

First Edition (March 1990)

This edition of the AIX Calls and Subroutines Reference for IBM RISC System/6000 applies to IBM AlX
Version 3 for RISC System/6000, Version 3 of IBM AlXwindows Environment/6000, IBM AIX System
Network Architecture Services/6000, IBM AIX 3270 Host Connection Program/6000, IBM AIX 3278/79
Emulation/6000, IBM AIX Network Management/6000, and IBM AIX Personal Computer Simulator/6000 and
to all subsequent releases of these products until otherwise indicated in new releases or technical
newsletters.

The following paragraph does not apply to the United Kingdom or any country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS MANUAL “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied
warranties in certain transactions; therefore, this statement may not apply to you.

IBM does not warrant that the contents of this publication or the accompanying source code examples,
whether individually or as one or more groups, will meet your requirements or that the publication or the
accompanying source code examples are error—free.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. iBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines
and programs), programming, or services that are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce such IBM products, programming,
or services in your country. Any reference to an IBM licensed program in this publication is not intended to
state or imply that you can use only IBM’s licensed program. You can use any functionally equivalent
program instead.

Requests for copies of this publication and for technical information about IBM products should be made to
your IBM Authorized Dealer or your IBM Marketing Representative.

A reader’s comment form is provided at the back of this publication. If the form has been removed, address
comments to IBM Corporation, Department 997, 11400 Burnet Road, Austin, Texas 78758-3493. IBM may
use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

© Copyright Adobe Systems, Inc., 1984, 1987

© Copyright X/Open Company Limited, 1988. All Rights Reserved.

© Copyright IXI Limited, 1989. Ali rights reserved.

© Copyright AT&T, 1984, 1985, 1986, 1987, 1988, 1989. All rights reserved.
© Silicon Graphics, Inc., 1988. All rights reserved.

Use, duplication or disclosure of the SOFTWARE by the Government is subject to restrictions as set
forth in FAR 52.227-19(c)(2) or subparagraph (c)(1)(li) of the Rights in Technical Data and Computer
SOFTWARE clause at SFARS 252.227-7013, and/or in similar or successor clauses in the FAR, or
the DOD or NASA FAR Supplement. Unpublished rights reserved under the Copyright Laws of the
United States. Contractor/manufacturer is SILICON GRAPHICS, INC., 2011 N. Shoreline Bivd.,
Mountain View, CA 94039-7311.

®© Copyright Carnegie Mellon, 1988. All rights reserved.
® Copyright Stanford University, 1988. All rights reserved.

Permission to use, copy, modify, and distribute this program for any purpose and without fee is
hereby granted, provided that this copyright and permission notice appear on all copies and
supporting documentation, the name of Carnegie Mellon and Stanford University not be used in
advertising or publicity pertaining to distribution of the program without specific prior permission, and
notice be given in supporting documentation that copying and distribution is by permission of
Carnegie Mellon and Stanford University. Carnegie Mellon and Stanford University make no
representations about the suitability of this software for any purpose. It is provided “as is” without
express or implied warranty.

©® Copyright Sun Microsystems, Inc., 1985, 1986, 1987, 1988. All rights reserved.
The Network File System (NFS) was developed by Sun Microsystems, Inc.

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license
from The Regents of the University of California. We acknowledge the following institutions for their role in its
development: the Electrical Engineering and Computer Sciences Department at the Berkeley Campus.

The Rand MH Message Handling System was developed by the Rand Corporation and the University of
California.

Portion of the code and documentation described in this book were derived from code and documentation
developed under the auspices of the Regents of the University of California and have been acquired and
modified under the provisions that the following copyright notice and permission notice appear:

® Copyright Regents of the University of California, 1986, 1987. All rights reserved.

Redistribution and use in source and binary forms are permitted provided that this notice is
preserved and that due credit is given to the University of California at Berkeley. The name of the
University may not be used to endorse or promote products derived from this software without
specific prior written permission. This software is provided “as is” without express or implied
warranty.

Portions of the code and documentation described in this book were derived from code and documentation
developed by Massachusetts Institute of Technology, Cambridge, Massachusetts, and Digital Equipment
Corporation, Maynard, Massachusetts, and have been acquired and modified under the provision that the
following copyright notice and permission notice appear:

©® Copyright Digital Equipment Corporation, 1985, 1988. All rights reserved.
©® Copyright 1985, 1986, 1987, 1988 Massachusetts Institute of Technology. All rights reserved.

Permission to use, copy, modify, and distribute this program and its documentation for any purpose
and without fee is hereby granted, provided that this copyright, permission, and disclaimer notice
appear on all copies and supporting documentation; the name of M.L.T. or Digital not be used in
advertising or publicity pertaining to distribution of the program without specific prior permission.
M.L.T. and Digital makes no representations about the suitability of this software for any purpose. It is
provided “as is” without express or implied warranty.

® Copyright INTERACTIVE Systems Corporation 1984. All rights reserved.

® Copyright 1989, Open Software Foundation, Inc. All rights reserved.

© Copyright 1987, 1988, 1989, Hewlett—Packard Company. All rights reserved.

© Copyright 1988 Microsoft Corporation. All rights reserved.

® Copyright Graphic Software Systems Incorporated, 1984, 1990. All rights reserved.
© Copyright Micro Focus, Ltd., 1987, 1990. All rights reserved.

© Copyright Paul Milazzo, 1984, 1985. All rights reserved.

©® Copyright E‘G Pup User Process, Paul Kirton, and ISI, 1984. All rights reserved.

© Copyright Apollo Computer, Inc., 1987. All rights reserved.
® Copyright TITN, Inc., 1984, 1989. All rights reserved.

This software is derived in part from the ISO Development Environment (ISODE). IBM acknowledges source
author Marshall Rose and the following institutions for their role in its development: The Northrup
Corporation and The Wollongong Group.

However, the following copyright notice protects this documentation under the Copyright laws of the United

States and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying,
and making derivative works.

® Copyright International Business Machines Corporation 1987, 1990. All rights reserved.

Notice to U.S. Government Users — Documentation Related to Restricted Rights — Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

Trademarks and Acknowledgements

The following trademarks and acknowledgements apply to this information:

AlX is a trademark of International Business Machines Corporation.

AlXwindows is a trademark of International Business Machines Corporation.
Apollo is a trademark of Apollo Computer, Inc.

IBM is a registered trademark of International Business Machines Corporation.
NCK is a trademark of Apollo Computer, Inc.

NCS is a trademark of Apollo Computer, Inc.

Network Computing Kernel is a trademark of Apollo Computer, Inc.

Network Computing System is a trademark of Apollo Computer, Inc.

Network File System and NFS are trademarks of Sun Microsystems, Inc.

POSIX is a trademark of the Institute of Electrical and Electronic Engineers (IEEE).
RISC System/6000 is a trademark of International Business Machines Corporation.
SNA 3270 is a trademark of International Business Machines Corporation.

UNIX was developed and licensed by AT&T and is a registered trademark of AT&T
Corporation.

X/OPEN is a trademark of X/OPEN Company Limited.

Note to Users
The term “network information services (NIS)” is now used to refer to the service formerly

known as “Yellow Pages.” The functionality remains the same; only the name has changed.

The name “Yellow Pages” is a registered trademark in the United Kingdom of British
Telecommunications plc, and may not be used without permission.

Legal Notice to Users Issued by Sun Microsystems, Inc.

“Yellow Pages” is a registered trademark in the United Kingdom of British

Telecommunications plc, and may also be a trademark of various telephone companies
around the world. Sun will be revising future versions of software and documentation to

remove references to “Yellow Pages.”

Trademarks

v

vi Base Operating System Reference

About This Book

This book, Calls and Subroutines Reference: Base Operating System, provides information
on application programming interfaces to the Advanced Interactive Executive Operating
System (referred to in this text as AlX) for use on the IBM RISC System/6000 System. This
book is part of A/IX Calls and Subroutines Reference for IBM RISC System/6000,
SC23-2198, which is divided into the following four major sections:

Volumes 1 and 2, Calls and Subroutines Reference: Base Operating System, corntains
reference information about the system calls, subroutines, functions, macros, and
statements associated with AlX base operating system runtime services, communications
services, and devices services. :

Volumes 3 and 4, Calls and Subroutines Reference: User Interface, contain reference
information about the AlXwindows widget classes, subroutines, and resource sets; the
AlXwindows Desktop resource sets; the Enhanced X—Windows subroutines, macros,
protocols, extensions, and events; the X-Window toolkit subroutines and macros; and the
curses and extended curses subroutine libraries.

Volume 5, Calls and Subroutines Reference: Kernel Reference, contains reference
information about kernel services, device driver operations, file system operations
subroutines, the configuration subsystem, the communications subsystem, the high
function terminal (HFT) subsystem, the logical volume subsystem, the printer subsystem,
and the SCSI subsystem.

Volumes 6, Calls and Subroutines Reference: Graphics, contains reference information
and example programs for the Graphics Library (GL) and the AlXwindows Graphics
Support Library (XGSL) subroutines.

Who Should Use This Book
This book is intended for experienced C programmers. To use this book effectively, you
should be familiar with AIX or UNIX System V commands, system calls, subroutines, file
formats, and special files. If you are not already familiar with the AIX operating system or the
UNIX System V operating system, see AIX General Concepts and Procedures.

How to Use This Book

Overview of Contents
This book contains the following alphabetically arranged sections consisting of system calls,
subroutines, functions, macros and statements. In this book all system calls are described
as subroutines.

Base Operating System Runtime (BOS) Services
Communications Services

SNA Services

AIX 3270 Host Connection Program (HCON)
Remote Procedure Calls (RPC)

Sockets

Simple Network Management Protocol (SNMP)

Network Computing System (NCS)

“ About This Book Vii

— Data Link Controls
- X.25 Application

¢ Devices Services

Highlighting
The following highlighting conventions are used in this book:
Bold ldentifies commands, keywords, files, directories, and other items whose
names are predefined by the system.
Italics Identifies parameters whose actual names or values are to be supplied by
the user.

Monospace Identifies examples of specific data values, examples of text similar to what
you might see displayed, examples of portions of program code similar to
what you might write as a programmer, messages from the system, or
information you should actually type.

Related Publications
The following books contain information about or related to application programming
interfaces:

e AIX General Programming Concepts for IBM RISC System/6000, Order Number
SC23-2205.

e AIX Communication Programming Concepts for IBM RISC System/6000, Order Number
SC23-2206.

» AIX Kernel Extensions and Device Support Programming Concepts for IBM RISC
System/6000, Order Number SC23-2207.

o AIX Files Reference for IBM RISC System/6000, Order Number SC23-2200.
o IBM RISC System/6000 Problem Solving Guide, Order Number SC23-2204.

e XL C Language Reference for IBM AIX Version 3 for RISC System/6000, Order Number
SC09-1260.

e XL C User’s Guide for IBM AlX Version 3 for RISC System/6000, Order Number
SC09-1259.

Ordering Additional Copies of This Book
To order additional copies of this book, use Order Number SC23-2198.

viii Base Operating System Reference

Contents

Base Operating System (BOS) Runtime Services

Subroutines A —Z ... e 1-1
FORTRAN Basic Linear Algebra Subroutines (BLAS) 1-823
Communications Services

AIX 3270 Host Connection Program (HCON) i iut 2-1
Data Link Controls e e 3-1
Network Computing System (NCS) i 4—1
Remote Procedure Calis (RPC) i 5-1
Simple Network Management Protocol (SNMP) 6-1
SNA SEIVICES ..ot e e e e 7-1
SOCKEES . . e e 8-1
X285 Applicationo e e 9-1
Devices Services e 10-1
Appendix A: Base Operating SystemErrorCodes A-1
Appendix B: ODMErrorCodes i, B-1
Appendix C: X.25 ApplicationErrorCodes C—-1
INdeX e e X-1

Contents ix

Base Operating System Reference-

AIX 3270 Host Connection Program (HCON)

AlX 3270 Host Connection Program (HCON) 2-1

2-2 Base Operating System Reference

BREAK

BREAK Statement

Purpose
Interrupts a loop in a LAF script.

Syntax
BREAK;

Description
The BREAK statement interrupts the execution of the innermost enclosing WHILE or
REPEAT-UNTIL statement. Execution continues with the statement following the WHILE or
REPEAT-UNTIL statement. The BREAK statement is one of the script statements in the
LAF language that are used to compose a LAF script.

Example

The statements below execute a loop. If a time out for the WAIT statement occurs, the
BREAK statement terminates the repeat loop and executes the next statement:

REPEAT
DO
MATCHAT (1,1, 'VM/370?0NLINE’);
IF (NOT MATCH) DO /* if not found */
WAIT(2); /* wait for update to display or timeout */
IF(TIMEOUT)
BREAK;
END;
END;
UNTIL(MATCH);

Implementation Specifics
The BREAK statement is part of the Logon Assist Feature of the AIX 3270 Host Connection
Program/6000 (HCON).

Related Information
How To Use a Logon Assist Feature Script, Understanding the Logon Assist Feature (LAF)
in Communications Programming Concepts.

HCON Overview for Programming in Communications Programming Concepts.

AIX 3270 Host Connection Program (HCON) 2-3

cfxfer

cfxfer Function

Purpose

Library

C Syntax

Checks the status of the programmatic File Transfer.

File Transfer Library (libfxfer.a)

#include <fxfer.h>
cfxter(sxfer)

struct fxs *sxfer;

Pascal Syntax

%include fxfer.inc
%include fxhfile.inc

function pcixfer(var sxfer : ixs) : integer; external,

FORTRAN Syntax

INTEGER FCFXFER
EXTERNAL FCFXFER
CHARACTER*XX SRC, DST, TIME

INTEGER BYTCNT, STAT
INTEGER ERRNO

RC = FCFXFER (SAC, DST, BYTCNT, STAT, ERRNO, TIME, RC)

Description

The cfxfer function returns the status of the file transfer request made by the fxfer function.
This function must be called once for each file transfer request. The cfxfer function places
the status in the structure specified by the sxfer parameter for C and Pascal. For
FORTRAN, status is placed in each corresponding parameter.

Each individual file transfer and file transfer status completes the requests in the order the
requests are made. If multiple asynchronous requests are made:

o To a single host session, the cfxfer function returns the status of each request in the
same order the requests are made

e To more than one host session, the cfxfer function returns the status of each request in
the order it is completed.

If the file transter is run asynchronously and the cfxfer function is immediately called, the
function returns a status not available (—2) code. An application performing a file transfer
should not call the cfxfer function until an error (1) or ready status (0) is returned. The
application program can implement the status check in a FOR LOOP or a WHILE LOOP
and wait for a—1 (negative one) or 0 (zero) to occur.

2-4 Base Operating System Reference

C Parameter
sxfer

Pascal Parameter
Stxfer

cfxfer

Specifies a record of type fxs defined in the fxfer.h file.

The C struct fxs is defined as follows:

struct fxs

int fxs bytcnt;
char *fxs_src;
char *fxs_dst;
char *fxs ctime;
int fxs_stat;
int fxs _errno;

le.;

Specifies a record of type fxs within the fxfer.inc file.

The Pascal fxs record format is as follows:

fxs = record
fxs _bytcnt : integer;
fxs_src : stringptr;
fxs_dst : stringptr;
fxs ctime : stringptr;
fxs stat : integer;
fxs errno : integer;

end;

C and Pascal fxs Field Descriptions

fxc_bytent

fxc_src

fxc_dst

fxs_ctime

fxs_stat

fxs_errno

Indicates the number of bytes transferred.

Points to a static buffer containing the source file name. The static buffer is
overwritten by each call.

Points to a static buffer containing the destination file name. The static
buffer is overwritten by each call.

Specifies the time the destination file is created relative to Greenwich Mean
Time (GMT), midnight on January 1, 1970.

Specities the status of the file transfer request.

Specifies the error number that results from an error in a system call.

FORTRAN Parameters

SRC
DST

BYTCNT
STAT
ERRNO
TIME

Specifies a character array of XX length containing the source file name

Specifies a character array of XX length containing the destination file
name.

Indicates the number of bytes transferred.
Specifies the status of the file transfer request.
Specifies the error number that results from an error in a system call

Specifies the time the destination file is created.

AIX 3270 Host Connection Program (HCON) 2-5

cfxfer

Return Value
The cfxter function returns the following:

0 (zero), if status is available.
-1, if an I/O error occurs on the fx_statxxxxxx status file and the status cannot be obtained

-2, if status is not available or if there are no outstanding file transfer requests.

The fx_statxxxxxx status file contains the status of each file transfer request made by the
application program. The fxfer function fills in the xxxxxx portion of the fx_stat file based on
random letter generation and places the file in the SHOME directory.

Implementation Specifics
The cixfer function is part of the AIX 3270 Host Connection Program/6000 (HCON).

Files
$SHOME/fx_statxxxxxx Temporary file used for status
/usr/lib/libfxfer.a Library containing C, FORTRAN, and Pascal interface

file transfer functions.

/usr/include/fxfer.h File transfer include file with structures and definitions.
/usr/include/fxfer.inc Pascal file transfer include file with structure.
/usr/include/fxconst.inc Pascal file transfer function constants.
/usr/include/txhfile.inc Pascal file transfer invocation include file.

Related Information
The fxfer command, fxfer function.

HCON Overview for Programming, Understanding File Transfer Programming, File Transfer
Program Interface Error Codes in Communications Programming Concepts.

2-6 Base Operating System Reference

DEBUG

DEBUG Statement

Purpose
Enables debugging messages in a Logon Assist Feature (LAF) script.
Syntax
DEBUG;
Description 4

The DEBUG statement enables debugging messages in a LAF script. The DEBUG
statement is one of the script statements in the LAF language that are used to compose a
LAF script. The DEBUG statement operates on successive LAF statements. Debugqging
occurs up to the end of the LAF script or when a NODEBUG statement is encountered. The
messages are written to the standard error. This statement should only be used in a script
linked with the tlaf test program. If a script containing the DEBUG statement is linked with
the file transfer program or an application using the HCON API, unpredictable results occur.

Implementation Specifics
The DEBUG statement is part of the Logon Assist Feature of the AIX 3270 Host Connection
Program/6000 (HCON).

Related Information
How To Use a Logon Assist Feature Script, Understanding the Logon Assist Feature (LAF)
in Communications Programming Concepts.

HCON Overview for Programming in Communications Programming Concepts.

AIX 3270 Host Connection Program (HCON) 2-7

DO-END

DO-END Statement
Purpose
Groups Logon Assist Feature (LAF) statements.
Syntax
DO statementlist END;
Description
The DO-END statement is used for grouping LAF statements. The DO-END statement is
one of the script statements in the LAF language that are used to compose a LAF script.
Expression
statementlist A statement or statements to be executed that are grouped by a
DO-END statement.
Example

The statements below search for CP READ string on line 24 of the terminal screen. The list

waits for a screen update and then looks for the string. If the string cannot be found in two
seconds, an exit is performed with a return code of 2.

DO
MATCH (24,1, 'CP?READ');
IF (NOT MATCH) DO /* if not found */

WAIT(2); /* wait for update to display or timeout */
IF (TIMEOUT)

EXIT(2); /* exit with error—can’t find it */
END;

END;

Implementation Specifics

The DO-END statement is part of the Logon Assist Feature of the AIX 3270 Host
Connection Program/6000 (HCON).

Related Information

How To Use a Logon Assist Feature Script, Understanding the Logon Assist Feature {LAF)
in Communications Programming Concepts.

HCON Overview for Programming in Communications Programming Concepts.

2-8 Base Operating System Reference

EXIT

EXIT Statement

Purpose
Terminates the execution of a Logon Assist Feature (LAF) script.

Syntax
EXIT(number);

Description
The EXIT statement halts the execution of a LAF script. The EXIT statement is one of the
script statements in the LAF language that are used to compose a LAF script. Upon
termination a specified return value is passed to the program that uses the LAF script. Ifa
LAF script exits with a successful logon or logoff the return value is zero (0). The EXIT
statement allows for abnormal exits whose return values indicate the area in the LAF script
that failed.

Expression
number Specifies the return code value.

Example

This statement terminates the script with a return code of 3 if a time out occurs:
IF(TIMEOUT) EXIT(3);
Implementation Specifics

The EXIT statement is part of the Logon Assist Feature of the AIX 3270 Host Connection
Program/6000 (HCON).

Related Information
How To Use a Logon Assist Feature Script, Understanding the Logon Assist Feature (LAF)
in Communications Programming Concepts.

HCON Overview for Programming in Communications Programming Concepts.

AIX 3270 Host Connection Program (HCON) 2-9

FINISH

FINISH Statement

Purpose

Ends a Logon Assist Feature (LAF) script.
Syntax

FINISH;
Description

The FINISH statement ends a LAF script. The FINISH statement is one of the script
statements in the LAF language that are used to compose a LAF script.

Each LAF script requires one FINISH statement, and it must be the last statement in the
script. The FINISH statement implies that a zero (0) return value is passed back to the
program using the LAF script (fxfer function or API functions). This return value denotes a
successful logon or logoff. Any other return value is interpreted by the program using the
LAF script as unsuccessful logon or logoff.

Implementation Specifics

The FINISH statement is part of the Logon Assist Feature of the AIX 3270 Host Connection
Program/6000 (HCON).

Related Information
The EXIT statement.

How To Use a Logon Assist Feature Script, Understanding the Logon Assist Feature (LAF)
in Communications Programming Concepts.

HCON Overview for Programming in Communications Programming Concepts.

2-10 Base Operating System Reference

fxfer

fxfer Function

Purpose

Initiates a file transfer from within a program executing in AlX.
Library

File Transfer Library (libfxfer.a)
C Syntax

#include <fxfer.h>
fxfer (xfer,sessionname)
struct fxc *xfer,

char *sessionname;

Pascal Syntax

%include /usr/include/fxfer.inc
%include /usr/include/fxhfile.inc
%include /usr/include/fxconst.inc
function pfxfer

(var xfer : fxc; sessionname : stringptr)
integer; external,

FORTRAN Syntax

INTEGER FFXFER

EXTERNAL FFXFER

CHARACTER*XX SRCF, DSTF, LOGID, SESSIONNAME

INT FLAGS, RECL, BLKSIZE, SPACE, INCR, UNIT, RC

RC = FFxfer (SRCF, DSTF, LOGID, FLAGS, RECL, BLKSIZE, SPACE,
+ INCR, UNIT, SESSIONNAME)

Description

The txfer function transfers a file from a specified source to a specified destination. The file
transfer is accomplished as follows:

¢ Inthe C or Pascal language, the fxfer or pfxfer function transfers a file specified by the
fxc_src variable to the file specified by the fxc_dst variable. Both variables are defined in
the fxc structure.

¢ Inthe FORTRAN language, the FFxfer function transfers a file specified by the SRCF
variable to the file specified by the DSTF variable.

The file names are character strings. The RISC System/6000 file names must be in AIX
format. The host file names must conform to the host naming convention, which must be
one of the following formats:

VM/CMS: filename filetype filemode

MVS/TSO: data_set_name [(member_name)][/password]

C Parameters

xfer Specifies a pointer to the fxe structure defined in the fxfer.h
file.

AIX 3270 Host Connection Program (HCON) 2-11

fxfer

sessionname

Pascal Parameters
xfer

sessionname

FORTRAN Parameters
SRCF

DSTF
LOGID

SESSIONAME

FLAGS

2-12 " Base Operating System Reference

Points to the name of a session, specifying the host
connectivity to be used by the File Transfer Programming
Interface. The session name is a single character in the range
of a—z. Capital letters are interpreted as lowercase letters.
Session variables are defined in a HCON session profile. If
the sessionname is set to NULL the fxfer function assumes
you are running in an €789 subshell.

Specifies a record of type fxc within the fxfer.inc file.

Points to the name of a session. The sessionname defines
the host connectivity to be used by the File Transfer
Programming Interface. The session name is a single
character in the range of a—z. Capital letters are interpreted
as lowercase letters. Session variables are defined in a
HCON session profile. If the sessionname is set to char(0) the
pfxfer function assumes you are running in an €789 subshell.

Specifies a character array of XX length containing the source
file name.

Specifies a character array of XX length containing the
destination file name.

Specifies a character array of XX length containing the logon
ID.

Points to the name of a session. The sessionname defines
the host connectivity to be used by the File Transfer
Programming Interface. The session name is a single
character in the range of a-z. Capital letters are interpreted
as lowercase letters. Session variables are defined in a
HCON session profile. If the SESSIONNAME is set to char(0)
the FFxfer function assumes you are running in an e789
subshell.

Contains the option flags value, which is the sum of the
desired option values listed below:

1 Upload

2 Download

4 Translate On

8 Translate Carriage Return Line Feed
16 Replace

32 Append

64 vOueue

128 Fixed Length Records

fxfer

256 Variable Length Records
512 Undefined Length (TSO only)
1024 Host System TSO
2048 Host System CMS

RECL Specifies the logical record length.

BLKSIZE Specifies the block size.

SPACE Specifies the allocation space.

INCR Specifies the allocation space increment.

UNIT Specifies the unit of allocation, which is:
-1 Specifies the number of TRACKS
-2 Specifies the number of CYLINDERS

Note: All FORTRAN character array strings must be NULL-terminated. For example:

SRCF = ‘rtfile’//CHAR(O0)

A positive number indicates the number of bytes to be allocated.

Return Value

If the fxfer function is called synchronously, it returns the value zero (0) when the transfer is
completed. The application program can then issue a cfxfer function call to obtain the status
of the file transfer.

If the fxfer function is called asynchronously, it returns zero (0) immediately. The
application program can issue a cfxfer function call to determine when the file transfer is
completed and to obtain the status of the file transfer. If the status cannot be reported by the
cfxfer function due to an I/O error on the fx_statxxxxxx status file, the cfxfer function
returns a —1 (negative one). If the status is not ready, the cfxfer function returns a -2
(negative two).

The fx_statxxxxxx status file contains the status of each file transfer request made by the
application program. The fxfer function fills in the xxxxxx portion of the fx_stat file based on
random letter generation and places the file in the $HOME directory.

Implementation Specifics
The fxfer function is part of the AIX 3270 Host Connection Program/6000 (HCON).

The fxfer function requires one of the following network communication adapters:

e IBM 3270 Connection Adapter plus appropriate cables for attachment to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non—SNA distributed function terminal (non—-SNA
DFT) mode.

¢ |BM System/370 Host Interface Adapter plus appropriate cables for attachment to an IBM
5088 Graphics Control Unit.

This function requires one of the following IBM System/370 operating system environments
be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP TSO/E, or MVS/XA
TSO/E.

AIX 3270 Host Connection Program (HCON) 2-13

fxfer

This function requires that the System/370 IBM Host-Supported File Transfer Program
(IND$FILE) be installed on the System/370.

This function is not available for Japanese Language Support.

Files
$HOME/fx_statxxxxxx Temporary file used for status
/usr/lib/libfxfer.a Library containing C, FORTRAN, and Pascal interface

file transfer functions.

/usr/include/fxfer.h File transfer include file with structures and definitions.
/usr/include/fxfer.inc Pascal file transfer include file with structure.
/usr/include/fxconst.inc Pascal file transfer function constants.
/usr/include/fxhfile.inc Pascal file transfer invocation include file.

Related Information
The file transfer check status function is the cfxfer function.

HCON Overview for Programming, Understanding the File Transfer Program Interface, How
to Compile a File Transfer Program, File Transfer Program Interface Error Codes in
Communications Programming Concepts.

2-14 Base Operating System Reference

G32ALLOC

G32ALLOC Function

Purpose
Starts interaction with an AIX API application running simultaneously on the RISC
System/6000.

Syntax
G32ALLOC

Description

The G32ALLOC function starts a session with an AIX API application by sending a message
to the AIX g32_alloc system call indicating that the allocation is compiete. The G32ALLOC
function is a HCON API function that can be called by a 370 Assembler applications
program.

Return Values
This call sets register O (zero), to the following values:

>=0 Normal return; successful call. The value returned indicates the maximum
number of bytes that may be transferred to an AlX application via
G32WRITE or received from an AlX application via G32READ.

Example
The following 370 Assembler code example illustrates the use of the host G32ALLOC
function:

L R11,=v(G32DATA)
USING G32DATAD,R11

G32ALLOC /* Allocate a session */
LTR RO,RO

BNM OK /* Normal completion */
C RO,G32ESESS /*Session error * /

BE SESSERR

C RO,G32ESYS /* System error */
BE SYSERR

Implementation Specifics
The G32ALLOC function is part of the AlIX 3270 Host Connection Program/6000 (HCON).

The G32ALLOC function requires one of the following network communication adapters:

¢ IBM 3270 Connection Adapter and attachment cables for connection to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non—SNA distributed function terminal (non—-SNA
DFT) mode.

* IBM System/370 Host Interface Adapter and attachment cables for connection to an IBM
5088 Graphics Control Unit.

AIX 3270 Host Connection Program (HCON) 2-15

G32ALLOC

The G32ALLOC function requires one of the following IBM System/370 operating system

environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP TSOJE,
or MVS/XA TSO/E.

The G32ALLOC function is not available for Japanese Language Support.

Related Information

2-16

Additional host interface functions are the G32DLLOC function, G32READ function, and
G32WRITE function.

AIX session control subroutines are the g32_alloc subroutine, g32_close subroutine,
g32_dealloc subroutine, g32_open subroutine, and g32_openx subroutine.

AIX message interface subroutines are the g32_get_status subroutine, g32_read
subroutine, and g32_write subroutine.

HCON Overview for Programming, Understanding the HCON Application Programming
Interfaces, Understanding the HCON Host Interface in Communications Programming
Concepts.

How to Compile a Host HCON API Program, Host API Errors, Sample Flows of API
Programs in Communications Programming Concepts.

Base Operating System Reference

g32_alloc

032_alloc Function

Purpose

Library

C Syntax

Initiate interaction with a host application.

HCON Library

C (libg3270.a)
Pascal (libg3270p.a)
FORTRAN (libg3270f.a)

#include <g32_api.h>
g32_alloc (as, app/name, mode)
struct g32_api *as;

char *appiname;

int mode,

Pascal Syntax

function g32allc(var as : g32_api;
applname : stringptr;
mode : integer): integer; external;

FORTRAN Syntax

EXTERNAL G32ALLOC
INTEGER RC, MODE, AS(9), G32ALLOC
CHARACTER* XX NAME

RC = G32ALLOC (AS, NAME, MODE)

Description

The g32_alloc function initiates interaction with a host application and sets the APl mode.

The host application program is invoked by entering its name, using the logical terminal
interface.

If invocation of the host program is successful and the mode is API/AP1, control of the
session is passed to the AIX application. If the mode is API/3270, the emulator retains
control of the session. The application communicates with the session by way of the logical
terminal interface.

The g32_alloc function may be used only after a successful open using the g32_open or
g32_openx function. The g32_alloc function must be issued before using any of the
message or logical terminal interface functions.

HCON application programs using the Pascal language interface must include and link both
the C and Pascal libraries. Applications programs using the FORTRAN language for the
HCON API must include and link both the C and FORTRAN libraries.

AIX 3270 Host Connection Program (HCON) 2-17

g32_alloc

C Parameters
as

applname

mode

Pascal Parameters
as

applname

sessionmode

Specifies a pointer to a g32_api structure. Status information is
returned in this structure. '

Specifies a pointer to the name of the host application that is to be
executed. This string should be the entire string necessary to start
the application, including any necessary parameters or options.
When using AP1/3270 mode, place the value in two double quotes
(“Testload™) or specify a null string (“). When using API/API
mode, place the host application name in double quotes ("Testload”)

Specifies the APl mode.The types of modes that can be used are
contained in the g32_api.h file and are defined as follows:

MODE_3270
The AP1/3270 mode is for communicating with host
applications that assume they are communicating with a
3270terminal. Applications in this mode use the logical
terminal interface to communicate with the host application. In
API1/3270 mode, if appiname is a null pointer, no host
application is started.

MODE_API
The API/API mode is for communicating with host applications
that assume they are communicating with a program.
Applications in this mode use the message interface to
communicate with host applications using the host API.

Note: When a session is in this mode, all activity to the
screen is stopped until this mode is exited. AP1/3270
mode functions cannot be used while in the API/API
mode.

MODE_APL_T
The APL_T mode is the same as MODE_API except this mode
translates messages received from the host from EBCDIC to
ASCIi, and translates messages sent to the host from ASCII to
EBCDIC. The translation table used is determined by the
country field in the HCON session profile.

Note: A host application started in API/API or API/API_T
mode must issue a G32ALLOC function as the API
waits for an acknowledgment from the host application,
when starting an API/API mode session.

Specifies the g32_api structure.

Specifies a stringptr containing the name of the host application to
be executed. This string should be the entire string necessary to
start the host application, including any necessary parameters and
options. A NULL application name is valid in 3270 mode.

Specifies the mode desired for the session.

2-18 Base Operating System Reference

g32_alloc

FORTRAN Parameters

AS Specifies the g32_api equivalent structure as an array of integers.
NAME Specifies the name of the application that is to execute on the host.
MODE Specifies the desired mode for the API.

Return Values
Upon successful completion:

e Avalue of 0 is returned.

Upon unsuccessful completion:

o Avalue of —1 is returned.

* The errcode bit is set to an error code identifying the error.

* The xerrinfo bit can be set to give more information about the error.

Example
C Language
1. The following example illustrates the use of the g32_alloc function:
#include <g32 _api.h /* API include file */
main ()
{
struct g32 api *as, asx; - /* asx is statically defined*/
int session_mode = MODE_API /* api session mode. Other modes
are MODE API T */
char appl name [20] /* name of the application to
run on the host*/
int return; /* return code */

.

.

strcpy (appl _name, “APITESTN”); /* name of host application*/
return = g32_alloc(as, appl_name, session mode);

.

return = g32 dealloc(as);

Implementation Specifics
The g32_alloc function is part of the AIX 3270 Host Connection Program/6000 (HCON).

The g32_alloc function requires one of the following network communication adapters:

* |IBM 3270 Connection Adapter and attachment cables for connection to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station

Subsystem Controller configured for non—SNA distributed function terminal (non—SNA
DFT) mode.

¢ IBM System/370 Host Interface Adapter and attachment cables for connection to an IBM
5088 Graphics Control Unit.

AIX 3270 Host Connection Program (HCON) 2-19

g32_alloc

Files

The g32_alloc function requires one of the following IBM System/370 operating system

environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP TSO/E,
or MVS/XA TSO/E.

The g32_alloc function is not available for Japanese Language Support.

/usr/include/g32_api.h Contains data structures and associated symbol
definitions.

/usr/include/g32const.inc Defines Pascal API constants

/usr/include/g32hfile.inc Defines Pascal API external definitions

/usr/include/g32types.inc Defines Pascal API data types

Related Information

Additional session control functions are the g32_close function, g32_dealloc function,
g32_open function, and g32_openx function.

AlX logical terminal interface functions are the g32_get_cursor function, g32_get_data
function, g32_notify function, g32_search function, and g32_send_keys function.

The API file transfer functions is the g32_fxfer function.

AlX message interface functions are the g32_get_status function, g32_read function, and
g32_write function.

Host interface functions are the G32ALLOC function, G32DLLOC function, G32READ
function, and G32WRITE function.

HCON Overview for Programming, Understanding the HCON Application Programming
Interface, Understanding the AIX Interface for HCON API, API error codes, Sample Flows of
API Programs in Communications Programming Concepts.

Understanding HCON Emuiator Session Profiles in Communication Concepts and
Procedures.

2-20 Base Operating System Reference

g32_close

g32_close Function

Purpose

Detaches from a session.
Library

HCON Library

C (libg3270.a)

Pascal (libg3270p.a

FORTRAN (libg3270f.a)
C Syntax

#include <g32_api.h>

g32_close(as)
struct g32_api *as;

Pascal Syntax
function g32clse (var as : g32_api) : integer; external;

FORTRAN Syntax
EXTERNAL G32CLOSE
INTEGER AS(9), G32CLOSE

RC = G32CLOSE(AS)

Description
The g32_close function relinquishes use of the session. If the g32_open or g32_openx
created the session, the g32_close function will log off from the host and terminate the

session. Any session must be terminated (by using the g32_dealloc function) before
issuing the g32_close function.

HCON application programs using the Pascal language interface must include and link both
the C and Pascal libraries. Applications programs using the FORTRAN language for the
HCON API must include and link both the C and FORTRAN libraries.

C Parameter

as Specifies a pointer to a g32_api structure. Status is returned in this
structure.

Pascal Parameter

as Specifies a g32_api structure.
FORTRAN Parameter
AS Specifies the g32_api equivalent structure as an array of integers.

AAIX 3270 Host Connection Program (HCON) 2-21

g32_close

Return Values
Upon successful completion:

¢ A value of 0 is returned.
Upon unsuccessful completion:

A value of -1 is returned.

The errcode bit is set to an error code identifying the error.

The xerrinfo bit can be set to give more information about the error.

Examples

C Language
1. The following example fragment illustrates the use of the g32_close function:

#include <g32_api.h> /* API include file */
main()

{

struct g32 api *as; /* g32 structure */

int return;

return = g32_close(as);

Implementation Specifics
The g32_close function is part of the AlX 3270 Host Connection Program/6000 (HCON).

The Q32_close function requires one of the following network communication adapters:

s |IBM 3270 Connection Adapter and attachment cables for connection to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non—SNA distributed function terminal (non-SNA
DFT) mode. ‘ '

* |IBM System/370 Host Interface Adapter and attachment cables for connection to an IBM
5088 Graphics Control Unit.

The g32_close function requires one of the following IBM System/370 operating system
environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP TSO/E,
or MVS/XA TSO/E.

The g32_close function is not available for Japanese Language Support.

Files
fusrf/include/g32_api.h Contains data structures and associated symbol
definitions.
/usr/include/g32const.inc Defines Pascal API constants
/usr/include/g32hfile.inc Defines Pascal API| external definitions
/usr/include/g32types.inc Defines Pascal API data types

2-22 Base Opetrating System Reference

g32_close

Related Information
Additional session control functions are the g32_alloc function, g32_dealloc function
g32_open function, and g32_openx function.

AIX logical terminal interface functions are the g32_get_cursor function, g32_get_data
function, g32_notify function, g32_search function, and g32_send_keys function.

The AP file transfer functions is the g32_fxfer function.

AIX message interface functions are the g32_get_status function, g32_read function, and
g32_write function.

Host interface functions are the G32ALLOC function, G32DLLOC function, G32READ
function, and G32WRITE function.

HCON Overview for Programming, Understanding the HCON Application Programming
Interfaces, Understanding the AIX Interface for HCON API, API error codes, Sample Flows
of API Programs in Communications Programming Concepts.

AlX 3270 Host Connection Program (HCON) 2-23

g32_dealloc

g32_dealloc Function

Purpose

Ends interaction with a host application.
Library

HCON Library

C (libg3270.a)

Pascal (libg3270p.a

FORTRAN (libg3270f.a)
C Syntax

#include <g32_api.h>

g32_dealloc(as)
struct g32_api *as;

Pascal Syntax
function g32deal (var as : g32_api) : integer; external,

FORTRAN Syntax

EXTERNAL G32DEALLOC
INTEGER AS(9), G32DEALLOC

RC = G32DEALLOC(AS)

Description
The g32_dealloc function ends interaction with the AIX application and the host application.
The function releases control of the session.

HCON application programs using the Pascal language interface must include and link both
the C and Pascal libraries. Applications programs using the FORTRAN language for the
HCON API must include and link both the C and FORTRAN libraries.

C Parameter
as Specifies a pointer to a g32_api structure as an array of integers.

Pascal Parameter

as Specifies the g32_api structure.
FORTRAN Parameters
AS Specifies the g32_api equivalent structure.

Return Values
Upon successful completion:

e The session is terminated.

e A value of 0 is returned.

2-24 Base Operating System Reference

Examples
C Language

032_dealloc

Upon unsuccessful completion:

A value of -1 is returned.

¢ The errcode bit is set to an error code identifying the error.

o The xerrinfo bit can be set to give more information about the error.

1.

The following example illustrates the use of the g32_dealloc function:

#include <g32_api.h> /* API include file */
main ()
{
struct g32_api *as, asx; /* asx is statically defined */
int session_mode = MODE_API; /* api session mode. Other modes
are MODE_API_T */
char appl name [20]; /* name of the application to
run on the host */
int return; /* return code */

strcpy (appl_name, “APITESTN”); /* name of host application */
return = g32_alloc(as, appl_name, session_mode);

return = g32_dealloc(as);

Implementation Specifics
The g32_dealloc function is part of the AIX 3270 Host Connection Program/6000 (HCON).

Files

The g32_dealloc function requires one of the following network communication adapters:

IBM 3270 Connection Adapter and attachment cables for connection to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non—SNA distributed function terminal (non—SNA
DFT) mode.

IBM System/370 Host Interface Adapter and attachment cables for connection to an IBM
5088 Graphics Control Unit.

The g32_dealloc function requires one of the following IBM System/370 operating system
environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP TSO/E,
or MVS/XA TSO/E.

The g32_dealloc function is not available for Japanese Language Support.

/usr/include/g32_api.h Contains data structures and associated symbol
definitions.
/usr/include/g32const.inc Defines Pascal AP! constants

AIX 3270 Host Connection Program (HCON) 2-25

g32_dealloc

/usr/include/g32hfile.inc Defines Pascal API external definitions
/usr/inciude/g32types.inc Defines Pascal API data types

Related Information

2-26

Additional session control functions are the g32_alloc function, g32_close function,
g32_open function, and g32_openx function.

AlX logical terminal interface functions are the g32_get_cursor function, g32_get_data
function, g32_notify function, g32_search function, and g32_send_keys function.

The API file transfer functions is the g32_fxfer function.

AlIX message interface functions are the g32_get_status function, g32_read function, and
g32_write function.

Host interface functions are the G32ALLOC function, G32DLLOC function, G32READ
function, and G32WRITE function.

HCON Overview for Programming, Understanding the HCON Application Programming
Interfaces, Understanding the AlX Interface for HCON API, APl error codes, Sample Flows
of APl Programs in Communications Programming Concepits.

Base Operating System Reference

G32DLLOC

G32DLLOC Function

Purpose
Terminates interaction with an AIX API application running simultaneously on the RISC
System/6000.

Syntax
G32DLLOC

Description

The G32DLLOC function ends interaction with an AIX API application. The G32DLLOC
function is a HCON AP function that can be called by a 370 Assembler applications
program.

Return Values
This call sets register 0 (zero) to the following values:

0 Zero. A normal return; call successful

<0 Less than zero. Error condition.

Examples
The following 370 Assembler code example illustrates the use of the host G32DLLOC
function:

L R11,=v(G32DATA)
USING G32DATAD,R11

G32DLLOC /* Deallocate a session */
C RO, G32ESESS /* Check for G32 error */

BE SESSERR /* Branch if error */
C RO, G32ESYS /* Check for system error */
BE SYSERR /* Branch if error * /

Implementation Specifics
The G32DLLOC function is part of the AIX 3270 Host Connection Program/6000 (HCON)}).

The G32DLLOC function requires one of the following network communication adapters:

¢ IBM 3270 Connection Adapter and attachment cables for connection to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non—SNA distributed function terminal (non—SNA
DFT) mode.

¢ IBM System/370 Host Interface Adapter and attachment cables for connection to an IBM
5088 Graphics Control Unit.

The G32DLLOC function requires one of the following IBM System/370 operating system
environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP TSO/E,
or MVS/XA TSO/E.

The G32DLLOC function is not available for Japanese Language Support.

AIX 3270 Host Connection Program (HCON) 2-27

G32DLLOC

Related Information
Additional host interface functions are the G32ALLOC function, G32READ function, and
G32WRITE function.

AIX session control subroutines are the g32_alloc subroutine, g32_close subroutine,
g32_dealloc subroutine, g32_open subroutine, and g32_openx subroutine.

AIX message interface subroutines are the g32_get_status subroutine, g32_read
subroutine, and g32_write subroutine.

2-28 Base Operating System Reference

032_fxfer

g32_fxfer Function

Purpose

Library

C Syntax

Invokes a file transfer.

HCON Library

File Transfer Library (libfxfer.a)
C (libg3270.a)

Pascal (libg3270p.a)

Fortran (libg3270f.a)

#include <g32_api.h>
#include <fxfer.h>

g32_fxfer(AS, Xfer)
struct g32_api *AS;
struct fxc *Xfer,

Pascal Syntax

const

%include /usr/include/g32const.inc
%include /usr/include/g32fxconst.inc
type

%include /usr/include/g32types.inc
%include /usr/include/fxhfile.inc

function g32fxfer(var AS : g32_api; var Xfer : txc) : integer; external;

FORTRAN Syntax

INTEGER G32FXFER, RC, AS(9)

EXTERNAL G32FXFER

CHARACTER*XX SRCF, DSTF

INTEGER FLAGS,RECL,BLKSIZE,SPACE,INCR,UNIT

RC = G32FXFER(AS,SCRF.DSTF,FLAGS,RECL,BLKSIZE,SPACE,
+ INCR,UNIT)

Description

The g32_fxfer function ailows a file transfer to take place within an AP! program without the
API program having to invoke a g32_close and relinquish the link. The file transfer is run
programmatically, meaning the user must set up the flag options, the source file name, and
the destination file name using either the programmatic fxfer fxc structure for C and Pascal
or the numerous variables for FORTRAN. The g32_fxfer function will in affect detach from
the session without terminating it, run the specified file transter and then reattach to the
session.

If a g32_alloc has been issued before invoking the g32_fxfer command, be sure that the
corresponding g32_dealloc is incorporated into the program before the g32_fxfer function
is called.

AIX 3270 Host Connection Program (HCON) 2-29

g32_fxfer

The status of the file transfer can be checked by using the cfxfer file transfer status check
function after the g32_fxfer function has been invoked.

HCON application programs using the Pascal language interface must include and link both
the C and Pascal libraries. Applications programs using the FORTRAN language for the
HCON API must include and link both the C and FORTRAN libraries.

C Parameters

AS Specifies a pointer to the g32_api structure. Status is returned in this
structure.
Xfer Specifies a pointer to the fxc structure defined in the fxfer.h file.

Pascal Parameters

AS Specifies a record of type g32_api.
Xfer Specifies a record of type fxc within the fxfer.inc file.
FORTRAN Parameters
AS Specifies the g32_api equivalent structure as an array of integers.
SRCF Specifies a character array of XX length containing the source file name.
DSTF Specifies a character array of XX length containing the destination file
name.
FLAGS Contains the option flags value, which is the sum of the desired option
values listed below:
1 Upload
2 Download
4 Translate On
8 Translate Carriage Return Line Feed
16 Replace
32 Append
64 Queue - this option may be specified by the user, but it is
blocked by the G32FXFER command
128 Fixed Length Records
256 Variable Length Records
512 Undefined Length (TSO only)
1024 Host System TSO
2048 Host System CMS
RECL Specifies the logical record length.

2-30 Base Operating System Reference

0g32_fxfer

BLKSIZE Specifies the block size. (TSO only)
SPACE Specifies the allocation space. (TSO only)
INCR Specifies the allocation space increment. (TSO only)
UNIT Specifies the unit of allocation (TSO only), which is:
-1 is the number of TRACKS
-2 is the number of CYLINDERS

A positive number indicates the number of bytes to be allocated.

Note: All FORTRAN character array strings must be NULL~terminated (for

example, SRCF = rtfile//CHAR(0)).

Return Values
Upon successful completion:

Examples

0 The user may call the cfxfer function to get the status of the
file transfer.

Upon unsuccessful completion:

1 The file transfer did not complete successfully. The user
may call the cfxfer function to get the status of the file
transfer.

-1 The g32_fxfer command failed while accessing the link.
The errcode bit is set to an error code identifying the error.
The xerrinfo bit can be set to give more information about
the error.

1. C
#include <g32 api.h> /* API include file */
#include <fxfer.h> /* file transfer include file */
main()
{

struct g32_api *as,asx;

struct fxc *xfer;

struct fxs sxfer;

int session_mode=MODE_3270;

char *aixfile="/etc/motd”;

char *hostfile="test file a”;

char sessionname{30],uid[30],pw[301];

int mlog=0,ret=0;

as = &asx;

sessionname = ‘\0’; /* We are assuming SNAME is set */

ret=g32_open(as,mlog,uid,pw,sessionname);

AIX 3270 Host Connection Program (HCON) 2-31

032_fxfer

2-32

printf(”"The g32_ open return code = %d\n”,ret);

/* Malloc space for the file transfer structure */
xfer = (struct fxc *) malloc(2048);
/* Set the file transfer flags to upload,
replace, translate and Host CMS */
xfer—>fxc_opts.f_flags = FXC_UP | FXC_REPL | FXC_TNL | FXC_CMS;
xfer—>fxc_opts.f_lrecl = 80; /* Set the Logical Record length

to 80 */
xfer—>fxc_src = aixfile; /* Set the Source file name to
aixfile */
xfer—>fxc_dst = hostfile; /* Set the Destination file name

to hostfile */
ret=g32_ fxfer(as,xfer);
printf(”The g32_fxfer return code = %d\n”,ret);

/* If the file transfer completed then get the status code of
the file transfer */

if ((ret == 0) || (ret == 1)) {
ret = cfxfer(&sxfer);
if (ret == 0) {

printf(”Source file: ¢s\n” ,sxfer.fxs_src);
printf(”Destination file: %s\n” ,sxfer.fxs_dst);
printf(”Byte Count: 2d\n” ,sxfer.fxs_bytcnt);
printf(”File transfer time: 2d\n”,sxfer.fxs_ctime);

printf(”Status Message Number: %d\n”,sxfer.fxs_stat);
printf(”System Call error number: %d\n”,sxfer.fxs_errno);

ret=g32_close(as);
printf(”The g32 close return code = %d\n”,ret);
return(0);

}

2. Pascal:

program testl(input,output);
const

%include /usr/include/g32const.inc
%include /usr/include/fxconst.inc

type

¢include /usr/include/g32hfile.inc
%$include /usr/include/g32types.inc
$include /usr/include/fxhfile.inc

var

as:g32_api;

xfer: fxc;

sxfer:fxs;

ret,sess_mode, flag:integer;
session, timeout,uid,pw:stringptr;
source,destination:stringptr;

begin
sess_mode = MODE_3270;

Base Operating System Reference

g32_fxfer

flag := 0;

{* Initialize API stringptrs and create space *}
new(uid,8);
uid@ := chr(0);
new(pw,8);

pw@ := chr(0);
new(session,2);
session@ := ’'a’
new(timout,8);
timeout := '60';

{* Call g32openx and open session a *}

ret := g32openx(as,flag,uid,pw,session,timeout);
writeln(’The g32openx return code = ',ret:4);

~e

{* Open session a *}

{* Set up the file transfer options and file names *}

new(source,1024);

source := ’'testfile’; {* Source file, assumes testfile exists
in the current directory *}

new(destination,1024);

destination := ’'testfile’; {* Destination file, TSO file

testfile *}
{* Set flags to Upload, Replace, Translate and Host TSO *}

xfer.fxc_opts.f_flags := FXC_UP + FXC_TSO + FXC_REPL + FXC_TNL;
xfer.fxc_src := source;
xfer.fxc_dst := destination;

{* Call the g32_fxfer using the specified flags and file names
*
}
ret := g32fxfer(as,xfer);
writeln(’The g32fxfer return code = ’,ret:4);
{* If g32_fxfer returned with 1 or 0 call the file transfer
status check function *}
if (ret >= 0) then begin
ret := pcfxfer(sxfer);
if (ret = 0) then begin

writeln(’Source file: " ,sxfer.fxs_src@);

writeln(’'Destination file: ' ,sxfer.fxs_dst@);

writeln(’'File Transfer Time: ' ,sxfer.fxs ctime@);

writeln(’'Byte Count: ' ,sxfer.fxs_bytcnt);

writeln(’Status Message Number: ',sxfer.fxs_stat);

writeln(’'System Call Error Number: ’,sxfer.fxs_errno);
end;

end;
L]
.

{* Close the session using the g32close function *}
ret := g32close(as);

writeln(’'The g32close return code = ’,ret:4);

end. '

AlX 3270 Host Connection Program (HCON) 2-33

g32_fxfer

3. FORTRAN:

INTEGER G320PENX,G32FXFER,G32CLOSE, FCFXFER
INTEGER RET,AS(9)FLAG

EXTERNAL G320PENX

EXTERNAL G32FXFER

EXTERNAL G32CLOSE

EXTERNAL FCFXFER

CHARACTER*8 UID

CHARACTER*8 PW

CHARACTER*2 SESSION

CHARACTER*8 TIMEOUT

CHARACTER*256 SRCF

CHARACTER*256 DSTF

CHARACTER*256 SRC

CHARACTER*256 DST

CHARACTER*40 TIME

INTEGER BYTCNT, STAT, ERRNO, TIME

INTEGER FLAGS,RECL,BLKSIZE,SPACE,INCR,UNIT

C Set up all FORMAT statement
1 FORMAT (”THE G320PENX RETURN CODE = " ,I4)
2 FORMAT(”THE G32FXFER RETURN CODE = ”,I4)
3 FORMAT(”THE G32CLOSE RETURN CODE = ”,I4)
4 FORMAT(”THE FCFXFER RETURN CODE = ”,I4)
5 FORMAT (” ")
10 FORMAT(”SOURCE FILE: " ,A)
11 FORMAT(”"DESTINATION FILE: ”,A)
12 FORMAT(”BYTE COUNT: ”,I10)
13 FORMAT(”TIME: ",A)
14 FORMAT(”STATUS MESSAGE NUMBER: ”,I10)
15 FORMAT("”"SYSTEM CALL ERROR NUMBER: ”,I10)
(o Set up all character values for the G320PENX command
UID = CHAR(O)
PW = CHAR(0)
SESSION = ’z’//CHAR(O0)
TIMEOUT = '60’//CHAR(0)
FLAG = 0
SRCF = ’'testcasel’//CHAR(0)
DSTF = ’'/u/test.casel’//CHAR(O0)
C Source and Destination files for the fcfxfer status check
command
SRC = CHAR(O0)
DST = CHAR(O0)
C Set the G32FXFER file transfer flags and options
C Take the defaults for Logical Record Length, Block Size,
and Space
RECL = 0
BLKSIZE = 0
SPACE = 0
c Set FLAGS to download (2), translate(4), and Host
TSO(1024)
FLAGS = 1030
Cc Call G320PENX

RET = G320PENX(AS,FLAG,UID,PW,sessionname, TIMEOUT)
WRITE(*,1) RET

2-34 Base Operating System Reference

g32_fxfer

c Call G32FXFER
RET = G32FXFER(AS,SRCF,DSTF,FLAGS,RECL,BLKSIZE, SPACE
+ INCR,UNIT)
WRITE(*,2) RET

C Call G32CLOSE
RET = G32CLOSE(AS)
WRITE(*,3) RET
C Call FCFXFER for file transfer status output
RET = FCFXFER(SRC,DST,BYTCNT,STAT, ERRNO, TIME)
WRITE(*,4) RET
WRITE(*,5)
WRITE(*,10) SRC
WRITE(*,11) DST
WRITE(*,12) BYTCNT
WRITE(*,13) TIME
WRITE(*,14) STAT
WRITE(*,15) ERRNO
WRITE(*,5)
STOP
END

Implementation Specifics
The g32_fxfer function is part of the AlIX 3270 Host Connection Program/6000 (HCON).

The g32_fxfer function requires one of the following network communication adapters:

¢ |BM 3270 Connection Adapter plus appropriate cables for attachment to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non—SNA distributed function terminal (non—-SNA
DFT) mode.

» IBM System/370 Host Interface Adapter plus appropriate cables for attachment to an IBM
5088 Graphics Control Unit.

This function requires one of the following IBM System/370 operating system environments
be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP TSO/E, or MVS/XA
TSOJE.

This function requires that the System/370 IBM Host—-Supported File Transfer Program
(IND$FILE) be installed on the System/370.

This function is not available for Japanese Language Support.

Files
{usr/include/fxfer.h File transfer include file with structures and definitions for
C.
/usr/include/fxconst.inc Pascal fxfer function constants.
/usr/include/fxhfile.inc Pascal file transfer invocation include file.
/usr/include/g32_api.h Contains data structures and associated symbol
definitions.

AlX 3270 Host Connection Program (HCON) 2-35

g32_fxfer

/usr/include/g32const.inc Defines Pascal APl constants
/usr/include/g32hfile.inc Defines Pascal APl external definitions
/usr/include/g32types.inc Defines Pascal API data types

Related Information
Session control functions are the g32_open function, the g32_openx function, the
g32_close function, the g32_alloc function, and the g32_dealloc function.

The fxfer function and cfxfer function.

HCON Overview for Programming, Understanding the HCON Application Programming
Interfaces, Understanding the AIX Interface for HCON API, API error codes, Sample Flows
of API Programs in Communications Programming Conceplts.

2-36 Base Operating System Reference

032_get_cursor

g32_get_cursor Function

Purpose
Sets the row and column components of the g32_api structure to the current cursor position
in a presentation space.
Library
HCON Library
C (libg3270.a)
Pascal (libg3270p.a)
FORTRAN (libg3270f.a)
C Syntax

#include <g32_api.h>

g32_get;cursor(as)
struct g32_api as

Pascal Syntax
function g32curs (var as : g32_api) : integer; external;

FORTRAN Syntax

EXTERNAL G32GETCURSOR
INTEGER AS(9), G32GETCURSOR

RC = G32GETCURSOR(AS)

Description
The g32_get_cursor function obtains the row and column address of the cursor and places

these values in the as structure. An application can only use the g32_get_cursor function
in AP1/3270 mode.

HCON application programs using the Pascal language interface must include and link both
the C and Pascal libraries. Applications programs using the FORTRAN language for the
HCON API must include and link both the C and FORTRAN libraries.

C Parameter

as Specifies a pointer to the g32_api structure. The row (row) and column (column)
address of the cursor is set here. Status information is also set in this structure.

Pascal Parameter
as Specifies the g32_api structure.

FORTRAN Parameter

AS Specifies the g32_api equivalent structure as an array of integers.

AIX 3270 Host Connection Program (HCON) 2-37

g32_get_cursor

Return Values
Upon successful completion:

e A value of 0 is returned.

¢ The corresponding row element of the as structure is the row position of the beginning of

the matched string.

s The corresponding column element of the as structure is the column position of the

beginning of the matched string.

Upon unsuccessful completion:

e An error code (-1 (—one)) is returned.

+ The errcode bit is set to the error code identifying the error.

e The xerrinfo bit can be set to give more information about the error.

Examples
C Language1

. The following example fragment illustrates the use of the g32_get_cursor function in an

api_3270 mode program:

Note: The following example is missing the required g32_open and g32_alloc
functions which are necessary for every HCON Workstation API program.

#include <g32_api.h> /* API include file */

main ()

{

struct g32_api *as; /* g32 structure */

char *buffer; /* pointer to char string
*/

int return; /* return code */

char *malloc(); /* C memory allocation

function */

return = g32_notify(as,1l); /* Turn notification on */
buffer = malloc(10);

return = g32_get cursor(as); /* get location of cursor */
printf (“ The cursor positionis row: %d col: %d/n”;

as —> row, as —> column);
/* Get data from host starting at the current row and column */
as —> length = 10; /* length of a pattern on host */
return = g32_get data(as,buffer); /* get data from host */
printf(“The data returned is <%s>\n”,buffer);

/* Try to search for a particular pattern on host */
as —>row =1; /* row to start search */

as —>column =1; /* column to start search */
return = g32_search(as,”PATTERN");

/*Send a clear key to the host *?
strcpy (buffer, ”“CLE/0");
return = g32_send keys(as, buffer);

2-38 Base Operating System Reference

g32_get_cursor

/* Turn notification off */
return = g32 _notify(as,0);

Implementation Specifics

Files

The g32_get_cursor function is part of the AIX 3270 Host Connection Program/6000
(HCON).

The g32_get_cursor function requires one of the following network communication
adapters:

¢ IBM 3270 Connection Adapter and attachment cables for connection to an iBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controlier configured for non—SNA distributed function terminal (non—SNA
DFT) mode.

¢ |IBM System/370 Host Interface Adapter and attachment cables for connection to an IBM
5088 Graphics Control Unit.

The g32_get_cursor function requires one of the following IBM System/370 operating
system environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP
TSO/E, or MVS/XA TSOJ/E.

The g32_get_cursor function is not available for Japanese Language Support.

/usrf/include/g32_api.h Contains data structures and associated symbol
definitions.

lusr/include/g32const.inc Defines Pascal API constants

/usr/include/g32htile.inc Defines Pascal API external definitions

{usr/include/g32types.inc Defines Pascal API data types

Related Information

Additional logical terminal interface functions are the g32_get_data function,
g32_send_keys function, g32_notify function, and g32_search function.

AIX session control functions are the g32_alloc function, g32_close function, g32_dealloc
function, g32_open function, and g32_openx function.

HCON Overview for Programming, Understanding the HCON Application Programming
Interface, Understanding the AlX Interface for HCON API, API error codes, Sample Flows of
API Programs in Communications Programming Concepts.

AIX 3270 Host Connection Program (HCON) 2-39

g32_get_data

g32_get_data Function

Purpose

Obtains current specified display data from the presentation space.
Library

HCON Library

C (libg3270.a)

Pascal (libg3270p.a)

FORTRAN (libg3270f.a)
C Syntax

#include <g32_api.h>

g32_get_data(as,buffer)
struct g32_api *as;
char *buffer,

Pascal Syntax

function g32data (var as : g32_api;
buffer : integer) : integer; external;

FORTRAN Syntax

EXTERNAL G32GETDATA
INTEGER AS(9), G32GETDATA
CHARACTER *XX Buffer

RC = G32GETDATA(AS, Buffer)

Description
The g32_get_data function obtains current display data from the presentation space. If the
starting offset in the buffer plus the transfer length is greater than the size of the presentation
space, the transfer wraps from the last buffer position to the first and the transfer continues
from there untif the transfer length is exhausted.

Note: The address of a packed array can be obtained by using the addr() system calil:
Buffer : = addr (<message array name> [1 (one)])

The g32_get_data function can only be used in API/3270 session mode.

HCON application programs using the Pascal language interface must include and link both
the C and Pascal libraries. Applications programs using the FORTRAN language for the
HCON API must include and link both the C and FORTRAN libraries.

C Parameters

as Specifies a pointer to the g32_api structure containing the row (row) and
column (column) address where the data begins, and the length (length) of
data to return. Status information is also returned in this structure.

buffer Specifies a pointer to a buffer where the data is placed.

2-40 Base Operating System Reference

032_get_data

Pascal Parameters

as

Specifies the g32_api structure as an array of integers.

buffer Specifies an address of a character—packed array. The array must be the

same length or greater than the length field in the g32_api structure.

FORTRAN Parameters

AS

Specifies the g32_api equivalent structure.

Buffer Specifies the character array that receives the retrieved data. The array

must be the same length or greater than the length field in the g32_api
structure.

Note: If the size of the buffer is smaller than AS(LENGTH), a memory fault may occur.

Return Values
Upon successful completion:

¢ A value of 0 is returned.

Upon unsuccessful completion:

e An error code -1 is returned.

o The errcode bit is set to the error code identifying the error.

¢ The xerrinfo bit can be set to give more information about the error.

Examples
C Language

1.

The following example fragment illustrates the use of the g32_get_data function in an
api_3270 mode program: ~

Note: The following example is missing the required g32_open and g32_alloc
functions which are necessary for every HCON Workstation AP| program.

#include <g32 api.h> /* API include file */

main()

{

struct g32_api *as; /* g32 structure */

char *buffer; /* pointer to char string */

int return; /* return code */

char *malloc(); /* C memory allocation function */
return = g32_notify(as,1); /* Turn notification on */

buffer = malloc(10);

return = g32_get_cursor(as); /* get location of cursor */

printf (“ The cursor positionis row: %d col: %d/n”";

as —> row, as —> column);
/* Get data from host starting at the current row and column */
as —> length = 10; /* length of a pattern on host */
return = g32_get_data(as,buffer); /* get data from host */
printf(“The data returned is <%s>\n”,buffer);

AIX 3270 Host Connection Program (HCON) 2-41

032_get_data

/* Try to search for a particular pattern on host */

as —>row =1; /* row to start search */

as —>column =1; /* column to start search */
return = g32_search(as, "PATTERN");

/*Send a clear key to the host *?
strcpy (buffer, ”"CLE/07);
return = g32_send_keys(as, buffer);

/* Turn notification off */
return = g32_notify(as,0);

Implementation Specifics

Files

The g32_get_data function is part of the AIX 3270 Host Connection Program/6000 (HCON).
The g32_get_data function requires one of the following network communication adapters:

e |BM 3270 Connection Adapter and attachment cables for connection to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non—SNA distributed function terminal (non—-SNA
DFT) mode.

¢ |BM System/370 Host Interface Adapter and attachment cables for connection to an IBM
5088 Graphics Control Unit.

The g32_get_data function requires one of the following IBM System/370 operating system
environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP TSO/E,
or MVS/XA TSO/E.

The g32_get_data function is not available for Japanese Language Support.

/usr/include/g32_api.h Contains data structures and associated symbol
definitions.

/usr/include/g32const.inc Defines Pascal API constants

/usr/include/g32hfile.inc Defines Pascal API external definitions

lusr/include/g32types.inc Defines Pascal API data types

Related Information .

2-42

Additional Logical Terminal Interface functions are the g32_get_cursor function, g32_notify
function, g32_search function, and g32_send_keys function.

AlX session control functions are the g32_alloc function, g32_close function, g32_dealloc
function, g32_open function, and g32_openx function.

The API file transfer function is the g32_fxfer function.

HCON Overview for Programming, Understanding the HCON Application Programming
Interface, Understanding the AlIX Interface for HCON API, API error codes, Sample Flows of
API Programs in Communications Programming Concepts.

Base Operating System Reference

g32_get_status

g32_get_status Function

Purpose

Returns status information of the logical path.
Library

HCON Library

C (libg3270.a)

Pascal (libg3270p.a)

FORTRAN (libg3270f.a)
C Syntax

#include <g32_api.h>

g32_get_status(as)
struct g32_api *as;

Pascal Syntax
function g32stat (var as: ¢32_api) : integer; external;

FORTRAN Syntax

EXTERNAL G32GETSTATUS
INTEGER AS(9),G32GETSTATUS

RC = G32GETSTATUS(AS)

Description
The g32_get_status function obtains status information about the communication path. The
function is called after an AIX API application determines that an error has occurred while

reading from or writing to the communication path or after a time out. The HCON session
profile specifies the communication path.

Note: The g32_get_status function can only be used in API/API or API/API_T mode.

HCON application programs using the Pascal language interface must include and link both
the C and Pascal libraries. Applications programs using the FORTRAN language for the
HCON API must include and link both the C and FORTRAN libraries.

C Parameter

as Specifies a pointer to a g32_api structure; status is returned in this
structure.

Pascal Parameter

as Specifies the g32_api structure.
FORTRAN Parameter
AS Specifies a g32_api equivalent structure as an array of integers.

Note: This function is used to determine the condition or status of the link. It should not be
used to determine whether the previous I/O operation was successful or
unsuccessful (the return code will provide this information).

AlX 3270 Host Connection Program (HCON) 2-43

g32_get_status

Return Values

Upon successful completion:

e A value of 0 is returned.

The values of errcode are as follows:

¢ No error has occurred (G32_NO_ERROR, error value = 0).

e A communications check has occurred (G32_COMM_CHK, error value = —1).

* A program check has occurred within the emulator (G32_PROG_CHK, error value = -2).
« A machine check has occurred (G32_MACH_CHK, error value = -3).

If errcode is anything other than G32_NO_ERROR, then xerrinfo contains an emulator
program error code.

Upon unsuccessful completion:
¢ An error code of —1 is returned.
* The errcode bit is set to the error code identifying the error.

+ The xerrinfo bit can be set to give more information about the error.

Example
C Language
1. The following example fragment illustrates the use of the g32_get_status function:
#include <g32_api.h> /* API include file */
main()
{
struct g32_api *as; /* g32 structure */

int return;

return = ¢g32_write(as, mssg, length);
/* see if unsucessful */
if (return < 0) {
return = g32_get_status(as);
printf(“Return from g32 get status = %d \n”,return);
printf(“errcode = %d =xerrinfor = %d \n”",
as —> errcode , as —> xerrinfo

Implementation Specifics

2-44

The g32_get_status function is part of the AIX 3270 Host Connection Program/6000
(HCON).

Base Operating System Reference

Files

g32_get_status

The g32_get_status function requires one of the following network communication
adapters:

¢ IBM 3270 Connection Adapter and attachment cables for connection to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non—SNA distributed function terminal (non—-SNA
DFT) mode.

¢ |BM System/370 Host Interface Adapter and attachment cables for connection to an IBM
5088 Graphics Control Unit.

The g32_get_status function requires one of the following IBM System/370 operating
system environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP
TSO/E, or MVS/XA TSO/E.

The g32_get_status function is not available for Japanese Language Support.

fusrf/include/g32_api.h Contains data structures and associated symbol
definitions.

/usr/include/g32const.inc Defines Pascal APl constants

/usr/include/g32hfile.inc Defines Pascal AP| external definitions

{usr/include/g32types.inc Detines Pascal AP1 data types

Related Information

Additiona! message interface functions are the g32_read function and g32_write function.

AIX session control functions are the g32_alloc function, g32_close function, g32_dealloc
function, g32_open function, and g32_openx function.

The API file transtfer function is the g32_fxfer function.

Host interface functions are the G32ALLOC function, G32DLLOC function, G32READ
function, and G32WRITE function.

HCON Overview for Programming, Understanding the HCON Application Programming
Interfaces, Understanding the AIX Interface for HCON API, AP error codes, Sample Flows
of AP| Programs in Communications Programming Concepts.

AIX 3270 Host Connection Program (HCON) 2-45

032_notify

032_notify Function

Purpose

Library

C Syntax

Turns data notification On or Off.

HCON Library

C (libg3270.a)
Pascal (libg3270p.a)
FORTRAN (libg3270f.a)

#include <g32_api.h>

032_notify(as,note)
struct g32_api *as;
int note;

Pascal Syntax

subroutine g32Note (var as : g32_api;
note : integer) : integer; external;

FORTRAN Syntax

EXTERNAL G32NOTIFY
INTEGER AS(9), Note, G32NOTIFY

RC = G32NOTIFY(AS,Note)

Description

The g32_notify subroutine is used to turn notification of data arrival On and Off. The
g32_notify subroutine may be used only by applications in API/3270 session mode.

If an application wants to know when the emulator receives data from the host, it turns
notification On. This causes the emulator to send a message to the application whenever it
receives data from the host. The message is sent to the IPC message queue who's file
pointer is stored in the eventf field of the as data structure. The application may then use
the poll system call to wait for data from the host. Once notified the application should clear
notification messages from the IPC queue using the msgrev subroutine. When the
application no longer wants to be notified, it should turn notification Off with another
g32_notify call.

HCON application programs using the Pascal language interface must include and link both
the C and Pascal libraries. Applications programs using the FORTRAN language for the
HCON API must include and link both the C and FORTRAN libraries.

C Parameters

2-46

as Specifies a pointer to the g32_api structure. Status is returned in this
structure.
note Specifies to turn notification Off (if the note parameter is zero) or On (if the

note parameter is nonzero).

Base Operating System Reference

032_notify

Pascal Parameters

as

note

Specifies a g32_api structure.

parameter is zero) or On (if the note parameter is nonzero).

FORTRAN Parameters

AS Specifies a g32_api equivalent structure as an array of integers.

Note

Return Values
Upon successful completion:

A value of 0 is returned.

Upon unsuccessful completion:

Example
C Language
]

An error code —1 is returned.
The errcode bit is set to the error code identifying the error.

The xerrinfo bit can be set to give more information about the error.

. The following example fragment illustrates the use of the g32_notify function in an

api_3270 mode program:

Note: The following example is missing the required g32_open and g32_alloc
functions which are necessary for every HCON Workstation API program.

#include <g32_api.h> /* API include file */
main()

{

struct g32_api *as; /* g32 structure */
char *buffer; /* pointer to char string */
int return; /* return code */
char *malloc(); /* C memory allocation function
return = ¢g32 notify(as,1); /* Turn notification on

buffer = malloc(10);

return = g32_get_cursor(as); /* get location of cursor

printf (“ The cursor positionis row: %d col: %d/n”";

as —> row, as —> column);
/* Get data from host starting at the current row and column
as —> length = 10; /* length of a pattern on host
return = g32_get_data(as,buffer);/* get data from host
printf(“The data returned is <%s>\n",buffer);

Specifies an integer that signals whether to turn notification Off (if the note

Specifies to turn notification Off (if Note is zero) or On (if Note is nonzero).

*/

*/
*/
*/

*/
*/

AIX 3270 Host Connection Program (HCON) 2-47

g32_notify

/* Try to search for a particular pattern on host */
as —>row =1; /* row to start search */
as —>column =1; /* column to start search */

return = g32_search(as,”"PATTERN");

strcpy (buffer, ”"CLE/0");
return = g32_send keys(as, buffer); /* Send clear key to host */

return = g32 notify(as,0); /* Turn notification off */

Implementation Specifics

Files

The g32_notify function is part of the AIX 3270 Host Connection Program/6000 (HCON).
The g32_notify function requires one of the following network communication adapters:

¢ |BM 3270 Connection Adapter and attachment cables for connection to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non—SNA distributed function terminal (non—-SNA
DFT) mode.

o IBM System/370 Host Interface Adapter and attachment cables for connection to an IBM
5088 Graphics Control Unit.

The g32_notify function requires one of the following IBM System/370 operating syétem
environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP TSO/E,
or MVS/XA TSO/E.

The g32_notify function is not available for Japanese Language Support.

/usr/include/g32_api.h Contains data structures and associated symbol
definitions.

/usr/include/g32const.inc Defines Pascal API constants.

/usr/include/g32hfile.inc Defines Pascal API external definitions.

/usr/include/g32types.inc Defines Pascal API data types.

Related Information

Additional logical terminal interface subroutines are the g32_get_cursor subroutine,
g32_get_data subroutine, g32_search subroutine, and g32_send_keys subroutine.

AlX session control functions are the g3’2_alloc function, g32_close function, g32_dealloc
function, g32_open function, and g32_openx function.

The API file transfer function is the g32_fxfer function.

HCON Overview for Programming, Understanding the HCON Application Programming
Interfaces, Understanding the AIX Interface for HCON API, API error codes, Sample Flows
of API Programs in Communications Programming Concepts.

2-48 Base Operating System Reference

g32_open

g32_open Function

Purpose .

Attaches to a session. If the session does not exist, the session is started.
Library

HCON Library

C (libg3270.a)

Pascal (libg3270p.a)

FORTRAN (libg3270f.a)
C Syntax

#include <g32_api.h>

g32_open(as,flag,uid,pw,sessionname)
struct g32_api *as;

int flag;

char * uid,;

char * pw;

char * sessionname;

Pascal Syntax
function g32open(var as : g32_api; flag : integer;
uid : stringptr;
pw : stringptr;
sessionname : stringptr;) : integer; external;

FORTRAN Syntax

INTEGER G320PEN, RC, AS(9), FLAG
EXTERNAL G320PEN
CHARACTER*XX UID, PW, SESSIONNAME

RC = G320PEN(AS, FLAG, UID, PW, SESSIONNAME)

Description

The g32_open function attaches to a session with the host. If the session does not exist,
the session is started (i.e. implicit). The user is logged on to the host if request. This
function is a subset of the capability provided by the g32_openx function. An application
program must call the g32_open or g32_openx function before calling any other API
function. If an AP application is running implicitly an implicit logon is performed.

HCON application programs using the Pascal language interface must include and link both
the C and Pascal libraries. Applications programs using the FORTRAN language for the

HCON API must include and link both the C and FORTRAN libraries.

C Parameters

as Specifies a pointer to the g32_api structure. Status is returned in this

structure.

AIX 3270 Host Connection Program (HCON)

2-49

g32_open

flag

uid

pw

sessionname

Pascal Parameters
as

flag

Signals whether the logon procedure should be performed. Flag values
are as follows:

¢ |f the emulator is running and the user is logged on to the host, the
value of the flag parameter must be 0 (zero).

» |f the emulator is running, the user is not logged on to the host, and the
AP! logs on to the host, the value of the flag parameter must be set to
1 (one).

¢ |f the emulator is not running and the API application executes an
implicit logon/logoff procedure, the value of flag parameter is ignored.

If the g32_open function is to log on to the host, the vid parameter
specifies a pointer to the logon ID string. If the logon ID is a null string,
the Logon procedure prompts the user for both the logon ID and the
password unless the host login ID is specified in the session profile in
which case the user is prompted only for a password. The logon ID is a
string consisting of the host user ID and, optionally, a list of
comma-separated AUTOLOG variables, which is passed to the implicit
procedure. The following is a sample list of AUTOLOG variables:

userid, node_id, trace, time=n,...

Specifies a pointer to the password string associated with the logon ID
string. The following usage considerations apply to the pw parameter:

* |f no password is to be specified, the user can specify a null string.

» If no value is provided and the program is running implicitly, the logon
procedure prompts the user for the password.

o if the uid parameter is a null string, the pw parameter is ignored.

Specifies a pointer to the name of a session. The session name is a
single character in the range of a—z. Capital letters are interpreted as
lowercase letters.

Specifies the g32_api structure.

Signals whether the logon procedure should be performed.

e If the emulator is running, the user is logged on to host, and the API

application executes as a subshell of the emulator, the value of the flag
parameter must be 0 (zero).

If the emulator is running, the user is not logged on to host, and the API
application executes as a subshell of the emulator and the application is
to perform an implicit logon/logoff procedure, the value of the flag
parameter must be set to 1 (one).

If the emulator is not running and the API application executes an implicit
logon/logoff procedure, the value of flag parameter is ignored.

2-50 Base Operating System Reference

uid

pw

sessionname

g32_open

Specifies a pointer to the logon ID string. If the user ID is a null string, the
Logon procedure prompts the user for both the user ID and the password
unless the host login 1D is specified in the session profile. In the latter case,
the user is prompted only for a password.

Specifies a pointer to the password string associated with the logon 1D

string. If it points to a null string, the Logon procedure prompts the user for
the password. This parameter is ignored if the uid parameter is a null string.

Specifies a pointer to the name of a session, which indicates the host

connectivity to be used by the API application. The session name is a
single character in the range of a—z. Capital letters are interpreted as

lowercase letters.

FORTRAN Parameters

When creating strings in FORTRAN that are to be passed as parameters, the strings must
be terminated by with a null character CHAR(0).

AS Specifies the g32_api equivalent structure as an array of integers.

FLAG Signals whether the logon procedure should be performed.

uiD Specifies a pointer to the logon ID string. If the user ID is a null string, the
Logon procedure prompts the user for both the user ID and the password
unless the host login 1D is specified in the session profile. In the latter case,
the user is prompted only for a password.

PW Specifies a pointer to the password string associated with the logon 1D
string. If the parameter specifies a null string, the Logon procedure prompts
the user for the password. This parameter is ignored if the uid parameter is
a null string.

SESSIONNAME

Return Values

Specifies the name of a session, which indicates the host connectivity to be
used by the AP| application. The session name is a single character in the
range of a—z. Capital letters are interpreted as lowercase letters.

Upon successful completion:

e A value of 0 is returned

* The Ipid bit is set to the session ID.

Upon unsuccessful completion:

e A value of -1 is returned.

+ The errcode bit is set to an error code identifying the error.

* The xerrinfo bit can be set to give more information about the error.

AIX 3270 Host Connection Program (HCON) 2-51

g32_open

Examples
1. C:
#include <g32_api.h>
main()
{
struct g32_ api *as, asx; /* asx 1is statically declared */
int flag=0;
int ret;
char uid[30],pw[307];
char *sn;
char nm='a’;
int log=0;
as = &asx; /* as points to an allocated structure */
sn = &nm;
ret=g32_open(as,log,uid,pw,sn);
}
2. Pascal:
program apitest (input, output);
const
$include /usr/include/g32const.inc
type
%¢include /usr/include/g32types.inc
var

as : g32_api;

rc : integer;

flag : integer;

sn : stringptr;

ret : integer;

uid, pw : stringptr;
%include /usr/include/g32hfile.inc
begin

flag := 0;

new(uid,20);

uid@ := chr(0);

new (pw,20);

pw@ := chr(0);

new (sn,l);

sn@ := ’a’;

ret := g32open(as,flag,uid,pw,sn);

end.

2-52 Base Operating System Reference

g32_open

3. FORTRAN:

INTEGER G320PEN
INTEGER RC, AS(9), FLAG
CHARACTER*20 UID
CHARACTER*10 PW
CHARACTER*1 SN
EXTERNAL G320PEN
UID = CHAR(O0)

PW = CHAR(O)
SN = 'a’//CHAR(0)
FLAG = 0

RC = G320PEN(AS, FLAG, UID, PW, SN)

Implementation Specifics

Files

The g32_open function is part of the AlX 3270 Host Connection Program/6000 (HCON).
The g32_open function requires one of the following network communication adapters:

e IBM 3270 Connection Adapter and attachment cables for connection to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non—SNA distributed function terminal (non—-SNA
DFT) mode.

o IBM System/370 Host Interface Adapter and attachment cables for connection to an IBM
5088 Graphics Control Unit.

The g32_open function requires one of the following IBM System/370 operating system
environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP TSOJE,
or MVS/XA TSOQ/E.

The g32_open function does not feature Japanese Language Support.

/usr/include/g32_api.h

lusr/include/g32const.inc
lustr/include/g32hfile.inc
/usti/include/g32types.inc

‘Related Information

Contains data structures and associated symbol
definitions.

Defines Pascal APl constants
Contains Pascal AP! external definitions
Defines Pascal API data types

Additional session control functions are the g32_alloc function, g32_close functuon
g32_dealloc function, and g32_openx function.

Additional logical terminal interface functions are the g32_get_cursor function,
g32_get_data function, g32_notify function, g32_search function, and g32_send_keys

function.

AIX message interface functions are the g32_get_status function, g32_read function, and

g32_write function.

The API file transter function is the g32_fxfer function.

AIX 3270 Host Connection Program (HCON) 2-53

g32_open

Host interface functions are the G32ALLOC function, G32DLLOC function, G32READ
function, and G32WRITE function.

HCON Overview for Programming, Understanding the HCON Application Programming
Interfaces, Understanding the AlX Interface for HCON API, API error codes, Sample Flows
of API Programs in Communications Programming Concepts.

2-54 Base Operating System Reference

g32_openx

g32_openx Function

Purpose

Library

C Syntax

Attaches to a session and provides extended open capabilities. If the session does not
exist, the session is started.

HCON Library

C (libg3270.a)
Pascal (libg3270p.a)
FORTRAN (libg3270f.a)

#include <g32_api.h>

032_openx(as, flag, uid, pw, sessionname, timeout)
struct g32_api *as;

int flag;

char * vid;

char * pw;

char * sessionname;

char * timeout;

Pascal Syntax

function g32openx(var as : g32_api; flag: integer;
uid : stringptr;

pw : stringptr;

sessionname : stringptr;

timeout : stringptr) : integer; external;

FORTRAN Syntax

INTEGER G320PENX,RC,AS(9),FLAG

EXTERNAL G320PEN
CHARACTER* XX UID, PW, SESSIONNAME

RC = G320PEN (AS, FLAG, UID, PW, SESSIONNAME, TIMEOUT)

Description

The g32_openx function attaches to a session. If the session does not exist, the session is
started. This is an implicit logon. The user is logged on to the host if requested. The
g32_openx function provides additional capability beyond that of the g32_open function.
An application program must call g32_openx or g32_open before any other API function.

If an API application is run implicitly, the function performs an implicit logon is performed.

HCON application programs using the Pascal language interface must include and link both
the C and Pascal libraries. Applications programs using the FORTRAN language for the
HCON API must include and link both the C and FORTRAN libraries.

AIX 3270 Host Connection Program (HCON) 2-55

g32_openx

C Parameters

2-56

The g32_openx function allows for a varying number of parameters after the ‘flag
parameter. This function uses two required parameters: as and flag plus the optional
parameters: uid, pw, session, and timeout.

With the g32_open function, the timeout parameter does not exist and the parameters for
uid, pw, and session are not optional. The reason for making the last four parameters
optional is that the system either prompts for the needed information (uid and pw) or defaults
with valid information (session or timeout).

Unless all of the parameters are defined for this function, the parameter list in the calling
statement must be terminated with the integer 0 (zero) (like the exec function). Providing an
integer of 1 forces a default on an parameter. Use the default to provide a placeholder for
optional parameters that you do not need to supply.

as Specifies a pointer to the g32_api structure.

flag Requires one of the following:

e Set the flag parameter to 0 (zero), if the emulator is running and the user
is logged on to host.

e Set the flag parameter to 1 (one) if the emulator is running, the user is not
logged on to host, and the API application is to perform the logon/logoff
procedure.

The g32_open function ignores the flag parameter, if the emulator is not
running and the API application executes an implicit logon/logoff procedure.

uid Specifies a pointer to the logon ID string. If the logon ID is a null string, the
Logon procedure prompts the user for both the logon ID and the password,
unless the host login ID is specified in the session profile. In the latter case
the user is prompted only for a password. The logon ID is a string consisting
of the host user ID and, optionally, a list of additional variables separated by
session, as shown in the example:

userid,varl,var2,...

In this example, varf is the logon script name (when using AUTOLOG) and

var2 is the optional trace and time values. The list is passed to the implicit
procedure.

pw Specifies a pointer to the password string associated with the logon ID
string. The following usage considerations apply to the pw parameter:

¢ If no password is to be specified, the user can specify a null string.

e If no value is provided and the program is running implicitly, the logon
procedure prompts the user for the password.

¢ If the uid parameter is a null string, the pw parameter is ignored.

sessionname Points to the name of a session. The session name is a single character in
the range of a-z. Capital letters are interpreted as lowercase letters.
Parameters for each session are specified in a per—session profile.

Base Operating System Reference

timeout

Pascal Parameters

032_openx

Specifies a pointer to a numerical string (such as 30 or 60) that specifies the
amount of nonactive time (in seconds) allowed to occur between the
workstation and the host operations (that is, g32_read/G32WRITE). This
parameter is optional. If no value is provided in the calling statement, the
default value is 15 seconds. The minimum value allowed is 1. There is no
maximum value limitation.

When using C as a programming language, you can make use of the feature of variable
numbered parameters. In Pascal, however, this feature is not allowed. Therefore, calls to the
g32_openx function must contain all six parameters.

To use defaults for the four optional parameters of C, provide a variable whose value is a

null string.

Note: The use of the integer one (1) is not allowed in the Pascal version of the g32_openx
function. Space must be allocated for any string pointers prior to calling the
g32_openx function.

as

flag

uid

pw

sessionname

timeout

Specifies the g32_api structure.

Signals whether the logon procedure should be performed.

¢ Set the flag parameter to 0 (zero), if the emulator is running, the user is
logged on to host.

s Set the flag parameter to 1 (one), if the emulator is running, the user is
not logged on to host, and the API application performs the logon/logoff
procedure.

¢ If the emulator is not running and the AP application executes an implicit
logon/logoff procedure, the value of flag is ignored.

Specifies a pointer to the logon ID string. If the logon ID is a null string, the

logon procedure prompts the user for both the logon ID and the password,

unless the host login 1D is-specified in the session profile. In the latter case
the user is prompted only for a password.

Specifies a pointer to the password string associated with the logon ID
string. The following usage considerations apply to the pw parameter:

¢ If no password is to be specified, the user can specify a null string.

¢ If no value is provided and the program is running implicitly, the logon
procedure prompts the user for the password.

» If the uid parameter is a null string, the pw parameter is ignored.

Points to the name of a session. The session name is a single character in
the range of a—z. Capital letters are interpreted as lowercase letters.
Parameters for each session are specified in a per session profile.

Specifies a pointer to a numerical string (such as 30 or 60) that specifies the
amount of nonactive time (in seconds) allowed to occur between the
workstation and the host operations (that is, g32_read/g32WRITE). This
parameter is optional. If no value is provided in the calling statement, the
default value is 15 seconds. The minimum value allowed is one. There is
no maximum value limitation.

AIX 3270 Host Connection Program (HCON) 2-57

032_openx

FORTRAN Parameters
FORTRAN calls to G32_OPENX must contain all six parameters. To use defaults for the
four optional parameters of C language, provide a variable whose value is a null string.
Note that the use of the integer 1 (one) is not allowed in the FORTRAN version of this
function. When creating strings in FORTRAN that are to pass as parameters, the strings
must be linked with a null character, CHAR (0).

AS
FLAG

uiD

PW

SESSIONNAME

TIMEOUT

Return Values

Specifies the g32_api equivalent structure as an array of integers.
Signals that the logon procedure should be performed.

o Set the Flag parameter to 0 (zero), if the emulator is running, the user is
logged on to host.

o Set the Flag parameter to 1 (one), if the emulator is running, the user is
not logged on to host.

o If the emulator is not running and the API application executes an implicit
logon/togoff procedure, the value of Flagis ignored.

Specifies a pointer to the logon ID string. If the logon ID is a null string, the
logon procedure prompts the user for both the logon ID and the password,
unless the host login ID is specified in the session profile. In the latter case
the user is prompted only for a password.

Specifies a pointer to the password string associated with the logon ID
string. The following usage considerations apply to the pw parameter:

¢ If no password is to be specified, the user can specify a null string.

¢ [f no value is provided and the program is running implicitly, the logon
procedure prompts the user for the password.

o If the uid parameter is a null string, the pw parameter is ignored.

Specifies the name of a session. The session name is a single character in
the range of a~z. Capital letters are interpreted as lowercase letters.
Parameters for each session are specified in a per session profile.

Specifies a numerical string (such as 30 or 60) that specifies the amount of
nonactive time (in seconds) allowed to occur between the workstation and
the host operations (that is, g32_read/g32WRITE). There is no maximum
to this, but the minimum is 1 (one).

Upon successful completion:

e A value of 0 is returned.

¢ The Ipid bit is set to the session ID.

Upon unsuccessful completion:

¢ A value of —1 is returned.

¢ The errcode bit is set to an error code identifying the error.

¢ The xerrinfo bit can be set to give more information about the error.

2-58 Base Operating System Reference

Examples

g32_openx

Examples of ways to use the g32_openx function are as follows:

1.

With fewer than four optional string constant parameters specified and used with

AUTOLOG:

g32 openx (AS, 0, “john, tso, trace”, ”"jlzhn”);

g32_openx (AS, 1, “john”, *“jl2hn”, “Z2",
With all optional parameters not specified:

g32_openx (AS, 1, 0);
or
g32_openx (AS, 0, 0);

. With four variable optional parameters:

g32_openx (AS, 0, UID, Pw, Sessionname,

. With fewer than four variable optional parameters:

g32_openx (AS, 1, UID, Pw, 0);
With two default optional parameters:

g32_openx (AS, 0, 1, 1, 1, "60");

. With a mixture:

g32_openx (AS, 0, 1, 1, Session, 0);

. With fewer than four optional string constant parameters specified and used with LAF:

0);

TimeOut);

The following examples illustrate the use of the g32_openx function within a program
segment in the C, Pascal, and FORTRAN languages:

1.

C:

#include <g32 api.h>
main()

{

struct g32_api *as, asx; /* asx 1s a temporary struct */
/* g32.api so that storage */
/* is allocated */

int flag=0;

int ret;

char uid[30],pw[30];
char *sn;

char nm='a’;

char timeout=“60";
int log=0;

sn = &nm;
as =

s&asx; /* as points to an allocated structure */

ret=g32_ openx(as,flag,uid,pw,sn,timeout);

AIX 3270 Host Connection Program (HCON) 2-59

g32_openx

2. Pascal:

program apitest (input, output);
const
$include /usr/include/g32const.inc
type
$include /usr/include/g32types.inc
var

as : g32_api;

rc : integer;

flag : integer;

sn : stringptr;

timeout : stringptr;

ret : integer;

uid, pw : stringptr;
$include /usr/include/g32hfile.inc
begin

flag := 0;

new(uid, 20);

uid@ := chr(0);

new (pw,20);

pw@ := chr(0);

new (sn,l);

sn@ := 'a’;
new (timeout,32);
timeout@ := ’'60’;

ret := g32openx(as,flag,uid,pw,sn,timeout);

end.
3. FORTRAN:

INTEGER G320PENX
INTEGER RC, AS(9), FLAG
CHARACTER*20 UID
CHARACTER*10 PW
CHARACTER*10 TIMEOUT
CHARACTER*1 SN
EXTERNAL G320PENX
UID = CHAR(O)
TIMEOUT = CHAR(0)
MODEL = CHAR(O0)

PW = CHAR(O0)

SN = 'a’//CHAR(0)
TIMEOUT = '60'//CHAR(0)
FLAG = 0

RC = G320PENX(AS, FLAG, UID, PW, SN, TIMEOUT)

2-60 Base Operating System Reference

g32_openx

Implementation Specifics

Files

The g32_openx function is part of the AIX 3270 Host Connection Program/6000 (HCON).
The g32_openx function requires one of the following network communication adapters:

» |BM 3270 Connection Adapter and attachment cables for connection to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non—SNA distributed function terminal (non—-SNA
DFT) mode.

e IBM System/370 Host Interface Adapter and attachment cables for connection to an IBM
5088 Graphics Control Unit.

The g32_openx function requires one of the following IBM System/370 operating system
environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP TSO/E,
or MVS/XA TSO/E.

The g32_openx function is not available for Japanese Language Support.

/usr/include/g32_api.h Contains data structures and associated symbol
definitions.

/usr/include/g32const.inc Defines Pascal AP| constants

/usr/include/g32hfile.inc Defines Pascal API external definitions

{/usr/include/g32types.inc Defines Pascal API data types

Related Information

Additional session control functions are the g32_alloc function, g32_close function,
g32_dealloc function, and g32_open function.

Additional logical terminal interface functions are the g32_get_cursor function,
g32_get_data function, g32_search function, g32_notify function, and g32_send_keys
function.

AIX message interface functions are the g32_get_status function, g32_read function, and
g32_write function.

The API file transfer functions is the g32_fxfer function.

Host interface functions are the G32ALLOC function, G32DLLOC function, G32READ
function, and G32WRITE function.

HCON Overview for Programming, Understanding the HCON Application Programming
Interfaces, Understanding the AIX Interface for HCON API, API error codes, Sample Flows
of API Programs in Communications Programming Concepts.

AIX 3270 Host Connection Program (HCON) 2-61

G32READ

G32READ Function

Purpose

Receives a message from the AIX API application running simuitaneously on the RISC
System/6000.

Syntax
G32READ

Description
The G32READ function receives a message from an AlIX AP application. The G32READ

function returns when a message is received. The status of the transmission is returned in
register zero (RO).

The G32READ function returns the following values:
RO Is the number of bytes read.

R1 Is the address of the message buffer.

Return Values
The G32READ function sets register zero (RO) to the following values:

>=0 Normal return. This is the length of the message (the number of bytes
read).
<0 Less than zero. Host API error condition.

In VM/CMS, storage for the read command is obtained using the DMSFREE macro. RO
contains the number of bytes read. R1 contains the address of the buffer. It is the
responsibility of the host application to release the buffer with a DMSFRET call. Assuming
the byte count and address are in RO and R1, respectively, the following code fragment
should be used to free the buffer:

SRL RO,3
A RO,=F’1’
DMSFRET DWORDS=(0),LOC=(1)

In MVS/TSO, storage for the READ command is obtained using the GETMAIN macro. RO
contains the number of bytes read. R1 contains the address of the buffer. The host
application must release the buffer with a FREEMAIN call.

In MVS/TSO, when programming an AP| assembly language application, you must be
careful with the TPUT macro. If it is used in a sequence of G32READ and G32WRITE
subroutines, it will interrupt the API/API mode and switch the host to API/3270 mode to exist.
You will not be able to get the AP!/API mode back until you send the Enter key.

2-62 Base Operating System Reference

G32READ

Example
The following 370 Assembler code example illustrates the use of the host G32READ
function:
MEMORY L 12,=v(G32DATA) /* SET POINTER TO API DATA AREA */

L 2,=F'2’

G32READ /* RECEIVE MESSAGE FROM AIX */
ST 1,ADDR /* STORE ADDRESS OF MESSAGE */
ST 0,LEN /* STORE LENGTH OF MESSAGE */

BAL 14,CHECK

Implementation Specifics
The G32READ function is part of the AIX 3270 Host Connection Program/6000 (HCON).

The G32READ function requires one of the following network communication adapters:

¢ IBM 3270 Connection Adapter and attachment cables for connection to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 8370 Work Station
Subsystem Controller configured for non-SNA distributed function terminal (non—SNA
DFT) mode.

¢ IBM System/370 Host Interface Adapter and attachment cables for connection to an IBM
5088 Graphics Control Unit.

The G32READ function requires one of the following IBM System/370 operating system
environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP TSO/E,
or MVS/XA TSO/E.

The G32READ function is not available for Japanese Language Support.

Related Information
Additional host interface functions are the G32ALLOC function, G32DLLOC function, and
G32WRITE function.

AlX session control subroutines are the g32_alloc subroutine, g32_close subroutine,
g32_dealloc subroutine, g32_open subroutine, and g32_openx subroutine.

AIX message interface subroutines are the g32_get_status subroutine, g32_read
subroutine, and g32_write subroutine.

For documentation on the DMSFREE and DMSFRET macros, consult the VM/SP System
Programmer’s Guide.

For documentation on the GETMAIN and FREEMAIN macros, consult the MVS/XA System
Macros and Facilities, Volume 2 or MVS/XA Supervisor Services and Macro Instructions.

AIX 3270 Host Connection Program (HCON) 2-63

G32READ

HCON Overview for Programming, Understanding the HCON Application Programming

Interfaces, Understanding the HCON Host Interface in Communications Programming
Concepts.

How to Compile a Host HCON API Program, Host API Errors, Sample Flows of API
Programs in Communications Programming Concepts.

2-64 Base Operating System Reference

032_read

g32_read Function

Purpose

Receives a message from a host application.
Library

HCON Library

C (libg3270.a)

Pascal (libg3270p.a)

FORTRAN (libg3270t.a)
C Syntax

#include <g32_api.h>

g32_read (as, msgbuf, msglen)
struct g32_api *as;

char **msgbuf;

int *msglen;

Pascal Syntax
function g32read (var as : g32_api;

var Buffer : stringptr;
var msglen : integer) : integer; external;

FORTRAN Syntax

EXTERNAL G32READ

INTEGER AS(9), BUFLEN, G32READ
INTEGER AS(9), BUFLEN, G32READ
CHARACTER *XX MSGBUF

RC= G32READ (AS, MSGBUF, BUFLEN)

Description
The g32_read function receives a message from a host application. The g32_read function
may only be used by those applications having API/API or API/API_T mode specified with
the g32_alloc function.

¢ In C or Pascal, a buffer is obtained, a pointer to the buffer is saved, and the message
from the host is read into the buffer. The length of the message and the address of the
buffer are returned to the user application.

e In FORTRAN, the calling procedure must pass a buffer large enough for the incoming
message. The BUFLEN parameter must be the actual size of the buffer. The G32READ
function uses the BUFLEN parameter as the upper array bound. Therefore, any
messages larger than BUFLEN are truncated to fit the buffer.

HCON application programs using the Pascal language interface must include and link both
the C and Pascal libraries. Applications programs using the FORTRAN language for the
HCON API must include and link both the C and FORTRAN libraries.

AIX 3270 Host Connection Program (HCON) 2—-65

032_read

C Parameters
as Specifies a pointer to a g32_api structure.

msgbuf Specifies a pointer to a pointer to a buffer where a message from the host is
placed. The AP! obtains space for this buffer by using the AIX malloc library
subroutine, and the user is responsible for releasing it by issuing a free call
after the g32_read function.

msglen Specifies a pointer to an integer where the length, in bytes, of the msgbuf
parameter is placed. The message length must be greater than 0 (zero) but
less than or equal to the maximum I/O buffer size parameter specified in the
HCON session profile.

Pascal Parameters
as Specifies the g32_api structure.

Buffer Specifies a stringptr. The AP obtains space for this buffer by using the AlX
malloc C library subroutine, and the user is responsible for releasing it by
issuing a dispose subroutine after the g32_read function.

msglen Specifies an integer where the number of bytes read is placed. The
message length must be greater than O (zero) but less than or equal to the
maximum /O buffer size parameter specified in the HCON session profile.

FORTRAN Parameters

AS Specifies the g32_api equivalent structure.
MSGBUF Specifies the storage area for the character data read from the host.
BUFLEN Specifies the size, in bytes, of the value contained in the MSGBUF

parameter. The message length must be greater than 0 (zero) and less
than the maximum [/O buffer size parameter specified in the HCON
session profile.

Return Values
Upon successful completion:
e The number of bytes read is returned (=0).
Upon unsuccessful completion:

¢ An error code —1 is returned.

The errcode bit is set to the error code identifying the error.

The xerrinfo bit can be set to give more information about the error.

Example

C Language
1. The following example illustrates the use of the g32read function:

#include <g32_api> /* API include file */
main()

{

struct g32_api *as; /* g32 api structure */

2-66 Base Operating System Reference

g32_read

char **msg_buf; /* pointer to host msg buffer */

char *messg; /* pointer to character string */

int *msg_len; /* pointer to host msg length */

char * malloc(); /* C memory allocation function */

int return; /* return code is no. of bytes read */
messg = malloc(30); /* allocate 30 bytes */

msg_buff = &messg; /* point to a string */

msg_len = malloc(sizeof(int)); /* allocate storage */

return = g32_read(as, msg_buff, msg len);

Implementation Specifics
The g32_read function is part of the AIX 3270 Host Connection Program/6000 (HCON).

The g32_read function requires one of the following network communication adapters:

s IBM 3270 Connection Adapter and attachment cables for connection to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non—SNA distributed function terminal (non-SNA
DFT) mode.

o IBM System/370 Host Interface Adapter and attachment cables for connection to an 1BM
5088 Graphics Contro! Unit.

The g32_read function requires one of the following IBM System/370 operating system
environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP TSO/E,
or MVS/XA TSO/E.

The g32_read function is not available for Japanese Language Support.

Files
/usr/include/g32_api.h Contains data structures and associated symbol
definitions.
/usr/include/g32const.inc Defines Pascal API constants
/usr/include/g32hfile.inc Defines Pascal API external definitions
/usr/include/g32types.inc Defines Pascal AP| data types

Related Information
Additional message interface functions are the g32_get_status function and g32_write
function.

AIX session control functions are the g32_alloc function, g32_close function, g32_dealloc
function, g32_open function, and g32_openx function.

The API file transfer function is the g32_fxfer function.

Host interface functions are the G32ALLOC function, G32DLLOC function, G32READ
function, and G32WRITE function.

AIX 3270 Host Connection Program (HCON) 2-67

g32_read

The malloc subroutine and free subroutine.
HCON Overview for Programming, Understanding the HCON Application Programming

Interface, Understanding the AlX Interface for HCON API, API error codes, Sample Flows of
API Programs in Communications Programming Concepts.

2-68 Base Operating System Reference

g32_search

g32_search Function

Purpose

Library

C Syntax

Searches for a character pattern in a presentation space.

HCON Library

C (libg3270.a)

Pascal (libg3270p.a)
FORTRAN (libg3270f.a)

#include <g32_api.h>

032_search(as,pattern)
struct g32_api *as;
char *pattern;

Pascal Syntax

function g32srch(var as : g32_api;
pattern : stringptr) : integer; external;

FORTRAN Syntax

EXTERNAL G32SEARCH

INTEGER AS(9), G32SEARCH
CHARACTER *XX PATTERN

RC = G32SEARCH(AS,PATTERN)

Description
The g32_search function searches for the specified byte pattern in the presentation space

associated with the application.

Note: The g32_search function can only be used in AP1/3270 mode.

The search is performed from the row and column given in the g32_api structure to the end
of the presentation space. Note that the row and column positions start at 1 (one) and not 0

(zero). If you start at 0 for row and column, you get invalid position errors.

In any given search pattern, the following characters have special meaning:

? The Question mark is the arbitrary character, matching any one character.

* The Asterisk is the wildcard character, matching any sequence of zero or
more characters.

\ The Backslash is the escape character meaning the next character is to be

interpreted literally.

AlX 3270 Host Connection Program (HCON)

2-69

g32_search

The following rules apply to the use of wildcard characters:
e The pattern can not begin with the wildcard character.
e The pattern can not end with the wildcard character.

s The pattern can not contain two consecutive wildcard characters.

Pattern Matching Example

The string AB?DE matches any of ABCDE, ABADE, ABxDE, but does not match ABCD,
ABCCDE, or ABDE. '

The string AB*DE matches any of ABCDE, AB9DE, ABCCDE, ABDE, but does not match
ABCD, ABCDF, or ABC.

Pattern Matching in C and Pascal:

If the pattern needs to contain either a question mark or an asterisk as a literal character,
these symbols must be preceded by two escape characters (\? or *). For example, to
search for the string, How are you today?, the pattern might be:

How are you today \\?

The backslash can be used as a literal character by specifying four backslash characters

(W) in the pattern. For example, to search for the string, We found the \., the pattern might
be:

We found the \\\\.

Pattern Matching in FORTRAN:

If the pattern needs to contain either a question mark or an asterisk as a literal character,
these symbols must be preceded by one escape character (\? or *). For example, to search
for the string, How are you today?, the pattern might be:

How are you today\?

The backslash can be used as a literal character by specifying two backslash characters (\\)
in the pattern. For example, to search for the string, We found the \., the pattern might be:

We found the \\.
HCON application programs using the Pascal language interface must include and link both

the C and Pascal libraries. Applications programs using the FORTRAN language for the
HCON API must include and link both the C and FORTRAN libraries.

C Parameters

as Specifies a pointer to a g32_api structure. It also contains the row and
column where the search should begin. Status information is returned in this
structure.

pattern Specifies a pointer to a byte pattern, which is searched for in the

presentation space.

Pascal Parameters

2-70

as Specifies the g32_api structure.

Base Operating System Reference

g32_search

pattern Specifies pointer to a string containing the pattern to search for in the

presentation space. The string must be at least as long as the length
indicated in the g32_api structure.

FORTRAN Parameters
AS Specifies a g32_api equivalent structure as an array of integers.
Pattern Specifies string that is searched for in the presentation space.

Return Values
Upon successful completion:

e Avalue of 0 is returned

¢ The corresponding row element of the as structure is the row position of the beginning of
the matched string.

e The corresponding column element of the as structure is the column position of the
beginning of the matched string.

e The corresponding length element of the as structure is the length of the matched string.

Upon unsuccessful completion:

An error code —1 is returned.

The errcode bit is set to the error code identifying the error.

The xerrinfo bit can be set to give more information about the error.

Example
C Language1

. The following example fragment illustrates the use of the g32_search function in an
api_3270 mode program:

Note: The following example is missing the required g32_open and g32_alloc
functions which are necessary for every HCON Workstation AP| program.

#include <g32_api.h> /* API include file */
main()

{

struct g32 api *as; /* g32 structure */

AIX 3270 Host Connection Program (HCON) 2-71

g32_search

char *buffer; /* pointer to char string */

int return; /* return code */

char *malloc(); /* C memory allocation function */
return = g32 notify(as,1); /* Turn notification on */

buffer = malloc(10);

return = g32_get_cursor(as); /* get location of cursor */
printf (“ The cursor positionis row: %d col: %d/n”;

as —> row, as —> column);
/* Get data from host starting at the current row and column */
as —> length = 10; /* length of a pattern on host */
return = g32 get data(as,buffer); /* get data from host */
printf(“The data returned is <%s>\n”,buffer);

/* Try to search for a particular pattern on host */

as —>row =1; /* row to start search */

as —>column =1; /* column to start search */
return = g32_search(as,”PATTERN");

/*Send a clear key to the host *?
strcpy (buffer, "CLE/0");
return = g32_send_keys(as, buffer);

/* Turn notification off */
return = g32_notify(as,0);

Implementation Specifics
The g32_search function is part of the AIX 3270 Host Connection Program/6000 (HCON).

The g32_search function requires one of the following network communication adapters:

o [BM 3270 Connection Adapter and attachment cables for connection to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non—SNA distributed function terminal (non—SNA
DFT) mode.

* |BM System/370 Host Interface Adapter and attachment cables for connection to an IBM
5088 Graphics Control Unit.

The g32_search function requires one of the following IBM System/370 operating system

environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP TSOJE,
or MVS/XA TSO/E.

The g32_search function is not available for Japanese Language Support.

Files
/usr/include/g32_api.h Contains data structures and associated symbol
definitions.
/usr/include/g32const.inc Defines Pascal APl constants
/usrfinclude/g32hfile.inc Defines Pascal API external definitions
/usr/include/g32types.inc Defines Pascal API data types

2-72 Base Operating System Reference

g32_search

Related Information
Additional Logical Termina! Interface functions are the g32_get_cursor function,
g32_get_data function, g32_notify function, and g32_send_keys function.

AlX session control functions are the g32_alloc function, g32_close function, g32_dealloc
function, g32_open function, and g32_openx function.

The API file transfer function is the g32_fxfer function.

HCON Overview for Programming, Understanding the HCON Application Programming
Interfaces, Understanding the AlX Interface for HCON API, API error codes, Sample Flows
of API Programs in Communications Programming Concepts.

AIX 3270 Host Connection Program (HCON) 2-73

032_send_keys

032_send_keys Function

Purpose

Sends key strokes to the terminal emulator.
Library

HCON Library

C (libg3270.a)

Pascal (libg3270p.a)

FORTRAN (libg3270f.a)
C Syntax

#include <g32_api.h>
#include <g32_keys.h>

032_send_keys(as,buffer)

struct g32_api *as;
char *buffer,

Pascal Syntax
const
%include /usr/include/g32keys.inc
function g32sdky (var as : g32_api;
buffer : stringptr) : integer; external;

FORTRAN Syntax

EXTERNAL G32SENDKEYS
INTEGER AS(9), G32SENDKEYS
CHARACTER *XX BUFFER

RC = G32SENDKEYS(AS,BUFFER)

Description
The g32_send_keys function sends one or more key strokes to a terminal emulator as
though they came from the keyboard. ASCII characters are sent by coding their ASCI|
value. Other keys (such as Enter and the cursor-movement keys) are sent by coding their
values from the g32_keys.h file (for C programs) or g32keys.inc file (for Pascal programs).

FORTRAN users send other keys by passing the name of the key through the
G32SENDKEYS buffer.

The g32_send_keys function can only be used in AP1/3270 mode.

C Parameters

as Specifies a pointer to the g32_api structure. Status is returned in this
structure.
buffer Specifies a pointer to a buffer of key stroke data.

2-74 Base Operating System Reference

Pascal Parameters

032_send_keys

as Specifies the g32_api structure. Status is returned in this structure.

buffer Specifies a pointer to a string containing the keys to be sent to the host. The
string must be at least as long as indicated in the g32_api structure.

FORTRAN Parameters
AS

BUFFER

Return Values

Specifies the g32_api equivalent structure as an array of integers.

The character array containing the key sequence to send to the host. A

special emulator key can be sent by the g32_send_keys function as
follows:

BUFFER = 'ENTER’//CHAR(0)
RC = G32SENDKEYS (AS,BUFFER)

The special emulator strings recognized by the g32_send_keys function
are as follows:

CLEAR DELETE DUP ENTER
EOF ERASE FMARK HOME
INSERT NEWLINE RESET SYSREQ
LEFT RIGHT up DOWN
LLEFT RRIGHT uup DDOWN
TAB BTAB

PAl PA2 PA3

PF1 PF2 PF3 PF4
PF5 PF6 PF7 : PF8
PF9 PF10 PF11 PF12
PF13 PF14 PF15 PF16
PF17 PF18 PF19 ~ PF20
PF21 PF22 PF23 PF24

Upon successful completion:

e A value of 0 is returned.

Upon unsuccessful completion:

e An error code ~1 is returned.

e The errcode bit is set to the error code identifying the error.

¢ The xerrinfo bit can be set to give more information about the error.

Examples
C Language
1

. The following example fragment illustrates the use of the g32_send_keys function in an

api_3270 mode program:

Note: The following example is missing the required g32_open and g32_alloc
functions which are necessary for every HCON Workstation AP! program.

AIX 3270 Host Connection Program (HCON) 2-75

032_send_keys

#include <g32_api.h> /* API include file */

main()

{

struct g32 _api *as; /* g32 structure */

char *buffer; /* pointer to char string */
int return; /* return code */

char *malloc(); /* C memory allocation function */
return = g32 notify(as,l); /* Turn notification on */
buffer = malloc(10);

return = g32_get_cursor(as); /* get location of cursor */
printf (“ The cursor positionis row: %d col: %d/n”;

as —> row, as —> colunn);
/* Get data from host starting at the current row and column */
as —> length = 10; /* length of a pattern on host */
return = g32 get data(as,buffer); /* get data from host */
printf (“The data returned is <%s>\n",buffer);

/% Try to search for a particular pattern on host */

as —>row =1; /* row to start search */

as —>column =1; /* column to start search */
return = g32_search(as,”PATTERN");

/*Send a clear key to the host *?
strcpy (buffer, ”"CLE/0");
return = g32_send keys(as, buffer);

/* Turn notification off */
return = g32_notify(as,0);

Implementation Specifics

2-76

The g32_send_keys function is part of the AIX 3270 Host Connection Program/6000
(HCON).

The g32_send_keys function requires one of the following network communication
adapters:

» IBM 3270 Connection Adapter and attachment cables for connection to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non—SNA distributed function terminal (non-SNA
DFT) mode.

* IBM System/370 Host Interface Adapter and attachment cables for connection to an IBM
5088 Graphics Control Unit.

The g32_send_keys function requires one of the following IBM System/370 operating

system environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP
TSO/E, or MVS/XA TSO/E.

The g32_send_keys function is not available for Japanese Language Support.

Base Operating System Reference

g32_send_keys

Files

/usr/include/g32_api.h Contains data structures and associated symbol
definitions.

lusrfinclude/g32_keys.h Defines key values for C language use.
/usr/include/g32keys.inc Defines key values for Pascal language use.
/usr/include/g32const.inc Defines Pascal AP| constants.
/usr/include/g32hfile.inc Defines Pascal API external definitions.
/usr/include/g32types.inc Defines Pascal API data types.

Related Information
Additional Logical Terminal Interface functions are the g32_get_cursor function,
g32_get_data function, g32_notify function, and g32_search function.

AIX session controf functions are the g32_alloc function, g32_close function, g32_dealloc
function, g32_open function, and g32_openx function.

The API file transfer function is the g32_fxfer function.

HCON Overview for Programming, Understanding the HCON Application Programming
Interfaces, Understanding the AIX Interface for HCON API, AP1 error codes, Sample Flows
of API Programs in Communications Programming Concepts.

AIX 3270 Host Connection Program (HCON) 2-77

G32WRITE

G32WRITE Function

Purpose
Sends a message to an AiX API application running simultaneously on the RISC
System/6000.

Syntax
G32WRITE MSG,LEN

Description
The G32WRITE function sends a message to an AIX API application. The maximum number
of bytes that may be transferred is specified by the value returned in RO after a successful
completion of the G32ALLOC function.
The G32 WRITE function is a HCON API function that can be called by a 370 Assembler
applications program.

Parameters

MSG The address of the message to be sent. It may be:
Label A label on a DC or DS statement declaring the message.
O(reg) A register containing the address of the message.

LEN | The length, specified in bytes, of the message. It is a full word, whose contents
cannot exceed the value returned by the G32ALLOC function in RO. It must be:

Label The address of a full word containing the length of the message.

Return Values
The G32WRITE function sets register 0 (zero) to the following values:

0 Zero. A normal return; call successful.
<0 Less than zero. Host API error condition.
Examples
The following 370 Assembler code example illustrates the use of the host G32WRITE
function:

L R11,=v(G32DATA)
USING G32DATAD,R11

G32WRITE MSG1l, LEN1 /* write ”"Hello” to AIX */
LTR RO,RO /* check return code */
BE WRITEOK /* if good, go to write */

(error code)

MSG1 DC C ’HELLO’
LEN1 DC AL4(*—MSG1)

2-78 Base Operating System Reference

G32WRITE

Implementation Specifics
The G32WRITE function is part of the AIX 3270 Host Connection Program/6000 (HCON).

The G32WRITE function requires one of the following network communication adapters:

o |BM 3270 Connection Adapter and attachment cables for connection to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non-SNA distributed function terminal (non-SNA
DFT) mode.

¢ IBM System/370 Host Interface Adapter and attachment cables for connection to an IBM
5088 Graphics Control Unit.

The G32WRITE function requires one of the following IBM System/370 operating system
environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP TSO/E,
or MVS/XA TSO/E.

The G32WRITE function is not available for Japanese Language Support.
Related Information

Additional host interface functions are the G32ALLOC function, G32DLLOC function, and
G32WRITE function.

AIX session control subroutines are the g32_alloc subroutine, g32_close subroutine,
g32_dealloc subroutine, g32_open subroutine, and g32_openx subroutine.

AIX message interface subroutines are the g32_get_status subroutine, g32_read
subroutine, and g32_write subroutine.

HCON Overview for Programming, Understanding the HCON Application Programming
Interfaces, Understanding the HCON Host Interface in Communications Programming
Concepts.

How to Compile a Host HCON API Program, Host AP! Errors, Sample Flows of API
Programs in Communications Programming Concepts.

AIX 3270 Host Connection Program (HCON) 2-79

g32_write

g32_write Function

Purpose

Sends a message to a host application.
Library

HCON Library

C (libg3270.a)

Pascal (libg3270p.a)

FORTRAN (libg3270f.a)
C Syntax

#include <g32_api.h>

g32_write(as, msgbuf, msglen)
struct g32_api *as;

char *msgbuf,

int msglen;

Pascal Syntax

function g32wrte (var as : g32_api;
Buffer : integer;
msglen : integer) : integer; external;

FORTRAN Syntax
EXTERNAL G32WRITE

INTEGER AS(9), MSGLEN, G32WRITE
CHARACTER* XX MSGBUF

RC = G32WRITE(AS, MSGBUF, MSGLEN)

Description
The g32_write function sends the message pointed to by the msgbuf parameter to the host.

This function may only be used by those applications having API/API or API/API_T mode
specified by the g32_alloc command.

HCON application programs using the Pascal language interface must include and link both
the C and Pascal libraries. Applications programs using the FORTRAN language for the
HCON API must include and link both the C and FORTRAN libraries.

C Parameters

as Specifies the pointer to a g32_api structure.
msgbuf Specifies a pointer to a message, which is a byte string.
msglen Specifies the length, in bytes, of the message pointed to by the msgbuf

parameter. The value of the msglen parameter must be greater than 0 and
and less than or equal to the maximum I/O buffer size specified in the
HCON session profile.

2-80 Base Operating System Reference

Pascal Parameters

FORTRAN

as Specifies the g32_api structure.

g32_write

Buffer Specifies an address of a character—packed array.

Note: The address of a packed array can be obtained by the addr()
function call: buffer ;= addr (<msg array name> [1 (one)])

msglen Specifies an integer indicating the length of the message to send to the
host. The msglen parameter must be greater than 0 and less than or equal
to the maximum /O buffer size specified in the HCON session profile.

Parameters

AS Specifies the g32_api equivalent structure as an array of integers.
MSGBUF Specifies a character array containing the data to be sent to the host.
MSGLEN Specifies the number of bytes to be sent to the host. The MSGLEN

parameter must be greater than 0 and less than or equal to the maximum
I/0 buffer size specified in the HCON session profile.

Return Values

Example
C Language

Upon successful completion:

¢ The number of bytes written is returned (>= 0).

Upon unsuccessful completion:

¢ An error code —1 is returned.

s The errcode bit is set to the error code identifying the error.

¢ The xerrinfo bit can be set to give more information about the error.

1. The following example illustrates the use of the g32_write function:
#include <g32_ api> /* API include */
main()
{
struct g32_api *as; /* the g32 structure */
char *messg; /* pointer to a character string
to send to the host */
int length; /* Number of bytes sent */
char *malloc(); /* C memory allocation function
* /

int return; /*

return code is no. of bytes
sent */

AIX 3270 Host Connection Program (HCON) 2-81

g32_write

messg = malloc(30); /* allocate 30 bytes for the string */
/* initialize message string with information */

strcpy(messg,“string to be sent to host/0”

length = strlen(messg); /* length of the message */

return g32_write(as,messg,length);

Implementation Specifics

Files

The g32_write function is part of the AIX 3270 Host Connection Program/6000 (HCON).
The g32_write function requires one of the following network communication adapters:

e IBM 3270 Connection Adapter and attachment cables for connection to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station

Subsystem Controller configured for non—-SNA distributed function terminal (non-SNA
DFT) mode.

¢ IBM System/370 Host Interface Adapter and attachment cables for connection to an IBM
5088 Graphics Control Unit.

The g32_write function requires one of the following IBM System/370 operating system
environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP TSO/E,
or MVS/XA TSO/E.

The g32_write function is not available for Japanese Language Support.

/usr/include/g32_api.h Contains data structures and associated symbol
definitions.

/usr/include/g32const.inc Defines Pascal API constants

/usr/include/g32hfile.inc Defines Pascal API external definitions

/usr/include/g32types.inc Defines Pascal API data types

Related Information

Additional message interface functions are the g32_get_status function and g32_read
function.

AlX session control functions are the g32_alloc function, g32_close function, g32_dealloc
function, g32_open function, and g32_openx function.

The API file transfer functions is the g32_fxfer function.

Host interface functions are the G32ALLOC function, G32DLLOC function, G32READ
function, and G32WRITE function.

HCON Overview for Programming, Understanding the HCON Application Programming
Interfaces, Understanding the AIX Interface for HCON API, API error codes, Sample Flows
of API Programs in Communications Programming Concepts.

2-82 Base Operating System Reference

IF-ELSE

IF-ELSE Statement

Purpose
Provides a two—way alternative test for conditional execution of Logon Assist Feature (LAF)
statements.

Syntax
IF (condition) t-statement [ELSE f-statement]

Description
The IF-ELSE statement provides a two—way alternative test for conditional execution of LAF
statements. The IF-ELSE statement is one of the script statements in the LAF language
that are used to compose a LAF script.

Expressions
condition Condition to be evaluated
I-statement Statement performed if condition evaluates true
f-statement Statement performed if condition evaluates false

Example

The statements below search for a pattern. If a match is found, PA2 is sent to the host and a
WAIT statement is executed, else the program exists with a return code of three (3).

IF (MATCH)DO
SEND (PA2);
WAIT(1);
END;

ELSE
EXIT(3);

Implementation Specifics
The IF-ELSE statement is part of the Logon Assist Feature of the AlX 3270 Host
Connection Program/6000 (HCON). '

Related Information
How To Use a Logon Assist Feature Script, Understanding the Logon Assist Feature (LAF)
in Communications Programming Concepts.

HCON Overview for Programming in Communications Programming Concepts.

AIX 3270 Host Connection Program (HCON) 2-83

MATCH

MATCH Statement

Purpose
Searches for a pattern in the current presentation space.

Syntax
MATCH(rownum,colnum, string| ARG(N));

Description
The Logon Assist Feature (LAF) MATCH statement searches for a pattern in the current
presentation space. The presentation space is the characters that appear on a terminal
display. The MATCH statement searches without waiting for receipt of data from the host.
The MATCH statement is one of the script statements in the LAF language that are used to
compose a LAF script.

The special variable MATCH is set to 0 (zero) if the operation is not successful and to 1
(one) if the operation is successful . If the search is successful, the special variables ROW
and COL are set to reflect the location of the beginning of the match in the presentation
space.

Note: The WAIT statement can be used before MATCHAT (or MATCH) to control the time
delay to receive data from the host before searching the presentation space.

Parameters
rownum Specifies the row number in the presentation space at which to
begin the search for the pattern.

colnum Specifies the column number in the presentation space to begin
searching for the pattern.

string Contains the string pattern to be used in the search.

ARG(N) Contains the string pattern that is the Nth argument in the LAF
logon ID string and should be used in the search.

Example
The MATCH statement searches the entire presentation space for the string MORE starting at
row 24, column 1.

MATCH(24,1,"MORE");
Implementation Specifics

The MATCH statement is part of the Logon Assist Feature of the AIX 3270 Host Connection
Program/6000 (HCON).

Related Information
How To Use a Logon Assist Feature Script, Understanding the Logon Assist Feature (LAF)
in Communications Programming Concepts.

HCON Overview for Programming in Communications Programming Concepts.

2-84 Base Operating System Reference

MATCHAT

MATCHAT Statement

Purpose

Syntax

Searches for a pattern in the current presentation space.

MATCHAT(rownum,colnum,string| ARG(N));

Description

The MATCHAT LAF statement is very similar to the MATCH statement. It searches for a
pattern in the current presentation space without waiting for receipt of data from the host.
The search is successful only if a match is found in the presentation space beginning at the
specified position. The MATCHAT statement is one of the script statements in the LAF
language that are used to compose a LAF script.

If a MATCHAT search operation is successful, ROW and COL are always set equal to
rownum and colnum. The special variable MATCHis set to O (zero), if the operation is not
successful and to 1 (one) for successful completion.

Note: The WAIT statement can be used before MATCHAT (or MATCH) to control the time
delay to receive data from the host before searching the presentation space.

Parameters

Example

rownum Specifies the row number in the presentation space to begin the
search for the pattern.

colnum Specifies the column number in the presentation space at which to
search for the pattern.

string Contains the string pattern to be used in the search

ARG(N) Contains the string pattern that is the Nth argument in the LAF
logon ID string and should be used in the search.

The MATCHAT statement searches for VvM/370?0NLINE string starting at row 1, column 1:

MATCHAT (1,1, 'VM/370?0NLINE’);

Implementation Specifics

The MATCHAT statement is part of the Logon Assist Feature of the AIX 3270 Host
Connection Program/6000 (HCON).

Related Information

The MATCH statement ar_\d RECEIVE statement.

How To Use a Logon Assist Feature Script, Understanding the Logon Assist Feature (LAF)
in Communications Programming Conceplts.

AIX 3270 Host Connection Program (HCON) 2-85

NODEBUG

NODEBUG Statement

Purpose
Disables debugging messages in a LAF script.

Syntax
NODEBUG;

Description
The NODEBUG statement turns off the generation of run-time debugging messages. The

NODEBUG statement is one of the script statements in the LAF language that are used to
compose a LAF script.

Implementation Specifics
The NODEBUG statement is part of the Logon Assist Feature of the AIX 3270 Host
Connection Program/6000 (HCON).

Related Information

How To Use a Logon Assist Feature Script, Understanding the Logon Assist Feature (LAF)
in Communications Programming Concepts.

HCON Overview for Programming in Communications Programming Concepts.

2-86 Base Operating System Reference

RECEIVE

RECEIVE Statement

Purpose
Waits for data to be received from the host and then searches the presentation space for a
pattern.

Syntax
RECEIVE(rownum,colnum,string | ARG(N));

Description
The RECEIVE statement waits 15 seconds or until data is received from the host and then
searches the presentation space for a pattern. The RECEIVE statement is one of the script
statements in the LAF language that are used to compose a LAF script.

The special variable MATCH is set to 0 (zero), if the RECEIVE operation is not successful,
and to 1 if the operation is successful. If the search is successful, the special variables ROW
and COL are set to reflect the location of the beginning of the match in the presentation
space.

Parameters

rownum Specifies the row number in the presentation space at which to begin the
search for the pattern.

colnum Specifies the column number in the presentation space at which to begin
the search for the pattern.

string Specifies a text string.

ARG(N) Contains the string pattern which is the Nth argument in the LAF logon ID
string and should be used in the search.

Example
The RECEIVE statement searches for MORE..., starting in row 25, column 75:

RECEIVE(25,75, 'MORE...");

Note: The RECEIVE statement waits up to 15 seconds to receive data from the host before
searching the presentation space, but the MATCH and MATCHAT statements search
immediately. The WAIT statement can be used in combination with MATCH and
MATCHAT to control the time delay to receive data from the host.

Implementation Specifics

The RECEIVE statement is part of the Logon Assist Feature of the AIX 3270 Host
Connection Program/6000 (HCON).

AIX 3270 Host Connection Program (HCON) 2-87

RECEIVE

Related Information
The MATCHAT statement and WAIT statement.

How To Use a Logon Assist Feature Script, Understanding the Logon Assist Feature (LAF)
in Communications Programming Concepts.

HCON Overview for Programming in Communications Programming Concepts.

2-88 Base Operating System Reference

RECVAT

RECVAT Statement

Purpose

Syntax

Waits for data to be received from the host and then searches the presentation space for a
pattern.

RECVAT(rownum,colnum,string | ARG(N));

Description

The RECVAT statement is very similar to the RECEIVE statement. It waits for data to be
received from the host and then searches the presentation space for a pattern. The search
is successful only if a match is found in the presentation space beginning at the specified
position. The RECVAT statement is one of the script statements in the LAF language that
are used to compose a LAF script.

The special variable MATCH is set to 0 (zero) if the search is not successful and to 1 if the
search is successful. If the search is successful, the special variables ROW and COL are set
to indicate the location of the beginning of the match in the presentation space. Unlike the
RECEIVE statement, if a RECVAT statement is successful, ROW and COL are always set
equal to the rownum and colnum parameters, respectively.

Parameters

Example

rownum Specifies the row number in the presentation space at which to begin the
search for the pattern.

colnum Specifies the column number in the presentation space at which to begin
the search for the pattern.

string Contains the string pattern to be used in the search

ARG(N) Contains the string pattern which is the Nth argument in the LAF logon ID
string and should be used in the search.

The RECVAT statement searches for the string passed in the fifth token of the logon 1D
string. The search begins at row 3, column 1:

RECVAT(3,1,ARG(4));

Implementation Specifics

The RECVAT statement is part of the Logon Assist Feature of the AIX 3270 Host
Connection Program/6000 (HCON).

Related Information

How To Use a Logon Assist Feature Script, Understanding the Logon Assist Feature (LAF)
in Communications Programming Concepts.

HCON Overview for Programming in Communications Programming Concepts.

AlX 3270 Host Connection Program (HCON) 2-89

REPEAT-UNTIL

REPEAT-UNTIL Statement

Purpose
Executes LAF script subject statement until the tested condition is found to be true.
Syntax
REPEAT statemenlist UNTIL (condition);
Description
The REPEAT-UNTIL statement executes the subject statement until the tested condition is
found to be true.
Expressions
statementlist Statement or statements to be executed until condition is true.
condition Condition that halts execution of REPEAT-UNTIL loop,when true.
Example

The following REPEAT-UNTIL statement causes the WAIT statement to continue to execute
until the TIMEOUT flag is set:

REPEAT
WAIT(2);
UNTIL(TIMEOUT) ;

Implementation Specifics

The REPEAT-UNTIL statement is part of the Logon Assist Feature of the AlX 3270 Host
Connection Program/6000 (HCON).

Related Information

How To Use a Logon Assist Feature Script, Understanding the Logon Assist Feature (LAF)
in Communications Programming Concepts.

HCON Overview for Programming in Communications Programming Concepts.

2-90 Base Operating System Reference

SELECT

SELECT Statement
Purpose
Provides a multiple alternative test for conditional execution of Logon Assist Feature (LAF)
statements.
Syntax
SELECT; WHEN—c/ause [OTHERWISE—c/ause] END;
WHEN (condition) statement
OTHERWISE statement
Description

The SELECT statement provides a multiple alternative test for conditional execution of LAF
statements. The SELECT statement is one of the script statements in the LAF language
that are used to compose a LAF script.

Reserved Words
WHEN-—clause Evaluates each statement in the WHEN clause until a true
condition is found. The statement in the WHEN clause is
then executed and control passes to the next statement
following the SELECT statement. There may be multiple
WHEN clauses in a SELECT statement.

OTHERWISE—c/ause Executed only if none of the WHEN clauses is true.
Expressions
Condition A condition, when true, causes the statement in the WHEN clause to be
executed.
Statement Statement to execute.

If there is no OTHERWISE clause and none of the WHEN clauses are true, the SELECT
statement does nothing.

Example
These statements check for the ENTER*PASSWORD: string starting at row 1, column 1 until a
timeout occurs. If the timeout occurs the routine exits with a return code of three (3).

REPEAT
DO; .
MATCHAT(1,1, 'ENTER*PASSWORD: ') ;
SELECT;
WHEN(NOT MATCH) WAIT(2);
WHEN(TIMEOUT) EXIT(3);
END;
END;
UNTIL(MATCH);

Implementation Specifics

The SELECT statement is part of the Logon Assist Feature of the AIX 3270 Host Connection
Program/6000 (HCON).

AlX 3270 Host Connection Program (HCON) 2-91

SELECT

Related Information
How To Use a Logon Assist Feature Script, Understanding the Logon Assist Feature (LAF)
in Communications Programming Concepts.

HCON Overview for Programming in Communications Programming Concepts.

2-92 Base Operating System Reference

SEND

SEND Statement

Purpose
Sends a string of keys to the emulator and from there to the host.

Syntax
SEND(string | keydef| UID | PW| ARG(N));

Description
The SEND statement sends a string of keys to an emulator and from there to the host.
 If the string parameter is coded, that string is sent to the host.
o If the keydef parameter is coded, that special key is sent to the host.

« |f any one or more of the UID, PW, or ARG(N) parameters are coded, they are passed as
parameters to the LAF script and sent as strings to the host.

The SEND statement is one of the script statements in the LAF language that are used to
compose a LAF script.

Parameters
string Specifies a text string

keydef Contains the string or key definition to be sent to the host.
uibD Specifies the host user ID.
PW Specifies the password associated with the UID.

ARG(N) Contains the string pattern which is the Nth argument in the LAF logon
1D string and should be used in the search.

Example
The SEND statement sends the Enter key to the host:
SEND (ENTER) ;

Implementation Specifics

The SEND statement is part of the Logon Assist Feature of the in AIX 3270 Host Connection
Program/6000 (HCON).

AIX 3270 Host Connection Program (HCON) 2-93

START

START Statement
Purpose
Begins a Logon Assist Feature (LAF) script.
Syntax
START [string]
Description
The START statement begins a LAF script. The START statement is one of the script
statements in the LAF language that are used to compose a LAF script.
Parameters
string Defines the name of the generated C function. If a name is not
supplied, the g32_logon script is used. Each script must have one
START statement, which must be the first statement in the script.
Example

The following START statement specifies the start of a new script labeled g32_logoff:
START “g32_logoff”;

Implementation Specifics

The START statement is part of the Logon Assist Feature of the AIX 3270 Host Connection
Program/6000.

Related Information

How To Use a Logon Assist Feature Script, Understanding the Logon Assist Feature (LAF)
in Communications Programming Concepts.

HCON Overview for Programming in Communications Programming Concepts.

2-94 Base Operating System Reference

WAIT

WAIT Statement

Purpose
Causes the Logon Assist Feature (LAF) script to wait until data is received from the host or
until the specified number of seconds has elapsed.

Syntax
WAIT(number);

Description
The WAIT statement causes the LAF script to wait until data is received from the host or
until the specified number of seconds has elapsed. The special variable TIMEOUT is set to 0
(zero) if data is received from the host and to one (1) if the specified time has elapsed.

Note: Use of the WAIT statement at the beginning of a script is not a good practice as the
initial data from the host is received immediately.

The WAIT statement is one of the script statements in the LAF language that are used to
compose a LAF script.

Expression

number Specifies in seconds, the amount of time to wait. A negative value indicates
that the WAIT statement only returns when data is received from the host. A
value of 0 indicates that the WAIT statement returns immediately.

Example
This statement executes a one—second wait if a match is not found:

IF(NOT MATCH) WAIT(1);

Due to variability in the amount of time it may take to log on, the WAIT statement should be
used sparingly outside of loops. REPEAT-UNTIL loops are another means of waiting for an
event to occur at the host.

The following loop can be used instead of a WAIT statement:

REPEAT
DO
MATCH(1,1, 'MORE’);
IF (MATCH) DO;
SEND(PA2);
END;
MATCH(1,1,'R; T');
IF (NOT MATCH) DO
WAIT(2);
IF (TIMEOUT)
BREAK;
END;
END;
UNTIL (MATCH);

Implementation Specifics
The WAIT statement is part of the Logon Assist Feature of the AlX 3270 Host Connection
Program/6000 (HCON).

AIX 3270 Host Connection Program (HCON) 2-95

WAIT

Related Information
How To Use a Logon Assist Feature Script, Understanding the Logon Assist Feature (LAF)
in Communications Programming Concepts. '

HCON Overview for Programming in Communications Programming Concepts.

2-96 Base Operating System Reference

WHILE

WHILE Statement
Purpose
Executes a Logon Assist Feature (LAF) script subject statement.
Syntax
WHILE (condition) statement
Description
The WHILE statement executes a subject statement as long as the tested condition remains
true. The WHILE statement is one of the script statements in the LAF language that are
used to compose a LAF script.
Expression
condition A condition may be any of the following:
MATCH
TIMEOUT
RECOVERY
ROW <comparison operator> <number>
COL <comparison operator> <number>
<condition> AND <condition>
<condition> OR <condition>
NOT <condition>
Example

The following example is a condition in the LAF language. Conditions are used in the
WHILE, REPEAT-UNTIL, IF-ELSE, and SELECT statements.

WHILE(NOT TIMEOUT) WAIT(2);
The WHILE statement continues to execute until the TIMEQUT flag is set.

Implementation Specifics

The WHILE statement is part of the Logon Assist Feature of the AIX 3270 Host Connection
Program/6000 (HCON).

Related Information

How To Use a Logon Assist Feature Script, Understanding the Logon Assist Feature (LAF)
in Communications Programming Concepts.

HCON Overview for Programming in Communications Programming Concepts.

AIX 3270 Host Connection Program (HCON) 2-97

WHILE

2-98

Base Operating System Reference

Data Link Controls

Data Link Controls ~ 3—1

3-2 Base Operating System Reference

close

close Subroutine Interface for Data Link Control (dic) Devices

‘Purpose

Closes the GDLC device manager using a file descriptor.

Syntax
int close (fildes),
int fildes;

Description
The close subroutine disables a generic data link control (GDLC) channel. If this is the last
channel to close on a port, the GDLC device manager is reset to an idle state on that port
and the communications device handler is closed.

Parameter

fildes Specifies the file descriptor of the GDLC being closed.

Return Values
Upon successful completion, the close subroutine returns a value of 0 (zero).

If an error occurs, a value of —1 is returned with one of the following error numbers available
using errno, as defined in the errno.h header file:

EBADF Bad file number

Implementation Specifics

This close subroutine interface is part of the device manager Data Link Control in BOS
Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or

any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
The close subroutine.

open Subroutine Interface for Data Link Control (dic) Devices

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-3

dicclose

dicclose Entry Point of the GDLC Device Manager

Purpose
Entry point to close a GDLC channel.
Syntax
#include <sys/device.h>
int dicclose (devno, chan, ext)
dev_t devno;
int chan, ext;
Note: The dic prefix is replaced with the 3-digit prefix for the specific GDLC device
manager being closed.
Description
The dlcclose routine is called when a user’s application program invokes the close
subroutine or when a kernel user calls the fp_close kernel service. This routine disables a
generic data link control (GDLC) channel for the user. If this is the last channel to close on
the port, the GDLC device manager issues a close to the network device handler and
deletes the kernel process that serviced device handier events on behalf of the user.
Parameters

devno Indicates major and minor device numbers. This is a dev_t device number
that specifies both the major and minor device numbers of the GDLC device
manager. There is one dev_t device number for each type of GDLC, such
as Ethernet, Token-Ring, or SDLC.

chan Specifies the channel ID assigned by GDLC in the dicmpx routine at open
time.

ext Specifies the extended subroutine parameter. This parameter is ignored by
GDLC.

Return Values

Upon successful completion, this service returns a value of 0 (zero).
If an error occurs, the following error value is returned, as defined in the errno.h header file:

EBADF Bad file number.

Implementation Specifics

3-4

This dicclose entry point of the GDLC is part of the device manager Data Link Control in
BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or

any combination) in place of device manager above, depending on which device manager
you decide to use.

Base Operating System Reference

dicclose

Related Information
The ddclose device entry point.

The fp_close kernel service.

The close subroutine.

dicopen Entry Point of the GDLC Device Manager.
dicmpx Entry Point of the GDLC Device Manager.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-5

dicconfig

dicconfig Entry Point of the GDLC Device Manager

Purpose
Entry point to configure the GDLC device manager.

Syntax
#include <sys/uio.h>
#include <sys/device.h>

int dlcconfig (devno, op, uiop)
dev_t devno;

int op;

struct uio *uiop;

Note: The dic prefix is replaced with the 3-digit prefix for the specific GDLC device
manager being configured.

Description
The dlcconfig routine is called during the kernel startup procedures to initialize the GDLC
device manager with its device information. This routine is also called by the operating
system when the GDLC is being terminated or queried for vital product data.

Parameters

devno Indicates major and minor device numbers. This is a dev_t device number
that specifies both the major and minor device numbers of the GDLC device
manager. There is one dev_t device number for each type of GDLC, such
as Ethernet, Token-Ring, or SDLC.

op Specifies the operation code that indicates the function to be performed:
INIT Initializes the GDLC device manager.
TERM Terminates the GDLC device manager.
QVPD Queries GDLC vital product data. This operation code is
optional.
uiop A pointer to the uio structure specifying the location and length of the

caller’s data area for the INIT and QVPD operation codes. No data areas
are specifically defined for GDLC, but DLC’s may define the data areas for a
particular network.

Return Values
Upon successful completion, this service returns a value of 0 (zero).

If an error occurs, one of the following error values is returned, as defined in the errno.h

header file:

EINVAL Invalid value

ENODEV No such device handler

EFAULT Kernel service, such as uiomove or devswadd, has failed.

3-6 Base Operating System Reference

dicconfig

Implementation Specifics

This dicconfig entry point of the GDLC is part of the device manager Data Link Contro! in
BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or

any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
Theddconfig device entry point.
The uiomove kernel service.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-7

dlcioctl

dicioctl Entry Point of the GDLC Device Manager

Purpose
Entry point to issue specific commands to GDLC.
Syntax
#include <sys/device.h>
#include <sys/gdlextcb.h>
int dicioctl (devno, op, arg, devflag, chan, ext)
dev_t devno;
ulong_t devfiag;
int op, arg, chan, ext;
Note: The dlc prefix is replaced with the 3-digit prefix for the specific GDLC device
manager being controlled.
Description
The dicioctl routine is called when a user’s application program invokes the ioctl subroutine
or when a kernel user calls the fp_ioctl kernel service. The dicioctl routine decodes
commands for special functions in the generic data link control (GDLC).
Parameters

devno Indicates major and minor device numbers. This is a dev_t device number
that specifies both the major and minor device numbers of the GDLC device
manager. There is one dev_t device number for each type of GDLC, such
as Ethernet, Token-Ring, or SDLC.

op Specifies the parameter from the subroutine that specifies the operation to
be performed. loctl Operations for DLC provides a listing of all possible
operators.

arg Indicates the parameter from the subroutine that specifies the address of a

parameter block. Parameter Blocks by ioctl Operation for DLC provides a
listing of all possible arguments.

devflag Specifies the flag word with the following flags defined:

DKERNEL Entry point called by kernel routine using the fp_open
kernel service. This indicates that the arg parameter points
to kernel space.

DREAD Open for reading. This flag is ignored.

DWRITE Open for writing. This flag is ignored.

DAPPEND Open for appending. This flag is ignored.

DNDELAY Device open in nonblocking mode. This flag is ignored.

chan Specifies the channel ID assigned by GDLC in the dlempx routine at open
time.

3-8 Base Operating System Reference

diciocti

ext Specifies the extended subroutine parameter. This parameter is ignored by
GDLC.

Return Values
Upon successful completion, this service returns a value of 0.

If an error occurs, one of the following error values is returned, as defined in the errno.h

header file:

EBADF Bad file number

EINVAL Invalid value

ENOMEM Not enough resources to satisfy the ioctl subroutine.

Implementation Specifics

This dicioctl entry point of the GDLC is part of the device manager Data Link Control in
BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or

any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
The ddioctl device entry point.
The fp_ioctl kernel service, fp_open kernel service.
The ioctl subroutine.
dicmpx Entry Point of the GDLC Device Manager.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-9

dicmpx

dicmpx Entry Point of the GDLC Device Manager

Purpose
Entry point to decode the device handlers special file name appended to the open call.
Syntax
#include <sys/device.h>
int diempx (devno, chanp, channame)
dev_t devno;
int *chanp,
char *channame;
Note: The dlc prefix is replaced with the 3-digit prefix for the specific GDLC device
manager being opened.
Description
The dlempx routine is called by the operating system when a generic data link control
(GDLC) channel is being allocated. This routine decodes the name of the device handler
that is appended to the end of the GDLC's special file name at open time. GDLC allocates
the channel and returns the value in the chanp parameter.
This routine is also called following a close subroutine to deallocate the channel. In this
case the chanp parameter is passed to GDLC in order to identify the channel being
deallocated. Since GDLC allocates a new channel for each open subroutine, there is a
dlcmpx routine following each call to the dlcclose routine.
Parameters

devno Indicates major and minor device numbers. This is a dev_t device number
that specifies both the major and minor device numbers of the GDLC device
manager. There is one dev_t device number for each type of GDLC, such
as Ethernet, Token-Ring, or SDLC.

chanp Specifies the channel ID returned if a valid path name exists for the device
handler, and the openflag is set. If no channel ID is allocated, this field is
set to a value of —1 by GDLC.

channame Specifies a pointer to the appended path name (path name extension) of the
device handler that is used by GDLC to attach to the network. If this is
NULL, the channel is to be deallocated.

Return Values

3-10

Upon successful completion, this service returns a value of 0 (zero).

If an error occurs, one of the following error values is returned, as defined in the errno.h
header file:

EBADF Bad file number.

EINVAL Invalid value.

Base Operating. System Reference

dicmpx

Implementation Specifics
This dlecmpx entry point of the GDLC is part of the device manager Data Link Control in
BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, |EEE Etherent (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
The ddmpx device entry point.
The close subroutine, open subroutine.
dicclose Entry Point of the GDLC Device Manager.
dicopen Entry Point fo the GDLC Device Manager.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-11

dicopen

dicopen Entry Point of the GDLC Device Manager

Purpose
Entry point to open a GDLC channel.
Syntax
#include <sys/device.h>
#include <sys/gdlextcb.h>
int dicopen (devno, devflag, chan, ext)
dev_t devno;
ulong_t devflag;
int chan, ext,
Note: The dlc prefix is replaced with the 3-digit prefix for the specific GDLC device
manager being opened.
Description
The dicopen routine is called when a user’s application program invokes the open or
openx subroutine, or when a kernel user calls the fp_open kernel service. The generic data
link control (GDLC) device manager opens the specified communications device handler and
creates a kernel process to catch posted events from that port. Additional opens to the same
port share both the device handler open and the GDLC kernel process created on the
original open.
Note: It may be more advantageous to handle the actual device handler open and
kernel process creation in the dlempx routine. This is left as a specific DLC’s option.
Parameters

devno Indicates major and minor device numbers. This is a dev_t device number
that specifies both the major and minor device numbers of the GDLC device
manager. There is one dev_t device number for each type of GDLC, such
as Ethernet, Token-Ring, or SDLC.

devflag Specifies the flag word with the following flags defined:

DKERNEL Entry point called by kernel routine using the fp_open
kernel service. All command extensions and ioctl
arguments will be in kernel space.

DREAD Open for reading. This flag is ignored.

DWRITE Open for writing. This flag is ignored.

DAPPEND Open for appending. This flag is ignored.

DNDELAY Device open in non-blocking mode. This flag is ignored.
chan Specifies the channel ID assigned by GDLC in the dicmpx routine.

ext Specifies the extended subroutine parameter. This is a pointer to the
dlc_open_ext extended I/O structure for open subroutine.

3-12 Base Operating System Reference

dicopen

Return Values
Upon successful completion, this service returns a value of 0 (zero).

If an error occurs, one of the following error values is returned, as defined in the errno.h

header file:

ECHILD Cannot create a kernel process.

EINVAL Invalid value.

ENODEV No such device handler.

ENOMEM Not enough resources to satisfy the open subroutine.
EFAULT Kernel service, such as copyin or initp, failed.

Implementation Specifics
This dicopen entry point of the GDLC is part of the device manager Data Link Control in
BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or

any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
The ddopen device entry point.
The open, openx subroutine.
Thefp_open kernel service, copyin kernel service, initp kernel service.
dicclose Entry Point of the GDLC Device Manager.
dicmpx Entry Point of the GDLC Device Manager.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-13

dicread

dicread Entry Point of the GDLC Device Manager

Purpose
Entry point to read receive data from GDLC.

Syntax

#include <sys/device.h>
#include <sys/gdlextch.h>

int dlcread (devno, uiop, chan, ext)
dev_t devno;

struct uio *uiop;

int chan, ext;

Note: The dlc prefix is replaced with the 3-digit prefix for the specific GDLC device
manager being read.

Description
The dicread routine is called when a user’s application program invokes the readx
subroutine. Kernel users do not call an fp_read kernel service. All receive data is returned to
the user in the same order as received. The type of data that was read is indicated, as well
as the service access point (SAP) and link station (LS) identifiers.

The following fields in the uio and iov structures are used to control the read-data transfer

operation:

uio_iov Points to an iovec structure.

uio_iovent Number of elements in the iovec structure. This must be setto a
value of 1. Vectored read operations are not supported.

uvio_offset The file offset established by a previous fp_lseek subroutine. This
field is ignored by generic data link control (GDLC).

uio_segflag Indicates whether the data area is in application or kernel space.
This is set to the UIO_USERSPACE value by the file I/0 subsystem
to indicate application space.

uio_fmode Contains the value of the file mode set with the open applications
subroutine to GDLC.

uio_resid This field is initially the total byte count of the receive data area.
GDLC decrements this count for each packet byte received using
the uiomove subroutine.

iovec structure A structure that contains the starting address and length of the
received data.

iov_base A variable in the iovec structure where GDLC writes the address of
the received data.

iov_len A variable in the iovec structure that contains the byte length of the

data.

3-14 Base Operating System Reference

dlcread

Parameters

devno Indicates major and minor device numbers. This is a dev_t device number
that specifies both the major and minor device numbers of the GDLC device
manager. There is one dev_t device number for each type of GDLC, such
as Ethernet, Token-Ring, or SDLC.

uiop Points to the uio structure containing the read parameters.

chan Specifies the channel ID assigned by GDLC in the dicmpx routine at open
time.

ext Specifies the extended subroutine parameter. This is a pointer to the

extended /O structure. The argument to this parameter must always be in
the application space. DLC Extended Parameters for read Subroutine
provides more information on this parameter.

Return Values
Reads that are successful and reads that must be truncated due to limited user data space
each return a value of 0. If more data is received from the media than will fit into the
application data area, the DLC_OFLO value indicator is set in the command extension area
(dlc_io_ext) to indicate that the read is truncated. All excess data is lost.

If other errors occur, one of the following error values is returned, as defined in the errno.h

header file:

EBADF Bad file number.

EINTR A signal interrupted the subroutine before it received data.
EINVAL Invalid value.

ENOMEM Not enough resources to satisfy the read.

Implementation Specifics

This dlcread entry point of the GDLC is part of the device manager Data Link Control in
BOS Extensions 2. ‘

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or

any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
The ddread device entry point.
The fp_read kernel service.
The readx subroutine, fp_Iseek subroutine, uiomove subroutine, open subroutine.
dicmpx Entry Point of the GDLC Device Manager.
DLC Extended Parameters for read Subroutine.
dlcwrite Entry Point of the GDLC Device Manager.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-15

dicselect

dicselect Entry Point of the GDLC Device Manager

Purpose
Entry point to select for asynchronous criteria from GDLC, such as receive data completion
and exception conditions.

Syntax
#include <sys/device.h>
#include <sys/gdlextcb.h>

int dicselect (devno, events, reventp, chan)
dev_t devno;

ushort_t events;

ushort_t *reventp;

int chan;

Note: The dic prefix is replaced with the three-digit prefix for the specific GDLC device
manager being selected.

Description
The dicselect routine is called when a user’s application program invokes a select or poll
subroutine. This allows the user to select receive data or exception conditions. The
DPOLLOUT write-availability criteria is not supported. If no results are available at the time
of a select subroutine, the user process is put to sleep until an event occurs.

If one or more events specified in the events parameter are true, the dlcselect routine
updates the returned events parameter (passed by reference), revenip, by setting the
corresponding event bits that indicate which events are currently true.

If none of the requested events are true, the dicselect routine sets the returned events
parameter to a value of 0 (passed by reference using the reventp parameter) and checks the
DPOLLSYNC flag in the events parameter. If this flag is true, the routine returns because
the event request was a synchronous request. If the DPOLLSYNC flag is false, an internal
flag is set for each event requested in the events parameter.

When one or more of the requested events become true, generic data link control (GDLC)
issues the selnotify kernel service to notify the kernel that a requested event or events
have become true. The internal flag indicating that the event was being requested is then
reset to prevent renotification of the event.

If the port in use is in a closed state, implying that the requested event or events can never
be satisfied, GDLC sets the returned events flags to a value of 1 for each event that can
never be satisfied. This is done so that the select or poll subroutine does not wait
indefinitely.

Kernel users do not call an fp_select kernel service since their receive data and exception
notification functions are called directly by GDLC. The DLC Extended Parameters for open
Subroutine details how these function handlers are specified.

Parameters

devno Indicates major and minor device numbers. This is a dev_t device number
that specifies both the major and minor device numbers of the GDLC device

3-16 Base Operating System Reference

dlcselect

manager. There is one dev_t device number for each type of GDLC, such
as Ethernet, Token-Ring, or SDLC.

events Identifies the events that are to be checked. The following events are:
DPOLLIN Read selection.
DPOLLOUT. Write selection. This is not supported by GDLC.
DPOLLPRI Exception selection.
DPOLLSYNC This request is a synchronous request only. The

routine should not perform a selnotify kernel service
routine due to this request if the events occur later.

reventp Identifies a returned events pointer. This is a parameter passed by

reference to indicate which of the selected events are true at the time of the
call. See the preceding events parameter for possible values.

chan Specifies the channel ID assigned by GDLC in the dicmpx routine at open
time.
Return Values
Upon successful completion, this service returns a value of 0 (zero).

If an error occurs, one of the following error numbers is returned, as defined in the errno.h

header file:

EBADF Bad file number.

EINTR A signal interrupted the subroutine before it found any of the selected
events.

EINVAL The specified DPOLLOUT write selection is not supported.

Implementation Specifics
This dicselect entry point of the GDLC is part of the device manager Data Link Control in
BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, |IEEE Etherent (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
The ddselect device entry point.
The select subroutine, poll subroutine.
The fp_select kernel service.
DLC Extended Parameters for open Subroutine.
dicselect Entry Point of the GDLC Device Manager.
dicmpx Entry Point of the GDLC Device Manager.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-17

dicwrite

dicwrite Entry Point of the GDLC Device Manager

Purpose
Entry point to write transmit data to GDLC.

Syntax
#include <sys/uio.h>
#include <sys/device.h>

#include <sys/gdlextcb.h>

int dicwrite (devno, uiop, chan, ext)
dev_t devno;

struct uio *uiop;

int chan, ext;

Note: The dic prefix is replaced with the 3-digit prefix for the specific GDLC device
manager being written.

Description
The dlcwrite routine is called when a user’s application program invokes a writex
subroutine or when a kernel user calls the fp_write kernel service. An extended write is

used in order to specify the type of data being sent, as well as the service access point
(SAP) and link station (LS) identifiers.

The following fields in the uio and iov structures are used to control the write data transfer
operation:

uio_iov Points to an iovec structure.

uio_iovent Number of elements in the iovec structure. This must be set to a value of 1
for the kernel user, indicating that there is a single communications memory
buffer (mbuf) chain associated with the write subroutine.

uio_offset The file offset established by a previous fp_iseek kernel service. This field
is ignored by GDLC.

uio_segflag Indicates whether the data area is in application or kernel space. This field

is set to the UIO_USERSPACE value by the file /0 subsystem if the data
area is in application space. The field must be set to the UIO_SYSSPACE
value by the kernel user to indicate kernel space.

uio_fmode Contains the value of the file mode set during an application open

subroutine to GDLC or can be set directly during a kernel user’s fp_open
kernel service to GDLC.

uio_resid For application users this field is set to the total byte count of the transmit
data area. For kernel users, GDLC ignores this field since the
communications memory buffer (mbuf) also carries this information.

iovec structure A structure that contains the starting address and length of the transmit.
(See the iov_base field and iov_len field.)

3-18 Base Operating System Reference

dlcwrite

iov_base A variable in the iovec structure where GDLC gets the address of the

application user's transmit data area or the address of the kernel user’s
transmit mbuf.

iov_len A variable in the iovec structure that contains the byte length of the

application user’s transmit data area. This variable is ignored by GDLC for
kerne! users, since the transmit mbuf contains a length field.

Parameters

devno Indicates major and minor device numbers. This is a dev_t device number
that specifies both the major and minor device numbers of the GDLC device
manager. There is one dev_t device number for each type of GDLC, such
as Ethernet, Token-Ring, or SDLC.

uiop Points to the uio structure containing the write parameters.

chan Specifies the channel ID assigned by GDLC in the dicmpx routine at open
time.

ext Specifies the extended subroutine parameter. This is a pointer to the

extended I/O structure. This data must be in the application space if the
iov_fmode field indicates an application subroutine or in the kernel space if
the iov_fmode field indicates a kernel subroutine. DLC Extended
Parameters for Write provides more information on this parameter.

Return Values
Upon successful completion, this service returns a value of 0 (zero).

If an error occurs, one of the following error values is returned, as defined in the errno.h

header file:

EAGAIN Transmit is temporarily blocked, and a sleep cannot be issued.

EBADF Bad file number (application).

EINVAL Invalid value, such as too much data for a single packet.

ENOMEM Not enough resources to satisfy the write subroutine, such as a lack of
communications memory buffers (mbufs).

ENXIO Invalid file pointer (kernel).

Implementation Specifics

This dicwrite entry point of the GDLC is part of the device manager Data Link Control in
BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or

any combination) in place of device manager above, depending on which device manager
you decide to use.

Data Link Controls 3-19

dlcwrite

Related Information
The ddwrite device entry point.

dicmpx Entry Point of the GDLC Device Manager.

The writex subroutine, open subroutine.

The fp_write kernel service, fp_lseek kernel service, fp_open kernel service.
dicread Entry Point of the GDLC Device Manage.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

3-20 Base Operating System Reference

fp_close

fp_close Kernel Service for Data Link Control (DLC) Devices

Purpose
Allows kernel closes to the GDLC device manager using a file pointer.

Syntax
int fp_close (fp, ext);
struct file *fp;

Description
The fp_close kernel service disables a generic data link control (GDLC) channel. If this is
the last channel to close on a port, the GDLC device manager resets to an idle state on that
port and the communications device handler is closed.

Parameters
fo Specifies the file pointer of the GDLC being closed.

ext Specifies the extension parameter. This parameter is ignored by GDLC.

Return Values
Upon successful completion, this service returns a value of 0 (zero).

If an error occurs, the following error value is returned, as defined in the errno.h header file:

ENXIO Invalid file pointer.

Implementation Specifics

This fp_close kernel service is part of the device manager Data Link Control in BOS
Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, |IEEE Etherent (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
The fp_close kernel service.

fp_open Kernel Service for Data Link Control (DLC) Devices.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-21

fp_ioctl

fp_ioctl Kernel Service for Data Link Control (DLC) Devices

Purpose
Transfers special commands from the kernel to GDLC using a file pointer.

Syntax
#include <sys/gdiextcb.h>
#include <fentl.h>

int fp_ioctl (fo, cmad, arg, ext)
struct file *fp;

unsigned int cmd;

caddr_t arg;

int ext;

Description

Various generic data link control (GDLC) functions can be initiated using the fp_ioctl kernel
service, such as changing configuration parameters, contacting the remote, and testing a
link. Most of these operations can be completed before returning to the user synchronously.
Some operations take longer, so asynchronous resuits are returned some time later using
the exception function handler. GDLC calls the kernel user’s exception handler to complete
these results. For more information on the functions that can be initiated using the fp_ioctl
kernel service, see loctl Operations (op) DLC and Parameter Blocks by Operation for DLC.

Note: The DLC_GET_EXCEP ioctl command operation is not used since all exception
conditions are passed to the kernel user through the exception handler.

Parameters
fo Specifies the file pointer of the target GDLC.

cmd Specifies the operation to be performed by GDLC. For a listing of all
possible operators, see loctl Operations (op) for DLC.

arg Specifies the address of the parameter block. The argument for this

parameter must be in the kernel space. For a listing of possible values, see
Parameters Blocks by Operations for DLC.

ext Specifies the extension parameter. This parameter is ignored by GDLC.

Return Values
Upon successful completion, the fp_ioct! kernel service returns a value of 0 (zero).

If an error occurs, one of the following error values is returned, as defined in the errno.h

header file:

ENXIO Invalid file pointer

EINVAL Invalid value

ENOMEM Not enough resources to satisfy the ioctl subroutine.

3-22 Base Operating System Reference

fp_ioctl

Implementation Specifics

This fp_ioctl kernel service is part of the device manager Data Link Control in BOS
Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or

any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
The fp_ioctl kernel service.
The ioctl subroutine.
The ioctl subroutine.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-23

fp_open

fp_open Kernel Service for Data Link Control (DLC) Devices

Purpose

Syntax

Allows kernel opens to the GDLC device manager by its device name.

#include <sys/gdlextcb.h>
#include <fentl.h>

fp_open (path, oflags, cmode, ext, segflag fop)
char path;

unsigned int oflags;

unsigned int cmode;

int ext;

unsigned int segflag;

struct file **fpp;

Description

The fp_open kernel service allows the kernel user to open a generic data link control
(GDLC) device manager by specifying the special file names of both the DLC and the
communications device handler. Since the GDLC device manager is multiplexed, more than
one process can open it (or the same process multiple times) and still have unique channel
identifications.

Each open carries the communications device handler’s special file name so that the DLC
knows which port to transfer data on.

The kernel user must also provide functional entry addresses in order to obtain receive data
and exception conditions. Using Special Kerne! Services provides related information.

Parameters

3-24

path Consists of a character string containing the /dev special file name of the
GDLC device manager, with the name of the communications device
handler appended. The format is shown in the following example:

/dev/dlcether/ent0

oflags Specifies a value to set the file status flag. The GDLC device manager
ignores all but the following values:

O_RDWR Open for reading and writing. This must be set for GDL.C or
the open will fail.

O_NDELAY, 0_NONBLOCK

Subsequent writes return immediately if no resources are
available. The calling process is not put to sleep.

cmode Specifies the O_CREAT mode parameter. This is ignored by GDLC.

ext Specifies the extended kernel service parameter. This is a pointer to the
dlc_open_ext extended I/O structure for open subroutines. The argument

Base Operating System Reference

fp_open

for this parameter must be in the kernei space. DL.C Extended Parameters
for open Subroutine provides more information on the extension parameter.

segflag Specifies the segment flag indicating where the path parameter is located:
FP_SYS The path parameter is stored in kernel memory.
FP_USR The path parameter is stored in application memory.

fop Specifies the returned file pointer. This parameter is passed by reference

and updated by the file I/0 subsystem to be the file pointer for this open
subroutine.

Return Values

Upon successful completion, this service returns a value of 0 (zero) and a valid file pointer in
the fp parameter.

If an error occurs, one of the following error values is returned as defined in the errno.h
header file:

ECHILD Cannot create a kernel process.
EINVAL Invalid value.
ENODEV No such device handler.

ENOMEM Not enough resources to satisfy the open.

EFAULT Kernel service, such as copyin or initp, has failed.

Implementation Specifics

This fp_open kernel service is part of the device manager Data Link Control in BOS
Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or

any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information

The fp_open kernel service, copyin kernel service, initp kernel service.
fp_close Kernel Service for Data Link Control (DLC) Devices.
DLC Extended Parameters for the open Subroutine.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-25

fp_write

fp_write Kernel Service for Data Link Control (DLC) Devices

Purpose

Syntax

Allows kernel data to be sent using a file pointer.

#include <sys/gdlextcb.h>
#include <sys/fp_io.h>

int fp_write (fp, buf, nbytes, ext, segflag, countp)
struct file *fp;

char *buf;

int nbytes;

int ext;

int segflag;

int *countp;

Description

Four types of data can be sent to GDLC. Network data can be sent to a service access point
(SAP), and normal, Exchange Identification (XID), or datagram data can be sent to a link
station (LS).

Kernel users pass a communications memory buffer (mbuf) directly to generic data link
contro! (GDLC) on the fp_write kernel service. In this case, a uiomove kernel service is not
required, and maximum performance can be achieved by merely passing the buffer pointer
to GDLC. Each write buffer is required to have the proper buffer header information and
enough space for the data link headers to be inserted. A write data offset is passed back to
the kernel user at start LS completion for this purpose.

All data must fit into a single packet for each write call. That is, GDLC does not separate the
user’s write data area into multiple transmit packets. A maximum write data size is passed
back to the user at DLC_ENABLE_SAP completion and at DLC_START_LS completion for
this purpose.

Normally, a write subroutine can be satisfied immediately by GDLC by completing the data
link headers and sending the transmit packet down to the device handler. In some cases,
however, transmit packets can be blocked by the particular protocol’s flow control or a
resource outage. GDLC reacts to this differently, based on the system blocked/nonblocked
file status flags (set by the file system and based on the O_NDELAY and O_NONBLOCKED
values passed on the fp_open kernel service). Nonblocked write subroutines that cannot
get enough resources to queue the communications memory buffer (mbuf) return an error
indication. Blocked write subroutines put the calling process to sleep until the resources free
up OF an error occurs.

Parameters

3-26

fo Specifies file pointer returned from the fp_open kernel service.
buf Points to a kernel mbuf.

nbytes Contains the byte length of the write data. It is not necessary to set this field
to the actual length of write data, however, since the mbuf contains a length

Base Operating System Reference

fp_write

field. Instead, this field can be set to any non-negative value (generally set
to 0 (zero)).

ext Specifies the extended kernel service parameter. This is a pointer to the
dlc_io_ext extended I/O structure for writes. The argument for this
parameter must be in the kernel space. For more information on this
parameter, see DLC Extended Parameters for write Subroutine.

segflag Specifies the segment flag indicating where the path parameter is located.
The only valid value is:
FP_SYS The path parameter is stored in kernel memory.

countp Points to the location where a count of bytes actually written is to be

returned (must be in kernel space). GDLC does not provide this information
for a kernel user since mbufs are used, but the file system requires a valid
address and writes a copy of the nbytes parameter to that location.

Return Values

Upon successful completion, this service returns a value of 0 (zero).

If an error occurs, one of the following error values is returned, as defined in the errno.h
header file:

EAGAIN Transmit is temporarily blocked, and the calling process cannot be put to
sleep.

EINVAL Invalid argument, such as too much data for a singie packet.

ENXIO Invalid file pointer.

Implementation Specifics

This fp_write kernel service is part of the device manager Data Link Control in BOS
Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or

any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information

The fp_write kernel service.

The uiomove subroutine, fp_open kernel service.
Parameter Blocks by ioctl Operation for DLC.

DLC Extended Parameters for the write Subroutine.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-27

ioctl (DLC)

ioctl Subroutine Interface for Data Link Control (DLC) Devices

Purpose ,
Transfers special commands to GDLC using a file descriptor.

Syntax
#include <sys/ioctl.h>
#include <sys/devinfo.h>
#include <sys/gdiextch.h>
int ioctl (fildes, op, arg);
int fildes;
int op;
char *arg;

Description
The ioctl subroutine initiates various generic data link control (GDLC) functions, such as
changing configuration parameters, contacting a remote link, and testing a link. Most of
these operations can be completed before returning to the user (synchronously). Since some
operations take longer, asynchronous results are returned some time later using the
exception condition notification. Application users can obtain these exceptions using the
DLC_GET_EXCEP ioctl operation. For more information on the functions that can be
initiated using the ioctl subroutine, see loctl Operations for DL.C (op) and Parameter Blocks
by Operations for DLC.

Parameters
fildes Specifies the file descriptor of the target GDLC.
op | Specifies the operation to be performed by GDLC. For a listing of all

possible operators, see loctl Operations.

arg Specifies the address of the parameter block. For a listing of possible
values, see Parameter Blocks by Operations for DLC.

Return Values
Upon successful completion, the ioctl subroutine returns a value of 0 (zero).

If an error occurs, a value of —1 is returned with one of the following error numbers available
using errno, as defined in the errno.h header file:

EBADF Bad file number.
EINVAL Invalid argument.
ENOMEM Not enough resources to satisfy the ioctl subroutine.

Implementation Specifics

This ioctl subroutine interface is part of the device manager Data Link Control in BOS
Extensions 2.

3-28 Base Operatina Svstem Reference

ioctl (DLC)

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
loctl Operations (op) for DLC and Parameter Blocks by Operations for DLC .

The ioctl subroutine.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-29

ioctl (op)

ioctl Subroutine Operations (op) for DLC

Description
GDLC supports the following ioctl command operations:

#define DLC_ENABLE SAP 1
#define DLC_DISABLE_SAP 2
#define DLC_START_ LS 3

#define DLC_HALT LS 4

#define DLC_TRACE 5

#define DLC_CONTACT 6

#define DLC_TEST 7

#define DLC ALTER 8

#define DLC_QUERY SAP 9

#define DLC_QUERY LS 10

#define DLC_ENTER_LBUSY 11

#define DLC_EXIT LBUSY 12

#define DLC_ENTER SHOLD 13

#define DLC_EXIT SHOLD 14

#define DLC_GET_ EXCEP 15

#define DLC_ADD_GRP 16

#define IOCINFO /* see /usr/include/sys/ioctl.h */
DLC_ADD_GRP Add a group or multicast receive address to a port. This

command allows additional address values to be fiitered in
receive as supported by the individual communication
device handlers. See the device handler specifications to
determine which address values are supported.

DLC_ALTER Alters link station (LS) configuration.

DLC_CONTACT Contacts the remote LS. This ioctl operation does not
complete processing before returning to the user. The
DLC_CONTACT notification is returned asynchronously to
the user using exception.

DLC_DISABLE_SAP Disables a service access point (SAP). This ioctl operation

does not fully complete the disable SAP processing before
returning to the user. The DLC_DISABLE_SAP notification
is returned asynchronously to the user some time later
using exception.

DLC_ENABLE_SAP Enables a SAP. This ioctl operation does not fully complete
the enable SAP processing before returning to the user.
The DLC_ENABLE_SAP notification is returned
asynchronously to the user some time later using exception.

DLC_ENTER_LBUSY Enters local busy mode on an LS.
DLC_ENTER_SHOLD Enters short hold mode on an LS.
DLC_EXIT_LBUSY Exits local busy mode on an LS.

3-30 Base Operating System Reference

DLC_EXIT_SHOLD
DLC_GET_EXCEP

DLC_HALT_LS

DLC_QUERY_LS
DLC_QUERY_SAP
DLC_START_LS

DLC_TEST

DLC_TRACE
IOCINFO

Implementation Specifics

ioctl (op)

Exits short hold mode on an LS.

Returns asynchronous exception notifications to the
application user.

Note: This ioctl command operation is not used by the
kernel user since all exception conditions are
passed to the kerne! user via their exeception
handler routine.

Halts an LS. This ioctl operation does not complete
processing before returning to the user. Notification of the
ioctl operation, DLC_HALT_LS, is returned asynchronously
to the user using exception.

Queries an LS.
Queries a SAP.

Starts an LS. This ioctl operation does not complete
processing before returning to the user. Notification of the
ioctl operation, DLC_START_LS, is returned
asynchronously to the user using exception.

Tests LS connectivity. This ioctl operation does not
complete processing before returning to the user.
Notification of the ioctl operation, DLC_TEST completion,
is returned asynchronously to the user using exception.

Traces LS activity.

Returns a structure that describes the device. Refer to the
description of the sys/devinfo.h file in A/X Version 3
Application Programming Interface, File Formats. The first
byte is set to an ioctype of DD_DLC. The subtype and
data are defined by the individual DLC devices.

These ioctl operations for DLC are part of the device manager Data Link Control in BOS

Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager

you decide to use.

Related Information

Generic Data Link Control (GDLC) Environment Overview in Communications Programming

Concepts.

Data Link Controls 3-31

ioctl (op)

ioctl Subroutine Operations Parameter Blocks for DLC

Each command operation has a specific parameter block associated with the command that
is pointed to by the arg pointer. Some parameters are sent to GDLC and some are returned.

The ioctl command operations for DLC are as follows:

e DLC_ENABLE_SAP ioctl Operation for DLC
DLC_DISABLE_SAP ioctl Operation for DLC
DLC_START_LS ioctl Operation for DLC
DLC_HALT_LS ioctl Operation for DLC
DLC_TRACE ioctl Operation for DLC
DLC_CONTACT ioctl Operation for DLC
DLC_TEST ioctl Operation for DLC
DLC_ALTER ioctl Operation for DLC
DLC_QUERY_SAP ioctl Operation for DLC
DLC_QUERY_LS ioctl Operation for DLC
DLC_ENTER_LBUSY ioctl Operation for DLC
DLC_EXIT_LBUSY ioctl Operation for DLC
DLC_ENTER_SHOLD ioctl Operation for DLC
DLC_EXIT_SHOLD ioctl Operation for DLC
DLC_GET_EXCEP ioctl Operation for DLC
DLC_ADD_GRP ioctl Operation for DLC

¢ |OCINFO ioct! Operation for DLC.

DLC _ENABLE_SAP ioctl Operation for DLC

The following parameter enables a service access point (SAP).

#define DLC_MAX NAME 20 /* maximum size of the address/name */
#define DLC_MAX_ GSAPS 7 /* maximum number of group sap */
#define DLC_MAX ADDR 8 /* maximum byte length of an address */
struct dlc_esap_arg
{
ulong_t gdlc_sap_corr; /* GDLC SAP correlator */
/* RETURNED */
ulong_t user_sap corr; /* User’'s SAP correlator */
ulong_t len_func_addr_mask; /* length of the field */
/* below it */
uchar_t func_addr_mask[DLC_MAX ADDR];/* Mask of the valid */
/* functional address */
ulong t len_grp_addr; /* length of the field */
/* below it */
uchar_t grp_addr[DLC_MAX ADDR]; /* Address of group packet */
/* to be received */
ulong t max_ls; /* Max number of link */
/* stations per SAP */

3-32 Base Operating System Reference

ioctl (op)

ulong t flags; /* Enable SAP flags */
ulong t len laddr name; /* Length of the local */

/* name/address */
u_char_t laddr_name[DLC_MAX NAME]; /* The local address/name */
u_char_t num_grp saps; /* Number of group SAPs */
u_char_t grp_sap[DLC_MAX GSAPS]; /* Group SAPs the SAP will */
, /* rsp to */
u_char_t resl(31]; /* reserved */
u_char_t local_sap; /* ID of local SAP */
}i

gdlc_sap_corr GDLC SAP correlator: The GDLC's service access point (SAP) identifier
that is returned to the user. This correlator must accompany all subsequent
commands associated with this service access point.

user_sap_corr User SAP correlator: The user’s SAP identifier to be returned by GDLC on
all SAP results. It allows routing of the SAP-specific results when multiple
SAPs have been opened by a single user.

len_func_addr_mask
Length of functional address mask: Specifies the byte length of the following
functional address mask. This field must be set to 0 (zero) if no functional
address is required. Length values of 0 through 8 are supported.

func_addr_mask
Functional address mask: The functional address mask to be ORed with the
functional address on the adapter. This address mask allows packets that
are destined for specified functions to be received by the local adapter. See
the individual DLC interface documentation to determine the format and
length of this field.

Note: GDLC does not distinguish whether a received packet was accepted
by the adapter due to a pre-set network, group, or functional
address. If the SAP address matches and the packet is otherwise
valid (no protocol errors, for instance), the received packet is passed
to the user.

len_grp_addr Length of group address: Specifies the byte length of the following group
address. This field must be set to 0 if no group address is required. Length
values of 0 through 8 are supported.

grp_addr Group address: The group address value to be written to the adapter. it

-allows packets that are destined for a specific group to be received by the
local adapter.

Note: Most adapters allow only one group address to be active at a time. If
this field is nonzero and the adapter rejects the group address
because it is already in use, the enable SAP call fails with an
appropriate error code.

Data Link Controls 3-33

ioctl (op)

3-34

max_ls Maximum link stations (LS): Specifies the maximum number of LSs allowed
to operate concurrently on a particular SAP. This field can be set to a value
from 1 through 255 inclusive.

flags Common SAP flags: The following flags are supported:

#define DLC_ESAP_NTWK 0x40000000 /* teleprocessing network */
/* type (LEASED) */

#define DLC_ESAP_LINK 0x20000000 /* teleprocessing link - */
/* type (multi) */

#define DLC_ESAP_PHYC 0x10000000 /* physical network call */

#define DLC_ESAP_ANSW 0x08000000 /* teleprocessing auto */
/* call/answer */

#define DLC_ESAP_ADDR 0x04000000 /* local address/name */
/* indicator (ADDR) */

DLC_ESAP_NTWK

DLC_ESAP_LINK

DLC_ESAP_PHYC

DLC_ESAP_ADDR

DLC_ESAP_ANSW

len_laddr_name

Teleprocessing network type:

0 = Switched (default)

1 = Leased.

Teleprocessing link type:

0 = Point to point (default)

1 = Multipoint.

Physical network call (teleprocessing):
0 = Listen for incoming call.

1 = Initiate call.

Local address or name indicator:
0 = Local name specified (default)
1 = Local address specified.

Specifies whether the local address or name field
contains an address or a name.

Teleprocessing autocall or autoanswer:

0 = Manual call and answer (default)
1 = Automatic call and answer.

Length of local address or name: Specifies the byte length of the following
local address or name. Length values of 1 through 20 are supported.

laddr_name Local address or name: Contains the unique network name or address of
the user’s local SAP as indicated by the DLC_ESAP_ADDR flag.

num_grp_sapsNumber of group SAPs: Specifies the number of group SAPs the user’s
local SAP responds to. If no group SAPs are needed, this field must contain
a 0. Up to seven group SAPs can be specified.

grp_sap Group SAP array: Contains the specific group SAP values that the user’s
local SAP responds to (maximum of seven).

Base Operating System Reference

ioctl (op)

local_sap Local SAP address: Specifies the local SAP address being opened. Receive
packets with this LSAP value indicated in the destination SAP field are
routed to the LSs opened under this particular SAP.

Protocol Specific Data Area

Optional: Allows parameters to be defined by the specific GDLC device
manager, such as X.21 call-progress signals or smartmodem
call-establishment data. This data area must directly foliow (or append to)
the end of the dic_esap_arg structure.

Implementation Specifics

This DLC_ENABLE_SAP ioctl operation for DLC is part of the device manager Data Link
Control in BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Ethernet (802.3), or X.25 QLLC (or

any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
Parameter Blocks by ioctl Operation for DLC on page .

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

DLC_DISABLE_SAP ioctl Operation for DLC

The following parameter disables a service access point (SAP).

struct dlc_corr_arg

{
ulong t gdlc_sap corr; /* GDLC SAP correlator */
ulong t gdlc_ls corr; /* << not used for disabling a SAP >> */
}i

gdic_sap_corr GDLC SAP correlator: Indicates the GDLC SAP identifier to be

disabled.

Implementation Specifics

This DLC_DISABLE_SAP ioctl operation for DLC is past of the device manager Data Link
Control in BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, |EEE Ethernet (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-35

ioctl (op)

DLC_START_LS ioctl Operation for DLC

The following parameter starts a link station (LS) on a particular SAP as caller or listener.

3-36

#define DLC_MAX DIAG 16 /* the maximum string of chars */
/* in the diag name */

struct dlc_sls_arg

{

ulong_t gdlc_ls_corr; /* GDLC User link station */
/* correlator */
u_char_t 1ls_diag[DLC_MAX DIAG]; /* the char name of the ls */
ulong_t gdlc_sap_corr; - /* GDLC SAP correlator */
ulong_t user_ls_corr; /* User’s SAP correlator */
ulong t flags; /* Start Link Station flags */
ulong t trace chan; /* Trace Channel */
- B /* (rc of trcstart) */
ulong_t len_raddr_ name; /* Length of the remote */
/* name/addr */

u_char_t raddr_name[DLC_MAX_ NAME];
ulong_t maxif;

ulong_t rcv_wind;
ulong_t xmit_wind;

u_char_t rsap;
u_char_t rsap_low;

u_char t rsap high;

u_char_t resl;
ulong_t max_repoll;
ulong_t repoll time;
ulong_t ack_time;

/* The Remote addr/name */
/* Maximum number of byte*/

/* in an I-field * /
/* Maximum size of the */
/* receive window */
/* Maximum size of the */
/* transmit window * /
/* Remote SAP value *x/
/* Remote SAP low range */
/* value */
/* Remote SAP high range */
/* value */
/* Reserved */

/* Maximum Repoll count */
/* Repoll timeout value */
/* Time to delay trans of*/

/* an ack */
ulong_t inact_time; /* Time before inactivity*/
/* times out */
ulong_t force_ time; /* Time before a forced */
/* disconnect */
}i
gdic_Is_corr GDLC LS correlator: The GDLC LS identifier returned to the user as
soon as resources are determined to be available. This correlator must
accompany all commands associated with this LS.
Is_diag LS diagnostic tag: Any ASCII 1 to 16-character name to be written to

GDLC trace, error log, and status entries for LS identification. (The
end-of-name delimiter is the AlX null character).

gdlc_sap_corr GDLC SAP correlator: The correlator returned by GDLC when the SAP
is enabled by the user. This correlator identifies the user’s service
access point to the GDLC protocol process. '

Base Operatina Svstem Reference

user_ls_corr

flags

#define
#define

#define
#define

#define
#define
#define

ioctl

(op)

User LS correlator: The user’s LS identifier to be returned by GDLC on

all results and data. It allows routing of the station-specific results
when multiple logical links have been started by a single user.

Common LS flags: The following flags are supported:

DLC_TRCO
DLC_TRCL

DLC_SLS_STAT
DLC_SLS_NEGO

DLC_SLS_HOLD
DLC_SLS_LSVC
DLC_SLS_ADDR

DLC_TRCO

DLC_TRCL

DLC_SLS_STAT

DLC_SLS_NEGO

DLC_SLS_HOLD

DLC_SLS_LSVC

0x80000000
0x40000000

0x20000000

0x10000000

0x08000000
0x04000000
0x02000000

/* Trace Control On
/* Trace Control Long
/* (full packet)

*/
*/
*/

/* Station type for SDLC */

/* (primary)

*/

/*Negotiate Station Type for*/

/* SDLC
/* Hold link on inactivity

*/
*/

/* Link Station Virtual Call */

/* Address Indicator
/* (not discovery)

Trace control on:

0 = Disable link trace.

1 = Enable link trace.

Trace control long:

0 = Link trace entries are short (80 bytes).

1 = Link trace entries are long (full packet).

Station type for SDLC:

0 = Secondary (default)

1 = Primary.

Negotiate station type for SDLC:

0 = No (default)

1 = Yes.

Hold link on inactivity:

0 = No (default), terminate the LS.

1 = Yes, hold it active.

LS virtual call:

0 = Listen for incoming call.

1 = Initiate call.

Data Link Controls

*/
*/

3-37

ioctl (op)

3-38

trace_chan

DLC_SLS _ADDR Address indicator:
0 = Remote is identified by name (discovery).

1 = Remote is identified by address (resolve,
SDLC).

Trace channel: Specifies the channel number obtained from the trcstart
subroutine. This field is valid only if the DLC_TRCO indicator is set active.

len_raddr_name

raddr_name

maxif

rev_wind

xmit_wind

rsap

rsap_low

rsap_high

max_repoll

Length of remote’s address or name: Specifies the byte length of the remote
address or name. This field must be set to 0 (zero) if no remote address or
name is required to start the LS. Length values of 0 through 20 are
supported.

Remote’s address or name: Contains the unique network address of the
remote node if the DLC_SLS_ADDR indicator is set active. Contains the
unique network name of the remote node if the DLC_SLS_ADDR indicator
is reset. Addresses are entered in hexadecimal notation, and names are
entered in character notation. This field is only valid if the previous length
field is nonzero.

Maximum I-field length: Specifies the maximum number of I-field bytes that
can be in one packet. This value is reduced by GDLC if the device handler’s
buffer sizes are too small to hold the maximum |-field specified here. The
resultant size is returned from GDLC when the link station has been started.

Receive window: The receive window specifies the maximum number of
sequentially numbered receive I-frames the local station can accept prior to
sending an acknowledgment.

Transmit window: The transmit window specifies the maximum number of

sequentially numbered transmitted I-frames that can be outstanding at any
time.

Remote SAP: Specifies the remote service access point address being
called. This field is valid only if the DLC_SLS_LSVC indicator or the
DLC_SLS_ADDR indicator is set active.

RSAP low range: Specifies the lowest value in the range of remote SAP
address values that the local SAP responds to when listening for a
remote-initiated attachment. This value cannot be the Null SAP (0x00) or
the Discovery SAP (0xFC), and must have the low-order bit set to 0
(B'nnnnnnn0’) to indicate an individual address.

RSAP high range: Specifies the highest value in the range of remote SAP
address values that the local SAP responds to, when listening for a
remote-initiated attachment. This value cannot be the Null SAP (0x00) or
the Discovery SAP (0xFC), and must have the low-order bit set to 0
(B‘nnnnnnn0’) to indicate an individual address.

Maximum repoll count: Specifies the maximum number of retries for an
unacknowledged command frame, or in the case of an I-frame time out, the
number of times the nonresponding remote link station is polled with a
supervisory command frame.

Base Operating System Reference

ioctl (op)

repoll_time Repoll time-out value: Contains the time-out value (in increments defined by
the specific GDLC) used to specify the amount of time allowed prior to
retransmitting an unacknowledged command frame.

ack_time Acknowledgment time-out: Contains the time-out value (in increments
defined by the specific GDLC) used to specify the amount of time to delay
the transmission of an acknowledgment for a received |-frame.

inact_time Inactivity time-out value: Contains the time-out value (in increments of 1
second) used to specify the maximum amount of time allowed before
receive inactivity returns an error.

force_time Force halt time-out value: Contains the time-out value (in increments of 1
second) specifying the period to wait for a normal disconnection. Once the
time-out occurs, the disconnection is forced and the link station halted.

Protocol Specific Data Area
Optional: Allows parameters to be defined by a specific GDLC device
manager, such as token-ring dynamic window increment or SDLC primary
slow poll. This data area must directly follow (or append to) the end of the
dlc_sls_arg structure.

Implementation Specifics
This DLC_START_LS ioctl operation for DLC is part of the device manager Data Link
Control in BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Ethernet (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepits.

DLC_HALT_LS ioctl Operation for DLC

The following parameter halts a link station (LS).

struct dlc_corr arg

{
ulong_t gdlc_sap corr; /* GDLC SAP correlator */
ulong_t gdlc_ls corr; /* GDLC link station correlator */
}i

gdic_sap_corr GDLC SAP correlator: The GDLC SAP identifier of the target LS.
gdic_Is_corr GDLC LS correlator: The GDLC LS identifier to be halted.

Implementation Specifics
This DLC_HALT_LS ioctl operation for DLC is part of the device manager Data Link Control
in BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Ethernet (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
" you decide to use.

Data Link Controls 3-39

ioctl (op)

Related Information

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

DLC_TRACE ioctl Operation for DLC

The following parameter traces a link stations (LS) activity for short or long activities.

struct dlc_trace_arg

{
ulong_t gdlc_sap_corr; /* GDLC SAP correlator * /
ulong_t gdlc_ls corr; /* GDLC link station correlator */
ulong_t trace_chan; /* Trace Channel (rc of trcstart) */
ulong_t flags; /* Trace Flags */
}i

gdlc_sap_corr GDLC SAP correlator: The correlator returned by GDLC when the SAP
was enabled by the user. This correlator identifies the user’s service
access point to the GDLC protocol process.

gdic_Is_corr GDLC LS correlator: The correlator returned by GDLC when the LS

was started by the user. This correlator identifies the user’s LS to the
GDLC protocol process.

trace_chan Trace channel: Specifies the channel number obtained from the
trcstart subroutine. This field is only valid if the DLC_TRCO indicator
is set active.

flags Trace flags: The following flags are supported:

#define DLC_TRCO 0x80000000 /* Trace Control On */

#define DLC_TRCL 0x40000000 /* Trace Control Long */

/* (full packet) */
DLC_TRCO Trace control on:

0 = Disable link trace.
1 = Enable link trace.
DLC_TRCL Trace control long:
0 = Link trace entries are short (80 bytes).

1 = Link trace entries are long (full packet).

Implementation Specifics

3-40

This DLC_TRACE ioctl operation for DLC is part of the device manager Data Link Control in
BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Ethernet (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Base Operating System Reference

ioctl (op)

Related Information
Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

DLC_CONTACT ioctl Operation for DLC

The following parameter contacts a remote station for a particular local link station (LS).

struct dlc_corr_arg

{
ulong t gdlc_sap_corr; /* GDLC SAP correlator */
ulong_t gdlc ls corr; /* GDLC link station correlator */
}i

gdlc_sap_corr GDLC SAP correlator: The GDLC SAP identifier of the target LS.

gdic_Is_corr GDLC LS correlator: The GDLC LS identifier to be contacted.

Implementation Specifics
This DLC_CONTACT ioctl operation for DLC is part of the device manager Data Link Control
in BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Ethernet (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

DLC_TEST ioctl Operation for DLC

The following parameter tests the link to a remote for a particular local link station (LS).

struct dlc_corr_arg

{
ulong_ t gdlc_sap corr; /* GDLC SAP correlator */
ulong t gdlc_1ls corr; /* GDLC link station correlator */
}i

gdic_sap_corr GDLC SAP correlator: The GDLC SAP identifier of the target LS.

gdic_lIs_corr GDLC LS correlator: The GDLC LS identifier to be tested.

Implementation Specifics

This DLC_TEST ioctl operation for DLC is part of the device manager Data Link Control in
BOS Extensions 2.

Insert the Standard Ethernet, SDL.C, Token-Ring, IEEE Ethernet (802.3), or X.25 QLLC (or

any combination) in place of device manager above, depending on which device manager
you decide to use.

Data Link Controls 3-41

ioctl (op)

Related Information
Generic Data Link Control (GDLC) Environment Overview in Communications Programming

DLC_ALTER ioctl Operation for DLC

3-42

Concepts.

The following parameter alters a link station’s (LS) configuration parameters.

#define DLC_MAX_ ROUT 20

struct dlc_alter_arg

{

ulong_t gdlc_sap_corr;
ulong_t gdlc_1ls_corr;
ulong_t flags;
ulong_t repoll time;
ulong_t ack_time;
ulong_t inact_time;
ulong_t force_time;
ulong_t maxif;
ulong_t xmit_wind;
ulong_t max_repoll;
ulong_t routing_len;

u_char_t routing[DLC_MAX_ROUT];

ulong_t result_flags;
}s

gdic_sap_corr
gdic_Is_corr

flags

/* Maximum Size of Routing Info */
/* GDLC SAP correlator */
/* GDLC link station correlator */
/* Alter Flags */
/* New Repoll Timeout */
/* New Acknowledge Timeout */
/* New Inactivity Timeout */
/* New Force Timeout */
/* New Maximum I-Frame Size */
/* New Transmit Value */
/* New Max Repoll Value */
/* Routing Length */

/* New Routing Data */

/* Returned flags * /

GDLC SAP correlator: The GDLC SAP identifier of the target LS.
GDLC LS correlator; The GDLC LS identifier to be altered.

Alter flags: The following flags are supported:

» #define

#define

DLC_ALT RTO
DLC_ALT_AKT

0x80000000
0x40000000

#define DLC_ALT_ITO 0x20000000
#define DLC_ALT FHT 0%10000000
#define DLC_ALT_MIF 0x08000000

#define
#define
#define
#define

#define

#define

#define

DLC_ALT_XWIN

DLC_ALT_MXR
DLC_ALT_RTE
DLC_ALT_SM1

DLC_ALT_ SM2
DLC_ALT IT1

DLC_ALT_IT2

Base Operating System Reference

0x04000000
0x02000000
0x01000000
0x00800000

0x00400000

0x00200000

0x00100000

/* Alter Repoll Timeout */

/* Alter Acknowledge Timeout */
/* Alter Inactivity Timeout */
/* Alter Force Halt Timeout */
/* Alter Maximum I-Frame Size*/
/* Alter Tranxmit Window Size*/
/* Alter Maximum Repoll Count*/

/* Alter Routing

/* Alter Mode (SDLC) bit 1
/* (Primary)

/* Alter Mode (SDLC) bit 2
/* (Secondary)

/* Alter Inactivity bit 1
/* (Notify)

/* Alter Inactivity bit 2

/* (Halt)

*/
*/
*/
*/
*/
*/
*/
*/
*/

DLC_ALT_RTO

DLC_ALT_AKT

DLC_ALT_ITO

DLC_ALT_FHT

DLC_ALT_MIF

ioctl (op)

Alter repoll time out:
0 = Do not alter repoll time out.
1 = Alter configuration with value specified.

Alters the length of time the LS waits for a response before
repolling the remote station. When specified, the repoll time
out value specified in the LS’s configuration is overridden by
the value supplied in the repoll time-out field of the Alter
command. This new value remains in effect until another
value is specified or the LS is halted.

Alter acknowledgment time out:
0 = Do not alter the acknowledgment time out.
1 = Alter configuration with value specified.

Alters the length of time the LS delays the transmission of
an acknowledgment for a received I-frame. When specified,
the acknowledgment time out value specified in the LS’s
configuration is overridden by the value supplied in the
acknowledgment time-out field of the Alter command. This
new value remains in effect until another value is specified
or the LS is halted.

Alter inactivity time out:
0 = Do not alter inactivity time out.

1 = Alter configuration with value specified.

Alters the maximum length of time allowed without receive
link activity from the remote station. When specified, the
inactivity time-out value specified in the LS’s configuration is
overridden by the value supplied in the inactivity time-out
field of the Alter command. This new value remains in
effect until another value is specified or the LS is halted.

Alter force halt time out:
0 = Do not alter force halt time out.
1 = Alter configuration with value specified.

Alters the period to wait for a normal disconnection before
forcing the halt LS to occur. When specified, the force halt
time-out value specified in the LS’s configuration is
overridden by the value supplied in the force halt time-out
field of the Alter command. This new value remains in
effect until another value is specified or the LS is halted.

Maximum |-field length:
0 = Do not alter maximum I-field length.

1 = Alter configuration with value specified.

Data Link Controls 3-43

ioctl (op)

Sets the value for the maximum length of transmit or
receive data in one I-field. If received data exceeds this
length, a buffer overflow indication set by GDLC in the
receive extension. When specified, the maximum |-field
length value specified in the LS’s configuration is overridden
by the value supplied in the maximum |-field length
specified in the Alter command. This new value remains in
effect until another value is specified or the LS is halted.

DLC_ALT_XWIN Alter transmit window:
0 = Do not alter transmit window.
1 = Alter configuration with value specified.

Alters the maximum number of information frames that can
be sent in one transmit burst. When specified, the transmit
window count value specified in the LS’s configuration is

- overridden by the value supplied in the transmit window
field of the Alter command. This new value remains in
effect until another value is specified or the LS is halted.

DLC_ALT_MXR Alter maximum repoll:
0 = Do not alter maximum repoll.

1 = Alter configuration with value specified

Alters the maximum number of fretries for an acknowledged
command frame, or in the case of an I-frame time out, the
number of times the nonresponding remote LS will be
polled with a supervisory command frame. When specified,
the maximum repoll count valee specified in the LS's
configuration is overridden by/the value supplied in the
maximum repoll count field of the Alter command. This new
value remains in effect until another value is specified or the
LS is halted.

DLC_ALT RTE Alter routing:
0 = Do not alter routing.
1 = Alter configuration with value specified.

Alters the route that subsequent transmit packets take when
transferring data across a local area network bridge. When
specified, the routing length and routing data values
specified in the LS'’s configuration are overridden by the
values supplied in the routing fields of the Alter command.
These new values remain in effect until another route is
specified or the LS is halted.

DLC_ALT_SM1 Set SDLC Control mode — primary:
0 = Do not alter SDLC Control mode.

1 = Set SDLC Control mode to primary.

3-44 Base Operating System Reference

repoll_time

ack_time

inact_time

force_time

maxif

xmit_wind

ioctl (op)

Sets the local station to a primary station in NDM, waiting
for a command from PU services to write an XID or TEST,
or a command to contact the secondary for NRM data
phase. This control can only be issued if not already in
NRM, and no XID, TEST, or SNRM is in progress. This flag
cannot be set if the DLC_ALT_SM2 flag is set.

DLC_ALT_SM2 Set SDLC Control mode — secondary:
0 = Do not alter SDLC Control mode.

1 = Set SDLC Control mode to secondary.

Sets the local station to a secondary station in NDM, waiting
for XID, TEST, or SNRM from the primary station. This
control can only be issued if not already in NRM, and no
XID, TEST, or SNRM is in progress. This flag cannot be set
if the DLC_ALT_SM1 flag is set.

DLC_ALT_IT1 Set Inactivity Time Out mode — notification only:
0 = Do not alter Inactivity Time Out mode.
1 = Set Inactivity Time Out mode to notification only.

Inactivity does not cause the LS to be halted, but notifies
the user of inactivity without termination.

DLC_ALT_IT2 Set Inactivity Time Out mode — automatic halt:
0 = Do not alter Inactivity Time Out mode.

1 = Set Inactivity Time Out mode to automatic halt.

Inactivity causes an automatic halt of the LS with a reason
code of inactivity.

Repoll time-out value: Provides a new value to replace the LS’s repoll
time-out value whenever the DLC_ALT_RTO flag is set.

Acknowledge time-out value: Provides a new value to replace the LS’s
acknowledgment time-out value whenever the DLC_ALT_AKT flag is set.

Inactivity time-out value: Provides a new value to replace the LS’s inactivity
time-out value whenever the Alter DLC_ALT_ITO flag is set.

Force halt time-out value: Provides a new value to replace the LS’s force
halt time-out value whenever the DLC_ALT_FHT flag is set.

Maximum I-field size value: Provides a new value to replace the LS started
result value for the maximum I-field size whenever the DLC_ALT_MIF flag
is set. GDLC does not allow this value to exceed the capacity of receive
buffer and only increases the internal value to the allowed maximum.

Transmit window value: Provides a new value to replace the LS’s transmit
window count value whenever the DLC_ALT_XWIN flag is set.

Data Link Controls 345

ioctl (op)

3-46

max_repoll Maximum repoll count value: Provides the new value that is to replace the
LS’s maximum repoll count value whenever the DLC_ALT_MXR flag is set.

routing_len Routing field length value: Provides a new value to replace the LS’s routing
field length whenever the DLLC_ALT_RTE flag is set.

routing Routing data field value: Provides a new value to replace the LS’s routing
data whenever the DLC_ALT_RTE flag is set.

result_flags Returned result indicator flags: The following result indicators may be
returned at the completion of the alter operation, depending on the
command:

#define DLC_MSS RES 0x00040000 /* Mode Set Secondary */

#define DLC_MSSF_RES 0x00020000 /* Mode Set Secondary Failed */

#define DLC_MSP_RES 0x00010000 /* Mode Set Primary */

#define DLC_MSPF_RES 0x00008000 /* Mode Set Primary Failed */

DLC_MSS_RES Mode set secondary:

This bit set to 1 indicates that the station mode has been
set to secondary as a result of the user’s issuing an Alter
(set mode secondary) command.

DLC_MSSF_RES Mode set secondary failed:

This bit set to 1 indicates that the station mode has been
not set to secondary as a result of the user’s issuing an
Alter (set mode secondary) command. This occurs
whenever an SDLC LS is already in data phase or an SDLC
primary command sequence has not yet completed.

DLC_MSP_RES Mode set primary:

This bit set to 1 indicates that the station mode has been
set to primary as a result of the user’s issuing an Alter (set
mode primary) command.

DLC_MSPF_RES Mode set primary failed:

This bit set to 1 indicates that the station mode has not
been set to.primary as a result of the user’s issuing an Alter
{set mode primary) command. This occurs whenever an
SDLC LS is already in data phase.

Protocol Dependent Area

Optional: Allows additional fields to be provided by a specific protocol type.
Corresponding flags may be necessary to support additional fields. This
data area must directly follow (or append to) the end of the dic_alter_arg
structure. :

Base Operating System Reference

Implementation Specifics
This DLC_ALTER ioctl operation for DLC is part of the device manager Data Link Control in
BOS Extensions 2. ’

ioctl (op)

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Ethernet (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information

Generic Data Link Control (GDLC) Environment Overview in Communications Programming

Concepts.

DLC_QUERY_SAP ioctl Operation for DLC

The following parameter queries statistics of a particular service access point (SAP).

#define DLC_MAX DIAG 16 /* the max string of chars in the */

/* diag

struct dlc_gsap_arg

{

ulong_t
ulong_t
ulong_t

uchar_t
ulong_t

}i

gdic_sap_corr

user_sap_corr

gdlc_sap corr;
user_sap_corr;
sap_state;

dev[DLC_MAX DIAG];

devdd_len;

GDLC SAP correlator: The GDLC SAP identifier to be queried.

name */

/* GDLC SAP correlator
/* user SAP correlator (returned) */
/* state of the SAP, returned by */
/* the kernel
/* the returned device handler’s */
/* device name

/* device driver dependent data

/* byte length

*/

*/

*/
*/
*/

User SAP correlator: The user’s identifier for the SAP, returned for

routing purposes.

Current SAP state: Contains the current state of this SAP:

the SAP

process

the SAP
the SAP
process

or
of
or

or
of

link station is in the */

*/
*/

opening

ls has been opened

link station is in the */
closing

*/

Contains the /dev name of the communications

sap_state
#define DLC_OPENING 1 /*
/ *
#define DLC_OPENED 2 /*
#define DLC_CLOSING 3 /*
/*
dev Device handler dev name:
I/0 device handler being used by this SAP.
devdd_len

Length of device driver dependent data: Contains the byte length of the
expected device driver statistics that will be appended to the dlc_gsap_arg

structure.

Data Link Controls

3-47

ioctl (op)

Device Driver Dependent Data
Optional: Contains the device statistics of the attached device handler. This
may be the query device statistics (reliability/availability/serviceability log
area) returned from a DLC_Query_LS, or if supported by the device
handler, this may be the result of a DLC_Query_SAP issued to the attached
device handler. See the individual device handler’s specifications for
information on the particular fields returned. This data area must directly
follow (or append to) the end of the dlc_qsap_arg structure.

Implementation Specifics
This DLC_QUERY_SAP ioctl operation for DLC is part of the device manager Data Link
Control in BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Ethernet (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

DLC_QUERY_LS ioctl Operation for DLC

The following parameter queries statistics of a particular fink station (LS).

struct dlc_gls_arg

{
ulong t gdlc_sap corr; /* GDLC SAP correlator */
ulong_t gdlc_ls_corr; /* GDLC 1ls correlator */
ulong_t user_sap _corr; /* user’s SAP correlator */
/* — RETURNED */
ulong t user_ls_corr; /* user'’s link station */
/* corr — RETURNED */
u_char_t 1ls_diag[DLC_MAX_DIAG]; /* the char name of the 1ls */
ulong_t 1ls_state; /* current ls state */
ulong_t ls_sub_state; /* further clarification */
/* of state */
struct dlc_ls_counters counters;
ulong_t protodd len; /* protocol dependent data */
/* byte length */
}i
gdlc_sap_corr GDLC SAP correlator: The GDLC SAP identifier of the target LS.
gdlc_Is_corr GDLC LS correlator: The GDLC LS identifier to be queried.
user_sap_corr User SAP correlator: The user’s SAP identifier returned for routing
purposes.
user_Is_corr User LS correlator: The user’s LS identifier returned for routing
purposes. :

3-48 Base Operating System Reference

ioctl (op)

Is_diag Link station diagnostic tag: Contains the ASCII character string tag
passed to GDLC at the DLC_START_LS ioctl operation to identify the
station being queried. For example, SNA Services puts the attachment
profile name in this field.

Is_state Current station state: Contains the current state of this LS:

#define DLC_OPENING 1 /* the SAP or link station is in the */

/* process of opening */

#define DLC_OPENED 2 /* the SAP or 1ls has been opened */

#define DLC_CLOSING 3 /* the SAP or link station is in the */

/* process of closing */
#define DLC_INACTIVE 4 /* the link station is in an inactive */
/* state at present * /

Is_sub_state Current station substate: Contains the current substate of this LS.
Several indicators may be active concurrently.

#define DLC_CALLING 080000000 /* the 1ls is calling */

#define DLC_LISTENING 0x40000000 /* the ls is listening */

#define DLC_CONTACTED 0x20000000 /* the ls is contacted into */

/* sequenced data mode */

#define DLC_LOCAL BUSY 0x10000000 /* the local link station is */

/* busy right now */

#define DLC_REMOTE_BUSY 0x08000000 /* the remote link station */

/* is busy right now */

counters

Link station reliability/availability/serviceability counters: These 14
reliability/availability/serviceability counters are shown as an example
only. Each GDLC device manager provides as many of these counters
as necessary to diagnose specific network problems for its protocol

type.

struct dlc_ls_counters

{

ulong_t
ulong_t
ulong t

ulong_t
ckets sent */

ulong t
ulong t

ulong t
ulong_t
ulong t

ulong t

ulong_t

test_cmds_sent; /* number of test commands sent */

test_cmds_fail; /* number of test commands failed */
test_cmds_rec; /* num of test commands received */

data_pkt_sent; /* number of sequenced data */ /* pa

data_pkt resent; /*

/*
max_cont_resent; /*
/%
data_pkt_rec; /*
inv_pkt rec; /*
adp_rec_err; /*
/%
adp_send err; /*
/%
rec_inact to; /*
/%

number of sequenced data * /
packets resent */
maximum number of contiguous */
resendings * /
data packets received - */
num of invalid packets rcvd * /
number of data detected */
receive errors * /
number of data_detected */

transmit errors */
number of received inactivity * /
timeouts

*/

Data Link Controls 3-49

ioctl (op)

ulong_t cmd_polls_sent; /* number of command polls sent */
ulong_t cmd_repolls_sent /* number of command repolls sent */
ulong_t cmd cont_repolls;/* maximum number of continuous */
/* repolls sent */
}i
protodd_len Length of protocol dependent data: Contains the byte length of the following

area.

Protocol Dependent Data
Optional: Contains any additional statistics that a particular GDLC device
manager might provide. See the individual GDLC specifications for
information on the specific fields returned. This data area must directly
follow (or append to) the end of the dic_qls_arg structure.

Implementation Specifics
This DLC_QUERY_LS ioctl operation for DLC is part of the device manager Data Link
Control in BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Ethernet (802.3), or X.25 QLLC (or

any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information ,
Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

DLC_ENTER_LBUSY ioctl Operation for DLC

The following parameter enters local busy mode on a particular link station (LS).

struct dlc_corr_arg

{
ulong_t gdlc_sap corr; /* GDLC SAP correlator */
ulong_t gdlc_ls corr; /* GDLC link station correlator */
}i

gdic_sap_corr GDLC SAP correlator: The GDLC SAP identifier of the target LS.

gdic_Is_corr GDLC LS correlator: The GDLC LS identifier to enter local busy mode.

Implementation Specifics
This DLC_ENTER_LBUSY ioctl operation for DLC is part of the device manager Data Link
Control in BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, |[EEE Ethernet (802.3), or X.25 QLLC (or

any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
Parameter Blocks by ioctl Operation for DLC.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

3-50 Base Operating System Reference

ioctl (op)

DLC_EXIT_LBUSY iocti Operation for DLC

The following parameter exits local busy mode on a particular link station (LS).

struct dlc_corr_arg

{
ulong_t gdlc_sap_corr; /* GDLC SAP correlator */
ulong_t gdlc_ls_corr; /* GDLC link station correlator */
Yi

gdic_sap_corr GDLC SAP correlator: The GDLC SAP identifier of the target LS.

gdic_Is_corr GDLC LS correlator: The GDLC LS identifier to exit local busy mode.

Implementation Specifics
This DLC_EXIT_LBUSY ioctl operation for DLC is part of the device manager Data Link
Control in BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Ethernet (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
Generic Data Link Control (GDLC) Environment Qverview in Communications Programming

Concepts.

DLC_ENTER_SHOLD ioctl Operation for DLC

The following parameter enters short hold mode on a particular link station (LS).

struct dlc_corr_arg

{
ulong t gdlc_sap corr; /* GDLC SAP correlator */
ulong t gdlc_ls corr; /* GDLC link station correlator */
}i

gdic_sap_corr GDLC SAP correlator: The GDLC SAP identifier of the target LS.

gdic_lIs_corr GDLC LS correlator: The GDLC LS identifier to enter short hold mode.

Implementation Specifics
This DLC_ENTER_SHOLD ioctl operation for DLC is part of the device manager Data Link
Control in BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Ethernet (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
Parameter Blocks by ioctl Operation for DLC.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-51

ioctl (op)

DLC_EXIT_SHOLD ioctl Operation for DLC

The following parameter exits short hold mode on a particular link station (LS).

struct d
{

lc_corr_arg

ulong_t gdlc_sap corr;
ulong t gdlc_ls_corr;

}i

/* GDLC SAP correlator
/* GDLC link station correlator

gdlc_sap_corr GDLC SAP correlator: The GDLC SAP identifier of the target LS.

gdic_lIs_corr

Implementation Specifics
This DLC_EXIT_SHOLD joctl operation for DLC is part of the device manager Data Link

Control in BOS Extensions 2.

*/
*/

GDLC LS correlator: The GDLC LS identifier to exit short hold mode.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Ethernet (802.3), or X.25 QLLC (or

any combination) in place of device manager above, depending on which device manager

you decide to urs.

Related Information
Generic Data Link Control (GDLC) Environment Overview in Communications Programming

Concepts.

DLC_GET_EXCEP ioctl Operation for DLC

The following parameter returns asynchronous exception notifications to the application

3-52

user.
struct dlc_getx_arg
{
ulong_t user_sap corr; /* user SAP corr — RETURNED */
ulong_t user_ 1ls corr; /* user ls corr — RETURNED */
ulong_t result_ind; /* the flags identifying the */
/* type of excep */
int result_code; /* the manner of excep */
u_char_t result_ext[DLC_MAX EXT]; /* excep specific ext */
}i
user_sap_corr User service access point (SAP) correlator: The user’s SAP identifier
for this exception.
user_ls_corr User link station (LS) correlator: The user’s LS identifier for this
exception.
result_ind Result indicators:
#define DLC_TEST_RES 0x08000000 /* a test cmd completion */
#define DLC_SAPE RES 0x04000000 /* an enable SAP completion */
#define DLC_SAPD RES 0x02000000 /* a disable SAP completion */
#define DLC_STAS_RES 0x01000000 /* a start ls completion */
#define DLC STAH_RES 0x00800000 /* a halt 1ls completion */
#define DLC_DIAL_RES 0x00400000 /* manually dial the phone now */
#define DLC_IWOT RES 0x00200000 /* inactivity without */
/* termination */
#define DLC_IEND_RES 0x00100000 /* the inactivity has ended */

~ Base Operating System Reference

ioctl (op)

#define DLC_CONT_RES 0x00080000 /* the station is now */
/* contacted */
#define DLC_RADD RES 0x00004000 /* the remote addr has changed */
#define DLC_ MAX EXT 48 /* max size of the result */
/* extension field */

DLC_TEST_RES

DLC_SAPE_RES

DLC_SAPD_RES

DLC_STAS_RES

DLC_STAH_RES

DLC_DIAL_RES

DLC_IWOT_RES

DLC_IEND_RES

Test complete: A nonextended result. Setto 1,
this bit indicates that the link test has completed
as indicated in the result code.

SAP enabled: An extended result. Set to 1, this
bit indicates that the SAP is active and ready for
LSs to be started. See DLC_SAPE_RES
operation for the format of the extension area.

SAP Disabled: A nonextended result. Setto 1,
this bit indicates that the SAP has been
terminated as indicated in the result code.

Link station started: An extended result. Set to 1,
this bit indicates that the link station is connected
to the remote station in asynchronous or normal
disconnected mode. GDLC is waiting for link
receive data from the device driver, or additional
commands from the user such as the
DLC_CONTACT ioctl operation. See
DLC_STAS_RES operation for the format of the
extension area.

Link station halted: A nonextended result. Set to
1, this bit indicates that the LS has terminated
due to a DLC_HALT_LS ioctl operation from the
user, a remote discontact, or an error condition
indicated in the result code.

Dial the phone: A nonextended result. Setto 1,
this bit indicates that the user may now manually
dial an outgoing call to the remote station.

Inactivity without termination: A nonextended
result. Set to 1, this bit indicates that the LS
protocol activity from the remote station has
terminated for the length of time specified in the
configuration (receive inactivity time out). The
local station remains active and notifies the user
if the remote station begins to respond.
Additional notifications of inactivity without
termination are suppressed until the inactivity
condition clears up.

inactivity ended: A nonextended result. Setto 1,
this bit indicates that the LS protocol activity from
the remote station has restarted after a condition
of inactivity without termination.

Data Link Controls 3-53

ioctl (op)

DLC_CONT_RES Contacted: A nonextended result. Set to 1, this
bit indicates that GDLC has either received a Set
Mode, or has received a positive response to a
Set Mode initiated by the local LS. GDLC is now
able to send and receive normal sequenced data
on this LS.

DLC_RADD_RES Remote address/name change: An extended
result. Set to 1, this bit indicates that the remote
LS address (or name) has been changed from
the previous value. This can occur on SDLC links
when negotiating a point to point connection, for
example. See the DLC_RADD_RES operation
for the format of the extension area.

result_code Result code: The following values specify the result codes for GDLC.
Negative return codes that are even indicate that the error condition can be
remedied by restarting the LS returning the error. Return codes that are odd
indicate that the error is catastrophic, and, at the minimum, the SAP must
be restarted. Additional error data may be obtained from the GDLC error log
and link trace entries.

#define DLC_SUCCESS 0 /* the result indicated was */

/* successful */
#define DLC_PROT ERR —906 /* protocol error */
#define DLC_BAD_DATA —908 /* a bad data compare on a TEST */
#define DLC_NO_RBUF —910 /* no remote buffering on test */
#define DLC_RDISC —-912 /* remote initiated discontact */
#define DLC_DISC_TO —-914 /+* discontact abort timeout */
#define DLC_INACT_TO —916 /* inactivity timeout */
#define DLC_MSESS_RE —918 /* mid session reset */
#define DLC_NO_FIND —920 /* cannot find the remote name */
#define DLC_INV_RNAME —-922 /* invalid remote name */
#define DLC_SESS_LIM —924 /* session limit exceeded */
#define DLC_LST IN_ PRGS —926 /* listen already in progress */
#define DLC_LS_NT_COND -928 /* 1ls unusual network condition */
#define DLC_LS_ROUT —930 /* link station resource outage */
#define DLC_REMOTE_BUSY -932 /* remote station found, but busy */
#define DLC_REMOTE_CONN -936 /* specified remote is already */

- /* connected */

#define DLC_NAME_IN_USE —-901 /* local name already in use */
#define DLC_INV_LNAME -903 /* invalid local name */
#define DLC_SAP_NT COND —-905 /* SAP network unusual network */

/* condition *x/
#define DLC_SAP ROUT —907 /* SAP resource outage */
#define DLC_USR_INTRF —-909 /* user interface error */
#define DLC_ERR_CODE —911 /* error in the code has been */

/* detected */
#define DLC_SYS_ERR -913 /* system error */

3-54 Base Operating System Reference

result_ext

ioctl (op)

Result extension: Several results carry extension areas to provide additional
information about them. The user must provide a full sized area for each
result requested since there is no way to tell if the next result is extended or
nonextended. The extended result areas are described by type below.

DLC_SAPE_RES — SAP Enabled Result Extension

The following parameter’s service access point (SAP) enables a result extension.

struct dlc_sape_res

{

ulong_t max_net_ send; /* maximum write network */
/* data length */

ulong t lport_addr len; /* local port network */
/* address length */

u_char_t lport_addr[DLC_MAX ADDR]; /* the local port */
/* address */

i

max_net_send Maximum write network data length: The maximum number of bytes that the

user can write for each packet when writing network data. This is generally
based on a communications mbuf/mbuf's page cluster size, but is not
necessarily limited to a single mbuf/mbuf’s since mbuf/mbuf’'s can be linked.

Iport_addr_len Local port net address length: Contains the byte length of the local port

Iport_addr

network address.

Local port network address: Contains the hexadecimal value of the local
port network address.

DLC_STAS_RES — Link Station Started Result Extension

The following parameter starts a link station's (LS) result extension.

struct dlc_stas_res

{
ulong_t maxif; /* max size of the data sent */
/* on a write */
ulong_t rport_addr len; /* remote port network */
/* address length */
u_char_t rport_addr[DLC_MAX ADDR}; /* remote port address */
ulong_t rname_len; /* remote network name length */
u_char_t rname[DLC_MAX NAME]; /* remote network name */
uchar t res[3]; /* reserved */
uchar_t rsap; /* remote SAP */
ulong_t max_data_ off; /* the maximum data offsets */
/* for sends */

}i

maxif

Maximum I-field size: Contains the maximum byte size allowable for user
data. This value is derived from the value supplied by the user at start link
station (DLC_START_LS) and the actual number of bytes that can be
handled by the GDLC and device handler on a single transmit or receive.
Generally this value is something less than the size of a communications
mbuf page cluster. However, some communications devices may be able to
link page clusters together, so the maximum I-field receivable may be even

Data Link Controls 3-55

ioctl (op)

greater than the length of a single mbuf. The returned value will never
exceed the value supplied by the user, but may be smaller if buffering is not
large enough to hold the specified value.

rport_addr_len Remote port network address length: Contains the byte length of the remote
port network address.

rport_addr Remote port network address: Contains the hexadecimal value of the
remote port network address.

rname_len Remote network name length: Contains the byte length of the remote port
network name. This is returned only when name discovery procedures are
used to locate the remote station. Otherwise this field is set to zero. Network
names can be 1 to 20 characters in length.

rname Remote network name: Contains the name being used by the remote SAP.

This field is valid only if name-discovery procedures were used to locate the
remote station.

rsap Remote SAP: Contains the hexadecimal value of the remote SAP address.

max_data_off Write data offset: Contains the data offset in bytes of a communications
mbuf where transmit data must minimally begin. This allows ample room for
the DLC and MAC headers to be inserted if needed. Some DLC’s may be
able to prepend additional mbufs for their headers, and will set this field to
zero.

This field is only valid for kernel users that pass in a communications mbuf
on write operations.

Note: In order to align the data moves to a particular byte boundary, the
kernel user may wish to choose a value larger than the minimum
value returned

DLC_STAH_RES — Link Station Halted Result Extension

The following parameter halts the link station (LS) result extension.

struct dlc_stah_res
{
ulong conf_1ls corr; /* conflicting link station corr */

}:

This extension is valid only if the result code value indicates —936 (specified remote is
already connected).

conf_Is_corr Conflicting link station correlator: Contains the user’s link station identifier
that already has the specified remote station attached.

DLC_RADD_RES — Remote Address/Name Change Result Extension

3-56

The following parameter changes the remote address or name of the result extension.

struct dlc_radd res

{
ulong rname_len; /* remote network name/addr length */
u_char rname[DLC_MAX NAME]; /* remote network name/addr */
}i

Base Operating System Reference

ioctl (op)

rname_len Remote network address or name length: Contains the byte length of the
updated remote service access point (SAP)'s network address or name.

rname Remote network address or name: Contains the updated address or name
being used by the remote SAP.

Implementation Specifics
This DLC_GET_EXCEP iocti operation for DLC is part of the device manager Data Link
Contro! in BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Ethernet (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

DLC_ADD_GRP loctl Operation for DLC

The following parameter adds a group or multicast receive address.

struct dlc_add_grp

{
ulong_t gdlc_sap_corr; /* GDLC SAP correlator */
ulong t grp_addr len; /* group address length */
uchar_t grp_addr[DLC_MAX ADDR]; /* grp addr to be added */
}i

gdic_sap_corr GDLC SAP Correlator: This is GDLC’s SAP identifier being requested
to add a group or multicast address to a port.

grp_addr_len Group Address Length: Contains the byte length of the group or
multicast address to be added.

grp_addr Group Address: Contains the group or multicast address value to be
added.

Implementation Specifics
This DLC_ADD_GRP ioctl operation for DLC is part of the device manager Data Link Control
in BOS Extensions 2.

insert the Standard Ethernet, SDLC, Token-Ring, IEEE Ethernet (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

IOCINFO ioctl Operation for DLC

Returns a structure that describes the device (refer to the description of the sys/devinfo.h
file. The first byte is set to an ioctype of DD_DLC. The subtype and data are defined by the
individual DLC devices. See the /usr/include/sys/devinfo.h file for details.

Data Link Controls 3-57

ioctl (op)

Implementation Specifics
This IOCINFO ioctl operation for DLC is part of the device manager Data Link Control in
BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Ethernet (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

3-58 Base Operating System Reference

open, openx

open, openx Subroutine Interface for Data Link Control (DLC)

Devices
Purpose
Opens the GDLC device manager by special file name.
Syntax
#include <sys/fcntl.h>
#include <sys/gdlextcb.h>
int open(path, oflag, mode)
or
int openx(path, oflag, mode, ext)
char *path;
int oflag;
int mode;
int ext;
Description
The open subroutine allows the application user to open a generic data link control (GDLC)
device manager by specifying the DLC’s special file name and the target device handler’s
special file name. Since the GDLC device manager is multiplexed, more than one process
can open it (or the same process many times) and still have unique channel identifications.
Each open carries the communications device handler’s special file name so that the DLC
knows on which port to transfer data. This name must directly follow the DLC’s special file
name. For example, in the /dev/dlcether/ent0 character string, ent0 is the special file
name of the Ethernet device handler. GDLC obtains this name using its dlempx routine.
Parameters

path Consists of a character string containing the /dev special file name of the
GDLC device manager, with the name of the communications device
handler appended, as follows:

/dev/dlcether/ent0

oflag Specifies a value for the file status flag. The GDLC device manager ignores
ali but the following flags:

O_RDWR Open for reading and writing. This must be set for GDLC or
the open will fail.

O_NDELAY, O_NONBLOCK :

Subsequent reads with no data present and writes that
cannot get enough resources will return immediately. The
calling process is not put to sleep.

mode Specifies the O_CREAT mode parameter. This is ignored by GDLC.

Data Link Controls 3-59

open, openx

ext Specifies the extended subroutine parameter. This is a pointer to the

dic_open_ext extended I/O structure for the open subroutines. DLC
Extended Parameters for open Subroutine provides more information on
this parameter.

Return Values

Upon successful completion, the open subroutine returns a valid file descriptor that identifies
the opened GDLC channel.

if an error occurs, a value of —1 is returned with one of the following error numbers available
using errno, as defined in the errno.h header file:

ECHILD Cannot create a kernel process.

EINVAL Invalid value.

ENODEV No such device handler.

ENOMEM Not enough resources to satisfy the open subroutine.
EFAULT Kernel service, such as copyin or initp, has failed.

Implementation Specifics

This open subroutine interface is part of the device manager Data Link Control in BOS
Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or

any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information

3-60

The dicmpx routine.
The copyin kernel service, initp kernel service.
open, openx Subroutine, Extended Parameters.
close Subroutine Interface for Data Link Control (DLC) Devices.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Base Operatina Svstem Reference

open, openx

open, openx Subroutine, Extended Parameters

Description
An extended open (openx) subroutine may be issued to alter certain normally defaulted
parameters, such as maximum service access points (SAPs) and ring queue depths. Kernel
users may change these normally defaulted parameters, but are required to provide
additional parameters to notify the dicopen routine that these callers are to be treated as
kernel processes and not as application processes. Additional parameters passed include
functional addresses that the user wishes GDLC to call for notification of asynchronous
events, such as receive data available.

The structure for the open subroutine extension parameters is as follows:

struct dlc_open_ext

{
ulong_t maxsaps; /* 1 (1 to 127) service access points * /
int (*rcvi_fa)(); /* receive I-frame function address */
int (*rcvx_fa)(); /* receive XID function address */
int (*rcvd _fa)(); /* receive Datagram function address */
int (*rcvn_fa)(); /* receive Network data function address */
int (*excp fa)(); /* exception handler function address */

}i

See the /include/sys/gdlextcb.h file for more details on GDLC structures.

The first parameter is optional for both the application and the kernel user. If the default
value is desired, the field must be set to zero by the user prior to issuing the open
subroutine.

maxsaps Maximum SAPs: The maximum number of SAPs that this user
channel is going to start and have running concurrently. The default
is 1. Any value from 1 to 127 can be specified (0 gets the default).

The last five parameters are mandatory for kernel users but are ignored by GDLC for
application users. There are no default values. Each field must be filled in by the kernel user.
All functional entry addresses must be valid. That is, entry points that the kernel user does
not wish to support must at least point to a routine that frees the communication’s memory
buffer (mbuf) passed on the call.

*revi_fa Receive |-Frame Data Function Pointer: The address of a user
routine that handles the sequenced |-frame receive data
completions. This field is valid for kernel users only and must be set
to 0 (zero) by application users.

*recvx_fa Receive XID Function Pointer: The address of a user routine that
handles the exchange ID receive data completions.

*rcvd_fa Receive Datagram Function Pointer: The address of a user routine
that handles the datagram receive data completions.

*revn_fa Receive Network Data Function Pointer: The address of a user
routine that handles the network receive data completions.

Data Link Controls 3-61

open, openx

*excp_fa Exception Handler Function Pointer: The address of a user routine
that handles the exception conditions, such as DLC_SAPE_RES
(SAP Enabled) or DLC_CONT_RES (LS contacted).

Implementation Specifics

These DLC extended parameters for open subroutine are part of the device manager Data
Link Control in BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or

any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
The open, openx subroutine.
The dicopen entry point routine.
Parameter Blocks by ioctl Operation for DLC

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

3-62 Base Operating System Reference

p

open, openx

Datagram Data Received Routine, for DLC

Function
This routine is coded by the kernel user and called by GDLC each time a datagram packet is
received for the kernel user.

Subroutine Call
#include <sys/gdlextch.h>
int (*dic_open_ext.rcvd_fa)(m, ext)
struct mbuf *m;
struct dlc_io_ext *ext;

Parameters
m Specifies the pointer to a communications memory buffer (mbuf).
ext Specifies the receive extension parameter. This is a pointer to the
dic_io_ext extended I/0 structure for reads.
Returns to GDLC
int Indicates one of the following return codes from this function call:
DLC_FUNC_OK The received datagram mbuf data has been
accepted.

DLC_FUNC_RETRY The received datagram mbuf data cannot be
accepted at this time. GDLC should retry this
function later. The actual retry wait period
depends on the DLC in use. Excessive retries
may close the link station.

Implementation Specifics
This DLC datagram data received routine is part of the device manager Data Link Control in
BOS Extensions 2.

insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
DLC Extended Parameters for read Subroutine.

Generic Data Link Controi (GDLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-63

open, openx

Exception Condition Routine

Function
This routine is coded by the kernel user and called by GDLC each time an asynchronous
event occurs that must notify the kernel user, such as DLC_SAPD_RES (SAP disabled) or
DLC_CONT_RES (contacted).

Subroutine Call
#include <sys/gdlextcb.h>
int (*dlc_open_ext.excp_fa)(exi)
struct dic_getx_arg *ext;

Parameter
ext Specifies the same structure for a dic_getx_arg (get exception) ioctl
subroutine.

Returns to GDLC
int Indicates the following return code from the function call:
DLC_FUNC_OK The exception has been accepted.
Note: The function call above has a hidden parameter extension for internal use only,
defined as int *chanp, the channel pointer.

Implementation Specifics
This DLC exception condition routine is part of the device manager Data Link Control in BOS
Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
The ioctl subroutine.

Parameter Blocks by ioctl Operation for DLC.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

3-64 Base Operating System Reference

open, openx

I-Frame Data Received Routine

Function
This routine is coded by the kernel user and called by GDLC each time a normal sequenced
data packet is received for the kernel user.

Subroutine Call
#include <sys/gdlextcb.h>

int (*dlc_open_ext.rcvi_fa)(m, ext)
struct mbuf *m;
struct dic_io_ext *ext;

Parameters
m Specifies the pointer to a communications memory buffer (mbuf).
ext Specifies the receive extension parameter. This is a pointer to the
dic_io_ext extended I/O structure for reads. The argument to this
parameter must be in the kernel space.
Returns to GDLC
int Indicates one of the following return codes from the function call:
DLC_FUNC_OK The received I-frame function call is accepted.
DLC_FUNC_BUSY The received I-frame function call cannot be

accepted at this time. The ioctl command
operation DLC_EXIT_LBUSY must be issued
later using the ioctl subroutine.

DLC_FUNC_RETRY The received I-frame function call cannot be
accepted at this time. GDLC should retry this
function call later. The actual retry wait period
depends on the DLC in use. Excessive retries
can be subject to a halt of the link station.

Implementation Specifics
This DLC I-frame data received routine is part of the device manager Data Link Control in
BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or

any combination) in place of device manager above, depending on which device manager
" you decide to use.

Related Information
The ioctl subroutine.

Parameter Blocks by ioctl Operation for DLC.
DLC Extended Parameters for read Subroutine.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-65

open, openx

Network Data Received Routine

Function

This routine is coded by the kernel user and called by GDLC each time network-specific data
is received for the kernel user.

Subroutine Call
#include <sys/gdlextcb.h>

int (*dlc_open_ext.revn_fa)(m, ext)
struct mbuf *m;
struct dlc_io_ext *ext,

Parameters
m Specifies the pointer to a communications memory buffer (mbuf).
ext Specifies the receive extension parameter. This is a pointer to the
dic_io_ext extended 1/O structure for reads.
Returns to GDLC
int Indicates one of the following return codes from this function call:
DLC_FUNC_OK The received network mbuf data has been
accepted.

DLC_FUNC_RETRY The received network mbuf data cannot be
accepted at this time. GDLC should retry this
function call some time later. The actual retry
wait period depends on the DLC in use, and
excessive retries can cause a disabling of the
service access point.

Implementation Specifics
This DLC network data received routine is part of the device manager Data Link Control in
BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or

any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
DLC Extended Parameters for read Subroutine.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

3-66 Base Operating System Reference

open, openx

XID Data Received Routine

Function

This routine is coded by the kernel user and called by GDLC each time an exchange
identification (XID) packet is received for the kernel user.

Subroutine Call
#include <sys/gdlextcb.h>

int (*dlc_open_ext.rcvx_fa)(m, ex!)
struct mbuf *m;
struct dic_io_ext *ext;

Parameters
m Specifies the pointer to a communication memory buffer (mbuf).
ext Specifies the receive extension parameter. This is a pointer to the
dic_io_ext extended I/O structure for reads. The argument to this
parameter must be in the kernel space.
Returns to GDLC
int Indicates one of the following return codes from this function call:
DLC_FUNC_OK The received XID mbuf data has been accepted.

DLC_FUNC_RETRY The received XID mbuf data cannot be accepted
at this time. GDLC should retry this function call
some time later. The actual retry wait period
depends on the DLC in use. Excessive retries
may close the link station.

Implementation Specifics

This DLC XID data received routine is part of the device manager Data Link Control in BOS
Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or

any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
DLC Extended Parameters for read Subroutine.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts. ;

Data Link Controls 3-67

read, readx

read, readx Subroutine, Extended Parameters

Description
An extended read (readx) subroutine must be issued by an application user to provide

GDLC with a structure to return the type of data and the service access point (SAP) and link
station (LS) correlators.

3-68

The structure for the read subroutine extension parameters is as follows:

struct dlc_io ext

{
ulong_t sap corr; /* Sap correlator
*/
ulong_t ls_corr; /* Link Station correlator
*/
» ulong_t flags; /* flags
*/
ulong_t dlh_len; /* data link header length
*/
}i
sap_corr User SAP Correlator: The user's SAP identifier of the received data.
Is_corr User LS Correlator: The user’s LS identifier of the received data.
flags Result Flags: The following flags are supported:
#define DLC_INFO 0x80000000 /* normal I-frame
*/
#define DLC_XIDD 0x40000000 /* XID data
*/
#define DLC_DGRM 0x20000000 /* datagram
*/
#define DLC_NETD 0x10000000 /* network data
*/
#define DLC_OFLO 0x00000002 /* receive overflow occurr
ed */
#define DLC_RSPP 0x00000001 /* response pending
*/

DLC_INFO |-Frame Data Received: Indicates that normal sequenced data has
been received for a link station. If buffer overflow (OFLO) is indicated,
the received data has been truncated because the received data
length exceeds either the maximum |-field size derived at completion
of DLC_START_LS ioctl operation or the application user’s buffer
size.

DLC_XIDD XID Data Received: Indicates that exchange identification (XID) data

has been received for a link station. If buffer overflow (OFLO) is
indicated, the received XID has been truncated because the received
data length exceeds either the maximum |-field size derived at
DLC_START_LS completion or the application user’s buffer size. If
response pending (RSPP) is indicated, an XID response is required

Base Operating System Reference

DLC_DGRM

DLC_NETD

DLC_OFLO

DLC_RSPP

dih_len

Implementation Specifics

read, readx

and must be provided to GDLC using a write XID as soon as possible
to avoid repolling and possible termination of the remote LS.

Datagram Data Received: Indicates that a datagram has been
received for an LS. If buffer overflow (OFLO) is indicated, the
received data has been truncated because the received data length
exceeds either the maximum I-field size derived at DLC_START_LS
completion or the application user’s buffer size.

Network Data: Indicates that data has been received from the
network for a service access point. This may be link-establishment
data such as X.21 call-progress signals or smart modem command
responses. It can also be data destined for the user’'s SAP when no
link station has been started that fits the addressing of the packet
received. If buffer overflow (OFLO) is indicated, the received data
has been truncated because the received data length exceeds either
the maximum packet size derived at DLC_ENABLE_SAP completion
or the application user’s buffer size.

Network data contains the entire MAC layer packet, excluding any
fields stripped by the adapter such as Preamble or CRC.

Buffer Overflow: indicates that overflow of the user data area has
occurred and the data was truncated. This error does not set a
u.u_error indication.

Response Pending: This bit indicates that the XID received requires
an XID response to be sent back to the remote link station.

Data Link Header Length: This field has different meaning depending
on whether the extension is for a readx subroutine call to GDLC or a
response from GDLC.

On the application readx subroutine it indicates whether the user
wishes to have datalink header information prefixed to the data. If this
field is set to O (zero), the data link header is not to be copied (only
the I-field is copied). !f this field is set to any nonzero value, the data
link header information will be included in the read.

On the response to an application readx subroutine this field contains
the number of data link header bytes received and copied into the
Data Link Header Information field.

On asynchronous receive function handlers to the kernel user, this
field contains the length of the data link header within the
communications memory buffer (mbuf).

These DLC extended parameters for read subroutine are part of the device manager Data
Link Control in BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager

you decide to use.

Data Link Controls 3-69

read, readx

Related Information
The read, readx, readv, or readvx Subroutine.

DLC Extended Parameters for write Subroutine
Parameter Blocks by ioctl Operation for DLC

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

3-70 Base Operating System Reference

readx

readx Subroutine Interface for Data Link Control (dic) Devices

Purpose
Allows receive application data to be read using a file descriptor.
Syntax
#include <sys/gdlextch.h>
#include <sys/uio.h>
int readx (fildes, buf, len, ext)
int fildes;
char *buf;
int len;
int ext;
Description
The receive queue for this application user is interrogated for any pending data. The oldest
data packet is copied to user space, with the type of data, the link station correlator, and the
service access point (SAP) correlator written to the extension area. When attempting to read
an empty receive data queue, the default action is to delay until data is available. If the
O_NDELAY or O_NONBLOCK flags are specified in the open subroutine, the readx
subroutine returns immediately to the caller.
Data is transferred using the uiomove kernel service between the user space and kernel
communications memory buffers (mbufs). A complete receive packet must fit into the user’s
read data area. GDLC does not break up received packets into multiple user data areas.
Parameters
fildes Specifies the file descriptor returned from the open subroutine.
buf Points to the user data area.
len Contains the byte count of the user data area.
ext Specifies the extended subroutine parameter. This is a pointer to the

dlc_io_ext extended 1/O structure for the readx subroutine. DLC Extended
Parameters for read Subroutine provides more information on this
parameter.

Note: Itis the user’s responsibility to set the ext parameter area to 0 (zero)
prior to issuing the readx subroutine to insure valid entries when no
data is available.

Return Values
Upon successful completion, the readx subroutine returns the number of bytes read and
placed into the application data area. If more data is received from the media than will fit into
the application data area, the DLC_OFLO flag is set in the dic_io_ext command extension
area to indicate that the read is truncated. All excess data is lost.

If no data is available and the application user has specified the O_NDELAY or
O_NONBLOCK flags at open time, a zero is returned.

Data Link Controls 3-71

readx

if an error occurs, a value of —1 is returned with one of the following error numbers available
using errno, as defined in the errno.h header file:

EBADF Bad file number.
EINTR A signal interrupted the subroutine before it received data.
EINVAL Invalid value.

ENOMEM Not enough resources to satisfy the read.

Implementation Specifics

This readx subroutine interface is part of the device manager Data Link Control in BOS
Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or

any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information

3-72

The readxsubroutine, open subroutine.
The uiomove kernel service.
read, readx Subroutine, Extended Parameters .

writex Subroutine Interface for Data Link.

Base Operating System Reference

select

select Subroutine Interface for Data Link Control (dic) Devices

Purpose

Syntax

Allows data to be sent using a file descriptor.

#include <sys/select.h>

int select (nfdsmsgs, readlist, writelist, exceptlist, timeout)
int nfdsmsgs;

struct sellist *readlist, *writelist, *exceptlist;

struct timeval *timeout,;

Description

The select subroutine checks the specified file descriptor and message queues to see if
they are ready for reading (receiving) or writing (sending), or if they have an exception
condition pending.

Note: GDLC does not support transmit for nonblocked notification in the full sense. If the
writelist parameter is specified in the select call, GDLC always returns as if transmit
is available. There is no checking to see if internal buffering is available or if internal
control-block locks are free. These resources are much too dynamic, and tests for
their availability can only be done reasonably at the time of use.

The readlist and exceptlist parameters are fully supported. Whenever the selection criteria
specified by the SelType parameter is true, the file system returns a value that indicates the
total number of file descriptors and message queues that satisfy the selection criteria. The
fdsmask bit masks are modified so that bits set to a value of 1 indicate file descriptors that
meet the criteria. The msgids arrays are altered so that message queue identifiers that do
not meet the criteria are replaced with a value of —1. If the selection is not satisfied, the
calling process is put to sleep waiting on a selwakeup subroutine at a later time.

Parameters

nfdsmsgs Specifies the number of file descriptors and message queues to check.

sellist The readlist, writelist, and exceptlist parameters specify what to check for
during reading, writing, and exceptions, respectively. Each sellistis a
structure that contains a file descriptor bit mask (fdsmask) and message
queue identifiers (msgids).

The writelist criterion is always set true by GDLC.

timeout Points to a structure that specifies the maximum length of time to wait for at
least one of the selection criteria to be met (if the timeout parameter is not a
null pointer).

Return Values

Upon successful completion, the select subroutine returns a value that indicates the total
number of file descriptors and message gqueues that satisfy the selection criteria. The return
value is similar to the nfdsmsgs parameter in that the low-order 16 bits give the number of
file descriptors, and the high-order 16 bits give the number of message queue identifiers.
These values indicate the sum total that meet each of the read and exception criteria.

Data Link Controls 3-73

select

If the time limit specified by the timeout parameter expires, then the select subroutine
returns a value of 0.

If an error occurs, a value of —1 is returned.with one of the following error numbers available
using errno, as defined in the errno.h header file:

EBADF Bad file number.

EINTR A signal interrupted the subroutine before it found any of the selected.
events.

EINVAL One of the parameters contained an invalid value.

Implementation Specifics

This select subroutine interface is part of the device manager Data Link Control in BOS
Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
The select subroutine.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

3-74 Base Operating System Reference

write, writex

write, writex Subroutine, Extended Parameters

Purpose

An extended write (writex) subroutine must be issued by an application or kernel user to
provide GDLC with the type of data and the service access point (SAP) and link station (LS)
correlators. The structure for the write subroutine extension parameters is shown below:

ulong_t sap_corr; /* Sap correlator
*/
ulong_t ls_corr; /* Link Station correlator
*/
ulong_t flags; /* flags
*/
ulong_t dlh_len; /* <<< not used for writes >>>
*/
}i
sap_corr GDLC SAP Correlator: The user’s SAP identifier of the received data.
Is_corr GDLC Link Station Correlator: The user’s link station identifier of the
received data. '
flags Write Flags: The following flags are supported:
/*** Read and Write Flags ***/
#define DLC_INFO 0x80000000 /* normal I—frame
*/
#define DLC_XIDD 0x40000000 /* XID data
*/
#define DLC_DGRM 0x20000000 /* datagram
*/
#define DLC_NETD 0x10000000 /* network data
*/
DLC_INFO Write I-Frame Data: Requests a sequenced data class of information
to be sent (generally called I-frames).
This request is valid any time the target link station has been started
and contacted.
DLC_XIDD Write XID Data: Requests an exchange identification (XID) or
response to be sent.
This request is valid any time the target link station has been started
with the following rules:
GDLC sends the XID as a command as long as no DLC_TEST,
DLC_CONTACT, DLC_HALT_LS, or DLC_XIDD write subroutine is
already in progress, and no received XID is waiting for a response. If
a received XID is waiting for a response, GDLC automatically sends
the write XID as that response. If no response is pending and a
command is already in progress, the write is rejected by GDLC.
DLC_DGRM Write Datagram: Requests an unnumbered datagram to be sent.

Data Link Controls 3-75

write, writex

This request is valid any time the target link station has been started.
DLC_NETD Write Network Data: Requests that network data be sent.

Examples of network data include special modem control data or
user-generated medium access control (MAC) and logical link control
(LLC) headers.

Network data must contain the entire MAC layer packet headers so
that the packet can be sent without the data link control (DLC)’s
intervention. GDLC only provides a pass-through function for this
type of write.

This request is valid any time the SAP is open.

Implementation Specifics

These DLC extended parameters for write subroutine are part of the device manager Data
Link Control in BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or

any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
The write, writex subroutine.
DLC Extended Parameters for read Subroutine.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

3-76 Base Operating System Reference

writex

writex Subroutine Interface for Data Link Control (dic) Devices

Purpose

Syntax

Allows application data to be sent using a file descriptor.

#include <sys/gdlextcb.h>
#include <sys/uio.h>

int writex (fildes, buf, len, exf)
char *buf,

int ext;

int fildes, len;

Description

Four types of data can be sent to GDLC. Network data can be sent to a service access point
(SAP), while normal, Exchange Identification (XID), or datagram data can be sent to a link
station (LS). Data is transferred using the uiomove subroutine between the application user
space and kernel communications 1/0 buffers (mbufs). All data must fit into a single packet
for each write subroutine. The generic data link contro! (GDLC) does not separate the user’s
write data area into multiple transmit packets. A maximum write data size is passed back to
the user at DLC_ENABLE_SAP completion and at DLC_START_LS completion for this
purpose. See DLC_SAPE_RES and DLC_STAS_RES for further information.

Normally, GDLC can immediately satisfy a write subroutine by completing the data link
headers and sending the transmit packet down to the device handler. In some cases,
however, transmit packets can be blocked by the particular protocol’s flow control or by a
resource outage. GDLC reacts to this differently based on the systems blocked or
nonblocked file status flags. These are set for each channel using the O_NDELAY and
O_NONBLOCK values passed on open subroutines or on fentl subroutines with the
F_SETFD parameter.

GDLC only looks at the uio_fmode on each write subroutine to determine whether the
operation is blocked or nonblocked. Nonblocked writes that cannot get enough resources to
queue the data return an error indication. Blocked write subroutines put the calling process
to sleep until the resources free up or an error occurs.

Note: GDLC does not support nonblocked transmit users based on resource availability
using the selwakeup subroutine. Internal resources such as communications /O
buffers and control block locks are very dynamic. Any write subroutines that fail with
errors (such as EAGAIN or ENOMEM;j should be retried at the users discretion.

Parameters

fildes Specifies the file descriptor returned from the open subroutine.
buf Points to the user data area.
len Contains the byte count of the user data area.

ext Specifies the extended subroutine parameter. This is a pointer to the
dlc_io_ext extended 1/O structure for the writex subroutine. DLC Extended

Data Link Controls 3-77

writex

Parameters for write subroutine provides more information on this
parameter.

Return Values
Upon successful completion, this service returns the number of bytes that were written into a
communications packet from the user data area.

If an error occurs, a value of —1 is returned with one of the following error numbers available
using errno, as defined in the errno.h header file.

EAGAIN Not enough resources to satisfy the write; for example, unable to obtain a
necessary lock. The user can try again later.

EBADF Bad file number.

EINVAL Invalid value, such as too much data for a single packet.

EIO An 1/O error has occurred, such as loss of the port.

ENOMEM Not enough resources to satisfy the write; for example, a lack of

communications memory buffers (mbufs). The user can try again later.

Implementation Specifics
This writex subroutine interface is part of the device manager Data Link Control in BOS
Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or

any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
The writex subroutine, uiomove subroutine, fcntl subroutine, open subroutine.
DLC Extended Parameters for write Subroutine
readx Subroutine Interface for Data Link Control (dic) Devices
Parameter Blocks by ioctl Operation for DLC

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

3-78 Base Operating System Reference

Network Computing System (NCS)

Network Computing System (NCS) 4-1

4-2 Base Operating System Reference

Ib_$lookup_interface

Ib_S$lookup_interface Library Routine (NCS)

Purpose

Looks up information about an interface in the GLB database.

Syntax

void Ib_S$lookup_interface (object_interface, lookup_handle, max_results, num_results,

results, status)

uuid_8$t *object_interface;

Ib_S$lookup_handle_t */ookup_handle;
unsigned long max_results;
unsigned long *num_results;

Ib_S$entry_t results[];
status_$t *status;

Parameters
Input

object_interface

max_results

Input/Output

lookup_handle

Output

num_results

results

status

Points to the UUID of the interface being looked up.

Specifies the maximum number of matching entries that can be
returned by a single call. This should be the number of elements
in the results parameter array.

Specifies a location in the database. On input, the lookup_handle
value indicates the location in the database where the search
begins. An input value of Ib_$default_lookup_handle specifies
that the search starts at the beginning of the database.

On return, the lookup_handle parameter indicates the next
unsearched part of the database (that is, the point at which the
next search should begin). A return value of
Ib_$default_lookup_handle indicates that the search reached
the end of the database. Any other value indicates that the
search found at most the number of matching entries specified by
the max_results parameter before it reached the end of the
database.

Points to the number of entries that are returned in the results
parameter array.

Specifies the array that contains the matching GLB database
entries, up to the number specified in the max_results parameter.
If the array contains any entries for servers on the local network,
those entries appear first.

Points to the completion status.

Network Computing System (NCS)- . 4-3

Ib_S$lookup_interface

Description
The Ib_$lookup_interface routine returns GLB database entries whose object_interface
fields match the specified interface. It returns information about all replicas of all objects that
can be accessed through that interface.

The tb_$lookup_interface routine cannot return more than the number of matching entries
specified by the max_results parameter at one time. The lookup_handle parameter directs
this routine to do sequential lookup calls to find all matching entries.

Notes:

1. The Location Broker does not prevent modification of the database between
lookup calls, which can cause the locations of entries relative to a lookup_handle
value to change. If multiple calls are made to find all matching results in the
database, the returned information may skip or duplicate entries from the
database.

2. ltis also possible for the results of a single lookup call to skip or duplicate entries.
This can occur if the size of the results exceeds the size of an RPC packet (64K
bytes).

Example
1. To look up information in the GLB database about a matrix multiplication interface, use
the following:

1b_$lookup_interface (&matrix if id, &lookup_handle,
results_array_size, &num_results,
&matrix_if results_array, &status);

Implementation Specifics

This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

4-4 Base Operating System Reference

Ib_$lookup_object

Ib_S$lookup_object Library Routine (NCS)

Purpose

Looks up information about an object in the GLB database.

Syntax

void |b_$lookup_object (object, lookup_handle, max_results, num_results, results, status)

uuid_$t *object;

Ib_$lookup_handle_t *lookup_handle;
unsigned long max_results;

unsigned long *num_results;

Ib_S$entry_t results[];
status_$t *status;

Parameters
Input

object

max_results

Input/Output

lookup_handle

Output

num_results

results

status

Points to the UUID of the object being looked up.

Specifies the maximum number of matching entries that can be
returned by a single call. This should be the number of elements
in the results parameter array.

Specifies a location in the database. On input, the value of the
lookup_handle parameter indicates the location in the database
where the search begins. An input value of
Ib_S$default_lookup_handle specifies that the search starts at
the beginning of the database.

On return, the lookup_handle parameter indicates the next
unsearched part of the database (that is, the point at which the
next search should begin). A return value of
Ib_$default_lookup_handle indicates that the search reached
the end of the database. Any other value indicates that the
search found at most the number of matching entries specified by
the max_results parameter before it reached the end of the
database.

Points to the number of entries that were returned in the results
parameter array.

Specifies the array that contains the matching GLB database
entries, up to the number specified in the max_results parameter.
If the array contains any entries for servers on the local network,
those entries appear first.

Points to the completion status.

Network Computing System (NCS) 4-5

Ib_S$lookup_object

Description
The Ib_$lookup_object routine returns GLB database entries whose object fields match

the specified object. It returns information about all replicas of an object and all interfaces to
the object.

The Ib_$lookup_object routine cannot return more than the number of matching entries
specified by max_results parameter at one time. The lookup_handle parameter directs this
routine to do sequential lookup calls to find all matching entries.

Notes:

1. The Location Broker does not prevent modification of the database between
lookup calls, which can cause the locations of entries relative to a value of the
lookup_handle parameter to change. If multiple calls are made to find all matching
results in the database, the returned information may skip or duplicate entries from
the database.

2. Itis also possible for the results of a single lookup call to skip or duplicate entries.
This can occur if the size of the results exceeds the size of an RPC packet (64K
bytes).

Example
1. To look up GLB database entries for the bank bank_id, enter the following:

lb_$lookup_object(&bank_id, &lookup_handle, MAX_LOCS, &n_locs,
bank_loc, &st);

Implementation Specifics

This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

4-6 Base Operating System Reference

Ib_$lookup_object_local

Ib_$lookup_object_local Library Routine (NCS)

Purpose
Looks up information about an object in an LLB database.
Syntax
void |b_S$lookup_object_local (object, sockaddr, slength, lookup_handle, max_results,
num_results, results, status)
uuid_$t *object;
socket_$addr_t *sockaddr;
unsigned long slength;
ib_$lookup_handle_t */ookup_handle;
unsigned long max_results;
unsigned long *num_results;
Ib_S$entry_t results[];
status_$t *status;
Parameters
Input
object Points to the UUID of the object being looked up.
sockaddr Specifies the location of the LLB database to be searched. The
socket address must specify the network address of a host.
However, the port number in the socket address is ignored. The
lookup request is always sent to the host’s LLB port.
slength Specifies the length, in bytes, of the socket address specified by
the sockaddr parameter.
max_results Specifies the maximum number of matching entries that can be
returned by a single call. This should be the number of elements
in the results parameter array.
Input/Output
lookup_handle Specifies a location in the database. On input, the value of the

fookup_handle parameter indicates the location in the database
where the search begins. An input value of
Ib_$default_lookup_handle specifies that the search starts at
the beginning of the database.

On return, the lookup_handle indicates the next unsearched part
of the database (that is, the point at which the next search should
begin). A return value of Ib_$default_lookup_handle indicates
that the search reached the end of the database. Any other value
indicates that the search found at most the number of matching
entries specified by the max_results parameter before it reached
the end of the database.

Network Computing System (NCS) 4-7

Ib_$lookup_object_local

Output

num_results Points to the number of entries that were returned in the results
parameter array.

results Specifies the array that contains the matching GLB database
entries, up to the number specified in the max_results parameter.
If the array contains any entries for servers on the local network,
those entries appear first.

status Points to the completion status.

Description

The Ib_$lookup_object_local routine searches the specified LLB database and returns all
entries whose object fields match the specified object. It returns information about all
replicas of an object and all interfaces to the object that are located on the specified host.

The Ib_$lookup_interface routine cannot return more than the number of matching entries
specified by the max_results parameter at one time. The lookup_handle parameter directs
this routine to do sequential lookup calls to find all matching entries.

Notes:

1. The Location Broker does not prevent modification of the database between
lookup calls. This can cause the locations of entries relative to a value of the
lookup_handle parameter to change. if multiple calis are made to find all matching
results in the database, the returned information may skip or duplicate entries from
the database.

2. ltis also possible for the results of a single lookup call to skip or duplicate entries.
This can occur if the size of the results exceeds the size of an RPC packet (64K
bytes).

Example
1. In the following example, the repob object is replicated, with only one replica located on
any host. To look up information about the repob object, enter the following:

1b_Slookup _object_local (&repob_id, &location, location_length,
&lookup_handle, 1, &num_results, myob_entry, &st);

Since there is only one replica located on any host, the routine returns at most one resuit.
Implementation Specifics

This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

4-8 Base Operating System Reference

Ib_$lookup_range

Ib_$lookup_range Library Routine (NCS)

Purpose
Looks up information in a GLB or LLB database.
Syntax
void Ib_8$lookup_range (object, object_type, object_interface, location, lookup_handle,
location_length, max_results, num_results, results, status)
uuid_$t *object;
uuid_$t *object_type;
uuid_$t *object _interface;
socket_$addr_t */ocation;
unsigned long /ocation_length;
Ib_8$lookup_handle_t */ookup_handle;
unsigned long max_results;
unsigned long *num_results;
Ib_S$entry t resuits[1;
status_$t *status;
Parameters
Input
object Points to the UUID of the object being looked up.
object_type Points to the UUID of the type being looked up.
object_interface Points to the UUID of the interface being looked up.
location Points to the location of the database to be searched. If the value
of the location_length parameter is 0, the GLB database is
searched. Otherwise, the LLB database at the host specified by
the socket address is searched. If the LLB database is searched,
the port number in the socket address is ignored, and the lookup
request is sent to the LLB port.
location_length Specifies the length, in bytes, of the socket address indicated by
the location parameter. A value of 0 indicates that the GLB
database is to be searched.
max_results Specifies the maximum number ot matching entries that can be

returned by a single call. This should be the number of elements

in the results array.

Network Computing System (NCS)

4-9

Ib_S$lookup_range

Input/Output

lookup_handle Specifies a location in the database. On input, the value of the
lookup_handle parameter indicates the location in the database
where the search begins. An input value of
Ib_$default_lookup_handle specifies that the search starts at
the beginning of the database.

On return, the lookup_handle parameter indicates the next
unsearched part of the database (that is, the point at which the
next search should begin). A return value of ' ‘
Ib_S$default_lookup_handle indicates that the search reached
the end of the database. Any other value indicates that the
search found at most the number of matching entries specified by
the max_results parameter before it reached the end of the
database.

Output

num_results Points to the number of entries that were returned in the results
parameter array.

results Specifies the array that contains the matching GLB database
entries, up to the number specified in the max_results parameter.
If the array contains any entries for servers on the local network,
those entries appear first.

status Points to the completion status.

Description

4-10

The Ib_$lookup_range routine returns database entries that contain matching object,
obj_type, and obj_interface identifiers. A value of uuid_$nil in any of these input
parameters acts as a wild card and matches all values in the corresponding entry field. You
can include wild cards in any combination of these parameters.

The Ib_S$lookup_interface routine cannot return more than the number of matching entries
specified by the max_results parameter at one time. The lookup_handle parameter directs
this routine to do sequential lookup calls to find all matching entries.

Notes:

1. The Location Broker does not prevent modification of the database between
lookup calls, which can cause the locations of entries relative to a value of the
lookup_handle parameter value to change. If multiple calls are made to find all
matching results in the database, the returned information may skip or duplicate
entries from the database.

2. ltis also possible for the results of a single lookup call to skip or duplicate entries.
This can occur if the size of the results exceeds the size of an RPC packet (64K
bytes).

Base Operating System Reference

Ib_$lookup_range

Example
1. To look up information in the GLB database about the change_if interface to the
proc_db2 object (which is of the proc_db type), enter the following:

lb_S$lookup_range (&proc_db2_id, &proc_db_id; &change_if_id,
glb, 0, &lookup_handle, 10, &num_results, results, &st);

The name glb is defined elsewhere as a null pointer. The results parameter is a
10-element array of the Ib_$entry_t type.

Implementation Specifics

This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Network Computing System (NCS) 4-11

Ib_S$lookup_type

Ib_S$lookup_type Library Routine (NCS)

Purpose
Looks up information about a type in the GLB database.
Syntax
void Ib_$lookup_type (object_type, lookup_handle, max_results, num_results, results,
status)
uuid_$t *object_type;
Ib_$lookup_handle_t */ookup handle;
unsigned long max_results;
unsigned long *num_results;
Ib_$entry_t results[];
status_$t *status;
Parameters
Input
object _type Points to the UUID of the type being looked up.
max_results Specifies the maximum number of matching entries that can be
returned by a single call. This should be the number of elements
in the results parameter array.
Input/Output
lookup_handle Specifies a location in the database. On input, the value of the
lookup_handle parameter indicates the location in the database
where the search begins. An input value of
Ib_S$default_lookup_handle specifies that the search starts at
the beginning of the database.
On return, the lookup_handle parameter indicates the next
unsearched part of the database (that is, the point at which the
next search should begin). A return value of
Ib_$default_tookup_handle indicates that the search reached
the end of the database. Any other value indicates that the
search found at most the number of matching entries specified by
the max_results parameter before it reached the end of the
database.
Output
num_results Points to the number of entries that were returned in the results
parameter array.
results " Specifies the array that contains the matching GLB database
entries, up to the number specified in the max_results parameter.
If the array contains any entries for servers on the local network,
those entries appear first.
status Points to the completion status.

4-12 Base Operating System Reference

Ib_S$lookup_type

Description

The Ib_$lookup_type routine returns GLB database entries whose obj_type fields match

the specified type. It returns information about all replicas of all objects of that type and
about all interfaces to each object.

The Ib_$lookup_type routine cannot return more than the number of matching entries
specified by the max_results parameter at one time. The lookup_handle parameter directs
this routine to do sequential lookup calls to find all matching entries.

Notes:

1. The Location Broker does not prevent modification of the database between
lookup calls, which can cause the locations of entries relative to a value of the
lookup_handle parameter to change. If multiple calls are made to find all matching
results in the database, the returned information may skip or duplicate entries from
the database.

2. ltis also possible for the results of a single lookup call to skip or duplicate entries.
This can occur if the size of the results exceeds the size of an RPC packet (64K
bytes).

Example

1. To look up information in the GLB database about the array_proc type, enter the
following:

lb_$lookup_type (&array proc_id, &lookup_handle, 10,
&num_results, &results, &st)

The results parameter is a 10-element array of the Ib_$entry_t type.
Implementation Specifics

This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Network Computing System (NCS) 4-13

Ib_Sregister

Ib_S$register Library Routine (NCS)

Purpose
Registers an object and an interface with the Location Broker.
Syntax
void Ib_$register (object, object_type, object_interface, flags, annotation, sockaddr,
slength, entry, status)
uuid_$t *object;
uuid_$t *object_type;
uuid_$t *object_interface;
b_$server_flag_t *flags;
char annotation [1;
socket_$addr_t *sockaddr;
unsigned long slength;
Ib_S$entry_t *entry;
status_$t *status;
Parameters
Input
object Points to the UUID of the object being looked up.
object_type Points to the UUID of the type being looked up.
object_interface Points to the UUID of the interface being looked up.
flags Points to the server that implements the interface. The value
must be 0 or Ib_$server_flag_local.
annotation Specifies information, such as textual descriptions of the object
and the interface. It is set in a 64-character array.
sockaddr Points to the socket address of the server that exports the
interface to the object.
slength Specifies the length, in bytes, of the socket address (sockaddr).
Output
entry Points to the copy of the entry that was entered in the Location
Broker database.
status Points to the completion status.
Description

The Ib_S$register routine registers with the Location Broker a specific interface to an object
and the location of a server that exports that interface. This routine replaces an existing
entry in the Location Broker database that matches the object, object_type, and

object interface parameters as well as both the address family and host in the socket
address specified by the sockaddr parameter. If no such entry exists, the routine adds a new
entry to the database.

4-14 Base Operating System Reference

Ib_Sregister

If the flags parameter has a value of Ib_$server_flag_local, the entry is registered only in
the LLB database at the host where the call is issued. Otherwise, the entry is registered in
both the LLB and the GLB databases.

Example
1. To register the bank interface to the bank_id object, enter the following:
lb_Sregister (&bank_id, &bank_$uuid, &bank_$if_spec.id, 0,

BankName, &saddr, slen, &entry, &st);

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Network Computing System (NCS) 4-15

Ib_S$unregister

Ib_Sunregister Library Routine (NCS)

Purpose
Removes an entry from the Location Broker database.

Syntax
void Ib_S$unregister (entry, status)
Ib_S$entry_t *entry;
status_$t *status;

Parameters
Input
entry Points to the entry being removed from the Location Broker database.
Output
status Points to the completion status.

Description
The Ib_$unregister routine removes from the Location Broker database the entry that
matches the value supplied in the entry parameter. The value of the entry parameter should
be identical to that returned by the Ib_S$register routine when the database entry was
created. However, the Ib_S$unregister routine does not compare all of the fields in the entry
parameter. It ignores the flags field, the annotation field, and the port number in the saddr
field.
This routine removes the entry from the LLB database on the local host (the host that issues
the call). If the flags field of the entry parameter is not the value Ib_$server_flag_local, this
routine also removes the entry from all replicas of the GLB database.

Example

1. To unregister the entry specified by the BankEntry results structure, which was obtained
from a previous call to the Ib_$register routine, enter the following:

1b Sunregister (&BankEntry, &st);
Implementation Specifics

This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

4-16 Base Operating System Reference

pfm_$cleanup

pfm_$cleanup Library Routine (NCS)

Purpose
Establishes a cleanup handler.
Syntax
#include <idl/c/base.h>
#include <idl/c/pfm.h>
status_$t
pfm_$cleanup(cleanup_record)
pfm_$cleanup_rec *cleanup_record,
Parameters
Input
cleanup_record A record of the context in which the pfm_$cleanup routine is called. A
program should treat this as an opaque data structure and not try to
alter or copy its contents. It is needed by the pfm_$cleanup and
pfm_$reset_cleanup routines to restore the context of the calling
process at the cleanup handler entry point.
Description

The pfm_$cleanup routine establishes a cleaunup handler that is executed when a fault
occurs. A cleaunup handler is a piece of code executed before a program exits when a
signal is received by the process. The cleaunup handler begins with a call to the
pfm_S$cleanup routine. This routine registers an entry point with the system where program
execution resumes when a fault occurs. When a fault occurs, execution resumes after the
most recent call to the pfm_$cleanup routine.

There can be more than one cleaunup handler in a program. Multiple cleaunup handlers are
executed consecutively on a last-in/first-out basis, starting with the most recently established
handler and ending with the first cleaunup handler. The system provides a default cleaunup
handler established at program invocation. The default cleaunup handler is always called
last, just before a program exits, and releases any system resources still held before
returning control to the process that invoked the program.

When called to establish a cleaunup handler, the pfm_$cleanup routine returns the
pfm_$cleanup_set status to indicate that the cleaunup handler was successfully
established. When the cleaunup handler is entered in response to a fault signal, the
pfm_$cleanup routine effectively returns the value of the fault that triggered the handler.

Note: Cleanup handler code runs with asynchronous faults inhibited. When the
pfm_$cleanup routine returns something other than pfm_$cleanup_set status,
which indicates that a fault has occurred, there are four possible ways to leave the
clean_up code:

* The program can call the pfm_$signal routine to start the next cleaunup handler
with a different fault signal.

e The program can call the pfm_$exit routine to start the next cleaunup handler
with the same fault signal.

Network Computing System (NCS) 4-17

pfm_$cleanup

o The program can continue with the code following the cleaunup handler. It should
generally call the pfm_$enable routine to re-enable asynchronous faults.
Execution continues from the end of the cleaunup handler code; it does not
resume where the fault signal was received.

o The program can re-establish the handler by calling the pfm_$reset_cleanup
routine before proceeding.

Example
1. To establish a cleaunup handler for a routine, use the following:

fst = pfm_cleanup(crec)

where fst is of type status_$t and crec is of type pfm_$cleanup_crec.

Implementation Specifics

This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Related Information
The pfm_$signal routine.

4-18 Base Operating System Reference

pfm_$enable

pfm_$enable Library Routine (NCS)

Purpose
Enables asynchronous faults.

Syntax
#include <idl/c/base.h>
#include <idl/c/pfm.h>
void
pfm_$enable (void)

Description
The pfm_$enable routine enables asynchronous faults after they have been inhibited by a
call to the pfm_$inhibit routine. The pfm_$enable routine causes the operating system to
pass asynchronous faults on to the calling process.
While faults are inhibited, the operating system holds at most one asynchronous fault.
Consequently, when pfm_$enable returns, there can be at most one fault waiting on the
process. If more than one fault was received between calls to the pfm_8inhibit and
pfm_$enable routines, the process receives the first asynchronous fault received while
faults were inhibited.

Example

1. To enable asynchronous interrupts to occur after a call to the pfm_$inhibit routine, use
the following:

pfm_Senable();

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Related Information
The pfm_S$enable_faults routine, pfm_S$inhibit routine.

Network Computing System (NCS) 4-19

pfm_$enable_faults

pfm_$enable_faults Library Routine (NCS)

Purpose
Enables asynchronous faults.

Syntax
#include <idl/c/base.h>
#include <idl/c/pfm.h>
void
pfm_$enable_faults (void)

Description
The pfm_$enable_faults routine enables asynchronous faults after they have been
inhibited by a call to the pfm_Sinhibit_faults routine. The pfm_$enable_faults routine
causes the operating system to pass asynchronous faults on to the calling process.
While faults are inhibited, the operating system holds at most one asynchronous fault.
Consequently, when pfm_$enable_faults returns, there can be at most one fault waiting on
the process. If more than one fault was received between calls to the pfm_S$inhibit_faults
and pfm_$enable_faults routines, the process receives the first asynchronous fault
received while faults were inhibited.

Example

1. To enable faults to occur after a call to pfm_Sinhibit_faults, use the following:

pfm_S$enable faults();

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Related Information
The pfm_$enable routine, pfm_8$inhibit_faults routine.

4-20 Base Operating System Reference

pfm_Sinhibit

pfm_Sinhibit Library Routine (NCS)

Purpose
Inhibits asynchronous faults.

Syntax
#include <idl/c/base.h>
#include <idl/c/pfm.h>
void
pfm_Sinhibit (void)

Description
The pfm_8$inhibit routine prevents asynchronous faults from being passed to the calling
process. While faults are inhibited, the operating system holds at most one asynchronous
fault. Consequently, a call to the pfm_$inhibit routine can result in the loss of some signals.
For that and other reasons, it is good practice to inhibit faults only when absolutely
necessary.
Note: This routine has no effect on the processing of synchronous faults, such as access

violations or floating-point and overflow exceptions.
Example

1. To prevent asynchronous interrupts from occurring in a critical portion of a routine, use
the following:

pfm_$inhibit();
Implementation Specifics

This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Related Information
The pfm_$enable routine, pfm_S$inhibit_faults routine.

Network Computing System (NCS) 4-21

pfm_Sinhibit_faults

pfm_$inhibit_faults Library Routine (NCS)

Purpose
Inhibits asynchronous faults, but allows task switching.

Syntax

#include <idl/c/base.h>
#include <idl/c/pfm.h>

void
pfm_8$inhibit_faults (void)

Description
The pfm_$inhibit routine prevents asynchronous faults, except for time-sliced task
switching, from being passed to the calling process. While faults are inhibited, the operating
system holds at most one asynchronous fault. Consequently, a call to the
pfm_Sinhibit_faults routine can result in the loss of some signals. For that and other
reasons, it is good practice to inhibit faults only when absolutely necessary.

Note: This routine has no effect on the processing of synchronous faults, such as access
violations or floating-point and overflow exceptions.
Example
1. To prevent faults from occurring in a critical portion of a routine, use the following:
pfm_S$inhibit_ faults();
Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Related Information
The pfm_$enable_faults routine, pfm_S$inhibit routine.

4-22 Base Operating System Reference

pfm_S$init

pfm_$init Library Routine (NCS)

Purpose
Initializes the program fault management (PFM) package.
Syntax
#include <idl/c/base.h>
#include <idl/c/pfm.h>
void
pfm_Sinit (flags)
unsigned long flags;
Parameters
Input
flags Indicates which initialization activities to perform. Currently only one value is
valid: pfm_8init_signal_handlers. This causes C signals to be intercepted
and converted to PFM signals. The signals intercepted are SIGINT,
SIGILL, SIGFPE, SIGTERM, SIGHUP, SIGQUIT, SIGTRAP, SIGBUS,
SIGSEGV, and SIGSYS.
Description
The pfm_Sinit routine initializes the PFM package. Applications that use the PFM package
should invoke the pfm_Sinit routine before invoking any other NCS routines.
Example

1. To initialize the PFM subsystem, use the following:
pfm_$init(pfm_S$init_signal handlers);
Implementation Specifics

This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Network Computing System (NCS) 4-23

pfm_S$reset_cleanup

pfm_$reset_cleanup Library Routine (NCS)

Purpose
Resets a cleanup handler.

Syntax
#include <idl/c/base.h>
#include <idl/c/ptm.h>

‘void
pfm_S$reset_cleanup (cleanup_record, status)

pfm_S$cleanup_rec *cleanup_record;
status_$t *status;

Parameters
Input

cleanup_ record A record of the context at the cleanup handler entry point. It is supplied

by the pfm_$cleanup routine when the cleanup handler is first
established.

Output

status Points to the completion status.

Description
The pfm_$reset_cleanup routine re-establishes the cleanup handler last entered so that

any subsequent errors enter it first. This procedure should only be used within cleanup
handler code.

Example
1. To re-establish a cleanup handler, use the following:

pfm_S$Sreset cleanup(crec, st);
where the crec cleanup record is a valid cleanup handler.
Implementation Specifics

This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

4-24 Base Operating System Reference

pfm_$rls_cleanup

pfm_$ris_cleanup Library Routine (NCS)

Purpose
Releases cleanup handlers.
Syntax
#include <idl/c/base.h>
#include <idl/c/pfm.h>
void
pfm_$ris_cleanup(cleanup_record, status)
pfm_$cleanup_rec *cleanup_record;
status_$t *status;
Parameters
Input
cleanup_record The cleanup record for the first cleanup handler to release.
Output
status Points to the completion status. If the status parameter has a value of
pfm_$bad_rls_order, it means that the caller attempted to release a
cleanup handler before releasing all handlers established after it. This
status is only a warning. The intended cleanup handler is released,
along with all cleanup handlers established after it.
Description
The ptm_$ris_cleanup routine releases the cleanup handler associated with the
cleanup_record parameter and all cleanup handlers established after it.
Example

1. To release an established cleanup handler, use the following:

pfm $rls_cleanup(crec, st);
where crec is a valid cleanup record established by the pfm_$cleanup routine.
Implementation Specifics

This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Network Computing System (NCS) 4-25

pfm_$signal

pfm_$signal Library Routine

Purpose
Signals the calling process.

Syntax
#include <idl/c/base.h>
#include <idl/c/pfm.h>

void
pfm_$signal (fault_signal)
status_$t *fault_signal;

Parameters
Input

fault_ signal A fault code.

Description
The pfm_$signal routine signals the fault specified by the fault_signal parameter to the
calling process. It is usually called to leave cleanup handlers.

Note: This routine does not return when successful.

Example
1. To send the calling process a fault signal, use the following:
pfm_S$signal(fst);

where fst is a valid PFM fault.
Implementation Specifics

This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

4-26 Base Operating System Reference

rpc_$alloc_handle

rpc_$alloc_handle Library Routine (NCS)

Purpose
Creates an RPC handle.
Syntax
handle_t rpc_S$alloc_handle (object_id, family, status)
uuid_$t *object_id;
unsigned long family;
status_$t *status;
Parameters
Input
object _id Points to the UUID of the object to be accessed. If there is no specific
object, specify uuid_$nil as the value.
family Specifies the address family to use in communications to access the object.
Output
status Points to the completion status.
Description

The rpc_Salloc_handle routine creates an unbound RPC handle that identifies a particular
object but not a particular server or host. A remote procedure call made using an unbound
handle is broadcast to all Local Location Brokers (LLBs) on the local network. If the call’s
interface and the object identified by the handle are both registered with any LLB, that LLB
forwards the request to the registering server. The client RPC runtime library returns the first
response that it receives and binds the handle to the server.

Note: This routine is used by clients only.

Return Value
Upon successful completion, the rpc_%$alloc_handle routine returns an RPC handle
identifying the remote object in the form handle_t. This handle is used as the first input
parameter to remote procedure calls with explicit handles.

Example
The following statement allocates a handle that identifies the Acme company’s payroll
database object:

handle = rpc_S$alloc_handle (&acme_pay id, socket_$dds, &st);
Implementation Specifics

This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Network Computing System (NCS) 4-27

rpc_$bind

rpc_$bind Library Routine (NCS)

Purpose
Allocates an RPC handle and sets its binding to a server.
Syntax
handle_t rpc_$bind (object id, sockaddr, slength, status)
uuid_$t *object id;
socket_S$addr_t *sockaddr;
unsigned long slength;
us_$%$t *status;
Parameters
Input
object_id Points to the UUID of the object to be accessed. If there is no specific
object, specify uuid_$nil as the value.
sockaddr Points to the socket address of the server.
slength Specifies the length, in bytes, of the socket address (sockaddr).
Output
status Points to the completion status.
Description

The rpc_$bind function creates a fully bound RPC handle that identifies a particular object

and server. This routine is equivalent to an rpc_$alloc_handle routine followed by an
rpc_%set_binding routine.

Note: This routine is used by clients only.

Return Value
Upon successful completion, this routine returns an RPC handle (handle_t) that identifies

the remote object. This handle is used as the first input parameter to remote procedure calls
with explicit handles.

Example

The following example binds a banking client program to the specified object and socket
address:

h = rpc_s$bind(&bank_id, &bank_loc[0].saddr, bank loc[0].saddr_len,
&st);

The bank_loc structure is the results parameter of a previous Location Broker lookup call.

Implementation Specifics

This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Related Information
The rpc_$alloc_handle routine, rpc_$set_binding routine.

4-28 Base Operating System Reference

rpc_S$clear_binding

rpc_$clear_binding Library Routine (NCS)

Purpose
Unsets the binding between an RPC handle and a host and server.

Syntax
void rpc_$clear_binding (handle, status)
handle_t handle;
status_$t *status;

Parameters
Input
handle Specifies the RPC handle from which the binding is being cleared.
Output
status Points to the completion status.

Description
The rpc_$clear_binding routine removes any association between an RPC handle and a
particular server and host, but does not remove the association between the handle and an
object. This routine saves the RPC handie so that it can be reused to access the same
object, either by broadcasting or after resetting the binding to another server.
A remote procedure call made using an unbound handle is broadcast to all Local Location
Brokers (LLBs) on the local network. If the call's interface and the object identified by the
handle are both registered with any LLB, that LLB forwards the request to the registering
server. The client RPC runtime library returns the first response that it receives and binds the
handle to the server.
The rpc_$clear_binding routine reverses an rpc_$set_binding routine.
Note: This routine is used by clients only.

Example

To clear the binding represented in a handle, enter the following:

rpc_S$clear_binding(handle, &st);

Implementation Specifics

This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Related Information
The rpc_$set_binding routine.

Network Computing System (NCS) 4-29

rpc_$clear_server_binding

rpc_S$clear_server_binding Library Routine (NCS)

Purpose
Unsets the binding between an RPC handle and a server.

Syntax
void rpc_$clear_server_binding (handle, status)
handle_t handie;
status_$t *status;

Parameters
Input

handle Specifies the RPC handle from which the server binding is being cleared.

Output

status Points to the completion status.

Description
The rpc_$clear_server_binding routine removes the association between an RPC handle
and a particular server (which is a particular port number), but does not remove the
associations with an object and a host. For example, the routine unmaps the handle to the
port number, but it leaves the object and host associated through a network address.

This routine replaces a fully bound handle with a bound-to-host handle. A bound-to-host
handle identifies an object located on a particular host, but does not identify a server
exporting an interface to the object.

if a client uses a bound-to-host handle to make a remote procedure call, the call is sent to
the Local Location Broker (LLB) forwarding port at the host identified by the handle. If the
call's interface and the object identified by the handle are both registered with the host's
LLB, the LLB forwards the request to the registering server. When the client RPC runtime
library receives a response, it binds the handle to the server. Subsequent remote procedure
calls that use this handle are then sent directly to the bound server’s port.

The rpc_$clear_server_binding routine is used for client error recovery when a server
dies. The port that a server uses when it restarts is not necessarily the same port that it used
previously. Therefore, the binding that the client was using may not be correct. This routine
enables the client to unbind from the dead server while retaining the binding to the host.
When the client sends a request, the binding is automatically set to the server’s new port.

Note: This routine is used by clients only.

Example
To clear the server binding represented in a handle, enter the following:
rpc_s$clear_server binding(handle, &st);

Implementation Specifics

This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

4-30 Base Operating System Reference

rpc_$dup_handle

rpc_$dup_handle Library Routine (NCS)

Purpose
Makes a copy of an RPC handle.
Syntax
handle_t rpc_$dup_handle (handle, status)
handle_t handle;
status_$t *status;
Parameters
Input
handle Specifies the RPC handle to be copied.
Output
status Points to the completion status.
Description

The rpc_$dup_handle routine returns a copy of an existing RPC handle. Both handles can
then be used in the client program for concurrent multiple accesses to a binding. Because all
duplicates of a handle reference the same data, a call to the rpc_$set_binding,
rpc_Sclear_binding, or rpc_$clear_server_binding routine made on any one duplicate
affects all duplicates. However, an RPC handle is not freed until the rpc_$free_handle
routine is called on all copies of the handle.

Note: This routine is used by clients only.

Return Value
Upon successful completion, this routine returns the duplicate handle (handle_t).

Example
1. To create as thread_2_handle a copy of a handle, enter the following:
thread_2_ handle = rpc_$dup_handle(handle, &st);

Implementation Specifics

This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Network Computing System (NCS) 4-31

rpc_%free_handle

rpc_S%$free_handle Library Routine (NCS)

Purpose
Frees an RPC handle.

Syntax
void rpc_S$free_handle (handle, status)
handle_t handle;
status_$t *status;

Parameters
Input

handle Specifies the RPC handle to be freed.
Output

status Points to the completion status.

Description
The rpc_$free_handle routine frees an RPC handle by clearing the association between the
handle and a server or an object, and then releasing the resources identified by the RPC
handle. The client program cannot use a handle after it is freed.

To make multiple RPC calls using the same interface but different socket addresses, replace
the binding in an existing handle with the rpc_$set_binding routine instead of creating a
new handle with the rpc_8$free_handle and rpc_$bind routines.

To free copies of RPC handles created by the rpc_$dup_handle routine, use the
rpc_S$free_handle routine once for each copy of the handle. However, the RPC runtime
library does not differentiate between calling the rpc_$free_handle routine several times on
one copy of a handle and calling it one time for each of several copies of a handle.
Therefore, if you use duplicate handles, you must ensure that no thread inadvertently makes
multiple rpc_$free_handle calls on a single handle.

Note: This routine is used by clients only.
Example
1. To free two copies of a handle, enter the following:
rpc_Sfree handle(handle, &st);
rpc_S$free_handle(thread_2 handle, &st);

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Related Information
The rpc_$set_binding routine, rpc_$dup_handle routine.

4-32 Base Operating System Reference

rpc_%ing_binding

rpc_S$ing_binding Library Routine (NCS)

Purpose
Returns the socket address represented by an RPC handle.
Syntax
void rpc_8$inq_binding (handle, sockaddr, slength, status)
handle_t handle;
socket_$addr_t *sockaddr;
unsigned long *slength;
status_$t *status;
Parameters
Input
handle Specifies an RPC handle.
Output
sockaddr Points to the socket address represented by the handle parameter.
slength Points to the length, in bytes, of the socket address (sockadar).
status Points to the completion status.
Description
The rpc_S$ing_binding routine enables a client to determine the socket address, and
therefore the server, identified by an RPC handle. It can be used to determine which server
is responding to a remote procedure call when a client uses an unbound handle in the call.
Note: This routine is used by clients only.
Diagnostics
The rpc_8ing_binding routine fails if the following is true:
rpc_$unbound_handle The handle is not bound and does not represent a specific
host address.
Example

1. The Location Broker administrative tool, Ib_admin, uses the following statement to
determine the particular GLB that responded to a lookup request:

rpc_$ing binding(glb_$handle, &global_ broker_addr,
&global broker addr_len, &status);

Implementation Specifics

This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Network Computing System (NCS) 4-33

rpc_S$inq_object

rpc_S%inq_object Library Routine (NCS)

Purpose
Returns the object UUID represented by an RPC handle.

Syntax
void rpc_8$inq_object (handle, object _id, status)
handle_t handle;
uuid_$t *object_id,;
status_$t *status;

Parameters
Input

handle Specifies an RPC handle.
Output

object_id Points to the UUID of the object identified by the handle parameter.

status Points to the completion status.

Description
The rpc_S$ing_object routine enables a server to determine the particular object that a client

is accessing. A server must use rpc_S$inq_object if it exports an interface through which
multiple objects may be accessed.

A server can make this call only if the interface uses explicit handles (that is, if each
operation in the interface has a handle argument). If the interface uses an implicit handle,
the handle identifier is not passed to the server.

Note: This routine is used by servers only.
Example
1. A database server that manages multiple databases must determine the particular

database to be accessed whenever it receives a remote procedure call. Each manager
routine therefore makes the following call:

rpc_$ing_object(handle, &db uuid, &st);
The routine then uses the returned UUID to identify the database to be accessed.

Implementation Specifics

This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

4-34 Base Operating System Reference

rpc_Slisten

rpc_$listen Library Routine (NCS)

Purpose

Listens for and handles remote procedure call packets.
Syntax

void rpc_S$listen (max_calls, status)

unsigned long max_calls;

status_$t *status;
Parameters

Input

max_calls Specifies the maximum number of calls (in the range 1 through 10) that the

server is allowed to process concurrently.

Output

status Points to the completion status.
Description

The rpc_$listen routine dispatches incoming remote procedure call requests to manager
procedures and returns the responses to the client. You must issue an rpc_$use_family or
rpc_$use_family_wk routine before you use the rpc_S$listen routine.

If the value of the max_calls parameter is greater than 1, the server RPC runtime library
uses Concurrent Programming Support (CPS) to handle multiple calls simultaneously. As a
result, the manager routines must be re-entrant. This means they must maintain
concurrency controls on any nonlocal variables to prevent conflicts among the various
threads of execution.

Note: This routine is used by servers only.

Return Value
This routine normally does not return.

Example
1. To have a server listen for incoming remote procedure call requests, handling up to five
concurrently, enter the folllowing:

rpc_$iisten(5, &status);
Implementation Specifics

This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

“Related Information
The rpc_$use_family routine, rpc_$use_family_wk routine.

Network Computing System (NCS) 4-35

rpc_$name_to_sockaddr

rpc_%$name_to_sockaddr Library Routine (NCS)

Purpose
Converts a host name and port number to a socket address.
Syntax
void rpc_$name_to_sockaddr (name, nlength, port, family, sockaddr, slength, status)
char *name;
unsigned long nlength;
unsigned long port,
unsigned long family;
socket_S$addr_t *sockaddr;
unsigned long *slength;
status_$t *status;
Parameters
Input
name Points to a host name, and optionally, a port and an address family, in the
form: family:host{porf]. The family: and [porf] parameters are optional. If
you specify a family variable as part of the name parameter, you must
specify socket_$unspec in the family parameter. The only supported value
for the family variable is ip. The host parameter specifies the host name,
and port specifies a port number in integer form.
nlength Specifies the number of characters in the name parameter.
port Specifies the socket port number. If you are not specifying a well-known
port, this parameter should have the value socket_$unspec_port. The
returned socket address will specify the Local Location Broker (LLB)
forwarding port at the host. If you specify the port number in the name
parameter, this parameter is ignored.
family Specifies the address family to use for the socket address. This value
corresponds to the communications protocol used to access the socket and
determines how the socket address (sockaddr) is expressed. If you specify
the address family in the name parameter, this parameter must have the
value socket_$unspec.
Output
sockaddr Points to the socket address corresponding to the name, port, and family
parameters.
slength Points to the length, in bytes, of the socket address (specified by the
sockaddr parameter).
status Points to the completion status.

4-36 Base Operating System Reference

rpc_$name_to_sockaddr

Description

The rpc_$name_to_sockaddr routine provides the socket address for a socket, given the
host name, the port number, and the address family.

You can specify the socket address information either as one text string in the name
parameter, or by passing each of the three elements as a separate parameter. When three
separate elements are passed, the name parameter should contain only the host name.

Example
1. To place in the sockaddr structure a socket address that specifies the LLB forwarding
port at the host identified by host_name, enter the following:

rpc_sname_to_sockaddr(host_name, strlen(host_name),
socket_Sunspec_port,socket_$dds, &sockaddr, &slen, &st);

Implementation Specifics

This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Network Computing System (NCS): 4-37

rpc_S$register

rpc_S$register Library Routine (NCS)

Purpose
Registers an interface at a server.
Syntax
void rpc_S$register (if_spec, epv, status)
rpc_Sif_spec_t *if_spec;
rpc_Sepv_t epv;
status_$t *status;
Parameters
Input
if_spec Points to the interface being registered.
epv Specifies the entry point vector (EPV) for the operations in the interface.
The EPV is normally defined in the server stub that is generated by the
NIDL compiler from an interface definition.
Output
status Points to the completion status.
Description
The rpc_8$register routine registers an interface with the RPC runtime library. After an
interface is registered, the RPC runtime library passes requests for that interface to the
server.
You can call rpe_$register multiple times with the same interface (for example, from various
subroutines of the same server), but each call must specify the same EPV. Each registration
increments a reference count for the registered interface. An equal number of calls to the
rpc_$unregister routine are then required to unregister the interface.
Note: This routine is used by servers only.
Diagnostics
The rpc_$register routine fails if one or more of the following is true:
rpc_S$too_many_ifs The maximum number of interfaces is already registered with the
server.
rpc_Sillegal_register You are trying to register an interface that is already registered,
and you are using an EPV difterent from the one used when the
interface was first registered.
Example

1. To register a bank interface with the bank server host’'s RPC runtime library, enter the
following:

rpc_sregister(&bank_$if_ spec, bank_S$server epv, &st);

4-38 Base Operating System Reference

rpc_S$register

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Related Information
The rpc_S$unregister routine.

Network Computing System (NCS) 4-39

rpc_%set_binding

rpc_$set_binding Library Routine (NCS)

Purpose
Associates an RPC handle with a server.

Syntax

rpc_$set_binding (handle, sockaddr, slength, status)
struct handle_t *handle;

struct socket_$addr_t *sockaddr,

int slength;

struct status_$t *status;

Parameters
Input

handle Specifies an RPC handle.

sockaddr Specifies the socket address of the server with which the handle is being
associated.

slength Specifies the length, in bytes, of the socket address (sockaddr).
Output

status Specifies the completion status.

Description
The rpc_$set_binding routine sets the binding of an RPC handle to the specified server.
The handle then identifies a specific object at a specific server. Any subsequent remote
procedure calls that a client makes using the handle are sent to this destination. This routine

can also replace an existing binding in a fully bound handle, or set the binding in an unbound
handle. '

Note: This routine is used by clients only.
Example

1. To set the binding on the m_handle handle to the first server in the results array, which
was returned by a previous Location Broker lookup call, enter the following:

rpc_S$set_binding(m_handle, &lb_reslts{0].saddr,
1b_reslts{0].saddr_len, &st);

Implementation Specifics

This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

4-40 Base Operating System Reference

rpc_%$sockaddr_to_name

rpc_$sockaddr_to_name Library Routine (NCS)

Purpose

Converts a socket address to a host name and port number.

Syntax

void rpc_$sockaddr_to_name (sockaddr, slength, name, nlength, port, status)

socket_$addr_t *sockaddr,
unsigned long slength;
unsigned long *nlength;

char *name;

unsigned long *port,
status_$t *status;

Parameters
Input

sockaddr

slength
Input/Output

nlength

Output

name

port

status

Description

Points to a socket address.

Specifies the length, in bytes, of socket address (sockaddr).

On input, points to the length of the name parameter in the buffer. On
output, points to the number of characters returned in the name parameter.

Points to a character string that contains the host name and the address
family in the format: family:host. The value of the family parameter must be
ip.

Points to the socket port number.

Points to the completion status.

The rpc_S$sockaddr_to_name routine provides the address family, the host name, and the
port number identified by the specified socket address.

Example

1. To take the bank server’s socket address, return the server’s host name and port, and
then print the information, enter the following:

rpc_S$sockaddr to_name(&saddr, slen, name, &namelen, &port, &st);
printf(” (bankd) name=\"%.*s\”, port=%d\n”, name, namelen, port

)i

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Network Computing System (NCS) 4-41

rpc_S$unregister

rpc_$unregister Library Routine (NCS)

Purpose
Unregisters an interface.
Syntax
void rpc_S$unregister (if_spec, status)
rpc_Sif_spec_t *if_spec;
status_$t *status;
Parameters
Input
if_spec Poaints to the interface being unregistered.
Output
status Points to the completion status.
Description
The rpc_$unregister routine unregisters an interface that the server previously registered
with the RPC runtime library. After an interface is unregistered, the RPC runtime library does
not pass requests for that interface to the server. ‘
If a server uses multiple calls to the rpc_$register routine to register an interface more than
once, then the server must call the rpc_$unregister routine an equal number of times to
unregister the interface.
Note: This routine is used by servers only.
Example

1. To unregister a matrix arithmetic interface, use the following:

rpc_Sunregister (&matrix_$if spec, &st);

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Related Information
The rpc_$register routine.

4-42 Base Operating System Reference

rpc_Suse_family

rpc_$use_family Library Routine (NCS)

Purpose

Syntax

Creates a socket of a specified address family for an RPC server.

void rpc_S$use_family (family, sockaddr, slength, status)
unsigned long family;

socket_$addr_t *sockaddr,

unsigned long *slength;

status_$t *status;

Parameters
Input
family Specifies the address family of the socket to be created. This value
corresponds to the communications protocol used to access the socket and
determines how the socket address (sockaddr) is expressed.
Output
sockaddr Points to the socket address of the socket on which the server listens.
slength Points to the length, in bytes, of the socket address (sockaddr).
status Points to the completion status.
Description

The rpc_$use_family routine creates a socket for a server without specifying its port
number. (The RPC runtime software assigns the port number.) Use this routine to create the
server socket unless the server must listen on a particular well-known port. If the socket
must listen on a specific well-known port, use the rpc_$use_family_wk routine to create the
socket.

A server can listen on more than one socket. However, a server normally does not listen on
more than one socket for each address family, regardless of the number of interfaces that it
exports. Therefore, most servers should make this call once for each supported address
family.

Note: This routine is used by servers only.

Diagnostics

The rpc_$use_family routine can fail if one or more of the following is true:

rpc_$cant_create_sock
The RPC runtime library is unable to create a socket.

rpc_S$cant_bind_sock
The RPC runtime library created a socket but is unable to bind it to a socket
address.

rpc_$too_many_sockets
The server is trying to use more than the maximum number of sockets

Network Computing System (NCS) 4-43

rpc_%use_family

allowed. The server has called the rpc_$use_family or
rpc_S$use_family_wk routines too many times.

Example
1. To create the bank server’s socket, enter the following:

rpc_S$use_family(atoi(argv[l]), &saddr, &slen, &st);

The numeric value of the address family to be used is supplied as an argument to the
program.

Implementation Specifics

This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Related Information
The rpc_S$use_family_wk routine.

4-44 Base Operating System Reference

rpc_$use_family_wk

rpc_$use_family_wk Library Routine (NCS)

Purpose
Creates a socket with a well-known port for an RPC server.

Syntax
void rpc_$use_family_wk (family, if_spec, sockaddr, slength, status)
unsigned long family;
rpc_Sif_spec_t *if_spec;
socket_$addr_t *sockaddrn;

unsigned long *slength;
status_$t *status;

Parameters
Input

family Specifies the address family of the socket to be created. This value
corresponds to the communications protocol used to access the socket and
determines how the socket address (sockaddr) is expressed.

if_spec Points to the interface that will be registered by the server. Typically, this
parameter is the $if_spec interface generated by the NIDL compiler from
the interface definition. The well-known port is specified as an interface
attribute.

Output
sockaddr Points to the socket address of the socket on which the server listens.
slength Points to the length, in bytes, of the socket address (sockaddn).

status Points to the completion status.

Description
The rpc_8$use_family_wk routine creates a socket that uses the port specified with the
if_spec parameter. Use this routine to create a socket if a server must listen on a particular
well-known port. Otherwise, create the socket with the rpc_$use_family routine.

A server can listen on more than one socket. However, a server normally does not listen on
more than one socket for each address family, regardiess of the number of interfaces that it
exports. Therefore, most servers that use well-known ports should make this call once for
each supported address family.

Note: This routine is used by servers only.

Diagnostics
The rpc_$use_family_wk routine fails if one or more of the following is true:

rpc_$cant_create_sock
The RPC runtime library is unable to create a socket.

Network Computing System (NCS) 4-45

rpc_Suse_family_wk

rpc_$cant_bind_sock
The RPC runtime library created a socket but is unable to bind it to a socket
address.

rpc_$too_many_sockets
The server is trying to use more than the maximum number of sockets
allowed. The server has called the rpc_$use_family or
rpc_S$use_family_wk routines too many times.

rpc_$addr_in_use
The specified address and port are already in use. This is caused by
multiple calls to the rpc_$use_family_wk routine with the same well-known
port.

Example
1. To create a well-known socket for an array processor server, use the following:

rpc_Suse_family wk (socket_$internet, &matrix $if spec,
&sockaddr, slen, &st);

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Related Information
The rpc_$use_family routine.

4-46 Base Operating System Reference

uuid_$decode

uuid_$decode Library Routine (NCS)

Purpose
Converts a character-string representation of a UUID into a UUID.

Syntax
void uuid_S$decode (uuid_string, uuid, status)
char *uuid_string;
uuid_$t *uuid;
status_$t *status;

Parameters
Input

uuid_string Points to the character-string representation of a UUID in the form
uuid_$string_t.

Output

uuid Points to the UUID that corresponds to the character string represented in
the wuid_string parameter.

status Points to the completion status.
Description

The uuid_$decode routine returns the UUID corresponding to a valid character-string
representation of a UUID.

Example
1. The following call returns as my_uuid the UUID corresponding to the character-string
representation in my uuid rep:

uuid_$decode (my_uuid_rep, &my_uuid, &status);
Implementation Specifics

This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Network Computing System (NCS) 4-47

uuid_$encode

uuid_$encode Library Routine (NCS)

Purpose
Converts a UUID into its character-string representation.

Syntax :
void uuid_S$encode (uuid, uuid_string)
uuid_$t *uuid,;

char *uuid_string;

Parameters
Input
uuid Points to the UUID.
Output

uuid_string Points to the character-string representation of a UUID, in the form
uuid_$string_t.

Description
The uuid_$encode call returns the character-string representation of a UUID.

Example
1. The following call returns as my_uuid_rep the character-string representation for the
UUID my_uuid:

uuid_S$encode (&my_ uuid, my_uuid_rep);
Implementation Specifics

This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

4-48 Base Operating System Reference

uuid_$gen

uuid_$gen Library Routine (NCS)

Purpose

Generates a new UUID.
Syntax

void uuid_$gen (uuid)

uuid_8$t *uuid;
Parameters

Output

uuid Points to the new UUID in the form of uuid_$t.
Description

The uuid_$gen routine returns a new UUID. y
Example

1. The following call returns as my_uuid a new UUID:
uuid_$gen (&my_uuid);
Implementation Specifics

This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Network Computing System (NCS) 4-49

uuid_$gen

4-50 Base Operating System Reference

Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC) 5—1

5—2 Base Operating System Reference

authdes_create

authdes_create Subroutine

Purpose

Enables the use of DES from the client side.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

AUTH *

authdes_create (name, window, syncaddr, ckey)

char *name;
u_int window;

struct sockaddr *syncadadr;
des_block *ckey;

Description

The authdes_create subroutine interfaces to the secure authentication system, known as
Data Encryption Standard (DES). This subroutine, used from the client side, returns the
authentication handle that allows use of the secure authentication system.

Note: The keyserv daemon must be running for the DES authentication system to work.

Parameters
name

window

syncaddr

ckey

Specifies the network name (or netname) of the server process owner. The
name parameter can be either the host name derived from the
host2netname subroutine or the user name derived from the
user2netname subroutine.

Specifies the confirmation of the client credentials, given in seconds. A
small value for the window parameter is more secure than a large one. Yet,
choosing too small a value for the window parameter increases the
frequency of resynchronizations due to clock drift.

Identifies clock synchronization. If the syncaddr parameter has a NULL
value, then the authentication system assumes that the local clock is always
in sync with the server’s clock. The authentication system will not attempt
resynchronizations. However, if an address is supplied, the system uses the
address for consulting the remote time service whenever resynchronization
is required. This parameter usually contains the address of the RPC server
itself.

Specifies the DES key. If the value of the ckey parameter is NULL, the
authentication system generates a random DES key to be used for the
encryption of credentials. However, if a DES key is supplied, the supplied
key is used.

Remote Procedure Calls (RPC) 5-3

authdes_create

Return Values
‘ This subroutine returns a pointer to a DES authentication object.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

5-4 Base Operating System Reference

authdes_getucred

authdes_getucred Subroutine

Purpose
Library

Syntax

Description

Maps a DES credential into a UNIX credential.

C Library (libc.a)

#include <rpc/rpc.h>

authdes_getucred (adc, uid, gid, grouplen, groups)
struct authdes_cred *adc;

short *uid;

short *gid;

short *grouplen;

int *groups;

The authdes_getucred subroutine interfaces to the secure authentication system known as
Data Encryption Standard (DES). The server uses this subroutine to convert a DES
credential, which is the independent operating system, into a UNIX credential. The
authdes_getucred subroutine retrieves necessary information from a cache, instead of
using the network information service (NIS).

Note: The keyserv daemon must be running for the DES authentication system to work.

Parameters

ade Points to the DES credential structure.

uid Specifies the caller’s effective user ID (UID).
gid Specifies the caller's effective group 1D (GID).
grouplen Specifies the group’s length.

groups Points to the group’s array.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of 0.

Implementation Specifics

This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The keyserv daemon.

Network Information Service (NIS) Overview for System Management in Communication
Concepts and Procedures.

Remote Procedure Calls (RPC) 5-5

auth_destroy

auth_destroy Macro

Purpose
Destroys authentication information.
Library
C Library (libc.a)
Syntax
#include <rpc/rpe.h>
void
auth_destroy (auth)
auth *auth;
Description
The auth_destroy macro destroys the authentication information structure pointed to by the
auth parameter. Destroying the structure deallocates private data structures. The use of the
auth parameter is undefined after calling this macro.
Parameter

auth Points to the authentication information structure to be destroyed.

Implementation Specifics
This macro is part of AIX Base Operating System (BOS) Runtime.

5-6 Base Operating System Reference

authnone_create

authnone_create Subroutine

Purpose

Creates NULL authentication.
Library

C Library (libc.a)
Syntax

#include <rpc/rpc.h>

AUTH *

authnone_create ()
Description

The authnone_create subroutine creates and returns a default Remote Procedure Call
(RPC) authentication handle that passes NULL authentication information with each remote
procedure call.

Return Values
This subroutine returns a pointer to an RPC authentication handle.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The auth_destroy macro.

The authunix_create subroutine, authunix_create_default subroutine, svcerr_auth
subroutine.

Remote Procedure Calls (RPC) 5-7

authunix_create

authunix_create Subroutine

Purpose
Creates an authentication handle with AIX permissions.

Library
C Library (libc.a)

Syntax

#include <rpc/rpc.h>

AUTH *

authunix_create (host, vid, gid, len, aupgids)
char *host;

int vid, gid

int /en, *aupgids;

Description

The authunix_create subroutine creates and returns a Remote Procedure Call (RPC)
authentication handie with AIX permissions.

Parameters
host Points to the name of the machine on which the permissions were created.
vid Specifies the caller’s effective user ID (UID).
gid Specifies the caller’s effective group ID (GID).
len Specifies the length of the groups array.
aupgids Points to the counted array of groups to which the user belongs.

Return Values :
This subroutine returns an RPC authentication handle.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The auth_destroy macro.

The authnone_create subroutine, authunix_create_defauit subroutine, svcerr_auth
subroutine.

5-8 Base Operating System Reference

authunix_create_default

authunix_create_default Subroutine

Purpose
Sets the authentication to default.
Library
C Library (libc.a)
Syntax
#include <rpc/rpc.h>
AUTH *
authunix_create_default()
Description
The authunix_create_default subroutine calls the authunix_create subroutine to create
and return the default AIX authentication handle.
Parameters

This subroutine contains no parameters.

Return Values
Upon successful completion, this subroutine returns an authentication handle.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The auth_destroy macro.

The authnone_create subroutine, authunix_create subroutine, svcerr_auth subroutine.

Remote Procedure Calls (RPC) 5-9

callrpc

callrpc Subroutine

Purpose
Calls the remote procedure on the machine specified by the host parameter.
Library
C Library (libc.a)
Syntax
#include <rpc/rpc.h>
callrpe (host, prognum, versnum, procnum,
inproc, in, outproc, out)
char *host,
u_long prognum, versnum, procnum;
xdrproc_t inproc;
char * in;
xdrproc_t outproc;
char *out;
Description
The callrpc subroutine calls a remote procedure identified by the prognum parameter, the
versnum parameter, and the procnum parameter on the machine pointed to by the host
parameter.
This subroutine uses User Datagram Protocol/Internet Protocol (UDP/IP) as a transport to
call a remote procedure. No connection will be made if the server is supported by
Transmission Control Protocol/Internet Protocol (TCP/IP). This subroutine does not control
time outs or authentication.
Parameters
host Points to the program name of the remote machine.
prognum Specifies the number of the remote program.
versnum Specifies the version number of the remote program.
procnum Specifies the number of the procedure associated with the remote program
being called.
inproc Specifies the name of the XDR procedure that encodes the procedure
parameters.
in Specifies the address of the procedure arguments.
outproc Specifies the name of the XDR procedure that decodes the procedure
results.
out Specifies the address where results are placed.

Return Values

5-10

This subroutine returns a value of enum cint_stat. Use the cint_perrno subroutine to
transiate this failure status into a displayed message.

Base Operating System Reference

callrpc

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related information
The cint_call macro.

The cint_broadcast subroutine, cinttcp_create subroutine, cintudp_create subroutine,
cint_perrno subroutine, registerrpc subroutine, svc_run subroutine.

Using the callrpc Routine in Communications Programming Concepts.

Understanding Protocols for TCP/IP, User Datagram Protocol in Communication Concepts
and Procedures.

Remote Procedure Calls (RPC) 5-11

cint_broadcast

cint_broadcast Subroutine

Purpose
Broadcasts a remote procedure call to all locally connected networks.
Library
C Library (libc.a)
Syntax
#include <rpc/rpc.h>
enum cint_stat
cint_broadcast (prognum, versnum, procnum,
inproc, in, outproc, out, eachresult)
u_long prognum, versnum, procnum;
xdrproc_t inproc;
char *in;
xdrproc_t outproc;
char *out,
resultproc_t eachresult,
Description
The cint_broadcast subroutine broadcasts a remote procedure call to all locally connected
networks. The remote procedure is identified by the prognum, versnum, and procnum
parameters on the workstation identified by the host parameter.
Broadcast sockets are limited in size to the maximum transfer unit of the data link. For
Ethernet, this value is 1500 bytes.
When a client broadcasts a remote procedure call over the network, a number of server
processes respond. Each time the client receives a response, the clnt_broadcast
subroutine calls the eachresult routine. The eachresult routine takes the following form:
eachresult (out, *addrn
char *out,
struct sockaddr_in *addr;
Parameters
prognum Specifies the number of the remote program.
versnum Specifies the version number of the remote program.
procnum Identifies the procedure to be called.
inproc Specifies the procedure that encodes the procedure’s parameters.
in Specitfies the address of the procedure’s arguments.
outproc Specifies the procedure that decodes the procedure results.
out Specifies the address where results are placed.
eachresult Specifies the procedure to call when clients respond.
addr Specifies the address of the workstation that sent the results.

5-12 Base Operating System Reference

cint_broadcast

Return Values
If the eachresult subroutine returns a value of 0, the cint_broadcast subroutine waits for
more replies. Otherwise, the cint_broadcast subroutine returns with the appropriate results.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The callrpe subroutine.

Sockets Overview in Communications Programming Concepts.

Remote Procedure Calls (RPC) 5-13

cint_call

cint_call Macro

Purpose

Library

Syntax

Calls the remote procedure associated with the cint parameter.

C Library (libc.a)

#include <rpc/rpc.h>
enum cint_stat

cint_call (cint, procnum, inproc, in, outproc, out, tout)
CLIENT *cint;

u_long procnum;

xdrproc_t inproc;

char *in;

xdrproc_t outproc;

char *out;

struct timeval ftout;

Description

The clnt_call macro calls the remote procedure associated with the client handle pointed to
by the cInt parameter.

Parameters

cint Points to the structure of the client handle that results from a Remote
Procedure Call (RPC) client creation subroutine, such as the
cintudp_create subroutine that opens a User Datagram Protocol/Internet
Protocol (UDP/IP) socket.

procnum Identifies the remote procedure on the host machine.

inproc Specifies the procedure that encodes the procedure’s parameters.
in Specifies the address of the procedure’s arguments.

outproc Specifies the procedure ihat decodes the procedure’s results.

out Specifies the address where results are placed.

tout Sets the time allowed for results to return.

Implementation Specifics

5-14

This macro is part of AIX Base Operating System (BOS) Runtime.

Base Operating System Reference

cint_call

Related Information

The callrpe subroutine, cint_perror subroutine, cinttcp_create subroutine, cintudp_create
subroutine.

Sockets Overview in Communications Programming Concepts.

User Datagram Protocol (UDP) in Communication Concepts and Procedures.

Remote Procedure Calls (RPC) 5-15

cint_control

cint_control Macro

Purpose
Changes or retrieves various information about a client object.
Library
C Library (libc.a)
Syntax
#include <rpc/rpc.h>
bool_t
cint_control (c/, req, info)
CLIENT *cf;
int req
char *info;
Description
The clnt_control macro is used to change or retrieve various information about a client
object.
User Datagram Protocol (UDP) and Transmission Control Protocol (TCP) have the following
supported values for the req parameter's argument types and functions:
Values for the req Parameter Argument Type Function
CLSET_TIMEOUT struct timeval Sets total time out
CLGET_TIMEOUT struct timeval Gets total time out
Note: If the time out is set using the cint_control subroutine, the timeout parameter
passed to the cint_call subroutine will be ignored in all future calls.
CLGET_SERVER_ADDR struct sockaddr Gets server’s address
The following operations are valid for UDP only:
CLSET_RETRY_TIMEOUT struct timeval Sets the retry time out
CLGET_RETRY_TIMEOUT struct timeval Gets the retry time out
Note: The retry time out is the time that User Datagram Protocol/Remote Procedure Call
(UDP/RPC) waits for the server to reply before retransmitting the request.
Parameters
cl Points to the structure of the client handle.
req Indicates the type of operation.
info Points to the information for request type.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of 0.

5-16 Base Operating System Reference

cint_control

Implementation Specifics
This macro is part of AIX Base Operating System (BOS) Runtime.

Related Information
The cint_call macro.

The cinttcp_create subroutine, cintudp_create subroutine.

Understanding Protocols for TCP/IP, User Datagram Protocol (UDP) in Communication
Concepts and Procedures.

Remote Procedure Calls (RPC) 5-17

cint_create

cint_create Subroutine

Purpose
Creates and returns a generic client handle.
Library
C Library (libc.a)
Syntax
#include <rpc/rpc.h>
CLIENT *
cint_create (host, prognum, versnum, protocol)
char *host,

unsigned prognum, versnum;
char *protocol;

Description
Creates and returns a generic client handle.

RPC messages transported by UDP/IP can hold up to 8K bytes of encoded data. Use this
transport for procedures that take arguments or return results of less than 8K bytes.

Parameters
host Identifies the name of the remote host where the server is located.
prognum Specifies the program number of the remote program.
versnum Specifies the version number of the remote program.
protocol Identifies which data transport protocol the program is using (UDP or TCP).

Return Values
Upon successful completion, this subroutine returns a client handle.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The cInt_control macro, clnt_destroy macro.
The cinttcp_create subroutine, cintudp_create subroutine.

Understanding Protocols for TCP/IP, User Datagram Protocol (UDP) in Communication
Concepts and Procedures.

5-18 Base Operating System Reference

cint_destroy

cint_destroy Macro

Purpose
Destroys the client's RPC handle.
Library
C Library (libc.a)
Syntax
#include <rpc/rpc.h>
void
cint_destroy (c/nf)
CLIENT *cint;
Description
The cint_destroy macro destroys the client's Remote Procedure Call (RPC) handle.
Destroying the client's RPC handle deallocates private data structures, including the cint
parameter itself. The use of the cint parameter becomes undefined upon calling the
cint_destroy macro.
Parameter

cint Points to the structure of the client handle.

Implementation Specifics
This macro is part of AIX Base Operating System (BOS) Runtime.

Related Information
The cintudp_create subroutine, cint_create subroutine.

Sockets Overview in Communications Programming Concepts.

Remote Procedure Calls (RPC) 5-19

cint_freeres

cint_freeres Macro

Purpose

Frees data that was allocated by the RPC/XDR system.
Library

C Library (libc.a)
Syntax

#include <rpc/rpc.h>

cint_freeres (cint, outproc, out)
CLIENT *cint,

xdrpoc_t outproc;

char *out;

Description
The cint_freeres macro frees data allocated by the Remote Procedure Call/eXternal Data

Representation (RPC/XDR) system. This data was allocated when the RPC/XDR system
decoded the results of an RPC call.

Parameters
cint Points to the structure of the client handle.
outproc Specifies the XDR subroutine that describes the results in simple decoding
primitives.
out Specifies the address where the results are placed.

Implementation Specifics
This macro is part of AIX Base Operating System (BOS) Runtime.

Related Information

eXternal Data Representation (XDR) Overview for Programming in Communications
Programming Concepts.

5-20 Base Operating System Reference

cint_geterr

cint_geterr Macro

Purpose
Copies error information from a client handle.

Library
C Library (libc.a)

Syntax

#include <rpc/rpc.h>

void

cint_geterr (cint, errp)
CLIENT *cint;

struct rpc_err *errp;

Description
The cint_geterr macro copies error information from a client handle to an error structure.

Parameters
cint Points to the structure of the client handle.

errp Specifies the address of the error structure.

Implementation Specifics
This macro is part of AiX Base Operating System (BOS) Runtime.

Remote Procedure Calls (RPC) 5-21

cint_pcreateerror

cint_pcreateerror Subroutine

Purpose

Indicates why a client RPC handle was not created.
Library

C Library (libc.a)
Syntax

#include <rpc/rpc.h>

void

cint_pcreateerror (s)

char *s;

Description
The cint_pcreateerror subroutine writes a message to standard error output, indicating why
a client Remote Procedure Call (RPC) handle could not be created. The message is
preceded by the string pointed to by the s parameter and a colon.

Use this subroutine if one of the following calls fails: the cintraw_create subroutine,
cinttcp_create subroutine, or cintudp_create subroutine.

Parameters
s Points to a character string that represents the error text.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The cint_create subroutine, cintraw_create subroutine, cinttcp_create subroutine,
cintudp_create subroutine, cint_spcreateerror subroutine.

5-22 Base Operating System Reference

cint_perrno

cint_perrno Subroutine

Purpose
Specifies the condition of the stat parameter.

Library
C Library (libc.a)

Syntax
#include <rpc/rpc.h>
void
cint_perrno (staf)
enum cint_stat staf;

Description
The cint_perrno subroutine writes a message to standard error output, corresponding to the
condition specified by the stat parameter.

This subroutine is used after a callrpc subroutine fails. The eint_perrno subroutine
translates the failure status (the enum cint_stat subroutine) into a message.

If the program does not have a standard error output, or the programmer does not want the
message to be output with the printf subroutine, or the message format used is different
from that supported by the clnt_perrno subroutine, then the cint_sperrno subroutine is
used instead of the cInt_perrno subroutine.

Parameters
stat Specifies the client error status of the remote procedure call.

Return Values

The cint_perrno subroutine transiates and displays the following enum cint_stat error
status codes:

RPC_SUCCESS =0 Call succeeded.
RPC_CANTENCODEARGS =1 Cannot decode arguments.
RPC_CANTDECODERES =2 Cannot decode results.
RPC_CANTSEND =3 Failure in sending call.
RPC_CANTRECV =4 Failure in receiving result.
RPC_TIMEDOUT =5 Call timed out.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The callrpc subroutine, clnt_sperrno subroutine.

Remote Procedure Calls (RPC) 5-23

cint_perror

cint_perror Subroutine

Purpose
Indicates why a remote procedure call failed.

Library
C Library (libc.a)

Syntax

#include <rpc/rpc.h>

cint_perror (cint, s)
CLIENT *cint;
char*s;

Description
The cint_perror subroutine writes a message to standard error output indicating why a

remote procedure call failed. The message is prepended with the string pointed to by the s
parameter and a colon.

This subroutine is used after the cint_call macro.

Parameters
cint Points to the structure of the client handle.

s Points to a character string that represents the error text.

Return Values
This subroutine returns an error string to standard error output.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The cint_call macro.

The cInt_sperror subroutine.

5-24 Base Operating System Reference

cint_spcreateerror

cint_spcreateerror Subroutine

Purpose
Indicates why a client RPC handle was not created.
Library
C Library (libc.a)
Syntax
#include <rpc/rpc.h>
char *
cint_spcreateerror (s)
char *s;
Description
The cint_spcreateerror subroutine returns a string indicating why a client Remote
Procedure Call (RPC) handle was not created.
Note: This subroutine returns the poihter to static data that is overwritten on each call.
Parameters

s Points to a character string that represents the error text.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The cint_pcreateerror subroutine.

Remote Procedure Calls (RPC) 5-25

cint_sperrno

cint_sperrno Subroutine

Purpose
Specifies the condition of the stat parameter by returning a pointer to a string containing a
status message.
Library
C Library (libc.a)
Syntax
#include <rpc/rpc.h>
char*
cint_sperrno (stal)
enum cint_stat stat;
Description
The cInt_sperrno subroutine specifies the condition of the stat parameter by returning a
pointer to a string containing a status message. The string ends with a new-line character.
Whenever one of the following conditions exists, the cint_sperrno subroutine is used
instead of the cint_perrno subroutine when a callrpc routine fails:
e The program does not have a standard error output. This is common for programs
running as servers.
* The programmer does not want the message to be output with the printf subroutine.
¢ A message format differing from that supported by the cint_perrno subroutine is being
used.
Note: The cint_sperrno subroutine does not return the pointer to static data, so the result
is not overwritten on each call.
Parameters

stat Specifies the client error status of the remote procedure call.

Return Values

5-26

The cInt_sperrno subroutine translates and displays the following enum cint_stat error
status messages:

RPC_SUCCESS =0 Call succeeded.
RPC_CANTENCODEARGS =1 Cannot decode arguments.
RPC_CANTDECODERES =2 Cannot decode results.
RPC_CANTSEND =3 Failure in sending call.
RPC_CANTRECV = 4 Failure in receiving result.
RPC_TIMEDOUT =5 Call timed out.

Base Operating System Reference

cint_sperrno

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The cint_perrno subroutine.

Remote Procedure Calls (RPC) 5-27

cint_sperror

cint_sperror Subroutine

Purpose
Indicates why a remote procedure call failed.

Library
C Library (libc.a)

Syntax

#include <rpc/rpc.h>

char*
cint_sperror (cl,s)
CLIENT *cf;
char*s;

Description
The cint_sperror subroutine returns a string to standard error output indicating why a

Remote Procedure Call (RPC) call failed. This subroutine also returns the pointer to static
data overwritten on each call.

Parameters
cl Points to the structure of the client handle.

s Points to a character string that represents the error text.

Return Values
This subroutine returns an error string to standard error output.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The cInt_perror subroutine.

5-28 Base Operating System Reference

cintraw_create

cintraw_create Subroutine

Purpose
Creates a toy RPC client for simulation.
Library
C Library (libc.a)
Syntax
#include <rpc/rpe.h>
CLIENT *
cintraw_create (prognum, versnum)
u_long prognum, versnum;
Description
The cintraw_create subroutine creates a toy Remote Procedure Call (RPC) client for
simulation of a remote program. This toy client uses a buffer located within the address
space of the process for the transport to pass messages to the service. If the corresponding
RPC server lives in the same address space, simulation of RPC and acquisition of RPC
overheads, such as round-trip times, are done without kernel interference.
Parameters
prognum Specifies the program number of the remote program.
versnum Specifies the version number of the remote program.

Return Values
Upon successful completion, this subroutine returns a pointer to a valid RPC client. if
unsuccessful, it returns a value of NULL.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The cint_pcreateerror subroutine, sveraw_create subroutine.

Remote Procedure Calls (RPC) 5-29

cinttcp_create

cinttcp_create Subroutine

Purpose
Library

Syntax

Creates a TCP/IP client transport handle.

C Library (libc.a)

CLIENT *

cinttcp_create (addr, prognum, versnum, sockp, sendsz, recvsz)
struct sockaddr_in *addr;

u_long prognum, versnum;

int *sockp;

u_int sendsz, recvsz;

Description

The cinttcp_create subroutine creates a Remote Procedure Call (RPC) client transport
handle for a remote program. This client uses Transmission Control Protocol/Internet
Protocol (TCP/IP) as the transport to pass messages to the service.

The TCP/IP remote procedure calls use buffered input/output (I/0). Users can set the size of
the send and receive buffers with the sendsz and recvsz parameters. If the size of either
buffer is set to a value of 0, the svctep_create subroutine picks suitable default values.

Parameters

addr Points to the Internet address of the remote program. If the port number for
this Internet address (addr—>sin_port) is a value of 0, then the adadr
parameter is set to the actual port on which the remote program is listening.
The client making the remote procedure call consults the remote portmap
daemon to obtain the port information.

prognum Specifies the program number of the remote program.
versnum Specifies the version number of the remote program.
sockp Specifies a pointer to a socket. If the value of the sockp parameter is

RPC_ANYSOCK, the cinttcp_create subroutine opens a new socket and
sets the sockp pointer to the new socket.

sendsz Sets the size of the send buffer.

recvsz Sets the size of the receive buffer.

Return Values

Upon successful completion, this routine returns a valid TCP/IP client handle. If
unsuccessful, it returns a value of NULL.

Implementation Specifics

5-30

This subroutine is part of AIX Base Operating System (BOS) Runtime.

Base Operating System Reference

cinttcp_create

Related Information
The portmap daemon.

The clnt_call macro.

The callrpc subroutine, cintudp_create subroutine, svetcp_create subroutine,
cint_pcreateerror subroutine.

Sockets Overview in Communications Programming Concepts.

Understanding Protocols for TCP/IP in Communication Concepts and Procedures.

Remote Procedure Calls (RPC) - 5-31

cintudp_create

cintudp_create Subroutine

Creates a UDP/IP client transport handle.

C Library (libc.a)

#include <rpc/rpc.h>

cintudp_create (addr, prognum, versnum, wait, sockp)
struct sockaddr_in *addr;

u_long prognum, versnum;

struct timeval wait;

The cintudp_create subroutine creates a Remote Procedure Call (RPC) client transport

handle for a remote program. The client uses User Datagram Protocol/Internet Protocol
(UDP/IP) as the transport to pass messages to the service.

RPC messages transported by UDP/IP can hold up to 8K bytes of encoded data. Use this
subroutine for procedures that take arguments or return resuits of less than 8K bytes.

Purpose

Library

Syntax
CLIENT *
int *sockp;

Description

Parameters
addr
prognum
versnum
wait
SOCKp

Return Values

Points to the Internet address of the remote program. If the port number for
this Internet address (addr-s>sin_port) is 0, then the value of the addr
parameter is set to the port that the remote program is listening on. The

cintudp_create subroutine consults the remote portmap daemon for this
information.

Specifies the program number of the remote program.
Specifies the version number of the remote program.

Sets the amount of time that the UDP/IP transport waits to receive a

response before the transport sends another remote procedure call or the
remote procedure call times out. The total time for the call to time out is set
by the cint_call macro.

Specifies a pointer to a socket. If the value of the sockp parameter is

RPC_ANYSOCK, the cintudp_create subroutine opens a new socket and
sets the sockp pointer to that new socket.

Upon successful completion, this subroutine returns a valid UDP client handle. If
unsuccessful, it returns a value of NULL.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

5-32 Base Operating System Reference

cintudp_create

Related Information
The portmap daemon.

The cint_call macro.

The calirpc subroutine, clnt_pcreateerror subroutine, cinttcp_create subroutine,
sveudp_create subroutine.

Sockets Overview in Communications Programming Concepts.

User Datagram Protocol (UDP) in Communication Concepts and Procedures.

Remote Procedure Calls (RPC) 5-33

dbm_close

dbm_close Subroutine

Purpose

Closes a database.
Library

C Library (libc.a)
Syntax

#include <ndbm.h>
void dbm_close (db)
DBM *db;

Description
The dbm_close subroutine closes a database.

Parameter
db Specifies the database to close.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The dbmclose subroutine.

5-34 Base Operating System Reference

dbm_delete

dbm_delete Subroutine

Purpose

Deletes a key and its associated contents.
Library

C Library (libc.a)
Syntax

#include <ndbm.h>

int dbm_delete (db, key)

DBM *db;

datum key;
Description

The dbm_delete subroutine deletes a key and its associated contents.
Parameters

db Specifies a database.

key Specifies the key to delete.

Return Values

Upon successful completion, this subroutine returns a value of 0 (zero). If unsuccessful, it
returns a negative value.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The delete subroutine.

Remote Procedure Calls (RPC) 5-35

dbm_fetch

dbm_fetch Subroutine

Purpose

Accesses data stored under a key.
Library

C Library (libc.a)
Syntax

#include <ndbm.h>

datum dbm_fetch(db, key)
DBM *db;
datum key;

Description
The dbm_fetch subroutine accesses data stored under a key.

Parameters
db Specifies the database to access.
key Specifies the input key.

Return Values

Upon successful completion, this subroutine returns a datum structure containing the value

returned for the specified key. If it is unsuccessful, the dptr field of the datum structure is set
to NULL.

Implementation Specifics
- This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The fetch subroutine.

5-36 Base Operating System Reference

dbm_firstkey

dbm_firstkey Subroutine

Purpose

Returns the first key in a database.
Library

C Library (libc.a)
Syntax

#include <ndbm.h>

datum dbm_firstkey (db)

DBM *db;
Description

The dbm_firstkey subroutine returns the first key in a database.
Parameter

db Specifies the database to access.

Return Values
Upon successful completion, this subroutine returns a datum structure containing the value
for the first key. If it is unsuccessful, the dptr field of the datum structure is set to NULL.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The firstkey subroutine.

Remote Procedure Calls (RPC) 5-37

dbm_nextkey

dbm_nextkey Subroutine

Purpose

Returns the next key in a database.
Library

C Library (libc.a)
Syntax

#include <ndbm.h>

datum dbm_nextkey (db)

DBM *db;
Description

The dbm_nextkey subroutine returns the next key in a database.
Parameter

ab Specifies the database to access.

Return Values

Upon successful completion, this subroutine returns a datum structure containing the value
for the next key. If it is unsuccesstul, the dptr field of the datum structure is set to NULL.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The nextkey subroutine.

5-38 Base Operating System Reference

dbm_open

dbm_open Subroutine

Purpose
Opens a database for access.

Library
C Library (libc.a)

Syntax

#include <ndbm.h>

DBM *dbm_open (file, flags, mode)
char *file;

int flags, mode;

Description
The dbm_open subroutine opens a database for access. This opens and/or creates the

file.dir and file.pag files, depending on the flags parameter. The returned DBM structure is
used as input to other NDBM routines.

Parameters
file Specifies the path to open a database.

flags Specifies the flags required to open a subroutine.

mode Specifies the mode required to open a subroutine.

Return Values

Upon successful completion, this subroutine returns a pointer to the DBM structure. If
unsuccessful, it returns a value of NULL.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The dbminit subroutine.

Remote Procedure Calls (RPC) 5-39

dbm_store

dbm_store Subroutine

Purpose
Places data under a key.

Library
C Library (libc.a)

Syntax
#include <ndbm.h>
int dbm_store (ab, key, content, flags)
DBM *db;
datum key, content;
int flags;

Description
The dbm_store subroutine places data under a key.

‘Parameters
db Specifies the database to store. .
key Specifies the input key.
content Specifies the value associated with the key to store.
flags Contains either DBM_INSERT or DBM_REPLACE. If the dbm_store

subroutine is called with flags set to DBM_INSERT, and if an entry for the
key already exists, then the dbm_store subroutine returns a value of 1. If
the flags parameter is set to DBM_REPLACE then the entry will be replaced
if it already exists.

Return Values

Upon successful completion, this subroutine returns a value of 0 (zero). If unsuccessful, it
returns a negative value. If the dbm_store subroutine is called with the flags parameter set
to DBM_INSERT and an existing entry is found, then it returns a value of 1.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The store subroutine.

5-40 Base Operating System Reference

dbmclose

dbmclose Subroutine

Purpose

Closes a database.
Library

DBM Library (libdbm.a)
Syntax

#inciude <dbm.h>

void dbmclose (db)

DBM *db;
Description

The dbmclose subroutine closes a database.
Parameter

db Specifies the database to close.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The dbm_close subroutine.

Remote Procedure Calls (RPC) 5-41

dbminit

dbminit Subroutine

Purpose
Opens a database for access.
Library
DBM Library (libdbm.a)
Syntax
#include <dbm.h>
dbminit (file)
char *file;
Description
The dbminit subroutine opens a database for access. At the time of the call, the file.dir and
file.pag files must exist.
Note: To build an empty database, create zero-length .dir and .pag files.
Parameter

file Specifies the path name of the database to open.

Return Values
Upon successful completion, this subroutine returns a value of 0 (zero). If unsuccessful, it
returns a negative value.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The dbm_open subroutine.

5-42 Base Operating System Reference

delete

delete Subroutine

Purpose

Deletes a key and its associated contents.
Library

DBM Library (libdbm.a)
Syntax

#include <dbm.h>

delete (key)

datum key;
Description

The delete subroutine deletes a key and its associated contents.
Parameter

key Specifies the key to delete.

Return Values

Upon successful completion, this subroutine returns a value of 0 (zero). If unsuccessful, it
returns a negative value.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The dbm_delete subroutine.

Remote Procedure Calls (RPC) 5-43

fetch

fetch Subroutine

Purpose

Accesses data stored under a key.
Library

DBM Library (libdbm.a)
Syntax

#include <dbm.h>

datum fetch (key)

datum key;

Description
The fetch subroutine accesses data stored under a key.

Parameter
key Specifies the input key.

Return Values

Upon successful completion, this subroutine returns data corresponding to the specified key.
If it is unsuccessful, a NULL value is indicated in the dptr field of the datum structure.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The dbm_fetch subroutine.

5-44 Base Operating System Reference

firstkey

firstkey Subroutine

Purpose
Returns the first key in the database.
Library
DBM Library (libdbm.a)
Syntax
#include <dbm.h>
datum firstkey ()
Description
The firstkey subroutine returns the first key in the database.
Parameters

This subroutine contains no parameters.

Return Values
Returns a datum structure containing the first key value pair.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The dbm_firstkey subroutine.

Remote Procedure Calls (RPC) 5-45

get_myaddress

get_myaddress Subroutine

Purpose
Gets the user’s IP address.
Library
C Library (libc.a)
Syntax
#include <rpc/rpc.h>
void
get_myaddress (addr)
struct sockaddr_in *adadr;
Description
The get_myaddress subroutine gets the machine’s Internet Protocol (IP) address without
consulting the library routines that access the /etc/hosts file.
Parameter

addr Specifies the address where the machine’s IP address is placed. The port
number is set to a value of htons (PMAPPORT).

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The /etc/hosts file.

Internet Protocol (IP) Overview in Communication Concepts and Procedures.

5-46 Base Operating System Reference

getnetname

getnetname Subroutine

Purpose
Installs the network name of the caller in the array specified by the name parameter.
Library
C Library (libc.a)
Syntax
#include <rpc/rpc.h>
getnetname (name)
char name [MAXNETNAMELEN]};
Description
The getnetname subroutine installs the caller’s unique, operating-system-independent
network name in the fixed-length array specified by the name parameter.
Parameter

name Specifies the network name (or netname) of the server process owner. The
name parameter can be either the host name derived from the
host2netname subroutine or the user name derived from the
user2netname subroutine.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of 0.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The host2netname subroutine, user2netname subroutine.

Remote Procedure Calls (RPC) 5-47

host2nethame

host2netname Subroutine

Purpose
Converts a domain-specific host name to an operating-system-independent network name.
Library
C Library (libc.a)
Syntax
#include <rpc/rpc.h>
host2netname (name, host, domain)
char *name;
char *host
char *domain
Description
The host2netname subroutine converts a domain-specific host name to an
operating-system-independent network name.
This subroutine is the inverse of the netname2host subroutine.
Parameters

name Points to the network name (or netname) of the server process owner. The
name parameter can be either the host name derived from the
host2netname subroutine or the user name derived from the
user2netname subroutine.

host Points to the name of the machine on which the permissions were created.

domain Points to the domain name.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of 0.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The netname2host subroutine, user2netname subroutine.

5-48 Base Operating System Reference

key_decryptsession

key_decryptsession Subroutine

Purpose
Decrypts a server network name and a DES key.

Library
C Library (libc.a)

Syntax
key_decryptsession (remotename, deskey)
char *remotename;
des_block *deskey;

Description
The key_decryptsession subroutine interfaces to the keyserv daemon, which is associated
with the secure authentication system known as Data Encryption Standard (DES). The
subroutine takes a server network name and a DES key and decrypts the DES key by using
the public key of the server and the secret key associated with the effective user number
(UID) of the calling process. User programs rarely need to call this subroutine. System
commands such as keylogin and the Remote Procedure Call (RPC) library are the main
clients.
This subroutine is the inverse of the key_encryptsession subroutine.

Parameters

remotename Points to the remote host name.
deskey Points to the des_block structure.
Return Values

Upon successful completion, this subroutine returns a value of 0. If unsuccessful, it returns a
value of —1.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The keylogin command.
The keyserv daemon.

The key_encryptsession subroutine.

Remote Procedure Calls (RPC) 5-49

key_encryptsession

key_encryptsession Subroutine

Purpose
Encrypts a server network name and a DES key.

Library
C Library (libc.a)

Syntax
#include <rpc/rpc.h>
key_encryptsession (remotename, deskey)
char *remotename;
des_block *deskey;

Description
The key_encryptsession subroutine interfaces to the keyserv daemon, which is associated
with the secure authentication system know as Data Encryption Standard (DES). This
subroutine encrypts a server network name and a DES key. To do so, the routine uses the
public key of the server and the secret key associated with the effective user number (UID)
of the calling process. System commands such as keylogin and the Remote Procedure Call
(RPC) library are the main clients. User programs rarely need to call this subroutine.
This subroutine is the inverse of the key_decryptsession subroutine.

Parameters

remotename Points to the remote host name.
deskey Points to the des_block structure.

Return Values

Upon successful completion, this subroutine returns a value of 0. If unsuccessful, it returns a
value of —1.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The keylogin command.
The keyserv daemon.

The key_decryptsession subroutine.

5-50 Base Operating System Reference

key_gendes

key_gendes Subroutine

Purpose
Asks the keyserv daemon for a secure conversation key.

Library
C Library (libc.a)

Syntax
#include <rpc/rpc.h>
key_gendes (deskey)
des_block *deskey;

Description
The key_gendes subroutine interfaces to the keyserv daemon, which is associated with the
secure authentication system know as Data Encryption Standard (DES). This subroutine
asks the keyserv daemon for a secure conversation key. Choosing a key at random is not
recommended because the common ways of choosing random numbers, such as the
current time, are easy to guess. User programs rarely need to call this subroutine. System
commands such as keylogin and the Remote Procedure Call (RPC) library are the main
clients.

Parameters
deskey Points to the des_block structure.

Return Values

Upon successful completion, this subroutine returns a value of 0. If unsuccessful, it returns a
value of —1.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The keylogin command.

The keyserv daemon.

Remote Procedure Calls (RPC) 5-51

key_setsecret

key_setsecret Subroutine

Purpose
Sets the key for the effective UID of the calling process.

Library
C Library (libc.a)

Syntax
#include <rpc/rpc.h>
key_setsecret (key)
char *key;

Description
The key_setsecret subroutine interfaces to the keyserv daemon, which is associated with
the secure authentication system know as Data Encryption Standard (DES). This subroutine
is used to set the key for the effective user number (UID) of the calling process. User
programs rarely need to call this subroutine. System commands such as keylogin and the
Remote Procedure Call (RPC) library are the main clients.

Parameters

key Points to the key name.

Return Values

Upon successful completion, this subroutine returns a value of 0. If unsuccessful, it returns a
value of —1.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The keylogin command.

The keyserv daemon.

5-52 Base Operating System Reference

netname2host

netname2host Subroutine

Purpose
Converts an operating-system-independent network name to a domain-specific host name.

Library
C Library (libc.a)

Syntax

#include <rpc/rpc.h>

netname2host (name, host, hostien)
char *name;

char *host;

int hostlen;

Description
The netname2host subroutine converts an operating-system-independent network name to
a domain-specific host name.

This subroutine is the inverse of the host2netname subroutine.

Parameters

name Specifies the network name (or netname) of the server process owner. The
name parameter can be either the host name derived from the
host2netname subroutine or the user name derived from the
user2netname subroutine.

host Points to the name of the machine on which the permissions were created.

hostlen Specifies the size of the host name.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of 0.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The host2netname subroutine, user2netname subroutine.

Remote Procedure Calls (RPC) 5-53

netname2user

netname2user Subroutine

Purpose
Converts from an operating-system-independent network name to a domain-specific UID.

Library
C Library (libc.a)

Syntax

#include <rpc/rpc.h>

netname2user (name, vidp, gidp, gidlenp, gidlist)
char *name;
int *uidp;
int *gidp;
int *gidlenp;
int *gidlist;
Description
The netname2user subroutine converts from an operating-system-independent network

name to a domain-specific user number (UID). This subroutine is the inverse of the
user2netname subroutine.

Parameters

name Points to the network name (or netname) of the server process owner. The
name parameter can be either the host name derived from the
host2netname subroutine or the user name derived from the
user2netname subroutine.

vidp Points to the user ID.

gidp Points to the group ID.

gidlenp Points to the size of the group ID.
gidlist Points to the group list.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of 0.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The host2netname subroutine, user2netname subroutine.

5-54 Base Operating System Reference

nextkey

nextkey Subroutine

Purpose

Returns the next key in a database.
Library

DBM Library (libdbm.a)
Syntax

#include <dbm.h>

datum nextkey (key)

datum key;
Description

The nextkey subroutine returns the next key in a database.
Parameters

key Specifies the input key. This value has no effect on the return value but
must be present.

Return Values
Returns a datum structure containing the next key-value pair.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The dbm_nextkey subroutine.

Remote Procedure Calls (RPC) 5-55

pmap_getmaps

pmap_getmaps Subroutine

Purpose

Library

Syntax

Returns a list of the current RPC program to port mappings on the host.

C Library (libc.a)

#include <rpc/rpe.h>

struct pmaplist *
pmap_getmaps (addr)
struct sockaddr_in *addr;

Description

Parameter

The pmap_getmaps subroutine acts as a user interface to the portmap daemon. The
subroutine returns a list of the current Remote Procedure Call (RPC) program to port
mappings on the host located at the Internet Protocol (IP) address pointed to by the addr
parameter.

Note: The rpcinfo —p command calls this subroutine.

aadr Specifies the address where the machine’s IP address is placed.

Return Value

If there is no list of current RPC programs, this procedure returns a value of NULL.

Implementation Specifics

This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

5-56

The rpcinfo command.
The portmap daemon.

The pmap_set subroutine, pmap_unset subroutine, svc_register subroutine.

Base Operating System Reference

pmap_getport

pmap_getport Subroutine

Requests the port number on which a service waits.

C Library (libc.a)

#include <rpc/rpc.h>

pmap_getport (addr, prognum, versnum, protocol)
struct sockaddr_in *addr;
u_long prognum, versnum, protocol;

The pmap_getport subroutine acts as a user interface to the portmap daemon in order to
return the port number on which a service waits.

Purpose
Library
Syntax
u_short
Description
Parameters
addr
prognum
versnum
protocol

Return Values

Points to the Internet Protocol (IP) address of the host where the remote
program that supports the waiting service resides.

Specifies the program number of the remote program.
Specifies the version number of the remote program.

Specifies the transport protocol that the service recognizes.

If the mapping does not exist or the Remote Procedure Call (RPC) system could not contact
the remote portmap daemon, this subroutine returns a value of 0. If the remote portmap
daemon could not be contacted, the rpc_createerr subroutine contains the RPC status.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The portmap daemon.

Internet Protocol (IP) in Communication Concepts and Procedures.

Remote Procedure Calls (RPC) 5-57

pmap_rmtcall

pmap_rmtcall Subroutine

Purpose
Instructs the portmap daemon to make a remote procedure call.
Library
C Library (libc.a)
Syntax
#include <rpc/rpc.h>
enum cint_stat
pmap_rmtcall (addr, prognum, versnum, procnum,
inproc, in, outproc, out, tout, portp)
struct sockaddr_in *addr;
u_long prognum, versnum, procnum;
xdrproc_t inproc;
char *in;
xdrproc_t outproc;
char *out;
struct timeval tout;
u_long *portp;
Description
The pmap_rmtcall subroutine is a user interface to the portmap daemon. The routine
instructs the host portmap daemon to make a remote procedure call. Clients consuit the
portmap daemon when sending out Remote Procedure Call (RPC) calls for given program
numbers. The portmap daemon tells the client the ports to which to send the calls.
Parameters
addr Points to the Internet Protocol (IP) address of the host where the remote
program that supports the waiting service resides.
prognum Specifies the program number of the remote program.
versnum Specifies the version number of the remote program.
procnum identifies the procedure to be called.
inproc Specifies the eXternal Data Representation (XDR) routine that encodes the
remote procedure parameters.
in Points to the address of the procedure arguments.
outproc Specifies the XDR routine that decodes the remote procedure results.
out Points to the address where the results are placed.
tout Sets the time the routine waits for the results to return before sending the
call again. ‘
portp Points to the program port number if the procedure succeeds.

5-58 Base Operating System Reference

pmap_rmtcall

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The portmap daemon.

The cInt_broadcast subroutine.

eXternal Data Representation (XDR) Overview for Programming in Communications
Programming Concepts.

Internet Protocol (IP) in Communication Concepts and Procedures.

Remote Procedure Calls (RPC) 5-59

pmap_set

pmap_set Subroutine

Purpose

Maps a remote procedure call to a port.
Library

C Library (libc.a)
Syntax

#include <rpc/rpc.h>

pmap_set (prognum, versnum, protocol, por)
u_long prognum, versnum, protocol,
u_short port;

Description
The pmap_set subroutine acts as a user interface to the portmap daemon to map the

program number, version number, and protocol of a remote procedure call to a port on the
machine portmap daemon.

Note: The pmap_set subroutine is called by the svc_register subroutine.

Parameters
prognum Specifies the program number of the remote program.
versnum Specifies the version number of the remote program.
protocol Specifies the transport protocol that the service recognizes. The values for
this parameter can be IPPROTO_UDP or IPPROTO_TCP.
port Specifies the port on the machine’s portmap daemon.

Return Values

Upon successful completion, this routine returns a value of 1. If unsuccessful, it returns a
value of 0.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The portmap daemon.

The pmap_getmaps subroutine, pmap_unset subroutine, svc_register subroutine.

Understanding Protocols for TCP/IP in Communication Concepts and Procedures.

5-60 Base Operating System Reference

pmap_unset

pmap_unset Subroutine

Purpose
Destroys the mappings between a remote procedure call and the port.
Library
C Library (libc.a)
Syntax
#include <rpc/rpc.h>
pmap_unset (prognum, versnum)
u_long prognum, versnum;
Description
The pmap_unset subroutine destroys mappings between the program number and version
number of a remote procedure call and the ports on the host portmap daemon.
Parameters
prognum Specifies the program number of the remote program.
versnum Specifies the version number of the remote program.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The portmap daemon.

The pmap_getmaps subroutine, pmap_set subroutine, sve_unregister subroutine.

Remote Procedure Calls (RPC) 5-61

registerrpc

registerrpc Subroutine

Purpose

Registers a procedure with the RPC service package.
Library

C Library (libc.a)
Syntax

#include <rpc/rpc.h>

registerrpc (prognum, versnum, procnum, procname, inproc, outproc)
u_long prognum, versnum, procnum

char * (*procname) ();

xdrproc_t inproc, outproc;

Description

The registerrpc subroutine registers a procedure with the Remote Procedure Call (RPC)
service package.

If a request arrives that matches the values of the prognum parameter, the versnum
parameter, and the procnum parameter, then the procname parameter is called with a
pointer to its parameters, after which it returns a pointer to its static results.

Note: Remote procedures registered in this form are accessed using the User Datagram
Protocol/Internet Protocol (UDP/IP) transport protocol only.

Parameters
prognum Specifies the program number of the remote program.
versnum Specifies the version number of the remote program.
procnum Identifies the procedure number to be called.
procname Identifies the procedure name.
inproc Specifies the eXternal Data Representation (XDR) subroutine that decodes
the procedure parameters.
outproc Specifies the XDR subroutine that encodes the procedure results.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccesstul, it returns a
value of —1.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

5-62 Base Operating System Reference

registerrpc

Related Information
The callrpe subroutine, svcudp_create subroutine.

eXternal Data Representation (XDR) Overview for Programming in Communications
Programming Concepts.

User Datagram Protocol (UDP) in Communication Concepts and Procedures.

Remote Procedure Calls (RPC) 5-63

rtime

rtime Subroutine

Purpose
Gets remote time.
Library
C Library (libc.a)
Syntax
#include <rpc/rpc.h>
#include <sys/types.h>
#include <sys/time.h>
#include <netinet/in.h>
int rtime (addrp, timep, timeout)
struct sockaddr_in *addrp;
struct timeval *timep;
struct timeval *timeout,;
Description
The rtime subroutine consults the Internet Time Server (TIME) at the address pointed to by
the addrp parameter and returns the remote time in the timeval structure pointed to by the
timep parameter. Normally, the User Datagram Protocol (UDP) protocol is used when
consulting the time server. If the timeout parameter is specified as NULL, however, the
routine instead uses Transmission Control Protocol (TCP) and blocks until a reply is
received from the time server.
Parameters o
addrp Points to the Internet Time Server.
timep Points to the timeval structure.
timeout Specifies how long the routine waits for a reply before terminating.

Return Values
Upon successful completion, this subroutine returns a value of 0. If unsuccesstul, it returns a
value of —1, and the error number parameter (errno) is set to reflect the cause of the error.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

Understanding Protocols for TCP/IP, User Datagram Protocol (UDP) in Communication
Concepts and Procedures.

5-64 Base Operating System Reference

store

store Subroutine

Purpose
Places data under a key.
Library
DBM Library (libdbm.a)
Syntax
#iinclude <dbm.h>
store (key, content)
datum key, content;
Description
The store subroutine places data under a key.
Parameters
key Specifies the input key.
content Specifies the value associated with the key to store.

Return Values
Upon successful completion, this subroutine returns a value of 0 (zero). If unsuccessful, it
returns a negative value.

Implementation Specifics
This subroutine is part ot AIX Base Operating System (BOS) Runtime.

Related Information
The dbm_store subroutine.

Remote Procedure Calls (RPC) 5-65

svc_destroy

svc_destroy Macro

Purpose

Destroys an RPC service transport handle.
Library

C Library (libc.a)
Syntax

#include <rpc/rpc.h>

void

svc_destroy (xpri)

SVCXPRT *xprt;

Description
The svc_destroy macro destroys a Remote Procedure Call (RPC) service transport handle.
Destroying the service transport handle deallocates the private data structures, including the

handle itself. After the sve_destroy macro is used, the handle pointed to by the xprt
parameter is no longer defined.

Parameter
xprt Points to the RPC service transport handle.

Implementation Specifics
This macro is part of AIX Base Operating System (BOS) Runtime.

Related Information
The cint_destroy macro, svc_freeargs macro.

5-66 Base Operating System Reference

svc_freeargs

svc_freeargs Macro

Purpose
Frees data allocated by the RPC/XDR system.

Library
C Library (libc.a)

Syntax

#include <rpc/rpc.h>

svc_{reeargs (xprt, inproc, in)
SVCXPRT *xprt;

xdrproc_t inproc;

char *in;

Description
The svc_freeargs macro frees data allocated by the Remote Procedure Call/eXternal Data
Representation (RPC/XDR) system. This data is allocated when the RPC/XDR system
decodes the arguments to a service procedure with the svc_getargs macro.

Parameters
xprt Paints to the RPC service transport handle.

inproc Specifies the XDR routine that decodes the arguments.

in Specifies the address where the procedure arguments are placed.

Implementation Specifics
This macro is part of AIX Base Operating System (BOS) Runtime.

Related Information
The svc_getargs macro, svc_destroy macro.

eXternal Data Representation (XDR) Overview for Programming in Communications
Programming Concepts.

Remote Procedure Calls (RPC) 5-67

svc_getargs

svc_getargs Macro

Purpose

Decodes the arguments of an RPC request.
Library

C Library (libc.a)
Syntax

#include <rpc/rpc.h>

svc_getargs (xprt, inproc, in)
SVCXPRT *xprt;

xdrproc_t inproc;

char *in;

Description
The svc_getargs macro decodes the arguments of a Remote Procedure Call (RPC) request
associated with the RPC service transport handle.

Parameters
xprt Points to the RPC service transport handle.
inproc Specifies the eXternai Data Representation (XDR) routine that decodes the
arguments.
in Specifies the address where the arguments are placed.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of 0.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The svc_freeargs macro.

eXternal Data Representation (XDR) Overview for Programming in Communications
Programming Concepts.

5-68 Base Operating System Reference

svc_getcaller

svc_getcaller Macro

Purpose
Gets the network address of the caller of a procedure.
Library
C Library (libc.a)
Syntax
#include <rpc/rpc.h>
struct sockaddr_in *
svc_getcaller (xprf)
SVCXPRT *xprt;
Description
The svec_getcaller macro retrieves the network address of the caller of a procedure
associated with the Remote Procedure Call (RPC) service transport handle.
Parameters

xprt Points to the RPC service transport handle.

Implementation Specifics
This macro is part of AIX Base Operating System (BOS) Runtime.

Related Information
The svc_register subroutine, sve_run subroutine.

Remote Procedure Calls (RPC) 5-69

svc_getreqgset

svc_getreqset Subroutine

Purpose
Services an RPC request.

Library
C Library (libc.a)

Syntax
#include <rpc/rpc.h>
void
svc__getreqset (rdfds)
fd_set *rdfds;

Description .
The svc__getreqset subroutine is only used if a service implementor does not call the
svc_run subroutine, but instead implements custom asynchronous event processing. The
subroutine is called when the select subroutine has determined that a Remote Procedure
Call (RPC) request has arrived on any RPC sockets. The svc_getreqgset subroutine returns

when all sockets associated with the value specified by the rdfds parameter have been
serviced.

Parameters
rdfds Specifies the resultant read-file descriptor bit mask.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The select subroutine, sve_run subroutine.

Sockets Overview in Communications Programming Conceplts.

5-70 Base Operating System Retference

svc_register

svc_register Subroutine

Purpose
Maps a remote procedure.
Library
C Library (libc.a)
Syntax
#include <rpc/rpc.h>
svc_register (xprt, prognum, versnum, dispatch, protocol)
SVCXPRT *xprt;
u_long prognum, versnum;
void (*dispatch) ();
int protocol;
Description
The svec_register subroutine maps a remote procedure with a service dispatch procedure
pointed to by the dispatch parameter. If the protocol parameter has a value of 0, the service
is not registered with the portmap daemon. If the protocol parameter does not have a value
of 0 (orifitis IPPROTO_UDP or IPPROTO_TCP), the remote procedure triple (prognum,
versnum, and protocol parameters) is mapped to the xprt->xp_port port.
The dispatch procedure takes the following form:
dispatch (request, xprt)
struct sve_req *request,
SVCXPRT *xprt;
Parameters
xprt Points to a Remote Procedure Call (RPC) service transport handle.
prognum Specifies the program number of the remote program.
versnum Specifies the version numbévr of the remote program.
dispatch Points to the service dispatch procedure.
protocol Specifies the data transport used by the service.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of 0.

Implementation Specifics

This subroutine is part of AIX Base Operating System (BOS) Runtime.

Remote Procedure Calls (RPC) 5-71

svc_register

Related Information
The portmap daemon.

The pmap_set subroutine, pmap_getmaps subroutine, sve_unregister subroutine.

Understanding Protocols for TCP/IP, User Datagram Protocol (UDP) in Communication
Concepts and Procedures.

5-72 Base Operating System Reference

svc_run

svc_run Subroutine

Purpose
Waits for a Remote Procedure Call (RPC) service reguest to arrive.
Library
C Library (libc.a)
Syntax
#include <rpc/rpc.h>
void
sve_run (xpri);
SCVXPRT *xprt,
Description
The svc_run subroutine waits for an RPC service request to arrive. When a request arrives,
the sve_run subroutine calls the appropriate service procedure with the svc_getreqset
subroutine. This procedure is usually waiting for a select subroutine to return.
Parameters

xprt Points to an RPC service transport handle.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The callrpc subroutine, registerrpc subroutine, select subroutine, svc_getreqset
subroutine.

Using the Intermediate Layer of RPC, Using the registerrpc Routine in Communications
Programming Concepts.

Remote Procedure Calls (RPC) 5-73

svc_sendreply

svc_sendreply Subroutine

Purpose
Sends back the results of a remote procedure call.
Library
C Library (libc.a)
Syntax
#include <rpc/rpc.h>
sve_sendreply (xprt, outproc, out)
SVCXPRT *xprt;
xdrproc_t outproc;
char *out;
Description
The svc_sendreply subroutine sends back the results of a remote procedure call. This
subroutine is called by a Remote Procedure Call (RPC) service dispatch subroutine.
Parameters
xprt Points to the RPC service transport handle of the caller.
outproc Specifies the eXternal Data Representation (XDR) routine that encodes the
results.
out Points to the address where results are placed.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of 0.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

eXternal Data Representation (XDR) Overview for Programming in Communications
Programming Concepts.

5-74 Base Operating System Reference

svc_unregister

svc_unregister Subroutine

Purpose

Removes mappings between procedures and objects.
Library

C Library (libc.a)
Syntax

#include <rpc/rpc.h>

void
svc_unregister (prognum, versnum)
u_long prognum, versnum

Description
The svc_unregister subroutine removes mappings between dispatch subroutines and the
service procedure identified by the prognum parameter and the versnum parameter. It also
removes the mapping between the port number and the service procedure which is identified
by the prognum parameter and the versnum parameter.

Parameters
prognum Specifies the program number of the remote program.
versnum Specifies the version number of the remote program.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The pmap_unset subroutine, svc_register subroutine.

Remote Procedure Calls (RPC) 5-75

svcerr_auth

svcerr_auth Subroutine

Purpose

Indicates that the service dispatch routine cannot complete a remote procedure call due to
an authentication error.

Library
RPC Library (libcrpc.a)

Syntax

#include <rpc/rpc.h>

void

svcerr_auth (xprt, why)
SVCXPRT *xprt;

enum auth_stat why;

Description
The sveerr_auth subroutine is called by a service dispatch subroutine that refuses to

perform a remote procedure call because of an authentication error. This subroutine sets the
status of the RPC reply message to AUTH_ERROR.

Parameters
xprt Paints to the Remote Procedure Call (RPC) service transport handle.

why Specifies the authentication error.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

5-76 Base Operating System Reference

svcerr_decode

svcerr_decode Subroutine

Purpose
Indicates that the service dispatch routine cannot decode the parameters of a request.
Library
C Library (libc.a)
Syntax
#include <rpc/rpc.h>
void
svcerr_decode (xprt)
SVCXPRT *xprt;
Description
The sveerr_decode subroutine is called by a service dispatch subroutine that cannot
decode the parameters specified in a request. This subroutine sets the status of the RPC
reply message to the GARBAGE_ARGS condition.
Parameter

xprt Points to the Remote Procedure Call (RPC) service transport handle.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The svc_getargs macro.

Remote Procedure Calls (RPC) 5-77

svcerr_noproc

svcerr_noproc Subroutine

Purpose
Indicates that the service dispatch routine cannot complete a remote procedure call because
the program cannot support the requested procedure.

Library
C Library (libc.a)

Syntax

#include <rpc/rpc.h>

void
svcerr_noproc (xprt)
SVCXPRT *xprt;

Description
The svcerr_noproc subroutine is called by a service dispatch routine that does not
implement the procedure number the caller has requested. This subroutine sets the status of

the RPC reply message to the PROC_UNAVAIL condition, which indicates that the program
cannot support the requested procedure.

Note: Service implementors do not usually need this subroutine.

Parameter
xprt Points to the Remote Procedure Call (RPC) service transport handle.

Implementation Specifics
This subroutine is part of AlX Base Operating System (BOS) Runtime.

5-78 Base Operating System Reference

svcerr_noprog

svcerr_noprog Subroutine

Purpose
Indicates that the service dispatch routine cannot complete a remote procedure call because
the requested program is not registered.

Library
C Library (libc.a)

Syntax
#include <rpc/rpc.h>
void
svcerr_noprog (xpri)
SVCXPRT *xprt;

Description
The svcerr_noprog subroutine is called by a service dispatch routine when the requested
program is not registered with the Remote Procedure Call (RPC) package. This subroutine
sets the status of the RPC reply message to the PROG_UNAVAIL condition, which indicates
that the remote server has not exported the program.
Note: Service implementors do not usually need this subroutine.

Parameter

xprt Points to the RPC service transport handle.

Implementation Specifics

This subroutine is part of AIX Base Operating System (BOS) Runtime.

Remote Procedure Calls (RPC) 5-79

svcerr_progvers

svcerr_progvers Subroutine

Purpose
Indicates that the service dispatch routine cannot complete the remote procedure call
because the requested program version is not registered.

Library
C Library (libc.a)

Syntax
#include <rpc/rpc.h>
void
sveerr_progvers (xprt)
SVCXPRT *xprt;
u_long

Description
The svcerr_progvers subroutine is called by a service dispatch routine when the requested
version of a program is not registered with the Remote Procedure Call (RPC) package. This
subroutine sets the status of the RPC reply message to the PROG_ MISMATCH condition,
which indicates that the remote server cannot support the client’s version number.
Note: Service implementors do not usually need this subroutine.

Parameter

xprt Points to the RPC service transport handle.

Implementation Specifics

5-80

This subroutine is part of AIX Base Operating System (BOS) Runtime.

Base Operating System Reference

svcerr_systemerr

svcerr_systemerr Subroutine

Purpose
Indicates that the service dispatch routine cannot complete the remote procedure call due to
an error that is not covered by a protocol.

Library
C Library (libc.a)

Syntax
#include <rpc/rpc.h>
void

sveerr_systemerr (xprt)
SVCXPRT *xprt;

Description
The svcerr_systemerr subroutine is called by a service dispatch subroutine that detects a
system error not covered by a protocol. For example, a service dispatch subroutine calls the
svcerr_systemerr subroutine if the first subroutine can no longer allocate storage. The
routine sets the status of the RPC reply message to the SYSTEM_ERR condition.

Parameter
xprt Points to the Remote Procedure Call (RPC) service transport handle.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Remote Procedure Calls (RPC) 5-81

svcerr_weakauth

svcerr_weakauth Subroutine

Purpose

Library

Syntax

Indicates that the service dispatch routine cannot complete the remote procedure call due to
insufficient authentication security parameters.

C Library (libc.a)

#include <rpc/rpc.h>

void
svcerr_weakauth (xprf)
SVCXPRT *xprt;

Description

Parameter

The svcerr_weakauth subroutine is called by a service dispatch routine that cannot make
the remote procedure call because the supplied authentication parameters are insufficient
for security reasons.

The svcerr_weakauth subroutine calls the svcerr_auth subroutine with the correct Remote
Procedure Call (RPC) service transport handle (the xprt parameter). The subroutine also
sets the status of the RPC reply message to the AUTH_TOOWEAK condition as the
authentication error (AUTH_ERR).

xprt Points to the RPC service transport handle.

Implementation Specifics

This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

5-82

The svcerr_auth subroutine, svcerr_decode subroutine.

Base Operating System Reference

svcfd _create

svcfd_create Subroutine

Purpose
Creates a service on any open file descriptor.

Library
C Library (libc.a)

Syntax

#include <rpc/rpc.h>

SVCXPRT *

svcfd_create (fd, sendsize, recvsize)
int fd;

u_int sendsize;

u_int recvsize;

Description

The svcfd_create subroutine creates a service on any open file descriptor. Typically, this
descriptor is a connected socket for a stream protocol such as Transmission Control
Protocol (TCP).

Parameters
fd Identifies the descriptor.

sendsize Specifies the size of the send buffer.

recvsize Specifies the size of the receive buffer.

Return Values

Upon successful completion, this subroutine returns a TCP-based transport handle. If
unsuccessful, it returns a value of NULL.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Sockets Overview in Communications Programming Concepts.

Understanding Protocols for TCP/IP in Communication Concepts and Procedures.

Remote Procedure Calls (RPC) 5-83

svcraw_create

svcraw_create Subroutine

Purpose
Creates a toy RPC service transport handle for simulation.

Library
C Library (libc.a)

Syntax
#include <rpc/rpc.h>

SVCXPRT *
svcraw_create ()

Description
The sveraw_create subroutine creates a toy Remote Procedure Call (RPC) service
transport handle. The service transport handle is located within the address space of the
process. If the corresponding RPC server resides in the same address space, then
simulation of RPC and acquisition of RPC overheads, such as round-trip times, are done
without kernel interference.

Parameters
This subroutine contains no parameters.

Return Values

Upon successful completion, this subroutine returns a pointer to-a valid RPC transport
handle. If unsuccessful, it returns a value of NULL.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The cintraw_create subroutine.

5-84 Base Operating System Reference

svctcp_create

svctcp_create Subroutine

Purpose
Creates a TCP/IP service transport handle.
Library
C Library (libc.a)
Syntax
#include <rpc/rpc.h>
SVCXPRT *
svctep_create (sock, sendsz, recvsz)
int sock;
u_int sendsz, rcvesz;
Description
The svctep_create subroutine creates a Remote Procedure Call (RPC) service transport
handle based on Transmission Control Protocol/Internet Protocol (TCP/IP) and returns a
pointer to it.
Since TCP/IP remote procedure calls use buffered I/O, users can set the size of the send
and receive buffers with the sendsz and recvsz parameters, respectively. If the size of either
buffer is set to a value of 0, the svctcp_create subroutine picks suitable default values.
Parameters

sock Specifies the socket associated with the transport. If the value of the sock
parameter is RPC_ANYSOCK, the svctcp_create subroutine creates a new
socket. The service transport handle socket number is set to
xprt—>xp_sock. If the socket is not bound to a local TCP/IP port, then this
routine binds the socket to an arbitrary port. Its port number is set to
xprt->xp_port. ’

sendsz Specifies the size of the send buffer.
recvsz Specifies the size of the receive buffer.
Return Values

Upon successful completion, this subroutine returns a valid RPC service transport handle. If
unsuccessful, it returns a value of NULL.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The registerrpc subroutine, sveudp_create subroutine.
Sockets Overview in Communications Programming Concepts.

Understanding Protocols for TCP/IP in Communication Concepts and Procedures.

Remote Procedure Calls (RPC) 5-85

svcudp_create

svcudp_create Subroutine

Purpose
Creates a UDP/IP service transport handle.
Library
C Library (libc.a)
Syntax
#include <rpc/rpc.h>
SVCXPRT *
sveudp_create (sock)
int sock;
Description
The svcudp_create subroutine creates a Remote Procedure Call (RPC) service transport
handle based on User Datagram Protocol/Internet Protocol (UDP/IP) and returns a pointer to
it.
The UDP/IP service transport handle is used only for procedures that take up to 8K bytes of
encoded arguments or results.
Parameter

sock Specifies the socket associated with the service transport handle. If the
value specified by the sock parameter is RPC_ANYSOCK, the
svcudp_create subroutine creates a new socket and sets the service
transport handle socket number to xprt—>xp_sock. If the socket is not
bound to a local UDP/IP port, then the sveudp_create subroutine binds the
socket to an arbitrary port. The port number is set to xprt->xp_port.

Return Values
Upon successful completion, this subroutine returns a valid RPC service transport. If
unsuccessful, it returns a value of NULL.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The registerrpc subroutine, svctcp_create subroutine.

Understanding Protocols for TCP/IP, User Datagram Protocol (UDP) in Communication
Concepts and Procedures.

5-86 Base Operating System Reference

user2netname

user2netname Subroutine

Purpose
Converts from a domain-specific user 1D to an operating-system-independent network name.

Library
C Library (libc.a)

Syntax

#include <rpc/rpc.h>

user2netname (name, uid, domain)
char *name;

int uid,

char *domain;

Description
The user2netname subroutine converts from a domain-specific user ID to an operating
system-independent-network name.

This subroutine is the inverse of the netname2user subroutine.

Parameters
name Points to the network name (or netname) of the server process owner.

uid Points to the caller’s effective user 1D (UID).

domain Points to the domain name.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of 0.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The host2netname subroutine, netname2user subroutine.

Remote Procedure Calls (RPC) 5-87

xdr_accepted_reply

xdr_accepted_reply Subroutine

Purpose
Encodes RPC reply messages.

Library
C Library (libc.a)

Syntax

#include <rpc/rpc.h>

xdr_accepted_reply (xdrs, ar)
XDR *xadrs;
struct accepted_reply *ar;

Description
The xdr_accepted_reply subroutine encodes Remote Procedure Call (RPC) reply

messages. The routine generates message replies similar to RPC message replies without
using the RPC program.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.

ar Specities the address of the structure that contains the RPC reply.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of 0.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

eXternal Data Representation (XDR) Overview for Programming in Communications
Programming Concepts.

5-88 Base Operating System Reference

xdr_array

xdr_array Subroutine

Purpose
Translates between variable-length arrays and their corresponding external representations.

Library
C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_array (xdrs, arrp, sizep, maxsize, elsize, elproc)
XDR *xdrs;

char **arrp;

u_int *sizep;

u_int maxsize;

u_int elsize;

xdrproc_t elproc;

Description
The xdr_array subroutine is a filter primitive that translates between variable-length arrays
and their corresponding external representations. This subroutine is called to encode or
decode each element of the array.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.

arrp Specifies the address of the pointer to the array. If the arrp parameter is
NULL when the array is being deserialized, XDR allocates an array of the
appropriate size and sets the parameter to that array.

sizep Specifies the address of the element count of the array. The element count
cannot exceed the value for the maxsize parameter.

maxsize Specifies the maximum number of array elements.

elsize Specifies the byte size of each of the array elements.

elproc Translates between the C form of the array elements and their external

representations. This parameter is an XDR filter.

Return Values
Upon successful completion, this routine returns a value of 1. If unsuccessful, it returns a
value of 0.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Understanding XDR Library Filter Primitives in Communications Programming Concepts.

Remote Procedure Calls (RPC) 5-89

xdr_authunix_parms

xdr_authunix_parms Subroutine

Purpose ,
Describes UNIX-style credentials.

Library
C Library (libc.a)

Syntax

#include <rpc/rpc.h>

xdr_authunix_parms (xdrs, app)
XDR *xdrs;
struct authunix_parms *app;

Description
The xdr_authunix_parms subroutine describes UNIX-style credentials. This subroutine

generates credentials without using the Remote Procedure Call (RPC) authentication
program.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.

app Points to the structure that contains the UNIX-style authentication
credentials.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of 0.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

eXternal Data Representation (XDR) Overview for Programming i n Communications
Programming Concepts.

5-90 Base Operating System Reference

xdr_bytes

xdr_bytes Subroutine

Purpose
Translates between internal counted byte arrays and their external representations.
Library
C Library (libc.a)
Syntax
#include <rpc/xdr.h>
xdr_bytes (xdrs, sp, sizep, maxsize)
XDR *xdrs;
char **sp;
u_int *sizep;
u_int maxsize;
Description
The xdr_bytes subroutine is a filter primitive that translates between counted byte arrays
and their external representations. This subroutine treats a subset of generic arrays, in
which the size of array elements is known to be 1 (one), and the external description of each
element is built-in. The length of the byte array is explicitly located in an unsigned integer.
The byte sequence is not terminated by a null character. The external representation of the
bytes is the same as their internal representation.
Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.
sp Specifies the address of the pointer to the byte array.
sizep Points to the length of the byte area. The value of this parameter cannot

exceed the value of the maxsize parameter.

maxsize Specifies the maximum number of bytes allowed when XDR encodes or
decodes messages.

Return Values

Upon successful completion, this routine returns a value of 1. If unsuccessful, it returns a
value of 0.

Implementation Specifics

This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

Understanding XDR Library Filter Primitives in Communications Programming Concepts.

Remote Procedure Calls (RPC) 5-91

xdr_callihdr

xdr_callhdr Subroutine

Purpose
Describes RPC call header messages.

Library
C Library (libc.a)

Syntax

#include <rpc/rpc.h>

xdr_callhdr (xdrs, chdr)
XDR *xdrs;
struct rpc_msg *chdr;

Description
The xdr_callhdr subroutine describes Remote Procedure Call (RPC) call-header messages.

This subroutine generates call headers that are similar to RPC call headers without using
the RPC program.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.

chdr Points to the structure that contains the header for the call message.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of 0.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

eXternal Data Representation (XDR) Overview for Programming in Communications
Programming Concepts.

5-92 Base Operating System Reference

xdr_calimsg

xdr_callmsg Subroutine

Purpose
Describes RPC call messages.

Library
C Library (libc.a)

Syntax

#include <rpc/rpc.h>

xdr_callmsg (xdrs, cmsg)
XDR *xdrs;
struct rpc_msg *cmsg;

Description
The xdr_callmsg subroutine describes Remote Procedure Call (RPC) call messages. This
subroutine generates messages similar to RPC messages without using the RPC program.

Parameters
xdrs Points to the eXternal Data Representatiion (XDR) stream handie.

cmsg Points to the structure that contains the text of the call message.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of 0.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
eXternal Data Representation (XDR) Overview for Programming i n Communications
Programming Concepts.

Remote Procedure Calls (RPC) 5-93

xdr_char

xdr_char Subroutine

Purpose

Translates between C language characters and their external representations.
Library

C Library (libc.a)
Syntax

#include <rpc/xdr.h>

xdr_char (xdrs, cp)

XDR *xdrs;

char *cp;

Description

The xdr_char subroutine is a filter primitive that translates between C characters and their

external representations.

Note: Encoded characters are not packed and occupy 4 bytes each. For arrays of
characters, the programmer should consider using the xdr_bytes, xdr_opaque, or
xdr_string routine.

Parameters

xdrs Points to the eXternal Data Representation (XDR) stream handle.

cp Points to the character.

Return Values

Upon successful completion, this routine returns a value of 1. If unsuccessful, it returns a
value of 0.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Understanding XDR Library Filter Primitives in Communications Programming Concepts.

5-94 Base Operating System Reference

xdr_destroy

xdr_destroy Macro

Purpose
Destroys the XDR stream pointed to by the xdrs parameter.

Library
C Library (libc.a)

Syntax
#include <rpe/xdr.h>
void

xdr_destroy (xdrs)
XDR *xdrs;

Description -
The xdr_destroy macro invokes the destroy routine associated with the eXternal Data
Representation (XDR) stream pointed to by the xdrs parameter and frees the private data
structures allocated to the stream. The use of the XDR stream handle is undefined after it is
destroyed.

Parameter
xdrs Points to the XDR stream handle.

Implementation Specifics
This macro is part of AIX Base Operating System (BOS) Runtime.

Related Information
Understanding XDR Non-Filter Primitives in Communications Programming Concepts.

Remote Procedure Calls (RPC) 5-95

xdr_double

xdr_double Subroutine

Purpose
Translates between C language double-precision numbers and their external
representations.

Library
C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_double (xdrs, dp)
XDR *xdrs;
double *dp;

Description
The xdr_double subroutine is a filter primitive that translates between C double-precision
numbers and their external representations.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.

dp Specifies the address of the double-precision number.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of 0.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Understanding XDR Library Filter Primitives in Communications Programming Concepts.

5-96 Base Operating System Reference

xdr_enum

xdr_enum Subroutine

Purpose
Translates between a C language enumeration (enum) and its external representation.

Library
C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_enum (xdrs, ep)
XDR *xdrs;
enum_t *ep;

Description
The xdr_enum subroutine is a filter primitive that translates between a C language
enumeration (enum) and its external representation.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.

ep Specifies the address of the enumeration data.

Return Values

Upon successful completion, this routine returns a value of 1. If unsuccessful, it returns a
value of 0.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Understanding XDR Library Filter Primitives in Communications Programming Concepts.

Remote Procedure Calls (RPC) 5-97

xdr_float

xdr_float Subroutine

Purpose |
Translates between C language floats and their external representations.

Library
C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_float (xdrs, fp)
XDR *xdrs;
float *fp;

Description
The xdr_float subroutine is a filter primitive that translates between C floats (normalized
single floating-point numbers) and their external representations.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.

fo Specifies the address of the float.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of 0.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Understanding XDR Library Filter Primitives in Communications Programming Concepts.

5-98 Base Operating System Reference

xdr_free

xdr_free Subroutine

Purpose
Deallocates, or frees, memory.

Library
C Library (libc.a)

Syntax

#include <rpc/xdr.h>

void

xdr_free (proc, objp)
xdrproc_t proc;
char *objp;

Description
The xdr_free subroutine is a generic freeing routine that deallocates memory. The first

argument is the eXternal Data Representation (XDR) routine for the object being freed. The
second argument is a pointer to the object itself.

Note: The pointer passed to this routine is not freed, but what it points to is freed
(recursively).

Parameters
proc Points to the XDR stream handle.

objp Points to the object being freed.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Understanding XDR Non-Filter Primitives in Communications Programming Concepts.

Remote Procedure Calls (RPC) 5-99

xdr_getpos

xdr_getpos Macro

Purpose
Returns an unsigned integer that describes the current position in the data stream.
Library
C Library (libc.a)
Syntax
#include <rpc/xdr.h>
u_int
xdr_getpos (xadrs)
XDR *xdrs;
Description
The xdr_getpos macro invokes the get-position routine associated with the eXternal Data
Representation (XDR) stream pointed to by the xdrs parameter. This routine returns an
unsigned integer that describes the current position in the data stream.
Parameter

xdrs Points to the XDR stream handle.

Return Values
This macro returns an unsigned integer describing the current position in the stream. In

some XDR streams, this routine returns a value of —1, even though the value has no
meaning.

Implementation Specifics
' This macro is part of AIX Base Operating System (BOS) Runtime.

Related Information
Understanding XDR Non-Filter Primitives in Communications Programming Concepts.

5-100 Base Operating System Reference

xdr_inline

xdr_inline Macro

Purpose
Returns a pointer to the buffer of a stream pointed to by the xdrs parameter.
Library
C Library (libc.a)
Syntax
#include <rpc/xdr.h>
long *
x_inline (xdrs, len)
XDR *xdrs;
int /en;
Description
The xdr_inline macro invokes the inline routine associated with the eXternal Data
Representation (XDR) stream pointed to by the xdrs parameter. The routine returns a
pointer to a contiguous piece of the stream’s buffer, whose size is specified by the /en
parameter. The buffer can be used for any purpose, but it is not data-portable. This routine
may return a value of NULL if it cannot return a buffer segment of the requested size.
Parameters
xdrs Points to the XDR stream handle.
len Specifies the size, in bytes, of the internal buffer.

Return Values
This macro returns a pointer to a piece of the stream'’s buffer.

Implementation Specifics
This macro is part of AlX Base Operating System (BOS) Runtime.

Related Information
Understanding XDR Non-Filter Primitives in Communications Programming Concepts.

Remote Procedure Calls (RPC) 5-101

xdr_int

xdr_int Subroutine

Purpose
Translates between C language integers and their external representations.
Library
C Library (libc.a)
Syntax
#include <rpc/xdr.h>
xdr_int (xdrs, ip)
XDR *xdrs;
int *ip;
Description
The xdr_int subroutine is a filter primitive that translates between C language integers and
their external representations.
Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.
ip Specifies the address of the integer.

Return Values

Upon successful completion, this routine returns a value of 1. If unsuccessful, it returns a
value of 0.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Understanding XDR Library Filter Primitives in Communications Programming Concepts.

5-102 Base Operating System Reference

xdr_long

xdr_long Subroutine

Purpose
Translates between C language long integers and their external representations.
Library
C Library (libc.a)
Syntax
#include <rpc/xdr.h>
xdr_long (xdrs, Ip)
XDR *xdrs;
long */p;
Description
The xdr_long filter primitive translates between C language long integers and their external
representations. This primitive is characteristic of most eXternal Data Representation (XDR)
library primitives and all client XDR routines.
Parameters

xdrs Points to the XDR stream handle. This parameter can be treated as an
opaque handler and passed to the primitive routines.

Ip Specifies the address of the number.

Return Values

Upon successful completion, this routine returns a value of 1. If unsuccessful, it returns a
value of 0.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Understanding XDR Library Filter Primitives in Communications Programming Concepts.

Remote Procedure Calls (RPC) 5-103

xdr_opaq ué

xdr_opaque Subroutine

Purpose
Translates between fixed-size opaque data and its external representation.
Library
C Library (libc.a)
Syntax
#include <rpc/xdr.h>
xdr_opaque (xdrs, cp, cnt)
XDR *xdrs;
char *cp;
u_int cnt;
Description
The xdr_opagque subroutine is a filter primitive that translates between fixed-size opaque
data and its external representation.
Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.
cp Specifies the address of the opaque object.
cnt Specifies the size, in bytes, of the object. By definition, the actual data

contained in the opaque object is not machine-portable.
Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of 0.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Understanding XDR Library Filter Primitives in Communications Programming Concepts.

5-104 Base Operating System Reference

xdr_opacque_auth

xdr_opaque_auth Subroutine

Purpose
Describes RPC authentication messages.

Library
C Library (libc.a)

Syntax
#include <rpc/rpc.h>
xdr_opaque_auth (xdrs, ap)

XDR *xdrs;
struct opaque_auth *ap;

Description
The xdr_opaque_auth subroutine describes Remote Procedure Call (RPC) authentication
information messages. It generates RPC authentication message data without using the
RPC program.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.

ap Points to the structure that contains the authentication information.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of 0.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
eXternal Data Representation (XDR) Overview for Programming i n Communications
Programming Concepts.

Remote Procedure Calls (RPC) 5-105

xdr_pmap

xdr_pmap Subroutine

Purpose
Describes parameters for portmap procedures.

Library
C Library (libc.a)

Syntax

#include <rpc/rpc.h>

xdr_pmap (xdrs, regs)
XDR *xdrs;
struct pmap *regs;

Description
The xdr_pmap subroutine describes parameters for portmap procedures. This subroutine
generates portmap parameters without using the portmap interface.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.

regs Points to the buffer or register where the portmap daemon stores
information.

Return Values

Upon successful completion, this subroutine returns a value of 1. f unsuccessful, it returns a
value of 0.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The portmap daemon.

eXternal Data Representation (XDR) Overview for Programming i n Communications
Programming Concepts.

5-106 Base Operating System Reference

xdr_pmaplist

xdr_pmaplist Subroutine

Purpose
Describes a list of port mappings externally.

Library
C Library (libc.a)

Syntax

#include <rpc/rpc.h>

xdr_pmaplist (xdrs, rp)
XDR *xdrs;
struct pmaplist **rp;

Description
The xdr_pmaplist subroutine describes a list of port mappings externally. This subroutine

generates the port mappings to Remote Procedure Call (RPC) ports without using the
portmap interface.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.
p Points to the structure that contains the portmap listings.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of 0.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The portmap daemon.

eXternal Data Representation (XDR) Overview for Programming i n Communications
Programming Concepits.

Remote Procedure Calls (RPC) 5-107

xdr_pointer

xdr_pointer Subroutine

Purpose

Provides pointer chasing within structures and serializes NULL pointers.
Library

C Library (libc.a)
Syntax

#include <rpc/xdr.h>

xdr_pointer (xdrs, objpp, objsize, xdrobj)
XDR *xdrs;

char **objpp;

u_int objsize;

xdrproc_t xdroby;

Description
The xdr_pointer subroutine provides pointer chasing within structures and serializes NULL
pointers. This subroutine can represent recursive data structures, such as binary trees or

linked lists.
Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.
objpp Points to the character pointer of the data structure.
objsize Specifies to the size of the structure.
xdrobj Specifies the XDR filter for the object.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of 0.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Understanding XDR Non-Filter Primitives in Communications Programming Concepts.

5-108 Base Operating System Reference

xdr_reference

xdr_reference Subroutine

Purpose
Provides pointer chasing within structures.
Library
C Library (libc.a)
Syntax
#include <rpc/xdr.h>
xdr_reference (xdrs, pp, size, proc)
XDR *xdrs;
char **pp;
u_int size;
xdrproc_t proc;
Description
The xdr_reference subroutine is a filter primitive that provides pointer chasing within
structures. This primitive allows the serializing, deserializing, and freeing of pointers within
one structure that are referenced by another structure.
The xdr_reference subroutine does not attach any special meaning to a null-value pointer
during serialization. Attempting to pass the address of a NULL pointer can cause a memory
error. The programmer must describe data with a two—armed discriminated union. One arm
is used when the pointer is valid; the other arm is used when the pointer is NULL.
Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.
pp Specifies the address of the pointer to the structure. When decoding data,
XDR allocates storage if the pointer is NULL.
size Specifies the byte size of the structure pointed to by the pp parameter.
proc Filters the structure between its C form and its external representation. This

parameter is the XDR procedure that describes the structure.

Return Values
Upon successful completion, this routine returns a value of 1. If unsuccessful, it returns a
value of 0.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Understanding XDR Library Filter Primitives in Communications Programming Conceplts.

Remote Procedure Calls (RPC) 5-109

xdr_rejected_reply

xdr_rejected _reply Subroutine

Purpose
Describes RPC message rejection replies.
Library
C Library (libc.a)
Syntax
#include <rpc/rpc.h>
xdr_rejected_reply (xdrs,)
XDR *xdrs;
struct rejected_reply *rr;
Description
The xdr_rejected_reply subroutine describes Remote Procedure Call (RPC) message
rejection replies. This subroutine can be used to generate rejection replies similar to RPC
rejection replies without using the RPC program.
Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.
r Points to the structure that contains the rejected reply.

‘Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of 0.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
eXternal Data Representation (XDR) Overview for Programming i n Communications
Programming Concepts.

5-110 Base Operating System Reference

xdr_replymsg

xdr_replymsg Subroutine

Purpose
Describes RPC message replies.

Library
C Library (libc.a)

Syntax

#include <rpc/rpc.h>

xdr_replymsg (xdrs, rmsg)
XDR *xdrs;
struct rpc_msg *rmsg;

Description
The xdr_replymsg subroutine describes Remote Procedure Call (RPC) message replies.

Use this subroutine to generate message replies similar to RPC message replies without
using the RPC program.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handie.

rmsg Points to the structure containing the parameters of the reply message.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccesstul, it returns a
value of 0.

implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
eXternal Data Representation (XDR) Overview for Programming in Communications
Programming Concepts.

Remote Procedure Calls (RPC) 5-111

xdr_setpos

xdr_setpos Macro

Purpose
Changes the current position in the XDR stream.

Library
C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_setpos (xdrs, pos)
XDR *xdrs;
u_int pos;

Description
The xdr_setpos macro invokes the set-position routine associated with the eXternal Data
Representation (XDR) stream pointed to by the xdrs parameter. The new position setting is
obtained from the xdr_getpos routine. This routine returns a value of FALSE if the set
position is impossible or if the requested position is out of bounds.

A position cannot be set in some XDR streams. Trying to set a position in such streams

causes the routine to fail. This routine also fails if the programmer requests a position that is
not within the stream’s boundaries.

Parameters
xdrs Points to the XDR stream handle.

pos Specifies a position value obtained from the xdr_getpos macro.

Return Values

Upon successful completion (if the stream is positioned successfully), this routine returns a
value of 1. If unsuccessful, the routine returns a value of 0.

Implementation Specifics
This macro is part of AIX Base Operating System (BOS) Runtime.

Related Information
The xdr_getpos macro.

Understanding XDR Non-Filter Primitives in Communications Programming Concepts.

5-112 Base Operating System Reference

xdr_short

xdr_short Subroutine

Purpose
Translates between C language short integers and their external representations.

Library
C Library (libc.a)

Syntax
#include <rpc/xdr.h
xdr_short (xdrs, sp)
XDR *xdrs;
short *sp;

Description
The xdr_short subroutine is a filter primitive that translates between C language short
integers and their external representations.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.

sp Specifies the address of the short integer.

Return Values
Upon successful completion, this routine returns a value of 1. If unsuccessful, it returns a
value of 0.

Implementation Specifics
This subroutine is part of AlX Base Operating System (BOS) Runtime.

Related Information
Understanding XDR Library Filter Primitives in Communications Programming Concepts.

Remote Procedure Calls (RPC) 5-113

xdr_string

xdr_string Subroutine

Purpose
Translates between C language strings and their external representations.

Library
C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_string (xdrs, sp, maxsize)
XDR *xdrs;

char **sp;

u_int maxsize;

Description
The xdr_string subroutine is a filter primitive that translates between C language strings
and their corresponding external representations. Externally, strings are represented as

sequences of ASCH characters, while internally, they are represented with character
pointers.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle