
--- ------ - ---- ---- - ---- - - ----------_.-

BASIC

Personal Computer
Hardware Reference
Library

Second Edition (May 1982)
Version 1.10

Changes are periodically made to the information herein; these
changes will be incorporated in new editions of this
publication.

Products are not stocked at the address below. Requests for
copies of this product and for technical information about the
system should be made to your authorized IBM Personal
Computer Dealer.

A Product Comment Form is provided at the back of this
publication. If this form has been removed, address comment
to: IBM Corp., Personal Computer, P.O. Box 1328-C, Boca Raton,
Florida 33432. IBM may use or distribute any ofthe information you
supply in any way it believes appropriate without incurring any
obligations whatever.

. © Copyright International Business Machines Corporation 1981

Summary of Changes

iv-b

The following changes have been made in BASIC
release 1.10:

• Lists to the screen or printer can be terminated
by pressing Ctrl-Break.

• Printers (LPT 1 :, LPT2:, and LPT3:) may be
opened in random mode. In release 1.00, these
devices were always opened for sequential output,
which would cause BASIC to add a line feed
character after each carriage return character.

Opening a printer in random mode with a width of
255 suppresses the line feed after the carriage
return, so that all characters may be sent to the
printer without change. This mode can be used
to support various types of graphics printers.

• The OPEN "COM ... statement has the following
new options:

RS

CS[n]

DS[n]

CD[n]

LF

suppresses RTS (Request To Send)

controls CTS (Clear To Send)

controls DSR (Data Set Ready)

controls CD (Carrier Detect)

sends a line feed following each carriage
return

Also, a LEN=number option has been added to
the OPEN "COM ... statement to specify the
maximum number of bytes which can be read
from the communication buffer when using GET
or PUT. This option is included for com patibility
with the BASIC Compiler.

• The STRIG function for Advanced BASIC now
reads four joystick buttons. This is useful if you
happen to have four one-dimensional paddles.

• The VARPTR$ function has been added. This
keeps compatibility with the IBM Personal
Computer BASIC Compiler, which needs this
function for DRAW and PLAY.

Details of these changes are contained in the following
pages.

iv-c

NOTES

iv-d

Preface

The IBM Personal Computer BASIC interpreter
consists of three upward compatible versions:
Cassette, Disk, and Advanced. This manual is a
reference for all three versions of BASIC release
1.10. We shall use the general term "BASIC" in this
book to refer to any of the versions of BASIC -
Cassette, Disk, or Advanced.

The IBM Personal Computer BASIC Compiler is an
optional software package available from IBM. If
you have the BASIC Compiler, the IBM Personal
Computer Basic Compiler manual is used in conjunction
with this book for reference.

iii

iv

How to Use This Manual

In order to use this manual, you should have some
knowledge of general programming concepts; we
are not trying to teach you how to program in this
manual.

The manual is divided into four chapters plus a
number of appendices.

Chapter 1 is a brief overview of the three
versions of IBM Personal Computer BASIC.

Chapter 2 tells you what you need to know to
start using BASIC on your IBM Personal
Computer. It tells you how to operate your
computer using BASIC.

Chapter 3 covers a variety of topics which you
will need to know before you actually start
programming. Much of the information
pertains to data representation when using
BASIC. We discuss filenames here, along with
many of the special input and output features
available in IBM Personal Computer BASIC.

Chapter 4 is the reference section. It contains
the syntax and semantics of every command,
statement, and function in BASIC, ordered
alphabetically.

The appendices contain other useful
information, such as lists of error messages,
ASCII codes, and math functions; and helpful
information on machine language subroutines,
diskette input and output, and
communications. You can also find detailed
information on more advanced subjects for the
more experienced programmer.

We suggest you read through all of chapters 2 and 3
to become familiar with BASIC. Then you can refer
to chapter 4 while you are actually programming to
get information you need about each command or
statement that you use.

Syntax Diagrams

Each of the commands, statements, and functions
described in this book has its syntax described
according to the following conventions:

• Words in capital letters are keywords and must
be entered as shown. They may be entered in
any combination of uppercase and lowercase.
BASIC always converts words to uppercase
(unless they are part of a quoted string, remark,
or DATA statement).

• You must supply any items in lowercase italic
letters.

• Items in square brackets ([]) are optional.

• An ellipsis (...) indicates an item may be
repeated as many times as you wish.

• All punctuation except square brackets (such as
commas, parentheses, semicolons, hyphens, or
equal signs) must be included where shown.

Let's look at an example:

INPUT[;] [''prompt'';] variable[,variable] ...

This says that for an INPUT statement to be valid,
you must first have the keyword INPUT, followed
optionally by a semicolon. Then, if you wish, you
may include a prompt/within quotation marks. If you
do include the prompt, it must be followed by a
semicolon. At least one variable is required for an
INPUT statement. You may have more than one
variable if you separate them with commas.

More detailed information on each of the
parameters is included with the text accompanying
the diagrarn. The information for this example is in
Chapter 4, under "INPUT Statement."

v

vi

Related Publications

The following manuals contain related information
that you may find useful:

• The IBM Personal Computer Guide to Operations
manual.

• The IBM Personal Computer Disk Operating System
manual.

• The IBM Personal Computer Technical Reference
manual.

Summary of Changes

The following changes have been made in BASIC
release 1.10:

• Any list to the screen or printer can be
terminated by pressing Ctrl-Break.

• Printers (LPT1:, LPT2:, and LPT3:) may be
opened in random mode. In release 1.00, these
devices were always opened for sequential
output, which would cause BASIC to add a line
feed character after each carriage return
character.

Opening a printer in random mode with a width
of 2 55 suppresses the line feed after the carriage
return, so that all characters may be sent to the
printer without change. This mode can be used
to support various types of graphics printers.

• the OPEN "COM ... statement has the
following new options:

RS suppresses RTS (Request To Send)

CS[n] controls CTS (Clear To Send)

DS[n] controls DSR (Data Set Ready)

CD[n] controls CD (Carrier Detect)

LF sends a line feed following each
carriage return

Also, a LEN=number option has been added to
the OPEN "COM ... statement to specify the
maximum number of bytes which can be read
from the file buffer when using GET or PUT.
This option is included for compatibility with
the BASIC Compiler.

vii

viii

• The STRIG function in Advanced BASIC now
reads four joystick buttons. This is useful if you
have four one-dimensional paddles.

• The V ARPTR$ function has been added. This
keeps compatibility with the compiler, which
needs this function for DRAW and PLAY.

CONTENTS

CHAPTER 1. THEVERSIONSOFBASIC... 1-1
The Versions of BASIC 1-3
Cassette BASIC 1-4
Disk BASIC 1-5
Advanced BASIC 1-6

CHAPTER 2. HOW TO START AND USE
BASIC 2-1

Getting BASIC Started 2-3
Options on the BASIC Command 2-4

Modes of Operation 2-7
The Keyboard 2-8

Function Keys 2-9
Typewriter Keyboard 2-10
Numeric Keypad 2-16
Special Key Combinations 2-18

The BASIC Program Editor 2-20
Special Program Editor Keys 2-20
How to Make Corrections on the

Current Line 2-33
Entering or Changing a BASIC

Program 2-3 7
Changing Lines Anywhere on the

Screen 2-39
Syntax Errors 2-41

CHAPTER 3. GENERAL INFORMATION
ABOUT PROGRAMMING IN BASIC.... 3-1

Line Format 3-3
Character Set 3-4
Reserved Words 3-6
Constants 3-9

Numeric Precision 3-11
Variables 3-12

How to Name a Variable. 3-12
How to Declare Variable Types 3-13
Arrays. 3-15

How BASIC Converts Numbers from One
Precision to Another 3-18

ix

x

Numeric Expressions and Operators 3-21
Arithmetic Operators 3-21
Relational Operators 3-23
Logical Operators 3-25
Numeric Functions 3-29
Order of Execution 3-29

String Expressions and Operators 3-31
Concatenation.. 3-31
String Functions 3-32

Input and Output 3-33
Files 3-33
Using the Screen 3-38
Other 1/0 Features 3-44

CHAPTER 4. BASIC COMMANDS,
STATEMENTS, FUNCTIONS, AND
VARIABLES 4-1

How to Use This Chapter........... 4-3
Commands 4-6
Statements 4-8

Non-I/O Statements 4-8
I/O Statements 4-13

Functions and Variables 4-17
Numeric Functions 4-17
String Functions 4-21

ABS Function 4-23
ASC Function 4-24
ATN Function 4-25
AUTO Command 4-26
BEEP Statement 4-28
BLOAD Command 4-29
BSAVE Command 4-32
CALL Statement 4-34
CDBL Function 4-35
CHAIN Statement 4-36
CHR$ Function 4-38
CINT Function 4-40
CIRCLE Statement 4-41
CLEAR Command 4-44
CLOSE Statement 4-46
CLS Statement 4-48
COLOR Statement 4-49

The COLOR Statement in Text Mode ... 4-49
The COLOR Statement in Graphics

Mode 4-54
COM(n) Statement 4-56

COMMON Statement 4-57
CONT Command 4-58
COS Function 4-60
CSNG Function 4-61
CSRLIN Variable 4-62
CVI, CVS, CVD Functions 4-63
DATA Statement 4-64
DATE$ Variable and Statement 4-66
DEF FN Statement 4-68
DEF SEG Statement 4-71
DEFtype Statements 4-73
DEF USR Statement 4-75
DELETE Command 4-76
DIM Statement 4-77
DRAW Statement 4-79
EDIT Command 4-84
END Statement 4-85
EOF Function 4-86
ERASE Statement 4-87
ERR and ERL Variables 4-89
ERROR Statement 4-91
EXP Function 4-93
FIELD Statement. .. 4-94
FILES Command 4-97
FIX Function 4-99
FOR and NEXT Statements 4-100
FRE Function 4-104
GET Statement (Files) 4-106
GET Statement (Graphics) ... ~ 4-108
GOSUB and RETURN Statements 4-111
GOTO Statement 4-113
HEX$ Function 4-115
IF Statement 4-116
INKEY$ Variable 4-119
INP Function 4-121
INPUT Statement 4-122
INPUT # Statement 4-125
INPUT$ Function 4-127
INSTR Function 4-129
INT Function 4-130
KEY Statement 4-131
KEY(n) Statement 4-134
KILL Command 4-136
LEFT$ Function 4-137
LEN Function 4-138

xi

LET Statement 4-139
LINE Statement 4-141
LINE INPUT Statement 4-144
LINE INPUT # Statement 4-145
LIST Command 4-147
LLIST Command 4-149
LOAD Command 4-150
LOC Function 4-153
LOCATE Statement 4-155
LOF Function 4-158
LOG Function 4-159
LPOS Function 4-160
LPRINT and LPRINT USING

Statements 4-161
LSET and RSET Statements 4-163
MERGE Command 4-165
MID$ Function and Statement 4-167
MKI$, MKS$, MKD$ Functions 4-170
MOTOR Statement 4-172
NAME Command 4-173
NEW Command 4-174
OCT$ Function 4-175
ON COM(n) Statement 4-176
ON ERROR Statement 4-178
ON ... GOSUB and ON ... GOTO

Statements 4-180
ON KEY(n) Statement 4-182
ON PEN Statement 4-185
ON STRIG(n) Statement 4-187
OPEN Statement 4-189
OPEN "COM ... Statement 4-194
OPTION BASE Statement 4-200
OUT Statement 4-201
PAINT Statement 4-203
PEEK Function 4-205
PEN Statement and Function 4-206
PLAY Statement 4-209
POINT Function 4-213
POKE Statement 4-214
POS Function 4-215
PRINT Statement 4-216
PRINT USING Statement 4-219
PRINT # and PRINT # USING

Statements 4-225

xii

PSET and PRESET Statements 4-228
PUT Statement (Files) 4-230
PUT Statement (Graphics) 4-232
RANDOMIZE Statement 4-236
READ Statement 4-238
REM Statement 4-240
RENUM Command 4-241
RESET Command 4-243
RESTORE Statement 4-244
RESUME Statement 4-245
RETURN Statement 4-247
RIGHT$ Function 4-248
RND Function 4-249
RUN Command 4-251
SAVE Command 4-253
SCREEN Function 4-255
SCREEN Statement 4-257
SGN Function 4-260
SIN Function 4-261
SOUND Statement 4-262
SPACE$ Function 4-265
SPC Function 4-266
SQR Function 4-267
STICK Function 4-268
STOP Statement 4-270
STR$ Function 4-272
STRIG Statement and Function 4-273
STRIG(n) Statement 4-275
STRING$ Function 4-276
SWAP Statement 4-277
SYSTEM Command 4-278
TAB Function 4-279
TAN Function 4-280
TIME$ Variable and Statement 4-281
TRON and TROFF Commands 4-283
USR Function 4-284
VAL Function 4-285
V ARPTR Function 4-286
V ARPTR$ Function 4-288
WAIT Statement 4-290
WHILE and WEND Statements 4-292
WIDTH Statement 4-294
WRITE Statement 4-298
WRITE # Statement 4-299

xiii

xiv

APPENDIX A. MESSAGES A-5

APPENDIX B. BASIC DISKETTE INPUT
AND OUTPUT B-1

Specifying Filenames. B-2
Commands for Program Files B-2
Diskette Data Files - Sequential and

Random I/O B-4
Sequential Files B-4
Random Files B-8

Performance Hints B-15

APPENDIX C. MACHINELANGUAGE
SUBROUTINES . C-1

Setting Memory Aside for Your
Subroutines C-2

Getting the Subroutine Code into
Memory C-3

Poking a Subroutine into Memory C-4
Loading the Subroutine from a File ... C-5

Calling the Subroutine from Your
BASIC Program......................... C-8

Common Features of CALL and USR ... C-8
CALL Statement C-10
USR Function Calls C-14

APPENDIX D. CONVERTING PROGRAMS TO
IBM PERSONAL COMPUTER BASIC... D-l

File I/O D-l
Graphics D-l
IF ... THEN D-2
Line Feeds D- 3
Logical Operations D- 3
MAT Functions D-4
Multiple Assignments D-4
Multiple Statements..... D-4
PEEKS and POKEs D-4
Relational Expressions D-5
Remarks D-5
Rounding of Numbers D-5
Sounding the Bell D-5
String Handling... D-6
Use of Blanks D-7
Other D-7

APPENDIX E. MATHEMATICAL
FUNCTIONS E-1

APPENDIX F. COMMUNICATIONS F-1
Opening a Communications File F-1
Communication I/O F-1
An Example Program F-4

Operation of Control Signals F-6
Control of Output Signals with OPEN. . . F-6
Use of Input Control Signals F-7
Testing for Modem Control Signals ... F-7
Direct Control of O.utput Control

Signals F-8
Communication Errors F-10

APPENDIX G. ASCII CHARACTER
CODES ~.... G-1

Extended Codes G-6

APPENDIX H. HEXADECIMAL
CONVERSION TABLE................. H-1

APPENDIX I. TECHNICAL INFORMATION
AND TIPS 1-1

Memory Map 1-2
How Variables Are Stored 1- 3
BASIC File Control Block 1-4
Keyboard Buffer 1-7
Search Order for Adapters 1-7
Switching Displays 1-8
Some Techniques with Color 1-9

Tips and Techniques 1-10

APPENDIX J. GLOSSARY J-1

INDEX X-1

xv

NOTES

xvi

CHAPTER 1. THE VERSIONS OF
BASIC

Contents

The Versions of BASIC 1-3

Cassette BASIC..................... 1-4

Disk BASIC 1-5

Advanced BASIC 1-6

1-1

NOTES

1-2

The Versions of BASIC

The IBM Personal Computer offers three different
versions of the BASIC interpreter:

• Cassette
• Disk
• Advanced

The three versions of BASIC are upward compatible;
that is, Disk BASIC does everything Cassette BASIC
does, plus a little more, and Advanced BASIC does
everything Disk BASIC does, plus a little more. The
differences between the versions are discussed in
more detail below.

The BASIC commands, statements, and functions
for all three versions of the BASIC interpreter are
described in detail in "Chapter4. BASIC Commands,
Statements, Functions, and Variables." Included in
each description is a section called Versions:, where
we tell you which versions of BASIC support the
command, statement, or function.

For example, if you look under "CHAIN Statement"
in Chapter 4, you will note that it says:

Versions: Cassette Disk Advanced Compiler
*** *** (**)

The asterisks indicate which versions of BASIC
support the statement. This example shows that you
can use the CHAIN statement for programs written
in the Disk and Advanced versions of BASIC.

In this example you will notice that the asterisks
under the word "Compiler" are in parentheses. This
means that there are differences between the way the
statement works under the BASIC interpreter and
the way it works under the IBM Personal Computer
BASIC Compiler. The IBM Personal Computer
BASIC Compiler is an optional software package
available from IBM. If you have the BASIC
Compiler, the IBM Personal Computer BASIC Compiler
manual explains these differences.

1-3

Cassette BASIC

1-4

The nucleus of BASIC is the Cassette version, which
is built into your IBM Personal Computer in
32K-bytes of read-only storage. You can use
Cassette BASIC on an IBM Personal Computer with
any amount of random access memory. The amount
of storage you can use for such things as programs
and data depends on how much memory you have in
your IBM Personal Computer. The number of
"bytes free" will be displayed after you switch on the
computer.

The only storage device you can use to save
information in Cassette BASIC is a cassette tape
recorder. You cannot use diskettes with Cassette
BASIC.

Some special features you will find in this and the
other two versions of BASIC are:

• An extended character set of 256 different
characters which can be displayed. In addition
to the usual letters, numbers, and special
symbols, you also have international characters
like n, a, and ~. You will also find symbols which
are commonly used in scientific and
mathematical applications, such as Greek
letters. There are also a variety of other
symbols.

• Graphics capability. If you have the
Color/Graphics Monitor Adapter, you can draw
points, lines, and even entire pictures. The
screen can be all points addressable in either
medium or high resolution. More information
on this can be found in Chapter 3.

• Special input/output devices. The IBM
Personal Computer has a speaker which you can
use to make sound. Also, BASIC supports a light
pen and joysticks which help make your
programs more interesting as well as more fun.

Disk BASIC

This version of BASIC comes as a program on the
IBM Personal Computer Disk Operating System
(DOS) diskette. DOS is a separate product available
from IBM. You have to load Disk BASIC into
memory before you can use it. Disk BASIC requires a
diskette-based machine with at least 32K-bytes of
random access memory. The amount of storage you
can use for such things as programs and data is
displayed on the screen when you start BASIC.

Special features of Disk BASIC are:

• Input/ output to diskette in addition to cassette.
See "Appendix B. BASIC Diskette Input and
Output" for special considerations when using
diskette files.

• An internal "clock," which keeps track of the
date and time.

• Asynchronous communications (RS232)
support, which you can use if you have an
Asynchronous Communications Adapter.
Refer to "Appendix F. Communications" for
details.

• Support for two additional printers.

1-5

Advanced BASIC

1-6

Advanced BASIC, the most extensive form of BASIC
available on the IBM Personal Computer, does
everything that Cassette and Disk BASIC do, and
more. Like Disk BASIC, it is a program on the IBM
DOS diskette which you must load into memory to
use. Advanced BASIC requires a diskette-based
machine with at least 48K-bytes of random access
memory. As with the other versions, the number of
free bytes you will have for programs and data is
displayed on the screen when you start BASIC.

Key features found only in Advanced BASIC are the
following:

• Event trapping. A program can respond to the
occurrence of a specific event by "trapping"
(automatically branching) to a specific program
line. Events include: communications activity,
a function key being pressed, the button being
pressed on a joystick, and the light pen being
activated.

• Advanced graphics. Additional statements are
CIRCLE, PUT, GET, PAINT, and DRAW.
These operations make it easier to create more
complex graphics with the Color/Graphics
Monitor Adapter.

• Advanced music support. The PLAY statement
allows easy usage of the built-in speaker to
create musical tones.

CHAPTER 2. HOWTOSTARTAND
USE BASIC

Contents
Getting BASIC Started 2-3

Options on the BASIC Command. 2-4

Modes of Operation 2-7

The Keyboard 2-8
Function Keys ~ 2-9
Typewriter Keyboard 2-10

Special Symbols 2-11
Uppercase 2-12
Backspace 2-12
PrtSc 2-13
Other Shifts 2-13

Numeric Keypad 2-15
Keypad Shift 2-16

Special Key Combinations 2-17

The BASIC Program Editor 2-19
Special Program Editor Keys 2-19
How to Make Corrections on the

Current Line 2-32
Changing Characters 2-32
Erasing Characters 2- 3 3
Adding Characters 2-34
Erasing Part of a Line 2- 3 5
Cancelling a Line 2-35

Entering or Changing a BASIC
Program 2-36

Adding a New Line to the
Program 2-36

Replacing or Changing an Existing
Program Line 2- 3 7

Deleting Program Lines 2-37
Deleting an Entire Program 2-38

Changing Lines Anywhere on the
Screen 2-38

Syntax Errors 2-40

2-1

NOTES

2-2

Getting BASIC Started

It's easy to start BASIC on the IBM Personal
Computer:

To Start Cassette BASIC:

Just switch the computer on. If your system has
diskette drives, you should make sure you don't have
a diskette in drive A, or leave the drive door open.

The words "Version C" and the release number will
be displayed along with the number of free bytes you
have available.

To Start Disk BASIC:

1. Start DOS. To do this, you can:

a. Insert the IBM DOS diskette in drive A:.

b. Switch on the computer.

2. Enter the command BASIC when DOS prompts
you for a command.

The words "Version D" and the release number
will be displayed along with the number of free
bytes.

To Start Advanced BASIC:

1. Start DOS as described above.

2. Enter the command BASICA in response to the
DOS prompt. ~

The words "Version A" and the release number
will be displayed along with the number of free
bytes.

2-3

Options on the BASIC Command

2-4

You can include options on the BASIC or BASICA
command when you start Disk or Advanced BASIC.
These options specify the amount of storage BASIC
uses to hold programs and data, and for buffer areas.
You can also ask BASIC to immediately load and run
a program.

These options are not required-BASIC will work
just fine without them. So if you're new to BASIC,
you may wish to skip over this section and go on to
the next section, "Modes of Operation." Then you
can refer back to this section when you become
more familiar with BASIC and its capabilities.

The complete format of the BASIC command is:

BASIC[A] [fi'lespec] [I Fiflles] [lS:bsize]
[I C:combuffer] [lM:max workspace]

filespec is the file specification of a program to be
loaded and executed immediately. It must be a
character string constant, but it should not be
enclosed in quotation marks. It should conform to
the rules for specifying files described under
"Naming Files" in "Chapter 3. General Information
about Programming in BASIC." A default extension
of . BAS is used if none is supplied and the length of
the filename is eight characters or less. If you include
filespec, BASIC proceeds as if a RUNfilespec command
were the first thing you entered once BASIC is ready.
Note that when you specify filespec, the BASIC
heading with the copyright notices is not displayed.

IF:files sets the maximum number of files that may
be open at anyone time during the execution of a
BASIC program. Each file requires 188 bytes of
memory for the file control block, plus the buffer
size specified in the IS: option. If the IF: option is
omitted, the number of files defaults to three. The
maximum value is 15.

IS:bsize sets the buffer size for use with random files.
The record length parameter on the OPEN
statement may not exceed this value. The default
buffer size is 128 bytes. The maximum value you
may enter is 32767. We suggest you use /S:512 for
improved performance when using random files.

IC:combuffer sets the size of the buffer for receiving
data when using the Asynchronous
Communications Adapter. This option has no effect
unless you have an Asynchronous Communications
Adapter on your system. The buffer for transmitting
data with communications is always allocated to 128
bytes. The maximum value you may enter for the/C:
option is 32767. If the IC: option is omitted, 256
bytes are allocated for the receive buffer. If you have
a high-speed line, we suggest you use/C:1024. If you
have two Asynchronous Communications Adapters
on your system, both receive buffers are set to the
size specified by this option. You may disable RS232
support by using a value of zero (I C:O), in which case
no buffer space will be reserved for
communications, and communications support will
not be included when BASIC is loaded.

IM:max workspace sets the maximum number of bytes
that may be used as BASIC workspace. BASIC is only
able to use a maximum of 64K-bytes of memory, so
the highest value you may set is 64K (hex FFFF).
You can use this option in order to reserve space for
machine language subroutines or for special data
storage. You may wish to refer to "Memory Map" in
Appendix I for more detailed information on how
BASIC uses memory. If the /M: option is omitted, all
available memory up to a maximum of 64K-bytes is
used.

Note: files, max workspace, bsize, and combuffer
are all numbers that may be either decimal,
octal (preceded by &0) or hexadecimal
(preceded by &H).

2-5

2-6

Some examples of using the BASIC command:

BASIC PAYROLL.BAS

This will start Disk BASIC so that it will use the
defaults as just described - all memory and
three files. The program PAYROLL.BAS will
be loaded and executed.

BASICA INVEN/F:6

Here we start Advanced BASIC to use all
memory and six files, and load and execute
INVEN.BAS. Remember, .BAS is the default
extension.

BASIC /M:32768

This command starts Disk BASIC so the
maximum workspace size is 32768. That is,
BASIC will use only 32K-bytes of memory. No
more than three files will be used at one time.

BASICA B:CHKWRR.TST/F:2/M:&H9000

This command sets the maximum workspace
size to hex 9000. This means Advanced BASIC
will be able to use up to 36K-bytes of memory.
Also, file control blocks are set up for two files,
and the program CHKWRR. TST on the
diskette in drive B is loaded and executed.

Modes of Operation

Once BASIC is started, it displays the prompt Ok.
Ok means BASIC is ready for you to tell it what to do.
Sometimes this state is known as command level. At
this point, you may talk to BASIC in either of two
modes: the direct mode or the indirect mode.

Indirect Mode

You enter programs using indirect mode. To tell
BASIC the line you are ent:ering is part of a program,
you begin the line with a line number. The line is then
stored as part of the program in memory. The
program in storage can be executed by entering the
RUN command. For example:

Ok
1 PRINT 20+2
RUN

22
Ok

Direct Mode

Direct mode means you are telling BASIC to perform
your request immediately after the request is
entered. You tell BASIC to do this by not preceding
the statement or command with a line number. You
can display results of arithmetic and logical
operations immediately or store them for later use,
but the instructions themselves are not saved after
they are executed. This mode is useful for debugging
as well as for quick computations that do not require
a complete program. For example:

Ok
PRINT 20+2

22
Ok

2-7

•

t-.)
I

ex>

-----Function

keys
Typewriter keyboard

--- ~

Numeric

keypad

~
t:T
(D

~
(D

&
o
~
I-t p..

The keyboard is divided into three general areas:

• Ten function keys, labeled Fl through FlO, are
on the left side of the keyboard.

• The "typewriter" area is in the middle. This is
where you find the regular letter and number
keys.

• The numeric keypad, similar to a calculator
keyboard, is on the right side.

All the keys, in all three areas of the keyboard, are
typematic. That means they repeat as long as you
hold them down. Each of the keyboard areas are
explained in more detail below:

Function Keys

Function
Keys

The function keys can be used:

• As "soft keys." That is, you can set each key to
automatically type any sequence of characters.
In fact, some frequently-used commands have
already been assigned to these keys. You may
change these if you wish. Refer to "KEY
Statement" in Chapter 4 for details.

• As program interrupts in Advanced BASIC,
through use of the ON KEY statement. See
"ON KEY(n) Statement" in Chapter 4.

2-9

Typewri ter Keyboard

2-10

Typewri ter Keyboard

The typewriter area of the keyboard behaves much
like a standard typewriter. All the letters are there, in
their usual places. The numbers 0 through 9 are on
the top row, along with some special characters.

Shift Keys

Capital letters and the special characters shown
above the numbers on the number keys are
displayed by holding down either of the Shift keys
and pressing the desired key.

W·,"·";'
L', ."

~,l~~~~~~~~~'~~"ri·"~
».1, ,

~~--~--~-~----~~~-~--~

The key with the .J symbol on it is the carriage
return key. You usually have to press this key to
enter information into the computer. We will refer
to it as the Enter key froni now on.

There are several important differences between this
keyboard and a regular typewriter, however.

Special Symbols:

m
'"

F9 FlO'

~~------------~~=-~--~

This keyboard has some special symbols that you
won't find on a regular typewriter, like" , [, and]; and
some characters are not where you might expect
them to be if you're used to using a typewriter. For
example, the uppershift period (.) is not a period,
but the> symbol.

2-11

2-12

Uppercase:

rn
' >2

'F9' FlO:

~~-------------

This keyboard does not have a normal Shift Lock
key. The Caps Lock key is similar to a Shift Lock key,
but it only gives you capital letters, and will not give
you the uppershift characters on the numeric or
other keys. After you press this key, you will
continue to get capital letters until you press it again.
You can get lowercase letters when in Caps Lock
state by pressing and holding one of the Shift keys.
When you release the Shift key, you'll go back to
Caps Lock state.

Backspace:

The Backspace key behaves somewhat differently
from the Backspace key on a typewriter. It not only
backspaces, it erases what you've typed as well. You
should use the Cursor Left key to avoid erasing what
you've typed. Refer to "The BASIC Program Editor"
later in this chapter.

PrtSc:

Below the Enter key is a key labeled PrtSc on top and
* on the bottom. "PrtSc" stands for "Print screen."
When the keyboard is in lowershift, pressing this key
causes an asterisk to be typed. In uppershift,
however, this is a special key that causes a copy of
what is on the screen to be printed on the printer
(LPT1:). So, if you ever need a hard (printed) copy of
what is currently being displayed, just press and hold
one of the Shift keys, and press the PrtSc key. (Note:
Characters which are unrecognizable by the printer
are printed as blanks.)

Other Shifts: In addition to the Shift keys which
change the keyboard from lowershift to uppershift,
there are two other "shift" keys on the typewriter
keyboard. They are the Alt (Alternate) and the Ctrl
(Control) keys. You use both of these keys like the
Shift keys; that is, you press and hold the Alt (or Ctrl)
key, then press the desired key. Then you can release
both keys. However, Alt and Ctrl cause different
things to happen.

2-13

2-14

The Alt key enables easy entry of BASIC statement
keywords. This key allows you to type an entire
BASIC keyword with a single keystroke.

The BASIC keyword is typed when the Alt key is held
down while one of the alphabetic keys A-Z is
pressed. Keywords associated with each letter are
summarized below. Letters not having reserved
words are noted by "(no word)".

A AUTO N NEXT
B BSAVE 0 OPEN
C COLOR P PRINT
D DELETE Q (no word)
E ELSE R RUN
F FOR S SCREEN
G GOTO T THEN
H HEX$ U USING
I INPUT V VAL
J (no word) W WIDTH
K KEY X XOR
L LOCATE Y (no word)
M MOTOR Z (no word)

The Alt key is also used with the keys on the numeric
keypad to enter characters not found on the keys.
This is done by holding down the Alt key and typing
the three-digit ASCII code for the character. (See
"Appendix G. ASCII Character Codes" for a
complete list of ASCII codes.)'

The Ctrl key is also used to enter certain codes and
characters not otherwise available from the
keyboard.

For example, Ctrl-G is the bell character. When this
character is printed, the speaker beeps. Note how
the notation "Ctrl-G" means you press and hold the
Ctrl key, then press the G key. Then you can release
both keys.

You also use the Ctrl key together with other keys
when you edit programs with the program editor.

Numeric Keypad

Numeric Keypad

2-15

2-16

Usually you will be using the numeric keypad keys
for their functions with the program editor. These
keys allow you to move the cursor up, down, right,
and left. You can insert and delete characters using
these keys. Refer to the following section, "The
BASIC Program Editor," for complete information.

m"J": .". ,,:

Note: The Scroll Lock, Pg Up, and Pg Dn keys
are not used by BASIC, but they may be given
meaning wi thin a program.

~~------------~--~~--~

Keypad Shift: You can use the Num Lock key to set
the numeric keypad so it works more like a
calculator keypad. Pressing the Num Lock key shifts
the numeric keypad into its own uppershift mode, so
that you get the numbers 0 through 9 and the
decimal point, as indicated on the key tops. Pressing
Num Lock again will return the keypad to its normal
cursor control mode. As with Caps Lock, you can
temporarily reverse the Num Lock state by pressing
one of the Shift Keys.

Special Key Combinations

You should be aware of the special functions of the
following combinations of keys:

Ctrl-Break

Ctrl-Num Lock

Ctrl-Break interrupts program
execution at the next BASIC
instruction and returns to BASIC
command level. It is also used to
exit AUTO line numbering mode.

Ctrl-N urn Lock sends the
computer into a pause state. This
can be used to temporarily halt
printing or program listing. The
pause continues until any key
other than the "shift" keys, the
Break key, and the Ins key, is
pressed. (See "Uppercase,"
"Other Shifts," and "Keypad
Shift" earlier in this section.)

2-17

Alt-Ctrl-Del

2-18

If the computer power is on,
Alt-Ctrl-Del performs a System
Reset. In other words, it's similar to
switching the computer from off
to on. You must press the Ctrl and
Alt keys (in either order) and hold
them down, then press the Del
key. Then you can release all three
keys. Doing a System Reset with
these keys is preferable to flipping
the power switch off and on again,
because the system will start
faster.

The BASIC Program Editor
Any line of text typed while BASIC is at command
level is processed by the BASIC program editor. The
program editor is a "screen line editor." That is, you
can change a line anywhere on the screen, but you
can only change one line at a time. The change will
only take effect if you press Enter on that line.

"
Use of the program editor can save a lot of time
during program development. To become familiar
with its features, we suggest you enter a sample
program and practice all the editing capabilities. The
best way for you to get a "feel" for the editing
process is to try editing a few lines while studying the
information that follows.

As you type things on your computer, you'll notice a
blinking underline or box appearing just to the right
of the last character you typed. This line or box is
called the cursor. It marks the next position at which a
character is to be typed, inserted, or deleted.

Special Program Editor Keys

You use the keys on the numeric keypad, the
Backspace key, and the Ctrl key to move the cursor
to a location on the screen, insert characters, or
delete characters. The keys and their functions are
listed on the next pages.

2-19

Key(s)

Home

Ctrl-Home

2-20

Function

Moves the cursor to the upper left-hand
corner of the screen.

Clears the screen and positions the cursor
in the upper left-hand corner of the screen.

Key(s) Function

t
(Cursor Up)

Moves the cursor one position up.

(Cursor Down)

Moves the cursor one position down.

2-21

Key(s)

(Cursor Left)

(Cursor Right)

2-22

Function

Moves the cursor one position left. If the
cursor advances beyond the left edge of the
screen, the cursor will move to the right
side of the screen on the preceding line.

Moves the cursor one position right. If the
cursor advances beyond the right edge of
the screen, the cursor will move to the left
side of the screen on the next line down.

Key(s)

Ctrl-~

(Next Word)

Function

Moves the cursor right to the next word. A
word is defined as a character or group of
characters which begins with a letter or
number. Words are separated by blanks or
special characters. So, the next word will
be the next letter or number to the right of
the cursor which follows a blank or special
character.

For example, suppose we have the
following line:

LINE (Ll,LQW2)-(MAX,48) ,3, BF

As you can see, the cursor is presently in
the middle of the word LOW2. If we press
Next Word (Ctrl-Cursor Right), the cursor
will move to the beginning of the next
word, which is MAX:

LINE (Ll,LOW2)-(~AX,48) ,3, BF

If we press Next Word again, the cursor
will move to the next word, which is the
number 48:

LINE (Ll,LOW2)-(MAX,~8) ,3, BF

2-23

Key(s)

Ctrl-~

(Previous Word)

2-24

Function

Moves the cursor left to the previous word.
The previous word will be the letter or
number to the left of the cursor which is
preceded by a blank or special character.

For example, suppose we have:

LI NE (L 1, LOW2) - (MAX,48) ,3 , BF

If we press Previous Word (Ctrl-Cursor
Left), the cursor moves to the beginning
of the word BF:

LINE (Ll,LOW2)-(MAX,48) ,3 , !F

When we press Previous Word again, the
cursor moves to the previous word, which
is the number 3:

LINE (Ll,LOW2)-(MAX,48) ,1, BF

And if we press it twice more, the cursor
will back up first to the number48, then to
the word MAX:

LINE (L1,LOW2)-(~AX,48) ,3, BF

Key(s)

End

Ctrl-End

Function

Moves the cursor to the end of the logical
line. Characters typed from this position
are added to the end of the line.

Erases to the end of logical line from the
current cursor position. All physical screen
lines are erased until the terminating Enter
is found.

2-25

Key(s)

Ins

2-26

Function

Sets insert mode. If insert mode is off, then
pressing this key will turn it on. If insert
mode is already on, then you will turn it off
when you press this key. When you're in
insert mode, the cursor covers the lower
half of the character position.

When insert mode is on, characters above
and following the cursor move to the right
as typed characters are inserted at the
curren t cursor position. After each
keystroke, the cursor moves one position
to the right. Line folding occurs; that is, as
characters advance off the right side of the
screen they return on the left on a
subsequent line.

When insert mode is off, any characters
typed replace existing characters on the
line.

Besides pressing the Ins key again, insert
mode will also be turned off when you
press any of the cursor movement keys or
the Enter key.

Key(s)

Del

Function

Deletes the character at the current cursor
position. All characters to the right of the
deleted character move one posi tion left to
fill in the empty space. Line folding occurs;
that is, if a logical line extends beyond one
physical line, characters on subsequent
lines move left one position to fill in the
previous space, and the character in the
first column of each subsequent line moves
up to the end of the preceding line.

2-27

Key(s)

(Backspace)

Esc

2-28

Function

Deletes the last character typed. That is, it
deletes the character to the left of the
cursor. All characters to the right of the
deleted character move left one position to
fill in the space. Subsequent characters and
lines within the current logical line move
up as with the Del key.

When pressed anywhere in the line, erases
the entire logical line from the screen. The
line is not passed to BASIC for processing.
If it is a program line, it is not erased from
the program in memory.

Key(s)

Ctrl-Break

Function

Returns to command level, without saving
any changes that were made to the current
line being edited. It does not erase the line
from the screen like Esc does.

2-29

Key(s)

(Tab)

2-30

Function

Moves the cursor to the next tab stop. Tab
stops occur every eight character
posi tions; that is, at positions 1, 9, 17, etc.

When insert mode is off, pressing the Tab
key moves the cursor over characters until
it reaches the next tab stop.

For example, suppose we have the
following line:

10 REM this is a remark

If we press the Tab key, the cursor will
move to the ninth position as shown:

10 REM this is a remark

If we press the Tab key again, the cursor
moves to the 17th position on the line:

10 REM th is is a rema rk

Key(s)

(Tab)

Function

(continued)

When insert mode is on, pressing the Tab
key inserts blanks from the current cursor
position to the next tab stop. Line folding
occurs as explained under Ins.

For example, suppose we have this line:

10 REM this is a remark

If we press the Ins key and then the Tab
key, blanks are inserted up to position 17:

10 REM th is a remark

2-31

How to Make Corrections on the Current
Line

2-32

Since any line of text typed while BASIC is at
command level is processed by the program editor,
you can use any of the keys described in the previous
section under" Special Program Editor Keys."
BASIC is always at command level after the prompt
Ok and until a RUN command is given.

A logical line is a string of text which BASIC treats as a
unit. It is possible to extend a logical line over more
than one physical screen line by simply typing
beyond the edge of the screen. The cursor will wrap
to the next screen line. You can also use a line feed
(Ctrl-Enter). Typing a line feed causes subsequent
text to be printed on the next screen line without
your having to enter all the blanks to move the
cursor there. The line is not processed; this only
happens when you press Enter.

Note that the line feed actually causes the remainder
of the physical screen line to be filled with blank
characters. A line feed character is not added to the
text. These blanks are included in the 255 characters
allowed for a BASIC line.

When the Enter key is finally pressed, the entire
logical line is passed to BASIC for processing.

Changing Characters: If you are typing a line and
discover you typed something incorrectly, you can
correct it. Use the Cursor Left or other cursor
movement keys to move the cursor to the position
where the mistake occurred, and type the correct
letters on top of the wrong ones. Then you can move
the cursor back to the end of the line using the
Cursor Right or End keys, and continue typing.

For example, suppose we have typed the following:

LOAD "V; PROG_

We accidently typed V; instead of B:. We fix the
problem by pressing Previous Word (Ctrl-Cursor
Left) twice, until the cursor is under the V:

LOAD "Y...; P ROG

Then we type B::

LOAD"B: PROG

Then we press the End key:

LOAD "B: P ROG

The error is fixed and we can continue typing:

LOAD "B:PROGRAM1"

Erasing Characters: If you notice you've typed an
extra character in the line you're typing, you can
erase (delete) it using the Del key. Use the Cursor
Left or other cursor movement keys to move the
cursor to the character you want to erase. Press the
Del key, and it is deleted. Then use the Cursor Right
or End keys to move the cursor back to the end of the
line, and continue typing.

For example, suppose we typed the following:

DEELETE

To erase the extra E, we press Cursor Left until the
cursor is under the extra E:

DEELETE

2-33

2-34

Then we press the Del key:

DELETE

Then we press the End key:

DELETE

and continue typing:

DELETE 20

If the incorrect character was the character you just
typed, use the Backspace key to delete it. Then you
can simply continue typing the line as desired.

For example, suppose we've typed the following:

DELETT

We can simply press the Backspace key:

DELET

Then we can continue typing:

DELETE 20

Adding Characters: If you see that you've omitted
characters in the line you're typing, move the cursor
to the position where you want to put the new
characters. Press the Ins key to get into Insert Mode.
Type the characters you want to add. The characters
you type will be inserted at the cursor and the
characters above and following it will be pushed to
the right. As before, when you're ready to continue
typing at the end of the line, use the Cursor Right or
End keys to move the cursor there and just continue
typing. Insert Mode will automatically be turned off
when you use either of these keys.

For example, suppose we've typed the following:

LIS 10

We forgot the T in LIST. So we press Cursor Left
until the cursor is under the space:

LI S 10

Then we press the Ins key and type the letter T:

Erasing Part of a Line: To truncate a line at the
current cursor position, press Ctrl- End.

For example, suppose we have the following:

10 REM -;',-A-A .9..arbage garbage garbage

We have the cursor positioned under the g in the
first word garbage, so all we have to do to erase the
garbage is press Ctrl-End:

10 REM -;'(";,(";"

Cancelling a Line: To cancel a line that is in the
process of being typed, press the Esc key anywhere
in the line. You do not have to press Enter. This
causes the entire logical line to be erased.

For example, suppose we had this line:

THIS IS A LINE THAT HAS NO MEANING

Even though the cursor is at the end of the line, the
en tire line is erased when we press Esc:

2-35

Entering or Changing a BASIC Program

2-36

Any line of text that you type that begins with a
number is considered to be a prografl! line.

A BASIC program line always begins with a line
number, ends with an Enter, and may contain a
maximumof255 characters, including the Enter. Ifa
line contains more than 255 characters, the extra
characters will be truncated when the Enter is
pressed. Even though the extra characters still
appear on the screen, they are not processed by
BASIC.

BASIC keywords and variable names must be in
uppercase. However, you may enter them in any
combination of uppercase and lowercase. The
program editor will convert everything to
uppercase, except for remarks, DATA statements,
and strings enclosed in quotation marks.

BASIC will sometimes change the way you enter
something in other ways. For example, suppose you
use the question mark (?) instead of the word PRINT
in a program line. When you later LIST the line, the?
will be changed to PRINT with a space after it,
since? is a shorthand way of entering PRINT. This
expansion may cause the end of a line to be
truncated if the line length is close to 255 characters.

Warning:
If your line reaches maximum length, the 255th
character must be Enter.

Adding a New Line to the Program: Enter a valid
line number (range is 0 through 65529) followed by
at least one non-blank character, followed by Enter.
The line will be saved as part of the BASIC program
in storage.

For example, if you enter the following:

1 0 he 1 1 0 Do r i

This will save the line as line number lOin the
program. Note that hello Dod is not a valid BASIC
statement; however, you will not get an error if you
enter this line. Program lines are not checked for
proper syntax before being added to the program.
That only happens when the program line is actually
executed.

If a line already exists with the same line number,
then the old line is erased and replaced with the new
one.

If you try to add a line to a program when there is no
more room in storage, an "Out of memory" error
occurs and the line is not added.

Replacing or Changing an Existing Program Line:
An existing line is changed, as indicated above, when
the line number of the line you enter matches the
line number of a line already in the program. The old
line is replaced with the text of the new one.

For example, if you enter:

10 this is a new 1 ine 10

The previous line 10 (hello Dori) would be
replaced with this new line 10.

Deleting Program Lines: To delete an existing
program line, type the line number alone followed
by Enter. For example, if you enter:

10

This would delete line 10 from the program.

2-37

Or you may use the DELETE command to delete a
group of program lines. Refer to "DELETE
Command" in Chapter 4 for details.

Note that if you try to delete a non-existent line, an
"Undefined line number" error will occur.

Do not use the Esc key to delete program lines. Esc
will cause the line to be erased from the screen only.
If the line exists in the BASIC program, it will remain
there.

Deleting an Entire Program: To delete the entire
program that is currently residing in memory, enter
the NEW command (see "NEW Command" in
Chapter 4). NEW is usually used to clear memory
prior to entering a new program.

Changing Lines Anywhere on the Screen

2-38

You can edit any line on the screen simply by using
the cursor movement keys (described under
"Special Program Editor Keys") to move the cursor
on the screen to the place requiring the change.
Then you can use any or all of the techniques
described previously to change, delete, or add
characters to the line.

If you want to modify program lines that do not
happen to be displayed at the moment, you can use
the LIST command to display them. List the line or
range of lines to be edited (see "LIST Command" in
Chapter 4). Position the cursor to a line to be edited
and change the line using the techniques already
described. Press Enter to store the modified line in
the program. You can also use the EDIT command
to display the line you want. Refer to "EDIT
Command" in Chapter 4.

For example, you could duplicate a line in the
program this way: Move the cursor to the line to be
duplicated. Change the line number to the new line
number by just typing over the numbers. When you
press Enter, both the old line and the new line will be
in the program.

Or, you could change the line number of a program
line by duplicating the line as described above, then
deleting the old line.

A program line is never actually changed within the
BASIC program until Enter is pressed. Therefore,
when several lines need alteration, it may be easier to
move around the screen making corrections to
several lines at once, and then go back to the first line
changed and press Enter at the beginning of each
line. By so doing, you store each modified line in the
program.

You do not have to move the cursor to the end of the
logical line before pressing Enter. The program
editor knows where each logical line ends and it
processes the whole line even if the Enter is pressed
at the beginning of the line.

Note: Use of the AUTO command can be very
helpful when you are entering your program.
However, you should exit AUTO mode by
pressing Ctrl-Break before changing any lines
other than the current one.

Remember, changes made using these techniques
only change the program in memory. To save the
program with the new changes permanently, you
should use the SAVE command (see "SAVE
Command" in Chapter 4) before entering a NEW
command or leaving BASIC.

2-39

Syn tax Errors

2-40

When a syntax error is discovered while a program is
running, BASIC automatically displays the line that
caused the error so you may correct it. For example:

Ok
10 A = 2$12
RUN
Syntax error in 10
Ok
10 A = 2$12

The program editor has displayed the line in error
and positioned the cursor right under the digit 1.
You can move the cursor right to the dollar sign ($)
and change it to a plus sign (+), then press Enter. The
corrected line is now stored back in the program.

When you edit a line and store it back in the program
while the program is interrupted (as in this example)
certain things happen, primarily:

• All variables and arrays are lost. That is, they are
reset to zero or null.

• Any files that were open are closed.

• You cannot use CONT to continue the
program.

If you want to examine the contents of some variable
before making the change, you should press
Ctrl-Break to return to command level. The
variables will be preserved since no program line is
changed. After you check everything you need to,
you can edit the line and rerun the program.

CHAPTER 3. GENERAL
INFORMATION
ABOUT
PROGRAMMING IN
BASIC

Contents

Line Format 3-3
Line Numbers 3- 3
BASIC Statements 3- 3
Comments 3-4

Character Set 3-4

Reserved Words 3-6

Constants 3-9
Numeric Precision 3-11

Variables 3-12
How to Name a Variable. 3-12
How to Declare Variable Types 3-13
Arrays. 3-15

How BASIC Converts Numbers from One
Precision to Another 3-18

Numeric Expressions and Operators 3-21
Arithmetic Operators 3-21

Integer Division 3-22
Modulo Arithmetic 3-22

Relational Operators 3-23
Numeric Comparisons. 3-23
String Comparisons 3-24

Logical Operators 3-25
How Logical Operators Work 3-27

Numeric Functions 3-29
Order of Execution 3-29

3-1

String Expressions and Operators 3-31
Concatenation 3-31
String Functions 3-32

Input and Output 3-33
Files 3-33

Naming Files 3-34
Using the Screen 3-38

Display Adapters 3-38
Text Mode 3-39
Graphics Modes 3-41

Other I/O Features 3-44
Clock 3-44
Sound and Music 3-44
Light Pen 3-45
Joysticks 3-45

3-2

Line Format

Program lines in a BASIC program have the
following format:

nnnnn BASIC statement[:BASIC statement ...] [' comment]

and they end with Enter. This format is explained in
more detail below.

Line N um bers: "nnnnn" indicates the line
number, which can be from one to five digits. Every
BASIC program line begins with a line number. Line
numbers are used to show the order in which the
program lines are stored in memory and also as
reference points for branching and editing. Line
numbers must be in the range a to 65529. A period
(.) may be used in LIST, AUTO, DELETE, and EDIT
commands to refer to the current line.

BASIC Statements: A BASIC statement is either
executable or non-executable. Executable statements are
program instructions that tell BASIC what to do
next while running a program. For example, PRINT
X is an executable statement. Non-executable
statements, such as DATA or REM, do not cause any
program action when BASIC sees them. All the
BASIC statements are explained in detail in the next
chapter.

3-3

You may, if you wish, have more than one BASIC
statement on a line, but each statement on a line
must be separated from the last one by a colon, and
the total number of characters must not exceed255.

For example:

Ok
10 FOR 1=1 TO 5: PRINT I: NEXT
RUN

1
2

3
4
5

Ok

Comments: Comments may be added to the end
of a line using the' (single quote) to separate the
comment from the rest of the line.

Character Set

3-4

The BASIC character set consists of alphabetic
characters, numeric characters and special
characters. These are the characters which BASIC
recognizes.

The alphabetic characters in BASIC are the
uppercase and lowercase letters of the alphabet. The
numeric characters are the digits 0 through 9.

The following special characters have specific
meanings in BASIC:

Character

+

*
/
\

(
)
%

$

&

?
<
>
"

Name
blank
equal sign or assignment symbol
plus sign or concatenation symbol
minus sign
asterisk or multiplication symbol
slash or division symbol
backslash or integer division symbol
caret or exponentiation symbol
left parenthesis
right parenthesis
percent sign or integer type declaration
character
number (or pound) sign, or
double-precision type declaration
character
dollar sign or string type declaration
character
exclamation point or single-precision
type declaration character
ampersand
comma
period or decimal point
single quotation mark (apostrophe), or
remark delimiter
semicolon
colon or statement separator
question mark (PRINT abbreviation)
less than
grea ter than
double quotation mark or string
delimiter
underline

Many characters can be printed or displayed even
though they have no particular meaning to BASIC.
See "Appendix G. ASCII Character Codes" for a
complete list of these characters.

3-5

Reserved Words

3-6

Certain words have special meaning to BASIC. These
words are called reserved words. Reserved words
include all BASIC commands, statements, function
names, and operator names. Reserved words cannot
be used as variable names.

You should always separate reserved words from
data or other parts of a BASIC statement by using
spaces or other special characters as allowed by the
syntax. That is, the reserved words must be
appropriately delimited so that BASIC will recognize
them.

The following is a list of all the reserved words in
BASIC.

ABS CVD
AND CVI
ASC CVS
ATN DATA
AUTO DATE$
BEEP DEF
BLOAD DEFDBL
BSAVE DEFINT
CALL DEFSNG
CDBL DEFSTR
CHAIN DELETE
CHR$ DIM
CINT DRAW
CIRCLE ED I T
CLEAR ELSE
CLOSE END
CLS EOF
COLOR EQV
COM ERASE
COMMON ERL
CONT ERR
COS ERROR
CSNG EXP
CSRLIN FIELD

FILES NOT
FIX OCT$
FNxxxxxxxx OFF
FOR ON
FRE OPEN
GET OPTION
GOSUB OR
GOTO OUT
HEX$ PAINT
IF PEEK
IMP PEN
I NKEY$ PLAY
INP POINT
INPUT POKE
INPUT# pas
INPUT$ PRESET
INSTR PRINT
INT PRINT#
KEY PSET
KILL PUT
LEFT$ RANDOMIZE
LEN READ
LET REM
LINE RENUM
LIST RESET
LLIST RESTORE·
LOAD RESUME
LaC RETURN
LOCATE RIGHT$
LOF RND
LOG RSET
LPOS RUN
LPRINT SAVE
LSET SCREEN
MERGE SGN
MID$ SIN
MKD$ SQUND
MKI $ SPACES
MKS$ SPC(
MOD SQR
MOTOR STEP
NAME STI CK
NEW STOP
NEXT STR$

3-7

3-8

STRIG
STRING$
SWAP
SYSTEM
TAB(
TAN
THEN
TIME$
TO
TROFF
TRON
USING

USR
VAL
VARPTR
VARPTR$
WAIT
WEND
WHILE
WIDTH
WRITE
WRITE#
XOR

Constants

Constants are the actual values BASIC uses during
execution. There are two types of constants: string
(or character) constants, and numeric constants.

A string constant is a sequence of up to 255
characters enclosed in double quotation marks.
Examples of string constants:

"HELL0 11

li$25,000.0011
"Number of Employees"

Numeric constants are positive or negative
numbers. A plus sign (+) is optional on a positive
number. Numeric constants in BASIC cannot
contain commas. There are five ways to indicate
numeric constants:

Integer Whole numbers between -32768
and +32767, inclusive. Integer
constants do not have decimal
points.

Fixed point Positive or negative real
numbers, that is, numbers that
contain decimal points.

Floating point Positive or negative numbers
represented in exponential form
(similar to scientific notation). A
floating point constant consists
of an optionally signed integer or
fixed point number (the
mantissa) followed by the letter E
and an optionally signed integer
(the exponent). Double-precision
floating point constants use the
letter D instead of E. For more
information, see the next
section, "Numeric Precision."

3-9

Hex

Octal

3-10

The E (or D) means "times ten to
the power of."

For example,

23E-2

Here, 23 is the mantissa, and -2 is
the exponent. This number
could be read as "twenty-three
times ten to the negative two
power." You could write it as
0.23 in regular fixed point
notation. More examples:

235.988E-7

is equivalent to: .0000235988

2359D6

is equivalent to: 2359000000

You can represent any number
from 2.9E-39 to 1. 7E+38
(positive or negative) as a floating
point constant.

Hexadecimal numbers with up to
four digits, with a prefix of &H.
Hexadecimal digits are the
numbers 0 through 9, A, B, C, D,
E, and F. Examples:

&H76
&H32F

Octal numbers with up to 6
digits, with the prefix &0 or just
&. Octal digits are 0 through 7.
Examples:

&0349
&1234

Numeric Precision

Numbers may be stored internally as either integer,
single-precision, or double-precision numbers.
Constants entered in integer, hex, or octal format
are stored in two bytes of memory and are
interpreted as integers or whole numbers. With
double-precision, the numbers are stored with 17
digits of precision and printed with up to 16 digits.
With single-precision, seven digits are stored and up
to seven digits are printed, although only six digits
will be accurate.

A single-precision constant is any numeric constant
that doesn't fit in the integer category and is written
with:

• seven or fewer digits, or

• exponential form using E, or

• a trailing exclamation point (!)

A double-precision constant is any numeric constant
that is written with:

• eight or more digits, or

• exponential form using D, or

• a trailing number sign (#)

Examples of single- and double-precision constants:

Single-Precision
46.8
-1.09E-06
3489.0
22.5!

Double-Precision
345692811
-1.09432D-06
3489.0#
7654321.1234

3-11

Variables

Variables are names used to represent values that are
used in a BASIC program. As with constants, there
are two types of variables: numeric and string. A
numeric variable always has a value that is a number.
A string variable may only have a character string
value.

The length of a string variable is not fixed, but may
be anywhere from 0 (zero) to 255 characters. The
length of the string value you assign to it will
determine the length of the variable.

You may set the value of a variable to a constant, or
you can set its value as the result of calculations or
various data input statements in the program. In
either case, the variable type (string or numeric)
must match the type of data that is being assigned to
it.

If you use a numeric variable before you assign a
value to it, its value is assumed to be zero. String
variables are initially assumed to be null; that is, they
have no characters in them and have a length of zero.

How to N arne a Variable

3-12

BASIC variable names may be any length. If the
name is longer than 40 characters, however, only the
first 40 characters are significant.

The characters allowed in a variable name are letters
and numbers, and the decimal point. The first
character must be a letter. Special characters which
identify the type of variable are also allowed as the
last character of the name. For more information
about types, see the next section, "How to Declare
Variable Types."

A variable name may not be a reserved word, but
may contain imbedded reserved words. (Refer to
"Reserved Words," earlier in this chapter, for a
complete list of the reserved words.) Also, a variable
name may not be a reserved word with one of the
type declaration characters ($, %, !, #) at the end. For
example,

10 EXP = 5

is invalid, because EXP is a reserved word. However,

10 EXPONENT = 5

is okay, because EXP is only a part of the variable
name.

A variable beginning with FN is assumed to be a call
to a user-defined function (see "DEF FN Statement"
in Chapter 4).

How to Declare Variable Types

A variable's name determines its type (string or
numeric, and if numeric, what its precision is).

String variable names are written with a dollar sign
($) as the last character. For example:

A$ = "SALES REPORT"

The dollar sign is a variable type declaration
character. It "declares" that the variable will
represent a string.

Numeric variable names may declare integer,
single-, or double-precision values. Although you
may get less accuracy doing computations with
integer and single-precision variables, there are

3-13

3-14

reasons you might want to declare a variable as a
particular precision.

• Variables of higher precisions take up more
room in storage. This is important if space is a
consideration.

• It takes more time for the computer to do
arithmetic with the higher precision numbers.
A program with repeated calculations will run
faster with integer variables.

The type declaration characters for numeric
variables and the number of bytes required to store
each type of value are as follows:

% Integer variable (2 bytes)

Single-precision variable (4 bytes)

Double-precision variable (8 bytes)

If the variable type is not explicitly declared, then it
will default to single-precision.

Examples of BASIC variable names follow.

PI#
MINIMUM!
LIMIT%
N$
ABC

declares a double-precision value
declares a single-precision value
declares an integer value
declares a string value
represents a single-precision value

Variable types may also be declared in another way.
The BASIC statements DEFINT, DEFSNG,
DEFDBL and DEFSTR may be included in a
program to declare the types for certain variable
names. These statements are described in detail
under "DEFtype Statements" in Chapter 4. All the
examples which follow in this book assume that
none of these types of declarations have been made,
unless the statements are explicitly shown in the
example.

Arrays

An array is a group or table of values that are referred
to with one name. Each individual value in the array
is called an element. Array elements are variables and
can be used in expressions and in any BASIC
statement or function which uses variables.

Declaring the name and type of an array and setting
the number of elements and their arrangement in
the array is known as defining, or dimensioning, the
array. Usually this is done using the DIM statement.
For example,

10 DIM B$(S)

This creates a one dimensional array named B$. All
its elements are variable length strings, and the
elements have an initial null value.

20 DIM A (2,3)

This creates a two-dimensional array named A. Since
the name does not have a type declaration character,
the array consists of single-precision values. All the
array elements are initially set to O.

Each array element is named with the array name
subscripted with a number or numbers. An array
variable name has as many subscripts as there are
dimensions in the array.

The subscript indicates the position of the element
in the array. Zero is the lowest position unless you
explicitly change it (see "OPTION BASE
Statement" in Chapter 4). The maximum number of
dimensions for an array is 255. The maximum
number of elements per dimension is 32767.

3-15

3-16

To continue the preceding examples, array B$ could
be thought of as a list of character strings, like this:

B$(O)

B$(1)

B$(2)

B$(3)

B$(4)

B$(5)

The first string in the list is named B$(O).

The array A could be thought of as a table of rows and
columns, like this:

columns

A(O,O) A(O,1) A(0,2) A(0,3)

A(1,0) A(l,1) A(l,2) A(l,3)

A(2,0) A(2,1) A(2,2) A(2,3)

The element in the second row, first column, is
called A(l,O).

If you use an array element before you define the
array, it is assumed to be dimensioned with a
maximum subscript of 10.

For example, if BASIC encounters the statement:

50 SIS(3)=500

and the array SIS has not already been defined, the
array is set to a one-dimensional array with 11
elements, numbered SIS(O) through SIS(10). You
may only use this method of implicit declaration for
one-dimensional arrays.

One final example:

Ok
10 DIM YEARS(3,4)
20 YEARS(2,3)=1982
30 FOR ROW=0 TO 3
40 FOR COLUMN=0 TO 4
50 PRINT YEARS(ROW,COLUMN);
60 NEXT COLUMN
70 PRINT
80 NEXT ROW
RUN
o 0 0 0 0
o 0 0 0 0
o 0 0 1982 0
00000

Ok

3-17

How BASIC Converts Numbers from
One Precision to Another

3-18

When necessary, BASIC will convert a number from
one precision to another. The following rules and
examples should be kept in mind.

1. If a numeric value of one precision is assigned to
a numeric variable of a different precision, the
number will be stored as the precision declared
in the target variable name.

Example:

Ok
10 A% = 23.42
20 PRINT A%
RUN

23
Ok

2. Rounding, as opposed to truncation, occurs
when assigning any higher precision value to a
lower precision variable (for example, changing
from double- to single-precision).

Example:

Ok
10 C = 55.8834567#
20 PRINT C
RUN
55.88346

Ok

This affects not only assignment statements
(e.g., 1%=2.5 results in 1%=3), but also affects
function and statement evaluations
(e.g., TAB(4.5) goes to the fifth position, A(1.5)
is the same as A(2), and X=11.5 MOD 4 will
result in a value of 0 for X).

3. If you convert from a lower precision to a higher
precision number, the resulting higher
precision number cannot be any more accurate
than the lower precision number. For example,
if you assign a single-precision value (A) to a
double-precision variable (B#), only the first six
digits of B# will be accurate because only six
digits of accuracy were supplied with A. The
error can be bounded using the following
formula:

ABS(B#-A) < 6.3E-8 * A

That is, the absolute value of the difference
between the printed double-precision number
and the original single-precision value is less
than 6.3 E-8 times the original single-precision
value.

Example:

Ok
10 A = 2.04
20 B# = A
30 PRINT A;B#
RUN
2.04 2.039999961853027

Ok

3-19

3-20

4. When an expression is evaluated, all of the
operands in an arithmetic or relational
operation are converted to the same degree of
precision, namely that of the most precise
operand. Also, the result of an arithmetic
operation is returned to this degree of
precision.

Examples:

Ok
10 D# = 6#/7
20 PRINTD#
RUN

.8571428571428571
Ok

The arithmetic was performed in
double-precision and the result was returned in
D# as a double-precision value.

Ok
10 D = 6#/7
20 PRINT D
RUN

.8571429
Ok

The arithmetic was performed in
double-precision and the result was returned to
D (single-precision variable), rounded, and
printed as a single-precision value.

5. Logical operators (see "Logical Operators" in
this chapter) convert their operands to integers
and return an integer result. Operands must be
in the range -32768 to 32767 or an "Overflow"
error occurs.

Numeric Expressions and Operators

A numeric expression may be simply a numeric
constant or variable. It may also be used to COrnP\ne
constants and variables using operators to produce a
single numeric value.

Numeric operators perform mathematical or logical
operations mostly on numeric values, and
sometimes on string values. We refer to them as
"numeric" operators because they produce a value
that is a number. The BASIC numeric operators may
be divided into categories as follows:

• Ari thmetic
• Relational
• Logical
• Functions

Arithmetic Operators

The arithmetic operators perform the usual
operations of arithmetic, such as addition and
subtraction. In order of precedence, they are:

Operator Operation Sample Expression

*, /

\

MOD

+ -,

Exponentiation X'" Y

Negation -X

Multiplication,
Floating Point
Division

Integer Division

Modulo Arithmetic

Addition,
Subtraction

X*y
X/Y

X\Y

XMODY

X+Y
X-Y

3-21

3-22

(If you have a mathematical background, you will
notice that this is the standard order of precedence.)
Although most of these operations probably look
familiar to you, two of them may seem a bit
unfamiliar - integer division and modulo
arithmetic.

Integer Division: Integer division is denoted by
the backslash (\). The operands are rounded to
integers (in the range -32768 to 32767) before the
division is performed; the quotient is truncated to an
integer.

For example:

Ok
10 A = 10\4
20 B = 25.68\6.99
30 PRINT A;B
RUN

2 3
Ok

Modulo Arithmetic: Modulo arithmetic is
denoted by the operator MOD. It gives the integer
value that is the remainder of an integer division.

For example:

Ok
10 A = 7 MOD 4
20 PRINT A
RUN

3
Ok

This result occurs because 7/4 is 1, with remainder 3.

Ok
PRINT 25.68 MOD 6.99
5

Ok

The result is 5 because 26/7 is 3, with the remainder
5. (Remember, BASIC rounds when converting to
integers.)

Relational Operators

Relational operators compare two values. The
values may be either both numeric, or both string.
The result of the comparison is either "true" (-1) or
"false" (0). This result is usually then used to make a
decision regarding program flow. (See "IF
Statement" in Chapter 4.)

Operator Relation Tested Sample Expressions

Equality X=Y

<> or >< Inequality X<>Y
x><y

< Less than x<y

> Grea ter than x>y

<= or =< Less than or x<=y
equal to x=<y

>= or => Greater than or x>=y
equal to x=>y

(The equal sign is also used to assign a value to a
variable. See "LET Statement" in Chapter 4.)

Numeric Comparisons: When arithmetic and
relational operators are combined in one
expression, the arithmetic is always performed first.
For example, the expression:

X+Y < (T-1)/Z

will be true (-1) if the value of X plus Y is less than the
value of T-1 divided by Z.

3-23

3-24

More examples:

Ok
10 x=100
20 I F X <> 200 THEN PR I NT IINOT EQUALI'

ELSE PRINT IIEQUAL 11

RUN
NOT EQUAL
Ok

Here, the relation is true (100 is not equal to 200).
The true result causes the THEN part of the IF
statement to be executed.

Ok
PRINT 5<2; 5<10
o -1

Ok

Here the first result is false (zero) because 5 is not
less than 2. The second result is -1 because the
expression 5 < lOis true.

String Comparisons: String comparisons can be
thought of as "alphabetical." That is, one string is
"less than" another if the first string comes before
the other one alphabetically. Lowercase letters are
"greater than" their uppercase counterparts.
Numbers are "less than" letters.

The way two strings are actually compared is by
taking one character at a time from each string and
comparing the ASCII codes. (See "Appendix G.
ASCII Character Codes" for a complete list of ASCII
codes.) If all the ASCII codes are the same, the
strings are equal. Otherwise, as soon as the ASCII
codes differ, the string with the lower code number is
less than the string with the higher code number. If,
during string comparison, the end of one string is
reached, the shorter string is said to be smaller.

Leading and trailing blanks are significant. For
example, all the following relational expressions are
true (that is, the result of the relational operation is
-1).

"AA" < "AB"
"F I LENAME" = "F I LENAME"
IIX&II > IIX#II

I IW R I I > "W R I I

"kg" > "KG"
"SMYTH II < "SMYTH Ell

B$ < "718 11 (where B$ = "12543")

All string constants used in comparison expressions
must be enclosed in quotation marks.

Logical Operators

Logical opera tors perform logical, or Boolean,
operations on numeric values. Just as the relational
operators are usually used to make decisions
regarding program flow, logical operators are
usually used to connect two or more relations and
return a true or false value to be used in a decision
(see "IF Statement" in Chapter 4).

A logical operator takes a combination of true-false
values and returns a true or false result. An operand
of a logical operator is considered to be "true" if it is
not equal to zero (like the -1 returned by a relational
operator), or "false" if it is equal to zero. The result
of the logical operation is a number which is, again,
"true" if it is not equal to zero, or "false" if it is equal
to zero. The number is calculated by performing the
operation bit by bit. This is explained in detail
shortly.

The logical operators are NOT (logical
complement), AND (conjunction), OR

3-25

(disjunction), XOR (exclusive or), IMP
(implication), and EQV (equivalence). Each
operator returns results as indicated in the following

hI ("T'" d' I "F" ta e. in icates a true, or non-zero va ue.
indicates a false, or zero value.) The operators are
listed in order of precedence.

NOT
X NOT X
T F
F T

AND
X Y XANDY
T T T
T F F
F T F
F F F

OR
X Y XORY
T T T
T F T
F T T
F F F

XOR
X Y XXORY
T T F
T F T
F T T
F F F

EQV
X Y XEQVY
T T T
T F F
F T F
F F T

IMP
X Y XIMPY
T T T
T F F
F T T

3-26 F F T

Some examples of ways to use logical operators in
decisions:

IF HE>60 AND SHE<20 THEN 1000

Here, the result will be true if the value of the
variable HE is more than 60 and also the value of
SHE is less than 20.

IF 1>10 OR K<0 THEN 50

The result will be true if I is greater than 10, or K is
less than 0, or both.

50 IF NOT (P=-l) THEN 100

Here, the program will branch to line 100 if P is not
equal to -1. Note that NOT (P=-l) does not produce
the same result as NOT P. Refer to the next section, .
"How Logical Operators Work," for an explanation.

100 FLAG% = NOT FLAG%

This example switches a value back and forth from
true to false.

How Logical Operators Work: Operands are
converted to integers in the range-32768 to +32767.
(If the operands are not in this range, an "Overflow"
error results.) If the operand is negative, the two's
complement form is used. This turns each operand
into a sequence of 16 bits. The operation is
performed on these sequences. That is, each bit of
the result is determined by the corresponding bits in
the two operands, according to the tables for the
operator listed previously. A 1 bit. is considered
"true", and a 0 bit is "false."

3-27

3-28

Thus, you can use logical operators to test for a
particular bit pattern. For instance, the AND
operator may be used to "mask" all but one of the
bits of a status byte at a machine I/O port.

The following examples will help demonstrate how
the logical operators work.

A = 63 AND 16

Here, A is set to 16. Since 63 is binary 111111 and 16
is binary 10000, 63 AND 16 equals 010000 in binary,
which is equal to 16.

B = -1 AND 8

B is set to 8. Since -1 is binary 11111111 11111111
and 8 is binary 1000, -1 AND 8 equals binary
00000000 00001000, or 8.

C = 4 OR 2

Here, C equals 6. Since 4 is binary 100 and 2 is binary
010,4 OR 2 is binary 110, which is equal to 6.

x = 2
TWOSCOMP = (NOT X) + 1

This example shows how to form the two's
complement of a number. X is 2, which is 10 binary.
NOT X is then binary 11111111 11111101, which is
-3 in decimal; -3 plus 1 is -2, the complement of 2.
That is, the two's complement of any integer is the
bit complement plus one.

Note that ifboth operands are equal to either 0 or -1,
a logical operator will return either 0 or -1.

Numeric Functions

A function is used like a variable in an expression to
call a predetermined operation that is to be
performed on one or more operands. BASIC has
"built-in" functions that reside in the system, such as
SQR (square root) or SIN (sine). All of BASIC's
built-in functions are listed under "Functions and
Variables" in the beginning of Chapter 4. Detailed
descriptions are also included in the alphabetical
section of Chapter 4.

You can also define your own functions using the
DEF FN statement. See "DEF FN Statement" in
Chapter 4.

Order of Execution

The categories of numeric operations were
discussed in their order of precedence, and the
precedence of each operation within a category was
indicated in the discussion of the category. In
summary:

1. Function calls are evaluated first

2. Arithmetic operations are performed next, in
this order:

a.
b. unary -
c. *, /
d. \
e. MOD
f. + -,

3. Relational operations are done next

3-29

3-30

4. Logical operations are done last, in this order:

a. NOT
b. AND
c. OR
d. XOR
e. EQV
f. IMP

Operations at the same level in the list are performed
in left-to-right orqer. To change the order in which
the operations are performed, use parentheses.
Operations within parentheses are performed first.
Inside parentheses, the usual order of operations is
main tained.

Here are some sample algebraic expressions and
their BASIC counterparts.

Algebraic Expression

X+2Y

X-Y
Z

XY
Z

X+Y
Z

X(-Y)

BASIC Expression

X+Y*2

X-y/z

X*y/z

(X+Y)/z

X*(-Y)

Note: Two consecutive operators must be
separated by parentheses, as shown in the
X*(-Y) example.

String Expressions and Operators

A string expression may be simply a string constant
or variable, or it may combine constants and
variables by using operators to produce a single
string value.

String operators are used to arrange character
strings in different ways. The two categories of string
operators are:

• Concatenation

• Functions

Note that although you can use the relational
operators =, <>, <, >, <=, and >= to compare two
strings, these are not considered to be "string
operators" because they produce a numeric result,
not a string result. Read through "Relational
Operators" earlier in this chapter for an explanation
of how you can compare strings using relational
operators.

Concatenation

] oining two strings together is called concatenation.
Strings are concatenated using the plus symbol (+).
For example:

Ok
1.0 COMPANY$ = "IBM"
2.0 TYPE$ = II Personal ll

3.0 F U L L N AM E $ = T Y P E $ + I I Co m put e r I I

4.0 PRINT COMPANY$+FULLNAME$
RUN
IBM Personal Computer
Ok

3-31

String Functions

3-32

A string function is like a numeric function except
that it returns a string result. A string function can be
used in an expression to call a predetermined
operation that is to be performed on one or more
operands. BASIC has "built-in" functions that reside
in the system, such as MID$, which returns a string
from the middle of another string, or CHR$, which
returns the character with the specified ASCII code.
All of BASIC's built-in functions are listed under
"Functions and Variables" in the beginning of
Chapter 4. Detailed descriptions are also included in
the alphabetical section of Chapter 4.

You can also define your own functions using the
DEF FN statement. See "DEF FN Statement" in
Chapter 4.

Input and Output

Files

The remainder of this chapter contains information
on input and output (1/0) in BASIC. The following
topics are addressed:

• Files - how BASIC uses files, how to name files,
and device names

• The screen - ways to display things on the
screen, with emphasis on graphics

• Other features - clock, sound, light pen, and
joysticks

A file is a collection of information which is kept
somewhere other than in the random access memory
of the IBM Personal Computer. For example, your
information may be stored in a file on diskette or
cassette. In order to use the information, you must
open the file to tell BASIC where the information is.
Then you may use the file for input andlor output.

BASIC supports the concept of general device I/O
files. This means that any type of inputl output may
be treated like I/O to a file, whether you are actually
using a cassette or diskette file, or are
communicating with another computer.

File Number: BASIC performs I/O operations
using a file number. The file number is a unique
number that is associated with the actual physical file
when it is opened. It identifies the path for the
collection of data. A file number may be any
number, variable, or expression ranging from 1 to n,
where n is the maximum number of files allowed. n is
4 in Cassette BASIC, and de fa ul ts to 3 in Disk and
Advanced BASIC. It may be changed, up to a
maximum of 15, by using the IF: option on the
BASIC command for Disk and Advanced BASIC.

3-33

3-34

Naming Files

The physical file is described by itsfile specification, or
filespec for short.

The file specification is a string expression of the
form:

device:filename

The device name tells BASIC where to look for the
file, and the filename tells BASIC which file to look
for on that particular device. Sometimes you do not
need both device name and filename, so
specification of device and filename is optionaL
Note the colon (:) indicated above. Whenever you
specify a device, you must use the colon even though
a filename is not necessarily specified. From now on
we will include the colon as part of the device name.

Note: File specification for communications
devices is slightly different. The filename is
replaced with a list of options specifying such
things as line speed. Refer to "OPEN "COM ...
Statement" in Chapter 4 for details.

Remember that if you use a string constant for the
filespec, you must enclose it in quotation marks. For
example,

LOAD liB: ROTHERM. ARKII

Device N arne: The device name consists of up to
four characters followed by a colon (:). The following
is a complete list of device names, telling what device
the name applies to, what the device can be used for
(input or output), and which versions of BASIC
support the device.

Device N arne Chart

KYBD:

SCRN:

LPT!:

LPT2:

LPT3:

Keyboard. Input only, all versions of
BASIC.
Screen. Output only, all versions of
BASIC.
First printer. Output, all versions; or
random, Disk and Advanced BASIC.
Second printer. Output or random, Disk
and Advanced BASIC.
Third printer. Output or random, Disk
and Advanced BASIC.

COMMUNICATIONS DEVICES

COM!:

COM2:

First Asynchronous Communications
Adapter. Input and output, Disk and
Advanced BASIC.
Second Asynchronous Communications
Adapter. Input and output, Disk and
Advanced BASIC.

STORAGE DEVICES

CAS!:

A:

B:

Cassette tape player. Input and output,
all versions.
First diskette drive. Input and output,
Disk and Advanced BASIC.
Second diskette drive. Input and output,
Disk and Advanced BASIC.

Refer to "Search Order for Adapters" in "Appendix
I. Technical Information and Tips" for information
on which adapters are referred to by the printer and
communications device names.

3-35

3-36

Filename: The filename must conform to the
following rules.

For cassette files:

• The name may not be more than eight
characters long.

• The name may not contain colons, hex '00' s or
hex 'FF's (decimal 255s).

For diskette files, the name should conform to DOS
conventions:

• The name may consist of two parts separated by
a period (.):

name. extension

The name may be from one to eight characters
long. The extension may be no more than three
characters long.

If extension is longer than three characters, the
extra characters are truncated. If name is longer
than eight characters and extension is not
included, then BASIC inserts a period after the
eigh th character and uses the extra characters
(up to three) for the extension. If name is longer
than eight characters and an extension is
included, then an error occurs.

• Only the following characters are allowed in
name and extension:

A through Z
o through 9
< > -() }
@ # $ % A &

\

Some examples of filenames for Disk and Advanced
BASIC are:

27HAL.OAO

VOL

PROGRAM1 . BAS

$ $@ (!) . 123

The following examples show how BASIC truncates
names and extensions when they are too long, as
explained above.

A23456789JKLMN becomes: A2345678.9JK

@HOME.TRUM10 becomes: @HOME.TRU

SHERRYLYNN. BAS causes an error

3-37

Using the Screen

3-38

BASIC can display text, special characters, points,
lines, or more complex shapes in color or in black
and white. How much of this you can do depends on
which display adapter you have in your IBM Personal
Computer.

Display Adapters

The IBM Personal Computer has two display
adapters: the IBM Monochrome Display and Parallel
Printer Adapter, and the Color! Graphics Monitor
Adapter.

With the IBM Monochrome Display and Parallel
Printer Adapter, you can display text in black and
white. Text refers to letters, numbers, and all the
special characters in the regular character set. You
have some capability to draw pictures with the
special line and block characters. You can also create
blinking, reverse image, invisible, highlighted, and
underscored characters by setting parameters on the
COLOR statement.

The Color/Graphics Monitor Adapter also operates
in text mode, but it allows you to display text in 16
different colors. (You can also display in just black
and white by setting parameters on the SCREEN or
COLOR statements.) You also get complete
graphics capability to draw complex pictures. This
graphics capability makes the screen all points
addressable in medium and high resolution. This is
more versatile than the ability to draw with the
special line and block characters which you have in
text mode. From now on, the termgraphics will refer
only to this special capability of the Color/Graphics
Monitor Adapter. The use of the extended character
set with special line and block characters will not be
considered graphics.

Character

position 1, 1

Text Mode

The screen can be pictured like this:

r--,-------
9 I

L_..J
I

I

I

-----,
I
I

I

I I
L _______________ -.-1

Border

screen

Characters are shown in 25 horizontal lines across
the screen. These lines are numbered 1 through 25,
from top to bottom. Each line has 40 character
positions (or 80, depending on how you set the
width). These are numbered 1 t040 (or 80) from left
to right. The position numbers are used by the
LOCATE statement, and are the values returned by
the POS(O) and CSRLIN functions. For example, the
character in the upper left corner of the screen is on
line 1, position 1.

Characters are normally placed on the screen using
the PRINT statement. The characters are displayed
at the position of the cursor. Characters are
displayed from left to right on each line, from line 1
to line 24. When the cursor would normally go to
line 25 on the screen, lines 1 through 24 are scrolled
up one line, so that what was line 1 disappears from
the screen. Line 24 is then blank, and the cursor
remains on line 24 to continue printing.

3-39

3-40

Line 25 is usually used for "soft key" display (see
"KEY Statement" in Chapter 4), but it is possible to
write over this area of the screen if you turn the "soft
key" display off. The 25 th line is never scrolled by
BASIC.

Each character on the screen is composed of two
parts: foreground and background. The foreground
is the character itself. The background is the "box"
around the character. You can set the foreground
and the background color for each character using
the COLOR statement. You can also choose to make
characters blink.

You can use a total of 16 different colors if you have
the Color/Graphics Monitor Adapter:

0 Black 8 Gray
1 Blue 9 Light Blue
2 Green 10 Light Green
3 Cyan 11 Light Cyan
4 Red 12 Light Red
5 Magenta 13 Light Magenta
6 Brown 14 Yellow
7 White 15 High-intensity White

The colors may vary depending on your particular
display device. Adjusting the color tuning of the
display may help get the colors to match this chart
better.

Most television sets or monitors have an area of
"overscan" which is outside the area used for
characters. This overscan area is known as the border
screen. You can also use the COLOR statement to set
the color of the border screen.

The statements you can use to display information in
text mode are:

CLS
COLOR
LOCATE
PRI NT

SCREEN
WI DTH
WRITE

The following functions and system variables may be
used in text mode:

CSRLIN SPC
pas TAB
SCREEN

Another special feature you get in text mode if you
have the Color/Graphics Monitor Adapter is
multiple display pages. The Color/Graphics Monitor
Adapter has a 16K-byte screen buffer, but text mode
needs only 2K of that (or 4K for 80 column width).
So the buffer is divided into differentpages, which
can be written on and! or displayed individually.
There are 8 pages, numbered 0 to 7, in 40 column
width; and 4 pages, numbered 0 to 3, in 80 column
width. Refer to "SCREEN Statement" in Chapter 4
for details.

Graphics Modes

The graphics modes are available only if you have the
Color/Graphics Monitor Adapter.

You can use BASIC statements to draw in two
graphic resolutions:

• medium resolution: 320 by 200 points and 4
colors

• high resolution: 640 by 200 points and 2 colors

You can select which resolution you want to use with
the SCREEN statement.

3-41

3-42

The statements used for graphics in BASIC are:

CIRCLE
COLOR
DRAW
GET
LINE

PAl NT
PRESET
PSET
PUT
SCREEN

The only graphics function is:

POINT

Medium Resolution: There are 320 horizontal
points and 200 vertical points in medium resolution.
These points are numbered from left to right and
from top to bottom, starting with zero. That makes
the upper left corner of the screen point (0,0), and
the lower right corner point (319,199). (If you are
familiar with the usual mathematical method for
numbering coordinates, this may seem upside-down
to you.)

Medium resolution is unusual because of its color
features. When you put something on the screen in
medium resolution, you can specify a color number
ofO, 1,2, or 3. These colors are not fixed, as are the
16 colors in text mode. You select the actual color
for color number ° and select one of two "palettes"
for the other three colors by using the COLOR
statement. A palette is a set of three actual colors to
be associated with the color numbers 1, 2 and 3. If
you change the palette with a COLOR statement, all
the colors on the screen change to match the new
palette.

You can still display text characters on the screen
when you are in graphics mode. The size of the
characters will be the same as in text mode; that is, 25
lines of 40 characters. In medium resolution, the
foreground will be color number 3, and the
background will be color number 0.

High Resolution: In high resolution there are 640
horizontal points and 20,0 vertical points. As in
medium resolution, these points are numbered
starting with zero so that the lower right corner
point is (639,199).

High resolution is a little easier to describe than
medium resolution since there are only two colors:
black and white. Black is always 0 (zero), and white is
always 1 (one).

When you display text characters in high resolution,
you get 80 characters on a line. The foreground color
is 1 (one) and the background color is 0 (zero). So
characters will always be white on black.

Specifying Coordinates: The graphic statements
require information about where on the screen you
want to draw. You give this information in the form
of coordinates. Coordinates are generally in the
form (x,y) , wherex is the horizontal position, andy is
the vertical position. This form is known as absolute
form, and refers to the actual coordinates of the point
on the screen, without regard to the last point
referenced.

There is another way to indicate coordinates, known
as relative form. Using this form you tell BASIC where
the point is relative to the last point referenced. This
form looks like:

STEP (xoffset,yoffset)

You indicate inside the parentheses the offset in the
horizontal and vertical directions from the last point
referenced.

The "last point referenced" is set by each graphics
statement. When we discuss these statements in

3-43

"Chapter 4. BASIC Commands, Statements,
Functions, and Variables," we will indicate what
each statement sets as the last point referenced.

Note: Be careful about drawing beyond the
limits of the screen with any graphics
statement; it may confuse the last point
referenced.

This example shows the use of both forms of
coordinates:

100 SCREEN 1
110 PSET (200, 100) 'abso 1 ute form
120 PSET STEP (10,-20) 'relative form

This sets two points on the screen. Their actual
coordinates are (200,100) and (210,80).

Other I/O Features

3-44

Clock

You may set and read the following system variables:

DATE$

TIME$

Ten-character string which is the
system date, in the form mm-dd-yyyy.

Eight-character string which indicates
the time as bb:mm:ss.

Sound and Music

You can use the following statements to create
sound on the IBM Personal Computer:

BEEP

SOUND

PLAY

Beeps the speaker.

Makes a single sound of given
frequency and duration.

Plays music as indicated by a character
string.

Light Pen

BASIC has the following statements and functions to
allow input from a light pen.

PEN

PEN

ON PEN

Joysticks

Function which tells whether or not
the pen was triggered and gives its
coordinates.

Statement which enables/disables
light pen function.

Statement to trap light pen activity.

Joysticks can be useful in an interactive
environment. BASIC supports two 2-dimensional
(x and y coordinate) joysticks, or four
one-dimensional paddles, each of which has a
button. (Four buttons are supported only in
Advanced BASIC.) The following statements and
functions are used for joysticks:

STICK

STRIG

STRIG

Function which gives the coordinates
of the joystick.

Function which gives the status of the
joystick button (up or down).

Statement which enables/disables
STRIG function.

ON STRIG Statement used to trap the button
being pressed.

STRIG(n) Statement which enables/disables the
joystick button interrupt.

Note: The light pen may only be used if you
have a Color/Graphics Monitor Adapter.
Joysticks may only be used if you have a Game
Control Adapter.

3-45

NOTES

3-46

CHAPTER 4. BASIC COMMANDS,
STATEMENTS,
FUNCTIONS, AND
VARIABLES

Contents

How to Use This Chapter. 4-3

Commands 4-6

Statements 4-8
Non-I/O Statements 4-8
I/O Statements 4-13

Functions and Variables 4-17
Numeric Functions 4-17

Arithmetic 4-17
String-Related 4-18
I/O and Miscellaneous 4-19

String Functions 4-21
General 4-21
I/O and Miscellaneous 4-21

Alphabetical Listing of Commands,
Statements, Functions and Variables:

A ... 4-23

B ... 4-28

C ... 4-34

D .. 4-64

E ... 4-84

F ... 4-94

4-1

G 4-106

H 4-115

I .. 4-116

K 4-131

L .. 4-137

M 4-165

N 4-1 73

o 4-1 75

P .. 4-203

R 4-236

S .. 4-253

T .. 4-279

U 4-284

V 4-285

W 4-290

4-2

How to Use This Chapter

Descriptions of all the BASIC commands,
statements, functions, and variables are included in
this chapter. BASIC's built-in functions and
variables may be used in any program without
further definition.

The first several pages contain lists of all the
commands, statements, functions, and variables.
These lists may be useful as a quick reference. The
rest of the chapter, arranged alphabetically,
describes each command, statement, function, and
variable in more detail.

The distinction between a command and a statement
is largely a matter of tradition. Commands, because
they generally operate on programs, are usually
entered in direct mode. Statements generally direct
program flow from within a program, and so are
usually entered in indirect mode as part of a program
line. Actually, most BASIC commands and
statements can be entered in either direct or indirect
mode.

The description of each command, statement,
function, or variable in this chapter is formatted as
follows:

Purpose: Tells what the command, statement, function, or
variable does.

Versions: Indicates which versions of BASIC allow the
command, statement, function, or variable. For
example, if you look under "CHAIN Statement" in
this chapter, you will note that after Versions: it
says:

Cassette Disk

Advanced

Compiler
(**)

The asterisks indicate which versions of BASIC
support the statement. This example shows that you

4-3

can use the CHAIN statement for programs written
in the Disk and Advanced versions of BASIC.

In this example you will notice that the asterisks
under the word "Compiler" are in parentheses. This
means that there are differences between the way the
statement works under the BASIC interpreter and
the way it works under the IBM Personal Computer
BASIC Compiler. The IBM Personal Computer
BASIC Compiler is an optional software package
available from IBM. If you have the BASIC
Compiler, the IBM Personal Computer BASIC Compiler
manual explains these differences.

Format: Shows the correct format for the command,
statement, function, or variable. A complete
explanation of the syntax format is presented in
the Preface. Remember to keep these rules in
mind.

• Words in capital letters are keywords and must
be entered as shown. They may be entered in
any combination of uppercase and lowercase
letters. BASIC always converts words to
uppercase (unless they are part of a quoted
string, remark, or DATA statement).

• You are to supply any items in lowercase italic
letters.

• Items in square brackets ([]) are optional.

• An ellipsis (...) indicates an item may be
repeated as many times as you wish.

• All punctuation except square brackets (such as
commas, parentheses, semicolons, hyphens, or
equal signs) must be included where shown.

Remarks: Describes in detail how the command, statement,
function, or variable is used.

Example: Shows direct mode statements, sample programs, or
program segments that demonstrate the use of the
command, statement, function, or variable.

4-4

In the formats given in this chapter, some of the
parameters have been abbreviated as follows:

x, y, z represent any numeric expressions

t: j, k, m, n represent integer expressions

xl, y$ represent string expressions

v, v$ represent numeric and string variables,
respectively

If a single- or double-precision value is supplied
where an integer is required, BASIC rounds the
fractional portion and uses the resulting integer.

Functions and Variables: In the format
description, most of the functions and variables are
shown on the right side of an assignment statement.
This is to remind you that they are not used like
statements and commands. It is not meant to suggest
that you are limited to using them in assignment
statements. You can use them anywhere you would
use a regular variable, except on the left side of an
assignment statement. Any exceptions are noted in
the particular section describing the function or
variable. A few of the functions are limited to being
used in PRINT statements; these are shown as part
of a PRINT statement.

Note: Only integer and single-precision
results are returned by the numeric functions,
except where indicated otherwise.

4-5

Commands

4-6

The following is a list of all the commands used in
BASIC. The syntax of each command is shown, but
not always in its entirety. You can find detailed
information about each command in the
alphabetical part of this chapter. You may also want
to check the next section in this chapter,
"Statements," for a list of the BASIC statements.

Command Action

AUTO number, increment
Generates line numbers
automatically.

BLOAD filespec,offset
Loads binary data (such as a
machine language program)
into memory.

BSAVE filespec, offset, length

CLEAR ,n,m

CONT

Saves binary data.

Clears program variables, and
optionally sets memory area.

Continues program
execution.

DELETE linel-line2 Deletes specified program
lines.

EDIT line

FILES filespec

KILL filespec

Displays a program line for
changing.

Lists files in the diskette
directory that match a file
specification.

Erases a diskette file.

Command Action

LIST linel-line2,filespec
Lists program lines on the
screen or to the specified file.

LLIST linel-line2 Lists program lines on the
printer.

LOAD filespec Loads a program file. Can
include the R option to run it.

MERGE filespec Merges a saved program with
the program in memory.

NAME filespec AS filename

NEW

Renames a diskette file.

Erases the current program
and variables.

RENUM newnum,oldnum,increment
Renumbers program lines.

RESET

RUN filespec

RUN line

SAVE filespec

SYSTEM

TRON, TROFF

Reini tializes diskette
information. Similar to
CLOSE.

Executes a program. The R
option may be used to keep
files open.

Runs the program in memory
starting at the specified line.

Saves the program in memory
under the given filename. A
or P option saves in ASCII or
protected format.

Ends BASIC. Closes all files
and returns to DOS.

Turns trace on or off.

4-7

Statements
This section lists all the BASIC statements
alphabetically in two categories: I/O (Input/Output)
Statements and Non-I/O Statements. The list tells
what each statement does and shows the syntax. For
the more complex statements the syntax shown may
not be complete. You can find detailed information
about each statement in the alphabetical portion of
this chapter, later on.

You may also want to look at the previous section,
"Commands," for a list of the BASIC commands.

Non-I/O Statements

4-8

Statement Action

CALL numvar(variable list)

CHAIN filespec

Calls a machine language
program.

Calls a program and passes
variables to it. Other options
allow you to use overlays,
begin running at a line other
than the first line, pass all
variables, or delete an
overlay.

COM(n) ON/OFF/STOP
Enables and disables trapping
of communications activity.

COMMON list of variables

DATE$ = x$

Passes variables to a chained
program.

Sets the date.

DEF FNname(arg list)=expression
Defines a numeric or string
function.

Statement Action

DEFtype ranges of letters
Defines default variable
types, where type is INT,
SNG, DBL, or STR.

DEF SEG=address Defines current segment of
memory.

DEF USRn=offset Defines starting address for
machine language subroutine
n.

DIM list of subscripted variables
Declares maximum subscript
values for arrays and allocates
space for them.

END Stops the program, closes all
files, and returns to command
level.

ERASE arraynames Eliminates arrays from a
program.

ERROR n Simulates error number n.

FOR variable=x TO y STEP z

GOSUB line

GOTO line

Repeats program lines a
number of times. The NEXT
statement closes the loop.

Calls a subroutine by
branching to the specified
line. The RETURN
statement returns from the
subroutine.

Branches to the specified
line.

4-9

4-10

Statement Action

IF expression THEN clause ELSE clause
Performs the statement(s) in
the THEN clause if
expression is true (nonzero).
Otherwise, performs the
ELSE clause or goes to the
next line.

KEY ON/OFF/LIST Displays soft keys or turns
display off.

KEY n, x$ Sets soft key n to the value of
the string x$.

KEY(n) ON/OFF/STOP
Enables/disables trapping of
function keys or cursor
control keys.

LET variable=expression
Assigns the value of the
expression to the variable.

MID$(v$,n,m)=y$ Replaces part of the variable
v$ with the string y$, starting
at position n and replacing m
characters.

MOTOR state Turns cassette motor on if
state is nonzero, off if state is
zero.

NEXT variable Closes a FOR ... NEXT loop
(see FOR).

ON COM(n) GOSUB line
Enables trap routine for
communications activity.

ON ERROR GOTO line
Enables error trap routine
beginning at line specified.

Statement Action

ON n GOSUB line list
Branches to subroutine
specified by n.

ON n GOTO line list
Branches to statement
specified by n.

ON KEY(n) GOSUB line
Enables trap routine for the
specified function key or
cursor control key.

ON PEN GOSUB line
Enables trap routine for light
pen.

ON STRIG(n) GOSUB line

OPTION BASE n

Enables trap routine for
joystick button.

Specifies the minim urn value
for array subscripts.

PEN ON/ OFF/STOP Enables/disables the light pen
function.

POKE n,m

RANDOMIZEn

REM remark

RESTORE line

Puts byte m into memory at
the location specified by n.

Reseeds the random number
generator.

Includes remark in program.

Resets DATA pointer so
DATA statements may be
reread.

RESUME line/NEXT/O
Returns from error trap
routine.

4-11

4-12

Statement

RETURN line

STOP

STRIG ON/OFF

Action

Returns from subroutine.

Stops program execution,
prints a break message, and
returns to command level.

Enables/ disables joystick
button function.

STRIG(n) ON/OFF/STOP
Enables/ disables joystick
button trapping.

SWAP variable1, variable2
Exchanges values of two
variables.

TIME$ = x$ Sets the time.

WAIT port,n,m Suspends program execution
until the specified port
develops the specified bit
pattern.

WEND Closes a WHILE ... WEND
loop (see WHILE).

WHILE expression Begins a loop which executes
as long as the expression is
true.

I/O Statements

Statement

BEEP

CIRCLE (x,y),r

CLOSE#f

CLS

Action

Beeps the speaker.

Draws a circle with center
(x,y) and radius r. Other
options allow you to specify a
part of the circle to be drawn,
or to change the aspect ratio
to draw an ellipse.

Closes a file.

Clears the screen.

COLOR foreground, background, border
In text mode, sets colors for
foreground, background, and
the border screen.

COLOR background, palette
In graphics mode, sets
background color and palette
of foreground colors.

DATA list of constants

DRAW string

Creates a data table to be used
by READ statements.

Draws a figure as specified by
string.

FIELD #f,width AS stringvar ...

GET #f,number

Defines fields in a random file
buffer.

Reads a record from a random
file.

GET (x1,yl)-(x2,y2),arrayname
Reads graphic information
from screen.

4-13

4-14

Statement Action

INPUT "prompt";variable list
Reads data from the keyboard.

INPUT #f, variable list
Reads data from file f.

LINE (x1,yl)-(x2,y2) Draws a line on the screen.
Other parameters allow you
to draw a box, and fill the box
in.

LINE INPUT "prompt";stringvar
Reads an entire line from the
keyboard, ignoring commas
or other delimiters.

LINE INPUT #f,stringvar

LOCATE row,col

Reads an entire line from a
file.

Positions the cursor. Other
parameters allow you to
define the size of the cursor
and whether it is visible or
not.

LPRINT list of expressions
Prints data on the printer.

LPRINT USING v$;list of expressions
Prints data on the printer
using the format specified by
v$.

LSET stringvar=x$ Left-justifies a string in a field.

OPEN filespec FOR mode AS #f
Opens the file for the mode
specified. Another option
sets the record length for
random files.

Statement Action

OPEN mode,#f,filespec,recl
Alternative fornl of preceding
OPEN.

OPEN "COMn:options" AS #f

OUT n,m

Opens file for
communications.

Outputs the byte m to the
machine port n.

PAINT (x,y),paint,boundary

PLAY string

Fills in an area on the screen
defined by boundary with the
paint color.

Plays music as specified by
string.

PRINT list of expressions
Displays data on the screen.

PRINT USING v$,list of expressions
Displays data using the
format specified by v$.

PRINT If, list of exps
Writes the list of expressions
to file f.

PRINT If, USING v$;list of exps

PRESET (x,y)

PSET (x,y),color

PUT #f,number

Writes data to file f using the
format specified by v$.

Draws a point on the screen in
background color. See PSET.

Draws a point on the screen,
in the foreground color if
color is not specified.

Writes data from a random
file buffer to the file.

4-15

4-16

Statement Action

PUT (x,y),array,action
Writes graphic information
to the screen.

READ variable list Retrieves information from
the data table created by
DATA statements.

RSET stringvar=x$ Right-justifies a string in a
field. See LSET.

SCREEN mode, burst,apage, vpage
Sets screen mode, color on or
off, display page, and active
page.

SOUND freq,duration

WIDTH size

Generates sound through the
speaker.

Sets screen width. Other
options allow you to specify
the width of a printer or a
communications file.

WRITE list of expressions
Outputs data on the screen.

WRITE #f, list of expressions
Outputs data to a file.

Functions and Variables
The built-in functions and variables available in
BASIC are listed below, grouped into two general
categories: numeric functions, or those which
return a numeric result; and string functions, or
those which return a string result.

Each category is further subdivided according to the
usage of the functions. The numeric functions are
divided into general arithmetic (or algebraic)
functions; string-related functions, which operate
on strings; and input/output and miscellaneous
functions. The string functions are separated into
general string functions, and input/ output and
miscellaneous string functions.

Note: Only integer and single-precision
results are returned by the numeric functions,
except where indicated otherwise.

Numeric Functions (return a numeric
value)

ARITHMETIC

Function

ABS(x)

ATN(x)

CDBL(x)

CINT(x)

COS(x)

CSNG(x)

Result

Returns the absolute value of
x.

Returns the arctangent (in
radians) of x.

Converts x to a
double-precision number.

Converts x to an integer by
rounding.

Returns the cosine of angle x,
where x is in radians.

Converts x to a
single-precision number.

4-17

4-18

Function Result

EXP(x) Raises e to the x power.

FIX(x) Truncates x to an integer.

INT(x) Returns the largest integer less
than or equal to x.

LOG(x) Returns the naturallogorithm
ofx.

RND(x) Returns a random number.

SGN(x) Returns the sign of x.

SIN(x) Returns the sine of angle x,
where x is in radians.

SQR(x) Returns the square root of x.

TAN(x) Returns the tangent of angle x,
where x is in radians.

For information on how to calculate mathematical
functions which are not included in this list, refer to
"Appendix E. Mathematical Functions."

STRING-RELATED

Function

ASC(x$)

Result

Returns the ASCII code for the
first character in x$.

CVI(x$), CVS(x$), CVD(x$)

INSTR(n,x$,y$)

LEN(x$)

VAL(x$)

Converts x$ to a number of the
indicated precision.

Returns the position of first
occurrence of y$ in x$ starting
at position n.

Returns the length of x$.

Returns the numeric value of
x$.

I/O and MISCELLANEOUS

Function

CSRLIN

EOF(f)

ERL

ERR

FRE(x$)

INP(n)

LOC(f)

LOF(f)

LPOS(n)

Result

Returns the vertical line
position of the cursor.

Indicates an end of file
condition on file f.

Returns the line number
where the last error occurred
(see ERR).

Returns the error code
number of the last error.

Returns the amount of free
space in memory not currently
in use by BASIC.

Reads a byte from port n.

Returns the "location" of file f:

• next record number of
random file

• number of sectors read or
written for sequential file

• number of characters in
communications input
buffer

Returns the length of file f:

• number of bytes (in
multiples of 128) in
sequential or random file

• number of bytes free in
communications input
buffer

Returns the carriage position
of the printer.

4-19

4-20

Function

PEEK(n)

PEN(n)

POINT(x,y)

POS(n)

Result

Reads the byte in memory
location n.

Reads the light pen.

Returns the color of point (x,y)
(graphics mode).

Returns the cursor column
position.

SCREEN(row,col,z) Returns the character or color
. at position (row,col).

STICK(n)

STRIG(n)

USRn(x)

Returns the coordinates of a
joystick.

Returns the state of a joystick
button.

Calls a machine language
subroutine with argument x.

VARPTR(variable) Returns the address of the
variable in memory.

VARPTR(#f) Returns the address of the file
control block for file f.

String Functions (return a string value)

GENERAL

Function

CHR$(n)

LEFT$(x$,n)

MID$(x$,n,m)

RIGHT$(x$,n)

SPACE$(n)

STRING$(n,m)

STRING$(n,x$)

Result

Returns the character with
ASCII code n.

Returns the leftmost n
characters of x$.

Returns m characters from x$
starting at position n.

Returns the rightmost n
characters of x$.

Returns a string of n spaces.

Returns the character with
ASCII value m, repeated n
times.

Returns the first character of
x$ repeated n times.

I/O and MISCELLANEOUS

Function

DATE$

HEX$(n)

INKEY$

INPUT$(n,#f)

Result

Returns the system date.

Converts n to a hexadecimal
string.

Reads a character from the
keyboard.

Reads n characters from file f.

4-21

4-22

Function Result

MKI$(x), MKS$(x), MKD$(x)

OCT$(n)

SPC(n)

STR$(x)

TAB(n)

TIME$

VARPTR$(v)

Converts x in indicated
precision to proper length
string.

Converts n to an octal string.

Prints n spaces in a PRINT or
LPRINT statement.

Converts x to a string value.

Tabs to position n in a PRINT
or LPRINT statement.

Returns the system time.

Returns a three-byte string
containing the type of
variable, and the address of the
variable in memory.

ABS
Function

Purpose: Returns the absolute value of the expression x.

Versions: Cassette

Format: v = ABS(x)

Disk

Advanced Compiler
*** ***

Remarks: x may be any numeric expression.

The absolute value of a number is always positive or
zero.

Example: Ok
PRINT ABS(7*(-5))

35
Ok

The absolute value of -35 is positive 35.

4-23

Ase
Function

Purpose: Returns the ASCII code for the first character of the
string xl.

Versions: Cassette

Disk

Advanced Compiler
*** ***

Format: v = ASC(x$)

Remarks: x$ may be any string expression.

The result of the ASC function is a numerical value
that is the ASCII code of the first character of the
string xl. (See "Appendix G. ASCII Character
Codes" for ASCII codes.) If x$ is null, an "Illegal
function call" error is returned.

The CHR$ function is the inverse of the ASC
function, and it converts the ASCII code to a
character.

Example: Ok

4-24

10 X$ = IITEST"
20 PRINT ASC(X$)
RUN

84
Ok

This example shows that the ASCII code for a capital
Tis 84. Print ASC("TEST") would work just as well.

Purpose: Returns the arctangent of x.

ATN
Function

Versions: Cassette

Disk Advanced Compiler
*** *** ***

Format: v = ATN(x)

Remarks: x may be a numeric expression of any numeric
type, but the evaluation of ATN is always
performed in single precision.

The ATN function returns the angle whose tangent
isx. The result is a value in radians in the range -PII2
to PI/2, where PI=3.l4l593.

If you want to convert radians to degrees, multiply
by l80/PI.

Example: Ok
PRI NT ATN (3)

1.249046
Ok

10 PI=3.141593
20 RADIANS=ATN(l)
30 DEGREES=RADIANS*180/PI
40 PRINT RADIANS,DEGREES
RUN

.7853983 45
Ok

The first example shows the use of the A TN function
to calculate the arctangent of3. The second example
finds the angle whose tangent is 1. It is .7853983
radians, or 45 degrees.

4-25

AUTO
Command

Purpose: Generates a line number automatically each time
you press Enter.

Versions: Cassette Disk Advanced Compiler
*** *** ***

Format: AUTO [number] [, [increment]]

Remarks: number is the number which will be used to start
numbering lines. A period (.) may be
used in place of the line number to
indicate the current line.

4-26

increment is the value that will be added to each line
number to get the next line number.

Numbering begins at number and increments each
subsequent line number by increment. If both values
are omitted, the default is 10,10. Ifnumber is followed
by a comma but increment is not specified, the last
increment specified in an AUTO command is
assumed. If number is omitted but increment is
included, then line numbering begins with 0.

AUTO is usually used for entering programs. It
releases you from having to type each line number.

AUTO
Command

If AUTO generates a line number that already exists
in the program, an asterisk (*) is printed after the
number to warn you that any input will replace the
existing line. However, if you press Enter
immediately after the asterisk, the existing line will
not be replaced and AUTO will generate the next
line number.

AUTO ends when you press Ctrl-Break. The line in
which Ctrl-Break is typed is not saved. After a
Ctrl-Break, BASIC returns to command level.

Note: When in AUTO mode, you may make
changes only to the current line. If you want to
change another line on the screen, be sure to
exit AUTO by first pressing Ctrl-Break.

Example: AUTO

This command generates line numbers 10, 20, 30,
40, ...

AUTO 100,50

This generates line numbers 100, 150, 200, ...

AUTO 500,

This generates line numbers 500, 550, 600, 650, ...
The increment is 50 since 50 was the increment in
the previous AUTO command.

AUTO ,20

This generates line numbers 0, 20, 40, 60, ...

4-27

BEEP
Statement

Purpose: Beeps the speaker.

Versions: Cassette Disk
*** ***

Format: BEEP

Advanced Compiler
*** ***

Remarks: The BEEP statement sounds the speaker at 800 Hz
for 1/4 second. BEEP has the same effect as:

PR I NT CHR$ (7) ;

Example: 2430 I F X < 20 THEN BEEP

4-28

In this example, the program checks to see if X is out
of range. If it is, the computer" complains" by
beeping.

BLOAD
Command

Purpose: Loads a memory image file into memory.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: BLOAD filespec [,offiet]

Remarks: filespec is a string expression for the file
specification. It must conform to the rules
outlined under "Naming Files" in Chapter
3, otherwise a "Bad file name" error occurs
and the load is cancelled.

offset is a numeric expression in the range 0 to
655 35. This is the address at which loading
is to start, specified as an offset into the
segment declared by the last DEF SEG
statement.

If offset is omitted, the offset specified at BSAVE is
assumed. That is, the file is loaded into the same
location it was saved from.

When a BLOAD command is executed, the named
file is loaded into memory starting at the speCified
location. If the file is to be loaded from the device
CASl:, the cassette motor is turned on
automatically.

If you are using Cassette BASIC and the device
named is omitted, CASl: is assumed. CASl: is the
only allowable device for BLOAD in Cassette
BASIC. If you are using Disk or Advanced BASIC
and the device name is omitted, the DOS default
diskette drive is used.

4-29

BLOAD
Command

4-30

BLOAD and BSA VE are useful for loading and
saving machine language programs. (You may
perform machine language programs from within a
BASIC program by using the CALL statement.)
However, BLOAD and BSA VE are not restricted to
machine language programs. Any segment may be
specified as the target or source for these statements
via the DEF SEG statement. You have a useful way of
saving and displaying screen images: save from or
load to the screen buffer.

Warning:
BASIC does not do any checking on the address.
That is, it is possible to BLOAD anywhere in
memory. You should not BLOAD over BASIC's
stack, BASIC's variable area, or your BASIC
program.

Notes when using CASt:

1. If you enter the BLOAD command in direct
mode, the file names on the tape will be
displayed on the screen followed by a period (.)
and a single letter indicating the type of file.
This is followed by the message "Skipped." for
the files not matching the named file, and
"Found." when the named file is found. Types
of files and the associated letter are:

.B for BASIC programs in internal format
(created with SAVE command)

.P for protected BASIC programs in internal
format (created with SAVE ,P command)

.A for BASIC programs in ASCII fermat
(created with SAVE ,A command)

.M for memory image files (created with
BSA VE command)

.D for data files (created by OPEN followed by
output statements)

BLOAD
Command

If the BLOAD command is executed in a BASIC
program, the file names skipped and found are
not displayed on the screen.

2. You may press Ctrl-Break any time during
BLOAD. This will cause BASIC to exit the
search and return to direct mode between files
or after a time-out period. Previous memory
contents do not change.

3. If CAS1: is specified as the device and the
filename is omitted, the next memory image
(.M) file on the tape is loaded.

Example: 10 lload the screen buffer
20 lpoint SEG at screen buffer
30 DEF SEG= &HB800
40 lload PICTURE into screen buffer
50 BLOAD llPI CTURE",0

This example loads the screen buffer for the
Color/Graphics Monitor Adapter, which is at
absolute address hex B8000. If you were loading the
screen buffer for the IBM Monochrome Display and
Parallel Printer Adapter, you would have to change
line 30 to read &HBOOO (the actual address is hex
BOOOO). Note that the DEF SEG statement in 30 and
the offset of 0 in 50 is wise. This assures that the
correct address is used.

The example for BSA VE in the next section
illustrates how PICTURE was saved.

4-31

BSAVE
Command

Purpose: Saves portions of the computer's memory on the
specified device.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Forma t: BSA VE filespec~ offset, length

Remarks: filespec is a string expression for the file
specification. It must conform to the rules
ou dined under "Naming Files" in Chapter
3; otherwise, a "Bad file name" error
occurs and the save is cancelled.

4-32

offset is a numeric expression in the range 0 to
65535. This is the offset into the segment
declared by the last DEF SEG. Saving will
start from this position.

length is a numeric expression in the range 1 to
65535. This is the length of the memory
image to be saved.

If offset or length is omitted, a "Syntax error" will
occur and the save will be cancelled.

If the device name is omitted in Cassette BASIC,
CASl: is assumed. CASl: is the only allowable device
for BSA VE in Cassette BASIC. In Disk and Advanced
BASIC, if the device name is omitted, the DOS
default diskette drive is used.

If you are saving the CASl:, the cassette motor will
be turned on and the memory image file will be
immediately written to the tape.

BSAVE
Command

BLOAD and BSA VE are useful for loading and
saving machine language programs (which can be
called using the CALL statement). However,
BLOAD and BSA VE are not restricted to machine
language programs. By using the DEF SEG
statement, any segment may be specified as the
target or source for these statements. For example,
you can save an image of the screen by doing a
BSA VE of the screen buffer.

Example: 10 I Save the co lor screen buffer
15 'point segment at screen buffer
20 DEF SEG= &HB800
25 Isave buffer in file PICTURE
30 BSAVE "PICTURE",0,&H4000

As explained under "BLOAD Command" in the
previous section, the address of the 16K screen
buffer for the Color/Graphics Monitor Adapter is
hex BSOOO. The address of the 4K screen buffer for
the IBM Monochrome Display and Parallel Printer
Adapter is hex BOOOO.

The DEF SEG statement must be used to set up the
segment address to the start of the screen buffer.
Offset of 0 and length &H4000 specifies that the
entire 16K screen buffer is to be saved.

4-33

CALL
Statement

Purpose: Calls a machine language subroutine.

Versions: Cassette

Disk

Advanced

Compiler
(**)

Format: CALL numvar [(variable [,vartable] ...)]

Remarks: numvar is the name of a numeric variable. The
value of the variable indicates the starting
memory address of the subroutine being
called as an offset into the current segment
of memory (as defined by the last DEF SEG
statement).

vartable is the name of a variable which is to be
passed as an argument to the machine
language subroutine.

The CALL statement is one way of interfacing
machine language programs with BASIC. The other
way is by using the USR function. Refer to
"Appendix C. Machine Language Subroutines" for
specific considerations about using machine
language subroutines.

Example: 100 DEF SEG=&H8000
110 OZ=0

4-34

120 CALL OZ(A,B$,C)

Line 100 sets the segment to location hex 80000. 02
is set to zero so that the call to 02 will execute the
subroutine at location hex 80000. The variables A,
B$, and C are passed as arguments to the machine
language subroutine.

CDBL
Function

Purpose: Converts x to a double-precision number.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v = CDBL(x)

Remarks: x may be any numeric expression.

Rules for converting from one numeric precision to
another are followed as explained in "How BASIC
Converts Numbers from One Precision to Another"
in Chapter 3. Refer also to the CINT and CSNG
functions for converting numbers to integer and
single-precision.

Example: Ok
10 A = 454.67
20 PRINT A;CDBL(A)
RUN
454.67 454.6699829101563

Ok

The value ofCDBL(A) is only accurate to the second
decimal place after rounding. The extra digits have
no meaning. This is because only two decimal places
of accuracy were supplied with A.

4-35

CHAIN
Statement

Purpose: Transfers control to another program, and passes
variables to it from the current program.

Versions: Cassette Disk Advanced Compiler
(**) *** ***

Format: CHAIN [MERGE] fi'le.pec [,[line] [,[ALL]
[,DELETE range]]]

Remarks: fi'lespec follows the rules for file specifications
outlined in "Naming Files" in Chapter 3. The
filename is the name of the program that is
transferred to, Example:

4-36

CHAIN "A:PROG1"

line is a line number or an expression that evaluates
to a line number in the chained-to program. It
specifies the line at which the chained-to program is
to begin running. If it is omitted, execution begins at
the first line in the chained-to program. Example:

CHAIN IA:PROG1",1000

line (1000 in this example) is not affected by a
RENUM command. If PROG 1 is renumbered, this
example CHAIN statement should be changed to
point to the new line number.

ALL specifies that every variable in the current
program is to be passed to the chained-to program. If
the ALL option is omitted, you must include a
COMMON statement in the chaining program to
pass variables to the chained-to program. See
"COMMON Statement" in this chapter. Example:

CHAIN "A:PROG1",1000,ALL

CHAIN
Statement

MERGE brings a section of code into the BASIC
program as an overlay. That is, a MERGE operation
is performed with the chaining program and the
chained-to program. The chained-to program must
be an ASCII file if it is to be merged. Example:

CHAIN MERGE "A:OVRLAylI, 1000

After using an overlay, you will usually want to
delete it so that a new overlay may be brought in. To
do this, use the DELETE option, which behaves like
the DELETE command. As in the DELETE
command, the line numbers specified as the first and
last line of the range must exist, or an "Illegal
function call" error occurs. Example:

CHAIN MERGE IA:OVRLAY2",1000,DELETE 1000-5000

This example will delete lines 1000 through 5000 of
the chaining program before loading in the overlay
(chained-to program). The line numbers in range are
affected by the RENUM command.

Notes:

1. The CHAIN statement leaves files open.

2. The CHAIN statement with MERGE option
preserves the current OPTION BASE setting.

3. If the MERGE option is omitted, the OPTION
BASE setting is not preserved in the chained-to
program. Also, without MERGE, CHAIN does
not preserve variable types or user-defined
functions for use by the chained-to program.
That is, any DEFINT, DEFSNG, DEFDBL,
DEFSTR, or DEF FN statements containing
shared variables must be restated in the chained
program.

4-37

CHR$
Function

Purpose: Converts an ASCII code to its character equivalent.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v$ = CHR$(n)

Remarks: n must be in the range 0 to 255.

The CHR$ function returns the one-character string
with ASCII code n. (ASCII codes are listed in
"Appendix G. ASCII Character Codes.") CHR$ is
commonly used to send a special character to the
screen or printer. For instance, the BEL character,
which beeps the speaker, might be included as
CHR$(7) as a preface to an error message (instead of
using BEEP). Look under "ASC Function," earlier in
this chapter, to see how to convert a character back
to its ASCII code.

Example: Ok

4-38

PRINT CHR$(66)
B
Ok

The next example sets function key Fl to the string
"AUTO" joined with Enter. This is a good way to set
the function keys so the Enter is automatically done
for you when you press the function key.

Ok
KEY 1, "AUTO " +CHR$ (13)
Ok

CHR$
Function

The following example is a program which shows all
the displayable characters, along with their ASCII
codes, on the screen in 80-column width. it can be
used with either the IBM Monochrome Display and
Parallel Printer Adapter or the Color/Graphics
Monitor Adapter.

10 CLS
20 FOR 1=1 TO 255
30 I ignore nondisplayable characters
40 IF (1)6 AND 1<14) OR (1)27 AND 1<32) THEN 100
50 COLOR 0,7 I black on white
60 PRINT USING 11###11; I ; J 3-digit ASCII code
70 COLOR 7,0 I white on black
80 PRI~T 11 "; CHR$(I); " ";
90 IF POS(0»75 THEN PRINT I go to next 1 ine
100 NEXT I

4-39

CINT
Function

Purpose: Converts x to an integer.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v = CINT(x)

Remarks: x may be any numeric expression. If x is not in
the range -32768 to 32767, an "Overflow"
error occurs.

x is converted to an integer by rounding the
fractional portion.

See the FIX and INT functions, both of which also
return integers. See also the CDBL and CSNG
functions for converting numbers to single- or
double-precision.

Example: Ok

4-40

PRINT CINT(45.67)
46

Ok
PRINT CINT(-2.89)
-3
Ok

Observe in both examples how rounding occurs.

CIRCLE
Statement

Purpose: To draw an ellipse on the screen with center (x,y) and
radius r.

Versions: Cassette Disk Advanced Compiler
*** ***

Graphics mode only.

Format: CIRCLE (x,y),r [,color [,start, end [,aspect]]]

Remarks: (x,y)

r

color

are the coordinates of the center of the
ellipse. The coordinates may be given in
either absolute or relative form. See
"Specifying Coordinates" under
"Graphics Modes" in Chapter 3.

is the radius (major axis) of the ellipse in
points.

is a number which specifies the color of the
ellipse, in the range 0 to 3. In medium
resolution, color selects the color from the
current palette as defined by the COLOR
statement. 0 is the background color. The
default is the foreground color, color
number 3. In high resolution, a color of 0
(zero) indicates black, and the default of 1
(one) indicates white.

start, end are angles in radians and may range from
-2*PI to 2*PI, where PI=3.141593.

aspect is a numeric expression.

4-41

CIRCLE
Statement

4-42

start and end specify where the drawing of the ellipse
will begin and end. The angles are positioned in the
standard mathematical way, with 0 to the right and
going counterclockwise:

PI/2

P100,2*PI
3*PI/2

If the start or end angle is negative (-0 is not allowed),
the ellipse will be connected to the center point with
a line, and the angles will be treated as if they were
positive (note that this is not the same as adding
2*PI). The start angle may be greater or less than the
end angle. For example,

10 PI=3. 141593
20 SCREEN 1
30 CI RCLE "(160,100) ,60 ,,-PI ,-PI/2

will draw a part of a circle similar to the following:

aspect affects the ratio of the x-radius to the y-radius.
The default for aspect is 5/6 in medium resolution and
5/12 in high resolution. These values give a visual
circle assuming the standard screen aspect ratio of
4/3.

CIRCLE
Statement

Ifaspect is less than one, thenr is the x-radius. That is,
the radius is measured in points in the horizontal
direction. If aspect is greater than one, then r is the
y-radius. For example,

10 SCREEN 1
20 C I R C L E (1 60, 1 00) ,60, , , , 5/ 1 8

will draw an ellipse like this:

In many cases, an aspect of 1 (one) will give nicer
looking circles in medium resolution. This will also
cause the circle to be drawn somewhat faster.

The last point referenced after a circle is drawn is the
cen ter of the circle.

Points that are off the screen are not drawn by
CIRCLE.

Example: The following example draws a face.

10 PI=3.141593
20 SCREEN 1 ' medium res. graphics
30 COLOR 0, 1 I black backg round, pa 1 et te
40 I two c i r c 1 es in co lor 1 (cyan)
50 CIRCLE (120,50), 10, 1
60 CIRCLE (200,50),10,1
70 Itwo horizontal ellipses
80 CIRCLE (120,50),30",,5/18
90 CIRCLE (200,50) ,30, ,,,5/18
100 larc in color 2 (magenta)
110 CIRCLE (160,0),150,2, 1.3"'PI, 1.7"'PI
120 larc, one side connected to center
130 CIRCLE (160,52) ,50" 1.4"'PI, -1.6"'PI

4-43

CLEAR
Command

Purpose: Sets all numeric variables to zero and all string
variables to null. Options set the end of memory and
the amount of stack space.

Versions: Cassette

Disk

Advanced

Compiler
(**)

Format: CLEAR [,[n] [,m]]

Remarks: n is a byte count which, if specified, sets the
maximum number of bytes for the BASIC
workspace (where your program and data are
stored, along with the interpreter workarea).
You would probably include n if you need to
reserve space in storage for machine language
programs.

4-44

m sets aside stack space for BASIC. The default is
512 bytes, or one-eighth of the available
memory (whichever is smaller). You may want
to include m if you use a lot of nested GOSUB
statements or FOR ... NEXT loops in your
program, or if you use PAINT to do complex
scenes.

CLEAR frees all memory used for data without
erasing the program which is currently in memory.
After a CLEAR, arrays are undefined; numeric
variables have a value of zero; string variables have a
null value; and any information set with any DEF
statement is lost. (This includes DEF FN, DEF SEG,
and DEF USR, as well as DEFINT, DEFDBL,
DEFSNG, and DEFSTR.)

CLEAR
Command

Executing a CLEAR command turns off any sound
that is running and resets to Music Foreground.
Also, PEN and STRIG are reset to OFF.

The ERASE statement may be useful to free some
memory without erasing all the data in the program.
It erases only specified arrays from the work area.
Refer to "ERASE Statement" in this chapter for
details.

Example: This example clears all data from memory (without
erasing the program):

CLEAR

The next example clears the data and sets the
maximum workspace size to 32K-bytes:

CLEAR ,32768

The next example clears the data and sets the size of
the stack to 2000 bytes:

CLEAR ,,2000

The last example clears data, sets the maximum
workspace for BASIC to 32K-bytes, and sets the
stack size to 2000 bytes:

CLEAR ,32768,2000

4-45

CLOSE
Statement

Purpose: Concludes I/O to a device or file.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: CLOSE [[#]filenum [,[#]filenum] ...]

Remarks: filenum is the number used on the OPEN
statement.

4-46

The association between a particular file or device
and its file number stops when CLOSE is executed.
Subsequent I/O operations specifying that file
number will be invalid. The file or device may be
opened again using the same or a different file
number; or the file number may be reused to open
any device or file.

A CLOSE to a file or device opened for sequential
output causes the final buffer to be written to the file
or device.

A CLOSE with no file numbers specified causes all
devices and files that have been opened to be closed.

Executing an END, NEW, RESET, SYSTEM or
RUN without the R option causes all open files and
devices to be automatically closed. STOP does not
close any files or devices.

Refer also to "OPEN Statement" in this chapter for
information about opening files.

Example: 100 CLOSE 1,#2,#3

CLOSE
Statement

Causes the files and devices associated with file
numbers 1, 2, and 3 to be closed.

200 CLOSE

Causes all open devices and files to be closed.

4-47

CLS
Statement

Purpose: Clears the screen.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: CLS

Remarks: If the screen is in text mode, the active page (see
"SCREEN Statement" in this chapter) is cleared to
the background color (see "COLOR Statement,"
also in this chapter).

If the screen is in graphics mode (medium or high
resolution), the entire screen buffer is cleared to the
background color.

The CLS statement also returns the cursor to the
home position. In text mode, this means the cursor
is located in the upper left-hand corner of the screen.
In graphics mode, this means the "last referenced
point" for future graphics statements is the point in
the center of the screen «160,100) in medium
resolution, (320,100) in high resolution).

Changing the screen mode or width by using the
SCREEN or WIDTH statements also clears the
screen. The screen may also be cleared by pressing
Ctrl-Home.

Example: 10 COLOR 10, 1
20 CLS

4-48

With the Color/Graphics Monitor Adapter, this
example clears the screen to Blue.

COLOR
Statement

Purpose: Sets the colors for the foreground, background, and
border screen. Refer to "Text Mode" in Chapter 3
for an explanation of these terms.

The syntax of the COLOR statement depends on
whether you are in text mode or graphics mode, as
set by the SCREEN statement.

In text mode, you can set the following:

Foreground- 1 of 16 colors
Character blink, if desired

Background- 1 of 8 colors
Border- 1 of 16 colors

You can set the following in medium resolution
graphics mode:

Background- 1 of 16 colors
Palette- 1 of 2 palettes with 3 colors each
The border is the same as the background color.

The COLOR Statement in Text Mode

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Text mode only.

Format: COLOR [foregroundJ [,[backgroundJ [,border]]

4-49

COLOR
Statement (Text)

Remarks: foreground is a numeric expression in the range 0 to
31, representing the character color.

4-50

background is a numeric expression in the range 0 to
7 for the background color.

border is a numeric expression in the range 0 to
15. It is the color for the border screen.

If you have the Color/Graphics Monitor Adapter,
the following colors are allowed for foreground:

o Black 8 Gray
1 Blue 9 Light Blue
2 Green 10 Light Green
3 Cyan 11 Light Cyan
4 Red 12 Light Red
5 Magenta 13 Light Magenta
6 Brown 14 Yellow
7 -White 15 High-intensity White

Colors and intensity may vary depending on your
display device.

You might like to think of colors 8 to 15 as "light" or
"high-intensity" values of colors 0 to 7.

You can make the characters blink by setting
foreground equal to 16 plus the number of the desired
color. That is, a value of 16 to 31 causes blinking
characters.

You may select only colors 0 through 7 for
background.

COLOR
Statement (Text)

If you have the IBM Monochrome Display and
Parallel Printer Adapter, the following values can
be used for foreground: ° Black

1 Underlined character with white foreground
2-7 White

In a manner similar to the Color/Graphics Monitor
Adapter, adding 8 to the number of the desired color
gives you the color in high-intensity. For example, a
value of 15 gives you high-intensity white. A value of
9 gives you high-intensity white, underlined. You
can't make high-intensity black.

As with the Color/Graphics Monitor Adapter, you
can make the character blink by adding 16 to the
number of the desired color. Thus, 16 gives you
black blinking characters, and 31 gives you
high-intensity white blinking characters.

For background with the IBM Monochrome Display
and Parallel Printer Adapter, you may select the
following values:

0-6 Black
7 White

Note: White (color 7) as a background color
shows up as white on the IBM Monochrome
Display only when it is used with a foreground
color of 0, 8, 16, or 24 (black). This creates
reverse image characters.

Black (color 0, 8, 16, or 24) as a foreground
color shows up as black only when used with a
background color of ° (which makes the
characters invisible) or 7 (which creates reverse
image characters).

Other combinations of foreground and
background colors produce standard (white on
black) results on the IBM Monochrome
Display.

4-51

COLOR
Statement (Text)

Notes for either adapter:

1. Foreground color may equal background color.
This has the effect of making any character
displayed invisible. Changiflg the foreground or
background color will make subsequent
characters visible again.

2. Any parameter may be omitted. Omitted
parameters assume the old value.

3. If the COLOR statement ends in a comma (,),
you will get a "Missing operand" error, but the
color will change. For example,

COLOR ,7,

is invalid.

4. Any values entered outside the range 0 to 255
will result in an "Illegal function call" error.
Previous values are retained.

Example: 10 COLOR 14, 1 ,0

4-52

This sets a yellow foreground, a blue background,
and a black border screen.

COLOR
Statement (Text)

The following example can be used with either the
Color/Graphics Monitor Adapter or the IBM
Monochrome Display and Parallel Printer Adapter:

10 PRINT "Enter your ";
20 COLOR 15,0 'highlight next word
30 PRINT "password";
40 COLOR 7 'return to default (white on black)
50 PRINT" here: ";
60 COLOR 0 'invisible (black on black)
70 INPUT PASSWORDS
80 IF PASSWORD$="secret" THEN 120
90 I blink and highl ight error message
100 COLOR 31: PRINT "Wrong Password": COLOR 7
110 GOTO 10
120 COLOR 0,7 Ireverse image (black on white)
130 PRINT "Program continues ... ";
140 COLOR 7,0 Ireturn to default (white on black)

4-53

COLOR
Statement (Graphics)

The COLOR Statement in Graphics Mode

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Graphics mode, medium resolution only.

Format: COLOR [background] [,fpalette]]

Remarks: background is a numeric expression specifying the
background color. The colors allowed
for background are 0 through 15, as
described previously under "The
COLOR Statement in Text Mode."

4-54

palette is a numeric expression which selects the
palette of colors.

The colors selected when you choose each palette
are as follows:

Color Palette 0 Palette 1

1 Green Cyan

2 Red Magenta
3 Brown White

Ifpalette is an even number, palette 0 is selected. This
associates the colors Green, Red, and Brown to the
color numbers 1, 2, and 3. Palette 1
(Cyan/Magenta/White) is selected when palette is an
odd number.

The color selected for background may be the same as
any of the palette colors.

COLOR
Statement (Graphics)

Any parameter may be omitted from the COLOR
statement. Omitted parameters assume the old
value.

In graphics mode, the COLOR statement sets a
background color and a palette of three colors. You
may select anyone of these four colors for display
with the PSET, PRESET, LINE, CIRCLE, PAINT,
and DRAW statements. It has meaning in medium
resolution only (set by SCREEN 1 statement). Using
COLOR in high resolution will result in an "Illegal
function call" error.

Any values entered outside the range 0 to 255 will
result in an "Illegal function call" error. Previous
values will be retained.

Example: 5 SCREEN 1
10 COLOR 9,0

Sets the background to light blue, and selects palette
o.

20 COLOR ,1

The background stays light blue, and palette 1 is
selected.

4-55

COM(n)
Statement

Purpose: Enables or disables trapping of communications
activity to the specified communications adapter.

Versions: Cassette Disk Advanced Compiler
(**) ***

Format: COM(n) ON

COM(n) OFF

COM(n) STOP

Remarks: n is the number of the communications adapter
(lor 2).

4-56

A COM(n) ON statement must be executed to allow
trapping by the ON COM(n) statement. After
COM(n) ON, if a non-zero line number is specified in
the ON COM(n) statement, BASIC checks to see if
any characters have come in to the communications
adapter every time a new statement is executed.

If COM(n) is OFF, no trapping takes place and any
communication activity is not remembered even if it
does take place.

If a COM(n) STOP statement has been executed, no
trapping can take place. However, any
communications activity that does take place is
remembered so that an immediate trap occurs when
COM(n) ON is executed.

COMMON
Statement

Purpose: Passes variables to a chained program.

Versions: Cassette Disk Advanced
*** ***

Format: COMMON variable [,variable] ...

Compiler
(**)

Remarks: variable is the name of a variable that is to be passed
to the chained-to program. Array variables
are specified by appending "()" to the
variable name.

The COMMON statement is used in conjunction
with the CHAIN statement. COMMON statements
may appear anywhere in a program, although it is
recommended that they appear at the beginning.
Any number of COMMON statements may appear in
a program, but the same variable cannot appear in
more than one COMMON statement. If all variables
are to be passed, use CHAIN with the ALL option
and omit the COMMON statement.

Any arrays that are passed do not need to be
dimensioned in the chained-to program.

Example: 100 COMMON A,BEE1 ,C,DO ,G$
110 CHAIN "A:PROG3 11

This example chains to program PROG3 on the
diskette in drive A:, and passes the array D along with
the variables A, BEEl, C, and G$.

4-57

CONT
Command

Purpose: Resumes program execution after a break.

Versions: Cassette Disk Advanced Compiler
*** *** ***

Format: CONT

Remarks: The CONT command may be used to resume
program execution after Ctrl-Break has been
pressed, a STOP or END statement has been
executed, or an error has occurred. Execution
continues at the point where the break happened. If
the break occurred after a prompt from an INPUT
statement, execution continues with the reprinting
of the prompt.

4-58

CONT is usually used in conjunction with STOP for
debugging. When execution is stopped, you can
examine or change the values of variables using
direct mode statements. You may then use CONT to
resume execution, or you may use a direct mode
GOTO, which resumes execution at a particular line
number.

CONT is invalid if the program has been edited
during the break.

CONT
Command

Example: In the following example, we create a long loop.

Ok
10 FOR A=1 TO 50
20 PRINT A;
30 NEXT A
RUN
1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29

(At this point we interrupt the loop by pressing
Ctrl-Break.)

•
•
•

Break in 20
Ok
CONT
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49
50

Ok

4-59

COS
Function

Purpose: Returns the trigonometric cosine function.

Versions: Cassette

Disk

Advanced Compiler
*** ***

Format: v = COS(x)

Remarks: x is the angle whose cosine is to be calculated. The
value of x must be in radians. To convert from
degrees to radians, multiply the degrees by
PI/180, where PI=3.141593.

The calculation of COS(x) is performed in single
precision.

Example: Ok

4-60

10 PI=3. 141593
20 PRINT cOS(PI)
30 DEGREES=180
40 RADIANS=DEGREES*PI/180
50 PRINT COS (RADIANS)
RUN
-1
-1
Ok

This example shows, first, that the cosine of PI
radians is equal to -1. Then it calculates the cosine of
180 degrees by first converting the degrees to
radians (180 degrees happens to be the same as PI
radians).

CSNG
Function

Purpose: Converts x to a single-precision number.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v = CSNG(x)

Remarks: x is a numeric expression which will be converted
to single-precision.

The rules outlined under "How BASIC Converts
Numbers from One Precision to Another" in
Chapter 3 are used for the conversion.

See the CINT and CDBL functions for converting
numbers to the integer and double-precision data
types.

Example: Ok
10 A# = 975.3421222#
20 PRINT A#; CSNG(A#)
RUN
975.3421222 975.3421

Ok

The value of the double-precision number A# is
rounded at the seventh digit and returned as
CSNG(A#).

4-61

CSRLIN
Variable

Purpose: Returns the vertical coordihate of the cursor.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v = CSRLIN

Remarks: The CSRLINvariable returns the current line (row)
position of the cursor on the active page. (The active
page is explained under "SCREEN Statement" in
this chapter.) The value returned will be in the range
1 to 25.

The pas function returns the column location of
the cursor. Refer to' "pas Function" in this chapter.

Refer to "LOCATE Statement" to see how to set the
cursor line.

Example: 10 Y = CSRLIN Irecord current line
20 X = POS(0) lrecord current column
29 Iprint HI MOM on 1 ine 24

4-62

30 LOCATE 24,1: PRINT IIHI MOW 1

40 LOCATE Y,X !restore position

This example saves the cursor coordinates in the
variables X and Y, then moves the cursor to line 24
to put the words "HI MOM" on that line. Then the
cursor is moved back to its old position.

CVI, CVS, CVD
Functions

Purpose: Converts string variable types to numeric variable
types.

Versions: Cassette Disk Advanced Compiler

Format: v = CVI(2-byte string)

v = CVS(4-byte string)

v = CVD(8-byte string)

*** ***

Remarks: Numeric values that are read from a random file
must be converted from strings into numbers. CVI '
converts a two-byte string to an integer. CVS
converts a four-byte string to a single-precision
number. CVD converts an eight-byte string to a
double-precision number.

The CVI, CVS, and CVD functions do not change the
bytes of the actual data. They only change the way
BASIC interprets those bytes.

See also "MKI$, MKS$, MKD$ Functions" in this
chapter, and "Appendix B. BASIC Diskette Input
and Output."

Example: 70 FIELD #1,4 AS N$, 12 AS B$
80 GET #1
90 Y=CVS (N$)

This example uses a random file (#1) which has fields
defined as in line 70. Line 80 reads a record from the
file. Line 90 uses the CVS function to interpret the
first four bytes (N$) of the record as a
single-precision number. N$ was probably originally
a number which was written to the file using the
MKS$ function.

4-63

DATA
Statement

Purpose: Stores the numeric and string constants that are
accessed by the program's READ statement(s).

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: DA TA constant[,constant] ...

Remarks: constant may be a numeric or string constant. No
expressions are allowed in the list. The
numeric constants may be in any format
integer, fixed point, floating point, hex, or
octal. String constants in DATA
statements do not need to be surrounded
by quotation marks, unless the string
contains commas, colons, or significant
leading or trailing blanks.

4-64

DATA statements are nonexecutable and may be
placed anywhere in the program. A DATA statement
may contain as many constants as will fit on a line,
and any number of DATA statements may be used in
a program. The information contained in the DATA
statements may be thought of as one continuous list
of items, regardless of how many items are on a line
or where the lines are placed in the program. The
READ statements access the DATA statements in
line number order.

DATA
Statement

The variable type (numeric or string) given in the
READ statement must agree with the corresponding
constant in the DATA statement or a "Syntax error"
occurs.

You can use the RESTORE statement to reread
information from any line in the list of DATA
statements. (See "RESTORE Statement" in this
chapter.)

Example: See examples under "READ Statement" in this
chapter.

4-65

DATE$
Variable and Statement

Purpose: Sets or retrieves the date.

Versions: Cassette Disk Advanced Compiler
*** *** ***

Format: As a variable:

v$ = DATE$

As a statement:

DATE$ = x$

Remarks: For the variable (v$ = DATE$):

4-66

A 10-character string of the form mm-dd-yyyy is
returned. Here, mm represents two digits for the
month, dd is the day of the month (also 2 digits), and
yyyy is the year. The date may have been set by DOS
prior to entering BASIC.

For the statement (DATE$ = x$):

x$ is a string expression which is used to set the
curreilt date. You may enter x$ in anyone of the
following forms:

mm-dd-yy
mm/dd/yy
mm-dd-yyyy
mm/dd/yyyy

The year must be in the range 1980 to 2099. If you
use only one digit for the month or day, a 0 (zero) is
assumed in front of it. If you give only one digit for
the year, a zero is appended to make it two digits. If
you give only two digits for the year, the year is
assumed to be 19yy.

DATE$
Variable and Statement

Example: Ok
10 DATE$= 118/29/8211
20 PRINT DATE$
RUN
08-29-1982
Ok

In the example we set the date to August 29th, 1982.
Notice how, when we read the date back using the
DA TE$ function, a zero was included in front of the
month to make it two digits, and the year became
1982. Also, the month, day, and year are separated
by hyphens even though we entered them as slashes.

4-67

DEFFN
Statement

Purpose: Defines and names a function that you write.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: DEF FNname[(arg [,arg] ...)] =expression

Remarks: name is a valid variable name. This name,
preceded by FN, becomes the name of the
function.

4-68

arg is an argument. It is a variable name in the
function definition that will be replaced
with a value when the function is called.
The arguments in the list represent, on a
one-to-one basis, the values that are given
when the function is called.

expression defines the returned value of the function.
The type of the expression (numeric or
string) must match the type declared by
name.

The definition of the function is limited to one
statement. Arguments (arg) that appear in the
function definition serve only to define the function;
they do not affect program variables that have the
same name. A variable name used in the expression
does not have to appear in the list of arguments. If it
does, the value of the argument is supplied when the
function is called. Otherwise, the current value of
the variable is used.

DEFFN
Statement

The function type determines whether the function
returns a numeric or string value. The type of the
function is declared by name, in the same way as
variables are declared (see "How to Declare Variable
Types" in Chapter 3). If the type of expression (string
or numeric) does not match the function type, a
"Type mismatch" error occurs. If the function is
numeric, the value of the expression is converted to
the precision specified by name before it is returned
to the calling statement.

A DEF FN statement must be executed to define a
function before you may call that function. If a
function is called before it has been defined, an
"Undefined user function" error occurs. On the
other hand, a function may be defined more than
once. The most recently executed definition is used.

Note: You may have a recursive function, that
is, one which calls itself. However, if you don't
provide a way to stop the recursion, an "Out of

" memory error occurs.

DEF FN is invalid in direct mode.

Example: Ok

~~ ~~;3~~~~~~~R)=PI*RA2
30 INPUT "Radius? ",RADIUS
40 P R I NT "Area is II FNAREA (RAD I US)
RUN
Radius?

(Suppose you respond with 2.)

Radius? 2
Area is 12.56637
Ok

4-69

DEFFN
Statement

4-70

Line 20 defines the function FNAREA, which
calculates the area of a circle with radius R. The
function is called in line 40.

Here is an example with two arguments:

Ok
10 DEF FNMUD(X,Y)=X-(INT(X/Y)*Y)
20 A = FNMUD(7.4,4)
30 PRINT A
RUN
3.4

Ok

DEFSEG
Statement

Purpose: Defines the current "segment" of storage. A
subsequent BLOAD, BSA VE, CALL, PEEK, POKE,
or USR definition will define the actual physical
address of its operation as an offset into this
segment.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: DEF SEG [=address]

Remarks: address is a numeric expression in the range 0 to
65535.

The initial setting for the segment when BASIC is
started is BASIC's Data Segment (DS). BASIC's Data
Segment is the beginning of your user workspace in
memory. If you execute a DEF SEG statement which
changes the segment, the value does not get reset to
BASIC's DS when you issue a RUN command.

If address is omitted from the DEF SEG statement,
the segment is set to BASIC's Data Segment.

Ifaddress is given, it should be a value based upon a 16
byte boundary. The value is shifted left 4 bits
(multiplied by 16) to form the segment address for
the subsequent operation. That is, if address is in
hexadecimal, a 0 (zero) is added to get the actual
segment address. BASIC does not perform any
checking to assure that the segment value is valid.

4-71

DEFSEG
Statement

DEF and SEG must be separated by a space.
Otherwise, BASIC will interpret the statement
DEFSEG=100 to mean: "assign the value 100 to the
variable DEFSEG."

Any value entered outside the range indicated will
result in an "Illegal function call" error. The
previous value will be retained.

Refer to "Appendix C. Machine Language
Subroutines" for more information on using
DEF SEG.

Example: 100 DEF SEG I restore segment to BASIC DS

4-72

200 I set segment to color screen buffer
210 DEF SEG=&HB800

In the second example, the screen buffer for the
Color/ Graphics Monitor adapter is at absolute
address B8000 hex. Since segments are specified on
16 byte boundaries, the last hex digit is dropped on
the DEF SEG specification.

DEFtype
Statements

Purpose: Declares variable types as integer, single-precision,
doubh::-precision, or string.

Versions: Cassette

Disk

Advanced

Compiler
(**)

Format: DEFtype letter [-letter] [,letter [-letter]] ...

Remarks: type is INT, SNG, DBL, or STR.

letter is a letter of the alphabet (A-Z).

A DEFtype statement declares that the variable
names beginning with the letter or letters specified
will be that type of variable. However, a type
declaration character (%, !, #, or $) always takes
precedence over a DEFtype statement in the typing
of a variable. Refer to "How to Declare Variable
Types" in Chapter 3.

If no type declaration statements are encountered,
BASIC assumes that all variables without declaration
characters are single-precision variables.

If type declaration statements are used, they should
be at the beginning of the program. The DEFtype
statement must be executed before you use any
variables which it declares.

4-73

DEFtype
Statements

Example: Ok

4-74

10 DEFDBL L-P
20 DEFSTR A
30 DEFINT X,D-H
40 ORDER = 1#/3: PRINT ORDER
50 ANIMAL = 'ICAT": PRINT ANIMAL
60 X=10/3: PRINT X
RUN

.3333333333333333
CAT
3

Ok

Line 10 declares that all variables beginning with the
letter L, M, N, 0, or P will be double-precision
variables.

Line 20 causes all variables beginning with the letter
A to be string variables.

Line 30 declares that all variables beginning with the
letter X, D, E, F, G, or H will be integer variables.

DEFUSR
Statement

Purpose: Specifies the starting address of a machine language
subroutine, which is later called by the USR
function.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: DEF USR[n]=offiet

Remarks: n

offiet

may be any digit from 0 to 9. It identifies
the number of the USR routine whose
address is being specified. If n is omitted,
DEF USRO is assumed.

is an integer expression in the range 0 to
65535. The value of offset is added to the
current segment value to obtain the actual
starting address of the USR routine. See
"DEF SEG Statement" in this chapter.

It is possible to redefine the address for a USR
routine. Any number of DEF USR statements may
appear in a program, thus allowing access to as many
subroutines as necessary. The most recently
executed value is used for the offset.

Refer to "Appendix C. Machine Language
Subroutines" for complete information.

Example: 200 DEF SEG = 0
210 DEF USR0=24000
500 X=USR0(Y+2)

This example calls a routine at absolute location
24000 in memory.

4-75

DELETE
Command

Purpose: Deletes program lines.

Versions: Cassette Disk Advanced Compiler
*** *** ***

Format: DELETE [linel] [-line2]

Remarks: linel is the line number of the first line to be
deleted.

line2 is the line number of the last line to be
deleted.

The DELETE command erases the specified range of
lines from the program. BASIC always returns to
command level after a DELETE is executed.

A period (.)may be used in place of the line number
to indicate the current line. If you specify a line
number which does not exist in the program, an
"Illegal function call" error occurs.

Example: This example deletes line 40:

4-76

DELETE 40

The next example deletes line 40 through 100,
inclusive:

DELETE 40-100

The last example deletes all lines up to and including
line 40:

DELETE -40

DIM
Statement

Purpose: Specifies the maximum values for array variable
subscripts and allocates storage accordingly.

Versions: Cassette

Disk

Advanced

Compiler
(**)

Format: DIM variable(subscripts) [,variable(subscripts)] ...

Remarks: variable is the name to be used for the array.

subscripts is a list of numeric expressions, separated
by commas, which define the dimensions
of the array.

When executed, the DIM statement sets all the
elements of the specified numeric arrays to an initial
value of zero. String array elements are all variable
length, with an initial null value (zero length).

If an array variable name is used without a DIM
statement, the maximum value of its subscript is
assumed to be 10. If a subscript is used that is greater
than the maximum specified, a "Subscript out of

" range error occurs.

The minimum value for a subscript is always 0,
unless otherwise specified with the OPTION BASE
statement (see "OPTION BASE Statement" in this
chapter). The maximum number of dimensions for
an array is 255. The maximum number of elements
per dimension is 32767. Both of these numbers are
also limited by the size of memory and by the length
of statements.

4-77

DIM
Statement

If you try to dimension an array more than once, a
"Duplicate Definition" error occurs. You may,
however, use the ERASE statement to erase an array
so you can dimension it again. For more information
about arrays, see "Arrays" in Chapter 3.

Example: Ok

4-78

10 WRRMAX=2
20 DIM 515(12), WRR$(WRRMAX,2)
30 DATA 26.5, 37, 8,29,80, 9.9, &H800
40 DATA 7, 18, 55, 12, 5,43
50 FOR 1=0 TO 12
60 READ 5 IS (I)
70 NEXT I
80 DATA SHERRY, ROBERT, IIA: II
90 DATA "H I, SCOTT", HELLO, GOOD-BYE
100 DATA BOCA RATON, DELRAY, MIAMI
110 FOR 1=0 TO 2: FOR J=0 TO 2
120 READ WRR$(I ,J)
130 NEXT J, I
140 PRINT 515(3); WRR$(2,0)
RUN

29 BOCA RATON
Ok

This example creates two arravs: a one-dimensional
numeric a;ray named SIS with 13 elements, SIS(O)
through SIS(12); and a two-dimensional string array
named WRR$, with three rows and three columns.

DRAW
Statem'ent

Purpose: Draws an object as specified by string.

Versions: Cassette Disk Advanced

Graphics mode only.

Format: DRA W string

Compiler
(**)

Remarks: You use the DRAW statement to draw using a
graphics definition language. The language commands
are contained in the string expression string. The
string defines an object, which is drawn when BASIC'
executes the DRAW statement. During execution,
BASIC examines the value of string and interprets
single letter commands from the contents of the
string. These commands are detailed below:

The following movement commands begin
movement from the last point referenced. After each
command, the last point referenced is the last point
the command draws.

Un Move up.

Dn Move down.

Ln Move left.

Rn Move right.

E n Move diagonally up and right.

Fn Move diagonally down and right.

Gn Move diagonally down and left.

Hn Move diagonally up and left.
4-79

DRAW
Statement

4-80

n in each of the preceding commands indicates the
distance to move. The number of points moved is n
times the scaling factor (set by the S command).

M x,y Move absolute or relative. If x has a plus
sign (+) or a minus sign (-) in front of it, it is
relative. Otherwise, it is absolute.

The aspect ratio of your screen determines the
spacing of the horizontal, vertical, and diagonal
points. For example, the standard aspect ratio of 4/3
indicates that the horizontal axis of the screen is 4/3
as long as the vertical axis. You can use this
information to determine how many vertical points
are equal in length to how many horizontal points.

For example, in medium resolution there are 320
horizontal points and 200 vertical points. That
means 8 horizontal points are equal in length to 5
vertical points if the screen aspect ratio is 1/1. If the
aspect ratio is different, you multiply the number of
vertical points by the aspect ratio. For example,
using the standard aspect ratio of 4/3, in medium
resolution 8 horizontal points are equal in length to
20/3 vertical points, or 24 horizontal equal 20
vertical. That is:

DRAW "u80 R96 D80 L96"

produces a square in medium resolution. Following
similar reasoning, again with the standard screen
aspect ratio of 4/3, in high resolution 48 horizontal
points are equal in length to 20 vertical points.

DRAW
Statement

The following two prefix commands may precede
any of the above movement commands.

B Move, but don't plot any points.

N Move, but return to the original position
when finished.

The following commands are also available:

A n Set angle n. n may range from 0 to 3, where
o isO degrees, 1 is90, 2 is 180, and 3 is270.
Figures rotated 90 or 270 degrees are
scaled so that they appear the same size as
with 0 or 180 degrees on a display screen
with standard aspect ratio 4/3.

C n Set color n. n may range from 0 to 3 in
medium resolution, and 0 to 1 in high
resolution. In medium resolution, n
selects the color from the current palette
as defined by the COLOR statement. 0 is
the background color. The default is the
foreground color, color number 3. In
high resolution, n equal to 0 (zero)
indicates black, and the default of1 (one)
indicates white.

S n Set scale factor. n may range from 1 to
255. n divided by 4 is the scale factor. For
example, if n=l, then the scale factor is
1/4. The scale factor multiplied by the
distances given with the U, D, L, R, E, F,
G, H, and relative M commands gives the
actual distance moved. The default value
is 4, so the scale factor is 1.

X variable; .Execute substring. This allows you to
execute a second string from within a
string.

4-81

DRAW
Statement

4-82

In all of these commands, the n, x, or y argument can
be a constant like 123 or it can be =variable; where
variable is the name of a numeric variable. The
semicolon (;) is required when you use a variable
this way, or in the X command. Otherwise, a
semicolon is optional between commands. Spaces
are ignored in string. For example, you could use
variables in a move command this way:

M+=Xl;,-=X2;

You can also specify variables in the form
V ARPTR$ (variable) , instead of =variable;. This is
useful in programs that will later be compiled. For
example:

One Method

DRAW "XA$; II
DRAW "S=SCALE;'J

Alternative Method

DRAW "X"+VARPTR$ (A$)
DRAW "S=J'+VARPTR$ (SCALE)

The X command can be a very useful part of DR A W,
because you can define a part of an object separate
~rom the entire object. For example, a leg could be
part of a man. You can also use X to draw a string of
commands more than 255 characters long.

When coordinates which are out of range are given
to DRAW, the coordinate which is out of range is
given the closest valid value. In other words, the
negative values become zero and Y values greater
than 199 become 199. X values greater than 639
become 639. X values greater than 319 in medium
resolution wrap to the next horizontal line.

DRAW
Statement

Example: To draw a box:

5 SCREEN 1
10 A=20
20 DRAW "U=A; R=A; D=A; L=A; II

To draw a triangle:

10 SCREEN 1
20 DRAW IIE15 F15 L30 11

To create a "shooting star:"

10 SCREEN 1,O: COLOR O,O: CLS
20 DRAW I'BM30!3,25 '1 J initial point
30 STAR$="M+7, 17 M-17,-12 M+20,0 M-17, 12 M+7,-17"
40 FOR SCALE=l TO 40 STEP 2
513 DRAW "C1;S=SCALE; BM-2,!3;XSTAR$;"
60 NEXT

4-83

EDIT
Command

Purpose: Displays a line for editing.

Versions: Cassette Disk Advanced Compiler
*** *** ***

Format: EDIT line

Remarks: line is the line number of a line existing in the
program. If there is no such line, an
"Undefined line number" error occurs. A
period (.) can be used for the line number
to refer to the current line.

4-84

The EDIT statement simply displays the line
specified and positions the cursor under the first
digit of the line number. The line may then be
modified as described under "The BASIC Program
Editor" in Chapter 2.

A period (.) can be used for the line number to refer
to the current line. For example, if you have just
entered a line and wish to go back and change it, the
command EDIT. will redisplay the line for editing.

LIST may also be used to display program lines for
changing. Refer to "LIST Command" in this
chapter.

END
Statement

Purpose: Terminates program execution, closes all files, and
returns to command level.

Versions: Cassette

Disk

Advanced

Compiler
(**)

Format: END

Remarks: END statements may be placed anywhere in the
program to terminate execution. END is different
from STOP in two ways:

• END does not cause a "Break" message to be
printed.

• END closes all files.

An END statement at the end of a program is
optional. BASIC always returns to command level
after an END is executed.

Example: 520 IF K>1000 THEN END ELSE GOTO 20

This example ends the program if K is greater than
1000; otherwise, the program branches to line
number 20.

4-85

EOF
Function

Purpose: Indicates an end of file condition.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v = EOF{filenum)

Remarks: /ilenum is the number specified on the OPEN
statement.

The EOF function is useful for avoiding an "Input
past end" error. EOF returns -1 (true) if end of file
has been reached on the specified file. A 0 (zero) is
returned if end of file has not been reached.

EOF is meaningful only for a file opened for
sequential input from diskette or cassette, or for a
communications file. A-I for a communications file
means that the buffer is empty.

Example: 10 OPEN IIOATA'I FOR INPUT AS #1
20 C=0

4-86

... '" I r- r-r"lr-/1 \ Tllr-~I r-~I~
j\U It"" C.Ut""\I) Inc.r~ c.r~u

40 INPUT #1,M(C)
50 C=C+1: GOTO 30

This example reads information from the sequential
file named "DATA". Values are read into the array M
until end of file is reached.

ERASE
Statement

Purpose: Elimina tes arrays from a program.

Versions: Cassette Disk Advanced Compiler
*** *** ***

Format: ERASE arrayname [,arrayname] ...

Remarks: arrayname is the name of an array you want to
erase.

You might want to use the ERASE statement if you
are running short of storage space while running
your program. After arrays are erased, the space in
memory which had been allocated for the arrays may
be used for other purposes.

ERASE can also be used when you want to
redimension arrays in your program. If you try to
redimension an array without first erasing it, a
"Duplicate Definition" error occurs.

The CLEAR command is used to erase all variables
from the work area.

4-87

ERASE
Statement

Example:

4-88

Ok
10 START=FRE (1111)
20 DIM BIG(100, 100)
30 MI DDLE=FRE(IIII)
40 ERASE BIG
50 DIM BIG(10,10)
60 F I NAL=FRE (1111)
70 PRINT START, MIDDLE, FINAL
RUN
62808 21980

Ok
62289

This example uses the FRE function to illustrate
how ERASE can be used to free memory. The array
BIG used up about 40K-bytes of memory
(62808-21980) when it was dimensioned as
BIG(100,100). After it was erased, it could be
redimensioned to BIG(10,10), and it only took up a
little more than 500 bytes (62808-62289).

The actual values returned by the FRE function may
be different on your computer.

ERR and ERL
Variables

Purpose: Return the error code and line number associated
with an error.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v = ERR

v= ERL

Remarks: The variable ERR contains the error code for the last
error, and the variable ERL contains the line number
of the line in which the error was detected. The ERR
and ERL variables are usually used in IF ... THEN
statements to direct program flow in the error
handling routine (refer to "ON ERROR Statement"
in this chapter).

If you do test ERL in an IF ... THEN statement, be
sure to put the line number on the right side of the
relational operator, like this:

IF ERL = line number THEN ...

The number must be on the right side of the
operator for it to be renumbered by RENUM.

If the statement that caused the error was a direct
mode statement, ERL will contain 655 35. Since you
do not want this number to be changed during a
RENUM, if you want to test whether an error
occurred in a direct mode statement you should use
the form:

IF 65535 = ERL THEN ...

4-89

ERR and ERL
Variables

ERR and ERL can be set using the ERROR
statement (see next section).

BASIC error codes are listed in "Appendix A.
Messages. "

Example: 10 ON ERROR GOTO 100

4-90

20 LPRINT "This goes to the printer "
30 END
100 IF ERR=27 THEN LOCATE 23,1:

PR I NT "Check pr i nter ll
: RESUME

This example tests for a common problem:
forgetting to put paper in the printer, or forgetting
to switch it on.

ERROR
Statement

Purpose: • Simulates the occurrence of a BASIC error; or

• Allows you to define your own error codes.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: ERROR n

Remarks: n must be an integer expression between 0 and
255.

If the value of n is the same as an error code used by
BASIC (see "Appendix A. Messages"), the ERROR
statement simulates the occurrence of that error. If
an error handling routine has been defined by the
ON ERROR statement, the error routine is entered.
Otherwise the error message corresponding to the
code is displayed, and execution halts. (See first
example below.)

To define your own error code, use a value that is
different from any used by BASIC. (We suggest you
use the highest available values; for example, values
greater than 200.) This new error code may then be
tested in an error handling routine, just like any
other error. (See second example below.)

If you define your own code in this way, and you
don't handle it in an error handling routine, BASIC
displays the message "Unprintable error," and
execution halts.

4-91

ERROR
Statement

Example: The first example simulates a "String too long"
error.

4-92

Ok
10 T = 15
20 ERROR T
RUN
String too long in 1 ine 20
Ok

The next example is a part of a game program that
allows you to make bets. By using an error code of
210, which BASIC doesn't use, the program traps the
error if you exceed the house limit.

110 ON ERROR GOTO 400
120 INPUT "WHAT IS YOUR BETII;B
130 IF B > 5000 THEN ERROR 210
•
•
•

400 IF ERR == 210 THEN PRINT 'IHOUSE LIMIT IS $5000"
410 IF ERL == 130 THEN RESUME 120

EXP
Function

Purpose: Calculates the exponential function.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v = EXP(x)

Remarks: x may be any numeric expression.

This function returns the mathematical number e
raised to the x power. e is the base for natural
logarithms. An overflow occurs if x is greater than
88.02969.

Example: Ok
10 X = 2
20 PRINT EXP(X-1)
RUN
2.718282

Ok

This example calculates e raised to the (2-1) power,
which is simply e.

4-93

FIELD
Statement

Purpose: Allocates space for variables in a nindom file buffer.

Versions: Cassette Disk Advanced Compiler
*** *** ***

Format: FIELD [#]filenum, width AS stringvar [,width
AS stringvar] ...

Remarks: /ilenum is the number under which the file was
opened.

4-94

width is a numeric expression specifying the
number of character positions to be
allocated to stringvar.

stringvar is a string variable which will be used for
random file access.

A FIELD statement defines variables that are used to
get data out of a random buffer after a GET or to
enter data into the buffer for a PUT.

The statement:

FIELD 1,20 AS N$, 10 AS 10$,40 AS ADD$

allocates the first 20 positions (bytes) in the random
file buffer to the string variable N$, the next 10
positions to ID$, and the next 40 positions to
ADD$. FIELD does not actually place any data into
the random file buffer. This is done by the LSET and
RSET statements (see "LSET and RSET
Statements" in this chapter).

FIELD
Statement

FIELD does not "remove" data from the file either.
Information is read from the file into the random file
buffer with the GET (file) statement. Information is
read from the buffer by simply referring to the
variables defined in the FIELD statement.

The total number of bytes allocated in a FIELD
statement must not exceed the record length that
was specified when the file was opened. Otherwise, a
"Field overflow" error occurs.

Any number of FIELD statements may be executed
for the same file number, and all FIELD statements
that have been executed are in effect at the same
time. Each new FIELD statement redefines the
buffer from the first character position, so this has
the effect of having multiple field definitions for the
same data.

Note: Be careful about using a fielded variable name
in an input or assignment statement. Once a variable
name is defined in a FIELD statement, it points
to the correct place in the random file buffer. If
a subsequent input statement or LET statement
with that variable name on the left side of the
equal sign is executed, the variable is moved to
string space and is no longer in the file buffer.

See" Appendix B. BASIC Diskette Input and
Output" for a complete explanation of how to use
random files.

4-95

FIELD
Statement

Example:

4-96

10 OPEN "A:CUST" AS #1
20 FIELD 1, 2 AS CUSTNO$, 30 AS CUSTNAME$,

35 AS ADDR$
30 LSET CUSTNAME$+"O'NEIL J NC'1
40 LSET ADDR$+"50 SE 12TH ST, NY, NY l

'

50 LSET CUSTNO$=MKI$(7850)
60 PUT 1,1
70 GET 1,1
80 CNUM%= CVI (CUSTNO$): N$ = CUSTNAME$
90 PRINT CNUM%, N$, ADDR$

This example opens a file named "CUST" as a
random file. The variable CUSTNO$ is assigned to
the first 2 positions in each record, CUSTNAME$ is
assigned to the next 30 positions, and ADDR$ is
assigned to the next 35 positions. Lines 30 through
50 put information into the buffer, and the PUT
statement in line 60 writes the buffer to the file. Line
70 reads back that same record, and line 90 displays
the three fields. Note in line 80 that it is okay to use a
variable name which was defined in a FIELD
statement on the right side of an assignment
statement.

FILES
Command

Purpose: Displays the names of files residing on a diskette.
The FILES command in BASIC is similar to the
DIR command in DOS.

Versions: Cassette Disk Advanced Compiler
*** *** ***

Format: FILES [filespec]

Remarks: jllespec is a string expression for the file
specification as explained under "Naming
Files" in Chapter 3. Iffilespec is omitted,
all the files on the DOS default drive will
be listed.

All files matching the filename are displayed. The
filename may contain question marks (?). A question
mark matches any character in the name or
extension. An asterisk (*) as the first character of the
name or extension will match any name or any
extension.

If a drive is specified as part offilespec, then files
which match the specified filename on the diskette
in that drive are listed. Otherwise, the DOS default
drive is used.

4-97

FILES
Command

Example: FILES

4-98

This displays all files on the DOS default diskette
drive.

FILES II.;';:. BASil

This displays all files with an extension of . BAS on
the DOS default diskette drive.

F I L E S I I B : ,', . ,', I I

This displays all files on drive B:.

FILES IITEST??BAS"

This lists all files on the DOS default drive which
have a filename beginning with TEST followed by
two or less other characters, and an extension of
.BAS.

FIX
Function

Purpose: Truncates x to an integer.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v = FIX(x)

Remarks: x may be ~ny numeric expression.

FIX strips all digits to the right of the decimal point
and returns the value of the digits to the left of the
decimal point.

The difference between FIX and INT is that FIX
does not return the next lower number when x is
negative.

See the INT and CINT functions, which also return
integers.

Example: Ok
PRINT FIX(45.67)
45

Ok
PRINT FIX(-2.89)
-2
Ok

Note in the examples how FIX does not round the
decimal part when it converts to an integer.

4-99

FOR and NEXT
Statements

Purpose: Performs a series of instructions in a loop a given
number of times.

Versions: Cassette

Disk

Advanced

Compiler
(**)

Format: FOR variable=x TO y [STEP z]

NEXT [variable][,variable] ...

Remarks: variable is an integer or single-precision variable to
be used as a counter.

4-100

x is a numeric expression which is the initial
value of the counter.

Y is a numeric expression which is the final
value of the counter.

z is a numeric expression to be used as an
increment.

The program lines following the FOR statement are
executed until the NEXT statement is encountered.
Then the counter is incremented by the amount
specified by the STEP value (z). If you do not specify
a value for z, the increment is assumed to be 1 (one).
A check is performed to see if the value of the
counter is now greater than the final value y. If it is
not greater, BASIC branches back to the statement
after the FOR statement and the process is repeated.
If it is greater, execution continues with the
statement following the NEXT statement. This is a
FOR ... NEXT loop.

FOR and NEXT
Statements

If the value of z is negative, the test is reversed. The
counter is decremented each time through the loop,
and the loop is executed until the counter is less than
the final value.

The body of the loop is skipped if x is already greater
thany when the STEP value is positive, or if x is less
than y when the STEP value is negative. If z is zero,
an infinite loop will be created unless you provide
some way to set the counter greater than the final
value.

Program performance will be improved if you use
integer counters whenever possible.

Nested Loops

FOR ... NEXT loops may be nested; that is, one
FOR ... NEXT loop may be placed inside another
FO R ... NEXT loop. When loops are nested, each
loop must have a unique variable name as its
counter. The NEXT statement for the inside loop
must appear before that for the outside loop. If
nested loops have the same end point, a single NEXT
statement may be used for all of them.

A NEXT statement of the form:

NEXT var1, var2, var3 ...

is equivalent to the sequence of statements:

NEXT var1
NEXTvar2
NEXT var3

4-101

FOR and NEXT
Statements

The variable(s) in the NEXT statement may be
omitted, in which case the NEXT statement matches
the most recent FOR statement. If you are using
nested FOR ... NEXT loops, you should include the
variable(s) on all the NEXT statements. It is a good
idea to include the variables in order to avoid
confusion; but it can be necessary if you do any
branching out of nested loops. (However, using
variable names on the NEXT statements will cause
your program to execute somewhat slower.)

If a NEXT statement is encountered before its
corresponding FOR statement, a "NEXT without
FOR" error occurs.

Example: The first example shows a FOR ... NEXT loop with a
STEP value of 2.

4-102

Ok
10 J=10: K=30
20 FOR 1=1 TO J STEP 2
30 PRINT I;
40 K=K+10
50 PRINT K
60 NEXT
RUN
1 40
3 50
5 60
7 70
9 80

Ok

FOR and NEXT
Statements

In the next example, the loop does not execute
because the initial value of the loop is more than the
final value:

Ok
10 J=0
20 FOR 1+1 TO J
30 PRINT I
40 NEXT I
RUN
Ok

In the last example, the loop executes ten times. The
final value for the loop variable is always set before
the initial value is set. (This is different from some
other versions of BASIC, which set the initial value
of the counter before setting the final value. In
another BASIC the loop in this example might
execute six times.)

Ok
10 1=5
20 FOR I =1 TO 1+5
30 PRINT I' ,
40 NEXT
RUN

1 2 3 4 5 6 7 8 9 10
Ok

4-103

FRE
Function

Purpose: Returns the number of bytes in memory that are not
being used by BASIC. This number does not include
the size of the reserved portion of the interpreter
workarea (normally 2.5K to 4K-bytes).

Versions: Cassette

Disk

Advanced

Compiler
(**)

Format: v = FRE(x)

v = FRE(x$)

Remarks: x and x$ are dummy arguments.

4-104

Since strings in BASIC can have variable lengths
(each time you do an assignment to a string its length
may change), strings are manipulated dynamically.
For this reason, string space may become
fragmented.

FRE with any string value causes a housecleaning
before returning the number of free bytes.
Housecleaning is when BASIC collects all of its useful
data and frees up unused areas of memory that were
once used for strings. The data is compressed so you
can continue until you really run out of space.

BASIC automatically does a housecleaning when it is
running out of usable workarea. You might want to
use FRE("") periodically to get shorter delays for
each housecleaning. Be patient: housecleaning may
take a while.

FRE
Function

CLEAR ,n sets the maximum number of bytes for
the BASIC workspace. FRE returns the amount of
free storage in the BASIC workspace. If nothing is in
the workspace, then the value returned by FRE will
be 2.5K to 4K-bytes (the size of the reserved
interpreter workarea) smaller than the number of
bytes set by CLEAR.

Example: Ok
PRINT FRE(0)

14542
Ok

The actual value returned by FRE on your computer
may differ from this example.

4-105

GET
Statement (Files)

Purpose: Reads a record from a random file into a random
buffer.

Versions: Cassette Disk Advanced Compiler
*** *** ***

Format: GET [#]filenum [, number]

Remarks: filenum is the number under which the file was
opened.

4-106

number is the number of the record to be read, in
the range 1 to 32767. If number is omitted,
the next record (after the last GET) is read
into the buffer.

After a GET statement, INPUT #, LINE INPUT #,
or references to variables defined in the FIELD
sta temen t may be used to read characters from the
random file buffer. Refer to "Appendix B. BASIC
Diskette Input and Output" for more complete
information on using GET.

Because BASIC and DOS block as many records as
possible in 512 byte sectors, the GET statement does
not necessarily perform a physical read from the
diskette.

GET may also be used for communications files. In
this case number is the number of bytes to read from
the communications buffer. This number cannot
exceed the value set by the LEN option on the
OPEN "COM ... statement.

GET
Statement (Files)

Example: 10 OPEN IIA: CUST II AS # 1
20 FIELD 1, 30 AS CUSTNAM£$, 30 AS ADDR$,

35 AS CITY$
30 GET 1
40 PRINT CUSTNAME$, ADDR$, CITY$

This example opens the file "CUST" for random
access, with fields defined in line 20. The GET
statement on line 30 reads a record into the file
buffer. Line 40 displays the information from the
record that was read.

4-107

GET
Statement (Graphics)

Purpose: Reads points from an area of the screen.

Versions: Cassette Disk Advanced Compiler
*** ***

Graphics mode only.

Format: GET (xl,yl)-(x2,y2),arrayname

Remarks: (xl,yl), (x2,y2)

4-108

are coordinates in either absolute or
relative form. Refer to "Specifying :J
Coordinates" under "Graphics Modes" in
Chapter 3 for information on coordinates.

arrayname is the name of the array you want to hold
the information.

GET reads the colors of the points within the
specified rectangle into the array. The specified
rectangle has points (xl,yl) and (x2,y2) as opposite
corners. (This is the same as the rectangle drawn by
the LINE statement using the B option.)

GET and PUT can be used for high speed object
motion in graphics mode. You might think of GET
and PUT as "bit pump" operations which move bits
onto (PUT) and off of (GET) the screen. Remember
that PUT and GET are also used for random access
files, but the syntax of these statements is different.

GET
Statement (Graphics)

The array is used simply as a place to hold the image
and must be numeric; it may be any precision,
however. The required size of the array, in bytes, is:

4+INT«x*bitsperptxel+ 7)/S)*y

where x and yare the lengths of the horizontal and
vertical sides of the rectangle, respectively. The
value of bitsperptxel is 2 in medium resolution, and 1
in high resolution.

For example, suppose we want to use the GET
statement to get a 10 by 12 image in medium
resolution. The number of bytes required is
4+INT((10*2+7)/S)*12, or 40 bytes. The bytes per
element of an array are:

• 2 for integer
• 4 for single-precision
• S for double-precision

Therefore, we could use an integer array with at least
20 elements.

The information from the screen is stored in the
array as follows:

1. two bytes giving the x dimension in bits
2. two bytes giving the y dimension in bits
3. the data itself

It is possible to examine the x and y dimensions and
even the data itself if an integer array is used. The x
dimension is in element 0 of the array, and the y
dimension is in ele1;Ilent 1. Keep in mind, however,
that integers are stored low byte first, then high byte;
but the data is actually transferred high byte first,
then low byte.

4-109

GET
Statement (Graphics)

4-110

The data for each row of points in the rectangle is left
justified on a byte boundary, so if there are less than a
multiple of eight bits stored, the rest of the byte will
be filled with zeros.

PUT and GET work significantly faster in medium
resolution when xl MOD 4 is equal to zero, and in
high resolution when xl MOD 8 is equal to zero. This
is a special case where the rectangle boundaries fall
on the byte boundaries.

GOSUB and RETURN
Statements

Purpose: Branches to and returns from a subroutine.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: GOSUB line

RETURN

Remarks: line is the line number of the first line of the
subroutine.

A subroutine may be called any number of times in a
program, and a subroutine may be called from within
another subroutine. Such nesting of subroutines is
limited only by available memory.

The RETURN statement causes BASIC to branch
back to the statement following the most recent
GOSUB statement. A subroutine may contain more
than one RETURN statement, if you want to return
from different points in the subroutine. Subroutines
may appear anywhere in the program.

To prevent your program from accidentally entering
a subroutine, you may want to put a STOP, END, or
GOTO statement in front of the subroutine to direct
program control around it.

Use ON ... GOSUB to branch to different
subroutines based on the result of an expression.

4-111

GOSUB and RETURN
Statements

Example:

4-112

Ok
10 GOSUB 40
20 PRINT "BACK FROM SUBROUTINE"
30 END
40 PRINT "SUBROUTINE";
50 PRINT II INII;
60 PRINT II PROGRESS"
70 RETURN
RUN
SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE
Ok

This example shows how a subroutine works. The
GOSUB in line 10 calls the subroutine in line 40. So
the program branches to line 40 and starts executing
statements there until it sees the RETURN
statement in line 70. At that point the program goes
back to the statement after the subroutine call; that
is, it returns to line 20. The END statement in line 30
prevents the subroutine from being performed a
second time.

GOTO
Statement

Purpose: Branches unconditionally out of the normal
program sequence to a specified line number.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: GOTO line

Remarks: line is the line number of a line in the program.

If line is the line number of an executable statement,
that statement and those following are executed. If
line refers to a non-executable statement (such as
REM or DATA), the prograrn continues at the first
executable statement encountered after line.

The GOTO statement can be used in direct mode to
re-enter a program at a desired point. This can be
useful in debugging.

Use ON ... GOTO to branch to different lines based
on the result of an expression.

4-113

GO TO
Statement

Example: Ok

4-114

5 DATA 5,7,12
10 READ R
20 PRINT IIR =II;R,
30 A = 3. 1 4,', R ~ 2
40 PRINT IIAREA =II;A
50 GOTO 5
RUN
R = 5 AREA = 78.5
R = 7 AREA = 153.86
R = 12 AREA = 452.16
Out of data in 10
Ok

The GOTO statement in line 50 puts the program
into an infinite loop, which is stopped when the
program runs out of data in the DATA statement.
(Notice how branching to the DATA statement did
not add additional values to the internal data table.)

HEX$
Function

Purpose: Returns a string which represents the hexadecimal
value of the decimal argument.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v$ = HEX$(n)

Remarks: n is a numeric expression in the range -32768 to
65535.

If n is negative, the two's complement form is used.
That is, HEX$(-n) is the same as HEX$(65536-n).

See the OCT$ function for octal conversion.

Example: The following example uses the HEX$ function to
figure the hexadecimal representation for the two
decimal values which are entered.

Ok
10 INPUT X
20 A$ = HEX$ (X)
30 PRINT X "DECIMAL IS II A$ II HEXADECIMAL"
RUN
? 32

32 DECIMAL IS 20 HEXADECIMAL
Ok
RUN
? 1023

1023 DECIMAL IS 3FF HEXADECIMAL
Ok

4-115

IF
Statement

Purpose: Makes a decision regarding program flow based on
the result of an expression.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: IF expression [,]THEN clause [ELSE clause]

IF expression [,] GOTO line [[,] ELSE clause]

Remarks: expression may be any numeric expression.

-4-116

clause

line

may be a BASIC statement or a sequence of
statements (separated by colons); or it may
be simply the number of a line to branch to.

is the line number of a line existing in the
program.

If the expression is true (not zero), the THEN or
GOTO clause is executed. THEN may be followed
by either a line number for branching or one or more
statements to be executed. GOTO is always
followed by a line number.

If the result of expression is false (zero), the THEN or
GOTO clause is ignored and the ELSE clause, if
present, is executed. Execution continues with the
next executable statement.

If you enter an IF ... THEN statement in direct mode,
and it directs control to a line number, then an
"Undefined line number" error results unless you

IF
Statement

previously entered a line with the specified line
number.

Note: When using IF to test equality for a
value that is the result of a single- or
double-precision computation, remember that
the internal representation of the value may not
be exact. (This is because single- and
double-precision values are stored internally in
floating point binary format.) Therefore, the
test should be against the range over which the
accuracy of the value may vary. For example, to
test a computed variable A against the value 1.0,
use:

IF ABS (A-1 .0) <1 .oE-6 THEN ...

This test returns a true result if the value of A is
1.0 with a relative error of less than 1.0E-6.

Also note that IF ... THEN ... ELSE is just one
statement. That is, the ELSE clause cannot be a
separate program line. For example:

10 IF A=B THEN x=4
20 ELSE P=Q

is invalid. Instead, it should be:

10 IF A=B THEN x=4 ELSE P=Q

4-117

IF
Statement

Nesting of IF Statements: IF ... THEN ... ELSE
statements may be nested. Nesting is limited only by
the length of the line. For example,

IF X>Y THEN PRINT "GREATER" ELSE IF Y>X
THEN PRINT "LESS THAN" ELSE PRINT "EQUAL"

is a valid statement. If the statement does not
contain the same number of ELSE and THEN
clauses, each ELSE is matched with the closest
unmatched THEN. For example,

IF A=B THEN IF B=C THEN PRINT "A=C"
ELSE PRINT "A<>C"

will not print "A<>C" when A<> B.

Example: This statement gets record I if I is not zero:

4-118

200 IF I THEN GET #1, I

In the next example, if I is between 10 and 20, DB is
calculated and execution branches to line 300. If I is
not in this range, the message "OUT OF RANGE" is
printed. Note the use of two statements in the
THEN clause.

100 IF (1)10) AND (1<20) THEN
DB=1982-1: GOTO 300

ELSE PRINT "OUT OF RANGE"

This next statement causes printed output to go to
either the screen or the printer, depending on the
value of a variable (IOFLAG). If IOFLAG is false
(zero), output goes to the printer; otherwise, output
goes to the screen:

210 IF IOFLAG THEN PRINT A$ ELSE LPRINT A$

INKEY$
Variable

Purpose: Reads a character from the keyboard.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v$ = INKEY$

Remarks: INKEY$ only reads a single character, even if there
are several characters waiting in the keyboard buffer.
The returned value is a zero-, one-, or two-character
string.

• A null string (length zero) indicates that no
character is pending at the keyboard.

• A one-character string contains the actual
character read from the keyboard.

• A two-character string indicates a special
extended code. The first character will be hex
00. For a complete list of these codes, see
"Appendix G. ASCII Character Codes."

You must assign the result of INKEY$ to a string
variable before using the character with any BASIC
sta temen t or function.

While INKEY$ is being used, no characters are
displayed on the screen and all characters are passed
through to the program except for:

• Ctrl-Break, which stops the program
• Ctrl-Num Lock, which sends the system into a

pause state
• Alt-Ctrl-Del, which does a System Reset
• PrtSc, which prints the screen

4-119

INKEY$
Variable

If you press Enter in response to ~NKEY$, the
carriage return character passes through to the
program.

Note: To avoid complications on the input
buffer in Cassette BASIC, you should execute:

DEF SEG: POKE 106,0

after INKEY$ has received the last character
you want from a soft key string. This POKE is
not required in Disk or Advanced BASIC.

Example: The following section of a program stops the
program until any key on the keyboard is pressed:

4-120

110 PRINT "Press any key to continue ll
120 A$=INKEY$: IF A$=llil THEN 120

The next example shows program lines that could be
used to test a two-character code being returned:

210 KB$= I NKEY$
220 IF LEN(KB$)=2 THEN KB$=RIGHT$(KB$,1)

INP
Function

Purpose: Returns the byte read from port n.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v = INP(n)

Remarks: n must be in the range 0 to 65535.

INP is the complementary function to the OUT
statement (see "OUT Statement" in this chapter).

INP performs the same function as the IN
instruction in assembly language. Refer to the IBM
Personal Computer Technical Reference manual for a
description of valid port numbers (I/O addresses).

Example: 100 A= I NP (255)

This instruction reads a byte from port 255 and
assigns it to the variable A.

4-121

INPUT
Statement

Purpose: Receives input from the keyboard during program
execution.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: INPUT[;] [''lJrompt'';] variable [,variable] ...

Remarks: ''lJrompt'' is a string constant which will be used to
prompt for the desired input.

4-122

variable is the name of the numeric or string
variable or array element which will receive
the input.

When the program sees an INPUT statement, it
pauses and displays a question mark on the screen to
indicate that it is waiting for data. If a ''lJrompt'' is
included, the string is displayed before the question
mark. You may then enter the required data from
the keyboard.

You may use a comma instead of a semicolon after
the prompt string to suppress the queestion mark.
For example, the statement INPUT "ENTER
BIRTHDATE" ,B$ prints the prompt without the
question mark.

The data that you enter is assigned to the variable(s)
given in the variable list. The data items you supply
must be separated by commas, and the number of
data items must be the same as the number of
variables in the list.

The type of each data item that you enter must agree
with the type specified by the variable name. (Strings
entered in response to an INPUT statement need
not be surrounded by quotation marks unless they

INPUT
Statement

contain commas or significant leading or trailing
blanks.)

If you respond to INPUT with too many or too few
items, or with the wrong type of value (letters
instead of numbers, etc.), BASIC displays the
message "? Redo from start". If a single variable is
requested, you may simply press Enter to indicate
the default values of 0 for numeric input or null for
string input. However, if more than one variable is
requested, pressing Enter will cause the "?Redo
from start" message to be printed because too few
items were entered. BASIC does not assign any of the
input values to variables until you give an acceptable
response.

In Disk and Advanced BASIC, if INPUT is
immediately followed by a semicolon, then pressing
Enter to input data does not produce a carriage
return/line feed sequence on the screen. This means
that the cursor remains on the same line as your
response.

Example: Ok
10 INPUT X
20 PRINT X "SQUARED IS" X"'2
30 END
RUN
?

In this example, the question mark displayed by the
computer is a prompt to tell you it wants you to enter
something. Suppose you enter a 5. The program
continues:

? 5
5 SQUARED IS 25

Ok
4-123

INPUT
Statement

4-124

Ok
10PI=3.14
20 INPUT "WHAT IS THE RADIUS";R
30 A=P I ,"R'" 2
40 PRINT liTHE AREA OF THE CIRCLE ISII;A
50 END
RUN
WHAT IS THE RADIUS?

For this second example, a prompt was included in
line 20, so this time the computer prompts with
"WHAT IS THE RADIUS? " Suppose you respond
with 7.4. The program continues:

WHAT IS THE RADIUS? 7.4
THE AREA OF THE CIRCLE IS 171.9464
Ok

INPUT #
Statement

Purpose: Reads data items from a sequential device or file and
assigns them to program variables.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: INPUT #/ilenum, variable [,vartable] ...

Remarks: /ilenum is the number used when the file was
opened for input.

vartable is the name of a variable that will have an
item in the file assigned to it. It may be a ..
string or numeric variable, or an array
element.

The sequential file may reside on diskette or on
cassette; it may be a sequential data stream from a
communications adapter; or it may be the keyboard
(KYBD:).

The type of data in the file must match the type
specified by the variable name. Unlike INPUT, no
question mark is displayed with INPUT #.

The data items in the file should appear just as they
would if the data were being typed in response to an
INPUT statement. With numeric values, leading
spaces, carriage returns, and line feeds are ignored.
The first character encountered that is not a space,
carriage return, or line feed is assumed to be the start
of the number. The number ends with a space,
carriage return, line feed, or comma.

4-125

INPUT #
Statement

If BASIC is scanning the data for a string item,
leading spaces, carriage returns, and line feeds are
also ignored. The first character encountered that is
not a space, carriage return, or line feed is assumed
to be the start of the string item. If this first character
is a quotation mark ("), the string item will consist of
all characters read between the first quotation mark
and the second. Thus, a quoted string may not
contain a quotation mark as a character. If the first
character of the string is not a quotation mark, the
string is an unquoted string; it will end when a
comma, carriage return, or line feed, or after 255
characters have been read. If end of file is reached
when a numeric or string item is being input, the
item is cancelled.

INPUT # can also be used with a random file.

Example: See "Appendix B. BASIC Diskette Input and
Output."

4-126

INPUT$
Function

Purpose: Returns a string of n characters, read from the
keyboard or from file number/ilenum.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v$ = INPUT$(n[,[#]fi"lenumD

Remarks: n is the number of characters to be read from
the file.

/ilenum is the file number used on the OPEN
statement. If/ilenum is omitted, the
keyboard is read.

If the keyboard is used for input, no characters will
be displayed on the screen. All characters (including
control characters) are passed through except
Ctrl-Break, which is used to interrupt the execution
of the INPUT$ function. When responding to
INPUT$ from the keyboard, it is not necessary to
press Enter.

The INPUT$ function enables you to read
characters from the keyboard which are significant
to the BASIC program editor, such as Backspace
(ASCII code 8). If you want to read these special
characters, you should use INPUT$ or INKEY$ (not
INPUT or LINE INPUT).

For communications files, the INPUT$ function is
preferred over the INPUT # and LINE INPUT #
statements, since all ASCII characters may be
significant in communications. Refer to "Appendix
F. Communications."

4-127

INPUT$
Function

Example: The following program lists the contents of a
sequential file in hexadecimal.

4-128

10 OPEN "DATA" FOR INPUT AS #1
20 IF EOF(1) THEN 50
30 PRINT HEX$(ASC(INPUT$(1,#1)));
40 GOTO 20
50 PRINT
60 END

The next example reads a single character from the
keyboard in response to a question.

100 PRINT "TYPE P TO PROCEED OR S TO STOP"
110 X$= I NPUT$ (1)
120 IF X$=llpll THEN 500
130 IF X$="Sll THEN 700 ELSE 100

INSTR
Function

Purpose: Searches for the first occurrence of string y$ in x$
and returns the position at which the match is found.
The optional offset n sets the position for starting
the search in x$.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v = INSTR([n,]x$,y$)

Remarks: n is a numeric expression in the range 1 to
255.

xl, y$ may be string variables, string expressions
or string constants.

Ifn>LEN(x$), orifx$ is null, orify$ cannot be found,
INSTR returns o. If y$ is null, INSTR returns n (or 1
if n is not specified).

If n is out of range, an "Illegal function call" error will
be returned.

Example: Ok
10 A$ = IIABCDEB"
20 B$ = "BII
30 PRINT INSTR(A$,B$); INSTR(4,A$,B$)
RUN

2 6
Ok

This example searches for the string "B" within the
string" ABCDEB". When the string is searched from
the beginning, "B" is found at position 2; when the
search starts at position 4, "B" is found at position 6.

4-129

INT
Function

Purpose: Returns the largest integer that is less than or equal
tox.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v = INT(x)

Remarks: x is any numeric expression.

This is called the "floor" function in some other
programming languages.

See the FIX and CINT functions, which also return
integer values.

Example: Ok

4-130

PRINT INT(45.67)
45

Ok
PRINT INT(-2.89)
-3
Ok

This example shows how INT truncates positive
integers, but rounds negative numbers upward (in a
negative direction).

KEY
Statement

Purpose: Sets or displays the soft keys.

Versions: Cassette

Format: KEY n, x$

KEY LIST

KEY ON

KEY OFF

Disk

Advanced

Compiler
(**)

Remarks: n is the function key number in the range 1 to 10.

x$ is a string expression which will be assigned to
the key. (Remember to enclose string constants
in quotation marks.)

The KEY statement allows function keys to be
designated soft keys. That is, you can set each
function key to automatically type any sequence of
characters. A string of up to 15 characters may be
assigned to anyone or all of the ten function keys.
When the key is pressed, the string will be input to
BASIC.

Initially, the soft keys are assigned the following
values:

F1 LIST
F3 LOAD"
F5 CONT~
F7 TRON~
F9 KEY

F2 RUN~
F4 SAVE"
F6 ,"LPT1:"~
F8 TROFF~
FlO SCREEN 0,0,0 ~

The arrow (~) indicates Enter.

4-131

KEY
Statement

4-132

KEY ON causes the soft key values to be displayed
on the 25 th line. When the width is40, five of the ten
soft keys are displayed. When the width is 80, all ten
are displayed. In either width, only the first six
characters of each value are displayed. ON is the
default state for the soft key display.

KEY OFF erases the soft key display from the 25th
line, making that line available for program use. It
does not disable the function keys.

KEY LIST lists all ten soft key values on the screen.
All 15 characters of each value are displayed.

KEY n, x$ assigns the value ofx$ to the function key
specified (1 to 10). x$ may be 1 to 15 characters in
length. If it is longer than 15 characters, only the first
15 characters are assigned.

Assigning a null string (string of length zero) to a soft
key disables the function key as a soft key.

If the value entered for n is not the range 1 to 10, an
"Illegal function call" error occurs. The previous
key string assignment is retained.

When a soft key is pressed, the INKEY$ function
returns one character of the soft key string each time
it is called. If the soft key is disabled, INKEY$
returns a two character string. The first character is
binary zero, the second is the key scan code, as listed
in "Appendix G. ASCII Character Codes."

KEY
Statement

Note: To avoid complications on the input
buffer in Cassette BASIC, you should execute:

DEF SEG: POKE 106,0

after reassigning any soft keys and after
INKEY$ has received the last character you
want from a soft key string. This POKE is not
required in Disk or Advanced BASIC.

After turning off the soft key display with KEY
OFF, you can use LOCATE 25,1 followed by PRINT
to display anything you want on the bottom line of
the screen. Information on line 25 is not scrolled, as
are lines 1 through 24.

See the following section, "KEY(n) Statement," to
see how to enable and disable function key trapping
in Advanced BASIC.

Example: 50 KEY ON

displays the soft keys on the 2 5 th line.

200 KEY OFF

erases soft key display. The soft keys are still active,
but not displayed.

10 KEY 1,"FILES"+CHR$(13)

assigns the string "FILES" +Enter to soft key 1. This
is a way to assign a commonly used command to a
function key.

20 KEY 1, /1/1

disables function key 1 as a soft key.

4-133

KEY(n)
Statement

Purpose: Activates and deactivates trapping of the specified
key in a BASIC program. See "ON KEY(n)
Statement" in this chapter.

Versions: Cassette Disk Advanced Compiler
(**) ***

Format: KEY(n) ON

KEY(n) OFF

KEY(n) STOP

Remarks: n is a numeric expression in the range 1 to 14, and
indicates the key to be trapped:

4-134

1-10 function keys F1 to FlO
11 Cursor Up
12 Cursor Left
13 Cursor Right
14 Cursor Down

KEY(n) ON must be executed to activate trapping
of function key or cursor control key activity A ... fter
KEY(n) ON, if a non-zero line number was specified
in the ON KEY(n) statement then every time BASIC
starts a new statement it will check to see if the
specified key was pressed. If so it will perform a
GOSUB to the line number specified in the ON
KEY(n) statement.

KEY(n)
Statement

IfKEY(n) is OFF, no trapping takes place and even if
the key is pressed, the event is not remembered.

Once a KEY(n) STOP statement has been executed,
no trapping will take place. However, if you press
the specified key your action is remembered so that
an immediate trap takes place when KEY(n) ON is
executed.

KEY (n) ON has no effect on whether the soft key
values are displayed at the bottom of the screen.

If you use a KEY(n) statement in Cassette or Disk
BASIC, you will get a "Syntax error." Refer to the
previous section, "KEY Statement," for an
explanation of the KEY statement without the (n).

4-135

KILL
Command

Purpose: Deletes a file from a diskette. The KILL .command
in BASIC is similar to the ERASE command in DOS.

Versions: Cassette Disk

Advanced Compiler
*** ***

Format: KILL filespec

Remarks: filespec is a valid file specification as explained
under "Naming Files" in Chapter 3. The
device name must be a diskette drive. If
the device name is omitted, the DOS
default drive is used.

KILL can be used for all types of diskette files. The
name must include the extension, if one exists. For
example, you may save a BASIC program using the
command

SAVE "TEST"

BASIC supplies the extension .BAS for the SAVE
command, but not for the KILL command. If you
want to delete that program file later, you must say
KILL "TEST. BAS", not KILL "TEST".

If a KILL statement is given for a file that is
currently open, a "File already open" error occurs.

Example: 200 KILL IA:DATA1"

4-136

This example deletes the file named "DATAl" on
drive A:.

LEFT$
Function

Purpose: Returns the leftmost n characters of x$.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v$ = LEFT$(x$,n)

Remarks: x$ is any string expression.

n is a numeric expression which must be in the
range 0 to 255. It specifies the number of
characters which are to be in the result.

If n is greater than LEN(x$), the entire string (x$) is
returned. If n=O, the null string (length zero) is
returned.

Also see the MID$ and RIGHT$ functions.

Example: Ok
10 A$ = I'BAS I C PROGRAM"
20 B$ = LEFT$(A$,S)
30 PRINT B$
RUN
BASIC
Ok

In this example, the LEFT$ function is used to
extract the first five characters from the string
"BASIC PROGRAM".

4-137

LEN
Function

Purpose: Returns the number of characters in xl.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v = LEN(x/)

Remarks: xl is any string expression.

Example:

4-138

Unprintable characters and blanks are included in
the count of the number of characters.

1 0 X $ = II B 0 C A RAT 0 N, F L I I

20 PRINT LEN(X$)
RUN

14
Ok

There are 14 characters in the string "BOCA
RATON, FL", because the comma and the blank are
counted.

LET
Statement

Purpose: Assigns the value of an expression to a variable.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: [LET] variable=expression

Remarks: variable is the name of the variable or array element
which is to receive a value. It may be a
string or numeric variable or array
element.

expression is the expression whose value will be
assigned to variable. The type of the
expression (string or numeric) must match
the type of the variable, or a "Type
mismatch" error will occur.

The word LET is optional, that is, the equal sign is
sufficient when assigning an expression to a variable
name.

4-139

LET
Statement

Example: 110 LET DORI=12
120 LET E=DORI+2

4-140

130 LET FDANCE$="HORN'

This example assigns the value 12 to the variable
DOR!. It then assigns the value 14, which is the value
of the expression DORI+2, to the variable E. The
string "HORA" is assigned to the variable
FDANCE$.

The same statements could have also been written:

110 DORI= 12
120 E =DORI+2
130 FDANCE$ = "HORA 'J

LINE
Statement

Purpose: Draws a line or a box on the screen.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Graphics mode only.

Format: LINE [(xl,yl)] -(x2,y2) [,[color] [,B[F]]]

Remarks: (xl,yl), (x2,y2)
are coordinates in either absolute or
relative form. (See "Specifying
Coordinates" under "Graphics Modes" in
Chapter 3')(3 _q ~

color is the color number in the range 0 to 3. In
medium resolution, color selects the color
from the current palette as defined by the
COLOR statement. 0 is the background
color. The default is the foreground color,
color number 3. In high resolution, a color
of 0 (zero) indicates black, and the default
of 1 (one) indicates white.

The simplest form of LINE is:

LINE -(X2,Y2)

This will draw a line from the last point referenced
to the point (X2,Y2) in the foreground color.

4-141

LINE
Statement

4-142

We can include a starting point also:

LINE (0,O)-(319,199) 'diagonal down screen
LINE (0,100)-(319,100) 'bar across screen

We can indicate the color to draw the line in:

LINE (10,10)-(20,20),2 'draw in color 2

1 'draw random 1 ines in random colors
10 SCREEN 1,O,O,O: CLS
20 LINE -(RND*319,RND*199) ,RND*4
30 GOTO 20

1 'alternating pattern - 1 ine on, 1 ine off
10 SCREEN 1,0,O,O: CLS
20 FOR X=0 TO 319
30 LINE (X,0)-(X,199),X AND 1
40 NEXT

The last argument to LINE is B - box, or BF - filled
box. We can leave out color and include the final
argument:

LINE (0,0)-(100,100)"B 'box in foreground

or we may include the color:

LINE (0,0)-(100,100),2,BF 'fill box color 2

The B tells BASIC to draw a rectangle with the
points (xJ,yJ) and (x2,y2) as opposite corners. This
avoids having to give the four LINE commands:

LINE (X1,Y1)-(X2,Y1)
LINE (X1,Y1)-(X1,Y2)
LINE (X2,Y1)-(X2,Y2)
LINE (X1,Y2)-(X2,Y2)

which perform the equivalent function.

LINE
Statement

The BF means draw the same rectangle as B, but also
fill in the interior points with the selected color.

When coordinates which are out of range are given
to the LINE statement, the coordinate which is out
of range is given the closest valid value. In other
words, the negative values become zero and Y values
greater than 199 become 199. X values greater than
639 become 639. X values greater than 319 in
medium resolution wrap to the next horizontal line.

The last point referenced after a LINE statement is
point (x2,y2). If you use the relative form for the
second coordinate, it is relative to the first
coordinate. For example,

LINE (100,100)-STEP (10,-20)

will draw a line from (100,100) to (110,80).

Example: This example will draw random filled boxes in
random colors.

10 CLS
20 SCREEN 1,O: COLOR 0,0
30 LINE -(RND*319,RND*199),RND*2+1,BF
40 GOTO 30 'boxes wi 1 1 overlap

4-143

LINE INPUT
Statement

Purpose: Reads an entire line (up to 254 characters) from the
keyboard into a string variable, ignoring delimiters.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: LINE INPUT[;] [t'lJrompt";] stringvar

Remarks: t'lJrompt" is a string constant that is displayed on the
screen before input is accepted. A
question mark is not printed unless it is
part of the prompt string.

stringvar is the name of the string variable or array
element to which the line will be assigned.
All input from the end of the prompt to
the Enter is assigned to stringvar. Trailing
blanks are ignored.

In Disk and Advanced BASIC, if LINE INPUT is
immediately followed by a semicolon, then pressing
Enter to end the input line does not produce a
carriage return/line feed sequence on the screen.
That is, the cursor remains on the same line as your
response.

You can exit LINE INPUT by pressing Ctrl-Break.
BASIC returns to command level and displays Ok.
You may then enter CONT to resume execution at
the LINE INPUT.

Example: See example in the next section, "LINE INPUT #
Statement."

4-144

LINE INPUT #
Statement

Purpose: Reads an entire line (up to 254 characters), ignoring
delimiters, from a sequential file into a string
variable.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: LINE INPUT #/ilenum, stringvar

Remarks: /ilenum is the number under which the file was
opened.

stringvar is the name of a string variable or array
element to which the line will be assigned.

LINE INPUT # reads all characters in the sequential
file up to a carriage return. It then skips over the
carriage return/line feed sequence, and the next
LINE INPUT # reads all characters up to the next
carriage return. (If a line feed! carriage return
sequence is encountered, it is preserved. That is, the
line feed/carriage return characters are returned as
part of the string.)

LINE INPUT # is especially useful if each line of a
file has been broken into fields, or if a BASIC
program saved in ASCII mode is being read as data
by another program.

LINE INPUT # can also be used for random files.
See "Appendix B. BASIC Diskette Input and
Output."

4-145

LINE INPUT #
Statement

Example: The following example uses LINE INPUT to get
information from the keyboard, where the
information is likely to have commas or other
delimiters in it. Then the information is written to a
sequential file, and read back 9ut from the file using
LINE INPUT #.

4-146

Ok
10 OPEN IlLIST 11 FOR OUTPUT AS #1
20 LINE INPUT "Address? ";C$
30 PRINT #1, C$
40 CLOSE 1
50 OPEN "LIST" FOR INPUT AS #1
60 LINE INPUT #1, C$
70 PRINT C$
80 CLOSE 1
RUN

Address?

Suppose you respond with DELRAY BEACH, FL
33445. The program continues:

•
•
•

Address? DELRAY BEACH, FL

DELRAY BEACH, FL
Ok

33445

33445

LIST
Command

Purpose: Lists the program currently in memory on the
screen or other specified device.

Versions: Cassette Disk Advanced Compiler
*** *** ***

Format: LIST [linel] [-[line2]] [filespec]

Remarks: linel, line2
are valid line numbers in the range 0 to
65529.linel is the first line to be listed.
line2 is the last line to be listed. A period (.)
may be used for either line number to
indicate the current line.

filespec is a string expression for the file
specification as outlined under "Naming
Files" in Chapter 3. Ifjilespec is omitted,
the specified lines are listed on the screen.

In Cassette BASIC, listings directed to the screen by
omitting the device specifier may be stopped at any
time by pressing Ctrl~Break. Listings directed to
specific devices may not be interrupted, and will list
until the range is exhausted. That is, LIST range may
be interrupted, but LIST range, "SCRN:" may not.

In Disk and Advanced BASIC, any listing to either
the screen or the printer may be interrupted by
pressing Ctrl-Break.

If the line range is omitted, the entire program is
listed.

4-147

LIST
Command

When the dash (-) is used in a line range, three
options are available:

• If only linel is given, that line and all higher
numbered lines are listed.

• If only line2 is given, all lines from the beginning
of the program through line2 are listed.

• Ifboth line numbers are specified, all lines from
linel through line2, inclusive, are listed.

When you list to a file on cassette or diskette, the
specified part of the program is saved in ASCII
format. This file may later be used with MERGE.

Example: LIS T

4-148

Lists the entire program on the screen.

Lists line 35 on the screen.

LIST 10-20, "LPT1: 11

LIST 100- ,IICOM1:1200,N,8 11

Lists all lines from 100 through the end of the
program to the first communications adapter at
1200 bps, no parity, 8 data bits, 1 stop bit.

LIST -200,IICAS1 :BOB 11

Lists from the first line through line 200 to a file
named "BOB" on cassette.

Purpose:

Versions:

Fonnat:

LLIST
Command

Lists all or part of the program currently in memory
on the printer (LPTI :).

Cassette Disk Advanced Compiler
*** ***

LLIST [line]] [- [line2]]

Differences: In BASIC release 1.10, LLIST may be terminated by
pressing Ctrl-Break.

4-130a

NOTES

4-130b

LLIST
Command

Purpose: Lists all or part of the program currently in memory
on the printer (LPT1:).

Versions: Cassette Disk Advanced Compiler
*** *** ***

Format: LLIST [lineJ][- [line2]]

Remarks: The line number ranges for LLIST work the same as
for LIST.

In Cassette BASIC, LLIST cannot be interrupted by
Ctrl-Break. If you want to stop the list, you must
turn the printer off.

BASIC always returns to command level after an
LLIST is executed.

Example: LLI ST

Prints a listing of the entire program.

LLI ST 35

Prin ts line 35.

LLiST 10-20

Lists lines 10 through 20 on the printer.

LLI ST 100-

Prints all lines from 100 through the end of the
program.

LLIST -200

Prin ts the first line through line 200.
4-149

LOAD
Command

Purpose: Loads a program from the specified device into
memory, and optionally runs it.

Versions: Cassette Disk Advanced Compiler
*** *** ***

Format: LOAD ji"lespec[,R]

Remarks: filespec is a string expression for the file
specification. It must conform to the rules
outlined under "Naming Files" in Chapter
3, otherwise an error occurs and the load is
cancelled.

4-t50

LOAD closes all open files and deletes all variables
and program lines currently residing in memory
before it loads the specified program. If the R
option is omitted, BASIC returns to direct mode
after the program is loaded.

However, if the R option is used with LOAD, the
program is run after it is loaded. In this case all open
data files are kept open. Thus, LOAD with the R
option may be used to chain several programs (or
segments of the same program). Information may
be passed between the programs using data files.

LOAD filespec,R is equivalent to RUN filespec.

If you are using Cassette BASIC and the device name
is omitted, CASt: is assumed. CASt: is the only
allowable device for LOAD in Cassette BASIC.

LOAD
Command

If you are using Disk or Advanced BASIC, the DOS
default diskette drive is used if the device is omitted.
The extension .BAS is added to the filename if no
extension is supplied and the filename is eight
characters or less.

Notes when using CASt:

1. If the LOAD statement is entered in direct
mode, the file names on the tape will be
displayed on the screen followed by a period (.)
and a single letter indicating the type of file.
This is followed by the message" Skipped." for
the files not matching the named file, and
"Found." when the named file is found. Types
of files and their corresponding letter are:

.B for BASIC programs in internal format
(created with SAVE command)

.P for protected BASIC programs in internal
format (created with SAVE ,P command)

.A for BASIC programs in ASCII format
(created with SAVE ,A command)

.M for memory image files (created with
BSA VE command)

.D for data files (created by OPEN followed
by output statements)

To see what files are on a cassette tape, rewind
the tape and enter some name that is known not
to be on the tape. For example, LOAD
"CAS1:NOWHERE". All file names will then
be displayed.

If the LOAD command is executed in a BASIC
program, the file names skipped and found are
not displayed on the screen.

4-151

LOAD
Command

2. Note that Ctrl-Break may be typed at any time
during LOAD. Between files ot after a time-out
period, BASIC will exit the search and return to
command level. Previous memory contents
remain unchanged.

3. If CAS 1: is specified as the device and the
filename is omitted, the next program file on
the tape is loaded.

Example: LOAD !'MENU "

4-152

Loads the program named MENU, but does not run
it.

LOAD "INVENT",R

Loads and runs the program INVENT.

RUN "INVENT"

Same as LOAD "INVENT",R.

LOAD "B:REPORT.BAS"

Loads the file REPORT. BAS from diskette drive B.
Note that the .BAS did not have to be specified.

LOAD "CAS1:"

Loads the next program on the tape.

LOC
Function

Purpose: Returns the current position in the file.

Versions: Cassette Disk Advanced Compiler
*** *** ***

Format: v = LOC(jilenum)

Remarks: /ilenum is the file number used when the file was
opened.

With random files, LOC returns the record number
of the last record read or written to a random file.

With sequential files, LOC returns the number of
records read from or written to the file since it was
opened. (A record is a 128 byte block of data.) When
a file is opened for sequential input, BASIC reads the
first sector of the file, so LOC will return a 1 even
before any input from the file.

For a communications file, LOC returns the number
of characters in the input buffer waiting to be read.
The default size for the input buffer is 256
characters, but you can change this with the Ie:
option on the BASIC command. If there are more
than 255 characters in the buffer, LOC returns 255.
Since a string is limited to 255 characters, this
practical limit alleviates the need for you to test for
string size before reading data into it. If fewer than
255 characters remain in the buffer, then LOC
returns the actual count.

4-153

LOC
Function

Example: 200 IF LOC (1) >5.0 THEN STOP

4-154

This first example stops the program if we've gone
past the 50th record in the file.

3.0.0 PUT #l,LOC(l)

The second example could be used to re-write the
record that was just read.

LOCATE
Statement

Purpose: Positions the cursor on the active screen. Optional
parameters turn the blinking cursor on and off and
define the size of the blinking cursor.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: LOCATE [row][, [col] [, [cursor][, [start] [,stoP]]]]

Remarks: row is a numeric expression in the range 1 to
25. It indicates the screen line number
where you want to place the cursor.

col

cursor

start

stop

is a numeric expression in the range 1 to 40
or 1 to 80, depending upon screen width. It
indicates the screen column number
where you want to place the cursor.

is a value indicating whether the cursor is
visible or not. A ° (zero) indicates off, 1
(one) indicates on.

is the cursor starting scan line. It must be a
numeric expression in the range 0 to 31.

is the cursor stop scan line. It also must be
numeric expression in the range 0 to 31.

cursor? start and stop do not apply to graphics mode.

4-155

LOCATE
Statement

4-156

start and stop allow you to make the cursor any size
you want. You indicate the starting and ending scan
lines. The scan lines are numbered from 0 at the top
of the character position. The bottom scan line is 7 if
you have the Color/Graphics Monitor Adapter, 13 if
you have the IBM Monochrome Display and Parallel
Printer Adapter. If start is given and stop is omitted,
stop assumes the value of start. If start is greater than

'11 Th" " stop, you get a two-part cursor. e cursor wraps
from the bottom line back to the top.

After a LOCATE statement, I/O statements to the
screen begin placing characters at the specified
location.

When a program is running, the cursor is normally
off. You can use LOCATE ,,1 to turn it back on.

Normally, BASIC will not print to line 25. However,
you can turn off the soft key display using KEY
OFF, then use LOCATE 25,1: PRINT ... to put
things on line 25.

Any parameter may be omitted. Omitted parameters
assume the current value.

Any values entered outside of the ranges indicated
will result in an "Illegal function call" error. Previous
values are retained.

Example: 10 LOCATE 1,1

LOCATE
Statement

Moves the cursor to the home position in the upper
left-hand corner of the screen.

20 LOCATE ,,1

Makes the blinking cursor visible; its position
remains unchanged.

30 LOCATE ",7

Position and cursor visibility remain unchanged.
Sets the cursor to display at the bottom of the
character on the Color/Graphics Monitor Adapter
(starting and ending on scan line 7).

40 LOCATE 5,1,1,0,7

Moves the cursor to line 5, column 1. Makes the
cursor visible, covering the entire character cell on
the Color/Graphics Monitor Adapter, starting at
scan line 0 and ending on scan line 7.

4-157

LOF
Function

Purpose: Returns the number of bytes allocated to the file
(length of the file).

Versions: Cassette Disk

Advanced Compiler
*** ***

Format: v = LOF(filenum)

Remarks: filenum is the file number used when the file was
opened.

For diskette files created by BASIC, LOF will return
a multiple of 128. For example, if the actual data in
the file is 257 bytes, the number 384 will be
returned. For diskette files created outside BASIC
(for example, by using EDLIN), LOF returns the
actual number of bytes allocated to the file.

For communications, LOF returns the amount of
free space in the input buffer. That is,
size-LOC(!ilenum), where size is the size of the
communications buffer, which defaults to 256 but
may be changed with the IC: option on the BASIC
command. Use ofLOF may be used to detect when
the input buffer is getting full. In practicality, LOC
is adequate for this purpose, as demonstrated in the
example in "Appendix F. Communications."

Example: These statements will get the last record of the file
named BIG, assuming BIG was created with a record
length of 128 bytes:

4-158

10 OPEN "BIG" AS #1
20 GET #1,LOF(1)/128

LOG
Function

Purpose: Returns the natural logarithm of x.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v = LOG(x)

Remarks: x must be a numeric expression which is greater
than zero.

The natural logarithm is the logarithm to the base e.

Example: The first example calculates the logarithm of the
expression 45/7:

Ok
PRINT LOG(45/7)

1.860752
Ok

The second example calculates the logorithm of e
and of e2 :

Ok
E= 2.718282
Ok
? LOG(E)

1
Ok
? LOG (E ,', E)

2
Ok

4-159

LPOS
Function

Purpose: Returns the current position of the print head
within the printer buffer for LPT1:.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v = LPOS(n)

Remarks: n is a numeric expression which is a dummy
argument in Cassette BASIC. In Disk and
Advanced BASIC, n indicates which printer is
being tested, as follows:

o or 1 LPT1:
2 LPT2:
3 LPT3:

Therefore, we recommend you use 0 or 1 in Cassette
BASIC to maintain compatibility with the other
versions.

The LPOS function does not necessarily give the
physical position of the print head on the printer ..

Example: In this example, if the line length is more than 60
characters long we send a carriage return character
to the printer so it will skip to the next line.

100 IF LPOS(0»60 THEN LPRINT CHR$(13)

4-160

LPRINT and LPRINT USING
Statements

Purpose: Prints data on the printer (LPTI :).

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: LPRINT [ltst of expressions] [;]

LPRINT USING vI; list of expressions [;]

Remarks: ltst of expressions
is a list of the numeric andlor string
expressions that are to be printed. The
expressions must be separated by commas
or semicolons.

vI is a string constant or variable which
identifies the format to be used for
printing. This is explained in detail under
"PRINT USING Statement."

These statements function like PRINT and PRINT
USING, except output goes to the printer. See
"PRINT Statement" and "PRINT USING
Statement."

LPRINT assumes an 80-character wide printer. That
is, BASIC automatically inserts a carriage return/line
feed after printing 80 characters. This will result in
two lines being skipped when you print exactly 80
characters, unless you end the statement with a
semicolon. You may change the width value with a
WIDTH "LPTl:" statement.

Printing is asynchronous with processing. If you do
a form feed (LPRINT CHR$(12);) followed by
another LPRINT and the printer takes more than 10
seconds to do the form feed, you may get a "Device

4-161

LPRINT and LPRINT USING
Statements

Timeout" error on the second LPRINT. To avoid
this problem, do the following:

1 ON ERROR GOTO 65000

65000 IF ERR = 24 THEN RESUME '24=timeout

You might want to test ERL to make sure the
timeout was caused by an LPRINT statement.

Example: This is an example of sending special control
characters to the IBM 80 CPS Matrix Printer using
LPRINT and CHR$. The printer control characters
are listed in the IBM Personal Computer Technical
Reference manual.

4-162

10 LPRINT CHR$(14);" Title Line "
20 FOR 1=2 TO 4
30 LPRI NT 11Report I i nell; 1

40 NEXT 1
50 LPRINT CHR$(15);"Condensed print; 132 char/line "
60 LPRINT CHR$(18);"Return to normal "
70 LPRINT CHR$(27) ;"E"
80 LPRINT "This is emphasized print"
90 LPRINT CHR$(27);"F "
100 LPRINT "Back to normal again "

The output produced by this program looks like
this:

F:St:)(JIt-t 1 i rJe 2
Report 1 i nE? ::::;
J=::epoF't. l:i fie 4-
Condensed print; 132 char/line
RE~tur-n t.o nOF'mal

This is emphasized print

Back t.o normal ~again

LSET and RSET
Statements

Purpose: Moves data into a random file buffer (in preparation
for a PUT (file) statement).

Versions: Cassette Disk Advanced Compiler
*** *** ***

Format: LSET stringvar = x$

RSET stringvar = x$

Remarks: stringvar is the name of a variable that was defined in
a FIELD statement.

x$ is a string expression for the information
to be placed into the field identified by
stringvar.

If x$ requires fewer bytes than were specified for
stringvar in the FIELD statement, LSET left-justifies
the string in the field, and RSET right-justifies the
string. (Spaces are used to pad the extra positions.)
If x$ is longer than stringvar, characters are dropped
from the right.

Numeric values must be converted to strings before
they are LSET or RSET. See "MKI$, MKS$, MKD$
Functions" in this chapter.

4-163

LSET and RSET
Statements

Refer to "Appendix B. BASIC Diskette Input and
Output" for a complete explanation of using
random files.

Note: LSET or RSET may also be used with a
string variable which was not defined in a
FIELD statement to left-justify or right-justify
a string in a given field. For example, the
program lines:

110 A$=SPACE$(20)
120 RSET A$=N$

right-justify the string N$ in a 20-character
field. This can be useful for formatting printed
output.

Example: This example converts the numeric value AMT into
a string, and left-justifies it in the field A$ in
preparation for a PUT (file) statement.

150 LSET A$=MKS$(AMT)

4-164

MERGE
Command

Purpose: Merges the lines from an ASCII program file into the
program currently in memory.

Versions: Cassette Disk Advanced Compiler
*** *** ***

Format: MERG E filespec

Remarks: filespec is a string expression for the file
specification. It must conform to the rules
for naming files as outlined in "Naming
Files" in Chapter 3; otherwise an error
occurs and the MERGE is cancelled.

The device is searched for the named file. If found,
the program lines in the device file are merged with
the lines in memory. If any lines in the file being"
merged have the same line number as lines in the
program in memory, the lines from the file will
replace the corresponding lines in memory.

After the MERGE command, the merged program
resides in memory, and BASIC returns to command
level.

In Cassette BASIC, if the device name is omitted,
CAS1: is assumed. CAS1: is the only allowable
device for MERGE in Cassette BASIC. With Disk
and Advanced BASIC, if the device name is omitted,
the DOS default drive is assumed.

If CAS 1: is specified as the device name and the
filename is omitted, the next ASCII program file
encountered on the tape is merged.

4-165

MERGE
Command

If the program being merged was not saved in ASCII
format (using the A option on the SAVE command),
a "Bad file mode" error occurs. The program in
memory remains unchanged.

Example: M ERG E "A: NUMB RS II

4-166

This merges the file named "NUMBRS" on drive A:
with the program in memory.

MID$
Function and Statement

Purpose: Returns the requested part ofa given string. When
used as a statement, as in the second format,
replaces a portion of one string with another string.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: As a function:

v$ = MID$(x$,n[,m])

As a statement:

MID$(v$,n[,m]) = y$

Remarks: For the function (v$=MID$...):

x$ is any string expression.

n is an integer expression in the range 1 to 255.

m is an integer expression in the range 0 to 255.

The function returns a string of length m characters
from x$ beginning with the nth character. If m is
omitted or if there are fewer thanm characters to the
right of the nth character, all rightmost characters
beginning with the nth character are returned. If m is
equal to zero, or if n is greater than LEN(x$), then
MID$ returns a null string.

Also see the LEFT$ and RIGHT$ functions.

4-167

MID$
Function and Statement

4-168

For the statement (MID$... =y$):

v$ is a string variable or array element that will
have its characters replaced.

n is an integer expression in the range 1 to 255.

m is an integer expression in the range 0 to 255.

y$ is a string expression.

The characters in vi, beginning at position n, are
replaced by the characters in y$. The optional m
refers to the number of characters fromy$ that will
be used in the replacement. If m is omitted, all ofy$
is used.

However, regardless of whether m is omitted or
included, the length of v$ does not change. For
example, if v$ is four characters long and y$ is five
characters long, then after the replacement v$ will
contain only the first four characters of y$.

Note: If either n or m is out of range, an
"Illegal function call" error will be returned.

MID$
Function and Statement

Example: The first example uses the MID$ function to select
the middle portion of the string B$.

Ok
10 A$=IIGOOD II
2.0 B$="MORNING EVENING AFTERNOON"
30 PRINT A$;MID$(B$,9,7)
RUN
GOOD EVENING
Ok

The next example uses the MID$ statement to
replace characters in the string A$.

Ok
1.0 A$="MARATHON, GREECE"
2.0 M 10$ (A$, 11) ="FLOR I DA"
3.0 PRINT A$
RUN
MARATHON, FLORID
Ok

Note in the second example how the length of A$
was not changed.

4-169

MKI$, MKS$, MKD$
Functions

Purpose: Convert numeric type values to string type values.

Versions: Cassette Disk Advanced Compiler

Format:

*** *** ***

v$ = MKI$ (integer expression)

v$ = MKS$ (single-precision expression)

v$ = MKD$ (double-precision expression)

Remarks: Any numeric value that is placed in a random file
buffer with an LSET or RSET statement must be
converted to a string. MKI$ converts an integer to a
2-byte string. MKS$ converts a single-precision
number to a 4-byte string. MKD$ converts a
double-precision number to an 8-byte string.

4-170

These functions differ from STR$ in that they do
not actually change the bytes of the data, just the
way BASIC interprets those bytes.

See also "CVI, CVS, CVD Functions" in this chapter
and "Appendix B. BASIC Diskette Input and
Output."

MKI$, MKS$, MKD$
Functions

Example: This example uses a random file (#1) with fields
defined in line 100. The first field, D$, is intended to
hold a numeric value, AMT. Line 110 converts AMT
to a string value using MKS$ and uses LSET to place
what is actually the value of AMT into the random
file buffer. Line 120 places a string into the buffer
(we don't need to convert a string); then line 130
writes the data from the random file buffer to the
file.

100 FIELD #1, 4 AS D$, 20 AS N$
1 1 0 L SET D $ M KS $ (AM T)
120 LSET N$ A$
130 PUT #1

4-171

MOTOR
Statement

Purpose: Turns the cassette player on and off from a program.

Versions: Cassette Disk Advanced Compiler
*** *** ***

Format: MOTOR [state]

Remarks: state is a numeric expression indicating on or
off.

If state is non zero, the cassette motor is turned on. If
state is zero, the cassette motor is turned off.

If state is omitted, the cassette motor state is
switched. That is, if the motor is off, it is turned on
and vice-versa.

Example: The following sequence of statements turns the
cassette motor on, then off, then back on again.

4-172

10 MOTOR 1
20 MOTOR 0
30 HOTOR

NAME
Command

Purpose: Changes the name of a diskette file. The NAME
command in BASIC is similar to the RENAME
command in DOS.

Versions: Cassette Disk Advanced Compiler
*** *** ***

Format: NAME filespec AS filename

Remarks: filespec is a file specification as outlined under
"Naming Files" in Chapter 3.

ji'lename will be the new filename. It must be a valid
filename as outlined in the same section.

The file specified by ji'lespec must exist and filename
must not exist on the diskette, otherwise an error
will result. If the device name is omitted, the DOS
default drive is assumed. Note that the file
extension does not default to .BAS.

After a NAME command, the file exists on the same
diskette, in the same area of diskette space, with the
new name.

Example: NAME "A:ACCTS.BAS" AS "LEDGER.BAS"

In this example, the file that was formerly named
ACCTS.BAS on the diskette in drive A will now be
named LEDGER. BAS.

4-173

NEW
Command

Purpose: Deletes the program currently in memory and clears
all variables.

Versions: Cassette Disk Advanced Compiler
*** *** ***

Format: NEW

Remarks: NEW is usually used to free memory before
entering a new program. BASIC always returns to
command level after NEW is executed. NEW causes
all files to be closed and turns trace off if it was on
(see "TRON and TROFF Commands," later in this
chapter).

Example: Ok
NEW
Ok

4-174

The program that had been in memory is now
deleted.

OCT$
Function

Purpose: Returns a string which represents the octal value of
the decimal argument.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: vi = OCT$(n)

Remarks: n is a numeric expression in the range -32768 to
65535.

If n is negative, the two's complement form is used.
That is, OCT$(-n) is the same as OCT$(65536-n).

See the HEX$ function for hexadecimal conversion.

Example: Ok
PRINT OCT$(24)
30
Ok

This example shows that 24 in decimal is 30 in octal.

4-175

ON COM(n)
Statement

Purpose: Sets up a line number for BASIC to trap to when
there is information coming into the
communications buffer.

Versions: Cassette Disk Advanced Compiler
(**) ***

Format: ON COM(n) GOSUB line

Remarks: n is the number of the communications
adapter (lor 2).

4-176

line is the line number of the beginning of the
trap routine. Setting line equal to 0 (zero)
disables trapping of communications
activity for the specified adapter.

A COM(n) ON statement must be executed to
activate this statement for adapter n. After COM(n)
ON, if a non-zero line number is specified in the ON
COM(n) statement then every time the program
starts a new statement, BASIC checks to see if any
characters have come in to the specified
communications adapter. If so, BASIC performs a
GOSUB to the specified line.

If COM(n) OFF is executed, no trapping takes place
for the adapter. Even if communications activity
does take place, the event is not remembered.

If a COM(n) STOP statement is executed, no
trapping takes place for the adapter. However, any
characters being received are remembered so an
immediate trap takes place when COM(n) ON is
executed.

When the trap occurs an automatic COM(n) STOP is
execu ted so recursive traps can never take place.

ON COM(n)
Statement

The RETURN from the trap routine automatically
does a COM(n) ON unless an explicit COM(n) OFF
was performed inside the trap routine.

Event trapping does not take place when BASIC is
not executing a program. When an error trap
(resulting from an ON ERROR statement) takes
place all trapping is automatically disabled
(including ERROR, STRIG(n), PEN, COM(n), and
KEY(n».

Typically the communications trap routine reads an
entire message from the communications line
before returning back. It is not recommended that
you use the communications trap for single
character messages since at high baud rates the
overhead of trapping and reading for each individual
character may allow the interrupt buffer for
communications to overflow.

You may use RETURN line if you want to go back to
the BASIC program at a fixed line number. Use of
this non-local return must be done with care,
however, since any other GOSUBs, WHILEs, or
FORs that were active at the time of the trap will
remain active.

Example: 150 ON COM (1) GOSUB 500
160 COM (1) ON

500 REM incoming characters

590 RETURN 300

This example sets up a trap routine for the first
communications adapter at line 500.

4-177

ON ERROR
Statement

Purpose: Enables error trapping and specifies the first line of
the error handling subroutine.

Versions: Cassette

Disk

Advanced

Compiler
(**)

Format: ON ERROR GOTO line

Remarks: line is the line number of the first line of the
error trapping routine. If the line number
does not exist, an "Undefined line
number" error results.

4-178

Once error trapping has been enabled, all errors
detected (including direct mode errors) will cause a jump
to the specified error handling subroutine.

To disable error trapping, execute an ON ERROR
GOT a O. Subsequent errors will print an error
message and halt execution. An ON ERROR
GOTO 0 statement that appears in an error trapping
subroutine causes BASIC to stop and print the error
message for the error that caused the trap. It is
recomrnended that all error trapping subroutines
execute an ON ERROR GOTO 0 if an error is
encountered for which there is no recovery action.

Note: If an error occurs during execution of
an error handling subroutine, the BASIC error
message is printed and execution terminates.
Error trapping does not occur within the error
handling subroutine.

ON ERROR
Statement

You use the RESUME statement to exit from the
error trapping routine. Refer to "RESUME
Statement" in this chapter.

Example: 10 ON ERROR GOTO 100
20 LPRINT "This goes to the printer. 11

30 END
100 IF ERR=27 THEN PRINT "Check printer"

: RESUME

This example shows how you might trap a common
error - forgetting to put paper in the printer, or
forgetting to switch it on.

4-179

ON ... GOSUB and ON ... GOTO
Statements

Purpose: Branches to one of several specified line numbers,
depending on the value of an expression.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: ON n GOTO line [,line] .. .

ON n GOSUB line[,line] .. .

Remarks: n is a numeric expression which is rounded
to an integer, if necessary. It must be in the
range 0 to 255, an "Illegal function call"
error occurs.

4-180

line is the line number of a line you wish to
branch to.

The value of n determines which line number in the
list will be used for branching. For example, if the
value of n is 3, the third line number in the list will be
the destination of the branch.

In the ON ... GOSUB statement; each line number in
the list must be the first line number of a subroutine.
That is, you eventually need to have a RETURN
statement to bring you back to the line following
the ON ... GOSUB.

If the value of n is zero or greater than the number of
items in the list (but less than or equal to 255),
BASIC continues with the next executable
statement.

ON ... GOSUB and ON ... GOTO
Statements

Example: The first example branches to line 150 ifL-1 equals
1, to line 300 ifL-1 equals 2, to line 320 ifL-1 equals
3, and to line 390 ifL-1 equals 4. IfL-1 is equal to 0
(zero) or is greater than 4, then the program just
goes on to the next statement.

100 ON L-1 GOTO 150,300,320,390

The next example shows how to use an
ON.,'.GOSUB statement.

1200 ON A GOSUB 1300,1400

1300 REM start of subroutine for A=l

1390 RETURN

4-181

ON KEY(n)
Statement

Purpose: Sets up a line number for BASIC to trap to when the
specified function key or cursor control key is
pressed.

Versions: Cassette Disk Advanced Compiler
(**) ***

Format: ON KEY(n) GOSUB line

Remarks: n is a numeric expression in the range 1 to 14
indicating the key to be trapped, as follows:

4-182

1-10 function keys F1 to F10
11 Cursor Up
12 Cursor Left
13 Cursor Right
14 Cursor Down

line is the line number of the beginning of the
trapping routine for the specified key. Setting
line equal to 0 disables trapping of the key.

A KEY(n) ON statement must be executed to
,.. ,.+;TT'" +,-,. +1.... s C"+,.,+.am.a + A f+.a .. VPV(.,.,\ ("\1\.T 1+ I]
a.\... l..l v a.l.\;;; l..l.l.l ., l.a. '-\,... .1.1\,....1.1 '-. .L.L.l '-\,....1 .L,..LJ.L V" I '-' , ~

non-zero line number is specified in the ON KEY(n)
statement then every time the program starts a new
statement, BASIC checks to see if the specified key
was pressed. If so, BASIC performs a GOSUB to the
specified line.

If a KEY(n) OFF statement is executed, no trapping
takes place for the specified key. Even if the key is
pressed, the event is not remembered.

ON KEY(n)
Statement

If a KEY(n) STOP statement is executed, no
trapping takes place for the specified key. However,
if the key is pressed the event is remembered, so an
immediate trap takes place when KEY(n) ON is
executed.

When the trap occurs an automatic KEY(n) STOP is
executed so recursive traps can never take place.
The RETURN from the trap routine automatically
does a KEY(n) ON unless an explicit KEY(n) OFF
was performed inside the trap routine.

Event trapping does not take place when BASIC is
not executing a program. When an error trap
(resulting from an ON ERROR statement) takes
place all trapping is automatically disabled
(including ERROR, STRIG(n), PEN, COM(n), and
KEY(n».

Key trapping may not work when other keys are
presse'd before the specified key. The key that
caused the trap cannot be tested using INPUT$ or
INKEY$, so the trap routine for each key must be
different if a different function is desired.

You may use RETURN line if you want to go back to
the BASIC program at a fixed line number. Use of
this non-local return must be done with care,
however, since any other GOSUBs, WHILEs, or
FORs that were active at the time of the trap will
remain active.

KEY(n) ON has no effect on whether the soft key
values are displayed at the bottom of the screen.

4-183

ON KEY(n)
Statement

Example: The following is an example of a trap routine for
function key 5.

4-184

100 ON KEY(5) GOSUB 200
110 KEY(5) ON

200 REM function key 5 pressed

290 RETURN 140

ON PEN
Statement

Purpose: Sets up a line number for BASIC to transfer control
to when the light pen is activated.

Versions: Cassette Disk Advanced

Compiler
(**)

Format: ON PEN GOSUB line

Remarks: line is the line number of the beginning of the
trap routine for the light pen. Using a line
number of 0 disables trapping of the light
pen.

A PEN ON statement must be executed to activate
this statement. After PEN ON, if a non-zero line
number is specified in the ON PEN statement, then
every time the program starts a new statement
BASIC will check to see if the pen was activated. If
so, BASIC performs a GOSUB line.

If PEN OFF is executed, no trapping takes place.
Even if the light pen is activated, the event is not
remembered.

If a PEN STOP statement is executed, no trapping
takes place, but pen activity is remembered so that
an immediate trap takes place when PEN ON is
executed.

When the trap occurs, an automatic PEN STOP is
executed so recursive traps can never take place.
The RETURN from the trap routine automatically
does a PEN ON unless an explicit PEN OFF was
performed inside the trap routine.

4-185

ONPEN
Statement

Event trapping does not take place when BASIC is
not executing a program. When an error trap
(resulting from an ON ERROR statement) takes
place all trapping is automatically disabled (including
ERROR, STRIG(n), PEN, COM(n), and KEY(n)).

PEN(O) is not set when pen activity causes a trap.

You may use RETURN line if you want to go back to
the BASIC program at a fixed line number. Use of
this non-local return must be done with care,
however, since any other GOSUBs, WHILEs, or
FORs that were active at the time of the trap will
remain active.

Note: Do not attempt any cassette I/O while
PEN is ON.

Example: This example sets up a trap routine for the light pen.

4-186

10 ON PEN GOSUB 500
20 PEN ON

500 REM subroutine for pen

650 RETURN 30

ON STRIG(n)
Statement

Purpose: Sets up a line number for BASIC to trap to when one
of the joystick buttons (triggers) is pressed.

Versions: Cassette Disk Advanced

Format: ON STRIG(n) GOSUB line

Compiler
(**)

Remarks: n may be 0, 2, 4, or 6, and indicates the button
to be trapped as follows:

o button Al

2 button BI

4 button A2

6 button B2

line is the line number of the trapping routine. If
line is 0, trapping of the joystick button is
disabled.

A STRIG(n) ON statement must be executed to
activate this statement for button n. If STRIG(n)
ON is executed and a non-zero line number is
specified in the ON STRIG(n) statement, then every
time the program starts a new statement BASIC
checks to see if the specified button has been
pressed. If so, BASIC performs a GOSUB to the
specified line.

If STRIG(n) OFF is executed, no trapping takes
place for button n. Even if the button is pressed, the
even t is not remembered.

If a STRIG(n) STOP statement is executed, no
trapping takes place for button n, but the button

4-187

ON STRIG(n)
Statement

being pressed is remembered so that an immediate
trap takes place when STRIG(n) ON is executed.

When the trap occurs, an automatic STRIG(n)
STOP is executed so recursive traps can never take
place. The RETURN from the trap routine
automatically does a STRIG(n) ON unless an
explicit STRIG(n) OFF was performed inside the
trap routine.

Event trapping does not take place when BASIC is
not executing a program. When an error trap
(resulting from an ON ERROR statement) takes
place all trapping is automatically disabled
(including ERROR, STRIG(n), PEN, COM(n), and
KEY(n».

Using STRIG(n) ON will activate the interrupt
routine that checks the button status for the
specified joystick button. Downstrokes that cause
trapping will not set functions STRIG(O),
STRIG(2), STRIG(4), or STRIG(6).

You may use RETURN line if you want to go back to
the BASIC program at a fixed line number. Use of
this non-local return must be done with care,
however, since any other GOSUBs, WHILEs, or
FORs that were active at the time of the trap will
remain active.

Example: This is an example of a trapping routine for the
button on the first joystick.

4-188

100 ON STRIG(0) GOSUB 2000
110 STRIG(0) ON

2000 REM subroutine for 1st button

2100 RETURN

Purpose:

Versions:

Format:

ON STRIG(n)
Statement

Sets up a line number for BASIC to trap to when one
of the joystick buttons (triggers) is pressed.

Cassette Disk Advanced

ON STRIG(n) GOSUB line

Compiler
(**)

Differences: BASIC release 1.10 supports four buttons.

n may be 0, 2,4, or 6, as follows:

o button Al

2 button B 1

4 button A2

6 button B2

4-162a

NOTES

4-162b

Purpose:

Versions:

Format:

Allows I/O to a file or device.

Cassette Disk

Advanced

OPEN
Statement

Compiler

OPEN filespec [FOR mode] AS [#]filenum
[LEN=recl]

or:

OPEN mode2, [#]filenum, filespec [,recl]

Differences: In BASIC release 1.10, a printer may be opened in
random mode. Opening the printer in random
mode with a width of 255 suppresses the automatic
line feed after a carriage return (CHR$(13)) is
received. This allows all 256 ASCII characters to be
passed to the printer without change.

Example: Ok
50 OPEN "LPT1:" AS #1 : WIDTH #1,255
60 PRINT #1, "Underline this"
70 PRINT # 1, STRING$ (14, "_")
80 WIDTH #1, 80 : PRINT #1
RUN
Underline this
Ok

4-166a

NOTES

4-166b

OPEN
Statement

Purpose: Allows I/O to a file or device.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: First form:

OPEN filespec [FOR mode] AS [#]filenum [LEN=recl]

Alternative form:

OPEN mode2, [#]filenum, filespec [,reel]

Remarks: mode

mode2

in the first form, is one of the following:

OUTPUT specifies sequential output
mode.

INPUT specifies sequential input
mode.

APPEND specifies sequential output
mode where the file is
positioned to the end of data
on the file when it is opened.

Note that mode must be a string constant,
not enclosed in quotation marks. If mode is
omi tted, random access is assumed.

in the alternative form, is a string
expression whose first character is one of
the following:

o specifies sequential output mode.
I specifies sequential input mode.
R specifies random input/ output mode.

4-189

OPEN
Statement

4-190

For both formats:

filenum is an integer expression whose value is
between one and the maximum number of
files allowed. In Cassette BASIC, the
maximum number is 4. In Disk and
Advanced BASIC, the default maximum is
3, but this can be changed with the IF:
option on the BASIC command.

filespec is a string expression for the file
specification as explained under "Naming
Files" in Chapter 3.

reel is an integer expression which, if included,
sets the record length for random files. It
may range from 1 to 32767. reel is not valid
for sequential files. The default record
length is 128 bytes. reel may not exceed the
value set by the IS: option on the BASIC
command.

OPEN allocates a buffer for I/O to the file or device
and determines the mode of access that will be used
with the buffer.

filenum is the number that is associated with the file
for as long as it is open and is uSed by other I/O
statements to refer to the file or device.

An OPEN must be executed before any I/O may be
done to a device or file using any of the following
statements, or any statement or function requiring a
file number:

PRINT #
PRINT # USING
WRITE #
INPUT$

INPUT #
LINE INPUT #
GET
PUT

)

OPEN
Statement

GET and PUT are valid for random files (or
communications files - see next section). A diskette
file may be either random or sequential, and a
printer may be opened in either random or
sequential mode; however, all other devices may be
opened only for sequential operations.

BASIC normally adds a line feed after each carriage
return (CHR$(13» sent to a printer. However, if
you open a printer (LPT1:, LPT2:, or LPT3:) as a
random file with width 255, this line feed is
suppressed.

APPEND is valid only for diskette files. The file
pointer is initially set to the end of the file and the
record number is set to the last record of the file.
PRINT # or WRITE # will then extend the file.

Note: At anyone time, it is possible to have a
particular file open under more than one file
number. This allows different modes to be used
for different purposes. Or, for program clarity,
you may use different file numbers for different
modes of access. Each file number has a
different buffer, so you should use care if you
are writing using one file number and reading
using another file number.

However, a file cannot be opened for sequential
output or append if the file is already open.

If the device name is omitted when you are using
Cassette BASIC, CAS1: is assumed. If you are using
Disk or Advanced BASIC, the DOS default drive is
assumed.

If CAS1: is specified as the device and the filename is
omitted, then the next data file on the cassette is
opened.

4-191

OPEN
Statement

In Cassette BASIC, a maximum of four files may be
open at one time (cassette, printer, keyboard, and
screen). Note that only one cassette file may be
open at a time. For Disk and Advanced BASIC the
default maximum is three files. You can override
this value by using the IF: option on the BASIC
command.

If a file opened for input does not exist, a "File not
found" error occurs. If a file which does not exist is
opened for output, append, or random access, a file
is created.

Any values given outside the ranges indicated will
result in an "Illegal function call" error. The file is
not opened.

See "Appendix B. BASIC Diskette Input and
Output" for a complete explanation of using
diskette files. Refer to the next section, "OPEN
"COM ... Statement," for information on opening
communications files.

Example: 10 OPEN "DATA" FOR OUTPUT AS #1
or

4-192

10 OPEN 10 11 ,#1,"DATA"

Either of these statements opens the file named
"DATA" for sequential output on the default device
(CAS1: for Cassette BASIC, default drive for Disk
and Advanced BASIC). Note that opening for
output destroys any existing data in the file. If you
do not wish to destroy data you should open for
APPEND.

20 OPEN "B:SSFILE" AS 1 LEN=256
or

20 OPEN IR I ,1,"B:SSFILE",256

OPEN
Statement

Either of the preceding two statements opens the
file named "SSFILE" on the diskette in drive B for
random input and output. The record length is 256.

25 FILE$ = "A:DATA.ART"
30 OPEN FILE$ FOR APPEND AS 3

This example opens the file "DATA.ART" on the
diskette in drive A and positions the file pointers so
that any output to the file is placed at the end of
existing data in the file.

Ok
1 0 0 PEN II L P T 1 : I I AS # 1 I ran d om a c c e s s
20 PRINT #l,"Printing width 80"
30 PRINT #1 ,"Now change to width 255"
40 WIDTH #1,255
50 PRINT #l,"This 1 ine will be underl ined"
60 WIDTH #1,80
70 PRINT ,11, STRING$(28," II)

80 PRINT #1 ,"Printing width 80 with CR/LF"
RUN
Printing width 80
Now change to width 255
This 1 ine will be underl ined
Printing width 80 with CR/LF
Ok

Line lOin this example opens the printer in random
mode. Because the default width is 80, the lines
printed by lines 20 and 30 end with a carriage
return/line feed. Line 40 changes the printer width
to 255, so the line feed after the carriage return is
suppressed. Therefore, the line printed by line 50
ends only with a carriage return and not a line feed.
This causes the line printed by line 70 to overprint
"This line will be underlined", causing the line to be
underlined. Line 60 changes the width back to 80 so
the underlines and following lines will end with a
line feed.

4-193

OPEN "COM ...
Statement

Purpose: Opens a communications file.

Versions: Cassette Disk Advanced Compiler
(**) *** ***

Valid only with Asynchronous Communications
Adapter.

Format: OPEN "COMn:[speedJ [,parity] [,data] [,stop]
[,RS] [,CS[n]] [,DS[n]] ~CD[n]] [,LF]"
AS [#]fi"lenum [LEN=number]

Remarks: n

speed

parity

4-194

is 1 or 2, indicating the number of the
Asynchronous Communications Adapter.

is an integer constant specifying the
transmit/receive bit rate in bits per second
(bps). Valid speeds are 75, 110, 150, 300,
600, 1200, 1800, 2400,4800, and 9600.
The default is 300 bps.

is a one-character constant specifying the
parity for transmit and receive as follows:

S SPACE: Parity bit always transmitted
and received as a space (0 bit).

o ODD: Odd transmit parity, odd
receive parity checking.

M MARK: Parity bit always transmitted
and received as a mark (1 bit).

Purpose:

Versions:

Fonnat:

OPEN "COM ...
Statement

Opens a communications file.

Cassette Disk

Advanced

Compiler

OPEN "COMn: [speed] [,parity] [,data] [,stop]
[,RS] [,CS[n]] [,DS[n]] [,CD[n]] [,LF]" AS
[#]filenum [LEN=number]

Differences: The RS, CS[n], DS[n], CD[n], and LF options
are new in the BASIC interpreter release 1.10. These
options perform as follows:

RS suppresses RTS (Request To Send)

CS[n] controls CTS (Clear To Send)

DS[n] controls DSR (Data Set Ready)

CD[n] controls CD (Carrier Detect)

LF sends a line feed following each carriage
return

The CD (Carrier Detect) is also known as the RLSD
(Received Line Signal Detect).

n in each of the above options may range from 0 to
65535.

Note: The speed, parity, data, and stop
parameters are positional, but RS, CS, DS, CD,
and LF are not.

4-170a

OPEN "COM ...
Statement

4-170b

The RTS (Request To Send) line is turned on when
you execute an OPEN "COM ... statement unless you
include the RS option. When you specify RS,
CSO is the default.

Normally I/O statements to a communications file
will fail if the CTS (Clear To Send) or DSR (Data Set
Ready) are off. The system waits one second before
returning a "Device Timeout." The CS and DS
options allow you to avoid this problem by ignoring
these lines. If the n argument is included, it specifies
the number of milliseconds to wait for the signal
before returning a "Device Timeout" error. If n is
omitted or is equal to zero, then the line status is not
checked at all.

Normally Carrier Detect (CD or RLSD) is ignored
when an OPEN "COM ... statement is performed.
The CD option allows you to test this line by includ
ing the n parameter, in the same way as CS and DS.
If n is omitted or is equal to zero, then Carrier Detect
is not checked at all (which is the same as omitting
the CD option).

The LF parameter is intended for those using
communication files as a means of printing to a serial
line printer. When you specify LF, a line feed
character (hex OA) is automatically sent after each
carriage return character (hex ~C). INPUT# or
LINE INPUT#, when used to read from a communica
tion file opened with the LF option, stop when they
see a carriage return. The line feed is always ignored.

number is the maximum number of bytes which can
be read from the communication buffer when using
GET or PUT. The default is 128 bytes.

Example:

OPEN "COM ...
Statement

10 OPEN "COM1:9600,N,8"CS,DS,CD" AS #1

Opens COM 1: at 9600 bps with no parity and eight
data bits. CTS, DSR, and RLSD are not checked.

50 OPEN "COM1:1200""CS,DS2000" AS #1

Opens COM 1 : at 1200 bps with the defaults of even
parity and seven data bits. RTS is sent, CTS is not
checked, and "Device Timeout" is given if DSR is
not seen within two seconds. Note that the commas
are required to indicate the position of the parity,
start and stop parameters, even though they are
omitted. This is what is meant by positional
parameters.

An OPEN statement may be used with an ON ERROR
statement to make sure a modem is working properly
before sending any data. For example, the following
program makes sure we get Carrier Detect (RLSD)
from the modem before starting. Line 20 is set to
timeout after 10 seconds. TRIES is set to 6 so we
give up if Carrier Detect is not seen within one minute.
Once communication is established, we re-open the
file with a shorter delay until timeout.

4-170c

"iiJUUittiit.,ilii,,,iil.P

OPEN "COM ...
Statement

4-170d

5 TRIES=6
10 ON ERROR GO TO 100
20 OPEN "COMl:300,N,8,2,CS,DS,CD10000" AS #1
30 ON ERROR GOTO a
40 CLOSE #1 ' works so can continue
50 GOTO 1000

100 TRIES=TRIES-l
110 IF TRIES=O THEN ON ERROR GOTO a ' give up
120 RESUME

1000 OPEN "COMl:300,N,8,2,CS,DS,CD2000" AS #1

The next example shows a typical way to use a
communication file to control a serial line prin ter.
The LF parameter in the OPEN statement ensures
that lines do not print on top of each other.

10 WIDTH "COM1:", 132
20 OPEN "COM1:1200,N,8"CS10000,DS10000,

CD10000,LF" AS #1

OPEN "COM ...
Statement

E EVEN: Even transmit parity, even
receive parity checking.

N NONE: No transmit parity, no
receive parity checking.

The default is EVEN (E).

data is an integer constant indicating the
number of transmit/receive data bits.
Valid values are: 4,5,6,7, or8. The default
is 7.

stop is an integer constant indicating the
number of stop bits. Valid values are 1 or
2. The default is two stop bits for 75 and
110 bps, one stop bit for all others. If you
use 4 or 5 for data, a 2 here will mean 1 1/2
stop bits.

filenum is an integer expression which evaluates to
a valid file number. The number is then
associated with the file for as long as it is
open and is used by other communications
I/O statements to refer to the file.

number is the maximum number of bytes which
can be read from the communication
buffer when using GET or PUT. The
default is 128 bytes.

OPEN "COM ... allocates a buffer for I/O in the
same fashion as OPEN for diskette files. It supports
RS232 asynchronous communication with other
computers and peripherals.

A communications device may be open to only one
file number at a time.

4-195

OPEN "COM ...
Statement

4-196

The RS, CS, DS, CD, and LF options affect the line
signals as follows:

RS suppresses RTS (Request To Send).

CS[n] controls CTS (Clear To Send).

DS[n] controls DSR (Data Set Ready).

CD[n] controls CD (Carrier Detect).

LF sends a line feed following each carriage
return.

The CD (Carrier Detect) is also known as the RLSD
(Received Line Signal Detect).

Note: The speed, parity, data, and stop
parameters are positional, but RS, CS, DS, CD,
and LF are not.

The RTS (Request To Send) line is turned on when
you execute an OPEN "COM ... statement unless
you include the RS option.

The n argument in the CS, DS, and CD options
specifies the number of milliseconds to wait for the
signal before returning a ((Device Timeout" error. n
may range from 0 to 65535. If n is omitted or is equal
to zero, then the line status is not checked at all.

The defaults are CS1000, DS1000, and CDO. If RS
was specified, CSO is the default.

That is, normally I/O statements to a
communications file will fail if the CTS (Clear To
Send) or DSR (Data Set Ready) signals are off. The
system waits one second before returning a "Device
Timeout." The CS and DS options allow you to
ignore these lines or to specify the amount of time
to wait before the timeout.

OPEN "COM ...
Statement

Normally Carrier Detect (CD or RLSD) is ignored
when an OPEN "COM ... statement is executed. The
CD option allows you to test this line by including
the n parameter, in the same way as CS and DS. If n is
omitted or is equal to zero, then Carrier Detect is
not checked at all (which is the same as omitting the
CD option).

The LF parameter is intended for those using
communication files as a means of printing to a serial
line printer. When you specify LF, a line feed
character (hex OA) is automatically sent after each
carriage return character (hex OC). (This includes
the carriage return sent as a result of the width
setting.) Note that INPUT # and LINE INPUT #,
when used to read from a communications file that
was opened with the LF option, stop when they see a
carriage return. The line feed is always ignored.

Any coding errors within the string expression
starting with speed results in a "Bad file name" error.
An indication as to which parameter is in error is not
given.

Refer to "Appendix F. Communications" for more
information on control of output signals and other
technical information on communications support.

If you specify 8 data bits, you must specify parity N.
If you specify 4 data bits, you must specify a parity,
that is, N parity is invalid. BASIC uses all 8 bits in a
byte to store numbers, so if you are transmitting or
receiving numeric data (for example, by using PUT),
you must specify 8 data bits. (This is not the case if
you are sending numeric data as text.)

Refer to the previous section for opening devices
other than communications devices.

4-197

OPEN "COM ...
Statement

Example: 10 OPEN ItCOM 1 : It AS 1

4-198

File 1 is opened for communication with all defaults.
The speed is 300 bps with even parity. There will be
7 data bits and one stop bit.

10 OPEN ItCOM1 :2400" AS #2

File 2 is opened for communication at 2400 bps.
Parity, number of data bits, and number of stop bits
are defaulted.

20 OPEN ICOM2:1200,N,8" AS #1

File number 1 is opened for asynchronous I/O at
1200 bps, no parity is to be produced or checked,
8-bit bytes will be sent and received, and 1 stop bit
will be transmitted.

10 OPEN "COM1 :9600,N,8, ,CS,DS,CD" AS #1

Opens COM1: at 9600 bps with no parity and eight
data bits. CTS, DSR, and RLSD are not checked.

50 OPEN "COM1 :1200""CS,DS2000" AS #1

Opens COM1: at 1200 bps with the defaults of even
• .l 1 t 1·. RIT1C"'t· . ,...,rr<,..... panty anu seven oa a pus. 1" 1S sent, \.....1 ~ 1S not

checked, and "Device Timeout" is given if DSR is
not seen within two seconds. Note that the commas
are required to indicate the position of the parity,
start, and stop parameters, even though a value is not
specified. This is what is meant by positional
parameters.

OPEN "COM ...
Statement

An OPEN statement may be used with an ON
ERROR statement to make sure a modem is
working properly before sending any data. For
example, the following program makes sure we get
Carrier Detect (CD or RLSD) from the modem
before starting. Line 20 is set to timeout after 10
seconds. TRIES is set to 6.so we give up if Carrier
Detect is not seen within one minute. Once
communication is established, we re-open the file
with a shorter delay until timeout.

5 TRIES=6
10 ON ERROR GOTO 100
20 OPEN "COM1:300,N,8,2,CS,DS,CD10000" AS #1
30 ON ERROR GOTO 0
40 CLOSE #1 I works so can cant i nue
50 GOTO 1000

100 TRIES=TRIES-1
110 IF TRIES=0 THEN ON ERROR GOTO 0 I give up
120 RESUME

1000 OPEN ICOM1:300,N,8,2,CS,DS,CD2000" AS #1

The next example shows a typical way to use a
communication file to control a serial line printer.
The LF parameter in the OPEN statement ensures
that lines do not print on top of each other.

1 0 WIDTH II C Ot11 : ", 1 32
20 OPEN "COM1:1200,N,8"CS10000,DS10000,

CD10000,LF" AS #1

4-199

OPTION BASE
Statement

Purpose: Declares the minimum value for array subscripts.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: OPTION BASE n

Remarks: n is 1 or O.

4-200

The default base is O. If the statement:

OPTION BASE 1

is executed, the lowest value an array subscript may
have is one.

The OPTION BASE statement must be coded before
you define or use any arrays.

OUT
Statement

Purpose: Sends a byte to a machine output port.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Remarks: n is a numeric expression for the port number, in
the range 0-65535.

m is a numeric expression for the data to be
transmitted, in the range 0-255.

Refer to the IBM Personal Computer Technical Reference
manual for a description of valid port numbers (I/O
addresses).

OUT is the complementary statement to the INP
function. Refer to "INP Function" in this chapter.

One use of OUT is to affect the video output. On
some displays attached to the Color/Graphics
Monitor Adapter, you may find that the first two or
three characters on the line don't show up on the
screen. If your display does not have a horizontal
adjustment control, you can use the following
statements to shift the display:

OUT 980,2: OUT 981,43

This shifts the display two characters to the right in
40-column width (or 16 points in medium
resolution graphics mode, or 32 points in high
resolution graphics mode).

4-201

OUT
Statement

OUT 980,2: OUT 981,85

This shifts the display right five characters in
sO-column width.

The shift caused by these OUT statements remains
in effect until a WIDTH or SCREEN statement is
executed. The MODE command from DOS can also
be used to shift the display as described here; it has
the benefit of remaining in effect until a System
Reset.

Example: 100 OUT 32, 100

This sends the value 100 to output port 32.

4-202

PAINT
Statement

Purpose: Fills in an area on the screen with the selected color.

Versions: Cassette Disk Advanced Compiler
*** ***

Graphics mode only.

Format: PAINT (x,y) [,paint [,boundary]]

Remarks: (x,y)

paint

are the coordinates of a point within the
area to be filled in. The coordinates may be
given in absolute or relative form (see
"Specifying Coordinates" under
"Graphics Modes" in Chapter 3). This
point will be used as a starting point.

is the color to be painted with, in the range
o to 3. In medium resolution, this color is
the color from the current palette as
defined by the COLOR statement. 0 is the
background color. The default is the
foreground color, color number 3. In high
resolution,paint equal to 0 (zero) indicates
black, and the default of 1 (one) indicates
white.

boundary is the color of the edges of the figure to be
filled in, in the range 0 to 3 as described
above.

The figure to be filled in is the figure with edges of
boundary color. The figure is filled in with the color
paint.

4-203

PAINT
Statement

Since there are only two colors in high resolution it
doesn't make sense for paint to be different from
boundary. Since boundary is defaulted to equalpaint we
don't need the third parameter in high resolution
mode.

In high resolution this means "blacking out" an area
until black is hit, or "whiting out" an area until
white is hit.

In medium resolution we can fill in with color 1 with
a border of color 2. Visually this might mean a green
ball with a red border.

The starting point of PAINT must be inside the
figure to be painted. If the specified point already
has the color boundary then PAINT will have no
effect. If paint is omitted the foreground color is
used (3 in medium resolution, 1 in high resolution).
PAINT can paint any type of figure, but "jagged"
edges on a figure will increase the amount of stack
space required by PAINT. So if a lot of complex
painting is being done you may want to use CLEAR
at the beginning of the program to increase the
stack space available.

The PAINT statement allows scenes to be displayed
with very few statements. This can be a very useful
capability.

Example: 5 SCREEN 1

4-204

10 LINE (0,0)-(100,150),2,B
20 PAINT (50,50),1,2

The PAINT statement in line 20 fills in the box
drawn in line 10 with color 1.

PEEK
Function

Purpose: Returns the byte read from the indicated memory
position.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v = PEEK(n)

Remarks: n is an integer in the range 0 to 65535. n is the
offset from the current segment as defined by
the DEF SEG statement, and indicates the
address of the memory location to be read. (See
"DEF SEG Statement" in this chapter.)

The returned value will be an integer in the range 0
to 255.

PEEK is the complementary function to the POKE
statement (see -"POKE Statement," later in this
chapter).

Example: The following example can be used in a program to
test which display adapter is on the system. After
line 30 is executed, the variable IBMMONO will
have a value of 0 (zero) if the Color/Graphics
Monitor Adapter is used, or 1 (one) if the IBM
Monochrome Display and Parallel Printer Adapter
is used.

10 'test display adapter
20 DEF SEG=0
30 IF (PEEK(&410) AND &H30)=&H30

THEN IBMMONO=l
ELSE IBMMONO=0

4-205

PEN
Statement and Function

Purpose: Reads the light pen.

Versions: Cassette

Disk

Advanced

Compiler
(**)

PEN STOP only in Advanced and Compiler.

Format: As a statement:

PENON

PEN OFF

PEN STOP

As a function:

v = PEN(n)

Remarks: The PEN function, v=PEN(n), reads the light pen
coordina tes.

4-206

n is a numeric expression in the range 0 to 9, and
affects the value returned by the function as
follows:

o A flag indicating if pen was down since last
poll. Returns -1 if down, 0 if not.

1 Returns the x coordinate where pen was
last activated. Range is 0 to 319 in medium
resolution, or 0 to 639 in high resolution.

2 Returns the y coordinate where pen was
last activated. Range is 0 to 199.

3 Returns the current pen switch value. -1 if
down, 0 if up.

PEN
Statement and Function

4 Returns the last known valid x coordinate.
Range is 0 to 319 in medium resolution, or
o to 639 in high resolution.

5 Returns the last known valid y coordinate.
Range is 0 to 199.

6 Returns the character row position where
pen was last activated. Range is 1 to 24.

7 Returns the character column position
where pen was last activated. Range is 1 to
40 or 1 to 80 depending on WIDTH.

8 Returns the last known valid character
row. Range is 1 to 24.

9 Returns the last known valid character
column position. Range is 1 to 40 or 1 to
80 depending on WIDTH.

PEN ON enables the PEN read function. The PEN
function is initially off. A PEN ON statement must
be executed before any pen read function calls can
be made. A call to the PEN function while the PEN'
function is off results in an "Illegal function call"
error.

Conversely, for execution speed improvements, it is
a good idea to turn the pen off with a PEN OFF
statement when you are not using the light pen.

For Advanced BASIC, executing PEN ON will also
allow trapping to take place with the ON PEN
statement. After PEN ON, if a nonzero line number
was specified in the ON PEN statement, then every
time the program starts a new statement BASIC
checks to see if the pen was activated. Refer to "ON
PEN Statement" in this chapter.

4-207

PEN
Statement and Function

PEN OFF disables the PEN read function. For
Advanced BASIC, no trapping of the pen takes place
and action by the light pen is not remembered even
if it does take place.

PEN STOP is only available in Advanced BASIC. It
disables trapping of light pen activity, but if activity
happens it is remembered so an immediate trap
occurs when a PEN ON is executed.

When the pen is down in the border area of the
screen, the values returned are inaccurate.

You should not attempt I/O to cassette while PEN is
ON.

Example: 50 PEN ON

4-208

60 FOR 1=1 TO 500
70 X=PEN(0): Xl=PEN(3)
80 PRINT X, Xl
90 NEXT
100 PEN OFF

This example prints the pen value since the last poll,
and the current value.

PLAY
Statement

Purpose: Plays music as specified by string.

Versions: Cassette Disk Advanced Compiler
(**) ***

Format: PLAY string

Remarks: PLAY implements a concept similar to DRAW by
imbedding a "tune definition language" into a
character string.

string is a string expression consisting of single
character music commands.

The single character commands in PLAY are:

A to G with optional #, +, or-
Plays the indicated note in the current
octave. A number sign (#) or plus sign (+)
afterwards indicates a sharp, a minus sign (-)
indicates a flat. The #, +, or - is not allowed
unless it corresponds to a black key on a
piano. For example, B# is an invalid note.

On Octave. Sets the current octave for the
following notes. There are 7 octaves,
numbered 0 to 6. Each octave goes from C to
B. Octave 3 starts with middle C. Octave 4 is
the default octave.

N n Plays note n. n may range from 0 to 84. In the
7 possible octaves, there are 84 notes. n=O
means rest. This is an alternative way of
selecting notes besides specifying the octave
(0 n) and the note name (A-G).

4-209

PLAY
Statement

4-210

L n Sets the length of the following notes. The
actual note length is lin. n may range from 1
to 64. The following table may help explain
this:

Length

L1
L2
L3

L4
L5

L6

L64

Equivalent

whole note
half note
one of a triplet of three half notes
(1/3 of a 4 beat measure)
quarter note
one of a quintuplet (1/5 of a
measure)
one of a quarter note triplet

sixty-fourth note

The length may also follow the note when
you want to change the length only for the
note. For example, A16 is equivalent to
L16A.

P n Pause (rest). n may range from 1 to 64, and
figures the length of the pause in the same
way as L (length).

(dot or period) After a note, causes the note
to be played as a dotted note. That is, its
length is multiplied by 3/2. More than one
dot may appear after the note, and the length
is adjusted accordingly. For example, "A .. "
will play 9/4 as long as L specifies, "A ... " will
play 2718 as long, etc. Dots may also appear
after a pause (P) to scale the pause length in
the same way.

Tn Tempo. Sets the number of quarter notes in a
minute. n may range from 32 to 255. The
default is 120. Under "SOUND Statement,"
later in this chapter, is a table listing common
~empos and the equivalent beats per minute.

PLAY
Statement

MF Music foreground. Music (created by
SOUND or PLAY) runs in foreground. That
is, each subsequent note or sound will not
start until the previous note or sound is
finished. You can press Ctrl-Break to exit
PLAY. Music foreground is the default state.

MB Music background. Music (created by
SOUND or PLAY) runs in background
instead of in foreground. That is, each note
or sound is placed in a buffer allowing the
BASIC program to continue executing while
music plays in the background. Up to 32
notes (or rests) may be played in background
at a time.

MN Music normal. Each note plays 7/8 of the
time specified by L (length). This is the
default setting of MN, ML, and MS.

ML Music legato. Each note plays the full period
set by L (length).

MS Music staccato. Each note plays 3/4 of the
time specified by L.

X variable;
Execu tes specified string.

In all of these commands the n argument can be a
constant like 12 or it can be =variable; where
variable is the name of a variable. The semicolon (;) is
required when you use a variable in this way, and
when you use the X command. Otherwise a
semicolon is optional between commands, except a
semicolon is not allowed after MF, MB, MN, ML, or
MS. Also, any blanks in string are ignored.

4-211

PLAY
Statement

You can also specify variables in the form
VARPTR$ (vart"able), instead of =variable;. This is
useful in programs that will later be compiled. For
example:

One Method

PLAY "XA$;II
P LAY 110= I ; II

Alternative Method

PLAY IIXI!+VARPTR$ (A$)
PLAY 1I0="+VARPTR$ (I)

You can use X to store a "subtune" in one string and
call it repetitively with different tempos or octaves
from another string.

Example: The following example plays a tune.

4-212

10 REM 1 ittle lamb
20 MARY$="GFE-FGGG"
30 PLAY "MB T100 03 L8;Xt1ARY$;p8 FFF1+"
40 PLAY "GB-B-4; XMARY$; GFFGFE-."

POINT
Function

Purpose: Returns the color of the specified point on the
screen.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Graphics mode only.

Format: v = POINT (x,y)

Remarks: (x,y) are the coordinates of the point to be used.
The coordinates must be in absolute form
(see "Specifying Coordinates" under
"Graphics Modes" in Chapter 3).

If the point given is out of range the value -1 is
returned. In medium resolution valid returns are 0,
1, 2, and 3. In high resolution they are ° and 1.

Example: The following example inverts the current state of
point (1,1).

5 SCREEN 2
10 IF POINT(I, 1)<>0 THEN PRESET(I, I)

ELSE PSET(I,I)
or

10 PSET(I,I),l-POINT(I,I)

4-213

POKE
Statement

Purpose: Writes a byte into a memory location.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: POKE n,m

Remarks: n must be in the range 0 to 65535 and indicates
the address of the memory location where the
data is to be written. It is an offset from the
current segment as defined by the DEF SEG
statement (see "DEF SEG Statement" in this
chapter).

m m is the data to be written to the specified
location. It must be in the range 0 to 255.

The complementary function to POKE is PEEK.
(See "PEEK Function" in this chapter.) POKE and
PEEK, are useful for efficient data storage,' loading
machine language subroutines, and passing
arguments and results to and from machine
language subroutines.

Warning:
BASIC does not do any checking on the address.
So don't go POKEing around in BASIC's stack,
BASIC's variable area, or your BASIC program.

Example: 10 DEF SEG: POKE 106,0

4-214

See "INKEY$ Variable" in this chapter for an
explanation of this example.

POS
Function

Purpose: Returns the current cursor column position.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v = POS(n}

Remarks: n is a dummy argument.

The current horizontal (column) position of the
cursor is returned. The returned value will be in the
range 1 to 40 or 1 to 80, depending on the current
WIDTH setting. CSRLIN can be used to find the
vertical (row) position of the cursor (see "CSRLIN
Variable" in this chapter).

Also see the LPOS function.

Example: I F pas (0) >60 TH EN PR I NT CHR$ (13)

This example prints a carriage return (moves the
cursor to the beginning of the next line) if the cursor
is beyond position 60 on the screen.

4-215

PRINT
Statement

Purpose: Displays data on the screen.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: PRINT [ltst of expressions] [;]

? [ltst of expressions] [;]

Remarks: ltst of expressions

4-216

is a list of numeric and/or string
expressions, separated by commas, blanks,
or semicolons. Any string constants in the
list must be enclosed in quotation marks.

If the list of expressions is omitted, a blank line is
displayed. If the list of expressions is included, the
values of the expressions are displayed on the screen.

Note: The question mark (?) may be used as a
shorthand way of entering PRINT only when
you are using the BASIC program editor.

Print Positions

The position of each printed item is determined by
the punctuation used to separate the items in the
list. BASIC divides the line into print zones of 14
spaces each. In the list of expressions, a comma
causes the next value to be printed at the beginning
of the next zone. A semicolon causes the next value
to be printed immediately after the last value.
Typing one or more spaces between expressions has
the same effect as typing a semicolon.

PRINT
Statement

If a comma, semicolon, or SPC or TAB function
ends the list of expressions, the next PRINT
statement begins printing on the same line, spacing
accordingly. If the list of expressions ends without a
comma, semicolon, SPC or TAB function, a carriage
return is printed at the end of the line; that is, BASIC
moves the cursor to the beginning of the next line.

If the length of the value to be printed exceeds the
number of character positions remaining on the
current line, then the value will be printed at the
beginning of the next line. If the value to be printed
is longer than the defined WIDTH, BASIC prints as
much as it can on the current line and continues
printing the rest of the value on the next physical
line.

Scrolling occurs as described under "Text Mode" in
Chapter 3.

Printed numbers are always followed by a space.
Positive numbers are preceded by a space. Negative
numbers are preceded by a minus sign.
Single-precision numbers that can be represented
with 7 or fewer digits in fixed point format no less
accurately than they can be represented in the
floating point format, are output using fixed point
or integer format. For example, 10" (-7) is output as
.0000001 and 10" (-8) is output as 1E-8.

BASIC automatically inserts a carriage return/line
feed after printing width characters, where width is40
or 80, as defined by the WIDTH statement. This will
cause two lines to be skipped when you print exactly
40 (or 80) characters, unless the PRINT statement
ends in a semicolon (;).

LPRINT is used to print information on the printer.
See "LPRINT and LPRINT USING Statements"
earlier in this chapter.

4-217

PRINT
Statement

Example: Ok

4-218

10 X=5
20 PRINT X+5, X-5, X*(-5)
30 END
RUN

10 0 -25
Ok

In this example, the commas in the PRINT
statement cause each value to be printed at the
beginning of the next print zone.

Ok
10 INPUT X
20 PRINT X "SQUARED IS" X"'2 "AND";
30 PRINT X "CUBED ISII X"3
RUN
? 9
9 SQUARED IS 81 AND 9 CUBED IS 729

Ok
RUN
? 21

21 SQUARED IS 441 AND 21 CUBED IS 9261
Ok

Here, the semicolon at the end of line 20 causes both
PRINT statements to be printed on the same line.

Ok
10 FOR X = 1 TO 5
20 J=J+5
30 K=K+10
40 ?J; K;
50 NEXT X
RUN

5 10 10 20 15 30 20 40 25 50
Ok

Here, the semicolons in the PRINT statement cause
each value to be printed immediately after the
preceding value. (Don't forget, a number is always
followed by a space and positive numbers are
preceded by a space.) In line 40, a question mark is
used instead of the word PRINT.

PRINT USING
Statement

Purpose: Prints strings or numbers using a specified format.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: PRINT USING vI; list of expressions [;]

Remarks: v$ is a string constant or variable which consists of
special formatting characters. These formatting
characters (see below) determine the field and
the format of the printed strings or numbers.

list of expressions
consists of the string expressions or numeric
expressions that are to be printed, separated by
semicolons or commas.

String Fields

When PRINT USING is used to print strings, one of
three formatting characters may be used to format
the string field:

Specifies that only the first character in
the given string is to be printed.

\n spaces\ Specifies that 2+n characters from the
string are to be printed. If the
backslashes are typed with no spaces,
two characters are printed; with one
space, three characters are printed, and
so on.

4-219

PRINT USING
Statement

4-220

If the string is longer than the field, the
extra characters are ignored. If the field is
longer than the string, the string is
left-justified in the field and padded with
spaces on the right.

Example:

10 A$=II LOO K": B'$="OUT"
30 PRINT USING "!";A$;B$
40 PRINT USING 11\ \";A$;B$
50 PRINT USING "\ \1;A$;B$;"!!li
RUN
LO
LOOKOUT
LOOK OUT !!

& Specifies a variable length string field.
When the field is specified with "&", the
string is output exactly as input. Example:

10 A$="LOOK": B$="OUT"
20 PRINT USING "!II;A$;
30 PRINT USING "&";8$
RUN
LOUT

Numeric Fields

When PRINT USING is used to print numbers, the
following special characters may be used to format
the numeric field:

A number sign is used to represent each
digit position. Digit positions are always
filled. If the number to be printed has
fewer digits than positions specified, the
number is right-justified (preceded by
spaces) in the field.

PRINT USING
Statement

A decimal point may be inserted at any
position in the field. If the format string
specifies that a digit is to precede the
decimal point, the digit will always be
printed (as 0 if necessary). Numbers are
rounded as necessary.

PRINT USING "##.##";.78
0.78

PRINT USING "###.##11;987.654
987.65

PRINT USING "##.## ";10.2,5.3,66.789, .234
10.20 5.30 66.79 0.23

In the last example, three spaces were
inserted at the end of the format string to
separate the printed values on the line.

+ A plus sign at the beginning or end of the
format string causes the sign of the
number (plus or minus) to be printed
before or after the number.

A minus sign at the end of the format field
causes negative numbers to be printed
with a trailing minus sign.

PRINT USING "+##.## ";-68.95,2.4,55.6,-.9
-68.95 +2.40 +55.60 -0.90

PRINT USING "##.##- ";-68.95,22.449,-7.01
68.95- 22.45 7.01-

** A double asterisk at the beginning of the
format string causes leading spaces in the
numeric field to be filled with asterisks.

4-221

PRINT USING
Statement

4-222

The ** also specifies positions for two
more digits.

PRINT USING 11
0",0",#.# ";12.39,-0.9,765.1

*12.4 *-0.9 765.1

$$ A double dollar sign causes a dollar sign to
be printed to the immediate left of the
formatted number. The $$ specifies two
more digit positions, one of which is the
dollar sign. The exponential format
cannot be used with $$. Negative numbers
cannot be used unless the minus sign trails
to the right.

PRINT USING 11$$###.##";456.78
$456.78

**$ The **$ at the beginning of a format string
combines the effects of the above two
symbols. Leading spaces are filled with
asterisks and a dollar sign will be printed
before the number. **$ specifies three
more digit positions, one of which is the
dollar sign.

PR I NT US I NG 11,1,0"'$##. ##"; 2.34
-;"-;"-;"$2.34

A comma that is to the left of the decimal
point in a formatting string causes a
comma to be printed to the left of every
third digit to the left of the decimal point.
A comma that is at the end of the format
string is printed as part of the string. A
comma specifies another digit position.

PRINT USING
Statement

The comma has no effect if used with the
exponential C''''''') format.

PRINT USING "####,.##";1234.5
1,234.50

PRINT USING "####.##,";1234.5
1234.50,

Four carets may be placed after the digit
position characters to specify exponential
format. The four carets allow space for
E±nn or D±nn to be printed. Any decimal
point position may be specified. The
significant digits are left-justified, and the
exponent is adjusted. Unless a leading + or
trailing + or - is specified, one digit
position is used to the left of the decimal
point to print a space or a minus sign.

Ok
PRINT USING "##.##""''''''''';234.56

2.35E+02
Ok
PRINT USING ".###"' ""-";-88888
.889E+05-
Ok
PRINT USING "+.##""""''';123
+.12E+03
Ok

An underscore in the format string causes
the next character to be output as a literal
character.

PRINT USING" !##.## !";12.34
! 12.34! - -

The literal character itself may be an
underscore by placing " __ " in the format
string.

4-223

PRINT USING
Statement

If the number to be printed is larger than the
specified numeric field, a percent sign (%) is printed
in front of the number. If rounding causes the
number to exceed the field, the percent sign is
printed in front of the rounded number.

Ok
PRINT USING "##.##11;111.22
% 111 .22
Ok
PRINT USING 11.##11;.999
%1 .00
Ok

If the number of digits specified exceeds 24, an
"Illegal function call" error occurs.

Example: This example shows how you can include string
constants in the format string.

4-224

Ok
PRINT USING IITHIS IS EXAMPLE J#II;
THIS IS EXAMPLE #1
Ok

PRINT # and PRINT # USING
Statements

Purpose: Writes data sequentially to a file.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: PRINT # filenum, [USING vI;] list of exps

Remarks: filenum is the number used when the file was
opened for output.

v$ is a string expression comprised of
formatting characters as described in the
previous section, "PRINT USING
Statement."

list of exps is a list of the numeric and/or string
expressions that will be written to the file.

PRINT # does not compress data on the file. Ail
image of the data is written to the file just as it would
be displayed on the screen with a PRINT statement.
For this reason, care should be taken to delimit the
data on the file, so that it will be input correctly from
the file:

In the list of expressions, numeric expressions
should be delimited by semicolons. For example,

PRINT #l,A;B;C;X;Y;Z

(If commas are used as delimiters, the extra blanks
that are inserted between print fields are also
wri tten to the file.)

4-225

PRINT # and PRINT # USING
Statements

4-226

String expressions must be separated by semicolons
in the list. To format the string expressions
correctly on the file, use explicit delimiters in the
list of expressions.

, For example, let A$="CAMERA" and
B$="93604-1". The statement

PRINT #1 ,A$;B$

would write CAMERA93604-1 to the file. Because
there are no delimiters, this could not be input as
two separate strings. To correct the problem, insert
explicit delimiters into the PRINT # statement as
follows:

P R I NT # 1 ,A $; II , I I ; B $

The image written to the file is

CAMERA,93604-1

which can be read back into two string variables.

If the strings themselves contain commas,
semicolons, significant leading blanks, carriage
returns, or line feeds, write them to the file
surrounded by explicit quotation marks using
CHR$(34).

For example, let A$="CAMERA, AUTOMATIC"
and B$=" 9 3 604-1". The statement:

PRINT #l,A$;B$

writes the following image to the file:

CAMERA, AUTOMATIC 93604-1

and the statement:

INPUT #l,A$,B$

inputs the string "CAMERA" to A$ and
"AUTOMATIC 93604-1" to B$.

PRINT # and PRINT # USING
Statements

To separate these strings properly on the file, write
double quotes to the file -image using CHR$(34).
The statement:

PRINT #1,CHR$(34) ;A$;CHR$(34) ;CHR$(34);

B$;CHR$(34)

writes the following image to the file:

"CAMERA, AUTOMAT I (1111 93604-111

and the statement:

INPUT #l,A$,B$

inputs "CAMERA, AUTOMATIC" to A$ and
" 93604-1" to B$.

The PRINT # statement may also be used with the
USING option to control the format of the file. For
example:

PRINT #l,USING I $$###.##,";J;K;L

The easy way to avoid all these problems is to use the
WRITE # statement rather than the PRINT #
statement. (Refer to "WRITE # Statement," at the
end of this chapter.)

~xample: For more examples using PRINT # and WRITE #,
see "Appendix B. BASIC Diskette Input and
Output."

4-227

PSET and PRESET
Statements

Purpose: Draws a point at the specified position on the
screen.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Graphics mode only.

Format: PSET (x,y) [,color]

PRESET (x,y) [,color]

Remarks: (X;y) are the coordinates of the point to be set.
They may be in absolute or relative form,
as explained in the section "Specifying
Coordinates" under "Graphics Modes" in
Chapter 3.

4-228

color specifies the color to be used, in the range
o to 3. In medium resolution, color selects
the color from the current palette as
defined by the COLOR statement. 0 is the
background color. The default is the
foreground color, color number 3. In high
resolution, a color of 0 (zero) indicates
black, and the default of 1 (one) indicates
white. In high resolution a color value of2
will be treated as 0, and 3 will be treated as
1.

PRESET is almost identical to PSET. The only
difference is that if no color parameter is given to
PRESET, the background color (0) is selected. If
color is included, PRESET is identical to PSET. Line
70 in the example below could just as easily be:

70 P SET (I , I) ,(0

PSET and PRESET
Statements

If an out of range coordinate is given to PSET or
PRESET no action is taken nor is an error given. If
color is greater than 3, this will result in an "Illegal
function call" error.

Example: Lines 20 through 40 of this example draw a diagonal
line from the point (0,0) to the point (100,100).
Then lines 60 through 80 erase the line by setting
each point to a color of 0.

10 SCREEN 1
20 FOR 1=0 TO 100
30 PSET (1,1)
40 NEXT
50 'erase 1 ine
60 FOR 1=100 TO 0 STEP -1
70 PRESET(I,I)
80 NEXT

4-229

PUT
Statement (Files)

Purpose: Writes a record from a random buffer to a random
file.

Versions: Cassette Disk Advanced Compiler
*** *** ***

Format: PUT [#] /ilenum [,number]

Remarks: filenum is the number under which the file was
opened.

4-230

number is the record number for the record to be
written, in the range 1 to 32767.

If number is omitted, the record has the next
available record number (after the last PUT).

PRINT #, PRINT # USING, WRITE #, LSET, and
RSET may be used to put characters in the random
file buffer before a PUT statement. In the case of
WRITE #, BASIC pads the buffer with spaces up to
the carriage return.

Any attempt to read or write past the end of the
buffer causes a "Field overflow" error. Refer to
"Appendix B. BASIC Diskette Input and Output."

Because BASIC and DOS block as many records as
possible in 512 byte sectors, the PUT statement
does not necessarily perform a physical write to the
diskette.

PUT
Statement (Files)

PUT can be used for a communications file. In that
case number is the number of bytes to write to the
communications file. This number must be less than
or equal to the value set by the LEN option on the
OPEN "COM ... statement.

Example: See" Appendix B. BASIC Diskette Input and
Output."

4-231

PUT
Statement (Graphics)

Purpose: Writes colors onto a specified area of the screen.

Versions: Cassette Disk Advanced Compiler
*** ***

Graphics mode only.

Format: PUT (x,y) ,array [,action]

Remarks: (x, y) are the coordinates of the top left corner
of the image to be transferred.

4-232

array

action

is the name of a numeric array containing
the information to be transferred. See
"GET Statement (Graphics)" in this
chapter for more information on this
array.

is one of:

PSET
PRESET
XOR
OR
AND

XOR is the default.

PUT is the opposite of GET in the sense that it takes
data out of the array and puts it onto the screen.
However it also provides the option of interacting
with the data already on the screen by the use of the
action.

PUT
Statement (Graphics)

PSET as an action simply stores the data from the
array onto the screen, so this is the true opposite of
GET.

PRESET is the same as PSET except a negative
image is produced. That is, a value of 0 in the array
causes the corresponding point to have color
number 3, and vice versa; a value of 1 in the array
causes the corresponding point to have color
number 2, and vice versa.

AND is used when you want to transfer the image
only if an image already exists under the transferred
image.

OR is used to superimpose the image onto the
existing image.

XOR is a special mode which may be used for
animation. XOR causes the points on the screen to
be inverted where a point exists in the array image.
XOR has a unique property that makes it especially
useful for animation: when an image is PUT against
a complex background twice, the background is
restored unchanged. This allows you to move an
object around 'without obliterating the background.

In medium resolution mode, AND, XOR, and OR
have the following effects on color:

AND

s
c
r
e
e
n

0

1

2

3

array value

0 1 2 3

0 0 0 0

0 1 0 1

0 0 2 2

0 1 2 3

4-233

PUT
Statement (Graphics)

4-234

OR

XOR

s
c
r
e
e
n

s
c
r
e
e
n

0

1

2

3

0

1

2

3

array value

0 1 2 3

0 1 2 3

1 1 3 3

2 3 2 3

3 3 3 3

array value

0 1 2 3

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

Animation of an object can be performed as follows:

1. PUT the object on the screen (with XOR).

2. Recalculate the new position of the object.

3. PUT the object on the screen (with XOR) a
second time at the old location to remove the
old· image.

4. Go to step 1, this time putting the object at the
new location.

PUT
Statement (Graphics)

Movement done this way leaves the background
unchanged. Flicker can be reduced by minimizing
the time between steps 4 and 1, and making sure
there is enough time delay between steps 1 and 3. If
more than one object is being animated, every
object should be processed at once, one step at a
time.

If it is not important to preserve the background,
animation can be performed using the PSET action
verb. But you should remember to have an image
area that will contain the "before" and "after"
images of the object. This way the extra area will
effectively erase the old image. This method may be
somewhat faster than the method using XOR
described above, since only one PUT is required to
move an object (although you must PUT a larger
image).

If the image to be transferred is too large to fit on
the screen, an "Illegal function call" error occurs.

4-235

RANDOMIZE
Statement

Purpose: Reseeds the random number generator.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: RANDOMIZE [n]

Remarks: n is an integer expression which will be used as
the random number seed.

4-236

If n is omitted, BASIC suspends program execution
and asks for a value by displaying:

Random Number Seed (-32768 to 32767)?

before executing RANDOMIZE.

If the random number generator is not reseeded, the
RND function returns the same sequence of
random numbers each time the program is run. To
change the sequence of random numbers every time
the program is run, place a RANDOMIZE
statement at the beginning of the program and
change the seed with each run.

In Disk and Advanced BASIC, the internal clock can
be a useful way to get a random number seed. You
can use VAL to change the last two digits ofTIME$
to a number, and use that number for n.

RANDOMIZE
Statement

Example: 10 RANDOMIZE
20 FOR 1=1 TO 4
30 PRINT RND;
40 NEXT I
RUN
Random Number Seed (-32768 to 32767)7

Suppose you respond with 3. The program
continues:

Random Number Seed (-32768 to
.7655695 .3558607 .3742327

Ok
RUN
Random Number Seed (-32768 to

32767)73
.1388798

32767)7

Suppose this time you respond with 4. The program
continues:

Random Number Seed (-32768 to
.1719568 .5273236 .6879686

Ok
RUN
Random Number Seed (-32768 to

32767)7 4
.713297

If you try 3 again, you'll get the same sequence as the
first run:

Random Number Seed (-32768 to 32767)7 3
.7655695 .3558607 .3742327 .1388798

Ok

4-237

READ
Statement

Purpose: Reads values from a DATA statement and assigns
them to variables (see "DATA Statement" in this
chapter).

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: READ variable [, variable] ...

Remarks: variable is a numeric or string variable or array
element which is to receive the value read
from the DATA table.

4-238

A READ statement must always be used in
conjunction with a DATA statement. READ
statements assign DATA statement values to the
variables in the READ statement on a one-to-one
basis. READ statement variables may be numeric or
string, and the values read must agree with the
variable types specified. If they do not agree, a
"Syntax error" will result.

A single READ statement may access one or more
DATA statements (they will be accessed in order), or
several READ statements may access the same
DATA statement. If the number of variables in the
list of variables exceeds the number of elements in
the DATA statement(s), an "Out of data" error
occurs. If the number of variables specified is fewer
than the number of elements in the DATA
statement(s), subsequent READ statements will
begin reading data at the first unread element. If
there are no subsequent READ statements, the
extra data is ignored.

READ
Statement

To reread data from any line in the list of DATA
statements, use the RESTORE statement (see
"RESTORE Statement" in this chapter).

Example: 80 FOR 1=1 TO 10
90 READ A (I)
100 NEXT I
110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

This program segment reads the values from the
DATA statements into the array A. After execution,
the value of A(l) is 3.08, and so on.

Ok
10 PRINT "CITY " , f'STATE II

, If ZIP"
20 READ C$,S$,Z
30 DATA "DENVER,'I, COLORADO, 80211
40 PRINT C$,S$~Z
RUN
CITY
DENVER,
Ok

STATE
COLORADO

ZIP
80211

This program reads string and numeric data from
the DATA statement in line 30. Note that you don't
need quotation marks around COLORADO,
because it doesn't have commas, semicolons, or
significant leading or trailing blanks. However, you
do need the quotation marks around "DENVER,"
because of the comma.

4-239

REM
Statement

Purpose: Inserts explanatory remarks in a program.

Versions: Cassette

Disk

Advanced

Compiler
(**)

Format: REM remark

Remarks: remark may be any sequence of characters.

REM statements are not executed but are output
exactly as entered when the program is listed.
However, they do slow up execution time
somewhat, and take up space in memory.

REM statements may be branched into (from a
GOTO or GOSUB statement), and execution
continues with the first executable statement after
the REM statement.

Remarks may be added to the end of a line by
preceding the remark with a single quotation mark
instead of :REM. If you put a remark on a line with
other BASIC statements, the remark must be the/ast
statement on the Hne.

Example: 1010 REr1 ca 1 cu 1 ate ave rage ve 1 oc i ty
110 SUM=0: REM initial ize SUM
120 FOR 1=1 TO 20
130 SUM=SUM + V(I)

Line 110 might also be written:

110 S UM=0 lin i t i ali ze SUM

4-240

Purpose: Renumbers program lines.

RENUM
Command

Versions: Cassette Disk Advanced Compiler
*** *** ***

Format: RENUM [newnum] [,[oldnum] [,increment]]

Remarks: newnum is the first line number to be used in the
new sequence. The default is 10.

oldnum is the line in the current program where
renumbering is to begin. The default is the
first line of the program.

increment is the increment to be used in the new
sequence. The default is 10.

RENUM also changes all line number references
following GOTO, GOSUB, THEN, ELSE,
ON ... GOTO, ON ... GOSUB, RESTORE,
RESUME, and ERL test statements to reflect the
new line numbers. If a nonexistent line number
appears after one of these statements, the error
message "Undefined line number xxxxx in yyyyy" is
printed. The incorrect line number reference
(xxxxx) is not changed by RENUM, but line
number yyyyy may be changed.

Note: RENUM cannot be used to change the
order of program lines (for example, RENUM
15,30 when the program has three lines
numbered 10, 20 and 30) or to create line
numbers greater than 65529. An "Illegal
function call" error will result.

4-241

RENUM
Command

Example: RENUM

4-242

Renumbers the entire program. The first new line
number is 10. Lines increment by 10.

RENUM 300,,50

Renumbers the entire program. The first new line
number is 300. Lines increment by 50.

RENUM 1000,900,20

Renumbers the lines from 900 up so they start with
line number 1000 and increment by 20.

RESET
Command

Purpose: Closes all diskette files and clears the system buffer.

Versions: Cassette Disk Advanced Compiler
*** *** ***

Format: RESET

Remarks: If all open files are on diskette, then RESET is the
same as CLOSE with no file numbers after it.

4-243

RESTORE
Statement

Purpose: Allows DATA statements to be reread from a
specified line.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: RESTORE [line]

Remarks: line is the line number of a DATA statement in
the program.

Example:

4-244

After a RESTORE statement is executed, the next
READ statement accesses the first item in the first
DATA statement in the program. If line is specified,
the next READ statement accesses the first item in
the specified DATA statement.

Ok
10 READ A,B,C
20 RESTORE
30 READ D,E,F
40 DATA 57, 68, 79
50 PR!NT A·R·r·n·F·F .. ,-,-,-,-,.
RUN

57 68 79 57 68 79
Ok

The RESTORE statement in line 20 resets the
DATA pointer to the beginning, so that the value~
that are read in line 30 are 57, 68, and 79.

RESUME
Statement

Purpose: Continues program execution after an error
recovery procedure is performed.

Versions: Cassette

Disk

Format: RESUME [0]

RESUME NEXT

RESUME line

Advanced

Compiler
(**)

Remarks: Any of the formats shown above may be used,
depending upon where execution is to resume:

RESUME or RESUME 0
Execution resumes at the
statement which caused the
error.

Note: If you try to
renumber a program
containing a RESUME °
statement, you will get an
"Undefined line number"
error. The statement will
still say RESUME 0, which is
okay.

RESUME NEXT Execution resumes at the
statement immediately following
the one which caused the error.

RESUME line Execution resumes at the
specified line number.

4-245

RESUME
Statement

A RESUME statement that is not in an error trap
routine causes a "RESUME without error" message
to occur.

Example: 10 ON ERROR GOTO 900

4-246

900 IF (ERR=230)AND(ERL=90) THEN PRINT
IlTRY AGAIN 1l : RESUME 80

Line 900 is the beginning of the error trapping
routine. The RESUME statement causes the
program to return to line 80 when error 230 occurs
in line 90.

RETURN
Statement

Purpose: To bring you back from a subroutine. See "GOSUB
and RETURN Statements" in this chapter.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

line valid only in Advanced and Compiler.

Format: RETURN [line]

Remarks: line is the line number of the program line you
wish to return to. You may use it only in
Advanced BASIC.

Although you can use RETURN line to return from
any subroutine, this enhancement was added to
allow non-local returns from the event trapping
routines. From one of these routines you will often
want to go back to the BASIC program at a fixed line
number while still eliminating the GOSUB entry the
trap created. Use of the non-local RETURN must be
done with care, however, since any other GOSUBs,
WHILEs, or FORs that were active at the time of the
trap will remain active.

4-247

RIGHT$
Function

Purpose: Returns the rightmost n characters of string x$.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v$ = RIGHT$(x$,n)

Remarks: x$ is any string expression.

n is an integer expression specifying the number
of characters to be in the result.

If n is greater than or equal to LEN(x$), then x$ is
returned. If n is zero, the null string (length zero) is
returned.

Also see the MID$ and LEFT$ functions.

Example: Ok

4-248

10 A$="BOCA RATON, FLORIDA"
20 PRINT RIGHT$(A$,7)
RUN
FLORIDA
Ok

Therightmost seven characters of the string A$ are
returned.

RND
Function

Purpose: Returns a random number between a and 1.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v = RND[(x)]

Remarks: x is a numeric expression which affects the
returned value as described below.

The same sequence of random numbers is generated
each time the program is run unless the random
number generator is reseeded. This is most easily
done using the RANDOMIZE statement (see
"RANDOMIZE Statement" in this chapter). You
may also reseed the generator when you call the
RND function by using x where x is negative. This
always generates the particular sequence for the
given x. This sequence is not affected by
RANDOMIZE, so if you want to generate a different
sequence each time the program is run, you must
use a different value for x each time.

Ifx is positive or not included, RND(x) generates the
next random number in the sequence.

RND(O) repeats the last number generated.

To get random numbers in the range 0 (zero)
through n, use the formula:

INT(RND * (n+l»

4-249

RND
Function

Example: Ok

4-250

10 FOR 1=1 TO 3
20 PRINT RND(I); I x>0
30 NEXT I
40 PRINT: X=RND(-6) I x<0
50 FOR 1=1 TO 3
60 PRINT RND(I); I x>0
70 NEXT I
80 RANDOMIZE 853 'randomize
90 PRINT: X=RND(-6) I x<0
100 FOR 1=1 TO 3
110 PRINT RND; I same as x>0
120 NEXT I
130 PRINT: PRINT RND(0)
RUN

.6291626 .1948297 .6305799

.6818615 .4193624 .6215937

.6818615 .4193624 .6215937

.6215937
Ok

The first horizontal line of results shows three
random numbers, generated using a positive x.

In line 40, a negative number is used to reseed the
random number generator. The random numbers
produced after this seeding are in the second row of
resuits.

In line 80, the random number generator is reseeded
using the RANDOMIZE statement; in line 90 it is
reseeded again by calling RND with the same
negative value we used in line 40. This cancels the
effect of the RANDOMIZE statement, as you can
see; the third line of results is identical to the second
line.

In line 130, RND is called with an argument of zero,
so the last number printed is the same as the
preceding number.

Purpose: Begins execution of a program.

Versions: Cassette

Disk

Format: RUN [line]

RUN filespec[, R]

Advanced

RUN
Command

Compiler
(**)

Remarks: line is the line number of the program in
memory where you wish execution to
begin.

filespec is a string expression for the file
specification, as explained under "Naming
Files" in Chapter 3. The default extension
.BAS is supplied for diskette files.

RUN or RUN line begins execution of the program
currently in memory. If line is specified, execution
begins with the specified line number. Otherwise,
execution begins at the lowest line number.

RUN filespec loads a file from diskette or cassette
into memory and runs it. It closes all open files and
deletes the current contents of memory before
loading the designated program. However, with the
R option, all data files remain open. Refer also to
"Appendix B. BASIC Diskette Input and Output."

Executing a RUN command will turn off any sound
that is running and reset to Music Foreground. Also,
PEN and STRIG will be reset to OFF.

4-251

RUN
Command

Example: Ok

4-252

10 PRINT 1/7
RUN

.1428571
Ok
10 PI=3.141593
20 PRINT PI
RUN 20
o

Ok

In this first example, we use the first form of RUN
on two very small programs. The first program is run
from the beginning. We used the RUN line option
for the second example to run the program from
line 20. In this case, line 10 does not get executed, so
PI does not receive its proper value. A 0 is printed
because all numeric variables have an initial value of
zero.

RUN 'ICAS1 :NEWFI L",R

The preceding example loads the program
"NEWFIL" from the tape and runs it, keeping files
open.

SAVE
Command

Purpose: Saves a BASIC program file on diskette or cassette.

Versions: Cassette Disk
*** ***

Format: SAVE filespec [,A]

SAVEfilespec [,P]

Advanced Compiler

Remarks: fi'lespec is a string expression for the file
specification. IfJilespec does not conform
to the rules outlined under "Naming Files"
in Chapter 3, an error is issued and the save
is cancelled.

The BASIC program is written to the specified
device. When saving to CASl:, the cassette motor is.
turned on and the file is immediately written to the
tape.

For diskette files, if the filename is eight characters
or less and no extension is supplied, the extension
. BAS is added to the name. If a file with the same
filename already exists on the diskette, it will be
written over.

When using Cassette BASIC, if the device name is
omitted, CASl: is assumed. CASl: is the only
allowable device for SAVE in Cassette BASIC.

For Disk and Advanced BASIC, the device defaults
to the DOS default drive.

The A option saves the program in ASCII format.
Otherwise, BASIC saves the file in a compressed
binary (tokenized) format. ASCII files take up more
space, but some types of access require that files be

4-253

SAVE
Command

in ASCII format. For example, a file intended to be
merged must be saved in ASCII format. Programs
saved in ASCII may be read as data files.

The P option saves the program in an encoded
binary format. This is the protection option. When
a protected program is later run (or loaded), any
attempt to LIST or EDIT it fails with an "Illegal
function call" error. N 0 way is provided to
"unprotect" such a program.

Note: The diskette directory entry for a
BASIC program file gives no indication that the
file is either protected or stored in ASCII
format. The . BAS extension is used in any case.

See also "Appendix B. BASIC Diskette Input and
Output."

Example: SAVE III NVENT 11

4-254

Saves the program in memory as INVENT. The
program is saved on cassette if you are using
Cassette BASIC. If you are using Disk or Advanced
BASIC, the program is saved on the diskette in the
DOS default drive and given an extension of .BAS.

SAVE "B:PROG",A

Saves PROG.BAS on drive B: in ASCII, so it may
later be merged.

SAVE "A:SECRET.BOZ",P

Saves SECRET.BOZ on drive A:, protected so it may
not be altered.

SCREEN
Function

Purpose: Returns the ASCII code (0-255) for the character on
the active screen at the specified row (line) and
column.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v = SCREEN(row,col[,z])

Remarks: row is a numeric expression in the range 1 to 25.

col is a numeric expression in the range 1 to 40 or 1
to 80 depending upon the WIDTH setting.

z is a numeric expression which evaluates to a
true or false value. z is only valid in text mode.

Refer to "Appendix G. ASCII Character Codes" for
a list of ASCII codes.

In text mode, if z is included and is true (non-zero),
the color attribute for the character is returned
instead of the code for the character. The color
attribute is a number in the range 0 to 255. This
number, v, may be deciphered as follows:

(v MOD 16) is the foreground color.

«(v -foreground)/16) MOD 128) is the background
color, whereforeground is calculated as above.

(v>127) is true (-1) if the character is blinking,
false (0) if not.

4-255

SCREEN
Function

Refer to "COLOR Statement" for a list of colors and
their associated numbers.

In graphics mode, if the specified location contains
graphic information (points or lines, as opposed to
just a character), then the SCREEN function returns
zero.

Any values entered outside of the ranges indicated
result in an "Illegal function call" error.

The SCREEN statement is explained in the next
section.

Example: 100 X = SCREEN (10,10)

4-256

If the character at 10,10 is A, then X is 65.

110 X = SCREEN (1,1,1)

Returns the color attribute of the character in the
upper left hand corner of the screen.

SCREEN
Statement

Purpose: Sets the screen attributes to be used by subsequent
statements.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Meaningful with the Color/Graphics Monitor
Adapter only.

Format: SCREEN [mode] [,[burst] [,[apage] [,vpage]]]

Remarks: mode is a numeric expression resulting in an
integer value of 0, 1 or 2. Valid modes are:

o Text mode at current width (40 or
80).

1 Medium resolution graphics mode
(320x200). Use with Color/Graphics
Monitor Adapter only.

2 High resolution graphics mode
(640x200). Use with Color/Graphics
Monitor Adapter only.

burst is a numeric expression resulting in a true
or false value. It enables color. In text
mode (mode=O), a false (zero) value disables
color (black and white images only) and a
true (non-zero) value enables color (allows
color images). In medium resolution
graphics mode (mode=l), a true (non-zero)
value will disable color, and a false (zero)
value will enable color. Since black and
white are the only colors in high resolution
graphics (mode=2), this parameter will not
have much effect in high resolution.

4-257

SCREEN
Statement

4-258

apage (active page) is an integer expression in the
range 0 to 7 for width 40, or 0 to 3 for
width 80. It selects the page to be written
to by output statements to the screen, and
is valid in text mode (mode=O) only.

vpage (visual page) selects which page is to be
displayed on the screen, in the same way as
apage above. The visual page may be
different than the active page. vpage is valid
in text mode (mode=O) only. If omitted,
vpage defaults to apage.

If all parameters are valid, the new screen mode is
stored, the screen is erased, the foreground color is
set to white, and the background and border colors
are set to black.

If the new screen mode is the same as the previous
mode, nothing is changed.

If the mode is text, and only apage and vpage are
specified, the effect is that of changing display pages
for viewing. Initially, both active and visual pages
default to 0 (zero). By manipulating active and visual
pages, you can display one page while building
another. Then you can switch visual pages
instantaneously.

Note: There is only one cursor shared
between all the pages. If you are going to switch
active pages back and forth, you should save the
cursor position on the current active page
(using POS(O) and CSRLIN), before changing
to another active page. Then when you return
to the original page, you can restore the cursor
position using the LOCATE statement.

SCREEN
Statement

Any parameter may be omitted. Omitted
parameters, except vpage, assume the old value.

Any values entered outside of the ranges
indicated will result in an "Illegal function call"
error. Previous values are retained.

If you are writing a program which is intended
to be run on a machine that may have either
adapter, we suggest you use the SCREEN 0,0,0
and WIDTH 40 statements at the beginning of
the program.

Example: 10 SCREEN 0,1,0,0

Selects text mode with color, and sets active and
visual page to 0.

20 SCREEN ,,1,2

Mode and color burst remain unchanged. Active
page is set to 1 and display page to 2.

30 SCREEN 2,,0,0

Switches to high resolution graphics mode.

40 SCREEN 1,0

Switches to medium resolution color graphics.

50 SCREEN ,1

Sets medium resolution graphics with color off.

4-259

SGN
Function

Purpose: Returns the sign of x.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v = SGN(x)

Remarks: x is any numeric expression.

SGN(x) is the mathematical signum function:

• If x is positive, SGN(x) returns 1.

• If x is zero, SGN(x) returns O.

• If x is negative, SGN(x) returns -1.

Example: ON SGN(X)+2 GOTO 100,200,300

4-260

branches to 100 if X is negative, 200 if X is zero, and
300 if X is positive.

SIN
Function

Purpose: Calculates the trigonometric sine function.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v = SIN(x)

Remarks: x is an angle in radians.

If you want to convert degrees to radians, multiply
by PI/lBO, where PI=3.141593.

SIN (x) is calculated in single precision.

Example: Ok
10 PI=3.141593
20 DEGREES = 90
30 RADIANS=DEGREES * PI/180 I PI/2
40 PRINT SIN(RADIANS)
RUN

1
Ok

'This example calculates the sine of 90 degrees, after
first converting the degrees to radians.

4-261

SOUND
Statement

Purpose: Generates sound through the speaker.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: SOUND freq, duration

Remarks: freq is the desired frequency in Hertz (cycles
per second). It must be a numeric
expression in the range 37 to 32767.

4-262

duration is the desired duration in clock ticks. The
clock ticks occur 18.2 times per second.
duration must be a numeric expression in
the range ° to 65535.

When the SOUND statement produces a sound, the
program continues to execute until another
SOUND statement is reached. If duration of the new
SOUND statement is zero, the current SOUND
statement that is running is turned off. Otherwise,
the program waits until the first sound completes
before it executes the new SOUND statement.

If you are using Advanced BASIC, you can cause the
sounds to be buffered so execution does not stop
when a new SOUND statement is encountered. See
the MB command explained under "PLAY
Statement" in this chapter for details.

If no SOUND statement is running, SOUNDx,O has
no effect.

SOUND
Statement

The tuning note, A, has a frequency of 440. The
following table correlates notes with their
frequencies for two octaves on either side of middle
C.

Note Frequency Note Frequency

C 130.810 C* 523.250
D 146.830 D 587.330
E 164.810 E 659.260
F 174.610 F 698.460
G 196.000 G 783.990
A 220.000 A 880.000
B 246.940 B 987.770
C 261.630 C 1046.500
D 293.660 D 1174.700
E 329.630 E 1318.500
F 349.230 F 1396.900
G 392.000 G 1568.000
A 440.000 A 1760.000
B 493.880 B 1975.500

*middle C. Higher (or lower) notes may be
approximated by doubling (or halving) the
frequency of the corresponding note in the previous
(next) octave.

To create periods of silence, use SOUND
32767 ,duration.

The duration for one beat can be calculated from
beats per minute by dividing the beats per minute
into 1092 (the number of clock ticks in a minute).

4-263

SOUND
Statement

The next table shows typical tempos in terms of
clock ticks:

Beats/
Tempo Minute

very slow Larghissimo

I
Largo 40-60
Larghetto 60-66
Grave
Lento
Adagio 66-76

slow Adagietto
t Andante 76-108

medium Andantino , Moderato 108-120
fast Allegretto

I
Allegro 120-168
Vivace
Veloce
Presto 168-208

very fast Prestissimo

Example: The following program creates a
glissando up and down.

4-264

10 FOR 1=440 TO 1000 STEP 5
20 SOUND I, 0.5
30 NEXT
40 FOR 1=1000 TO 440 STEP -5
50 SOUND I, 0.5
60 NEXT

Ticks/
Beat

27.3-18.2
18.2-16.55

16.55-14.37

14.37-10.11

10.11-9.1

9.1-6.5

6.5-5.25

SPACE$
Function

Purpose: Returns a string consisting of n spaces.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v$ = SPACE$(n)

Remarks: n must be in the range 0 to 255.

Refer also to the SPC function.

Example: Ok
10 FOR I = 1 TO 5
20 X$ = SPACE$(I)
30 PRINT X$; I
40 NEXT I
RUN

1
2

3
4

5
Ok

This example uses the SPACE$ function to print
each number I on a line preceded by I spaces. An
additional space is inserted because BASIC puts a
space in front of positive numbers.

4-265

SPC
Function

Purpose: Skips n spaces in a PRINT statement.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: PRINT SPC(n)

Remarks: n must be in the range 0 to 255.

If n is greater than the defined width of the device,
then the value used isn MOD width. SPC may only be
used with PRINT, LPRINT and PRINT #
statements.

If the SPC function is at the end of the list of data
items, then BASIC does not add a carriage return, as
though the SPC function had an implied semicolon
after it.

Also see the SP ACE$ function.

Example: Ok

4-266

PRINT "OVER" SPC(lS) "THERE"
OVER THERE
Ok

This example prints OVER and THERE separated
by 15 spaces.

SQR
Function

Purpose: Returns the square root of x.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v = SQR(x)

Remarks: x must be greater than or equal to zero.

Example: Ok
10 FOR X = 10 TO 25 STEP 5
20 PRINT X, SQR(X)
30 NEXT
RUN

10 3.162278
15 3.872984
20 4.472136
25 5

Ok

This example calculates the square roots of the
numbers 10, 15, 20 and 25.

4-267

STICK
Function

Purpose: Returns the x and y coordinates of two joysticks.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v = STICK(n)

Remarks: n is a numeric expression in the range 0 to 3
which affects the result as follows:

4-268

o returns the x coordinate for joystick A.

1 returns the y coordinate of joystick A.

2 returns the x coordinate of joystick B.

3 returns the y coordinate of joystick B.

Note: STICK(O) retrieves all four values for
the coordinates, and returns the value for
STICK(O). STICK(l), STICK(2), and STICK(3)
do not sample the joystick. They get the values
previously retrieved by STICK (0).

The range of values for x and y depends on your
particular joysticks.

Example: 10 PRI NT IIJoyst i ck BII

STICK
Function

20 PRINT "x coordinate","y coordinate"
30 FOR J=l TO 100
40 TEMP=STICK(0)
50 X=STICK(2): Y=STICK(3)
60 PRINT X,Y
70 NEXT

This program takes 100 samples of the coordinates
of joystick B and prints them.

4-269

STOP
Statement

Purpose: Terminates program execution and returns to
command level.

Versions: Cassette

Disk

Advanced

Compiler
(**)

Format: STOP

Remarks: STOP statements may be used anywhere in a
program to terminate execution. When BASIC
encounters a STOP statement, it displays the
following message:

4-270

Break in nnnnn

where nnnnn is the line number where the STOP
occurred.

Unlike the END statement, the STOP statement
does not close files.

BASIC always returns to command level after it
executes a STOP. You can resume execution of the
program by issuing a CONT command (see "CONT
Command" in this chapter).

Example: 10 I NPUT A, B
20 TEMP= A:;\°B
30 STOP

STOP
Statement

40 FINAL = TEMP+200: PRINT FINAL
RUN
? 26,2.1
Break in 30
Ok
PRINT TEMP
54.6

Ok
CaNT

254.6
Ok

This example calculates the value of TEMP, then
stops. While the program is stopped, we can check
the value of TEMP. Then we can use CONT to
resume program execution at line 40.

4-271

STR$
Function

Purpose: Returns a string representation of the value of x.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v$ = STR$(x)

Remarks: x is any numeric expression.

If x is positive, the string returned by STR$ contains
a leading blank (the space reserved for the plus sign).
For example:

Ok
? STR$(321); LEN(STR$(321))

321 4
Ok

The VAL function is complementary to STR$.

Example: This example branches to different sections of the
program based on the number of digits in a number
that is entered. The digits in the number are counted
by using STR$ to convert the number to a string,
then branching based on the length of the string.

4-272

5 REM arithmetic for kids
1 0 I N P UT "TY PEA N U~1B E R II; N
20 ON LEN(STR$(N))-l GOSUB 30,100,200,300
•
•
•

STRIG
Statement and Function

Purpose: Returns the status of the joystick buttons (triggers).

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: As a statement:

STRIG ON

STRIG OFF

As a function:

Remarks: n

v = STRIG(n)

is a numeric expression in the range 0 to 3. It
affects the value returned by the function as
follows:

o Returns -1 if button Al was pressed since
the last STRIG(O) function call, returns 0
if not.

1 Returns -1 if button Al is currently
pressed, returns 0 if not.

2 Returns -1 if button Bl was pressed since
the last STRIG(2) function call, returns 0
if not.

3 Returns -1 if button Bl is currently
pressed, returns 0 if not ..

4-273

STRIG
Statement and Function

4-274

In Advanced BASIC and the BASIC Compiler,
you can read four buttons from the joysticks.
The additional values for n are:

4 Returns -1 if button A2 was pressed since
the last STRIG(4) function call, returns 0
if not.

5 Returns -1 if button A2 is currently
pressed, returns 0 if not.

6 Returns -1 if button B2 was pressed since
the last STRIG(6) function call, returns 0
if not.

7 Returns -1 if button B2 is currently
pressed, returns 0 if not.

STRIG ON must be executed before any STRIG(n)
function calls may be made. After STRIG ON, every
time the program starts a new statement BASIC
checks to see if a button has been pressed.

If STRIG is OFF, no testing takes place.

Refer also to the next section, "STRIG(n)
Statement" for enhancements to the STRIG
function in Advanced BASIC.

Purpose:

Versions:

Format:

STRIG
Function

Returns the status of the joystick buttons (triggers).

Cassette Disk

v = STRIG(n)

Advanced

Compiler

Differences: Advanced BASIC release 1.10 supports four buttons
on the joysticks.

n may be in the range 0 to 7. The values
supporting the additional buttons are:

4 Returns -I if button A2 was pressed since
the last STRIG(4) function call, returns 0
if not.

5 Returns -1 if button A2 is currently
pressed, returns 0 if not.

6 Returns -I if button B2 was pressed since
the last STRIG(6) function call, returns 0
if not.

7 Returns -1 if button B2 is currently
pressed, returns 0 if not.

4-234a

NOTES

4-234h

STRIG(n)
Statement

Purpose: Enables and disables trapping of the joystick
buttons.

Versions: Cassette Disk

Format: STRIG(n) ON

STRIG(n) OFF

STRIG(n) STOP

Advanced

Compiler
(**)

Remarks: n may be 0, 2,4, or 6, and indicates the button to
be trapped as follows:

o button Al
2 button BI
4 button A2
6 button B2

STRIG(n) ON must be executed to enable trapping
by the ON STRIG(n) statement (see "ON STRIG(n)
Statement" in this chapter). After STRIG(n) ON,
every time the program starts a new statement,
BASIC checks to see if the specified button has been
pressed.

If STRIG(n) OFF is executed, no testing or trapping
takes place. Even if the button is pressed, the event
is not remembered.

If a STRIG(n) STOP statement is executed, no
trapping takes place. However, if the button is
pressed it is remembered so that an immediate trap
takes place when STRIG(n) ON is executed.

Refer also to the previous section, "STRIG
Statement and Function."

4-275

STRING$
Function

Purpose: Returns a string of length n whose characters all
have ASCII code m or the first character of x$.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v$ = STRING$(n,m)

v$ = STRING$(n,x$)

Remarks: n, m are in the range 0 to 255.

x$ is any string expression.

Example: 0 k ".

4-276

10 X$ STRING$(10,4S)
20 PRINT X$ "MONTHLY REPORT" X$
RUN
----------MONTHLY REPORT---------
Ok

The first example repeats an ASCII value of 45 to
print a string of hyphens,

Ok
10 X$="ABCD"
20 Y$+STRING$(10,X$)
30 PRINT Y$
RUN
AAAAAAAAAA
Ok

The second example repeats the first character of
the string "ABCD".

Purpose:

Versions:

Format:

STRIG(n)
Statement

Enables and disables trapping of the joystick buttons.

Cassette Disk

STRIG(n) ON

STRIG(n) OFF

STRIG(n) STOP

Advanced Compiler
*** ***

Differences: BASIC release 1.10 supports four buttons. The
number n corresponds to the number in the ON
STRIG(n) statement:

n may be 0, 2, 4, or 6, as follows:

o button Al

2 button.Bl

4 button A2

6 button B2

4-236a

NOTES

4-236b

SWAP
Statement

Purpose: Exchanges the values of two variables.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: SWAP variablel, variable2

Remarks: variablel, variable2
are the names of two variables or array
elements.

Any type variable may be swapped (integer,
single-precision, double-precision, string), but the
two variables must be of the same type or a "Type
misma tch" error results.

Example: Ok
1.0 A$=" ONE II : B$=" ALL"
20 PRINT A$ C$ B$
3.0 SWAP A$, B$
4.0 PRINT A$ C$ B$
RUN

ONE FOR ALL
ALL FOR ONE

Ok

After line 30 is executed, A$ has the value" ALL"
and B$ has the value" ONE ".

4-277

SYSTEM
Command

Purpose: Exits BASIC and returns to DOS.

Versions: Cassette Disk Advanced Compiler
*** *** ***

Format: SYSTEM

Remarks: SYSTEM closes all files before it returns to DOS.

4-278

Your BASIC program is lost.

If you entered BASIC through a Batch file from
DOS, the SYSTEM command returns you to the
Batch file, which continues executing at the point it
left off.

TAB
Function

Purpose: Tabs to position n.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: PRINT TAB(n)

Remarks: n must be in the range 1 to 255.

If the current print position is already beyond space
n, TAB goes to positionn on the next line. Space 1 is
the leftmost position, and the rightmost position is
the defined WIDTH.

TAB may only be used in PRINT, LPRINT, and
PRINT # statements.

If the TAB function is at the end of the list of data
items, then BASIC does not add a carriage return, as
though the TAB function had an implied semicolon
after it.

Example: TAB is used in the following example to cause the
information on the screen to line up in columns.

Ok
10 PRI NT "NAME" TAB (25) "AMOUNT" : PRI NT
20 READ A$,B$
30 PRINT A$ TAB(25) B$
40 DATA ilL. M. JACOBS I ,I$25.00"
RUN
NAME AMOUNT

L. M. JACOBS
Ok

$25.00

4-279

TAN
Function

Purpose: Returns the trigonometric tangent of x.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v = TAN(x)

Remarks: x is the angle in radians. To convert degrees
to radians, multiply by PI/l80, where
PI=3.l4l593.

TAN(x) is calculated in single precision.

Example: Ok

4-280

10 PI=3.141593
20 DEGREES=45
30 PRINT TAN(DEGREES*PI/180)
RUN

1
Ok

This example calculates the tangent of 45 degrees.

TIME$
Variable and Statement

Purpose: Sets or retrieves the current time.

Versions: Cassette Disk Advanced Compiler
*** *** ***

Format: As a variable:

v$ = TIME$

As a statement:

TIME$ =x$

Remarks: For the variable (v$ = TIME$):

The current time is returned as an 8 character string.
The string is of the form bb:mm:ss, where bb is the
hour (00 to 23), mm is the minutes (00 to 59), andss is
the seconds (00 to 59). The time may have been set
by DOS prior to entering BASIC.

For the statement (TIME$ = x$):

The current time is set. x$ is a string expression
indicating the time to be set. x$ may be given in one
of the following forms:

bb Set the hour in the range 0 to 23. Minutes
and seconds default to 00.

bb:mm Set the hour and minutes. Minutes must be
in the range 0 to 59. Seconds default to 00.

bb:mm:ss Set the hour, minutes, and seconds.
Seconds must be in the range 0 to 59.

4-281

TIME$
Variable and Statement

A leading zero may be omitted from any of the
above values, but you must include at least one digit.
For example, if you wanted to set the time as a half
hour after midnight, you could enter
TIME$="O: 30", but not TIME$=": 30". If any of the
values are out of range, an "Illegal function call"
error is issued. The previous time is retained. If x$ is
not a valid string, a "Type mismatch" error results.

Example: The following program displays the time
continuously in the middle of the screen.

4-282

10 CLS
20 LOCATE 10,15
30 PRINT TIME$
40 GOTO 3.0

TRON and TROFF
Commands

Purpose: Traces the execution of program statements.

Versions: Cassette

Format: TRON

TROFF

Disk

Advanced

Compiler
(**)

Remarks: As an aid in debugging, the TRON command (which
may be entered in indirect mode) enables a trace flag
that prints each line number of the program as it is
executed. The numbers appear enclosed in square
brackets. The trace is turned off by the TROFF
command.

Example: Ok
10 K= 10
20 FOR J=l TO 2
30 L=K + 10
40 PRINT J;K;L
50 K=K+10
6CJ NEXT
70 END
TRON
Ok
RUN
[10J[20J[30J[40J 1 10 20
[50J[60J[30J[40J 2 20 30
[50J[60J[70J
Ok
TROFF
Ok

This example uses TRON and TROFF to trace
execution of a loop. The numbers in brackets are
line numbers; the numbers not in brackets at the
end of each line are the values of J, K, and L which
are printed by the program.

4-283

USR
Function

Purpose: Calls the indicated machine language subroutine
with the argument argo

Versions: Cassette

Disk

Advanced

Compiler
(**)

Format: v = USR[n](arg)

Remarks: n is in the range 0 to 9 and corresponds to the
digit supplied with the DEF USR statement for
the desired routine (see "DEF USR Statement"
in this chapter). If n is omitted, USRO is
assumed.

arg is any numeric expression or string variable,
which will be the argument to the machine
language subroutine.

The CALL statement is another way to call a
machine language subroutine. See "Appendix C.
Machine Language Subroutines" for complete
information on using machine language
subroutines.

Example: 10 DEF USR0 = &HF000
50 C USR0(B/2)

4-284

60 D = USR(B/3)

The function USRO is defined in line 10. Line 50
calls the function USRO with the argument B/2. Line
60 calls USRO again, with the argument B/3.

VAL
Function

Purpose: Returns the numerical value of string xl.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v = VAL(x$)

Remarks: x$ is a string expression.

The VAL function strips blanks, tabs, and line feeds
from the argument string in order to determine the
result. For example,

V AL(" -3")

returns -3.

If the first characters of x$ are not numeric, then
VAL(x$) will return 0 (zero).

See the STR$ function for numeric to string
conversion.

Example: Ok
PRINT VAL("3408 SHERWOOD BLVD.")

3408
Ok

In this example, VAL is used to extract the house
number from an -address.

4-285

VARPTR
Function

Purpose: Returns the address in memory of the variable or file
control block.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: v = VARPTR(vartable)

v = VARPTR(#/ilenum)

Remarks: variable is the name of a numeric or string variable
or array element in your program. A value
must be assigned to vartable prior to the
call to V ARPTR, or an "Illegal function
call" error results.

4-286

/ilenum is the number under which the file was
opened.

For both formats, the address returned is an integer
in the range 0 to 65535. This number is the offset
into BASIC's Data Segment. The address is not
affected by the DEF SEG statement.

The first format returns the address of the first byte
of data identified with vartable. The format of this
data is described in Appendix I under "How
Variables Are Stored."

Note: All simple variables should be assigned
before calling V ARPTR for an array, because
addresses of arrays change whenever a new
simple variable is assigned.

V ARPTR is usually used to obtain the address of a
variable or array so it may be passed to a USR
machine language subroutine. A function call of the

VARPTR
Function

form V ARPTR(A(O» is usually specified when
passing an array, so that the lowest-addressed
element of the array is returned.

The second format returns the starting address of
the file control block for the specified file. This is
not the same as the DOS file control block. Refer to
"BASIC File Control Block" in "Appendix I.
Technical Information and Tips" for detailed
information about the format of the file control
block.

V ARPTR is meaningless for cassette files.

Example: This example reads the first byte in the buffer of a
random file:

10 OPEN "DATA.FIL" AS #1
20 GET #1
30 'get address of control block
40 FCBADR = VARPTR(#l)
50 'figure address of data buffer
60 DATADR = FCBADR+188
70 'get first byte in data buffer
80 A% = PEEK(DATADR)

The next example use V ARPTR to get the data from
a variable. In line 30, P gets the address of the data.
Integer data is stored in two bytes, with the less
significant byte first. The actual value stored at
location P is calculated in line 40. The bytes are read
with the PEEK function, and the second byte is
multiplied by 256 because it contains the high-order
bits.

10 DEFINT A-Z
20 DATA1=500
30 P=VARPTR(DATA1)
40 V=PEEK(P) + 256*PEEK(P+1)
50 PRINT V

4-287

VARPTR$
Function

Purpose: Returns a character form of the address of a variable
in memory. It is primarily for use with PLAY and
DRAW in programs that will later be compiled.

Versions: Cassette Disk Advanced Compiler
*** *** ***

Format: v$ = VARPTR$(varlable)

Remarks: varIable is the name of a variable existing in the
program.

4-288

Note: All simple variables should be assigned
before calling V ARPTR$ for an array element,
because addresses of arrays change whenever a
new simple variable is assigned.

V ARPTR$ returns a three-byte string in the form:

Byte 0 Byte 1 Byte 2

type low byte of high byte of
variable variable
address address

type indicates the variable type:

2 integer
3 string
4 single-precision
8 double-precision

Purpose:

Versions:

Format:

Remarks:

VARPTR$
Function

Re~ns a character form of the address of a variable
in me~ory. It is primarily for use with PLAY and
DRAW\~ programs that will later be compiled.

\\
Cassette \Disk

**
\

\

Advanced

v$ = VARPTR$(variable)

Compiler

V ARPTR$ is a new function in BASIC release 1.10.

variable is the name of ~ variable existing in the
program. \

\

V ARPTR$ returns a three-b)\te string in the form:
\
\

\
Byte 0 Byte 1 \ Byte 2

type low byte of high byte of
variable v~riable
address ad\ ress

type indicates the variable type:

2 integer

3 string

4 single-precision

8 double-precision

VARPTR$
Function

4-246b

The returned value is the same as:

CHR$(type)+MKI$(VARPTR(variable))

You can use V ARPTR$ to indicate a variable name in
the command string for PLAY or DRAW. For
example:

Release 1.00

PLAY "XA$;"
PLAY "0=1;"

1.1 0 Equivalent

PLAY "X"+VARPTR$(A$)
PLAY "O="+V ARPTR$(I)

Note that the BASIC release 1.00 forms for PLAY
and DRAW will still work with BASIC release 1.10.

VARPTR$
Function

The returned value is the same as:

CHR$(type)+MKI$ (V ARPTR(vartable»

You can use V ARPTR$ to indicate a variable name
in the command string for PLAY or DRAW. For
example:

Method One

PLAY "XA$;"
PLAY "0= I ; II

Alternative Method

PLAY "X"+VARPTR$ (A$)
PLAY "O='J+VARPTR$ (I)

This technique is mainly for use in programs which
will later be compiled.

4-289

WAIT
Statement

Purpose: Suspends program execution while monitoring the
status of a machine input port.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: WAIT port, n[,m]

Remarks: port is the port number, in the range 0 to
65535.

4-290

n, m are integer expressions in the range 0 to
255.

Refer to the IBM Personal Computer Technical Reference
manual for a description of valid port numbers (I/O
addresses) .

The WAIT statement causes execution to be
suspended until a specified machine input port
develops a specified bit pattern.

The data read at the port is XORed with the integer
expression m and then ANDed with n. If the result is
ze;o, BASIC loops back and reads the data at the
port again. If the result is nonzero, execution
continues with the next statement. If m is omitted, it
is assumed to be zero.

WAIT
Statement

The WAIT statement lets you test one or more bit
positions on an input port. You can test the bit
position for either a 1 or a o. The bit positions to be
tested are specified by setting l' s in those positions
in n. If you do not specify m, the input port bits are
tested for 1 'so If you do specify m, a 1 in any bit
position in m (for which there is a 1 bit in n) causes
WAIT to test for a 0 for that input bit.

When executed, the WAIT statement loops testing
those input bits specified by 1 's in n. If anyone of
those bits is 1 (or 0 if the corresponding bit in m is 1),
then the program continues with the next
statement. Thus WAIT does not wait for an entire
pattern of bits to appear, but only for one of them to
occur.

Note: It is possible to enter an infinite loop
with the WAIT statement. You can do a
Ctrl-Break or a System Reset to exit the loop.

Example: To suspend program execution until port 32
receives a 1 bit in the second bit position:

100 WAIT 32,2

4-291

WHILE and WEND
Statements

Purpose: Executes a series of statements in a loop as long as a
given condition is true.

Versions: Cassette

Disk

Advanced

Compiler
(**)

Format: WHILE expression

(loop statements)

WEND

Remarks: expression is any numeric expression.

4-292

If expression is true (not zero), loop statements are
executed until the WEND statement is encountered.
BASIC then returns to the WHILE statement and
checks expression. If it is still true, the process is
repeated. If it is not true, execution resumes with
the statement following the WEND statement.

WHILE ... WEND loops may be nested to any level.
Each WEND will match the most recent WHILE.
An unmatched WHILE statement causes a "WHILE
without WEND" error, and an unmatched WEND
statement causes a "WEND without WHILE" error.

WHILE and WEND
Statements

Example: This example sorts the elements of the string array
A$ into alphabetical order. A$ was defined with J
elements.

90 'bubble sort array A$
100 FLIPS=1 'force one pass thru loop
110 WHILE FLIPS
115 FLIPS=0
120 FOR 1=1 TO J-l
130 IF A$(I»A$(1+1) THEN

SWAP A$ (I) ,A$ (1+1): FL I PS= 1
140 NEXT I
150 WEND

4-293

WIDTH
Statement

Purpose: Sets the output line width in number of characters.
After outputting the indicated number of
characters, BASIC adds a carriage return.

Versions: Cassette

Disk

Advanced

Compiler
(**)

Format: WIDTH size

WIDTH /ilenum, size

WIDTH device, size

Remarks: size is a numeric expression in the range 0 to
255. This is the new width. WIDTH 0 is
the same thing as WIDTH 1.

4-294

filenum is a numeric expression in the range 1 to
15. This is the number of a file opened to
one of the devices listed below.

device is a string expression for the device
identifier. Valid devices are SCRN:,
LPT1:, LPT2:, LPT3:, COM1:, or COM2:.

Depending upon the device specified, the following
actions are possible:

WIDTH size or WIDTH "SCRN:",size
Sets the screen width. Only 40 or 80
column width is allowed.

If the screen is in medium resolution
graphics mode (as would occur with a
SCREEN 1 statement), WIDTH 80 forces
the screen into high resolution (just like a
SCREEN 2 statement).

WIDTH
Statement

If the screen is in high resolution graphics
mode (as would occur with a SCREEN 2
statement), WIDTH 40 forces the screen
into medium resolution (like a SCREEN 1
statement).

Note: Changing the screen width
causes the screen to be cleared, and
sets the border screen color to black.

WIDTH device, size
Used as a deferred width assignment for
the device. This form of width stores the
new width value without actually changing
the current width setting. A subsequent
OPEN to the device will use this value for
wid th while the file is open. The width
does not change immediately if the device
is already open.

Note: LPRINT, LLIST, and
LIST,"LPTn:" do an implicit OPEN
and are therefore affected by this
statement.

WIDTHjilenum,size
The width of the device associated with
/llenum is immediately changed to the new
size specified. This allows the width to be
changed at will while the file is open. This
form of WIDTH has meaning only for
LPTl: in Cassette BASIC. Disk and
Advanced BASIC also allow LPT2:, LPT3:,
COMl: and COM2:.

4-295

WIDTH
Statement

4-296

Any value entered outside of the ranges indicated
will result in an "Illegal function call" error. The
previous value is retained.

WIDTH has no effect for the keyboard (KYBD:) or
cassette (CAS1 :).

The width for each printer defaults to 80 when
BASIC is started. The maximum width for the IBM
80 CPS Matrix Printer is 132. However, no error is
returned for values between 132 and 255.

It is up to you to set the appropriate physical width
on your printer. Some printers are set by sending
special codes, some have switches. For the IBM 80
CPS Matrix Printer you should use LPRINT
CHR$(15); to change to a condensed typestyle when
printing at widths greater than 80. Use LPRINT
CHR$(18); to return to normal. The IBM 80 CPS
Matrix Printer is set up to automatically add a
carriage return if you exceed the maximum line
length.

Specifying a width of 255 disables line folding. This
has the effect of "infinite" width. WIDTH 255 is the
default for communications files.

Changing the width for a communications Hie does
not alter either the receive or the transmit buffer; it
just causes BASIC to send a carriage return
character after every size characters.

Changing screen mode affects screen width only
when moving between SCREEN 2 and SCREEN 1 or
SCREEN o. See "SCREEN Statement" in this
chapter.

WIDTH
Statement

Example: 1 0 WIDTH "L PT 1 : " ,75
20 OPEN "LPT1:" FOR OUTPUT AS #1

6020 WIDTH #1,40

In the preceding example, line 10 stores a printer
width of75 characters per line. Line 20 opens file #1
to the printer and sets the width to 75 for
subsequent PRINT #1, ... statements. Line 6020
changes the current printer width to 40 characters
per line.

SCREEN 1,0
'vI I DTH 80
WIDTH 40

SCREEN 0, 1
WIDTH 80

'Set to med-res color graphics
'Go to hi-res graphics
'Go back to medium res

'Go to 40x25 text color mode
'Go to 80x25 text color mode

4-297

WRITE
Statement

Purpose: Outputs data on the screen.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: WRITE [ltst of expressions]

Remarks: ltst of expressions
is a list of numeric and/or string
expressions, separated by commas or
semicolons.

If the list of expressions is omitted, a blank line is
output. If the list of expressions is included, the
values of the expressions are output on the screen.

When the values of the expressions are output, each
item is separated from the last by a comma. Strings
are delimited by quotation marks. After the last item
in the list is printed, BASIC adds a carriage
return/line feed.

WRITE is similar to PRINT. The difference
between \VRITE and PRI~~T is that \Y1RITE inserts
commas between the items as they are displayed and
delimits strings with quotation marks. Also, positive
numbers are not preceded by blanks.

Example: This example shows how WRITE displays numeric
and string values.

4-298

10 A=80: B=90: C$="THAT'S ALL"
20 WRITE A,B,C$
RUN
80,90,"THAT ' S ALL"
Ok

WRITE #
Statement

Purpose: Writes data to a sequential file.

Versions: Cassette Disk Advanced Compiler
*** *** *** ***

Format: WRITE #fllenum, list of expressions

Remarks: filenum is the number under which the file was
opened for output.

list of expressions
is a list of string and/or numeric
expressions, separated by commas or
semicolons.

The difference between WRITE # and PRINT # is
that WRITE # inserts commas between the items as
they are written and delimits strings with quotation
marks. Therefore, it is not necessary for the user to
put explicit delimiters in the list. Also, WRITE #
does not put a blank in front of a positive number. A
carriage return/line feed sequence is inserted after
the last item in the list is written.

4-299

WRITE #
Statement

Example: Let A$="CAMERA" and B$="93604-1". The
statement:

4-300

WRITE #l,A$,B$

writes the following image to the file.

"CAMERA" ,"93604-1"

A subsequent INPUT # statement, such as:

INPUT #1,A$,B$

would input "CAMERA" to A$ and "93604-1" to
B$.

APPENDIXES

Contents

APPENDIX A. MESSAGES A-5

APPENDIX B. BASIC DISKETTE INPUT AND
OUTPUT B-1

Specifying Filenames. B-2

Commands for Program Files B-2
Protected Files B-3

Diskette Data Files - Sequential and
Random I/O B-4

Sequential Files B-4
Creating and Accessing a

Sequential File B-4
Adding Data to a Sequential File ... B-7

Random Files B-8
Creating a Random File B-9
Accessing a Random File B-I0
An Example Program B-12

Performance Hints B-15

APPPENDIX C. MACHINE LANGUAGE
SUBROUTINES C-l

Setting Memory Aside for Your
Subroutines C-2

Getting the Subroutine Code into
Memory C-3

Poking a Subroutine into Memory C-4
Loading the Subroutine from a File C-5

Calling the Subroutine from Your
BASIC Program C-8

'Common Features of CALL and USR ... C-8
CALL Statement C-I0
USR Function Calls C-14

A-I

A-2

APPENDIX D. CONVERTING PROGRAMS TO
IBM PERSONAL COMPUTER BASIC... D-1

File I/O D-1
Graphics D-1
IF ... THEN D-2
Line Feeds..... D-3
Logical Operations D-3
MAT Functions D-4
Multiple Assignments D-4
Multiple Statements D-4
PEEKs and POKEs D-4
Relational Expressions D-5
Remarks............................. D-5
Rounding of Numbers D-5
Sounding the Bell D-5
String Handling............. D-6
Use of Blanks D-7
Other D-7

APPENDIX E. MATHEMATICAL
FUNCTIONS E-1

APPENDIX F. COMMUNICATIONS F-1
Opening a Communications File F-l
Communication I/O F-l

GET and PUT for Communications
Files ".............. F-2

I/O Functions F-2
INPUT$ Functions F-3

An Example Program F-4
Notes on the Program F-5

Operation of Control Signals............. F-6
Control of Output Signals with OPEN .. F-6
Use of Input Control Signals F-7
Testing for Modem Control Signals ... F-7
Direct Control of Output Control

Signals F-8
Communication Errors F-IO

APPENDIX G. ASCII CHARACTER
CODES G-l

Extended Codes G-6

APPENDIX H. HEXADECIMAL CONVERSION
TABLE H-l

APPENDIX I. TECHNICAL INFORMATION
AND TIPS 1-1

Memory Map 1-2
How Variables Are Stored 1-3
BASIC File Control Block 1-4
Keyboard Buffer 1-7
Search Order for Adapters 1-7
Switching Displays 1-8
Some Techniques with Color 1-9

Tips and Techniques 1-10

APPENDIXJ. GLOSSARy................ J-l

A-3

NOTES

A-4

Appendix A. Messages

If BASIC detects an error that causes a program to
stop running, an error message is displayed. It is
possible to trap and test errors in a BASIC program
using the ON ERROR statement and the ERR and
ERL variables. (For complete explanations of ON
ERROR, ERR and ERL, see "Chapter 4. BASIC
Commands, Statements, Functions, and Variables.")

This appendix lists all the BASIC error messages
with their associated error numbers.

Number Message

1 NEXT without FOR
The NEXT statement doesn't have a
corresponding FOR statement. It may be
that a variable in the NEXT statement
does not correspond to any previously
executed and unmatched FOR statement
variable.

Fix the program so the NEXT has a
matching FOR.

2 Syn tax error
A line contains an incorrect sequence of
characters, such as an unmatched
paren thesis, a misspelled command or
statement, or incorrect punctuation. Or,
the data in a DATA statement doesn't
match the type (numeric or string) of the
variable in a READ statement.

When this error occurs, the BASIC
program editor automatically displays the
line in error. Correct the line or the
program.

A-5

A-6

Number Message

3 RETURN without GOSUB
A RETURN statement needs a previous
unmatched GOSUB statement.

Correct the program. You probably need
to put a STOP or END statement before
the subroutine so the program doesn't
"fall" into the subroutine code.

4 Out of data
A READ statement is trying to read more
data than is in the DATA statements.

Correct the program so that there are
enough constants in the DATA statements
for all the READ statements in the
program.

5 Illegal function call
A parameter that is out of range is passed
to a system function. The error may also
occur as the result of:

• A negative or unreasonably large
subscript

• Trying to raise a negative number to a
power that is not an integer

• Calline: a USR function before
defini~g the starting address with
DEF USR

• A negative record number on GET or
PUT (file)

• An improper argument to a function
or statement

• Trying to list or edit a protected
BASIC program

• Trying to delete line numbers which
don't exist

Number Message

Correct the program. Refer to "Chapter
4. Basic Commands, Statements,
Functions, and Variables" for information
about the particular statement or
function.

6 Overflow
The magnitude of a number is too large to
be represented in BASIC's number format.
Integer overflow will cause execution to
stop. Otherwise, machine infinity with the
appropriate sign is supplied as the result
and execution continues.

To correct integer overflow, you need to
use smaller numbers, or change to single
or double-precision variables.

Note: If a number is too small to be
represented in BASIC's number format,
we have an underflow condition. If this
occurs, the result is zero and execution
continues without an error.

7 Out of memory
A program is too large, has too many FOR
loops or GOSUBs, too many variables,
expressions that are too complicated, or
complex painting.

You may want to use CLEAR at the
beginning of your program to set aside
more stack space or memory area.

8 Undefined line number
A line reference in a statement or
command refers to a line which doesn't
exist in the program.

Check the line numbers in your program,
and use the correct line number.

A-7

A-8

Number Message

9 Subscript out of range
You used an array element either with a
subscript that is outside the dimensions of
the array, or with the wrong number of
subscripts.

Check the usage of the array variable. You
may have put a subscript on a variable that
is not an array, or you may have coded a
built-in function incorrectly.

10 Duplicate Definition
You tried to define the size of the same
array twice. This may happen in one of
several ways:

• The same array is defined in two DIM
statements.

• The program encounters a DIM
statement for an array after the
default dimension of 10 is established
for that array.

• The program sees an OPTION BASE
statement after an array has been
dimensioned, either by a DIM
statement or by default.

Move the OPTION BASE statement to
make sure it is executed before you use
any arrays; or, fix the program so each
array is defined only once.

11 Division by zero
In an expression, you tried to divide by
zero, or you tried to raise zero to a negative
power.

It is not necessary to fix this condition,
because the program continues running.
Machine infinity with the sign of the

Number Message

number being divided is the result of the
division; or, positive machine infinity is
the result of the exponentiation.

12 Illegal direct
You tried to enter a statement in direct
mode which is invalid in direct mode (such
as DEF FN).

The statement should be entered as part of
a program line.

13 Type mismatch
You gave a string value where a numeric
value was expected, or you had a numeric
value in place of a string value. This error
may also be caused by trying to SWAP
variables of different types, such as
single- and double-precision.

14 Out of string space
BASIC allocates string space dynamically
until it runs out of memory. This message
means that string variables caused BASIC
to exceed the amount of free memory
remaining after housecleaning.

15 String too long
You tried to create a string more than 255
characters long.

Try to break the string into smaller strings.

16 String formula too complex
A string expression is too long or too
complex.

The expression should be broken into
smaller expressions.

A-9

A-I0

Number Message

17 Can't continue
You tried to use CONT to continue a
program that:

• Halted due to an error,

• Was modified during a break in
execution, or

• Does not exist

Make sure the program is loaded, and use
RUN to run it.

18 Undefined user function
You called a function before defining it
with the DEF FN statement.

Make sure the program executes the DEF
FN statement before you use the function.

19 No RESUME
The program branched to an active error
trapping routine as a result of an error
condition or an ERROR statement. The
routine does not have a RESUME
statement. (The physical end of the
program was encountered in the error
trapping routine.)

Be sure to include RESUME in your error
trapping routine to continue program
execution. You may want to add an ON
ERROR GOTO 0 statement to your error
trapping routine so BASIC displays the
message for any untrapped error.

20 RESUME without error
The program has encountered a RESUME
statement without having trapped an
error. The error trapping routine should
only be entered when an error occurs or an
ERROR statement is executed.

Number Message

You probably need to include a STOP or
END statement before the error trapping
routine to prevent the program from
"falling into" the error trapping code.

22 Missing operand
An expression contains an operator, such
as * or OR, with no operand following it.

Make sure you include all the required
operands in the expression.

23 Line buffer overflow
You tried to enter a line that has too many
characters.

Separate multiple statements on the line
so they are on more than one line. You
might also use string variables instead of
constants where possible.

24 Device Timeout
BASIC did not receive information from
an input/output device within a
predetermined amount of time. In
Cassette BASIC, this only occurs while the
program is trying to read from the cassette
or write to the printer.

For communications files, this message
indicates that one or more of the signals
tested with OPEN "COM ... was not found
in the specified period of time.

Retry the operation.

25 Device Fault
A hardware error indication was returned
by an interface adapter.

In Cassette BASIC, this only occurs when a
fault status is returned from the printer
interface adapter.

A-tt

A-12

Number Message

25
(cont.)

26

This message may also occur when
transmitting data to a communications
file. In this case, it indicates that one or
more of the signals being tested (specified
on the OPEN "COM ... statement) was not
found in the specified period of time.

FOR without NEXT
A FOR was encountered without a
matching NEXT. That is, a FOR loop was
active when the physical end of the
program was reached.

Correct the program so it includes a NEXT
statement.

27 Out of Paper
The printer is out of paper, or the printer is
not switched on.

You should insert paper (if necessary),
verify that the printer is properly
connected, and make sure that the power
is on; then, continue the program.

29 WHILE without WEND
A WHILE statement does not have a
matching WEND. That is, a WHILE was
still active when the physical end of the
program was reached.

Correct the program so that each WHILE
has a corresponding WEND.

30 WEND without WHILE
A WEND is encountered before a
matching WHILE was executed.

Correct the program so that there is a
WHILE for each WEND.

Number Message

50 FIELD overflow
A FIELD statement is attempting to
allocate more bytes than were specified for
the record length of a random file in the
OPEN statement. Or, the end of the
FIELD buffer is encountered while doing
sequential I/O (PRINT #, WRITE #,
INPUT #) to a random file.

Check the OPEN statement and the
FIELD statement to make sure they
correspond. If you are doing sequential
I/O to a random file, make sure that the
length of the data read or written does not
exceed the record length of the random
file.

51 In ternal error
An internal malfunction occurred in
BASIC.

Recopy your diskette. Check the hardware
and retry the operation. If the error
reoccurs, report to your computer dealer
the conditions under which the message
appeared.

52 Bad file number
A statement uses a file number of a file that
is not open, or the file number is out of the
range of possible file numbers specified at
initialization. Or, the device name in the
file specification is too long or invalid, or
the filename was too long or invalid.

Make sure the file you wanted was opened
and that the file number was entered
correctly in the statement. Check that you
have a valid file specification (refer to
"Naming Files" in Chapter 3 for
information on file specifications).

A-13

A-14

Number Message

53 File not found
A LOAD, KILL, NAME, FILES, or OPEN
references a file that does not exist on the
diskette in the specified drive.

Verify that the correct diskette is in the
drive specified, and that the file
specification was entered correctly. Then
retry the operation.

54 Bad file mode
You tried to use PUT or GET with a
sequential file or a closed file; or to
execute an OPEN with a file mode other
than input, output, append, or random.

Make sure the OPEN statement was
entered and executed properly. GET and
PUT require a random file.

This error also occurs if you try to merge a
file that is not in ASCII format. In this case,
make sure you are merging the right file. If
necessary, load the program and save it
again using the A option.

55 F ile already open
You tried to open a file for sequential
output or append, and the file is already
opened; or, you tried to use KILL on a file
that is open.

Make sure you only execute one OPEN to
a file if you are writing to it sequentially.
Close a file before you use KILL.

57 Device 110 Error
An error occurred on a device I/O
operation. DOS cannot recover from the
error.

Number Message

When receiving communications data,
this error can occur from overrun,
framing, break, or parity errors. When you
are receiving data with 7 or less data bits,
the eighth bit is turned on in the byte in
error.

58 File already exists
The filename specified in a NAME
statement matches a filename already in
use on the diskette.

Retry the NAME command using a
different name.

61 Disk full
All diskette storage space is in use. Files
are closed when this error occurs.

If there are any files on the diskette that
you no longer need, erase them; or, use a
new diskette. Then retry the operation or
rerun the program.

62 Input past end
This is an end of file error. An input
statement is executed for a null (empty)
file, or after all the data in a sequential file
was already input.

To avoid this error, use the EOF function
to detect the end of file.

This error also occurs if you try to read
from a file that was opened for output or
append. If you want to read from a
sequential output (or append) file, you
must close it and open it again for input.

A-15

Number Message

63 Bad record number
In a PUT or GET statement, the record
number is either greater than the
maximum allowed (32767) or equal to
zero.

Correct the PUT or GET statement to use
a valid record number.

64 Bad file name
An invalid form is used for the filename
with BLOAD, BSA VE, KILL, NAME,
OPEN, or FILES.

Check "Naming Files" in Chapter 3 for
information on valid filenames, and
correct the filename in error.

66 Direct sta temen t in file
A direct statement was encountered while
loading or chaining to an ASCII format
file. The LOAD or CHAIN is terminated.

The ASCII file should consist only of
statements preceded by line numbers.
This error may occur because of a line feed
character in the input stream. Refer to
"Appendix D. Converting Programs to
IBM Personal Computer BASIC."

67 Too many files
An attempt is made to create a new file
(using SAVE or OPEN) when all directory
entries on the diskette are full, or when the
file specification is invalid.

If the file specification is okay, use a new
formatted diskette and retry the
operation.

68 Device Unavailable
You tried to open a file to a device which
doesn't exist. Either you do not have the
hardware to support the device (such as

A-16

Number Message

printer adapters for a second or third
printer), or you have disabled the device.
(For example, you may have used /C:O on
the BASIC command to start Disk BASIC.
That would disable communications
devices.)

Make sure the device is installed correctly.
If necessary, enter the command:

SYSTEM

This returns you to DOS where you can
re-enter the BASIC command.

69 Communication buffer overflow
A communication input statement was
executed, but the input buffer was already
full.

You should use an ON ERROR statement
to retry the input when this condition
occurs. Subsequent inputs attempt to
clear this fault unless characters continue
to be received faster than the program can
process them. If this happens there are
several possible solutions:

• Increase the size of the
communications buffer using the / C:
option when you start BASIC.

• Implement a "hand-shaking" protocol
with the other computer to tell it to
stop sending long enough so you can
catch up. (See the example in
"Appendix F. Communications.")

• Use a lower baud rate to transmit and
receive.

A-17

A-IS

Number Message

70 Disk Write Protect
You tried to write to a diskette that is
write-protected.

Make sure you are using the right diskette.
If so, remove the write protection, then
retry the operation.

This error may also occur because of a
hardware failure.

71 Disk not Ready
The diskette drive door is open or a
diskette is not in the drive.

Place the correct diskette in the drive and
continue the program.

72 Disk Media Error
The controller attachment card detected a
hardware or media fault. Usually, this
means that the diskette has gone bad.

Copy any existing files to a new diskette
and re-format the bad diskette. If
formatting fails, the diskette should be
discarded.

73 Advanced Feature
Your program used an Advanced BASIC
feature while you were using Disk BASIC.

Start Advanced BASIC and rerun your
program.

Unprintable error
An error message is not available for the
error condition which exists. This is
usually caused by an ERROR statement
with an undefined error code.

Check your program to make sure you
handle all error codes which you create.

Appendix B. BASIC Diskette Input
and Output

This appendix describes procedures and special
considerations for using diskette input and output.
It contains lists of the commands and statements
that are used with diskette files, and explanations of
how to use them. Several sample programs are
included to help clarify the use of data files on
diskette. If you are new to BASIC or if you're getting
diskette-related errors, read through these
procedures and program examples to make sure
you're using all the diskette statements correctly.

You may also want to refer to the IBM Personal
Computer Disk Operating System manual for other
information on handling diskettes and diskette files.

Note: Most of the information in this
appendix about program files and sequential
files applies to cassette I/O as well. The cassette
cannot be opened in random mode, however.

B-1

Specifying Filenames

Filenames for diskette files must conform to DOS
naming conventions in order for BASIC to be able to
read them. Refer to "Naming Files" in Chapter 3 to
be sure you are specifying your diskette files
correctly.

Commands for Program Files

B-2

The commands which you can use with your BASIC
program files are listed below, with a quick
description. For more detailed information on any
of these commands, refer to "Chapter 4. BASIC
Commands, Statements, Functions, and Variables."

SAVE filespec [,A]
Writes to diskette the program that is
currently residing in memory. Optional A
writes the program as a series of ASCII
characters. (Otherwise, BASIC uses a
compressed binary format.)

LOi' ... D filesPec [,R]
Loads the program from diskette into
memory. Optional R runs the program
immediately. LOAD always deletes the
current contents of memory and closes all
files before loading. If R is included,
however, open data files are kept open.
Thus, programs can be chained or loaded
in sections, and can access the same data
files.

RUN filespec [,R]
RUN filespec loads the program from
diskette into memory and runs it. RUN
deletes the current contents of memory
and closes all files before loading the
program. If the R option is included,
however, all open data files are kept open.

MERGE filespec
Loads the program from diskette into
memory, but does not delete the current
contents of memory. The program line
numbers on diskette are merged with the
line numbers in memory. If two lines have
the same number, only the line from the
diskette program is saved. After a MERGE
command, the "merged" program resides
in memory, and BASIC returns to
command level. .

KILL filespec
Deletes the file from the diskette.

NAME filespec AS filename
Changes the name of a diskette file.

Protected Files

If you wish to save a program in an encoded binary
format, use the P (protect) option with the SAVE
command. For example:

SAVE "MYPROG", P

A program saved this way cannot be listed, saved, or
edited. Since you cannot "unprotect" such a
program, you may also want to save an unprotected
copy of the program for listing and editing
purposes.

B-3

Diskette Data Files - Sequential and
Random I/O

Two types of diskette data files may be created and
accessed by a BASIC program: sequential files and
random access files.

Sequential Files

Sequential files are easier to create than random files
but are limited in flexibility and speed when it
comes to accessing the data. The data that is written
to a sequential file is stored sequentially, one item
after another, in the order that each item is sent.
Each item is read back in the same way, from the
first item in the file, to the last item.

The statements and functions that are used with
sequential files are:

CLOSE
INPUT #
LINE INPUT #
OPEN
PRINT #
PRINT # USING

WRITE #
EOF
INPUT$
LOC
LOF

Creating and Accessing a Sequential File

To create a sequential file and access the data in the
file, include the following steps in your program:

1. Open the file for output or append using the
OPEN statement.

2. Write data to the file using the PRINT #,
WRITE #, or PRINT # USING statements.

3. To access the data in the file, you must close the
file (using CLOSE) and reopen it for input
(using OPEN).

4. Use the INPUT # or LINE INPUT # statements
to read data from the sequential file into the
program.

The following are example program lines that
demonstrate these steps.

Istep 1 100
200
300
400
500

OPEN I'DATNI FOR OUTPUT AS #1
WRITE #l,A$,B$,C$
CLOSE #1
OPEN "DATN' FOR INPUT AS #1
INPUT #l,X$,Y$,Z$

IS tep 2
'step 3

'also step 3
'step 4

The above program could also have been written as
follows:

100 OPEN "O I ',#l,IIDATA'1 I step 1
200 WRITE #l,A$,B$,C$, step 2
300 CLOSE #1 Istep 3
400 OPEN "1", #1, 'IDATA" 'st i 11 step 3
500 INPUT #l,X$,Y$,Z$ IS tep 4

Notice that both ways of writing the OPEN
statement yield the same results. Look under
"OPEN Statement" in Chapter 4 for details of the
syntax of each form of OPEN.

The following program, PROG RAMI, is a short
program that creates a sequential file, "DATA",
from information you enter at the keyboard.

B-5

B-6

Program 1

1 REM PROGRAM1 - create a sequential file
10 OPEN "DATN' FOR OUTPUT AS #1
20 INPUT "NAME";N$
25 IF N$="DONE" THEN CLOSE: END
30 INPUT "DEPARTMENT";D$
40 INPUT "DATE HIREDI';H$
50 WRITE #1,N$,D$,H$
60 PRINT: GOTO 20
RUN
NAME? MICHELANGELO
DEPARTMENT? AUDIO/VISUAL AIDS
DATE HIRED? 01/12/72

NAME? SHERLOCK HOLMES
DEPARTMENT? RESEARCH
DATE HIRED? 12/03/65

NAME? EBENEEZER SCROOGE
DEPARTMENT? ACCOUNTING
DATE HIRED? 04/27/78

NAME? SUPER MANN
DEPARTMENT? MAINTENANCE
DATE HIRED? 08/16/78

NAME? DONE
Ok

Now look at PROGRAM2. It accesses the file
"DATA" that was created in PROG RAMI and
displays the name of everyone hired in 1978.

Program 2

1 REM PROGRAM2 - accessing a sequential file
10 OPEN 'JDATN J FOR INPUT AS 1
20 INPUT #1,N$,D$,H$
30 IF RIGHT$(H$,2)=178" THEN PRINT N$
40 GOTO 20
RUN
EBENEEZER SCROOGE
SUPER MANN
Input past end in 20
Ok

PROG RAM2 reads, sequentially, every item in the
file. When all the data has been read, line 20 causes
an "Input past end" error. To avoid getting this
error, insert line 15 which uses the EOF function to
test for end of file:

15 IF EOF(1) THEN CLOSE: END

and change line 40 to GOTO 15. The end of file is
indica ted by a special character in the file. This
character has ASCII code 26 (hex 1 A). Therefore,
you should not put a CHR$(26) in a sequential file.

A program that creates a sequential file can also
write formatted data to the diskette with the
PRINT # USING statement. For example, the
statement:

PRINT #1,USING "####.##,II;A,B,C,D

could be used to write numeric data to diskette
without explicit delimiters. The comma at the end
of the format string serves to separate the items in
the diskette file.

The LOC function, when used with a sequential file,
returns the number of records that have been
written to or read from the file since it was opened.
(A record is a 128-byte block of data.) The LOF
function returns the number of bytes allocated to
the file. This number is always a multiple of 128 (by
rounding upward, if necessary).

Adding Data to a Sequential File

If you have a sequential file residing on diskette and
later want to add more data to the end of it, you
cannot simply open the file for output and start
writing data. As soon as you open a sequential file
for output, you destroy its current contents.
Instead, you should open the file for APPEND.
Refer to "OPEN Statement" in Chapter 4 for
details.

B-7

Random Files

B-s

Creating and accessing random files requires more
program steps than sequentiall files, but there are
advantages to using random files. For instance,
numbers in random files are usually stored on
diskette in binary formats, while numbers in
sequential files are stored as ASCII characters.
Therefore, in many cases random files require less
space on diskette than sequential files.

The biggest advantage to random files is that data
can be accessed randomly; that is, anywhere on the
diskette. It is not necessary to read through all the
information, as with sequential files. This is possible
because the information is stored and accessed in
distinct units called records, and each record is
numbered.

Records may be any length up to 3276Tbytes. The
size of a record is not related to the size of a sector
on the diskette (512 bytes). BASIC automatically
uses all512 bytes in a sector for information storage.
It does this by both blocking records and spanning
sector boundaries (that is, part of a record may be at
the end of one sector and the other part at the
beginning of the next sector).

The statements and functions that are used with
random files are:

CLOSE
FIELD
GET
LSET/RSET
OPEN
PUT
CVD

CVI
CVS
LOC
LOF
MKD$
MKI$
MKS$

Creating a Random File

The following program steps are required to create a
random file.

1. Open the file for random access. The example
which follows to illustrate these steps specifies
a record length of 32 bytes. If the record length
is omitted, the default is 128 bytes.

2. Use the FIELD statement to allocate space in
the random buffer for the variables that will be
written to the random file.

3. Use LSET or RSET to move the data into the
random buffer. Numeric values must be made
into strings when placed in the buffer. To do
this, use the "make" functions: MKI$ to make
an integer value into a string, MKS$ for a
single-precision value, and MKD$ for a
double-precision value.

4. W rite the data from the buffer to the diskette
using the PUT statement.

The following lines illustrate these steps:

100 OPEN IIFILEII AS #1 LEN=32 'step 1
200 FIELD #1,20 AS N$, 4 AS A$, 8 AS p$

IS tep 2

300 LSET N$=X$ Istep 3
400 LSET A$=MKS$(AMT) I s ti11 step 3
500 LSET P$=TEL$ 1 s t ill step 3
600 PUT #1, CODE% I step 4

Note: Do not use a string variable which has
been defined in a FIELD statement in an input
statement or on the left side of an assignment
(LET) statement. This causes the pointer for
that variable to point into string space instead
of the random file buffer.

B-9

B-IO

Look at PROGRAM3. It takes information that is
entered at the keyboard and writes it to a random
file. Each time the PUT statement is executed, a
record is written to the file. The two-digit code that
is input in line 30 becomes the record number.

Program 3

1 REM PROGRAM3 - create a random file
10 OPEN IIFILEII AS #1 LEN=32
20 FIELD #1,20 AS N$, 4 AS A$, 8 AS P$
30 INPUT "2-DIGIT CODE";CODE%
35 IF CODE%=99 THEN CLOSE: END
40 I N PUT II N AM E I I ; X $
510 I N PUT JlAMOUNr I; AMT
610 INPUT "PHONE";TEL$: PRINT
710 LSET N$=X$
810 LSET A$=MKS$(AMT)
910 LSET P$=TEL$
1010 PUT #l,CODE%
1110 GOTO 30

Accessing a Random File

The following program steps are required to access a
random file:

1. Open the file for random access.

2. Use the FIELD statement to allocate space in
the random buffer for the variables that will be
read from the file.

Note: In a program that performs both
input and output on the same random file,
you can usually use just one OPEN
statement and one FIELD statement.

3. Use the GET statement to move the desired
record into the random buffer.

4. The data in the buffer may now be accessed by
the program. Numeric values must be
converted back to numbers using the
"convert" functions: CVI for integers, CVS for
single-precision values, and CVD for
double-precision values.

The following program lines illustrate these steps:

100 OPEN "FI LEI' AS 1 LEN=32 Istep 1
200 FIELD #1 20 AS N$, 4 AS A$, 8 AS p$

'step 2
'step 3 300 GET #1,CODE%

400 PRINT N$
500 PRINT CVS(A$)

's tep 4
'still step 4

PROG RAM4 accesses the random file "FILE" that
was created in PROGRAM3. By entering the
two-digit code at the keyboard, the information
associated with that code is read from the file and
displayed.

Program 4

1 REM PROGRAM4 - access a random file
10 OPEN "FILE" AS 1 LEN=32
20 FIELD #1, 20 AS N$, 4 AS A$, 8 AS p$
30- INPUT "2-DIGIT CODE";CODE%
35 IF CODE%=99 THEN CLOSE: END
40 GET #1, CODE%
50 PRINT N$
60 PRINT USING "$$###.##";CVS(A$)
70 PRINT p$: PRINT
80 GOTO 30

The LOC function, with random files, returns the
"current record number." The current record
number is the last record number that was used in a
GET or PUT statement. For example, the statement

IF LOC(1»50 THEN END

ends program execution if the current record
number in file #1 is higher than 50.

B-11

B-12

An Example Program

PROGRAM5 is an inventory program that
illustrates random file access. In this program, the
record number is used as the part number, and it is
assumed the inventory will contain no more than
100 different part numbers. Lines 690-750 initialize
the data file by writing CHR$(25 5) as the first
character of each record. This is used later (line 180
and line 320) to determine whether an entry already
exists for that part number.

Lines 40-120 display the different inventory
functions that the program performs. When you
type in the desired function number, line 140
branches to the appropriate subroutine.

Program 5 f~ ~ F l,..P\. <\

10 REM PROGRAMS - inventory
20 OPEN 'inven.dat a AS #1 LEN=39
30 FIELD #1,1 AS F$,30 AS D$,2 AS Q$,2 AS R$,4 AS P$
40 PRINT: PRINT"Options: 8

: PRINT
50 PRINT 1,"Initialize File"
60 PRINT 2,·Create a New Entry"
70 PRINT 3,·Display Inventory for One Part·
80 PRINT 4,"Add to Stock"
90 PRINT 5,·Subtract from Stock"
100 PRINT 6,HList Itels Below Reorder Level"
110 PRINT 7,"End Application"
120 PRINT: PRINT: INPUT ·Choice";CHOICE
130 IF (CHOICE(l} OR (CHOICE)?} THEN PRINT uBad Choice Number"

: 6010 40
140 ON CHOICE GOSUB 690, 160, 300, 390, 470, 590, 760
150 60TO 120
160 REM build new entry
170 BOSUS 670
180 IF ASC{F$)(>255 THEN INPUT ROverwrite";A$:

IF AS()"y· AND A$()"Y· THEN RETURN
190 LSET F$=CHR$(O)
200 INPUT "Description";DESC$
210 LSET D$=DESC$

220 INPUT "Quantity in stockB;QX
230 lSET Q$=HKI$(Q7.)
240 INPUT "Reorder leveP;R!
250 LSET R$=HKI$(R7.}
260 INPUT "Unit priceR;?
270 LSET P$=HKS$(P)
280 PUT 11,PART7.
290 RETURN
300 REM display entry
310 GOSUB 670
320 IF ASC(F$}=255 THEN PRINT uNull entry": RETURN
330 PRINT USING uPart number #iift;PARTZ
340 PRINT D$
350 PRINT USING RQuantity on hand t####";CVI(Q$)
360 PRINT USING ftReorder level Itlll";CVI(R$)
370 PRINT USING "Unit price $$II.#IR;CVS(P$)
380 RETURN
390 REM add to stock
400 BOSUB b70
410 IF ASC(F$)=255 THEN PRINT"Null entry":RETURN
420 PRINT D$:INPUT "Quantity to add";AX
430 QZ=CVI(U$)+AZ
440 lSET U$=MKI$(QZ)
450 PUT Il,PARTX
460 RETURN
470 REM remove from stock
480 BOSUS 670
490 IF ASC{F$}=255 THEN PRINT uNull entry": RETURN
500 PRINT D$
510 INPUT HQuantity to subtractH;Si.
520 Q7.=CVI(Q$}
530 IF (U7.-SZ}(O THEN PRINT"Only";Q7.;uin stock": GOTO 510
540 Qi.=UI-SI
550 IF QI.=(CVI(R$) THEN PRINT "Quantity nowH;Q!;

H, Reorder level";CVI(R$}
560 LSET Q$=MKI$(Q7.}
570 PUT 11,PARTi.
580 RETURN
590 REM list itellis below reorder level
600 FOR 1=1 TO 100
610 SET 11,1
620 IF ASC(F$)=255 THEN 640
630 IF CVI(Q$)(CVI(R$) THEN PRINT D$;" UuantityB;CVI(Q$)

TAB(50} uReorder leve}";CVI(R$}
640 NEXT I
650 RETURN

B-13

B-14

b60 REM get part record
670 INPUT "Part nUlber";PARTZ
680 IF PART1(1 OR PARTl)lOO

THEN PRINT uBad part nUiberH: 60TO 670
ELSE 6ET #l,PARTl: RETURN

690 REM initialize file
700 INPUT HAre you surel;B$: IF B$()IV 1 AND B$<)Hyl

THEN RETURN
710 LSET F$=CHR$(255)
720 FOR 1=1 TO 100
730 PUT #1,1
740 NEXT I
750 RETURN
760 REM end application
770 CLOSE: END

Performance Hin ts

• If you do not use random files, specify IS:o on
the BASIC command when you start BASIC.
This will save 128 bytes times the number of
files specified in the IF: option.

• BASIC sets up three files by default. If you use
less than three, set IF:files when you start
BASIC with the BASIC command. Note that
the screen, keyboard, and printer do not count
as files unless you explicitly OPEN them.

• Sequential files use a buffer of 128 bytes.
Random files also default to a buffer of 128
bytes, but this can be overridden with the IS:
option on the BASIC command. There is no
advantage to setting IS: to a number greater
than the largest record length on any of your
random files. However, the combination of a
record length of512 and/S:512 gives improved
performance since the diskette sector size is
512 bytes.

If you want to do sequential I/O, but still want
improved performance, you can use random
files to do "pseudo-sequential" I/O. For
example:

1 I example 1A
10 OPEN "ABC II FOR OUTPUT AS #1
20 FOR 1=1 TO 3000
30 PR I NT #1, IIMELHII

Lf0 NEXT
50 CLOSE #1: END

This example (lA) uses regular sequential I/O
to create a file with 3000 items in it.

B-15

B-16

1 I examp 1 e 1 B
10 OPEN I'ABC " FOR It~PUT AS #1
20 OPEN "DEF" FOR OUTPUT AS #2
30 IF EOF(l) THEN CLOSE: END
40 INPUT #l,A$
50 PRINT #2,A$
60 GOTO 30
70 END

This example (1 B) copies the sequential file
"ABC", which we just created, to a file named
"DEF".

For the next examples we will perform the
same task using "pseudo-sequential" I/O.

1 I example 2A
10 OPEN "PQR" AS #1 LEN=512
15 ON ERROR GOTO 90
20 FOR 1=1 TO 3000
30 PRINT #l,IMELH"
40 NEXT
45 PRINT #l,l/eaf"
50 ON ERROR GOTO 0: PUT #1: CLOSE
60 END
90 PUT #1: RESUME

This example (2A) creates a file with 3000 items
using random I/O. This is a "pseudo-sequential"
file.

1 I examp 1 e 2B
10 OPEN "PQR" AS #1 LEN=512
20 OPEN "XYZ" AS #2 LEN=512
30 ON ERROR GOTO 80
40 GET #1
50 INPUT #l,A$
60 PRINT #2,A$
70 IF A$<>"/eaf" THEN 50 ELSE

ON ERROR GOTO 0: PUT #2: CLOSE: END
80 IF ERL=50 THEN GET #1: RESUME

ELSE PUT #2: RESUME

This final example copies the
"pseudo-sequential" file created in the
previous example to a new "pseudo-sequential"
file named "XYZ". It takes about half as long to
run as the example using sequential I/O.

The technique used in these examples involves
detection of the" FIELD overflow" error (error
50) and doing the appropriate GET or PUT to
purge the buffer (line 90 in example 2A and line
80 in example 2B). Note also that a dummy end
of file must be written ("/eof' in the example)
and checked for during input. Also, the INPUT
and PRINT statements use only single
variables, rather than a list of variables.

This technique is useful only when you have
more than one file open at a time.

B-17

NOTES

B-18

Appendix C. Machine Language
Subroutines

This appendix describes how BASIC interfaces with
machine language subroutines. In particular, it
describes:

• How to allocate memory for the subroutines

• How to get the machine language subroutine
into memory

• How to call the subroutine from BASIC and
pass parameters to it

This appendix is intended to be used by an
experienced machine language programmer.

Reference Material

Rector, Russell and Alexy, George. The 8086
Book. Osborne/McGraw-Hill, Berkeley,
California, 1980. (includes the 8088)

Intel Corporation Literature Department. The
8086 Family User's Manual, 9800722.
3065 Bowers Avenue, Santa Clara, CA 95051.

IBM Corporation Personal Computer library.
Macro-Assembler. Boca Raton, FL 33432.

IBM Corporation Personal Computer library.
Technical Reference. Boca Raton, FL 33432.

C-l

Setting Memory Aside for
Your Subroutines

C-2

BASIC normally uses all memory available from its
starting location up to a maximum of 64K-bytes.
This BASIC workarea contains your BASIC program
and data, along with the interpreter workarea and
BASIC's stack. You may allocate memory space for
machine language subroutines either inside or
outside of this BASIC 64K workarea. Where you
decide to put the routines depends on the total
amoun t of available memory and the size of the
applications to be loaded.

Your system needs more than 64K-bytes of memory
if you want to put your machine language
subroutines outside BASIC's 64K workarea. If you
are using Disk or Advanced BASIC, DOS takes up
approximately 12K-bytes, and BASIC takes up
another 10K-bytes, so you need at least a
96K-byte system in order for there to be room
outside the BASIC workarea for the machine
language subroutines.

Outside the BASIC W orkarea: If your system has
enough memory that you can put your subroutines
outside the BASIC 64K-byte workarea, you don't
have to do anything to reserve that area. You use the
DEF SEG statement to address the external
subroutine area outside the BASIC workarea.

For example, in a 96K-byte system, to specify an
address in the upper4K-bytes of memory, you could
use:

110 DEF SEG=&H1700

This statement specifies a segment starting at
hexadecimal location 17000 (92K).

Inside the BASIC Workarea: In order to keep
BASIC from writing over your subroutines in
memory, use either:

• The CLEAR statement, which is available in all
versions of BASIC

• The 1M: option on the BASIC command to start
Disk and Advanced BASIC from DOS

Only the highest memory locations can be set aside
for subroutines. For example, to reserve the highest
4K-byte area of BASIC's 64K-byte workarea for
your machine language subroutines, you could use:

10 CLEAR ,&HF000

or start BASIC with the DOS command:

BAS I Cit": &H F000

Either of these statements restricts the size of the
BASIC workarea to hex FOOO (60K) bytes, so you
can use the uppermost 4K-bytes for machine
language subroutines.

Getting the Subroutine Code into
Memory

The following are offered as suggestions as to how
machine language subroutines can be loaded. We
don't describe all possible situations.

Two common ways to get a machine language
program into memory are:

• Poking it into memory from your BASIC
program

• Loading it from a file on diskette or cassette

C-3

Poking a Subroutine into Memory

C-4

You can code relatively short subroutines in
machine language and use the POKE statement to
put the code into memory. In this way, the
subroutine actually becomes a part of your BASIC
program. One way to do this is:

1. Determine the machine code for your
subroutine.

2. Put the hex value (&Hxx format) of each byte
of the code into DATA statements.

3. Execute a loop which reads each data byte, and
then pokes it into the area you've selected for
the subroutine (see the preceding discussion).

4. After the loop is complete, the subroutine is
loaded. If you are going to call the subroutine
using the USR function, then you must execute
a DEF USR statement to define the entry
address of the subroutine; if you are going to
call the subroutine using the CALL statement,
you must set the value of the subroutine
variable to the subroutine's entry address.

For example:

Ok
10 DEFINT A-Z
20 DEF SEG=&H1700
30 FOR 1=0 TO 21
40 READ J
50 POKE I,J
60 NEXT
70 SUBRT=0
80 A=2:B=3:C=0
90 CALL SUBRT(A,B,C)
100 PRINT C
110 END
120 DATA &H55,&H8B,&HEC,&H8B,&H76,&H0A
130 DATA &H8S,&H04,&H8B,&H76,&H08
140 DATA &H03,&H04,&H8B,&H7E,&H06
150 DATA &H89,&H05,&H5D,&HCA,&H06,&H00
RUN
5

Ok

Loading the Subroutine from a File

You use the BASIC BLOAD command to load a
memory image file directly into memory. The
memory image can be a machine language
subroutine which was saved using the BSA VE
command. Of course, that leads to the question of
how the subroutine got there in the first place. The
machine language subroutine may be an executable
file which was created by the linker from DOS, and
which was placed into memory using DEBUG.
DEBUG and the linker are explained in the IBM
Personal Computer Disk Operating System manual.

The following is a suggested way to use BLOAD to
get such a machine language subroutine into
memory:

1. Use the linker to produce an . EXE file of your
routine (let's call it ASMROUT. EXE) so it will
load at the HIGH end of memory.

2. Load BASIC under DEBUG by entering:

DEBUG BAS Ie. Cot1

3. Display the registers (use the R command) to
find out where BASIC was put in memory.
Record the values contained in the registers
(CS, IP, SS, SP, DS, ES) for later reference.

4. Use DEBUG to load the .EXE file (your
subroutine) into HIGH memory, where it will
overlay the transient portion of
COMMAND. COM.

N ASMROUT.EXE
L

C-5

C-6

5. Display the registers (use the R command) to
find out where the subroutine was placed in
memory. Record the values contained in the CS
and IP registers for later use.

6. Reset the registers (use the R command) back
to the values they contained when BASIC. COM
was originally loaded, using the values noted in
step 3.

7.· Use the G command to branch to the BASIC
entry point and to set breakpoints (if desired) in
the machine language subroutine.

8. When BASIC prompts, load your BASIC
application program and edit the DEF SEG and
either the DEF USR statement or the value of
the CALL variable to correspond with the
location of the subroutine as determined when
you loaded the subroutine in step 5.

• Use the previously recorded value in the
CS register for DEF SEG

• Use the previously recorded value in the IP
register for the DEF USR or the variable
val ue of the CALL

9. In direct mode in BASIC, enter a BSAVE
command to save the subroutine area. Use the
starting location defined by the CS and IP
registers when the subroutine was loaded in
step 5, and the code length printed on the
assembler listing or LINK map. (Refer to
"BSA VE Command" in Chapter 4.)

10. Edit your BASIC application program so it
contains a BLOAD statement after the DEF
SEG that sets the proper value of CS for the
subroutine.

Note: If the machine language routine is
self-relocatable, BLOAD can be used to
put the subroutine some place other than
where the linker originally placed it. If you
make such a change, be sure to make a
corresponding change to the DEF SEG
statement associated with the call so that
BASIC can find the subroutine at
execution time.

Some suggestions for alternate locations
for the subroutine are:

• An unused screen buffer
• An unused file buffer (located with

V ARPTR(#j))
• A string variable area located with

V ARPTR(stringvar)

(See 'BLOAD Command" and "V ARPTR
Function" in Chapter 4.)

11. Save the resulting modified BASIC application.

Some Notes on Using DEBUG with BASIC:
When you run BASIC under DEBUG, BASIC is
loaded after DEBUG in memory, so DEBUG is not
written over if you load a large BASIC program. If
you set breakpoints in your machine language
subroutine, they return you to DEBUG. The
SYSTEM command also returns you from BASIC to
DEBUG.

C-7

Calling the Subroutine from
Your BASIC Program

All versions of BASIC have two ways to call machine
language subroutines: the USR function, and the
CALL statement. This section describes the use of
both USR and CALL.

Common Features of CALL and USR

C-8

Whether you call your machine language
subroutines with CALL or with the USR function,
you must keep the following things in mind:

Entering the Subroutine

• At entry, the segment registers DS, ES, and SS
are all set to the same value, the address of
BASIC's data space (the default for DEF SEG).

• At entry, the code segment register, CS,
contains the current value specified in the latest
DEF SEG. If DEF SEG has not been specified,
or if the latest DEF SEG did not specify an
override value, the value in CS is the same as in
the other three segment registers.

String Arguments

• If an input argument is a string, the value
received in the argument is the address of a
three-byte area called the string descriptor:

1. Byte 0 of the string descriptor contains the
length of the string (0 to 255).

2. Byte 1 of the string descriptor contains the
lower 8 bits of the offset of the string in
BASIC's data space.

3. Byte 2 of the string descriptor contains the
higher 8 bits of the offset of the string in
BASIC's data space.

The string itself is pointed to by the last two
bytes of the string descriptor.

Warning:
The subroutine must not change the
contents of any of the three bytes of the string
descriptor.

The subroutine may change the content of the
string itself, but not its length.

If the subroutine changes a string, be aware that
this may modify your program. The following
example may change the string "TEXT"in the
BASIC program.

A$ = "TEXT"
CALL SUBRT(A$)

However, the next example does not modify
the program, because the string concatenation
causes BASIC to copy the string into the string
space where it may be safely changed without
affecting the original text.

A$ = "BAS I C" +""
CALL SUBRT(A$)

Returning from the Subroutine

• The return to BASIC must be by an
inter-segment RET instruction. (The
subroutine is a FAR procedure.)

• At exit, all segment registers and the stack
pointer, SP, must be restored. All other
registers (and flags) may be altered.

C-9

• The stack pointer, at entry, indicates a stack
that has only 16 bytes (eight words) available
for use by the subroutine. If more stack space is
needed, the subroutine must set up its own
stack segment and stack pointer. You should
make sure that the location of the current stack
is recorded so its pointer can be restored just
prior to return.

• If interrupts were disabled by the subroutine,
they should be enabled prior to return.

CALL Statement

C-IO

Machine language subroutines may be called using
the BASIC CALL statement. The format of the
CALL statement is:

CALL numvar [(variable ltst)]

numvar is the name of a numeric variable. Its
value is the offset, from the segment set
by DEF SEG, that is the starting point in
memory of the subroutine being called.

variable ltst contains the variables, separated by
commas, that are to be passed as
arguments to the routine. (The
arguments cannot be constants.)

Execution of a CALL statement causes the
following:

1. For each variable in the variable list, the
variable's location is pushed onto the stack.
The location is specified as a two-byte offset
into BASIC's data segment (the default DEF
SEG).

2. The return address specified in the CS register
and the offset are pushed on to the stack.

3. Control is transferred to the machine language
routine using the segment address specified in
the last DEF SEG statement and the offset
specified by the value of numvar.

Notes for the CALL Statement

• You can return values to BASIC through the
arguments by changing the values of the
variables in the argument list.

• If the argument is a string, the offset for the
argument points to the three-byte string
descriptor as explained previously.

• The called routine must know how many
argumen ts were passed. Parameters are
referenced by adding a positive offset to BP
after the called routine moves the current stack
pointer into BP. The first instructions in the
subroutine should be:

PUSH BP
MOV BP,SP

;SAVE BP
;MOVE SP TO BP

The offset into the stack of anyone particular
argument is calculated as follows:

offset from BP = 2*(n-m)+6

where:

n is the total numbtf of arguments passed.

m is the position of the specific argument in the
argument list of the BASIC CALL statement (m
may range from 1 to n).

C-ll

C-12

Example: The following example adds the values
in A% and B% and stores the result in C%:

The following statements are in BASIC:

100 A%=2: B%=3
200 DEF SEG=&H27E0
250 BLOAD "SUBRT.EXEII,0
300 SUBRT=0
400 CALL SUBRT (A%,B%)C%)
500 PRINT C%

Note: Line 200 sets the segment to location
hex 27EOO. SUBRT is set to 0 so that the call
to SUBRT executes the subroutine at
location &H27EOO.

The following statements are in IBM Personal
Computer Macro-Assembler source code:

CSEG SEGMENT
ASSUME CS:CSEG

SUBRT PROC FAR
PUSH BP
MOV BP,SP
MOV S I ,[BP]+10
MOV AX,[SI]
MOV SI ,[BP]+8
ADD AX,[SI]
MOV DI,[BP]+6
MOV [DIJ,AX
POP BP
RET 6

SUBRT ENDP
CS EG ENDS

END

;SAVE BP
;SET BASE PARM LIST
;GET ADDR PARM A
;GET VALUE OF A
;GET ADDR PARM B
;ADD VALUE B TO REG
;GET ADDR PARM C
;PASS BACK SUM
;RESTORE BP
;FAR RETURN TO BASIC

Note: When you call a routine using the
CALL statement, the routine must return
with a RET n, where n is 2 times the number
of arguments in the variable list. This is
necessary to adjust the stack to the point at
the start of the calling sequence.

As another example:

10 DEFINT A-Z
100 DEF SEG=&H1800
110 BLOAD "SUBRT.EXE",0
120 SUBRT=0
130 CALL SUBRT (A,B$,C)

The following sequence of Macro-Assembler code
shows how the arguments (including the address of a
string descriptor) are passed and accessed, and how
the result is stored in variable C:

PUSH BP ;SAVE BP
MOV
MOV
MOV
MOV

BP,SP
BX ,'[BP J+8
CL,[BXJ
DX,l[BXJ

;GET CURRENT STK POSITION INTO BP
;GET ADDR OF B$ STRING DESCRIPTOR
;GET LENGTH OF B$ INTO CL
;GET ADDR OF B$ TEXT INTO DX

MOV SI,[BPJ+10 ;GET ADDR OF A INTO SI
MOV DI,[BPJ+6 ;GET ADDR OF C INTO DI
MOVS WORD ;STORE VARIABLE A INTO C
POP BP ;RESTORE BP
RET 6 ;RESTORE STACK, RETURN
END

Warning:
It is entirely up to you to make sure that the
arguments in the CALL statement match in
number, type, and length with the arguments
expected by the subroutine.

In the preceding example, the instruction MOVS
WORD copies only two bytes because variables A
and C are integers. However, if A and Care
single-precision, four bytes must be copied; if A and
C are double-precision, eight bytes must be copied.

C-13

USR Function Calls

C-14

The other way to call machine language subroutines
from BASIC is with the USR function. The format of
the USR function is:

USR[n] (arg)

n must be a single digit in the range 0 through 9.

arg is any numeric expression or a string variable
name.

n specifies which USR routine is being called, and
corresponds with the digit supplied in the DEF USR
statement for that routine. If n is omitted, USRO is
assumed. The address specified in the DEF USR
statement determines the starting address of the
subroutine. Even if the subroutine does not require
an argument, a dummy argument must still be
supplied.

When the USR function is called, register AL
contains a value that specifies the type of argument
that was supplied. The value in AL will be one of the
following:

Value in AL Type of Argument

2 Two-byte integer (two's complement)

3 String

4 Single-precision number

8 Double-precision number

If the argument is a string, the DX register points to
the three-byte string descriptor. (See "Common
Features of CALL and USR," described previously.)

If the argument is a number and not a string, the
value of the argument is placed in the Floating Point
Accumulator (FAC), which is an eight-byte area in
BASIC's data space. In this case, the BX register
contains the offset within the BASIC data space to
the fifth byte of the eight-byte FAC. For the
following examples, assume that the FAC is in bytes
hex 49 F through hex 4A6; that is, BX contains hex
4A3:

If the argument is an integer:

• Hex 4A4 contains the upper 8 bits of the
argument.

• Hex 4A3 contains the lower 8 bits of the
argument.

If the argument is a single-precision number:

• Hex4A6 contains the exponent minus 128, and
the binary point is to the left of the most
significant bit of the mantissa. Hex 4A5
contains the highest 7 bits of the mantissa with
the leading 1 suppressed (implied). Bit 7 is the
sign of the number (0 = positive; 1 = negative).

• Hex 4A4 contains the middle 8 bits of the
mantissa.

• Hex 4A3 contains the lowest 8 bits of the
mantissa.

If the argument is a double-precision number:

• Hex 4A3 through hex 4A6 are the same as
described under single-precision floating-point
number in the preceding paragraph.

• Hex 49 F through Hex 4A2 contain four more
bytes of the mantissa (hex 49 F contains the
lowest 8 bits).

C-15

C-16

Usually, the value returned by a USR function is the
same type (integer, string, single-precision, or
double-precision) as the argument that was passed
to it. However, a numerical argument of the
function, regardless of its type, may be forced to an
integer value by calling the FRCINT routine to get
the integer equivalent of the argument placed into
register BX.

If the value being returned by the function is to be
an integer, place the resulting value into the BX
register. Then make a call to MAKINT just prior to
the inter-segment return. This passes the value back
to BASIC by placing it into t)1e FAC.

The methods for accessing. FRCINT and MAKINT
are shown in the following example:

100 DEF SEG=&H1800
120 BLOAD "SUBRT.EXE",0
130 DEF USR0=0
140 X = 5 'Note that X is single-precision
1 50 y = US R0 (X)
160 PRINT Y

At location 1800:0 (segment:offset), the following
Macro-Assembler language routine has been loaded.
The routine doubles the argument passed and
returns an integer result:

RSEG SEGMENT AT 0F600H ;BASE OF BASIC ROM
ORG 3 ;OFFSET TO FORCE INTEGER

FRCJNT LABEL FAR
ORG 7 ;OFFSET TO MAKE INTEGER

MAKINT LABEL FAR
RSEG ENDS

CSEG SEGMENT
USRPRG PROC FAR ;ENTRY POINT

CALL FRCINT ;FORCE ARG IN FAC INTO [BX]
ADD BX,BX ;[BX] = [BX] * 2
CALL MAKINT ;PUT INT RSLT IN BX INTO FAC
RET ; INTER-SEGMENT RETURN TO BASIC

USRPRG ENDP
CSEG ENDS

Note: FRCINT and MAKINT perform
inter-segment returns. You should make sure
that the calls to FRCINT and MAKINT are
defined by a FAR procedure.

C-17

NOTES

C-18

Appendix D. Converting Programs
to IBM Personal
Computer BASIC

Since IBM Personal Computer BASIC is very similar
to many microcomputer BASICs, the IBM Personal
Computer will support programs written for a wide
variety of microcomputers. If you have programs
written in a BASIC other than IBM Personal
Computer BASIC, some minor adjustments may be
necessary before running them with IBM Personal
Computer BASIC. Here are some specific things to
look for when converting BASIC programs.

File I/O
In IBM Personal Computer BASIC, you read and
write information to a file on diskette or cassette by
opening the file to associate it with a particular file
number; then using particular I/O statements which
specify that file number. I/O to diskette and cassette
files is implemented differently in some other
BASICs. Refer to the section in Chapter 3 called
"Files," and to "OPEN Statement" in Chapter 4 for
more specific information.

Also, in IBM Personal Computer BASIC, random
file records are automatically blocked as
appropriate to fit as many records as possible in each
sector.

Graphics

How you draw on the screen varies greatly between
different BASICs. Refer to the discussion of
graphics in Chapter 3 for specific information about
IBM Personal Computer graphics.

D-l

IF ... THEN

D-2

The IF statement in IBM Personal Computer BASIC
contains an optional ELSE clause, which is
performed when the expression being tested is false.
Some other BASICs do not have this capability. For
example, in another BASIC you may have:

10 IF A=B THEN 30
20 PRI NT IINOT EQUAL 1

' : GOTO 40
30 PRINT "EQUALII

40 REM CONTINUE

This sequence of code will still function correctly in
IBM Personal Computer BASIC, but it may also be
conveniently recoded as:

10 IF A=B THEN PRINT "EQUAL" ELSE PRINT "NOT EQUAL"
20 REM CONTINUE

IBM Personal Computer BASIC also allows multiple
statements in both the THEN and ELSE clauses.
This may cause a program written in another BASIC
to perform differently. For example:

10 IF A=B THEN GOTO 100 : PRI NT IINOT EQUAL II

20 REM CONTINUE

In some other BASICs, if the test A= B is false,
control branches to the next statement; that is, if A is
not equal to B, "NOT EQUAL" is printed. In IBM
Personal Computer BASIC, both GOTO 100 and
PRINT "NOT EQUAL" are considered to be part of
the THEN clause of the IF statement. If the test is
false, control continues with the next program line;
tha t is, to line 20 in this example. PRINT "NOT
EQUAL" can never be executed.

This example can be recoded in IBM Personal
Computer BASIC as:

10 IF A=B Tj.\EN 100 ELSEPR I NT IINOT EQUAL"
20 REM CONTINUE

Line Feeds

In other BASICs, when you enter a line feed, a line
feed character is actually inserted into the text. On
the IBM Personal Computer, entering a line feed
will pad the rest of the display line with spaces - it
does not insert the line feed character. If you try to
load a program with line feed characters in it, you
will get a "Direct statement in file" error.

Logical Operations

In IBM Personal Computer BASIC, logical
operations (NOT, AND, OR, XOR, IMP, and EQV)
are performed bit-by-bit on integer operands to
produce an integer result. In some other BASICs,
the operands are considered to be simple "true"
(non-zero) or "false" (zero) values, and the result of
the operation is either true or false. As an example
of this difference, consider this small program:

10 A=9: B=2
20 IF A AND B THEN PRINT "BOTH A AND B ARE TRUE"

This example in another BASIC will perform as
follows: A is non-zero, so it is true; B is also non-zero,
so it is also true; because both A and B are true, A
AND B is true, so the program prints BOTH A AND
BARE TRUE.

However, IBM Personal Computer BASIC
calculates it differently: A is 1001 in binary form,
and B is 0010 in binary form, so A AND B
(calculated bit-by-bit) is 0000, or zero; zero
indicates false, so the message is not printed, and the
program continues with the next line.

This can affect not only tests made in IF statements,
but calculations as well. To get similar results,
recode logical expressions !ike the following:

10 A=9: 8=2
20 IF (A<>O) AND (B~>O)

THEN PRINT !JBOTH A AND B ARE TRUE!!

D-3

MAT Functions

Programs using the MAT functions available in
some BASICs must be rewritten using FOR ... NEXT
loops to execute properly.,

Multiple Assignments

Some BASICs allow statements of the form:

10 LET 8=C=0

to set Band C equal to zero. IBM Personal
Computer BASIC would interpret the second equal
sign as a logical operator and set B equal to -1 if C
equaled o. Instead, convert this statement to two
assignment statements:

10 C=0:8=0

Multiple Statements

Some BASICs use a backslash (\) to separate
multiple statements on a line. With IBM Personal
Computer BASIC, be sure all statements on a line
are separated by a colon (:).

PEEKs and POKEs

0-4

Many PEEKs and POKEs are dependent on the
particular computer you are using. You should
examine the purpose of the PEEKs and POKEs in a
program in another BASIC, and translate the
statement so it performs the same function on the
IBM Personal Computer.

Relational Expressions

In IBM Personal Computer BASIC,the value
returned by a relational expression, such as A>B, is
either -1, indicating the relation is true, of 0,
indicating the relation is false. Some other BASICs
return a positive 1 to indicate true. If you use the
value of a relational expression in an arithmetic
calculation, the results are likely to be different
from what you want.

Remarks

Some BASICs allow you to add remarks to the end of
a line using the exclamation point (!). Be sure to
change this to a single quote (') when converting to
IBM Personal Computer BASIC.

Rounding of Numbers

IBM Personal Computer BASIC rounds single- or
double-precision numbers when it requires an
integer value. Many other BASICs truncate instead.
This can change the way your program runs, because
it affects not only assignment statements (for
example, 1%=2.5 results in 1% equal to 3), but also
affects function and statement evaluations (for
example, TAB(4.5) goes to the fifth position, A(1.5)
is the same as A(2), and X=11.5 MOD 4 will result in
a value of ° for X). Note in particular that rounding
may cause IBM Personal Computer BASIC to select
a different element from an array than another
BASIC - possibly one that is out of range!

Sounding the Bell

Some BASICs require PRINT CHR$(7) to send an
ASCII bell character. In IBM Personal Computer
BASIC, you may replace this statement with BEEP,
although it is not required.

D-5

String Handling

D-6

String Length: Since strings in IBM Personal
Computer BASIC are all variable length, you should
delete all statements that are used to declare the
length of strings. A statement such as DIM A$(I,]),
which dimensions a string array for] elements of
length I, should be converted to the IBM Personal
Computer BASIC statement DIM A$O).

Concatenation: Some BASICs use a comma or
ampersand for string concatenation. Each of these
must be changed to a plus sign, which is the operator
for IBM Personal Computer BASIC string
concatenation.

Substrings: In IBM Personal Computer BASIC,
the MID$, RIGHT$, and LEFT$ functions are used
to take substrings of strings. Forms such as A$(I) to
access the Ith character in A$, or A$(I,]) to take a
substring of A$ from positin I to position], must be
changed as follows:

Other BASIC

X$=A$ (I)
X$=A$(I,J)

IBM Personal Computer BASIC

X$=MI O$(A$, 1,1)
X$=MIO$(A$, I ,J-I+1)

If the substring reference is on the left side of an
assignment and X$ is used to replace characters in
A$, convert as follows:

Other BASIC

A$(I)=X$
A$(I,J)=X$

IBM Personal Computer BASIC

t11 0$ (A$, I , 1) =X$
~11 D$ (A$, I ,J-·I+1)=X$

Use of Blanks

Other

Some BASICs allow statements with no separation
of keywords:

20FORI=1TOX

With IBM Personal Computer BASIC be sure all
keywords are separated by a space:

20 FOR 1=1 TO X

The BASIC language on another computer may be
different from the IBM Personal Computer BASIC
in other ways than those listed here. You should
become familiar with IBM Personal Computer
BASIC as much as possible in order to be able to
appropriately convert any function you may
require.

D-7

NOTES

D-8

Appendix E. Mathematical Functions

Functions that are not intrinsic to IBM Personal
Computer BASIC may be calculated as follows.

Function

Logarithm to base B
Secant
Cosecant
Cotangent
Inverse sine
Inverse cosine

Inverse secant

Inverse cosecant

Inverse cotangent
Hyperbolic sine
Hyperbolic cosine
Hyperbolic tangent

Hyperbolic secant
Hyperbolic cosecant
Hyperbolic
cotangent
Inverse hyperbolic

sine
Inverse hyperbolic

cosine
Inverse hyperbolic

tangent
Inverse hyperbolic

secant
Inverse hyperbolic

cosecant

Inverse hyperbolic
cotangent

Equivalent

LOGB(X) = LOG(X)/LOG(B)
SEC(X) = l/COS(X)
CSC(X) = l/SIN(X)
COT(X) = l/TAN(X)
ARCSIN(X) = ATN(X/SQR(l-X*X»
ARCCOS(X) = 1.570796

-ATN(X/SQR(l-X*X»
ARCSEC(X) = ATN(SQR(X*X-1»

+(X<0)*3.141593
ARCCSC(X) = ATN(1/SQR(X*X-1»

+(X<0)*3.141593
ARCCOT(X) = 1.57096-ATN(X)
SINH(X) = (EXP(X)-EXP(-X»/2
COSH(X) = (EXP(X)+EXP(-X»/2
TANH(X) = (EXP(X)-EXP(-X»

/ (EXP(X)+ EXP(-X»
SECH(X) = 2/(EXP(X)+EXP(-X»
CSCH(X) = 2/(EXP(X)-EXP(-X»
COTH(X) = (EXP(X)+ EXP(-X»

/ (EXP(X)-EXP(-X»

ARCSINH(X) = LOG(X+SQR(X*X+1»

ARCCOSH(X) = LOG(X+SQR(X*X-1»

ARCTANH(X) = LOG«l +X)/(1-X»/2

ARCSECH(X) = LOG«l +SQR(l-X*X»/X)

ARCCSCH(X) = LOG«l+SGN(X)
*SQR(l +X*X»/X)

ARCCOTH(X) = LOG«X+1)/(X-1»/2

E-1

E-2

If you use these functions, a good way to code them
would be with the DEF FN statement. For example,
instead of coding the formula for inverse hyperbolic
sine each time you need it, you could code:

DEF FNARCSINH(X) = LOG(X+SQR(X*X+l))

in one place, then refer to it as

FNARCSINH(Y)

each time you need it.

Appendix F. Communications

This appendix describes the BASIC statements
required to support RS232 asynchronous
communication with other computers and
peripherals.

Opening a Communications File

OPEN "COM ... allocates a buffer for I/O in the
same fashion as OPEN for diskette files. Refer to
"OPEN "COM ... Statement" in Chapter 4.

Communication I/O

Since each communications adapter is opened as a
file, all input/output statements that are valid for
diskette files are valid for communications.

Communications sequential input statements are
the same as those for diskette files. They are:

INPUT #
LINE INPUT #
INPUT$

Communications sequential output statements are
the same as those for diskette files, and are:

PRINT #
PRINT # USING
WRITE #

Refer to the INPUT and PRINT sections for details
of coding syntax and usage.

F-l

F-2

GET and PUT for Communications Files

GET and PUT are only slightly different for
communications files than for diskette files. They
are used for fixed length I/O from or to the
communications file. In place of specifying the
record number to be read or written, you specify the
number of bytes to be transferred into or out of the
file buffer. This number cannot exceed the value set
by the LEN option on the OPEN "COM ...
statemen t. Refer to the GET and PUT sections in
Chapter 4.

110 Functions

The most difficult aspect of asynchronous
communication is being able to process characters
as fast as they are received. At rates of 1200 bps or
higher, it may be necessary to suspend character
transmission from the other coniputer long enough
to "catch up." This can be done by sending XOFF
(CHR$(19» to the other computer and XON
(CHR$(17» when ready to resume. XOFF tells the
other computer to stop sending, and XON tells it it
can start sending again.

Note: This is a commonly used convention,
but it is not universal. It depends on the
protocol implemented between you and the
other computer or peripheral.

Disk and Advanced BASIC provide three functions
which help in determining when an "overrun"
condition may occur. These are:

LOC(f) Returns the number of characters in the
input buffer waiting to be read. If the
number is greater than 255, LOC returns
255.

LOF(f) Returns the amount of free space in the
input buffer. This is the same as n-LOC(f),
where n is the size of the cornmunictions
buffer as set by the / C: option on the
BASIC command. The default for n is 256.

EOF(f) Returns true (-1) if the input buffer is
empty; false (0) if there are any characters
waiting to be read.

Note: A "Communication buffer overflow"
can occur if a read is attempted after the input
buffer is full (that is, when LOF(f) returns 0).

INPUT$ Function

The INPUT$ function is preferred over the
INPUT # and LINE INPUT # statements when
reading communications files, since all ASCII
characters may be significant in communications.
INPUT # is least desirable because input stops when
a comma (,) or carriage return is seen. LINE
INPUT # stops when a carriage return is seen.

INPUT$ allows all characters read to be assigned to
a string. INPUT$(n,j) will return n characters from
the #/ file. The following statements are efficient for
reading a communications file:

110 WHILE NOT EOF(l)
1 20' A $ = I N PUT $ (L 0 C (1) ,# 1)

(process data returned in A$)

190 WEND

These statements return the characters in the buffer
into A$ and process them, as long as there are'
characters in the input buffer. If there are more than
255 characters in the buffer, only 255 will be
returned at a time to prevent "String overflow."
Further, if this is the case, EOF(l) is false and input
continues until the input buffer is empty. Simple,
concise, and fast.

F-3

In order to process characters quickly, you should
avoid, if possible, examining every character as you
receive it. If you are looking for special characters
(such as control characters), you can use the INSTR
function to find them in the input string.

An Example Program

F-4

The following program enables the IBM Personal
Computer to be used as a conventional" dumb"
terminal in a full duplex mode. This program
assumes a 300 bps line and an input buffer of 256
bytes (the Ie: option was not used on the BASIC
command).

10 REM dumb terminal example
20 Iset screen to black and white text mode
30 I and set width to 40
40 SCREEN 0,0: WIDTH 40
50 Iturn off soft key display; clear screen;
60 I make sure all files are closed
70 KEY OFF: CLS: CLOSE
80 'define all numeric variables as integer
90 DEFINT A-Z
100 'define true and false
110 FALSE=0: TRUE= NOT FALSE
120 'define the XON, XOFF characters
130 XOFF$=CHR$(19): XON$=CHR$(17)
140 lopen communications to file number 1,
150 I 300 bps, EVEN parity, 7 data bits
160 OPEN IIeOM1 :300,E,7" ,f1,S #1
170 luse screen as a f i 1 e, just for fun
180 OPEN IISCRN: II FOR OUTPUT AS 2
1910 Iturn cursor on
200 LOCATE , , 1
!}00 PAUSE=FALSE: ON ERROft GOTO 9000
490 I

500 'send keyboard input to com 1 ine
510 B$=INKEY$: IF B$<>'"' THEN PRINT #l,B$;
520 'if no chars in com buffer, check key in
530 IF EOF(1) THEN 510
540 'i f buffer more than 1/2 full, then
550' set PAUSE flag to say input suspended,
560' send XOFF to host to stop transmission
570 IF LOC(1»128 THEN PAUSE=TRUE: PRINT #l,XOFF$;
580 'read contents of com buffer
590 A$=INPUT$(LOC(1) ,#1)
600 'get rid of 1 inefeeds to avoid double spaces
610' when input displayed on screen
620 LFP=0
630 LFP=INSTR(LFP+1 ,A$,CHR$(10)) 'look for LF
640 IF LFP>0 THEN M I D$ (A$, LFP ,1)=" ": GOTO 630
650 'display com input, and check for more
660 PRINT #2,A$;: IF LOc(1»0 THEN 570
670 'if transmission suspended by XOFF,
680' resume by send i ng XON
690 IF PAUSE THEN PAUSE=FALSE: PRINT #l,XON$;
700 'check for keyboard input again
710 GOTO 510
8999 'i f error, d i sp 1 ay error number and ret ry
9000 PRINT "ERROR NO.";ERR: RESUME

Notes on the Program

• "Asynchronous" communication implies
character I/O as opposed to line or block I/O.
Therefore, all PRINTs (either to
communications file or to screen) are
terminated with a semicolon (;). This stops the
carriage return normally issued at the end of
the list of values to be printed.

• Line 90, where all numeric variables are defined
as integer, is coded because any program
looking for speed optimization should use
integer counters in loops where possible.

• Note in line 51 ° that INKEY$ will return a null
string if no character is pending.

F-5

Operation of Control Signals
This section contains more detailed technical
information that you may need to know to
communicate with another computer or peripheral
from BASIC.

The output from the Asynchronous Communications
Adapter conforms to the EIA RS2 32-C standard for
interface between Data Terminal Equipment (DTE)
and Data Communications Equipment (DCE). This
standard defines a number of control signals that are
transmitted or received by your IBM Personal
Computer to control the interchange of data with
another computer or peripheral. These signals are
DC voltages that are either ON (greater than +3
volts) or OFF (less than -3 volts). See the IBM
Personal Computer Technical Reference manual for
details.

Control of Output Signals with OPEN

F-6

When you start BASIC on your IBM Personal
Computer, the RTS (Request To Send) and DTR
(Data Terminal Ready) lines are held OFF. When an
OPEN "COM ... statement is performed, both of
these lines are normally turned ON. However, you
can specify the RS option on the OPEN "COM ...
statement to suppress the RTS signal. The lines stay
ON until the communications file is closed (by
CLOSE, Er~D, r~EW, RESET, SYSTE!vl, or RUN
without the R option). Even if the OPEN "COM ...
statement fails with an error (as described below),
the DTR line (and RTS line, if applicable) is turned
ON and stays ON. This allows you to retry the -
OPEN without having to execute a CLOSE.

Use of Input Control Signals

Normally, if either the CTS (Clear To Send) or DSR
(Data Set Ready) lines are OFF, then an OPEN
"COM ... statement will not execute. After one
second, BASIC will return with a "Device Timeout"
error (error code 24). The Carrier Detect
(sometimes called Receive Line Signal Detect) can
be either ON or OFF; it has no effect on the
operation of the program.

However, you can specify how you want these lines
tested with the RS, CS, DS, and CD options on the
OPEN "COM ... statement. Refer to
"OPEN "COM ... Statement" in Chapter 4 for details.

If any of the signals that are being tested are turned
OFF while the program is executing, I/O statements
associated with the communications file won't
work. For example, when you execute a PRINT #
statement after the CTS or DSR line is turned off, a
"Device Fault" (code 25) or "Device Timeout"
(code 24) error occurs. The RTS and DTR stay on
even if such an error occurs.

You can test for a line disconnect by using the INP
function to read the bits in the MODEM Status
Register on the Asynchronous Communications
Adapter. See the following section, "Testing for
Modem Control Signals," for details.

resting for Modem Control Signals

There are four input control signals picked up by
the Asynchronous Communications Adapter. These
signals are the CTS and DSR signals describ ed
previously, the Carrier Detect (sometimes called
Received Line Signal Detect) (pin 8), and Ring
Indicator (pin 22). You can specify how you want to
test the CTS, DSR, and CD lines with the OPEN
"COM ... statement. Ring Indicator is not used at all
by the communications function in BASIC.

F-7

If you need to test for any of these signals in a
program, you can check the bits corresponding to
these signals in the MODEM Status Register on the
Asynchronous Communications Adapter. To read
the eight bits in this register, you use the INP
function-use INP(&H3FE) to read the register on
an unmodified communications adapter, and
INP(&H2FE) to read the register on a modified
communications adapter. See the" Asynchronous
Communications Adapter" section of the Technical
Reference manual for a description of which bits in
the Status Register correspond to which control
signals. You can also use the Delta bits in this
register to determine if transient signals have
appeared on any of the control lines. Note that for a
control signal to have meaning, the pin
corresponding to that signal must be connected in
the cable to your modem or to the other computer.

You can also test for bits in the Line Status Register
on the Asynchronous Communications Adapter.
Use INP(&H3FD) to access this register on an
unmodified communications adapter, and
INP(&H2FD) to access it on a modified
communications adapter. Again, the bits are
described in the IBM Personal Computer Technical
Reference manuaL These bits ·can be used to
determine what types of errors have occurred on
receipt of characters from the communications line
or whether a break signal has been detected.

Direct Control of Output Control Signals

F-8

You can control the RTS or DTR control signals
directly from a BASIC program with an OUT
statement. The states (ON or OFF) of these signals
are controlled by bits in the MODEM Control
Register on the Asynchronous Communications
Adapter. The address of this register is &H3 FC on an
unmodified communications adapter and &H2FC
on a modified communications adapter. The IBM
Personal Computer Technical Reference manual describe~
which of these bits correspond to which signals.

You can also modify bits in the Line Control
Register on the Asynchronous Communications
Adapter. You should be careful in modifying these
bits as most of the bits in this register have been set
by BASIC at the time an OPEN statement is
executed and changing a bit could cause
communications failure. The Line Control Register
is at address &H3 FB on an unmodified
communications adapter and at address &H2FB on a
modified communications adapter.

When changing bits in either the MODEM Control
Register or the Line Control Register, you should
first read the register (with an INP function) and
then rewrite the register with only the pertinent bit
or bits changed.

A bit you may wish to control in the Line Control
Register is bit 6, the Set Break bit. This bit permits
you to produce a Break signal on the
communications send line. A Break is often used to
signal a remote computer to stop transmission.
Typically a Break lasts for half a second. To produce
such a signal, you must turn ON the Set Break, wait
for the desired time of the Break signal, and then
turn the bit OFF. The following BASIC statements
will produce a Break signal of approximately half a
second duration on an unmodified communications
adapter.

100 IC%=INP(&H3FB) Iget contents of modem register
110 IZ%=IC% OR &H40 Iturn ON the Set Break bit
110 OUT &H3FB,IZ% 'transmit to modem control register
120 FOR 1=1 TO 500: NEXT 1 'delay half a second
130 OUT &H3FB,IC% Iturn Set Break bit OFF in register

F-9

Communication Errors

F-IO

Errors occur on communication files in the
following order:

1) When opening the file-

a) "Device Timeout" if one of the signals to
be tested (CTS, DSR, or CD) is missing.

2) When reading data -

a) "Com buffer overflow" if overrun occurs.

b) "Device I/O error" for overrun, break,
parity, or framing errors.

c) "Device Fault" if you lose DSR or CD.

3) When writing data -

a) "Device Fault" if you lose CTS, DSR, or
CD on a Modem Status Interrupt while
BASIC was doing something else.

b) "Device Timeout" if you lose CTS, DSR,
or CD while waiting to put data in the
output buffer.

Appendix G. ASCII Character Codes

The following table lists all the ASCII codes (in
decimal) and their associated characters. These
characters can be displayed using PRINT CHR$(n),
where n is the ASCII code. The column headed
"Con trol Character" lists the standard
interpretations of ASCII codes 0 to 31 (usually used
for control functions or communications).

Each of these characters may be entered from the
keyboard by pressing and holding the Alt key, then
pressing the digits for the ASCII code on the
numeric keypad. Note, however, that some of the
codes have special meaning to the BASIC program
editor-the program editor uses its own
interpretation for the codes and may not display the
special character listed here.

G-l

ASCII Control ASCII
value Character character value Character

000 (null) NUL 032 (space)

001 © SOH 033 !
002 • STX 034
003 • ETX 035 #=
004 • EDT 036 $
005 • ENG 037 %
006 • ACK 038 &
007 (beep) BEL 039
008 a 8S 040
009 (tab) HT 041
010 (line feed) LF 042 *
011 (home) VT 043 +
012 (form feed) FF 044
013 (carriage return) CR 045 ",.,.
014 n SO 046
015 ~ SI 047 /
016 .. OLE 048 0
017 DC1 049 1
018 * DC2 050 2
019 !! DC3 051 3
020 qr DC4 052 4
021 § NAK 053 5
022 - SYN 054 6
023 i ETB 055 7
024 t CAN 056 8
025 ~ EM 057 9
026 .-.. SUB 058
027 ..- ESC 059
028 (cursor right) FS 060 <
029 (cursor left) GS 061
030 (cursor up) RS 062 >
031 (cursor down) US 063 ?

G-2

ASCII ASCII

value Character value Character

064 @ 096
065 A 097 a
066 B 098 b

067 C 099 c
068 D 100 d

069 E 101 e
070 F 102 f

071 G 103 9
072 H 104 h

073 I 105
074 J 106 j

075 K 107 k
076 L 108
077 M 109 m

078 N 110 n

079 0 111 0

080 P 112 p

081 Q 113 q

082 R 114
083 S 115
084 T 116 t
085 U 117 u

086 V 118 v

087 W 119 w

088 X 120 x

089 y 121 y

090 Z 122 z

091 [123
092 \ 124
093] 125
094 1\ 126
095 127 0

G-3

ASCII ASCII
value Character value Character

128 C 160 a
129 U 161
130 e 162 6
131 a 163 u
132 a 164 n
133 a 165 N
134 a 166 ~

135 <; 167 Q

136 A 168 e

137 e 169 r-

138 e 170 --,

139 I 171 Y2
140 172 %

141 173
142 A 174 «
143 A 175 »
144 E 176

145 re 177 ::::;:;::

146 A: 178 :;:;:;:;:;:

147 '" 179 0

148 0 180 --1
149 0 181 =9
150 "" 182 --ll u

151 U 183 11

152 Y '184 ====l

153 0 185 ~I
154 U 186 II
155 ¢ 187 ~

156 £ 188 ~

157 l 189 --1J

158 Pt 190 d

159 f 191 -,

G-4

ASCII ASCII

value Character value Character

192 L 224 a

193 ...L 225 ~
194 I 226 r
195 I- 227 7r

196 228 L
197 + 229 a-
198 1= 230 fJ.

199 II- 231 T

200 l!: 232 Q

201 rr= 233 -&

202 -IL 234 Q

203 =;;= 235 6

204 I~ 236 00

205 237 0
206 .JL 238 E ,r

207 ='= 239 n
208 ...IL. 240 =
209 '9 241 ±

210 .,., 242 ~

211 lL 243 ::::

212 b: 244 r
213 F 245 J
214 rr 246 -;-

215 * 247 ~

216 +: 248 0

217 ..J 249 •
218 r 250
219 • 251 ~
220 - 252 n

221 I 253
222 I 254 •
223 - 255 (blank 'F F/)

G-5

Extended Codes

G-6

For certain keys or key combinations that cannot be
represented in standard ASCII code, an extended
code is returned by the INKEY$ system variable. A
null character (ASCII code 000) will be returned as
the first character of a two-character string. If a
two-character string is received by INKEY$, then
you should go back and examine the second
character to determine the actual key pressed.
Usually, but not always, this second code is the scan
code of the primary key that was pressed. The ASCII
codes (in decimal) for this second character, and the
associated key(s) are listed on the following page.

Second Code

3
15
16-25
30-38
44-50
59-68

71
72
73
75
77
79
80
81
82
83
84-93
94-103

104-113
114
115
116
117
118
119
120-131
132

Meaning

(null character) NUL
(shift tab) I ~
Alt- Q, W, E, R, T, Y, U, I, 0, P
Alt- A, S, D, F, G, H,], K, L
Alt-Z,X,C,V,B,N,M
function keys F1 through FlO

(when disabled as soft keys)
Home
Cursor Up
PgUp
Cursor Left
Cursor Right
End
Cursor Down
PgDn
Ins
Del
F11-F20 (Shift- F1 through FlO)
F21-F30 (Ctrl- F1 through FlO)
F31-F40 (Alt- F1 through FlO)
Ctrl-PrtSc
Ctrl-Cursor Left (Previous Word)
Ctrl-Cursor Right (Next Word)
Ctrl-End
Ctrl-Pg Dn
Ctrl-Home
Alt- 1,2,3,4,5,6,7,8,9,0,-,=
Ctrl-Pg Up

G-7

NOTES

G-8

Appendix H. Hexadecimal
Conversion Table

Hex Decimal Hex Decimal

1 1 10 16
2 2 20 32
3 3 30 48
4 4 40 64
5 5 50 80
6 6 60 96
7 7 70 112
8 8 80 128
9 9 90 144
A 10 Ao 160
B 11 BO 176
C 12 CO 192
D 13 DO 208
E 14 EO 224
F 15 FO 240

100 256 1000 4096
200 512 2000 8192
300 768 3000 12288
400 1024 4000 16384
500 1280 5000 20480
600 1536 6000 24576
700 1792 7000 28672
800 2048 8000 32768
900 2304 9000 36864
AOO 2560 Aooo 40960
BOO 2816 BOOO 45056
COO 3072 COOO 49152
DOO 3328 DOOO 53248
EOO 3584 EOOO 57344
FOO 3840 FOOO 61440

H-1

NOTES

H-2

Appendix I. Technical Information
and Tips

This appendix contains more specific technical
information pertaining to BASIC. Included are a
memory map, descriptions of how BASIC stores
data internally, and some special techniques you can
use to improve program performance.

Other information may be found in the IBM Personal
Computer Technical Reference manual.

1-1

Memory Map

0000:0000

0060:0000

ps1:0000
PS1:0100

OS2:0000

top of memory
or

OS2:FFFF

AOOO:OOOO

F400:0000

1-2

~ ;;,
J

The following is a memory map for Disk and
Advanced BASIC. DOS and the BASIC extensions
are not present for Cassette BASIC. Addresses are in
hexadecimal in the form segment:offset.

system

.t
DOS

~h.::

~i
DOS workarea

1 t
~

.. ~
GO 1~ BASIC .i.:'; c: ~

extensions '" CI !: :t
is"i 'a CI

cc"i

Notes:

1. PS refers to DOS

1 ! Program Segment

interpreter »{~
E!~

workarea Doo:t

t~

BASIC
program

scalar variables

arrays

T
2. DS refers to BASIC's

Data Segment

3. the number xxxx is in
locations DS: 30 and e

:t DS: 31 (low byte, high e
'j(

byte) e
In
~

string
space

In t",
BASIC N~

- > stack In .J:j

¥
4. the number yyyy is in

I
locations DS:358,
DS:359 (low byte,

1 high byte) .

or set by CLEAR 5.
command

~
~

system
(includes screen buffers)

read·only memory

How Variables Are Stored

Byte o

Scalar variables are stored in BASIC's data area as
follows:

2 3 4 4+/ength
~--~~------------------~ ~~v~~v-~----------~

name data

type char chars 2,3,4, or 8 bytes

~--~~--~~--~----~--~A~AVr-~------------

type identifies the variable's type:

2 integer
3 string
4 single-precision
8 double-precision

name is the name of the variable. The first two
characters of the name are stored in the
bytes 1 and 2. Byte 3 tells how many more
characters are in the variable name. These
additional characters are stored starting at
byte 4.

Note that this means any variable name
will take up at least three bytes. A one- or
two-character name will occupy exactly
three bytes; an x character name will
occupy x+ 1 bytes.

data follows the name of the variable, and may
be either two, three, four, or eight bytes
long (as described by type). The value
returned by the V ARPTR function points
to this data.

J,;·3

For string variables, data is the string descriptor:

• The first byte of the string descriptor contains
the length of the string (0 to 255).

• The last two bytes of the string descriptor
contain the address of the string in BASIC's
data space (the offset into the default segment).
Addresses are stored with the low byte first and
the high byte second, so:

The second byte of the string descriptor
contains the low byte of the offset.
The third byte of the string descriptor
contains the high byte of the offset.

For numeric variables data contains the actual value
of the variable:

• Integer values are stored in two bytes, with the
low byte first and the high byte second.

• Single-precision values are stored in four bytes
in BASIC's internal floating point binary
format.

• Double-precision values are stored in eight
bytes in BASIC's internal floating point binary
format.

BASIC File Control Block

I-4

When you call V ARPTR with a file number as an
argument, the returned value is the address of the
BASIC file control block. The address is specified as
an offset into BASICs Data Segment. (Note that the
BASIC file control block is not the same as the DOS
file control block.)

Information contained in the file control block is as
follows (offsets are relative to the value returned by
VARPTR):

Offset Length Description

° 1 The mode in which the file was
opened:

1 - Input only
2 - Output only
4. - Random

16 - Append only
32 - Internal use

128 - Internal use

1 38 DOS file control block

39 2 For sequential files, the number
of sectors read or written. For
random files, contains 1 + the
last record number read or
written.

41 1 Number of bytes in sector when
read or written.

42 1 Number of bytes left in input
buffer.

43 3 (reserved)

46 1 Device number:
0,1 - Diskette drives A: and B:
248 - LPT3:
249 - LPT2:
250 - COM2:
251 - COM1:
252 - CAS1:
253 - LPT1:
254 - SCRN:
255 - KYBD:

1-5

Offset Length Description

47 1 Device width.

48 1 Position in buffer for PRINT #.

49 1 Internal use during LOAD and
SAVE. Not used for data files.

50 1 Output position used during tab
expansion.

51 128 Physical data buffer. Used to
transfer data between DOS and
BASIC. Use this offset to
examine data in sequential I/O
mode.

179 2 Variable length record size.
Default is 128. Set by length
parameter on OPEN statement.

181 2 Current physical record number.

183 2 Current logical record number.

185 1 (reserved)

186 2 Diskette files only. Position for
PRINT #, INPUT #, and
WRITE#.

188 n Actual FIELD data buffer. Size n
is determined by the IS: option
on the BASIC command. Use
this offset to examine file data in
random mode.

1-6

Keyboard Buffer

Characters typed on the keyboard are saved in the
keyboard buffer until they are processed. Up to 15
characters can be held in the buffer; if you try to
type more than 15 characters, the computer beeps.

INKEY$ will read only one character from the
keyboard buffer even if there are several characters
pending there. INPUT$ can be used to read
multiple characters; however, if the requested
number of characters are not already present in the
buffer, BASIC will wait until enough characters are
typed.

The system keyboard buffer may be cleared by the
following lines of code:

DEF SEG=0: POKE 1050, PEEK(1052)

This technique could be useful, for example, to
clear the buffer before you ask the user to "press any
key."

BASIC has its own line buffer, where the program
editor acts on characters that are received from the
system keyboard buffer. BASIC's line buffer may be
cleared using the following code:

DEF SEG: POKE 106,0

Search Order for Adapters

The printers associated with LPT1:, LPT2:, and
LPT3: are assigned when you switch your computer
on. The system looks for printer adapters in a
particular sequence; the first printer adapter found
becomes LPT1:, the second adapter (if one exists)
becomes LPT2:, and the third (if it exists) becomes
LPT3:. The search order is as follows:

1. An IBM Monochrome Display and Parallel
Printer Adapter

2. A Parallel Printer Adapter
3. A Parallel Printer Adapter which has been

modified to change its base address

1-7

If a printer was re-routed using the MODE
command from DOS, the change is effective in
BASIC as well.

The communication devices COM1: and COM2: are
assigned in a manner similar to the printers. Their
search order is:

1. An Asynchronous Communications Adapter
2. A modified Asynchronous Communications

Adapter

Switching Displays

1-8

If you have both the Color/Graphics Monitor
Adapter and the IBM Monochrome Display and
Parallel Printer Adapter in your IBM Personal
Computer, the one BASIC will normally write to
would be the Monochrome Display. However, you
can switch from one display to the other from
BASIC by using the following code:

10 I switch to monochrome adapter
20 DEF SEG = 0
30 POKE &H410, (PEEK(&H410) OR &H30)
40 SCREEN 0
50 WIDTH 40
60 \..J I DTH 80
70 LOCATE ,,1,12,13

10 I switch to color adapter
20 DEF SEG = 0
30 POKE &H410, (PEEK(&H410) AND &HCF) OR &H10
40 SCREEN 1,0,0,0
50 SCREEN 0
60 WIDTH 40
70 LOCATE ,,1,6,7

Note: When you use this technique, the
screen you are switching to is cleared. Also, you
may need to keep track of the cursor location
independently for each display.

Some Techniques with Color

Sixteen Background Colors: In text mode, if you
are willing to give up blink, you can get all 16 colors
(0-15) for the background color. Do the following:

In 40-column width:

In 80-column width:

OUT &H308,8

OUT &H308,9

Character Color in Graphics Mode: You can
display regular text characters while in graphics
mode. In medium resolution, the foreground color
of the characters is color number 3; the background
is color number o.

You can change the foreground color of the
characters from 3 to 2 or 1 by performing a:

OEF SEG: POKE &H4E, color

where color is the desired foreground color (1, 2, or
3- 0 is not allowed). Later PRINTs will use the
specified foreground color.

1-9

Tips and Techniques

1-10

Often there are several different ways you can code
something in BASIC and still get the same function.
This section contains some general hints for coding
to improve program performance.

GENERAL

• Combine statements where convenient to
take advantage of the 255 character statement
length. For example:

Do

100 FOR 1=1 TO 10: READ A(I): NEXT 1

Instead of

100 FOR 1=1 TO 10
110 READ A (1)
120 NEXT 1

• Avoid repetitive evaluation of expressions. If
you do the identical calculation in several
statements, you can evaluate the expression
once and save the result in a variable for use in
later statements. For example:

Do

300 X=C,', 3+D
310 A=X+Y
320 B=X+Z

Instead of

310 A=C", 3+D+Y
320 B=C,', 3+D+Z

However, assigning a constant to a variable is
faster than assigning the value of another
variable to the variable.

• Use simple arithmetic. In general, addition
is performed faster than multiplication, and
multiplication is faster than division or
exponentiation.

Consider these example:

Do

250 B=A,',. 5
500 8=A+A
650 B=A,',A,',A-k
750 B%=A%\4

Instead of

250 B=A/2
5100 B=A,',2
650 B=A"'3
750 B%=INT(A%/4)

• Use buH t-in functions. Use the built-in
system functions where possible; they always
execute faster than the same capability written
in BASIC.

• Use remarks sparingly. It takes a small
amount of time for BASIC to identify a remark.
Use the single quote (') to place remarks at the
end of the line rather than using a separate
statement for them when possible. This
improves performance and saves storage by
eliminating the need for a line number. For
example:

Do

10 FOR 1=1 TO 10
20 A (I) = 30 lin i t i ali ze A
30 NEXT 1

Instead of

10 FOR 1=1 TO 10
1 5 lin i t i ali ze A
20 A(I)=30
30 NEXT I

• Just a note about IBM Personal Computer
BASIC- When BASIC wants to branch to a
particular line number, it doesn't know exactly

1-11

1-12

where in memory that line is. Therefore BASIC
has to search through the line numbers in the
program, starting at the beginning, to find the
line it's looking for.

In some other BASICs, this search must be
performed each time the branch occurs in the
program. In IBM Personal Computer BASIC,
the search is only performed once, and
thereafter the branch is direct. So placing
frequently-used subroutines at the beginning
of the program will not make your program run
faster.

LOGIC CONTROL

• Use the capabilities of the IF statement. By
using AND and OR and the ELSE clause, you
can often avoid the need for more IF
statements and additional code in the program.
For example:

Do

200 IF A=B AND C=D THEN Z=12 ELSE Z=B

Instead of

200 IF A=B THEN GOTO 210
205 GOTO 215
210 IF C=D THEN 225
215 Z=R
220 GOTO 230
225 Z=12
230

• Order IF statements so the most frequently
occurring condition is tested first. This avoids
having to make extra tests. For example,
suppose you have a data entry file for customer
orders which consists of different record types
and numerous individual transactions.

A typical record group looks like this:

Type code Record type

Do

A
B
C
C

C
D

100
110
120
130

IF
IF
IF
IF

Header
Customer name and address
Transaction
Transaction

Transaction
Trailer

TYPE$="C" THEN 3000
TYP E$="AI' THEN 1000
TYPE$="B" THEN 2000
TYPE$="D" THEN 4000

Instead of

100 IF TYPE$="A" THEN 1000
110 IF TYPE$="B" THEN 2000
120 IF TYPE$="C" THEN 3000
130 IF TYPE$="D" THEN 4000

If you had 100 groups, with 10 transactions per
group, moving the test to the beginning of the
list results in 1800 fewer IF statements being
executed.

1-13

1-14

Another example of ordering IF statements in a
cascade so less tests need to be performed:

DO

200 IF A<>l THEN 250
210 IF 8=1 THEN X=0
220 IF 8=2 THEN X=l
230 IF 8=3 THEN X=2
240 GOTO 280
250 IF 8=1 THEN X=3
260 IF 8=2 THEN x=4
270 IF 8=3 THEN X=5
230

Instead of

200 IF A=l AND 8=1 THEN
210 IF A= 1 AND 8=2 THEN

X=0
X=l

220 IF f\= 1 AND 8=3 THEN X=2
230 IF A<>l AND 8=1 THEN X=3
2L:0 IF A<>l Arm J:::2 THEN x=4
250 IF A<>l AND 8=3 THEN X=5

LOOPS

• Use integer counters on FOR ... NEXT loops
when possible. Integer arithmetic is performed
faster than single- and double-precision
ari thmetic.

• Omit the variable on the NEXT statement
where possible. If you include the variable,
BASIC takes a little time to check to see that it
is correct. It may be necessary to include the
variable on the NEXT statement if you are
branching out of nested loops. Refer to "FOR
and NEXT Statements" in Chapter 4 for more
information.

• Use FOR ... NEXT loops instead of using the IF,
GOTO combination of statements.

For example:

Do Instead of

200 FOR 1=1 TO 10 200 1=1
210

290 1=1+1
300 NEXT I 300 IF 1<=10 THEN 210

• Remove unnecessary code from loops. This
includes statements which don't affect the
loop, as well as non-executable statements such
as REM and DATA. For example:

Do

10 A=B+l
20 FOR X=l TO 100
30 IF D(X»A THEN D(X)=A
40 NEXT X

Instead of

10 FOR X=l TO 100
20 A=B+1
30 IF D(X»A THEN D(X)=A
40 NEXT X

In the preceding example, it is not necessary to
calculate the value of A each time through the
loop, because the loop never changes the value
of A.

The next example shows a non-executable
statement.

Do Instead of

200 DATA 5, 12, 191t3 200 FOR 1=1 TO 100
210 FOR 1=1 TO 100 210 DATA 5, 12, 1943

300 NEXT 300 NEXT

1-15

I-16

Refer also to "Performance Hints" in
Appendix B for some tips relating to diskette
files.

Appendix]. Glossary

This part of the book explains many of the technical
terms you may run across while programming in
BASIC.

absolute coordinate form: In graphics, specifying
the location of a point with respect to the origin of
the coordinate system.

access mode: A technique used to obtain a specific
logical record from, or put a logical record into, a
file.

accuracy: The quality of being free from error. On
a machine this is actually measured, and refers to the
size of the error between the actual number and its
value as stored in the machine.

active page: On the Color/Graphics Monitor
Adapter, the screen buffer which has information
written to it. It may be different from the screen
buffer whose information is being displayed.

adapter: A mechanism for attaching parts.

address: The location of a register, a particular
part of memory, or some other data source or
destination. Or, to refer to a device or a data item by
its address.

addressable point: In computer graphics, any
point in a display space that can be addressed. Such
points are finite in number and form a discrete grid
over the display space.

algorithm: A finite set of well-defined rules for the
solution of a problem in a finite number of steps.

J-1

J-2

alloca te: To assign a resource, such as a diskette
file or a part of memory, to a specific task.

alphabetic character: A letter of the alphabet.

alphameric or alphanumeric: Pertaining to a
character set that contains letters and digits.

application program: A program written by or for
a user which applies to the user's work. For
example, a payroll application program.

argument: A value that is passed from a calling
program to a function.

arithmetic overflow: Same as overflow.

array: An arrangement of elements in one or more
dimensions.

ASCII: American National Standard Code for
Information Interchange. The standard code used
for exchanging information among data processing
systems and associated equipment. An ASCII file is a
text file where the characters are represented in
ASCII codes.

asynchronous: Without regular time relationship;
unpredictable with respect to the execution of a
program's instructions.

attribute: A property or characteristic of one or
more items.

background: The area which surrounds the
subject. In particular, the part of the display screen
surrounding a character.

backup: Pertaining to a system, device, file, or
facility that can be used in case of a malfunction or
loss of data.

baud: A unit of signalling speed equal to the
number of discrete conditions or signal events per
second.

binary: Pertaining to a condition that has two
possible values or states. Also, refers to the Base 2
numbering system.

bit: A binary digit.

blank: A part of a data medium in which no
characters are recorded. Also, the space character.

blinking: An intentional regular change in the
intensity of a character on the screen.

boolean value: A numeric value that is interpreted
as "true" (if it is not zero) or "false" (if it is zero).

bootstrap: An existing version, perhaps a
primitive version, of a computer program that is
used to establish another version of the program.
Can be thought of as a program which loads itself.

bps: Bits per second.

bubble sort: A technique for sorting a list of items
into sequence. Pairs of items are examined, and
exchanged if they are out of sequence. This process
is repeated until the list is sorted.

buffer: An area of storage which is used to
compensate for a difference in rate of flow of data,
or time of occurrence of events, when transferring
data from one device to another. Usually refers to an
area reserved for I/O operations, into which data is
read or from which data is written.

bug: An error in a program.

byte: The representation of a character in binary.
Eight bits.

J-3

J-4

call: To bring a computer program, a routine, or a
subroutine into effect, usually by specifying the
entry conditions and jumping to an entry point.

carriage return character (CR): A character that
causes the print or display position to move to the
first position on the same line.

channel: A path along which signals can be sent,
for example, a data channel or an output channel.

character: A letter, digit, or other symbol that is
used as part of the organization, control, or
representation of data. A connected sequence of
characters is called a character string.

clock: A device that generates periodic signals
used for synchronization. Each signal is called a
clock pulse or clock tick.

code: To represent data or a computer program in a
symbolic form that can be accepted by a computer;
to write a routine. Also, loosely, one or more
computer programs, or part of a program.

comment: A statement used to document a
program. Comments include information that may
be helpful in running the program or reviewing the
output listing.

communication: The transmission and reception
of data.

complement: An "opposite." In particular, a
number that can be derived from a given number by
subtracting it from another given number.

compression: Arranging data so it takes up a
minimal amount of space.

concatenation: The operation that joins two
strings together in the order specified, forming a
single string with a length equal to the sum of the
lengths of the two strings.

constant: A fixed value or data item.

control character: A character whose occurrence
in a particular context initiates, modifies, or stops a
control operation. A control operation is an action
that affects the recording, processing, transmission,
or interpretation of data; for example, carriage
return, font change, or end of transmission.

coordinates: Numbers which identify a location
on the display.

cursor: A movable marker that is used to indicate a
position on the display.

debug: To find and eliminate mistakes in a
program.

default: A value or option that is assumed when
none is specified.

delimiter: A character that groups or separates
words or values in a line of input.

diagnostic: Pertaining to the detection and
isolation of a malfunction or mistake.

directory: A table of identifiers and references to
the corresponding items of data. For example, the
directory for a diskette contains the names of files
on the diskette (identifiers), along with information
that tells DOS where to find the file on the diskette.

disabled: A state that prevents the occurrence of
certain types of interruptions.

J-5

J-6

DOS: Disk Operating System. In this book, refers
only to the IBM Personal Computer Disk Operating
System.

dummy: Having the appearance of a specified
thing but not having the capacity to function as
such. For example, a dummy argument to a
function.

duplex: In data communication, pertaining to a
simultaneous two-way independent transmission in
both directions. Same as full duplex.

dynamic: Occurring at the time of execution.

echo: To reflect received data to the sender. For
example, keys pressed on the keyboard are usually
echoed as characters displayed on the screen.

edit: To enter, modify, or delete data.

element: A member of a set; in particular, an item
in an array.

enabled: A state of the processing unit that allows
certain types of interruptions.

end of file (EOF): A "marker" immediately
following the last record of a file, signalling the end
of that file.

even t: An occurrence or haooenine:: in IBM
Personal Computer Advanced .LBASIC, refers
particularly to the events tested by the COM(n),
KEY(n), PEN, and STRIG(n).

execute: To perform an instruction or a computer
program.

extent: A continuous space on a diskette,
occupied or reserved for a particular file.

fault: An accidental condition that causes a device
to fail to perform in a required manner.

field: In a record, a specific area used for a
particular category of data.

file: A set of related records treated as a unit.

fixed-length: Referring to something in which the
length does not change. For example, random files
have fixed-length records; that is, each record has
the same length as all the other records in the file.

flag: Any of various types of indicators used for
identification, for example, a character that signals
the occurrence of some condition.

floppy disk: A diskette.

folding: A technique for converting data to a
desired form when it doesn't start out in that form.
For example, lowercase letters may be folded to
uppercase.

font: A family or assortment of characters of a
particular size and style.

foreground: The part of the display area that is the
character itself.

format: The particular arrangement or layout of
, data on a data medium, such as the screen or a
diskette.

form feed (FF): A character that causes the print
or display position to move to the next page.

function: A procedure which returns a value
depending on the value of one or more independent
variables in a specified way. More generally, the
specific purpose of a thing, or its characteristic
action.

J-7

J-8

function key: One of the ten keys labeled FI
through FlO on the left side of the keyboard.

garbage collection: Synonym for housecleaning.

graphic: A symbol produced by a process such as
handwriting, printing, or drawing.

half duplex: In data communication, pertaining
to an alternate, one way at a time, independent
transmission.

hard copy: A printed copy of machine output in a
visually readable form.

header record: A record containing common,
constant, or identifying information for a group of
records that follows.

hertz (Hz): A unit of frequency equal to one cycle
per second.

hierarchy: A structure having several levels,
arranged in a tree-like form. "Hierarchy of
operations" refers to the relative priority assigned
to arithmetic or logical operations which must be
performed.

host: The primary or controlling computer in a
multiple computer installation.

housecleaning: When BASIC compresses string
space by collecting all of its useful data and frees up
unused areas of memory that were once used tor
strings.

implicit declaration: The establishment of a
dimension for an array without it having been
explicitly declared in a DIM statement.

increment: A value used to alter a counter.

initialize: To set counters, switches, addresses, or
contents of memory to zero or other starting values
at the beginning of, or at prescribed points in, the
operation of a computer routine.

instruction: In a programming language, any
meaningful expression that specifies one operation
and its operands, if any.

integer: One of the numbers 0, ±1, ±2, ±3, ...

integrity: Preservation of data for its intended
purpose; data integrity exists as long as accidental or
malicious destruction, alteration, or loss of data are
prevented.

interface: A shared boundary.

interpret: To translate and execute each source
language statement of a computer program before
translating and executing the next statement.

interrupt: To stop a process in such a way that
it can be resumed.

invoke: To activate a procedure at one of its entry
points.

joystick: A lever that can pivot in all directions and
is used as a locator device.

justify: To align characters horizontally or
vertically to fit the positioning constraints of a
required format.

K: When referring to memory capacity, two to the
tenth power or 1024 in decimal notation.

keyword: One of the predefined words of a
programming language; a reserved word.

leading: The first part of something. For example,
you might refer to leading zeroes or leading blanks
in a character string.

J-9

J-10

light pen: A light sensitive device that is used to
select a location on the display by pointing it at the
screen.

line: When referring to text on a screen or printer,
one or more characters output before a return to the
first print or display position. When referring to
input, a string of characters accepted by the system
as a single block of input; for example, all characters
entered before you press the Enter key. In graphics,
a series of points drawn on the screen to form a
straight line. In data communications, any physical
medium, such as a wire or microwave beam, that is
used to transmit data.

line feed (LF): A character that causes the print or
display position to move to the corresponding
position on the next line.

literal: An explicit representation of a value,
especially a string value; a constant.

location: Any place in which data may be stored.

loop: A set of instructions that may be executed
repeatedly while a certain condition is true.

M: Mega; one million. When referring to memory,
two to the twentieth power; 1,048,576 in decimal
notation.

machine infinity: The lan!est number that can hp
represented in aJcompU:ter'~ inter~ai for~~t. ----.--

mantissa: For a number expressed in floating
point notation, the numeral that is not the
exponent.

mask: A pattern of characters that is used to
control the retention or elimination of another
pa ttern of characters.

matrix: An array with two or more dimensions.

matrix printer: A printer in which each character
is represented by a pattern of dots.

menu: A list of available operations. You select
which operation you want from the list.

minifloppy: A 5 -1 /4 inch diskette.

nest: To incorporate a structure of some kind into
another structure of the same kind. For example,
you can nest loops within other loops, or call
subroutines from other subroutines.

notation: A set of symbols, and the rules for their
use, for the representation of data.

null: Empty, having no meaning. In particular, a
string with no characters in it.

octal: Pertaining to a Base 8 number system.

offset: The number of units from a starting point
(in a record, control block, or memory) to some
other point. For example, in BASIC the actual
address of a memory location is given as an offset in
bytes from the location defined by the DEF SEG
statement.

on-condition: An occurrence that could cause a
program interruption. It may be the detection of an
unexpected error, or of an occurrence that is
expected, but at an unpredictable time.

operand: That which is operated upon.

J-11

J-12

operating system: Software that controls the
execution of programs; often used to refer to DOS.

operation: A well-defined action that, when
applied to any permissible combination of known
entities, produces a new entity.

overflow: When the result of an operation
exceeds the capacity of the intended unit of storage.

overlay: To use the same areas of memory for
different parts of a computer program at different
times.

overwrite: To record into an area of storage so as
to destroy the data that was previously stored there.

pad: To fill a block with dummy data, usually zeros
or blanks.

page: Part of the screen buffer that can be
displayed and/or written on independently.

parameter: A name in a procedure that is used to
refer to an argument passed to that procedure.

parity check: A technique for testing transmitted
data. Typically, a binary digit is appended to a group
of binary digits to make the sum of all the digits
either always even (even parity) or always odd (odd
party).

pixel: A graphics "point." Also, the bits which
contain the information for that point.

port: An access point for data entry or exit.

position: In a string, each location that may be
occupied by a character and that may be identified
by a number.

prec1s10n: A measure of the ability to distinguish
between nearly equal values.

prompt: A question the computer asks when it
needs you to supply information.

protect: To restrict access to or use of all, or part
of, a data processing system.

queue: A line or list of items waiting for service;
the first item that went in the queue is the first item
to be serviced.

random access memory: Storage in which you can
read and write to any desired location. Sometimes
called direct access storage.

range: The set of values that a quantity or function
may take.

raster scan: A technique of generating a display
image by a line-by-line sweep across the entire
display screen. This is the way pictures are created
on a television screen.

read-only: A type of access to data that allows it to
be read but not modified.

record: A collection of related information,
treated as a unit. For example, in stock control, each
invoice might be one record.

recursive: Pertaining to a process in which each
step makes use of the results of earlier steps, such as
when a function calls itself.

relative coordinates: In graphics, values that
identify the location of a point by specifying
displacements from some other point.

reserved word: A word that is defined in BASIC for
a special purpose, and that you cannot use as a
variable name.

J-13

J-14

resolution: In computer graphics, a measure of
the sharpness of an image, expressed as the number
of lines per unit of length discernible in that area.

routine: Part of a program, or a sequence of
instructions called by a program, that may have
some general or frequent use.

row: A horizontal arrangement of characters or
other expressions.

scalar: A value or variable that is not an array.

scale: To change the representation of a quantity,
expressing it in other units, so that its range is
brought within a specified range.

scan: To examine sequentially, part by part. See
raster scan.

scroll: To move all or part of the display image
vertically or horizontally so that new data appears at
one edge as old data disappears at the opposite edge.

segment: A particular 64K-byte area of memory.

sequential access: An access mode in which
records are retrieved in the same order in which they
were written. Each successive access to the file refers
to the next record in the file.

stack: A method of temporarily storing data so
that the last item stored is the first item to be
processed.

statement: A meaningful expression that may
describe or specify operations and is complete in the
context of the BASIC programming language.

stop bit: A signal following a character or block
that prepares the receiving device to receive the
next character or block.

storage: A device, or part of a device, that can
retain data. Memory.

string: A sequence of characters.

subscript: A number that identifies the position of
an element in an array.

syntax: The rules governing the structure of a
language.

table: An arrangement of data in rows and
columns.

target: In an assignment statement, the variable
whose value is being set.

telecommunication: Synonym for data
communication.

terminal: A device, usually equipped with a
keyboard and display, capable of sending and
receiving information.

toggle: Pertaining to anything having two stable
states; to switch back and forth between the two
states.

trailing: Located at the end of a string or number.
For example, the number 1000 has three trailing
zeros.

trap: A set of conditions that describe an event to
be intercepted and the action to be taken after the
in terception.

truncate: To remove the ending elements from a
string.

two's complement: A form for representing
negative numbers in the binary number system.

J-15

J-16

typematic key: A key that repeats as long as you
hold it down.

update: To modify, usually a master file, with
current information.

variable: A quantity that can assume any of a given
set of values.

variable-length record: A record having a length
independent of the length of other records in the
file.

vector: In graphics, a directed line segment. More
generally, an ordered set of numbers, and so, a
one-dimensional array.

wraparound: The technique for displaying items
whose coordinates lie outside the display area.

write: To record data in a storage device or on a
data medium.

INDEX

Special Characters

! 3-14
$ 3-13
% 3-14
?Redo from start 4-123
3-14

A: 3-35
ABS 4-23

A

absolute form for specifying
coordinates 3-43

absolute value 4-23
accuracy 3-11
adapters

communications 1-8
display 3-38,4-31,4-205,

1-8
printer 1-7

adding characters 2-34
adding program lines 2-36
addition 3-21
Advanced BASIC 1-6
alphabetic characters 3-4
Alt 2-13
Alt-Ctrl-Del 2-18
Alt-key words 2-14
alternate shifts 2-13
AND 3-25
append 4-189, B-8
arctangent 4-25
arithmetic operators 3-21
arrays 3-15,4-77,4-87,

4-200

ASC 4-24
ASCII codes 4-24, 4- 38,

Appendix G
ASCII format 4-253
aspect ratio 4-42, 4-80
assembly language

subroutines See machine
language subroutines

assignment statement 4-139
ATN 4-25
AUTO 3-3, 4-26
automatic line numbers 4-26

B
B: 3-35
background 3-40,4-49
Backspace 2-12, 2-28, 2-34
BASIC command 2-4
BASIC versions 1-3
BASIC, starting 2-3
BASIC's Data Segment 4-71
BEEP 4-28
beeping from the

computer 1-7
blanks 3-6, D-7
blinking characters 4-50,

4-51
BLOAD 4-29, C-5
Boolean operations 3-25
border screen 3-40, 4-49
branching 4-113,4-180
Break 2-17, 2-29
bringing up BASIC 2- 3
BSAVE 4-32

X-I

buffer
communications 2-5,·

4-195
keyboard 1-7

reading the 4-119,
4-127

random file 2-5, 4-106,
4-163, 4-230

screen 3-41,4-31,4-33
built-in functions

See functions

c
CALL 4-34, C-10
cancelling a line 2-3 5
capital letters 2-12
Caps Lock 2-12
Cassette BASIC 1-4
cassette II 0 B-1
cassette motor 4-172
CAS 1 : 3-35, 4-151
CDBL 4-35
CHAIN 4-36,4-57
changing BASIC program

2-36
changing characters 2-32
changing line numbers 2- 39
changing lines anywhere on

the screen 2- 38
changing program lines 2-3 7
character color 1-9
character set 3-4,

Appendix G
CHR$ 4-38, G-1
CINT 4-40
CIRCLE 4-41
CLEAR 4-44
clear screen 4-48
clearing memory 2-38,

4-174

X-2

clearing the keyboard
buffer 1-7

clock 3-44, 4-262
CLOSE 4-46
CLS 4-48
COLOR 4-49

in graphics modes
3-42, 4-54

in text mode 3-40, 4-49
COM 4-56
command level 2-7, 2-3 2
commands 4-6
comments 3-4, 4-240
COMMON 4-36,4-57
communications 4-194,

Appendix F
buffer size 2-5
trapping 4-56,4-176

comparisons
numeric 3-23
string 3-24

complement, logical 3-25
complement, two's 3-27,

3-28
computed GOSUB/GOTO

4-180
COM1: 3-35, 1-8
COM2: 3-35, 1-8
concatenation 3- 31
conjunction 3-25
constants 3-9
CONT 4-58
control block, file 1-5
converting

character to ASCII
code 4-24

degrees to radians 4-60
from number to

string 4-272
from numbers for random

files 4-170
from numeric to

octal 4-175

hexadecimal 4-115, H-1
numbers from random

files 4-63
one numeric precision to

another 3-18
radians to degrees 4-25
string to numeric 4-285

converting programs to IBM
Personal Computer BASIC
Appendix D

coordinates 3-43
copy display 2-13
correcting current line 2-32
COS 4-60
cosine 4-60
CSNG 4-61
CSRLIN 4-62
Ctrl 2-13
Ctrl-Break 2-17, 2-29
Ctrl-Num Lock 2-17
cursor 2-19
cursor control keys 2-19
Cursor Down key 2-21
Cursor Left key 2-22
cursor position 4-62,4-155,

4-215
Cursor Right key 2-22
Cursor Up key 2-21
CVI, CVS, CVD 4-63, B-ll

D
DATA 4-64,4-238
Data Segment 4-71
DATE$ 4-66
DEBUG C-7
decisions 4-116
declaring arrays 3 -15, 4-7 7

declaring variable types
3-13,3-14,4-73

DEF FN 4-68
DEF SEG 4-71
DEF USR 4-75
DEFtype (-INT, -SNG,

-DBL, -STR) 3-14, 4~73
Del key 2-27
DELETE 3-3,4-76
deleting a file 4-136
deleting a program 2-38,

4-174
deleting arrays 4-87
deleting characters 2- 33
deleting program lines 2- 37,

4-76
delimiting reserved

words 3-6
descriptor, string 1-4
device name 3-34, 3-3 5
Device Timeout 4-162, A-II
DIM 4-77
dimensioning arrays 3-15,

4-77
DIR 4-97
direct mode 2-7, 4-178
disjunction 3-25
diskette I/O Appendix B
display adapters 3-38,

4-31,4-205, 1-8
display pages 3-41, 4-258
display program lines 4-147
display screen, using 3-38
division 3-21
division by zero A-8
double-precision 3-11,

4-35
DRAW 4-79
DS (BASIC's Data

Segment) 4-71
duplicating a program

line 2-38

X-3

E
EDIT 3-3, 4-84
editor 2-19
editor keys 2-19

Backspace 2-28
Ctrl-Break 2-29
Ctrl-End 2-25
Ctrl-Home 2-20
Cursor Down 2-21
Cursor Left 2-22
Cursor Right 2-22
Cursor Up 2-21
Del 2-27
End 2-25
Esc 2-28
Home 2-20
Ins 2-26
Next Word 2-23
Previous Word 2-24
Tab 2-30

ELSE 4-116
END 4-85
End key 2-25
end of file 4-86, B-7
ending BASIC 4-278
Enter key 2-11
entering BASIC

program 2-36
entering data 2-19
EOF 4-86, B-7
equivalence 3-25
EQV 3-25
ERASE 4-87
ERASE (DOS) 4-136
erasing a file 4-136
erasing a program 2-38,

4-174
erasing arrays 4-87
erasing characters 2- 3 3
erasing part of a line 2-3 5
erasing program lines 2-3 7 ,

4-76

X-4

erasing variables 4-44
ERL 4-89
ERR 4-89
ERROR 4-91
error codes 4-89,4-91,

Appendix A
error line 4-89
error messages Appendix A
error trapping 4-89, 4-91,

4-178,4-245
Esc key 2-28
event trapping

COM(n) (communications
activity) 4-56, 4-176

KEY(n) 4-134,4-182
PEN 4-185,4-206
STRIG(n) (joystick

button) 4-187, 4-275
exchanging

variables 4-277
exclusive or 3-25
executable statements 3- 3
executing a program 2-4,

4-251
EXP 4-93
exponential function 4-93
exponentiation 3-21
expressions

numeric 3-21
string 3-31

extended ASCII codes G-6
extension, filename 3-36

F
false 3-23, 3-25
FIELD 4-94
file control block 1-5
file specification 3-34
filename 3-34,3-36
filename extension 3-36

files 3-33, Appendix B, D-l
control block 1-4
file number 3-33
maximum number 2-4
naming 3-34
opening 3-33, 4-189
position of 4-153
size 4-158

FILES 4-97
FIX 4-99
fixed point 3-9
fixed-length strings 4-163
floating point 3-9
floor function 4-130
flushing the keyboard

buffer 1-7
folding, line 2-27
FOR 4-100,1-14
foreground 3-40, 4-49
format notation v
formatting 4-219
FRE 4-104
free space 2-5,4-44,4-104
frequency table 4-263
function keys 2-9
functions 3-29, 3- 32, 4-5,

4-17, 1-11
derived Appendix E
user-defined 4-68

G
garbage collection 4-104
GET (files) 4-106, B-I0
GET (graphics) 4-108
glissando 4-264
GOSUB 4-111,4-180
GOTO 4-113,4-180
graphics 3-38, D-l
graphics modes 3-41,4-257

graphics statements
CIRCLE 4-41
COLOR 4-54
DRAW 4-79
GET 4-108
LINE 4-141
PAINT 4-203
POINT function 4-213
PSET and PRESET 4-228
PUT 4-232

H
hard copy of screen 2-13
HEX$ 4-115
hexadecimal 3-10, 4-115,

H-1
hierarchy of operations 3-29
high resolution 3-43,4-257
high- in tensi ty

characters 4-50, 4-5 1
hold 2-17
Home key 2-20
housecleaning 4-104

I
I/O statements 4-13,

Appendix B
IF 4-116, D-2, 1-12
IMP 3-25
implication 3-25
implicit declaration of

arrays 3-17
index (position in string)

4-129
indirect mode 2-7
initialiZing BASIC 2- 3
INKEY$ 4-119, G-6
INP 4-121
INPUT 4-122

X-5

INPUT # 4-125
input and output 3-33
input file mode 4-189, B-5
INPUT$ 4-127, F-3
Ins key 2-26
insert mode 2-26
inserting characters 2- 34
INSTR 4-129
INT 4-130
integer 3-9, 3-11

converting to 4-40, 4-99,
4-130

integer division 3-22
interrupting program

execution 2-17
intrinsic functions

See functions
invisible characters 4-51

J
joystick 3-45, 4-268
joystick button 4-187,

4-273, 4-275
jumping 4-113, 4-180

K
KEY 4-131
KEY(n) 4-134
keyboard 2-8

buffer See buffer,
keyboard

input 4-119,4-122,4-127,
4-144

KILL 4-136, B-3
KYBD: 3-35

X-6

L
last point referenced 3-43
LEFT$ 4-137
left-justify 4-163
LEN 4-138
length of file 4-158
length of string 4-104,

4-138
LET 4-139
light pen 3-45,4-185,4-206
LINE 4-141
line feed 2-32, 4-191, D-3
LINE INPUT 4-144
LINE INPUT # 4-145
lines

BASIC program 3-3
drawing in graphics 4-141
folding 2-27
line numbers 2-7, 3-3,

4-26,4-241
on screen 3-39

LIST 3-3,4-147
list program lines 4-149
listing files

on cassette 4-15 1
on diskette 4-97

LLIST 4-149
LOAD 4-150, B-2
loading binary data 4-29
LOC 4-153
LOCATE 4-155
LOF 4-158
LOG 4-159
logarithm 4-159
logical line 2-32
logical operators 3-25, D-3
loops 4-100, 4-292, 1-14
LPOS 4-160
LPRINT 4-161
LPRINT USING 4-161

LPT1: 3-35, 4-149, 4-160,
4-161, 1-7

LPT2: 3-35,1-7
LPT3: 3-35, 1-7
LSET 4-163

M
machine language

subroutines 4-34,4-75,
4-284, Appendix C

medium resolution 3-42,
4-257

memory image 4-32
memory map 1-2
MERGE 4-36,4-165, B-3
messages AppendixA
MID$ 4-167, D-6
MKI$, MKS$, MKD$ 4-170,

B-9
MOD 3-22
modulo arithmetic 3-22
MOTOR 4-172
multiple statements on a

line 3-3
multiplication 3-21
music 3-44, 4-209

N
NAME 4-173
naming files 3-34
negation 3-21
NEW 4-174
NEXT 4-100

See also FOR
Next Word 2-23
non-executable statements

3-3

NOT 3-25
Num Lock 2-16
numeric characters 3-4
numeric comparisons 3-23
numeric constants 3-9
numeric expressions 3-21
numeric functions 3-29,4-17
numeric keypad 2-15
numeric variables 3-13

o
OCT$ 4-175
octal 3-10, 4-175
Ok prompt 2-7·
ON COM(n) 4-176
ON ERROR 4-178
ON KEY(n) 4-182
ON PEN 4-185
ON STRIG(n) 4-187
ON ... GOSUB 4-180
ON ... GOTO 4-180
OPEN (file) 4-189, B-4,

B-9
OPEN "COM... 4-194, F-6
operators

arithmetic 3-21
concatenation 3-31
functions 3-29, 3-32
logical 3-25
numeric 3-21
relational 3-23
string 3-31

OPTION BASE 4-200
options on BASIC

command 2-4
OR 3-25
or, exclusive 3-25
order of execution 3-29
OUT 4-201

X-7

output file mode 4-189, B-4
overflow A-7
overlay 4-36
overscan 3-40

p

paddles 3-45
PAINT 4-203
palette 3-42, 4-54
parentheses 3- 30
pause 2-17
PEEK 4-205, D-4
PEN 4-206
performance hints B-15,

1-10
Pg Up and Pg Dn 2-16
PLAY 4-209
POINT 4-213
POKE 4-214, C-4, D-4
POS 4-215
position in string 4-129
position of file 4-153
positioning the cursor 4-155
precedence 3-29
precision 3-11, 4-73
PRESET 4-228
Previous Word 2-24
PRINT 4-216
PRINT # 4-225
PRINT # USING 4-225
print fo~matting 4-219
print screen 2-13
PRINT USING 4-219
printing 4-161
program editor 2-19
protected files 4-253, B-3
PrtSc 2-13
PSET 4-228
PUT (files) 4-230, B-9
PUT (graphics) 4-232

X-8

R
random files 4-94, 4-106,

4-189, B-8
random numbers 4-236,

4-249
RANDOMIZE 4-236
READ 4-64,4-238
record length

maximum 2-5
setting 4-189

? Redo from start 4-123
related publications vi
relational operators 3-23
relative form for specifying

coordinates 3-43
REM 4-240
remarks 3-4, 4-240
RENAME 4-173
renaming files 4-173, B-3
RENUM 4-36,4-89,4-241
repeating a string 4-276
replacing program lines 2-3 7
requirements See system

requirements
reserved words 3-6, 3-13
RESET 4-243
RESTORE 4-244
RESUME 4-245
resume execution 4-58
RETURN 4-111,4-247
reverse irnage characters

4-51
RIGHT$ 4-248
right-justify 4-163
RND 4-249
rounding 3-18, D-5
rounding to an integer 4-40
RSET 4-163 .
RS232 See communications
RUN 4-251, B-2

s
SAVE 4-253, B-2
saving binary data 4-32
screen 3-39

shifting 4-201
use of 3-38

SCREEN function 4-255
SCREEN statement 4-257
SCRN: 3-35
Scroll Lock 2-16
scrolling 3-40
search order for adapters 1-7
seeding random number

generator 4-236
segment of storage 4-71
sequential files 4-189, B-4
SGN 4-260
shifting screen image 4-201
sign of number 4-260
SIN 4-261
sine 4-261
single-precision 3-11, 4-61
soft keys 2-9, 4-1 31
SOUND 4-262
sounds 3-44, 4-28, 4-209,

4-262
SPACE$ 4-265
spaces 3-6, D-7
SPC 4-266
special characters 3-5
specification of files 3- 34
specifying coordinates 3-43
SQR 4-267
square root 4-267
stack space 4-44
starting BASIC 2-3
statements 4-8

I/O 4-13
non-I/O 4-8

STICK 4-268
STOP 4-270

STR$ 4-272
STRIG 4-273
STRIG(n) 4-275
string comparisons 3-24
string constants 3-9
string descriptor 1-4
string expressions 3- 31
string functions 3-32 4-21

D-6 "
string space 2-5,4-44,4-104
string variables 3-13
STRING$ 4-276
subroutines 4-111, 4-180
~11 '

subroutines, machine
language 4-34,4-75,4-284,
Appendix C

subscripts 3-15,4-77,4-200
substring 4-137, 4-167,

4-248
subtraction 3-21
SWAP 4-277
switching displays 1-8
syntax diagrams v
syntax errors 2-40
SYSTEM 4-278
system functions

See functions
system requirements

Advanced 1-6
Cassette 1-4
Disk 1-5

System Reset 2-18

T
TAB 4-279
Tab key 2-30
TAN 4-280
tangent 4-280
technical information 1-1

X-9

telecommunications
See communications

tempo table 4-264
terminating BASIC 4-278
text mode 3-39,4-257
THEN 4-116
TIME$ 4-281
tips 1-10
trace 4-283
trigonometric functions

arctangent 4-25
cosine 4-60
sine 4-261
tangent 4-280

TROFF 4-283
TRON 4-283
true 3-23, 3-25
truncation 4-99, 4-130
truncation of program

lines 2-36
two's complement 3-27, 3-28
type declaration

characters 3-14
typewriter keyboard 2-10

u
underflow A-7
underlined characters 4-51
uppershift 2-12
user workspace 2-5. 4-44.

4-104 ..
user-defined functions 4-68
using the screen 3-38
USR 4-75, 4-284, C-14

X-to

v
VAL 4-285
variables 3-12

names 3-12
storage of 1-3

VARPTR 4-286,1-3
versions 1-3
visual page

See display pages

w
WAIT 4-290
WEND 4-292
WHILE 4-292
WIDTH 4-294
word 2-23
workspace 2-5,4-44,4-104
WRITE 4-298
WRITE # 4-299

x
XOR 3-25

Product Comment Form

BASIC

The Personal Computer
Software Library

6025013

Your comments assist us in improving our products.
IBM may use and distribute any of the information
you supply in anyway it believes appropriate without
incurring any obligation whatever. You may, of
course, continue to use the information you supply

Comments:

If you wish a reply, provide your name and address in
this space.

~arne ____________________________________ __

Address __________________________________ _

City __________ _ State ___________ _

Zip Code ____ _

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 123 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE
P.O. BOX 1328-C
BOCA RATON, FLORIDA 33432

9J94 PIO::!

91delS lOU Op 9seald

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

ade.l

--- ------- ----- ---- - ---- - - ---
=~=":'=®

International Business Machines Corporation

P.O. Box 1328-W
Boca Raton, Florida 33432

6025013
Printed in USA

