Technical Newsletter No. 8

APPLIED SCIENCE DEVISITON

APPLIED SCIENCE DIVISION
Technical Newsletter No. 8
September 1954

This issue of the Newsletter is devoted solely to articles on the
IBM Type 650 Magnetic Drum Data Processing Machine. Three
of the articles were written by George R. Trimble, Jr., and
Elmer C. Kubie who were members of the IBM Mathematical
Planning Group at Endicott, N. Y. Mr. Trimble is also the
author of the remaining three articles. All the routines and
programs presented in this issue have been tested and checked
out on the Type 650 in Endicott.

Copyright, 1954, by International Business Machines Corporation
590 Madison Avenue, New York 22, New York

CONTENTS

Principles of Optimum Programming the IBM Type 650. . . . 5
G. R. Trimble, Jr. and E. C. Kubie

. An Interpretative Floating Decunal System for the IBM

Type 650. A V|
G. R. Trimble, Jr. and E. C. Kubie

Floating Decimal Sub-Routines for the IBM Type 650 37
G. R. Trimble, Jr. -

IBM Type 650 Loading Routines« . « 44
G. R. Trimble, Jr. and E. C. Kubie

. A Method for Performing Double Precision Arithmetic

onthe IBM Type 650 « ¢« « « v o ¢ & ¢ ¢ . .60
G. R. Trimble, Jr.

. A Method for Performing Complex Arithmetic on the

IBM Type 650. e e e e e e e e e 67
G. R. Trimble, Jr.

PRINCIPLES OF OPTIMUM PROGRAMMING
THE IBM TYPE 650

G. R. Trimble, Jr.
E. C. Kubie

Introduction

The IBM Type 650 is a parallel-serial calculator utilizing a magnetic drum for
storage. It has been designed with ‘‘ease of use’’ as one of the primary considerations.
The programmer is not burdened with timing restrictions which he must always keep in
mind. Interlocks make it impossible to violate timing conditions in such a way as to
cause the machine to give erroneous results. If, however, proper recognition and
analysis of the sequence of events occurring within the machine is made, one can signifi-
cantly increase the overall speed by properly locating data and instructions. Optimum
programming is the technique by which data and instructions are located in such a manner
as to minimize or eliminate, if possible, non-productive waiting or searching time.

The basic cycle of the 650 is the ‘‘word time’’ or time required to read one word.
As there are 50 words written around the drum, each word time is equal to 1/50 of a
drum revolution. Since the drum revolves at 12, 500 revolutions per minute a word
time is equal to . 096 milliseconds. Each operation can be analyzed in terms of word
times. The object here is to analyze each operation to see how many word times are

" required in its interpretation and execution. In this manner the basic or fundamental

word times are determined and from these a set of rules is derived through which
optimum programming may be effected.

Angular drum locations are all that must be considered when optimum coding.
The 650 is completely synchronous so that the words located in equivalent angular
positions are in phase and are equivalent from a timing viewpoint. Thus, the words
in addresses n modulo 50 are equivalent, so that, for example, addresses 0003,
0053, 0103, ..., 1903, 1953 are in phase and therefore, equivalent so far as
optimum programming is concerned. This means that there are 40 different
locations along the length of the drum, any of which may be used without loss
of time.

The lower half of the accumulator can be read into or out of only during an
even word time and the upper half of the accumulator only during an odd word time.
Thus, when the operation called for is one which uses the accumulator, it may be
necessary to wait for an even word time or an odd word time in order to obtain the

data. This is why the cycles ‘wait for even’, or ‘wait for odd’ on the sequence chart,
are required.

The D-I address system used in the 650 greatly facilitates optimum programming.
Data and instructions may be in any locations on the drum and instructions may be
taken in any desired sequence. As mentioned ab‘dve, once the optimum location has
been determined there are 40 different locations in which the datum or instruction
could be placed since the 40 bands are in phase.

It is also significant that the address of many instructions will be optimum
within a range of angular locations. This is due to the 650’s ability to overlap
arithmetic execution with search for the next instruction.

The characteristics of the 650 which facilitate optimum programming are,

1. It is synchronous, that is, all timing is controlled from timing pulses
on the drum.

2. Interlocks make it impossible to cause errors by violation of timing
conditions.

3. Equivalence of angular locations in the 40 bands.

4. Parallel operation, that is, simultaneous execution of operation and
search for next instruction.

5. The D-I address system which makes possiblé flexible location of data
and instructions.

Sequence Chart

The sequence chart shows the steps taken in the interpretation and execution
of each operation. It is drawn in segments which are usually equivalent to one
word time. Where events are shown in parallel, they are performed simultaneously.
Most operations branch into parallel execution shortly after the data is made available
to the arithmetic unit. One branch indicates the arithmetic process and the other
the obtaining of the next instruction.

Analyzing the steps carried out by the machine in the performance of any
operation, one sees that in every case certain fundamental word times are required.
Begin considei'ation of each instruction at the time when the instruction has been
located but has not entered the program register. Starting at this point, the first
word time of every operation is used to transfer the instruction from its memory
location to the program register. The next word time is used to initiate the
interpretation of this instruction. This is done by transferring the data address to
the address register and the operation code to the operation register. The steps
performed during the word times beyond this point will depend upon the particular
instruction being executed.

Consider the shift right 3 operation. The portion of the sequence chart for
this particular operation is shown in Figure 1. Assume that the shift instruction
is in location n and that n is odd. During word time n, the instruction is read

into the program register. During word time n+1 the operation code (30) is
transferred to the operation register and the data address (0003) is transferred
to the address register. Word time n+2 “Enable Shift Control’’ , is used to set
up the necessary control circuits to perform the shifting. Since n+3 is even,
the next cycle, ‘“Wait for Even,’’ is skipped and shifting begins immediately.
At this point parallel operation begins and the actual shifting process on the
right branch occurs simultaneously with the process of searching for and obtaining
the next instruction indicated on the left branch.

The restart signal which occurs during word time n+3 indicates that the
data address in the address register is no longer needed. During word time
n+4 the instruction address is transferred to the address register. Word time
n+5 is the ‘“Enable Program Register Read In’’ cycle which indicates that a new
instruction is to be read into the program register. Thus, beginning with word
time n+6 the 650 starts searching for the next instruction. This search may
require from 0 word times to as many as 49 word times depending on the location

of the next instruction.

n Instruction to Program Register
n+l Data Address to Address Register
Operation Code to Operation Register
To_Read and
Punch Oper-
tions n+2 Enable Shift Control
L
Wait for Even
(Not taken since n+3 is even)
n+3 Restart Signal n+3 Shift
T Instruction Address
n+4 to Address Register n+4 One
T Enavle Program T
n+5 Register Read In n+5 Shift
n+6 : Search n+6 One
T 4
n#7 | For n+7 Shift
i
n+8 Next n+8 One
«+ 4+
n+9 ! Instruction n+9 Remove Interlock A
+* .
'
n+l0
-+
|
n+? : Shift Right Three
: FIGURE 1
|
L

Examining the arithmetic branch it is seen that during word times n+3 through

n+8 the actual shifting takes place. The interlock at point A is removed during
word time n+9. The function of this interlock will be explained later.

Although the arithmetic portion of the operation is not completed until word
time n+9, the program register is able to accept the next instruction at word
time n+6. If the next instruction were placed in a location corresponding to
word times n+6, n+7, or n+8, it would be read into the program register before
completion of the arithmetic portion of the shift operation. In addition to this,
interpretation of this instruction would begin in that the operation code would be
transferred to the operation register and the data address transferred to the
address register. Thus, the first two cycles of the interpretation of the next
instruction occur in parallel with the execution of the shift instruction. At
this point, interpretation must cease since further steps may make use of
control circuits ar portions of the arithmetic unit which are already in use
(unless it is a read or punch instruction). The interlock at A is provided to
insure that interpretation of the next instruction does not proceed past
this point.

If the next instruction were placed in a location corresponding to word
time n+9, the instruction would be read into the program register during
completion of the arithmetic portion of the shift operation. In this case only
the first cycle of the interpretation of the next instruction occurs in parallel
with the execution of the shift instruction.

If the next instruction were placed in a location corresponding to word
time n+10 it would be read into the program register immediately upon
completion of the shift operation. '

Each of the locations corresponding to word times n+6 through n+10
effectively reduces the search time to 0 since there is no wait time between
completion of the shifting operation and the obtaining of the next instruction.
However, if the next instruction were placed in a location corresponding to

word times n+6 throughn+9, one cycle of the interpretation of the next instruction

would take place. K it were restricted to a location corresponding to word times
n+6 through n+8, two cycles of interpretation of the next instruction would take
place. i

Thus, not only can the search for the next instruction take place during
completion of the arithmetic portion of an operation, but also interpretation

of this next instruction can begin. If the next instruction calls for a read or punch

operation, execution of either of these operations can proceed since they do not
require use of the arithmetic unit. In this case the interlock A does not stop
interpretation of the next instruction after the first 2 cycles but it will be noted
that read and punch instructions bypass this interlock.

As a numerical example assume n=643, that is, the instruction is in location
0643. The instruction address should be 0649, 0650, or 0651 to reduce the access
time to zero. Of course, locations 0699, 0700, 0701, etc., are equally good.

There are three classes of operations. They are read, punch and arithmetic
operations. Correspondingly, there are three interlocks. The read interlock ¢‘R’’
stops execution of the following read instructions, until completion of the previous
read instruction. If the following instructions are punch or arithmetic operations
however, they may proceed without delay. The punch interlock ‘‘P’’ stops execution
of the following punch instructions, until completion of the previous punch instruction.
If the following instructions are read or arithmetic operations however, they may
proceed without delay. The arithmetic interlock ‘“A’’ stops execution of the following
arithmetic instructions until completion of the previous arithmetic operation. If the
following instructions are read or punch instructions however, they may proceed
without delay. Thus simultaneous reading, punching, and computing is possible.
However, simultaneous execution of two arithmetic operations, two punching
operations or two reading operations is not possible.

Referring to the shift right three example again, it is seen that since read or
punch instructions are not held up by the interlock at A, they should be placed in a
location corresponding to word time n+6 (649 in the numerical example). If the
next instruction is another arithmetic operation, there is no advantage to n+6 or
n+7 over n+8, since the interlock at A causes the machine to wait for completion of
the shifting process.

The rules developed for optimum coding are based on an effective step being
executed during every word time. This assumption is made to keep the rules
simple. For this reason, it is best that the next instruction be placed in a location
corresponding to word time n+8 (651 in the numerical example) if it is another
arithmetic operation. This allows maximum overlap and assures an effective step
for every word time (no waiting at interlock points).

Because of the above considerations the rules for shift instructions are stated
in terms of 2 limits, The lower limit is best if the next instruction calls for a read
or punch operation. The upper limit is best if the next instruction is an arithmetic
operation. If the upper limit is not convenient, any location withinthe two limits will
result in zero access time. However, when considering the succeeding instructions
and their data or instruction addresses, one should apply the rules as if the upper
limit were used. With this in mind, the following rules apply for the shift right 3

instruction.
Shift Right Three Location of Next Instruction
Lower Limit Upper Limit
n even i=n+7 i=n+9
n odd 1=n+b 1=n+8

This example demonstrates how the sequence chart is used to determine optimum

10

locations.

It would be too lengthy a task to show how every rule is obtained from the

sequence chart, so we will state the rules and leave the proofs for those readers

sufficiently curious.

Rules for Optimum Programming

n : location of instruction
d : data address of instruction

i : instruction address of instruction

il: lower limit of i

iy upper limit of i

Zm

: sum of multiplier digits

Zq : sum of quotient digits

a : location of argument found by table look up operation

Operation n even n odd d even d odd
d=n+ d=n+ i=d+ i=d+
Add, subtract, etc., 10,11,15,16,
17,18,60,61,65,66,67,68 3 3 5 4
Multiply, 19 3 3 21+2Zm 20+2Zm
Divide, 14, 64 3 3 61+2Zq 60+2Zq
Store Lowér Accumulator, 20 5 4 3 3
Store Upper Accumulator, 21 4 5 3 3
Load Dist., Store Dist., 69, 24 3 3 3 3
Store D Address, Store I Address, 22,23 3 4 3 3
peration n even n odd a even a odd
d=n+ d=n+ i=a+ i=a+
Table Look Up, 84 3 3 5 6
Operation n even n odd n even n odd
d=n+ d=n+ i=n+ i=n+
Branch Non-Zero Upper, 44 3 4 4 5
Branch Non-Zero, 45 4 3 5 4
Branch Minus, 46 3 3 4 4
Branch Overflow, Branch Dist. 8, 47
91-98 3 3 5 5
Branch Dist. 8, 90, 99 4 4 5 5
No Operation, Stop, 00, 01 - - 4 4
Shift Operations No. of Positions n even odd
/ 11=n+ 1,,=Nn+ 11=n+ 1y=n+
Shift Right, 30 0 6 6 5)
Shift Left, 35 (1) 7 7 6 6
Shift and Count, 36 (2) 7 7 6 6
(3) 7 9 6 8
J (4) 7 il 6 10
(5) 7 13 6 12
(6) 7 15 6 14
(7; 7 17 6 16
(8 7 19 6 18
\(9) 7 21 6 20
Shift and Count Only, 36 (10) 7 23 6 22
Shift and Round, 31 (1) 7 7 6 6
(2) 7 9 6 8
(3) 7 11 6 10
€4) 7 13 6 12
4 (5) 7 15 6 14
(6) 7 17 6 16
(7 7 19 6 18
(8) ki 21 6 20
9) 7 23 6 22
\(10) 7 25 6 24

800X Addresses

Since the storage entry switches (8000), distributor (8001), lower accumulator
(8002) and upper accumulator (8003) are addressable, special consideration must be
given to the cases where one of these locations is addressed. The storage entry
switches and distributor are always immediately accessible. However, the lower
accumulator can be read into or out of only during an even word time. The upper
accumulator can be read into or out of only during an odd word time. Thus, for
purposes of optimum coding the storage entry switches and the distributor may be

treated as being equivalent to any address, the lower accumulator as equivalent
to an even address and the upper accumulator as equivalent to an odd address.

If, for example, a reset add upper operation (or any add type operation) has a
data address of 8000 or 8001, these addresses can be treated as being equivalent
to n+3 and the instruction address of that instruction can be determined accordingly.
If a data address of 8002 were used, and the instruction were in an even location,
the optimum location for the datum for that instruction would be.n+3, which is odd
in this case. Therefore, an extra cycle must be taken to wait for an even location
so that the lower accumulator may be read out. Since the effective data address
is then even, the rule i=d+5 must be used to determine the location of the next
instruction. Similar analyses may be made for each of the other cases,

The following table gives the rules for determining the instruction address of an
instruction in cases in which a data address of 800X is used.

: Data n even n odd
'Operation Address i=n+ i=n+
Add, Subtract, etc., 8000 7 8
(10,11,15,16,17,18 8001 7 8
60, 61, 65, 66,67,685 8002 9 8
8003 7 8
Load Distributor, 69 8000 6 6
8001 6 6
8002 7 6
8003 6 7

Since the accumulator may be in use when an instruction address of 8002 or 8003
is given, it would seem to be possible to take the next instruction from the accumulator
before the arithmetic operation was completed. For example, if an 8002 instruction
address were used on a multiply operation, one of the partial products might be taken
as the next instruction rather than the final product. For this reason, an additional
interlock is provided to prevent the next instruction from being taken from an 800X '
address until completion of the arithmetic portion of the operation. This prevents
the above from occurring.

The following table gives the rules for determing the effective instruction address
in those cases in which an instruction address of 800X is used.

12

Operation Inst. d even d odd
Address ind+ igd+
Add, Subtract, ete. 8000 5 4
(10,11,15,16,17,18, 8001 5 4
60,61,65,66,67,68) 8002 6 5
No Complement Cycle Required 8003 5 4
Add, Subtract, etc., 8000 7 6
(10,11,15,16,17,18, 8001 7 6
60,61,65, 66,67, 68) 8002 8 7
Complement Cycle Required 8003 7 6
Load Distributor, 69 8000 3 3
8001 3 3
8002 4 3
8003 3 4

~ means ‘‘equivalent to”’

By application of the principles used in determining the above rules it is possible
to determine equivalent addresses for any other desired case. It is only necessary to
remember that an 8002 address is equivalent to an even drum address and 8003 is
equivalent to an odd drum address.

Consider the instruction 1006438000. Since 0643 is odd, the rule in d+4 must be
used. Therefore, the instruction at 8000 can be programmed as though it were located
in location 06417,

Techniques for Using Optimum Programming

The gains obtained by optimum programming will depend upon the particular
problem considered and the skill of the programmer. Every instruction cannot be
optimum as conflict will occasionally exist between instructions. For example,
data placed optimumly for a store operation may not be optimumly located for a later
add operation, Furthermore, an instruction which is preceded by several branch
instructions cannot usually be optimumly located for each of these branch instructions.

Techniques for efficient use of optimum programming will be developed through
experience. It is too lengthy a task to thoroughly explore techniques for its use in
this paper. However, certain general principles can be applied to any program one
may wish to consider. Some of these principles will be indicated in the following
paragraphs.

The first consideration that must be made is when should optimum programming
be used. '

Any problem in which the speed of input or output is appreciably reduced due to
lengthy calculations, can justifiably be programmed optimumly.

Once it has been determined that optimum programming is necessary, there are
two ways in which it can be done. One could simply program the problem optimumly
by straightforward application of the rules derived above without consideration of the

program as a whole. Such a procedure may result in data and instructions being
poorly located for the latter part of the problem. This type of programming can
be done quickly and with very little more difficulty than if the instructions were
programmed in sequence. Even though it is done roughly, it will usually result
in a significant increase in the overall speed, and will be well worth the small
amount of additional effort required.

The second type of optimum programming is where the programming is done
elegantly. This type of programming requires a greater amount of work and thought
on the part of the programmer. Instead of simply programming each step optimumly
as it occurs, the programmer must think ahead to see how this might possibly
affect later steps which will use the same data or perhaps branch to the same
instruction. Many possibilities exist when programming in this manner. One can
see after he has completed the problem how a simple re-arrangement of the
beginning may improve the latter part of the problem. It may be necessary to re-
program the same problem several times in order to obtain the most efficient
program. Obviously such a procedure would require much more time than ‘“sequential’’
programming or the ‘“rough’’ optimum programming described above.

Elegant optimum programming should be used only when it is desirable to use
the 650 in the most efficient manner possible. The types of problems for which this
is necessary are those which must be done over and over on a mass basis and which
realize reduced input-output speeds. It will not always be necessary to program the
entire problem this way but only those segments or sub-routines which are most
frequently used. For example, sub-routines, such as floating decimal operations,
square root, sine, and cosine evaluations, which occur frequently in technical
applications, should be programmed to function in the most efficient manner possible.
Similar applications which will occur in commercial problems are extension from
gross to net in payroll calculation, insurance dividend calculation, and bill computation
in public utility customer accounting.

Example

The following example of programming for square root is included to help clarify
how optimum programming is used. When programmed sequentially, this routine
requires approximately . 321 seconds (assuming 5 iterations). Secondly is shown
the same routine coded optimumly. The time required is reduced to .152 seconds.
Thus, the increase in speed is a factor of 2.1 to 1. Note, however, that the
optimumly programmed routine requires 2 additional storage locations so that the
constant 1/2 will always be located optimumly. Experience to date has shown that
the gain realized may be a factor of less than 2 to 1 to a factor as large as 6 or 7 to 1.
Computing During Input and Output Operations

At a card punching rate of 100 cards per minute up to 544 milliseconds are available

for computmg. This-is- approximately 5600 word times or 110 drum revolutions. At
a card reading speed of 200 cards per minute up to 257 milliseconds are available for
computing. (Thls is. approx1mate1y 2700 word times or 54 drum revolutlons)

/

A 4
N

13

. .
|
T T |
H |
i
uoponnul voponasug § _
oy (69 vT | (69 i
(0v2) 01 (gg) sasbary oo apiAla o wsouay g @ Ny |
(002) 01 (02) sanmbay doo AN o 4 b o srouy | o4l © T _
o
yoivag | nu:un“ uopannsu] _m
| pamday | (5 8y) |
T J1umg N m
v uf pey anvlaN Au ut prey) |
yoopawy | (1) wW | wawadwon (1 04 kd
Qaoway oqrag | i orqrug) _m
r 201MNWRIY yavag
.“u .nu T doot wworvy [¢4) o yweav () | _ -
voponnsuy uopannsul sp1ata 1 o | (2) B t
uoponasuL 4 o _ (6%) (s¥) 10 ® " wpr o) _m .m_m
V- woy | 1N waN fidnnw TRUBS | () g wulis] o) udj (r) |
o o wnay e ageug _ m
et © o w04 104 T _
osowsy | (T 104 UaA: |
4 | © (o) | @ sw [¢4) vaag | (1) wvorvi| @ | _m.
ot | goreag yaresg i 104 10 _
e | i WM () uem | (o) o+ | “
- A omqrang
punoy | (z) J— v) e v U pea 10mgasia womgasia | (p al{n |
| yoouaut | (1 3 [woousmul | (1) | (0 ol (M o mrd nra | |
s1qeuz snow w1qeu a0y aqeud wned] T 1 |
+ T T+ } |
! 2=z
s o) wvavi| @ ! 1
yms ¥vavi| (O door vl ums voneoor | e P wonve0y m_m Al
doo . ™ ort doo (0 s I (6») neg | 6y) 235 &g
e s © *cuxv ® PE geaqupy| (O g | - g Bra et
s el | oy @ T e yrs wugis| 0 | o w3 | | o g 2EE
2 weuny ey | (0) @ sy © 104 L o 1 sm“ © e ,w_w
T m o yorvag | 0.
uaag 1 (D) uAz
5—““ A.w 04 10 Jod .% oS | | oS “ __ =
e, (o M uf peay
uem |) ueM § (o + up peay uf proy @ somarmnna | (1) |
tonuoD Tonuod onginsig [(1) somquung 1. Pt v L d
g s | (@ uws | (D sasi3 LSS "W Pl = -
| it | s TER Ty B a0 vt
ph L spria
| 2 el 1€ o) w8y s Ldpiny novnqng wava
punoy pur 33us 31 y1s L4
pue NS

LAVHD 3IDNIND3IS 059 3IdAlL

woat | (1

wel

14

1
I
|

#191dwos 51 vonerado uioE_.::N snotaaid oy pyiun passed 3q J0uted Y WO

uopannsul | a131dwod sy vonesado yound snotaaid ay3 [13um passed 3q 10UUED g W04
(0] 131dwod 51 uontesado peay snoraaid ay1 T1un passed aq Jouued Y j0d
v ! *SHDOTILNI
1 o I 960° = QWD oM T
104 } sawm piom w = (w)
()] sBayuoneidg = WdO
yoreas | By sappy = AV
: sy weifory = W
T UONONNSU] JO SSAPPY uopdonAsu] = VI
ur pead m uoponnsyf jo ssAUppy t1ed = vd
nE uonannsyf jo apog uonesxdo = dO
nqeud | vononmsu} = 1 T T
| i
|
wav A.: *NOILYION uoInsyy | uorantu “
T T () | e
JoreTnwnao AN MON
M v | i i
up ssaippy | (1) oponnsyy | i o | @
b | (e9) 104 w04
w1 | () woN | Lo P
04| 10 voponnug | | o yareog " ya1eag |
nem | (@ _ () od | © -
1 1XON 1 u] pedy up peny
worppv | (0 I o s w | (1 Wl
od | @ oqe aqeuy
T | ut pray
.,,_..Sﬂmww eS| 9 @ avorvt | (1) worvt| (0
1391103, | anqeua
up proy
ned
¥ | (0 wyorve | (D) simg | @
BUELTLE (Y] | B3
@ T T T T
nueq
1awop | N | \ | I worvl| (1) aog | !
| uononnsy] uoponzsul | cu:u._b::_ uonannsuy | uoneot |
— Rl P 169 [(o) T | en | 6» j(&»
\ s | WON | . waN | “ waN| _xoz_ . neg | o
o) 1
uopannsuy _EH | s04 " o1 ﬂ o wopanasyy | ._E_ sog | o100 o o4 |
v | T j o | © I (e ! | © na | @
| @] a8 | qoress | waN _ o yorrag| youesg | 0 [EE T |
waumsr o,
i “ (0 " 1w od 1o om ng somqrang]
0 | urpray mao0 Bur | (D) © uf pray u1 pray a
yoreas | w03) | yoreag a | (D o1t (1)
[Wl ~youeig oN Jtur | o yoreas | Wl (1) | {1 somnunasyn somnunsdy 1
| 04| srqer peay ud aqend | (o) a1qeul sqery | n) Yodt
1t (] . 4] m somquusia rpo | (1
TP @ yoress | paumvay 1 |) pammbau 1| 30 R parmbajl| o panmbeN | g al o 04 | 1 oo o
a1qeuy | wWOVLE () ¥ 1 VI | (o) s1qeuz WOV (o) WOV () sorwnunooy *1 | wem | (0) L3
ua, vondaras Az m uf pexy uf pey
oo | m .aowwh:huw“.“ @ PR Au i ﬂw .”w :.w vonysod | (1) w04 | o owqumg | (D omgymal - (1)
wavi| @ v s1qeug pu 1oL Wavih nem| (0) wem | (o) staesa | L sow | LELIE PRV Y
4 i %
0,00 i $8 08 g.. T8 1Y 9 i Iomqnelq 1018 "o, “ut AN 1ddn 1M1
dors dn woo1 8 mave 8 “ma W NTW ¥ 7 nzNv n Ao S atong oimig
4O oN aqeL AO ¥

15

IBM IBM TYPE 650 PROGRAM SHEET PANTED th U5

Teade-Mark

PROBLEM:__Square Root WRITTEN BY:
a=VA , 0<AK]
LOCATION OPERATION ADDRESS REMARKS

INSTRUCTION| ABBRV. CODE DATA 'lNSTRUOTION i
SEQUIENTIAL PROGRAMMING REQUIRES 321 SEC

0102 RAL 45 0200 0103

103 |AU 10| 8001 0104 _a=(A*1) /2
0104 |MULT 19 0201 0105]
0105 STU 21 0202|0106 /
0106 |RAU 40 0200___|0107
0107 [MULT 19 0201 o108
0108 [DIVRU |64 0202|0109 a _ “la +Ala) /2
0109 |AU 10 0200|0110
0110 [MULT 19 0202___ o111
0111 |sT U 21 0203 10112
0112 |su 11 0202|0113 _Testa - 2

0113 |BRNZU |44 0114 {0101 1~ transfer back to main routine (0101).
0114 BR_MIN__| 46 0115 0101 Y.

115 LD 69 020310116 A -
0116 SID 24 0202 0106 iteration
0200: |1/2 = 5000000000
0201: (A
0202. o,

0203: Tempn:a:y
0101 Contalns_néal.ﬂggwcﬂonj main_routine.

o]l m m w b m m b m w e m e e e b e e o e e o as e w me e e e v ee e e e e

OPTIMUM-_PROGRAMMING-REQUIRES.. 152 SEC

0132 RAL 65 0142|0148 -
148 AU 10 8001 Qos___ IS _a, = _(A+ 1) /2
0105 |MULT _ 19 | 0108|0189 } M

0189 ST U 21 0144 0147 |

0147 |RAU 60 0100___ 10155

0155 |MULT 19 0108|0140 _

0140 IDIVRU (64 0144 10134 _a, .=(a_+Ala_) /2

0134 AU 10 0137 0141 e .

0141 MULT 19 0144 Q125

0125 st u 21 013010133 _

0133 ISy 11 0144 10120 Test apsd—=an—lfan, 3 -an2 0
0120 __[BRNZU [44 0124 10128 _transfer back to_maln routing i

L [BRMIN__1 44 0127 0128

0127 1D 49 0130 10135 Qpy3-—=a, < 0, thus, prapare to i
0135 I|STD 24 0144 (0147 repeat. iteration

0142: 1/2_ - 5000000000

0108:
| 0144: o,

0100: |1/2 = _|.5000000000

132: [1/2 = 5000(&00000

0130: {Tem Stora

0128: Con?:{;sry.r cxt_in%huction in' main routine

PAGE OF

AN INTERPRETATIVE FLOATING DECIMAL SYSTEM FOR THE IBM TYPE 650

G. R. Trimble, Jr.
E. C. Kubie

Introduction

This floating decimal system will perform 18 basic operations using a floating
decimal number system by means of interpretative programming. It was designed
with coding convenience as a prime objective. This is illustrated by the fact that one
of the basic operations is essentially a vector by vector multiplication.

Floating decimal instructions, that is, instructions which are to be interpreted,
have a negative sign. A floating decimal instruction consists of a two digit operation
code, a 4 digit address specifying the location of the first factor, a 4 digit address
specifying the location of the second factor (if required) and another 4 digit address
specifying the location of the third factor (if required). It is a variable address system
in that only as many addresses as are needed for the particular operation are required.

Thus, some operations use only one address, some require two addresses and others
require 3 addresses.

Floating decimal instructions will be taken from consecutive memory locations.
If an instruction requires one or two addresses, the instruction is stored in one memory
location. If three addresses are required, the third address is stored in the memory
location immediately following the one containing the instruction.

Should a positive instruection appear, it is interpreted as a normal 650 instruction
and subsequent instructions are not interpreted. Thus, upon occurrence of a positive
instruction the 650 operates in its usual D-I mode. This continues until an instruction
address of 0026 is given which causes control to return to the interpretative routine.
The program will return to the floating decimal mode of operation at the point of
departure.

For example, consider the following sequence:

17

18

Location Contents

n floating point instruction (-)
n+1 floating point instruction (~)
n+2 floating point instruction (-)
n+3 normal 650 instruction (+)

(The contents of n+3 are interpreted as a normal 650 instruction including the instruction
address for sequencing. Normal execution of instructions continues until 0026 is used
as an instruction address, at which time the program returns to the floating decimal
mode of operation beginning with the instruction in location n+4).

Number Form

The number form is as follows:

Exponent +50

‘ l Mantissa
XX XXXXXXXX:

Instruction Form

The instruction form is as follows:

floating point command (01-18)
1st address

2nd address
location i XX —")T:E%P
location i+1 00 XxXxXX 0OOO-

i+1 has this form only if the third address is needed, otherwise, the form of i+l is
the same as the form of i.

Floating Decimal Accumulator
A floating point accumulator referred to as K is used for accumulation and

accumulative multiplication. It does not need to be addressed in operations which make
use of it. For example, operation 01 (A+B -—3K) uses two addresses, A and B. The
sum is automatically stored in K as the result of this operation.
Operations ,

Below is a list of the operations with their codes, addresses required and estimated
average time of execution.

Code and Addresses Qperation Estimated Average Time
01, A, B A+B——K 62.8
02, A A+K——5K 54.7
03, A, B A-B—>K 63.1
04, A K-A—>K 59.5
05, A, B, C A+B—>C 81.8

Code and Addresses Operation Estimated Average Time

06, A, B, C A-B—.C 96. 2
07, A, B, C AXxB—+C 84.8
08, A, B AxB——3 K 78.4
09, A, B, C A/B——C 92.2
10, A, B A/B——K 72.2
11, A, B BRMIN A 28.4
12, A BR 18.7
13, A, B BRNZ A 30.8
14, A, B (AxB)+K—K 102.5
15, A, B K-(AxB)->K 102.5
16, A, B VA —B 157.9
17, A, B, C VALBHCT 4K 416.3
18, A;, By, n il;:l ABK (32. 4+92. 3n)

Explanation of programs
1. General Interpretation
The general interpretation routine takes instructions from consecutive memory

locations and analyzes them to see if they are normal 650 instructions or if they must be
interpreted. If the instruction is a normal 650 instruction, it is executed as such. If

the instruction is to be interpreted, the routine obtains the factor at address A and stores
it in location 0037. Control is then transferred to the proper sub-routine. The constant
in location 0193 facilitates use of the translating routine TR1. The amount of translation
is placed in the instruction address positions of this constant. This amount is then added
to the operation code and control is transferred to the translated sub-routine.

2. Addition Sub-Routine

The addition sub-routine adds the factors in locations 0037, in which A is
stored, and 0057, which is the floating decimal accumulator K. The result is normally
stored in the floating decimal accumulator K.

3. Multiplication Sub~Routine
The multiplication sub-routine multiplies the factors in 0037, which is A, and
0089, in which B is placed. The product is normally stored in 0037.

4. Division Sub-Routine

The division sub-routine divides the factor in 0037 which is A, by the factor
B, which had previously been placed in the lower accumulator. The result is normally
stored in 0057 which is the floating decimal accumulator.

19

20

The following sub-routines interpret the second and third addresses if required,
obtain the necessary factors and modify the addition, multiplication and division sub-
routines so as to store the result in the desired location. In some cases, they also
modify portions of other sub-interpretative routines.

5. Interpretation of 01
This sub-interpretative routine obtains the factor B and transfers control to
the addition sub-routine.

6. Interpretation of 02
Since the factors are already in place all that is necessary for this sub-
interpretative routine is to transfer control to the addition sub-routine.

7. Interpretation of 03
This sub-interpretative routine obtains the factor B, reverses its sign and
transfers control to the addition sub-routine.

8. Interpretation of 04
The sign of the factor A is reversed and control is transferred to the
addition sub-routine.

9. Interpretation of 05

Since the addition sub-routine makes use of the floating decimal accumulator
K, the contents of K must be temporarily transferred to another location, and returned
after the operation has been completed. This sub-interpretative routine obtains B,
modifies the addition sub-routine to store the result in location C and transfers control
to the addition sub-routine. After completion of the operation, control is returned to the
sub-interpretative routine and the addition sub-routine is restored to normal.

10. Interpretation of 06
This sub-interpretative routine modifies the sub-interpretative routine,
‘‘Interpretation of 05°’ so that the sign of factor B is reversed.

11. Interpretation of 07

This sub-interpretative routine obtains the factor B, modifies the multiply
sub-routine to store the product in location C and transfers control to the multiply
sub-routine. After completion of the multiplication, control is returned to this sub-
interpretative routine and the multiply sub-routine is restored to normal.

12 Interpretation of 08
The factor B is obtained, the last instruction of the multiply sub-routine is

modified to store the product in X and control is transferred to the multiply sub-routine.
After completion of the multiplication, control is returned to the sub-interpretative
routine ‘‘Interpretation of 07’’ which restores the last instruction of the multiply sub-
routine to normal.

13. Interpretation of 09

The factor B is obtained, the last instruction of the divide sub-routine is
modified to store the quotient in C and control is transferred to the divide sub-routine.
After completion of the division, control is returned to this sub-interpretative routine
and the last instruction of the divide sub-routine is restored to normal.

14. Interpretation of 10
The factor B is obtained and control is transferred to the divide sub-routine.

15, Interpretation of 11

The sign of the factor in location A is examined. If the sign is minus, control
is transferred to location B by modifying the general interpretation routine. Sequencing
of instructions then continues in the normal fashion beginning with B. If the factor in
location A is positive or its mantissa is zero, sequencing of instructions continues in
the normal fashion.

16. Interpretation of 12

The general interpretation routine is modified so that the next instruction is
taken from location A, Sequencing of instructions then continues in the normal fashion
beginning with A.

17. Interpretation of 13

The factor in A is examined and if its mantissa is not zero, the general
interpretation routine is modified to take the next instruction from location B. Sequencing
of instructions then continues in the normal fashion beginning with B. If the factor in A
is zero, sequencing of instructions continues in the normal manner.

18. Interpretation of 14

The factor B is obtained, the last instruction in the multiply sub-routine is
modified to store the product in 0037, which is A, and control is transferred to the
multiply sub-routine. After completion of the multiplication, control is returned to the
sub-interpretative routine, the last instruction of the multiply sub-routine is restored
to normal and control is transferred to the addition sub-routine which computes the
desired sum.

21

22

19. Interpretation of 15
The sign of the factor B is reversed andcontrol is transferred to the sub-
interpretative routine ‘‘Interpretation of 14”°.

20. Interpretation of 16

This sub-interpretative routine computes the required square root and stores
it in location B. The initial approximation is X = (1+4A)/(4+A), obtained from the
RAND Corporation ‘‘Approximations in Numerical Analysis’’ form 158, Notes.

21. Interpretation of 17

Factor B is obtained and temporarily stored in 0265. Factor A is squared
and stored in 0057 by the multiplication sub-routine. Factor B is then squared and
added to the square of A. Factor C is then obtained, squared and added to A% 4 B2,
Finally, control is transferred to the square root sub-routine and VALB%CE
is computed and stored in 0057 which is K.

22. Interpretation of 18

Operation 18 is a vector by vector multiplication. Address A, and address
B; are the addresses of the first elements of each of the vectors. Succeeding elements
of the vectors are then taken from consecutive memory locations starting with the
initial locations A, and B,. The third address, n, indicates the number of elements in
each vector.

Use is made of the sub-interpretative routine ‘“‘Interpretation of 14’’ to
perform accumulative multiplication. As each pair of factors are multiplied together
and added to the previous sum, n is reduced by 1 and zero tested. When n has been
reduced to zero, the last two factors have been multiplied and the operation is complete.

Storage _

This system requires 46'6‘_; storage locations. It uses locations 0000 through 0465.
Every location within-this block is used, thus making it easy to incorporate this program
with other programs. The translating routine, TR1 may be used to translate this
program to any desired block of memory locations. It should be translated by an
even amount however to preserve the even-odd conditions.

S LA

IBM IBM TYPE 650 PROGRAM SHEET FORM NO. 22-6181-0
PROBLEM: General Interpretation WRITTEN BY:
LOGATION OPERATION ADDRESS
0 REMARKS
INSTRUCTION] ABBRV. | CODE | DATA INSTRUGTION
0026 RAU 80 00290092
0092 AU 10 0099 0118 Increase i to i+l
0118 STU 21 0029 8001
gggé RAL 65 i+l 0439 Pick up instruction i+1
BRMIN ! _46 0025 8002 Is in i i+1 to be
‘mterpregea%
0025 LD 69 0028 00310\
0031 STDA | 22 0035 8001 [Put data at address A in location
8001 LD 69 A 0455 0037
0455 SLT 35 0002 ! 0334
0334 ST D 24 0037 0040
0040 ‘AU 10 0193 8003 Tr t o) -routine.
8003 NO OP 00 0000 | QoOfc
0029 RAL 65 i 0439
0099 00 0001 ! 0000 Constants
0028 LD 69 0000 0455
0193 Q0 0000 0000

23

IBM IBM TYPE 650 PROGRAM SHEET PRNTED IR US4
PROBLEM: —> WRITTEN BY:
(1) (A) = a1 Ay, (K)= agAz, a=xx, A= X, XXXXXXX+

[LOGATION OPERATION | ADDRESS [REMARKS
INSTRUGTION _ABBRV. | GODE | DATA __ JNSTRUGTION|
005 RAL 65 0057 | 0061 N 0057: K
0061 SLT 35 0002 | 0067
0067 STU 21 0073 | 0027 a3—»0073
0027 STL 20 0081 | 0034 A+=%0081
0034 |RAL 65 0037 | 0041 0037: A
0041 SLT 35 0002_| 0048
0048 TU | 21 0052 | 0055
0055 STIL. 20 0059 | 0062
0062 RAABL | 67 8003 | 0069
0069 SABL 18 0073 | 0077
0077 LT 35 0004 | 0087
0087 LD 9 [0090 | 0043
0043 FSI' DA 22 0098 | 0051
0051 BRNZ 45 0104 | 0056 Isag=2ay ?
0056 AL 65 0059 | 0078 o =ajy, Thus Aq =Ag + Ay
0078 L 15 0081 | 0038
0038 BRNZU | 44 00901 | 0044 [Is |A} [210°
0091 ISRD 31 0003 | 0101 lAbl 210, Thus A3=0.1A}
0101 LT 35 0002 [0058 i
0058 [BR MIN | 46 0111 | 0112 Is AS <0?
0111 SI, 168 0065 | Q070 4_A,5_Q0,__[n_m:easeﬁpmnnpnt by 1
0070 ISABI 18 0073 | 0127
0127 S1.T 35 0008_| 0045 Put exponent in normal positions
0045 AT, 15 8003 | 0053 (2 high order digit positions)
0112 L 15 0065 | 0120 Ag > 0. Increase exponent by 1
0120 ABL 17 0073 | 0127
0044 BRNZ 45 0049 | 0053 IA%I <10, Is Al=0?
0049 RAU 60 8002 | 0066 i
0066 CT 36 0000 | 0088 o<1Angm._mm_A-3 equals A}
0088 U 11 8002 | 0105 shiftéd and counted. v
0105 RAL 65 8003 | 0116
0116 BR MIN | 46 00701 0120 Is Aq <0 2
0104 LD 69 0057 | 0060 h
0060 RT 30 0005 | 0074 |# ag#£aj. Is lag -a,l 210?
0074 BRNZ 45 0080 | 0079
0080 BR MIN | 46 0033 | 0084 lag -agl 210, Isag >as?
0033 RAT. 65 8001 | 0053 a, 239 +10. Thus a.3 A3 = a] A]
0084 AL 65 0037 | 0053 a5 2a; +10. Thusag Ag=2ag Ag
10079 |BR MIN | 46 0032 | 0039 0°<| a9 =a4 1 < 10." Isag >a4"?
0032 RAL 65 0059 | 0064
0064 SRT 30 0002 | 0072 ay >a29. Thus A} = Ay + shifted Ag
0072 LD 69 ?OB]___O_QQR
0298 _[SRD 31 0000) 0071
10071 SI.T 35 0002 | 0030 Compute Aé
0030 L 15 8001 | 0038

39 LD 69 0052 | 0068
0068 ST D 24 0073 | 0076
0076 RAL 65 0081 | 0036 a A= i
0036 SRT 30 0002 | 0046 _Also, use a9 to compute ag
(0046 LD 69 0059 | 0098

24

PROBLEM:_(A) + (K) —» K Subroutine WRITTEN BY:
_ A)=ay A = Ao a= A= +
LOCATION OPERATION ADDRESS
INSTRUCTION] ABBRV. CODE DATA INSTRUCTION REMARKS
0053 ST I, 20 | 0057 0026 | Store sum in K
0090 < 31 0000 007
0065 |-
PROBLEM:.(A}.&.(B):Lthr_mnm___ WRITTEN BY:
(A) = m3 M1, (B) = mg M2 , m=xx, M=X. XXXXXXX +
LLOCATION OPERATION ADDRESS
OF REMARKS
INSTRUCTION| ABBRV. GCODE DATA iNSTRUGTION .
0134 |RAL 65 0037 0141 0037: A. Separate exponent and
0141 |si.T 35 0002 0097 |3 mantissa
0097 STL 20 0151 0106) Mi:"lﬂlsl M1 =X. XXXXXXXX0Q
0106 |RAU 60 8003 0063
0083 |SRT 30 0002 0119_ N m+ - 50
0119 |RAABRBI. |67 8002 0128 [{ *
0128 |SL. 16 0131 0085
0085 AU 10 0089 0093 0089: B. Testto see ifM2<O
0093 _|BR MIN |46 0096 0147
0096 iSU 11 8001 0103 ,
0103 [SL 16 8001 0161 Mg__(0
0161 [SLT 35 0002 0117 Put
0117 |AU 10 8002 0075 3 = mo=-50 in lower accumulator,
0075 [RSU 61 8003 0138 Acc: o MMMM/mmo0000000
0138 [SRT 30 0002 0095
0147 [SU 11 8001 0155
0155 AL 15 8001 0113 Mo > 0.
0113 (SI.T 35 0002 0121 Pt i tor and
0121 AU 10 8002 0115 mh = m+ + mo =50 in lower accumulator |
0115 |RAUL 60 8003 0138 d - 4
MPY 19 0151 [0082 | M4 =My x Mg
0082 [RR MIN |48 0135 0086 4
0135 [SI, 16 0139 0094 %
0086 |AL 15 0139 0094 [\ Round M3 in 7th decimal place
00904 1D 69 8003 | o100 [l
0100__ISLT 35 0002 0107
0107 [SRT 30 [0001 | 0163) Te if M2 i form
01683 {SCT 36 0001 0170 OX. XXXXXXXX O XX, XXXXXXXX
0170 [BROV 147 0123 0126
0123 [SRT 30 0009 0181
—| 0181 ISRD 31 0002 0102
0102 IST DA 129 0205 0108
0108 ISTIA {23 0211 | 0114 3 M3 isof the form oX.xooooocx
RAL 85 1 0171 Round MS in 8th decimal place
0171 |BR MIN 46 0124 0125 to get M.
0124 AL 15 0178 0083 J
0125 |SL, 16 0178 0083
STL 20 0037 0026
0126 [RAT. 65 8001 0042 | :
| Q042 |BR MIN |46 0000 0050 mg = mg +1
| 0000 _[SL 16 0109 0083 ©
| 0050 AT 15 0109 0083
0131 .5 00 ,\
0139 I: 5 00 Constants
0178 |- 0 05 |
0109 |- 01 00
in Aeesssad il 0191 el il N el o

An

L4

om Cote

a,:;/?ja. Ty oitf g LAl » 2 4%47«‘.,;4 snl, Bcdiocsva
979

25

26

IBM IBM TYPE 650 PROGRAM SHEET PRNTED N S A
PROBLEM: (A : WRITTEN BY:
(A) =d;Dy , (B) =dg Dg d=xx, D= X.XXXXXXX
[COGATION | _ OPERATION ADDRESS
REMARKS

INSTRUCTION| ABBRV. CODE DATA NSTRUGTION|

0213 lsrT 135 | 0002 | 0169

0169 | STTII 21 0174 0177 d

0177 _|STL 20 0081 0184 Do —20081

0184 [RAL 65 0037 0191 @

0191 [SLT 35 0002 0148

0148 |STU 21 00589 0263 d1 ~—»0059

0263 | RAU 60 8002 0221 -

0221 SRT 30 0001 0227 D4 .—-.'_'[11,/]32

0227 | DIV RU| 64 0081 0464 v

0464 | BR MIN| 46 0159 0209

0159 [SIL 16 0162 0167 Round D} in 8th decimal place.

0209 |AL 15 0162 01617

0167 | SL.T 35 0001 0223 Tpmw%

0223 | BRNZ1I| 44 0130 0228 form X. XXXXXXXXX Or X

0228 | BR MIN!| 46 0132 0182
| 0132 AL 15 0185 0189 DL is of the form o. xxxxXXXXX, thus

0182 [SI. 16 0185 0189 réund D% in the 9th decimal place

0189 |[SRT 30 0002 | 0145 [} to get D3.

0145 [SLT 35 0002 0152 o

0152 BR_MIN| 46 0255 (0156

0255 |SABI 18 0059 0164 I{

SL 16 0217 0321

0321 | AABL |17 0174 0179 dg =dy = d2 + 50-1

0156 |AABI. |17 v

0214 [AL 15 0217 0371

0371 | SABL 18 0174 0179

0130 [SRT .30 0003 _| 1

0140 | SLT 35 0002 0149 D5 = pd

0149 | BR MIN| 46 0153 0154 g 9

0158 |SABL._ 18 0059 0313

0313 | SI. 18 0168 0321 de = dy-dg + 50

0154 | AABL |17 0059 0363 v -

0363 | AL 15 0166 0371

0179 | RAU 60 8002 0137

0137 | SRT 30 0002 0143 Put dq in normal position

0143 | AU 10 8002 0202 e

0202 | STU 21 0057 0026

0162 0000000050

01856 '%50 Constants

0217 | :0 49

0166 :0000000050

FORM NO. 22-618!-0

IBM IBM TYPE 650 PROGRAM SHEET FORM No. 226l
PROBLEM:_INTERPRETATION OF 01: WRITTEN BY:
A) + (B) —»K
LOCATION OPERATION ADDRESS
INSTSUCTION ABBRV. CODE DATA !NSTRUGTION REMARKS
0001 [SLT 35 0002 | 015 ‘
0157 |LD 69 0110 | 0165 [\
0165 |ST DA [22 0073 8001 _|{ Put B in 0057
8001 |RAL 65 B 0453
0453 STL 20 0057 0054
0110 [: 650000045
_ I
IBM IBM TYPE 650 PROGRAM SHEET P e
PROBLEM:___INTERPRETATION OF 02: WRITTEN BY:
(4) + (K) —»K
LOGATION OPERATION ADDRESS
| o REMARKS
INSTRUCTION] - ABBRV. CODE DATA ENSTRUGTION
0002 NO OP 0O 0000 | 0054
IBM IBM TYPE 650 PROGRAM SHEET fom i 220
PROBLEM:_INTERPRETATIONOF 03: ~ WRITTEN BY: _
(A) - (B)=—p»K
—LcTc;mT OPERATION ADDRESS
INSTRUCTION| ABBRV. CODE DATA iNSTRUCTlON REMARKS
0003 _|SLT 35 0002 | 0160
0160 |LD 69 0215 0168 [{
0168 ST DA |22 0073 8001 | Put -B in 0057
8001 |RSL 66 B 0453 1\ '
0453 st [20 | 0057 | 0054
0215 |: 66000?0453
IBM IBM TYPE 650 PROGRAM SHEET PANTED 1y e
PROBLEM:__INTERPRETATION OF 04: WRITTEN BY:
(K) - (A)—r»K
LOGATION OPERATION ADDRESS J :
INSTRUCTION] ABBRV. CODE DATA LNSTRUGTION : REMARKS
0004 | RSL | 66 00371 0133 1} Pyt -A in 0037
0133 | STL 20 003710054

217

28

IBM IBM TYPE 650 PROGRAM SHEET

Trale-Mark

FORM NO. 22-618!-0
PRINTED IN US.A.

PROBLEM: __INTERPRETATION OF 05 WRITTEN BY:
(A) + (B) =5C
l LOGA":I’ION OPERATION ADDRESS | REMARKS
INSTSUGTION ABBRV. CODE DATA INSTRUGTION,
0005 |SI,T 35 0002 0212
0212 1D 69 0216 0220 |t Modify instruction to get B
0220 |ST DA |22 02173 0176
0176 |RAU 60 0029 0183
0183 AU 10 0186 0192 Increase i+l to i+2
[0192 |AL 15 8003 0199
[0199 LD 69 0252 0206
0206 ST DA 122 0059 | 8001 Get third address (C) from j+2
8001 [AABI. (17 i+2 0463
0463 LD 69 0057 0262 Put K in 0265 temporarily
0262 ST D |24 0265 0218
0218 ST, 16 8003 0175__\ Store i+2 in 0029
0i75_ISTD |24 0029 o187 |
0187 1D 69 0142 0196
0196 |ST DA_ {22 0053 0273 inC,
0273 [RAYL. |65 B 0453) Get (B) and transfer to add
0453 ST L.__ 120 0057 | 0054 i
0188 LD 89 0265 0195 Return K to 0057
0195 _IsTp_ [24 0057 | 0104 [
0194 _|I.D 69 0197 0150 Restore last instruction of Add
0150 TD 124 00531 0026 1.
0216
0252 Caonstants
0142
0197
IBM IBM TYPE 650 PROGRAM SHEET PRWTED WUSA
PROBLEM:_INTERPRETATION OF 06: WRITTEN BY:
(&) = (B) weeppC
l'T.OicA;NON OPERATION ADDRESS] REMARKS
)
mngUU&B%N %BEIY' c%%s 0%602 Nsrnggggu Modify interpretation oi Uo 10
0264 LD 69 | 0267 0220! obtain -B

02671 . 6600 0045_?;1

IEM IBM TYPE 650 PROGRAM SHEET PRINTED N USA
PROBLEM: : WRITTEN BY:
(A) x (B) —=C
LOGATION OPERATION ADDRESS T
INSTRUCTION ABBRV. | GODE | _DATA INSTRUCTION REMARKS
0007 | SLT 35 0002 0266
0266 | RSI. 66 8002 0225
0225 { AU 10 0029 ify instruction-toget B
0233 LD 69 023610190
22 0243 0246
0246 | RAL 65 8003 0203
0203 | AL 15 0207 0261
0261 | LD 69 0314 0268 Increase i+l to i+2. Get C and
68 | ST DA 22 0073 | 8001 :
8001 | S11 11 i+2 0458 modify last instruction of multiply
0456 | . ST I 20 0029 0239
0239 | AU 10 0242 0198 routine-to-store-preductinG—— |
0198 | ST U 21 0083 0243
0243 | RAL 65 B ""70456;}_&L.B_aud_stn1:&itin_ﬂ089 Go
0456 | ST L 20 0089 0134 to multiply sub-routine,
0454 | 1D 69 0226 0230 Restore last instruction of multiply |
0230 | ST D 24 0083 0026 routine to normal
0236: | BF 4865
ﬂ9n'7:
0314- [1100000456 Constants
0242- | 2000000454
| 0226: | 2000370026
IBM IBM TYPE 650 PROGRAM SHEET PRINTED 1N USa
PROBLEM: _INTERPRETATION OF 08: WRITTEN BY:
(A) x (B) —»K
LOCATION OPERATION ADDRESS
OF REMARKS
INSTRUCTION] ABBRV. | GODE | DATA __ INSTRUGTION
0008 SL.T 35 0002 0315
0315 LD 69 0219 0172
0172 ST DA |22 0277 8001
| 8001 {I.D 69 B 0462
0462 (ST D 24 0089 0244
0244 |ID 69 0158 0129 1\ t. _of mult, routine
0129 [STD. [24 0083 | 0134 | i n go ta
0454 to restore last inst. of mult
routine-to-normal
0219 16900000462
0158: (2000570454 { Constants

29

IBM TYPE 650 PROGRAM SHEET rome x0. 22-181-0

IBM
PROBLEM: WRITTEN BY:
(a)/(B) —»C '
LOCATION OPERATION ADDRESS B
Ol - REMARKS
INSTRUCTION] ABBRV. CODE DATA NSTRUGCTION
0009 [SLT 35 0002 0317
0317 | RSL 66 8002 0276
0276 1AU 10 0029 | 0234 { Modify instruetion-to-get-B
0234 LD 69 0237 0240
0240 |ST DA 129 0243 | 0248
0248 [AY 10| 0201 | 0208
0208 |RAL 165 | 8003 | 0316 || Iner
0316 |AU 10 0269 0224 madify last instruction of divide
0224 IST L 20 0029 0232 rqutme_to_smm_quntlent_m_c_.______
0232 LD 69 0285 0238
0238 ST DA |22 0241 8001
8001 9] 11 i+2 0461
0461 (ST U 21 0202 0243
0243 |RAIL 65 B 0213 Get B and go to divide routine
0293 LD 69 0296 0249)\ Restore last instruction of divide
0249 _IsTD |24 0202 0026 routine-to-normal
0237: 16500000213
0201: 10000010000
0269. 12100000293 Constants
0285: (1100000461
0296: |2100570026
IBM IBM TYPE 650 PROGRAM SHEET PRNTES 15 0o A ©
PROBLEM: INTERPRETAT : WRITTEN BY:
@)/ (B):R'EK
ILOO&;I’ION OPERATION ADDRESS . REMARKS
INSTRUCTION] ABBRV. CODE DATA NSTRUGCTION
010! SLT 35 0002 02220\
0222! LD 69 0237] 0290!\ Put Binlo
0290 ST DA| 22 0243 8001/f to divide routine
8001 RAL 65 B 0213
0237!] 6500000213 Constant

IBM IBM TYPE 650 PROGRAM SHEET et
PROBLEM:__INTERPRETATION OF 11: WRITTEN BY:
Branch Minus
LOG(A;\;I’ION OPERATION ADDRESS REM
INSTRUCTION! ABBRV. CODE DATA NSTRUCTION EMARKS
0011 | SRT 30 0002 0417
0417~ }-~A -] 1010037 -]~ 0378 _Test for minus.,—If plus, donot hranch
0378 | BR MIN 46 0382 0026
0382 | SLT 35 0002 0339)
0339 | SRT 30 0002 0397 Test for zero. If zera_do not branch
0397 | BRNZIl 44 0352 0026
0352 | SLT | 35 0004|0420
0420 | LD 89 | 0373 | 0426 4 Modify 0029 and get next
0426 | ST DA | 22 0029 8001 instruction
8001 | RAL 65 B 0439
AT L
0373 RRQQ_OO?ASQ Constant
IBM IBM TYPE 650 PROGRAM SHEET Famres s
PROBLEM:__ _INTERPRETATION OF 12: WRITTEN BY:
Branch
LOCATION OPERATION ADDRESS
REMARKS
INSTRUCTION| ABBRV. CODE DATA NSTRUCTION
0012 SRT 30 0002 0420
0420 |LD 69 0373 0426 Put A in 0029
0426 T DA 22 0029 8001
0373: 16500000439 Constant
IBM IBM TYPE 650 PROGRAM SHEET PRNTED NS
PROBLEM:_INTERPRETATION OF 13: WRITTEN BY:
Branch Non-Zero
LOCATION CPERATION ADDRESS
REMARKS
INSTRUCTION] ABBRV. CODE DATA NSTRUCTION
U015 - | SRT 30 | -0002- | 0423
-0423—-AU -1 0} 0037 . |.-. 0431
0431 | BR MIN| 46 0382 0336 Put -|Alin upper accumulator |
0336 | SU 11 8001 0443
0443 | SU 11 8001 0382
0382 | SLT 35 0002 0339
0339 | SRT 30 0002 | 0397) Test for zero. I zero do not branch
0397 | BRNZ1i 44 0352 0026
0352 | SL.T 35 0004 0420
0420 | LD 69 0373 | 0426 |{ Modify 0029 and get next
0426 [ST DA |22 0029 8001 [instruction
8001 | RAL 85 B 0439 /
Cof O S b
J i A A
N /i i
0373: | 6500000439 Constant

31

IBM IBM TYPE 650 PROGRAM SHEET PRNTED WS A

PROBLEM:; INTERPRETATION OF 14: WRITTEN BY:
EE B HE —K
LOGATION [OPERATION ADDRESS
REMARKS
INSTRUCTION| ABBRV. | CODE DATA___ANSTRUGTION
0014 | SL.T 35 0002 0422
LD 69 03175 0278
0278 ST DA 22 0081 8001 Put B in 0089
1! RAL 65 B 0358
8&58 ST I, 20 0089 | 0392
0392 | LD 69 0398 0357)) ultipl
03571 ST D 24 | 0083 0134 g routine to store product in 0037
0399 | 1D 69 0402 0355 Restore last instruction of mulfiply
0355| ST D 24 0083 0054 routine to normal
0375:] 650000D358
0398:] 2000370399 { Constants
0402: 2000370026
IBM IBM TYPE 650 PROGRAM SHEET FonM NG, 22 8181-0
PROBLEM: _INTERPRETATION OF 15: WRITTEN BY:
(K) - (A) x (B)—»K
l LOCATION OPERATION ADDRESS |
OF REMARKS
INSTRUCTION] ABBRV. | CODE | DATA NSTRUCTION
0015 | SLT 35 0002 0421 Modify ‘‘Interpretation of 14’ to

0421 | LD 69 0424 0278 obtain -B

0424- 6@0.0_0_?3 58 Constant

IBM IBM TYPE 650 PROGRAM SHEET PRINTED N o en
PROBLEM: INTERPRETATION OF 16: WRITTEN BY:
| VA)—>» B
LOCATION OPERATION ADDRESS
REMARKS
INSTRUCTION| ABBRV. CODE DATA NSTRUCTION
0016 LD 69 0326 10329
0329 SLT 35 0002 10335 |f Modify instruction to store square |
0335 ST DA |22 0241 10306 root in B :
0306 RAL 65 0037 10323
0323 SLT 35 0002 10279 Separate a3 Ay, Store Ay in 0283
0279 ST L, 20 0283 10286 i - -
0286 RAL 65 8003 10343
0343 AU 10 8001 0251
0251 AU 10 8001 10210 1/2 ay
0210 Al 10 8003 0387
0367 AU 10 8002 10325
0325 SRT 30 0001 (0281
0281 SU 11 8003 10289 Is a3 even or odd?
0289 SLT 35 0001 10245
0245 BRNZII |44 0250 (0200
0250 RAU 60 8001 (0307 Y
0307 Al 10 0260 0415 a1 even ag-.-E /2 a1\ +25
0415 SRT 30 0002 10322 - P)
0322 ST 1. 20 0277 10330 29902177
0330 RAU 80 0283 10287
0287 SRT 30 0002_ {0294
10200 RALL a0 8001 0257
0257 _ [AU 10 02600365 aj odd. as =11/2 ay] 425
0365 SRT 30 0002__lo272 - \ =
0272 ST L 20 027710280 a9 —»0277
10280 RAU 60 0283 0337
0337 SRT 30 0001 {0294
0294 AL 1 8003 |0301
0301 AL 15 0204 0259 Store A in 0265,
59 ST I 21 0265 (0318 Store 4+A in 0273
318 ST L 20 027310376
0376 RAU 60 8003 10284
0284 AU 10 8001 10291 ¢ Compute 1+4A
10291 I 10 8003 {0299
10299 AU 10 0253 10258
0258 ISRT 30 0001__10270 Xa-= (1+4A)/(41A)
0270 DIV RU [64 0273 0440 I i
0440 Al 10 0265 10369
0369 SL 16 8002 10327 Test to see if A is zero.
1327 BRNZ 45 0380 0274
0380 DIV.RU |64 8001 {0460
0460 AT, 15 8001 10413
0413 SRT 30 0001 10320
0320 Al 10 8002 10379 X4 =1/2 (Xn +A/XA)
0379 L 15 8001 (0387 A SR
0387 AL 15 8002 10295
10295 AL 15 8003 10303
303 RAL 85 8002 l0311 [
0311 AU 10 026510370
70 SL 18 8002 1038+

33

34

IBM IBM TYPE 650 PROGRAM SHEET FoRM No. 22-6161-0
PROBLEM:_%_;‘_EBEREIMIQN_Q_EJ.G;_ WRITTEN BY:
A) —»B
LOGCATION OPERATION ADDRESS] REMARKS
INSTRUCTION| ABBRV. CODE DATA INSTRUCTION
0381 DIV RU 64 8001 | 0451
0451 AT, 15 8001 | 0304
0304 SRT 30 0001 | 0312
0312 AU 10 8002 | 0374 Xg = 1/2 (X3+A/Xy)
0374 | AL 15 8001 | 0282 : -
0282 AL 15 8002 | 0292
0292 AL 15 8003 | @300
0300 RAL 65 8002 | 0310
0310 AU 10 0265 | 0419)
0419 SL 16 8002 | 03717
0377 DIV RU|_64 8001 | 0452
0452 AL 15 8001 | 0256
0256 SRT 30 0001 [0364 [f X3=1/2 (Xo+A/Xs)
0364 AU 10 8002 | 0324 4 “
0324 AL 15 8001 | 0331
0331 AL 15 8002 | 0340
0340 AL 15 8003 [0450
| 0450 RAL 65 8002 | 0409
0409 ATl 10 0265 | 0180 N
0180 SL 16 8002 | 0144
Q 4% DIV _RU._64 8001 0458
045 AL 15 8001 | 0459 X4=1/2 (X3+A/X3)
0459 SRT 30 0001 | 0235
0235 AT 10 8002 | 0146
0146 Al 15 8001 | 0405
0405 Al 15 8002 | 0231
0231 AL 15 8003 | 0247
0247 RATI 80 8002 | 0305
0305 SCT 36 0000 | 0361 Normalize t
0361 BROV | 47 0366 | 0366 |7 reset' overflow circuit.
0366 SRT 30 0002 | 0274
0274 AUl 10 0277 | 0241 Put exp i
0241 ST U 21 B 0026 ultin B
0236: | 210 026 -/
-0260:---1-0000000025 ! 1Y Constants
0204: 0400000000 ’ '
0253: 0100000000 /

IBM IBM TYPE 650 PROGRAM SHEET PANTES N G.SA
PROBLEM:_INTERPRETATION OF 17: WRITTEN BY:
C A)3 + (B)2 + (C)2 =K
LOGATION OPERATION ADDRESS I REMARKS
INSTRUCTION] ABBRV. | GODE | DATA __INSTRUGTION
0017 SLT 35 0002 | 0275
0275 LD 69 0037 | 0136
0136 ST D 2 0089 | 0342
0342 LD 89 0345 | 0298
0298 ST DA | 22 0351 | . 8001 Prepare to compute (A)? and
8001 RAL 65 B 0408
0408 | LD 69 0427 | 0430 put (A)? in 0057
0430 STD 24 0083 | 0346
0346 STL | 20 0265 | 0134 temporarily put (B) in 0265.
0360 RAL 65 0265 | 0333
0333 ST L 20 0089 | 0297 Prepare to compute (B)? and
0297 LD 69 0254 | 0308
0308 | STD | 24 0083 | 0141 put (B)?.in 0037
0341 L.D 69 0395 | Q349 Prepare to compute (A)24. ‘B)’ and
0349 ST D 24 0053 | 0054 ‘]’ store it in 0057
0362 RAL 65 0029 | 0383
0383 AL 15 0186 0391
0391 LD 69 0394 | 0347 -
0347 ST DA | 22 0351 | 0354 Increase j+ito_i+2. Get C
0354 AU 10 8001 | 0411
0411 ST 1, 20 0029 8003 and prepare to compute ()2
8003 RAL 65 i+ 0466 7
0466 SL 16 0338 | 8002 and put it in 0037
8002 RAL 65 C 0437
0437 STL 20 0089 | 0396
0396 LD 89 0302 | 0368
0368 STD 24 0083 | 0141
r__()_3_9_() LD 89 0393 0348
0348 STD | 24 0053 | 0309 Prepare to compute (A)%(B)%(C)2
0309 LD 69 02261 0429 _and store it in 0037
0429 ST D 24 0083 0054
i 0328 LD 69 0332 | 0288 Restore last instruction of add
..-0288 ST D 24 0241 | 0344 routine to normal
. 0344 | 1D 69 0197 | 0350 Prepare to compute V{(A)%(B)%(CR |
0350 ST D 24 0053 | 0306
0345:. 6500000408
04217 2000570360
0254: 2000370341
| 0395: | 2000570362
0394: 6500000466
! _0338: 65000004317 Constants
L 0302- 2000370390
1_0393: | 2000370328
:..0332:.....2100570026

35

IBM IBM TYPE 650 PROGRAM SHEET Fonres ;-

Trwe-Mark

PROBLEM:I};m____EL‘_T_IQ_N_QF_lﬁ:___ WRITTEN BY:

A
. Y K h
LOCATION 1=l OPERATION ADDRESS I
OF REMARKS
INSTRUCTION] ABBRV. | CODE DATA __ INSTRUCTION U

0018 SRT 30 0002 | ~0425

0425 | -SU- | -11- 0029 1-0384- ‘ 4)in_ 0389
0384 ST 1., 20 ; 0389 0442
0442 RSL 661°“7:8003 | 0401 oo e
0401 STU 21 0057 | 0412 Put zeros in K
0412 AL 15 0416 | 0432
0432 LD 69 0385 | 0388 Increase i+l to i+2 and get n
03388 STDA|[22 0241 | 8001
8001 SU 11 i+2 0457
0457 ST L %0 0029 | 0433
0433 SU 1 0386 | 0441 '\ Store n-1_in 0386
0441 LD 69 0444 | 0447 I\ Modify last instruction of add
0447 STD 24 0053 | 0356 |2 rontine to return control to 410
0356 ST U 21 0414 0434
0434 RAL 85 0389 | 0445 Prepare to get By
0445 SLT 35 0004 | 0422 I
0410 BATI a0 0414] 0418 Test to_see if n has been reduced
0418 BRNZ | 45 0122 | 0438 |f to zero g
0122 S1I 11 0428 04386 ﬁ
0436 AABIL | 17 0389 | 0446 Decrease nby 1, Increase Ajand | ,
0446 AL 15 0449 | 0359 Bi by 1, \J’
0359 STU 21 0414 | Q435
0435 ST 1. 20 0389 0448
0448 LD 69 0403 0406
0406 | ST DA| 22 0059 | 8001 } Get Ajsqand prepare to get Bisg

8001 LD 69 Aa.;_ 0407
1 ST D 24 0 3]7 0404
4 SLT 35 0004 | 0422

0438 LD 69 0197 ! 0400 Restore last instruction of add
0400 ST-D 24 0053 10026 routine to-normal.

Al

0416: | 0000010000 .
0385: 1100000457
0386 0000010000
0444- 2000570410 Constants
0428- 0000010000
| 0449: 0000010001
0403: 690000ID407

B

FLOATING DECIMAL SUB-ROUTINES FOR THE IBM TYPE 650

G. R. Trimble, Jr.

Introduction

The sub-routines given in this article will perform the basic operations of
addition, multiplication, division and square root using a floating decimal point
number system. These sub-routines are designed to obtain maximum speed at the
expense of doubling the memory needed for storage of data. The coder places the
factors in specified registers, places the next instruction in the distributor and
transfers control to the sub-routine. The floating decimal operation called for is
performed, the result is left in the lower accumulator and in the distributor and
control is returned to the main routine. Usually, the next operation performed will
be to store the result in the desired locations.

The entire set of sub-routines uses locations 0000 through 0193. It is
programmed to use every memory location within this block of memory and does
not use any memory locations outside of it.

Each number is composed of 2 parts. The mantissa is 10 digits in length and
may be either positive or negative. The exponent is 6 digits in length and may be
either positive or negative. There is no special relation between storage locations
of the mantissae and exponents.

Discussion of Sub-Routines
The system consists of the following sub-routines.

Operation Estimated Average Time
Addition 18.4 ms
Multiplication 17.5 ms
Division 17.5 ms
Square Root 118.6 ms

Subtraction can be performed by simply reversing the sign of one of the
factors before performing an addition.

The times given above do not include the time required to obtain factors, place
them in the calling registers, and store the result. This requires approximately an
additional 30 ms for the add, multiply and divide sub-routines and 15 ms for the square
root sub-routine. If results are stored judiciously, it will not always be necessary to

37

38

obtain both factors. For example, if a product was to be used in the addition sub-
routine, it could be stored in the calling registers for the addition sub-routine and thus
already be in place at the time it was needed. Use of techniques such as this can reduce
the time required for calling sequence by a factor of about 1/2.

It is assumed that factors are in ‘““normal ’’form when a sub-routine is entered.
That is, the high order digit is non-zero unless the entire number is zerc. If this is
the case, the result will always be in normal form.

Trade-Mark

PROBLEM:_FLOATING DECIMAL ADDITION WRITTEN BY:

IBM TYPE 650 PROGRAM SHEET PRNTED 1R US A

LOCATION L OPERATION ADDRESS
REMARKS
INSTRUCTION| ABBRV. CODE DATA NSTRUCTION
, | 0000 ST D 24 | 0003 {0006 | Store next instructionin 0003 |
0006 RAL 685 01109__0014__—0009.—4’»2_—-}0000520000
0014 S, 18 1
0021 | BR MIN 46 | 0034 | 0035 %lagr_ai 152 FIOOK0000
. 0024 | LD 69 | 0027 gnsn_%_lzcepammshituxz_(aj_zagp___ —
0030 ST DA | 22 0033 | 0036 | |
0036 SRT 30 0005 | 0049 Is a3 2 + 10?2 1
0049 BRNZ | 45 0002 | 0004 2 i
0004 RAL 65 0008 | 0033 Oﬂﬂﬁz_A%,_Sh.i.f.Lﬁze_a.mLadd____,
0033 SRT 30 | OQOON | 0053 A, to gét Aq i
0053 AL 15 0058 | 0013 0058: A4 - (a2<a1<‘é2 + 10)]
0013 BRNZU| 44 0019 | 0018 Is A4 = 10?2
0018 RAU 60 8002 | 0077 5
0071 SCT 36 0000 | 0040 | 5
[0040 STU |21 0044 | 0005 and stare it in 0044 i
0005 RSABL | 68 8002 | 0063
0063 LD 69 0017 | 0020 a3 =a] - Count Number. Put Aq in
0020 SLT 35 0004 | 0032 distributor. M
0032 AL 15 8001 | 0041
0041 LD 69 0044 | 0048
0048 BROV | 47 0003 | 0003 Routine completed, Go to next inst.
| 0019 SRT 30 | 0026 | ALz 10 Shift right 1.to get Ag =
, 0026 STIL |20 0044 | 0010
0010 RAL 65 0017 | 0022 ag =2y 41 !
0022 AL 15 00781 0041 —
0002 LD 69 0058 | 0011 } 342 agﬂll Thus Aq =A. and
. | 0011 STD |24 0044 | 0012 o= a.. .‘
0012 RAL 65 0017 | 0041 ° 1 f
0025 LD 69 031 Prepare to shift Ay ‘32 Z a1) i
0031 ST DA | 22 0035 | 0038 il]
0038 SRT 30 0005 | 0001 Is ag = ay +10? ;
0001 BRNZ | 45 0054 | 0055
0055 | RAL 85 0058 | 0035 | _ Shift Ay an A
0035 SRT 30 000N | 0052 __(a,l_j_z Say +1m
0052 AL 15 0008 | 0064 :
0064 BRNZU| 44 0067 | 0068 Is A2z 10?
¢ 0068 |RAU |60 8002 | 0127 A3<10. Shift and count A3 to get Ag |
0127 SCT 36 0000 | 0039 |
0039 STU [21 0044 | 0047 !
a 0047 RSABL | 68 8002 | 0056 ag = ag -count number
0056 LD 69 0009_| 0020
0067 SRT 30 0001 ! 0029 Ay 210, Shift right 1 to get Ag
0029 STI. |20 0044 | 0050 e
0050 RAL 685 00091 0022 Qo= 2n 4
0054 LD 69 0008 | 0015 _ 9 ettt
0015 STD |24 0044 | 0051 2g Z ay410Q, Thus, a3 = as and -
0051 RAI.__| 65 0009 | 0041 Ao = A,
0078: | 00 0001/0000 v “
Q027 30 00000053 Constants
0028: 1 30 0000.0052

39

IBM IBM TYPE 650 PROGRAM SHEET PRNTED O eA
PROBLEMFLOATING DECIMAL MULTIPLICATIGN TEN BY:
~ LocAF?lon [OPERATION ADDRESS CEMARKS
INSTRUGTION ABBRV. | GODE DATA __ INSTRUGTION
0130 STD 24 0083 0086 Store next instruction in 0003: ~» ¢ i .
0086 RAU 60 | 0089 0043 0089: A \AL=-A xA_
0043 | MULT | 19 | 0046 0102 0046. A-) ° L 4
0102 BRMIN| 46 | 0105 0106 Is AL> 2 0°?
0105 SU 11 | 0059 0114 Ao<°0. Testtoseeif | AL | > 10
0114 BROV | 47 | 0117 0069 hd v
0117 SU 11 | 0071 0125 AL | >.10. Store A, in 0080
0125 STU | 21 | 0080 0042 9 o
0069 SLT 35 0001 0126 AL | <10, Store A, in 0080
0126 STU | 21 | 0080 0045 v o
0106 AU 10 | 0059 0113 Al >0, Test to see if AL >10.
0113 BROV | 47 | 0016 0118 L v
0016 ATl 10| 0071 0076 Al >10. _Store A. in 0080
0076 ST U 21 0080 0042 L J
0118 SLT 35 0001 0075 Al <10, Store A in 0080
0075 ST U 21 | 0080 0045 hd e
0042 RAL 65 [0100 0007 AL | >10.) |
0045 RAL 65 | 0101 0007 1ALl <10.§ ag=aq+ag +(0 or 1)
0007 AL 15 | 0061 0066 .9 I
0066 AL 15 | 0119 0023 0119: 5.+ /
0023 LD 69 0080 0083 Put A3 4 in dist. and go to next ingt,
0059: 19000000/000
0071 11000000{000 Constants
0100: [0000010(000
0101: 10000000 00Q

PAGE OF

IBM IBM TYPE 650 PROGRAM SHEET e el

Trade-Mark

PROBLEM: FLOATING DECIMAL DIVISION WRITTEN BY:

LOGATION | _ OPERATION ADDRESS

INSTRUGTION ABBRV. | GODE | _DATA __INSTRUGTION REMARKS

‘ 0081 STD 24 0034 0037 Store next instruction in 0034
0037 RAABIL 67 0091 0096 0091: A,
0096 SABIL 18 0099 0103 0099: AZ{Is JA I SI A2
. 0103 BRMIN| 46 0156 0057 4/ 7 4
0156 RSU 61 0109 0163
0163 AU 10 0116 0121 0116: a. |[Ast >1 A, |, Thus
0121 Su 11 | 0074 0079 0074: a; af=a =a " -1, » =7 -~}
0079 ST | 21 | 0084 | 0087 . 3 4 > =~
0087 RAU 60 0091 0145 w=AL /Ay
0145 DIV RU 64 | 0099 0073 9 +é
57 RAU 6 011 0171 1A, I 1A]. Thus

0171 SU 11 0074 0129 ::13“=':=v.1 -ﬁg
0129 ST U 21 0084 0088 . -
008 RAU 60 009 0095
0095 | LD 69 | 0099 0153 Ag=A./ (10 A,)
0153 SRT 30 0001 0060 © B
0060 DIV RU 64 8001 0073
00 ST L 1] 012 0131 4 Store A in 0128
0131 RAL 65 0084 0090 Put a, ifl lower accumulator
0090 LD 69 | 0128 0034 A, in“distributor and go

to‘next instruction

0109: 0000010000 Constant

PAGE OF

Travke: Mark

PROBLEM:F_I-QAEB}IQ_IEQLM_&.SQIME_ROOWRWTEN BY:

IBM TYPE 650 PROGRAM SHEET

FORM NO. 22-618I-0
PRINTED IN U.S.A.

LOCATION OPERATION ADDRESS
oOF REMARKS
INSTRUCTION! ABBRV. CODE DATA NSTRUCTION|
- 0094 STD 24 0097 0150 Store next instruction in_ 0097
0150 RAU 60 | 0104 0110 |
0110 MULT| 19 0065 0070 0065: a, ,a,=11/2a,]. Testto
0070 AL 15 | 8003 0154 1\ - S L +
0154 SuU 11 8003 0111 see if 2. was even or add
0111 | SLT 35 | 0004 0072 1
0072 | STL 20 0177 0180
018 BRNZU 44 | 0133 0134
0133 RAU 60 0137 0141 0137: A.. Ifa. was of then
0141 SRT 30 | 0002 0098 T A2V 1 A, = VA
0134 RAU 60__| 0137 0191 If ay was evell, A, =vA 1 =vA
0191 SRT 30| 0001 0098 v <
0098 RAU 60 | 8003 0155
0155 AL 15 | 8003 0164
0164 AL 15._1_0167 0122
0122 STU 21 | 0176 0179 First approximation
0179 STL 20 | 0183 0136
0136 AU 10 8003 0093 X = (144A) /(4+A)
0093 AU 10__| 8003 0151 i
0151 AU 10 | 0107 0062
0062 RAT 6018003 0120
0120 SRT 30 | 0001 | 0178
0178 DIVRU 64 | 0183 0161
0161 AU 10 | 0176 0181 IsA, =0?
0181 SL 16 8002 __i 0139 L
0139 BRNZU 44 | 0193 0115
0193 DIVRU 64 [8001 0185
0185 Al 15 | 8001 0174
0174 SRT 30 | 0001 0182 X. =12 (X +A/X)
0182 ATl 10 | 8002 0192 - Y hd
0192 AL 15 | 8001 0149
0149 | AL 5 | 8002 0158
0158 AL 5 8003 0165
0165 RAL 65 | 8002 0123
0123 AU 10 | 0176 0082
0082 SL 16 | 8002 0092
0092 DIV RU 64 | 8001 0186
0186 AL 15 | 8001 0190
0190 SRT 30 | 0001 0157 =1/2 (X, + A/X.)
0157 AU 10 8002 0166 - 4 1 -
0166 AL 15 | 8001 0138
0138 AL 15 | 8002 0147
0147 AL 15 | 8003 0112
0112 RAL 65 | 8002 0172
0172 AL 10 | 0176 0132
0132 SL 16 | 8002 0142
0142 DIVRUY 64 | 8001 0188
0188 AL 15 | 8001 0140
0140 SRT 30 | 0001 0159 X,=1/2 (X, + A/X,)
AU 10 8002 0169 J 4 4

42

PAGE OF

IBM IBM TYPE 650 PROGRAM SHEET o g

PROBLEM:FLOATING DECIMAL SQUARE ROOWRITTEN BY:

|'LOOOAFTION |~ OPERATION ADDRESS REMARKS
INSTRUCTIOM| ABBRV. | GODE | DATA JINSTRUGTION
0169 AL 15°] 8001 0187
0187 AL 15 | 8002 0146
0146 AL 15 | 8003 0162 Xo=1/2 (X, + A/X,)
0162 RAL 65 | 8002 0173 0 4 4

0173 AU 10 | 0176 0135

0135 | SI, 16 | 8002 | 0144
0144 DIVRU 64 | 8001 0189
0189 | AL 15 | 8001 | 0148
0148 | SRT 30 | 0001 | 0108 [IX;=1/2 (Xq+ A/X,)
0108 | AU 10 | 8002 | 0168 A
0168 | AL 15 | 8001 0175
01175 AL 15 | 8002 0085
0085 | AL 15 | 8003 | 0143

0143 RAU 60 | 8002 0152
0152 sSCT 36| 0000 0160 A, = Jq: = X, shifted 0 or 1
0160 BR OV] 47 | Q115 Q115 =

0115 STU 21 0170 0124 Put a, in lower accumulator, A, in
0124 RAL 65 | 0177 0184 distributor and go to next inst. ©
0184 LD 89 | 0170 0097

0107-_].0100000/000
0167: {0400000{000 Constants
0104- 10000500[000 i

PAGE OF

44

IBM TYPE 650 LOADING ROUTINES

G. R. Trimble, Jr.
E. C. Kubie

One of the first problems that arises in using a computer of any sort is how to
enter information into the machine. The flexibility of the input system of the IBM
Type 650 gives the programmer a wide range of possibilities. Most problems will
require their own individual loading routines which are adapted to the particular
type of data which they will be processing. The following routines, however, are of
general interest since all problems require that programs and possibly tables, be
entered. These routines are by no means exhaustive but merely indicate the many
possibilities which exist and the ease with which this problem may be solved for the
650.

These routines are programmed so that the card reader will operate at 200 cards
per minute. In some cases, it was necessary to use optimum programming to obtain
this speed. In addition, they are programmed so as to use a block of memory
location. The translating routine may be used on each of these programs, as well as
the translating routine itself, to store them in a different set of memory locations from
those for which they are programmed.

Since unpunched columns enter the machine as invalid information, the word entered
will not pass the validity check if the program tries to use it. By punching zeros with a
plus sign in all unused fields of the different types of loading cards, the information which
enters the machine will be valid though perhaps meaningless. Thus, if it is necessary
to punch out the contents of the entire memory in order that a new program can be
entered, it is not necessary to make provision for avoiding locations in which invalid
information may possibly have entered. This procedure greatly simplifies the routine
which would be required for unloading memory.

DESCRIPTION AND FUNCTION
LL1 Loading Routine
This routine enters four words from a card, each card containing the addresses of

the locations in which these four words are to be stored. It consists of nine instructions,
five of which are kept on the drum in locations 1995 through 1999, the other four being
entered on each card into locations 1951, 1953, 1955 and 1957. The four words to be
stored are entered into locations 1952, 1954, 1956, and 1958. The routine consists
essentially of a read instruction followed by four sets of load distributor-store
distributor instructions. The data addresses of the store distributor instructions,

which are punched on the load card; "specify the locations into which the corresponding
words are to be entered. Load cards are identified by a 12 punch in column 1. The
only control panel wiring necessary is from column 1 of first reading to the load hub.

LL1 is particularly useful for entering instructions. The card form is designed
so that the card can be punched directly from the program sheet. The address of the
location to be entered is punched followed by the word itself.

This routine is also useful for entering programs which are coded optimumly where
instructions are scattered throughout the drum. It can also be used to load other loading
routines which are not self-loading.

LL1 can be loaded with only two cards. To use LL1 simply place these two cards
in front of the program to be loaded, set 70 1951 3000 on the storage entry switches and
take the first instruction from the storage entry switches. This causes cards 1 and 2
to read into the 650 and the program punched on these cards enter LL1 in the desired
locations. Control is then transferred to LIL1 'a.nd the cards following are entered by it.

Once all of the desired cards have been read, it is necessary to transfer control
to the main program. This can be accomplished in one of two ways. If the card read
is not a load card, the next instruction will not be taken from 1995 as is usually the
case, but will be taken from the location specified by the I address of the read
instruction. Thus, the I address may be changed to cause control to transfer to the
first instruction of the routine when the program has been entered.

The second and probably most useful method is simply to change the I address

“of one of the store distributor instructions punched on the load card. Thus, if only
two instructions are punched on a particular load card, the I address of the second
store distributor instruction, which is in columns 27 through 30 should be changed
to cause control to transfer to the desired location. Obviously load cards containing
one, three, or four words can be handled in the same manner.

In case only one, two, or three words are entered from the card, the remaining
fields should have zeros punched. This makes it easy to punch out the contents of the

entire memory at a later time if desired.

Load Card Form - 12 punches in columns 1, 10, 30, 50, 70. Signs of words 1, 2, 3,
and 4 must be either 11 or 12 punch in columns 20, 40, 60, and 80 respectively.

1951 1952 1 953 | 195y i \Q55 \q56 1 1957 1 1958

§ - § o € m €

‘= -9 ‘e -p S o

553 Word 56T Word 2 13 Woed 3 G4% Word ¥4

$°3 33 $ 3 33
BBGUUOQOUOFOOU000000000000000 goooooeno0 ﬂﬂﬂﬂUFUUUFDOOHODOOODOUOUDOGO 00600000000
1213 45 67 8 8 10[ht 1213 1415 36 17 18 19 20{|21 2223 24 25 26|27 28 29 34}31 32 33 34 35 36 37 38 39 4« 142043 44 45 46147 48 49 50[5E1 52 53 54 5¢ 56 57 5¢ 59 60|61 62{63 64 65 6667 68 69 7|1 72 73 24 75 75 77 18 19 80
llllllllllllllllIIIIIIlllﬂllI1IIIIIIIIIIIIIIllllllIlillllllllll|l1ﬂ|llllllllllli
l2222222222222222222|22222222 222222222218212222(1222222222222221922222122222222222222

3313333333313333333333)33(3333(33333333333333133/333313333/3333333333(33(3333[3334)3333333333

af14444/444414440444444148{4444(4424(4044444444)86{4444/24a4f28440024844 481444414 444844444444484
55/5555/55555555555555/55(5555/5555/5555555555]55(5555/55550555555555%55/5555/55555555555555
5616 666(66 685 666666666|66/6666/6666666666666656/6666(6666)566666666666/6666/666G6666666666
R R R R R R YRR (IR RN RN NI RN I BRR I RRRRRRERE IR IRRRIRRE \RERRRDERE

06/16888888812888888888(38(88086/(888813888883888(38/3388/8880/388688888H68/8888|38888888888868
9919999190 $91999999999389(3999/308 99999999999399999!'9 99999999%999999|9BPEI9999999999
123 0'sB:J;°oas‘l 1112 13 1415 16 17 18 19 20{p1 22122 24 75 2527 28 29 3131 32 33 34 35 36 37 38 39 4G{1 42043 &4 45 46{47 48 49 ST 52 53 54 55 56 57 58 59 G161 62469 54 65 66[67 68 63 711 7213 24 75,76 77 78 18

IBM IBM TYPE 650 PROGRAM SHEET PRNTED N USA

Trike: Mank

PROBLEM: LL1 LOADING ROUTINE WRITTEN BY:
LOGATION OPERATION ADDRESS
g REMARKS

INSTRUCTION] ABBRV. | GODE DATA NSTRUGTION

1995 LD 69 1952 1951

1996 LD 69 1954 1953

1997 L.D 69 19561 1955 These instructions are kept on the drum.
1998 LD 69 1958 1957

11999 READ 70 1995 0000

1951 STD 24 XXXX 1996 These instructions are read into the 650 |
1953 STD 24 XXXXK 1997 | ar he data addresses
1955 STD 24 XXX 1998 | i

1957 STD 2 XXXX 1999 four pieces of information punched on

the card are to be stored.

PROBLEM: LOADING ROUTINE TO I.QAD L.1.1

8000 READ 70 1951 3000 Read Card 1 into 1951 thru 1958 |
1951 READ 70 1901 3000\ Read Card 2 into 1901 thru 1908

90 LD 69 1952 1902
902 STD 24 1995 1903
1903 LD 69 1953 1904
90 STD 24 19 1905
1905 LD 69 1954 1906 | LL1 in 1995.thru 1999
1906 . |STD 24 1997 1007
1907 LD 69 1955 1908
11908 STD 24 1998 1957
1957 LD 69 1956 1958
1958 STD 24 1999 1999

1952: 69 19521 195
1953: 69 1954 | 1951

1954: 69 19.56.__1.95$
1955: 1691958 | 195
1956: |70 1995] 0000

PAGE OF

Cards 1 and 2 for LL1

Card 1 is punched as follows: 12 punches in columns 1, 10, 20, 30, 40, 50, 60, 70, 80

10190130006919521951691954195369195619556919581957701995000 69195619582419991999,

1951 1952 1953 1954 1955 1956 1957 1958

Card 2 is punched as follows: 12 punches in columns 1, 10, 20, 30, 40, 50, 60, 70, 80

§9195219022419951903691953190424199619056919541
219 251 03 190 2569195 9062419971907Q’919551909%419981957

1901 1903 1904 1905 1906 1907 1908

L1 Loading Routine
L1 is used to enter load cards as identified by a 12 punch in column 1. As many

as seven ten-digit words may be entered on a card by means of L1. A control word
punched on the card indicates where the first word is to be entered as well as the
number of words to be entered. Successive words on the card are entered into

successive memory locations.

Card Form for L1 Load Card:

1 10 11 20| 21 301 31 0171 80
Control Word 1 Word 2 Woj jrd6 Word 7
Word

The control word is constructed as follows:

Column 1, double punch 12 and 0; v

Column 1, punch 0; .

Columns 3-6, punch address where Wérd 1 is to be entered.

This address is f=f; £, f, f,,

Columns 7-9, punch 0; ’

Column 10, double punch 12 and n, where n is number of words to be entered. (n=1,
2,3,4,5,60rT7)

Load cards must have all ten columns of the fields to be entered punched and must
have the sign punched over the units position of the field (columns 10, 20, 30, etc.)
12 for plus, and 11 for minus. Fields not entered should have zeros punched in them.

47

48

Control Panel Wiring:

Column 1 of first reading is wired to the load hub. The 12 in column 1 identifies
load cards.

Explanation of Program:

Instruction 1988 calls for a Read. If the card read is not a load card, the data is
entered into locations 1951-1960 and the next instruction is taken from m, where m
is the location in the main routine to which control is transferred. If the card read
is a load card the data read is entered into locations 1951-1958 and the next instruction
is taken from 1994,

Words 1 through n will be transferred to locations f through f + n - 1 by LD and
ST D instructions. These two instructions will be kept in the accumulator where they
will be modified and executed.

Instruction 1994 puts the control word in the accumulator.

Instructions 1979 and 1986 modify the ST D instruction so that Word 1 is stored
in location f. The ST D instruction is then 24 (f) 1977.

Instructions 1989, 1981, and 1990 construct a dummy instruction which is used
to indicate that the last word has been transferred. This dummy instruction is
24 (f + n) 19717.

Instructions 1984 and 1992 load the accumulator with the LD and ST D instructions.
These instructions are then executed from the accumulator.

Instructions 1977 and 1985 add 1 to the data addresses of the LLD and ST D in~
structions in the accumulator so that the next time they are executed, the next word
will be transferred to its proper location.

Instructions 1993 and 1983 compare the ST D instruction in the accumulator with
the dummy ST D instruction. If they are equal, as indicated by a zero in the upper
half of the accumulator, the last word has been transferred and control is returned
to 1988 and a new card is read. If they are not equal, the ST D instruction is
regenerated in the upper half of the accumulator by adding the dummy instruction
back in on instruction 1987. Control is returned to 8002 and the next word is
transferred.

IBM IBM TYPE 650 PROGRAM SHEET PRNTED W U
PROBLEM:_L1 LOADING ROUTINE WRITTEN BY:
LOCATION OPERATION ADDRESS
REMARKS
INS{gggTION AR BETEI) 00705 DI]\;I; 7} FNSTHUGTION (T .
m) (Transfer control to location m if no load card) |
1994 RAL 65 1951 1979
1979 LD 49 1982 | 1986
1984 ST DA 22 1982 1989
1989 SLT 35 0004 | 1981 Prepare to store starting with locatlon £, |
1981 AL 15 8001 1990
1990 SIDA | 22 1978 | 1984
1984 RAL 65 1991 1992
1992 AU 10 1982_| 8002 _
8002 LD 69 | (1952) | 8003 |\ Store word | in location f + | =1
8003 SID 24 (f) 1977 _1J
1977 AU 10 1980__{ 1985 | \ Modify Instructions In preparation to store |
1985 AL 15 8001 1993 ward ! +1
1993 su 11 1978 | 1983 Test to see If word n = 1 has been stored. If
1983 BRNZU| 44 1987 | 1988 | J so, read the next card,
1987 AU 10 | 8001 | 8002 | FPrepara to store word | + 1
1982 STD 24 0000 19771
1991 LD 49 1952 | 8003 | ¥ Constants
1980 00 0001 | o000 |J
1978 SID 24 f+n | 1977 |} Temporary Storage
1951 00 f 000n___| > Control word punched on load card. fls

address. wheze_ihtsr_unrg_nn_mzdés_m.tn____
entered, n is the number of words to be

entered,

49

50

L2, L2A, L2B, L2C. Loading Routine

L2 is used to load eight full words from each card. The initial address £ o is
given, and words are located sequentially beginning at { o Cards containing a 12 in
column 1 will be loaded in consecutive addresses. This will continue until occurrence
of a card with no 12 in the load control column at which time automatic branching is
made from L2. '

An optional way to get out of the routine is to set the address switches at the first
location beyond the last one for which lbading is desired. Then branching can be
manually effected to other routines. In this case the word following the last word
to be loaded must have ten zeros punched.

The calling for L2 and £ o an be effected manually, from the first card read, or
from the preceding program by L2A, L2B and L2C respectively.

Wiring:

Column 1 of first reading is wired to the load hub. The 12 punch in column 1
identifies load cards.

Program Explanation:

The store distributor operations are executed from the lower accumulator and
stepped up by the contents of the upper accumulator. The load distributor operations
are stored in memory. Loading is then realized by repeated load distributor, store
distributor (per instruction in lower accumulator), and add to lower accumulator from
upper operations.

L2A: L2A is designed t_o initiate L2 and specify fo manually. The storage entry
switches are set to 00 f o 1966 and control is sent to these switches by depressing in
turn the program reset butfon and the program start button. L2A then inserts fo
into the L2 routine and reading is begun.

L2B: L2Bis designed to have the first card of a group to be loaded by L2 designate
f o The first word on this card is punched 24 f o 1981. L2B transfers fo into L2 and
initiates L2. To call for L2B all that is required is to give an instruction address of
1970.

L2C: L2C is designed to have fo designated by a word in memory. This word is in the

following form; 24 £, 1979, L2C inserts f; into L2 and initiates L2. To call for L2C all
that is required Is to give an instruction of the form 65 m’ 1969,

Fields on the last card which are not entered should have zeros punched in them.

IBM IBM TYPE 650 PROGRAM SHEET

PRINTED IN U.S A.

Trade-Mark

PROBLEM: L2A, B, and C LOADING ROUTINEWRITTEN BY:

LOGAﬁON OPERATION ADDRESS
REMARKS
INSTRUCTION| ABBRV. CODE DATA NSTRUGTION
L2 A (f§ taken from Storage Entry ﬁ;ﬁitr hégi_, i
8000 NoOpl00 |f 1966 |
19686 RAIL ! 65 | 8000 1974 | .
1974 SRT 30 0004 1967 | _ ;
1967 SLT |35 0004 1968 & ;
1968 AL 15 1971 1969 ! L. Acc;_ ,.2.%4,1.'&,1..979 ;
1969 AU 10 | 1972 1977 U._ Acc: 0000010002 __ i
1971 ST D 124 0000 | 1979)f Constants ‘
1972 00 | 0001 0002 - ;
12B (f,|taken from first word of first c rd) -
)
1970 READ| 70 1975 - 0000 :
1975 RAL | 65 1951 1976 I.. Acc: 24 f 1981 ‘
1976 AU 10 1972 1980 U. Acc: 00 Q001 0002 !
1951 STD |24 [fg 1981 First word punched on first card i
1972 00 0001 0002 Constant T :
—
L2C (f»lin memary lodation m’
m’’ RAL | 65 m’ 1969 L, Acc: 24f_ 1979
1969 ATl 10 | 1972 1977 | 1. Acc:_00 0001 0002
m’ STD 24 f, 1979 :
é
J

52

IBM IBM TYPE 650 PROGRAM SHEET PANTED WUSA
PROBLEM: L2 LOADING ROUTINE WRITTEN BY:
lLOGgA;rION [OPERATION ADDRESS REMARKS
INSTRUGTION| ABBRV. | GODE DATA___ ANSTRUGTION,
977 READ | 70 978 | m (Transfar control to lacation m 1f no load card)]
1978 LD. 69 951 8002
8002 STD 24 f). 1979
1979 AL 15 8003 1980
1980 LD 69 1952 8002
8002 STD 24 (f+1)] 1981
1981 AL 15 8003 1982
1982 1D 49 19253 8002
8002 ST D 24 (f+2) | 1983
1983 Al 15 8003 1984
1984 LD 69 1954 8002
8002 STD 24 (f+3) | 1985
1985 Al 15 8003 1986 Store 8 words in locations £ thru £+ 7.
1986 LD 469 1955 8002
| 8002 STD 24 (F+4) | 1987
| 1987 AL 15 8003 1988
1988 LD 69 1956 8002
- 8002 ST.D 24 (f+5) | 1989
1989 AL 15 8003 1990
197¢ LD 49 1957 8002
8002 STD 24 (E+6) | 1991
9291 AL 15 8003 1992
992 LD 49 1958__| 8002
8002 STD 24 (F+7) [1993)
993 AL 15 8003 | 1 994___.v3r_ModL£ansnleons_to_LepenUmp_EnL_
1994 SL 16 1973 1977 next card,
1973 00 0000 | 0016 Constant

LT 1 Loading Routine For Tables
LT 1 is used to enter table cards as identified by a 12 punch in column 1. One

argument and as many as six functions associated with that argument may be entered
on a card by means of LT 1. A control word punched on the card indicates where the
argument is to be entered, the number of arguments and functions to be entered, and
where the functions will be placed relative to the argument.

Card Form for LT 1 Table Loading Card:

1 10 |11 20 |21 30 |31 7041 80
Control First Sec fth Sixth
Word | Argument| Function Fu ction Function

The control word is constructed as follows:

Column 1, double punch 12 and 0.

Column 2, punch n, where n is the number of arguments and functions to be entered.
For one argument n=1, for one argument and one function n=2, etc. n=7 is maximum.
Columns 3-6, punch address where argument is to be entered. This address is a=a, a,
Az a4 .

Columns 7-10, punch increment between argument and first function. This increment
isi, i=i;izigis. Thus the argument will be stored in a, the first function stored in
a + i, the second function stored in a + 2i, etc. Column 10 must also have a 12 punch.

Table load cards must have all ten columns of the fields to be entered punched and
must have the sign punched over the units position of the field (columns 10, 20, 30, etc.)
12 for plus and 11 for minus. Fields not entered should have zeros punched in them.

Control Panel Wiring:

Column 1 of first reading is wired to the load hub. The 12 in column 1 identifies
table load cards.

Explanation of Program:

Instruction 1978 calls for a Read. If the card read is not a table load card, the
data is entered into locations 1951-1960 and the next instruction is taken from m,
where m is the location in the main routine to which control is transferred. If the
card read is a table load card the data read is entered into locations 1951-1958 and
the next instruction is taken from 1994.

54

Instruction 1994 places the control word in the lower accumulator.

Instructions 1985 and 1988 modify the ST D instruction so that the argument is stored
in location a.

Instructions 1989, 1981, and 1991 store the increment i in 1975.

Instructions 1984, 1992, 1976 and 1986 construct a dummy instruction which is
used to indicate that the last word has been transferred. This dummy instruction is
69 (1953+n) 8002, When the LD instruction has been modified so that it is equal to the
dummy instruction the last function has been transferred.

Instructions 1993 and 1980 load the accumulator with the LD and ST D instructions.
These instructions are then executed from the accumulator,

Instructions 1972 and 1979 modify the LD and ST D instructions in the accumulator
so that the next time they are executed the next piece of data will be transferred to its
proper location.

Instructions 1987 and 1973 compare the LD instruction in the accumulator with the
dummy LD instruction. If they are equal, as indicated by a zero in the upper half of
the accumulator, the last word has been transferred and control is returned to 1978 and
a new card is read. If they are not equal, the LD instruction is regenerated in the upper
half of the accumulator by adding the dummy instruction back in on instruction 1977.
Control is returned to 8003 and the next word is transferred.

Note that if i=1, LTI is functionally identical with L1. This increased flexibility
is gained by an increase in the number of storage locations required however. LT1
uses 5 more storage locations than L1.

IBM

Trade-Mark

PROBLEM: LT 1 LOADING ROUTINE FOR TABLES WRITTEN BY:

FORM NO. 22-6181-0

IBM TYPE 650 PROGRAM SHEET PRINTED N U.S.A.

LOCATION

OPERATION

ADDRESS

INSTRUGTIOM ABBRV. | CODE | DATA __ INSTRUGTION REMARKS
1978 READ 70 1994 m (Transfer control to location m if no Toad card)
1994 | RAL 5 1951 1985 |
1985 LD 69 1974 1988
1988 ST.DA 22 1974 1982
19892 LD 69 8003 1981
1981 SLT 35 0004 1991
1991 STDA | 22 1975_| 1984 Prepare_to_store starting with location a
1984 RAL 65 8003 1992
1992 SLT 35 0002 1976
1976 Al i5 1983 1986
1984 ST DA 22 1990 1223
1923 RAL &5 1974 1980
1980 AU 10 1983 8003__[J
8003 LD 49 | _(1952) | 8002 |\ Store word {inlocationa + (j=1). |
8002 STD 24 (a) 1972 |/
1972 Al 15 1975_| 1979 |\ Modify Instructions in preparation to store
1979 AU 10 1982 | 1987 |/ word [+ 1.
1987 Sy 11 1990 1973 |\ Test to see if word n=1 has been stored, If
1973 BRNZU| 44 1977 | 1978 | [so, read the next card,
1977 Al 10 8001 8003 __| epare_to store word [+ 1,
974 SID 24 0000 1972
1983 LD 69 1952 8002 | > Constants
982 00 0001 0000
1975 00 | 1 0000___| ¥ Increment 1 gotten from controi word, |
1990 LD 69 | (19524n) | 8002) Temporary. Storage
1951 n a i

¥ Control_word nunched.m:._tu.blﬂalmd_‘:g!.d..___
a is address where the flrst word Is fo be

stored. I Is incr

ement to be added to addresses |
of successive words. n Is the number of words

to he stared

55

TR 1 Translating Routine
This routine is used to translate a sub-routine or sub-program to a different set of

memory locations from those for which it was programmed. It will simultaneously
modify each instruction as required, so that they will be properly executed from their
new locations. Each instruction or constant in the sub-routine will have associated
with it a six digit number. Four digits of this numberspec1fy1tslbcat10nw?ffnn the
sub-routine. The remaining two digits indicate whether or not either the D or I
address parts of the number should be modified when it is translated. An 8 indicates that
the corresponding address is to be modified, and a 9 indicates that the address is not to
be modified. Thus, for example, the modification control digits for a constant would
be 99 since nothing in the constant is to be modified. Most instructions, however, will
have 88 as the modification control digits since both the data and instruction addresses
will be modified. A shift instruction would usually have 98 as its modification control
digit, since the data address of a shift instruction should not be modified. Similarly,
an instruction in which the D address should be modified while the I address should

not be modified will have 89 as its modification control digits.

A master card placed in front of the deck containing the sub-routine indicates the
amount by which the sub-routine is to be translated, the number of instruction in that
sub-routine, and an indication of what should be done after the sub-routine has been
completély translated.

The detail cards will each contain five ten-digit words and their corresponding
control information. If less than five words are punched in the detail card, the
remaining fields should have zeros punched in them.

Master Card Form:
12 punches in columns 1, 10, 20, 30, 40, 50, 60, 70, 80.

000000tt:000000nnnn000000iiii00 . . .0
——

\V)

Amount Number Next 50 zeros
of of Inst.
Translation Words

Detail Card Form:
The detail card contains five sixteen-digit fields each punched as follows:

Col. 1: D modification control column; 8 if data address is to be modified, 9 if data
address is not to be modified.

.56

Col. 2: I modification control column; 8 if instruction address is to be modified, 9 if
instruction address is not to be modified.

Col. 3-6: Location of word within sub-routine before translation. Column 6 also has
a 12 punch.

Col. 7-16: Punch the word to be translated. The sign of the word is in column 16
(units position).

Control Panel Wiring:

Wire from column 1 of First Reading to the Load Hub. A 12 punch in column 1
identifies master cards.

The six control digits for the first word are wired to enter the 6 low order
positions of Storage Entry Word 1. Word 1 is also wired for Word Size 6. The first
word is wired to enter Storage Entry Word 2. The Sign over Units switch and Read
Plus switch must also be wired. Word 2 must also be wired for Word Size 10. The
remaining 4 fields on the card are. wired similarly to enter Storage Entry Words 3
through 10.

Explanation of Program:

The instruction in location 1933 calls for a read. If the card read is a master
card, the next instruction will be taken from location 1991 and the nine instructions
starting with 1991 and ending with 1990 will be executed. These instructions store
the amount of translation, the number of instructions and the location of the next
instruction, i, in their proper locations. It places the amount of translation,t, in 'the
data address positions of one word, the instruction address positions of another word,
and in both data and instruction address positions of a third word. Thus, when it has
been determined how the word to be translated should be modified, all that must be
done is to add one of these three numbers or zero to that word before storing it in its
new location.

The location of the next instruction, i, is used to indicate what should be done
after the sub-routine has been translated. For example, if another sub-routine follows
which must also be translated, i will take the form 00 0000 1933. When the translation
of the first sub-routine is complete, another read instruction is given to call in the
master card for the following sub-routine. When the last sub-routine has been
translated, i is used to transfer control to the first instruction of the program.

The four instructions, starting with the one in location 1939, simply set two

57

58

other instructions to their initial values.

The five instructions beginning with the one in location 1937, add t to the sub-
routine location of the word being translated and modifies a ‘‘store’’ instruction so
that this word will be stored in location L + t. Beginning with the instruction in
location 1968, the modification control digits are analyzed to determine whether the
data address and/or the instruction address positions of the word to be stored should
be modified. This is accomplished by adding one of the four constants computed from
the master card. The instruction in location 1965 then stores the modified word in its
new location.

The number of instructions, n, is decreasedby one each time a word is stored
and is zero tested to see if the last word in the sub-routine has been stored. If so,
control is transferred to i, If the last word has not been stored, a test is made then
to determine whether the last (5th) word on the card has been stored. If so, a new
card is read. I more words remain to be transferred, the instructions are modified
in preparation for storing the next word.

Use of TR 1:

Once it has been determined which sub-routines are to be used and where they
are to be placed, the programmer punches the amount of translation necessary to
place the library sub-routine in the desired locations and the other information
necessary, on a master card. This master card is placed in front of the library sub-
routine and all of the sub-routines are assembled. These sub-routines, along with
the rest of the program, are then read into the 650 and the problem is begun.

Routines which are programmed optimumly should be translated only by an
even amount in order to preserve the even-odd conditions.

FORM NO. 22-6181-0

— 1937

IBM 1BM TYPE 650 PROGRAM SHEET PRINTED IN U.8.A.
PROBLEM:_TR1 TRANSLATING ROUTINE WRITTEN BY:
FW OPERATION ADDRESS REMARKS
INSTRUOTION ABBRV. CODE DATA NSTRUCTION
1933 READ 70 1991 1939
1991 RAL 65 1951 1938 .
1238 SID 24 1992 =1 1947 Store_00 0000 (1))
1967 SLT 35 0004 1934
1934 STDA | 22 1941~ [1929 _Store 00 (1) (1) | Master
929 ST L 20 1993 =] 1940 Store 00 (1) 0000 \ Card
940 LD 69 1953 1969 Only
969 STD 24 19481 1930 Store {
930 RAL 65 1952 1990
990 STL 20 1989~ | 1933 Store n J
1939 LD 492 1942 1945
1945 STD 24 12492 1972 Sat instructions 1937.and 1949 to
1972 LD 69 19232 19235 initial values
19235 SID 24 1937 8001
RAL 65 (1951) | 1964]
1964 SLT 35 0004 | 1976 |__Prepare to store a word in location L+t |
1976 AL 15 1993 | 1947 '
1947 LD 49 1950 1961
1961 ST DA 22 1965 1968 »
| 1968 LD 49 8002 1975
1975 BRD® 29 19792 1982 Test to see_haow word should he
1979 BRD 10O 20 1284 1988 modified hpFnre_be.ing.s.tor.ed
1982 BRD10. 0. 1987 1986
1986 RAL 65 1994 —1 1949)
1987 RAL 65 1993 1949
1984 RAL 65 1941 1949 Modify word and store it in location L +4,
1988 RAL 45 1992 1949
1949 AL 15 (1252) 1965
1965 STL 20 (L+t) | 1974
1974 RSL 66 1981 1934 Test_to see if last word in routine has heen |
1934 AL 15 1982 1943 - _stared
1943 BRNZ 45 1946 1248 If so, transfer control ta 1
1946 AU 10 1949 1963]
1963 Sy 1 1966 1971 > Testtosee If lastwordoncard |
1971 BRNZU_| 44 1978 1990] has been stored
1978 AU 10 1931__| 1985
1985 ST L 20 1989 1944 r Prepare_to store next word
1944 ST U 21 1949 1942
1962 RAL 65 8003 19270
1970 SL. 14 1973 | 1977 Prepare to read nex card
1977 LD 49 1280 1983
1983 ST DA 22 1937 8001
1941 00 t + -
1992 00__|_0000 t
1993 00 t 0000 Constants determined from Master. Card |
1994 Q0 0000.__.0000 d
989 Q0 0000 n
1948 00 0000 i
1942 15 1952 1965
1932 65 1951 1964
1950. 20 0000 1974
1981 an 0000 0001 Constants
966 15 1940 1945
931 15 1962 1945
973 00 Q001 0000
1980 45 0000 1944)

59

60

A METHOD FOR PERFORMING DOUBLE PRECISION ARITHMETIC ON THE IBM TYPE 650

G. R. Trimble, Jr.

Introduction

It is sometimes necessary to perform computations using a larger number size
than is basically provided on the 650. This system has been developed to perform the
basic operations of addition, subtraction, multiplication and division using numbers
which are 20 decimal digits in length. It was designed with coding convenience as a
prime objective and uses an interpretative routine to perform double precision
arithmetic.

Double precision instrucfions, that is, instructions which are to be interpreted
have a negative sign. A double precision instruction consists of a 2 digit operation
code, a 4 digit address specifying the location of the first factor and another 4 digit
address specifying the location of the second factor. The result of the operation is
always stored in a pair of memory locations referred to as C. A 5th operation, ¢‘Store’’,
is used to transfer the result from C to the locations desired by the programmer. In
order to store the result where desired, it will usually be necessary to follow one of the
4 basic arithmetic operations by a store instruction. The net effect of such a procedure
is four 3-address operations.

Tae address given refers to the 10 high order digits of the factor to be operated
upon. The interpretative routine automatically selects the 10 low order digits from
the next memory location. Thus, the high order and low order digits of a number will
always be stored in successive memory locations.

Should a positive instruction appear, it is interpreted as a normal 650 instruction
and subsegquent instructions are not interpreted. Thus, upon occurrence of a
positive instruction, the 650 operates in its usual D-I mode. This continues until an
instruction address of 0004 is given which causes the control to return to the
interpretative routine. The program will return to the double precision mode of
operation at the point of departure.

For example, consider the following sequence:

Location Contents
n double precision instruction (-)
n+l double precison instruction (-)

n+2 double precision instruction (-)

n+3 normal 650 instruction (+)

(the contents of n+3 are interpreted as a normal 650 instruction including the instruction
address for sequencing. Normal execution of instructions continues until 0004 is used
as an instruction address, at which time the program returns to the double precision
mode beginning with the instruction in location n+4).

Number Form

The number form is as follows:
« XXXXXXXXXKK KXXXXXKXX=A 1t Az.

The low order digits of the number are stored in the location immediately following
the one containing the high order digits.

Instruction Form

The instruction form is as follows:

double precision command (00-04)
1st address A
2nd address B

location i XV IXZXY

Operations
The following is a list of the operations with their codes and estimated average
time.
Code Operation Estimated Average Time (ms)
00 B=0O, C—A 23.88
01 A+B-—C 49, 46
02 A-B—sC 49. 46
03 AxB—C 113.40
04 A/B—C 182, 52

Since the factors are assumed to be less than one, the numbers must be scaled
so that the results will be less than one. If any answer should exceed one, the machine
will stop. Also, the condition |A| <|B|must be satisfied for the divide operation.

This system requires 115 storage locations. It uses locations 0000 through 0114,
W <Every location within this block is used, thus making it easy to incorporate this
program with other programs, The translating routine, TR1, may be used to translate
this routine to any desired locations. It should be translated by an even amount, however,

NG : !
\

. AR (\(),f .“—‘ PR) A /

61

62

4

to preserve the even-odd conditions.

Explanation of Programs,

The interpretative routine determines where the next instruction is located, obtains
that instruction, and analyzes it to see if it must be interpreted or if it is a normal
650 instruction. If it is a normal 650 instruction it is executed as such. I« it must
be interpreted the interpretative routine continues to analyze it, obtains the required
factors, transfers control to the proper sub-routine.

The constant in location 0091 facilitates use of TR1. During read in by TR1 this
constant is modified so that its instruction address digits contain the amount of
translation, This is then added to the operation code so that control will be
transferred to the translated sub-routine during analysis of the operation code.

The store, add, subtract, and multiply sub-routines are straightforward and
simple. The latter part of the add sub-routine is common to both the subtract and
multiply sub-routines thus saving memory locations,

The divide sub-routines uses the following approximation to perform double
precision division,

The sub-routine computes %1 and B, ° The multiply sub-routine is used to

multiply these two factors to obtain the final quotient.

IBM IBM TYPE 650 PROGRAM SHEET Fomu 10 z2-s1s1-0

PRINTED IN U.S.A,

Trade-Mark

PROBLEM: _INTERPRETATION WRITTEN BY:
f"LOCATION OPERATION ADDRESS

(o] REMARKS
INSTRUCTION| ABBRV. CODE DATA LNSTRUGTION

0004 RAL 65 0007 |0061

0061 AL 15 0014 [8002 Increase n to n4+l and get instruction
8002 SU 11 n+l 0008 n+l :

0008 BR MIN| 46 0072 {0099 Is n+1 a normal 650 instruction?
0072 AU 10 8001 |0045

0045 AU 10 8001 |0053 n+l is a normal 650 instruction

0053 ST 20 0007 _ 18003
8003 Normal | i

0099 ST L 20 0007 10010 n+1 must be interpreted

0010 AU 10 0013 (0017

0017 RAL 65 8003 10025 Is operation code 00?2
| 0025 BR OV {47 0028 {0032

0028 LD 69 0081 10084

0084 STDA |22 0087 |8001

8001 LD 69 A1 0067

_8_887 ST D 24 0023 | 0026

6 AL 15 0029 10033 Get (A) and store it in 0023, 0031
0033 LD 89 0036 Q039
| 0039 ST DA |22 0093 8001
8001 LD 69 A9 0071
0071 ST D 24 0031 (0034
0034 SLT 35 0004 | 0046
0046 LD 69 0049 (0052
0052 ST DA [22 0005 | 8001
8001 LD 69 Bi 0115

0115 [STD |24 0006|0009 Get (B) and store it in 0006, 0015 |
(0000 [AL 15 | 0062 [0018
0018 [LD 69 0021 10024
0024 |ST DA [22

0077 | 8001
8001 LD 69 0110

Bo
0110 ST D 24 0015 |[0068
SRT 30 0002 | 0075 Analyze operation code and

1 0068
0075 [AU 10 00918003 transfer to proper sub-routine,
8003 [NO OP [00 0000 |Qper

0007: [11n. 10008 Address of instruction heing interpreted |
0014: 00 0001]0000

0013- 99 0000 /0000
0081- 69 000010067
| 0029: 00 0001 /0000
0036: 69 000010071 Constants
| 0049: 69 000010115

[0062: | 00 000110000
0021: 169 00000110
0091 |00 0000 /0000

PAGE OF

64

IBM iIBM TYPE 650 PROGRAM SHEET PANTED uea s
PROBLEM: 00: (CO)——>»A WRITTEN BY:

| LOCATION "~ OPERATION ADDRESS

INSTRUGTION ABBRV. | CODE | _DATA __INSTRUGTION REMARKS
0032 L 15 0037 041 \

0041 LD 69 0044 18002

8002 STD 124 Aa—ﬁlﬂﬁ_ sfer contents of C to A
0106 ,AL) 0043 048

0048 LD 69 0051 18002

8002 TD 24 [As

0037: 000 0106 Constants

0043: | Q.O_D_QO_O_?_QQS

FORM NO. 22-6181-0

IBM IBM TYPE 650 PROGRAM SHEET FOnM Ko. 2218l
PROBLEM:__01: (A)+(B)-—%C WRITTEN BY:
LOGAF'_I'ION OPERATION ADDRESS REMARKS
INSTRUGTIOM ABBRV. | CODE | _DATA __INSTRUGTION
0000 RAU 60 0006 | 0011
0011 AL 15 0015 | 0019 A1+ By +Ag+ By
LAY 10 002310027 <
0027 AL 15 0031 0035
| 0035 BR OV | 47 0107 10040 Test for overflow
| 0040 ST I 21 0044 10 um in C
0047 ST L 20 0051 |0004
0107 |STOP |01 0000|0107 Overflow on addition (or subtraction) |
IBM IBM TYPE 650 PROGRAM SHEET FORM NO. 22-8181-0
PROBLEM:__02: (A)-(B)—»C WRITTEN BY:
LOGA';TION OPERATION ADDRESS REMARKS
|IN8T8UGTION ABBRV. | GODE | DATA __INSTRUGTION
0001 RSU 61 0006 | 0012
0012 SL 16 0015 (0019 A+ -Bi +A3 -Bg
0019 AU 10 0023|0027 -
0027 AL 15 0031 {0035
0035 BR OV | 47 0107 | 0040 Test for overflow
| 0040 STU 21 0044 {0047 Stare difference in C
0047 ST L 20 0051 | 0004 3 :
0107 STOP |01 0000 (0107 Overflow on subtraction

IBM IBM TYPE 650 PROGRAM SHEET Fanes At

Trmde-Mark

PROBLEM:__ 03: (A)x(B)—»C WRITTEN BY:

LOCATION OPERATION ADDRESS
lNSTglFJCTION ABBRV. CODE DATA INSTRUGTION
0002 RAU 60 0006 | 0064
0064 MULT | 19 0023 | 0055 Al X B1— 0076, 0085
005 ST U 21 0076 | 0030
0030 STL |20 0085 | 0100
0100 RAU 60 0006 | 0066 :
0066 | MULT | 19 0031 | 0057 Ag X B1—-0074 0051
0057 STL |20 0074 | 0092
[0092 STU |21 0051 | 0054
0054 RAU 60 0015 | 0020

REMARKS

0020 MULT | 19 0023 | 0058 |} A1 X B2—0083._ 0059
0058 STL |20 0083 lo101 [f = =

0101 STU [21 0059 | o112 ¥

0112 RAU 60 0015 | 0070

0070 MULT | 19 0031 0104 Ao X Ba

0104 RAL 65 8003 | 0105 4 4

0105 AL 15 0074 | 0080\

0080 AL 15 0083 | 0090

| 0090 RAL 65 8003 | 0098 |

0098 [AL 15 | 0051 | 0056 Ay By+Ay Bo+ AgBy+ AoBo

AL 15 0059 0063
0063 AU 10 0076 0082
0082 AL 15 0085 | 0040
0040 STU 21 0044 | 0047 Store product in C

0047 ST L 20 0051 ! 0004

N

S -

66

FORM NO, 22-618i-0

IBM IBM TYPE 650 PROGRAM SHEET FORM NO. 226181
PROBLEM:__ 04: (A)/(B)—*C WRITTEN BY:
- LOOA';I’ION | OPERATION ADDRESS REMARKS
- |INSTRUCTI ABBRV. CODE DATA AINSTRUGTION
0003 RAU 60 | 0023 | 0078
0078 AL 15 0031 | 0042
0042 DIV 14 0006 | 0108
0108 ST L 20 0023 1 0088 A/Bs— 31
0088 RAU 60 8003 | 0095 it
0095 DIVRUL 64 | 0008 | 0109
0109 STL 20 0031_! 0050
0050 RAU 60 0006 | 0111
0111 Al 15 0015 _| 0022 Is Bo= 0? _If so, A/B=A/Bi
| 0022 sSU. 11 8003 | 0079 Ba= -
L 0079 BRNZ | 45 0038 | 0019
0038 DIV 14 8001 | 0113
0113 ST L, 20 0089 | 0096
| 0096 RATII 60 8003 | 0103
0103 DIV RUl 64 0006 | 0114 |]
0114 RSL 86 8002 | 0016 /B1
0016 AT, 15 _0069 | 0073 -
| 0073 AU 10
0086 | SU 11 0089 | 0094
AL 15 | 0097 .| 0102
0102 ST U 21 0006 _| 00680 }__E:egarp to go ta multiply
0060 ST L 20 0015 | 0002 routine to compute il
C= (A/By) (1- B2 /By)
0069: Constants
0097: | 0000004001

A METHOD FOR PERFORMING COMPLEX ARITHMETIC ON THE IBM TYPE 650

G. R. Trimble, Jr.

Introduction

This method for performing complex arithmetic on the 650 has been developed
since it is sometimes necessary to perform computations using complex numbers.
The basic operations of addition, subtraction, multiplication and division using
complex numbers are performed by this method. It was designed with coding
convenience as a prime objective and uses an interpretative routine to perform
complex arithmetie.

Complex instructions, that is, instructions which are to be interpreted, have a
negative sign. A complex instruction consists of a 2 digit operation code, a 4 digit
address specifying the location of the first factor and another 4 digit address
specifying the location of the second factor. The result of the operation is always
stored in a pair of memory locations referred to as C. A 5th operation, ‘‘Store’’,
is used to transfer the result from C to the locations desired by the programmer.

In order to store the result where desired, it will usually be necessary to follow one
of the 4 basic arithmetic operations by a store instruction. The net effect of such
a procedure is four 3-address operations.

The address given refers to the real part of the factor to be operated upon. The
interpretative routine automatically selects the imaginary part from the next memory
location. Thus, the real and imaginary parts of a complex number will always be
stored in successive memory locations.

Should a positive instruction appear, it is interpreted as a normal 650 instruction
and subsequent instructions are not interpreted. Thus, when a positive instruction
occurs the 650 operates in its usual D-I mode. This continues until an instruction
address of 0054 is given which causes the control to return to the complex mode of
operation at the point of departure.

For example, consider the following sequence:

Location Contents
n complex instruction (-)
n+l complex instruction (-)

67

68

n+2 complex instruction ()

n+3 ' normal 650 instruction (+)

(the contents of n+3 are interpreted as a normal 650 instruction including the instruction
address for sequencing. Normal execution of instructions continues until 0054 is used
as an instruction address, at which time the program returns to the complex mode
beginning with the instruction in location n+4).

Number Form

‘The number form is-as follows:

. XXXXXXXXXK+. momi=A1 + Azi

The imaginary part of a number is stored in the location immediately following
the one containing the real part.

Instruction Form

The instruction form is as follows:

complex command (00-04)
1st address A
2nd address B

location i XX¥XXXX \

Operations
The following is a list of the operations with their codes and estimated average
time.

Code Operation ~ Estimated Average Time (ms)
00 B=0, C—>A 23. 50
01 . A+B—»=C 45.64
02 A-B—>»C 45.64
03 AxB__ 5C 96. 50
04 A/B__»C 175. 42

Since the factors are assumed to be less than one, the numbers must be scaled
so that the results will be less than one. If any answer should exceed one, the machine
will stop. Also, the condition |A| <|B| must be satisfied for the divide operation.

This system requires 126 storage locations. It uses locations 0000 through 0127,
Every location within this block is used, thus making it easy to incorporate this
program with other programs. The translation routine, TR1, may be used to translate
this routine to any desired memory Location. It should be translated by an even amount
however, to preserve the even-odd conditions.

Explanation of Program ,

The interpretative routine determines where the next instruction is located, obtains
the instruction and analyzes it to see if it must be interpreted or if it is a normal 650
instruction. If it is a normal 650 instruction it is executed as such. If it must be
interpreted the interpretative routine continues analyzing it, obtains the required
factors, and transfers control to the proper sub-routine.

The constant in location 0091 facilitates use of TR1. During read in by TR1 this
constant is modified so that its instruction address digits contain the amount of
translation. This is then added to the operation code so that the control will be
transferred to the translated sub-routine during analysis of the operation code.

The sub-routines are straightforward and simple. The latter part of the add
sub-routine is also used by the subtract sub-routine to save memory locations. The
divide sub-routine may require that the dividend and divisor both be shifted right one
place if B} + B2 should exceed one.

69

70

Trade-Mark

PROBLEM:____INTERPRETATION _ WRITTEN BY:

IBM TYPE 650 PROGRAM SHEET PANTED WU SA

LGGATION OPERATION ADDRESS I CEMARKS
INSTRUGTION _ABBRV. | CODE | DATA __JNSTRUGTION'
0054 RAL 651 0007 0011 .
_0_01% 15 | 0014 | 8002 _Increase n toni+l and get instruction |
800 sSU 11 n+l 0122 n+l
0122 46 0106 0125 Is n+1 a normal 650 instruetion? =~ |
Al 10 | 8001 | 0045
045 _AU 10 | 8001 0053 n+l is a normal 650 instruction, |
053 ST L 20 | 0007 8003
8003 Normal 650 | Instruclion
0125 STL 20 ! 0007 0060 n+1 must be interpreted
0060 AU 10 | 0063 00687
(0067 BR OV! 47 | 0020 2
0020 RAL 65 8003 0027 n+l is not operation 00,
0027 LD 0030 0083
0083 STDA| 22 | 0037 | 8001 i
8001 LD _69 A1 0056
STD 24 | 0013 | 0016 Get A and store it in 00130037
0016 AL 15 | 0019 | 0023
0023 LD 69 | 0077 0080
0080 STDA!| 22 0035 8001
8001 LD 69 Ao 0123
0123 D | 24 | 0037 1 0040
0040 SLT 35 | 0004 | 0051
0051 LD - 69 1 0104 0008
0008 ST DA |22 0061 8001
8001 LD 69 | By 0102
0102 ST D 24 0058 Get B and store it in 00050028 |
0058 AL 15 0111 15
69 0021
CF I VT
24 oA | ooat
301 0002 | 0038 | Interpret operation code and
10 0091 | 8003 I transfer to proper sub-routine. |
(0000 | Oper
0122 -
0000 preted
0000
0056
0000
0 Constants
0102
0126
0

PAGE OF

IBM TYPE 650 PROGRAM SHEET

FORM NO. 22-8i81-0

IBM
PROBLEM: 00: (C)———mA WRITTEN BY:
LOCATION [OPERATION ADDRESS
msr%cnod ABBRV. | CODE DATA __ INSTRUGTION REMARKS
D026 AU 10 0029 0034
D034 LD 69 | 0046 8003 Store Cg in A
003 STD (24 [A 0121
121 SIL 11 | 0059
D059 LD - 0022 8003 r Store Cy in A1
R003 STD 24 [Aq4 0124 |
124 BROV [47 [0054 | 0054 | Reset overflow circuit
029- 25 000110121 Constants
055- 00 00009997
PROBLEM:01: (A)+(B)—»C WRITTEN BY:
TOCATION | __ OPERATION ADDRESS REMARKS
INSTRUCTH ABBRV. CODE DATA NSTRUCTION|
0000 BAU_ 1.60 | 0005 | 0009
0009 _ATl 10 | 0013 0017 C ;_Ai_*_nrﬁmzz
p017 STU 121 | 0022 0025 1
025 RAU 60 | 0028 0033
033 AU 10 0041 | = 46
041 STU 121 0046 | 0049
049 BR OV | 47 0120 for overflow
0120 STOP | 01 | 0000 0120
PROBLEM:_02: (A)-(B}—>»C ___ WRITTEN BY:
LOCA'?ION OPERATION ADDRESS
REMARKS
INSTRUGT! ABBRV. GCODE DATA INSTRUCTION
0001 RSU 61] 0005 0010
0010 AU 10/ 0013 0018y C.=A.-B——»0022
0018 STU 21 0022 0075) < L
0075 Rsu 61! 0028 [0033
0033 AU 10 0037 0041 Co=A,-B,—0046
0041 ST U 211 0046 0049 4 &4 -
0049 BROV 47 0120 0054 Test for overflow
0120 STOP 01! 0000 0120
PROBLEM: 03: (A)x(B)—3C ~~ WRITTEN BY:
LOGAFTION OPERATION ADDRESS
‘INSTgUGTION ABBRV. CODE DATA iNSTRUGTION REMARKS .
0002 RAU 60 0005 0109
0109 MULT | 19 0013 0119 A, B—»0057
0119 ST U 21 | 0057 0110 -+
0110 RAU 60 | 0013 0070
0070 MULT | 19 | 0028 0115 A, B—p»0071
0115 STU 121 | 0071 | 0024 2
0024 RSU 61 | 0028 0084
0084 MULT 19 37 0118 A.B. A B ___Fm_)29
0118 AU 10 3857 o006 | "1L "24™4
0066 sTU_ |21 | 0022 0078
0078 RAU 60 | 0037 0047
0047 MULT | 19 0005 0112 A, B, + A; B.—»0046
0112 AU 10 | 0071 0042 - 4 a t
0042 STU 21 0046 0054

71

Trade-Mark

PROBLEM:_04: (A) / (B)——C

PERATION

IBM TYPE 650 PROGRAM SHEET

FORM NO. 22-6181-0
PRINTED IN U.S.A.

WRITTEN BY:

ADDRESS

LOGA';I’ION [o] R
||NST800TI ABBRV. CODE DATA hNSTRUcTION EMARKS
0003 RSU 61 | 0013 0117
0117 MULT{ 19 | 0028 0098 -A, B.—5»0105
0098 sTUl 211 0105 0108 - a
| 0108 RAU a0 | 0013 0095
 MULTl 19| 0005 | .0103 _A, B1—»0061
0103 ST U 21 0061 | 0127 -
0127 RAU 60 | 0037 0092 '
MULTL 19 | 0005 0089 A, B.—30097
0089 STU [211 0097 0100 a 1
| 0100 RAU 60 | 0005 0062 5
0062 _MULT]_19 | 8001 0107 B —=0064
0107 sTul 211 0064 0 *
0082 RAU 60 0037 | 0093
0093 MULT. 19 | 0028 0096 A. B.—»0094
0096 STU | 211 0094 0048 a 4
| 0048 RAU 60 | 0028 0086 5 5
0086 | MULT 19 | 8001 0113 B . B-
0113 RAL 65 | 8003 0006 1 2
0006 AL 15 | 0064 0069 o 9
0069 BRNZI 44 | 0073 0081 IsBY +BS >12
0073 SRT 30 | 0001 0085 N
0085 ST L 20 | 0090 0043 B + B“— 0090
004 RAL 65 | 0097 0101 * 4
0101 AL 15| 0105 0012 A, B.-A, B,—»0032
0012 SRT 30 [o001 0072 a 1/
0072 STL! 20! 0032 0039
0039 RAL 65 | 0094 0099
0099 AL 15 1 0061 0065 A, B, + A, B;~—>8003
0065 SRT 30 | 0001 0074 0 4 “
0074 RAU 60 | 8002 0036 o o
0081 ST L 20 | 0090 0044 B¢ + B5—>»0090
0044 RAU 60 | 0097 0052 1 4
0052 AU 10 I 0105 0128 A, B, -A, B;30032
0128 STU | 21! 0032 : 0 27112
0088 RAU 60 [0094 . 0004 A. B.+A_ B 8003
0004 AU 10| 0061 ' 0036 r 4 e 5 o
0036 DIV.RII 64 | 0090 . 0116 Cy=(A, BysA, Bo) / (By + Bo)—30022.
0116 STL | 20 0022 0079 1
0079 RAU 60 | 0032 0087 5 o
0087 DIV RII 64 [0090 0114 C, = - 0046
| 0114 ST L. 20 | 0048 0054 4

72

PAGE - OF

INTERNATIONAL BUSINESS MACHINES CORPORATION

9 adison Avenue, New York 22, N. Y.
Form No. 34-6367-1-2M-A : 590 M venue, ! Litho in USA

