1 echnical Newsletter No. 13

3 APPLIED SCIENCE

IBM

APPLIED SCIENCE
TECHNICAL NEWSLETTER NO. 13

APRIL. 1957

We wish to extend thanks to the authors of these papers for their cooperation
in contributing to this interchange of technical information.

(© 1957 by International Business Machines Corporation

CONTENTS

. A Punched Card Method for Successive Intervals Scaling.......

Samuel J. Messick, Ledyard R. Tucker,
and Harry W. Garrison

. A Simplified Method for the Computation of Biserial
Correlation Coefficients on the 604 Electronic Calculating
K. Warner Schaie, Allan Katcher,

S. Frank Miyamoto and Laura I. Crowell

. A Method for the Packaged Processing of a Statistical

Analysisonthe IBM 650. oo it iiiiiiiiiiiii it

L. H. Somerall and N. A. Habibe

. An Interpretive Subroutine for the Solution of Systems of

First Order Ordinary Differential Equations on the 650........

Franz Edelman

. Double Table Look-Uponthe IBM650........................

Robert H. Goerss

A PUNCHED CARD METHOD FOR SUCCESSIVE INTERVALS SCALING?

Samuel J. Messick and Ledyard R. Tucker
Princeton University and Educational Testing Service

and

Harry W. Garrison
Educational Testing Service

INTRODUCTION

The scaling method of successive intervals has appeared in several forms
(e.g., 1, 3, 5) with variations in the computational labor required depending
upon the simplifying assumptions made. Generally, the more rigorous the
solution, the more laborious the computations (see reference 4); but, in any
event, as the number of stimuli to be scaled increases, the amount of computation
required by any suggested procedure soon becomes prohibitive. Recently,
however, an iterative least squares solution to successive intervals2 was
developed, for which punched card procedures were appropriate; and thus a
feasible computational routine for scaling large numbers of stimuli was made
available without sacrificing the rigor of a least squares approach.
| A punched card procedure for a general weighted least squares solution
to successive intervals is described below. Use of zero weights permits
application of this procedure to cases of incomplete data. The procedure
outlined suggests use of an IBM 101 Electronic Statistical Machine for obtaining

frequency counts. Conversion of frequencies to normal curve deviates and

4This research was jointly supported in part by Princeton University, the
Office of Naval Research under contract N6éonr-270-20, and the National Science
Foundation under grant NSF G-642, and in part by the Educational Testing Service.

assignment of weights is accomplished on a gang punch. The main procedure
is an iterative process with repetitive cycles of computation using a 602A
Calculating Punch and an accounting machine.
THE GENERAL LEAST SQUARES SOLUTION TO SUCCESSIVE INTERVALS
The experimental procedure for the method of successive intervals requires
n stimuli to be sorted N times into (k + 1) categories on some attribute continuum.
From this sorting procedure the number of times, fig’ that the ith stimulus
was placed in the gth category can be readily obtained. The frequencies in each
row of the n x (k + 1) table generated by these data are then cumulated so that
each entry, Fig’ now represents the number of times the ith stimulus appeared
below the gth category boundary, tg. These cumulated frequencies are converted
into proportions, pig' and then to normal deviate values, Zig' At this point,
some set of weights, wig’ can be applied to the normal deviates to take account
of differences in the reliability of the various proportions.
The general least squares solution tb suécessive intervals 2 provides
formulae for the n scale values, mi, the n discriminal dispersions, Si’ and the

k category boundaries, t , as follows:

k
S = a w.t z - b w t , 1
1 i g iggxig i 2 ig 8 W
m = C 3 t - 3 2
i T % 2Yiglga "0 LViglga g @
g g
k
where .
Zw,
g 18

2"igig
b- = g)
i k 2 k
(Z wigzig) (z 1g)) (Zwlgz1) (4)
g g
k
2
2 ig"ig
cC. = g ’
i = k 2 k k
(Twigfig) (wig) = (Twigr)” O
g g g
t A4
gl + 1) = glax + 1) ,
LS 2 s (6)
W g Ve + 1) T Vig '
n n
where Vg (¢ + 1) = Zwigmi(x+ 2 wigzigsidi
i i (7)

and w - §gwig
gi

The subscript & was introduced into the above equations to indicate the
various cycles of approximation in an iterative procedure. Thus, if some
tentative first estimates, tg1 , of the category boundaries were available to
start the iteration, equation (1) could be solved to obtain first estimates,

s;; » of the discriminal dispersions; equation (2) could be used to find first
estimates, m, , of the scale values; and equations (6) and (7) could be solved
for second estimates, tgz’ of the category boundaries, etc. The procedure could
be iterated until two successive t-estimates were as similar as desired,

i.e., until [tg(c[+1) - tg]

a;, bi’ and c, are written solely in terms of the data and do not involve iteration

was negligible. It should be noted that the coefficients

subscripts « ; they need to be computed only once for the entire iterative

procedure.
A suitable first estimate of t with which to start the iterative procedure
g
must now be determined. In order to be consistent with the above equations, an

origin and unit for the t-scale should be defined so that

k n _
Ztg Zwig =0 (8)
g 1

and N
th §wi =W, ®
g 18
This definition is completely arbitrary, the successive intervals scale
being determined only within a linear transformation. A t-scale meeting such

requirements may be obtained as follows. If vgl is a set of k numbers to be

used as possible estimates of t , then
tgl-: Vgl ‘Vl
) (10)
LS gt b
W og Ug "VD7 £V
where K
v = 1 o
_— v W,
1 W g gl ? ig.

A set of equally spaced numbers, such as the integers from 1 to k converted
according to equation (10), would be a convenient first estimate of the category
boundaries. The rate of convergence may possibly be increased by doubling or

tripling the difference between successive t-estimates, i.e., instead of using

t in the (« + 1) iterative cycle use (t’ =t + 2t - t).
g(a +1) g(ax+ 1) g ge+1) g
The weights, wig , appearing in the above equations may be chosen in
any fashion as long as W, = 0 and W, Z = O when p=0or p = 1. It would

g 1g

seem reasonable, however, to select these weights so as to take account of
differences in the reliability of various proportions. See reference 2 for a more

detailed discussion of the choice of weights.
TRANSFORMATIONS TO SIMPLIFY THE PUNCHED CARD PROCEDURE

Before presenting the punched card routine, the introduction of some linear
transformations will greatly simplify the procedure. Because of the conversion
of equation (10), the tgcc values in the above solution are both positive and negative,
as are the normal deviate values, zig . Since it would be advantageous to have

all these quantities converted to positive values, the above solution was modified

according to the following functions:

7Z = ez + f (11)
1g 1g
T = et +
where e and f are transformation constants chosen to make z, and t all
1g ga

positive and to expand the range.
The introduction of these conversions does not affect the formula for estimates

of the discriminal dispersions at all. Its form is merely changed to
K k
. = T Z -B))w T 13
i Aizg:wig ga ig lzg ig g« (13)

where Ai and Bi equal ai and bi , respectively, with Zig substituted for z_ .
1g

However, the transformations do produce some changes in the formula
for estimating scale values. The m"I values may now be obtained in terms of
i
the transformed scores as follows:

1 .
m, = —_— -
- e Pt 5, 0 (14)

k k
where Pio: = CiEg: wingc(- Bi% wing(Zig(15)

10

Again, B; and Ci equal bi and c, respectively, with Zig substituted for Zig'
In summary, if the transformations given in equations (11) and (12) are
used, equation (15) may be applied to obtain some values, Pi« ,which can

be converted by equation (14) into the scale values, m_ . New estimates of
1

the t scale can then be obtained as follows:

ga
n n
Vg(oc + 1) = evVogy)+i= izwigPi“Jr%wigsid Zig (16)
)1
'@ +1) = Vg((I+ - f

. (17)
J.L)3 2 1
Wog [Vg(cr+l) - 1] 2w
THE PUNCHED CARD PROCEDURE

1. The starting point for successive intervals analysis is an n X k table

of the number of times, F_ , that the ith stimulus was placed below the

1g
gth category boundary, t . Since the data are rarely available in this
g

form, individual scores must be tallied. If a card is made up for each of

N individuals, with n columns representing n stimuli, the category
(1 to k 4 1) into which each stimulus was placed by an individual can

be punched in the columns appropriate for that stimulus. It may be

necessary to use more than one column to designate each stimulus; and

if there are too many stimuli for one card per individual, two or more
cards might be punched for each person. Then the cumulated frequencies,
Fig’ with which each stimulus was placed below each category boundary
may be directly tallied on the IBM 101 Electronic Statistical Machine.

These operations may also be performed on an accounting machine.

The cards used for tallying the initial scores will not be needed in the rest
of the analysis. The cumulated frequencies, Fig’ are placed in detail
cards - there being one such card for each entry in a stimulus-by-category
table. There are actually k + 1 categories; however, since Fi would
always equal N for the last category, it need not be punched. Also, there
will usually be missing entries in the F ig table, so the total number of
detail cards will generally be less than n X k. The detail cards will be
operated upon from this point on. In addition to Fig’ each card should
also contain punches for stimulus and category designations.
. A deck of conversion master cards must now be set up which will convert
cumulated frequencies, Fig , into corresponding transformed normal
deviates, Zig' Accordingly, each master card should contain Fig and
the corresponding Zig value. It will be advantageous for later operations
if the conversion cards also contain for each Fi the corresponding weight,
w; g’ and the products wigzig and wigzigz . Thg conversion deck should
also be set up so that cumulated frequencies for which the corresponding
wig is zero would be converted into X punches in the Zig field. The X
punch is used to indicate a conversion to zero, so that Z values with
zero weights may be easily sorted out at a later stage of the procedure.
This single conversion deck, then, includes the weighting system, the
conversion to normal deviates, and the linear transformation of equation
(11).
. The detail cards are now sorted into ascending order of Fig , the conversion
master cards are merged in front controlling on Fig , and the quantities Zi ’

g

, W, Z. , andw, Z, 2 are transferred from the master cards by
ig ig ig ig

W,
1g

11

12

7.

8.

gang punching. Each detail card now contains entries of F , Zig
1g
2
w, Z and

(where the Z. value may be an X punch), w, , w) ,
1g 1g 1g ig

. Z_,
1g 1g
punches identifying stimulus, i, and category, g.

. Some of the detail cards will not be used in the analysis, since they contain

little or no information. At this point, all cards with an X punched in the
Zig field can be removed. The X punch indicates that the information in
the card was based upon a frequency so unreliable that it had been
weighted zero. In case there is only one Z1g for any stimulus i, the card

for this Zig is to be removed and the stimulus dropped from the study.

. The following steps may now be performed on a desk calculator:

(a) Using the integers 1 to k as v . , solve equation (10) for initial

gl

estimates of the category boundaries, t . . If the numger of stimuli

gl
is so large that it is difficult to find the k values of izwig by

n
hand, the cards may be sorted by category and 2w_ obtained for
1 ig

each g on an accounting machine.

(b) Convert the t ! values into positive scores, T , by equation (12).
g gl

. Gang punch Tgl values into detail cards with the corresponding category

designation, g.

Sort the cards in order of stimuli

Punching a trailer card for each stimulus, run off the sums
k k

k
%Wig ’ gwigzig, and %wig Zig on an accounting machine.

. Using a desk calculator, compute the coefficients Ai , Bi » and G, ,

according to equations (3), (4), and (5), respectively, with Zi

substituted for z, . For large numbers of stimuli these values may be
1g
more efficiently computed on the 602A Calculating Punch.

10.

11.

12,

13.

14.

15.

16.

17.

With the cards in order of stimuli ellcnd punching a trailer card for each

i, compute on the 602A the values zw T andrw Z T _.
g 88l g 1z ig gl

Using a desk calculator, solve equations (13) and (15) for the n values of
s, and Pil , respectively. Again the 602A is probably more efficient

il
for solving these equations when the number of stimuli involved is very

large.

Punch into each detail card the corresponding s i and P, i value.
Sort the cards in order of category, and for each g obtain ZW ,
n i ig
2w. Z. s, and Z w., P on the 602 A.

i g 1gil i 1gil

Again at this point, hand computation is probably better for solving
equations (16) and (17) for a new set of tg2 values.

Convertt to positive scores according to equation (12) and gang
punch theg'%‘g2 values into detail cards with corresponding category
designations.

Beginning with step 10, repeat the above computations to obtain new
estimates si2 , Piz’ and tg3 . Steps 10 to 15 can then be iterated,
replacing the subscript 1 with an & appropriate to the iterative cycle
being performed, until two successive t-estimates are as similar as
desired.

When convergence has been obtained, the final scale values, m, , can

be computed from equation (14).

13

14

REFERENCES _
1. F. Atmeave, "A Method of Graded Dichotomies for the Scaling of Judgments, "

Psychological Review, LVI (1949), 334-340.

2. G. W. Diederich, S. J. Messick, and L. R. Tucker, "A General Least

Squares Solution for Successive Intervals, " Educational Testing Service,

Research Bulletin 55-24 .

3. W. R. Garner, and H. W. Hake, "The Amount of Information in Absolute

Judgments, " Psychological Review, LVIII (1951), 446-459.

4. H. Gulliksen, "A Least Squares Solution to Successive Intervals Assuming

Unequal Standard Deviations, " Psychometrika, IXX (1954), 117-139.

5. M. Saffir, "A Comparative Study of Scales Constructed by Three

Psychophysical Methods, " Psychometrika, II (1937), 179-198.

A SIMPLIFIED METHOD FOR THE COMPUTATION OF BISERIAL CORRELATION

a
COEFFICIENTS ON THE 604 ELECTRONIC CALCULATING PUNCH

K. Warner Schaieb, Allan Katcher, S. Frank Miyamoto and Laura I. Crowell
University of Washington

A number of schemes for obtaining biserial correlation coefficients by means
of punched card computing methods have been reported in the psychological
and computing literatures. All of these procedures (a representative example
is the one proposed by]ohnson4) yield oﬁly the components necessary for
computing the final coefficient and require additional manual computation on a
desk calculator.

The greatest difficulty in programming a straightforward procedure lies in
the fact that it is necessary to obtain values from a table of the normal
probability curve in the course of the computation. While this problem can be
readily taken care of on the IBM 650 or 704, the social scientist usually has
access only to lower order equipment, which for his purposes is generally less
expensive.

In this article we will describe a one-board procedure for the IBM 604
Electronic Calculating Punch, which will automatically perform the required
table look-up and compute the final Tis® We selected the 604 because this
instrument is rapidly becoming standard equipment for most basic IBM installations
and is thus readily available. In presenting our procedure, familiarity with the 604
and with general IBM procedures is assumed, and the terminology uséd agrees

with the instruction manual for the 6043.

a
The authors gratefully acknowledge the research support provided by a grant
from the Agnes H. Anderson fund of the University of Washington.

bNow with the Department of Psychiatry and Neurology, Washington University
School of Medicine, St. Louis, Missouri.

15

16

Given the continuous and dichotomized scores, the mean, and the standard
deviation for the total group on the continuous variable, the proposed method
will summary punch, in one machine run, one biserial correlation coefficient
at a time. No prior information is required on the magnitute of p or q, and
it will be shown that categorical data can be used for purposes of dichotomization
without having to be repunched. This method is thus also useful in cases
where the investigator originally intended to compute Pearsonian r's but, after
inspection of his data, concluded that biserial correlations were more appropriate.

The method to be described here was developed in connection with a
research project focusing on self-concepts of communicative skills!. Two
specifically constructed questionnaires were administered to several hundred
students who participated in three different studies. As one phase of the study,
we were interested in examining relationships between biographical information
and questionnaire scores. The computational example given in the final part
of this paper is derived from this study.

COMPUTATIONAL. FORMULA

For our purposes, the most economical formula is one suggested by
Garrettz, siﬁce it requires a minimum number of constants to be carried
during the calculation.‘ We write the formula for the biserial correlation

coefficient as follows:

where Mp = the mean of the continuous variable for the larger proportion of

scores, regardless of whether this group represents 0 or 1 scores.

Mt = the mean of the total group on the continuous variable.

v, = the standard deviation of the total group on the continuous variable.
p = the proportion of the group having the largest number of entries.
y = the ordinate of the normal curve corresponding to p.

Of all the required components, a priori knowledge is needed only of M, and
T since all other components, with the exception of y, will be obtained
during the computation. The values of y, for a sufficient range of p's, were
obtained from a conventional table of the normal curve. These values were then
punched on a special deck of cards, described below. Values for Mt and o ¢
may be computed by a number of machine routines. We used a convenient procedure
to obtain these values on the 604, which Lunneborg, Wrighf, and Ax recently
reported. >
PREPARATION OF PUNCHED CARDS
Any set of detail cards containing scores for the continuous and dichotomous

variables may be utilized, but a standard format will be given to correspond to
the wiring diagrams shown in this paper.

Columns 1 to 4 are assigned the subject identification code. Column 6
receives an X punch, which identifies the card as a detail card and impulses
the programs steps required for this card. The continuous scores are punched

in columns 8, 9, and 10. In our design, three-digit scores are used for the

17

18

continuous variable; two-digit scores would have to be punched in the form xx0
to conform to this layout. A zero or one is punched for each dichotomized
variable, one column per variable, beginning with column 37. Where scores
may have more than two categories, numerical scores are punched; and after
a decision has been made as to where to dichotomize, allowance can be made
in the punch panel wiring.

Four types of function cards are required. The first is a card which
precedes the deck during calculation and clears the storage units. This card
receives an X punch in column 78.

The second function card reads in the required constants and impulses part
of the computation. This card receives the reciprocal of the total number of
cases (1/N) in columns 1 to 5. The mean for the total number of cases Mt is
punched in columns 8 to 11, and the standard deviation for the total group
v, is assigned to columns 12 to 15. Both mean and standard deviation are
taken to two decimal places, while the reciprocal is taken to five decimals. An
X is placed in column 79 to impulse the program steps wired to occur when
this card passes through the calculator.

Next we prepare the card which receives the final result. It requires a 12
punch in column 77. (A 12 rather than an X punch must be used to permit
immediate transfer to avoid normal punch suppression. See diagrams.)

This card is also prepunched with the variable identification number to ensure

easier recording of the results.

Finally we prepare the table look-up deck of 40 cards, each of which
receives an X punch in column 76. Each of the X76 cards further receives
a numerical identification in columns 1 and 2. The values for p are punched
in columns 21 and 22, and the corresponding values for y (staggered one card
to permit delayed pickup) are punched to three decimals in columns 23 to 25.
Table 1 gives the required values for punching this deck, which covers splits
from 50-50 to 90-10. This should be adequate for most empirically derived
distributions.

COMPUTATIONAL PROCEDURE

In developing the present procedure, advantage was taken of the limited
decision-making capacity of the 604 and also of the possible use of this machine
as a miniature card-programmed calculator. Table 2 lists all the steps required
in the computation. These will be summarized in the following paragraphs.

The cards are arranged in the following sequence: X78, detail cards
(X6), X79, table look-up deck (X76), 12-77. When the X78 card is read, the
storage units are cleared; but no calculation is otherwise permitted to occur
on this card.

As the first X6 (detail) card is read, a 1 is emitted into the counter. The
dichotomized score is read through a digit selector and, depending upon
whether the score is zero or unity, the 1 in the counter is assigned to different
storage compartments. Depending upon this information also, the numerical

score is read into different storage compartments. Both the count as well as

19

TABLE 1

Values of p = y Punched for the Table-Look-Up Operation on the 6042

Column 1-2 21-22 23-25
1 52 399
2 53 398
3 54 398
4 55 397
5 56 396
6 57 394
7 58 393
8 59 391
9 60 389

10 61 386
11 62 384
12 63 381
13 64 378
14 65 374
15 66 370
16 67 366
17 68 362
18 69 . 358
19 70 353
20 71 348
21 72 342
22 73 337
23 74 331
24 75 324
25 76 318
26 77 311
27 : 78 304
28 79 296
29 80 288
30 81 280
31 82 271
32 83 262
33 84 253
34 85 243
35 86 233
36 87 223
37 88 212
38 89 200
39 90 188
40 91 176

a ‘
Staggered to permit delayed pickup

TABLE 2

Program Chart for the Biserial Correlation Computing Procedure

Card| Prog. Units
No. |Step Read Out Read In Function Into Out of Suppression
6 |Read Mult Quot
79 Read Mult Quot,
FS2, FS4
76 {Read FS1, GS2
78 1 Counter FS1, FS3 Positive NX78
78 |2 Counter GS1-2, GS3-4| Positive NX78
6 |3 Counter Emit 1 Positive NX6
6 |4 FSI or FS3? Counter Positive NX6
6 |5 & Reset Counter FS1 or Fs32 NX6
6 |6 Mult Quot Counter Positive NX6
6 |7 GS1-2 or GS3-42 Counter Positive NX6
6 |8 Counter GS1-2 or GS3-42 NX6
79 |9 FS1 Counter Positive NX79
79 10 FS3 Counter Minus, Balance NX79
test for step
suppression
79 11 & Reset Counter NX79
79 12 FS1 Multiply Positive NX79 &
minus
79 |13 FS3 Multiply Positive NX79 &
plus
79 14 1/2 adjust 3 NX79
79 |15 FS1 FS3 ’ NX79 &
minus
79 16 & Reset Counter FS1 4 NX79
79 17 GS1-2 Counter Positive 3 NX79 &
minus
79 18 GS3-4 Counter Positive 3 NX79 &
plus
79 19 FS3) Divide NX79
79 20 & Reset Counter NX79
79 21 Mult Quot Counter Positive NX79
79 |22 FS2 Counter Negative NX79
79 (23 1/2 Adjust NX79
79 24 & Reset Counter GS1-2 Positive 2 NX79
79 25 GS1-2 Counter Positive 5 NX79
79 |26 FS4 Divide NX79
79 27 & Reset Counter NX79
79 |28 Mult Quot GS3-4 NX79
79 29 FS1 FS3 NX79
79 |30 GS3-4 Counter Negative NX79 &
minus
79 |31 & Reset Counter GS3-4 NX79 &
minus
76 |32 FS3 Counter Positive NX76
76 |33 FS1 Counter Negative NX76
76 |34 Zero Check NX76
76 |35 Gs2 FS4 NX76P
76 |36 & Reset Counter NX76
77 37 FS3 Counter Positive 5 NX77
77 |38 FS4 Divide NX77
77 139 & Reset Counter ~NX77
77 |40 GS4 Multiply Positive NX77
77 41 1/2 Adjust 2 : NX77
77 |42 & Reset Counter GS3-4 3 NX77
77 43 GS3-4 Counter Positive NX77
77 Punch | & Reset Counter

3The dichotomized score read in through a digit selector determines the position of calculator
selector 1. If a zero or low-order digit is read, FS1 and GS1-2 are used; if a unity or high-order
digit is read, FS3 and GS3-4 are used (see text).

bStep 35 is suppressed also whenever a zero check impulse transfers calculator selector 2,
through which this program is wired.

21

the numerical score is then added to the totals accumulating in the correct
storage units.‘ This selection is performed by impulsing calculator selector 1
to transfer whenever a zero is read. If categorical scores have been punched in
the detail card, it is necessary only to wire the digits which are to be considered
zero through bus hubs to the calculator selector pickup to achieve the same
result as if a zero had actually been punched in the card.

The X79 reads in the information on Mt’ " and 1/N, as well as impulsing
a number of logical and arithmetical steps. The total counts for zero and unity
entries are compared. The larger count is then divided by its N to obtain
Mp, from which Mt is next subtracted. The remainder is then divided by
o, and stored. Depending on the outcome of the balance test, an adjustment
is made to give this remainder the correct sign.

On each X76 card the p entry stored in the calculator is compared with
the one read from the individual X76 cal;d. A zero check impulse is emitted
whenever the two do not compare, thus transferring calculator selector 2
to inhibit reading in the y value. At the time when the two amounts do agree,
the corresponding y value is permitted to read into calculator storage from
the X76 card. Since the zero check impulse is emitted one cycle later, the y
entries are staggered by one card on the table look-up deck.

The X77 card permits completion of the calculation. p is divided by y

and the result is multiplied by the stored product of the first part of the

equation which was computed while the X79 card passed through the calculator.

The result punches on this card in columns 71 to 74, the coefficient being
punched to four decimals.

Figure 1 shows the punch panel wiring for this operation. It should be noted
that all wiring is permanent except for the wire from the common hub of pilot
selector 2. This wire is moved after each run if more than one dichotomous

score is punched on the detail cards, as will ordinarily be the case. Figure 2

gives the calculator panel wiring, except for the necessary program suppressions.

These are shown separately in figure 3 for greater clarity.

The time required to compute one coefficient is determined by the number
of detail cards (N) plus the required 43 function cards. It can be determined by
the equation

Machine time for one T N ;)043 ' minutes
Because three-digit storage units are used to record the unit count, the upper
limit for N is equal to p = 999 or, in general, to approximately 1200 cases,
depending upon the extremity of the splits. The method will prove most useful
where there are at least several hundred subjects and where there are few
continuous and many dichotomous variables.
COMPUTATIONAL EXAMPLE

As already mentioned, the above method was developed for a study of self-
concepts of communication skills. As a simple illustration we shall take the

scores for six subjects on the communication scale and the dichotomized score

on "number of siblings." The communication scale required the subject to

23

UOTIB[21X0D) [B1I3SIg X0] Taued youngd °T 2anSrg

(o) [+] o [o] (o] (o] o [o] o o o] o o e} [} o] o] o o] o HH
NO NO
29
SIHILIMS NWN10D v_z<..¢
_ 0O 0 0o OO OO O O 0 0 © _ #
- ._._xm z;:._._OU bLAALE :uz:a :»:On
_ o 0 o o0 o o o o o 33
>E.zm ZZBOU ANViE ¥ xuz:m w::Oo
[=] o o] [+ [e] o] (o] [+] (o] [} [[} o (o) (o) aa
. ¢ ot o S31GVIYVA LN3IN3dIQ Y04 G3AOW S3YIM ---------
o 0 0 0o 0O O O OO O O O O 0O 6 0 6 0 0 © 2
09 ss 0s sr S3YIM LNINVNE3d
o o o o o Q o (o] (o] o (o] (o] (o] (o] (=] [« o] o (=] "
or € [[11
O 0 0o 0O 0O OO O O 0O OO O 0O 0 0O 0 0 0 © vy
-0 st ONIQY3¥ ANODJ3S § Hv Hn H« H—
O 0 0 0O Oy0 0O 0O O 0,0 0 0O O Oj0 © O O © z
] 2 110-AvY3Y¥ 19VIOLS 1VYINIO
o o o o ojo o o o o|lo o o o o|lo o o o o H H H o A
N [] L 9 S N y ¢ [z [t
o o o o olo o o o o|lo o o o o0flo o o o0 © p ONIQV3Y 1Syld E X
L1 S¥OL12313S HONNJ 1 NI"QY3¥ 19Y¥01S TV¥INIS 9 9L /.2 8L 6L 1iX3 X-0
O 0 0 0O 0O 0O 0O OO O 6 0 0 6 0 6 0 0 0 © 9 ¢ ¢ ¢ ¢ ¢ O O O O O O|M
LB 114 0Z 13 bl
O 0 0 0O O OO OO O OO 0O O o 0 0 0 0 © 4 O O 0 0 0 © O ©0 O O ofaA
4] 11 [sr 60
o O 0 0 0 0O 0o OO 0O O O 0 0 0 0.0 o o—eué o oso o o oln
or st ot 114 1y _.Z NWN102 el
o o O 0 0 0O 0O O 00O 0O O 6O 0 0 0 0 © *—0—0—0 o£0;0 Ol10y1
-0z st ONIHONNd S ¥y Yi10— e 98(1E ¥9 98
! olro o 0o o 0o 0o o 0 0 © | [F'o'o.lo o—o0 | o—o—o | s
11X3 ¥3INNOD y Hn 3 0¥ Y1) INIWNOISEY 319V30L1S TVY¥INID
= 2 _lo.l.onlol.ol_ ¥
NI GY3¥ 19VY0ILS ¥OLOVi—F—1d 1D dW
J]o:o o oro oloto octo0|Oo10 O OO O0]lO0:0 _o_ }O——O0~—0—10-1 o
((L— L—1i1%3 3D9Y¥OLS 1V¥INID L _ 531040 Q¥Y>
o o (o] o o o o TTTI FOmmem O——O—1-0 otgo o] ol 0 d
b —I _ b} > e 98| 1 v9 99
o o o ojo|lo e—b—e o0]o]o 0o 0o of|e—d—e o o o 0 o—o}|o—o—0o{o
N 14 1| 4 L THEWNOTSSY 19VIHOLS ¥010V4
e 7o ° olJojo o o o TTWHW o—o0 o—ojjo o o _ o—o o|o|o|0||o._ N
—l= SY01P3I13S HPNNJ 1= ¢ 6 ..:._ 1——8-S¥01353735 YOLV[INSTY O 1NO-MO1i¥3A0 QOYd-NI
o—o o—0 n/y n/ 4Xo 0—0—0 | 0—0—0 _:
8] F—o0—aVY3i¥ ANZ——s J48da
o—o o0—o || o—o—o 1
1dS 109 01 £ ¢ ¥ Y . -2 I—6——S30423135 HINNd—1 .llolxuz_: ._Ix:u ogl_
_w“o\o\o\o\o_m o o o_meﬂ._o_m“o 010 |[o—0O | Oo—of|]0c 0o 0o o ojo o Jo o o._l O—0—0—o0 | ¥
NYLN3 39VHEOLS NYAINIO L s 1 1 9 |ro 11X} s ONITdNOd—1 cmnolon:_ hw.l.oa 90¥d NIINN
o \ \KKO o ofo ofo o o ofo o o o ollo—o> y0—ol|o20o o o o|o o |o ©20|] or ot oz o1 r
o8 L [\ s9 s 3 3 ¢ L1X3 914D
o o o o o o olo o|lo oloe o o olo o o o o|lo—o o—o|| oNo o o o]Jo o o oNojjo o050 o [
09 sS 0s 14 y 1 1,
o o o @ o o o|o o|lo ojo o o0 o oL)||o—o 3 1o—9o|[oto o o olo o o otof]jo oNo o H
or ' st oc e S S ¢ o1 < L
o o o 4 o -©- o p o—e—g—e—o||fo—o0, 100|020 0o o o o o |o e>3elo olo o o
2 T r e L L RS P e . N R Iy 0 | Rt oo Y I S S
: o—o0 o0—0 N o o o |o oz 0 020 o 4
2Abing 1000 11w 1dS 109 9 9, ¢
N/1 40 X ' o—o | lo—elolo o o o o o |o dllo|lo oNo o 3
o a a o |[fo s 1
o—o o—o|loc o o o o o o |o e ,0 olo o a
" 1 nd m»<_nm2¢<_||—l._wm Y8 OIN-
o—o o—o|lo o o o o o o o o o0 | o0—o—0o—0 by
u u nd a
2 X FLPELEPFRL S |2z,
d L—> o—J o |6 I8 ¢ o s Ir ¢ |t |v 10N
0;0—ero+€ O|0!0 0£O0]O! o_mUOE_olollol o—0—0—0 | &—0—0—o0 | 0—o0 | v
AY¥LIN3I 39VYO1S 401DV4 S3SINdWI L1910 X S¥013313S 1014 X sng dns HOd 21vd

oy Iy Iy Or 68 86 LE 98 SE€ PE E€ IE 1€ Of & 8 L& 9T ST

rz €z P Z iz oz &t 81

Za 9t stortogtoouott

14 s ’ 4 t

1INVd HONNJ

CALCULATOR PANEL

AA

88

CC|

oD

EE

FF

1 2 3 4 5 6 7 8
—1—PROGRAM—26
oje e e|loi1e e o
suPl 2 supl 27
o:o °o o o:o o o
3, 3 28) 28
o:o e e|O|le e O
a4 290 29
ole e o ole e o
s os 30, 30
cle @@ ojlole e ©
6, 31: 3 (03
‘o1e e oflo,e e o
70 7 32 32
o:o e ojole e o
sl s 13) B
O, @ o|lole o0 O
91 9 34: 34
ocle e oflo,e n o
10 10 3st 35
cle e e|o,e e o
nion 361 36
oie o o|ole o o©
12: 12 37 3
c|e e © o:o e ©
131 1 381 38
o, e o|ole e o
il ou 39, 39
o:o e olole o o
15, 15 w0l w0
o|le @ olole e o
161 16 41: “ 4
o:o o e|lOo|@® o ©
17w 42: 42
cle o e|lo.,e e @
le: 18 a3l
oje e efoje e o
19, W 44: 44
ocje e ojojo o o
201 20 45t 45
o!'e o o|lolo o o
21: 2 46 46
o|e e 0| 030 o ©
22 22 471 47
ole e o:o o o
23! » 48; 48
o{o o ojolc o o
24| 24 49] 49
ole e e| 010 0 O
25 25 so! 50
ole e o|loio o o

~BAL.TEST FOR SELPU—"
o1o203040

S

_IEBAL .TEST FOR STEP SUP—F——

SUPPRESS ON PLUS BAL.
SUPPRESS ON MINUS BAL.
—SUPPRESS WITHOUT BAL.TESTA

EMITTER CONTROL

EEEEELE

BUS BUS

GG

HH

oO—O0—0—0 o0—O0—0—0

o—0—0—0 o0—O0—0—0

9 10 11 12 13 14 15 16 17 18 19 20 2 22
FACTOR STOR READ IN—T—BUS — CALC.SEL-
| | ¢i6 e]e O elIe
Al 2.4 X Fgl 1 .Gél'Z
7 15 ¢CS2N m‘FS32m o g
CSI 574 GS 3-4
ece o Becel
—FACTOR STOR READ OUT—
9 22 oTO0 0 oOoTO
FS4in2GS 2 out
ON® @ ONO
13
l29 35 35 35
oCce e o0CO
—GENERAL Slfgk READ IN—-
2 3l oTo o oToO
3
ONO © ONO
0oCo o oco
—GENERAI. STOR READ OUT—
l8 oTo o oTO
4
ONO o ONO
43
oCco o ocCo
——MULT. QUOT. N
oTo O OTO
READ IN READ OUT 5
t::z:: ONO O ONO
CQUNJER,CONTR
E Tfff —
3. N READ IN —
132Réé " ih /7 oTo o oToO
24 20 16 Il 1 6
ONO ©0 ONo
REA S READ OUT
Ré) 97 oCco o oco
————FU T‘ N|§ONTROL
oTo o ofToO
MULTIPLY + MULTIPLY — 7
ONO o0 ONO
s
38 26 19 oCo ©o ocCo
DIVIDE
34J oTo o o7ToO
8
4] 23 14 ONO O ONO
14 ADJUST iZERO CHECK
oCo o ocCo
f~—————READ ITS INTO PROGRAM—
H H’ 14 20610 o0 o
i l | D [sup} 52
37 I8 olo o o
READ UNITS OUT OF——— 53 : s3
16 42 2d0 10 o O
6TH S5TH 4TH 3RD 2ND | 54| 54
o : o o o
For N exceeding 100 the tollowing z)sl osso °
modifications should be made: 6 | 56
I
o100 o o©
Program 17 Read into 3rd instead 4,1 o,
Of 4th le) : le) fe) [o)
91 " 18 Read into 3rd instead s8] 58
of 4th o : o o o
" 22 Remove wire to Read s9; 59
into 2nd o : o o o
" 25 Read into Sth instead 60 60
of 4th o |0 [e] [e]

Figure 2. Calculator Panel for Biserial Correlation

CAL

CULATOR PANEL

9 10 11 12 13 14
—FACTOR STOR READ IN—

1 2 3 4

~FACTOR STOR READ OUT—

—GENERAL STOR READ IN-—

1 2 3 4
—GENERAL STOR READ OUT—]]
1 2 3 4

15
——BUS—

———MULT. QUOT. CONTROL

i READ IN I READ OUT

—————COUNTER CONTROL

i READ IN + I READ IN —

F———FUNCTION CON

iREAD OUT & RESET l READ OUT

TROL

i MULTIPLY + | iMULTIPlY -

i DIVIDE I

©
o—0

-
1 2 3 4 5 6 7 8
7—1—PROGRAM—26———
A 10 0o o 1o o o
CSTN sim 2 sypl 27
) :o o o { o o o
| —3 8) 28
c 4) o o o lo o o
\. 1| 4 ol 29
p| :o o o : o o o
H] 30, 30
El ¢1lo o o lo o o
: 6 CS3C-—{|= 3
Fl ¢1l10 o o jo o o
1 32, 2
G :o o o lo o o
1| s T
H ilo o ol¢dto o o
9 1) 9 : 34
1 il o o o o o
10 3 35
J Illo o o o o o
: n 36
[¢ 1o o o o o o
n: n 37
(T O {0 o [o] o o
CSS(: 131 13 38
—o llo o o °o o
141 14 39
N e-fo o o o o
L 15y 15 40
of—o Ilo o o o o
CS3Q 161 1 KL
e e o o 1 o o
171 : 42
ol oo o o . o o
|a= 18 R
\M—0 o o o 1 o o
19,1 1 u: 44
s jfo o oJo,0 o o
01| 20 45) 45
T lb o ojolo o o
o 46: 46
u Jo o o|lo;0 o o
2] 22 471 47
v lo o ofo : o o o
UPPER LY 48; 48
BUS |w =o o o|o : c o o
] 24 49, 49
X lo o ojo1o o o
st o5 sol so
Y to o o{oi10 o o©
LBAL.TEST FOR SEL.PU—
7zl oto?03%04%0
——BAL.TEST FOR STEP SUP—p———
A o—o—0o—0—0—0—o0——0
CS3S|UPPRESS ON PLUS BAL.
B8
csjYPPRESS ON MINUS BAL.
cc| e—o—o0—0—0—0—0—0
|—SUPPRESS WITHOUT BAL.TESTH
oo| o—0—0—O0O—O0—0—0—0
EMITTER CONTROL
EE
IEPEEEEE!
F
BUS 8US
66 o0—0—0—0 0—0—0—0
HH O0—O0—0—0 O—0—0—0

————READ UNITS INTO

ford Jo foo Jwe

READ UNITS OUT OF —

for Jro Jos e e

i 14 ADJUST | !ZERO CHECK

6 17 18 19 20 21 22
CALC.SEL-
oTo © oTo
1.
ONO ©O ONO
oCo O ocCo
oTo o O0TO
2
ONO © ONO
oCo o ocCo
1 oSUE ONHSYRON-
SWBT SWBT
o ® ON®
S13,18 S12,15,1
o @ OC%‘S%"I
SWBT
oTo o oOoTO
4 J
ONO @ ONO
$34,5678
oCo e ocCo
4 SWBT
otTo Jo ofTo
s
ONO ONO
$32,33,34,35,36
0oCo ¢ ocCo
SWBT
oTo o oOTo
6
oNo & ONo
S 37,38,39,40,41,42,83
oCo ¢ ocCo
SWBT
oTo o oTO
ONos’ol»ZONo
ocCo ocCo
2 SWET
oTo o oTo
8
ONO O ONO
oCo o ocCo
PROGRAM—
o110 o ©
sup| 52
ojo 0 ©
53: 53
o0 0 ©
sS4 54
olo o o
ss: 55
©0,0 o o
56, 56
010 0 ©
57: 57
0,0 0o o
58l 58
o:o o o
591 59
olo o o
50: 60
o0 o o]

Figure 3. Program Suppression for Biserial Correlation

appraise his performance as a communicator in a wide variety of situations.
A scoring scheme was employed so that total scores on the scale reflected
the extent to which a subject felt his over-all performance was high or low.
Table 3 gives the information for these subjects punched into the detail cards
and the X79 card.

TABLE 3

Detail Cards for the Computational Example

Subject Communication No. of
Identif. Score Siblings

Column 1-4 8-10 37
0001 075 1
0002 085 1
0003 110 1
0004 080 1
0005 090 2
0006 125 3

X =94.17

o =17.65

1/N = .16667

The categorical variable (number of siblings) was dichotomized into subjects
with one sibling and subjects with more than one sibling. Since a punch of 1 in
the dichotomized variable column was the low-order digit, the 1 on the digit
emitter was wired instead of zero. In all other respects the panels remained
as described. The following paragraphs describe in detail the program steps
of the required computations.

Only program steps 3 through 8 are permitted to operate on the detail

cards. On program 3, a 1 is emitted into the counter. Since a low-order digit

27

28

is read on card 0001, the 1 in the counter is transferred to FS1 on program 5.
(Nothing is added to the counter on program 4, since FS1 has been cleared by
the X78 card preceding the first detail card.) Similarly, the continuous score
(75) is transferred on program 8 to GS1-2. On the second detail card (since
again a low-order digit is read), program 4 adds the stored count of 1 to the
counter and program 5 returns the augmented count of 2 to FS1. Similarly,
program 7 adds the accumulated sum of the continuous scores to the one read
in on card 0002 and program 8 returns the augmented sum to storage. The same
process is repeated for cards 0003 and 0004, as both have low-order digits on
the dichotomized variable. A high-order digit is read on card 0005, and therefore
no impulse is available to transfer calculator selector 1. As a result, the unit
count is stored in FS3 instead of FS1, and the sum of continuous scores is
accumulated in GS3-4 instead of GS1-2. The information from card 0006 is treated
in the same manner.

Table 4 gives the values which appear in the storage units and counter
after completion of each program step, beginning with step 8. These program
steps will be discussed in detail below.

The X79 card has the values given in table 3. Of these, Mt is stored in
FS2, o ¢ in FS4, and 1/N in MQ.

On program 9 the sum of the low-order digit count enters into the counter
from FS1. On program 10 the sum of the high-order digit count enters

negatively from FS3 and a program test for balance suppression is performed.

TABLE 4

Computational Example

Step Factor Storage MQ Counter General Storage
1 2 3 4 2 3 4
Computations During the X79 Card

8 4 2 4 350 215

9 94.17 17.65 .16667 4
10 2
11 0
12 .66668
13
14 .67168
15 4
16 67 0
17 350000
18
19 87.500 0
20
21 87.500
22 -6.670
23 -6.675
24 0 -6.67
25 -6.67000
26 -.376 Rem.
27 0
28
29 67 -.376
30 .376
31 0 .376

Computations During the 17th X76 Card
32 68 67 .362
33 -.01
34 -.02
35 .362
36 0
Computations During the 77 Card

37 91 .670000 .176
38 1.851 ‘Rem.
39 0
40 .696776
41 696826
42 0 .6968
43 .6968

All values are shown when they first enter the counter or storage units, remaining
there until a change is indicated.

29

30

The result of this test determines which of several alternate program steps
will be suppress’ed (see table 2). In our example, a plus balance results
and program levels 13 and 18 are suppressed. Program 11 clears the counter;
and on 12 the count for the larger sub-group is multiplied by the reciprocal of
the total number of cases to yield p, the proportion of the larger group. This
result is rounded off on program 14 and, on program 16, stored in FS2 to
two decimal places. Program 15 serves to shift the N for the larger sub-group
from FSI1 to FS3 and is required to make available additional storage facilities.
On program 17 the sum of the continuous scores for p is read into the counter
and is divided, on program 19. by the N for this group to yield' the mean for
the continuous scores for the larger sub-group. After the result has been
transferred back into the co;mter, Mt is subtracted by negative entry from
FS2. The result of this operation is rounded off in the last place and then stored
to two decimal places in GS1-2. On program 26 it is read out again into the
counter and divided by « . The quotient is stored in GS3-4; but its sign is
reversed on programs 30 and 31, since the low-order digit group is the larger,
to assure that the final coefficient will have the correct sign. The program levels
passed over in the description serve to clear and shift the required storage
units.

The next step in the calculation consists of reading in the corresponding
value of y for the value of p which has been computed while the X79 card

passed through the calculator. The deck of X76 cards constitutes the table

required for this purpose. Successive trial values of p are read from the X76
cards and are compared with the computed value of p stored in ‘the calculator.
Whenever the two values balance, the corresponding value for y is stored in
the calculator. On step 32 the computed value of p is read into the counter from
FS3. Then on 33 the read-in trial value is subtracted. On 34 a zero check

test 1s performed.

We found the value of p for our example to be .67. Therefore, no changes
occur in the calculator until card # 16 of the X76 deck passes. No zefo check
impulse is emitted because observed and trial values agree; and on the next
card the y value is entered into FS4, since step 35 is permitted to be active.
Table 4 shows the values found after calculation is complete on X76 #17.

Since a zero check impulse will be emitted on all subsequem X76 cards,

no further changes occur until the 77 card enters the calculator and impulses
the remaining computations. On step 37 p is read into the counter into fifth
place and is divided by y on step 38. After resetting the counter this result
is multiplied on step 40 by the product of the preceding calculations stored in
GS3-4. This final product is then rounded in the second position on step 41.
The last two steps reduce the coefficient to four decimals, which are punched on
the 77 card to give the biserial correlation coefficient of .6968 for our example.
SUMMARY

This paper describes a method for computing biserial correlation coefficients

on the 604 Electronic Calculating Punch in a single-step procedure, provided

31

32

the mean and standard deviation for the total sample are known for the continuous
score. The method is also adaptable to the case where categorical scores must
first be dichotomized before biserial r can be computed. A computational

example as well as all required wiring diagrams and program charts are given.
REFERENCES

1. L. Crowell, A. Katcher,and S. F. Miyamoto, "Self-Concepts of Communication

Skills and Performance in Small Group Decisions, " Speech Monographs,

22 (1955), pp. 20-27.

2. H. E. Garrett, Statistics in Psychology and Education (New York: Longmans,

Green & Co., 1946)

3. IBM Type 604 Electronic Calculating Punch Manual of Operation
(sevénfh revision).

4. W. Johnson, "A Simplified Method for Machine Calculation of the Components
Used in the Formulas for Biserial and Point Biserial Correlation Coefficients, "
Report # 001 058.25.02, U. S. Naval School of Aviatien Medicine, Pensacola,
Florida (1953).

5. C. E. Lunneborg, C. E. Wright, and A. F. Ax, "A Set of Statistical Boards
for the 604 Electronic Calculating Punch, ' Mimeographed Report, University

of Washington School of Medicine (1955).

A METHOD FOR THE PACKAGED PROCESSING OF A STATISTICAL
ANALYSIS ON THE IBM 650

Leon H. Somerall and Nicholas A. Habibe

Air Weather Service
Asheville, North Carolina

The primary purpose of this paper is the presentation of a logical
program design for the "one package" processing or continuous solution of
a standard statistical problem on the IBM 650 Magnetic Drum Data
Processing Machine.

The one package concept embodies all the functions (except the pre-
liminary sorting or assembly and the printing of the output) formerly attained
through "step" or discontinuous procedures requiring the use of diverse IBM
equipment such as sorters, summary punches, collators, accounting machines,
and/or calculating equipment such as calculating punches, card-programmed
calculators. Proper program logic enables the 650 to simulate functions
featured in component-type punched-card equipment.

The standard statistical pfoblem to be discussed consists basically of
two parts: (1) performance of a bivariate frequency distribution by a table
look-up method and (2) evaluation of some statistics pertaining to the distribution.

The printed result, figure 1, shows two families of imposed class
intervals X, Y, within which the single-valued variables or observations x, y
will fall uniquely and respectively, and the family of groups Z, called the
parameter of the distribution. Each member of the family Z contains all the
members of X and Y.

Part 1 seeks to build, by groups of data, a drum table of frequencies
which will reflect the fitting of each x, eachy, and the pair (x, y) into the
appropriate class interval member Xi’ Yj’ and (Xi’ Y}), respectively, to add

a count each in the three drum cells containing the corresponding frequencies.

a ;
The terminology and notation at the end of the paper will be found helpful . 33

1 2
I fon
f121 fom
fin1 fonl
n n
f =% f f. = T f.
11 j=1 11 21 j=1 2j1
f12 fo12
f192 f992
fin2 fon2
n n
0z =
ha=) T2 [f22= i) feje
fip fo1p
fap fo2p
flnp f2np
n n
== . = Z
fip= %) Tup |f2p=,2 faip

Figure 1

¥

A count is also added into a cell reserved to keep track of how many valid
observations have been processed. Thus, the table will furnish a running
record of how many x's, how many y's, and how many (x,y)'s fall respectively
in each class Xi for all values of Y, in each class Yj for all values of X, and
in each pair (Xi, Yj) . The members of X and Y may be in random sequence
and not necessarily equi-spaced. If the class intervals are equi-spaced and
continuous, the distribution will not necessarily require table look-up.

Each group Zk in the printed output, figure 1, represents a corresponding
group Z, of input cards, shown in figure 2 arranged in groups Z 1’ 22, ce e Zp.
Prior to processing in the 650, the cards are assembled in groups of the
parameter Z by means of a sorting operation. Each card contains three fields:
group Z, to which the card belongs, the observation x, and the observation y.

Part 2 is concerned with the determination of means, standard deviations,
and correlation coefficients. Of course, any other statistics may be included

by appropriate programming.

The printed output, a modified replica of the drum table, is obtained by

processing in the IBM 407 Accounting Machine the punched output of the IBM 650.

The headings Xl’ X, ..., X, in figure 1 are not present in the drum table,

9’
figure 4. They are printed by 407 control panel wiring. The drum area
assigned to the»table of frequencies and statistics must contain (m+3) (n+1)
cells to house the frequencies, the identification, and the statistics. On the
printed output, X runs horizontally and Y runs vertically. On the drum table,
however, the X and Y directions are interchanged to facilitate 650 punching
and 407 printing of the output one line per card.

The program design is based on the general scheme of effecting the

following data analysis on each valid card of any group Zj:

35

(a) Validity check on x,y
(b) Relating each member Xi of X to the family Y by means of the

f , £

frequency fik’ which is the sum of the frequencies f ok *t fink

n ik
in any one class X, for all values of Y: f, = Z f
i k327 ik’

(c) Relating each member Y]. of Y to the family X by means of the frequency

8k’ which is the sum of the frequencies fljkr,rl f2jk’ cees fmj i in
any one class Y, for all values of X: = £f ..
Y J gjk i ; 1 ijk

(d) Relating each member Xi of X to each member Yj of Y by means of
the freqﬁency fijk of the simultaneous pair (Xi, Yj) .
Each pair (x, y) is considered valid if x and y comply with some
imposed conditions of restraint. An invalid card is disregarded.

The freguencies or counts fi 8igr and fijk are properly recorded

k' ©j
on the drum table as a result of an interesting table look-up technique
to be explained below. Thus, table look-up is the principal data
processing link between the information contained in the input cards
and the corresponding counts to be recorded in the drum table of
frequencies.
(e) Progressive recording of Y x, 3y, EXZ, Zyz,ny, N for the evaluation,
by groups, of the mean ()?k) of all X's, the mean (Vk) of all y's, the
standard deviation (o Xk) of all x's, the standard deviation (o yk) of
all y's, and the correlation coefficient r, between all the x's and all

k
the y's in each group.

Figure 2. Batch or Deck-Sorted or Assembled in Groups Zl’ Zz, ce s Zp

PROGRAM LOGIC

An overall procedure for the logical processing of data is shown in the
block diagram of figure 3, which conforms to the block diagramming conventions
outlined in the manual "IBM 650 Problem-Planning Aids." It is generally
applicable in situations where it is desired to cause the production of a set of
outputs whenever a difference exists between the Z value of two adj'acent cards.
This output will provide the result of the analysis of a Z group.

The following discussion ties in the block diagram, figure 3, and the
drum display, figure 4.
BLLOCKS

01. Early during the conception of the flow chart, a distinct fact is
recognized: separate reading instructions must be provided for the first card

only; the reading of any other card but the first must be accomplished with a

37

38

different set of instrﬁctions, as provided by block 05. Exclusive reading
instructions for the first cards is dictated by (a) the uniqueness of the position
of this card in the deck, (b) the necessity of clearing (block 02) the drum area
assigned to the table of frequencies before the data analysis is to begin, and
(c) the prevention of an output routine at the start of the data process. An
instruction in block 01 reads the first caid of the first group onto the drum,
i. e., the observations x, y and the identification Z enter the read input
area where the Z is then called Zr.

02. Storage clearing is a prerequisjte before the analysis of each group
Zk starts. Instructions in this block clear to zero all the memory locations
assigned to cumulative data (frequencies or counts and other summations). It
is generally faster to clear storage during the output routine. If the amount
of time devoted fo output computations of statistics in block 07 is less than
the time available for maximum punch output rate, then storage clearing can be
incorporated in the output routine to take advantage of the remaining available
time. In this case, block 02 is operative for the first card of the first group
only instead of the first card of each group. In other words, when storage
clearing takes place at output time, block 02 is still operative for the very
first cafd because there is no convenient way of divorcing storage clear in
the output routine to have it apply to the very first card.

03. This set of instruétions stores the first Zr’ i.e., the Z of the first
card read in each group, in another location L(Zs) where it is renamed ZS .
The purpose of the transfer is two-fold: (1) to compare the Z of the first
card of every group with the Z's of subsequent cards in order to detect a
change in Z or transition to a new group, and (2) to identify the output. The

use of the punch output area for the storage of ZS permits most conveniently

Q1 Block
Read

1st Card

4

02
Clear Storage
Used as <
Accumulator
\ 4
03
Store
Identification == e - ceccaccecaccs=-q
Z, os Zg
v
04
Data
Analysis
05

Read Any Card
but First

z Zr;‘ézs

J

Qutput
Routine ’

o7

Figure 3. Block Diagram

39

Aerdstg wnxq °p 2anSig

(spasy Buuowsy ur suoyonysuT)

% /4
paJy Kousnbaiq jo a|qoL
(
A B T YT
Y N O XY WY
WMz, “
Ahy sjuawnbay
qoL
—>mN o ®o ojo o o oo o |oe o |0 e [oeoe
A A
N xmu v_:nw eo o anw HiE, £y , -o%,_,o .u%_“o
DaJy «_Nw x:mw e e xwmm x._.Nu NX 1 '
4ndinQ 3, | qur Ner |3ty | % A X
4oung) | M oo o A2Y PATH Ty
"z Wiz oo oWz W2
¢ paly jndu| poay
N | A3 A posy 4uap|
~>w A1 eeol|oce mv_é £ biy usmgo
X3 | x3x (024 salisuois Jeuio f NGL N}c/ «v; X Bly UIAID
VP ol B\ 0000
/ DaJy SIUDISU0D :n_._.w
X N\
N AN

40

—_

the performance of the two-fold function of Zs.

04. In this particular problem, data analysis represents the following
collection of operations applied to each card: (a) validity check, (b) progressive
recording of cumulative frequencies by a table look-up method, (c) progressive
recording of summations for the evaluation of statistics. Other operations,
based on the individual values of the read elements, could be performed during
this data analysis phase.

A validity check, a test to determine if the read variables x, y fulfill
certain criteria or conditions of restraint, precedes data analysis. When the
imposed conditions are not met, the card is disregarded and the program
logic proceeds to read another card.

Progressive recording of cumulative frequencies for any valid card is
accomplished through the following routine: (a) at the beginning of each group
the drum area assigned to cumulative data is cleared to zero,as explained
above; (b) a table look-up operation selects the appropriate terminal value
(Xp); of the class interval X; in which the read x belongs, to yield the address
L(f;)) of f;1» that is, one of the m locations assigned for the accumulation of
the frequencies in the class Xi for all values of Y; the address being known,
fik is sent to the accumulator to be increased by a count of one and then returned
to its original location; (c) a similar routine for the read y yields the address
of gjk’ that is, one of the n locations assigned for the accumulation of the
frequencies in the class Yj for all values of X; the contents of this address are
then increased by a count of one as explained above; (d) the address of fijk’
that is, one of the mn locations for the accumulation of the frequencies in
the pair (Xi’ Yj)’ is attained via the addresses of f,, and g,k; fi is then

ik ik ijk
increased by a count of one.

41

42

Progressive recording of)x, 3, sz, Zyz, > xy, and N does not
involve table look-up because these summations have a fixed reference (or
data address) throughout the data process. The search for addresses mentioned
in block 04 (b), (c), and (d) requires a variable address scheme capable of
giving all the locations of the table of frequencies as a function of the read
variables. The instructions to store the counts or frequencies are automatically
modified for each card in accordance with the individual values of x, y. A
number of schemes could be devised to accomplish address searching, some
of which may or may not involve table look-up and/or computation. In the pre-
sent problem, TLU and computation are featured in the determination of
variable addresses because of the flexibility afforded by such a scheme.

In the conventional sense, TLU is the process of best matching a given
argument to one of a coliection of tabulated arguments and reading off the
tabulated function associated with the tabulated argument. In the 650 sense,
however, the standard TLU operation yields the address or location of one
out of many tab arguments equal to or next larger (if no equal exists) than the
given argument. The tab function, stored with or a constant number of locations
away from its corresponding tab argument, is then extracted by making use
of the found tab argument address. The tab function could be any function,
such as a function of the argument, an instruction, an address, a constant, etc.

The standard TLU operation is susceptible to many refinements to
accomplish address searching more efficiently. In the TLU technique presented
in this paper, the tab function can be computed as a function of the location of
the corresponding tab argument. Then, because no extraction takes place,
drum area for the storage of tab functions is unnecessary. Since in this problem

there are two given arguments x and y, two families of tab arguments will be

required. The families of terminal values Xt and Yt of the class intervals X
and Y, which are the required tab arguments, are referred to here as the
Xt directory and the Yt directory. The location of the freque\ncies in the drum
table of frequencies constitute the "tab functions."

The following drum areas are required for the execution of the table look-

up techniques:

Area Name Contents Role
Read input A value of x Given x argument
A value of y Given y argument
Xt directory ‘Terminal values
(Xt)l’ (Xt)z’ cens (Xt)m Tab Xt arguments
Y directory Terminal values
t (Y), (Y),.uu, (Y) Tab Y, arguments
tl t2 tn
TLU constants kl’ k2, k 3 Computation of

In order to store counts for the frequency in each class Xi for all values
of Y, in each class Yj for all values of X, and in each pair (Xi’ Yj)’ the
locations L(fik)’ L(gjk)’ and L(fijk) must be computed for every card with
valid x and y using the equations

Lif) = LX), + k (1)

1
L(gjk)=50 L(Yt)j + k) (2)
L(fijk)= L(f;) + L(gjk) + kg (3)

The numerical values of kl’ kz, k3 are dependent on the relative position

of the drum areas assigned to the directories and to the table of frequencies.

The sequence of events for obtaining the unknown addresses in equations (1),

(2), (3) and for storing the counts in each address follows:

43

44

Step Operation Result

1. TLU Read input x vs. Xt directory L(Xt)i

2. TLU Read input y vs. Yt directory L(Yt)j

3. Computation Equation (1) L(fik)

4. Computation Equation (2) L(gjk)

5. Computation Equation (3) L(fijk)

6. Store count One unit added to contents of fik
L(f;,)

7. Store count One unit added to contents of 8y
L(g,)]

jk

8. Store count One unit added to contents of fi’k

I"(fijk) :

To illustrate the table look-up technique presented, suppose
(a) a card in the first group (k =1) undergoing data analysis contains the

following: X =Xg, y=y6, Z = Zl, x and y valid.

k

(b) x_ falls in the class interval X5 (i=>5), whose terminal value is (X)5;
t

5
y6 falls in the class interval Y6 (j=06), whose terminal value is (Yt)é'
(c) the family X contains nine class intervals, the family Y contains
seven, and the drum area layout is the one shown in figure 5.
The problem is

(a) find the drum location L(fSl) of the frequency f__, i.e., the location

f51
(0768) of the frequencies of occurrence in the class XS, group Zl,
regardless of Y.

(b) find the location L(g 61) of the frequency 861’ i. e., the location (0673)
of the frequencies of occurrence in the class Y6’ group Zl’ regardless

of X.

(c) find the location of L(f56l) of the frequency f___, i. e., the location

561

Constants

K, 364 0400 T 0450
. (xt)1 (Yt)1
ko | -22,077 0401 | 0451
kg | -773 (X)g | (Y
0403 | 0452
(Xps | (Y
0403 | 0453
(Xt) 4 (Yt) 4 fYt directory
0404 | 0454
X)s | (%)
_ o od05 | ogms
Xt directory (Xt)6 (Yt)6
0406 | 0456
X)g | Yy
0407
(X)g
0408
%)g
Y—
2, Yy (2, Y9 |2, Yy | 2y, Yy |2), Y |Z), Y | 2), Y, |2, |2
0414 | 0464 |0514 | 0564 | 0614 | 0664 | 0714 | 0764 |
i flor | B3t | f | G5t | fBe | B | T | ®
fon | f221 | fam for | T
fan1 fa1 |5
f |9
0668 0768
f561 I |71
f61
fn
fa1
fo1
0423 | 0473 |0523 | 0573 | 0623 | 0673 | 0723
811 81 | 83 4 | 81 | B | &7 N

Figure 5. Drum Layout for the Illustrative Example

45

(0668) of the frequency of occurrence in the pair of classes (X 5Y 6) .
(d) increase by one count each, the contents of the locations L(f5 l)’
L , and L(f .
(g, (56 1)
The solution is:

Step 1. TLU of given argument Xg VeTrsus the Xt directory yields 0404, the
location of the tab argument (Xt) 5 equal to or next higher than xs.
Step 2. TLU of given argument y g Versus the Yt directory yields 0455,
the location of the tab argument (Yt) 6 equal to or next higher than
Ye-
Step 3. Equation (1) gives:
L(f51) = 0404 + 364 =0768
Step 4. Equation (2) gives:
L(gél) = 50(0455) — 22,077 = 0673
Step 5. Equation (3) gives:

L(f...)=0768+ 0673 — 773 = 0668

561

Steps -6 through 8. The contents of locations 0768, 0673, and 0668 are

increased by one unit.

05. The program logic shown by the block diagram requires two blocks
of instructions for the 650 to execute card reading. Block 05 reads all cards
except the first card of the first group, which is read by block 01.

06. This test compares the identification Zs of the first card of a group
with the identification of each card within the group. If the equal condition
exists, the card read (just before the test) is part of the group currently under
process, in which case the data analysis and card reading will not be disturbed

until an unequal condition is detected. If the test yields an unequal result, the

card read (just before the test) is the first of a new group, implying that the

data collected and analyzed on an individual card basis is complete for the group;
card reading is then temporarily interrupted until the output routine takes place.
07. The output routine incorporates two subroutines: (a) computation or
further data analysis on a group basis and (b) assembly of the data in the punch
output area. Means, standard deviations, correlation coefficients, etc., are
computed in subroutine (a). The data to be punched is transferred from the
table of frequencies to a punch output area by subroutine (b) . It will generally
require the computation of the data address (especially if a "loop" is used)
of the instruction to "go and get" the appropriate data items for transfer to
the output area. The data address of this instruction can very conveniently be
inserted in a "clear to zero" instruction so that a "write and erase" subroutine
can be developed. Upon completion of the output routine the data process starts
all over again, this time with block 02 or 03.
The genei'alized program described above can be easily modified to do
a variety of accounting and statistical problems.
TERMINOLOGY AND NOTATION
Conditions of Restraint Criteria for acceptance of data or restrictions
imposed in the course of a process.
Batch or Deck A collection of groups of cards,
Group A collection of items or cards having a common
characteristic (such as identification).
Valid Data which meet the criteria for acceptance
or fulfill the imposed restrictions.
Table Look-up The process of best matching a given argument
with one of a collection of tabulated arguments

to read off the tabulated function associated

47

Given Arg

Tab Arg

Tab Function

Directory

Extraction

Class Interval

48

with the tabulated argument.

Given argument, a value of the variable which,
by comparison with a tabulated argument, is
used to search for the tabulated function.
Tabulated argument, a value which best matches
the given argument.

The value associated with the tab argument.

A relatively small table or drum area consisting
of tab arg, tab functions, constants, etc.,
sometimes necessary for access to a larger
drum area or table.

The process of obtaining the tab function by
means of 650 coded steps.

A range of values comprising and contained
within an initial value and a terminal value.
Observations or variables to be distributed

in class intervals. They have a finite though
variable number of digits and belong in one
class interval only, provided the class intervals
do not overlap.

Family of class intervals in random sequence
and not necessarily equi-spaced, representing

all the members X , X, ..., X
1 2 m

Any one member of the family X, one class
interval whose range is from (XO)i to (Xt)i
(i=1, 2, ..., m).
Family of initial values of the family X,
representing all the members (Xo)i’ (X0)2, (Xo)m.
Any one member of the family XO’ the initial
value of the class interval Xi‘
Family of terminal values of the family X,
representing all the members (Xt)l’ (Xt)2’

e (Xt)rn'
Any one member of the family Xt' the terminal
value of the class interval Xi.
Family of class intervals in random sequence
and not necessarily equi-spaced, representing
all the members Yl, Yz, eees Yn'
Any one member of the family Y, one class
interval whose range is from (YO)j to (Yt)j
(=1, 2,..., n).
Family of initial values of the family Y,
represehting all the members (Y())l’ (YO) Y

. (Yo)n.
Any one member of the family YO, the initial
value of the class interval Yj'
Family of terminal values of the family Y,

representing all the members (Yt)l’ (Yt)Z’ cees (Yt)n.

49

()

J

q 7;_4! wﬁl

50

Any one member of the family Yt’ the terminal
value of the class interval Y _.
Family of group identifications representing
all the members Z., Z_, ..., Z .

1" 2 p
Any one member of the family Z (k=1, 2, ..., p).
A frequency or number of times the pair of
observations (x, y) falls within the pair of

class intervals (Xi’ Yj) in a group Zk.

n
=2 f , any one member

i=1 ijk
S f ,f= 3% f £ =3 f
f = , =) e sy =
1k 1jk 2k 2 2ik mk 2 mjk

of a family f of summations of frequencies

f 1 falling within any one class interval Xi for
1

all values of Y in a group Zk'

m
=% s any one member
i=1 1ijk

5 > >
g.= 2 f. , & = finy, -28 f.
1k j=1 ilk 2k ;i nk j= 1 ink

of a family g of summations of frequencies fi.
falling within any one class interval Yj for all
values of X in a group Zk.
Arithmetic mean of all x's in group k.

Arithmetic mean of all y's in a group k.

Standard deviation of all x's in a group k.

Standard deviation of all y's in group k.

Correlation coefficient of y vs. x in a group k.

Group identification of any card just read.
Group identification of any group's first card
just stored.

Drum address or location of U, where U is

any quantity.

=1, 2, ..., m.
=1, 2, , N
=1, 2, ..., p.
Initial .

Read (past tense).
Stored.

Terminal.

51

52

AN INTERPRETIVE SUBROUTINE FOR THE SOLUTION OF
SYSTEMS OF FIRST ORDER ORDINARY DIFFERENTIAL
EQUATIONS ON THE 650

Franz Edelman
RCA Laboratories

INTRODUCTION

The problem of solving ordinary differential equations occurs very
frequently in technical computations. The writing and subsequent checking of
such programs is extremely wasteful of both machine and programming time.
Because of this, a general purpose program has been written® which will
automatically perform this function.

To use this subroutine, the programmer need specify only initial conditions,
the equations to be solved and their number, as well as the precision required
in the solution.

- The programmer has a choicé of two distinct methods for solution, those
of Runge-Kutta-Gill and Milne. The program for the latter provides automatic
choice of optimum intervals. A choice for a fixed or floating point precision
crite‘rion is also provided.

The maximum number of equations which may be solved simultaneously
is limited only by the memory capacity of the machine and is in the neighborhood
4 The program is written for the Interpretive System described by V. M.

Wolontis of the Bell Telephone Laboratories, Murray Hill, New Jersey, in
IBM Applied Science Division Technical Newsletter No.11. ‘

of thirty.

The basic logic of this subroutine is in no way restricted to be applied
solely to a 650 program. Therefore it is felt that, because of the flexibility and
compactness of the logic, this program will lend itself well to transcription
into other machine or pseudo-languages. Complete flow diagrams are furnished
for this purpose at the end of the report.

In designing this general purpose program an effort has been made to
anticipate as many of the likely requirements and needs as possible, particularly
with regard to generality, flexibility, and convenience of use.

There are several phases of a typical differential equation problem where
flexibility is nothing less than essential;

The Method of Solution. In general, integration methods which keep track

of truncation error, such as that of Milnel, are preferable to those which do
not, for obvious reasons. There are, however, two disadvantages to the former:
first, a starting procedure is required before the method can be applied; and,

second, under some conditions this method may become unstable. The first

shortcoming is only an inconvenience, but the second renders the method useless.

For these reasons a second method is available, which is that of Runge-Kutta-
Gillz. This method also doubles as the starting procedure for the Milne method.
Output. At each step of the integration the type and amount of the output as
well as the format are completely within the control of the user of the program.
All the information required by the user as output is available from a given set

of locations arranged in such a manner as not to tax his memory unnecessarily.

53

54

The user may, if he wishes, change the nature and format of his output during
a run depending on some predetermined criterion.

The Criterion for Terminating a Solution. Here again is something which

varies from one problem to the next. Therefore the program is designed in
such a way that the user may program this criterion, which may depend on any
or all of the variables, to suit his purpose.

Precision. This consideration applies only to the Milne method. The manner
in which the precision is computed is important, since its proper choice may
in some cases reduce machine time by more than 50 percent. This program
offers two choices. The increasing or decreasing of the integration interval
is governed by a comparison of the predicted and corrected values of the
dependent variables using a predetermined number of either (1) decimal

places or (2) significant figures. In either case this number is specified by the

" user as a floating point integer. If the solutions oscillate about zero with

an amplitude of order unity, for example, then criterion (1) is considerably
faster. Thus if at some point the solution is very near zero, criterion (1) would
remain undisturbed while criterion (2), noting the poor agreement between
predicted and corrected values (in terms of significant figures), would

proceed to reduce the integration interval unnecessarily. On the other hand, if
the solutions run uniformly to very large or very small numbers, criterion (2)
is faster and more realistic. In other woxrds, criterion (2) is always safe, even

though sometimes excessively time-consuming. The solutions toy" + y = 0

and y" - y =0,for example, illustrate this point.

Reducing the Integration Interval. In general, the variations of the dependent

variables and their derivatives are not violent enough to warrant such a drastic
reduction of the integration interval as an order of magnitude, for example.
Nevertheless it may happen that the customary reduction by the factor 0.5

is insufficient. Therefore this factor has been left to the discretion of the user.
Unless otherwise instructed, however, the program will use the factor 0.5.

Increasing the Integration Interval. When the precision of the computations

becomes too large, implying that the integration interval has become too small,
the subroutine will automatically double the interval until the precision reaches
its prescribed range.

The above-mentioned features are believed to make this program flexible
enough to cover a wide range of problems.

For a better understanding of what is to follow, a list of definitions

is given below:

yO is the independent variable; ij isits (j + 1)th value.

2 i=1, 2, ...,N, are the dependent variables; yij are their values at

YO_] ¢

fij = (dyi/dyo)j, i=0,1, 2, ...,N, are the derivatives of y; with respect
toy, at ij' Thus ij =] for all j.
kij’ rij’ qij are defined analytically in the following section.

h is a positive or negative integration increment.

55

56

N is the number of equations to be solved.
T is the required precision.
H is the fraction by which h is to be reduced.
D is the tolerance factor for doubling the integration interval.
Eij is the deviation between the predicted and corrected values of Y; at
ij.\Ej is the maximum Eij at ij.

A table summarizing the functions of all special locations, which may be
referred to by the user of this program, is shown at the end of this report.
MATHEMATICAL BACKGROUND

Any system of ordinary differential equations may be reduced, by suitable

changes of variables, to an equivalent system of first order ordinary differential

equations:

1

Vi = §(g Yo Vg - ¥y (=12, .., N), (1)
subject to the initial conditions

Vi) = Vi =1 2...,N). (2)

The program described here will automatically solve such a system,

requiring of the user only the specification of the functions f and the initial
i

conditions.

For the sake of completeness the equations of both methods employed are

given below.

The equations of Runge-Kutta-Gill are

kij = hfij

G, 1=
= +
yi,j-!-l yij T

O a1 T

G j+ 17 Yy

Cj_l_(EJ

=0, 1, 2, 3

i=0,1, 2, ...

(3)

(4)

&)

(6)

The initial values q;(are taken to be zero at the first point and equal to

Qiy of the previous point, subsequently. aj, b
J

each given by

a = "'} 1‘.\/7-) l+ ‘,;1'

b, = (1, =vE 1+ VI

3

= (1. 1-V4 [I
= /5 W/ D
The equations of Milne are the "predictor'.
() sh)
. =Yy, . + = (2f - f + 2f
yl,j-o-l i,j-3 3 ij i, j-1 i, -2
i
and the "corrector': }
i
© h [()
A =y . 2 P +af_+ f
1, j+1 1,]"1+3 fi, j+1 4fij i,j-l)
./

Superscripts p and c indicate predicted and corrected values, respectively.

and c_are sets of four constants,

J

(7)
(8)
)

(11)

57

An RKG solution is obtained by successive applications of equations
(3) through (6) for each j from O to 3, together with four applications of

equation (1). yi are the values of the solutions at the mesh points determined

4
by h.

A Milne solution is obtained by using (10) followed by (1) to evaluate

(p) — . (0) (c)
fi, P+l - Then (11) and another application of (1) determine Yi,j + 1’and fi, i+1
respectively.

The maximum deviation (over i) between predicted and corrected values
divided by 29 (see reference 1) is used to judge the size of the integration interval.
The procedure for changing this interval will be described in detail below.

Both of the above methods yield fourth order precision, i. e., have

. 5
truncation errors of order h™.

THE PROGRAM

Every subroutine, if it is to be complete and self-contained, requires of
the user a set of instructions which enable the subroutine to perform its
intended function and which supply to the subroutine the required return
address(es) to the main program. Such a set of instructions is termed the
"calling sequence."

This subroutine is designed in such a manner that the calling sequence,
which is written as part of the user's program, has two distinct portions.

The first portion is that in which the functions fi are to be programmed
and stored in the appropriate locations. The data required for the computation

of f; are available from given locations.

The second portion of the calling sequence is concerned with preparing
the output and testing for continuation of the solution. As mentioned previously,
both of these operations are entirely within the control of the user. The two
parts of the calling sequence are separated by a TRSUB instruction.

This separation was necessary because we do not wish to execute the
output program every time control is transferred to the first part of the calling
sequence. For example, when using the Milne method, y(p), y,(p), y(C), y'(c)
are computed in that order. The second and fourth of the above quantities are
computed in the first part of the calling sequence. The second part of the
calling sequence, however, is to be executed only after computation of y' (C).

Three program parameters must be supplied by the user before execution

of the program.
1.INlis entered into location 997
2. h is entered into location 998
3. T is entered into location 999

The initial conditions yOO’ yl y Y s e yNO are entered into locations 500

0 "20
to 500+ IN| . All input is in normalized floating point form. After the above
data are stored, the calling sequence is as follows:

loc.p: TRSUB +0 204 q 600

loc. q : Start computation of fi’ storing them in 550 + i, i =1, 2, ...,N.

loc. r: TRSUB +0 204 s 620

59

60

loc. s : Select output from locs. 500 to 500-+Nj| énd 551 to 5504I NI

for punching.
Punch output.
Select from the same locations the criterion for terminating
the solution.
Test this criterion.
If solution is to be continued, transfer to loc. 640.

The yij values for computing the functions fi between locations q and r are

available from locations 500 to 500+ IN] .

If the parameter N is stored as a positive number, the program will compute

the first three points (not counting the initial point) with the RKG method. Then
it will switch to the Milne method until the integration interval is to be
decreased. If N is stored wjth a negative sign, the program will use the RKG
method throughout.

(If it should be desirable to compute m RKG points (m >3) before switching
to the Milne method, this can be achieved by placing behind the program deck
the instruction

loc. 625: SetB +0 050 655 m+ 1.)
The subroutine may be used any number of times within the same program.
The only restriction here is thatN|is not changed. If IN]is to be changed, the

program must first be reloaded.

It might be pointed out here that the system of equations to be solved need

not be simultaneous. Several unrelated differential equations may be solved at
the same time.
DOUBLING THE INTERVAL

When using the Milne method, the routine examines at each point the sum
of the absolute values of the maximum deviations for the last three points. When
this sum is exceeded by the quantity 29x10"T/D, the interval is doubled. The
value of D is largely a matter of experimentation. Obviously, there has to be
some separation between the regions in which the interval is decreased or

increased. The region in which the interval is left unchanged is given by

T

29x10°T B < 29x10°
sp !
In fact, the ratio of these two bounds must be at least 30, since the error is
multiplied by approximately that when the interval is doubled. It was found here
in one specific instance that D = 200 was near a machine time optimum.
However, D, which is located in 788, may be changed should the user so desire.

After doubling of the interval has taken place, the routine is prevented from
doubling again until 3 more RKG points, followed by one Milne point, have been
computed.

It has been found useful to indicate on the output any modification of h which
may have taken place. Therefore the program will punch a card with a two-in
the second word when the doubling routine is called in.

DECREASING THE INTERVAL

Before going into this process it is necessary to specify the two

61

62

precision criteria which were mentioned previously.
If the entire program deck is used, the quantity
E = max |yP) - y(C)
j i ij ij
will be compared to 29xlO'T. If the last card is removed (Card 70 Deck 1),

then the quantity

(42))
E = max |1 - yij
J i —

o

will be compared to 29x10-T. These are the fixed and floating point precision
criteria, respectively.

Three different routines for decreasing the interval are built into this
program:

1. If the interval is to be decreased at point pl in the middle of a run (and
if h has remained unchanged at the previous point pO), the program will discard
that point, back up to the previous point po, re-enter the RKG method and
compute three points with the decreased interval. It will then switch again
to the Milne method. An indicator card with an H will be punched.

2. If, after having just decreased the interval, the program finds upon
leaving the RKG procedure that it is to decfease the interval again, it will
again back up to the original point p 0 and proceed from there as before. The
program will repeat this procedure as often as necessary. The results at
point pO are not repunched during this operation.

3. If the point pO happens to be the initial point of the solution, i. e., if

the initial h has been chosen too large, the program will, upon leaving the RKG
procedure, punch a spacer card, repunch the initial point and start again with
the reduced interval. It will repeat this procedure until the proper initial h

has been found.

If, in this last case, the programmed switch is set to STOP, a conditional
stop will occur, displaying the value of h which caused it. This was done in
order to give the user the opportunity to modify the starting procedure. If,
when the stop occurs, the storage entry switch is set to plus and the start
button is pressed, routine c will be executed. If the storage entry switch is
set to minus, routine a will be executed.

There is one more special situation which may arise. Suppose we are
solving a single differential equation of large order N. Then it is conceivable
that we may not wish all derivatives up to order N-1 to be examined for precision.
Suppose we wish to examine only the first n (n < N) functions, i. e.,

v, 9% .. y(n-l). This can be achieved by placing behind the subroutine
a card loading into location 723 the instruction

+ 0 109 B 717,
where B = 1000 - N + n.

The fraction H is stored in location 789 and may be changed by the user, if
he so desires.
STORAGE

Permanent. The program occupies locations 600-999. This breaks down

as follows : The interpretive program (Deck 1), which corresponds to the

63

entire solution of the problem, occupies 180 locations. This interpretive
program contains some forty-odd instructions which are functions of the
program parameter |N]| . Those instructions are compiled with two basic
language programs (Deck 2) totalling 190 instructions. The basic language
programs, which contain no loops, are executed only once. Numerical constants
(Deck 3) take up 20 locations, and parameters 10 locations.

Erasable. The buffer between the user's program and the subroutine, locs.
500 to 500+| NI and 551 to 550 +|NI , is erasable storage before and after
execution of the subroutine. Location 550 cannot be used during execution of
the subroutine. The remainder of these two bands is not used.

If the RKG method only is used (N negative), the erasable storage requirement
is locations 500-2(] NI + 1) to 499.

If the Milne method is used (N positive), the erasable storage requirement
is locations 500-13|N| to 499. The appropriate block of erasable storage which is
used to carry along the function values at previous points may not be used
during execution of the subroutine, but is available before and after. For
the sake of compactness the erasable storage was so arranged as to leave
free as much of lower memory as possible. For all practical purposes N is
unlimited in size if the RKG method is used. In the case of the Milne method,
which requires much more storage, N = 30 leaves about 150 locations for the

main program. The overall limit on N, dictated by the size of the buffer, is 49.

TIMING

The routine was so designed that no operations are performed unnecessarily
or repeated needlessly. N is tested only once, and the basic control operations
are executed only once. It is felt that this routine is nearly as efficient as a
custom-made program. If the RKG method is to be used, then no instructions
pertaining to the Milne method are executed, with the exception of the one-
time execution of a single SET C instruction at the beginning of the program.

The execution time per point, excluding the time required for the
computation of f, is about (6 + 3 | N|) seconds for the RKG method and
(2.5 + 1.5]| NI) seconds for the Milne method.

A detailed time study for a particular problem involving a single second
order equation showed that the custom-made program required 14 seconds
per point whereas the subroutine required 16 seconds per point.
MISCELLANEOUS REMARKS

The loop box and COUNT register are available ‘anywhere for the user's
own program. A word of caution is appropriate at this point. It is to be noted
that the program in which the functions fi are computed by the user is
executed four times for each RKG point and twice for each Milne point. This
is important if the coefficients of the equation are given in tabular form. It
would then be necessary to count the number of executions before giving the

loop instruction.

65

66

Two unconditional stops may occur during execution of the subroutine :
1. A stop at location 635 indicates [N| < 1 or IN| 2 100.
2. A DIV-CHECK at location 717 indicates y(c) =0
i, j *1
for some i, if the floating point precision criterion is used.

When tracing, the program is so arranged as to trace through each of the
two sections of the user's program only once. Therefore it is advisable, when
checking out this portion of the program, to enter the routine with some non-
trivial initial conditions.

The program may be translated with the standard Bell translation program.
Deck numbers distinguish the three types of cards used.

The error term E_is stored in location 659 so that the skeptic may include

J
it in his output if he so desires.

EXAMPLE
The program for a specific sample problem is shown in Figure 1. The
equation to be solved is
e yytyre yy'= sinx,
subject to the initial condition

y(0) =1, y'(0) =0, y"(0) =1, y'"' (0) = 0.

To reduce this equation to a system of first order equations, we define

y=u
u' ' =v
v =W,

Then w'= sin x - uvw - yu.

The initial conditions become

y(0) =1, u@) =0, v(0) = 1, w(0) = 0.

Four significant figures are required, and the initial h is taken to be 0.1.

The output is to consist of the quantities x, y, u, v, w, and w' punched on
one card.

The solution is to be terminated when x exceeds unity or y becomes negative,
whichever happens first.

The entire program requires 17 instructions.
FLOW DIAGRAMS

Complete flow diagramé for this subroutine are shown in figures 2 and
3. A numeral or letter outside an instruction box denotes the location of the
instruction represented by that box.

Locations ¢ and p contain the transfers to the main program.

67

SUMMARY TABLE

In order to aid in the application of this program a summary table is given

below :

Item Purpose Location
N Input 997

h Input 998

T Input 999

A Input - Qutput 500

A Input - Output 501 to 500+|N|

f Output 551 to 5S0+INI|

1st address
2nd address

3rd address

H
D
E,
]
+ 0050655 (m + 1)

+0109B717

Storage
Storage
Storage

STOP TRACE

68

TR to SUBR, initial.

TR to SUBR, after computation of fi

TR to SUBR, for continuation of
solution

Parameter

Parameter

Error term
To compute m initial RKG points
To test only up to y(n-l)

B= 1000 - N+ n
Locations used by program
Erasable storage for RKG

Erasable storage for Milne

Tracing control

600

620

640
789
788
659

625

723
600 to 999
500-2(INJ + 1) to 499
500-13INI to 499

601, 621, and 641

FIGURE 1. PROGRAM FOR THE SOLUTION OF

(4)

+yy' = sin x

Yy +yy'y
2
<9
Loc. | & [+o. | Acro.| B c
<_tl 5 1 2

5
100 TRSUH + 0 204 101 600 ENTER SUBROUTINE
101 ImpPY | + | 3| s02 503 | 000 uv
102 ImMpy |+ | 3| 000 504 | 200 uvw
103 |MPY | + | 3| 501 502 | 201 vu
104 | SIN + | 0| 303 500 | 000 SIN x
105 SuB + | 2 000 200 000 SIN X-UVW
106 SuB + 1 21| 000 201 554 w!=SIN x-Uvw-yU
107 |MOVE | + | 9 | 003 502 | 551 v'=uu'=vivi=w
108 TRSUB + | 0 204 109 620 RE ENTER SUBROUTINE
109 MOVE | + 9 005 500 250 MOVE OUTPUT
110 |MOVE |+ | 9| o000 554 | 255 "
11 'pcH |+ | 0] 410 250 | 255 PUNCH
112 fsuyB |+ | 2| 500 505 | 000 X1
113 |TRs |+ | 0| 201 116 | 114 TEST x-1
114 Imov |+ | 9! aoo 501 | 000 v
115 |TRs |+ | 0| 201 640 | 116 TEST v
116 |stoP |+ | 6 | goo 117 | 000 STOP
117 | pisPL| + | 9 | 999 999 | 999
500 + |0 00 LOAD X,
501 + |1 50 " Yo
502 + 10 00 "y
503 + |1 50 "V
504 +10 00 "ow
505 + |1 50 "o
997 + | 4 50 4N
998 + |1 49 "on
999 + | 4 50 "n T

69

FIGURE 2. FLOW CHART FOR RUNGE—KUTTA—GILL. METHOD AND
STARTING PROCEDURE FOR MILNE METHOD

600

STC a to [q]
STOP TRACE

INIx10%»Ly

157 TIME

COMPUTE
RKG_INSTR'S

OTHERWISE

|

STC AtoA,

STC BtoB,

SET TRUtoV
START TRACE

INTERCHANGE

INTERCHANGE

INTERCHANGE

INTERCHANGE
S, 1017
s; WITH 356

640 INTERCHANGE

STOP TRACE

NEG.

OTHERWISE _
COMPUTE

STC Bto B, MILNE INSTR'S

STORE RESULTS
FOR
MILNE ROUTINE

B,

NOT_FINISHED

C (count

c
STC Cto B,

FINISHED D

INITIALIZE

T
{
|
|
|
t
1
1
|
|
I G0 =0

to loc.E
(FG.3) “——3

SET INITIAL
|_ADDR. OF a,b

C

COMPUTE
ki, 1,0

Yy, 9

ADD 00! to
I ADDR. OF g,b,c|

TR tom

FIGURE 3. FLOW CHART FOR MILNE METHOD

SET TRJtoM
STEP UP ¥

‘P,COMPUTE
Y i,jn —>[501]

STC A toF

COMPUTE
tc)

Y i, el

MOVE UP
Ei, Ei

COMPUTE
E i+

[SET TRI toN | [¥o,j.-4h>500]

MOVE RE-ARRANGE
Y} jn—>[501] DATA

[Yo,jsi-h—>500} [PUNCH "0*]

|

Yi L ~4h—+500

STC A toG

RE-ARRANGE
DATA

STC B toH

PUNCH H

RE-ARRANGE
DATA

RE- INITIALIZE (578 ¢ fo 003]
H | DATA FOR NEXT STB Cto 003
MILNE POINT

STC Afo A, to A, (FIG. 2)

STC B to By

COMPUTE
DIEj

to D (FIG.2)

[RE-ARRANGE
DATA

72

REFERENCES

1. W. E. Milne, Numerical Calculus (Princeton University Press, 1949),

p. 134.

2. S. Gill, "A Process for the Step-by-Step Integration of Differential
Equations in an Automatic Digital Computing Machine, " Camb. Phil.

Soc., Proc., 47 (1951), p. 96.

DOUBLE TABLE LOOK—UP ON THE IBM 650

Robert H. Goerssal
Dodco, Inc.

INTRODUCTION

One of the most difficult types of computation in a computing laboratory
using digital equipment is double table look-up of location of data presented
in a three-dimensional form. Specifically, Y is presented as a function of

two variables X and Z.

X
For example, the presentation of drag of both aircraft and missiles is

frequently in this form where drag is a function of velocity and altitude.
One method of approach to this problem is to reduce the data to a function
of one variable or a fit in either one or both variables. Unfortunately,

this laborious procedure must be repeated for each set of data.

a
Now associated with Electronic Associates, Inc.

73

74

This paper presents a general method of double table look-up of Y as
a function of two variables X and Z. The procedure outlined has the advantage
that tables of various sizes can be handled without changes in the code,
subject to storage limitations of the equipment used. While the basic concept
can be used on any medium or large-scale stored-program computer, this
paper presents the storage limitations, code, and an example of a 5x 5
table for the IBM 650.
METHOD

On the 650 the storage limitations are that the number of points in
both X and Z be less than 48 and the number of values of Y be less than
1800 minus the storage requirements of the problem using this subroutine.

The subroutine will find the necessary values for linear interpolation
for Y as a function of any X and Z in the range given by the table. The only
restriction on the tabulated data is that Y must be given for the same points
of X for all values of Z and vice versa. To interpolate linearly for Y as a

function of X , Z , where X< X <X andZ < Z_< Z , we need the following
0 Z 1 0 I A Z B

numbers: XI’ XII' ZA, ZB’

Y .Y Y
_(XIZA) 20 XZp (XpZp

To make the explanation of the presentation of the data and the code

easily understood, we define X as the primary argument and Z as the
secondary argument. The arguments and data are fed into the 650 as
follows: The primary arguments are loaded in ascending order starting in
storage location 0050; the secondary arguments are loaded in ascending
order starting in location 0100; and the table of Y's are loaded in ascending
order first with respect to the primary argument, then with respect to the
secondary argument. Tables 1, 2 and 3 show the storage of primary and

secondary arguments and the functions for a 5 x 5 table.

TABLE 1 TABLE 2 .

Location of Primary Argument Location of Secondary Argument
0050 X1 0100 Z=a
0051 X2 0101 Z=Db
0052 X3 0102 Z=c
0053 X4 0103 Z=d
0054 X5 0104 Z=ce

TABLE 3
Storage of Function Y(XZ)
x=1-5 = a-e
Location Contents Location Contents Location Contents

0200 Y(1a) 0210 Y(1lc) 0220 Y(1e)

0201 Y(2a) 0211 Y(2c) 0221 Y(2e)

0202 - Y(3a) 0212 Y(3c) 0222 Y(3e)

0203 Y(4a) 0213 Y(4c) 0223 Y(4e)

0204 Y(5a) 0214 Y(5¢c) 0224 Y(5e)

0205 Y(1b) 0215 Y(1d) ‘

0206 Y(2b) 0216 : Y(2d)

0207 Y(3b) 0217 Y(3d)

0208 Y(4b) 0218 Y(4d)

0209 Y(5b) 0219 Y(5d)

76

Inspection of Table 3 indicates that it could be considered a table of
tables; that is, tables of Y as a function of X are arranged as in
ascending order of Z. Associated with both arguments is a table of
secondary modifiers. The secondary modifiers serve as an index to
which table of Y as a function of the primary argument should be used.
Specifically, adding the data address of the secondary modifier to the

location of X; yields the location of YI A

TABLE 4
Storage of Secondary Modifiers

Location Contents
0150 00 0150 0002 Z=a
0151 00 0155 0002 zZz=bhb
0152 00 0160 0002 z=cC
0153 00 0165 0002 z=d
0154 00 0170 0002 Zze

Associated with the primary argument is a number called the jump
modifier. Adding the data portion of the jump modifier to the data address

of YII A Vields the data address of Y__. It is important to note that for a

1B
table of any size the only changes that need to be made in the routine other
than the data and arguments are the secondary and jump modifiers.

The code itself consists of 31 instructions, which logically break
down into eight steps. In each of these steps a Store Distributor command
with a variable data address is generated in the lower accumulator. This
operation is then executed, and the contents of the distributor are stored
in a desired storage position. The arguments X0 and ZZ are assumed
stored in locations 0030 and 0031. The following operations are performed:

1. Find the location of ZB by 650 table look-up; store ZB in 0035.

2. Find the location of ZA by subtracting 1 from the data address of

ZB; store ZA in 0034.

3. Find the location of the secondary modifier by adding 50 to the
address of Z A store the secondary modifier in 0046.

4. Find the location of XII by 650 table look-up; store XH in 0033.

5. Find the location of XI by subtracting 1 from the location of XII;
store XI in 0032.
6. Find the location of YI A by adding the secondary modifier to the

location of XI; store YI A in 0036.

7. Find the location of YII A by adding 1 to the location of YIA; store

YII A in 0037.

8. Find the location of YIB by adding the jump modifier to the location

of Y A; store Y., in 0038.

II IA
9. Find the location of YIIB by adding 1 to the location of YIB; store
YIIB in 0039.

The complete code and a list of storage positions follows:

TABLE 5
Storage of Input and Output

Location Contents
0030 XO
0031 Zy
0032 X1
0033 X
0034 Zp
0035 Zg
0036 Yia
0037 Y

IIA
0038 YIB
0039 YIIB

Jump Modifier
0040 00 0004 0002

77

TABLE 6
Other Storage

Location Contents Function
0041 00 0000 9998 : Address Modifier
0042 00 0050 0002 Address Modifier
0043 00 0001 0002 Address Modifier
0044 69 0000 0004 Load Distributor Command
0045 69 0000 0012 Load Distributor
0046 Temporary Storage

This system was used by the author as a subroutine in a problem
coded with the floating decimal interpretive system described by
V. M. Wolontis in IBM Applied Science Division Technical Newsletter
No. 11. For that reason the data address of the last command is 1095, a
location for a return to the Wolontis system. In this connection it should
be pointed out that when using any floating coded decimal system, or when
using a floating decimal arithmetic unit, care must be taken that the
argument is only one order of magnitude. This can be accomplished by
using a modified argument equal to the argument increased by the quantity
1 x 10 &, where «is such that all modified arguments have the same
exponent.

If there are n values of X and m values of Z, the secondary modifiers

and jump modifier can be expressed in terms of n and m as follows:

Command Data Instruction
Jump modifier 00 n-1 0002
Secondary modifiers 00 0150 0002
00 0150 + n 0002
00 0150 + 2n 0002
00 0150 + 3n 0002

00 0150 + (m-1)n 0002

With slight modifications, this system can be expanded for higher
order interpolation or to handle two related functions of the same two

arguments.

ACKNOWLEDGMENT

The author wishes to express thanks to D. O. Dommash, President,
Dodco, Inc., for his helpful encouragement and for suggesting the useful
notation of primary and secondary arguments. The author also wishes to
express his thanks to Sherwood Skillman of the RCA Laboratories for his
help in checking the code.

79

Trade Mark

IBM TYPE 650 PROGRAM SHEET

PROBLEM:___DOUBLE TABLE LOOK-UP

FORM NO. 22-618I1-1
PRINTED IN U.S.A.

WRITTEN BY: R. H. GOERSS

TI:NSTR

LOCATION OF OPERATION ADDRESS
NO. |INSTRUCTION| aBBRV. | CODE | DATA |[INSTRUCTION REMARKS

0001 RAL 65 0044 0002 Reset lower accumulator basic load
distributor command,

0002 LD 69 0031 0003 Load Z., (secondary argument) into the
distributor.

0003 TLU 84 10100 8002 Find the location of Zp.

8002 LD 69 L (Zp) 0004 Load Z. into distributor.

0004 STD 24 |0035 0005 | Store Zg 0035.

0005 SL 16 0041 8002 Find the location of Z, by subtracting
1 from the location of Zp, add 2 to
the instruction address.

8002 LD 69 L (Zp) 0006 Load Z, into the distributor.

0006 STD 24 10034 0007 Store 2, in 0034.

0007 AL 15 0042 8002 Find the location of the secondary
modifier and increase instruction
address by 2.

8002 LD 69 |L_(SM) 0008 Load gsecondary modifier into
distributor.

0008 STD 24 0046 0009 Store secondary modifier in temporary
storage.

0009 RAL 65 0045 0010 Reset lower accumulator load basic
load distributor command.

0010 LD 69 0030 0011 load primary argument X0 into the
distributor.

0011 TLU 84 10050 8002 Find the location of X ..

8002 LD 69 1L (X33) | 0012 | load Xyy into distributor.

0012 STD 24 0033 0013 StorgAXIT in 0033,

0013 SL 16 0041 8002 Find loqgtion of b by subtracting 1
from the location of Xire

8002 LD 69 1. (Xs) 0014 | Load X; into distributor.

0014 STD 24 0032 0015 Store X in 0032.

0015 AL 15 10046 8002 | Find the location of Y;, by addin
the secondary modifier to the location
of X..

8002 LD 69 L (Y. ,) 0016 Load"Y;, into the distributor.

0016 STD 24 10036~ 0017 Store Yya in 0036.

0017 AL 15 0043 8002 Find the location of Yyy, by adding
1 to the location of Yy,.

8002 LD 69 1L (Yyyasyl 0018 Load Yisa in distributor.

0018 STD 26 10037 ""7] 0019 | Store ¥yy,.

0019 AL 15 10040 8002 Find the location of Y.. by addin ‘
jump modifier to the location of Y.,.,.

8002 LD 69 1L (Y..) 0020 Load into distributor. T

0020 STD 26 | 0038™" 0021 | Store %?- in 0038.

0021 AL 15 0043 8002 Find location of Y._.__.

8002 LD 69 L (Yreodl 0022 Load Y .. in distriSutor.

0022 STD 24 10039 1095 Store Y:in.

80

PAGE OF

Form No. 32-7710

IBM

DATA
PROCESSING

INTERNATIONAL BUSINESS MACHINES CORP.
590 MADISON AVENUE, NEW YORK 22, N. Y.

Litho. inU. S. A.

