape()
<Unmap>: MenuUnmap()
<Focusins: MenuFocusin()
<FocusOut>: MenuFocusOut()
<EnterWindow>: MenuEnter()
<Key>Left: MenuGadgetTraverselLeft()
<Key>Right: MenuGadgetTraverseRight()
<Key>Up: MenuGadgetTraverseUp()
<Key>Down: MenuGadgetTraverseDown()

For a Pulldown MenuPane, the default translations are:

<BtnDown>: PulldownBtnDown()
<BtnUp>: PulidownBtnUp()
<Key>Return: MenuGadgetReturn()
<Key>Escape: MenuGadgetEscape()
<Unmap>: MenuUnmap()

<Focusin>: MenuFocusin()
<FocusOuts: MenuFocusOut()
<EnterWindows>: MenuEnter()

<Key>Left: MenuGadgetTraverseleft()
<Key>Right: MenuGadgetTraverseRight()
<Key>Up: MenuGadgetTraverseUp()
<Key>Down: MenuGadgetTraverseDown()

For a MenuBar, the default translations are:

<BtnDown>: MenuBarBtnDown()
<BtnUp>: MenuBarBtnUp()
<Unmap>: MenuUnmap()
<Focusin>: MenuFocusin()
<FocusOuts>: MenuFocusOut()
<EnterWindow>: MenuEnter()

For a WorkArea, the default translations are:

<Btn1Down>: WorkAreaBtnDown()
<Btn1Up>: WorkAreaBtnUp()

Keyboard Traversal
The description of the XmManager widget class contains information on keyboard traversal
in a WorkArea.

Implementation Specifics

This subroutine is part of AIXwindows Development Environment in AIXwindows
Environment/6000.

AlXwindows Classes 1—-105

XmRowColumn

File

fusr/include/Xm/RowColumn.h

Related Information
The Composite widget class, Constraint widget class, Core widget class,
XmCreateMenuBar subroutine, XmCreateOptionMenu subroutine, XmCreatePopupMenu
subroutine, XmCreatePulldownMenu subroutine, XmCreateRadioBox subroutine,
XmGetMenuCursor subroutine, XmLabel widget class, XmManager widget class,
XmSetMenuCursor subroutine, XmMenuPosition subroutine, XmOptionButtonGadget
subroutine, XmOptionLabelGadget subroutine, XmUpdateDisplay subroutine,
XmMenuPosition subroutine.

1-106 User Interface Reference

XmScale

XmScale Widget Class

Purpose
The Scale widget class.

Library
AlXwindows Library (libXm.a)

Syntax

#include<Xm/Scale.h>

Children

No children are supported.

Description
A Scale widget class is used by a client application to select a value from within a range of
values, and it allows the user to input or modify a value from the same range.

A Scale widget class has an elongated rectangular region similar to a ScrollBar widget. A
slider inside this region indicates the current value along the Scale. The user can also
modify the Scale value by moving the slider within the rectangular region of the Scale
widget. A Scale widget can also include a label set outside the Scale widget region. The
label set can be used to indicate the relative value at various positions along the scale.

A Scale widget can be either input/output or output only. An input/output Scale widget value
can be set by the client application and modified through use of the slider. An output only
Scale widget is used strictly as an indicator of current value and cannot be modified
interactively. The Core resource XmNsensitive specifies whether the Scale widget value
can be modified interactively.

The XmScale widget class inherits behavior and resources from the Core, Composite,
Constraint, and XmManager classes. The class pointer is xmScaleWidgetClass. The
class name is XmScale.

Subroutines
e XmCreateScale

e XmScaleGetValue

¢ XmScaleSetValue

New Resources
Setting the resource values for inherited classes also sets resources for the XmScale
widget. To reference a resource in a .Xdefaults file, remove the first three letters (XmN)
from the resource name and use the remaining letters. To specify one of the defined values
for a resource in a .Xdefaults file, remove the Xm prefix and use the remaining letters (in
either lower case or upper case, but include any underscores between words). The codes in
the access column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S). retrieved by using XtGetValues (G), or is not applicable (N/A). The
following resource set lists the resources of the XmScale class:

¢ XmScale Resource Set

AlXwindows Classes 1-107

XmScale

Inherited Resources

The following resource sets contain a complete description of the resources inherited by the
Scale widget:

¢ XmManager Resource Set
e Composite Resource Set

¢ Core Resource Set

Callback Information

Behavior

The following structure is returned with each callback:

typedef struct

{
int reason;
XEvent * event,
int value;

} XmScaleCallbackStruct;

reason Indicates why the callback was invoked.
event Points to the XEvent that invoked the callback.
value Is the new slider location value.

<Btn1Down>: Activates the interactive dragging of the slider if the button is pressed
anywhere inside of the scale rectangle, including the slider.

Button1<PtrMoved>: Moves the slider to the new position and calls the callback routines
for XmNdragCallback if the button press occurs within the slider.

<Btn1Up>: Calls the callback routines for XmNvalueChangedCallback if the button press
occurs within the scale rectangle, and if the slider position was changed.

Default Translations

Button assignments are: Left Button is Button 1; Left Button AND Right Button are Button 2;
and Right Button is Button 3.

<Btn1Down>: Arm()
<Btn1Up>: Activate()
<EnterWindow>: Enter()
<Focusin>: Focusin()

Keyboard Traversal

Information on keyboard traversal is contained in the XmManager widget class and its
sections on behavior and default translations.

Implementation Specifics

File

This subroutine is part of AIXwindows Development Environment in AIXwindows
Environment/6000.

/usr/include/Xm/Scale.h

1-108 User Interface Reference

XmScale

Related Information
The Constraint widget class, Composite widget class, Core widget class, XmCreateScale
subroutine, XmManager widget class, XmScaleGetValue subroutine, XmScaleSetValue
subroutine.

AlXwindows Classes 1—-109

XmScrollBar

XmScrollBar Widget Class

Purpose
A ScroliBar widget class.

Library
AlXwindows Library (libXm.a)

Syntax

#include <Xm/ScroliBar.h>

Children

No children are supported.

Description
A ScrollBar widget allows the user to view data that is too large to be displayed at one time.
ScrollBar widgets are usually located beside or within the widget that contains the data to
be viewed. When the user interacts with the ScrollBar widget, the data within the other
widget scrolls.

A ScrollBar widget consists of two arrows, located at opposite ends of a rectangle called the
scroll region. A smaller rectangle, called the slider, is placed within the scroll region. Data is
scrolied by selecting on either arrow or the scroli region, or by dragging the slider. When an
arrow is selected, the slider within the scroll region is moved in the direction of the arrow by
an amount supplied by the client application. If the mouse button is held down, the slider
continues to move at a constant rate.

The ratio of the slider size and the scroll region size corresponds to the relationship between
the size of the visible data and the total size of the data. For example, if ten percent of the
data is visible, the slider occupies ten percent of the scroll region. This provides the user
with a visual clue to the size of the invisible data.

The XmScrollBar widget class inherits behavior and resources from the Core and
XmPrimitive classes. The class pointer is xmScrollBarWidgetClass. The class name is
XmScroliBar. :

Subroutines
XmCreateScroliBar

XmScrollBarGetValues
XmScrollBarSetValues
XtCreateWidget

New Resources
Setting the resource values for inherited classes also sets resources for the XmScrollBar
widget class. To reference a resource in an .Xdefaults file, remove the XmN or XmC prefix
and use the remaining letters. To specify one of the defined values for a resource in an
Xdefaults file, remove the Xm prefix and use the remaining letters (in either lower case or
upper case, but include any underscores between words). The codes in the access column
indicate if the given resource can be set at creation time (C), set by using XtSetValues (S),

1-110 User interface Reference

XmScrollBar

retrieved by using XtGetValues (G), or is not applicable (N/A). The following resource set
lists the resources of the ScroliBar class:

e XmScroliBar Resource Set

Inherited Resources

The following resource sets contain a complete description of the resources inherited by the
XmScrollBar widget class:

¢ XmPrimitive Resource Set

e Core Resource Set

Callback Information

Behavior

The following structure is returned with each callback routine:

typedef struct

{

int reason,

XEvent * event,

int value;

int pixel,

} XmScroliBarCallbackStruct;

reason Indicates why the callback routine was invoked.

event Points to the XEvent that invoked the callback routine.
value Contains the new slider location value.

pixel Is used only for XmNtoTopCallback and XmNtoBottomCallback. For

horizontal ScrollBars, it contains the x coordinate of where the mouse button
selection occurred. For vertical ScrollBars, it contains the y coordinate.

<Btn1Down>(in arrow): Moves the slider one increment (or decrement) in the direction of
the arrow and invokes the callback routines for the XmNincrementCallback resource or the
XmNdecrementCallback resource. The XmNvalueChangedCallbacks is called if the
XmNincrementCallbacks or XmNdecrementCallbacks resource is empty.

<Btn1Down>(in scroll region): Moves the slider one page increment or page decrement
depending on the which side of the slider is selected and invokes the callback routines for
XmNpagelncrementCaliback or XmNpageDecrementCallback. The
XmNvalueChangedCalibacks is called if the XmNpagelncrementCallbacks or
XmNpageDecrementCallbacks resource is empty.

<Btn1Down>(in slider): Activates the interactive dragging of the slider. If the button is held
down in either the arrows or scroll region longer than the XmNinitialDelay resource, the
slider is moved again by the same increment and the same callback routines are called.
After the initial delay has been used, the time delay changes to the time defined by the
resource XmNrepeatDelay.

Buttoni<PtrMoved>: If the button press occurs within the slider, the subsequent motion
events move the slider to the new position and the callback routines for XmNdragCallback
are invoked.

AlXwindows Classes 1—-111

XmScrollBar

<Btn1Up>: If the button press occurred within the slider and the slider position was
changed, the callback routines for XmNvalueChangedCallback are invoked.

Shift<Btn1Downs>: This mouse button press in the top arrow button causes the callback
routines for XmNtoTopCallback to be called.

Shift<Btn1Down>: This mouse button press in the bottom arrow button causes the callback
routines for XmNtoBottomCallback to be called.

<Key>Up: For vertical ScrollBars, pressing the up arrow cursor key decrements the slider
one unit and calls XmNdecrementCallback. The XmNvalueChangedCallbacks is called if
the XmNdecrementCallbacks resource is empty.

<Keys>Down: For vertical ScrollBars, pressing the down arrow cursor key increments the
slider one unit and calls XmNincrementCallback. The XmNvalueChangedCallbacks is
called if the XmNincrementCallbacks resource is empty.

<Keys>Left: For horizontal ScroliBars, pressing the left arrow cursor key decrements the
slider one unit and calls XmNdecrementCallback. The XmNvalueChangedCallbacks is
called if the XmNdecrementCallbacks resource is empty.

<Key>Right: For horizontal ScrollBars, pressing the right arrow cursor key increments the
slider one unit and calls XmNincrementCallback. The XmNvalueChangedCallbacks is
called if the XmNincrementCallbacks resource is empty.

Default Translations

~Shift ~Ctrl ~Meta ~Alt <Bth1Down>: Select()

~Shift ~Ctrl ~Meta ~Alt <Btn1Up>: Release()
~Shift ~Ctrl ~Meta ~Alt Button1<PtrMoved>: Moved()

Shift ~Ctrl ~Meta ~Alt <Btn1Down>: GoToTop()
Shift ~Ctrl ~Meta ~Alt <Btn1Down>: GoToBottom()
~Shift ~Ctrl ~Meta ~Alt <Key>Up: UpOrLeft(0)
~Shift ~Ctrl ~Meta ~Alt <Key>Down: DownOrRight(0)
~Shift ~Ctrl ~Meta ~Alt <Key>Left: UpOrLeft(1)
~Shift ~Ctrl ~Meta ~Alt <Key>Right: DownOrRight(1)
<EnterWindow>: Enter()
<LeaveWindow>: Leave()

Keyboard Traversal

When the XtNtraversalOn resource is set to True at create time or during a call to
XtSetValues, the XmManager widget superclass automatically augments the Manager
widget translations to support keyboard traversal. The description of the XmManager widget
class contains a complete description of these translations.

Implementation Specifics

This subroutine is part of AIXwindows Development Environment in AIXwindows
Environment/6000.

/usr/include/Xm/ScrollBar.h

Related Information

The Core widget class, XmCreateScrollBar subroutine, XmPrimitive widget,
XmScrollBarGetValues subroutine, XmScroliBarSetValues subroutine, XtCreateWidget
subroutine.

1-112 User Interface Reference

XmScrolledWindow

XmScrolledWindow Widget

Purpose

Library

Syntax

Children

The ScrolledWindow widget class.

AlXwindows Library (libXm.a)

#include <Xm/ScrolledW.h>

ArrowButton Widget
BulletinBoard Widget
CascadeButtonGadget Gadget
DialogShell Widget
DrawnButton Widget

Form Widget

.Label Widget

List Widget

MenuShell Widget
PanedWindow Widget
PushButtonGadget Gadget
Scale Widget
ScrolledWindow Widget
Separator Widget

Text Widget
ToggleButtonGadget Gadget

Description
A ScrolledWindow widget combines one or more ScrollBar widgets and a viewing area to
implement a visible window onto some other (usually larger) data display. The visible part of
the window can be scrolled through the larger display by the use of the ScroliBars.

ArrowButtonGadget Gadget
CascadeButton Widget
Command Widget
DrawingArea Widget
FileSelectionBox Widget
Frame Widget
LabelGadget Gadget
MainWindow Widget
MessageBox Widget
PushButton Widget
RowColumn Widget
ScrollBar Widget
SelectionBox Widget
SeparatorGadget Gadget
ToggleButton Widget

To use a ScrolledWindow widget, a client application creates a ScrolledWindow widget,
any needed ScrollBar widgets, and a widget capable of displaying any desired data as the
work area of the ScrolledWindow widget. The ScrolledWindow widget positions the
work—area widget and display the scroll bars if so requested. When the user performs some
action on the ScrollBar widget, the application is notified through the normal ScroliBar

callback interface.

The ScrolledWindow widget can be configured to operate in an automatic manner; all
scrolling and display actions are performed automatically with no need for application
program involvement. It can also be configured to provide a minimal support framework in
which the application is responsible for processing all user input and making all visual
changes to the displayed data in response to that input.

When the ScroliedWindow widget is performing automatic scrolling, it creates a clipping
window. Conceptually, this window becomes the view port through which the user examines
the larger underlying data area. The application simply creates the desired data, and then
makes that data the work area of the ScrolledWindow widget. When the user moves the

AlXwindows Classes 1-113

XmScrolledWindow

slider to change the displayed data, the workspace is moved under the viewing area so that
a new portion of the data becomes visible.

There are instances where it is impractical for an application to create a large data space
and simply display it through a small clipping window. An example of this is a text editor in
which there would be an undesirable amount of overhead involved with creating a single
data area that consisted of a large file. The application would want to use the concept of a
ScrolledWindow widget (a small viewport onto some larger data), but would want to be
notified when the user scrolled the viewport so it could bring in more data from storage and
update the display area. For these cases the ScrolledWindow widget can be configured so
that it provides only visual layout support. No clipping window is created, and the application
must maintain the data displayed in the work area, as well as respond to user input on the
ScrollBars.

The XmScrolledWindow widget class inherits behavior and resources from the Core,
Composite, Constraint, and XmManager classes. The class pointer is
xmScrolledWindowWidgetClass. The class name is XmScrolledWindow.

Subroutines
XmCreateScrolledWindow

XmScrolledWindowSetAreas

XmCreateScrolledList

XmCreateScrolledText

New Resources
Setting the resource values for the inherited classes also sets resources for this widget. To
reference a resource by name or by class in an .Xdefaults file, remove the XmN or XmC
prefix and use the remaining letters. To specify one of the defined values for a resource in an
-Xdefaults file, remove the Xm prefix and use the remaining letters (in either lower case or
upper case, but include any underscores between words). The codes in the access column
indicate if the given resource can be set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable (N/A). The following resource set
lists the resources of the XmScrolledWindow class:

o XmScrolledWindow Resource Set

Inherited Resources

The following resource sets contain a c