

IBM C/2™ Computer Language Series

Language Reference

Programming Family

---- ------ - ---- ---- -. ---- - - -------------_ ... -

First Edition (September 1987)

The following paragraph does not apply to the United Kingdom or any
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This publication could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or infor­
mation about, IBM products (machines and programs), programming,
or services that are not announced in your country. Such references
or information must not be construed to mean that IBM intends to
announce such IBM products, programming, or services in your
country.

Requests for copies of this publication and for technical information
about IBM products should be made to your IBM Authorized Dealer or
your IBM Marketing Representative.

Operating System/2 is a trademark of the International Business
Machines Corporation.

C/2 is a trademark of the International Business Machines Corpo­
ration.

© Copyright International Business Machines Corporation 1987.
All rights reserved. No part of this publication may be reproduced or
distributed in any form or by any means without prior permission in
writing from the International Business Machines Corporation.

Preface

This book is volume 3 of the three - volume set explaining IBM C/2.™ It
contains descriptions of each of the functions of the C r~n-time
library. The keywords and commands are listed in alphabetical
order.

This product attempts to conform to the forthcoming American
National Standards Institute (ANSI) standard whenever possible. IBM

C/2 does make minor changes to what is considered ANSI standard C;
these changes are documented in this and other IBM publications for
the IBM C/2 Compiler.

First-time users of this book are expected to be computer science stu­
dents who are studying C in their seco.nd or third year of school.
Experienced users are expected to be experienced appl ications pro­
grammers or system programmers. Users should also be familiar
with their computer and operating system.

Related Publications

The following books contain topics related to information in the IBM C/2

Library:

• IBM CI2 Fundamentals
• IBM C/2 Compile, Link, and Run

• IBM Disk Operating System User's Guide
• IBM Disk Operating System User's Reference
• IBM Disk Operating System Technical Reference

• IBM Operating Systeml2™ (OS/2TM) User's Guide
• IBM Operating Systeml2 User's Reference
• IBM Operating Systeml2 Programmer's Guide
• IBM Operating Systeml2 Technical Reference

IBM (;/2 is a trademark of International Business Machines Corporation

Operating System/2 (OS/2) is a trademark of International Business
Machines Corporation.

iii

• IBM Personal Systeml2™ (PSI2TM) Quick Reference
• IBM Personal Systeml2 Mode1 50 Technical Reference
• IBMPersonal Systeml2 Model 60 Technical Reference
• IBMPersonal Systeml2 Model 80 Technical Reference

• IBM Personal Computer Personal Editor
• IBM Personal Computer Guide to Operations
• IBM Personal Computer Technical Reference.

• iAPX 86,88 User's Manual Copyright 1981, Intel Corp. Santa
Clara, CA.

• iAPX 286 Hardware Reference Manual Copyright 1983, Intel
Corp. Santa Clara, CA.

• iAPX 286 Programmer's Reference Manual Copyright 1985, Intel
Corp. Santa Clara, CA.

You can use the following table as a cross reference for information
in the IBM C/2 library.

If You Want To ... Refer to ...

Install the product Compile, Link, and Run

Learn basic facts about the Fundamentals
language

Know the syntax of an i nstruc- Language Reference
tion

Understand error messages Language Reference

Debug a program Compile, Link, and Run

Compile a program Compile, Link, and Run

Link a program Compile, Link, and Run

Write a program Fundamentals, Language Ref-
erence, and Compile, Link,
and Run

Personal System/2 (PS/2) is a trademark of the International Business
Machines Corporation.

iv

Contents

Chapter 1. About the IBM C/2 Library 1-1

How This Book Is Organized 1-2
Hardware Requirements 1-3

Software Requirements '. 1-4
Notation Used In This Book 1-4

Typeface Notation 1-4
Command Syntax Notation 1-7

Syntax Diagram Terms Used .. 1-7
Reading Syntax Diagrams 1-8

Using C Library Routines 1-9
Identifying Functions and Macros 1-9
Including Files 1-11
Declaring Functions .. 1-12
Stack Checki ng 1-13

Argument Type-Checking 1-14
Error Handling 1-15

Filenames and Pathnames 1-17

Binary and Text Modes
DOS Considerations

1-18

1-20
Using Floating-Point Data 1-21
Huge Models 1-23

Using Huge Arrays with Library Functions 1-24

Chapter 2. Global Variables and Standard Types 2-1
Global Variables in Run-Time Routines 2-1

_pgm ptr 2-2

_amblksiz 2-3
daylight, timezone, tzname . 2-4

_doserrno, errno, sys_errlist, sys_nerr 2-6

fmode 2-7

_osmajor, _osminor, _osmode 2-8

environ, _psp 2-9
Standard Data Types in Run-Time Routines 2-10

Chapter 3. Run-Time Routines by Category 3-1
Buffer Manipulation 3-1
Character Classification and Conversion 3-2

Data Conversion 3-4

v

Directory Control 3-4
File Handl.ing 3~5
Input and Output 3-6
Stream Routi hes 3-6

Controlling Stream Buffering 3-10
Closing Streams 3-11
Reading and Writing Data 3-11
Detecting Errors 3-12

Low~Level Routines 3-12
Opening a File 3-13
Predefined Handles 3-14
Reading and Writing Data 3-15
Closing Files 3-15

Keyboard and Port I/O Routi nes 3-16
Math .. 3-17
Reserving Storage 3-20
DOS Interface 3-24
Process Control 3-25
Searching and Sorting 3-28
Manipulating Strings 3-29
Time .. 3-30
Variable-Length Argument Lists 3-31
Miscellaneous Routines 3-32

Chapter 4. Include Files 4-1
assert.h .. 4-2
conio.h 4-2
ctype.h 4-2
direct.h 4-3
dos.h .. 4-3
errno.h 4-4
fcntl. h .. 4-4
float.h ... ;.................................... 4-5
iO.h .. 4-5
limits.h 4-5
locking.h 4-6
malloc.h 4-6
math.h 4-6
memory.h 4-7
process.h 4-7
search.h 4-8
setjmp.h 4-8
share.h 4-8

vi

signal.h 4-8
stat.h .. 4-8
stdarg.h 4-9
stddef. h 4-9
stdio.h 4-10
stdlib.h 4-12
string.h 4-13
timeb.h 4-13
time.h 4-13
types.h 4-14
utime.h 4-14

Chapter 5. Library Routines 5-1
abort .. 5-2
abs .. 5-4
access 5-5
acos ... 5-7
alloca .. 5-9
asctime 5-11
asin .. 5-13
assert 5-15
atan - atan2 5-17
atof - atol 5-19
bdos .. 5-22
bessel 5-24
bsearch 5-26
cabs .. 5-29
calloc 5-31
ceil ... 5-33
cgets 5-34
chdir 5-36
chmod 5-38
chsize 5-40

_clear87 5-42
clearerr .. 5-44
close 5-46

_control87 5-47
cos - cosh 5-49
cprintf 5-51
cputs 5-53
creat 5-54
cscanf
ctime

5-57
5-59

vii

cwait 5-61
dieeetomsbin - dmsbintoieee 5-64
difftime 5-66
dosexterr .. 5-68
dup - dup2 5-70
ecvt .. 5-72
eof ... 5-74
execl - execvp 5-76
exit - _exit 5-82
exp ... 5-84
_expand 5-85

fabs .. 5-87
fclose - fcloseall 5-89
fcvt ... 5-91
fdopen 5-94
feof .. 5-97
ferror
fflush
_ffree
fgetc - fgetchar
fgets
fieeetomsbin - fmsbintoieee
filelength
fileno
floor
flushall
_fmalloc

5-99
5-101
5-103
5-105
5-107
5-109
5-111
5-113
5-114
5-115
5-116

fmod 5-118
_fmsize 5-119
fopen 5-120
FP _OFF - FP _SEG 5-123
_fpreset .. 5-124
fpri ntf 5-126
fputc - fputchar 5-128
fputs 5-130
fread 5-131
free
free
_freect

5-133
5-133
5-135

freopen 5-137
frexp 5-140
fscanf 5-142

viii

fseek 5-144
fstat 5-146
ftell .. 5-149
ftime 5-151
fwrite 5-153
gcvt 5-155
getc - getchar 5-157
getch 5-159
getche 5-160
getcwd 5-161
getenv 5-163
getpid 5-165
gets 5-166
getw 5-167
gmtime 5-169
halloc 5-171
hfree 5-173
hypot 5-175
inp .. 5-176
int86 5-177
int86x 5-179
intdos 5-182
i ntdosx 5-184
isalnum - isascii
isatty
iscntrl - isxdigit
itoa
kbhit
labs

5-187
5-189
5-190
5-193
5-195
5-196

Idexp 5-197
Ifind - Isearch 5-198
localtime 5-201
locking 5-203
log - log10 5-206
longjmp 5-208
Iseek 5-211
Itoa .. 5-214
malloc
matherr
_memavl
memccpy
memchr
memcmp

5-216
5-218
5-221
5-223
5-225
5-226

ix

memepy
memiemp
memset
mkdir
mktemp
modf
movedata

5-228
5-229
5-231
5-232
5-234
5-236
5-237

_ msize 5-239
_ nfree 5-241
_nmalloe 5-242

nmsize 5-243
onexit 5-244
open 5-246
outp 5-250
perror 5-252
pow 5-254
printf 5-255
pute - putehar 5-264
puteh 5-266
putenv 5-267
puts 5-269
putw
qsort
raise
rand
read
realloe
remove
rename
rewind

5-270
5-272
5-274
5-275
5-278
5-280
5-282
5-284
5-286

rmdi r 5-288
rmtm p 5-290
sbrk 5-291
seant 5-293
seg read 5-299
setbut 5-301
setj m p 5-303
setmode 5-306
setvbuf 5-308
signal 5-310
sin - sinh 5-316
sopen 5-318
spawnl - spawnvp 5-323

x

spri ntf 5-329
sqrt 5-331
srand 5-332
sscanf 5-334
stackavai I 5-336
stat 5-337
_status87 5-340
strcat - strdup 5-342
strerror 5-346
strlen 5-348
strlwr 5-349
strncat - strnset 5-350
strpbrk 5-353
strrchr 5-354
strrev 5-355
strset 5-356
strspn 5-357
strstr 5-359
strtod - strtol 5-360
strtok 5-363
strupr 5-365
swab 5-366
system 5-367
tan - tanh 5-369
tell .. 5-371
time 5-373
tmpfile 5-374
tmpnam - tempnam 5-376
toascii - _toupper 5-379
tzset 5-382
u !toa 5-384
umask .. 5-385
ungetc 5-387
ungetch 5-389
unlink 5-391
utime 5-393
va _ arg - va_start 5-395
vfprintf-vsprintf 5-398
wait 5-400
write 5-403

Appendix A. Error Messages A-1
Run-Time Library Error Messages A~1

xi

Floating-Point Exceptions A-4
Run-Time Limits A-6
Compiler Error Messages A-7
Fatal Error Messages A-10
Error Messages During Compiling A-15
Warning Error Messages A-28
Command Line Messages A-36
Compiler Limits A-40
Linker Error Messages A-42
Linker Limits A-56
Library Manager Error Messages A-58
MAKE Error Messages A-62
EXEMOD Error Messages A-64
Errno Value Error Messages A-66
Errno Values A-67
Math Errors A-70
CodeView Error Messages A-71

Appendix B. Reentrant Functions 8-1

Appendix C. ASCII Characters C-1

Index X-1

xii

Chapter 1. About the IBM C/2 Library

The IBM C/2 run-time library is a set of over 200 predefined functions
and macros designed for use in C programs. The run-time library
makes programming easier by providing:

• An interface to operating system functions (such as opening and
closing files)

• Fast and efficient routines to perform common programming
tasks, such as string manipulation, sparing you the time and
effort needed to write such functions.

The run-time library is especially important in C programming
because the C language does not provide some basic functions such
as input and output, storage allocation, and process control.

The math routines of the IBM C run-time library have been extended to
provide exception handli ng.

If you are interested in taking advantage of the specific features of
DOS, the library includes DOS interface functions. These functions let
you make DOS system calls and interrupts from a C program. The
library also contains input and output routines to allow reading from
your keyboard and writing to your screen.

To take advantage of the type-checking capabilities of IBM C/2, the
include files that accompany the run-time library have been
expanded. In addition to the definitions and declarations required by
library functions and macros, the include files now contain function
declarations The argument type lists enable type-checking for calls to
library routines. This feature can be extremely helpful in detecting
subtle program errors resulting from type mismatches between
actual and formal arguments to a function. Although usi ng argument­
type lists for type-checking is helpful, you are not required to use
argument type-checking. The function declarations in the include
files are in preprocessor #ifdef blocks; defining the LlNT_ARGS identi­
fier enables them.

To provide argument-type lists for all run-time functions, several new
include files have been added to the list of standard include files.

1-1

The names of the new include files have been chosen to maintain as
much compatibility as possible with the proposed ANSI standard for C.

How This Book Is Organized

Chapter 1, "About the IBM C/2 Library," tells how to use the C/2 library.
It discusses functions and macros, tells how to include files, declare
functions, and use the argument type-checking feature in making
function calls. It tells how to use huge arrays with library functions.

Chapter 2, "Global Variables and Standard Types," is a reference to
the global variables and standard types that the include files define.
The global variables are in alphabetical order. The standard data
types are in an alphabetical list at the end of the chapter.

Chapter 3, "Run-Time Routines by Category," is a cross-reference by
category to the routines described in Chapter 5. The categories are
as follows:

• Buffer manipulation
• Character classification and conversion

• Data conversion
• Directory control
• File handling
• Input and output

Stream routines
- Low-level routines
- Keyboard and port routi nes

• Math
• Reserving storage
• DOS interface
• Process control
• Searchifl9 and sorting
• Manipulat!ng strings

• Time
• Variable-length argument lists
• Miscellaneous routines.

ChEipter 4, "Include Files," is a cross-reference to the include files, in
which the functions of the run-time library are defined.

1-2

Chapter 5, "Library Routines," is a reference to the more than 200 C
functions that constitute the run-time library.

Appendix A, "Error Messages," is a comprehensive reference to the
error messages that this product can display and to the error situ­
ations that produce them.

Appendix B, "Reentrant Functions," is a list of the functions that you
can use as reentrant under OS/2.

Appendix C, "ASCII Characters," is a table of ASCII character codes for
your IBM system unit.

The C language is a powerful, general-purpose programming lan­
guage capable of producing efficient, compact, and portable code.
IBM C/2 is a C language compiler that includes a large number of func­
tions designed for application programmers.

Hardware Requirements

The following are minimum hardware requirements for IBMC/2:

• IBM Personal Computer, IBM Portable Computer, IBM Personal
Computer XT, IBM Personal Computer AT, IBM Personal Computer
Convertible, or IBM Personal System/2. Each system listed must
have at least 320K bytes (1 K byte = 1024 bytes) of user-available
memory.

• IBM Color Display with the IBM Color/Graphics Display Adapter or
the IBM Monochrome Display with the IBM Monochrome Display
and Printer Adapter.

• Two dual-sided diskette drives (3.5 inch only) or one dual-sided
diskette (3.5 inch or 5.25 inch) drive with one fixed disk.
However, using this product with a fixed disk provides optimal
results.

• While a printer is optional in all cases, you should use a printer
while using this product.

1-3

Software Requirements

The minimum software requirement for IBM C/2 is the IBM Disk Oper­
ating System (DOS) Version 3.30.

Notation Used In This Book

This book uses certain conventions to define operating system com­
mands, formats of functions, names, and terms.

Typeface Notation

The following typeface conventions are used in the IBM C/2 books:

Bold: Boldface is used for:

• Anything you must type exactly as it appears in the book, such as:

Functions - Examples: main, prinH, open
Declaratives - Example: argc
Pointers to functions
Keys that you press after entering a command
Keywords - Examples: near, far, huge
Library routines - Examples: spawn, exec, system.

• Anything that appears on a screen that is referred to in text.

Example: The Stack Overflow message tells you

• Single alphabetic keys on the keyboard.

Example: Type Sand

Italics: Italics are used for:

• New terms when they are first defined in a book.

Example: An object module is produced ...

• Variables, including all-caps variables, in command formats and
within text. You supply these items.

Example: TIME [hh.mm.ss.xx]

1-4

• Book titles.

Example: The IBM CI2 Fundamentals book

Small Capital LeHers: Small capital letters are used for:

• The names of commands

Example: the ENTER BYTES command

• Sample filenames in text.

Example: Use the AUTOEXEC file

• DOS programming commands.

Example: The COpy command

• Suffixes (file or language extensions) used alone.

Example: A .BAT file is required

• All acronyms and other fully capitalized words.

Examples: IBM, DOS

• Library names.

Example: Place it in the LlB1.LlB ...•

Ellipses: Additional information that you supply in the form shown.

Brackets: Items in square brackets [] are optional. You must place
square brackets around the subscripts of arrays.

Vertical Bars: Items separated by a vertical bar (I) mean that you can
enter one of the separated items. For example:

ONloFF

Means you can enter ON or OFF but not both.

Hexadecimal Representation

This book represents hexadecimal numbers in two ways. The letter H
shows hexadecimal system calls, such as 59H, in DOS.

All other hexadecimal numbers use the standard C representation
Oxhexdigits, such as Ox1 F.

1-5

Operating Systems

Throughout these books, the references to operating systems have
the following meaning:

Abbreviation Meaning

DOS DOS 3.30

OS/2 OS/2 Operating System

Also, throughout this book, the following terms have the specified
reference:

Term

Codeview®

EXEMOD

LIB

LINK

MAKE

Reference

IBM Codeview, Version 1.00

IBM EXEMOD/2, Version 1.00

IBM Library Manager/2, Version 1.00

IBM Linker/2, Version 1.00

IBM MAKE/2, Version 1.00

CodeView is a registered trademark of the Microsoft Corporation.

1-6

Command Syntax Notation

These books use syntax diagrams to explain the format of commands
entered on the DOS command line. The syntax diagram has the
command name at the beginning (top left corner). You follow the
diagram using the reading pattern of left-to-right and top-to-bottom.

The following is a sample syntax diagram:

KEYWORD \:. 7 required
item 1

path

+ ~---~----reqUired --.,.-.
item 2·

path

•• -----T~-----~-".....----.~r-----~-.,-- required ---------1
item 3

optional path
item

Syntax Diagram Terms Used

syntax diagram

baseline

branch lines

keyword

variable

required items

optional items

An illustration of possible structural patterns of a
command sequence.

A horizontal line that connects each of the
required items in turn.

Multiple horizontal lines that show choices.
Branch lines are below the base line.

Words shown in all uppercase letters. Compile
and utility names are keywords. You can type
keywords in any combination of uppercase and
lowercase letters.

Items shown in lowercase italic letters mean that
you are to substitute the item. For example:
filename indicates that you should type the name
of your file in place of filename.

Items that must be included. Required items
appear on the base line. Command names are
required items.

Items that you can include if you choose to do so.
Optional items appear below the base line.

1-7

repeat symbol A symbol that indicates you can specify more than
one choice or a single choice more than once.

Arrows are used to show base line continuation and completion as
follows:

-I

Symbol indicates that the command syntax is con­
tinued.

Symbol indicates that a line is continued from the pre­
vious line.

Symbol indicates the end of a command.

Symbol indicates that you can specify a choice more
than once.

Reading Syntax Diagrams

To read a syntax diagram:

1. Start at the top left of the diagram.

2. Follow only one line at a time going from left to right and top to
bottom.

3. Items on the lines indicate what you must or can specify and the
requi red sequence.

4. When you encounter one or more branch lines, you must make a
choice of items. Follow the line you choose from left to right
except where you encounter the repeat symbol. The repeat
symbol indicates you can make more than one choice or a single
choice more than once.

With many commands, you can enter as many of a group of options
as you want. These options are in a box that has a repeat arrow
around it. You can follow the arrow through the box until you have
selected all the options you want to use. Once you have chosen an
option from the box, you cannot choose the same option again.

1-8

Using C Library Routines

To use a C library routine, call it in your program, just as if the func­
tion were defined in your program. The C library functions are stored
in compiled form in the library files that accompany your C compiler.

At link time, you must link your program with the appropriate C
library file or files to resolve the references to the library functions
and provide the code for the called library functions. The procedures
for linking with the C library are discussed in detail in the IBM CI2

Compile, Link, and Run book.

In most cases, you must prepare for the call to the run-time library
routine by performing one or both of these steps:

1. Including a given file in your program. Many routines require
definitions and declarations that are provided by an include file.

2. Providing declarations for library functions that return values of
any type but Int. The compiler expects all functions to have int
return type unless declared otherwise. You can provide these
declarations by including the C library file containing the declara­
tions or by explicitly declaring the functions within your program.

These are the minimum steps required; you might also want to take
other steps, such as enabling type-checking for the arguments in
function calls.

The remainder of this chapter discusses the preparation procedures
for using run-time library routines and special rules (such as filename
and pathname conventions) that apply to some routines.

Identifying Functions and Macros

Most routines in the run-time library are C functions; that is, they
consist of compiled C statements. However, some routines are in the
form of macros. A macro is an identifier defined with the C pre­
processor directive #define to represent a value or expression. Like
a function, a macro can be defined to take zero or more arguments,
which replace formal parameters in the macro definition. Defining
and using macros is discussed in detail in the IBM CI2 Fundamentals
book.

1-9

The macros defined in the C run-time library behave like functions.
They take arguments and return values, and you call them in a
similar manner. The major advantage of using macros is faster
running time; the preprocessor expands their definitions, eliminating
the overhead required for a function call. However, because the pre­
processor expands macros (replaces them with their definitions)
before compiling, using macros can increase the size of a program,
particularly when a macro occurs many times in the program. Unlike
a function, which is defined only once regardless of how many times
it is called, each occurrence of a macro produces the expanded defi­
nition. Functions and macros thus offer a compromise between
speed and size. In several cases, the C library provides both macro
and function versions of the same library routine to allow you this
choice.

Some important differences between functions and macros are:

• Some macros may treat arguments with side effects incorrectly
when you define the macro to evaluate the arguments more than
once. See the example that follows this list.

• A macro identifier does not have the same properties as a func­
tion identifier. In particular, a macro identifier does not evaluate
to an address as a function identifier does. Therefore, you cannot
use a macro identifier in contexts requiring a pointer. For
instance, if you give a macro identifier as an argument in a func­
tion call, the program passes the value represented by the
macro; if you give a function identifier as an argument in a func­
tion call, the program passes the address of the function.

• Because macros are not functions, you cannot declare them, nor
can you declare pointers to macro identifiers. Thus, you cannot
perform type-checking on macro arguments. The compiler does,
however, detect cases in which you specified the wrong number
of arguments for the macro.

• The library routines used as macros are defined through pre­
processor directives in the library include files. To use a library
macro, you must include the appropriate file, or the macro is
undefined.

The routines used as macros are marked with a note in Chapter 5,
"Library Routines." You can examine a particular macro definition in
the corresponding include file to tell whether arguments with side
effects can cause problems.

1-10

Example
This example uses the toupper routine from the C library. The
toupper routine is a macro.

#include <ctype.h>

i nt a = I m I ;

a = toupper(a++);

The include file ctype.h contains the following definition of toupper:

#define toupper(c) ((islower(c)) ? _toupper(c) : (c))

The definition uses the conditional operator (? :). In the conditional
expression, the macro expansion evaluates the argument c twice:
once to determine whether it is lowercase, and once to return the
appropriate result. This causes the macro to evaluate the argument
a + + twice, increasing a twice instead of once. As a result, the value
operated on by islower differs from the val ue operated on by
_toupper.

Not all macros have this effect; you can tell whether a macro can
handle side effects property by examining the macro definition before
using it.

Including Files

Many run-time routines use macros, constants, and types that are
defined in separate include files. To use these routines, you must
incorporate the specified file (using the preprocessor directive
#include) into the source file being compiled.

The contents of each include file are different, depending on the
needs of specific run-time routines. However, in general, include
files contain combinations of the following:

• Definitions of manifest constants. For example, the constant
BUFSIZ, which determines the size of buffers for buffered input and
output operations, is defined in stdio.h.

• Definitions of types. Some run-time routines take data structures
as arguments or return values with structure types. Include files
set up the required structure type definitions. For example, most
stream input and output operations use pointers to a structure of
type FILE, defined in stdlo.h.

1-11

• Two sets of function declarations. The first set of declarations
gives return types and argument type lists for run-time functions,
while the second set declares only the return type. Declaring the
function return type is required for any function that returns a
value with type other than int; see "Declaring Functions" in this
chapter. The presence of an argument type list enables type­
checking for the arguments in a function call; see "Argument
Type-Checking" in this chapter for a discussion of this option.

• Macro definitions. Some routines in the run-time library are
macros. The definitions for these macros are in the include files.
To use one of these macros, you must include the appropriate
file.

The reference page for each library routine lists the include file or
files needed by the routine.

Declaring Functions

Whenever you use a library function that returns any type of value
except an int, make sure that you declare the function before you call
it. The easiest way to do this is to include the file containing declara­
tions for that function, causing the appropriate declarations to be
placed in your program.

Two sets of function declarations are provided in each include file.
The first set declares both the function return type and the argument
type list for the function. This set is included only when you enable
argument type-checking, as described in this chapter. Use of the
argument type-checking feature is highly recommended because mis­
matches between actual and formal arguments to a function can
cause serious and possibly hard-to-detect errors.

The second set of function declarations declares only the function
return type. This set is included when argument type-checking is not
enabled.

1-12

Your program can contain more than one declaration of the same
function, as long as the declarations are compatible. This is an
important feature to remember if you have older programs whose
function declarations do not contain argument type lists. For
instance, if your program contains the declaration:

char *calloc();

you can also include the declaration:

char *calloc(unsigned, unsigned);

Although the two declarations are not identical, they are compatible;
no conflict occurs.

You can provide your own function declarations instead of using the
declarations in the library include files if you wish. However, it is
recommended that you consult the declarations in the include files to
make sure that your declarations are correct.

Stack Checking

Upon entry to a library routine, the routine may make a call to a
stack-checking subroutine. This subroutine determines whether or
not there is space on the stack for the local variables used by the
routine. If enough space exists, it is allocated and the stack pointer is
adjusted accordingly; otherwise a "Stack Overflow" run-time error
occurs. If stack checking has been turned off, the compiler assumes
there is enough stack space. If in fact the stack has too little space,
you may write over memory locations in the data segment with no
warning.

Typically, only functions with large requirements for local variables
(more than about 150 bytes) have stack checking enabled, since there
is enough free space between the stack and data segments to handle
functions with smaller requirements. If a function is called many
times with stack checking enabled, the execution time increases
slightly.

The following routines have stack checking enabled:

1-13

printf
fprintf
sprintf
vprintf

scanf
fscanf
sscanf
spawnvpe

execvp
spawnvp
system
execvpe

Argument Type-Checking

The IBM C/2 compiler offers a type-checking feature for the arguments
in a function call. The IBM C/2 compiler checks argument types when­
ever an argument type list is present in a function declaration. The
form of the argument-type list and the method for checking the type
are discussed in full in the IBM C/2 Fundamentals book.

For functions that you write yourself, you must set up argument-type
lists to call type-checking. You can also use the IZg command line
option to cause the compiler to produce a list of function declarations
for all functions defined in a particular source file. You can then
incorporate the list into your program. See the IBM C/2 Compile, Link,
and Run book for details about using the IZg option.

For functions in the C run-time library, you can use the procedures
outlined in this section to check the type on arguments. Every func­
tion in the C run-time library is declared in one of the library include
files. Two declarations are given for each function: one with and one
without an argument type list. The function declarations are enclosed
in an #ifdef preprocessor block. If you define an identifier named
LlNT_ARGS, the declarations containing argument type lists are proc­
essed and compiled, thus enabling argument type-checking. If the
LlNT_ARGS identifier is not defined, the declarations without argument
type lists are included, and argument type-checking is not performed.

By default, LlNT_ARGS is undefined, so no type-checking is performed
for library functions. You can define LlNT_ARGS in one of two ways:

• Use the 10 command-line option to define LlNT_ARGS at compile
time.

• Define LlNT_ARGS with a #define directive in your source file. The
#define directive must occur before the #include directive for the
given fi Ie to be effective.

The value of LlNT_ARGS is not significant. You can define it to any
value, including an empty value.

1-14

Notice that the LlNT_ARGS definition applies only to the library function
declarations given in the include files. The function declarations in
your source program or in your own include files are not affected.
You can make the inclusion of your own declarations dependent on
the LlNT_ARGS identifier by using an #if or #ifdef directive. Refer to the
library include files for a model.

Only limited type-checking can be performed on functions that take a
variable number of ~rguments. The following run-time functions are
affected by this limitation:

• In calls to cpr-inH, cscanf, prinH, and scanf, type-checking is per­
formed only on the first argument, the format string.

• In calls to fprlntf, fscanf, sprinH, and sscanf, type-checking is per­
formed on the first two arguments: the file or buffer, and the
format string.

• In calls to open, only the first two arguments are type-checked:
the pathname and open flag.

• In calls to sopen, the first three arguments are type-checked: the
pathname, open flag, and sharing mode.

• In calls to execl, execle, and execlp, type-checking is performed
on the first two arguments: the pathname, and the first argument
pointer.

• In calls to spawnl, spawnle, and spawnp, type-checking is per­
formed on the first three arguments: the mode flag, the
pathname, and the first argument pointer.

Error Handling

When you call a function, it is a good idea to provide for detection and
handling of error returns, if any. Otherwise, your program may
produce unexpected results.

For run-time library functions, you can tell the expected return value
from the "Remarks" discussion on each "Library Routines" page. In
some cases, no established error return exists for a routine. This
usually occurs when the range of legal return values makes it impos­
sible to return a unique error value.

1-15

When an error occurs, the C compiler sets a global variable named
errno to a value showing the type of error. You cannot depend upon
errno being set unless the description of the routine explicitly men­
tions the errno variable.

When using routines that set errno, you can test the errno values
against the error values defined in errno.h, or you can use the perror
routine to print the system error message to standard error.

For a listing of errno values and the associated error messages, see
Appendix A, "Error Messages."

When you use errno and perror, keep in mind that the value of errno
reflects the error value for the last call that set errno. To prevent
misleading results, test the return value to verify that an error actu­
ally occurred before you get access to errno. Whenever you find that
an error occurred, use errno or perror immediately. Otherwise, the
value of errno can be changed by intervening calls.

Each math routine sets errno upon finding an error in the manner
described on the "Library Routines" page for that routine. Math rou­
tines handle errors by calling a function named matherr. You can
choose to handle math errors differently by writing your own error
routine and naming it matherr. When you provide your own matherr
function, that function is used in place of the run-time library version.
To write your own matherr function, follow the rules on the matherr
page in Chapter 5.

You can check for errors in stream operations by calling the ferror
routine. The ferror routine detects whether the error indicator for a
given stream has been set. The error indicator is automatically
cleared when the stream is closed or rewound. Or you can call the
clearerr function to reset the error indicator.

Errors in low-level input and output operations cause the compiler to
set errno.

The feof routine tests for end-of-file on a given stream. You can
detect an end-of-file condition in low-level input and output with the
eof routine or when a read operation returns zero as the number of
bytes read.

1-16

Filenames and Path names

Many routines in the run-time library accept strings representing
pathnames and filenames as arguments. The routines process the
arguments and pass them to the operating system, which is ulti­
mately responsible for creating and maintaining files and directories.
It is important to keep in mind not only the C conventions for strings,
but also the operating system rules for filenames and pathnames.
There are several considerations:

• case sensitivity

• Subdirectory conventions

• Delimiters for pathname components.

The C language is case-sensitive, meaning that it distinguishes
between uppercase and lowercase letters. The DOS operating system
is not case-sensitive. When getting access to files and directories on
DOS, you cannot use case differences to distinguish between identical
names. For example, the names "FILEA" and "fileA" are equal and
refer to the same file. Storing some include files in a subdirectory
named SYS is a portable convention adopted in this manual, which
includes the SYS subdirectory in the specification for the appropriate
include files. If you are not concerned with portability, you can disre­
gard this convention and set up your include files accordingly. If you
are concerned with portability, using the SYS subdirectory can make
portability easier.

Operating systems differ in the handling of pathname delimiters.
Some systems use the forward slash (I) to delimit the components of
pathnames. DOS ordinarily uses the backslash (\). Within C pro­
grams, you can use either backslash or a forward slash in DOS

pathnames as long as the context is unambiguous and a pathname is
clearly expected.

The following routines accept string arguments that are not known in
advance to be pathnames (they may be pathnames but are not
required to be). In these cases, the arguments are treated as C
strings, and special rules apply.

• In the exec and spawn families of routines, you pass the name of
a program that is to run as a child process and then pass strings
representing arguments to the child process. The pathname of
the program that is to run as the child process can use either

1-17

forward slashes or backslashes as delimiters, because the com­
piler expects a pathname argument. You can use backslashes in
any pathname arguments to the child process. The program run
as the child process might expect a string argument that is not
necessarily a pathname.

• In the system call, you pass a command to DOS; this command
need not include a pathname.

In these cases, use only the backslash (\) separator as a pathname
delimiter. However, in C strings, the backslash is an escape char­
acter. It signals that a special escape sequence follows. If an ordi­
nary character follows the backslash, the compiler disregards the
backslash and prints the character. Thus, to produce a single back­
slash in a C string, you must code the sequence \\. See the IBM CI2

Fundamentals book for a full discussion of escape sequences.

When you want to pass a pathname argument to the child process in
an exec or spawn call, or when you use a pathname in a system call,
you must use the double backslash sequence (\\) to represent a
single pathname delimiter.

Example

result = system("DIR B:\\TOP\\DOWN");

In the example, double backslashes must be in the call to system to
represent the pathname:

DrR B:\TOP\DOWN

Not all calls to system use a pathname; for example:

result = system("DIR");

does not contain a pathname.

Binary and Text Modes

Most C programs use one or more data files for input and output.
Under DOS, data files are ordinarily processed in text mode. In text
mode, carriage-returnlline-feed combinations are translated into a
single line-feed character on input. Line-feed characters are trans­
lated to carriage-returnlline-feed combinations on output.

1-18

In some cases you may want to process files without making these
translations. In binary mode, carriage return/line feed translations
are suppressed.

You can control the translation mode for the files used in a program
in the following ways:

• To process a few selected files in binary mode, while retaining
the default text mode for most files, you can specify binary mode
when you open the selected files. The 'open routine opens a file
in binary mode when the letter "b" is specified in the access type
string for the file. If you use the open routine, you can specify the
O_BINARY flag in the oflag argument to open the file in binary
mode. For details about these routines, see Chapter 5, "Library
Routines."

• To process most or all files in binary mode, you can change the
default mode to binary. The global variable _'mode controls the
default translation mode. When _'mode is set to O_BINARY, the
default mode is binary; otherwise, the default mode is text, except
for sldaux and sldprn, which are opened in binary mode by
default. The initial setting of _'mode is text, by default.

You can change the value of _'mode in one of two ways. First,
you can link with the file BINMODE.OBJ (supplied with your compiler
software). Linking with BINMODE.OBJ changes the initial setting of
_'mode to O_BINARY, causing all files except sldin, sldoul, and
slderr to be opened in binary mode. This option is described in
the IBM CI2 Compile, Link, and Run book.

Second, you can change the value of _'mode directly, by setting it
to O_BINARY in your program. This has the same effect as linking
with BINMODE.OBJ.

You can still cancel the default mode (now binary) for particular
files by opening them in text mode. The 'open routine opens a
file in text mode when the letter I is specified in the access type
string for the file. If you use the open routine, you can specify the
O_TEXT flag in the of/ag argument to cause the file to be opened in
text mode.

• The open routine opens the sldin, sldoul, and slderr streams in
text mode by default; it opens sldaux and sldprn in binary mode.
To process sldin, sldoul, or slderr in binary mode instead, or to
process sldaux or sldprn in text mode, use the setmode routine.

1-19

You can also use this routine to change the mode of a file after
you have opened it. The setmode routine takes two arguments, a
file handle and a translation mode argument, and sets the mode
of the fi I e accordi ngly.

DOS Considerations

The version of DOS that you are using affects some routines in the
run-time library. The following list describes these routines:

dosexterr, locking, sopen

dup,dup2

These three routines are effective only on DOS Versions
3.00 and later. The sopen function opens a file with file­
sharing attributes. Use this function in place of open when
you want a file to have such attributes. The locking func­
tion locks all or part of a file from access by other users.
The dosexterr function provides error-handling for DOS

system call 59H, and is not available in OS/2. mode.

In certain cases, using the dup and dup2 functions on ver­
sions of DOS earlier than 3.00 might cause unexpected
results. When you use dup or dup2 to create a duplicate
file handle for stdin, stdout, stderr, stdaux, or stdprn under
versions of DOS earlier than 3.00, calling the close function
with either handle causes errors in later input or output
operations using the other handle. Under DOS Version
3.30 , the close is handled correctly and does not cause
later errors.

exec, spawn
When using the exec and spawn families of routines under
versions of DOS earlier than 3.00, the value of the argO or
argv[O] argument is not avai lable to you. DOS stores the
character "C" in that position. Under DOS Version 3.00 or
later, the value of argO or argv[O] contains the complete
command path.

To write programs that run on all versions of DOS, you can use the
_osmajor, _osmode, and _osminor variables, discussed in Chapter 2,
"Global Variables and Standard Types," to test the current operating
system version number and take the appropriate action based on the
result of the test.

1-20

Example
This example tests the global variable _osmajor to tell whether the
system is to open the file TEST. OAT using the open routine (under ver­
sions of DOS earlier than 3.00) or the sopen routine (DOS Version 3.00
or later).

#include

mai n ()
{

<stdlib.h>

if (osmajor > 2)

else

printf(lI> 2 : _osmajor %u\n",
_osmajor);

printf("<= 2: osmajor %u\n",
- _osmajor);

Using Floating-Point Data

The math routines supplied in the C run-time library require floating­
point routines or a math coprocessor to perform calculations with real
numbers. The floating-point libraries that accompany your compiler
software or by a numeric coprocessor can provide this capability.

The following list is of the names of the routines that require floating­
poi nt support:

acos _clear87 exp frexp sin
asln _control87 'abs gcvt sinh
atan cos fcvl hypot sqrt
atan2 cosh 'ieeetomsbin Idexp status87 -
ato' dieeelomsbin floor log slrtod
bessel1 difftime fmod log10 tan
cabs dmsbintoieee fmsblntoieee modf tanh
ceil ecvl _'preset pow

In addition, the prlnH routines cprinH, fprlnH, prlnH, sprlnH, vfprlnH,
vprlnH, and vsprinH require support for floating-point input and output
when you use them to print floating-point values.

1 bessel does not correspond to a single function but to six functions
named jO, j1, jn, yO, y1, and yn.

1-21

The IBM C/2 compiler detects whether a program uses floating-point
values; the compiler loads floating-point routines only if the program
requires them. This saves considerable space for programs that do
not require floating-point support.

When you use a floating-point type character in the format string for
the prinH or scanf functions (cprinH, fprinH, printf, sprintf, vfprintf,
vprintf, vsprintf, cscanf, fscanf, scanf, or sscanf) make sure that you
specify floating-point values or pointers to floating-point values in the
argument list to correspond to any floating-point type characters in
the format string. Floating-point arguments let the compiler detect
the use of floating-point values.

For example, if you use a floating-point type character to print an
integer argument, the compiler cannot detect the use of floating-point
values because it does not read the format string that the printf and
scanf functions use. For instance, the following program causes a
run-time error:

main() /* This example produces an error */
{

long f = 10L;
printf("%f", f);

This program produces the following message when you run it:

Floating point not loaded

The compiler does not detect the floating-point values because you
gave no floating-point arguments in the call to printf.

The following is a correct version of the above call to printf.

printf("%f.", (double)f);
/* CORRECT VERSION OF THE EXAMPLE */

This version corrects the error by casting the long integer value to
double type.

1-22

Huge Models

When considering huge models, you can declare a huge array in one
of two ways. First, in a small-, compact-, medium-, or large-storage
model, you can explicitly declare an array or pointer as huge:

double huge d[100] [100];
double huge *hp;

The first statement defines d as a huge array of double type. This
type of array requires 80000 bytes of data space, which exceeds the
64K byte limit.

The second statement defines hp as a pointer to a huge array of
double type. The huge modifier shows that any arithmetic done with
this pointer must use a 32-bit address in place of the 16-bit offset
arithmetic used by other pointers.

You can also declare a huge array by compiling the entire program in
a huge model (JAH option). Because a huge model allows arrays to
be larger than 64K bytes and assumes all pointers to be huge, the
above examples still work, but the huge keyword is not required.

However, because of the 16-bit default size of small and medium
models, you cannot pass huge arrays and huge pointers arrays to
library functions. Huge items require a 32-bit address and therefore
you cannot pass them to library functions (or any other functions) that
expect a 16-bit pointer argument. When using large or huge models,
you can use huge arrays and pointers as arguments to functions.

1-23

Using Huge Arrays with Library Functions

In programs that use the small-, compact-, medium-, and large­
storage models, IBM C/2 lets you use arrays exceeding the 64K-byte
limit of physical storage by explicitly declaring the arrays as huge.
(See "Working with Storage Models" in the IBM C/2 Compile, Link, and
Run book for a complete discussion of storage models and the near,
far, and huge keywords.) However, you cannot generally pass huge
data items as arguments to C library functions. In the case of small
and medium models, where the default size of a data pointer is near
(16 bits), the only routines that accept huge pointers are halloc and
hfree. In the compact model library used by compact-model pro­
grams, and in the large model library used by both large-model and
huge-model programs, only the functions listed below use argument
arithmetic that works with huge items:

bsearch
fread
fwrite

halloc
hfree
Ifind

Isearch
memccpy
memchr

memcmp
memcpy
memicmp

memset
qsort

With this set of functions, you can read from or write to huge arrays,
sort and search them, copy data from them, initialize variables in
them, compare the values of elements in them, or dynamically
reserve or free storage for them. You can pass any of these functions
a huge pointer in a compact-, large-, or huge-model program without
difficulty.

1-24

Chapter 2. Global Variables and Standard
Types

This chapter describes the global variables and the standard data
types the C run-time library routines use.

Global Variables in Run-Time Routines

The C run-time library contains definitions for a number of variables
and data types that library routines use. You can get access to these
variables and data types by including the files that contain the fol­
lowing declarations or by declaring them in your programs.

2-1

_pgmptr

Format:

extern char far * _pgmptr;

The run-time variable ygmptr points to the name of the executable
file being run. Under DOS and in the DOS mode of OS/2, ygmptr points
to the program name which is stored in the environment segment. A
typical example might be:

C:\TOOLS\TEST\PROG.EXE

In DOS and in the DOS mode of OS/2, the ygmptr string is identical to
the argv[O] argument passed to the main program.

In OS/2 mode, the string pointed to by ygmptr will be the copy of the
ProgPtr argument passed to the DOSEXECPGM function. If the program
was called by CMD.EXE, it is a fully-qualified path string such as the
example given above. If the program in question was called by
another user program, ygmptr points to the string that the other user
program passed to DOSEXECPGM for the ProgPtr argument. Note that
this is not necessarily the same as the argv[O] argument passed to
the main program, although it may be depending on how the program
was called. A program is always able to call a copy of itself using the
ygmptr string.

2-2

amblksiz

Format:

unsigned int _amblkslz;

You can use the _amblksiz variable to control the amount of storage
space in the heap that C uses for dynamic storage. This variable is
declared in the include file malloc.h.

The first time your program calls one of the dynamic storage allo­
cation functions such as calloc or malloc, it asks the operating system
for an initial amount of heap space that is typically much larger than
the amount of storage that calloc or malloc request. This amount is
shown by _amblksiz, whose default value is 8K bytes. The compiler
reserves subsequent storage from this 8K bytes of storage, resulting
in fewer calls to the operating system when the system is reserving
many relatively small items. IBM C/2 calls the operating system again
only if the amount of storage taken up by dynamic storage allocations
exceeds the currently reserved space.

If the requested size in your C program is greater than _amblksiz, the
system reserves multiple blocks, each of size _amblksiz, until it satis­
fies the request. Because the amount of heap space reserved is more
than the amount requested, subsequent allocations can break up
heap space. You can control this breaking up of heap space by using
_amblksiz to change the default amount of storage to whatever value
you would like, as in the following example:

_amblksiz = 2000;

Because the heap allocator always rounds the DOS request up to the
nearest power of two greater than or equal to _amblksiz, the pre­
ceding statement causes the heap allocator to set aside storage in
the heap in multiples of 2K bytes.

Adjusting _amblksiz affects only far heap allocation, that is, standard
calloc and malloc calls in compact, large, and huge models, and
_fmalloc calls in small and medium models. It has no effect on halloc
or _nmalloc in any model.

2-3

daylight, timezone, tzname

Format:

int daylight;
long timezone;
char *tzname [2];

Several time and date functions use the daylight, timezone, and
tzname variables to make local time adjustments. The declarations
for daylight, timezone, and tzname are in the time.h include file. The
setting of an environment variable named TZ determines the values of
these variables.

You can control local time adjustments by setting the TZ environment
variable. The value of the environment variable TZ must be a 3-letter
time zone, followed by a number, possibly signed, giving the differ­
ence in hours between Greenwich Mean Time and local time. A posi­
tive value for TZ denotes time zones west of the Greenwich meridian,
and a negative number denotes time zones east of the Greenwich
meridian. A 3-letter Daylight Saving Time zone can follow the
number. For example, the command

SET TZ=EST5EDT

specifies that the local time zone is EST (Eastern Standard Time), that
local time is 5 hours earlier than Greenwich Mean Time, and that
Daylight Saving Time (EDT) is in effect. Omitting the Daylight Saving
Time zone, as shown below, means that the program is to make no
correction for Daylight Saving Time.

SET TZ=EST5

When you call the ftime or localtime function, the TZ setting deter­
mines the values of the three variables daylight, timezone, and
tzname. The daylight variable receives a nonzero value if a Daylight
Saving Time zone is present in the TZ setting; otherwise, daylight is
zero. The timezone variable is aSSigned the difference in seconds
(calculated by converting the hours given in the TZ setting) between
Greenwich Mean Time and local time. The first element of the
tzname variable is the string value of the 3-letter time zone from the

2-4

daylight, timezone, tzname

TZ setting; the second element is the string value of the Daylight
Saving Time zone. If the Daylight Saving Time zone is omitted from
the TZ setting, tzname[1] is an empty string.

If you do not explicitly assign a value to TZ before calling flime or
localtime, the following default setting is used:

EST5EDT

The fllme and localtlme functions call another function, tzset, to
assign values to the three global variables from the TZ setting. You
can also call tzset directly if you like. See the tzset function in
Chapter 5, "Library Routines," for details.

2-5

_ doserrno, errno, sys _ errlist, sys _ nerr

Format:

int _ doserrno;
int errno;
char *sys_errlist[];
int sys _ nerr;

The perror function uses the errno, sys_errlist, and sys_nerr vari­
ables to print error information. The include file stdlib.h contains the
declarations for these variables. When an error occurs in a system­
level call, the system sets the errno variable to an integer value to
reflect the type of error. The perror function uses the errno value to
look up (index) the corresponding error message in the sys_errlist
table. The number of elements in the sys_errlist array defines the
value of the sys_nerr variable.

The errno values for a DOS system are a subset of the values for errno
for XENIX systems. Thus, the value assigned to errno in case of error
does not necessarily correspond to the actual error code returned by
a DOS system call. Instead, the system maps DOS error codes onto the
perror values. If you want to access the DOS error code, you can use
the _doserrno variable. When an error occurs in a system call, the
_doserrno variable contains the error code returned by the corre­
sponding DOS system call. (See the IBM Disk Operating System Tech­
nical Reference book for details about DOS error returns.)

In general, use _doserrno for error detection only in operations
involving input and output, because the errno values for input and
output errors have DOS error code equivalents. Not all error values
available for errno have exact DOS error code equivalents, and some
have no equivalents, causing the value of _doserrno to remain unde­
fined.

2-6

'mode

Format:

int-,mode;

The -,mode variable controls the default file translation mode. The
stdllb.h include file contains the declaration of _fmode. By default,
the value of _fmode is zero, causing the system to translate files in
text mode (unless specifically opened or set to binary mode). When
you set _'mode to O_BINARY, the default mode is binary. Set _'mode to
O_BINARY by linking with BINMODE.OBJ or by assigning it the value
O_BINARY. See "Binary and Text Modes" in this book for a discussion
of file translation modes and the use of the -,mode variable.

2-7

osmajor, osminor, osmode - - -

Format:

unsigned char _osmajor;
unsigned char _osminor;
unsigned char _ osmode;

The _osmajor and _osminor variables provide information about the
version number of DOS currently in use. The stdlib.h include file con­
tains their declarations. The _osmajor variable holds the "major"
version number. For example, under DOS Version 3.30, _osmajor is
equal to 3.

The _osminor variable stores the "minor" version number. For
example, under DOS Version 3.30, _osminor is 3.

These variables can be useful when you want to write code to run on
different versions of DOS. For example, you can test the _osmajor
variable before making a call to sopen. If the major version number
of DOS is earlier than 3.00, use open instead of sopen.

The global variable _osmode is defined for DOS operation as the mani­
fest constant DOS_MODE (defined in stdlib.h). Under OS/2, the _osmode
variable stores the prevailing addressing mode. It assumes one of
the values DOS_MODE or OS2_MODE. These constants, defined in
stdlib.h, match the values returned from the OS/2 system call
DOSGETMACHINEMODE.

2-8

Format:

char *environ[];
unsigned int ysp;

environ, psp

The environ and ysp variables provide access to storage areas con­
taining process-specific information. The stdlib.h include file contains
declarations for both variables.

The environ variable is an array of pointers to the strings making up
the process environment. The environment consists of one or more
entries of the form:

NAME = string

where NAME is an environment variable and string contains the value
of that variable. The string can be empty. The system takes the
initial environment settings from the DOS environment when the
program runs.

The getenv and putenv routines use the environ variable to get
access to and modify the environment table. You call putenv to add
or delete environment settings. When you do this the environment
table changes in size, and its location in storage can change,
depending on the storage requirements of the program. The routine
adjusts the environ variable in these cases so that it always points to
the correct table location.

The ysp variable contains the segment value of the Program
Segment Prefix (psp) for the process. The Program Segment Prefix
contai ns the performance information about the process, such as a
copy of the command line that called the process and the return
address for the command that ends or interrupts the process. See
the IBM Disk Operating System Technical Reference book for details.
You can use the ysp variable to form a long pointer to the Program
Segment Prefix. The segment value is ...psp and the offset value is O.

The ysp variable is undefined under OS/2. Processes running under
OS/2 have no PSP.

2-9

Standard Data Types in Run-Time Routines

A number of run-time library routines use data structures that are
defined in include files. The following list describes each structure
type and names the include file that defines it. For a listing of each
structure definition, see the appropriate include file in Chapter 4,
"Include Files;"

Standard Type Description

complex The complex structure, defi ned in math.h, stores the
real and imaginary parts of a complex number and
is used by the cabs function.

DOSERROR The DOSERROR structure, defined in dos.h, stores
values returned by the DOS system call 59H (avail­
able under DOS Version 3.30 but not under OS/2).

exception The exception structure, defined in math.h; stores
error information for math routines and is used by
the matherr routi ne.

FILE The FILE structure, defined in stdio.h, is the structure
used in all stream input and output operations. The
fields of the FILE structure store information about
the current state of the stream.

REGS

SREGS

2-10

The jmp_buf data type, declared in setjmp.h, is an
array rather than a structure. It defines the buffer
used by the seljmp and longjmp routines to save and
restore the program envi ronment.

The REGS data type, defined in dos.h, is a-union
rather than a structure. It stores byte-and word­
register values to be passed to and returned from
calls to the DOS interface functions. It is not appli­
cable under OS/2.

The SREGS structure, defined in dos.h, stores the
val ues of the ES, CS, SS, and DS registers. This struc­
ture is used by the DOS interface functions (inI86](,
intdosx, and segread) that requi re segment register
values. It is not applicable under OS/2.

stat

timeb

tm

utimbuf

The stat structure, defined in sys\stat.h, contains file
status information returned by the stat and Istat rou­
tines.

The timeb structure, defined in sys\tlmeb.h, is used
by the ftime routine to store the current system time
in four fields (time, millitm, timezone, and dstf/ag).

The tm structure, defined in tlme.h, is used by the
asctime, gmtime, and localtime functions to store
and retrieve time information.

The utimbuf structure, defined in sys\utlme.h, stores
file-access and file-modification times used by the
utime function to change file-modification dates.

2-11

2-12

Chapter 3. Run-Time Routines by Category

This chapter describes the major categories of routines in the IBM C/2

run-time library. The discussions of these categories give a brief
overview of the capabilities of the run-time library. For a complete
description of the syntax and use of each routine, see Chapter 5,
"Library Routines."

Buffer Manipulation

The buffer manipulation routines are useful for working character-by­
character with areas of storage. Buffers are arrays of characters
(bytes). However, unlike strings, they do not usually end with a null
character (\0). The buffer manipulation routines always take a length
or count argument.

Function declarations for the buffer manipulation routines are in the
include files memory.h and string.h.

Routine

memccpy

memchr

memcmp

memcpy

memset

movedata

Use

Copies characters from one buffer to another, until it
copies a given character or a specified number of
characters.

Returns a pointer to the first occurrence, within a
specified number of characters, of a given character
in the buffer.

Compares a specified number of characters from
two buffers.

Copies a specified number of characters from one
buffer to another.

Uses a given character to initialize a specified
number of bytes in the buffer.

Copies a specified number of characters from one
buffer to another, even when buffers are in different
segments.

3-1

memicmp Compares specified number of characters from two
buffers without regard to case.

Character Classification and Conversion

The character classification and conversion routines let you test indi­
vidual characters and convert characters between uppercase and
lowercase. The classification routines identify a character by looking
it up in a table of classification codes. Using these routines is gener­
ally faster than writing an equivalent test expression such as;

if ((c>= 0)11 (c <= Ox7f))

to classify a character.

Routine

isalnum
isalpha
isascii
iscntrl
isdigit
isgraph

islower
isprlnt
ispunct
isspace
isupper
isxdigit
toascii
tolower

toupper

_tolower
_toupper

Use

Tests for an alphanumeric character.
Tests for an alphabetic character.
Tests for an ASCII character.
Tests for a control character.
Tests for a decimal digit.
Tests for printable characters except for blanks (ASCII

32).
Tests for a lowercase character.
Tests for a printable character.
Tests for a punctuation character.
Tests for a white-space character.
Tests for an uppercase character.
Tests for a hexadecimal digit.
Converts a character to ASCII code.
Tests a character and converts to lowercase if upper­
case.
Tests a character and converts to uppercase if lower­
case.
Converts a character to lowercase (unconditional).
Converts a character to uppercase (unconditional).

You can use the tolower and toupper routines both as functions and
as macros. The remainder of the routines in this category are only
macros. The ctype.h include file contains definitions of all character
classification and conversion macros. You must include this file or
the macros in your program remain undefined.

3-2

The toupper and tolower macros evaluate their arguments twice.
Arguments with side effects give incorrect results when you use
these macros. Use the function versions of these routines instead.

The IBM C/2 compiler uses macro versions of tolower and toupper by
default when you include ctype.h. To use the function versions
instead, you must give #undef preprocessor directives for tolower
and toupper after the #include directive for ctype.h but before you call
the routines. This procedure removes the macro definitions and
causes all occurrences of tolower and toupper to be treated as func­
tion calls to the tolower and toupper library functions.

If you want to use the function versions of toupper and tolower and
you do not use any of the other character classification macros in
your program, you can omit the ctype.h include file. In this case, no
macro definitions are present for tolower and toupper, so the com­
piler uses the function versions.

Function declarations for the tolower and to~pper functions are in the
include file stdlib.h instead of ctype.h. This avoids conflict with the
macro definitions. When you want to use tolower and toupper as
functions and include the declarations from stdlib.h, you must follow
this sequence:

1. Include ctype.h if it is required for other macro definitions.

2. If you included ctype.h, give #undef directives for tolower and
toupper.

3. Include stdlib.h.

An #ifndef ~Iock encloses the declarations of tolower and toupper in
stdllb.h. The compiler processes these definitions only if the corre­
sponding identifier (toupper or tolower) is not defined.

3-3

Data Conversion

The data conversion routines convert numbers to strings of ASCII char­
acters and the reverse. These routines are functions, defined in the
include file stdlib.h. The one exception is atol, defined in math.h.
The atol function converts a string to a floating-point value.

Routine

atol
atoi
atol
ecvt
Icvl
gcvt
itoa
Ito a

strtod
strtol

ulloa

Use

Converts a string to a Iloat.
Converts a string to an int.
Converts a stri ng to a long.
Converts a double to a string.
Converts a double to a string.
Converts a double to a string and stores it in a buffer.
Converts an int to a string.
Converts a long to a string.
Converts a string to a double.
Converts a string to a long decimal integer that is equal
to a number with the specified radix.
Converts an unsigned long to a string.

Directory Control

The directory control routines let you get access to, change, and
obtain information about the directory structure from within your
program. You can get the current working directory, change directo­
ries, and add or remove directories.

The declarations of the directory routines, which are functions, are in
the include file direct.h.

Routine

chdir
getcwd
mkdir
rmdir

3-4

Use

Changes the current working directory.
Gets the current working directory.
Makes a new directory.
Removes a directory.

File Handling

The file handling routines work on a file designated by a pathname or
file handle. They change or give information about the designated
file. All of these routines except fstat and stat are declared in the
include file IO.H. The declarations of the fstat and stat functions are in
sys\stat.h. The declarations of the remove and rename functions are
in stdio.h.

Routine

access
chmod
chsize
filelength
fstat
isatty
locking
mktemp
remove
rename
setmode
stat
umask
unlink

Use

Checks a file permission setting.
Changes a file permission setting.
.Changes a file size.
Checks a file length.
Gets a file status information on file handle.
Checks for a character device.
Locks areas of a file.
Creates a unique filename.
Deletes a file.
Renames a file.
Sets a file translation mode.
Gets file-status information on a named file.
Sets the default permission mask.
Deletes a file.

The access, chmod, rename, remove, stat, and unlink routines
operate on files specified by a pathname or filename.

The chsize, filelength, fstat, isatty, locking, and setmode routines
work with files designated by a file handle. The locking routine locks
a region of a file against access by other users.

The mktemp and umask routines have slightly different functions than
the above routines. The mktemp routine creates a unique filename.
Programs can use mktemp to create unique filenames that do not
conflict with the names of existing files. The umask routine sets the
default permission mask for any new files created in a program. The
mask can cancel the permission setting given in the open or creat
call for the new file.

3-5

Input and Output

The input and output routines of the standard C library let you read
data to and write data from files and devices. In C, there are no pre­
defined file structures; the system treats all data as sequences of
bytes. Three types of input and output (1/0) functions are available:

• Stream input/output
• Low-level input/output
• Console and port input/output.

The maximum number of file handles on DOS is 20, but on OS/2 you set
the maximl!m using the OS/2 function DOSSETMAXFH. The C libraries
impose a maximum of 40 file handles.

Stream Routines

The stream routines treat a data file or data item as a stream of indi­
vidual characters. By choosing among the many stream functions
available, you can process data in different sizes and formats, from
single characters to large data structures~

When you open a file for input or output using the stream functions,
the system associates the opened file with a structure of type FILE,

defined in stdio.h, containing basic information about the file. The
system returns a pointer to the FILE structure when you open the
stream. This pointer, called the stream pointer or just stream, refers
to the file in subsequent operations.

The stream functions can provide for optionally buffered and for­
matted input and output. When you direct a stream to a buffer, the
system collects data rea~ from or written to the stream in an interme­
diat~ storage location called a buffer. During a write operation, the
system writes the contents of the output buffer t9 the appropriate final
location only after the buffer is full, When the stream is closed,or
when the program ends normally. To carry out this operation is to
flush th~ buffer .. During a read operation, the system places a block
of data in the input buffer and reads the data from the buffer. The
system transfers the next block of data into the buffer only after the
buffer is empty.

3-6

Buffering lets input or output proceed efficiently because the system
can transfer a large block of data in a single operation rather than
performing an input or output operation each time it reads a data item
from or writes one to a stream. However, if a program ends abnor­
mally, the system might not flush the output buffers and could lose
data.

Routine

elearerr
felose
feloseall
fdopen
feof
ferror
fflush
fgete
fgetehar
fgets
fileno
flushall
fopen
fprinH
fpute
fputehar
fputs
fread
freopen
fseanf
fseek
Hell
fwrite
gete
getehar
gets
getw
prinH
pute
putehar
puts
putw
rewind
rmtmp

Use

Clears the error indicator for a stream.
Closes a stream.
Closes all open streams.
Opens a stream using a handle.
Tests for an end-of-file on a stream.
Tests for an error on a stream.
Flushes a stream.
Reads a character from a stream (function version).
Reads a character from stdin (function version).
Reads a string from stream.
Gets the file handle associated with a stream.
Flushes all streams.
Opens a stream.
Writes formatted data to a stream.
Writes a character to a stream (function version).
Writes a character to stdout (function version).
Writes a stri ng to a stream.
Reads unformatted data items from a stream.
Reassigns a FILE pointer.
Reads formatted data from a stream.
RepOSitions the file pointer to a given location.
Gets the current file pointer position.
Writes fixed-length data items to stdout.
Reads a character from a stream (macro version).
Reads a character from stdin (macro version).
Reads a line from stdin.
Reads a bi nary int from a stream.
Writes formatted data to stdout.
Writes a character to a stream (macro version).
Writes a character to stdout (macro version).
Writes a line to a stream.
Writes a bi nary int to a stream.
Repositions file pointer to beginning of a stream.
Removes temporary files created by a tmpfile.

3-7

scanf
setbuf
setvbuf
sprintf
sscanf
tempnam
tmpfile
tmpnam
ungetc
vfprintf
vprintf
vsprintf

Reads formatted data from stdin.
Controls stream bufferi ng.
Controls stream buffering and buffer size.
Writes formatted data to a string.
Reads formatted data from a stri ng.
Produces a temporary file name in a given directory.
Creates a temporary file.
Produces a temporary file name.
Places a character in the buffer.
Writes formatted data to a stream.
Writes formatted data to stdout.
Writes formatted data to a string.

To use the stream functions, you must include the stdio.h file in your
program. This file defines constants, types, and structures used in
the stream functions and contains function declarations and macro
definitions for the stream routines.

Some constants defined in stdio.h can be useful in your program.
The manifest constant EOF is the value returned at the end of a file.
NULL is the null pointer. FILE is the structure that maintains informa­
tion about a stream. BUFSIZ defines the size of stream buffers in
bytes.

Opening a Stream: You must open a stream with the fdopen, fopen,
or freopen function before you can perform input or output on that
stream. You can open a stream for reading, writing, or both. You can
open a stream in text mode or bi nary mode.

The fdopen, fopen, and freopen functions return a FILE pointer, which
refers to the stream. When you call one of these functions, assign the
return value to a FILE pointer variable and use that variable to refer to
the opened stream. For example, if your program contains the line:

infile = fopen ("test.dat", "r");

you can use the FILE pointer variable infile to refer to the stream.

3-8

Predefined Stream Pointers: stdin, stdout, stderr, stdaux, stdprn:
When a program begins to run, the system automatically opens five
streams. These streams are the standard input, standard output,
standard error, standard auxiliary, and standard print streams. By
default, the standard input, standard output, and standard error
streams refer to the keyboard and screen. Whenever a program
expects input from the standard input stream, it receives that input
from the keyboard. Similarly, a program that writes to the standard
output stream displays data on the screen. The system sends error
messages produced by the library routines to the standard error
stream. The error messages interrupt the standard output stream
and appear on the screen.

The assignment of the standard a'uxiliary stream and the standard
print stream depends on the machine setup. These streams usually
refer to an auxiliary port and a printer, respectively, but they might
not have a device attached on a particular system. Be sure to check
your machine setup before using these streams.

When you use the stream functions, you can refer to the standard
input, standard output, standard error, standard auxiliary, and
standard print streams by using the following predefined FILE
pointers.

Stream

stdin
stdout
stderr
stdaux
stdprn

Device

Standard input
Standard output
Standard error
Standard auxiliary
Standard pri nt.

You can use these pointers in any function that requires a stream
pointer as an argument. Some functions, such as getchar and
putchar, use stdin or stdout automatically. The pointers stdin, stdout,
stderr, stdaux, and stdprn are constants, not variables. Do not try to
assign them a new stream pointer value. Pointers stdaux and stdprn
are not predefined under OS/2.

You can use the DOS redirection symbols «,>, or ») or the pipe
symbol (I) to redefine the standard input and standard output for a
particular program. See the IBM Disk Operating System Technical
Reference book for a complete discussion of redirection and pipes.

3-9

For example, if you run a program and redirect its output to a file
named RESULTS, the program writes to the RESULTS file each time the
standard output is specified in a write operation. You do not change
the program when you redirect the output. You change only the file
associated with stdout for a single run of the program.

You can redefine stdin, stdout, stderr, stdaux, or stdprn to refer to a
disk file or to a device. The freopen routine reassigns the stream.
See the freopen function in Chapter 5, "Library Routines," for a
description of this option.

Note: You cannot redirect stderr (the standard error stream) at the
DOS command level, though you can from OS/2. For example,
use the command line

c1 main.c 2>errmsg

in OS/2 to redirect the error stream from the compiler to a file
called ERRMSG.

Controlling Stream Buffering

By default, the system buffers any files that you open by using the
stream functions, except for the preopened streams stderr, stdaux,
stdin, stdout, and stdprn. The stderr and stdaux streams are unbuf­
fered, unless they are being used by printf or scan', which assign a
temporary buffer. These two streams can also be buffered using
setbuf or setvbuf. Streams stdin, stdout, and stdprn are buffered.
The compiler flushes the buffer whenever it is full, or whenever the
function causing I/O ends.

By using the setbuf or setvbuf functions, you can cause streams to be
unbuffered or you can associate a buffer with an unbuffered stream.
Buffers reserved by the system are not accessible, but you can name
buffers reserved with setbuf or setvbuf. You can manipulate them as
if they were variables. Buffers can have any size. If you use setbuf, it
sets the manifest size for the constant BUFSIZ in stdio.h. If you use
setvbuf, you can set the size of the buffer yourself. For more informa­
tion about these two functions, see setbuf and setvbuf in Chapter 5,
"Li brary Routi nes. "

The system automatically flushes buffers when they reach the size of
BUFSIZ, when the system closes the associated file, or when a
program ends normally. You can flush buffers at other times with the

3-10

fflush and flushall routines. The fflush routine flushes a single speci­
fied stream, while flushall flushes all open, buffered streams.

Closing Streams

The fclose and fcloseall functions close a stream or streams. The
fclose routine closes a single specified stream. The fcloseall routine
closes all open streams except stdin, stdout, stderr, stdaux, and
stdprn. If your program does not explicitly close a stream, the system
automatically closes the stream when the program ends. It is good
practice to close a stream when you finish with it.

Reading and Writing Data

The stream functions let you transfer data in a variety of ways. You
can read and write binary data or specify the reading or writing of
characters, lines, or more complicated formats. A summary of the
stream functions for reading and writing data is at the beginning of
this section. For a full description of each function, see Chapter 5,
"Library Routines."

Reading and writing operations on streams begin at the current posi­
tion in the stream, known as the file pointer for the stream. After a
reading or writing operation, the functions change the file pointer to
reflect the new position of the file pointer. For example, if you read a
single character from a stream, the function increases the file pointer
by 1 byte. The next operation now begins at the first unread char­
acter. If you open a stream to add something, the system automat­
ically positions the file pointer at the end of the file before each
writing operation. A new-line character is not required at the end of a
text stream. A text line containing only a single space character plus
a terminating new-line character is not converted on input to a line
consisting only of the terminating new:.line character; the space is left
in the string. NUL characters are never appended to data written to
bi nary streams.

The feof macro detects an end-of-file in a stream. After you set the
end-of-file indicator, it remains set until you close the file, return to
the beginning of the file, or call the clearerr or rewind functions.

You can position the file pointer anywhere in a file with the fseek
function. The next operation takes place at the position you specified.

3-11

The rewind function positions the file pointer at the beginning of the
file. Use the Hell function to tell the current position of the file
pointer.

Streams associated with a device, such as a screen, do not have file
pointers. You cannot get random access to data going to a screen.
Routines that use file pointers have undefined results if you use them
on a stream associated with a device.

Detecting Errors

When an error occurs in a stream operation, the system sets an error
indicator for the stream. You can use the ferror macro to test the
error indicator and tell whether an error has occurred. After an error
occurs, the error indicator for the stream remains set until you close
the stream, return to the beginning of the stream, or explicitly clear
the error indicator by calling the clearerr or rewind function.

Low-Level Routines

The low-level input and output routines do not buffer or format data.
They directly call input and output capabilities of the operating
system. These routines let you get access to files and peripheral
devices at a more basic level than the stream functions.

When you open a file with a low-level routine, the compiler associ­
ates a file handle with the opened file. This handle is an integer
value used to refer to the file in subsequent operations.

CAUTION:
Stream routines and low-level routines are generally incompatible.
Use either stream or low-level functions consistently on a given file.
Because stream functions are buffered and low-level functions are
not, attempting to get access to the same file or device by two dif­
ferent methods causes confusion and can result in the loss of data in
buffers.

Routine Use

close Closes a file.
creat Creates a file.

3-12

dup
dup2
eof
Iseek
open
read
sopen
tell
write

Creates a second handle for a file.
Reassigns a file handle.
Tests for an end-of-file.
Repositions the file pointer to a given location.
Opens a fi Ie.
Reads data from a file.
Opens a file for file-sharing.
Gets the current file pointer position.
Writes data to a file.

Low-level input and output calls do not buffer or format data. Use a
file handle to refer to files opened by low-level calls. This is an
integer value that the operating system uses to refer to the file. Use
the open function to open files. On DOS Version 3.30, you can use
sopen to open a file with file-sharing attributes.

Low-level functions, unlike the stream functions, do not require the
include file stdio.h. Some common constants are defined in stdio.h
that can be useful (for example, the end-of-file indicator, (EOF). If your
program requires these constants, you must include stdio.h.

Declarations for the low-level functions are given in the include file
io.h.

Opening a File

You must open a file with the open, sopen, or creat function before
you can perform input and output with the low-level functions on that
file. You can open the file for reading, writing, or both. You can open
the file in either text mode or binary mode. You must include the file
fcntl.h when opening a file. The fcntl.h file contains definitions for
flags that the open function uses. In some cases, you must also
include the files sys\types.h and sys\stat.h. For details see the open
routine in Chapter 5, "Library Routines."

These functions return a file handle that the operating system uses to
refer to the file in later operations. When you call one of these func­
tions, assign the return value to an integer variable and use that vari­
able to refer to the opened stream.

3-13

Predefined Handles

When a program begins to run, the system assigns five file handles,
corresponding to the standard input, standard output, standard error,
standard auxiliary, and standard print streams. By using the fol­
lowing predefined handles, a program can call low-level functions to
get access to the standard input, standard output, standard error,
standard auxiliary, and standard print streams described with the
stream functions in this chapter.

Stream Handle

stdin 0
stdout
stderr 2
stdaux 3
stdprn 4

You can use these file handles in your program without opening the
associated files. The compiler opens.the files when the program
begins, as the following short program shows. This example uses the
fileno function to print the file handle values assigned to the standard
input, standard output, standard error, standard auxiliary, and
standard pri nt streams:

#include <stdio.h>

rnai n ()
{
printf("stdin: %d\n",fileno(stdin));
printf("stdout: %d\n",fileno(stdout));
printf("stderr: %d\n",fileno(stderr));
printf("stdaux: %d\n",fileno(stdaux));
printf("stdprn: %d\n",fileno(stdprn));
}

Output:

stdin: 0
stdout: 1
stderr: 2
stdaux: 3
stdprn: 4

As with the stream functions, you can use redirection and pipe
symbols when you run your program to redirect the standard input
and standard output. The dup and dup2 functions let you assign mul-

3-14

tiple handles for the same file. You can use these functions to asso­
ciate the predefined file handles with different files.

Note: You cannot redirect stderr (the standard error stream) at the
DOS command level, though you can under 05/2. For example,
use the command line

c1 main.c 2>errmsg

in OS/2 to redirect the error stream from the compiler to a file
called ERRMSG.

Reading and Writing Data

Two basic functions, read and write, perform input and output. As
with the stream functions, reading and writing operations always
begin at the current position in the file. You must update the current
position each time a read or write operation takes place.

You can use the eof routine to test for an end-of-file condition. Low­
level input/output routines set the errno variable when an error
occurs. You can use the perror function to print information about
input/output errors.

You can position the file pointer anywhere in a file with the Iseek
function. The next operation takes place at the position you specified.
Use the tell function to tell the current position of the file pointer.

Devices, such as the screen or a printer, do not have file pointers.
The Iseek and tell routines have undefined results if you use them on
a handle associated with a device.

Closing Files

The close function closes an open file. The system automatically
closes all open files when a program ends. However, it is good prac­
tice to close a file when you finish with it.

3-15

Keyboard and Port 1/0 Routines

The keyboard and port input/output routines are an extension of the
stream routi nes. They let you read from a keyboard or read from or
write to an input/output port, such as a printer port. The port
input/output routines read and write data in bytes. Some additional
options are available with keyboard input/output routines. For
example, your program can detect whether a user has typed a char­
acter on the keyboard. You can also choose between echoing char­
acters to the screen as the system reads them or reading characters
without echoing. The routines are:

Routine

cgets
cprinH
cputs
cscanf
getch
getche
inp
kbhit
outp
putch
ungetch

Use

Reads a string from the keyboard.
Writes formatted data to the screen.
Writes a string to the screen.
Reads formatted data from the keyboard.
Reads a character from the keyboard.
Reads a character from the keyboard and echoes it.
Reads from a specified input port.
Checks for a keystroke at the keyboard.
Writes to a specified output port.
Writes a character to the screen.
Pushes the last character back to the keyboard again so
that it becomes the next character read.

The keyboard and port input/output routines are functions in the
include file conio.h. These functions perform reading operations from
your keyboard, writing operations on your screen, or reading or
writing operations on a specified port. The cgets, cscanf, getch,
getche, and kbhit functions take input from the keyboard, while
cprinH, cputs, putch, and ungetch write to the screen. Redirecting the
standard input or standard output streams from the command line
redirects the input or output of these functions.

You do not have to open or close the port for the keyboard or screen
before you perform an input or output operation. Consequently, there
are no open or close routines in this category. The port input/output
routines inp and outp read 1 byte at a time from or write 1 byte at a
time to the specified port. The keyboard and screen input/output rou­
tines allow the reading and writing of strings (cgets and cputs), for-

3-16

matted data (cscanf and cprinH), and characters. Several options are
available for reading and writing characters.

The putch routine writes a character to the screen. The getch and
getche routines read a character from the keyboard. Getche echoes
the character back to the screen, and getch does not. The ungetch
routine pushes the last character read back to the keyboard. The
next read operation on the keyboard begins with that character, the
last character typed.

The kbhit routine tells when a key has been struck at the keyboard.
This routine lets you test for keyboard input before you try to read.

Note: The keyboard and screen input/output routines use the corre­
sponding DOS system calls to read and write characters. See
the IBM Disk Operating System Technical Reference book for
the details of the specific system calls. Under OS/2, you may
not redirect data to or from other files using these routines.
The keyboard and screen input/output routines always use the
console.

Math

The math routines let you perform common mathematical calcu­
lations. All math routines (except matherr, the error-handling func­
tion) work with floating-point values and thus require floating-point
support. See the section on "Floating-Point Support" in Chapter 1 of
this book for additional information. The include file math.h gives
function declarations for the math routines, except for _clear87,
_controI87, _fpreset, and _status87, whose definitions are in the
float.h include file.

Routine

acos
asin
atan
atan2
bessel
cabs
ceil

Use

Calculates an arc cosine.
Calculates an arc sine.
Calculates an arc tangent of one argument.
Calculates an arc tangent of two arguments.
Calculates bessel functions. .
Finds the absolute value of a complex number.
Finds the integer ceiling of a double.

3-17

_clear87
_control87

cos
cosh
dieeetomsbin

dmsbintoieee

exp
fabs
fieeetomsbin

floor
fmod
fmsbintoieee

_fpreset
frexp

hypot
Idexp
log
log10
matherr
modf

pow
sin
sinh
sqrt
status87

tan
tanh

Gets and clears a floating-point status word.
Gets an old floating-point control word and sets a
new control-word val ue.
Calculates a cosine.
Calculates a hyperbolic cosine.
Converts an IEEE double-precision format to a
binary double format.
Converts a binary double format to an IEEE double­
precision format.
Calculates an exponential function.
Fi nds an absol ute val ue of a double.
Converts an IEEE single-precision format to binary
format (float).
Finds an integer floor of a double.
Finds a remainder.
Converts a binary format (float) to IEEE single­
precision format.
Reinitializes the floating-point math package.
Breaks down a double into a mantissa and expo­
nent.
Calculates an hypotenuse.
Calculates x times a power of 2.
Calculates a natural logarithm.
Calculates a base 10 logarithm.
Handles math errors.
Breaks down a double into an integer and fractional
parts.
Calculates a power.
Calculates a sine.
Calculates a hyperbolic sine.
Finds a square root.
Gets the floating-point status word.
Calculates a tangent.
Calculates a hyperbolic tangent.

The math functions call the matherr routine when errors occur. This
routine is defined in the library, but you can redefine it if you want
different error-handling procedures. When you define the matherr
function, it must conform to the specifications for the matherr function
in Chapter 5, "Library Routines."

3-18

You need not supply a definition for matherr. If no definition is
present, the system returns the default error for each routine. See
the reference page for each routine in Chapter 5, "Library Routines,"
for a description of its error return values.

3-19

Reserving Storage

The storage allocation routines let you reserve, free, and reallocate
blocks of storage. The include file malloc.h contains the declarations
of these functions.

Routine

alloca
calloc
_expand

free
_freect

_fmsize

halloc
hfree
malloc
_memavl

_nfree
_nmalloc

_nmslze

realloc

sbrk
stackavail

Use

Reserves storage from the stack.
Reserves storage for an array.
Expands or contracts a block of storage without
moving its location.
Frees a block reserved by _fmalloc.
Reserves a block of storage outside the default data
segment, returns a far pointer.
Frees a reserved block.
Returns the approximate number of items of a given
size that the compiler can reserve.
Returns the size of a storage block pointed to by a far
pointer.
Reserves a huge array.
Frees a block reserved by halloc.
Reserves a block.
Reports the approximate number of bytes available
for reserving in the heap in memory.
Returns the size of the block reserved by calloc,
malloc, or realloc.
Frees a block reserved by _nmalloc.
Reserves a block of storage in the default data
segment, returns a near pointer.
Returns the size of a storage block pointed to by a
near pointer.
Changes the size of a previously reserved block of
storage.
Resets the break val ue.
Returns the size of the stack space available for
reserve with alloca.

The calloc and malloc routines reserve storage blocks. The malloc
routine reserves a given number of bytes; the calloc routine reserves
and initializes to 0 an array with elements of a given size. The rou-

3-20

tines _fmalloe and _nmalloe are similar to malloe, except that
_fmalloe and _nmalloe let you reserve blocks of bytes while over­
coming the addressing limitations of the current storage model. The
halloe routine performs essentially the same function as ealloe, with
the difference that halloe reserves space for huge arrays (those
exceeding 64K bytes in size). Arrays allocated with halloe must
satisfy the requirements for huge arrays, as outlined in "Creating
Huge Model Programs" in the IBM C/2 Compile, Link, and Run book.
The realloe and _expand routines change the size of an allocated
block. The _expand function always attempts to change the size of an
allocated block without moving its heap location. It expands the size
of the block up to the size requested or as much as the current
location allows, whichever is smaller. In contrast, realloe changes
the location in the heap if there is not enough room. The halloe
routine returns a huge pointer, _fmalloe returns a far pointer, and
_nmalloe returns a near pointer. These routines all return a pointer
to void; the space to which they point satisfies the alignment require­
ments for any type of object. Use a type cast on the return value to
obtain the type of pointer you need.

When _fmalloe is called it allocates a segment from DOS, returns the
requested amount of memory, and does heap management on the
rest for subsequent calls to _fmalloe. When it runs out of memory on
its current segment, it goes to DOS for another. While _fmalloe allo­
cates memory from DOS, _ffree returns it to _fmalloe's heap (the far
heap). The _fmalloe routine attempts to allocate memory from the
near heap in the default data segment as a last resort.

When an IBM C/2 program is loaded, it reduces its DOS allocated
memory to:

program size + global and static variables + stack + heap area
for _nmalloe,

where variables + stack + heap area <=64K.

This overrides the specification in the program header which tells the
loader to use all the memory. The extent to which the original allo­
cation gets cut back is controlled by using the /CPARMAXALLOC link
option described in Compile, Link, and Run.

The _nmalloe and _fmalloe routines exhibit performance differences.
_"malloe is the best for small memory allocation where total memory

3-21

allocation requirements are less than 64K. This amount is smaller
depending on the number of external variables and the amount of
runtime 1/0. _fmalloc is best when total memory allocation require­
ments are greilter than 64K but no single data object is greater than
64K. The halloc function is the slowest of all because it petitions DOS

for every memory request. Select halloc as the function of choice
when either you want data objects larger than 64K or you want to be
certain you can free allocated memory back to DOS for subsequent
program spawns.

The free routine (for calloc, malloc, and realloc), the _ffree routine
(for _fmalloc), the _nfree routine (for _nmalloc), and the hfree routine
(for halloc) all free storage that was previously reserved, making it
available for later requests.

The _freect and _memavl routines tell you how much storage is avail­
able for dynamic storage allocation in the default data segment. The
_freect function returns the approximate number of items of a given
size for which the compiler can reserve storage. The _memavl func­
tion returns the total number of bytes available for allocation
requests.

The _msize function returns the size of a storage block reserved by a
call to calloe, _expand, malloc, or realloc. The _fmsize and _nmsize
functions return the size of a block of storage reserved by _fmalloc or
_nmalloc, respectively.

The sbrk routine is a low-level routine that reserves storage. It
increases the break value of the program, letting the program take
advantage of available unreserved storage.

CAUTION:
A program that uses the sbrk routine should not use the other rou­
tines that reserve storage although the compiler does not prohibit
their use. Using sbrk to decrease the break value can cause later
calls to other storage allocation routines to give unpredictable
results.

The preceding routines all reserve storage dynamically from the
heap. IBM C/2 also pr~vides two storage functions, alloca and
stackavail, for reserving space from the stack and determining the
amount of available stack space. The alloca function reserves, from

3-22

the stack, the requested number of bytes that the compiler frees when
control returns from the function calling alloca. The stackavail func­
tion lets your program know how much storage (in bytes) is available
on the stack.

3-23

DOS Interface

These routines provide access to DOS system calls and interrupts.
See the IBM Disk Operating System Technical Reference book for
information on system calls and interrupts.

Routine

bdos

dosexterr

FP_OFF

FP_SEG

int86
int86x
intdos

intdosx
segread

Use

Makes a DOS system call; uses only the DX and the AL

registers.
Obtains register values from DOS system call function
59H.
Returns offset portion of a far pointer.
Returns segment portion of a far pointer.
Calls 8086 software interrupt.
Calls 8086 software interrupt.
Makes a DOS system call; uses registers other than DX

and AL.

Makes a DOS system call; uses segment registers.
Returns current values of segment registers.

The FP _OFF and FP _SEG routines let you easily get access to the
segment and offset portions of a far pOinter value. The FP _OFF and
FP_SEG routines are macros defined in dos.h. The remaining routines
are functions declared in dos.h.

The dosexterr function obtains and stores the register values
returned by DOS system call 59H (extended error handling). This func­
tion is for DOS Version 3.30.

The bdos routine makes DOS calls that use either or both of the DX

(DH/DL) or AL registers for arguments. However, do not use bdos to
make system calls that return an error code in AX if the carry flag is
set. The program cannot detect whether the carry flag is set, making
it impossible to determine whether the value in AX is a legitimate
value or an error value. In this case use the intdos routine instead,
because it lets the program detect whether the carry flag is set. You
can also use the intdos routine to call DOS calls that use registers
other than DX and AL.

The intdosx routine is similar to the intdos routine, but you use it
when ES is required by the system call, when DS must contain a value

3-24

other than the default data segment (for instance, when a far pointer
is used), or when making a system call in a large model program.
When calling Intdosx, give an argument that specifies the segment
val ues used in the call.

Use the int86 routine to call DOS interrupts. The int86x routine is
similar, but, like the intdosx routine, works with large model pro­
grams and far items as described in the preceding paragraph for
intdosx.

The segread routine returns the current values of the segment regis­
ters. Use this routine with the intdosx and int86x routines to obtain
the correct segment values.

Process Control

The term process refers to a program running under the operating
system. A process consists of the code and data for the program and
information about the status of the running program, such as the
number of open files. Whenever you run a program at the DOS level,
you start a process. In addition, you can start, stop, and manage
processes from within a program by using the process control rou­
tines.

The process control routines let you:

• Identify a process by a unique number (getpid)

• Stop a process (abort, exit, and _exit)

• Handle an interrupt signal (raise and signal)

• Start a new process (the exec and spawn families of routines,
plus the system routine).

The declarations for all process control functions except raise and
Signal are in the include file process.h. The declaration for the raise
and signal function are in the signal.h include file.

Routine Use

abort Stops a process.
exec I Runs a child process, using an argument list.

3-25

execle

execlp

execlpe

execv
execve

execvp

execvpe

exit
_exit
getpid
onexit

raise
signal
spawn I
spawn Ie

spawnlp

spawnlpe

spawnv
spawnve

spawnvp

Runs a child process, using an argument list and a given
environment.
Runs a child process, using the PATH variable and an argu­
ment list.
Runs a child process, using the PATH variable and an argu­
ment list.
Runs a child process, using an argument array.
Runs a child process, using an argument array and a
given envi ronment.
Runs a child process, using the PATH variable and an argu­
ment array.
Runs a child process, using the PATH variable, an argu­
ment array, and a given environment.
Ends a process, flushing buffers and closing files.
Ends a process without flushing the buffers.
Gets a process identification number.
Runs functions at the normal or abnormal ending of a
program.
Sends a signal to a program.
Handles an interrupt signal.
Starts a child process, using an argument list.
Starts a child process, using an argument list and a given
environment.
Starts a child process, using the PATH variable and an
argument list.
Starts a child process, using the PATH variable, an argu­
ment list, and a given environment.
Starts a child process, using an argument array.
Starts a child process, using an argument array and a
given environment.
Starts a child process, using the PATH variable and an
argument array.

spawnvpe Starts a child process, using the PATH variable, an argu­
ment array, and a given environment.

system Runs a DOS command.

The abort and _exit functions immediately end a process without
flushing the stream buffers. The exit function ends a process after
flushing the stream buffers.

The system function runs a given DOS command. The exec and spawn
functions start up a new process, called the child process. The differ­
ence between the exec and spawn routi nes is that the spawn routi nes

3-26

can return control from the child process to its caller (the parent
process). Under DOS, both the parent process and the child process
are present in memory unless you specify P _OVERLAY. Under OS/2, the
parent and child mayor may not both be in memory, if swapping is
enabled.

Under DOS in the exec routines, the child process overlays the parent
process. Returning control to the parent process is impossible unless
an error occurs when you attempt to start running the child process.
Under OS/2, exec is simulated. The child process does not actually
overlay the parent in storage, but it is not possible to return control to
the parent process, which ends as soon as the child starts.

There are eight forms each of the spawn and exec routines. The fol­
lowing table summarizes the differences between the forms. The
function names are in the first column. The second column specifies
whether the current PATH setting locates the file to be run as the child
process.

The third column describes the method for passing arguments to the
child process. PaSSing an argument list means that you list the argu­
ments to the child process as separate arguments in the exec or
spawn call. Passing an argument array means that the arguments
are in an array and a pointer to the array is passed to the child
process. Use the argument-list method when the number of argu­
ments is constant or is known when you compile. Use the argument­
array method when you cannot tell the number of arguments until you
run the program.

The last column specifies if the child process inherits the environ­
ment settings of its parent or you must pass a pointer to a table of
environment settings to set up a different environment for the child
process.

3-27

Use of PATH Argument-Passing
Routine Setting Convention Environment

execl, Uses PATH Argument list Pointer to envi-
spawn I ronment table

for child
process
passed as last
argument.

execle, Uses PATH Argument list Pointer to envi-
spawn Ie ronment table

for child
process
passed as last
argument

execlp, Uses PATH Argument list Inherited from
spawnlp parent

execv, Does not Argument array Inherited from
spawnv use PATH parent

execve, Does not Argument array Pointer to envi-
spawnve use PATH ronment table

for child
process
passed as last
argument

execvp, Uses PATH Argument array Inherited from
spawnvp parent

execvpe, Uses PATH Argument array Pointer to envi-
spawnvpe ronment table

for child
process
passed as last
argument

Searching and Sorting

The run-time library has three search routines and one sort routine.

Routine

bsearch
Ifind
Isearch

qsort

3-28

Use

Performs a binary search.
Performs a linear search for a given value.
Performs a linear search of an array for a given value. If
Isearch does not find the value in the array, it adds it to
the array.
Performs a quick-sort.

The bsearch, Ifind, Isearch and qsort functions provide helpful binary
search, linear search, and quick-sort utilities. The include file
seareh.h contains the declarations for these functions.

Manipulating Strings

The declarations of the string functions are in the include file string.h.
A wide variety of string functions is available in the run-time library.
You can:

• Perform string comparisons
• Search for individual characters or characters from a given set

• Copy stri ngs
• Convert strings to a different case
• Set characters of the string to a given character
• Reverse the characters of strings

• Break strings into tokens
• Store error messages in a string.

The following string functions are in string.h:

Routine Use

Adds a string to a string. streat
strehr
stremp
strempi
strepy
strespn

Finds the first occurrence of a given character in a string.
Compares two strings.

strdup
strerror

stricmp

strlen
strlwr
strneat
strnemp
strnepy

Compares two strings without regard to case.
Copies one string to another.
Finds the first occurrence of a character from a given
character set in a string.
Reserves a space and copies a string.
Saves the system error message and optional user error
messages in a string.
Compares two strings without regard to case (identical to
strempi).
Finds the length of a string.
Converts a string to lowercase.
Adds n characters to the end of a string.
Compares n characters of two strings.
Copies n characters of one string to another.

3-29

strnicmp

strnset
strpbrk

strrchr
strrev
strset
strspn

strstr

strtok
strupr

Compares n characters of two strings without regard to
case. (The "i" indicates this function is "case
insensitive" .)
Sets n characters of a string to a given character.
Finds the first occurrence of a character from one string in
another.
Finds the last occurrence of a given character in a string.
Reverses a string.
Sets all characters of a string to a given character.
Finds the first occurrence of a character in a string that is
not in a given string.
Finds the first occurrence of a given string in another
string.
Finds the next token in a string.
Converts a string to uppercase.

All string functions work on character strings that end with a null
escape sequence \0. When working with character arrays that do not
end with a null character, you can use the buffer manipulation rou­
tines, described earlier in this chapter.

Time

The time functions let you obtain the current time, then convert and
store it according to your particular needs. The current time is always
the system time. The time and ftime functions return the current time
as the number of seconds elapsed since Greenwich Mean Time,
January 1, 1970. You can convert, adjust, and store this value in a
variety of ways, using the asctime, ctime, gmtime, and localtime func­
tions. The utime function sets the modification time for a specified
file, using either the current time or a time value stored in a structure.

Routine

asctime

ctime

difftime
ftime
gmtime

3-30

Use

Converts the time from a structure to a character
string.
Converts the time from a long integer to a character
string.
Computes the difference between two times.
Gets the current system time as a structure.
Converts the time from an integer to a structure.

localtime

time
tzset

utime

Converts the time from an integer to a structure with
local correction.
Gets the current system time as a long integer.
Sets external time variables from the environment time
variable.
Sets the file modification time.

The fllme function requires two include files: sys\types.h and
sys\timeb.h. The declaration for the fllme function is in sys\tlmeb.h.
The uti me function also requires two include files: sys\types.h and
sys\utime.h. The declaration for the uti me function is in sys\utlme.h.
The declarations for the remainder of the time functions are in the
include file time.h.

When you want to use ftime or localtime to make adjustments for
local time, you must define an environment variable named TZ. See
the discussion of daylight, timezone, and tzname in Chapter 2,
"Global Variables and Standard Types." TZ is also described on the
tzset reference page in Chapter 5, "Library Routines."

Variable-Length Argument Lists

The va_arg, va_end, and va_start routines are macros that provide a
portable way to get access to the arguments of a function when the
function takes a variable number of arguments. The macro defined in
stdarg.h conforms to the proposed ANSI C standard. For more infor­
mation, see the discussion of the va_arg-va_start in Chapter 5,
"Library Routines."

Routine Use

Retrieves an argument from an argument list.
Sets the argument pointer to the end of an argument
list.
Sets the pointer to the beginning of an argument list.

3-31

Miscellaneous Routines

The miscellaneous category covers a number of commonly-used rou­
tines that do not fit easily into any of the other categories. The decla­
rations for all routines except assert, longjmp, and setjmp are in
stdlib.h.

Routine

abs
assert
getenv
labs
longjmp
perror
putenv
rand
setjmp
srand
swab

Use

Fi nds the absol ute val ue of an int.
Tests for a logic error.
Gets the value of an environment variable.
Fi nds the absol ute val ue of a long.
Restores a saved stack envi ronment.
Prints an error message.
Adds or changes the value of an environment variable.
Gets a pseudo-random number.
Saves a stack environment.
Initializes a pseudo-random number sequence.
Swaps bytes of data.

The assert routine is a macro defined in assert.h. The declarations
for the setjmp and longjmp functions are in setjmp.h.

The abs and labs functions return the absolute value of an int and a
long value, respectively.

Use the assert macro to test for program logic errors; it prints a
message when a given assertion fails to hold true. Defining the iden­
tifier NDEBUG removes from the source file any occurrences of assert.
This lets you turn off assertion-checking without changing the source
file.

The getenv and putenv routines provide access to the environment
table. The global variable environ also points to the environment
table. It is recommended that you use the getenv and putenv routines
to get access to and change the environment settings instead of
getting access to the environment table directly.

The perror routine prints the system error message or messages that
you supply for the last system-level call that produces an error. The
declaration of the perror function is in stdlib.h. The routine obtains

3-32

the error number from the errno variable and the system message
from the sys_errlisl array. The errno variable is guaranteed to have
been set only by those routines that explicitly mention the errno vari­
able in the "Remarks" sections of Chapter 5, "Library Routines."

The rand and srand functions initialize and generate a pseudo­
random number sequence of integers.

The seljmp and longjmp functions save and restore a stack environ­
ment. These routines let you run a nonlocal golo.

The swab routine (also declared in Sldllb.h) swaps bytes of bin~ry
data. Use it to prepare data for transfer to a system that uses a dif­
ferent byte order.

3-33

3-34

Chapter 4. Include Files

The include files provided with the run-time library contain macro and
constant definitions, type definitions, and routine declarations. Some
routines require definitions and declarations from include files to
work properly. For other routines, the inclusion of a file is optional.
The description of each include file in this chapter explains the con­
tents of each include file and lists the routines that use it.

A number of routines are declared in more than one include file. For
example, the buffer manipulation functions memccpy, memchr,
memcmp, memcpy, memicmp, memset, and movedata are declared
in both memory.h and string.h. These multiple declarations ensure
agreement with the names of include files under the proposed ANSI

standard for C. This preserves compatibility with programs written in
earlier versions of C, and further increases the portability of the pro­
grams you write in C.

Two sets of routine declarations are provided in each include file.
The first set declares both the routine return type and the argument
type list for the routine. This set is included only when you enable
argument type-checking by defining L1NT_ARGS, as described in "Argu­
ment Type-Checking" in Chapter 1, "About the IBM C/2 Library." The
second set of declarations declares only the routine return type. This
set is included when argument type-checking is not enabled.

The include files were named and organized to:

• Maintain compatibility of include file names with the developing
ANSI standard

• Reflect the logical categories of run-time routines (for example,
placing declarations for all storage allocation routines in one file,
malloc.h)

• Require the inclusion of the minimum number of files to use a
given routine.

Occasionally, these goals conflict. For example, the ftime routine
uses the structure type timeb. The timeb structure type is defined in
the include file sys\timeb.h on some systems. To maintain compat­
ibility, the same include file is used on DOS. To reduce the number of

4-1

required include files when using ftime, the ftime routine is declared
in sys\timeb.h, even though the declarations for most of the other
time routines are in time.h.

assert.h

The assert.h include file defines the assert macro. You must include
the assert.h fi Ie when you use assert.

The definition of assert is in an #ifndef preprocessor block. If you
have not defined the identifier NDEBUG through a #define directive or
on the compiler command line, the assert macro tests a given
expression (the "assertion"). If the assertion is false, the system
prints a message and the program ends.

If NDEBUG is defined, assert is defined as empty text. This disables all
program assertions by removing all occurrences of assert from the
source file. You can suppress program assertions by defining
NDEBUG.

conio.h

The conio.h include file contains routine declarations for all of the
screen and port input/output routines listed below:

cgets
cprintf
cputs

ctype.h

cscanf
getch
getche

inp
kbhit
outp

putch
ungetch

The ctype.h include file defines macros and constants and declares a
global variable used in character classification. The macros defined
in ctype.h are listed below. You must include ctype.h when using
these macros or the macros are undefined.

4-2

isalnum iscntrl islower isspace toascii
isalpha isdlgit isprint isupper tolower
isascii isgraph ispunct isxdigit toupper

_tolower
_toupper

The toupper and tolower macros are defined as conditional oper­
ations. These macros evaluate their argument twice and produce
unexpected results for arguments with side effects. To overcome this
problem, you can remove the macro definitions of toupper and
tolower and use the routines by the same names. For more informa­
tion about conditional operations, see "Character Classification and
Conversion" in Chapter 3, "Run-Time Routines by Category." Decla­
rations for the routine versions of tolower and toupper are given in
stdlib.h.

In addition to macro definitions, the ctype.h include file also contains
the following:

• A set of manifest constants defined as bit masks. The bit masks
correspond to specific classification tests. For example, the con­
stants _UPPER and _LOWER are defined to test for an uppercase or
I.owercase letter, respectively.

• A declaration of a global variable, _ctype. The _ctype variable is
a table of character classification codes based on the ASCII char­
acter codes.

direct.h

The direct.h include file contains routine declarations for the four
directory control routines (chdir, getcwd, mkdir, and rmdir).

dos.h

The dos.h include file contains macro definitions, routine declara­
tions, and type definitions for the DOS interface routines.

The FP_SEG and FP_OFF macros are defined to obtain the segment and
offset portions from a far pointer value. You must include dos.h when
using these macros or they remain undefined. The following routines
are declared in dos.h:

4-3

bdos int86
dosexterr int86x

intdos
intdosx

segread

The dos.h file also defines the WORDREGS and BYTE REGS structure types
used to define sets of word registers and byte registers, respectively.
These structure types are combined in the REGS union type. The REGS

union serves as a general purpose register type, holding both reg­
ister structures at one time. The SREGS structure type defines four
members to hold the ES, CS, SS, and DS segment register values.

The DOSERROR structure is defined to hold error values returned by
DOS system-call 59H (available under DOS 3.30 , but not under OS/2).

WORDREGS, BYTEREGS, REGS, SREGS, and DOSERROR are tags, not typedef
names. (For more information about type definitions, tags, and
typedef names, see the IBM IBM C/2 Fundamentals book.)

errno.h

The errno.h include file defines the values that system-level calls use
to set the errno variable. The perror routine uses the constants
defined in errno.h to index the corresponding error message in the
global variable sys_errlist.

The constants defined in errno.h are listed with the corresponding
error messages in Appendix A, "Error Messages."

fcntl.h

The fcntl.h include file defines flags used in the open and sopen calls
to specify the type of the operations for which the file is open and to
control whether the file is interpreted as a text file or a binary file.
Include this file when you use open or sopen.

The routine declarations for open and sopen are not in fcntl.h. They
are in the include file io.h.

4-4

float.h

The float.h include file contains definitions of constants that specify
the ranges of floating-point data types, for example, the maximum
number of digits for objects of type double (DBL_DIG = 15) or the
minimum exponent for objects of type float (FLT_MIN_EXP = -38).

The float.h file also contains function declarations for the math func­
tions _clear87, _controI87, _fpreset, and _status87, as well as defi­
nitions of constants that these functions use.

In addition, float.h defines floating-point-exception subcodes that the
compiler uses with SIGFPE to trap floating-point errors. For additional
information about SIGFPE, see the discussion of signal.h in this
chapter.

io.h

The io.h include file contains routine declarations for most of the file
handling and low-level I/O routines listed below:

access
chmod
chsize
close
creat
dup

dup2
eof
file length
isatty
locking
Iseek

mktemp
open
read
rename
setmode
sopen

tell
umask
unlink
write

The exceptions are fstat and stat, declared in sys\stat.h.

limits.h

The limits.h include file contains definitions of constants that specify
the ranges of integer and character data types; for example, the
maximum value for an object of type char (CHAR_MAX = 127).

4-5

locking.h

The locking.h include file (conventionally stored in a subdirectory
named Sys) contains definitions of flags used in calls to locking.
Whenever you use the locking routine, you must include this file to
define the locking.

The routine declaration for locking is in the io.h file. Use the locking
routine only under DOS Version 3.30 or OS/2.

malloc.h

The malloc.h include file contains function declarations for the
storage-allocation functions listed below:

alloca _fmalloc halloc msize realloc -
calloc _fmsize hfree nfree sbrk -
_expand free malloc nmalloc stackavail -
_ffree _freect _memavl -nmsize

math.h

The math.h include file contains routine declarations for all the
floating-point math routines listed below, plus the atof routine:

acos ceil fabs hypot modf
asin cos fieeetomsbin labs pow
atan cosh floor Idexp sin
atan2 dieeetomsbin fmod log sinh
bessel1 dmsbintoieee fmsbintoieee log10 sqrt
cabs exp frexp matherr tan

tanh

1 bessel does not correspond to a single routine but to the routines named
jO, j1, jn, yO, y1, and yn

4-6

The math.h include file also defines two structures: exception and
complex. The exception structure is used with the matherr routine,
and the complex structure is used to declare the argument to the
cabs routine.

The HUGE_VAL value, which is returned on error from some math rou­
tines, is defined in math.h. Use the HUGE_VAL value either as a mani­
fest constant or as a global variable with double type. Do not change
the value of the HUGE_VAL constant.

The math.h file also defines manifest constants passed in the excep­
tion structure when a math routine generates an error (for example,
DOMAIN and SING).

memory.h

The memory.h include file contains routine declarations for the seven
buffer manipulation routines: memccpy, memchr, memcmp, memcpy,
memicmp, memset, and movedata.

process.h

The process.h include file declares all process-control functions
except for the raise and signal functions, declared in signal.h. The
following functions are in the process.h file:

abort execlpe execvpe spawn I spawnv
exec I execv exit spawnle spawnve
execle execve _exit spawnlp spawnvp
execlp execvp getpid spawnlpe spawnvpe

system

The process.h include file also defines the flags used in calls to
spawn functions to control the running of the child process. When­
ever you use one of the eight spawn functions, you must include
process.h to define the flags.

4-7

search.h

The search.h include file declares the functions: bsearch, Ifind,
Isearch, and qsort.

setjmp.h

The setjmp.h include file contains function declarations for the setjmp
and longjmp functions. It also defines a system-dependent buffer
type that the setjmp and longjmp functions use to save and restore
the program state.

share.h

The share.h include file defines flags used in the sopen function to set
the sharing mode of a file. Include this file whenever you use sopen.
The function declaration for sopen is in the file io.h. Use the sopen
function under DOS Version 3.30 or under OS/2.

signal.h

The signal.h include file defines the values for signals. The raise and
signal functions are also declared in signal.h. DOS recognizes only
the SIGINT (Ctrl+C) and the SIGFPE (floating-point exceptions) signals.
OS/2 supports the additional signals SIGTERM, SIGUSR1, SIGUSR2, SIGUSR3,

and SIGBREAK.

stat.h

The stat.h include file (conventionally stored in a subdirectory named
sys) defines the structure type returned by the Istat and stat functions
and defines flags used to 'maintain file-status information. It also con­
tains function declarations for the Istat and stat functions. Whenever
you use the Istat or stat function. You must include this file to define
the appropriate structure type (named stat).

4-8

stdarg.h

The stdarg.h include file defines macros that let you get access to
arguments in functions with variable-length argument lists, such as
vprinH. These macros are defined to be system-independent, port­
able, and compatible with the developing ANSI standard for C.

stddef.h

The stddef.h include file contains definitions of the commonly used
pointers, variables, and types, from typedef statements, listed below:

Item

NULL

errno

ptrdif'-t

Description

The null pointer (also defined in stdio.h)

A global variable containing an error message number
(also defined in errno.h)

Synonym for the type (int) of the difference of two
pointers

Synonym for the type (unsigned int) of the value
returned by sizeof.

4-9

stdio.h

The stdio.h include file contains definitions of constants, macros, and
types, along with function declarations for stream I/O routines. The
stream input/output routines are:

clearerr fileno2 fseek putchar2 sprinH
fclose flushall fie II puts sscanf
fcloseall fopen fwrite putw tempnam
fdopen fprinH getc2 remove tmpfile
feof2 fputc getchar2 rename tmpnam
ferror2 fputchar gets rewind ungetc
fflush fputs getw rmtmp vfprinH
fgetc fread prinH setbuf vprinH
fgetchar freopen putc2 setvbuf vsprinH
fgets fscanf scanf

-,
perror

2 Implemented as a macro.

4-10

The stdio.h file also defines the constants listed below. You can use
these constants in your programs, but you should not alter their
values.

BUFSIZ

_NFILE

EOF

NULL

Buffers used in stream input/output must have a constant
size, which is defi ned by the BUFSIZ constant. This val ue
establishes the size of system-allocated buffers and must
also be used when calling setbuf to allocate your own
buffers.

The _NFILE constant defines the number of open files
allowed at one time. The five files, stdin, stdout, stderr,
stdaux, and stdprn, remain open. You should include them
when calculating the number of files your program opens.
(The files stdaux and stdprn are not opened automatically
under OS/2.)

The EOF value is the value returned by an I/O routine when
the end of the file (or in some cases, an error) is found.

The NULL value is the null pointer value. It is 0 in small­
and medium-model programs and OL in large- and huge­
model programs.

The stdio.h file also defines a number of flags used internally to
control stream operations.

The FILE structure type is defined in stdio.h. Stream routines use a
pOinter to the file type to get access to a given stream. The system
uses the information in the FILE structure to maintain the stream.

The FIL~ structures are stored as an array called _iob, with one entry
for each file. Thus, each element of _iob is a FILE structure corre­
sponding to a stream. When a stream is opened, it is assigned the
address of an entry in the _iob array (a FILE pointer). Thereafter, the
pointer is used for references to the stream.

4-11

stdlib.h

The stdlib.h include file contains function declarations for the fol-
lowing functions:

abort ecvt itoa putenv swab
abs exit labs rand system
atof fcvt Itoa realloc to lower
atoi free malloc srand toupper
atol gcvt onexit strtod ultoa
bsearch getenv perror strtol qsort
calloc

The tolower and toupper routines are functions in the run-time
library, but the include file also uses them as macros in ctype.h. The
declarations for tolower and toupper are enclosed in an #ifndef block;
they take effect only if the compiler suppresses the corresponding
macro definitions in ctype.h by removing the definitions of tolower
and toupper.

The stdlib.h include file also includes the definition of the type
onexit_t and declarations of the following global variables:

doserrno
environ
errno

4-12

-,mode
_osmajor
osminor

_osmode
"'psp
sys _ errlist

sys_nerr

string.h

The string.h include file declares the string manipulation functions, as
listed below:

memccpy strcat strcmpi strncmp strrev
memchr strchr strerror strncpy strset
memcmp strcmp stricmp strnicmp strspn
memicmp strcpy strlen strnset strstr
memset strcspn strlwr strpbrk strtok
movedata strdup strncat strrchr strupr

timeb.h

The timeb.h include file (conventionally stored in a subdirectory
named sys) defines the timeb structure type and declares the ftime
function, which uses the timeb structure type. Whenever you use the
ftime function, you must include timeb.h to define the timeb structure
type.

time.h

The tlme.h include file declares the time functions asctlme, ctime,
dlfftlme, gmtlme, localtime, time, and tzset. (The Hime and utime
functions are declared in sys\timeb.h and sys\utime.h, respectively.)

The time.h also defines the tm structure that is used by the asctime,
gmtime, and localtime functions and the time_t type that is used by
the difftime function.

4-13

types.h

The Iypes.h include file (conventionally stored in a subdirectory
named Sys) defines types that system-level calls use to return file
status and time information. You must include this file whenever you
include the file sys\slat.h, sys\ulime.h, or sys\timeb.h.

utime.h

The include file ulime.h (conventionally stored in a subdirectory
named Sys) defines the ulimbuf structure and declares the ulime func­
tion which uses it. Whenever you use the ulime function you must
include utime.h so that the structure type is defined.

4-14

Chapter 5. Library Routines

5-1

abort

Purpose:

Stops the process that calls this function.

Format:

/* Required for function declarations * /
#include <stdlib.h>

void abort()

Comments:

The abort function writes the message:

Abnormal program termination

to the stderr data stream, then calls raise (SIGABRT). The signal
SIGABRT stops the process that called it, returning control to the
process that initiated the calling process, usually the operating
system. The abort function does not flush stream buffers or do onexit
processing.

The abort function returns an exit status of 3 to the parent process or
operating system.

5-2

abort

Example:

The following example tests for successful opening of the file DATA

and points to an error message if the opening of the file was unsuc­
cessful.

#include <stdio.h>
#include <stdlib.h>
main()
{

FILE *stream;

if «stream = fopen("data", "r")) == NULL)
{
perror("couldn't open data file");
abort () ;
}

Related Topics:

execl, execle, execlp, execv, execve, execvp, exit, _exit, raise,
spawnl, spawnle, spawnlp, spawnv, spawnve, spawnvp, signal,

5-3

abs

Purpose:

Returns the absolute value of an integer argument.

Format:

/* Required for function declarations */

#include <stdlib.h>

int abs(n)
int n; /* Integer value */

Comments:

The abs function returns the absolute value of an integer argument n.
There is no error return value. The result is undefined when the
argument is the least of the negative short int (-32768), whose abso­
lute value cannot be represented as a short int.

Example:

#include <stdlib.h>

int x = -4, y;

y = abs(x); /* y = 4 */

Related Topics:

cabs, fabs, labs

5-4

Purpose:

Tells whether you can get access to a specified file.

Format:

/* Required for function declarations */
#include <io.h>

int access(pathname, mode)
char *pathname; /* File pathname */
int mode; /* Permission setting */

Comments:

access

The access function determines whether the specified file exists and
whether you can get access to it in the given mode. The following list
gives possible values for the mode and their meaning in the access
call:

Value Meaning

06 Check for permission to both read from and write to the file.

04 Check for permission to read from the file.

02 Check for permission to write to the file.

00 Check only for the existence of the file.

Because all existing files have read access under DOS, the modes 00
and 04 produce the same results on DOS. Similarly, the modes 06 and
02 produce the same results because, on DOS, getting access to write
implies getting access to read.

The access function returns the value 0 if you can get access to the
file in the given mode. A return value of -1 shows that the file does
not exist or is not accessible in the given mode, and the system has
set errno to one of the following values:

5-5

access

Value

EACCES

ENOENT

Example:

Meaning

Access is denied; the permission setting of the file does
not allow you to get access to the file in the specified
mode.

The system cannot find the file or or the path that you
specified, or (in the OS/2 mode) the filename was incorrect.

The following example opens the file DATA for writing after checking
the file to see if writing is permissible. The example prints the fol­
lowing error message:

data Iile not writeable: permission denied

if the permission setting prohibits you from writing to the file.

#include <stdio.h>
#include <io.h>
#include <fcntl.h>
#include <process.h>

int fh;
mai n ()
{

/* Check for permission to write to the file */
if «access("data",2)) == -l){

perror("data file not writeable");
exit(l);
}

fh = open("data",O_WRONLY);
}

Related Topics:

chmod, Istat, open, stat

5-6

acos

Purpose:

Retu rns the arc cosi ne of a val ue.

Format:

#include <math.h>

double acos(x)
double x;

Comments:

The acos function returns the arc cosine of x in the range 0 to n.

The value of x must be between -1 and 1. If x is less than -1 or
greater than 1, acos sets errno to EDOM, writes a DOMAIN error
message to the stderr data stream, and returns O. For additional infor­
mation about DOMAIN and EDaM, see "Math Errors" in Appendix A,
"Error Messages," in this book.

You can change the way acos handles errors by using the matherr
routine.

5-7

aeos

Example:

This program prompts for input in the range -1 to 1. If the input is
outside the range, the program displays an error message. When
correct input is entered, the program prints the arccosine of the input
value.
#include <math.h>
#include <stdio.h>

extern int errno;

mai n ()
{

fl oat x, y;

for (errno = EDOM; errno == EDOM;
y = acos(x)}

{
printf("Cosine =");
if (scanf("%f", &x) > 0)
errno = 0;

}
printf("Arccosine of %f", x);
printf("= %f radians\n", y);

Related Topics:

asin, atan, atan2, cos, matherr, sin, tan

5-8

alloea

Purpose:

Allocates space from the program's stack. The space is freed when
the routine that called alloca is ended.

Format:

/* Required for function declaration */
#include <malloc.h>

void *alloca(size)
/* Bytes to be reserved from the stack * /

size _ t size;

Comments:

The alloca function returns a char pointer to the space reserved on
the stack. The storage space to which the return value points is suit­
ably aligned for storage of any type of object. To get a pointer to a
type other than char, use a type cast on the return value. The return
value is NULL if alloca cannot reserve the space.

Example:

The following example shows a called function which allocates stack
space to hold values having temporary existence. The goal is to
compute the sum of the squares of random values drawn from a par­
ticular range. 0 to 1. The main program controls the number of inte­
gers to be processed. The called function performs the calculations
and returns the sum of squares.

5-9

alloca

#include <malloc.h>
#include <stdlib.h>

double sumsq(unsigned int);

mai n ()
{

unsigned int length = 10;

printf("Sum of the squares of ");
printf("%u values was ", length);
printf("%e\n", sumsq(length»;

double sumsq(length)
unsigned int length;
{

float *floatarray;
doub 1 e d = 0.;
unsigned int i;

/* allocate space on the stack for */
/* the float values */
floatarray = (float *) alloca(length *
sizeof(float» ;

/* fill the array with random numbers */
for (i = 0; i < length; i++)
*(floatarray + i) = (float) rand()

/ 32768;
for (i = 0; i < length; i++)
d += *(floatarray + i) *

*(floatarray + i);
returned);

Related Topics:

calloc, malloc, realloc

CAUTION:
Do not pass the pointer value returned by alloca as an argument to
free. Also, because alloca manipulates the stack, use it only in
simple assignment statements. Distinct stack-manipulation logic is
used with every call; therefore, using alloca in an expression that is
an argument to a function causes the stack pointer to be incorrect.

5-10

asctime

Purpose:

Converts time stored as a structure to a character string in storage.

Format:

#include <time.h>

char *asctime(time)
/* Pointer to structure defined in TIME.H */

const struct tm *time;

Comments:

The asctlme function converts time stored as a structure to a char­
acter string in storage. Obtain the time value from a call togmtime or
localtime, either of which returns a pOinter to a tm structure, defined
in tlme.h. See gmtime for a description of the tm structure fields.

The string result that asctlme produces contains exactly 26 charac­
ters and has the form of the following example:

Sat Jul 06 02:03:55 1985\n\0

The asctime function uses a 24-hour-clock format. All fields have
constant widths. The newline character (\n) and the null character
(\0) occupy the last two positions of the string.

The asctime function returns a pointer to the resulting character
string. There is no error return value.

5-11

asctime

Example:

This example polls the system clock and prints a message giving the
current time.

#include <time.h>
#include <stdio.h>

struct tm *newtime;
time_t ltime;
mai n ()
{

/* Get the time in seconds */
time(<ime);

/* Convert it to the structure tm */
newtime = localtime(<ime);

/* Print the local time as a string */
printf("the current date and time are %s\n",

asctime(newtime));

Related Topics:

ctime, ftime, gmtime, localtime, time, tzset

Note: The asctime and ctime functions use a single, statically­
allocated buffer to hold the return string. Each call to one of
these functions destroys the result of the previous call.

5-12

Purpose:

Calculates the arc sine of a value.

Format:

#include <math.h>

double asin(x)
double x;

Comments:

asin

The asln function calculates the arc sine of x in the range -n/2 to n/2.

The value of x must be between -1 and 1. If x is less than -1 or
greater than 1, asin sets errno to EDOM, writes a DOMAIN error
message to stderr data stream, and returns a value of O. For more
information about EDOM and DOMAIN, see "Math Errors" in Appendix A,
"Error Messages," in this book.

You can change the way the asln function handles errors by using the
matherr routi ne.

5-13

ashl

Example:

This,program prompts for input in the range -1 to 1. If the input is
outside the range, the program displays an error message. When
correct input is entered, the program prints the arcsine of the input
value.

#include <math.h>
#include <stdio.h>

extern int errno;

mai n ()
{

float x, y;
i nt j;

char c;

for (errno=EDOM; errno==EDOM; y=asin(x))
{

printf("Sine = ");
j=scanf("%f", &x):
if (j>0) errno=0;
else scanf("%c", &c);

}
printf("Arcsine of %f = %f radians\n",x,y);

Related Topics:

acas, alan, alan2, cos, malherr, sin, tan

5-14

assert

Purpose:

Prints a diagnostic message and stops the process that called it if the
expression is false.

Format:

#include <assert.h>

void assert(int expression}

Comments:

The assert routine prints a diagnostic message and stops the process
that called it if the expression is false (zero). The diagnostic
message has the following form:

Assertion failed: file filename, line linenumber

Filename is the name of the source file and linenumber is the line
number in the source file of the assertion that failed. The assert
routine takes no action if the expression is true (nonzero).

Use the assert routine to identify program logic errors. Choose the
expression so that it holds true only if the program is operating as
you intend. After you have debugged the program, you can use the
special no-debug identifier, NDEBUG, to remove the assert calls from
the program. If you define NDEBUG to any value with a ID command
line option or with a #deflne directive, the C preprocessor removes
all assert calls from the program source file.

There is no return value.

Note: The assert routine is a macro. You can use an #undeflne
directive to remove the assert macro definition to obtain
access to an actual function called assert, which you supply.

5-15

assert

Example:

In this example, the assert routine tests the "string" argument for a
null string and an empty string. Before processing this argument, it
verifies that the "length" argument is positive.

#include <stdio.h>
#include <assert.h>

void analyze(char *, int);

rnai n ()
{

analyze("", 1);

void analyze(string, length)
char *string;
tnt length;
{

}

assert(length > 0);
assert(string != NULL);
assert(*string != '\0');

5-16

Purpose:

Calculates the arc tangent of x or y/x.

Format:

#include <math.h>

/* Calculate arc tangent of x* /
double atan(x)
double x;

/* Calculate arc tangent of y/x */
double atan2(y, x);
double x;
double y;

Comments:

atan - atan2

The atan and atan2 functions calculate the arc tangent of x and y/x,
respectively.

The atan function returns a value in the range -n/2 to n/2; the atan2
function returns a value in the range -n to n. If both arguments of
atan2 are zero, the function sets errno to EDOM, writes a DOMAIN error
message to the stderr data stream, and returns a value of o.

You can change the way these routines handle errors by using the
matherr routine.

5-17

atan - atan2

Example:

This example is a function that converts Cartesian to polar coordi­
nates.

#include <math.h>
struct polar {

double r;
double theta;
} ;

/* Radius */
/* Angle in radians */

struct polar *cart_polar(f)
struct complex *f;
{

struct polar *p;
p->r = cabs (*f) ;
p->theta = atan2(f->y,f->x);
return (p);

Related Topics:

acos, aSin, cos, matherr, sin, tan

5-18

Purpose:

Converts character strings to double, integer, or long.

Format:

/* Required for function declarations */
#include <stdlib.h>

/* Convert string to double * /
double atof(string)

/* Convert string to int * /
int atoi(string)

/* Convert string to long * /
long int atol(string)
const char *string; /* String to be converted */

Comments:

atof - atol

These functions convert a character string to a double-precision
floating-point value (atot), an integ~r value (atol), or a long integer
value (atol). The input string is a sequence of characters that c~n be
interpreted as a numerical value of the specified type. The function
stops reading the input string at the first character that it cannot r~c­
ognize as part of a number; this char~cter can be the null char~cter
that ends the string.

The atot function expects a string in the follo¥\,ing form:

[whitespace][sign][digits][.digits][dIDleIE[sign]digits]

The whitespace consists of required space and tab characters, which
the function ignores. The sign is either "+" or "-". The digits are one
or more decimal digits; if no digits appear before the decimal point, at
least one digit must appear after the decimal point. The decimal
digits can precede an exponent, introduced by the letter "p", "D'~,
"e"! or ~'E". The exponent is a ~ecimal integ~r, which m$y be signed.

5-19

atof - atol

The aloi and alol functions do not recognize decimal points or expo­
nents. The string argument for these functions has the form:

[whitespace] [sign] digits

where whitespace, sign, and digits are exactly as described above for
alot.

Each function returns a double, inl, or long value produced by inter­
preting the input characters as a number. The return value is 0 (OL
for alol) if function cannot convert the input to a val ue of that type.
The return value is undefined in case of overflow. These routines do
not set errno.

Examples:

This program shows how numbers stored as strings can be converted
to numerical values.

#include <rnath.h>
#include <stdio.h>
#include <stdlib.h>

rnai nO
{

char *s; double x; int i; long 1;

/* first test of "atof" */
s =" -2309.12E-15";
x = atof(s);
printf("%e\t",x);

/* second test of "atof" */
s = "7.8912654773d210";
x = atof(s);
pri ntf ("%e\ t", x) ;

/* test of "atoi"
s =" -9885";
i = atoi(s);
printf("%d\t",i);

*/

/* test of "atol" */
s = "98854 dollars";
1 = atol(s);
printf("%ld\t",l);

5-20

Related Topics:

ecvt, fcvt, gcvt

atot - atol

5-21

bdos

Purpose:

Makes a DOS system call.

Format:

#include <dos.h>
int bdo~(dosfn, dosdx, dosa/)
int dosfn; 1* Function number *1
unsigned int dosdx; /* OX register value *1
unsigned int dosa/; /* AL register value *1

Comments:

The b~o~ function makes the DOS system call specified by dosfn after
placil1g the value specified by dosdx in theDxregister and the value
specified by dosa/ in the AL register. The bdos function performs an
tNT 21H instruction that makes the system call. .When control returns
from DOS, bdos returns the contents of the' AX register:

Use th~ bdos function to make DOS system calls that either take no
arg~ments or only take arguments stored in the ox (DH,DL) and/or AL
regist~rs.

The bdos function returns the value of theAx register only after DOS
completes the system call.

This example makes DOS function call 9 (display string) display a
prompt. Because this call does not need the AL register value, code
a 0 instead. This example works correctly only in small anq medium
model programs.

#include <dos.h>

char *buffer = "Enter file name:$";

/* AL is not needed, so 0 is used */
bdos(9,(unsigned)buffer,8);

5-22

bdos

Related Topics:

intdos, intdosx

Notes:

1. Do not use this call to make system calls that indicate errors by
setting the carry flag. Because C programs do not have access to
this flag, they cannot tell the status of the return value. Use the
intdos function in these cases.

2. The bdos function is not available under OS/2. For information on
calling OS/2 functions from a C program, see "Application
Program Interface" in the IBM Operating Systeml2 Technical Ref­
erence manual.

5-23

bessel

Purpose:

Returns bessel functions.

Format:

#include <math.h>
double jO(x)
double j1 (x)
double jn(n,x)
double yO(x)
double y1 (x)
double yn(n,x)
double x; /* Floating-point value */
int n; /* Integer order */

Comments:

Bessel functions are power-series expansions that are solutions of
certain special differential equations. These equations occur in prob­
lems in physics, particularly those problems that concern oscillations.

The jO, j1, and jn routines are bessel functions of the first kind for
orders 0, 1, and n, respectively.

The yO, y1, and yn routines are bessel functions of the second kind for
orders 0, 1, and n, respectively. The argument x must be positive.

These functions return the result of a bessel function of x.

For jO, j1, yO, or y1, if x is too large, the function sets errno to ERANGE,

writes a TLOSS error message to the stderr data stream, and returns O.

For yO, y1, or yn, if x is negative, the function sets errno to EDOM,

writes a DOMAIN error message to the stderr data stream, and returns
the value HUGE_VAL.

For more information about EDOM and DOMAIN, see "Math Errors" in
Appendix A, "Error Messages" in this book.

5-24

bessel

You can change the way that the bessel function handles errors by
using the matherr routine.

Example:
#include <rnath.h>
#define j2(x) (2./(x)) * jl(x) - jO(x)

/* The Bessel functions of the first
kind obey the recurrence relation:

J(n+l,x) =.(2n/x)*J(n,x) - J(n-l,x) */

This implies that the particular function jn(2,x) may be expressed in
terms of jO and j1 by the identity given above in the #define
statement. This example tests whether the library function jn(2,x)
computes values identical to those of the macro j2, using selected
double values of x.
double g[3J={ 6.E-2, 6.25E-2, 6.5E-2 };
rnai nO
{

i nt i;
doub 1 ed, e, f;

printf(" x j2(x)
"jn(2,x) cornpare?\n");

for(i=O; i<3; i++)
{

d=g[iJ;
e=j2(d);
f=jn(2,d) ;
printf("%7.4f %16.13e"

"%16.13e ",d,e,f);
printf«e==f)?" equal\n"

:"unequal\n");

Related Topics:

matherr

5-25

bsearch

Purpose:

Performs a binary search of a sorted array.

Format:

/* Use either search.h or stdlib.h */
#include <stdlib.h>

void *bsearch(key, base, num, width, compare)
const void *key; /* Search key * /

/* Pointer to base of search data */
const void *base;

/* Number and width of elements */

size _ t num, width;
/* Pointer to compare function */

int (*compare)(const void *element1 ,const void *element2) ;

Comments:

The bsearch function performs a binary search of a sorted array of
num elements, each of width bytes in size. The base is a pointer to
the base of the array to search, and the key is the value being sought.

Compare is a pointer to a routine, which you must supply, that com­
pares two array elements and returns a value specifying their
relationship. The bsearch function calls this routine one or more
times during the search, passing pointers to two array elements on
each call. The routine must compare the elements, then return one of
the following values.

Value

Less than 0

o
Greater than 0

5-26

Meaning

element1 less than element2

element1 identical to element2

element1 greater than element2

bsearch

The bsearch function returns a pointer to the first occurrence of the
key in the array to which the base points. If bsearch cannot find the
key, it returns NULL.

Example:

This program reads the command-line parameters and uses qsort to
sort them. It then displays the sorted arguments. Next, it uses
bsearch to locate the first parameter starting with "TEMP".

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

int qcompare(); /* function for qsort */
int bcompare(); /* function for bsearch */

main(argc, argyl
int argc;
char **argv;
{

char **result;
char *key = "TEMP";
i nt i;

/* Eliminate argv[O] from sort: */
argv++;
argc--;

/* Sort using Quicksort algorithm: */
qsort((char *)argv,argc,

sizeof(char *),qcompare);

/* Output sorted list: */
for (i=O; i<argc; ++i)

printf("%s\n",argv[i]);

/* Find item that begins with
* "TEMP" using binary search. */

result=(char **)bsearch«char *)&key,
(char *)argv, argc,
sizeof(char *), bcompare);

if (result)
printf("%s found\n" , *result);

else
printf("TEMP not foundl\n");

5-27

bsearch

int qcompare(argl,arg2)
char **argl, **arg2;
{
/* Compare all of both strings. */

return(strcmp(*argl,*arg2));

int bcompare(argl,arg2)
char **argl, **arg2;
{
/* Compare to length of key. */

return(strncmp(*argl,*arg2,
strlen(*argl)));

Related Topics:

qsort

5-28

Purpose:

Calculates the absolute value of a complex number.

Format:

#include <mat~.h>
double cabs(z)

/* Contains real and imaginary parts */
struct complex z;

Comments:

cabs

The cabs function calculates the absolute value of a complex number.
The complex number must be a structure with type complex, defined
in math.h:

struct complex {double x,y;};

A call to cabs is equivalent to

sqrt{z.x * z.x + z.y * z.y)

The cabs function returns the absolute value as described above. If
an overflow results, the function calls the matherr routine, sets errno
to ERANGE and returns the value HUGE_VAL.

5-29

cabs

Example:

The following example computes d to be the the absolute value of the
complex number (3.0, 4.0).

#include <math.h>
#include <stdio.h>

mai n ()
{

struct complex value;
double d;

value.x = 3.0;
value.y = 4.0;

d = cabs(value);
printf("Absolute value is %f\n",d);

Related Topics:

abs, labs, hypot, labs

5-30

calloc

Purpose:

Reserves storage space for an array and sets the initial value of all
elements to o.

Format:

/* Required for function declarations */
#include <stdlib.h>
void *calloc(n, size)
size_t n; /* Number of elements */

/* Length, in bytes, of each element */
size_t size;

Comments:

The canoe function reserves storage space for an array of n ele­
ments, each of length size bytes. The canoe function then gives each
element an initial value of O.

The canoe function returns a pointer to the reserved space. The
storage space to which the return value points is guaranteed to be
suitably aligned for storage of any type of object. To get a pointer to
a type, use a type cast on the return value. The return value is NULL if
there is not enough storage available.

5-31

calloc

Example:

The following example reserves enough space in storage for 40 long
integers and gives each integer an initial value of zero.
#include <stdio.h>
#include <stdlib.h>

long *1 all oc;
rnai n ()
{
lalloc = (long *)calloc(40,sizeof(long));
If (lalloc !=NULL)

printf("Allocation OK \n");
else printf ("ca11oc failed \n");
}

Related Topics:

free, malloc, realloc

5-32

ceil

Purpose:

Returns a double value representing the smallest integer that is
greater than or equal to x.

Format:

#include <math.h>

double ceil(x)
double x; /* Floating-point value */

Comments:

The ceil function returns a double value representing the smallest
integer that is greater than or equal to x.

There is no error return value.

Example:

The following example sets the y to the smallest integer greater than
1.05 and, then, the smallest integer greater than -1.05. The results
are 2. and -1., respectively.

#include <math.h>

double y, z;

y = ceil(1.05); /* y = 2.0 */
z = ceil (-1.05); /* Z = -1.0 */

Related Topics:

floor, fmod

5-33

cgets

Purpose:

Reads and stores a string of characters directly from the keyboard.

Format:

/* Required for function declarations */
#include <conio.h>

char *cgets(str)
/* Storage location for data */

char *str;

Comments:

The cgets function reads a string of characters directly from the key­
board and stores the string and its length in the location to which str
points. The str variable must be a pointer to a character array. The
first element of the array, str[O], must contain the maximum length, in
characters, of the string to be read. The array must have enough ele­
ments to hold the string, a final null character (\0), and two additional
bytes.

The cgets function continues to read characters until it meets a car­
riage returnlline feed combination or reads the specified number of
characters. It stores the stri ng starti ng at str[2]. If cgets reads a
CR-LF combination, it replaces this combination with a null character
(\0) before storing the string. The cgets function then stores the
actual length of the string in the second array element, str[1].

The cgets function returns a pointer to the start of the string, which is
at str[2]. In case of error in OS/2 mode, cgets returns NULL.

5-34

cgets

Example:

This example creates a buffer and initializes the first byte to the size
of the buffer-2. Next, the program accepts an input string using cgets
and displays the size and text of that string.

#include <conio.h>
char buf[S2];
char *result;

mai nO
{

buf[O] = SO; /* max. number */
printf("Input line of text, follo");
printf("wed by carriage return:\n");
result = cgets(buf);
printf("\nLine length = %d\n",buf[l]);
printf("Text = %s\n",result);

Related Topics:

getch, getche

5-35

chdir

Purpose:

Changes the directory.

Format:

/* Required for function declarations */
#include <direct.h>

int chdir(pathname)
/* Path name of new working directory */

char *pathname;

Comments:

The chdir function causes the current working directory to change to
the directory specified by pathname. The pathname must refer to an
existing directory.

The chdir function returns a value of 0 if the working directory suc­
cessfully changes. A return value of -1 shows an error; in this case,
chdir sets errno to ENOENT, showing that chdir cannot find the speci­
fied pathname. No error occurs if pathname specifies the current
working directory.

Example:

The following example changes the current working directory to the
root d i recto ry.

#include <direct.h>

chdir("\\");

5-36

chdir

Related Topics:

mkdir, rmdir, system

Note: This function can change the current working directory only on
the current default drive. It cannot change the current working direc­
tory on a different drive. For example, if A:\BIN is the current working
directory, the following does not change it:

chdir' ("c:elllp");

Under DOS you can achieve the desired result. In this case, you must
first call system to change the current default drive to C: before you
can change the current working directory on that drive.

5-37

chmod

Purpose:

Changes the permission setting of a file.

Format:

#include <sys\types.h>
#include <sys\stat.h>

/* Required for function declarations */
#include <io.h>

int chmod(pathname, pmode)
/* Path name of the existing file * /

char *pathname;
/* Permission setting for the file */

int pmode;

Comments:

The chmod function changes the permission setting .of the file speci­
fied by pathname. The permission setting controls access to the file
for reading or writing. The pmode constant expression contains one
or both of the manifest constants SJWRITE and SJREAD, defined in
sys\siat.h. The chmod functions ignores any other values for pmode.
When you give both Gonstants, the chmod function joins them with the
bitwise operator OR(I). The following list gives the meaning for the
val ues of the pmode argument.

Value

S_IREAD

S_IWRITE

S_IREAD I S_IWRITE

Meaning

Reading permitted
Writing permitted
Reading and writing both permitted.

If you do not give permission to write to the file, the chmod function
makes the file read-only. Under DOS, all files are readable; it is not
possible to give write-only permission. Thus, the modes S_IWRITE and
S_IREAD I S_IWRITE set the same permission.

5-38

chmod

The chmod function returns the value 0 if it successfully changes the
permission setting. A return value of -1 shows an error; in this case,
the chmod function sets errno to ENOENT, showing either that it cannot
find the specified file or in the OS/2 mode the filename was incorrect.

Example:

This program takes file names passed as arguments and sets each to
read-only.

#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>

main(argc,argv)
int argc;
char **argv;

int result;
register char **p;
if (argc<2) return;
for (p=++argv; argc>l; argc--, p++)

/* Make a file read-only */
result = chmod(*p, S IREAD);
if (result == -1) -
perror("file not found");
}

Related Topics:

access, creat, Istat, open, stat

5-39

chsize

Purpose:

Lengthens or cuts off the file associated with the handle.

Format:

/* Required for function declarations */
#include <io.h>

int chsize(handle, size)
/* A handle referring to open file */

int handle;
/* The new length of the file, in bytes */

long size;

Comments:

The chsize function lengthens or cuts off the file associated with the
handle to the length specified by size. You must open the file in a
mode that permits writing. The chsize function adds null characters
(\0) when it lengthens the file. When chsize cuts off the file, it erases
all data from the end of the shortened file to the end of the original
file.

The chsize function returns the value 0 if it successfully changes the
file size. A return value of -1 shows an error, and chsize sets errno to
one of the following values.

Value Meaning

EACCESS The specified file is locked against access

EBADF The file handle is not valid, or the file is not open for
writing.

ENOSPC There is no space left on device.

5-40

chsize

Example:

This program opens a file named dat and writes data to it. Then it
uses chsize to extend the size of dat.

#include <io.h>
#include <fcntl .h>
#include <sys\types.h>
#include <sys\stat.h>
#include <stdio.h>

#define MAXSIZE 32768L

i nt fh, result;
char buffer[BUFSIZ] = "Initialize the buffer to

this string.\n";
mai n ()
{
i nt i;
unsigned int nbytes = BUFSIZ;
fh = open(ldat",O_RDWRlo_CREAT,
S_IREADls_IWRITE);
for (i=O; i<50; i++)
result = write(fh, buffer, nbytes);
result = -1;

/* Make sure the file is no longer */
/* than 32K bytes before closing it */

if (lseek(fh,OL,SEEK END) > MAXSIZE)
result = chsize(fh,MAXSIZE);

if (result == 0)
printf ("Size successfully changed");

else
printf ("Problem in changing the size");

Related Topics:

close, creat, open

5-41

clear87

Purpose:

Gets and clears the floating-point status word.

Format:

#include <float.h>
unsigned int _clear87()

Comments:

The _clear87 function gets and clears the floating-point status word.
The floating-point status word is a combination of the numeric
coprocessor status word and other conditions that the numeric excep­
tion handler detects, such as floating-point stack overflow and under­
flow.

The bits in the value returned show the floating-point status. For a
complete definition of the bits returned by _clear87, see the float.h
include file.

Example:

The following example shows how you can lose significance by
assigning a double to a float. It takes a number close to zero as a
double and assigns it to a float. The result is a loss of significance
and the creation of a denormal number. The _clear87 function gets
the floating-point status word, and the printf function prints it as
immediate data.

5-42

#include <stdio.h>
#include <float.h>

double a = le-40,b;
float x,y;

mai nO
{
unsigned int statword;

statword = _clear87();
printf("cleared floating-point status word"

" = %.4x\n", statword);

/* Assignment of the double to the float y
is inexact; the underflow bit is also set. */
y=a;
statword = _clear87();
printf("floating-point status = %.4x"

"after underflow\n" , statword);

/* Reassigning the denormal y to the double b
causes the denormal bit to be set. */
b = y;
statword = _clear87();
printf("floating-point status = %.4x"

"for denormal\n",statword);

Output:

cleared floating-point status word = 0000
floating-point status = 0030 after underflow
floating-point status= 0002 for denormal

Related Topics:

_ control87, _ status87

clear87

5-43

clearerr

Purpose:

Resets the error and end-o;-file indicators.

Format:

#include <stdio.h>
void clearerr (stream)
FILE *stream;/* Pointer to file structure */

Comments:

The clearerr function resets the error indicator and end-of-file indi­
cator for the specified stream to O. The system does not automatically
clear error indicators. When clearerr sets the error indicator for a
specified stream, operations on that stream continue to return an
error until your program calls clearerr or rewind.

Example:

The following example sends data to a stream, and then checks to
make sure that a write error has not occurred. The stream must be
open for writing.

#include <stdio.h>
#include <stdlib.h>

FILE *stream;
int c;
mai n ()
{
stream = fopen("data", Ow");
if ((c=getc(stream)) == EOF)

if (ferror(stream)) {
fprintf(stderr,"write error\n");
clearerr(stream);
}

5-44

clearerr

Related Topics:

eof, feof, ferror, perror

5-45

close

Purpose:

Closes the file associated with the handle.

Format:

/* Required for function declarations */
#inciude <io.h>
int close(handle)

/* Handle referring to open file */
int handle;

Comments:

The close function closes the file associated with the handle.

The close function returns 0 if it successfully closes the file. A return
value of ~1 shows an error, and close sets errno to EBADF, showing a
incorrect file handle argument.

Example:

The following example closes the file DATA after opening it as a read­
only file with the file handle fh.

#inelude <io.h>
#inelude <fentl.h>

int fh;

fh = open("data" ,O_RDONLy);

elose(fh);

Related Topics:

chsize, creal, dup; dup2, open, unlink

Purpose:

Gets and sets the floating-point control word.

Format:

#include <float.h>

/* Get floating-point control word */

unsigned int _controI87(new,mask)
/* New control word bit val ues * /

unsigned int new;
/* Mask for new control word bits to set * /

unsigned int mask;

Comments:

control87

The _control87 function gets and sets the floating-point control word.
The floating-point control word lets the program change the precision,
rounding, and infinity modes in the floating-point math package. You
can mask or unmask floating-point exceptions using the _control87
function.

If the value for the mask is equal to 0, _control87 gets the floating­
point control word. If the mask is non-zero, _control87 sets a new
value for the control word in the following manner. For any bit in the
mask equal to 1, the corresponding bit in new updates the control
word. This is equivalent to the expression

fpcntrl = ((fpcntrl & - mask) I (new & mask))

where 'pentrl is the floating-point control word.

The bits in the returned value show the floating-point control state.
For a complete definition of the bits returned by _controI87, see the
discussion of the float.h include file.

5-47

control87

Example:

This example prints the control word in hexadecimal, then illustrates
different representations of 0.01, depending on the precision.

#include <stdio.h>
#include <float.h>

double a = .1;

rnai n ()
{
printf("control = %.4x\n",

/* Get control word */
contro187(CW_DEFAULT,0»;

printfC'a*a = .01 = %.15e\n",a*a);
_contro187(PC_24,MCW_PC);

/* Set precision to 24 bits */
printf("a*a =.01 (rounded to 24 bits) =%.15e\n",a*a);

/* Restore to initial default */
contro187(CW_DEFAULT,Oxffff);

printf("a*a = .01 = %.15e\n",a*a);

Related Topics:

_ clear87,_ status87

5-48

cos - cosh

Purpose:

The cos function returns the cosine. The cosh function returns the
hyperbolic cosine.

Format:

#include <math.h>

/* Calculate the cosine of x */

double cos(x)

/* Calculate the hyperbolic cosine of x */
double cosh(x)
double x; /* Angle in radians */

Comments:

The cos function returns the cosine of x. If x is large, a partial loss of
significance in the result might occur. In such cases, cos produces a
PLOSS error, but prints no message. If x is so large that a total loss of
significance results, cos prints a TLOSS error message to STDERR and
returns 0 In both cases, the cos function sets errno to ERANGE.

The cosh function returns the hyperbolic cosine of x. If the result is
too large, cosh returns the value HUGE_VAL and sets errno to ERANGE.

You can changes the way that cosh handles errors by using the
malherr routine.

For more information about PLOSS, TLOSS, ERANGE, and HUGE_VAL, see
"Math Errors" in Appendix A, "Error Messages."

5-49

cos - cosh

Example:

This program samples the level of an oscillator at ten equally-spaced
points, one millisecond apart. The phase angle begins at zero, at
time zero.
#include <math.h>
#define TWOPI 6.283185307
/* frequency in hertz */

double frequency=120.0;
double amplitude=1.0;

mai n ()
{

double level, time;
int n;

printf("time (s) level\n");
for (n=O; n<18; n++)
{

time=n * 0.001;

1 evel =

amplitude*cos(TWOPI*frequency*time);
printf(" %5.3f % 8.6f\n",
time, 1 evel);

}

Related Topics:

acos, asin, atan, atan2, matherr, sin, sinh, tan, tanh

5-50

Purpose:

Formats and prints characters directly to the screen.

Format:

/* Required for function declarations */
#include <conio.h>

i nt cpri ntf(format-string[,argument ...])
/* Format control string */

char *format-string;

Comments:

cprintf

The cprinH function formats and prints a series of characters and
values directly to the screen, using the putch function to put each
character out to the screen. The cprlnH function converts each argu­
ment (if any) and puts it out according to the corresponding format
specit'ication in the format-string. The format-string has the same
form and function as the format-string argument for the prinH func­
tion. See the prinH reference page for a description of the format­
string and arguments.

The cprinH function returns the number of characters printed.

Example:

The following example prints:

i=-16, j=Ox1d, k=511

Hinclude <conio.h>

i nt i = -16, j = 29;
unsigned int k = 511;
rnai nO
{
cprintf("i=%d, j=%Hx, k=%u\n" , i, j, k);
}

5-51

cprintf

Related Topics:

'prinH, prinH, sprinH

Note: Unlike the 'prinH, prinH, and sprinH functions, cprinH does not
translate line feed characters into output of carriage returnlline
feed combinations.

5-52

cputs

Purpose:

Writes a string ending with a null character directly to the screen.

Format:

/* Required for function declarations */
#include <conio.h>

int cputs(str)
char *str; /* Pointer to output string * /

Comments:

The cputs function writes directly to the screen the string to which *str
points. The string str must end with a null character (\0). The cputs
function does not automatically add a carriage returnlline feed combi­
nation to the string after writing.

If the action is successful, cputs returns O. In case of error in OS/2,

cputs returns EOF.

Example:

The following statement puts a prompt out to the screen.

#include <conio.h>

char *buffer = "Insert data disk in drive a: \r\n";

cputs(buffer);

Related Topics:

putch

5-53

creat

Purpose:

Creates or opens and cuts off a file.

Format:

#include <sys\types.h>
#include <sys\stat.h>

/* Required for function declarations */
#include <io.h>

int creat(pathname, pmode)
char *pathname; /* Pathname of new file */
int pmode; /* Permission setting */

Comments:

The creat tunction either creates a new file or opens and cuts off an
existing file. If the file specified by pathname does not exist, creat
creates a new file is with the given permission setting and open for
writing. If the file already exists and its permission setting allows
writing, creat cuts off the file to length 0, destroying the previous con­
tents, and opens it for writing.

The permission setting, pmode, applies to newly created files only.
The new file receives the specified permission setting after you close
it for the first time. The pmode integer expression contains one or
both 91 the manifest constants S_IWRITE and SJREAD, defined in
sys\slat.h. When you give both constants, creal joins them with the
bitwise operator oR(I).

5-54

creat

The following gives the values of the pmode argument and their
meaning.

Value

S_IREAD

S_IWRITE

S_IREAD I S_IWRITE

Meaning

Reading permitted
Writing permitted
Reading and writing permitted.

If you do not give permission to write to the file, the file is a read-only
file. Under DOS it is not possible to give write-only permission. Thus,
the modes SJWRITE and SJREAD ISJWRITE have the same results.
Under DOS, files opened using creat are always open in DOS mode
(see sopen in this chapter). The creat function applies the current file
permission mask to pmode before setting the permissions (see
umask in this chapter). The creat function returns a handle for the
created file if the call is successful. A return value of -1 shows an
error, and creat sets errno to one of the following values:

Value Meaning

EACCCES The pathname specifies an eXisting read-only file or speci­
fies a directory instead of a file.

EMFILE No more file handles are available. There are too many
open files.

ENOENT The pathname was not found, or (in OS/2 mode) the
filename was incorrect.

Example:

This example creates for reading or writing a file with the file name
DATA. It prints an error message if the creat operation fails.
#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdlib.h>
rnai nO
{

i nt fh;

fh=creat("data",S_IREADls_IWRITE);
if(fh==-l)

perror("couldn't create data file");
else printf("file \"data\" created\n"); }

5-55

creat

Related Topics:

chmod, chsize, close, dup, dup2, open, sopen, umask

Nole: IBM provides the creal function primarily for compatibility with
previous libraries. A call to open with the O_CREAT and O_TRUNC

values specified in the of/ag argument has the same results as
creal and is preferable for new code.

5-56

Purpose:

Reads data directly from the keyboard to locations given by
arguments.

Format:

/* Required for function declarations */

#include <conio.h>

i nt cscanf(format-string[,argument. ..])
char *format-string; /* Format control stri ng * /

Comments:

cscanf

The cscanf function reads data di rectly from the keyboard to the
locations given by the arguments, if any. The cscanf function uses
the getche function to read characters. Each argument must be a
pointer to a variable with a type that corresponds to a type specifier
in the format-string. The format-string controls the interpretation of
the input fields and has the same form and function as the format­
string argument for the scanf function. See the scanf reference page
for a description of the format-string.

The cscanf function returns the number of fields that were success­
fully converted and assigned. The return value does not include
fields that were read but not assigned.

The return value is EOF for an attempt to read at end-of-file. A return
value of 0 means that no fields were assigned.

5-57

cscanf

Example:

The following example stores string input from the keyboard. The
result is the number of correctly matched input fields. If cscanf can
match no input fields, the result is zero.
#include <conio.h>

i nt result;
char buffer[20];

cprintf("Please enter file name:");

result = cscanf("%19s", buffer);

Related Topics:

fscanf, scanf, sscanf

Note: Although cscanf normally echoes the input character, it will not
do so if the last action was an ungetch.

5-58

ctime

Purpose:

Converts time stored as long value to a character string.

Format:

/* Required only for function declarations */
#include <time.h>

char *ctime(time)
const time_t *time; /* Pointer to stored time */

Comments:

The clime function usually obtains the time value from a call to lime,
which returns the number of seconds elapsed since 00:00:00
Greenwich Mean Time, January 1,1970.

The string result produced by clime contains exactly 26 characters
and has the form of the following example:

Sat Jul 06 02:03:55 1985\n\0

The clime function uses a 24-hour clock format. All fields have a con­
stant width. The newline character (\n) and the null character (\0)
occupy the last two positions of the string.

Under DOS, clime does not understand dates prior to 1980. If time
represents a date before January 1,1980, clime returns NULL.

The clime function returns a pointer to the character string result.
There is no error return value.

5-59

clime

Example:

This example gets the number of seconds elapsed since January 1,
197000:00:00 GMT and assigns it to Itime. It then uses the clime func­
tion to convert the number of seconds to the current time. It prints a
message giving the current date and time.

#include <time.h>
#include <stdio.h>

ma in ()
{

time(<ime);
printf("The time is %s\n",

ctime(<ime));

Related Topics:

asclime, ftime, gmlime, locallime, lime

Note: The asctime and clime functions use a single, statically­
allocated buffer for holding the return string. Each call to one
of these functions destroys the result of the previous call.

5-60

cwait

Purpose:

The cwait function delays the completion of a parent process until a
particular child process is complete.

Format:

#include <process.h>

int cwait (stat_loc,process_id,action_code)
int *stat_loc;
int process_id;
int action_code;

Comments:

The cwait function delays a parent process until the child process
specified by process_id ends. You can use this function only under
OS/2.

The process_id specifies the child process for which the parent
process waits. This value is the process_id value returned by the
spawn function or by the call to the OS/2 DOSEXECPGM

function that started the child process. If the specified child process
ends before cwait is called, cwait returns immediately. If the
process_id is 0, the parent process waits until all of its child proc­
esses end.

5-61

cwait

If not NULL, the stat_/oc argument points to a location that holds infor­
mation about the return status and the return code of the child
process. The return status shows whether the child process ended
norm~lIy, using a call to the OS/2 DOSEXIT function. The low-order and
high-order bytes of the return status are as follows:

Byte

L()w-order

High-order

Contents

o
The low-order byte of the resulting code that the child
process passed to DOSEXIT. DOSEXIT is called if the child
process called exit or _exit, returned from main, or
reached the end of main. The low-order byte of the
result code is either the low-order byte of the argument
to _exit or exit, the low~order byte of the return value
from main, or if control from the child process fell
through at the end of main, an unpredictable value.

If the child process stopped for any other reason, the low-order and
high-order bytes of the return status are as follows:

Byte

Low-order

Contents

Return code from OS/2 DOSCWAIT function.

Code Meaning

1 Hard-error abnormal end

2 Trap operation

3 SIGTERM signal not intercepted

High-order 0

5-62

cwait

The action-code specifies when the parent process starts running
again as shown in the following list:

Action Code Meaning

WAIT_CHILD The parent process waits until the specified child process
stops.

WAIT_GRANDCHILD

The parent process waits until the specified child process
and all of the child processes of that child process stop.

WAIT_CHILD and WAIT_GRANDCHILD are defined in process.h.

If cwait returns after an unexpected end of the child process, it
returns -1 to the parent process and sets errno to EINTR.

If cwait returns after a normal end of the child process, it returns the
process identifier of the child process to the parent process.

Otherwise, cwait returns immediately with a value of -1. In this case,
errno indicates the error, as shown in the following list:

Value Meaning

EINVAL Incorrect action code

ECHILD No child process exists, or incorrect process identifier.

Related Topics:

exit, _exit, spawnl, spawnle, spawnlp, spawnlpe, spawnv, spawnve,
spawnvp, spawnvpe, walt

5-63

dieeetomsbin - dmsbintoieee

Purpose:

Converts double-precision numbers between binary format and IEEE

format.

Format:

#include <math.h>

/* IEEE double precision to binary double */
int dieeetomsbin(srcB,dst8)

/* binary double to IEEE double precision */
int dmsbintoieee(srcB,dst8)
double *src8, *dst8;

Comments:

The dieeetomsbin routine converts a double-precision number in IEEE

format to binary format. The dmsbintoieee routine converts a double­
precision number in binary format to IEEE format.

These functions return 0 if the conversion is successful and 1 if the
conversion causes an overflow.

5-64

dieeetomsbin - dmsbintoieee

Example:

This example uses a particular value (7.) to test whether these two
routines function as inverses of each other. After conversion and
reconversion, the value (7.) is written out.

#include <stdio.h>
#include <math.h>

mai n ()
{

double b=7.;
double c, d;

if (dmsbintoieee(&b, &c) == 1)
fprintf(stderr,

"overflow converting to IEEE form\n");
if (dieeetomsbin(&c, &d) == 1)

fprintf(stderr,
"overflow converting from IEEE form\n");

printf("The number after"
"reconversion is %f\n",d);

Related Topics

fleeetomsbin, fmsbintoieee

Note: These routines do not handle IEEE NaNs and infinities. IEEE

denormals are treated as 0 in the conversions.

5-65

difftime

Purpose:

Computes the difference between time2 and time1.

Format:

#include <time.h>

double difftime(time2,time1)
/* Type time_t defined in time.h */

time_t time2;
time_t time1;

Comments:

The diHtime function computes the difference between time2 and
time1. DiHtime is a macro.

The diHtime function returns the elapsed time in seconds from time1
to time2 as a double precision number.

5-66

difftime

Example:

The following example shows a timing application using dlfftime. The
example calculates how long it takes to find the prime numbers from
3 to 10000.

#include <time.h>

int mark[10000];

mai nO
{

/*
*
*

time_t start, finish;
register int i, loop, n, num, step;

pri ntf ("Thi s program wi 11 take about 3 mi nutes"
"on an AT or 8 minutes on a PC.\n");

pri ntf ("Worki ng ... \n") ;

time(&start);
for (loop = 0; loop < 1000; ++loop)

for (num = 0, n = 3; n < 10000; n += 2)
if (!mark[n])
{

step = 2*n;
for(i= 3*n; i<10000; += step)

mark[i] = -1;
++num;

}
time(&finish);

Divide elapsed time by 1000 to get the
average time per pass through the
loop. */

printf("\nProgram takes %.3f seconds"
"to find %d primes.\n",
difftime(finish,start)/1000.,num);

The program takes an average of 0.110 seconds to find each of the
1228 primes.

Related Topics:

time

5-67

dosexterr

Purpose:

Obtains and stores values from DOS system call function 59H.

Format:

#include <dos.h>

int dosexterr (buffer)
struct DOSERROR * buffer;

Comments:

The dosexterr function obtains the register values returned by the DOS

system call 59H and stores the values in the structure to which buffer
points. Use this function when you make system calls under DOS,

which offers extended error handling. See your IBM Disk Operating
System Technical Reference book for details about DOS system calls.

The dos.h include file defines the structure type DOSERROR as follows:

struct DOSERROR {

int exterror;
char class;
char action;
char locus;
};

Giving a null pOinter argument causes dosexterr to return the value in
AX without filling in the structure fields.

The dosexterr function returns the value in the AX register (identical
to the value in the exterror structure field). This code identifies which
particular error condition arose. The class field of the structure gives
the type of error, such as permission, hardware, or media failure.
The action field recommends how the user can remedy the problem.
The locus field gives additional information to locate the failure, such
as network, memory, or block device. Codes for all of these returns
are in IBM Disk Operating System Technical Reference.

5-68

dosexterr

Example:

This example tries to open a nonexistent file called VOID for reading.
When the file fails to open, the example prints extended error codes
for class, action, and locus.

#include <dos.h>
#include <fcntl.h>
#include <stdio.h>

struct DOS ERROR doserror;,
int fd;

rnai n ()
{

if ((f d=open (" voi d" , 0_ RDONL Y)) ==-1)
{

}

dosexterr(&doserror);
printf("error=%d, class=%d,"

"acti on=%d, 1 ocus=%d\n",
doserror.exterror,doserror.class,
doserror.action,doserror.locus);

Related Topics:

perror

Note: The dosexterr function should be used only under DOS Version
3.30. This routine is not supported under OS/2.

5-69

dtip - dup2

Purpose:

Associates a second file handle with a currently open file.

Format:

/* Required for function declarations */
#include <io.h>

/* Create second handle for open file */
int dup(handle)

/* Handle referring to open file */
int handle;

/* Force handle2 to refer to handle file */
int dLip2(handle1, handle2)
int hand/e1; /* Hand,le referring to open file * /
int hand/e2; /* Any handle value */

Comments:

The dup and dup2 functions associate a second file handle with a
currently-open file: You can carry out operations on the file, using
either file handle, because all handles associated with a given file
use the same file pointer. Creation of a new handle does not affect
the type 01 access allowed for the file. The dup function returns the
next available file handle for the given file. The dup2 function forces
the given handle, hand/e2, to refer to the same file as handle1. If
handle2 is associated with an open file at the time of the call, that file
is closed.

5-70

dup - dup2

The dup function returns a new file handle. The dup2 function returns
o to indicate success. Both functions return -1 if an error occurs and
set errno to one of the following values.

Value Meaning

EBADF This is an incorrect file handle.

EMFILE No more file handles are available. There are too many
open files.

Example:

The following example makes another file handle refer to the same
file as file handle 1 (stdout). Then, it makes file handle 3 refer to the
same file as file handle 1 (stdout). If file handle 3 is already open,
this example first closes the file.

#include <io.h>
#include <stdlib.h>

i nt fh;

fh = dup(l);

if (fh == -1)
perror("dup(l) failure");

fh = dup2(l ,3);

if (fh != 0)
perror("dup2(l,3) failure");

Related Topics:

close, creat, open

5-71

ecvt

Purpose:

Converts a floating-point number to a character string.

Format:

/* Required for function declarations */
#include <stdlib.h>

char *ecvt(value, ndigits, decptr, signptr)
double value; /* Number to be converted */
int ndigits; /* Number of digits stored * /

/* Pointer to stored decimal position */
int *decptr;

/* Pointer to stored sign indicator */
int *signptr;

Comments:

The ecvt function converts a floating-point number to a character
string. The value is the floating-point number to be converted. The
ecvt function stores ndigits digits of value as a string and adds a null
character (\0). If the number of digits in value exceeds ndigits, the
low-order digit is rounded. If there are fewer than ndigits digits, the
stri ng is padded with zeros.

Only digits are stored in the string. You can obtain the position of the
decimal point and the sign of value after the call from decptr and
signptr. The decptr points to an integer value that gives the position
of the decimal point with respect to the beginning of the string. A 0 or
a negative integer value indicates that the decimal point lies to the
left of the first digit. The signptr points to an integer that indicates the
sign of the converted number. If the integer value is 0, the number is
positive. Otherwise, the number is negative.

The ecvt function returns a pointer to the string of digits. There is no
error return value. Because of the linited precision of the double
type, no more than 16 decimal deigits are significant in any conver­
sion.

5-72

ecvl

Example:

This example will read in two floating-point numbers, compute their
product, and print out only the billions digit of its character
representation. At most 16 decimal digits of significance can be
expected.

#include <stdlib.h>
#include <math.h>

mai nO
{

fl oat x. y;
double z;
int w. b. i. decimal, sign;
char c;
char *buffer;

printf("Enter two"
"floating-point numbers.\n");
if(2!=(i=scanf("%e %e",&x.&y)))

printf("input error ... \n");
abort();

z=x*y;
w=loglO(fabs(z))+l.;
buffer=ecvt(z,w,&decimal,&sign);
b=decimal-lO;
if (b<O)

printf("Their product does not"
" exceed one billion.\n");

if(b>15)
printf("The billions digit of"

" their product is insignificant.\n");
if«b>-1)&&(b<16»)

printf("The billions digit of"
"their product is %c.\n",
buffer[b]);

Relaled Topics:

alof, aloi, alol, fcvt, gcvt

Note: The ecvt and fcvt functions use a single, statically-allocated
buffer for the conversion. Each call to one of these functions
destroys the result of the previous call.

5-73

eof

Purpose:

Determines the position of the end-of-file character.

Format:

/* Required for function declarations */

#include <io.h>
int eof(handle)
int handle; /* Handle referring to open file */

Comments:

The eof function determines whether the file pointer has reached the
end-of-file character for the file associated with handle.

The eof function returns the value 1, if the current position is the end
of the file, or 0, if it is not. A return value of -1 shows an error, in
which case the system sets errno to EBADF, showing an incorrect file
handle.

Example:

This example counts the number of bytes that it reads in a file until
the EOF symbol.

#include <io.h>
#include <fcntl.h>

rnai n ()
{

int fh;
unsigned count,total=O;
char buf[5];

fh=open("data",O_RDONLY);

while(Ieof(fh))
{

count=read(fh,buf,l);
total ++;

printf("%u bytes were read.\n",total);

5-74

eof

Related Topics:

clearerr, feof, ferror, perror

5-75

execl-execvp

Purpose:

Load and run a new child process.

Format:

/* Required for function declarations */
#include <process.h>

int execl(pathname, argO, arg1, ... ,
argn,NuLL)

int execle(pathname, argO, arg1, ...
argn, NULL, envp)

int execlp(pathname, argO, arg1, ...
argn, NULL)

int execlpe(pathname, argO, arg1,&ellip,
argn, NULL, envp)

int execv(pathname, argv)
int execve(pathname, argv, envp)
int execvp(pathname, argv)
int execvpe(pathname, argv, envp)

/* Path name of file to be run */
char *pathname;

/* List of pointers to arguments */
char *argO, *arg1 , ... , *argn;

/* Array of pointers to arguments */
char *argv[];

/* Array of pointers to environment settings */
char *envp[];

Comments:

The exec functions load and run new child processes. When the call
is successful, the system places the child process in the storage pre­
viously occupied by the calling process. Sufficient storage must be
available for loading and running the child process.

5-76

execl-execvp

The pathname argument specifies the file to run as the child process.
The pathname can specify a full path from the root, a partial path
from the current working directory, or a file name. If pathname does
not have a file name extension or does not end with a period (.), the
exec functions first add the extension .COM and search for the file. (In
OS/2 mode this search is not made.) If the search is unsuccessful, the
exec functions try to find the file with the same file name and a .EXE

extension. If pathname has an extension, the system uses only that
extension. If pathname ends with a period, the exec functions search
for pathname with no extension. The execlp, execlpe, and execvp
functions search for the pathname in the directories that the PATH

environment variable specifies.

You pass arguments to the new process by giving one or more
pointers to character strings as arguments in the exec call. These
character strings form the argument list for the child process. The
combined length of the strings forming the argument list for the new
process must not exceed 128 bytes. Do not include in the count the
final null character (\0) for each string, but do count any space char­
acters automatically inserted to separate arguments.

The compiler can pass the argument pointers as separate arguments
(exec I, execle, execlp, and execlpe) or as an array of pointers (execv,
execve , execvp, and execvpe). You must pass at least one argu­
ment, argO or argv[O], to the child process. By convention, this argu­
ment is a copy of the pathname argument, but a different value does
not produce an error.

Use the execl, execle, execlp, and execlpe functions to call cases
where you know the number of arguments in advance. The argO
argument is usually a pointer to pathname. The arg1 through argn
arguments are pOinters to the character strings forming the new argu­
ment list. There must be a NULL pointer following argn to mark the
end of the argument list. Use the execv, execve, execvp, and
execvpe functions when the number of arguments to the new process
is variable. Pass pointers to the arguments of these functions as an
array, argv[]. The argv[O] argument is usually a pointer to pathname.
The argv[1] through argv[n] arguments are pointers to the character
strings forming the new argument list. A NULL pointer must follow
argv[n] to mark the end of the argument list.

5-77

execl-execvp

Files that are open when you make an exec call remain open in the
new process. In the execl, execlp,execv, and execvp calls, the child
process receives the environment of the parent. The execle, execlpe,
execvp, and execvpe functions let you change the envi ronment for the
child process by passing a list of environment settings through the
envp argument. The envp argument is an array of character pointers,
each element 6f which points to a string, ending with a null character
that defines ari enviroriment variable. Such a string usually has the
following form:

NAME = value

where NAME is the name of an environment variable and value is the
string value to which the exec function sets that variable.

Note: Do not enclose the value in double quotes.

The finai element of the envp array should be NULL. When envp itself
is NULL, the child process receives the environment settings of the
parent process.

5-78

execl-execvp

The exec functions do not normally return control to the calling
process. They are equivalent to the corresponding spawn functions
with P_OVERLAY as the value of modefJag. If an exec function returns,
an error has occurred, and the return value is -1. The errno variable
then has one of the following values.

Value Meaning

E2BIG The argument list exceeds 128 bytes or the space required
for the environment information exceeds 32K bytes.

EACCESS The specified file has a locking or sharing violation.

EMFILE There are too many open files. You must open the speci­
fied file to tell whether it is executable.

ENOENT The file or pathname was not found, or was specified
incorrectly in OS/2 mode.

ENOEXEC The specified file cannot run or has an incorrect execut­
able file format.

ENOMEM One of the following conditions exists:

• There is not enough storage available to run the child
process.

• The available storage has been corrupted.

• An incorrect block exists, telling you that you did not
properly reserve space for the parent process.

5-79

execl-execvp

Example:

This example shows calls to four of the eight exec routines. When
invoked without arguments from the command line, the program first
runs the code for case PARENT. It then calls exec() to load and run a
copy of itself. The instructions for the child are blocked to run only if
argv[O] and one parameter were passed (case CHILD). In its turn, the
child runs a child's child as a copy of the same program. The
younger-generation child overlays the child in storage. This
sequence is continued until four generations of child processes have
run. Each of the processes prints a message identifying itself.

#include <stdio.h>
#include <process.h>
#define PARENT
#define CHILD

extern char **environ;
char *args[3J;

main(argc, argv, envp)
int argc;
char **argv;
char **envp;
{

switch(argc)
{

case PARENT: /* No argument was
passed: run a child process. */

{
printf("Parent process began.\n");
execle(argv[OJ,argv[OJ,"I",NULL,envp);
abort(); /* Not executed because

parent was overlaid. */

case CHILD: /* One argument was passed:
run a child's child. */

printf("Child process %s began.\n",
argv [IJ) ;

if('I'==*argv[lJ)
/* generation one */

{
execl(argv[OJ,argv[OJ,"2",NULL)

abort(); /* Not executed because
child was overlaid. */

5-80

}

}
}

}
if('2'==*argv[lJ)

/* generation two */

args[0J=argv[0J;
args [lJ ="3";
args[2J=NULL;
execv(argv[0],args);
abort(); /* Not executed

because child was overlaid. */
}
if('3'==*argv[1])

/* generation three */

args[0J=argv[0J;
args[lJ="4";
args[2J=NULL;
execve(argv[0J,args,environ);
abort(); /* Not executed

because child was overlaid.*/
}
if('4'==*argv[1])

/* generation four */
printf("Child process %s",

argv [1]) ;

printf(" ended.\n");
exit(0);

execl-execvp

Related Topics:

abort, exit, _exit, spawnl, spawn Ie, spawnlp, spawnlpe, spawn,
spawnve, spawnvp, spawnvpe, system

Note: The exec functions do not preserve the translation modes of
open files. If the child process must use files received from the
parent, use the setmode function to set the translation mode of
these files to the desired mode. The exec functions do not pre­
serve signal settings in child processes that calls to exec func­
tions create. Calls to exec functions reset the signal settings to
the default in the child process.

Do not use the exec functions if you plan to create a dual-mode
executable using BIND. Use the corresponding SPAWN functions
with modef/ag set to P_WAIT.

5-81

exit - exit

Purpose:

End the calling process.

Format:

1* Required for function declarations */
#include <stdlib.h>
#include <process.h>

1* _exit defined in process.h */

1* End after closing files */
void exit(status).

1* End without flushing stream buffers */

void _exit(status)
int status; I*Exit status */

Comments:

The exit and _exit functions end the calling process. They first call all
functions that the onexlt function has placed in a sequential list of
functions, in reverse order. The exit function then flushes all buffers
and closes all open files before ending the process. The _exit func­
tion ends the process without processing onexit functions or flushing
stream buffers. The exit and _exit functions give the value 0 to status
to show a normal exit and set status to some other value to show an
error.

Although the exit and _exit calls do not return a value, they make the
low-order byte of status available to the waiting parent process, if
there is one, after the child process ends. If no parent process waits
for the exiting process, the status value is lost. The status value is
available to the DOS command IF ERRORLEVEL.

There is no return value.

5-82

exit - exit

Example:

The following example ends the process after flushing buffers and
closing open files if it cannot open another file. Then, the example
ends the process immediately if it cannot open a file.

#include <stdio.h>
#include <process.h>
#include <stdlib.h>

FILE *stream;
mai n ()
{
if «stream = fopen("data","r"» == NULL)

perror("couldn't open data file");
exit (1);
}

if «stream = fopen("data"," r ") == NULL)
perror ("couldn't open data file");
fl usha 11 () ;
_exit(1);
}

Related Topics:

abort, atexit, ewalt, execl, execle, execlp, execv, execve, execvp,
onexit, spawnl, spawn Ie , spawnlp, spawnv, ~pawnve, sp$wnvp,
system, wait

5-83

exp

Purpose:

Returns an exponential function of a floating-point argument.

Format:

#include <math.h>

double exp(x)
double x; /* Floating-point value */

Comments:

The exp function returns the exponential function of a floating-point
argument x.

The exp function returns e to the power x (eX). If an overflow occurs,
the function returns HUGE_VAL; when an underflow occurs, it returns O.
Overflow also sets errno to ERANGE.

Example:

The following example calculates y as the exponential function of x:

#include <math.h>

double x, y;

y = exp(x);

Related Topics:

log

5-84

_expand

Purpose:

Changes the size of a previously reserved storage block by
expanding or contracting the block without moving its location in the
heap.

Format:

/* Requi red only for function declarations *1
#include <malloc.h>

void * _expand(ptr,size)
void *ptr;
size_t size;

Comments:

The _expand function changes the size of a previously reserved
storage block by trying to expand or contract the block without
moving its location in the heap. The ptr argument points to the begin­
ning of the block. The size argument gives the new size of the block,
in bytes. The contents of the block are unchanged up to the shorter of
the new and old sizes.

The ptr argument can also point to a block that has been freed, as
long as there has been no intervening call to ealloe, _expand, haUoe,
malloe, or realloe since the block was freed. If ptr points to a freed
block, the block remains free after a call to _expand.

The _expand function returns a pointer to the reallocated storage
block. Unlike realloe, _expand cannot move a block to change its
size. This means that the ptr argument to _expand is the same asthe
return value if there is sufficient storage available to expand the block
without moving it.

The return value is NULL if there is not enough storage available to
expand the block to the given size without moving it. In this case, the
compiler has expanded, as much as possible in the current location,
the item to which ptr pOints.

5-85

expand

The storage space to which the return value points is aligned for
storage of any type of object. You can check the new size of the item
with the _msize function. To get a pointer to a type, use a type cast
on the return value.

El,(ample:

The following examplt3 reserves in storage a block of 10000 bytes and
tries to expand it to a block of 64000 bytes, printing a repor1 of the
status of the operation.

#include <rnalloc.h>
#include <stdio.h>
rnai nO

{
long *oldptr;
size_t int newsize = 64888;

oldptr = (long *)rnalloc(18888);
printf("Size of storage block pointed to

by oldptr = %u\n".
_rnsize(oldptr));

if (_expand(oldptr,newsize))
printf("_expand was able to

increase block to %u\n",
_msize(oldptr));

else
printf("_expand was able to

increase block to only %u\n",
_ms;ze(oldptr));

Related Topics:

calloc, free, haUoc, ~alloc, _ms,ze, realloc

5-86

labs

Purpose:

Returns the absolute value of a floating-point argument.

Format:

#include <math.h>

double fabs(x)
double x; /* Floating-point value */

Comments:

The labs function returns the absolute value of a floating-point argu­
ment. There is no error return value.

5-87

tabs

Example:

Compare the harmonic series expansion of the arctangent with the
value returned by the library function. The number of terms to take
the alternating series is given by the defined constant NTERM.

#define NTERM 200
#include <math.h>
double atanterm();
mai n ()
{

doubJe x;
printf("Enter x, a floating point"
II value, -1. < x < 1. : ");
scanf("%E",&x);
if (fabs (x)<=1.)
{

printf("\nTo %d terms, ",NTERM);
printf("the harmonic series value"
" of atan(%E)=%E\n",
x,x*atanterm(x*x,l));
printf("The C library function"
"value of atan(%E)=%E\n",
x,atan(x));

else p~intf("\nThe value of x "
"must lie -1. < x < 1.\n");
}

double atanterm(y,j)
double y;
int j;
{

double z;

z=y*j/(j+2) ;
if (j > NTERM)

return (1.):
else
return (1. - z * atanterm(y, j+2));

Related Topics:

abs, cabs, labs

5-88

Purpose:

Close open streams.

Format:
#include <stdio.h>

int fclose(stream) /* Close an open stream */
FILE *stream; /* Pointer to file structure */

int fcloseall() /* Close all open streams */

Comments:

fclose - fcloseall

The fclose and fcloseall functions close a stream or streams. These
functions flush all buffers associated with the streams before closing
them. When they close the stream, these functions release the
buffers that the system reserved. They do not automatically release
buffers that the setbuf routine assigned.

The fclose function closes the given stream. The fcloseall function
closes all open streams except the stdin, stdout, stderr, stdaux, and
stdprn streams, and any temporary files created by tmpfile.

The fclose function returns 0 if it successfully closes the stream. The
fcloseall function returns the total number of streams closed. Both
functions return EOF to indicate an error.

5-89

fclose - fcloseall

Example:

The following example opens a file data for reading as a data stream;
then, it closes this file. It closes all other streams except the stdin,
stdout, stderr, stdaux, and stdprn data streams.

#include <stdio.h>

FILE *stream;
int numclosed;

stream = fopen("data", "r");

/* The following statement closes the stream. */
fclose(stream);

/* The following statement closes all *
* streams except stdin, stdout, *
* stderr, stdaux, and stdprn. */

numclosed = fcloseall();

Related Topics:

close, fdopen, fflush, fopen, freopen

5-90

Purpose:

Converts a floating-point number to a character string.

Format:

/* Required for function declarations */
#include <stdlib.h>

char *fcvt(value, ndee, decptr, signptr)
/* Number to be converted */

double value;
/* Number of digits after decimal point */

int ndee;
/* Pointer to stored decimal point position */

int *deeptr;
/* Pointer to stored sign indicator */

int *signptr;

Comments:

fcvl

The fcvt function converts a floating-point number to a character
string. The value is the floating-point number to be converted. The
fcvl function stores the digits of value as a string and adds a null
character (\0). The ndee variable specifies the number of digits to be
stored after the decimal point.

If the number of digits after the decimal point in value exceeds ndee,
fcvl rounds the correct digit according to thE:) FORTRAN F format. If
therE:) are fewer than ndee digits of precision, fcvt pads the string with
zeros.

The fcvlfunction stores only digits in the string. You can obtain the
position of the decimal point and the sign of value after the call from
deeptr and signptr. The deeptr variable points to an integer value
giving the position of the decimal point with respect to the beginning
of the string. A zero or negative integer value shows that the decimal
point lies to the left of the first digit. The signptr variable points to an
integer showing the sign of value. The fcvl function sets the integer
to 0 if value is positive and to a nonzero number if value is negative.

5-91

fevt

The fcvl function returns a pointer to the string of digits. There is no
error return value. Because of the limited precision of the double
type, no more than 16 decimal digits are significant in any conver­
sion.

Example:

This example will read in two floating-paint numbers, compute their
product, and print out only the billions digit of its character
representation. At most, 16 decimal digits of significance can be
expected.

#include <stdlib.h>
#include <math.h>

mai n ()
{

}

float x, y;
double z;
int w, b. i, decimal, sign;
char c;
char *buffer;

printf("Enter two floating-point"
"numbers.\n");
if(21",(i"'scanf("%e %e",&x.&y)))
{

printf("input error ... \n");
abort () ;

}
z"'x*y;
w"'10g10(fabs(z))+1.;
buffer"'fcvt(z,w,&decimal,&sign);
b=decimal-10;
i f(b<0)

printf("Their product does not"
" exceed one bi 11 ion. \n") ;

if(b>15)
pri ntf ("The bi 11 ions di git of II

"their product is insignificant.\n");
if«b>-1)&&(b<16))

printf("The billions digit of"
" their product is %c.\n",

buffer[b]);

5-92

fcvl

Related Topics:

atof, atoi, atol, ecyl, gcyl

Note: The ecyl and fcyl functions use a single, statically-allocated
buffer for the conversion. Each call to one of these functions
destroys the result of the previous call.

5-93

fdopen

Purpose:

Associates an input or output stream with the file identified by a
handle.

Format:

#include <stdio.h>

FILE *fdopen(handle, type)
int handle; /* Handle referring to open file */
char *type; /* Type of access permitted * /

Comments:

The fdopen function associates an input or output stream with the file
identified by handle. The type variable is a character string speci­
fying the type of access requested for the file.

Type

" r"

"w"

"a"

"r+"

"w+"

"a+"

Description

Open a text file for reading. (The file must exist.)

Create a text file for writing. If the given file exists, erase
its contents.

Open a text file for writing additional data at the end of the
file. Create the file first if it does not exist.

Open a text file for both reading and writing. (The file
must exist.)

Create a text file for both reading and writing. If the given
file exists, erase its contents.

Open a text file for reading and for writing additional data
to the end of the file. Create the file first if it does not
exist.

"rb" Open a binary file for reading. The file must exist.

"wb" Create a binary file for writing. If the given file exists, its
contents are destroyed.

5-94

fdopen

"ab" Open a binary file for writing at the end of that file. Create
the file first if it does not exist.

"r+b" or "rb+"
Open a binary file for both reading and writing. The file
must exist.

"w+b" or "wb+"
Create a binary file for both reading and writing. If the
given file exists, fdopen erases its contents.

"a+b" or "ab+"
Open a binary file for both reading and adding to its end.
Create the file first if it does not exist.

CAUTION:

Use the "w", "w+", "wb", "wb+", and "w+b" modes with care. They
can destroy flies.

The specified type must be compatible with the access mode you
used to open the file.

When you open a file with "a" or "a+" as the value of type, all write
operations take place at the end of the file. Although you can reposi­
tion the file pointer, using fseek or rewind, the file pointer always
moves back to the end of the file before the system carries out any
write operation. This action prevents you from writing over existing
data.

When you specify any of the types containing "+" you can both read
from and write to the file. The file is said to be open for "update."
However, when switching from reading to writing, or the reverse, you
must include an intervening fseek or rewind operation. You can
specify the current position for the fseek operation.

In accessing text files carriage return-linefeed (CR-LF) combinations
are translated into a single linefeed (LF) on input; linefeed characters
are translated to CR-LF combinations on output. Accesses to binary
files suppress all of these translations.

The fdopen function returns a pointer to the open stream. A NULL

pointer value shows an error.

5-95

'dopen

Example:

The following example opens the file DATA and associates its file
handle fh with the pointer stream.

#include <stdio.h>
#include <fcntl.h>

FILE *stream;
int fh;

fh = open("data", O_RDONLY);

/* The following statement associates a *
* stream with the open file handle. */

stream = fdopen(fh, "r");

Related Topics:

dup, dup2, tclose, tcloseall, topen, treopen, open

5-96

feof

Purpose:

Tests the end-of-file indicator for a stream.

Format:

#include <stdio.h>

int feof(stream)
FILE *stream; /* Pointer to a file structure * /

Comments:

The feof function tells whether you have reached the end of the given
stream. After you reach the end-of-file character, read operations
return an end-of-file indicator until you close the stream or call
clearerr, fseek, or rewind.

The feof function returns a nonzero value after the first read operation
which attempts to read past the end-of-file character. The feof func­
tion returns the value 0 if no attempt has been made to read past the
end-of-file character. There is no error-return value.

Example:

The following example scans the input file STREAM until it reads an
end-of-file character.

#include <stdio.h>

char string[lOO];
FILE *stream;
void process(char *);
main()

{

while (!feof(stream))
if (fscanf(stream, "%s", string))

process(string);}

5-97

feof

Related Topics:

clearerr, eof, ferror, perror

Note: The feot routine is a macro. Since an empty file has no end-of­
file character, calls to the teof for an empty stream always
returns O.

5-98

ferror

Purpose:

Tests for errors in reading from or writing to a stream.

Format:

#include <stdio.h>

irit ferror(stream)
FILE *stream; /* Pointer to file structure */

Comments:

The terror function tests for an error in reading from or writing to the
given stream. If an error occurs, the error indicator for the stream
remains set until the you close stream, rewind, or call clearerr.

The terror function returns a nonzero value to indicate an error on the
given stream. A return value of 0 means no error has occurred.

Example:

The following example puts data out to a stream, and then checks to
make sure a write error has not occurred. You must have previously
opened the stream for writing.

#include <stdio.h>

FILE *stream;
char *string;

fprintf(stream, "%s\n", string};
if (ferror(stream}) {

printf("write error"};
clearerr(stream};
}

5-99

terror

Related Topics:

clearerr, eof, feof, fopen, perror

Note: The ferror routine is a macro.

5-100

fflush

Purpose:

Causes the system to write the contents of a buffer to a file.

Format:

#include <stdio.h>

int fflush(stream)
FILE *stream; /* Pointer to a file structure *1

Comments:

The fflush function causes the system to write the contents of the
buffer associated with the specified output stream to a file. If the
stream is open for input, fflush clears the contents of the buffer. The
fflush function negates the effect of any prior call to ungetch for the
stream. The stream remains open after the call. The fflush function
has no effect on an unbuffered stream.

The fflush function returns the value 0 if it successfully flushes the
buffer. It also returns the value 0 in cases where the specified stream
has no buffer or is open for reading only. A return value of EOF
shows an error.

Example:

The following statements flush a stream buffer and set up a new
buffer for that stream.

#include <stdio.h>

FILE *stream;
char buffer[BUFSIZ];

fflush(stream);
setbuf(stream,buffer);

5-101

"lush

Related Topics:

fclose, flushall, setbuf

Note: The system automatically flushes buffers when they are full,
when you close the stream, or when a program ends normally
without closing the stream.

5-102

Purpose:

Frees a storage block.

Format:

/* Required qnly for function declarations */
#include <malloc.h>
void _ffree(ptr)

/* Pointer to reserved storage block */
void far *ptr;

Comments:

ffree

The _ffree function frees a storage block outside the default data
segment. Ptr points to a storage block previously reserved through a
call to _'malloe. The number of bytes freed is the number specified
when the block was allocated. After the cal.I, the freed block is again
available. If ptr is NULL, _ffree ignores it.

Note: Attempting to free an incorrect ptr (a pointer not reserved with
_'malloe) can affect subsequent attempts to reserve storage
and cause errors. In the small and medium models, a call to
'ree is equivalent to a call to _n'ree. In the compact and large
models, a call to'ree is equivalent to a call to _ffree.

Example:

The following example illustrates the reserving and freeing of 100
bytes.

#include <malloc.h>
#include <stdio.h>

void far *alloc;

alloc = _fmalloc(100);

if (alloc != NULL) /* Test for a valid pointer */
_ffree(alloc); /* Free storage for the heap */

5-103

ffree

Related Topics:

_fmalloe, free, malloe

5-104

fgetc - fgetchar

Purpose:

Read a single character from an input stream and increase the file
pointer.

Format:

#include <stdio.h>
/* Read a character from stream * /

int fgetc(stream)
FILE *stream; /* Pointer to file structure */

/* Read a character from *
* the standard input stream, stdin */

int fgetchar();

Comments:

The fgetc function reads a single character from the input stream at
the current position and increases the associated file pointer, if any,
to point to the next char.acter. The fgetchar function is the same as
fgetc(stdin).

The fgetc and fgetchar functions return the character read. A return
value of EOF can show an error or end-of-file position; however, the
EOF value is also a legitimate integer value. Use feof or ferror to tell
whether the return value shows an error or an end-of-file position.

5-105

fgetc - fgetchar

Example:

The following example gathers a line of input from a stream. You can
use fgetchar() instead of fgetc(stream) in the for statement to gather
a line of input from the stdin data stream. This operation is the same
as fgetc(stdin).

#include <stdio.h>

FILE *stream;
char buffer[81];
i nt i, ch;

for (i = 0; (i < 80) &&
«ch = fgetc(stream)) ! = EOF)

&& (ch ! = '\n'); i ++)
buffer[i] = ch;
buffer[i] = '\0';

Related Topics:

fputc, fputchar, getc, getchar

Note: The fgetc and fgetchar functions are identical to getc and
getchar, except that fgetc and fgetchar are functions, not
macros.

5-106

fgets

Purpose:

Reads a string from the input data stream and stores it in a string.

Format:

#include <stdio.h>

/* Read a stri ng from stream * /
char *fgets(string, n, stream)
char *string; /* Storage location for data */
int n; /* Number of characters stored */
FILE *stream; /* Pointer to file structure */

Comments:

The fgets function reads a string from the input stream and stores it
in string. The fgets function reads characters from the current stream
position up to and including the first neW-line character (\n), up to the
end of the stream, or until the number of characters read is equal to n
-1, whichever comes first. The fgets function stores the result in
string and adds a null character (\0) to the end of the string. The
string includes the neW-line character, if read. If n is equal to 1, the
string is empty.

The fgets function returns the string. A NULL return value shows an
error or an end-of-file condition. Use feof or ferror to determine
whether the NULL value represents an error or the end of the file.

5-107

'gets

Example:

The following example gets a line of input from a data stream. The
example reads no more than 99 characters, or up to \n, from the
stream.

#include <stdio.h>

FILE *stream;
char line[100], *result;

result = fgets(line,100,stream);

Related Topics:

'puts, gets, puts

5-108

fieeetomsbin - fmsbintoieee

Purpose:

Convert from IEEE single precision to binary or from binary to IEEE

single precision.

Format:

#include <math.h>

/* IEEE single to binary */
int fieeetomsbin(src4,dst4)

/* Binary to IEEE single */
int fmsbintoieee(src4,dst4)

float *src4, *dst4;

Comments:

The fieeetomsbin routine converts a single-precision number in IEEE

format to binary format. The fmsbintoieee routine converts a single­
precision number in binary format to IEEE format.

The src4 is a pOinter to the float value to be converted. These func­
tions store the result at the location given by dst4.

These functions return 0 if the conversion is successful and 1 if the
conversion caused an overflow.

5-109

fieeetomsbin - fmsbintoieee

Example:

This example uses a particular value (-16101.) to test whether these
two routines function as inverses of each other. After conversion and
reconversion, the value -16101. is written out.

#include <stdio.h>
#include <rnath.h>

rna; n ()
{

float b=-16101.;
float c, d;

if (frnsbintoieee(&b, &c) == 1)
fprintf(stderr, "overflow"

" converting to IEEE form\n");
if (fieeetornsbin(&c, &d) == 1)
fprintf(stderr, "overflow"

" converting from IEEE form\n");

printf("The number after"
" reconversion is %f\n",d);

Related Topics:

dieeetomsbin, dmsbintoieee

Note: These routines handle neither an IEEE NaN nor infinity. They
treat IEEE denormals as 0 in the conversions. Nuillbers in the
range 1.1755e-38 to 2.93874e-39, although representable as
non-zero binary numbers, are IEEE denormals, which the com­
pi ler treats as 0 in the conversions.

5-110

Purpose:

Returns file length in bytes.

Format:

/* Required for function declarations */
#include <io.h>

long filelength(handle)
int handle; /* Handle referring to an open file */

Comments:

filelength

The file length function returns the length, in bytes, of the file associ­
ated with handle.

A return value of -1 L indicates an error. The function will set errno to
EBADF to show an incorrect file handle. If you have an open file to
which you have appended bytes, you must close and reopen it before
file length can determine the updated length.

5-111

file length

Example:

The following example tries to tell the length of the file associated
with a data stream:

#include <io.h>
#include <stdio.h>

FILE *strearn;
long length;

rnai nO
{

void flenO;

stream = fopen("flength.c","a");
fl en 0;

/* Extend the file by five lines. */
fprintf(stream,"\n\n\n\n\n");
fl enO ;
fclose(strearn);

stream = fopen("flength.c","r");
flenO;

void flenO
{
/* Get length or -IL if function fails. */

length = filelength(fileno(stream));

if (length == -IL)
printf("filelength failed");

else
printf("file length is %ld\n",length);
return;

Related Topics:

chsize, fileno, fstat, stat

5-112

fileno

Purpose:

Returns the file handle currently associated with any data stream.

Format:

#include <stdio.h>

int fileno(stream)
FILE *stream; 1* Pointer to file structure */

Comments:

The fileno function returns the file handle currently associated with
stream. If more than one handle is associated with the stream, the
return value is the handle assigned when you first opened the stream.

There is no error return. The result is undefined if stream does not
specify an open fi I e.

Example:

The following example determines the file handle of the stderr data
stream:

#include <stdio.h>

int result;

result = fileno(stderr); /* result is 2 */

Related Topics:

fdopen, file length, lopen, freopen

Note: The fileno routine is a macro.

5-113

floor

Purpose:

Returns a floating-point value representing the largest integer less
than or equal to x.

Format:

#include <math.h>

double floor(x)
doubl e x; /* FI oati ng-poi nt val ue *1

Comments:

The floor function returns the floating-point result as a double value.
There is no error return.

Example:

This example computes y as the largesrinteger less than or equal to
2.8 and z as the largest integer less than or equal to -2.8.

#include <math.h>
double y, z;

y = floor(2.8}; /* y = 2.0 */
z = floor(-2.8); /* z = -3.0 */

Related Topics:

cell, fmod

5-114

flushall

Purpose:

Causes the system to write the contents of buffers to the files.

Format:

#include <stdio.h>

int flushall()

Comments:

The flushall function causes the system to write to files the contents
of all buffers associated with open output streams. It clears all
buffers associated with open input streams of their current contents.
The next read operation, if there is one, then reads new data from the
input files into the buffers. All streams remain open after the call.

The flushall function returns the number of open streams of input and
output. There is no error-return value.

Example:

The following statement resolves any pending input or output on all
streams:

#include <stdio.h>

int numflushed;

numflushed = flushall ();

Related Topics:

fflush

Note: The system automatically flushes buffers when they are full,
when you close streams, or when a program ends normally
without closing streams.

5-115

fmalloe

Purpose:

Reserves a storage block outside the default data segment.

Format:

/* Required only for function definitions */
#include <malloc.h>

void far *_fmalloc(size)
size_t size; /* Bytes in reserved block */

Comments:

The _fmalloc function reserves a storage block of at least size bytes
outside the default data segment. (The block might be larger than
size bytes because of the space required for alignment and for main­
tenance information.)

The _fmalloc function returns a far pointer to the reserved space. The
storage space to which the return value points is aligned for storage
of any type of object. For a pointer to a type other than void, use a
type cast on the return value.

If sufficient storage is not available outside the default data segment,
_fmalloc tries to reserve a block of storage using the default data
segment (near heap). If there is still not enough storage available,
the return value is NULL.

Example:

The following example reserves space for 20 integers:

#include <malloc.h>

int far *intarray;

intarray = (int far *)_fmalloc(20*sizeof(int));

5-116

fmalloc

Related Topics:

_ffree, _fmsize, malloe, realloc

5-117

fmod

Purpose:

Calculates a floating-point remainder.

Format:

#include <math.h>

double fmod(x,y)
/* Floating-point values *1

double x;
double y;

Comments:

The Imod function calculates f, the floating-point remainder of x 1 y,
such that x = iy + f where i is an integer, f has the same sign as x,
and the absolute value of f is less than the absolute value of y.

The Imod function returns the floating-point remainder. If y is zero or
if x 1 y causes an overflow, the function returns O.

Example:

The following example computes z as the remainder of xly; here xly
is -3 with a remai nder of -1:

#include <math.h>

double x, y, z;

x = -10.0;
y = 3.0;
z = fmod(x,y); /* z = -1.0 */

Related Topics:

ceil, labs, Iloor

5-118

fmsize

Purpose:

Returns the size, in bytes, <;>f the storage block reserved by a call to
_fmalloc.

Format:

#include <malloc.h>

size_t _fmsize(ptr)
void far *ptr;

Comments:

The _fmsize function returns the size, in bytes, of the storage block
reserved by a call to _fmalloc. The _fmsize function returns the size,
in bytes, as an unsigned integer.

Example:

#include <malloc.h>

char far *stringarray;
unsigned int alloc_bytes;

stringarray = fmalloc(200*sizeof(char));
if ((alloc bytes = fmsize(stringarray)) < 200)

printf(;Only %u bytes allocated\n",alloc_bytes);
else

printf("All 200 bytes allocated\n");

Related Topics:

_ffree, _fmalloc, malloc, _msize, _nfree, _nmalloc, _nmsize

5-119

topen

Purpose:

Opens a file.

Format:

#include <stdio.h>

FILE *fopen(pathname, type)
const char *pathname; /* Path name of file */
const char *type; /* Type of access permitted */

Comments:

The lopen function opens the file specified by pathname. The type
variable is a character string specifying the type of access requested
for the file, as follows:

Type

"r"

"w"

"a"

"r+"

"w+"

"a+"

"rb"

"wb"

"ab"

5-120

Description

Open a text file for reading. (The file must exist.)

Create a text file for writing. If the given file exists, its
contents are destroyed.

Open a text file for writing at the end of that file. Create
the file first if it does not exist.

Open a text file for both reading and writing. (The file
must exist.)

Create a text file for both reading and writing. If the given
file exists, lopen erases its contents.

Open a text file for reading and appending.

Open a binary file for reading. The file must exist.

Create a binary file for writing. If the given file exists, its
contents are destroyed.

Open a a binary file for writing at the end of that file.
Create the file first if it does not exist.

fopen

"r+b" or "rb+"
Open a binary file for both reading and writing. If the
given file exists, fopen erases its contents.

"a+b" or "ab+"
Open a binary file for reading and appending. Create the
file first if it does not exist.

"w+b" or "wb+"

CAUTION:

Create a binary file for both reading and writing. If the
given file exists, fopen erases its contents.

Use the "w" "w+b", "wb+", "w+" and "wb" modes with care; they
can destroy eXisting files.

When you open a file with "a" or "a+" type, all write operations take
place at the end of the file. Although you can reposition the file
pointer using fseek or rewind, these functions move the file pointer
back to the end of the file before they carry out any write operation.
Thus, you cannot write over existing data.

When you specify any of the types containing" + ", you can both read
from and write to the file. The file is open for update. However, when
switching between reading and writing, you must include an inter­
vening fseek or rewind operation. You can specify the current posi­
tion for the fseek operation.

In accesses to text files, carriage returnlline feed combinations are
translated into a single line feed on input; line feed characters are
translated to carriage returnlline feed combinations on output. Also,
Ctrl+Z is interpreted as an end-of-file character on input. In files
opened for reading or reading/writing, the function checks for a
Ctrl+Z at the end of a file and removes it, if possible. Accesses to
binary files suppress all of these translations.

The fopen function returns a pointer to the open file. A NULL pointer
value indicates an error.

5-121

lopen

Example:

The following statements attempt to open a text file for reading.

#include <stdio.h>
#include <stdlib.h>

FILE *stream;

if «stream = fopen("data", "r")) == NULL)
printf("couldn't open data file");

Related Topics:

fclose, fcloseall, fdopen, ferror, fileno, freopen, open, setmode

Note: You will not receive an error if you open the same file multiple
times. However, if you write to a file using multiple handles,
the file contents are unpredictable.

5-122

FP OFF - FP SEG - -

Purpose:

Return the offset and segment of the long pOinter.

Format:

#include <dos.h>

unsigned FP _OFF(/ongptr)

unsigned FP _SEG(/ongptr)
/* Long pointer to storage address */

char far */ongptr;

Comments:

The FP _OFF and FP _SEG macros return the offset and segment, respec­
tively, of the long pointer /ongptr.

The FP _OFF macro returns an unsigned integer value representing an
offset. The FP _SEG macro returns an unsigned integer value repres-
enting a segment address. .

Under OS/2, references to segments are translated into selector
values.

Example:

#include <dos.h>

char far *p;
unsigned int sp;
unsigned int op;

sp = FP SEG(p);
op = FP)FF(p);

Related Topics:

segread

5-123

_'preset

Purpose:

Resets the floating-point math package.

Format:

#include <float.h>

/* Resets the floating-point math package *j

void _fpreset()

Comments:

The _fpreset function resets the floating-point math package. Usually,
you use this function with signal or the exec or spawn family of rou­
tines.

If a program traps floating-point-error signals (SIGFPE) with signal, the
program can safely recover from floating-point errors by calling
_fpreset and doing a longjmp.

CAUTION:
Under DOS, a child process run by an exec, spawn, or system function
might affect the floating-point state of the parent process if you use a
numeric coprocessor. You should call_fpreset after any exec,
spawn, or system call if the child process performed any operations
using the numeric coprocessor.

Example:

The following example establishes the routine fphandler as a
floating-point error handler. The main program produces a floating­
point error, then calls _fpreset to reset the floating-point math
package.

5-124

fpreset

#include <stdio.h>
#include <signal.h>
#include <setjmp.h>
#include <float.h>

mai n ()
{

double a = 1.0, b = 0.0, c;
int fphandler();

if (signal (SIGFPE, fphandler)

abort();
if (setjmp(mark) == 0)
{

(int (*)()) -1)

/* generate floating-point error */
c = a / b;
printf("Should never get here\n");

printf("Recovered from floating");
printf("-point error\n");

int fphandler(sig, num)
int sig, num;
{

printf("signal = %d, subcode = %d\n",sig, nurn);
/* Reinitialize floating-point package */

_fpreset ();
longjmp(mark, -1);

Output:

signal = 8, subcode = 131
Recovered from floating-point error

Related Topics:

execl, execle, execlp, execlpe, execv, execve, execvp, execvpe,
signal, spawnl, spawnle, spawnlp, spawnlpe, spawnv, spawnve,
spawnvp, spawnvpe

5-125

fprinH

Purpose:

Formats and prints characters to the output stream.

Format:

#include <stdio.h>

int fprintf(stream, format-string[, argument...])
/* Pointer to file structure */

FILE *stream;
/* Format control string */

const char *format-string;

Comments:

The 'prin" function formats and prints a series of characters and
values to the output stream. The 'prin" function converts each argu­
ment, if any, and puts out the stream according to the corresponding
format specification in the format-string.

The format-string has the same form and function as the format-string
argument for the prin" function. See the printf reference page for a
description of the format-string and the argument list.

The 'prin" function returns the number of characters printed.

5-126

fprintf

Example:

This example sends to the printer a line of asterisks for each integer
in the array count[]. The number of asterisks printed on each line
corresponds to an integer in the array.

#include <stdio.h>

int count [10J = {l, 5, 8, 3, 0, 3, 5, 6, 8, 10};
mai n ()
{
i nt i,j;

FILE *printer;

/* Open the printer for writing */
printer = fopen("prn","w");

/* Loop for each number in the array */
for (i=O; i < 10; i++)
{

/* Loop for each count */
for (j = 0; j < count[i]; j++)

/* Print asterisk */
fprintf(printer, "*");

/* Move to the next line */
fprintf(printer,"\n");

fclose (printer);
}

Related Topics:

cprintf, fscanf, printf, sprinH

5-127

fpule - fpulehar

Purpose:

Writes the character c to the output stream.

Formal:

#include <stdio.h>

/* Write a character to stream * /
int fputc(c, stream)
i nt c; /* Character to write * /
FILE *stream; /* Pointer to file structure */

int fputchar(c) /* Write a character to STDOUT */
int c; /* Character to write */

Commenls:

The fpule function writes the single character c to the output stream at
the current position. The fpulehar function is equivalent to fpule (c,
sldoul).

The fpule and fpulehar functions return the character written. A
return value of EOF can show an error. However, because the EOF

value is also a legitimate integer value, use ferror to tell whether this
is an error condition or the end of the file.

Nole: The fpule and fpulehar functions are equivalent to the pule and
pulehar macros.

5-128

fpule - fpulehar

Example:

The following example writes the contents of a buffer to a data
stream.

Note: Because the output occurs as a side effect within the second
expression of the for statement, the statement body is null.
You can use fputehar(buffer [iD instead of fpute(stream) in the
for statement to write contents of the buffer to the stdout data
stream. This statement has the same effect as
fpute(buffer[i],stdout).

#include <stdio.h>

FILE *stream;
char buffer[81];
int i;
int ch;

for (i = 0; (i < 81) &&
(ch = fputc(buffer[i] ,stream» != EOF); i++);

Related Topics:

fgete, fgetehar, pute, putehar

5-129

'puts

Purpose:

Copies a string to the output stream at the current position.

Formal:

#include <stdio.h>

/* Write a stri ng to stream * /
int fputs(string, stream)
const char *string; /* The string to put out */
FILE *stream; /* Pointer to file structure */

Commenls:

The 'puis function copies string to the output stream at the current
position. It does not copy the null character (\0) at the end of the
string.

The 'puis function returns the last character put out. If the input string
is empty, the return value is O. The return value EOF shows an error.

Example:

The following example writes a string to a stream.

#include <stdio.h>

FILE *stream;
int result;

result = fputs("data files have been"
"updated\n", stream);

Relaled Topics:

'gels, gels, puis

5-130

fread

Purpose:

Reads items from the input stream and stores them in the buffer.

Format:

#include <stdio.h>

size_t fread(buffer, size, count, stream)
void *buffer; /* Storage location for data */

size_t size; /* Item size in bytes */

size_t count; /* Maximum number of items to be read *
FILE * stream; /* Pointer to file structure */

Comments:

The tread function reads up to count items of size length from the
input stream and stores them in the given buffer. The file pointer
associated with stream, if there is one, increases by the number of
bytes read.

If the given stream was open in text mode, tread replaces carriage
return/line feed characters with single line-feed characters. This
replacement has no effect on the file pointer or the return value.

Under OS/2 in large and compact models, memory is reserved from
the OS/2 heap. Each allocation unit is memory-protected and limited
in size. In a read or tread call, if you give a read count that is greater
than the size of the allocated buffer, OS/2 issues a General Protection
Failure message, even if the file being read is small enough to fit
within the boundaries of the buffer.

The fread function returns the number of full items actually read,
which can be less than count if an error occurs or if the file end is met
before reaching count.

5-131

tread

Example:

The following statement reads 100 binary long integers from the
stream.

#include <stdio.h>

FILE *stream;
long list[100];
int numread;

stream = fopen("data": "r+b");

numread = fread((char *)list, s;zeof(long),
100. stream);

Related Topics:

fwrite, read

5-132

Purpose:

Frees a block of storage.

Format:

/* Required for function declarations */
#include <stdlib.h>

void free(ptr)
/* Poi nter to a reserved block of storage * /

void *ptr;

Comments:

free

The free function frees a block of storage. The ptr variable points to a
block previously reserved with a call to calloe, malloe, or realloe.
The number of bytes freed is the number of bytes specified when you
reserved (or reallocated, in the case of realloc) the block of storage.
After the call, the freed block is available for reserving again. If ptr is
NULL, free ignores it.

There is no return value.

Example:

The following example reserves 100 bytes and then frees them.

#include <stdlib.h>
#include <stdio.h>

void *alloc;

alloc = malloc(lOO);

if (alloc 1= NULL) /* Test for a valid pointer */
free(alloc); /* Free storage for the heap */

5-133

free

Related Topics:

calloc, malloc, realloc

Note: Attempting to free an incorrect ptr (a pointer not allocated with
calloc, malloc, or realloc) can affect the subsequent reserving
of storage and cause errors. In the small and medium models,
a call to free is equivalent to a call to _"free. In the compact
and large models, a call to free is equivalent to a call to _ffree.

5-134

freect

Purpose:

Returns the number of items of a given size for which you can
reserve storage in the default data segment.

Format:

#include <malloc.h>

unsigned int _freect(size)
size_t size; /* Item size in bytes */

Comments:

The _freect function tells you how much storage is available for
dynamic allocation. The_freect function returns the number of items
for which you can reserve storage in the default data segment.

The _freect function returns the number of items as an unsigned
integer.

Example:

#include <malloc.h>
#include <stdio.h>

mai nO
{
printf("# of integers that can
be dynamically allocated\n")
printf("\t before malloc call = %u\n",
_freect(sizeof(int)));
malloc(500*sizeof(int));
printf("# of integers that can
be dynamically allocated\n");
printf("\t after malloc call %u\n",
_freect(sizeof(int)));
}

5-135

freect

Output:
(Actual numbers may vary slightly.)

of integers that can be dynamically allocated
before malloc call = 15312

of integers that can be dynamically allocated
after rna 11 oc call = 15059

Related Topics:

calloc, _expand, malloc, _memavl, _msize, realloc

5-136

freopen

Purpose:

Closes a file and reassigns a stream.

Format:

#include <stdio.h>

FILe freopen(pathname, type, stream)
const char *pathname; /* Path name of new file */
const char *type; /* Type of access permitted * /
FILE *stream; /* Pointer to file structure *

Comments:

The freopen function closes the file currently associated with stream
and reassigns stream to the file specified by pathname. You can use
the freopen function to redirect the preopened files stdin, stdout,
stderr, stdaux, and stdprn to files that you specify. The freopen func­
tion opens the new file associated with stream with the given type,
which is a character string specifying the type of access requested for
the file.

Type Description

"r" Open a text file for reading. (The file must exist.)

"w" Create a text file for writing. If the given file exists, erase
its contents.

"a"

"r+"

"w+"

"rb"

"wb)'

Open a texUile for writing additional data at the end of the
file. Create the file first if it does not exist.

Open a text file for both reading and writing. (The file
must exist.)

Create a text file for both reading and writing. If the given
fi Ie exists, erase its contents.

Open a binary file for reading. The file must exist.

Create a binary file for writing. If the given file exists, its
contents are destroyed.

5-137

'reopen

"ab" Open a binary file for writing at the end of that file. Create
the file first if it does not exist.

"r+b" or "rb+"
Open a binary file for both reading and writing. The file
must exist.

"w+b" or "wb+"
Create a binary file for both reading and writing. If the
given file exists, freopen erases its contents.

"a+b" or "ab+"
Open a binary file for both reading and adding to its end.
Create the file first if it does not exist.

"a+" Open the file for reading and for writing additional data to
the end of the file. Create the file first if it does not exist.

CAUTION:
Use the "w", "w+", "wb", "wb+ and "w+b" modes with care; they
can destroy the contents of existing files.

When you open a file with "a" or "a+" as the value of type, all write
operations take place at the end of the file. Although you can reposi­
tion the file pointer using fseek or rewind, these functions always
move the file pointer back to the end of the file before carrying out
any write operation. Thus, you cannot write over existing data.

When you specify any of the types containing "+", both reading and
writing are allowed, and the file is open for updating. However, when
switching between reading and writing, you must code an intervening
fseek or rewind operation. You can specify the current position for
the fseek operation.

In accesses to the text files, the freopen function translates carriage
returnlline feed characters to a single line-feed character when it
puts in the data stream. It translates line feed characters to carriage
returnlline feed combinations when it puts out the data stream when
accessing binary files.

The freopen function returns a pointer to the newly-opened file. If an
error occurs, freopen closes the original file and returns a NULL

pointer value.

5-138

freopen

Example:

After writing one line to the standard output file, this example closes
stdout and opens a new file called altout. The output from the second
printf call is directed to the altout file rather than to stdout.

#include <stdio.h>

FILE *strearnl;
rna in ()
{

}

printf("This line goes to stdout.\n");
strearnl=freopen ("a ltout II , "W" ,s tdout) ;
printf("This line goes to altout.\n");

Related Topics:

fclose, fcloseall, fdopen, fileno, fopen, open, setmode

5-139

frexp

Purpose:

Breaks down a floating-point value into a normalized fraction and an
integer power of 2.

Format:

#include <math.h>

double frexp(x, expptr)
double x; 1* Floating-point value */
int *expptr; 1* Pointer to stored integer exponent */

Comments:

The frexp function breaks down the floating-point value x into a term
m for the mantissa and another term n for the exponent, such that the
absolute value of m is greater than or equal to 0.5 and less than 1.0
and x= m*2 to the power of n. The frexp function stores the integer
exponent n at the location to which expptr points.

The frexp function returns the mantissa term m. If x is zero, the func­
tion returns 0 for both the mantissa and exponent. There is no error
return value.

5-140

frexp

Example:

This example decomposes the floating-point value of x, 16.4, into its
characteristic 0, its mantissa .5125, and its exponent 5. It stores the
characteristic and mantissa in y and the exponent in n. The decom­
position is computed in base 2.

#include <stdio.h>
#include <rnath.h>

rnai n ()
{

i nt n;
double x, y;

x = 16.4;
/* y is .5125, n is 5 */
y = frexp(x, &n);
printf("x %If, y %If, n %d\n", x, y, n);

Related Topics:

Idexp, modi

5-141

'scan'

Purpose:

Reads data from a stream into specified locations.

Format:

#include ~stdio.h>

int fscanf(stream, format-string [,argument ...])
FILE *stream; 1* Pointer to file structure */
const char *format-string; /* Format control string * /

Comments:

The 'scan' function reads data from the current position of the speci­
fied stream into the locations given by the arguments, if any. Each
argument must be a pointer to a variable with a type that corresponds
to a type specifier in the format-string. The format-string controls the
interpretation of the input fields and has the same form and function
as the format-string argument for the scan' function. See the scan'
reference page for a description of the format-string.

The 'scan' function returns the number of fields that it successfully
converted and assigned. The return value does not include fields that
'scan' read but did not assign.

The return value is EOF for an attempt to read at end-of-file. A return
value of 0 means that 'scanf assigned no fields.

5-142

fscanf

Example:

This example opens the file DATA for reading and then scans this file
for a string, a character, a long integer value, and a floating-point
value.

#inc1ude <stdio.h>

FILE *stream;
long 1;
float fp;
char s [81J ;
char c;

stream = fopen("data", "r");

/* Put in various data. */

fscanf(stream, "%5", s);
fscanf (stream, "%c", &c);
fscanf(stream, "%ld" , &1);
fscanf(stream, "%f" , &fp);

Related Topics:

cscanf, fprlntf, scanf, sscanf

5-143

'seek

Purpose:

Moves the file pointer to a new location.

Format:

#include <stdio.h>

int fseek(stream, offset, origin)
FILE *stream; 1* Pointer to file structure *
long int offset; 1* Number of bytes from origin */
int origin; 1* Initial position */

Comments:

The 'seek function moves any file pointer, associated with stream to a
new location that is offset bytes from the origin. The next operation
on the stream takes place at the new location. On a stream open for
update, the next operation can be either a reading or a writing opera­
tion.

The origin must be one of the following constants, defined in
stdio.h:

Origin Definition

SEEK_SET Beginning of file

SEEK_CUR Current position of file pointer

SEEK_END End of file.

The fseek function can reposition the pointer anywhere in a file. You
can also position the pointer beyond the end of the file. However, an
attempt to position the pointer before the beginning of the ,file causes
an error. The 'seek function clears the end-of-file indicator, even
when origin is SEEK_END.

The fseek function returns the val ue 0 if it successfully moves the
pOinter. A nonzero return value shows an error. On devices that
cannot seek, such as screens and printers, the return value is unde­
fined.

5-144

fseek

Example:

The following example opens a file DATA for reading. After per­
forming input operations (not shown), it moves the file pointer to the
beginning of the file.

#include <stdio.h>
rnai n ()
{
FILE *stream;
i nt result;

stream = fopen("data", "r");

result = fseek(strearn, OL, SEEK_SET);
}

Related Topics:

ftell, Iseek, rewind

Note: For streams opened in text mode, fseek has limited use
because carriage return/line feed translations can produce
unexpected results. The only fseek operations that work on
streams opened in text mode are seeking with an offset of zero
relative to any of the origin values or seeking from the begin­
ning of the file with an offset value returned from a call to ftell.

5-145

'stat

Purpose:

Obtains information about an open file.

Format:

#include <sys\types.h>
#include <sys\stat.h>

int fstat(handle, buffer)
1* Handle referring to open file */

int handle;
1* Pointer to structure to store results */

struct stat * buffer;

Comments:

The Istat function obtains information about the open file associated
with the given handle and stores it in the structure to which buffer
points. The sys\stat.h include file defines the stat structure. The stat
structure contains the following fields:

Field

st_nlink

5-146

Value

Bit mask for file mode information. The Istat function
sets the S_IFCHR bit if handle refers to a device. It sets
the S_IFREG bit if handle refers to an ordinary file. It sets
user read/write bits accordi ng to the perm ission mode
of the file.

The drive number of the disk containing the file or
handle for a device. This field is not defined under OS/2.

The drive number of the disk containing the file or
handle for a device. (This is the same as st_dev. It is
not defined under OS/2.)

Always 1.

The size of the file in bytes.

fstat

sl_alime The time of the last change in the file. (This is the same
as sl_mlime and 51_clime.)

sl_mtime The time of the last change in the file. (This is the same
as sl_alime and 51_clime.)

The time of last change in file. (This is the same as
sl_allme and sl_mtime.

There are three additional fields in the sial structure type that do not
contain meaningful values under DOS.

The Islal function returns the value 0 if it obtains the file status infor­
mation. A return value of -1 indicates an error; in this case, Islal sets
errno to EBADF, showing an incorrect file handle.

Example:

This program uses Islal to report the size of a file named DATA.

#include <time.h>
#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <stdio.h>
#include <io.h>

struct stat buf;
i nt fh, result;
char *buffer = "A line to output";
mai nO
{
fh = open("tmp\\data", O_CREAT I

O_WRONLY IO_TRUNC);
write (fh, buffer, strlen(buffer));

result = fstat(fh, &buf);

if (result == 0) {
printf("file size is %ld\n",

buf.st_size);
printf("drive number is %d\n",

buf.st dey);
prin~f("time modified is %s\n",
ctime(&buf.st atime));
} -

else printf("Bad file handle\n");
}

5-147

'stat

Related Topics:

access, chmod, file length, stat

Note: If the given handle refers to a device, the size and time fields in
the stat structure are not meaningful.

5-148

Purpose:

Gets the current position of the file pointer.

Format:

#include <stdio.h>

/* Pointer to file structure * /
long int ftell(stream)
FILE *stream;

Comments:

Hell

The Hell function gets the current position of any file pointer associ­
ated with stream. The Hell function expresses the position as an
offset relative to the beginning of the stream.

The Hell function returns the current position. On error, f!~(j;1I returns
-1 L and sets errno to a non-zero val ue.

Possible values for errno are:

EBADF Incorrect file number.

EINVAL Non-valid stream argument.

On devices that cannot seek, such as screens and printers, or when
stream does not refer to an open file, the return value is undefined.

5-149

ftell

I;xa~ple:

The following example opens the file DATA for reading. After per­
forming input operations (not shown), it puts the current file pointer
position into the long variable position.

#include <stdio.h>

FILE *stream;
long pas it i on;

stream = fopen("data", "rb");

position = ftell (stream);

Related Topics:

fsee~, Iseek, tell

Note: Text mode causes translation of carriage return and line feed
characters. The value returned by flell might not reflect the
o~set, in bytes, of the physical position of the file pointer in
streams opened in text mode. Use flell in conjunction with the
fseek function to remember and return to file locations cor­
rectly.

The current file position returned by flell is not necessarily the posi­
tion at which the next write operation would occur. For example,
when a file is opened for appending, flell returns a position at the
beginning of the file, even though the next write operation would
occur at the end.

5-150

Purpose:

Gets the current time and stores it.

Format:

#include <sys\types.h>
#include <sys\timeb.h>

void ftime(timeptr)
1* Pointer to structure defined in sys\timeb.h */

struct timeb *timeptr;

Comments:

ftime

The ftime function gets the current time and stores it in the structure
to which timeptr points. The sys\limeb.h include file contains the
definition of the limeb structure. It contains four fields: time, millitm,
timezone, and dstf/ag.

The time field gives the time in seconds since 00:00:00 Greenwich
Mean Time, January 1, 1970. The millitm field gives the fraction of a
second, in milliseconds. The timezone field gives the difference in
minutes between Greenwich Mean Time and local time, moving west­
ward. The ftime function sets the value of timezone from the value of
the global variable timezone (see Izset). The dstflag is nonzero if
Daylight Saving Time is currently in effect for the local time zone. For
an explanation of how daylight savings time is determined, see tzsel
in this chapter.

The ftime function gives values to the fields in the structure to which
timeptr points. It does not return a value.

5-151

ftime

Examples:

This example polls the system clock, converts the current time to a
character string, and prints the string. The following is the format of
the output:

the time is Tues May 05 10:13:55 1987

This example saves the time data in the structure timebuffer.

#include <sys\types.h>
#include <sys\timeb.h>
#include <stdio.h>
#include <time.h>

struct timeb timebuffer;

ftime{&timebuffer);
printf{"the time is %s\n",

ctime{&{timebuffer.time)));

Related Topics:

asctlme, ctime, gmtime, localtime, time, tzset

5-152

Purpose:

Writes items to the output stream.

Format:

#include <stdio.h>

size_t fwrite(buffer, size, count, stream)
/* Poi nter to data to be written * /

const void *buffer;
size _ t size; /* Item size in bytes * /

/* Maximum number of items to be written */

size_t count;
FILE *stream;

Comments:

/* Pointer to file structure *

fwrite

The 'write function writes up to count items of size length from buffer
to the output stream. The file pointer associated with stream, if there
is a pointer, increases by the number of bytes actually written.

If the given stream is open in text mode, fwrite replaces each car­
riage return with a carriage-returnlline feed pair. The replacement
has no effect on the return value.

The 'write function returns the number of full items actually written,
which can be less than count if an error occurs.

5-153

fwrite

Example:

The following example writes 100 long integers to a stream in binary
format.

#include <stdio.h>

FILE *stream;
long list[lOO];
i nt numwrit ten;

stream = fopen("data", "w+b");

numwritten = fwrite((char *)list, sizeof(long),
100, stream);

Related Topics:

fread, write

5-154

gcvt

Purpose:

Converts a floating-point value to a character string and stores the
string in a buffer.

Format:

/* Required for function declarations */
#include <stdlib.h>

char *gcvt(value, ndec, buffer)
double value; /* Value to convert */
int ndec; /* Number of significant digits stored */
char *buffer; /* Storage location for result */

Comments:

The gcvt function converts a floating-point value to a character string
and stores the string in the buffer. The buffer should be large enough
to hold the converted value and a null character (\0), which gcvt auto­
matically adds to the end of the string. There is no provision for over­
flow.

The gcvt function tries to produce ndec significant digits in FORTRAN F

format. Failing that, it produces ndec significant digits in FORTRAN E

format. Trailing zeros might be suppressed in the conversion.

A FORTRAN F number has the following format:

[sign]digit[digit . ..] .[digit]

A FORTRAN E number has the following format:

[sign]digit.digit[digit . ..] E[sign]digit digit

The gcvt function returns a pointer to the string of digits. There is no
error return value.

5-155

gcvt

Example:

The following example converts the value -3.1415e5 to a character
string and places it in the character array buffer.

#include <stdlib.h>

char buffer[50];
int precision = 7;

/* Buffer contains "-314150.0\0" */
gcvt(-3.1415e5, precision, buffer);

Relaled Topics:

alol, aloi, alol, ecvl, levi

5-156

gete - getehar

Purpose:

Reads a single character and increases the file pointer.

Format:

#include <stdio.h>

/* Read a character from stream * /
int getc(stream)
FILE *stream; /* Pointer to file structure */

int getchar(); /* Read a character from stdin */

Comments:

The getc function reads a single character from the current stream
position and increases the associated file pointer, if there is one, to
point to the next character. The getchar function is identical to
getc(stdin).

The getc and getchar functions return the character read. A return
value of EOF shows an error or end-of-file condition. Use ferror or feof
to determine whether an error or an end-ot-tile condition occurred.

5-157

gete - getehar

Example:

The following example gets a line of input from the stdin data stream.
You can also use gete(stdin) instead of geteharO in the for statement
to get a line of input from stdin.

#include <stdio.h>

FILE *stream;
char buffer[81] ;
i nt i. ch;

for (i = 8; (i < 88) && ((ch = getchar()) != EOF)
&&(ch != '\n'); i++)

buffer[i] = ch;

buffer[i] = '\8';

Related Topics:

fgete, fgetchar, geteh, getche, pute, putchar, ungete

Note: The gete and getchar routines are identical to fgete and
fgetehar, but are macros, not functions.

5-158

getch

Purpose:

Reads a single character from the keyboard without echoing it on a
screen or printer.

Format:

/* Required for function declarations *j

#i ncl ude <conio.h>

int getch();

Comments:

The getch function reads, without echoing, a single character directly
from the keyboard. If you type Ctrl-C, the system ends your program.

The getch function returns the character read. In case of error in the
OS/2 mode, getch returns EOF.

Example:

The following example gets characters from the keyboard until it finds
a non-blank character.

#include <conio.h>
#include <ctype.h>

i nt ch;
/* This loop gets characters until a nonblank *
* character is seen. Preceding blanks are *
* discarded. *j

do {
ch = getch () ;
}
while (isspace(ch));

Related Topics:

cgets, getche, getchar

5-159

getche

Purpose:

Reads a single character from the keyboard and echoes it on a
screen or printer.

Format:

/* Required for function declarations */
#include <conio.h>

i nt getche()

Comments:

The getche function reads a single character from the keyboard and
displays the character read. Under DOS, if you type Ctrl+Break, the
system performs a DOS INT 23H to end your rogram.

The getche function returns the character read. There is no error
return value.

Example:

The following example gets a character from the keyboard and
echoes it to the screen. If the character is an uppercase letter,
getche converts it to lowercase and writes over the old character.

#include <conio.h>
#include <ctype.h>

int ch;

ch = getche () ;
if (isupper(ch»

cprintf("\b%c", _tolower(ch»;

Related Topics:

cgets, getch, getchar

5-160

Purpose:

Gets the full pathname of the current working directory.

Format:

/* Required for function declarations */
#include <direct.h>

char *getcwd(pathbuf, n)
/* Storage location for pathname * /

char * pathbuf;
int n; /* Maximum length of pathname */

Comments:

getcwd

The getcwd function gets the full pathname of the current working
directory and stores it at pathbuf. The integer argument n specifies
the maximum length for the pathname. An error occurs if the length
of the pathname (including the terminating null character) exceeds n.

The pathbuf argument can be NULL; getcwd wi II reserve a buffer of at
least n bytes (using malloc) to store the pathname. If the current
working directory string is more than n bytes, the reserved buffer will
be large enough to contain the string. You can later free this buffer
using the getcwd return value as a pointer to the buffer in the free
function.

The getcwd function returns pathbuf. A NULL return value indicates an
error and sets errno to one of the following values.

Value

ENOMEM

ERANGE

Meaning

Not enough storage space available to reserve n bytes
(when NULL argument is pathbuf)

Path name longer than n characters.

5-161

getcwd

Example:

The following example stores the name of the current working direc­
tory (up to 128 characters) in a buffer.

#include <direct.h>
#include <stdio.h>

char buffer[129];

if (getcwd(buffer, 128) == NULL)
perror("getcwd error");

Related Topics:

chdlr, mkdir, rmdlr

5-162

Purpose:

Searches environment variables for varname.

Format:

/* Required for function declarations */
#include <stdlib.h>

char *getenv(varname);
const char *varname; /* Name of environment variable */

Comments:

getenv

The getenv function searches the list of environment variables for an
entry corresponding to varname. Environment variables define the
environment (for example, the default search path for libraries linked
with a program) in which a process runs.

The getenv function returns a pointer to the environment table entry
containing the current string value of varname. The return value is
NULL if the given variable is not currently defined.

Example:

The following example gets the value of the PATH environment vari­
able. If an entry such as PATH=A:\BIN;B:\SUE is in the environment,
pathvar points to A:\BIN;B:\SUE.

#include <stdlib.h>

char *pathvar;

pathvar = getenv("PATH");

5-163

getenv

Related Topics:

putenv

Note: Do not directly change environment table entries. To change
an entry, use the putenv function. To change the returned
value without affecting the environment table, use strdup or
strcpy to make a copy of the string. The getenv and putenv
functions use the global variable environ to get access to the
environment table. The putenv function can change the value
of environ, thus invalidating the envp argument to the main
function.

5-164

Purpose:

Returns the process identification.

Format:

/* Required for function declarations */
#include <process.h>

int getpid()

Comments:

getpid

The getpid function returns an integer, the process identification,
which uniquely identifies the calling process. There is no error return
value.

Example:

The following example prints FILExxxxx, where xxxxx is the process
identification.

#include <process.h>
#include <string.h>
#include <stdio.h>
char filename[ll], pid[6];

strcpy(filename, "FILE");
strcat(filename, itoa(getpid(),pid,lO));
printf("Filename is ~os\n", filename);

Related Topics:

mktemp

5-165

gets

Purpose:

Reads a line from the standard input-data stream stdin.

Format:

#include <stdio.h>

char *gets(buffer)
/* Storage location for input string */

char * buffer;

Comments:

The gets function reads a line from the standard input stream stdin
and stores it in buffer. The line consists of all characters up to and
including the first newline character (\n). The gets function then
replaces the newline character with a null character (\0) before
returning the line.

The gets function returns its argumertt. A NULL pointer shows an error
or an end-of-file condition. Use ferror or feof to tell which of these
conditions occurred.

Example:

The following statement gets a line of input from stdin:

#include <stdio.h>

char 1 i ne [100] ;
char *result;

result = gets(line);

Related Topics:

fgets, fputs, puts

5-166

getw

Purpose:

Reads the next binary value from a stream and increases the file
pointer.

Format:

#include <stdio.h>

int getw(stream)
FILE *stream; /* Pointer to file structure */

Comments:

The getw function reads the next binary value of type int from the
specified input stream and increases the associated file pOinter, if
there is one, to point to the next unread character. The getw function
does not assume any alignment of items in the stream.

The getw function returns the integer value read. A return value of
EOF can show an error or the end of the file, but the EOF value is also
a legitimate integer value. Use feof or ferror to verify an whether this
return value is an end-of-file or error condition.

Example:

The following example reads a binary word from the input stream. If
it fi nds an error, it prints getw failed and resets the error flag for the
stream.

#include <stdio.h>
#include <stdlib.h>

FILE *stream;
int i;

= getw(stream);

if (ferror(stream))
printf("getw failed");
clearerr(stream);
}

5-167

getw

Related Topics:

putw

Note: IBM provides the getw function primarily for compatibility with
previous libraries. Portability problems can occur with getw
because the size of an int and ordering of bytes within an int
differ between systems.

5-168

gmtime

Purpose:

Converts time, a long integer variable, to a structure variable.

Format:

#include <time.h>

struct tm *gmtime(time)
const time_t *time; /* Pointer to stored time */

Comments:
The gmtime function converts a time value to a structure. The value
time represents the seconds elapsed since 00:00:00, January 1, 1970,
Greenwich Mean Time; this value is usually obtained from a call to
time.

The gmtime function breaks down the time value and stores it in a tm
structure, defined in time.h. The structure reflects Greenwich Mean
Time, not local time.

The fields of the 1m structure store those values:

Field

tm_sec

1m_min

1m_hour

Im_mday

Im_mon

tm_year

Im_wday

Im_yday

Im_isdsl

Value Siored

Seconds

Minutes

Hours (0-24)

Day of month (1-31)

Month (0-11; January = 0)

Year (current year minus 1900)

Day of week (0-6; Sunday = 0)

Day of year (0-365; January 1 = 0)

Always 0 for gmlime. For locallime this val ue is
nonzero if daylight savings time is in effect, and zero
otherwise.

5-169

gmtime

DOS does not understand dates prior to 1980. If time represents a
date before January 1, 19Sq, gmtime returns NULL.

The gmtime function returns a pointer to the structure result. There is
no error return value.

Example:

This program uses the gmtlme function to convert a long-integer rep­
resentation of Greenwich Mean Time to a structure named newtime,
then uses asctime to convert this structure to an output string.

#include <stdio.h>
#include <time.h>

struct tm *newtime;
time_t ltime;
mai n ()
{
time(&1time);
newtime = gmtime(<ime);
printf ("Greenwich Mean Time is %s\n",

asctime(newtime));

Related Topics:

asctlme, ctime, ftime, localtime, time, tzset

Note: The gmtime and localtime functions use a single, statically­
allocated structure to hold the result. Each call to one of these
functions destroys the result of the previous call.

5-170

Purpose:

Reserves storage for huge arrays.

Format:

/* Required only for function declarations */
#include <malloc.h>

void huge *halloc(n,size)
long n; /* Number of elements */

/* Length in bytes of each element */

size _ t size;

Comments:

halloc

The halloe function call DOS to reserve storage space for a huge array
of n elements, each of length size bytes. Halloe resets each element
to o.

If the size of the array is greater than 128K bytes, the size of an array
element must be a power of 2.

Halloe returns a huge pointer to the reserved space. The storage
space to which the return value points is aligned for storage of any
type of object. To get a pointer to a type other than void, use a type
cast on the return value. The return value is NULL if there is not
enough storage space available, or if the huge array has been speci­
fied illegally.

5-171

halloc

Example:

This example allocates space for 80000L long integers and sets the
space to zero.

#include <stdio.h >
#include <malloc.h>

rna; n ()
{

long huge *lalloc;
lalloc = '

(long huge *)halloc(80000L,sizeof(long));
if (lalloc == NULL)

printf("Insufficient memory available");
else

printf("Memory successfully allocated");

Related Topics:

calloc, free, hfree, malloc, realloc, _fmalloc,_nmalloc

Note: Unlike the related memory allocation functions _fmalloc and
_nmalloc, halloc performs no heap management. It allocates
strictly on the basis of what storage is available from DOS.

5-172

Purpose:

Frees a block of space in storage.

Format:

/* Required only for function declarations */
#include <malloc.h>

void hfree(ptr)
/* Pointer to reserved storage block */

void huge *ptr;

Comments:

hfree

The hfree function frees a block of space in storage. The ptr points to
a storage block previously reserved through a call to halloc. The
number of bytes freed is the number of bytes specified when you
reserved the block. After the call, the freed block is available
storage.

Note: Attempting to free an incorrect ptr (a pointer not reserved with
halloc) can affect subsequent allocation and can cause errors.
The hfree function performs no heap management. It merely
gives back to DOS the allocated block.

5-173

hfree

Example:

The following example reserves 80000 bytes and then frees them.

#include <malloc.h>

void huge *alloc;

alloc = halloc(80000L.sizeof (char));

if (alloc != NULL) /* Test for valid pointer */
hfree(alloc); /* Free memory for the heap */

Related Topics:

halloc

5-174

hypot

Purpose:

Calculates the length of the hypotenuse.

Format:

#include <math.h>

double hypot(x,Y)
double x, y; /* Floating-point values */

Comments:

The hypot function calculates the length of the hypotenuse of a right
triangle based on the lengths of two sides x and y. A call to hypot is
equal to:

sqrt(x*x + y*y);

The hypot function returns the length of the hypotenuse. If an over­
flow results, the function sets errno to ERANGE and returns the value
HUGE_VAL.

Example:

The following example calculates the hypotenuse of a right triangle
with sides of 3.0 and 4.0.

#include <math.h>

double x, y, z;

x = 3.0;
y = 4.0;
z = hypot(x,y); /* z = 5.0 */

Related Topics:

cabs

5-175

inp

Purpose:

Reads one byte from the input port.

Format:

/* Required for function declarations */
#include <conio.h>-

int inp(port)
unsigned port; /* Port number */

Comments:

The inp function reads one byte from the input port specified by port.
The port argument can be any unsigned integer number in the range
o to 65535. There is no error return value.

Example:

The following example reads a byte from the port to which port is cur­
rently set.

#include <conio.h>
mainO
{
unsigned port=0x64;
char result;
result = inp(port);
printf("%0x\n",(int)result);
}

Related Topics:

outp

Note: Under OS/2, inp uses privileged IN instructions that require you
to set up your system to get access to the input/output privilege
level (IOPL) and to provide a .DEF file for your program. Use inp
only for getting access to ports for graphics adapters. For
more information on 10PL, see the IBM Operating System/2
Technical Reference book.

5-176

Purpose:

Performs an 8086 software interrupt.

Format:

#include <dos.h>

int int86(intno, inregs, outregs)
int intno; /* Interrupt number */

/* Register values on call */
union REGS *inregs;

/* Register values on return */
union REGS *outregs;

Comments:

int86

Under DOS, the int86 function performs the 8086 software interrupt
specified by the interrupt number intno. Before performing the inter­
rupt, int86 copies the contents of inregs to the corresponding regis­
ters. After the interrupt returns, the function copies the current
register values to outregs. It also copies the status of the system
carry flag to the cfJag field in outregs. The inregs and outregs argu­
ments are unions of type REGS. The include file dos.h. defines the
union type REGS.

Use the int86 function to perform DOS interrupts directly. The int86
function is not available under 05/2. If you use int86 for 05/2, you
receive an unresolved external reference at link time.

The return value is the value in the AX register after the interrupt
returns. If the cf/ag field in outregs is nonzero, an error has occurred,
and the doserrno variable is also set to the corresponding error code.

5-177

int86

Example:

This program uses the int86 to call the bios video service (lNT [10]) to
change the size of the cursor.

The default values are:

Monochrome card: 12 13,
Color card: 6 7
43-line EGA: 4 5

#define VIDEO_IO OxlO
#define SET_CRSR 1

#include <dos.h>
#incluse <stdio.h>

union REGS regs;

main ()
{
int top, bot;

printf ("Enter new cursor top and bottom: ");
/* Get new cursor size from user */

scanf ("%d %d", &top, &bot);

regs.h.ah = SET_CRSR; /* Set up for cursor
change call */

regs.h.ch = top;
regs.h.cl = bot;

int86 (VIDEO_la, ®s, ®s); /*Execute interrupt */
}

Related Topics:

bdos, Intdos, intdosx, int86x

5-178

Purpose:

Performs an 8086 software interrupt.

Format:

#include <dos.h>

int int86x(intno,inregs,outregs,segregs)
int intno;

/* Register values on call */
union REGS *inregs;

/* Register values on return */
union REGS *outregs;

/* Segment register value on call */
struct SREGS *segregs;

Comments:

int86x

Under DOS, the int86x function performs the 8086 software interrupt
specified by the interrupt number intno. Unlike the int86 function,
int86x accepts segment register values in segregs, letting programs
that use large model data segments or far pointers specify the
segment or pointer used during the system call. Before performing
the specified interrupt, int86x copies the contents of in regs and
segregs to the corresponding registers. The int86x function uses only
OS and ES register values in segregs. After the interrupt returns, the
function copies the current register values to outregs, copies the
current ES and OS values to segregs, and restores OS. It also copies
the status Of the system carry flag to the cf/ag field inoutregs. The
in regs and outregs arguments are unions of type REGS. The segregs
argument is a structure of type SREGS. The include file dos.h defines
these types.

Use the Int86x function to call DOS interrupts that take an argument in
the ES register or take a OS register value that is different from the
default data segment.

The return value is the value in the AX register after the interrupt
returns. If the cf/ag field in outregs is nonzero, an error has occurred,

5-179

int86x

and int86x sets the doserrno variable to the corresponding error
code.

This function is not available under OS/2.

Example:

The following example uses the int86x function to produce software
interrupt Ox21, whiph then makes the DOS CHANGE ATIRIBUTES system
call. This example uses the int86x function because the filename to
which it refers can be in a segment other than the default data
segment. (A far pointer is the reference to it.) You must explicitly set
the DS register with the SREGS structure.

#include <signal .h>
#include <dos.h>
#include <stdio.h>
#include <process.h>

/* INT 21H makes system calls */
#define SYSCALL Ox21

/* System call 43h - Change Attributes */
#define CHANGE_ATTR Ox43

/* The filename is in a 'far ' data segment */
char far *filename = lIint86x.c ll

;

union REGS inregs, outregs;
struct SREGS segregs;
int result;
mai n ()
{

/* AH is system call number */
inregs.h.ah = CHANGE_ATTR;

/* AL is function (get attributes) */
inregs.h.al = 0;

/* DS:DX points to filename */
inregs.x.dx = FP_OFF(filename);
segregs.ds = FP_SEG(filename);
result = int86x(SYSCALL, &inregs, &outregs,

&segregs);
if (outregs.x.cflag) {

printf(lIcan't get file attributes;
error number %d\nll,result);
exit(1);

}
else

printf(IIAttribs = %#x\nll, outregs.x.cx);

5-180

int86x

Output:

If the file is open only for reading, the following output is displayed:

Attribs = OxOOOl

Related Topics:

bdos, intdos, intdosx, int86, segread, FP _SEG

Note: You can obtain segment values for the segregs argument by
using either the segread function or the FP _SEG macro.

5-181

intdos

Purpose:

Makes a DOS system call.

Format:

#include <dos.h>

int intdos(inregs, outregs)
/* Register values on call */

union REGS *inregs;
/* Register values on return */

union REGS *outregs;

Comments:

The intdos function makes the DOS system call specified by register
values defined in inregs and returns the effect of the system call in
outregs. The inregs and outregs arguments are unions of type REGS.

The dos.h include file defines the REGS union type.

To make a system call, intdos performs a DOS INT 21H instruction.
Before performing the instruction. the function copies the contents of
inregs to the corresponding registers. After the DOS INT instruction
returns, intdos copies the current register values to outregs. It also
copies the status of the system carry flag to the cfJag field in outregs.
If this field is nonzero, the system call sets the flag to show an error
condition.

Use the intdos routine to make DOS system calls that take arguments
in regi&ters other than DX (DH/DL) and AL or to make system calls that
show errors by setting the carry flag.

The intdos function returns the value of the AX register after the
system call is complete. If the cfJag field in outregs is is nonzero, an
error has occurred. The intdos function sets _do$errno to the corre­
spondi ng error code.

5-182

intdos

This function is not available under OS/2. For information on calling
OS/2 functions from a C program, see" Application Program Interface"
in the IBM Operating Systeml2 Technical Reference book.

Example:

Suppose that the current date is March 31, 1986. In the following
example, the DOS INT 2AH system call makes the date available for
printing as "date is 3/3111986".

#include <dos.h>
#include <stdio.h>

union REGS inregs. outregs;
rnai n ()
{

inregs.h.ah = Ox2a;
intdos(&inregs. &outregs);
printf("date is %d/%d/%d\n". outregs.h.dh.

outregs.h.dl. outregs.x.cx);

Related Topics:

bdos, intdosx

5-183

intdosx

Purpose:

Makes a DOS system call.

Format:

#include <dos.h>

int intdosx(inregs, outregs, segregs)
/* Register values on call */

union REGS *inregs;
/* Register values on return */

union REGS *outregs;
/* Segment register values on call */

struct SREGS *segregs;

Comments:

The intdosx function makes the DOS system call specified by register
values defined in in regs and returns the effect of the system call in
outregs. Unlike the intdos function, intdosx accepts segment register
values in segregs, letting programs that use long model data seg­
ments or far pointers specify which segment or pointer should be
used during the system call. The inregs and outregs arguments are
unions of type REGS. The segregs argument is a structure of type
SREGS. The include file dos.h defines these types.

To make a system call, intdosx performs a DOS INT 21H instruction.
Before performing the instruction, the function copies the contents of
in regs and segregs to the corresponding registers. The intdosx func­
tion uses only the OS and ES register values in segregs. After the
DOS INT instruction returns, intdosx copies the current register values
to outregs, copies the current OS and ES registers to segregs, and
restores OS. It also copies the status of the system carry flag to the
cflag field in outregs. If this field is nonzero, the system call sets the
flag to show an error condition.

The intdosx function makes DOS system calls that take an argument in
the ES register or that take a OS register value that is different from
the default data segment.

5-184

intdosx

The intdosx function returns the value of the AX register after the
system call is complete. If the cf/ag field in outregs is nonzero, an
error has occurred. The intdosx function sets _doserrno to the corre­
sponding error code.

This function is not available under OS/2. For information on calling
OS/2 functions from a C program, see" Application Program Interface"
in the IBM Operating Systeml2 Technical Reference book.

Examples:

The following example makes a DOS system call to retrieve country­
dependent information. Use the data formats for DOS 3.30.

#include <dos.h>
#include <stdio.h>
#include <malloc.h>

int _doserrno
struct country_info {

int date;
char currency sym[5];
char th sep[2J;
char dec sep[2];
char date_sep[2];
char time_sep[2];
char currency_format;
char currency_sig_dig;
char time_format;
unsigned case rnap[2J;
char data list sep[2J;
unsigned ;[5J;-
}

/* Define the three valid date formats. */
char *date_format[3J = ("rn d y", "d rn y", "y rn d");

rnai nO
{

union REGS inregs, outregs;
struct SREGS segregs;
struct country_info far *c;

/* Reserve space for the table.*/
c=(struct country info far *)

_frnalloc(sizeof(struct country_info));

5-185

intdosx

/* Get country-dependent information. */
inregs.h.ah = 0x38;
inregs.h.al = 0x00;
segregs.ds = FP_SEG(c);
inregs.x.dx = FP_OFF(c);

intdosx(&inregs, &outregs, &segregs);
if(outregs.x.cflag) /* Has an error occurred? */
{

printf("The DOS error code was %d\n", doserrno);
return (1); -

printf("The country code is: %d\n",
outregs.x.bx);

printf("The date format is: %s\n",
date format[c->dateJ);

printi("The currency symbol is: %Fs\n",
c->currency sym);

printf("The thousands separator is: %Fs\n",
c->th_sep);

printf("The date separator is: %Fs\n",
c->date_sep);

printf("The time separator is: %Fs\n",
c->time_sep);

/* Other values can be printed here. */

Related Topics:

bdos, intdos, segread, FP _ SEG

Note: You can obtain segment values for the segregs argument by
using either the segread function or the FP _SEG macro.

5-186

Purpose:

Test integer values.

Format:

#include <ctype.h>

/* Test for alphanumeric */
/* ('A'-'Z' or 'a'- 'z', or '0'-'9') */

int isalnum(c)
/* Test for letter ('A'-'Z' or 'a'-'z') */

int isalpha(c)
/* Test for ASCII char (OxOO-Ox7F) * /

int isascii(c)
int c; /* Integer to test * /

Comments:

isalnum - isascii

The ctype routines listed above test a given integer value, returning a
nonzero value, if the integer satisfies the test condition, or a zero
value, if it does not. These functions assume that the system uses an
ASCII character set.

The isascii routine produces a meaningful result for all integer
values. The remaining routines produce a defined result only for
integer values corresponding to the ASCII character set, where isascii
is true. These routines are also true for the non-ASCII value EOF

defined in stdio.h.

5-187

isalnum - isascii

Example:

The following example analyzes all characters between code OxO and
code Ox7f, printing A for alphas, AN for alphanumerics, and AS for
ASCII characters.

#include <stdio.h>
#include <ctype.h>
rnai n ()
{
int ch;

for (ch = 0; ch <= Ox7f; ch++) {
printf("%#04x", ch);
printf("%3s", isalnum(ch) ? "AN" "");
printf("%2s", isalpha(ch) ? "A" "");
printf("%3s", isascii(ch) ? "AS" "");

putchar('\n');

Related Topics:

iscnlrl, isdigil, isgraph, islower, isprinl, ispunct, isspace,
isupper, isxdigil, loascii, lolower, toupper

Note: The ctype routines are macros.

5-188

Purpose:

Tests the handle for a character device.

Format:

/* Required for function declarations */
#include <io.h>

int isatty(handle)
int handle; /* Handle of device to be tested */

Comments:

isatty

The isatty function determines whether the given handle is associated
with a character device (a keyboard, screen, printer or serial port).

The isatty function returns a nonzero value if the device is a character
device. Otherwise, the return value is O.

Example:

This example tests file handle fh and sets long integer loc to the
current file pointer if fh does not correspond to a character device.

#include <io.h>

int fh;
long 1 oc;

/* If not a device, get current position */
if (isatty(fh) == 0)

lac = tell (fh);

5-189

iscntrl - isxdigit

Purpose:

Test integer values.

Format:

#include <ctype.h>

/* Test for control char (OxOO-Ox1f or Ox7f) * /
int iscntrl(c)

/* Test for digit ('0'-'9') */
int isdigit(c)

/* Test for printable char not including the */
/* space character(Ox21-0x7e) */

int isgraph(c)

/* Test for lower case ('a'-'z') */

int islower(c)

/* Test for printable character (Ox20-0x7e) */
int isprint(c)

/* Test for punctuation character (not blank, * /
/* isalnum(c) and iscntrl(c) both false) * /

int ispunct(c)

/* Test for whitespace character */
/* (Ox09-0xOd or Qx20) * /

int isspace(c)

/* Test for upper case ('A'-'Z') */
int isupper(c)

/* Test for hex digit ('A'-'F', */
/* 'a'-'f', or '0'-'9') */

int isxdigit(c)

int c; /* Integer value to test */

5-190

iscntrl - isxdigit

Comments:

The ctype routines listed above test a given integer value, returning a
nonzero value, if the integer satisfies the test condition, and zero, if it
does not. These tests assume that the system uses an ASCII character
set.

These routines produce a defined result only for integer values corre­
sponding to the ASCII character set (only where isascii holds true).
These routines also have a defined result for the non-ASCII value EOF

defined in stdio.h.

Example:

The following example analyzes all characters between code OxO and
code Ox7f, printing U for uppercase, L for lowercase, D for digits, X for
hexadecimal digits, S for spaces, PU for punctuation, PR for printable
characters, G for graphics characters, and C for control characters.
This example prints the code if printable.

The output of this example is a 128-line table showing which of the
characters from 0 to 127 possess the attributes tested.

#include <stdio.h>
#include <ctype.h>
rnai n ()
{
i nt ch;

for (ch = 0; ch <= 0x7f; ch++)
printf(" %c",isprint(ch)
pri ntf ("%2s ", i scntrl (ch)
pri ntf ("%2s", i sdi git (ch)
printf("%2s",isgraph(ch)
pri ntf (" %2s II , i slower (ch)
printf("%3s",ispunct(ch)
printf("%2s",isspace(ch)
pri ntf("%3s", i spri nt (ch)
printf("%2s",isupper(ch)
pri ntf ("%2s", i sxdi gi t (ch)

putchar('\n');
}

?
{
ch '\0');
"(" " ");
"Oil II ");
"Gil II II);
"L" II ");
"PU" II ");
"S" II ");
"PR" " ");
"U" " ");
"X" " ");

5-191

iscntrl - isxdigit

Related Topics:

isalnum, isalpha, isascii, toascii, tolower, toupper

Note: The ctype routines are macros.

5-192

Purpose:

Converts an integer value to a character string ending with a null
character (\0) and stores the results.

Format:

/* Required for function declarations */
#include <stdlib.h>

char *itoa(value, string, radix)
int value; /* The number to convert * /
char *string; /* String result * /
int radix; /* Base of value */

Comments:

itoa

The itoa function converts the digits of the given value to a character
string that ends with a null character and stores the result in string.
The radix argument specifies the base of value; it must be in the
range 2-36. If radix equals 10 and value is negative, the first char­
acter of the stored string is the minus sign (-).

The itoa function returns a pointer to string. There is no error-return
value.

Example:

This example converts the decimal value -3445 to an octal number,
storing its character representati9n in the array
buffer[].

#include <stdlib.h>

int radix = 8;
char buffer[20];
char *p;

p = itoa{-3445, buffer, radix); /* p = "1712l3" */

5-193

itoa

Related Topics:

Itoa, ultoa

Note: The space reserved for string must be large enough to hold the
returned string. The function can return up to 17 bytes.

5-194

Purpose:
Checks keyboard for recent keystrokes.

Format:

/* Required for function declarations */
include <conio.h>

int kbhit()

Comments:
The kbhlt function checks the keyboard for a recent keystroke.

kbhit

The kbhit function returns a nonzero value if a key has been pressed.
Otherwise, it returns zero.

Example:

The following statement tests for the pressing of a key on the key­
board.

If the result is nonzero, a keystroke is waiting in the buffer. You can
get it with getch or getche. If you call getch or getche without fi rst
checking with kbhit, the program pauses while waiting for the input of
a keystroke.

#include <conio.h>

i nt result;

result = kbhit();

5-195

labs

Purpose:

Produces the absolute value of a long integer argument.

Format:

/* Required for function declarations */
#include <stdlib.h>

long int labs(n)
long int n; /* Long integer value */

.Comments:

The labs function produces the absolute value of its long integer
argument n. There is no error-return value. The result is undefined
when the argument is the least of the negative long integers
(-2147483648), whose absolute value cannot be represented as a long
integer.

Example:

This example computes y as the absolute value of the long integer
-41567.

#include <stdlib.h>

long x, y;

x = -41567L;
Y = labs(x); /* y = 41567L */

Related Topics:

abs, cabs, fabs

5-196

Purpose:

Calculates the value of x * (2exp).

Format:

#include <math.h>

double Idexp(x, exp)
double x; /* Floating - point value */
int exp; /* Integer exponent * /

Comments:

Idexp

The Idexp function calculates and returns the value of x * (2exp). If an
overflow results, the function returns +HUGE_VAL or -HUGE_VAL and
sets errno to ERANGE.

Example:

The following example computes y as 1.5 times 2 to the fifth power
(1.5 * 25):

#include <math.h>

double x, y;
int p;

x = 1.5;
p = 5;
y = ldexp(x,p); /* y = 48.0 */

Related Topics:

frexp, modf

5-197

Ifind - Isearch

Purpose:

The Isearch and Ifind functions perform a linear search for the value
key in an array of elements, each of which is a certain width.

Format:

/* Required only for function declaration */
#include <search.h>

char *lsearch(keY,base,num,width,compare)

char *Ifind(key,base,num,width,compare)

char *key; /* Search key */
/* Pointer to base of search data */

char *base;
/* Number and width of elements */

unsigned *num,width;
/* Pointer to compare function */

int (*compare)(const void *e/ement1, const void *e/ement2);

Comments:

The Isearch and Ifind functions perform a linear search for the value
key in an array of num elements, each of width bytes in size. Unlike
bsearch, Isearch and Ifind do not require that you sort the array first.
The argument base is a pointer to the base of the array that is to be
searched.

If Isearch does not find the key, it adds the key to the end of the array.
If Ifind does not find the key, it does not add the key to the array.

The argument compare is a pointer to a routine, which you supply,
that compares two array elements and returns a value specifying
their relationship. Both Isearch and Ifind call the compare routine
one or more times during the search, passing pointers to two array
elements on each call. This routine must compare the elements and
then return one of the following values.

5-198

Ifind - Isearch

Value

Not equal to 0

o

Return Value:

Meaning

element1 and element2 different

element1 identical to element2.

If the key is found, both Isearch and Ifind return a pointer to that
element of the array to which base pOints. If the key is not found,
Isearch returns a pointer to a newly added item at the end of the
array, while Iflnd returns NULL.

Example:
This program uses Ifind function to search for the PATH keyword in the
command-line arguments.

#include <search.h>
#include <string.h>
#include <stdio.h>

/* Must declare 'compare' as a function */
i nt compare ();

main (argc, argv)
int argc;
char **argv;
{

char **result;
char *key = "PATH";
i nt compare () ;

/* The following statement finds the *
* argument that starts with "PATH" */

if (result = (char **)lfind((char *)&key,
(char *)argv, &argc, sizeof(char *),compare))

printf ("%s found\n",*result);
else printf ("PATH not found \n");

/* The following is a sample 'compare' function */
int compare (argl, arg2)
char **argl, **arg2;

return(strncmp(*argl,*arg2,strlen(*argl)));

5-199

Ifind - Isearch

Related Topics:

bsearch

5-200

localtime

Purpose:

Converts time stored as a long integer to time as a structure.

Format:

#include <time.h>

struct tm *Iocaltime(time)
const time_t *time; /* Pointer to stored time */

Comments:

The localtime function converts a time stored as a time_t value to a
structure. The time_t value time represents the seconds elapsed
since 00:00:00, January 1, 1970, Greenwich Mean Time. The
localtime functions obtain this value from the time function.

The function localtime breaks down the time value, corrects for the
local time zone and Daylight Saving Time, if appropriate, and stores
the corrected time in a structure of type tm. See the gmtime function
for a description of the fields in a tm structure.

DOS does not understand dates prior to 1980. If time represents a
date before January 1, 1980, localtime returns NULL.

The localtime function makes corrections for the local time zone if
you first set the environment variable TZ. The value of TZ must be a
three-letter time zone name such as PST (Pacific Standard Time). A
number follows this value, giving the difference between Greenwich
Mean Time and the local time zone. If the local time zone is west of
the Greenwich meridian, this number is unsigned or has a + sign. If
the local time zone is east of the Greenwich meridian, the number
has a preceding - sign. A three-letter daylight saving time zone such
as PDT (Pacific Daylight Time) can follow this number. The localtime
function uses the difference between Greenwich Mean Time and local
time to adjust the stored time value. If a daylight-saving-time zone is
present in the TZ setting, localtime also corrects for daylight saving

5-201

localtime

time. If TZ currently has no value, localtime uses the default value
EST5EDT.

When you set TZ, the system automatically sets three other envi ron­
ment variables, timezone, daylight, and tzname. See the tzset func­
tion for a description of these variables.

The localtime function returns a pointer to the structure result. There
is no error return value.

Example:

Suppose that the current local time and date is 3 PM March 31, 1986.
The following example reads the system clock and displays the local
time in the following message:
the time Is Mon Mar 3115:00:00.001986

#include <time.h>
#include <stdio.h>

. struct tm *newtime;

.long 1 time;

time(<ime);
newtime = localtime(<ime);
printf("the time is %s\n", asctime(newtime));

Related Topics:

asctime, ctime, ftime, gmtime, time, tzset

Note: The gmtime and localtime functions use a single, statically­
allocated buffer for the conversion. Each call to one of these
functions erases the result of the previous call. The TZ environ­
ment variable is an IBM extension and is not part of the ANSI

definition of localtime.

5-202

Purpose:

Locks or unlocks bytes of a file.

Format:

#include <sys\locking.h>
/* Required for function declarations */

#include <io.h>

int locking(handle, mode, nbyte)
int handle; /* File handle */
int mode; /* File locking mode */
long nbyte; /* Number of bytes to lock */

Comments:

locking

The locking function locks or unlocks nbyte bytes of the file specified
by handle. Locking bytes in a file prevents subsequent reading and
writing of those bytes by other processes. Unlocking a file permits
other processes to read or to write to previously locked bytes. All
locking or unlocking begins at the current position of the file pointer
and proceeds for the next nbyte bytes or to the end of the file.

The mode variable specifies the action that locking is to perform. It
must be one of the following.

Mode Meaning

Lock the specified bytes. If the bytes cannot be
locked, locking tries again after 1 second. If the bytes
cannot be locked after 10 attempts, locking returns an
error.

Same as LK_LOCK.

Lock the specified bytes. If bytes cannot be locked,
locking returns an error.

Same as LK_NBLCK.

5-203

locking

Unlock the specified bytes. The bytes must have
been previously locked.

You can lock more than one region of a file, but you cannot overlap
locked regions. You can unlock no more than one region with a
single call.

Note: Refer to the SHARE command in the IBM Disk Operating System
Reference book.

When unlocking a file, the region of the file unlocked must correspond
to a previously locked region. The locking function does not unite
adjacent regions. If two locked regions are adjacent, you must unlock
each region separately.

Remove all locks before closing a file or leaving the program.

The locking function returns 0 if it is successful. A return value of -1
indicates failure, and sets errno to one of the following values:

Value

EACCESS

EBADF

EDEADLOCK

EINVAL

5-204

Meaning

Locking violation (file already locked or unlocked).

Incorrect file handle.

Locking violation. This error returns when you
specify the LK_LOCK or LK_RLCK flag, and the file
cannot be locked after 10 attempts.

Missing SHARE.COM or SHARE.EXE file.

locking

Example:

The following example tests the DOS version number to tell if the
number is at least 3.00. If the number is at least 3.00, this example
saves the file pointer position and then locks a region from the begin­
ning of the file to the saved file pointer position. If it succeeds in
locking this region, it runs a block of code in which it later unlocks the
locked bytes.

#include <io.h>
#include <sys\locking.h>
#include <stdlib.h>

extern unsigned char _osmajor;
int fh;
long pos;

if (_osmajor >= 3)
pas = tell (fh);
lseek(fh, OL, 0);
if ((locking(fh, LK_NBLCK, pos)) != -1) {

lseek(fh, OL, 0);
locking(fh, LK UNLCK, pos);
} -

Related Topics:

creat, open

Note: Under DOS the locking function provides file sharing in a
network environment. Under OS/2, locking provides file sharing
for multiple processes.

5-205

log .. log10

Purpose:

Calculate the natural or base 10 logarithm.

Format:

#include <math.h>

/* Calculate the natural logarithm of x * /
double log(x)

/* Calculate logarithm base10 of x */
double log10(x)

/* Floating - point value */
double x;

Comments:

The log function calculates the natural logarithm of x. The log10 func­
tion calculates the baSe 10 logarithm of x.

The log arid log10 functions return the logarithm result. If x is nega­
tive, both functions print a DOMAIN error message to the stderr data
stream, set errno to I:DOM, and return the value negative HUGE_VAL. If
x is zero, both functions print a SING error message, return the value
negative HUGE_VAL, and ~et errno to ERANGE. For more information
about DOMAIN and SING, see the section "Math Errors" in Appendix A,
"Error MesSages," in this book.

You can change error handling by using the matherr routine.

5-206

log - log10

Example:

The following example first calculates the natural logarithm of 1000.0
and then calculates the base 10 logarithm of the same number.

#include <math.h>

double x = 1000.0, y;

/* The natural logarithm, y = 6.907755 */
y = log(x);

/* The base 10 logarithm, y = 3.0 */
y = 1 og10(x);

Related Topics:

exp, matherr, pow

5-207

longjmp

Purpose:

Restores a stack environment that setjmp previously saved.

Format:

#include <setjmp.h>

void longjmp(env, value)
/* Variable in which to store environment */

jmp_buf env;
/* Value to be returned to the setjmp call */

int value;

Comments:

The longjmp function restores a stack environment previously saved
in env by setjmp. The setjmp and longjmp functions provide a way to
perform a nonlocal goto. Use these functions to pass program control
to error- handling or recovery code in a previously-called function
without using the normal calling or return conventions.

A call to setjmp causes the current stack environment to be saved in
env. A subsequent call to longjmp restores the saved environment
and returns control to the point just after the corresponding setjmp
call. Performance of the program resumes as if the setjmp call had
just returned the given value. All variables, except register variables,
that are accessible to the function that receives control contain the
values they had when you called longjmp. The values of register var­
iables are unpredictable.

5-208

longjmp

Note: You must call the longjmp function before the function that
called setjmp returns. Calling longjmp after the function
calling setjmp returns causes unpredictable program behavior.
You may call longjmp from within a signal-handling routine that
you defined, but if a signal occurs during the call to longjmp,
the results are unpredictable.

The value returned by longjmp must be nonzero. If you give a zero
argument for value, longjmp substitutes a 1 in the return.

The longjmp function does not return a value.

Example:

The following example saves the stack environment at the statement:

if(setjmp(mark) 1= 0) ...

On the first performance of the if condition, the system saves the
environment in mark. The condition in the if statement is false
because the setjmp function returns 0 when saving the environment.
The system prints the message setjmp has been called.

The subsequent call to function p tests for a local error condition that
might cause the program to perform longjmp. Then control passes to
the original setjmp, using the environment saved in mark. This time
the condition is true. The longjmp function returns a value of -1. The
system prints longjmp has been called. It then runs the recover func­
tion, which you supply, and exits.

5-209

longjmp

#include <stdio.h>
#include <setjmp.h>

jmp_buf mark;
mai n 0
{

}
pO
{

if (setjmp(mark) ! = 0) {
printf("longjmp has been called\n");
recoverO;
exit (1);
}

printf("setjmp has been called\n");

PO;

int error = 0;

if (error != 0)
longjmp(mark, -1);

recover()
{

/* Ensure exiting will not corrupt data files */

Related Topics:

setjmp

Note: The values of register variables in the function calling setJmp
might not be restored to the proper values after a longjmp
runs.

5-210

Purpose:

Moves the file pointer to a new location.

Format:

/* Required for function declarations */
#include <io.h>

long Iseek(handle, offset, origin)
/* Handle referring to open file */

int handle;
/* Number of bytes from origin * /

long offset;
int origin; /* Initial position * /

Comments:

Iseek

The Iseek function moves any file pointer associated with handle to a
new location that is offset bytes from the origin. The next operation
on the file takes place at the new location. Origin must be one of the
followi ng constants, defi ned in stdio.h:

Origin

S~EK_SET

SEEK_CUR

SEEK_END

Definition

Beginning of file

Current position of file pointer

End offile.

The Iseek function can reposition the pointer anywhere in a file. The
pointer can also be positioned beyond the end of the file. However,
an attempt to position the pOinter before the beginning of the file
causes an error.

5-211

Iseek

The Iseek function returns the offset, in bytes, of the new position
from the beginning of the file. A return value of -1 L indicates an
error, and errno is set to one of the following values:

Value

EBADF

EINVAL

Meaning

The file handle is incorrect.

The value for origin is incorrect, or the position specified
by offset is before the beginning of the file.

On devices incapable of seeking (such as keyboards and printers),
the return value is undefined.

5-212

Iseek

Example:

The following example shows two calls to Iseek. After opening the
DATA file for reading, the program tries to move the file pointer to the
beginning of the file. It prints:

lseek to beginning failed

if this operation is unsuccessful. Later the program calls Iseek with
an origin of 1 to get the position five bytes beyond the current file
pointer.

#include <io.h>
#include <fcntl.h>
#include <stdlib.h>
#include <stdio.h>

int fh;
long positi on;

fh = open("data", O_RDONLY);

/* 0 offset from beginning */

position = lseek(fh, OL, SEEK_SET);
if (position == -lL)

perror("lseek to beginning failed");

/* Move from current position */
position = lseek(fh, 5L, SEEK_CUR);
if (position == -lL)

perror("lseek 5 beyond current position failed");

/* Go to end of file */
position = lseek(fh, OL, SEEK_END);
if (position == -lL)

perror("lseek to end failed");

Related Topics:

fseek, tell

5-213

Iloa

Purpose:

Converts digits to a null-ended character string and stores the result.

Format:

/* Requi red for function declarations * /
#include <stdlib.h>

char *Itoa(value, string, radix)
long value; /* Number to convert */
char *string; /* String result */
int radix; /* Base of value */

Comments:

The Itoa function converts the digits of the given long value to a
null- ended character string and stores the result in string. The radix
argument specifies the base of value; it must be in the range 2-36. If
radix equals 10 and value is negative, the first character of the stored
string is the minus sign (-).

The Ito a function returns a pointer to string. There is no error return.

Example:
This example converts the long integer -344155 to the ASCII string
"-344155".
#include <stdlib.h>

int radix = 10;
char buffer[20];
char *p;

p = ltoa(-344155L, buffer, radix);
/* p = "-344155" */

5-214

Itoa

Related Topics:

itoa, ultoa

Note: The space allocated for string must be large enough to hold the
returned string. The function can return up to 33 bytes.

5-215

malloc

Purpose:

Reserves a block of storage.

Format:

/* Requi red for function declarations * /
#include <stdlib.h>
void *malloc(size)

/* Bytes in reserved block of storage */

size_t size;

Comments:

The malloe function reserves a block of storage of at least size bytes.
(The block might be larger than size bytes due to space required for
alignment and for maintenance information.)

The malloe function returns a pointer to the reserved space. The
storage space to which the return value points is guaranteed to be
suitably aligned for storage of any type of object. To get a pointer to a
type, use a type cast on the return value. The return value is NULL if
there is not enough storage available.

Example:

The following example reserves space for 20 integers.

#include <stdlib.h>

int *intarray;

intarray = (int *)malloc(20*sizeof(int));

5-216

malloc

Related Topics:

calloc, free, realloc, _fmalloc, _nmalloc

Note: The call malloc(O) does not return NULL but, instead, reserves a
O-Iength item (header only) in the heap. The resulting pointer
can be passed to realloc to adjust the size at any time. In the
small and medium models, a call to malloc is equivalent to a
call to _nmalloc. In the compact and large models, a call to
malloc is equivalent to a call to _fmalloc.

5-217

matherr

Purpose:

Processes errors produced by math library functions.

Format:

#include <math.h>

i nt matherr(x)
/* Math exception information */

struct exception *x;

Comments:

The matherr function processes errors generated by the functions of
the math library. The math functions call matherr whenever they
detect an error. You can provide a different definition of the matherr
function to carry out special error-handling.

When an error occurs in a math routine, matherr is called with a
pointer to the following structure (defined in math.h) as an argument:

struct exception {
Int type;
char *name;
double arg1, arg2, retval;
};

5-218

matherr

The type variable specifies the type of math error. It is one of the fol­
lowing values, defined in math.h.

Value Meaning

DOMAIN Argument domain error

SING Argument singularity

OVERFLOW Overflow range error

UNDERFLOW Underflow range error

TlOSS Total loss of significance

PLOSS Partial loss of significance.

The name is a pointer to a null-ended string containing the name of
the function that caused the error. The arg1 and arg2 variables
specify the argument values that caused the error. (If only one argu­
ment is given, it is stored in arg1).

The retval is the default return value for this error; you can change
the return value. The return value from matherr must specify whether
or not an error actually occurred. If matherr returns zero, an error
message appears, and errno is set to an appropriate error value. If
matherr returns a nonzero value, no error message appears and
errno remains unchanged.

The matherr routine should return zero to indicate an error and
nonzero to indicate successful corrective action.

5-219

matherr

Example:

The following example is a definition that you can create to handle
errors from the log or log10 functions. The arguments to these loga­
rithmic functions must be positive double values. This routine proc­
esses a negative value in an argument (a DOMAIN error) by returning
the log of its absolute value. It suppresses the error message
normally displayed when this error occurs. If the error is a zero argu­
ment, or if some other routine produced the error, the example takes
the default actions.

#include <math.h>
#include <string.h>

int matherr(x)
struct exception *x;
{

if (x->type == DOMAIN)
if (strcmp(x->name, "log") == 0) {

x->retval = log(-(x->argl));
return(1);
}

else if (strcmp(x->name, "1 0g10") == 0) {
x->retval = 10g10(-(x->arg1));
return(l);
}

return(O); /* Use default actions */

Related Topics:

acos, aSin, atan, atan2, bessel, cabs, cos, cosh, exp, hypot, log, pow,
sin, sinh, sqrt, tan

5-220

memavl

Purpose:

The _memavl function returns the approximate size in bytes of the
storage space available for dynamic allocation in the default data
segment.

Format:

/* Required only for function declarations */
#include <malloc.h>

Comments:

The _memavl function returns the approximate size in bytes of the
storage space available for dynamic allocation in the default data
segment. You can use this function with canoe, malloc, or reanoc in
the small- and medium-storage models and with _nmalloc in all
storage models.

The _memavl function returns the size in bytes as an unsigned
integer.

5-221

memavl

Example:

#inelude <malloe.h>
#inelude <stdio.h>
mai nO

{
long *longptr;

printf("Memory available before"
"malloe = %u\n", _memavl(»;

longptr = (long*)malloe(5000*sizeof(long»);
printf("Memory available after"

"malloe = %u\n", _memavl(»;

Output:
(Actual numbers may vary slightly.)

Memory available before malloe = 61293
Memory available after malloe = 40959

Related Topics:

calloc, malloc, _ 'reect, realloc, and stackavail

5-222

Purpose:

Copi es bytes of src to dest.

Format:

/* Requi red for function declarations * /
#include <memory.h>

/* Use either string.h or memory.h */
#include <string.h>

void *memccpy(dest, src, c, cnt}
void *dest; 1* Pointer to destination */
void *src; 1* Pointer to source */
int c; 1* Last character to copy */
unsigned cnt; 1* Number of characters */

Comments:

memccpy

The memccpy function copies zero or more bytes of src to dest. It
copies up to and including the first occurrence of the character c or
until cnt bytes have been copied, whichever comes first.

If the character c is copied, memccpy returns a pointer to the byte in
dest that immediately follows the character. If c is not copied,
memccpy returns NULL.

5-223

memccpy

Example:

The following example copies up to 100 bytes from the source to a
buffer until it copies the '\n' character:

#include <memory.h>

char buffer[100] , source[100];
char *result;

result = memccpy(buffer, source, '\n', 100);

Related Topics:

memchr, memcmp, memcpy, memset

5-224

Purpose:

Searches buf for the first occurrence of c.

Format:

/* Requi red for function declarations * /
#include <string.h>
void *memchr(buf, c, cnt)
const void *buf; /* Pointer to buffer */
int c; /* Character for which to search */

size_t cnt; /* Number of characters */

Comments:

memchr

The memchr function searches the first cnt bytes of buf for the first
occurrence of c converted to a character. The search continues until
it finds c or examines cnt bytes.

The memchr function returns a pointer to the location of c in buf. It
returns NULL if c is not within the first cnt bytes of buf.

Example:

The following example finds the first occurrence of 'a' in the buffer. If
'a' is not in the first 100 bytes, memchr returns a NULL.

#include <string.h>

char buffer[100];
char *result;

result = memchr(buffer, 'a', 100);

Related Topics:

memccpy, memcmp, memcpy, memset

5-225

memcmp

Purpose:

Compares buf1 and buf2.

Format:

/* Required for function declarations */
#include <string.h>
int memcmp(buf1, buf2, cnt)
const void *buf1; /* First buffer */
const void *buf2; /* Second buffer */

size_t cnt; /* Number of characters */

Comments:

The memcmp function compares the first cnt bytes of buf1 and buf2
and returns a value indicating their relationship, as follows:

Value

Less than 0

o
Greater than 0

Meaning

buf1 less than buf2

buf1 identical to buf2

buf1 greater than buf2.

The memcmp function returns an integer value as described above.

5-226

memcmp

Example:

The following example compares first[] and second[] to see which, if
either, is greater. If the first 100 bytes are the same, then the
memcmp function considers them equal.

#include <string.h>

char first[100], second[100];
int result;

result = memcmp(first, second, 100);

Related Topics:

memccpy, memchr, memcpy, memset

5-227

memcpy

Purpose:

Copies bytes of src to dest.

Format:

/* Required for function declarations */
#include <memory.h>

char *memcpy(dest, src, cnt)
void *dest; /* Pointer to destination */
const void *src; /* Pointer to source */
size_t cnt; /* Number of characters */

Comments:

The memcpy function copies cnt bytes of src to dest. If some regions
of src and dest overlap, memcpy ensures that the original src bytes in
the overlapping region are copied before writing over them.

The memcpy returns a pointer to dest.

Example:

The following example moves 200 bytes from source to destination,
and returns a pointer to destination.

#include <memory.h>

char source[200], destination[200];

memcpy(destination, source, 200);

Related Topics:

memccpy, memchr, memcmp, memset

5-228

memicmp

Purpose:

Compares bytes in buffers without regard to the case of the letters.

Format:

I*Required for function declarations* /
#include <memory.h>

int memicmp (buf1, but2, cnt)
void *buf1; 1* First buffer */
void *but2; 1* Second buffer * /
unsigned int cnt; 1* Number of characters */

Comments:

The memicmp function compares the first cnt bytes of but1 and but2
without regard to the case of letters in the two buffers. Uppercase
and lowercase letters are considered equivalent. The memicmp func­
tion returns a value indicating the relationship of buf1 and but2 as
follows.

Value

Less than 0

o
Greater than 0

Meaning

but1 less than but2

but1 identical to but2

but1 greater than but2.

The memicmp function returns an integer value.

5-229

memicmp

Example:

The following example copies two strings that each contain a sub­
string of 29 characters that is the same except for its case. The
example then compares the first 29 bytes without regard to case.

#include <memory.h>

char first[lOO], second[lOO];
int result;

strcpy(first,"Those Who Will Not Learn"
"From History");

strcpy(second,"THOSE WHO WILL NOT LEARN"
"FROM their mistakes");

result = memicmp(first,second,29);
pri ntf ("%d\n" , result) ;

Result:

o

Related Topics:

memccpy, memchr, memcmp, memcpy, memset

5-230

memset

Purpose:

Sets first cnt bytes of dest to character c.

Format:

/* Required for function declarations */
#include <string.h>

void *memset(dest, c, cnt)
void *dest; /* Pointer to destination */
int c; /* Character to set */

size_t cnt; /* Number of characters */

Comments:

The memset function sets the first cnt bytes of dest to the value c,
converted to a character.

The memset function returns a pointer to dest.

Example:
The following example sets the first 100 bytes of the buffer to
NULL.

#include <string.h>

char buffer[lOO];

memset(buffer, '\0',100);

Related Topics:

memccpy, memchr, memcmp, memcpy

5-231

mkdir

Purpose:

Creates a new directory.

Format:

/* Required for function declarations */
#include <direct.h>
int mkdir(pathname)

/* Path name for new di rectory * /
char *pathname;

Comments:

The mkdir function creates a new directory with the specified
pathname. Only one directory can be created at a time, so only the
last component of pathname can name a new di rectory.

The mkdir function returns the value 0 if the a directory was created.
A return value of -1 shows an error, and errno is set to one of the
following values.

Value

EACCES

ENOENT

5-232

Meaning

The directory was not created: the given name is the
name of an existing file, directory, or device.

The pathname was not found.

mkdir

Example:
The following example creates two new directories: one at the root on
drive B:, and one in the tmp subdirectory of the current working direc­
tory.

#include <direct.h>

int result;

result = mkdir("b:\\aleng");

result = mkdir("tmp\\aleng");

Related Topics:

chdlr, rmdir

5-233

mktemp

Purpose:

Creates a unique filename from template.

Format:

/* Required for function declarations */
#include <io.h>

char *mktemp(template)
char *template; /* Filename pattern */

Comments:

The mktemp function creates a unique filename by changing the
given template. The template argument has the form:

basexxxxxx

where base is the part of the new filename supplied by the user and
the xs are placeholders for the part supplied by mktemp. The
mktemp function preserves base and replaces the six trailing xs with
an alphanumeric character followed by a 5-digit value. The 5-digit
value is a unique number identifying the calling process. The alpha­
numeric character is zero the first time mktemp is called with a tem­
p/ate.

In subsequent calls from the same process with the same template,
mktemp checks to see whether previously returned names have been
used to create files. If no file exists for a given name, mktemp returns
that name. If files exist for all previously returned names, mktemp
creates a new name by replacing the alphanumeric character in the
name with the next available lowercase letter. For example, if the
first name returned is "t012345" and this name is used to create a
file, the next name returned will be "ta12345." When creating new
names mktemp uses, in order, '0' and the lowercase letters 'a' to 'z'.

The mktemp function returns a pointer to the modified template. The
return value is NULL if the template argument has a syntax error or no
more unique names can be created from the template.

5-234

mktemp

Example:

The following example calls mktemp to produce a unique filename.

#include <io.h>

char *template = IfnXXXXXX";
char *result;

result = mktemp(template);

Related Topics:

fopen, getpid, open

Note: The mktemp function produces unique filenames but does not
create or open files.

5-235

modI

Purpose:

Breaks down floating-point values into fractional and integer parts.

Format:

#include <math.h>

double modf(x,intptr)
/* Floating - point value */

double x;
/* Pointer to stored integer portion */

double *intptr;

Comments:

The modf function breaks down the floating - point value x into frac­
tional and integer parts. The signed fractional portion of x is
returned. The integer portion is stored as a floating - pOint value at
intptr.

The modf function returns the signed fractional portion of x. There is
no error return.

Example:

The following example breaks the floating-point number -14.87654321
into its fractional and integer components:

#include <math.h>

double x, y, n;

x = -14.87654321;
y = modf(x, &n); /* y = -0.87654321, n = -14.0 */

Related Topics:

frexp, Idexp

5-236

movedata

Purpose:

Copies nbytes bytes from a specified source address to a specified
destination address.

Format:

/* Required only for function declarations */
#include <memory.h>

void movedata(sreseg,sreoff,destseg,destoff,nbytes)
/* Segment address of source */

unsigned int sreseg;
/* Offset value of source */

unsigned int sreoff;
/* Segment address of destination */

unsigned int destseg;
/* Offset value of destination */

unsigned int destoff;
/* Number of bytes to copy */

unsigned nbytes;

Comments:

The movedata function copies nbytes of data from the source address
specified by sreseg:sreoff to the destination address specified by
destseg:destoff.

The movedata function moves far data in small or medium-model pro­
grams where segment addresses of data are not implicitly known. In
large-model programs, use the memcpy function because segment
addresses are implicitly known.

Under OS/2, references to segments are translated into selector
values.

5-237

movedata

Note:

Segment values for the srcssg and destseg arguments can be
obtained by using either the segread function or the FP _SEG

macro.

The movedata function does not handle all cases of overlap­
ping moves correctly. Overlapping moves occur when part of
the destination is the same storage area as part of the source.
Overlapping moves are handled correctly in the memcpy func­
tion.

Example:

The following example moves 512 bytes of data from src to dest.

#include <memory.h>
#include <dos.h>

char far *src;
char far *dest;
mai n ()
{

movedata(FP_SEG(src) ,FP_OFF(src) ,
FP_SEG(dest), FP_OFF(dest), 512);

Related Topics:

memcpy, segread, FP_SEG

5-238

msize

Purpose:

Returns the size in bytes of the storage block that C reserved during a
call to a calloe, malloc, or realloc function.

Format:

/* Required only for function declarations */
#include <malloc.h>

size_t _msize(ptr)
void *ptr; /* Pointer to memory block */

Comments:

The _msize function returns the size in bytes of the storage block
reserved by a call to calloc, malloc, or realloc.

The _msize function returns the size in bytes as an unsigned integer.

Example:

#include <stdio.h>
#include <rnalloc.h>

rnai n ()

long *oldptr;
size_t newsize = 64888;

oldptr = (long *)rnalloc(18888*sizeof(long));
printf("Size of block of storage pointed to by

oldptr = %u\n", _rnsize(oldptr));

if(_expand(oldptr,newsize) != NULL)
printf("expand was able to increase block to
%u\n", _rnsize(oldptr));

else
printf("expand was able to increase block to
only %u\n", _rnsize(oldptr));

5-239

msize

Output:

Size of block of storage pointed to by oldptr = 40000
expand was able to increase block to only 44836.

(Actual numbers may vary slightly.)

Related Topics:

calloc, _expand, malloc, realloc

5-240

Purpose:

Frees a block of storage.

Format:

/* Required only for function declarations */
#include <malloc.h>
void _nfree(ptr)
void near *ptr;

Comments:

nfree

The _nfree function frees a block of storage. The argument ptr points
to a block of storage previously reserved through a call to _nmalloe.
The number of bytes freed is the number of bytes specified when you
reserved the block. After the call, the freed block is again available
to be reserved. If ptr is NULL, _nfree ignores it.

Note: Attempting to free a pointer not reserved with _nmalloe can
affect subsequent allocation and cause errors.

Example:

The following example reserves 100 bytes and then frees them.

#include <malloc.h>
#include <stdio.h>

void near *alloc;

/* Test for a valid pointer */
if «alloc = nmalloc(lOO» == NULL)

printf("unible to reserve storage\n");
else {
/* Free storage for the heap */

nfree(alloc) ;
}"

Related Topics:

_nmalloe, free, malloe

5-241

nmalloc

Purpose:

Reserves a storage block.

Format:

/* Required only for function declarations */
#include <malloc.h>

void near *_nmalloc(size)
size_t size; /* Bytes in allocated block */

Comments:

The _nmalloe function reserves a storage block of at least size bytes
inside the default data segment. The block can be larger than size
bytes because of the space required for aligning the block.

The _nmalloe function returns a near pointer. The storage space to
which the return value points is guaranteed to be aligned for storage
of any type of object. To get the pointer to a type, you must use a
type cast on the return value. The return value is NULL if there is not
enough storage available.

Example:

The following example reserves space for 20 integers.

#include <malloc.h>

int near *array;

array = (int *)_nmalloc(20*sizeof(int»;

Related Topics:

_nfree, _nmsize, malloe, realloe

5-242

nmsize - .

Purpose:

Returns the size in bytes of the storage block reserved by a call to
_nmalloe.

Format:

/* Required only for function declarations */
#include <malloc.h>

size_t _nmsize(ptr)
void near *ptr; /* Pointer to memory block */

Comments:

The _nmsize function returns the size in bytes of the storage block
that C reserves during a call to the _nmalloe function. The _nmslze
function returns the size in bytes as an unsigned integer.

Example:

#include <rnalloc.h>
#include <stdio.h>

rnai n ()
{
char near *stringarray;

stringarray = nrnalloc(200*sizeof(char»;
if (stringarray != NULL)

printf("%u bytes allocated\n",
_nrnsize(stringarray»;

else
printf("Allocation request failed.\n");

Related Topics:

_ffree, _fmalloe, _fmsize, malloe, _msize, _nfree, _nmalloe

5-243

onexit

Purpose:

Receives the address of a function to call when the program ends
normally.

Format:

/* Required only for function declarations *j

#include <stdlib.h>

onexit_t onexit (tunc)
onexit_ t tunc;

Comments:

The onexit function receives the address of a function tunc to call
when the program ends normally. Successive calls to onexit create a
register of functions that run last-in, first-out. You can place no more
than 32 functions in the register with calls to onexit. If you exceed 32
functions, onexit returns the value NULL. The functions passed to
onexit cannot take parameters.

If successful, onexit returns a pointer to the function, otherwise it
returns a NULL value.

5-244

onexit

Example:

This example specifies and defines four distinct functions that run
consecutively at the completion of main.
#include <stdlib.h>
rnai nO

{
int fnl(), fn2(), fn3(), fn4();

onexit(fnl) ;
onexit(fn2);
onexi t (fn3) ;
onexit (fn4) ;
printf("This is run first.\n");
}

int fnl()
{
printf("next.\n");
}

int fn2()
{
printf("run ");
}

i nt fn30
{
printf("is ");
}

int fn4()
{
printf("This ");
}

5-245

open

Purpose:

Opens a file for reading or writing.

Format:

#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>

/* Requi red for function declarations * /
#include <io.h>

int open(pathname, of/ag[, pmode])
char *pathname; /* File pathname */
int of/ag; /* Type of operations allowed */
int pmode; /* Permission setting */

Comments:

The open function opens the file specified by pathname and prepares
the file for subsequent reading or writing as defined by of/ago The
of/ag is an integer expression formed by combining one or more of
thefollowjng manifest constants, defined in Icntl.h. When more than
one manifest constant is given, the constants are joined with the
bitwise OR operator I.

Ollag

5-246

Meaning

Reposition the file pointer to the end of the file
before every write operation.

Create and open a new file. This has no effect if
the file specified by pathname exists.

Return an error value if the file specified by
pathname exists. This applies only when used with
O...,:CREAT.

Open the file for reading only. If this flag is given,
neither O_RDWR nor O_WRONLY can be given.

O_TRUNC

O_WRONLY

open

Open the file for both reading and writing. If this
flag is given, neither O_RDONLY nor O_WRONLY can be
given.

Open and truncate an existing file to 0 length. The
file must have write permission. The contents of
the file are destroyed.

Open the file for writing only. If this flag is given,
neither O_RDONLY nor O_RDWR can be given.

Open the file in binary (untranslated) mode. (See
fopen for a description of binary mode.)

Open the file in text (translated) mode. (See fopen
for a description of text mode.)

You must specify one of the access mode flags, O_RDONLY, O_WRONLY,

or O_RDWR. There is no default.

Note: When you open files in text mode for reading only, Ctrl + Z is
interpreted as an end-of-file character. When you open files in
text mode for reading only or for writing and reading, open
attempts to remove any Ctrl + Z characters from the end of the
file when it opens the file.

CAUTION:
O_TRUNC destroys the complete contents of an existing file. Use it with
care.

The pmode argument is required only when O_CREAT is specified.

5-247

open

If the file exists, pmode is ignored. Otherwise, pmode specifies the
permission settings for the file, which are set when the new file is
closed for the first time. The pmode is an integer expression con­
taining one or both of the manifest constants S_IWRITE and SJREAD,

defined in SYS\STAT.H. When both constants are given, they are joined
with the bitwise OR operator I. The meaning of the pmode argument
is as follows.

Value Meaning

Writing permitted

Reading permitted

Reading and writing permitted.

If write permission is not given, the file is read - only. Under DOS, all
files are readable; it is not possible to give write - only permission.
The modes SJWRITE and SJREAD I SJWRITE are equivalent.

The open function applies the current file permission mask to pmode
before setting the permissions. (See umask in this chapter.)

The open function returns a file handle for the opened file. A return
value of -1 indicates an error, and errno is set to one of the fol­
lowing values.

Value Meaning

EACCESS The given pathname is a directory; or the file is
read - only but an open for writing was attempted; or a
sharing violation occurred. (The sharing mode of the file
does not allow the specified operations unless you have
PC DOS Version 3.00 or later).

EEXIST The O_CREAT and O_EXCL flags are specified, but the named
file already exists.

EMFILE No more file handles are available. There are too many
open files.

ENOENT File or pathname not found.

5-248

open

Example:

This example tries to open files DATA1 and DATA2 for writing. It prints
an open failed message whenever the open function returns an error
value.

#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdlib.h>

i nt fhl, fh2;
rnai n ()
{
fh1 = open("data1", O_RDONLY);
if (fh1 == -1)

perror("open failed on input file");

fh2 = open("data2", O_WRONLY I O_TRUNC I O_CREAT,
S_IREAD I S_IWRITE);

if (fh2 == -1)
perror("open failed on output file");

Related Topics:

access, chmod, close, creat, dup, dup2, fopen, sopen, umask

5-249

outp

Purpose:

Writes specified values to an output port.

Formal:

/* Required for function declarations */
#include <conio.h>

int outp(port, value)
unsigned port; /* Port number */
int value; /* Output value */

Comments:

The oulp function writes the specified value to the output port speci­
fied by port. The port argument can be any unsigned integer in the
range of 0 through 65535; value can be any integer in the range of 0
through 255.

The oulp function returns value. There is no error return.

5-250

outp

Example:

The following example sends a byte to the port to which port is cur­
rently set.

#include <conio.h>

int byte_val;
unsigned port;

outp(port, byte_val);

Related Topics:

Inp

Note: Under OS/2, outp uses privileged OUT instructions that require
you to set up your system to get access to the input/output priv­
ilege level (IOPL) and to provide a .DEF file for your program.
IBM recommends outp only for getting access to ports for
graphics adapters. For more information on IOPL, see the IBM

Operating System/2 Technical Reference book.

5-251

perror

Purpose:

Prints an error message to stderr.

Format:

/* Required for function declarations */

#include <stdio.h>

void perror(string)
const char *string; /* User supplied message */

int errno; /* Error number */

int sys_nerr; /* Number of system messages */
/* Array of error messages * /

char *sys_errlist [sys_nerr];

Comments:

The perror function prints an error message to stderr. The string
argument is printed first, followed by a colon, the system error
message for the last library call that produced an error, and a
newline character. If string is a NULL pointer or a pointer to a NULL

string, perror prints only the system error message.

The error number is stored in the variable errno, which you declare
at the external level. The perror function gets access to the system
error messages through the variable sys_errlist, which is an array of
messages arranged by error number. The perror function prints the
appropriate error message by using the errno value as an index to
sys_errlist. The value of the variable sys_nerr is defined as the
maximum number of elements in the sys_errlist array.

To produce accurate results, perror should be called immediately
after a library routine returns with an error. Otherwise, subsequent
calls might write over the errno value.

The perror function returns no value.

5-252

perror

Example:

The following example tries to open a stream. If the open function
fails, the example prints a message and ends the program.

#include <stdlib.h>
#include <stdio.h>
#include <process.h>

i nt fh

if ((fh = open(ldata",O_RDONLY)) == -1) {
perror("Could not open data file");
abort () ;
}

Related Topics:

clearerr, ferror

Note: Under DOS, some of the errno values listed in errno.h are not
used. See Appendix A, "Error Messages," in this book for a
list of errno values used on DOS and the corresponding error
messages. The perror function prints an empty string for any
errno value not used under DOS.

5-253

pow

Purpose:

Computes xY.

Format:

#include <math.h>
double pow(x,Y)
double x; /* Number to be raised */
double y; /* Power of x * /

Comments:

The pow function computes x raised to the yth power.

The pow function returns the value of XY. If Y is zero, pow returns the
value 1. If x is zero and y is negative, pow sets errno to EDOM and
returns O. If both x and y' are 0, or if x is negative and y is not an
integer, pow prints a DOMAIN error message to stderr, sets errno to
EDOM, and returns o. If an overflow results, the function sets errno to
ERANGE and returns either positive or negative HUGE_VAL. No message
is printed for overflow or underflow conditions. The pow function
does not recognize integral floating-point values greater that 264.

Example:

The following example calculates the value of 23:

#include <math.h>

double x = 2.0, y = 3.0, z;

z = pow(x,y); /* z = 8.0 */

Related Topics:

exp, log, sqrt

5-254

printf

Purpose:

Formats and pri nts characters to stdout.

Format:

#include <stdio.h>

int printf(format-string[, argument ...]}
const char *format-string; /* Format-control string */

Comments:

The printf function formats and prints a series of characters and
values to the standard output stream stdout. The format-string con­
sists of ordinary characters, escape sequences, and format specifica­
tions. The ordinary characters are copied in order of their
appearance to stdout. Format specifications, beginning with a
percent sign (%), determine the output format for any arguments fol­
lowing the format-string.

The format-string is read left to right. When the first format specifica­
tion is found, the value of the first argument after the format-string is
converted and put out according to the format specification. The
second format specification causes the second argument to be con­
verted and put out, and so on through the end of the format-string. If
there are more arguments than there are format speCifications, the
extra arguments are ignored. The results are undefined if there are
not enough arguments for all the format specifications. A format
speCification has the following form:

%[f/ags] [width] [.precision] [FINlhllIL]type

Each field of the format specification is a single character or number
signifying a particular format option. The type character, which
appears after the last optional format field, determines whether the
associated argument is interpreted as a character, a string, or a
number. The simplest format specification contains only the percent
sign and a type character (for example, "%s").

5-255

printf

The following optional fields control other aspects of the formatting.

Field

flags

width

precision

F,N

Description

Justification of output and printing of signs, blanks,
decimal points, octal, and hexadecima.l prefixes.

Minimum number of characters output.

Maximum number of characters printed for all or part of
the output field, or minimum number of digits printed for
integer values.

Prefixes that let you ignore the default addressing con­
ventions of the storage model that you are using:
F In a small model, prints a value previously

declared far.
N In medium, large, and huge models, prints values

previously declared near.
Use F and N only with the sand p type characters
because they are relevant only with arguments that
pass a pointer. F and N are IBM extensions.

h,I,L Size of argument expected:
h A prefix with the integer types d, i, 0, u, x, and X

that specifies that the argument is short int.
A prefix with d, i, 0, u, x, and X types that specifies
that the argument is a long int; with the e, E, f, g, or
G types, it shows that the argument is double
instead of float.

L A prefix with e, E, f, g, or G types that specifies that
the argument is long double.

Each field of the format specification is discussed in detail below. If a
percent sign (%) is followed by a character that has no meaning as a
format field, the character is simply copied to STDOUT. For example,
to print a percent sign character, use U%%".

The type characters and their meanings are given in the following
table.

5-256

printf

Character Argument Output Format

d, i Integer Signed decimal integer.

u Integer Unsigned decimal integer.

0 Integer Unsigned octal integer.

x Integer Unsigned hexadecimal
integer, using "abcdef".

X Integer Unsigned hexadecimal
integer, using" ABCDEF".

f Floating-point Signed value having the
form [-]dddd.dddd, where
dddd is one or more
decimal digits. The number
of digits before the decimal
point depends on the mag-
nitude of the number, and
the number of digits after
the decimal point depends
on the requested precision.

e Floating-point Signed value having the
form [-]d.dddd E[sign] ddd,
where d is a single decimal
digit, dddd is one or more
decimal digits, ddd is
exactly three decimal digits,
and sign is + or -.

E Floating-point Identical to the "e" format
except that "E" introduces
the exponent instead of "e".

5-257

prinH

Character Argument Output Format

g Floating-point Signed value printed in "f"
or "e" format, whichever is
more compact for the given
value and precision (see
below). The "e" format is
used only when the expo-
nent of the value is less
than - 4 or greater than
precision. Trailing zeros
are truncated and the
decimal point appears only
if one or more digits follow
it.

G Floating-point Identical to the "g" format
except that "E" introduces
the exponent (where appro-
priate) instead of "e".

c Character Single character.

s Pointer to char Characters printed up to the
first null character ('\0') or
until precision is reached.

n Pointer to integer Number of characters suc-
cessfully written so far to
the stream or buffer; this
value is stored in the
integer whose address is
given as the argument.

p Far pointer to void Prints the address pointed
to by the argument in the
form xxxx:yyyy, where xxxx
is the segment, YYYY is the
offset, and the digits x and Y
are uppercase hexadecimal
digits. %Np prints only the
offset of the address yyyy.
Since %p expects a pOinter
to a far value, pointer argu-
ments to p must be cast to
far in small model pro-
grams.

The flag characters and their meanings are as follows (notice that
more than one flag can appear in a format specification):

5-258

prinH

Flag Meaning Default

- Left - justify the result within the Right - justify.
field width.

+ Prefix the output value with a sign Sign appears
(+ or -) if the output value is of a only for negative
signed type. signed values

(-).

blank(' ') Prefix the output value with a blank No blank.
if the output value is signed and
positive. The" +" flag overrides
the blank flag if both appear, and a
positive signed value will be output
with a sign.

When used with the 0, x, or X No prefix
formats, the "#" flag prefixes any
nonzero output value with 0, Ox, or
OX, respectively.

When used with the f, e, or E Decimal point
formats, the "#" flag forces the appears only if
output value to contain a decimal digits follow it.
point in all cases.

When used with the 9 or G formats, Decimal point
the "#" flag forces the output value appears only if
to contain a decimal point in all digits follow it;
cases and prevents the truncation trailing zeros
of trailing zeros. are truncated.

Ignored when used with c, d, i, u,
or s.

Width is a nonnegative decimal integer controlling the minimum
number of characters printed. If the number of characters in the
output value is less than the specified width, blanks are added on the
left or the right (depending on whether the" -" flag is specified) until
the minimum width is reached. If width is prefixed with a zero (0),
zeros are added until the minimum width is reached (not useful for
left-justified numbers).

Width never causes a value to be truncated; if the number of charac­
ters in the output value is greater than the specified width, or width is
not given, all characters of the value are printed (subject to the preci­
sion specification).

5-259

prinH

The width specification can be an asterisk (*), in which case an argu­
ment from the argument -list supplies the value. The width argu­
ment must precede the value being formatted in the argument list.

Precision is a nonnegative decimal integer preceded by a period,
which specifies the number of characters to be printed or the number
of decimal places. Unlike the width specification, the precision can
cause truncation of the output value or rounding of a floating - point
value.

The precision specification may be an asterisk (*), in which case an
argument from the argument list supplies the value. The precision
argument must precede the value being formatted in the argument
list.

The interpretation of the precision value and the default when the
precision is omitted depend upon the type, as shown in the following
table.

Type Meaning Default

i Precision specifies the If preCision is 0 or
d minimum number of digits omitted entirely, or if
u to be printed. If the number the period (.)
0 of digits in the argument is appears without a
x less than precision, the number following it,
X output value is padded on the precision is set

the left with zeros. The to 1.
value is not truncated when
the number of digits
exceeds precision.

e Precision specifies the Default precision is
E number of digits to be six. If precision is

printed after the decimal zero or the period
point. The last digit printed appears without a
is rounded. number following

it,no decimal point is
printed.

5-260

printf

Type Meaning Default

f Precision specifies the Default precision is
number of digits after the zero; if precision is
decimal point. If a decimal explicitly zero, no
point appears, at least one decimal point is
digit appears before it. The printed.
value is rounded to the
appropriate number of
digits.

g Precision specifies the All significant digits
G maximum number of signif- are printed.

icant digits printed.

c No effect. Character printed.

s Precision specifies the Characters are
maximum number of char- printed until a null
acters to be printed. Char- character is
acters in excess of encountered.
precision are not printed.

The prinH function returns the number of characters printed.

Representation of special floating-point values:

If you call prinH with a floating point format specifier and the corre­
sponding argument is infinite, indefinite, or not-a-number, the output
from prinH appears as follows:

VALUE

+ infinity

- infinity

indefinite

not-a-number

where:

OUTPUT

1.#INFrandom digits

-1.#INFrandom digits

digit.#INDrandom digits

digit.#NaNrandom digits

digit and random digits
are unpredictable values.

5-261

prinH

Example:

The following example prints data in a variety of formats:

#include <stdio.h>

mai nO
{

char ch = 'h', *string = "computer";
int count = 234, hex = Ox10, oct = 010, dec = 10;
int *ptr;
double fp = 251.7366:

/* Output integer in various formats */
printf("%d %+d %06d %X %x %o\n\n",

count, count, count, count, count, count);

/* Show how %n gets string length */
printf(11234567890123%n45678901234567890\n\n",

&count);
printf("Value of count should be 13: II

"count = %d\n\n", count):

/* Show character in two formats */
printf(I%10c%5c\n\n",ch,ch):

/* Show string in two formats */
printf(I%25s\n%25.4s\n\n",string, string):

/* Show floating point in 4 formats. */
printf("%f %.2f %e %E\n\n",

fp, fp, fp, fp);

/* Show output of different bases */
printf("%i %i %i\n\n", hex, oct, dec);

/* Show output using pointers */
ptr = &count;
printf("%Np %p %Fp\n~,

ptr, (int far *)ptr, (int far *)ptr);

5-262

Output:

(Actual numbers may vary slightly.)

234 +234 000234 EA ea 352

123456789012345678901234567890

Value of count should be 13; count = 13

h

251. 736600

16 8 10

computer
comp

251.74 2.517366e+002

12FA 41E4:12FA 41E4:12FA

Related Topics:

tprinH, scant, sprintf

printf

2.517366E+002

5-263

pule - pulehar

Purpose:

Writes a character to the output stream.

Formal:

#include <stdio.h>

/* Write a character to stream * /
int putc(c, stream)
int c; /* Character to write */
FILE *stream; /* Pointer to file structure */

i nt putchar(c) /* Write a character to sldoul * /
int c; /* Character to write */

Commenls:

The pule function writes the single character c to the output stream at
the current position. The putchar function is identical to putc(c,
sldoul).

The pule and pulchar functions return the character written. A return
value of EOF indicates an error which could be caused by an attempt
to write to a read-only file, specifying a non-valid stream pointer, or
no space left on the device. Because the EOF value is a legitimate
integer value, use the terror function to verify that an error occurred.

5-264

pute - putehar

Example:

The following example writes the contents of a buffer to a data
stream. In this example, the body of the for statement is null because
the example carries out the writing operation in the test expression.

#include <stdio.h>

FILE *strearn;
char buffer[81]="strings";
i nt i, ch;
rnai n ()
{
for (i = G; (i < 81) && ((ch = putc(buffer [i],

stream)) != EOF); i++);

Related Topics:

'pute, 'putchar, getc, getehar

Note: The putc and putehar functions are identical to 'pute and
fputehar but are macros, not functions.

5-265

putch

Purpose:

Writes the character c directly to the screen.

Format:

/* Required for function declarations */
#include <conio.h>

int putch(c)
int c; /* Character to put out */

Comments:

The putch function writes the character c directly to the screen. If the
action is successful, putch returns c. In case of error in OS/2 mode,
putch returns EOF.

Example:

The following example shows how to define the getche function using
putch and getch.

#include <conio.h>

i nt getche ()
{

int ch;

ch = getch () ;
putch(ch);
return(ch);

Related Topics:

cprlnH, getch, getche

5-266

Purpose:

Adds or modifies environment variables.

Format:

/* Required for function declarations */
#include <stdlib.h>

int putenv(envstring)
/* Environment string definitions */

char *envstring;

Comments:

putenv

The putenv function adds new environment variables or modifies the
values of existing environment variables. Environment variables
define the environment in which a process runs (for example, the
default search path for libraries to be linked with a program).

The envstring argument must be a pointer to a string with the form:

varname = string

where varname is the name of the environment variable to be added
or modified and string is the value of the variable. If varname is
already part of the environment, string replaces it; otherwise, the new
string is added to the environment. A variable can be set to an empty
value by specifying an empty string.

Do not free a pointer to an environment entry while the environment
entry is still in use. The environment variable will point into freed
space. A similar problem can occur if you pass a pOinter to a local
variable to putenv, then exit the function in which the variable is
declared.

The putenv function returns 0 if it is successful. A return value of -1
indicates an error.

5-267

putenv

Example:

The following example tries to change an environment variable. If it
fails, the example writes an error message.

#include <stdlib.h>
#include <stdio.h>
#include <process.h>

if (putenv("PATH=a:\\bin;b:\\andy")== -1)
{
printf("putenv failed - out"

"of environment space");
exit (1);
}

Related Topics:

getenv

Note: The getenv and putenv functions use the global variable
environ to get access to the environment table. The putenv
function can change the value of environ, thus invalidating the
envp argument to the main function.

5-268

The environment manipulated by putenv is local to the process
currently running. You cannot enter new items in your
command level environment using putenv. When the program
ends, the environment reverts to the parent process environ­
ment (DOS level in most cases). However, this environment is
passed on to any chi Id processes that are spawned, and they
get any new items added using putenv.

puts

Purpose:

Writes a given string to stdout.

Format:

#include <stdio.h>

i nt puts(string)
const char *string; /* String to write to stdout */

Comments:

The puts function writes the given string to the standard output
stream stdout, replacing the ending null character (\0) in the string
with a newline character (\n) in the output stream.

The puts function returns the last character written, which is always
the newline character. A return value of EOF indicates an error.

Example:
The following example writes a prompt to stdout:

#include <stdio.h>

int result;

result = puts("Insert data disk and press any key");

Related Topics:

fputs, gets

5-269

putw

Purpose:

Writes a binary value to the specified stream.

Format:

#include <stdio.h>

int putw(binint, stream)
int binint; /* Binary integer to write */
FILE *stream; /* Pointer to file structure * /

Comments:

The putw function writes a binary value of type int to the current posi­
tion of the specified stream. The putw function does not affect the
alignment of items in the stream, nor does it assume any special
alignment

The putw function returns the value written. A return value of EOF

might indicate an error. Because EOF is also a legitimate integer
value, use ferror to verify an error.

Example:

The following example writes a word to a data stream and checks for
an error.

#include <stdio.h>
#include <stdlih.h>

FILE *stream;

putw(0345, stream);

if (ferror(stream)) {
printf("putw failed");
clearerr(stream);
}

5-270

putw

Related Topics:

getw

Note: The putw function is provided primarily for compatibility with
previous libraries. Notice that portability problems might occur
with putw because the size of an Int and the orderi ng of bytes
within an Int differ across systems.

5-271

qsort

Purpose:

Uses a quick-sort algorithm to sort an array of elements.

Format:

/* Required for function declarations */
#include <stdlib.h>

void qsort(base, num, width, compare)
void *base;
size_t num, width;
int (*compare)(const void *element1,const void *element2);

Comments:

The qsort function uses a quick-sort algorithm to sort an array of num
elements, each of width bytes in size. The base pointer is a pOinter
to the base of the array to be sorted. The qsort function overwrites
this array with the sorted elements.

The compare pointer points to a routine, which you supply, that com­
pares two array elements and returns an integer value specifying
their relationship. The qsort function calls the compare routine one
or more times during the sort, passing pointers to two array elements
on each call. The routine must compare the elements, then return
one of the following values.

Value

Less than 0

o
Greater than 0

Meaning

element1 less than element2

element1 equal to element2

element1 greater than element2.

The sorted array elements are stored in increasing order, as defined
by your comparison routine. You can sort in reverse order by
reversing the sense of "greater than" and "less than" in the compar­
ison routi ne.

5-272

qsort

There is no return value.

Example:

This example reads the command-line parameters and uses qsort to
sort them. It then displays the sorted arguments.

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

int qcompare(); /* function for qsort */

main(argc, ai'gv)
int argc;
char **argv;
{

char **result;
int i;

/* Eliminate argv[O] from sort: */
argv++;
argc--;

/* Sort using Quicksort algorithm: */
qsort((void *)argv,argc,

sizeof(char *),qcompare);

/* Output sorted list: */
for (i=O; i<argc; ++i)

printf("%s\n" ,argv[i]);

int qcompare(argl,arg2)
char **argl, **arg2;
{
/* Compare all of both strings. */

return(strcmp(*argl,*arg2));

Related Topics:

bsearch

5-273

raise

Purpose:

Send a signal to a process.

Format:

#include <signal.h>

int raise (sig)
int sig; I*the constant expression for the signal */

Comments:

The raise function sends the signal sig to the running program. The
return value is zero if successful, nonzero if unsuccessful.

Example:

#include <signal .h>
/*This program requests its own termination by raising condition
SIGTERM.*/
mai n ()
{

raise(SIGTERM); /* Request termination. */

Related Topics:

signal

5-274

Purpose:

Returns a pseudo random integer.

Format:

/* Required for function declarations */

#include <stdlib.h>

int rand()

Comments:

rand

The rand function selects a pseudo random integer in the range 0 to
32767. Use the srand function before calling rand to set a random
starting pOint. The default seed is 1.

The rand function returns a pseudo random number as described
above. There is no error return.

5-275

rand

Example:

#define MAX 10
#include <math.h>
#include <stdlib.h>
mai n ()
{

i nt index [MAXJ ;
int i;

for(i=0; i<MAX; i++)
index[i]=i;

shuffle(index,MAX);
printf("The shuffled index vector was:");
for(i=0; i<MAX; i++)

printf(" %d",index[iJ);
printf("\n");

/* This subroutine takes the first
argument, a pointer to a vector of non­
negative integers, and performs an
in-place random permutation of the
elements of the vector. The iength is
the second argument. The subroutine
uses the sign bits of the vector
elements as markers during the shuffle,
and reset them to zero (positive) after
the operation. ,ne constraints on the
numbers accepted after the random draw
are designed to make any of the n
factorial permutations equally probable.
*/

shuffle(m,n)
int m[J;
int n;
{

int i ,j,k,r,cellcount,hold,save;
unsigned multiplier;
int cyclestart=-l;

for (i=0; i<n; i++)
/* Test input vector for validity. */
if (m[i J<0)
{

5-276

printf("Input error--element"
" %d was negative.\n",i};

return (-I);
}

cellcount=n;
a: do

{
++cyclestart;
if(cyclestart>=n) goto wrapup;

}
while (m[cyclestart]<O);

j=cyclestart;
save=m[j] ;

b: hold=save;
frexp((float)cellcount,&k);
/* Which power of 2 is cellcount? */

multiplier=OxOOOl « (15-k);
/* Form the multiplier. */

while((multiplier*cellcount-l}
<= (r=rand ()))

r %= ce 11 count;
for (++r; r>O; r--)

/* The number of cells to
do (j==(n-l))?(j=O):(j++);
while(m[j]<O) ;

/* Seek an uncanceled cell.
save=m[j] ;
m[j]=hold I Ox8000;

/* Mark the cell with the

skip. * /

*/

sign bit. */
cellcount--;
if(j!=cyclestart) goto b;

/* Is a cycle completed? */
goto a;

wrapup:
for (i=O; i<n; i++)

/* Reset all the sign bits. */
m[i] &= Ox7FFF;

return (0);

Related Topics:

srand

rand

5-277

read

Purpose:

Reads bytes from a file into a buffer.

Format:

/* Required for function declarations */

#include <io.h>

int read(handle, buffer, count)
int handle; /* Handle referring to open file */
char *buffer; /* Storage location for data */
unsigned int count; /* Maximum number of bytes */

Comments:

The read function tries to read count bytes from the file associated
with handle into buffer. The read operation begins at the current
position of any file pointer associated with the given file. After the
read operation, the file pointer points to the next unread character.

The read function returns the number of bytes actually read, which
can be less than count if there are fewer than count bytes left in the
file or if the file was open~d in text mode (see below). The return
value 0 indicates an attempt to read at end-of-file. The return value -1
indicates an error, and errno is set to the following value.

Value

EBADF

Meaning

The given handle is incorrect. Or the file is not open for
reading. Or the file is locked.

If you are reading more than 32K bytes from a file, the return value
should be of the type unsigned int. However, the maximum number of
bytes that can be read from a file is 65534, because 65535 (or OxFFFF)
is indistinguishable from -1, and returns an error.

If the file was opened in text mode, the return value might not corre­
spond to the number of bytes actually read. When text mode is in
effect, each carriage return/line feed pair is replaced with a single

5-278

read

line feed character. Only the single line feed character is counted in
the return value. The replacement does not affect the file pointer.

Under OS/2 in large and compact models, memory is reserved from
the OS/2 heap; each reserved unit is memory-protected and limited in
size. If you give, in a read or fread call, a read count that is greater
than the size of the allocated buffer, OS/2 issues a General Protection
Failure message, even if the file being read is small enough to fit
within the boundaries of the buffer.

Example:

#inelude <io.h>
#inelude <stdio.h>
#inelude <fentl.h>

ehar buffer[60000];

mai n ()
{

int fh, bytesread;
unsigned int nbytes = 60000;

if((fh = open ("c:\\data\\eonf.dat",

o RDONLY)) == -1) {
-perror("open failed on input file");
exit(l);
}

if ((bytesread = read(fh,buffer,nbytes)) == -1)
perror('''') ;

else
printf("Read %u bytes from file\n",bytesread);

Related Topics:

creat, fread, open, write

Note: Under DOS, when files are open in text mode, a Ctrl + Z char­
acter is treated as an end-of-file indicator. When the Ctrl + Z is
found, reading stops, and the next reading returns 0 bytes.
You must close the file to clear the end-of-file indicator.

5-279

realloc

Purpose:

Changes the size of a previously-reserved block of storage.

Format:

/* Required for functton declarations */
#include <stdlib.h>

void *realloc(ptr, size)
/* Pointer to previously-reserved storage block */
void *ptr;
size _ t size; /* New size in bytes * /

Comments:

The realloe function changes the size of a previously-reserved
storage block. The ptr argument points to the beginning of the block.
The size argument gives the new size of the block, in bytes. The con­
tents of the block are unchanged up to the shorter of the new and old
sizes.

The ptr argument can also point to a block that has been freed, as
long as there has been no i nterveni ng call to ealloe, malloe, or realloe
since the block was freed.

The realloe function returns a pointer to the reallocated storage
block. The block might be moved when its size changed; thus, the ptr
argument to realloe is not necessarily the same as the return value.

The return value is NULL if size is 0, or if there is not enough storage
space to expand the block to the given size. The original block is
freed when this occurs.

The storage space to which the return value pOints is guaranteed to
be aligned for storage of any type of object. To get a pOinter to a
type, use a type cast on the return value.

5-280

realloc

Example:

The following example gets enough space for 50 characters. Then it
reallocates the block to hold 100 characters.

#include <stdlib.h>
#include <stdio.h>

char *alloc;

alloc = malloc(50*sizeof(char));

if (alloc != NULL)
alloc = realloc(alloc, lOO*sizeof(char));

Related Topics:

calloc, free, malloc

5-281

remove

Purpose:

Deletes the specified file.

Format:

#include <stdio.h>

int remove(pathname)
/* Path name of file to be removed */

const char *pathname;

Comments:

The remove function deletes the file specified by pathname.

The remove function returns the value 0 if it successfully deletes the
file. A return value of -1 indicates an error, and errno is set to one of
the following values.

Value Meaning

EACCESS The pathname specifies a directory or a read-only file.

ENOENT The file or pathname was not found, or (in OS/2 mode) the
filename was improperly formed.

You may issue a remove call against an open file. The file is deleted
when it is closed.

5-282

remove

Example:

The following example removes the file TMPFILE and checks for an
error, issuing a message if an error occurs.

#include <stdio.h>
#include <stdlib.h>

int result;

result = remove("tmpfile");
if (result == -1)

perror(" cou ld not delete tmpfile");

Related Topics:

close, unlink

5-283

rename

Purpose:

Renames a file or directory.

Format:

/* Required for function declarations * /
#include <stdio.h>

int rename(oldname,newname)
const char *newname; /* Pointer to new name */
const char *oldname; /* Pointer to old name */

Comments:

The rename function renames the file or directory specified by
oldname to the name given by newname. The oldname pointer must
specify the pathname of an existing file or directory. The newname
pointer must not specify the name of an existing file or directory.

You can use the rename function to move a file from one directory to
another by giving a different pathname in the newname argument.
However, fi les cannot be moved from one device to another (for
example, from drive A: to drive B:). Directories can only be renamed,
not moved. The capability of renaming directories is available only
under DOS 3.30 and OS/2.

The rename function returns 0 if it is successful. On an error, it
returns a nonzero value and sets errno to one of the following values:

Value Meaning

EACCESS The file or directory specified by newname already exists
or could not be created (non-valid path). Or oldname is a
di rectory and newname specifies a different path.

ENOENT The filename or pathname specified by oldname not
found, or, in OS/2 mode, the file was incorrectly named.

EXDEV An attempt was made to move a file to a different device.

5-284

rename

Example:

The following example changes name of the file INPUT to the name
DATA:

#include <stdio.h>

int result;

result = rename("input", "data");

Related Topics:

creat, lopen, open

5-285

rewind

Purpose:

Repositions the file pointer to the beginning of a file.

Format:

#include <stdio.h>

void rewind(stream)
FILE *stream; /* Pointer to tile structure */

Comments:

The rewind function repositions the file pointer associated with
stream to the beginning of the file. A call to rewind is the same as:

(void) fseek(stream, OL, SEEK_SET);

except that rewind clears the end-ot-tile and error indicators tor the
stream, but fseek does not clear the error indicators.

There is no return value.

5-286

rewind

Example:

This program first opens a file named DATA for input and output. It
writes integers to the file. Next, it uses REWIND to reposition the file
pointer to the beginning of the file, then reads the data back in.

#include <stdio.h>

FILE *stream;
int datal, data2;
rna in ()
{

datal = 1; data2 = -37;

/* Place data in the file */
stream = fopen("data", "w+");
fprintf(stream, "%d %d", iata1, data2);

/* Now read the data file */
rewind(stream);
fscanf(stream, "%d", &data1);
fscanf(stream, "%d" ,&data2);
printf("The values read back in are: %d and %d\n",

datal, data2);

Related Topics:

fseek, flell

5-287

rmdir

Purpose:

Deletes a directory.

Format:

/* Required for function declarations */
#include <direct.h>.
int rmdir(pathname)

/* Path name of directory to remove */
char *pathname;

Comments:

The rmdir function deletes the di rectory specified by pathname. The
directory must be empty, and it must not be the current working direc­
tory or the root directory.

The rmdir function returns the value 0 if the directory is successfully
deleted. A return value of -1 indicates an error, and errno is set to
one of the following values.

Value Meaning

EACCESS The given pathname is not a directory, the directory is not
empty, or the directory is the current working directory or
root directory.

ENOENT The pathname was not found.

5-288

rmdir

Example:

The following example deletes two directories: one at the root, and
one in the current working directory:

#include <direct.h>

int resultl, result2;

resultl = rmdir("\\data");
result2 = rmdir("data");

Related Topics:

chdir, mkdir

5-289

rmtmp

Purpose:

Cleans up the temporary files in the current directory.

Format:

#include <stdio.h>

int rmtmp()

Comments:

The rmtmp function removes all those temporary files in the current
directory that tmpfile creates. Use rmtmp only in the same directory
in which the temporary files were created.

The rmtmp function returns the number of temporary files closed and
deleted.

Example:

#include <stdio.h>

mai n ()
{
int numdeleted;
FILE *stream;

if «stream = tmpfile(» == NULL)
perror("Could not open new temporary file");

numdeleted = rmtmp();
printf("Number of files closed and deleted"
"in current directory = %d", numdeleted);
}

Related Topics:

flushall, tmpfile, tmpnam

5-290

Purpose:

Resets the break value of the calling process.

Format:

/* Required for function declarations */
#include <malloc.h>

void *sbrk(incr)
/* Number of bytes added or subtracted */

int incr;

Comments:

sbrk

The sbrk function resets the break value for the calling process. The
break value is the address of the first byte of unallocated storage.
The sbrk function adds incr bytes to the break value; the size of the
storage reserved for the process is adjusted accordingly. The incr
variable can be negative, in which case the amount of reserved space
is decreased by incr bytes.

The sbrk function returns the old break value. A return value of (char
*)-1 indicates an error and sets errno to ENOMEM, indicating there was
not enough storage space.

Example:

The following example first adds an increment of 100 bytes to the
break value of the process. Next, the call to sbrk reduces the
reserved storage by 40 bytes, resulting in additional reserved storage
of 60 bytes beyond the original break.

#include <malloc.h>
#include <stdio.h>

void *alloc;
alloc = sbrk(100);

if (alloc != NULL)
sbrk(-40);

5-291

sbrk

Related Topics:

calloc, free, malloc, realloc

Note: The address returned by sbrk is not necessarily aligned for
storage of any particular type of object. In compact-, large-,
and huge-model programs sbrk fails and returns (char *)-1.
Use malloc for allocation requests in these models or when
al ignment is requi red.

5-292

scanf

Purpose:

Reads data from stdin into locations given by arguments.

Format:

#include <stdio.h>

int scanf(format-string [, argument...])
const char *format-string; /* Format-control string */

Comments:

The scan' function reads data from the standard input stream stdin
into the locations given by arguments. Each argument must be a
pointer to a variable with a type that corresponds to a type specifier
in the format-string. The format-string controls the interpretation of
the input fields. The format-string can contain one or more of the
following:

• White-space characters, which are (blank (' '), tab (\t), and new
line (\n). A white-space character causes scan' to read, but not to
store, all consecutive white-space characters in the input up to
the next character that is not white space. One white-space char­
acter in the format-string matches any combination of white­
space characters in the input.

• Characters that are not white space, except for the percent sign
character (%). A nonwhite-space character causes scan' to read,
but not to store, a matching nonwhite-space character. If the next
character in stdin does not match, scan' ends.

• Format specifications, introduced by the percent sign (%). A
format specification causes scan' to read and convert characters
in the input into values of a specified type. The value is assigned
to an argument in the argument list.

The scan' function reads the format-string from left to right. Charac­
ters outside of format specifications are expected to match the
sequence of characters in stdin; the matched characters in stdin are

5-293

scanf

scanned but not stored. If a character in stdin conflicts with the
format-string, scanf ends. The conflicting character is left in stdin as
if it had not been read.

When the first format specification is found, the value of the first input
field is converted according to the format specification and stored in
the location specified by the fi rst argument. The second format spec­
ification converts the second input field and stores it in the second
argument, and so on through the end of the format-string.

An input field is defined as all characters up to the first white-space
character (space, tab, or new line), up to the first character that
cannot be converted according to the format specification, or until the
field width is reached, whichever comes fi rst. If there are too many
arguments for the given format specifications, the extra arguments
are ignored. The results are undefined if there are not enough argu­
ments for the given format specifications.

A format specification has the following form:

%[*] [width][FIH][hll IL]type

Each field of the format specification is a single character or a
number signifying a particular format option. The type character,
which appears after the last optional format field, determines whether
the input field is interpreted as a character, a string, or a number.
The simplest format specification contains only the percent sign and a
type character (for example, %s).

Each field of the format specification is discussed in detail below. If a
percent sign (0/0) is followed by a character that has no meaning as a
format control character, that character and following characters up
to the next percent sign are treated as an ordinary sequence of char­
acters; that is, a sequence of characters that must match the input.
For example, to specify a percent sign character, use 0/0%.

An asterisk (*) following the percent sign suppresses assignment of
the next input fieid, which is interpreted as a field of the specified
type. The field is scanned but not stored.

The width is a positive decimal integer controlling the maximum
number of characters to be read from stdin. No more than width
characters are converted and stored at the corresponding argument.

5-294

scanf

Fewer than width characters are read if a white-space character
(space, tab, or new line), or a character that cannot be converted
according to the given format occurs before width is reached.

The optional F and N prefixes cancel the default addressing con­
ventions of the storage model that you are using. Prefix F to an argu­
ment pointing to a far object. Prefix N to an argument pointing to a
near object. F and N are IBM extensions.

The optional prefix I shows that you use the long version of the fol­
lowing type, while the prefix h indicates that the short version is to be
used. The corresponding argument should point to a long or double
object (for the I character), a long double object (for the L character),
or a short object (with the h character). The I and h modifiers may be
used with the d, i, n, 0, x, and u type characters. The I modifier may
also be used with the e, f and 9 type characters. The L modifier may
be used with the e, f and g type characters. The I and h modifiers are
ignored if specified for any other type. The type characters and their
meanings are in the following table.

5-295

scant

Character Type of Input Expected Type of Argument

d Decimal integer Pointer to int

D Decimal integer Pointer to long

0 Octal integer Pointer to int

0 Octal integer Pointer to long

x Hexadecimal integer Pointer to int

X Hexadecimal integer Pointer to long

i Decimal, hexadecimal, or Pointer to int
octal integer

I Decimal, hexadecimal, or Pointer to long
octal integer

u Unsigned decimal integer Pointer to unsigned int

U Unsigned decimal integer Pointer to unsigned long

e,f,g,E,G Floating-point value con- Pointer to float
sisting of an optional sign
(+ or -); a series of one or
more decimal digits pos-
sibly containing a decimal
point; and an optional expo-
nent ("e" or "E") followed
by a possibly signed integer
value

c Character; whitespace Pointer to char
characters that are ordi-
narily skipped are read
when c is specified; to read
the next nonwhitespace
character, use" % 1s".

s String. Pointer to character array
large enough for input field
plus a terminating null char-
acter (\0), which is automat-
ically appended

n No input read from stream Pointer to int, into which is
or buffer stored the number of char-

acters successfully read
from the stream or buffer up
to that point in the call to
scanf

p Value in the form xxxx:yyyy, Pointer to far pointer to void
where x and yare upper-
case hexadecimal digits

5-296

scanf

To read strings not delimited by space characters, a set of characters
in brackets ([]) can be substituted for the s (string) type character.
The corresponding input field is read up to the first character that
does not appear in the bracketed character set. If the first character
in the set is a caret (1\), the effect is reversed: the input field is read
up to the first character that does appear in the rest of the character
set.

To store a string without storing an ending null character (\0), use the
specification %nc, where n is a decimal integer. In this case, the c
type character means that the argument is a pointer to a character
array. The next n characters are read from the input stream into the
specified location, and no null character (\0) is added.

The input for a %x format specifier is interpreted as a hexadecimal
number; the leading Ox (OX) is not needed as it is in the language.
Thus, if the input is Oxffff, the result returned from scant is 0 because
x is not a correct hex character. The correct input would be ffff. If the
data file contains leading Ox (OX) characters, the correct format
specifier is "Ox%x".

The scant function scans each input field character by character. It
might stop reading a particular input field before it reaches a space
character. The specified width has been reached, so the next char­
acter cannot be converted as specified, conflicts with a character in
the control string that it should match, fails to appear, or appears in a
given character set. When this occurs, the next input field begins at
the first unread character. The conflicting character, if there was one,
is considered unread and is the first character of the next input field
or the first character in subsequent read operations on stdin.

The scant function returns the number of fields that were successfully
converted and assigned. The return value does not include fields that
were read but not assigned.

The return value is EOF for an attempt to read at end-of-file. A return
value of 0 means that no fields were assigned.

5-297

scant

Examples:

The following example scans various types of data:

#include <stdio.h>

int i;
float fp;
charc, s[81J;

scanf("%d %f %c %s", &i, &fp, &c, s);

The following example converts a hexadecimal or octal integer to a
decimal integer. The do loop ends if the input value is 00 or if scant
is unable to assign the field.

#include <stdio.h>

mai nO
{

int numassigned, val;

printf("Enter a hexadecimal or octal"
" number or 88 to quit:\n");

do {
printf("Number = ");

numassigned = scanf("%i", &val);
printf("Decimal number = %i\n", val);
}

while (val && numassigned);

Output:

Enter hexadecimal or octal number or 88 to quit:
Number = 8xf
Decimal number = 15
Number = 0188
Decimal number = 64
Number = 08
Decimal number = 8

Related Topics:

tscant, prinH, sscant

5-298

segread

Purpose:

Fills a structure with the current contents of segment registers.
Under OS/2, references to segments are translated to selector values.

Format:

#include <dos.h>
void segread(segregs)

/* Segment register val ues * /
struct SREGS *segregs;

Comments:

The segread function fills the structure to which segregs points with
the current contents of the segment registers. Use segread under
DOS with intdosx nd int86x functions to retrieve segment register
values for later use.

There is no return value.

Example:

This program reads the four segment registers cs, ds, es, and ss. It
prints their values as hexadecimal numbers.

#include <dos.h>

struct SREGS segregs;
unsigned int cs, ds, es, ss;

mai n ()
{

segread(&segregs);
cs = segregs.cs;
ds = segregs.ds;
es = segregs.es;
ss = segregs.ss;
printf("In hexadecimal the four"

" segment values are: %x"
II %x %x %x\nll,
cs,ds,es,ss) ;

5-299

segread

Related Topics:

intdosx, int86x, FP _ SEG

5-300

Purpose:

Allows control of bufferi ng.

Format:

#include <stdio.h>
void setbuf(stream, buffer)
FILE *stream; j* Pointer to file structure */
char *buffer; /* User-allocated buffer *j

Comments:

setbuf

The setbuf function lets you control buffering for the specified stream.
The stream pointer must refer to an open file. If the buffer argument
is NULL, the stream is unbuffered. If not, the buffer must point to a
character array of length BUFSIZ, which is the buffer size defined in
stdio.h. The system uses the buffer, which you specify, for
input/output buffering instead of the default system-allocated buffer
for the given stream.

The stderr and stdaux streams are unbuffered by default but can be
assigned buffers with setbuf.

There is no return value.

5-301

setbuf

Example:

The following example opens the file DATA1 for reading and DATA2 for
writing. It then calls the setbul function for each data stream, estab­
lishing a buffer of length BUFSIZ for the first file and no buffering for
the output file. For stdio.h, the value of the manifest constant BUFSIZ

is 512.

#include <stdio.h>

char buf[BUFSIZ];
FILE *streaml, *stream2;
streaml = fopen("datal", "r");
stream2 = fopen(ldata2", "W");
setbuf(streaml,buf);
setbuf(stream2,NULL);

Related Topics:

fflush, lopen, fclose

5-302

Purpose:

Saves a stack envi ronment that can be restored by longjmp.

Formal:

#include <setjmp.h>

int setjmp(env)
/* Variable in which environment is stored */

jmp_buf env;

Commenls:

setjmp

The selJmp function saves a stack envi ronment that can subsequently
be restored by longjmp. The seljmp and 10ngJmp functions provide a
way to perform a nonlocal golo. This use of a nonlocal golo passes
control to error-handling or recovery code in a previously called func­
tion without using the normal calling or return conventions.

A call to selJmp causes it to save the current stack environment in
env. A subsequent call to 10ngJmp restores the saved environment
and returns control to the point just after the corresponding setJmp
call. The values of all variables (except register variables) acces­
sible to the function receiving control contain the values they had
when longjmp was called. The values of register variables are
unpredictable.

The selJmp function returns the value 0 after saving the stack environ­
ment. If seljmp returns as a result of a longjmp call, it returns the
value argument of longjmp, or 0 if the value argument of 10ngJmp is 1.
There is no error-return value.

5-303

setjmp

Example:

The following example provides for saving the stack environment at
the statement:

if(setjmp(mark) I = 0) ...

When the system first performs the if statement, it saves the environ­
ment in mark and sets the condition to FALSE because setjmp returns
a 0 when it saves the environment. The system prints the message:

setjmp has been called

The subsequent call to function p tests for a local error condition,
which can cause it to perform the longjmp function. Then, control
returns to the original setjmp function using the environment saved in
mark. This time the condition is TRUE because -1 is the return value
from the longjmp function. The example then performs the state­
ments in the block and prints:

longjmp has been called

Then, it performs your recover function and leaves the program.

5-304

#include <stdio.h>
#include <setjmp.h>

mai n ()
{

}
pO
{

if (setjmp(mark) != 0) {
printf("longjmp has been called\n");
recover();
exit(l);
}

printf("setjmp has been called\n");

PO;

int error = 0;

if (error != 0)
longjmp(mark, -1);

recover()
{

/* Put code here that ensures that *
* exiting the program does not *
* corrupt the data files. */

Related Topics:

longjmp

CAUTION:

setjmp

The values of register variables in the function calling setJmp might
not be restored to the proper values after a 10ngJmp call is run.

5-305

setmode

Purpose:

Sets translation mode of a file.

Format:

#i ncl ude <fcntl. h >
/* Requi red for function declarations * /

#include <io.h>

int setmode(handle, mode)
int handle; 1* File handle */
int mode; 1* New translation mode */

Comments:

The setmode function sets the translation mode of the file given by
handle to mode. The mode must be one of the manifest constants in
the following table:

Manifest Constant Meaning

O_TEXT Set text (translated) mode. Carriage­
returnlline-feed combinations are translated
into a single line feed on input. Line-feed char­
acters are translated into carriage-returnlline­
feed combinations on output.

O_BINARY Set binary (untranslated) mode. The above
translations are suppressed.

Use the setmode function to change the default translation mode of
stdln, stdout, stderr, stdaux, and stdprn, or you can use it on on any
file.

5-306

setmode

If successful, setmode returns the previous translation mode. A
return value of SIG_EER indicates an error, and errno is set to one of
the following values.

Value Meaning

EBADF Non-valid file handle

EINVAL Non-valid mode argument (neither O_TEXT nor O_BINARY)

Example:

The following example sets the translation mode of the standard input
file stdin to binary (untranslated mode).

#include <stdio.h>
#include <fcntl.h>
#include <io.h>

int result;

result = setmode(fileno(stdin), O_BINARY);

Related Topics:

creat, lopen, open

5-307

setvbuf

Purpose:

Controls buffering and buffer size for a specified stream.

Format:

#include <stdio.h>

int setvbuf(stream,but,type,size)
FILE *stream; /* Pointer to file structure * /
char *but; /* User-allocated buffer */
i nt type; /* Type of buffer:

* -,ONBF for no buffer
* -'OFBF for full buffering *
* -'OLBF for line buffering * /

size_t size; /* Size of buffer */

Comments:

The setvbuf function controls both buffering and buffer size for the
specified stream. The stream must refer to an open file. The array to
which but points is used as the buffer, unless it is NULL, in which case
the stream is unbuffered. If the stream is buffered, the type specified
is used; the type must be JONBF, JOFBF, or _IOLBF. If the type is JOFBF

or JOLBF, then size is the size of the buffer. If type is JONBF, the
stream is unbuffered, and size and but are ignored.

Value Meaning

No buffer is used regardless of but or size.

Full buffering is used unless but is NULL. Use but as the
buffer and size as the size of the buffer.

Same buffering as JOFBF.

The legal values for size are greater than 0 and less than the
maximum integer size.

The setvbuf function returns a 0 if successful and nonzero if you
specify an illegal type or buffer size.

5-308

Example:

#include <stdio.h>

char buf[l024];
FILE *stream1, *stream2;

mai n ()
{
streaml = fopen("datal", "r");
stream2 = fopen("data2", "r");

/* Streaml uses a user-assigned buffer of *
* 1024 bytes, while stream2 is unbuffered */

if (setvbuf(stream1, buf, IOFBF, sizeof(buf))
!=O)

printf("Incorrect type or size of bufferl\n");
if (setvbuf(stream2, NULL, IONBF, 0) !=O)

printf("Incorrect type o~ size of buffer2\n");

Related Topics:

setbul, fflush, lopen, Iclose

setvbuf

5-309

signal

Purpose:

Allows handling of an interrupt signal from operating system.

Format:

#include <signal.h>

void (*signal(sig, tunc))(sig)
void (*tunc)(sig); /* Function to run */
int sig; /* Signal value */

Comments:

The signal function allows a process to choose one of several ways to
handle an interrupt signal from the operating system. Under DOS,
the sig argument must be one of the manifest constants SIGINT or
SIGFPE, defined in signal.h. SIGINT corresponds to the DOS interrupt
signal, INT 23H (the Control + C signal). SIGFPE corresponds to floating­
point exceptions that are not masked, such as overflow, division by
zero, or non-valid operations. The tunc argument must be one of the
manifest constants, defined in signal.h, SIG_DFL, SIG-,GN, or a function
address.

Under OS/2, the sig argument must be one of the manifest constants,
SIGABRT, SIGILL, SIGSEGV, SIGINT, SIGFPE, SIGTERM, SIGUSR1, SIGUSR2,

SIGUSR3, or SIGBREAK, defined in signal.h. The tunc argument must be
one of the manifest constants, SIG_DFL, SIG-,GN, SIG_ERR, or SIG_ACK,

defined in signal.h, or a function address.

The meaning of the values of sig are as follows:

Value

SIGABRT

SIGBREAK

5-310

Meaning

SIGABRT is the abnormal termination signal sent
by the abort() function. Default action is to end
the program.

SIGBREAK is a Control + Break signal that you can
use only on OS/2. Default action is to end the
program.

SIGFPE

SIGILL

SIGINT

SIGSEGV

SIGTERM

SIGUSR1

SIGUSR2

SIGUSR3

signal

SIGFPE corresponds to floating-point exceptions
that are not masked, such as overflow, division
by zero, and invalid operation. Default action is
to end the program.

SIGILL corresponds to detection of an invalid func­
tion image. Under DOS, the SIGILL signal handler
is reset to the default when a user-defined han­
dling routine is called. Under OS/2, the SIGILL

signal handler is NOT reset to the default when a
user-defined handling routine is called.

SIGINT is a Control + C signal. In DOS, SIGINT corre­
sponds to the DOS INT 23H interrupt signal, and in
OS/2, SIGINT corresponds to the OS/2 SIGINTR signal.
Default action is to end the program.

SIGSEGV corresponds to an invalid access to
memory. Default action is to end the program.

SIGTERM corresponds to the OS/2 SIGTERM program
termination signal, which can be sent only by
using the OS/2 DOSKILLPROCESS command. Default
action is to end the program.

SIGUSR1 corresponds to the OS/2 process-flag A
signal, which you can use only on OS/2. Default
action is to ignore the signal.

SIGUSR2 corresponds to the OS/2 process-flag B
signal, which you can use only on OS/2. Default
action is to ignore the signal.

SIGUSR3 corresponds to the OS/2 process-flag C
signal, which you can use only on OS/2. Default
action is to ignore the signal.

SIGUSR1, SIGUSR2, and SIGUSR3 are signals that you
can defi ne and send usi ng DOSFLAGPROCESS. For
more information about using these signal, see
the DOSCALLS section in IBM Operating Systeml2
Technical Reference.

The action taken when the interrupt signal is received depends on the
value of func.

5-311

signal

Value Meaning

SIG_ACK acknowledges receipt of a signal. A
process uses SIG_ACK to re-enable recognition of
a given signal whenever a signal handler is pre­
pared to receive more signals of this type. This
option does not affect the handler installed for a
given signal. You can use SIG_ACK only on OS/2.

In a process with multiple threads of perform­
ance, only the first thread receives a signal,
though the action taken is to call the function to
which any of the threads of that process last set
the func argument.

On DOS, the calling process is ended and control
returns to the DOS command level. All files
opened by the process are closed, but buffers are
not flushed. On OS/2, the system default response
is to ignore all signals except SIGTERM, SIGBREAK,

SIGSEGV, SIGINT, SIGABRT, and SIGFPE. The system
responses for SIGTERM and SIGFPE are the same as
those for DOS.

SIG_SGE SIG_SGE is equivalent to SIGJGN except that it also
makes it an error for a process to send the signal
to this process using DOSFLAGPROCESS, if the
signal is SIGUSR1, SIGUSR2, or SIGUSR3, or using
DOSKILLPROCESS if the signal is SIGTERM. It has
exactly the same effect as SIGJGN for SIGINT and
SIGBREAK signals because these can only be sent
by the operating system. You can use SIG_SGE

only on OS/2.

SIG_IGN The interrupt signal is ignored. Never give this
value with SIGFPE because the floating-point state
of process is left undefined.

Function address The function address installs a specified function
as a handler for the given signal. For SIGINT

signals on DOS, the function pointed to by tunc is
passed the single argument SIGINT and run. If the
function returns, the calling process resumes
running just after the point where it received the
interrupt Signal. Before the specified function is

5-312

signal

run, the value of func is set to SIG_DFL; the next
interrupt signal is treated as described above for
SIG_DFL unless an intervening call to signal speci­
fies otherwise. This allows you to reset signals
in the called function if desired.

For all signals other than SIGFPE on OS/2, the func­
tion is passed two arguments, the signal number
and, if appropriate, the argument furnished by
the DOSFLAGSPROCESS. The second argument is
appropriate only if the signal is SIGUSR1, SIGUSR2,

or SIGUSR3.

For SIGFPE signals on all versions of DOS, the func­
tion to which func points is passed the single
argument, SIGFPE, then performed. (See the
include file float.h for definitions of the FPE_XXX

subcodes.) The value of tunc is not reset on
receiving the signal; to recover from floating­
point exceptions, use setjmp in connection with
longjmp. (See the example under _fpreset in this
chapter.) If the function returns, the calling
process resumes running with the floating-point
state of the process left in an undefined state.

For all types of signals and for all versions of
OS/2, if the function returns, the calling process
resumes running immediately following the point
at which it received the interrupt signal.

On DOS before the specified function runs, the
operating system sets the value of tunc to
SIG_DFL. It then treats the next interrupt signal as
SIG_DFL unless an intervening call to SIGNAL speci­
fies otherwise. This action lets you reset signals
in the called function, if necessary.

OS/2 does not reset the signal handler to the
system default response. Instead, OS/2 ensures
that a process can receive no signals of a given
type until the process sends a SIG_ACK to the
operating system. You can restore the default
system response from the handler by sending a

5-313

signal

SIG_DFL and then a SIG_ACK to the operating
system.

On DOS, the signal function returns the previous value of func.

On OS/2, for SIGFPE signals, the signal function returns the previous
value of tunc for SIGFPE. For all other signals, the return value is as
follows:

Previous Current
tunc Value tunc Value

SIG-,GN SIG-,GN

SIG_DFL SIG_DFL

SIG_SGE SIG_SGE

SIG_ACK The address of the
currently installed
handler

Function address The function address.

A return value of SIG_ERR indicates an error, and errno is set to EINVAL,

indicating an incorrect sig value.

The possible causes of error are an incorrect sig value, a value for
func that is less than SIG_ACK but undefined, or a value for tunc of
SIG_ACK when no handler is currently installed.

5-314

signal

Example:

In the following example, the call to signal in main(} establishes the
routine handler(} to process the DOS interrupt signal when it occurs.
An error value returned from this call to signal(} causes the program
to end with a printed error message. The handler(} routine asks you
to enter a V or y from the keyboard if you want to halt the program.
Entering any other character causes the program to resume opera­
tion.

#include <stdio.h>
#i ncl ude <si gnal . h>
#include <stdlib.h>
#include <process.h>

i nt handl er () ;

rnai nO
{

if (signal(SIGINT,handler) == (int(~)())-l)
perror("Could not set SIGINT");
abort ();
}

i nt handl er 0
{

char ch;

signai(SIGINT,handler);
printf("End processing?");
ch = get char ();
if (ch == I Y I II ch == I Y I)

exit (0) ;

Related Topics:

abort, exit, _exit, _fpreset, raise, spawnl, spawnle, spawnlp, spawnv,
spawnve, spawnvp

Note: Signal settings are not preserved in child processes created by
calls to exec or spawn functions. The signal settings are reset
to the default in the child process. Calling library functions
from within a signal handler routine may result in undefined
behavior.

5-315

sin - sinh

Purpose:

Return the sine and hyperbolic sine.

Format:

#include <math.h>

double sin(x) 1* Calculate sine of x */
/* Calculate hyperbolic sine of x */

double sinh(x)
double x; 1* Angle in radians */

Comments:

The sin and sinh functions return the sine and hyperbolic sine of x,
respectively.

The sin function returns the sine of x. If x is large, a partial loss of
significance in the result might occur. In such cases, sin generates a
PLOSS error, but no message is printed. If x is so large that a total
loss of significance results, sin prints a TLOSS error message to stderr
and returns O. In both cases, errno is set to ERANGE.

The sinh function returns the hyperbolic sine of x. If the result is too
large, sinh sets errno to ERANGE and returns the value HUGE_VAL (posi­
tive or negative, depending on the value of x).

Error handling can be modified by using the matherr routine.

5-316

sin - sinh

Example:

The following example computes y as the sine of nl2 and z as the
hyperbolic sine of n12:

#include <math.h>

double pi, x, y, z;

pi = 3.1415926535;
x = pi/2;
y = sin (x) ; /* y is l. 0 * /

z = sinh(x); /* z is 2.3 */

Related Topics:

acos, asin, atan, atan2, cos, cosh, tan, tanh

5-317

sopen

Purpose:

Opens a file for shared reading or writing.

Format:

#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <share.h>
#include <io.h>

/* Required for function declarations */

int sopen(pathname, of lag, shflag [, pmodeD
char *pathname; /* File path name */
int of/ag; /* Type of operations allowed */
int shf/ag; /* Type of sharing allowed */
int pmode; /* Permission setting */

Comments:

The sopen function opens the file specified by pathname and pre­
pares the file for subsequent shared reading or writing as defined by
of lag and shf/ag. The of/ag is an integer expression formed by com­
bining one or more of the manifest constants defined in fentr.h. When
more than one manifest constant is given, the constants are joined
with the OR operator (I).

Note: File sharing modes do not work correctly for buffered files, so
do not use fdopen to associate a file opened for sharing (or
locking) with a stream.

5-318

sopen

The oflag of every sopen must contain one of the following:

O_RDONLY

O_WRONLY

O_RDWR

The six other manifest constants modify how the file is processed.

Otlag

O_BINARY

O_TRUNC

O_WRONLY

CAUTION:

Meaning

Reposition the file pointer to the end of the file before
every write operation.

Open the file in binary (untranslated) mode. (See
topen for a description of binary mode.)

Create and open a new file. This has no effect if the
file specified by pathname exists.

Return an error value if the file specified by pathname
exists. This applies only when used with O_CREAT.

Open the file for reading only. If this flag is given,
neither O_RDWR nor O_WRONLY can be given.

Open the file for both reading and writing. If this flag
is given, neither O_RDONLY nor O_WRONLY can be tJiven.

Open the file in text (translated) mode. (See topen for
a description of text mode.)

Open and truncate an existing file to 0 length. The file
I

must have write permission, and the contents of the
file are destroyed.

Open the file for writing only. If this flag is given,
neither O_RDONLY nor O_RDWR can be given.

O_TRUNC destroys the complete contents of an existing file. Use with
care.

5-319

sopen

The shflag function is a constant expression consisting of one of the
following manifest constants, defined in share.h. If SHARE.COM (or
SHARE.EXE under OS/2) has not been installed, the system ignores the
sharing mode. See your DOS documentation for detailed information
on sharing modes.

Shflag Meaning

SH_COMPAT Set compatibility mode (not available under OS/2)

SH_DENYRW Deny read and write access to file

SH_DENYWR Deny write access to file

SH_DENYRD Deny read access to file

SH_DENYNO Permit read and write access (OS/2 only).

Under DOS, the default value of shflag is SH_COMPAT, while under OS/2 it
is SH_DENYNO. The pmode argument is required only when O_CREAT is
specified. If the file does not exist, pmode specifies the permission
settings of the file, which are set when the new file is closed for the
first time. Otherwise, the pmode argument is ignored. The pmode
argument is an integer expression containing one or both of the mani­
fest constants S_IWRITE and SJREAD. When both constants are given,
they are joined with the OR operator I. The meanings of the pmode
argument are in the following table.

Value

S_IREAD

S_IREAD I S_IWRITE

Meaning

Writing permitted

Reading permitted

Reading and writing permitted.

If write permission is not given, the file is read only. Under DOS all
files are readable; it is not possible to give write-only permission.
Thus, the modes S_IWRITE and S_IREAD I S_IWRITE are equivalent.

Specifying a pmode of S_IREAD is similar to making a file read-only
with the DOS ATTRIB command.

The sopen function applies the current file permission mask to pmode
before setting the permissions (see umask in this chapter).

5-320

sopen

The sopen function returns a file handle for the opened file. A return
value of -1 indicates an error, and errno is set to one of the following
values.

Value

EACCESS

EEXIST

EM FILE

ENOENT

Meaning

The given pathname is a directory, but the file is read­
only and an open for writing was attempted, or a sharing
violation occurred.

The O_CREAT and O_EXCL flags are specified, but the
named file already exists.

No more file handles are available. (There are too many
open files.)

File or pathname was not found.

Note: When opening text files, the compiler opens the file for
read/write access to look for a Ctrl + Z at the end. Because of
this, an open will fail if the file has previously been opened
with a DENY_RD sharing mode, even if the open specified write
only access.

5-321

sopen

Examples:

This program first checks the version of DOS in use. If it is 3.00 or
later, the programmer uses sopen to open a file called DATA for
sharing.

#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <share.h>
#include <io.h>

extern unsigned char _osrnajor;
int fh;
rnai nO
{

/* The _osrnajor variable is used to test *
* the DOS version number before calling sopen. */

if (_osmajor >= 3)
/* Open for sharing. */
fh = sopen("data", O_RDWR 10_BINARY, SH_DENYR W);

else
/* No sharing */

fh = open("data", O_RDWR 10_BINARY);

Related Topics:

close, creal, lopen, open, umask

5-322

spawn I - spawnvp

Purpose:

Starts and runs a new child process.

Format:

#include <process.h>

int spawnl(modefJag, pathrlame,argO,
arg1, ... , argn, NULL)

int spawnle(modefJag, pathname, argO,
arg1, ... , argn, NULL, envp)

int spawnlp(modefJag, pathname, argO,
arg1, ... , argn, NULL)

int spawnlpe(modefJag, pathname, argO,
arg1, ... ,argn, NULL, envp)

int spawnv(modef/ag, pathname, argv)
int spawnve(modef/ag, pathname, argv, envp)
int spawnvp(modef/ag, pathname, argv)
int spawnvpe(modef/ag, pathname, argv, envp)

/* Execution mode for parent process * /
int modef/ag;

/* Path name of file to be executed */
char *pathname;

/* List of pointers to arguments */
char *argO, *arg1 , ... , *argn;

/* Array of poi nters to arguments * /
char *argv[];

/* Array of pointer to environment settings */
char *envp[];

5-323

spawn I - spawnvp

Comments:

The spawn functions create and run a new child process. There must
be enough storage available for loading and running the child
process. The modefJag argument determines the action taken by the
parent process before and during the spawn. The following values
for modef/ag are defined in process.h.

Value

P_NOWAIT

P_OVERLAY

Meaning

Suspend the parent process until the performance of
the child process is complete.

Continue to run the parent process concurrently with
the child process (OS/2 only).

Overlay the parent process with the child process,
erasing the parent process. (This is the same effect as
exec calls.)

The pathname argument specifies the file run as the child process.
The pathname can specify a full path (from the root), a partial path
(from the current working directory), or just a filename. If pathname
does not have a filename extension or end with a period (.), the
spawn routines first add the extension .COM and search for the file; if
the search is unsuccessful, the extension .EXE is attempted. If
pathname has an extension, only that extension is used. If pathname
ends with a period, the spawn routines search for pathname with no
extension. The spawnlp, spawnlpe, spawnvp, and spawnvpe func­
tions search for pathname (using the same procedures) in the directo­
ries specified by the PATH environment variable.

Pass arguments to the child process by giving one or more pointers
to character strings as arguments in the spawn routine. These char­
acter strings form the argument list for the child process. The com­
bined length of the strings forming the argument list for the child
process must not exceed 128 bytes. The ending null character (\0) for
each string is not included in the count, but space characters (auto­
matically inserted to separate arguments) are included.

5-324

spawnl - spawnvp

The argument pOinters can be passed as separate arguments
(spawnl, spawnle, spawnlp, and spawnlpe) or as an array of pointers
(spawnv, spawnve, spawnvp, and spawnvpe). At least one argument,
argO or argv[O], must be passed to the child process. By convention,
this argument is a copy of the pathname argument. However, a dif­
ferent value will not produce an error. The pathname is available as
argO or argv[O] under DOS and OS/2.

Use the spawnl, spawnle, spawnlp, and spawnlpe routines in cases
where you know the number of arguments. The argO is usually a
pointer to pathname. The arg1 through argn are pointers to the char­
acter strings forming the new argument list. Following argn, there
must be a NULL pointer to mark the end of the argument list.

The spawnv, spawnve, spawnvp and spawnvpe functions are useful
when the number of arguments to the child process is variable.
Pointers to the arguments are passed as an array, argv. The argv[O]
is usually a pointer to the pathname. The argv[1] through argv[n] are
pointers to the character strings forming the new argument list. The
argv[n+ 1] must be a NULL poi nter to mark the end of the argument
list.

Files that are open when a spawn call is made remain open in the
child process. In the spawnl, spawnlp, spawnv, spawnvp calls, and
the child process inherits the environment of the parent. The
spawnle, spawnlpe, spawnve, and spawnvpe functions let you alter
the environment for the child process by passing a list of environment
settings through the envp argument. Envp is an array of character
pointers, each element of which points to a string, ended by a null,
that defines an environment variable. Such a string has the form

NAME= value

where NAME is the name of an environment variable and value is the
string value to which that variable is set. (Notice that value is not
enclosed in double quotes.) The final element of the envp array
should be NULL. When envp itself is NULL, the child process inherits
the environment settings of the parent process.

Under DOS, the return value is the exit status of the child process.
The exit status is 0 if the process ended normally. The exit status can
also be set to a nonzero value if the child process specifically calls

5-325

spawnl - spawnvp

the exit function with a nonzero argument. If not set, a positive exit
status indicates an abnormal exit with an abort or an interrupt. Under
OS/2 the return from a spawn has one of two different meanings. The
return value of a synchronous spawn is the exit status of the child
process. The return value of an asynchronous spawn is the process
identification of the child process. You can use the wait or cwait func­
tions to get the child process exit code.

A return value of -1 indicates an error (the child process is not
started), and errno is set to one of the following values.

Value

E2BIG

EINVAL

ENOENT

ENOEXEC

ENOMEM

Meaning

The argument list exceeds 128 bytes, or the space
required for the environment information exceeds 32K
bytes.

The modef/ag argument is incorrect.

The file or path name was not found, or in OS/2 mode was
incorrectly specified.

The specified file is not executable or has an incorrect
executable file format.

Not enough storage is available to run the child process.

Note: The spawn functions pass on all information on open files to
the child process, including the translation mode. This is done
using the environment passed to the child, which has a special
entry called u;C_FILE-'NFO". It is normally processed and deleted
from the environment by the C startup code. However, if
spawnxx is used to create a non-C process (such as the
command interpreter) and the environment strings are exam­
ined, this entry is still present. Also, because the information
is passed in binary form, printing the environment shows some
graphics characters in the definition string for this entry.

5-326

Signal settings are not preserved in child processes created by
calls to spawn functions. The signal settings are reset to the
default in the child process.

spawnl - spawnvp

Example:

This example shows calls to four of the eight spawn routines. When
called without arguments from the command line, the program first
runs the code for case PARENT. It spawns a copy of itself, waits for its
child to run, then spawns a second child. The instructions for the
child are blocked to run only if argv[O] and one parameter were
passed (case CHILD). In its turn, each child spawns a grandchild as a
copy of the same program. The grandchild instructions are blocked
by the existence of two passed parameters. The grandchild is per­
mitted to overlay the child. Each of the processes prints a message
identifying itself. This program runs under either DOS or OS/2; it does
not use the P _NOWAIT mode flag setting for concurrent execution.

#include <stdio.h>
#include <process.h>

#define PARENT
#define CHILD
#define GRANDCHILD

extern char **environ;

main(argc. argY, envp)
int argc;
char **argv;
char **envp;
{

int result;
char *args[4];

switch (argc)
{
case PARENT:

/* no argument was passed: */
/* spawn child and wait */
result = spawnle(P WAIT. argv[O].

argv[0]. "'One". NULL. envp);
if (result)

abort ();
/* spawn another child. */
/* and wait for it */
args[O] = argv[O];
args[l] = "two";
args[2] = NULL;
result = spawnve(P WAIT. argv[O].

args. envi~on);
if (result)

abort () ;
printf("Parent process ended\n");
exit (0);

5-327

spawnl - spawnvp

case CHILD:
/* one argument was passed: */
/* allow grandchild to */
/* overlay */
printf("child process %s began\n",

argv [1]) ;
/* child one? */
if (*argv[l] == '0')
{

spawnl (P_OVERLAY, argv[O] ,
argv[0] , "oneil, "two!!,
NULL);

abortO;
/* not executed because */
/* child was overlaid */
}
/* child two? */
if (*argv[l] == 't')
{

args[O] = argv[O];
args [1J = "two";
args[2] = "one";
args[3] - NULL;
spawnv(P OVERLAY, argv[O] ,

args);
abort ();

/* not executed because */
/* child was overlaid */

/* argument not valid */
abort ();

case GRANDCHILD:
/* two arguments */
printf("grandchild %s ran\n",

argv[1]);
exit(O);

Related Topics:

abort, cwait, execl, execle, execlp, execv, execve, execvp, exit, _exit,
wait

5-328

Purpose:

Formats and stores characters or values in buffer.

Format:

#include <stdio.h>
int sprintf(buffer,format-string[, argument. ..])
char *buffer; /* Storage location for output * /
const char *format-string; /* Format control string *

Comments:

sprintf

The sprintf function formats and stores a series of characters and
values in buffer. Any argument is converted and put out according to
the corresponding format specification in the format-string. The
format-string consists of ordinary characters and has the same form
and function as the format-string argument for the printf function. See
the printf keyword page for a description of the format-string and
arguments.

The sprintf function returns the number of characters printed, not
counting the ending null.

5-329

sprintf

Example:

#include <stdio.h>
char buffer[280];
int i, j;
double fp;
char *s = "baltimore";
char c;
mai n ()
{

c = '1';
i = 35; fp = 1.7328588;

/* Format and print various data */
j = sprintf(buffer, "%s\n", 5);
j += sprintf(buffer+j, "%c\n", c);
j += spri ntf (buffer+j, "%d\n", i);
j += sprintf(buffer+j, "%f\n", fp);
printf("string:\n%s\ncharacter count = %d\n" ,

buffer, j);

Related Topics:

fprlnH, prinH, sscanf

5-330

sqrt

Purpose:

Calculates the square root.

Format:

#include <math.h>

double sqrt(x)
double x; /* Non-negative floating-point value */

Comments:

The sqrt function calculates the non-negative square root of x.

The sqrt function returns the square root result. If x is negative, the
function prints a DOMAIN error message to stderr, sets errno to EDOM,

and returns O.

You can change error handling by using the matherr routine.

Example:

The following example computes z as the square root of the
quantity x+y, printing an error message if x+y is negative.

#include <math.h>
#include <stdio.h>

doub 1 ex, y, z;

if ((z = sqrt(x+y)) == 0.0)
if ((x+y) < 0.0)

perror("sqrt of a negative number");

Related Topics:

exp, log, matherr, pow

5-331

srand

Purpose:

Sets the starting point for pseudo-random integers.

Format:

/* Required for function declarations */
#include <stdl.ib.h>
void srand(seed)

/* Seed for random number generation */
unsigned int seed;

Comments:

The srand function sets the starting point for producing a series of
pseudo-random integers. To reinitialize the generator, use 1 as the
seed argument. Any other value for seed sets the generator to a
random starting point. The rand function retrieves the pseudo­
random numbers generated.

There is no return value.

5-332

srand

Example:

First, this program calls srand with a value other than 1 to initiate the
random value sequence. Then the program computes 20 random
values for the array of integers called ranvals.

#include <stdlib.h>
#include <stdio.h>
mai n()
{
int x, ranvals[20};

/* Initialize the random number generator *
and save the first 20 random *

* numbers generated in an array.

srand(l7) ;
for (x = 0; x < 20; ranvals[x++J = rand())
printf("Iteration %d ranvals [%d] = %d\n",

x+l, x, ranvals[x]);

Related Topics:

rand

*/

5-333

sscanf

Purpose:

Reads data from a buffer into locations given by arguments.

Format:

#include <stdio.h>

int ssca.nf(buffer, format-string [,argument...])
const char *buffer; /* Stored data */
const char *format-string; /* Format control string *

Comments:

The sscanf function reads data from buffer into the locations given by
arguments. Each argument must be a pointer to a variable with a
type that corresponds to a type specifier in the format-string. The
format-string controls the interpretation of the input fields and has the
same form and function as the format-string argument for the scanf
function. See the scanf reference page for a description of the
format-string.

The sscanf function returns the number of fields that were success­
fully converted and assigned. The return value does not include
fields that were read but not assigned.

The return value is EOF for an attempt to read at end-of-string. A
return value of 0 means that no fields were assigned.

5-334

sscanf

Example:

This program uses sscanf to read various data from a string named
tokenstring, then displays it.

#include <stdio.h>

char *tokenstring = "15 12 14 ... ";
i nt i;
float fp;
char s [81J ;
char c;
mai n ()
{

/* Input various data. */
sscanf(tokenstring, "%s", s);
sscanf(tokenstring, "%c", &c);
sscanf(tokenstring, "%d", &i);
sscanf(tokenstring, "%f", &fp);

/* Display the data */
printf("string = %s\n",s);
printf("character = %c\n",c);
pri ntf (" integer = %d\n", i);
printf("floating-point number = %f\n",fp);
}

Related Topics:

'scanf, scanf, sprlntf

5-335

stackavail

Purpose:

Reports available stack space.

Format:

/* Required only for function declarations */
#include <malloc.h>

size_t stackavail ()

Comments:

The staekavail function returns the approximate size in bytes of the
stack space available for dynamic storage allocation with alloea.

The staekavail function returns the size in bytes as an unsigned
integer value.

Example:

#include <malloc.h>

mainO
{
char *ptr;
printf("Stack memory available before

" all oca = %u\n". stackavail ());
ptr = alloca (1000*sizeof(char));
printf ("Stack memory available after"

" alloca = %u\n" , stackavailO);

Output:

(Actual numbers may vary slightly.)

Stack memory available before alloca = 1682
Stack memory available after alloca = 678

Related Topics:

alloea, freeet, memavl

5-336

Purpose:

Obtains information about a file or directory.

Format:

#include <sys\types.h>
#include <sys\stat.h>

int stat(pathname, buffer)
/* Path name of existing file */

char * pathname;
/* Pointer to structure to receive results */

struct stat * buffer;

Comments:

stat

The stat function obtains information about the file or directory speci­
fied by pathname and stores it in the structure to which buffer points.
The stat structure, defined in sys\stat.h, contains the following fields.

Field Value

Bit mask for file mode information. The S_IFDIR bit is
set if pathname specifies a directory. The S_IFREG bit
is set if pathname specifies an ordinary file. User
read/write bits are set according to the permission
mode of the file. User run bits are set using the file­
name extension.

5-337

stat

FED C 8 A 9 8 7 6 5 4 3 2 1 0 low order
I I I I I I I I I I I I I

S_IFREG~ j
(regular file) ~

S-IFDIR
S-IFCHR

r t L execute/search permission,
owner (S_IEXEC)
write permission, owner
read permission, owner

sl_size

sl_alime

sl_mtime

sl_clime

Drive number of the disk containing the file.

Drive number of the disk containing the file (same as
sl_dev).

Always 1.

Size of the file in bytes.

Time of last modification of file.

Time of last modification of file (same as sl_alime).

Time of last modification of file (same as sl_alime
and sl_ mlime).

There are three additional fields in the sial structure type that do not
contain meaningful values under DOS.

The sial function returns the value 0 if the file status information is
obtained. A return value of -1 indicates an error, and errno is set to
ENOENT, indicating that the filename or pathname could not be found.
ENOENT might also be set in OS/2 MODE when the filename was speci­
fied with more than 8 characters, or the extension with more than 3
characters.

5-338

stat

Example:

The following example requests that the status information for the file
CHILD.EXE be placed into the structure but. If the request is successful
and the file is executable, the example runs CHILD.EXE.

#include <sys\types.h>
#include <sys\stat.h>
#include <stdio.h>

struct stat buf;
int result;
char *args[4];

result = stat("child.exe", &buf);

if (result == 0)
if (buf.st mode & S IEXEC)

execv("~hild.exe~. args);

Related Topics:

access, Istat

Note: If the given pathname specifies only a device, (for example
"e:"), stat returns an error; fields in the stat structure are not
meaningful.

5-339

status87

Purpose:

Gets the floating-point status word.

Format:

#include <float.h>

/* Get floati ng-poi nt status word *1
unsigned int _status87()

Comments:

The _status87 function gets the floating-point status word. The
floating-point status word is a combination of the Numeric
Coprocessor status word and other conditions detected by the
numeric exception handler, such as floating-point stack underflow
and overflow.

The bits in the value returned show the floating-point status. See the
discussion of the float.h include file for a complete definition of the
bits returned by _STATUS87.

5-340

Example:

#include <stdio.h>
#include <float.h>

double a = le-40. b;
float x,y;

rnai n ()
{
printf("status = %.4x - clear\n",_status87());
y = a;

/* Store into y is inexact, so underflow */
printf("status = %.4x - inexact, underflow\n",

status87());
b = y; /* y is denorrnal */
printf("status = %.4x - inexact, underflow,

denorrna 1 \n", _status87 ());
_clear87(); /* Clear user 8087 status */
}

Related Topics:

_ clear87, _ control87

status87

5-341

slreal - slrdup

Purpose:

Operates on null-ended strings. /stricmp /strcat

Format:

/* Requi red for function declarations * /
#include <string.h>

/* Append string2 to string1 * /
char *strcat(string1, string2)
char *string1; /* Destination string */
const char *string2; /* Source string */

/* Search for first occurrence of *
c in string */

char *strchr(string, c)
const char *string; /* Source string */
i nt c; /* Character to be located * /

/* Com pare stri ngs * /
int strcmp(string1, string2)
const char *string1;
const char *string2;

/* Copy string2 to string1 * /
char *strcpy(string1, string2)
char *string1; /* Destination string */
const char *string2; /* Source string */

/* Find the length of the first substring *
* in string1 of characters not in string2 */

size_t strcspn(string1, string2)
const char *string1; /* Source string */
const char *string2; /* Character set */

/* Compare strings without regard to case */
int strcmpi(string1, string2)
int stricmp(string1, string2)
const char *string1;

5-342

streat - strdup

const char *string2;

char *strdup(string) /* Duplicate string * /

const char *string; /* Source string */

Comments:

The strcat, strchr, strcmp, strcmpi, stricmp, strcpy, strcspn and strdup
functions operate on null-ended strings. The string arguments to
these functions are expected to contain a null character (\0) marking
the end of the string. No overflow checking is performed when a
string is copied or something is added to it.

The strcat function adds string2 to string1, ends the resulting string
with a null character, and returns a pointer to the concatenated string
(string1).

The strchr function returns a pointer to the first occurrence of c con­
verted to a character in string. The character c can be the null char­
acter (\0); the ending null character of string is included in the search.
The function returns NULL if the character is not found.

The strcmp function compares string1 and string2 and returns a value
indicating their relationship, as follows:

Value

Less than 0

o
Greater than 0

Meaning

string1 less than string2

string1 identical to string2

string1 greater than string2.

The strcmpi and stricmp functions are case-insensitive versions of
strcmp. All alphabetic characters in the two arguments string1 and
string2 are converted to lowercase before the comparison, so string1
and string2 are compared without regard to case.

The strcpy function copies string2, including the ending null char­
acter, to the location specified by string1 and returns string1.

The strcspn function returns the index of the first character in string1
that belongs to the set of characters specified by string2. This value
is equivalent to the length of the initial substring of string1 that con-

5-343

streat - strdup

sists entirely of characters not in string2. Ending null characters are
not considered in the search. If string1 begins with a character from
string2, strcspn returns O.

The strdup function reserves storage space (with a call to malloc) for
a copy of string and returns a pointer to the storage space containing
the copied string. The function returns NULL if it cannot reserve
storage.

Example:

#include <stdio.h>
#include <string.h>

char string[lGO] ,template[lGG],*result,*newstring;
i nt numresu It;
mai n ()
{

/* Construct the string "computer *
* program" using strcpy and strcat.*/

strcpy(string, "computer");
result = strcat(string, " program");
printf("Result = %s\n", result);

/* Search a string for the occurrence of 'a' */
result = strchr(string, 'a');

/* Determine whether a string is less than, *
* greater than, or equal to another. */

numresult = strcmp(string, template);

/* Compare two strings without regard to case */
numresult = strcmpi ("hello", "HELLO");

/* Result is 0 */

/* Make a copy of a string */
result = strcpy(template, string);

/* Search for a's, b's, or c's in a string */
strcpy(string,"xyzabbc");
numresult = strcspn(string, "abc");

/* Result is 3 */

/* Make new string point to a duplicate of string */
newstring = strdup(string);
printf("The new string is %s\n", newstring);
}

5-344

strcat - strdup

Related Topics:

strncat, strncmp, strncpy, strrchr, strspn, strpbrk

5-345

strerror

Purpose:

Tests for system error and returns a pointer to the string containing
the system error message.

Format:

/* Required only for function declarations */
#include <string.h>

char *strerror(string)
char *string; /* Your system error message */
int errno; /* Error number */

int sys_nerr; /* Number of system messages */
/* Array of error messages * /

char *sys_errlist[sys_nerr];

Comments:

If string is equal to NULL, the strerror function returns a poi nter to a
string containing the system error message for the last library call
that produced an error. The newline character (\n) ends this string.

If string is not equal to NULL, strerror returns a pointer to a string
containing:

• Your string message

• A colon
• A space
• The system error message for the last library call producing an

error

• A newline character.

Your string message can be a maximum of 94 bytes long.

Unlike perror, strerror by itself does not print a message. To print the
message returned by strerror to stderr, your program must have a
prinH statement similar to the following:

if «access("datafile",2)) == -1)
printf(strerror(NULL));

5-346

strerror

The compiler stores the error number in the variable errno, which
you should declare at the external level. You get access to the
system error messages through the variable sys_errlist, which is an
array of messages ordered by the errno variable. Strerror gets
access to the appropriate error message by using the errno value as
an index to sys_errlist. The value of the variable sys_nerr is the
maximum number of elements in the sys_errlist array.

To produce accurate results, call strerror immediately after a library
routine returns with an error. Otherwise, subsequent calls might
write over the errno val ue.

Note: DOS does not use some of the errno values listed in errno.h.
See Appendix A, "Error Messages" for a list of errno values
used on DOS and the corresponding error messages. The
strerror function prints an empty string for an errno value not
used under DOS.

Example:

#inleude <string.h>
#inelude <fentl.h>
#inelude <sys\types.h>
#inelude <sys\stat.h>
#inelude <io.h>
#inelude <stdio.h>

int fhl, fh2;

fhl = open(ldatal",O_RDONLY);
if (fhl == -1)

pri ntf (strerror("open fai 1 ed on input fil e")) ;

fh2 = open("data2",O_WRONLyIO_TRUNClo_CREAT
S_IREADls_IWRITE);

if (fh2 == -1)
printf(strerror(" open failed on output file"));

Related Topics:

clearerr, terror, perror

5-347

strlen

Purpose:

Returns the length of a string.

Format:

/* Required for function declarations */
#include <string.h>

size_t strlen(string)
const char *string; /* Null-ended string * /

Comments:

The strlen function returns determines the length, in bytes, of
string, not including the ending null character (\0).

The strlen function returns the string length. There is no error return.

Example:

The following example determines the length of the string to which
string points.

#include <string.h>

char *string = "some space";
size_t result;
mai n ()
{
result = strlen(string); /* result = 10 */
}

5-348

Purpose:

Converts uppercase to lowercase in a null-ended string.

Format:

/* Required for function declarations */
#include <string.h>
char *strlwr(string)
char *string; /* String to convert */

Comments:

strlwr

The strlwr function converts any uppercase letters in the given nulI­
ended string to lowercase. Other characters are not affected.

The strlwr function returns a pointer to the converted string. There is
no error return.

Example:

This example makes a copy in all-lowercase of the string "General
Assembly", then prints the copy.

#include <string.h>
#include <stdio.h>

rnai n ()
{

char *string="General Assembly";
char *copy;

copy=strlwr(strdup(string»;
printf("%s\n",copy);

Related Topics:

slrupr

5-349

strncat - strnset

Purpose:

Operate on null-ended strings. The strnccc functions process only the
n bytes specified.

Format:

/* Required for function declarations */
#include <string.h>

/* Append n characters *
* of string2 to string1 * /

char *strncat(string1, string2, n)
char *string1; /* Destination string */
const char *string2; /* Source string */

/* Number of characters to append */

size_t n;

/* Compare first n
* characters of stri ngs * /

int strncmp(string1, string2, n)
const char *string1;
const char *string2;

/* Number of characters to compare */

size_t n;

/* Copy n characters *
* of string2 to string1 */

char *strncpy(string1, string2, n)
char *string1; 1* Destination string */
const char *string2; /* Source string */

/* Number of characters to copy */

size_t n;

/* Compare first n characters of *
* strings without regard to case */

int strnicmp(string1, string2, n)
const char *string1;
const char *string2;

5-350

strncat - strnset

/* Number of characters to compare */

size_t n;

/* Initialize first n characters of string */
char *strnset(string, c, n)
char *string; /* String to be initialized */
int c; /* Character setting */

size_t n; /* Number of characters to set */

Comments:

The strncat, strncmp, strncpy, strnicmp, and strnset functions operate
on, at most, the first n characters of null-ended strings.

The strncat function appends, at most, the first n characters of string2
to string1, ends the resulting string with a null character (\0), and
returns a pointer to the joined string (string1). If n is greater than the
length of string2, the length of string2 is used in place of n.

The strncmp function compares, at most, the fi rst n characters of
string1 and string2 and returns a value indicating the relationship
between the substrings, as listed below.

Value

Less than 0

o
Greater than 0

Meaning

substring1 less than substring2

substring1 equivalent to substring2

substring1 greater than substring2.

Strnicmp is a case-insensitive version of strncmp; strnicmp converts
all alphabetic characters in the two strings string1 and string2 to low­
ercase before comparing them, so that the uppercase (capital) and
lowercase forms of a letter are considered equivalent.

The strncpy function copies exactly n characters of string2 to string1
and returns string1. If n is less than the length of string2, a null char­
acter (\0) is not automatically appended to the copied string. If n is
greater than the length of string2, the string1 result is padded with
null characters (\0) up to length n.

5-351

strncat - strnset

The strnset function sets at most the first n characters of string to c
(converted to a character) and returns a pointer to the altered string.
If n is greater than the length of string, the length of string is used in
place of n.

Example:

This program demonstrates the uses of strncat, strncmp, strnicmp,
and strnset.

#include <string.h>
#include <stdio.h>

char string[lOO] = "XYZabbc This is a string!";
char copy [100J = "Thi sis a di fferent stri ng";
char *result;
char suffix[100]="this is even more string ... ";
i nt numresult;

mai n ()

/* Combine strings with no more than */
/* 100 characters of suffix: */
printf("String before=%s\n",string);
result=strncat(string,suffix,lOO);
printf{"string after=%s\n "9 string);

/* Determine ordering of two strings */
/* but consider only 7 characters. */
strcpy(string, "programming");
numresul t=strncmp (stri ng, "program", 7) ;
printf("%s is %5 %s\n",string,

numresult? numresult>O ? "greater than"
: "less than" : "equal to","program");

/* Copy at most 99 characters. */
printf("%s %s\n",copy,string);
result=strncpy(copy,string,99);
copy[99J""\O' ;
printf("%s %s\n",copy,string);

/* set not more than 4 characters */
/* of a string to be x
result=strnset (" computer" , 'x' , 4) ;
printf("%s\n", result);

Related Topics:

strcat, strcmp, strcpy, strset

5-352

*/

strpbrk

Purpose:

Finds the first occurrence in string1 of any character from string2.

Format:

/* Requi red for function declarations * /
#include <string.h>

/* Find any character from. *
string2 in string1 */

char *strpbrk(string1, string2)
const char *string1; /* Source string */
const char *string2; /* Character set * /

Comments:

The strpbrk function finds the first occurrence in string1 of any char­
acter from string2. The ending null character (\0) is not included in
the search.

The strpbrk function returns a pointer to the first occurrence of any
character from string2 in string1. A NULL pointer indicates that string1
and string2 have no characters in common.

Example:

The following example returns a pointer to the first occurrence in the
array string of either the character a or the character b.

#include <string.h>

char string[lOO], *result;

resul t = strpbrk(stri ng, "ab");

Related Topics:

strchr, strrchr, strcspn

5-353

strrchr

Purpose:

Finds the last occurrence of the character c in string2.

Format:

/* Required for function declarations *j
#include <string.h>

const char *strrchr(string, c)
/* Find last occurrence *

of c in string *j
const char *string; /* Searched string *j
int c; /* Character to locate *j

Comments:

The strrchr function finds the last occurrence of c (converted to a
character) in string. The ending null character (\0) is not included in
the search.

The strrchr function returns a pointer to the last occurrence of c in
string. A NULL pointer indicates that the given character is not found.

Example:

The following example searches a string for the last occurrence of the
character a in the string.

#include <string.h>

char *result, string[] = "Baltimore";

result = strrchr(string, 'a');

Related Topics:

strchr, strpbrk, strcspn

5-354

Purpose:

Reverses the order of characters in a given string.

Format:

/* Required for function declarations */
#include <string.h>

char *strrev(string)
char *string; /* String to be reversed */

Comments:

strrev

The strrev function reverses the order of the characters in the given
string. The ending null character (\O) remains in place.

The strrev function returns a pointer to the altered string. There is no
error-return value.

Example:

The following example determines if a string is a palindrome. A
palindrome is a string that reads the same forwards and backwards.

#include <string.h>

char string[lOO];
i nt result;

result = strcmp(string, strrev(strdup(string)));

/* If result equals 0, the string reads *
* the same read forwards or backwards. */

Related Topics:

strcpy, strset

5-355

strset

Purpose:

Sets the characters of a given string to c.

Format:

/* Required for function declarations */
#include <string.h>

char *strset(string, c}
char *string; /* String to be set */
int c; /* Character setting */

Comments:

The strset function sets all characters of string except the ending null
character (\0) to c (converted to a character).

The strset function returns a pointer to the altered string. There is no
error return.

Examples:

The following example sets a string to be all blanks.

#include <string.h>

char string[100]. *result;

result = strset(string. ' ');

Related Topics:

strnset

5-356

strspn

Purpose:

Returns the index of first character that does not belong in string.

Format:

/* Required for function declarations * /
#include <string.h>
size_t int strspn(string1, string2)
const char *string1; /* Searched string */
const char *string2; /* Character set */

Comments:

The strspn function returns the index of the first character in string1
that does not belong to the set of characters specified by string2.
This value is equal to the length of the initial substring of string1 that
consists entirely of characters from string2. The null character (\0)
that ends string2 is not considered in the matching process. If string1
begins with a character not in string2, strspn returns O.

The strspn function returns an integer value specifying the position of
the first character in string1 not in string2.

5-357

strspn

Example:

The following example returns a pointer to the first occurrence in the
array string that is neither an a, b, nor c. Because the string in this
example is cabbage, the value of the pointer is 5. You can use this
function in text editors and word processors as a negative search
function to locate special characters or control bytes.

#include <string.h>

char *string="cabbage";
int result;

result = strspn(string, "abc"); /* result = 5 */

Related Topics:

strcspn

5-358

strstr

Purpose:

Returns a pointer to the first occurrence of a string in another string.

Format:

/* Requi red only for a function declaration * /
#include <string.h>

char *strstr(string1,string2)
const char *string1; /* Searched string */
const char *string2; /* String to search for */

Comments:

The strstr function returns a pointer to the first occurrence of string2
in string1. The strstr function ignores the null character (\0) that ends
string2 in the matching process.

The strstr function returns a pOinter to the first substring in string1
equal to string2. If string2 does not appear in string1, strstr returns
NULL.

Example:

The following example locates the string hay in the string needle in a
haystack.

#include <string.h>

char *stringl = "needle in a haystack";
char *string2 = "hay";
char *result;

result = strstr(stringl,string2);
/* Result = a pointer to "hay" */

Related Topics:

strcspn, strspn

5-359

strtod - strtol

Purpose:

Converts a character string to a double-precision value or a long­
integer value.

Format:

#include <stdlib.h>.

/* Convert the string pointed *
to by nptr to double * /

double strtod(nptr,endptr)
const char *nptr; /* Pointer to string */
char **endptr; /* Pointer to end of scan */

/* Convert string to long decimal integer *
* equivalent of number given base */

long int strtol(nptr,endptr,base)
const char *nptr;
char **endptr;
int base; /* Number base to use */

Comments:

The strtod and strtol functions convert a character string to a double­
precision value or a long-integer value. The input string is a
sequence of characters that can be interpreted as a numerical value
of the specified type. These functions stop reading the string at the
first character that they cannot recognize as part of a number. This
character can be the null character at the end of the stri ng. With
strtol, this ending character can also be the first numeric character
greater than or equal to the base. If endptr is not NULL, *endptr points
to the character that stopped the scan.

Strtod expects nptr to point to a string with the following form:

[white space][sign][digits][.digits][dIDleIE[sign]digits]

The first character that does not fit this form stops the scan.

5-360

strtod - strtol

Strtol expects nptr to point to a string with the following form:

[white space][sign][OI OxIOX][digits]]

If base is from 2 through 36, then it becomes the base of the number.
If base is 0, the prefix determines the base (8, 16, or 10): the prefix 0
means base 8; the prefix Ox or OX means base 16; using any other
digit without a prefix means decimal.

The letters from a through z (or A through Z) are assigned the values
10 through 35; only letters whose assigned values are less than base
are permitted.

Strtod returns the value of the floating-point number, except when the
representation causes an overflow. In those cases, it returns +/­
HUGE_VAL.

Strtol returns the value represented in the string, except when the
representation causes an overflow. In these cases, it returns
LONG_MAX or LONG_MIN.

In both functions errno is set to ERANGE for the exceptional cases.

Example:

#include <stdlib.h>

rnai n ()
{

char *string, *stopstring;
double x;
long 1;
int bs;

string = "3.1415926This stopped it";
x = strtod(string, &stopstring);
printf("string = %s\n", string);
printf("strtod = %f\n". x);
printf("Stopped scan at %s\n\n", stopstring);

string = "10110134932";
printf("string = %s\n", string);
for (bs = 2; bs <= 8; bs *= 2) {

1 = strtol (string. &stopstring, bs);
printf("strtol = %ld (base %d)\n", 1, bs);
printf("Stopped scan at %s\n\n", stopstring);
}

5-361

strtod - strtol

Output:

string = 3.1415926This stopped it
strtod = 3.141593
Stopped scan at This stopped it

string = 10110134932
strtol = 45 (base 2)
Stopped scan at 34932

strtol = 4423 (base 4)
Stopped scan at 4932

strtol = 2134108 (base 8)
Stopped scan at 932

Related Topics:

atol, atol

5-362

Purpose:

Reads string1 and string2.

Format:

/* Required for function declarations */
#include <string.h>

/* Find token in string1 */
char *strtok(string1, string2)
char *string1; /* String containing token(s) * /
const char *string2; /* Set of delimiter characters * /

Comments:

strtok

The strtok function reads string1 as a series of zero or more tokens
and string2 as the set of characters serving as delimiters of the
tokens in string1. The tokens in string1 can be separated by one or
more of the delimiters from string2. The tokens are broken out of
string1 by a series of calls to strtok.

In the first call to strtok for a given string1, strtok searches for the first
token in string1, skipping over leading delimiters. A pointer to the
first token is returned.

To read the next token from string1, call strtok with a NULL value for
the string1 argument. The NULL string1 argument causes strtok to
search for the next token in the previous token string. The set of
delimiters can vary from call to call, so string2 can take any value.

The first time strtok is called, it returns a pointer to the first token in
string1. In later calls with the same token string, strtok returns a
pointer to the next token in the string. A NULL pointer is returned
when there are no more tokens. All tokens are null-ended.

5-363

strtok

Example:

Using a loop, the following example gathers tokens, separated by
blanks or commas, from a string until no tokens are left. After proc­
essing the tokens (not shown), the example returns the tokens a,
string, of, and tokens. The next call to strtok returns NULL and the loop
ends.

#include <string.h>
#include <stdio.h>
char *token;

char *string="a string, of, ,tokens II.

token = strtok(string, II ,");

while (token != NULL) {
/* Insert code to process the token here */

token = strtok(NULL," ,II); /* Get next token */
}

Related Topics:

strcspn, strspn

5-364

Purpose:

Converts lowercase letters to uppercase.

Format:

/* Required for function declarations */
#include <string.h>

char *strupr(string)
char *string; /* String to be capitalized */

Comments:

strupr

The strupr function converts any lowercase letters in string to upper­
case. Other characters are not affected.

The strupr function returns a pointer to the converted string. There is
no error return.

Example:

This example makes a copy in all-uppercase of the string
"DosCreateSem", then prints the copy.

#include <string.h>
#include <stdio.h>

rnai n()
{

char *string="DosCreateSem";
char *copy;

copy=strupr(strdup(string));
printf("%s\n" ,copy);

Related Topics:

strlwr

5-365

swab

Purpose:

Copies and swaps adjacent bytes, then stores the result.

Format:

/* Required for function declarations */
#include <stdlib.h>

void swab(source, destination, n)
/* Data to be copied and swapped * /

char *source;
/* Storage location for swapped data * /

char *destination;
int n; /* Number of bytes copied */

Comments:

The swab function copies n bytes from source, swaps each pair of
adjacent bytes, and stores the result at destination. The integer n
should be an even number to allow for swapping. The swab function
is typically used to prepare binary data for transfer to a machine that
uses a different byte order.

There is no return value.

Ex:ample:

The following example copies n bytes from one location to another,
swapping each pair of adjacent bytes.

#include <stdlib.h>
#define NBYTES 1024

char from[NBYTES], to[NBYTES];

swab(from, to, NBYTES);

Related Topics:

fgetc, fputc

5-366

system

Purpose:

Passes a string to the command interpreter.

Format:

/* Required for function declarations */
#include <stdlib.h>

int system(string)
const char *string; /* Command to be run */

Comments:

The system function passes the given string to the command inter­
preter, which interprets and runs the string as a DOS command. In
DOS mode the command interpreter is COMMAND.COM, while under OS/2

mode it is CMD.EXE. The system function refers to the COMSPEC and
PATH environment variables to locate the appropriate command inter­
preter, which is used to run the string command.

The system function returns the value 0 if string successfully runs. A
return value of -1 indicates an error, and errno is set to one of the
following values:

Value

E2BIG

ENOENT

ENOEXEC

ENOMEM

Meaning

The argument list for the command exceeds 128 bytes
or the space required for the environment information
exceeds 32K bytes.

COMMAND.COM or CMD.EXE cannot be found.

The command interpreter file has a non-valid format
and is not executable.

Not enough storage is available to run the command, or
the available storage has been corrupted, or an incor­
rect block exists, indicating that the process making the
call was not reserved properly.

5-367

system

Example:

#include <stdlib.h>
main()
{
i nt result;

/* The following statements append a copy of the DOS *
* version number to a log file, then display it. */

result = system("ver »result.log");
result = system("type result.log");
}

Related Topics:

execl, execle, execlp, execv, execve, execvp, exit, _exit, spawn I,
spawn Ie, spawnlp, spawnv, spawnve, spawnvp

Note: If you use the system function to call a new command inter­
preter and do a DOS SET command, you will see a new environ­
ment variable called ";C_FILEJNFO". This variable exists only
during the lifetime of a child program, such as the command
interpreter during a SYSTEM call. ";C_FILE_INFO" contains binary­
encoded information on open files.

5-368

tan - tanh

Purpose:

Return tangent and hyperbolic tangent.

Format:

#include <math.h>
double tan(x) /* Calculate tangent of x */

/* Calculate hyperbolic *
* tangent of x * /

double tanh(x)
double x; /* Angle in radians */

Comments:

The tan and tanh functions compute the tangent and hyperbolic
tangent of x, respectively.

The tan function returns the tangent of x. If x is large, a partial loss of
significance in the result can occur. In such cases, tan sets errno to
ERANGE and generates a PLOSS error, but no message is printed. If x
is so large that a total loss of significance occurs, tan prints a TLOSS

error message to stderr, sets errno to ERANGE, and returns O. For
more information about ERANGE, PLOSS, and TLOSS, see Appendix A,
"Error Messages", in this book.

The tanh function returns the hyperbolic tangent of x. There is no
error return.

5-369

tan - tanh

Example:

The following example computes x as the tangent of nl4 and y as the
hyperbolic tangent of x.

#include <math.h>

doubl e pi, x, y;

pi = 3.1415926535;
x = tan(pi/4.0); /* x is 1.0 */
y = tanh(x); /* y is .761594 */

Related Topics:

acos, asin, atan, atan2, cos, cosh, sin, sinh

5-370

Purpose:

Gets the current position of the file pointer.

Format:

/* Required for function declarations */
#include <io.h>

long tell (handle)
int handle; /* Handle referring to open file */

Comments:

tell

The tell function gets the current position of any file pointer associ­
ated with handle. The position is the number of bytes from the begin­
ning of the file.

The tell function returns the current position. A return value of -1L
indicates an error, and errno is set to EBADF to indicate a non-valid
file handle argument. On devices incapable of seeking (such as
screens and printers), the return value is undefined.

5-371

tell

Example:

The following example opens the file DATA. After processing some
statements (not shown), the example gets the current position of the
file pointer, using tell. The example then assigns this value to posi­
tion. After processing additional statements (not shown), the
example uses Iseek to return to the position stored in position.

#include <io.h>
#include <stdio.h>
#include <fcntl.h>

int fh;
long position;

fh = open ("data", O_RDONLY);

position = tell(fh);

lseek(fh, position, SEEK_SET);

Related Topics:

ftell, Iseek

5-372

Purpose:

Returns the elapsed seconds since January 1, 1970.

Formal:

/* Required for function declarations */

#include <time.h>
time_t time(timeptr)

time_t *timeptr; /* Storage location for time */

time

The lime function returns the number of seconds elapsed since
00:00:00 Greenwich Mean Time, January 1,1970, according to the
system clock. The return value is also stored in the location given by
timeptr. If timeptr is NULL, the return value is not stored.

The time function returns the time in elapsed seconds. There is no
error return.

Example:

This example gets the number of seconds elapsed since January 1,
197000:00 GMT and assigns it to Itime. It then uses the clime func­
tion to convert the number of seconds to the current time. It prints a
message giving the current date and time.

#include <time.h>
#include <stdio.h>

mai n ()
{

10n9 ltime;
time(<ime);
printf("The time is %s\n".

ctime(<ime));

Related Topics:

asctime, ftime, gmtime, localtime, utime

5-373

tmpfile

Purpose:

Creates a temporary file and returns a pointer to that file.

Format:

#include <stqio.h>
FILE *tmpfile() f*-Pointer to file structure */

Comments:

The tmpfile function creates a temporary file and returns a pointer to
that file. If the file ~annot be opened, tmpfile returns a NULL pointer.

The system deletes this temporary file when the file is closed, when
the program ends, or when you call rmtmp, assuming that the current
working directory does not change. The tmpfile function opens the
temporary file in "w + b" mode.

Tmpfile returns a stream pointer, unless it cannot open the file, in
which case it returns a NULL pointer.

The tmpfile routine uses the tmpnam routine to generate the name of
the temporary file. For information on how the temporary file is
named and which directory prefix is used, refer to the description of
tmpnam in this chapter.

5-374

Example:

#include <stdio.h>

FILE *stream;
char tmpstring[] = "This is the string to be"

"temporarily written";
mai nO

{
if((stream = tmpfile()) == NULL)

perror("Cannot make a temporary file");
else

fpri ntf(stream, "%s", tmpstri ng);

Related Topics:

tmpnam, tempnam, rmtmp

tmpfile

5-375

tmpnam - tempnam

Purpose:

Produces a temporary filename in the same or another directory.

Format:

#include <stdio.h>

char *tmpnam(string)
char *string; 1* Pointer to temporary name */

char *tempnam(dir,prefix)
char *dir;
char *prefix;

Comments:

The tmpnam function produces a temporary filename that you can
use as a temporary file. It stores this name in string. If string is NULL,

tmpnam leaves the result in an internal static buffer. Any subsequent
calls destroy this value. If string is not NULL, it points to an array of at
least L_tmpnam bytes. The value of L_tmpnam is defined in stdio.h.

The tempnam function lets you create a temporary file in another
directory. It uses dir as the directory to test for the existence of the
name of the temporary file and prefix as the prefix to the filename. If
dir is NULL, or if it is a non-existent directory, tempnam uses P _tmpdir
in stdio.h for the directory. If P _tmpdir does not exist, \TMP is used. If
this fails, tempnam uses the current working directory.

Tmpnam and tempnam both return a pointer to the temporary name,
unless it is impossible to create this name or the name is not unique.
If the name cannot be created, or if it already exists, tmpnam and
tempnam return the value NULL.

Note: Because tempnam uses malloc to reserve space for the
created filename, it is your responsibility to free this space
when you no longer need it.

5-376

tmpnam - tempnam

The character string that tmpnam creates consists of the path prefix
defined by the P _tmpdir entry in stdlo.h, followed followed by a
sequence of the digit characters '0' through '9'; the numerical value of
this string can range from 1 to 65535. Changing the definitions of
L_tmpnam or P _tmpdir in stdio.h does not change the operation of
tmpnam.

The tempnam function lets you create a temporary file in another
directory. The prefix is the prefix to the filename. The tempnam func­
tion looks for the file with the given name in the following directories,
listed in order of precedence:

Condition Directory Used by tempnam

TMP environment var- Di rectory specified by TMP
iable is set and direc-
tory specified by TMP
exists

TMP envi ronment var- The dir argument to
iable not set or direc- tempnam
tory specified by TMP
does not exist

The dir argument is P _tmpdir in stdio.h
NULL, or dir is name of
nonexistent di rectory

P _tmpdir does not The current working direc-
exist tory

If this is not successful, tempnam returns the value NULL.

5-377

tmpnam - tempnam

Example:

This program creates two temporary filenames: one in the current
working directory, and one in A:\TMP with a prefix stq.

#include <stalib.h>

mai n ()

char *namel, *name2;
if ((namel = tmpnam(NULL)) ! =NULL)

printf("%s is safe to use as a"
"temporary file.\n", namel);

else printf("Cannot create a unique filename\n");

if((name2 = tempnam("a:\\tmp","stq")) != NULL)

printf("%s is safe to use as a"
"temporary file.\n", name2);

else printf("Cannot create unique filename\n");
}

Related Topics:

tmpfile

5-378

Purpose:

Convert a single character.

Format:

#include <ctype.h>

/* Convert c to ASCII character * /
int toascii(c)

/* Convert c to lowercase if appropriate */
int tolower(c)

/* Convert c to lowercase * /
int _tolower(c)

/* Convert c to uppercase if appropriate */
int toupper(c)

/* Convert c to uppercase * /
int _toupper(c)
i nt c; /* Character to be converted * /

Comments:

toascii - _toupper

The toaseii, tolower, _tolower, toupper, and _toupper macros convert
a single character as specified.

The toaseii function sets all but the low-order 7 bits of c to 0 so that
the converted value represents a character in the ASCII character set.
If c already represents an ASCII character, c is unchanged.

The tolower macro converts c to lower case if c represents an upper­
case letter. Otherwise, c is unchanged.

The _tolower macro is a version of tolower to use only when c is
known to be uppercase. The result of _tolower is undefined if c is not
an uppercase letter.

The toupper macro converts c to uppercase if c represents a lower­
case letter. Otherwise, c is unchanged.

5-379

toascii - _ toupper

The _toupper macro is a version of toupper to use only when cis
known to be lowercase. The result of _toupper is undefined if c is not
a lowercase letter.

The toaseii, tolower, _tolower, toupper, and _toupper return the
possibly-converted character c. There is no error return.

Example:

This example prints four sets of characters. The first set is the ASCII

characters having graphic images, which range from Ox21 through
Ox7e. The second set takes integers Ox7f21 through Ox7f7e and
applies the toaseii function to them, yielding the same set of printable
characters. The third set is the characters with all lowercase letters
converted to uppercase. The fourth set is the characters with all
uppercase letters converted to lowercase.

#include <stdio.h>
#include <ctype.h>

mai n ()
{
int ch;

printf("The graphic characters"
" (Ox21 to Ox7e) are:\n");

for (ch = 33; ch <= 126; ch++)
printf("%c",ch);

printf("\nlntegers Ox7f21 to Ox7f7e"
" mapped into these characters are:\n");

for (ch = 32545; ch <= 32638; ch++)
printf("%c",toascii(ch);

printf("\nWith lowercase converted"
" to upper, these are:\n");

for (ch = 33; ch <= 126; ch++)
pri ntf ("%c" , toupper (ch)) ;

printf("\nWith uppercase converted"
" to lower, these are:\n");

for (ch = 33; ch <= 126; ch++)
pri ntf ("%c", tol ower(ch»;

5-380

toascii - _ toupper

Related Topics:

isalnum, isalpha, isascii, iscntrl, isdigit, isgraph, islower,
isprint, ispunct, isspace, isupper, isxdigit

Note: These functions are used as macros. However, tolower and
toupper are also used as functions because the macro versions
do not correctly handle arguments with side effects. You can
use the function versions by removing the macro definitions
through #undef directives or by not including ctype.h. Function
declarations of tolower and toupper are given in stdlib.h.

5-381

tzset

Purpose:

Assigns values to daylight, timezone, and tzname.

Format:

/* Requi red for function declarations * /
#include <time.H>

void tzset()

/* Daylight saving time flag */
int daylight;

/* Difference in seconds from GMT */
long timezone;

/* Three-letter time zone strings */
char *tzname [2];

Comments:

The tzset function uses the current setting of the environment vari­
able TZ to assign values to three variables, daylight, timezone, and
tzname. These variables are used by the ftime and localtime func­
tions to make corrections from Greenwich Mean Time (GMT) to local
time.

The value of the environment variable TZ must be a 3-letter time zone
name, such as EST, followed by a (possibly) signed number giving
the difference in hours between Greenwich Mean Time and local
time. The number can be followed by a 3-letter daylight saving time
zone, such as EDT. For example, "EST5EDT" represents a valid TZ

value for the Eastern Standard Time zone.

When tzset is called, the difference in seconds between Greenwich
Mean Time and local time is stored in timezone. The daylight vari­
able is given a nonzero value if a daylight saving time zone is speci­
fied in the TZ setting. Otherwise, this variable is given the value O.
The tzset function assigns tzname[O] the string value of the 3-letter
time zone name from the TZ setting; tzname[1] is assigned the string

5-382

tzset

value of the daylight saving time zone. If you omit the daylight saving
time zone from the TZ setting, tzname[1] is assigned an empty string.

If TZ is not currently set, the default is "EST5EDT," which corresponds
to the Eastern Time zone. The default for daylight is 1; for timezone,
18000; for tzname[O], "EST"; and for tzname[1], "EDT."

The functions gmtime, localtime, and ftime all retun a flag to indicate
whether daylight savings time is in effect. That flag is true only if
daylight is nonzero and the current date is during the period of the
year when daylight savings time is in effect.

The functions gmtime, localtime, and ftime, all return a flag to indi­
cate whether daylight savings time is in effect. The flag is true only if
daylight is nonzero and the current date is during the period when
daylight savings time is in effect.

There is no return value.

Example:

The following example uses the putenv function to give the TZ vari­
able the value EST5. It then uses the tzset function to set the values
of daylight, timezone, and tzname to the values implied in TZ: daylight
becomes 0; timezone becomes 18000; tzname[O] becomes EST;
tzname[1] becomes the empty string.

#include <time.h>
int daylight;
long timezone;
char *tzname[];

putenv("TZ=EST5");
tzset () ;

Related Topics:

asctime, ftime, localtime, gmtime

5-383

ulloa

Purpose:

Converts digits to a null-ended character string and stores results.

Format:

/* Requi red for f.unction declarations * /
#include <stdlib.h>

char ultoa(value, string, radix)
unsigned long value; /* Number to convert */
char *string ; /* String result * /
int radix; /* Base of value */

Comments:

The ultoa function converts the digits of value to a null-ended char­
acter string and stores the result in string. No overflow checking is
performed. The radix argument specifies the base of value; it must
be in the range of 2 through 36.

The ultoa function returns a pointer to string. There is no error-return
value.

Example:

The following example converts the digits of the unsigned long value
1344115000 to the hexadecimal representation Ox501d9138:

#include <stdlib.h>

int radix = 16;
char buffer[40];
char *p;
p = ultoa(1344115000L, buffer, radix);

Related Topics:

itoa, Itoa

Note: The space allocated for string must be large enough to hold the
returned string. The function can return up to 33 bytes.

5-384

Purpose:
Sets the file permission mask of the current process.

Format:

#include <sys\types.h>
#include <sys\stat.h>

/* Required for function declarations */
#include <io.h>

int umask(pmode)
int pmode; /* Default permission setting */

Com·ments:

umask

The umask function sets the file permission mask of the current
process to the mode specified by pmode. The file permission mask is
used to modify the permission setting of new files created by creat,
open, or sopen. If a bit in the mask is 1, the corresponding bit in the
file's requested permission value is set to 0 (disallowed). If a bit in
the mask is 0, the corresponding bit is left unchanged. The permis­
sion setting for a new file is not set until the file is closed for the first
time.

The variable pmode contains one or both of the manifest constants
S_WRITE and S_IREAD, defined in sys\stat.h. When both constants are
given, they are joined with the bitwise OR operator I. The meanings
of the pmode arguments are in the following table:

Value

S_IWRITE

Meaning

Reading permitted

Writing permitted

S_IREAD I SJWRITE Reading and writing permitted.

If the write bit is set in the mask, any new files will be read-only.
Under DOS all files are readable. It is not possible to give write-only
permission. Thus, setting the read bit has no effect.

5-385

umask

The umask function returns the previous value of pmode. There is no
error return.

Example:

The following example sets the permission mask to create a read­
only file.

#include <sys\types.h>
#include <sys\stat.h>
#include <;o.h>

int oldmask;

oldmask = umask(S_IWRITE);

Related Topics:

chmod, creat, mkdir, open

5-386

ungetc

Purpose:

Pushes character c back onto input stream.

Format:

#include <stdio.h>

int ungetc(c, stream)
int c; /* Character to be pushed */
FILE *stream; /* Pointer to file structure */

Comments:

The ungetc function pushes the character c back onto the given input
stream. The stream must be buffered and open for reading. A subse­
quent read operation on the stream starts with c. An attempt to push
EOF on the stream using ungetc is ignored. The ungetc function
returns an error value if nothing has yet been read from stream or if c
cannot be pushed back.

Characters placed on the stream by ungetc can be erased if an fseek
or rewind function is called before the character is read from the
stream.

The ungetc function returns the character argument c. The return
value EOF indicates a failure to push back the specified character.

5-387

ungetc

Example:

In the following example, the while statement reads decimal digits
from an input data stream, using arithmetic statements to compose
the numeric values of the numbers as it reads them. When a non­
digit character appears before the end of the file, ungete replaces it in
the input stream so that later input routines can process it.

#include <stdio.h>
#include <ctype.h>

FILE *stream;
int ch;
unsigned int result = 0;

while ((ch = getc(stream» != EOF && isdigit(ch))
result = result * 10 + ch - '0';

if (ch ! = EOF)
ungetc(ch,stream);

/* Put the nondigit character back */

Related Topics:

gete, getehar, pute, putehar

5-388

ungetch

Purpose:

Pushes character c back to the keyboard.

Format:

/* Required for function declarations */
#include <conio.h>
int ungetch(c)
i nt c; /* Character to push back * /

Comments:

The ungetch function pushes the character c back to the keyboard,
causi ng c to be the next character read. The ungetch function fails if
called more than once before the next read.

The ungetch function returns the character c if it is successful. A
return value of EOF indicates an error.

5-389

ungetch

Example:

In this example, there is a token delimited by white-space characters.
The example calls the ungetch function to replace the white-space
character following the token. Other input routines can then process
the delimiter.

#include <conio.h>
#include <ctype.h>

mai nO
{
char buffer[100];
int count = 0;
i nt ch;
while (isspace(ch = getche()))

/* Skip preceding white space */ ;
while (count < 99) { /* Gather token */

if (isspace(ch)) /* End of token */
break;

buffer[count++] = ch;
ch = getche();
}

ungetch(ch); /* Put back delimiter */
buffer[count] = '\0' ;/* NULL - end the token */
printf("\n%s\n". buffer);
}

Related Topics:

cscanf, getch, getche

5-390

Purpose:

Deletes a file.

Format:

/* Required for function declarations */
#include <io.h>
int unlink(pathname)

/* Path name of file to be removed */
char * pathname;

Comments:

The unlink function deletes the file specified by pathname.

unlink

The unlink function returns the value 0 if the file is successfully
deleted. A return value of -1 indicates an error, and errno is set to
one of the following values:

Value Meaning

EACCESS The pathname specifies a read-only file.

ENOENT The file or pathname was not found, or the path name
specifies a directory, or in OS/2 mode the filename was
incorrect.

5-391

unlink

Example:

The following example deletes the file TMPFILE from the system or
prints an error message if unable to delete it

#include <io.h>
#include <stdio.h>
rnai n ()
{
int result;

result = unlink("trnpfile");
if (result == -1)

perror("Cannot delete trnpfile");

Related Topics:

close

5-392

Purpose:

Sets modification time.

Format:

#include <sys\types.h>
#include <sys\utime.h>

int utime(pathname, times)
char *pathname; /* File pathname */

/* Pointer to stored time values */
struct utimbuf *times;

Comments:

utime

The utime function sets the modification time for the file specified by
pathname. The process must have write access to the file; otherwise,
the time cannot be changed.

Although the utimbuf structure contains a field for access time, under
DOS, only the modification time is set. If times is a NULL pointer, the
modification time is set to the current time. Otherwise, times must
point to a structure of type utimbuf, defined in sys\utime.h. The mod­
ification time is set from the modtime field in this structure.

The utime function returns the value 0 if the file modification time was
changed. A return value of -1 indicates an error, and errno is set to
one of the following values.

Value Meaning

EACCESS The pathname specifies a directory or read-only file.

EMFILE There are too many open files. The file must be opened to
change its modification time.

ENOENT The file or pathname was not found, or in OS/2 mode the
filename was incorrectly specified.

5-393

utime

Example:

The following example tries to set the last modification time of file
\TMP\DATA to the current time. It prints an error message if it is unable
to do so.

#include <sys\types.h>
#include <sys\utime.h>
#include <stdio.h>
#include <stdlib.h>

if (utime("\\tmp\\data", NULL) == -1)
perror("utime failed");

Related Topics:

asctime, ctlme, fstat, ftime, gmtime, localtime, stat, time

5-394

va _ arg - va_start

Purpose:

Accesses the arguments to a function when the function takes a fixed
number of required arguments and a variable number of optional
arguments.

Format:

#include <stdio.h>
#include <stdarg.h>

/* Macro to set arg-ptr to beginning *

* of list. Variable-name is the *

* identifier of the rightmost parameter *
* in the function definition. */

void va _ start(arg-ptr, variable-name)
/* Macro which expands to */
/* an expression having
* the type and val ue of *
* the next element in the *
* argument list */

type va_arg(arg-ptr,type)

/* Function to set arg-ptr *
* to the end of the list */

void va_end(arg-ptr)
/* Pointer to a list of arguments * /

va_list arg-ptr;
/* Type of argument to be retrieved * /
/* Parameter preceding first optional argument */

type variable-name;

5-395

Comments:

The va_start, va_arg, and va_end macros get to the arguments to a
function when the function also takes a variable number of optional
arguments. You declare required arguments as ordinary parameters
to the function and get to the arguments through the parameter
names.

The stdarg.h macros get to the optional arguments. The va start
macro sets the arg-ptr pointer to the first optional argument in the
argument list. The variable-name argument may not be declared with
register storage class. The argument arg-ptr must have a vaJist
type. The argument variable-name is the identifier immediately pre­
ceding the first optional argument in the argument list. Use the
va_start macro before the va_arg macro.

The va_arg macro retrieves a value of the given type from the
location given by arg-ptr and increases arg-ptr to point to the next
argument in the list (using the size of type to determine where the
next argument starts). The va_arg macro can retrieve arguments
from the list any number of times within the function.

The va_end macro resets the pointer to NULL after all arguments have
been retrieved.

The va_arg macro returns the current argument. The va_start and
va_end macros do not return values.

Example:

The following example shows the passing of a variable number of
arguments. The called function average 0 computes the mean of the
integers passed to it. The main program calls the average function
first with four arguments, then with five arguments.

5-396

#include <stdio.h>
#include <stdarg.h>

mai n ()
{

i nt n;

/* Call with 4 arguments: -1 ends the list */
n = average(2, 3, 4, -1);
pri ntf (\I Average is: %d\n \I, n) ;

/* Call with 5 arguments: -1 ends the list */
n = average(5, 7, 9. 11. -1);
pri ntf (\I Average is: %d\n \I, n) ;

average(first)
int first;
{

int i = 0, count = 0, sum = 0;
va_list arg_marker;

va_start arg_marker, first);

if (first! = -1)
sum = first;

else
return(O);

count++;
for (;

(i = va_arg(arg(arg_marker,int)) > = 0;
sum+=i, count++)

return (sumOcount);

Output:

Average is: 3 Average is: 8

Output:

Computer 99 2.718282 a

Related Topics:

vfprinH, vprinH, vsprinH

va arg - va start - -

5-397

vfprinU-vsprintf

Purpose:

Prints stream data with a varying list of arguments.

Format:

#include <stdio.h>
#include <stdarg.h>

i nt vp ri ntf(format-stri ng, arg-ptr)
const char *format-string; /* Format control * /

/* Pointer to a list of arguments */

vaJist arg-ptr;

int vfprintf(stream,format-string,arg-ptr)
FILE *stream; /* Pointer to file structure */
const char *format-string;
vaJist arg-ptr;

i nt vspri ntf(target-string ,format-string ,arg-ptr)
/* Storage buffer for output * /

char *target-string;
const char *format-string;
va Jist arg-ptr;

Comments:

The vprinlf, vfprinlf, and vsprinlf functions are similar to their counter­
parts prinlf, fprinlf, and sprlnlf. In vprinlf, vfprinlf, and vsprinlf, arg-ptr
points to a list of arguments whose number can vary during the
running of the program. In contrast, prinlf, fprinlf, and sprinlf can
have a list of arguments, but the number of arguments in that list is
fixed when you compile the program. The arg-ptr parameter has type
va-list, which is defined in stdarg.h. The list of arguments is con­
verted and output according to the format specifications in format­
string.

5-398

vfprintf-vsprintf

If there is no error, vprintf, vfprintf, and vsprintf return the number of
characters written to stdout, stream, or the target string, respectively.
If there is an error, these functions return the value -1.

Example:

The following example shows the passing of a variable number of
arguments.

#include <stdio.h>
#include <stdarg.h>

mai n ()
{

char *s = "Computer";
i nt i = 99;
double fp = 2.71828182847;
char c = 'a ' ;

vout(1, s, i, fp, c);

vout(dum_var, ...)
int dum var;
{ -

va_list arg_ptr;

va_start(arg_ptr, dum_var);
/* at least one variable must */
/* be in the argument list */
vprintf("%s %d %f %c\n", arg_ptr);
va_end(arg_ptr);

Output:

Computer 99 2.718282 a

Related Topics:

prlntf, fprintf, sprlnU

5-399

wait

Purpose:
The wait function delays the completion of a parent process until the
end of one or more child processes.

Format:

#include <process.h>

int wait (stat_loc)
int *stat_loc;

Comments:
The wait function delays a parent process until one of the immediate
child processes stops. If all the child processes stop before wait is
called, control returns immediately to the parent function. The wait
function is available only under OS/2.

If not NULL, the stat_lac argument points to the location that holds
information about the return status and return code of a child process
that ends. The return status shows whether the child process
stopped normally. If the child process stops normally, using a call to
the OS/2 DOSEXIT function, the low-order and high-order bytes of the
return status are as follows:

Byte

Low-order

High-order

5-400

Contents

o
Low-order byte of the code that the child process
passed to DOSEXIT. The system calls DOSEXIT if the

child process called exit or _exit, returned from
main, or reached the end of main. The low-order
byte of the result code is either the low-order byte of
the argument to _exit or exit, the low-order byte of
the return value from main, or, if control from the
child process fell through at the end of main, an
unpredictable value.

wait

If the child process stops for any other reason, the low-order and
high-order bytes of the return status are as follows:

Byte

Low-order

Contents

Return-status code from OS/2 DOSCWAIT function:

Code
1
2
3

Meaning
Hard-error unexpected end
Trap operation
SIGTERM signal not intercepted.

High-order 0

If wait returns after unexpected end of a child process, it returns -1 to
the parent process and sets errno to EINTR.

If wait returns after a normal end of a child process, it returns the
process identifier of the child process to the parent process.

Otherwise, wait returns immediately with a value of -1. In this case,
errno is set to ECHILD, indicating that no child processes exist for the
particular process.

5-401

wait

Example:
The following example creates a new process called CHILD.EXE, speci­
fying NO_WAIT when the child is called. The parent calls waitO and
waits for the child to stop running. The parent then displays the
child's status word in hexidecimal.
#include <stdio.h>
#include <process.h>
int stat_child;

mai n ()
{

int i ,result;
result=spawnl (P _NOWAIT, "chi ld.exe",

"child.exe",NULL);
/* Display error status message, if any */

if ((i=wait(&stat child))==-l)
perror(); -

else
printf("child process %d is running\n",i);

/* Display the word returned when child ended. */

printf("child process was &*X\n",stat_child);

Related Topics:

cwait, exit, _exit, spawnl, spawnle, spawnlp, spawnlpe, spawnp,
spawnv,spawnve,spawnvp,spawnvpe

5-402

write

Purpose:

Writes from buffer to file.

Format:

/* Required for function declarations */
#include <io.h>

int write(handle, buffer, count)
int handle; /* Handle referring to open file */
char *buffer; /* Data to be written */
unsigned int count; /* Number of bytes */

Comments:

The write function writes count bytes from buffer into the file associ­
ated with handle. The write operation begins at the current position
of any file pointer associated with the given file. If the file is open for
adding, the operation begins at the current end of the file. After the
write operation, the file pointer (if any) is increased by the number of
bytes actually written.

The write function returns the number of bytes actually written. The
return value may be positive but less than count (for example, when
running out of space on a disk before count bytes are written). A
return value of -1 indicates an error, and errno is set to one of the
followi ng val ues.

Value

EBADF

ENOSPC

Meaning

The file handle is non-valid or the file is not open for
writing.

No space is left on the device.

If you are writing more than 32K bytas to a file, the return value
should be of the type unsigned int. The maximum number of bytes
you can write to a file is 65534,because 65535 (OxFFFF) is indistin­
guishable from -1 and causes the return of an error.

5-403

write

If the given file was opened in text mode, each line feed character is
replaced with a carriage returnlline feed pair in the output. The
replacement does not affect the return value.

Example:

The following example writes the contents of the character array
buffer to the output file whose handle is fh. The length of the buffer is
BUFSIZ.

#include <io.h>
#include <stdio.h>

int fh. byteswritten;
unsigned int nbytes = BUFSIZ;
char buffer[BUFSIZ);

byteswritten = write(fh. buffer. nbytes);

Related Topics:

cwait, exit, _exit, fwrite, open, read, spawnl, spawnle, spawnlp,
spawnlpe, spawnv, spawnve, spawnvp, spawnvpe

Note: When you write to files opened in text mode, a Ctrl+Z char­
acter is treated as the logical end of file. When you write to a
device, a Ctrl+Z character in the buffer causes output to stop.

5-404

Appendix A. Error Messages

This appendix lists the error messages you might find as you develop
a program and gives a brief description of the action required to
correct the error. The first section lists run-time errors that you may
find when you run your program.

The remaining sections describe error messages produced by the fol­
lowing programs:

• IBM C/2

• The IBM Linker

• The CodeView symbolic debugger

• The IBM LIB library management utility

• The EXEMOD header modification utility

• The MAKE program maintenance utility

• The errno variable and math routines.

Run-Time Library Error Messages

Run-time error messages are divided into four categories:

1. Error messages generated by the run-time library to notify you of
serious errors.

2. Floating-point exceptions generated by the Numeric Coprocessor
or the NPX emulator.

3. Error messages generated by calls in the program to error­
handling routines in the C run-time library (the abort, assert, and
perror routines). These routines print an error message to the
standard error data stream (stderr) whenever the program calls
the given routine. For a description of these routines, see
Chapter 5 "Library Routines" in this book.

A-1

4. Error messages generated by calls to math routines in the C run­
time library. On an error, the math routines return an error value
or print a message to the standard error data stream. See
Chapter 5, "Library Routines" for a description of the math rou­
tines.

When your program has serious errors, the system can generate the
following messages at run time:

R6000: stack overflow
Your program has run out of stack space. This can occur when a
program uses a large amount of local data or is heavily recur­
sive. The system stops the program with an exit status of 255. To
correct the problem, recompile using the IF option of the CL

command, or relink using the linker ISTACK option to reserve a
large stack or modify the stack information in the executable file
header by using the EXEMOD program.

R6001: null pOinter assignment
The contents of the NULL segment changed as the program ran.
The NULL segment is a special location in low storage that is not
normally used. If the contents of the NULL segment change during
the running of a program, the program has written to this area,
usually by an inadvertent assignment through a null pointer.
Your program can contain null pOinters without generating this
message; the message appears only when you get access to a
storage location through the null pOinter.

This error does not cause your program to stop; the system prints
the error message following the normal end of the program.

This message reflects a potentially serious error in your program.
Although a program that produces this error can appear to run
correctly, it is likely to cause problems in the future and might fail
to run in a different operating environment.

R6002: floating point not loaded

A-2

Your program needs the floating-point library, but that library was
not loaded. This error stops the program with an exit status of
255. This error occurs in three situations:

1. A format string for one of the routines in the printf or scanf
family contains a floating-point format specification, and
there are no floating-point values or variables in the program.
The C compiler tries to minimize the size of the program by

loading floating-point support only when necessary. It does
not detect floating-point format specifications within format
strings and, consequently, does not load the necessary
floating-point routines. To correct this error, use a floating­
point argument that corresponds to the floating-point format
specification. This causes the C compiler to load floating­
poi nt support.

2. You specified XLlBFP.LlB or XLlBFA.LlB (where x is S, M, L, C, or
H depending on the storage model) after XLlBC.LlB in the
linking stage. You must relink the program with the correct
library specification.

3. The program uses floating point and is compiled and linked
with options that require a numeric coprocessor (-FPi87, for
example), but is run on a machine that does not have a
numeric coprocessor. You should either recompile with
switch IFPi, relink with emulator library EM.LlB, or install a
coprocessor.

R6003: integer divide by 0
An attempt was made to divide an integer by 0, giving an unde­
fi ned result.

R6004: DOS 2.00 or later required
IBM C/2 cannot run on versions of DOS prior to 2.00

R6005: not enough memory on exec

R6006: bad format on exec

R6007: bad environment on exec
Errors R6005 through R6007 occur when a child process spawned
by one of the exec library routines fails, and DOS was unable to
return control to the parent process.

R6008: not enough space for arguments
See explanation under error R6009

R6009: not enough space for environment
Error R6008 and R6009 both occur at start-up if there is enough
memory to load the program, but not enough room for the argv
and/or envp vectors. To avoid this problem, you can rewrite the
_setargv or _setenvp routines.

A-3

Floating-Point Exceptions

The error messages listed below correspond to exceptions produced
by the numeric coprocessor. These messages appear with error
2100: Floating pOint error, described in the previous section. Refer to
the Intel documentation for your processor for a detailed discussion
of hardware exceptions.

When you use the default floating-point control word settings in C, the
following exceptions are masked and do not occur:

Exception

Denormal

Default Masked Action

Exception masked

Result goes to 0.0

Exception masked.

Underflow

Inexact

The following errors do not occur with code that IBM C/2 produces or
code provided in the IBM C/2 run-time library:

• Square root
• Stack underflow
• Unemulated.

The floating-point exceptions have this format:

runtime-time error M61xx : MATH
-floating-point error: message text

The following list describes the floating-point exceptions:

M6101: invalid
The operation is a non-valid operation. Usually this message
appears when an operation tries to operate on NANS or infinities.

M6102: denormal

A-4

The operation produced a very small floating-point number,
which might no longer be correct due to loss of significance.
Denormals are normally masked, causing them to be trapped and
operated on.

M6103: divide by 0
The operation tried to divide by zero.

M6104: overflow
The operation produced an overflow in floating-point operation.

M6105: underflow
The operation produced an underflow in a floating-point opera­
tion. An underflow is normally masked so that the operation
yields the result 0.0.

M6106: inexact
Loss of precision occurred in a floating-point operation. This
exception is normally masked, because almost any floating-point
operation can cause loss of precision.

M6107: unemulated
An attempt was made to run a floating-point instruction not sup­
ported by the emulator or a non-valid floating point instruction.

M6108: square root
The operand in a square root operation was negative.

Note: The sqrt function in the C run-time library checks the argu­
ment before performing the operation and returns an error
value if the operand is negative. See Chapter 5, "Library
Routines" for details on sqrt.

M6110: stack overflow
A floating-point expression has used too many stack levels on the
numeric coprocessor or emulator. (Stack overflow exceptions
are trapped up to a limit of seven additional levels beyond the
eight levels normally supported by the numeric coprocessor.)

M6111: stack underflow
A floating-point operation resulted in a stack underflow on the
numeric coprocessor or the emulator.

A-5

Run-Time Limits

The following table summarizes the limits that apply to programs at
run time. If your program exceeds one of these limits, an error
message informs you of the problem.

Program limits at Run Time

Program

Files

Item Description

Maximum file size

Maximum number of
open files (streams)!

Limit

232_1 bytes (4
gigabytes)

20 for DOS

40 for OS/2

Command Line Maximum number of 128
characters (including
program name)

Environment Maximum size 32K
Table

1 Five streams are opened automatically (stdin, stdout, stderr, stdaux, and
stdprn), leaving 15 available for the program to open.

Compiler Error Messages

The error messages produced by IBM C/2 fall into five categories:

• Warning messages
• Fatal error messages
• Error messages during compiling
• Command line messages
• Compiler internal error messages.

Warning messages are informational only; they do not prevent com­
piling and linking. You can control the level of warnings generated by
the compiler by using the IW option, described in the IBM C/2 Compi/e,
Link, and Run book. The list of warning messages includes a number
for each message indicating the minimum level that must be set for
the message to appear.

Fatal error messages indicate severe problems, those that prevent
the compiler from processing your program. After printing out a
message about the fatal error, the compiler stops without producing
an object file or checking for further errors.

Error messages during compiling identify actual program errors. No
object file is produced for a source file that has such errors. When
the compiler finds a nonfatal program error, it tries to recover from
the error. If possible, the compiler continues to process the source
file and produce error messages. If errors are too numerous or too
severe, the compiler stops processing.

Command line messages give you information about non-valid or
inconsistent command line options. If possible, the compiler con­
tinues operation, printing a warning message to indicate which
command line options are in effect and which are disregarded. In
some cases, command line errors are fatal, and the compiler stops
processing.

Compiler internal error messages indicate errors on the part of the
compiler instead of an error in your program. The following mes­
sages are compiler internal error messages. No matter what your
source program contains, these messages should not appear. If they
do, please report the condition to your authorized IBM dealer.
Although these errors are not the fault of your program, you will prob-

A-7

ably want to rearrange your code so that the program can be com­
piled.

C1000: UNKNOWN FATAL ERROR

C2000: UNKNOWN ERROR
An unforeseen error condition has been detected by the compiler.

C1 001: Internal Compiler Error
(compiler file '<name>',line <n»

The compiler performs internal consistency checks during com­
piling. This message indicates that the consistency check failed
and the compiler cannot continue operation.

C4000: UNKNOWN WARNING

Error messages in the warning, fatal, and compiling error message
categories have the same basic form:

filename (linenumber) : msg-code error-number message

The parts of the error message are as follows:

filename

linenumber

msg-code

A-8

The name of the source file being compiled.

The line of the file containing the error.

The message code consists of two parts:

1. An initial letter which identifies the component
that is reporting the error.

2. A single digit following the letter indicates the
severity of the error.

The form of the message code with a number is:

<L> <N> <###>

Letter
C
D
M
R

Error Type
C Compiler
CLICC driver
Math runtime errors
General runtime errors

Number Error Type

1 Fatal Error

2 Error

4 Warning

6 Runtime

The <###> is the 3-digit error number within the cat­
egory

error-number The number associated with the error

message A self-explanatory description of the error or warning.
A command line error message gives a message
about the command line; it does not contain refer­
ences to line numbers and filenames.

The messages for each category are listed below in numerical order,
along with a brief explanation of each error. To look up an error
message, first determine the message category, then find the error
number.

"Compiler Limits" in this appendix summarizes the limits, such as
the maximum size of a macro definition, that the IBM C/2 compiler
imposes.

A-9

Fatal Error Messages

The following messages identify fatal errors. The compiler cannot
recover from a fatal error; it stops after printing the error message.

C1 001: Internal Compiler Error
(compiler file '<name>' ,line <n»
The compiler has detected an internal error. Please report this
error to your authorized IBM dealer. Include the compiler filename
and line number information.

C1002: out of heap space
The compiler has run out of dynamic storage space. This usually
means that your program has many symbols and complex
expressions. To correct the problem, break down the file into
several smaller source files.

C1003: error count exceeds n; stopping compilation
Errors in the program are too numerous or too severe to allow
recovery, and the compiler must stop.

C1004: unexpected EOF
This message appears when you have insufficient space on the
default disk drive for the compiler to create the temporary files it
needs. The space required is approximately two times the size of
the source file.

C1006: write error on compiler intermediate file
The compiler is unable to create the intermediate files used in the
compiling process. The exact reason is unknown.

C1007: unrecognized flag 'string' in 'option'
The given string in the command line option is not a valid option.

C1009: compiler limit: possibly a recursively defined macro
The expansion of a macro exceeds the available space. Check to
see whether the macro is recursively defined or if the expanded
text is too large.

C1010: compiler limit: macro expansion too big
The expansion of a macro exceeds the available space.

C1012: bad parenthesis nesting - missing 'character'
The parentheses in a preprocessor directive are not matched.
The character is either (or).

A-10

C1013: cannot open source file 'pfilename'
The given source file cannot be opened. Check to make sure you
have given the correct pathname for the file. The system may
have run out of file handles; you should have a line FILES = 20 in
your CONFIG.SYS file.

C1 014: too many include flies
Nesting of #include directives exceeds the limit of 10 levels.

C1015: cannot open include file 'filename'
The given file cannot be opened. Check to make sure your
INCLUDE environment variable is correct. The system may have
run out of file handles; you should have a line FILES = 20 in your
CONFIG.SYS file. If your include files are shared, they should be
read-only.

C1 016: #if[n]def expected an identifier
You must specify an identifier with the #ifdef and #Ifndef direc­
tives.

C1017: invalid integer constant expression
The expression in an #if directive must evaluate to a constant.

C1018: unexpected '#elif'
The #elif directive is legal only when it appears within an #If,
#ifdef, or #ifndef directive.

C1019: unexpected '#else'
The #else directive is legal only when it appears within an #if,
#ifdef, or #ifndef di rective.

C1020: unexpected '#endif'
An #endlf directive appears without a matching #if, #Ifdef, or
#ifndef directive.

C1021: bad preprocessor command 'string'.
The characters following the number sign (#) do not form a pre­
processor directive.

C1022: expected '#endif'
An #if, #ifdef, or #ifndef directive does not end with an #endif
directive.

C1026: parser stack overflow, please simplify your program
Your program cannot be processed because the space required
to parse the program causes a stack overflow in the compiler. To
solve this problem, simplify your program.

A-11

C1027: DGROUP data allocation exceeds 64K
Large, compact, or huge model allocation of variables to the
default segment exceeds 64K bytes. Use the IGT option to move
items into separate segments.

C1032: cannot open listing file 'filename'
The filename or pathname given for the listing file is not valid.

C1033: cannol open assembly language output file 'filename'
The filename or pathname given for the assembly language
output file is not valid.

C1034: cannol open source file 'filename'
The filename or pathname given for the source file is not valid.

C1035: expression 100 complex, please simplify
The compiler cannot produce code for a complex expression.
Break the expression into simpler subexpressions and recom­
pile.

C1036: cannot open source-listing file 'filename'
The filename or pathname given for the source file is not valid.

C1037: cannot open objecl file 'filename'
The filename or pathname given for the source file is not valid.

C1039: unrecoverable heap overflow in Pass 3
The post-optimizer compiler pass has overflowed the heap and
cannot continue. Try recompiling with the /Od option or breaking
up the function containing the line causing the error.

C1040: unexpected EOF in source file 'filename'
The compiler detected an unexpected end-of-file while creating a
source listing or mingled a source/object listing. The probable
cause is a source file edited during compiling. This error most
likely occurs on a multi-tasking system where the compiling can
be done as a background process.

C1041: cannot open compiler intermediate file -no more files
The compiler is unable to create intermediate files used in the
compiling process because no more file handles are available.
This can usually be corrected by changing the files = line in the
CONFIG.SYS file to allow a larger number of open files (20 is the
recommended setting).

A-12

C1042: cannot open compiler intermediate file - no such file or direc­
tory
The compiler is unable to create intermediate files used in the
compiling process because the TMP environment variable is set
to a non-valid directory or path.

C1043: cannot open compiler intermediate file
The compiler is unable to create intermediate files used in the
compiling process. The exact reason is unknown.

C1044: out of disk space for compiler intermediate file
The compiler is unable to create intermediate files used in the
compiling process because no more space is available. To
correct the problem, make more space available on the disk and
recompile.

C1045: floating point overflow
The compiler has produced a floating-point exception while doing
constant arithmetic on floating-point items at compile time, as in
the following example:

float fp_val = 1.0e100

In this case, the double-precision constant 1.0e100 exceeds the
maximum allowable value for a floating-point data item.

C1047: too many option flags, 'string'
There are too many occurrences of the given option; string con­
tains the occurrence of the option causing the error.

C1048: Unknown option 'character' in 'optionstring'
The specified character is not a valid letter for optionstring.

C1049: invalid numerical argument 'string'
A numerical argument was expected instead of string.

C1050: 'segname': code segment too large
The code generated for the given segment exceeded 64K.

C1 051: program too complex
Simplify your program.

C1052: too many #ifl#ifdefs
Your #if or #ifdef directives are nested more than 32 levels deep.

C1053: compiler limit: struct/union nesting
Nesting of structure and union definitions are limited to ten levels
of nesting.

A-13

C1054: compiler limit: initializers too deeply nested
The compiler limit on nesting of initializers has been exceeded.
The limit ranges from 10 through 15 levels, depending on the
combination of types being initialized. To correct this problem,
simplify the data type being initialized to reduce the levels of
nesting, or assign initial values in separate statements after the
declaration.

C1056: compiler limit: out of macro expansion space
The expansion of a macro (often nested macros and large actual
parameters) has used up the available space in the macro expan­
sion buffer.

C1057: unexpected EOF in macro expansion
The preprocessor encountered an end-of-file while collecting the
actual arguments for a macro expansion. This is usually caused
by a missing) closing the macro argument list.

C1059: out of near heap space
Program too large (too many symbols) and the compiler cannot
allocate space in the near heap.

C1060: out of far heap space
Program too large (too many symbols) and the compiler cannot
allocate space in the far heap. Try removing other memory resi­
dent programs to create extra memory space. If your machine is
a network server, you could reconfigure it so that it does not use
network software during compiling.

C1062: error writing to preprocessor output file
A -p option was entered to create a preprocessor listing file.
However, there is no available space on the output directory.

A-14

Error Messages During Compiling

The messages listed below indicate that your program has errors.
When the compiler finds any of the errors listed in this section, it con­
tinues parsing the program, if possible, and puts out additional error
messages. However, no object file is produced.

C2000: UNKNOWN ERROR
The compiler has detected an unforeseen error condition. Please
report this error to your authorized IBM dealer.

C2001: newline in constant
A newline character in a character or string constant must be
preceded by the backslash escape character (\).

C2002: out of macro actual parameter space
Arguments to preprocessor macros cannot exceed 256 bytes.

C2003: expected 'defined id'
An #if directive has a syntax error.

C2004: expected 'defined(id)'
An #if directive has a syntax error.

C2005: #line expected a line number
A #line directive lacks the mandatory line number specification.

C2006: #include expected a filename
An #include directive lacks the mandatory filename specification.

C2007: #define syntax
A #define directive has a syntax error.

C2008: 'c' : unexpected in macro definition
The character c is misused in a macro definition.

C2009: reuse of macro formal' identifier'
The parameter list in a macro definition contains two occurrences
of the same identifier.

C2010: 'c' : unexpected in formal list
The character c is misused in the list of formal parameters for a
macro definition.

C2011: 'identifier' : definition too big
Macro definitions cannot exceed 512 bytes.

A-15

C2012: missing name following '<I
An #include directive lacks the mandatory filename specification.

C2013: missing I>'
The closing angle bracket ">" is missing from an #include direc­
tive.

C2014: preprocessor command must start as first non-whitespace
Non-whitespace characters appear before the number sign # of a
preprocessor directive on the same line.

C2015: too many chars in constant
A character constant is limited to a single character or escape
sequence. (Multi-character character constants are not sup­
ported.)

C2016: no closing single quote
8ackslash escape character (\) must precede a newline character
ina character constant.

C2017: illegal escape sequence
The characters after the escape character (\) do not form a valid
escape sequence.

C2018: unknown character 'Oxn'
The given hexadecimal number does not correspond to a char­
acter.

C2019: expected preprocessor command, found 'c'
The character following a number sign (#) is not the first letter of
a preprocessor di rective.

C2020: bad octal number' n'.
The character n is not a valid octal digit.

C2021: expected exponent value, not' n'
The exponent of a floating-point constant is not a valid number.

C2022: 'n' : too big for char
The number n is too large to be represented as a character.

C2023: divide by 0
The second operand in a division operation (I) evaluates to zero,
giving undefined results.

C2024: mod by 0
The second operand in a remainder operation (%) evaluates to
zero, giving undefined results.

A-16

C2025: 'identifier' : enum/struct/union type redefinition
The given identifier has al ready been used for an enumeration,
structure, or union tag.

C2026: 'identifier' : member of enum redefinition
The given identifier has already been used for an enumeration
constant, either within the same enumeration type or within
another enumeration type with the same visibility.

C2028: struct/union member needs to be inside a structlunion
Structure and union members must be declared within the struc­
ture or union.

C2029: 'identifier' : bit-fields only allowed in structs
Only structure types can contain bit-fields.

C2030: structlunion member redefinition
The same identifier was used for more than one structure or
union member.

C2031: 'identifier' : function cannot be structlunion member
A function cannot be a member of a structure. Use a pointer to a
function instead.

C2032: 'identifier' : base type with nearlfar not allowed
Declarations of structure and union members cannot use the near
and far keywords.

C2033: 'identifier' : bit-field cannot have indirection
The bit field is declared as pointer, *, which is not allowed.

C2034: 'identifier' : bit-field type too small for number of bits
The number of bits specified in the bit field declaration exceeds
the number of bits in the given unsigned type.

C2035: enum/struct/union 'identifier': unknown size
A member of a structure or union has an undefined size.

C2036: left of '->identifier' must have struct/union type
The expression before member selection operator '->' is not a
pOinter to a structure or union type, or the expression before
member selection operator'.' does not evaluate to a structure or
union.

C2037: left of '->' specifies undefined structlunion 'identifier'
The expression before member selection operator' ->' or '.' iden­
tifies a structure or union type that is not defined.

A-17

C2038: 'identifier' : not struct/union member
The given identifier is used in a context that requires a structure
or union member.

C2039: '->' requires structlunion pointer
The expression before member selection operator '->' is not a
pointer to a structure or union.

C2040: '.' requires struct/union name
The expression before member selection operator'.' is not the
name of a structure or union.

C2042: signed/unsigned mutually exclusive
You may declare an identifier type as signed or unsigned, but not
both.

C2043: illegal break
A break statement is legal only when it appears within a do, for,
while, or switch statement.

C2044: illegal continue
A continue statement is legal only when it appears within a do,
for, or while statement.

C2045: 'identifier' : label redefined
The given identifier appears before more than one statement in
the same function.

C2046: illegal case
The case keyword can appear only within a switch statement.

C2047: illegal default
The default keyword can appear only within a switch statement.

C2048: more than one default
A switch statement contains too many default labels. Only one is
allowed.

C2050: non-integral switch expression
Switch expressions must be integers.

C2051: case expression not constant
Case expressions must be integer constants.

C2052: case expression not integral
Case expressions must be integer constants.

A-18

C2053: case value' n' already used
The decimal equivalent of case value n has already been used in
this switch statement, where n is an integer constant.

C2054: expected '{' to follow 'identifier'
The context requires parentheses after the function identifier.

C2055: expected formal parameter list, not a type list
An argument type list appears in a function definition where a
formal parameter list should appear.

C2056: illegal expression
An expression is illegal because of a previous error. The pre­
vious error did not produce an error message.

C2057: expected constant expression
The context requi res a constant expression.

C2058: constant expression is not integral
The context requires an integer constant expression.

C2059: syntax error: 'token'
The given token caused a syntax error.

C2060: syntax error : EOF
The end of the file was found unexpectedly, causing a syntax
error.

C2061: syntax error: identifier' identifier"
The given identifier caused a syntax error.

C2062: type' identifier' unexpected
The given type is misused.

C2063: 'identifier' : not a function
The given identifier was not declared as a function, but an
attempt was made to use it as a function.

C2064: term does not evaluate to a function
An attempt is made to call a function through an expression that
does not evaluate to a function pointer.

C2065: 'identifier' : undefined
The given identifier is not defined.

C2066: cast to function returning ... is illegal
An object cannot be cast to a function type.

A-19

C2067: cast to array type is illegal
An object cannot be cast to an array type.

C2068: illegal cast
A type used in a cast operation is not a legal type.

C2069: cast of 'void' term to non-void
The void type cannot be cast to any other type.

C2070: illegal sizeof operand
The operand of a sizeof expression must be an identifier or a type
name.

C2071: 'class' : bad storage class
The given storage class cannot be used in this context.

C2072: 'identifier' : initialization of a function
Functions cannot be initialized.

C2073: 'identifier' : cannot initialize array in function
Arrays can be initialized only at the external level.

C2074: 'identifier' cannot initialize struct/union in function
Structures and unions can be initialized only at the external level.

C2075: 'identifier' : array initialization needs curly braces
The braces { } around an array initializer are missing

C2076: structlunion initialization needs curly braces
The braces { } around a structure or union initializer are missing.

C2077: non-integral field initializer 'identifier'
An attempt is made to initialize a bit field member of a structure
with a non-integer value.

C2078: too many initializers
The number of initializers exceeds the number of objects to be
initialized.

C2079: 'variable' uses an undefined struct/union identifier
The given variable is declared as a structure or union type identi­
fier that has not been defined.

C2082: redefinition of formal parameter' identifier'
A formal parameter to a function is redeclared within the function
body.

C2083: array' identifier' already has a size
The dimensions of the given array have already been declared.

A-20

C2084: function' identifier' already has a body
The given function has already been defined.

C2085: 'identifier' : not in formal parameter list
The given identifier was declared in the list of argument declara­
tions for a function, but was not listed in the formal parameter list
in the function header.

C2086: 'identifier' : redefinition
The given identifier was defined more than once.

C2087: 'identifier' : missing subscript
To refer to an element of an array, you must use a subscript.

C2088: use of undefined enum struct/union 'identifier'
The identifier refers to a structure, enumeration, or union type
that is not defined.

C2089: typedef specifies a nearlfar function
The near or far keyword is used in a typedef declaration.

C2090: function returns array
A function cannot return an array. It can return a pointer to an
array.

C2091: function returns function
A function cannot return a function. It can return a pointer to a
function.

C2092: array element type cannot be function
Arrays of functions are not allowed.

C2093: cannot initialize a static or struct with address of automatic
vars
You tried to initialize a static pointer to the address of a local var­
iable.

C2094: label 'identifier' was undefined
The function does not contain a statement labeled with the identi­
fier.

C2095: parameter has type void
Formal parameters and arguments to functions cannot have void
type.

C2096: struct/union comparison illegal
You cannot compare two structures or unions. You can, however,
compare individual members of structure and unions.

A-21

C2097: illegal initialization
An initialization is illegal because of a previous error. The pre­
vious error might not have produced an error message.

C2098: non-address expression
An attempt was made to initialize an item that is not an Ivalue.

C2099: non-constant offset
An initializer uses a non-constant offset.

C2100: illegal indirection
Indirection operator * was applied to a non-pointer value.

C2101: 'I' on constant
Only variables and functions can have their address taken.

C2102: '&' requires Ivalue
Address-of operator & can be applied only to Ivalue expressions.

C2103: 'I' on register variable
Register variables cannot have their address taken.

C2104: '&' on bit-field
Bit-fields cannot have their address taken.

C2105: 'operator' needs Ivalue
The operator must have an Ivalue operand.

C2106: 'operator' : left operand must be !value
The left operand of the operator must be an Ivalue.

C2107: illegal index, indirection not allowed
A subscript was applied to an expression that does not evaluate
to a pOinter.

C2108: non-integral index
Only integer expressions are allowed in array subscripts.

C2109: subscript on non-array
A subscript was used on a variable that is not an array.

C2110: ' + ' : 2 pointers
Two pointers cannot be added.

C2111: pointer + non-integral value
Only integer values can be added to pointers.

C2112: illegal pointer subtraction
Only pointers that point to the same type can be subtracted.

A-22

C2113: '-' : right operand pOinter
The right-hand operand in a subtraction operation (-) is a pointer,
but the left-hand operand is not.

C2114: 'operator' : pOinter on left; needs integral right
The left operand of the operator is a pointer; the right operand
must be an integer value.

C2115: 'identifier' : incompatible types
An expression contains types that are not compatible.

C2116: 'operator' : bad left or right operand
The specified operand of the operator is an illegal value.

C2117: 'operator' : illegal for struct/union
Structure and union type values are not allowed with the
operator.

C2118: negative subscript
A value defining an array size was negative.

C2119: 'typedefs' both define indirection
Two typedef types are used to declare an item and both typedef
types have indirection. For example, the declaration of pshint; in
the following example is illegal:

typedef int *P_INT;
typedef short *P_SHORT;

/* This declaration is illegal */
P_SHORT P_INT pshint;

C2120: 'void' illegal with all types
The void type cannot be used in declarations with other types.

C2121: typedef specifies different enum
Two different enumeration types defined with typedef are used to
declare an item, and the enumeration types are different.

C2122: typedef specifies different struct
Two structure types defined with typedef are used to declare an
item, and the structure types are different.

C2123: typedef specifies different union
Two union types defined with typedef are used to declare an item,
and the union types are different.

C2125: 'identifier': allocation exceeds 64K
The given item exceeds the limit of 64K bytes. The only items
that are allowed to exceed 64K bytes are huge arrays.

A-23

C2126: 'identifier': automatic allocation exceeds size
The space allocated for the local variables of a function exceeds
the given limit.

C2127: parameter allocation exceeds 32K
The storage space required for the parameters to a function
exceeds the limit of 32K bytes.

C2128: 'identifier' huge array cannot be aligned to segment boundary
The given array violates one of the restrictions imposed on huge
arrays. See IBM CI2 Compile, Link, and Run, Chapter 3.

C2129: static function 'identifier' not found
A forward reference was made to a missing static procedure.

C2130: #line expected a string containing the filename
A #line directive is missing a filename.

C2131: aHrib"',8S specify more than one nearlfar/huge
More than one near, far, or huge attribute was applied to an item,
as in the following example:

typedef int near NINT;
NINT far a; /* Illegal */

C2132: syntax error: unexpected identifier
The given identifier caused a syntax error.

C2133: array 'identifier': unknown size
A negative subscript was used in an array, or there is an
improper size designation.

C2134: 'identifier': struct/union too large
The declared symbol is greater than 232

. If the struct/union did
not have a tag name, this message reads "<unnamed>
structlunion too large."

C2135: missing')' in macro expansion
A macro reference with arguments is missing a closing paren­
thesis.

C2137: empty character constant
The single quotes delimiting a character constant must contain
one character. For example, the declaration char a = ' , is
illegal. To represent a null character constant, use an escape
sequence, such as '\0'.

A-24

C2138: unmatched close comment '*1'
The compiler detected */ without a matching /*. This usually indi­
cates an attempt to use nested comments, which is illegal.

C2139: type following type is illegal
There is an illegal type combination, such as the following:

long char a; /* Illegal */

C2140: argument type cannot be function returning ...
A function is declared as a formal parameter of another function,
as in the following example:

int funcl(a)
int a(); /* Illegal */

C2141: value out of range for enum constant
An enumerated constant has a value outside the range of values
allowed for type int.

C2142: ellipsis requires three periods
The compiler has detected the token" .. " and assumes " ... " was
intended.

C2143: syntax error: missing 'token' before 'token'
The compiler has detected a syntax error which it thinks is a
missing token prior to the specified token. The compiler inserts
the first token and attempts to continue parsing. Note that even if
the compiler has guessed correctly and inserted the correct
token, the compile fails until the user makes the change to the
source file

C2144: syntax error: missing 'token' before type 'type'
Same as C2143, except that the second token is known to be a
type, such as int or float.

C2145: syntax error: missing 'token' before identifier
Same as C2143, except that the second token is an identifier
whose name is not currently known. This can happen in certain
situations involving look-ahead tokens.

C2146: syntax error: missing 'token' before identifier 'identifier'
Same as C2145, except that the identifier is listed.

C2147: array: unknown size
An operation has been done on an unsized array which requires
knowledge of the array size, e.g.:

struct foo *p;

p [2J;

A-25

where struct foo has not been defined at the time the p[2] is seen.
You may also get this message when attempting to do arithmetic
with a pointer to void. To correct, cast the pointer to an object of
known size.

C2148: array too large
You used an array larger than 232 bytes.

C2149: 'identifier': named bit-field cannot have zero width
Bit-fields of zero width must be unnamed.

C2150:'identifier': bit-field must have type int, signed int, or unsigned
int
You used compile option -Za to force ANSI conformance, bu
declared a bit-field with a type other than those permitted.

C2151: more than one cdecllfortran/pascal attribute specified
You gave more than one of the keywords cdecl, fortran, or pascal
in a declaration.

C2152:'operator' : pOinters to a function with different attributes
The function pointer operands of the specified 'operator' have dif­
fering near or far attributes or different language (cdecl or
fortran/pascal) attributes.

int far faa 0; /* far function */

int (near *fp) () = foo(); /* near func ptr - ERROR */

Or:

int pascal foo(int, int); 1* pascal function */

int (*fp) () = foo;/* C function pointer - ERROR */

C2153: hex constants must have at least 1 hex digit
You used the form \x, which is not valid syntax for a hexadecimal
constant.

C2159: more than one storage class specified
You declared a variable with more than one storage class
specifier, such as "extern static f;."

C2172: 'functionname': actual is not a pOinter: parameter n
This message is generated when the nth parameter (of the mth
parameter list) of functionname is a structure or a union and the
corresponding formal parameter is a pointer to void.

A-26

int function(void *)
struct bar

{
i nt i,j, k;
} *foo;

rnai n ()
{

function(*foo); /* illegal to pass a structure by value */
/* to a pointer to void */

C2173: 'functionname': actual is not a pointer: parameter n, param­
eter list m
This message is generated when the nth parameter (of the mth
parameter list) of functionname is a structure or a union and the
corresponding formal parameter is a pointer to void. (See
example in C2172.)

C2177: constant too big
Information is lost because a constant value is too large to be
represented in the type to which it is assigned.

A-27

Warning Error Messages

The messages listed in this section indicate potential problems but do
not hinder compiling and linking. The number in square brackets []
at the end of each message gives the minimum warning level that
must be set for the message to appear.

C4001: macro' identifier': requires parameters [1]
The given identifier was defined as a macro taking one or more
arguments, but the identifier is used in the program without argu­
ments.

C4002: too many actual parameters for macro 'identifier' [1]
The number of arguments specified with an identifier is greater
than the number of formal parameters given in the macro defi­
nition of the identifier.

C4003: not enough actual parameters for macro 'identifier' [1]
The number of arguments specified with an identifier is less than
the number of formal parameters given in the macro definition of
the identifier.

C4004: missing close parenthesis after 'defined' [1]
The closing parenthesis is missing from an #if defined phrase.

C4005: 'identifier' : redefinition [1]
The given identifier is redefined.

C4006: #undef expected an identifier [1]
The name of the identifier whose definition is to be removed must
be given with the #undef di rective.

C4009: string too big, trailing chars truncated [1]
A string exceeds the compiler limit on string size. To correct this
problem, you must break the string down into two or more
strings.

C4011: identifier truncated to 'identifier' [1]
Only the first 31 characters of an identifier are significant.

C4014: 'identifier' : bit-field type must be unsigned [1]
Bit fields must be declared as unsigned integer types. A conver­
sion has been supplied.

A-28

C4015: 'identifier' : bit-field type must be integral [1]
Bit fields must be declared as unsigned integral types. A conver­
sion has been supplied.

C4016: 'name': no function return type [2]
No function declaration or definition for name has been given.
The default return type of int is assumed.

C4017: cast of int expression to far pOinter [1]
A far pointer represents a full segmented address. On an
8086/8088 processor, casting an int value to a far pointer
produces an address with a meaningless segment value.

C4020: 'name' too many actual parameters [1]
The number of arguments specified in a call to function name is
greater than the number of parameters specified in the argument
type list or in the function definition.

C4021: 'name': too few actual parameters [1]
The number of arguments specified in a call to function name is
less than the number of parameters specified in the argument
type list or in the function definition.

C4022: 'name': pointer mismatch: parameter n [1]
The given parameter has a different pointer type than is specified
in the argument type list or the function definition for the named
function.

C4024: 'name': different types: parameter n [1]
The type of the given parameter in a function call does not agree
with the argument type list or the function definition for the
named function.

C4025: function declaration specified variable argument list [1]
The argument type list in a function declaration ends with a
comma, indicating that the function can take a variable number of
arguments, but no formal parameters for the function are
declared.

C4026: function was declared with formal argument list [1]
The function was declared to take arguments, but the function
definition does not declare formal parameters.

A-29

C4027: function was declared without formal argument list [1]
The argument type list consists of the word void. The function
was declared to take no argument, but formal parameters are
declared in the function definition, or arguments are given in a
call to the function.

C4028: parameter n declaration different [1]
The type of the given parameter does not agree with the corre­
sponding type in the argument type list or with the corresponding
formal parameter.

C4029: declared parameter list different from definition [1]
The argument type list given in a function declaration does not
agree with the types of the formal parameters given in the func­
tion definition.

C4030: first parameter list Is longer than the second [1]
A function is declared more than once, and the argument type
lists in the declarations differ.

C4031: second parameter list is longer than the first [1]
A function is declared more than once, and the argument type
lists in the declarations differ.

C4032: unnamed struct/union as parameter [1]
The structure or union type being passed as an argument is not
named, so the declaration of the formal parameter cannot use the
name and must declare the type.

C4033: function must return a value [2]
A function is expected to return a value unless it is declared as
void.

C4034: sizeof returns 0 [1]
The sizeof operator is applied to an operand that yields a size of
zero.

C4035: 'function' :no return value [2]
A function declared to return a value does not do so.

C4036: unexpected formal parameter list [1]
A formal parameter list is given in a function declaration and is
ignored.

C4037: 'identifier' : formal parameters ignored [1]
Formal parameters appeared in a function declaration, for
example:

extern int *f(a,b,c);

A-30

The formal parameters are ignored.

C4038: :'identifier' : formal parameter has bad storage class [1]
Formal parameters must have auto or register storage class.

C4039: 'identifier' : function used as an argument [1]
A formal parameter to a .function is declared to be a function,
which is illegal. The formal parameter is converted to a function
pointer.

C4040: near/far/huge on 'identifier' ignored [1]
The near, far, or huge keyword has no effect in the declaration of
the given 'identifier' and is ignored.

C4041: formal parameter on 'identifier' is redefined [1].
The given formal parameter is redefined in the function body,
making the corresponding actual argument unavailable in the
function.

C4042: 'identifier' : has bad storage class [1]
The specified storage class cannot be used in this context. For
example, function parameters cannot be given extern class. The
default storage class for that context is used in place of the illegal
class.

C4043: 'identifier' : void type changed to int [1]
You can declare only functions as having the void type.

C4044: huge on 'identifier' ignored, must be an array [1]
The huge keyword can only be used in array declarations.

C4045: 'identifier' : array bounds overflow [1]
Too many initializers are present for the given array. The excess
initializers are ignored.

C4046: '&' on function/array, ignored [1]
You cannot apply the address-of operator & to a function or array
identifier.

C4047: 'operator' : different levels of indirection [1]
An expression involving the specified operator has inconsistent
levels of indirection. For example:

char **p;
char *q;

p=q;

/* Two levels of indirection */
/* One level of indirection */

/* Different levels of indirection */

A-31

C4048: array's declared subscripts differ [1]
An array is declared twice with differing sizes. The larger size is
used.

C4049: 'operator' : indirection to different types [1]
The indirection operator * is used in an expression to get access
to values of different types.

C4051: data conversion [3]
Two data items in an expression had different types, causing the
type of one item to be converted.

C4052: different enum types [1]
Two different enum types are used in an expression.

C4053: at least one void operand [1]
An expression with type void is used as an operand.

C4056: overflow in constant arithmetic [1]
The result of an operation exceeds Ox7FFFFFFF.

C4057: overflow in constant multiplication [1]
The result of an operation exceeds Ox7FFFFFFF.

C4058: address of frame variable taken, OS ! = SS [1]
Program was compiled with the default data segment (DS) not
equal to the stack segment (ss), and you tried to point to a frame
variable with a near pointer

C4059: segment lost in conversion [1]
The conversion of a far pointer (a full segmented address) to a
near pointer (a segment offset) results in the loss of the segment
address.

C4060: conversion of long address to short address [1]
The conversion of a long address (a 32-bit pointer) to a short
address (a 16-bit pointer) results in the loss of the segment
address.

C4061: long/short mismatch in argument: conversion supplied [1]
An integral type is assigned to an integer of a different size,
causing a conversion to take place. For example, a long is given
where a short was declared.

C4062: nearlfar mismatch in argument: conversion supplied [1]
A pointer is assigned to a pointer with a different size, resulting
in the loss of a segment address from a far pointer or the addition
of a segment address to a near pointer.

A-32

C4063: 'identifier' : function too large for post-optimizer [0]
The named function was not optimized because not enough space
was available. To correct this problem, reduce the size of the
function by breaking it down into two or more smaller functions.

C4064: procedure too large, skipping [loop inversion or branch
sequence or cross jump] optimization and continuing [0]
Some optimizations for a function are skipped because insuffi­
cient space is available for optimization. To correct this problem,
reduce the size of the function by breaking it down into two or
more smaller functions.

C4065: recoverable heap overflow in post optimizer - some optimiza­
tions may be missed [0]
Some optimizations are skipped because not enough space is
available for optimization. To correct this problem, reduce the
size of the function by breaking it down into two or more smaller
functions.

C4066: local symbol table overflow - some local symbols may be
missing in listings [1]
The listing generator ran out of heap space for local variables, so
source listing might not contain symbol-table information for all
local variables.

C4067: unexpected characters following' identifier'
directive - newline expected [1]
There are extra characters following a preprocessor directive,
such as the following:

#endif

This is accepted in in the IBM C Compiler Version 1.00 but not in
IBM C/2. IBM C/2 requires comment delimiters, such as the
following:

#endif

C4068: unknown pragma [1]
The compiler does not recognize the pragma you used and
ignores this pragma.

C4069: conversion of near pOinter to long integer [1]
A near pointer is being converted to a long integer, which
involves extending the high order word with the current data
segment val ue.

A-33

C4071: 'identifier': no function prototype given [3]
You did not supply an argument-type list for the given identifier.

C4072: insufficient memory to process debugging information [1]
Your computer lacks enough memory to compile this program
using the -Zi switch.

C4073: scoping too deep, deepest scoping merged when debugging
[1]
The visibility control of identifiers in deeply-nested blocks
exceeds a built-in limit. Variables in all the deepest levels will be
visibile to Code~iew during debugging.

C4074: non standard extension used -'description' [3]
You used a valid construction which is not recognized by the pro­
posed ANSI standard for C. The description string may be one of
the following:

trailing',' used for variable argument list
cast on Ivalue
extended initializer form
benign typedef redefinition
redefined extern to static
macro formals in strings
missing ';' following last struct/union member
biHield types other than int

C4075: size of switch expression or case constant too large - con­
verted to int [1]
You used a switch expression that evaluated to more than 32767.

C4076: 'type' : may be used on integral types only [1]
You used the given keyword with a non-integral data type.

C4077: unknown check_stack option [1]
You gave an incorrect argument to pragma check_stack.

C4078: missing ')' [1]
When using the (arguments) form of pragmas, you omitted the
closing parenthesis.

C4084: expected a pragma keyword [1]
You used an unknown identifier in a pragma.

C4085: expected [onloff] [1]
The argument in the parenthesized form of the check_stack
pragma must be either "on" or "off."

A-34

C4087: 'name' : declared with 'void' parameter list [1]
A function declared with a void parameter list was called with
actual arguments.

C4088: 'name' : pOinter mismatch: parameter n, parameter list m [1]
You called a function with an actual parameter of a different
poi nter type from the formal parameter.

C4089: 'name' : different types: parameter n, parameter list m [1]
You called a function with an actual parameter of a different type
from the formal parameters.

C4093: unescaped newline in character constant in non-active code
The preprocessor found an unmatched single quote or double
quote on a single line within an #ifl#ifdefl#elifl#else block which
is being skipped because of a false entry condition.

A-35

Command Line Messages

The following messages indicate errors on the command line that you
use to call the compiler. If possible, the compiler continues opera­
tion, printing a warning message. In some cases, command line
errors are fatal and the compiler stops processing.

Fatal Error Messages

D1000:UNKNOWN COMMAND LINE FATAL ERROR
An unforeseen error condition has been detected by the compiler.
Please report this error to your authorized IBM dealer.

D1 001: could not execute 'pass'
The specified compiler file could not be found, or there is not
enough space in storage.

D1002: too many open files, cannot redirect 'filename'
No more file handles are available to redirect the output of the -p
option to a file. Try editing the CONFIG.SYS file and increasing
the value num on the line files=num (if num is less than 20.)

Error Messages

D2000:UNKNOWN COMMAND LINE ERROR
An unforeseen error condition has been detected by the compiler.
Please report this error to your authorized IBM dealer.

D2001: too many symbols predefined with -D
The limit on command line definitions is normally 16; the IU
option can increase the limit to 20.

D2002: a previously-defined model specification has been overridden.
Two different storage models are specified; the model specified
last is used.

D2003: missing source file name
You must give the name of the source file to be compiled.

D2004: too many commas
Too many commas appear on the command line.

D2005: comma needed before :'fi/ename'
The fields in the command line must be set off by commas.

A-36

02006: a file name (not a path name) is required
The name of a directory is given where the name of a file is
required.

02008: too many option flags in 'string'
Too many letters are given with a specific option (for example,
with the 10 option).

02009: unknown option 'c' in 'option'
One of the letters in the given option is not recognized.

02010: unknown floating-point option
The specified floating-point option (an IFP option) is not one of
the five valid options.

02011: only one floating-point model allowed
You can only give one of the five floating-point (lFP) options on
the command line.

02012: too many linker flags on command line
For compile-and-link (CL) only, you attempted to pass more than
128 separate options and object files to the linker.

02013: incomplete model specification
The Astring option requires all three character (data-pointer size,
code-pointer size, and segment setup) in string.

02014: -NO not allowed with -Ad
You cannot rename the default data segment unless you give the
-Au option (if the stack segment is not equal to the data segment,
load the data segment).

02015: assembly files are not handled
You specified a filename with the extension .ASM. The compiler
cannot invoke MASM automatically, so it cannot assemble these
files.

02016: -Gw and -NO name are incompatible
You cannot rename the default data segment to name when you
give the -G2 option because -Gw also requires -Aw.

02017: -Gw and -Au flags are incompatible
You cannot use the -Au option (if the stack segment does not
equal the data segment, load the data segment) with -Gw
because -Gw also requires -Aw.

A-37

02018: cannot open linker cmd file
The compiler cannot open the response file used to pass object­
file names and options to the linker. One possible cause of this
error is the existence of another file that is a read-only file with
the same name as the response file.

02019: cannot overwrite the source file, 'filename'
The source file specified an output file name. The compiler does
not allow the source file to be overwritten by one of the compiler
output files.

02020: -Gc option requires extended keywords to be enabled (-Ze)
The -Gc option requi res the extended keyword cdecl to be
enabled if the library functions are to be accessible.

02021: invalid numerical argument 'string'
You specified a non-numerical string following an option that
requires a numerical argument.

02022: cannot open help file 'filename'
The driver expects the help file to be in the same directory it is in,
or in the path.

02027: cannot link file 'filename'
You specified a filename with the extension .OBJ. This is not a
valid extension as a source file name for the CC command.

Warning Messages

04000:UNKNOWN COMMAND LINE WARNING
An unforeseen error condition has been detected by the compiler.
Please report this error to your authorized IBM dealer.

04001: listing has precedence over assembly output
Two different listing options were chosen; the assembly listing is
not created.

04002: ignoring unknown flag' string'
One of the options given on the command line is not recognized
and is ignored.

04003: 80186/286 selected over 8086 for code generation
Both IG1 and IG2 are selected.

04004: optimizing for time over space
This message confirms that the lOt option is used for optimizing.

A-38

04005: could not execute' name',
please insert diskette and press any key.
One of the compiler passes cannot be found on the current disk.
Insert the disk containing the named file and press any key.
When the current subdirectory is on a fixed disk, the job must be
halted. Move the necessary file to the subdirectory and recom­
pile.

04006: only one of ·P/-E/-EP allowed, -P selected
Only one preprocessor option can be specified at one time.

04007: -C ignored (must also specify -P or -E or -EP)
The -C option must be used with one of the preprocessor output
flags, -E, -EP, or -Po

04009: threshold only for far/huge data, ignored
The -Gt option cannot be used in memory models that have near
data pOinters. The -Gt option can be used only with compact-,
large-, and huge-memory models.

04010: -Gp not implemented, ignored
The DOS version of the compiler does not allow profiling.

04011: preprocessing overrides source listing
The compiler produces only a preprocessor listing because it
cannot produce both a source listing and a preprocessor listing at
the same time.

D4012: function declarations override source listing
The compiler cannot produce both a source-listing file and the
function prototype declarations at the same time.

04013: combined listing has precedence over object listing
When -Fc is specified along with either -FI or -Fa, the combined
listing (-Fc) is created.

D4014: invalid value n for 'identifier'. Default m is used
You used an incorrect numerical value for the given switch.

A-39

Compiler Limits

To operate IBM C/2, you must have sufficient disk space available for
the compiler to create temporary files used in processing. The space
required is approximately two times the size of the source file.

The following table summarizes the limits imposed by C/2. If your
program exceeds one of these limits, an error message informs you
of the problem.

Program Item Description Limit

String Literals Maximum length of a string, 512 bytes
including the ending null character
(\0).

Constants Maximum size of a constant. The
type determines the maximum size
of a constant. See the IBM C/2 Fun-
damentals book for a discussion of
constants.

Identifiers Maximum length of an identifier. 31 bytes
(additional
characters
are dis-
carded)

Declarations Maximum level of nesting for 10 levels
structure/union definitions.

Preprocessor Maximum size of a macro defi- 512 bytes
Directives nition for a macro with no argu-

ments.

Maximum length of a macro argu- 512 bytes
ment.

Maximum level of nesting for #if, 32 levels
#ifdef, and #ifndef directives.

Maximum level of nesting for glevels
include files.

Input Files Maximum number of files proc- 128 files
essed by CL driver (includes .C
and .OBJ files)

A-40

The compiler does not set explicit limits on the number and com­
plexity of declarations, definitions, and statements in an individual
function or in a program. If the compiler finds a function or program
that is too large or too complex to be processed, it produces an error
message to that effect.

A-41

Linker Error Messages

This section lists error messages produced by the IBM Linker.

Fatal errors cause the linker to stop running. Fatal error messages
have the following format:

location: fatal error L 1 xxx: message text

Non-fatal errors indicate problems in the executable file. LINK

produces the executable file (and sets the error bit in the header if for
protected mode). Non-fatal error messages have the following
format:

location: error L2 xxx: message text

Warnings indicate possible problems in the executable file. LINK

produces the executable file (it does not set the error bit in the
header if for protected mode). Warnings have the following format:

location: error L4xxx: message text

In these messages, location is the input file associated with the error,
or LINK if there is not input file. If the input file is a module definitions
file, the line number will be included, as shown below:

foo.def(3): fatal error L 1030:
missing internal name

If the input file is an .OBJ or .L1B file and has a module name, the
module name is enclosed in parentheses, as shown in the following
examples:

SLlBC.LlBLfile}
MAIN.OBJ(main.c)
TEXT.OBJ

A-42

The following error messages may appear when you link object files
with LINK.

L1001 option: option name ambiguous
A unique option name does not appear after the option indicator
(I). For example, the command

LINK IN main;

produces this error, since LINK cannot tell which of the three
options beginning with the letter N is intended.

L 1002 option: unrecognized option name
An unrecognized character followed the option indicator (I), as in
the following example:

LINK IABCDEF main;

L 1003 option: MAP symbol limit too high
The specified symbol limit value following the MAP option is
greater than 32767, or there is not enough memory to increase
the limit to the requested value.

L 1004 option: invalid numeric value
An incorrect value appeared for one of the linker options. For
example, a character string is entered for an option that requires
a numeric value.

L1005 option: packing limit exceeds 65536 bytes
The number following the /PACKCODE option is greater than 65536.

L 1006 option: stack size exceeds 65534 bytes
The size you specified for the stack in the /STACK option of the LINK

command is more than 65534 bytes.

L 1007 option: interrupt number exceeds 255
You gave a number greater than 255 as a value for the
/OVERLAYINTERRUPT option.

L 1008 option: segment limit set too high
The specified limit on the ISEGMENTS option is greater than 1024
usi ng the /SEGMENTS

L 1009 option: CPARMAXALLOC : illegal value
The number you specified in the /CPARMAXALLOC option is not in
the range 1 to 65535.

A-43

L 1020 no object modules specified
You did not specify any object-file names to the linker.

L 1021 cannot nest response files
A response file occurs within a response file.

L 1022 response line too long
A line in a response file is longer than 127 characters.

L1023 terminated by user
You entered Ctrl + C.

L 1024 nested right parentheses
You typed the contents of an overlay incorrectly on the command
line.

L 1025 nested left parentheses
You typed the contents of an overlay incorrectly on the command
line.

L 1026 unmatched right parenthesis
A right parenthesis is missing from the contents specification of
an overlay on the command line.

L 1027 unmatched left parenthesis
A left parenthesis is missing from the contents specification of an
overlay on the command line.

L 1030 missing internal name
In the module definitions file, when you specify an import by entry
number, you must give an internal name, so the linker can iden­
tify references to the import.

L 1031 module description redefined
In the module definitions file, a module description specified with
the DESCRIPTION keyword is given more than once.

L 1032 module name redefined
In the module definitions file, the module name is defined more
than once with the NAME or LIBRARY keyword.

L 1040 too many exported entries
An attempt is made to export more than 3072 names.

L 1041 resident-name table overflow
The total length of all resident names, plus three bytes per name,
is greater than 65534.

A-44

L 1042 nonresident-name table overflow
The total length of all nonresident names, plus three bytes per
name, is greater than 65534.

L 1043 relocation table overflow
There are more than 65536 load-time relocations for a single
segment.

L 1044 Imported-name table overflow
The total length of all the imported names, plus one byte per
name, is greater than 65534 bytes.

L 1045 too many TYPDEF records
An object module contains more than 255 TYPDEF records.
These records describe communal variables. This error can only
appear with programs produced by compilers that support com­
munal variables.

L 1046 too many external symbols in one module
An object module specifies more than the limit of 1023 external
symbols. Break the module into smaller parts.

L 1047 too many group, segment, and class names in one module
The program contains too many group, segment, and class
names. Reduce the number of groups, segments, or classes, and
recreate the object files.

L 1048 too many segments in one module
An object module has more than 255 segments. Split the module
or combine segments.

L1049 too many segments
The program has more than the maximum number of segments.
The SEGMENTS option specifies the maximum allowed number; the
default is 128. Relink using the ISEGMENTS option with an appro­
priate number of segments.

L 1050 too many groups in one module
The linker found more than 21 group definitions (GRPDEF) in a
single module.
Reduce the number of group definitions or split the module.

L 1051 too many groups
The program defines more than 20 groups, not counting DGROUP.

Reduce the number of groups.

A-45

L 1052 too many libraries
An attempt is made to link with more than 32 libraries. Combine
libraries, or use modules that require fewer libraries.

L 1053 symbol table overflow
The program has more than 256K bytes of symbolic information,
such as public, external, segment, group, class, and file names).
Combine modules or segments and recreate the object files.

Eliminate a many public symbols as possible.

L 1054 requested seg~ent limit too high
The linker does not have enough memory to allocate tables
describing the number of segments requested (the default is 128
or the value specified with the ISEGMENTS option).
Try linking again using the ISEGMENTS option to select a smaller
number of segments (for example, use 64 if the default was used
previously), or free some memory by eliminating resident pro­
grams or shells.

L 1056 too many overlays
The program defines more than 63 overlays.

L 1057 data record too large
A LEDATA record (in an object module) contained more than 1024
bytes of data. This is a translator (compiler or assembler) error.
Note which translator (compiler or assembler) produced the
incorrect object module and the circumstances, and contact your
authorized IBM dealer.

L 1070 segment size exceeds 64K
A single segment contains more than 64K bytes of code or data.
Try compiling, or assembling, and linking using the large model.

L 1071 segment _TEXT larger than 65520 bytes
This error is likely to occur only in small-model C programs, but it
can occur when any program with a segment named _TEXT is
linked using the IDOSSEG option of the LINK command. Small­
model C programs must reserve code addresses 0 and 1; this is
increased to 16 for alignment purposes.

L 1072 common area longer than 65536 bytes
The program has more than 64K bytes of communal variables.
This error cannot appear with object files produced by the IBM

Macro Assembler/2. It occurs only with programs produced by
IBM C/2 or other compilers that support communal variables.

A-46

L 1073 file-segment limit exceeded
There are more than 255 physical or file segments.

L 1074 name: group larger than 64K bytes
A group contained segments which total more than 65536 bytes.

L 1075 entry table larger than 65535 bytes
Because of an excessive number of entry names, you have
exceeded a linker table size limit. Reduce the number of names
in the modules you are linking.

L 1080 cannot open list file
The disk or the root directory is full. Delete or move files to make
space.

L 1081 out of space for run file
The disk on which .EXE file is being written is full.
Free more space on the disk and restart the linker.

L 1082 stub .EXE file not found
The stub file specified in the module definitions file is not found.

L 1083 cannot open run file
The disk or the root directory is full. Delete or move files to make
space.

L 1084 cannot create temporary file
The disk or root directory is full. Free more space in the directory
and restart the linker.

L 1085 cannot open temporary file
The disk or the root directory is full. Delete or move files to make
space.

L 1086 scratch file missing
Internal error. You should note the conditions when the error
occurs and contact your authorized IBM Computer dealer.

L 1087 unexpected end-of-file on scratch file
The disk with the temporary linker-output file is removed.

L 1088 out of space for list file
The disk on which the listing file is being written is full. Free
more space on the disk and restart the linker.

L 1089 filename: cannot open response file
The linker could not find the specified response file. This usually
indicates a typing error.

A-47

L 1090 cannot reopen list file
The original disk is not replaced at the prompt. Restart the linker.

L 1091 unexpected end-of-file on library
The disk containing the library probably was removed. Replace
the disk containing the library and run the linker again.

L 1092 cannot open module definitions file
The specified module definitions file cannot be opened.

L 1100 stub .EXE file invalid
The stub file specified in the definitions file is not a valid .EXE file.

L 1101 invalid object module
One of the object modules is non-valid.
If the error persists after recompiling, contact your authorized

IBM dealer.

L 1102 unexpected end-of-file
A non-valid format for a library was found.

L 1103 attempt to access data outside segment bounds
A data record in an object module specified data extending
beyond the end of a segment. This is a translator error. Note
which translator (compiler or assembler) produced the incorrect
object module and the circumstances, and contact your author­
ized IBM dealer.

L 1104 filename: not valid library
The specified file is not a valid library file. This error causes the
linker to stop running.

L 1110 DOSALLOCHUGE failed
Internal error. You should note the conditions when the error
occurs and contact your authorized IBM dealer.

L 1111 DOSREALLOCHUGE failed
Internal error. You should note the conditions when the error
occurs and contact your authorized IBM dealer.

L1112 DOSGETHUGESHIFT failed
Internal error. You should note the conditions when the error
occurs and contact your authorized IBM dealer.

L 1113 unresolved COMDEF; internal error
You should note the conditions when the error occurs and contact
your authorized IBM dealer.

A-48

L1114 file not suitable for IEXEPACK; relink without
For the linked program, the size of the packed load image plus
the packing overhead is larger than that of the unpacked load
image. Relink without the EXEPACK option.

L2000 imported entry point
A MODEND, or starting address record, referred to an imported
name. Imported program-starting addresses are not supported.

L2001 fixup(s) without data
A FIXUP record occurred without a data record immediately pre­
ceding it. This is probably a compiler error. See the IBM Disk
Operating System Technical Reference book for more information
on FIXUP.

L2002 fix up overflow near number in frame seg segname target
seg segname target offset number
The following conditions can cause this error:

• A group is larger than 64K bytes
• The program contains an intersegment short jump or interseg­

ment short call
• The name of a data item in the program conflicts with that of a

subroutine in a library included in the link
• An EXTRN declaration in an assembler-language source file

appeared inside the body of a segment.

For example:

code SEGMENT pub 1 i c ' CODE'
EXTRN main:far

start PROC far
call main
ret

start ENDP
code ENDS

The following construction is preferred:

EXTRN main:far
code SEGMENT public 'CODE'
start PROC far

call mai n
ret

start ENDP
code ENDS

Revise the source file and recreate the object file.

A-49

L2003 intersegment self-relative fixup
An intersegment self-relative fixup is not allowed.

L2004 LOBYTE-type fixup overflow
A LOBYTE fixup produced an address overflow.

L2005 fixup type unsupported
A fixup type occurred that is not supported by the linker. This is
probably a compiler error. You should note the conditions when
the error occurs and contact your authorized IBM dealer.

L2010 too many fixups in LlDATA record
There are more fixups applying to a LlDATA record than will fit in
the linker's 1024-byte buffer.
The buffer is divided between the data in the LlDATA record and
run-time relocation items, which are 8 bytes apiece, so the
maximum varies form 0 to 128. This is probably a compiler error.

L2011 name: NEAR/HUGE conflict
Conflicting NEAR and HUGE attributes are given for a communal
variable.
This error can occur only with programs produced by compilers

that support communal variables.

L2012 name: array-element size mismatch
A far communal array is declared with two or more different
array-element sizes (for example, an array declared once as an
array of characters and once as an array of real numbers). This
error cannot occur with object files produced by the IBM Macro
Assembler/2. It occurs only with IBM C/2 and any other compiler
that supports far communal arrays.

L2013 LlDATA record too large
A LlDATA record in an object module contains more than 512 bytes
of data. Most likely, an assembly module contains a very
complex structure definition or a series of deeply-nested DUP

operators. For example, the following structure definition causes
this error:

alpha DB 10DUP(11 DUP(12 DUP(13 DUP(...))))

Simplify the structure definition and reassemble. (LiDATA is a DOS

term).

L2020 no automatic data segment
No group named DGROUP is declared.

A-50

L2021 library instance data not supported in real mode
The library module is directed to have instance data. This works
in protected mode only.

L2022 name alias internalname: export undefined
A name is directed to be exported but is not defined anywhere.

L2023 name alias internalname: export imported
An imported name is directed to be exported.

L2024 name: symbol already defined
One of the special overlay symbols required for overlay support
is defined by an object.

L2025 name: symbol defined more than once
Remove the extra symbol definition from the object file.

L2026 multiple definitions for entry ordinal number
More than one entry point name is assigned to the same ordinal.

L2027 name: ordinal too large for export
You tried to export more than 3072 names.

L2028 automatic data segment plus heap exceeds 64K
The size of DGROUP near data plus requested heap size is greater
than 64K.

L2029 unresolved externals
One or more symbols are declared to be external in one or more
modules, but they are not publicly defined in any of the modules
or libraries.
A list of the unresolved external references appears after the
message, as shown in the following example:

_exit in file(s)
rnai n. obj (rnai n. c)
fopen in files(s)

-fileio.obj(fileio.c) rnain.obj(rnain.c)

The name that comes before in file(s) is the unresolved external
symbol. On the next line is a list of object modules which have
made references to this symbol. This message and the list are
also written to the map file, if one exists.

L2030 starting address not code (use class 'CODE')

You specified a starting address to the linker which is a segment
that is not a CODE segment. Reclassify the segment to CODE, or
correct the starting point.

A-51

L4001 frame-relative fixup, frame ignored
A fixup occurred with a frame segment different from the target
segment where either the frame or the target segment is not
absolute. Such a fixup is meaningless in protected mode, so the
target segment is assumed for the frame segment.

L4002 frame-relative absolute fixup
A fixup occurred with a frame segment different from the target
segment where both frame and target segments were absolute.
This fixup is processed using base-offset arithmetic, but the
warning is issued because the fixup may not be valid in OS/2

mode.

L4010 invalid alignment speCification
The number following the IALIGNMENT option is not a power of 2,
or is not in numerical form.

L4011 PACKCODE value exceeding 65500 unreliable
Code segments of length 65501-65536 may be unreliable on the
80286 processor.

L4012 load-high disables EXEPACK
The options IHIGH and IEXEPACK are mutually exclusive.

L4013 invalid option for new-format executable file ignored
If an OS/2 mode program is being produced, then the options
ICPARMAXALLOC, IDSALLOCATE, IEXEPACK,
INOGROUPASSOCIATION, and IOVERLAYINTERRUPT are
meaingless, and the linker ignores them.

L4014 invalid option for old-format executable file ignored
If a DOS format program is produced, the options IALIGNMENT,
INOFARCALLTRANSLATION, and IPACKCODE are meaningless,
and the linker ignores them.

L4020 name: code-segment size exceeds 65500
Code segments of length 65501-65536 may be unreliable on the
80286 processor.

A-52

L4021 no stack segment
The program does not contain a stack segment defined with
STACK combine type. This message should not appear for
modules compiled with IBM C/2, but it could appear for an
assembler-language module. Normally, every program should
have a stack segment with the combine type specified as STACK.

You can ignore this message if you have a specific reason for not
defining a stack or for defining one without the STACK combine
type.

L4022 name1, name2 : groups overlap
Two groups are defined such that one starts in the middle of
another. This may occur if you defined segments in a module
definitions file or assembly file and did not correctly order the
segments by class.

L4023 exportname : export internal-name conflict
An exported name, or its associated internal name, conflict with
an already-defined public symbol.

L4024 name: multiple definitions for export name
The name name is exported more than once with different
internal names. All internal names except the first are ignored.

L4025 name: import internal-name conflict
An imported name, or its associated internal name, is also
defined as an exported name. The import name is ignored.
The conflict may come from a definition in either the module defi­
nition file or an object file.

L4026 modulename : self-imported
The module definitions file directed that a name be imported from
the module being produced.

L4027 name: multiple definitions for import internal-name
An imported name, or its associated internal name, is imported
more than once. The imported name is ignored after the first
mention.

L4028 name: segment already defined
A segment is defined more than once with the same name in the
module definitions file. Segments must have unique names for
the linker. All definitions with the same name after the first are
ignored.

A-53

L4029 name: DGROUP segment converted to type data
A segment which is a member of DGROUP is defined as type CODE

in a module definition file or object file.
This probably happened because a CLASS keyword in a SEGMENTS

statement is not given.

L4030 name: segment attributes changed to conform with auto-
matic data segment
The segment named name is defined in DGROUP, but the shared
attribute is in conflict with the instance attribute. For example,
the shared attrbute is NONSHARED and the instance is SINGLE, or the
shared attribute is SHARED and the instance attribute is MULTIPLE.

The bad segment is forced to have the right shared attribute and
the link continues. The image is not marked as having errors.

L4031 name: segment declared in more than one group
A segment is declared to be a member of two different groups.
Correct the source file and recreate the object files.

L4032 name: code-group size exceeds 65500 bytes
Code segments of length 65501-65536 may be unreliable on the
80286 p rocesso r.

L4034 more than 239 overlay segments; extra put in root
You specified an overlay structure containing more than 239 seg­
ments. The extra segments have been assigned to the root
overlay.

L4036 no automatic data segment

L4040 NON-CONFORMING: obsolete
In the module definitions file, NON-CONFORMING is a valid keyword
for earlier versions of LINK and is now obsolete.

L4041 HUGE segments not yet supported
This feature is not yet implemented in the linker.

L4042 cannot open old version
An old version of the EXE file, specified with the OLD keyword in
the module definitions file, could not be opened.

L4043 old version not segmented-executable format
The old version of the .EXE file, specified with the OLD keyword in
the module definitions file, does not conform to segmented­
executable format.

A-54

L4045: <name>: is name of output file
The user created a dynamic link library file without specifying an
extension. In such cases, the linker supplies an extension of
".DLL." This is to warn the user in case he expected a ".EXE" file to
be generated.

L4046 : module name different from output filename
The user specified a module name via the NAME or LIBRARY state­
ment in the definitions file which is different from the output file
(.EXE or .DLL) name. This will likely cause problems in BINDING the
file or in using it in OS/2 mode so the user should rename the file
to match the module name before it is executed.

L4050 too many public symbols
The IMAP option is used to request a sorted listing of public
symbols in the map file, but there were too many symbols to sort
(the default is 2048 symbols). The linker produces an unsorted
listing of the public symbols. Relink using IMAP:number.

L4051 filename: cannot find library
The linker could not find the specified file. Enter a new filename,
a new path specification, or both.

L4053 VM.TMP: illegal filename; ignored
VM.TMP appears as an object-file name. Rename the file and
rerun the linker.

L4054 filename: cannot find file
The linker could not find the specified file. Enter a new filename,
a new path specification, or both.

A-55

Linker Limits

The table below summarizes the limits imposed by the linker. If you
find one of these limits, you may adjust your program so that the
linker can accommodate it.

Item Limit

Symbol table 256K

Load-time relocations Default is 32K. If
(for DOS programs) IEXEPACK is used,

the maximum is 512K.

Public symbols The range 7700-8700
can be used as a
guideline for the
maximum number of
public symbols
allowed; the actual
maximum depends on
the program.

External sym bois per 1023
module

Groups Maximum number is
21, but the linker
always defined
DGROUP so the effec-
tive maximum is 20.

Overlays 63

A-56

Item Limit

Segments 128 by default;
however, this
maximum can be set
as high as 1024 by
usi ng the ISEGMENTS
option of the LINK

command.

Libraries 32

Group definitions per 21
module

Segments per module 255

Stack 64K

A-57

Library Manager Error Messages

Error messages produced by the IBM Library Manager, LIB, have one
of the following formats:

• filenamelLlB: fatal erro r U1xxx : messagetext
• filenamelLlB: warning U4xxx : messagetext

The message begins with the input filename (filename), if one exists,
or with the name of the utility. LIB may display the following error
messages:

Ul150 page size too small
The page size of an input library is too sma", which indicates a
non-valid input .L1B file.

U1151 syntax error : illegal file specification
You gave a command operator, such as a minus sign (-), without
a module name following it.

Ul152 syntax error: option name missing
You gave a forward slash (/) without a value following it.

Ul153 syntax error: option value missing
You gave the IPAGESIZE option without a value following it.

U1154 option unknown
An unknown option is given. Currently, LIB recognizes the
IPAGESIZE option only.

U1155 syntax error: illegal input
The given command did not follow correct LIB syntax.

U1156 syntax error
The given command did not follow correct LIB syntax.

Ul157 comma or new line missing
A comma or carriage return is expected in the command line, but
did not appear. This may indicate an
inappropriately placed comma, as in the following line:

LIB math.lib,-mod1 + mod2;

The line should have been entered as follows:

LIB math.lib -mod1 + mod2;

A-58

U1158 terminator missing
Either the response to the Output library: prompt or the last line
of the response file used to start LIB did not end with a carriage
return.

U1161 cannot rename old library
LIB could not rename the old library to have a .BAK extension
because the .BAK version already
existed with read-only protection. Change the protection of the

old .BAK version.

U1162 cannot reopen library
The old library could not be reopened after it was renamed to
have a .BAK extension.

U1163 error writing to cross-reference file
The disk or root directory is full. Delete or move files to make
space.

U1170 too many symbols
More than 4609 symbols appeared in the library file.

U1171 insufficient memory
LIB did not have enough memory to run. Remove any shells or
resident programs and try again, or add more memory.

U1172 no more virtual memory
You should note the conditions when the error occurs and contact
your authorized IBM dealer.

U1173 internal failure
You should note the conditions when the error occurs and contact
your authorized IBM dealer.

U1174 mark: not allocated
You should note the conditions when the error occurs and contact
your authorized IBM dealer.

U1175 free : not allocated
You should note the conditions when the error occurs and contact
your authorized IBM dealer.

U1180 write to extract file failed
The disk or root directory is full. Delete or move files to make
space.

A-59

U1181 write to library file failed
The disk or root directory is full. Delete or move files to make
space.

U1182 filename: cannot create extract file
The disk or root directory is full, or the specified extract file
already exists with read-only protection.
Make space on the disk or change the protection of the extract

file.

U1183 cannot open response file
The response file was not found.

U1184 unexpected end-of-file on command input
An end-of-file character is received prematurely in response to a
prompt.

U1185 cannot create new library
The disk or root directory is full, to the library file already exists
with read-only protection.
Make space on the disk or change the protection of the library

file.

U1186 error writing to new library
The disk or root directory is full. Delete or move files to make
space.

U1187 cannot open VM.TMP
The disk or root directory is full. Delete or move files to make
space.

U1188 cannot write to VM
You should note the conditions when the error occurs and contact
your authorized IBM dealer.

U1189 cannot read from VM
You should note the conditions when the error occurs and contact
your authorized IBM dealer.

U1190 DOSALLOCHUGE failed
You should note the conditions when the error occurs and contact
your authorized IBM dealer.

U1191 DOSREALLOCHUGE failed
You should note the conditions when the error occurs and contact
your authorized IBM dealer.

A-60

U1192 DOSGETHUGESHIFT failed
You should note the conditions when the error occurs and contact
your authorized IBM dealer.

U1200 name: invalid library header
The input library file has a non-valid format. It is either not a
library file, or it has been corrupted.

U1203 name: invalid object module near location
The module specified by name is not a valid object module.

U4150 modulename : module redefinition ignored
A module is specified to be added to a library, but a module with
the same name is already in the library. Or, a module with the
same name is found more than once in the library.

U4151 symbol(modulename) : symbol redefinition ignored
The specified symbol is defined in more than one module.

U4152 filename: cannot create listing
The directory or disk is full, or the cross-reference listing file
already exists with read-only protection. Make space on the disk
or change the protection of the cross-reference listing file.

U4153 number: page size too small; Ignored
The value specified in the IPAGESIZE option is less than 16.

U4155 modulename : module not in library; ignored
The specified module is not found in the input library.

U4156 libraryname : output-library specification ignored
An output library is specified in addition to a new library name.
For example, specifying

LIB new.lib + one.obj,new.lst,new.lib

where new.lib does not already exist causes this error.

U4157 filename: cannot access file
LIB is unable to-open the specified file.

U4158. libraryname : invalid library header; file ignored
The input library has an incorrect format.

U4159 filename: invalid format hexnumber; file ignored
The signature byte or word, hexnumber, of an input file is not one
of the recognized types.

A-61

MAKE Error Messages

Error messages displayed by the IBM Program Maintenance Utility,
MAKE, have one of the following formats:

• filenamelMAKE: fatal error U1xxx: messagetext
• filenamelMAKE: warning U4xxx : messagetext

The message begins with the input filename (filename), if one exists,
or with the name of th~ utility. MAKE produces the following error
messages:

U1001 macro definition larger than number
A single macro is defined to have a value string longer than the
number stated.
Try rewriting the MAKE description file to split the macro into two
or more smaller ones.

U1002 infinitely recursive macro
A circular chain of macros is defined, as in the following
example:

A = $(8)
n , "./,..\
D - .}\ l-J

C = $(A)

U1003 out of memory
MAKE ran out of memory for processing the MAKE description file.
Try to reduce the size of the MAKE description file by reorganizing
or splitting it.

U1004 syntax error: macro name missing
The MAKE description file contained a macro definition with no left
side (that is, a line beginning with =)

U1005 syntax error: colon miSSing
A line that should be an outfile/infile line lacked a colon indi­
cating the separation between outfile and infile. MAKE expects
any line following a blank line to be an outfilelinfile line.

U1006 targetname: macro expansion larger than number
A single macro expansion, plus the length of any string it may be
concatenated to, is longer than the number stated. Try rewriting
the MAKE description file to split the macro into two or more
smaller ones.

A-62

U1007 multiple sources
An inference rule is defined more than once.

U1008 name: cannot find file or directory
The file or directory specified by name could not be found.

U1009 command: argument list too long
A command line in the MAKE description file is longer than 128
bytes, which is the maximum that DOS allows. Rewrite the com­
mands to use shorter argument lists.

U1010 filename: permission denied
The file specified by filename is a read-only file.

U1011 filename: not enough memory
Not enough memory is available for MAKE to run a program.

U1012 filename: unknown error
You should note the conditions when the error occurs and contact
your authorized IBM dealer.

U1013 command: error errcode (ignored)
One of the programs or commands called in the MAKE description
file returned with a nonzero error code.
If MAKE is run with the /I option, MAKE displays (ignored) and con­

tinues. Otherwise, MAKE stops running.

U4000 filename: target does not exist
This usually does not indicate an error.
It warns you that the target file does not exist. MAKE runs any

commands given in the block description since in many cases the
outfile file will be created by a later command in the MAKE

U4001 dependent filename does not exist; target filename not built
MAKE could not continue because a required infile file did not
exist. Make sure that all named files are present and that they
are spelled correctly in the MAKE description file.

U4014 usage: make [In] [I d) [Ii] [Is] [name = value ...] file
MAKE has not been called correctly. Try entering the command
line again with the syntax shown in the message.

A-63

EXEMOD Error Messages

Error messages from the IBM EXE File Header Utility, EXEMOD, have
one of the following formats:

• filenamelExEMOD: fatal error U1xxx : messagetext
• filenamelExEMoD: warning U4xxx : messagetext

The message begins with the input filename (filename), if one exists,
or with the name of the utility. EXEMOD produces the following error
messages:

U1050 usage: exemod file [-/h] [-/stack n] [-1m ax n] [-/min n]
You did not specify the EXEMOD command line properly. Try again
using the syntax shown. Note that the option indicator can be
either a slash (/) or a dash (-). The single brackets [] in the error
message show your optional choice.

U1051 invalid .EXE file: bad header
The specified input file is not an executable file or has an incor­
rect file header.

U1052 invalid .EXE file: actual length less than reported
The second and third fields in the input-file header indicate a file
size greater than the actual size.

U1053 cannot change load-high program
When the minimum allocation value and the maximum allocation
value are both zero, you cannot change the file.

U1054 file not .EXE
EXEMOD adds the .EXE extension to any filename without an exten­
sion. In this case, no file with the given name and an .EXE exten­
sion was found.

U1055 filename: cannot find file
The file specified by filename was not found.

U1056 filename: permission denied
The file specified by filename is a read-only file.

U4050 packed file
The given file is a packed file. This is a warning only.

A-64

U4051 minimum allocation less than stack; correcting minimum
If the minimum allocation value is not enough to accommodate
the stack (either the original stack request or the changed
request),
the minimum allocation value is adjusted. This is a warning
message only; the change is still performed.

U4052 minimum allocation greater than maximum; correcting
maximum
If the minimum allocation value is greater than the maximum
allocation value, the maximum allocation value is adjusted.
This is a warning message only; the change is still performed.

A-65

Errno Value Error Messages

This section lists and describes the values to which the errno variable
can be set when an error occurs in a call to a library routine. Note
that only some routines set the errno variable. See Chapter 5,
"Library Routines" in this book for the routines that set errno.

An error message is associated with each errno value. This
message, along with a message that you supply, can be printed by
using the perror function.

The value of errno reflects the error value for the last call that set
errno. The errno value is not automatically cleared by later suc­
cessful calls. Thus, you should test for errors and print error mes­
sages immediately after a call to obtain accurate results.

The errno.h include file contains the definitions of the errno values.
However, not all of the definitions given in errno.h are used under
DOS. This section lists only the errno values used under DOS. For the
complete listing of values, see the errno.h include file.

Also listed on this section are the errors produced by math routines
when an error occurs. These errors correspond to the exception
types defined in the math.h include file and returned by the matherr
function when a math error occurs.

A-66

Errno Values

The following list gives the errno values used under DOS, the system
error message corresponding to each value, and a brief description
of the circumstances that caused the error.

Value

E2BIG

EACCESS

EBADF

EDEADLOCK

Message and Description

Arg list too long.

The argument list exceeds 128 bytes, or the space
required for the environment information exceeds
32K bytes.

Permission denied.

The permission setting of the file does not allow the
specified access. This error can occur in a variety of
circumstances. It signifies that an attempt was
made to get access to a file (or, in some cases, a
directory) in a way that is incompatible with the attri­
butes of the file.

For example, this error can occur when an attempt is
made to read from a file that is not open, to open an
existing read-only file for writing, or to open a direc­
tory instead of a file. Under DOS 3.00 and later and
OS/2, EACCESS can also indicate a locking or
sharing violation.

This error can also occur in an attempt to rename a
file or directory or to remove an existing directory.

Bad file number.

The specified file handle is not a valid file handle
value, does not refer to an open file, or an attempt
was made to write to a file or device opened for read
access (or the reverse).

Resource deadlock would occur.

Locking violation: the file cannot be locked after 10
attempts.

A-67

EDOM

EEXIST

EINVAL

EM FILE

ENOENT

ENOEXEC

ENOMEM

ENOSPC

A-68

Math argument.

The argument to a math function is not in the domain
of the function.

File exists.

The O_CREAT and O_EXCL flags are specified when
opening a file, but the named file already exists.

non-valid argument.

A non-valid value was given for one of the argu­
ments to a function. For example, the value given
for the origin when positioning a file pointer is
before the beginning of the file.

Too many open files.

No more file handles are available, so no more files
can be opened.

No such file or directory.

The specified file or directory does not exist or
cannot be found. This message can occur whenever
a specified file does not exist or a component of a
pathname does not specify an existing directory. It
can also occur in OS/2 mode if a filename exceeds 8
characters, or if the filename extension exceeds 3
characters.

Exec format error.

An attempt is made to run a file that is not execut­
able or that has a non-valid executable file format.

Not enough core.

Not enough storage is available. This message can
occur when not enough storage is available to run a
child process or when the allocation request in an
sbrk or getcwd call cannot be satisfied.

No space left on the device.

No more space for writing is available on the device.
(For example, the disk is full.)

ERANGE

EXDEV

Result too large.

An argument to a math function is too large,
resulting in partial or total loss of significance in the
result. This error can also occur in other functions
when an argument is larger than expected (for
example, when the pathname argument to the
getcwd function is longer than expected).

Cross-device link.

An attempt was made to move a file to a different
device (using the rename function).

A-69

Math Errors

The following errors can be generated by the math routines of the C
run-time library. These errors correspond to the exception types
defined in math.h and returned by the matherr function when a math
error occurs. See Chapter 4, "Include Files," for more information.

Error

DOMAIN

OVERFLOW

PLOSS

SING

TlOSS

UNDERFLOW

A-70

Description

An argument to the function is outside the domain
of the function.

The result is too large to be represented in the
return type of the function.

A partial loss of significance occurred.

Argument singularity: an argument to the function
has an illegal value (for example, passing the
value zero to a function that requires a nonzero
value).

A total loss of significance occurred.

The result is too small to be represented.

CodeView Error Messages

CodeView displays an error message whenever it detects a command
it cannot run. You might see any of the following error messages.
Except for start-up errors, most errors stop the CodeView command
in which the error occurred, but do not stop CodeView. For more
information about CodeView, see the IBM C/2 Compile, Link, and Run
book.

Bad address
You specified the address in an non-valid form. For example, you
might have entered an address containing hexadecimal charac­
ters when the radix is deci mal.

Bad breakpoint command
You typed an non-valid breakpoint number with the BREAKPOINT

CLEAR, BREAKPOINT DISABLE, or BREAKPOINT ENABLE command. The
number must be in the range of 0 through 19.

Bad flag
You specified an non-valid flag mnemonic with the REGISTER

dialog command (R). Use one of the mnemonics that appears
when you enter the command RF.

Bad format string
You specified a non-valid type specifier following an expression.
Expressions used with the DISPLAY EXPRESSION, WATCH, WATCHPOINT,

and TRACEPOINT commands can have printf type specifiers set off
from the expression by a comma. The valid type specifiers are d,
i, u, 0, I, X, f, e, E, g, G, c, and s. Some type specifiers can be
preceded by the prefix h or I.

Bad radix (use 8, 10, or 16)
CodeView only uses octal, decimal, and hexadecimal radixes.

Bad register
You typed the REGISTER command (R) with an non-valid register
name. Use AX, ex, ex, DX, SP, BP, SI, 01, DS, ES, SS, es, IP, or
F.

Bad type cast
The valid types for type-casting are the C types void, char, int,
short, long, signed, unsigned, float, and double. The types
unsigned, signed, long, and short can be combined with other

A-71

types (for example, unsigned char), as listed in the IBM C/2 Funda­
mentals book.

Bad type (use one of ' ABDILSTUW')
The valid dump types are ASCII (A), byte (B), integer (I), unsigned
(U), word (W), doubleword (E), short real (S),
long real (L), and ten-byte real (T).

Badly formed type
The type information in the symbol table of the file you are
debugging is incorrect. If this message occurs, note the circum­
stances of the error and report it using the Reader's Comment
Form.

Breakpoint "# or ,,, expected
You entered the BREAKPOINT CLEAR (BC), BREAKPOINT DISABLE (BD),
or BREAKPOINT ENABLE (BE) commands with no argument. These
commands require that you specify the number of the breakpoint
at which CodeView is to act or that you specify an asterisk *, indi­
cating that CodeView is to act on all breakpoints.

Cannot use struct or union as scalar
You cannot use a structure or union variable as a scalar value in
a C expression. The address-of operator must precede structure
or union variables, and a field specifier must follow them.

Can't find filename
CodeView cannot find the executable file you specified when you
started. You probably misspelled the file name, or the file is in a
different directory.

Constant too big
CodeView cannot accept a constant number larger than
4294967295
(OxFFFFFFFF) .

Divide by zero
An expression in an argument of a dialog command attempts to
divide by zero.

ExpreSSion too complex
An expression given as a dialog command argument is too
complex. Simplify the expression.

A-72

Extra input ignored
You specified too many arguments to a command. CodeView
evaluates the valid arguments and ignores the rest. Often in this
situation, CodeView does not evaluate the arguments in the order
that you intended.

Floating point error
If this message occurs, note the circumstances of the error and
report it to your authorized IBM dealer.

Internal debugger error
If this message occurs, note the circumstances of the error and
report it to your authorized IBM dealer.

Invalid argument
One of the arguments you specified is not a valid CodeView
expression.

Missing"
You specified a string as an argument to a dialog command, but
you did not supply a closing double quote mark.

Missing ')'
You specified an argument to a dialog command as an
expression containing a left parenthesis but no right parenthesis.

Missing '('
You specified an argument to a dialog command as an
expression containing a right parenthesis but no left parenthesis.

Missing '['
You specified an argument to a dialog command as an
expression containing a right bracket but no left bracket. This
error can also occur if you specify a regular expression with a
right bracket but no left bracket.

No closing single quote
You specified a character in an expression used as a dialog
command argument, but the closing single quote is missing.

No code at this line number
You tried to set a breakpoint on a source line that does not corre­
spond to code. The line might be a data declaration or a
comment.

A-73

No match of regular expression
CodeView can find no match for the regular expression you speci­
fied with the SEARCH command or with the Find selection from the
Search menu.

No previous regular expression
You selected Previous from the Search menu, but there was no
previous match for the last regular expression specified.

No program to debug
You have run to the end of the program you are debugging. You
must restart the.program (using the RESTART command) before
using any command that runs code.

No source lines at this address
The address you specified as an argument for the VIEW command
(V) does not have any source lines. It might be an address in a
library routine or an assembly-language module.

No such file/directory
A file you specified in a command argument or in response to a
prompt does not exist. For example, this message appears when
you select Load from the File menu and then enter the name of a
nonexistent fi I e.

No symbolic information
The program file you specified is not in the CodeView format.
You cannot debug in source mode, but you can use assembly
mode.

Not a text file
You attempted to load a file using the Load selection from the File
menu or using the VIEW command, but the file is not a text file.
CodeView determines if a file is a text file by checking the first
128 bytes for characters that are not in the ASCII range of 9
through 13 and 20 through 126.

Not an executable file
The file you specified for debugging when you started CodeView
is not an executable file having the extension .EXE or .COM.

Not enough space
You typed the SHELL ESCAPE command (!) or selected Shell from
the File menu, but there is not enough free storage to run
COMMAND.COM. Because storage is released by code in the C
start-up routines, this error always occurs if you try to use the

A-74

the code run commands (TRACE, PROGRAM STEP, or GO) to run the C
start-up code, then try the SHELL ESCAPE command again. The
message also occurs with assembly-language programs that do
not specifically release storage. This message also appears
when CodeView does not have enough memory space to load
your program.

Object too big
You entered a TRACEPOINT command with a data object, such as
an array, that is larger than 128 bytes. You can watch data
objects larger than 128 bytes using the storage version of the
TRACEPOINT command.

Operand types incorrect for this operation
An operand in a C expression had a type that is incompatible with
the operation applied to it. For example, if you declare p as char
*, then? p*p produces this error because a pointer cannot be
multiplied by a pointer.

Operator must have a struct/union type
You used the one of the member selection operators (- > or.) in
an expression that does not refer to an element of a structure or a
union.

Operator needs Ivalue
You specified an expression that does not evaluate to an Ivalue in
an operation that requires an Ivalue. For example, ? 3=100 is
non-valid. See the IBM CI2 Fundamentals book for more informa­
tion on Ivalues.

Program terminated normally (number)
You ran your program to the end. The number displayed in
parentheses is the exit code that your program returns to DOS or
OS/2. You must use the RESTART command (or the Start menu
selection) to start the program before running more code.

Register variable out of scope
You tried to specify a register variable using the period (.) oper­
ator and a function name. For example, if you are in a third-level
function, you can display the value of a local variable called local
in a second-level function called parent with the following
command:

? parent. 1 Dca 1

However, this command does not work if you declare local as a
register variable.

A-75

Regular expression too complex
The regular expression you specified is too complex for
CodeView to evaluate.

Regular expression too long
The regular expression you specified is too long for CodeView to
evaluate.

Syntax error
You specified an non-valid command line for a dialog command.
Check for an non-valid command letter. This message also
appears if you enter an non-valid assembly-language instruction
using the ASSEMBLE command. The error follows a caret that
points to the first character that CodeView cannot interpret.

Too many breakpoints
You tried to specify a 21st breakpoint. Codeview permits only 20
breakpoi nts.

Too many open files
You do not have enough file handles for CodeView to operate cor­
rectly. You must specify more files in your CONFIG.SYS file. See
your Disk Operating System book for information about using the
CONFIG.SYS fi Ie.

Type conversion too complex
You tried to type cast an element of an expression in a type other
than the simple types or with more than one level of indirection.
An example of a complex type is type casting to a structure or
union type. An example of two levels of indirection is char **.

Unable to open file
CodeView cannot open a file that you specified in a command
argument or in response to a prompt. For example, this message
appears when you select Load from the File menu and then enter
the name of a file that is corrupted or has its file attributes set so
that it cannot be opened.

Unknown symbol
You specified an identifier that is not in CodeView's symbol table.
Check for a misspelling. CodeView cannot recognize a symbol
name spelled with letters of the wrong case unless you turn off
the Case Sense selection on the Options menu. Another potential
cause for this message is if you try to use a local variable in an
argument when you are not in the function in which you define
the variable.

A-76

Unrecognized option option - The valid options are IB, Iccommand, IF,
IS, IT, OR IW

You entered an non-valid option when starting CodeView. Retype
the command line.

Usage: cv [options] file [arguments]
You failed to specify an executable file when you started
CodeView. Try again with the syntax shown in the message.

Video mode changed without IS option
The program changed video modes from or to one of the graphics
modes when screen swapping was not specified. You must use
the IS option to specify screen swapping when you are debugging
graphics programs. You can continue debugging when you get
this message, but the output screen of the debugged program
might be damaged.

Warning: packed file
You started CodeView with a packed file as the executable file.
You can attempt to debug the program in assembly mode, but the
packing routines at the start of the program might make this diffi­
cult. You cannot debug in source mode because EXEPACK strips
all symbolic information from a file when it packs the file. This
occurs with the IEXEPACK linker option.

A-77

A-78

Appendix B. Reentrant Functions

With OS/2, you can call operating system functions from within C pro­
grams. The facility of creating multiple threads of execution is illus­
trated in Appendix A of the IBM C/2 Compile, Link, and Run book. That
appendix warns of the usage of non-reentrant functions with multiple
threads.

A list of the reentrant library functions in the C run-time library for
OS/2 is given here for reference.

abs Ifind strchr strupr
atol longjmp strcmp swab
atoi memccpy strcmpi tolower
bsearch memchr strcpy toupper
chdir memcmp stricmp utime
getch memcpy strlen
getche memicmp strlwr
getpid memset strncal
halloc movedata strnicmp
hfree outp strncpy
inp putch strnset
iota qsort strrchr
kbhit segread strrev
labs setjmp strset
Isearch strcat strstr

8-1

8-2

Appendix C. ASCII Characters

C-1

000 001 002 003 004 005 006 007 008 009

NUL I ©I ~xl E~X I + 4- ~ BEL I Il HT
SOH BS

010 011 012 013 014 015 016 017 018 019

LF VT FF CR ~ 0
:EI ~11 D~21 Jl31 SO SI

020 021 022 023 024 025 026 027 028 029

047

() I * I
+

I I II 0 I 1 I ,
050 051 052 053 054 055 056 057 058 059

2 3 I 4 I 5 6 7 I 8 I 91 .
I

.
I

060 061 062 063 064 065 066 067 068 069

< I > I
? ;) A I B I c I D I E I

070 071 072 073 074 075 076 077 078 079

F G I H I I J K I L I MI N I 0 I
080 081 082 083 084 085 086 087 088 089

P I Q I R I s T U I V w X V I
090 091 092 093 094 095 096 097 098 099

Z I [I \ I] 1\ I
,

a b c
100 101 102 103 104 105 106 107 108 109

d I e I f I 9 h I
.

k J m
110 111 112 113 114 115 116 117 118 119

n I 0 I p I q I r s I t u v W
120 121 122 123 124 125 126 127 128 129

X I y I z I { I I } I "" lui c u ,

C-2

130 131 132 133 134 135 136 137 138 139

I e a a a a ~LI e ~T I ~ ~ I
140 141 142 143 144 145 146 147 148 149

I IF dR ~ ~ E re ~I 0 I D~41 0 I
150 151 152 153 154 155 156 157 158 159

10 u erN 6 u E~el£I¥lptl:p1
160 161 162 163 164 165 166 167 168 169

Iii 6 un N ~1~1~1r-1

I :: ~: I ~ T I ~~ I;; I ~~~ IIIII T I
1~1~111~1;1~lrrl;I~I~1
Id I; ILI.LITI FI·~lf I~ IIF I

200 201 202 203 204 205 206 207 208 209

lib IIF IJb 1r liE 1= 13f 1::6 IJLI T I
ITILlb Flrlllfl~lrllU
1II1121 I 221 _I ~ I ;5 I 2~ I ~ I ; I ; I

230 231 232 233 234 235 236 237 238 239

I~ITI~ eioiol oo l01Elni
240 241 242 243 244 245 246 247 248 249

1=1±lz ~Irl JI·I~I 0 I-I
250 251 252 253 254 255

C-3

C-4

Index

Special Characters
... ellipses 1-5
.COM extension A-74
.EXE extension A-74
(I) slashes 1-8
(,) comma 1-8
(?) question mark 1-8

(:) colon 1-8
(=) equal sign 1-8
(\) backslash, use in naming

files 1-17
I vertical bar 1-5
IS CodeView option A-77
_amblksiz 2-3
_clear87 1-21,5-42

floating-point support 1-21
_control87 1-21,5-47

floating-point support 1-21
_ctype variable 4-3
_doserrno variable 2-6
_exit 3-26,5-82
_fmalloc 3-20, 3-21

fmode variable 1-19,2-7
_fmsize 3-20
_fpreset 3-18
_iob array 4-11

_memavl 3-20,5-221
memsize 3-20
msize 5-239

_nfree 3-20, 5-241

_nmalloc 3-20,5-242
_nmsize 3-20,5-243
_osmajor variable 1-20,2-8
_osminor variable 1-20,2-8
_osmode variable 2-8

_pgmptr 2-2
_pgmptr run-time variable

_amblksiz run-time variable 2-3

_doserrno 2-6
_fmode variable 2-7
_osmajor variable 2-8

_osminor variable 2-8
_osmode variable 2-8
_psp variable 2-9
daylight global variable 2-4
standard data types 2-1 °
timezone variable 2-4
tzname variable 2-4

_psp variable 2-9
_status87 1-21,3-18,5-340

floating-point support 1-21

_tolower 5-379
_toupper 5-379
[] brackets 1-5
[] square brackets 1-8

A
abnormal program termination 5-2
abort 3-25, 5-2

process control 3-25
aborting a process 5-2
about the C/2 library 1-1
abs 5-4

cabs 5-29
miscellaneous routines 3-32

absolute value 5-4
cabs 5-29
fabs 5-87
labs 5-196

access 5-5
file handling 5-5

X-1

access mode 5-94,5-120
acos 1-21,3-17,5-7

acos 5-7
floating-point support 1-21

addresses A-71
as arguments A-71

addresses as arguments A-74
alloca 5-9
allocating memory

halloc 5-171
allocating storage 3-20
appending 5-1~0, 5-137
arc cosine 5-7
arc sine function 5-13
arc tangent 5-17
argument 1-1

arguments with side
effects 1-11

checking 1-14
complex 4-7
declarations 1-14
DOSSERROR, standard 4-4
file 4-11
maximum number of macro argu­

ments A-40
maximum size of macro defi-

nition A-40
passing an argument 3-27
predefined stream pOinters 3-9
standard data types in run-time

routi nes 2-10
standard types, exception 4-7
stat 4-8
type lists 1-14
type-checking 1-1
type-list 1-1

argument singularity 5-219
argument type-checking 1-14
arguments A-73, A-76

dialog commands A-73, A-76
arrows in syntax 1-8
ASCII characters C-2
ascti me 5-11

time routines 3-30

X-2

asin 1-21,3-17,5-13
asin 5-13
floating-point support 1-21

assemble command A-76
assembly mode A-74
assert 5-15

miscellaneous routines 5-15
assert.h

contents 4-2
assert.h 3-32

miscellaneous routines 3-32
assertions 5-15

failed 5-15
assigning buffers 5-301
atan 1-21,3-17,5-17

floating-point support 1-21
atan2 1-21,3-17,5-17

atan 5-17
floating-point support 1-21

atof 1-21,5-19
floating-point support 1-21

atoi 5-19
atol 5-19

B
backslash(\) 1-18

as a pathname delimiter 1-18
as escape character 1-18
as separator 1-18

baseline 1-7
bdos 3-24

DOS interface routines 5-22
bessel 1-21,3-17,5-24

floating-point support 1-21
functions 5-24

binary and text modes
binary 1-18
default transition 1-18
text 1-18

binary int
reading 5-167
writing 5-270

binary mode 1-18,2-7
binary search 5-26
BINMODE.OBJ 1-19, 2-7
break value 5-291
breakpoint clear command A-71 ,

A-72
breakpoint disable command A-71,

A-72
breakpoint enable command A-71 ,

A-72
breakpoint set A-73
breakpoint set command A-73,

A-76
bsearch 1-24,3-28,5-26

huge models 1-24
buffer manipulation 3-1

memccpy 5-223
memchr 5-225
memcmp 5-226
memcpy 5-228
memset 5-231

buffered 3-6
input/output 3-6

buffering
preopened streams 3-10

buffers 3-10, 5-301
comparing 5-226
copying 5-223,5-228
flushing 3-10,5-101
searching 5-225
setting characters 5-231

BUFSIZ constant 3-8, 4-11
byte order

swapping 5-366
byte regs type 4-4

c
C expressions A-72, A-73
cabs 1-21,3-17,5-29

floating-point support 1-21
calloc 3-20,5-31

storage allocation 3-20
carry flag 5-23, 5-177
case sensitivity A-76
ceil 1-21,3-17,5-33

floating-point support 1-21
ceiling function 5-33
cgets 5-34
changing current working

directory 5-36
changing size of files 5-40
character classification and conver-

sion 3-2,3-3

_tolower 3-2, 5-379
_toupper 3-2,5-379
character classification and con­

version
ctype.h 3-2

file handle 3-5
include file 3-2

ctype.h 3-2
isalnum 5-187
isalpha 3-2,5-187
isascii 5-187
iscntrl 3-2, 5-190
isdigit 3-2,5-190
isgraph 3-2,5-190
islower 3-2,5-190
isprint 3-2,5-190
ispunct 3-2, 5-190
isspace 3-2, 5-190
isupper 3-2,5-190
isxdigit 3-2, 5-190
reading 5-105,5-157
reading from keyboard 5-159
reading from port 5-176
stdlib.h 3-3
toascii 3-2,5-379
tolower 3-2, 5-379

X-3

character classification and conver­
sion (continued)

toupper 3-2
writing 5-128,5-403

character device 5-189
characters 5-379

converting to ASCII 5-379
converting to lowercase 5-379
converting to uppercase 5-379
reading from keyboard

with echo 5-160
ungetting 5-387
writing 5-264
writing to screen 5-266

characters, ASCII C-2
characters, writing to port 5-250
chdir 5-36
checking for keystroke 5-195
checking, argument type 1-14

with variable arguments
cprintf
cscanf
execl
execle
execlp
fprintf
fscanf
open
printf
scanf
sopen
spawnl
spawnle
spawnp
sprintf
sscanf 1-15

child process 5-76,5-323
signal settings 5-81, 5-323
translation mode 5-81, 5-323

chmod 5-38
chsize 5-40

files 5-40
classifying characters 5-187,5-190

X-4

clear 87 3-18
clearerr

error handling 1-16
clearing the floating-point status

word 5-42
close 5-46

low-level 1/0 3-12
closing files 3-15,5-46
closing streams 3-11,5-89
code generation error A-8
command line error messages A-7
command line, maximum length

of A-6
command syntax notation 1-7
COMMAND.COM 5-367
commands A-73

assemble A-76
breakpoint clear A-71 , A-72
breakpoint disable A-71, A-72
breakpoint enable A-71 , A-72
breakpoint set A-76
radix A-71
register A-71
restart A-74, A-75
search A-74, A-76
shell escape A-74
tracepoint A-71 , A-75
view A-74
watch A-71
watchpoint A-71

comparing buffers 5-226
comparing strings 5-342,5-350
compatibility mode 5-318
compilation error messages A-7
compiler error messages

code generation error A-8
command line A-7
compilation A-7
error messages during

compiling A-15
fatal A-7, A-10
internal A-7
warning A-7, A-8

compiler internal error messages,
See internal error messages A-7

compiler limits A-40
input files A-40
maximum length of a

string A-40
maximum length of an

identifier A-40
maximum level of nesting A-40
maximum level of nesting for

include files A-40
maximum number of macro argu­

ments A-40
maximum size of a

constant A-40
maximum size of macro defi­

nition A-40
preprocessor directives,

maximum length A-40
space required A-40

complex 4-7
standard types 2-10

concatenating strings 5-342,5-350
CONFIG.SYS file A-76
conio.h 4-2

contents 4-2
conio.h 3-16
constant numbers as

arguments A-72
constants A-40

maximum size A-40
control 87 3-18
CONTROL-Z 5-279, 5-403
control, process 3-25
controlling stream buffering 3-10

buffering 3-10
conversions 5-19,5-214

floating-point numbers to inte­
gers and fractions 5-236

floating-point numbers to
strings 5-72,5-91, 5-155

integers to stri ngs 5-193
long integers to strings 5-214
strings to floating-point

values 5-19

converting characters 5-379
to ASCII 5-379
to lowercase 5-379
to uppercase 5-379

converting from structure to
string 5-11

converting strings to
lowercase 5-349

converting strings to
uppercase 5-365

copying buffers 5-223
overlapping moves 5-228

copying strings 5-342,5-350
cos 1-21,3-18,5-49

floating-point support 1-21
cosh 1-21,3-18,5-49

floating-point support 1-21
cosine 5-49
cprintf 5-51

limitations on argument type­
checking 1-15

cputs 5-53
creat 5-54

low-level 110 3-12
creating a temporary file

tmpfile 5-374
creating a temporary file in another

directory 5-376
creating directories 5-232
creating files 5-54, 5-246
cscanf 5-57

limitations on argument type­
checking 1-15

ctime 5-59
time routines 3-30

ctype routines 5-187,5-190
ctype.h

contents 4-2
current working directory

getting 5-161

X-5

D
data conversion 3-4, 5-19

atof 3-4,5-19
atoi 3-4,5-19
atol 3-4,5-19
ecvt 3-4, 5-72
fcvt 3-4, 5-91
fieeetomsbin 5-109
fmsbintoieee 5-109
gcvt 3-4, 5-155
itoa 3-4, 5-193
Itoa 3-4, 5-214
math.h 3-4
stdlib.h 3-4
strtod 3-4
strtol 3-4
ultoa 3-4

data items 5-131
reading 5-131
writing 5-153

Data type limits 4-5
data, readi ng and writi ng 3-11,

3-15
date 5-201
daylight variable 5-382
daylight, timezone, tzname
deallocating storage 5-133
declarations

declaring functions 1-12
defined 1-14
for routines 4-2
maximum level of nesting A-40

default 1-19
changing 1-19
overriding 1-19
transition mode 2-7

default translation mode 1-18
in child process 5-81,5-323

definition of manifest
constants 1-11

deleting directories
directory control 5-288

X-6

delimiters for path name compo-
nents 1-17

denormal A-4
detecting errors 3-12
dieeetomsbin 3-18,5-64
differences, exec routines 3-27
differences, spawn routines 3-27
difftime 5-66

time routines 3-30
directh 4-3
directory

changing 5-36
chmod 5-38
getting current working

directory 5-161
renaming 5-284

directory control 3-4,5-36
chdir 3-4, 5-36
creating 5-232
getcwd 3-4,5-161
mkdir 3-4,5-232
rmdir 3-4

divide by zero A-72
dmsbintoieee 3-18,5-64
DOMAIN 5-219
DOS commands

executing from within
programs 5-367

DOS considerations
detecting version number 2-8
DOS error codes 2-6

DOS error codes 2-6
DOS interface routines 3-24, 5-68,

5-179
bdos 3-24
dosexterr 3-24
FP _OFF 3-24

FP _SEG 3-24
include file 3-24
i ntdos 3-24, 5-182
i ntdosx 3-24, 5-184
int86 3-24,5-177
int86x 3-24
invoking 5-177

DOS interface routines (continued)
segread 3-24, 5-299

DOS interrupts
invoking 5-179

DOS system calls
error handling 5-68
invoking 5-22, 5-182

DOS version number 2-8
dos.h 4-3
dos.h 3-24
DOSERROR

standard types 2-10
DOSERROR type 4-4, 5-68
dosexterr 1-20, 3-24, 5-68

DOS considerations 1-20
dup 1-20, 5-70

DOS considerations 1-20
low-level I/O 3-13

duplicating 5-70
duplicating a file handle 5-70
dup2 1-20, 5-70

E

DOS considerations 1-20
low-level I/O 3-13

echoing characters 5-160
ecvt 5-72
end-of-file 5-74
end-of-file condition 1-16
end-of-stream

I/O 5-97
ending a process 5-2
environ variable 2-9
environment table 2-9, 3-32, 5-163
environment variables 5-163,

5-267
eof 1-16,5-74

clearing 5-286
low-level I/O 3-13

EOF constant 3-8, 4-11
errno value error messages A-66
errno values A-67

errno variable 4-9, 5-252
DOS error codes 2-6
errno variable 2-6
handling math routine

errors 1-16
errno.h 4-4

contents 4-4
errno.h error messages A-67
error handling 5-252

assert 5-15
clearerr 1-16
DOS error codes 2-6
errno value error

messages A-66
errno values A-67
errno, use of 1-16
error causing conditions A-49
error messages A-1, A-36
EXEMOD error messages A-64
fatal error messages A-36
library manager error

messages A-58
limker limits A-56
linker error messages and

limits A-42
low-level 1-16
low-level I/O 3-15
MAKE error messages A-62
math errors A-70
math routines 1-16, 3-18
matherr 1-16
perror 5-252
stream I/O 3-12,5-99
stream operations 1-16
warning messages A-28

error indicator 1-16,3-12,5-99
clearing 5-286
stream 3-12

error messages 5-252, A-1
code generation A-8
CodeView A-71
command line A-7
compilation A-7
compiler error messages A-7

X-7

error messages (continued)
compiler internal A-7
during compiling A-15
errno val ue A-66
errno values A-67
error messages A-36
EXEMOD A-64
fatal A-7, A-10
fatal messages A-36
floating-point exceptions A-4
floating-point not loaded A-2
library manager error

messages A-58
linker error messages and

limits A-42
linker limits A-56
MAKE A-62
math errors A-70
null pOinter assignment A-2
run-time library A-1
stack overflow A-2
unknown error A-8
warning A-7, A-8
warning messages A-28

error messages during
compiling A-15

Euclidean distance 5-175
evnironment, maximum size A-6

exception type 4-7,5-218
standard 2-10

exception, floating-point A-4
exclamation pOint (!)

shell escape command A-74
exec family 1-17,3-25,5-76

differences between exec rou­
tines. 3-27

pathname delimiters 1-17
process control 3-25

execl 3-25, 5-76
limitations on argument type­

checking 1-15
process control 3-25

execle 3-25, 5-76
limitations on argument type­

checking 1-15

X-8

execle (continued)
process control 3-25

execlp 1-15,3-25,5-76
limitations on argument type­

checking 1-15
process control 3-25

execlpe 5-76
process control 3-26

executable file A-74
command line A-72

executing DOS commands from
within programs 5-367

executing programs from within
programs 5-76, 5-323

execv 3-26, 5-76
execve 3-26, 5-76
execvp 3-26,5-76
execvpe 3-26, 5-76
EXEMOD error messages A-64
EXEPACK link option A-77
exit 3-26, 5-82
exiting a process 5-82
exp 1-21,3-18,5-84

floating-point support 1-21
expand 3-20,5-85

storage allocation 3-20
exponential functions 5-84

exp 5-84
frexp 5-140
Idexp 5-197
log 5-206
log10 5-206
sqrt 5-331

expression evaluation A-72, A-73
expressions, regular A-74, A-76

F
fabs 1-21, 3-18, 5-87

floating-point support 1-21
far pOinters 5-123
fatal error messages A-7, A-10,

A-36
fclose 5-89
fcloseall 5-89
fcntl.h 4-4

contents 4-4
fcvt 5-91
fdopen 5-94
feof 1-16, 5-97
ferror 1-16,5-99
fflush 5-101
ffree 3-20
fgetc 5-105
fgetchar 5-105
fgets 5-107
fieeetomsbin 3-18,5-109
file

standard types 2-10
file handle 3-13,5-70

for stream 5-113
fstat 5-146
predefined 3-14
stat 5-337
stdaux 3-14
stderr 3-14
stdin 3-14
stdout 3-14
stdprn 3-14

file handles A-76
file handling 3-5, 5-111

chsize 5-40
file handle

io.h 3-5
locking 5-203
mktemp 5-234
rename 5-284
setmode 5-306
tempnam 5-376
tmpnam 5-376

file menu A-74
load A-74, A-76
shell A-74

file pOinter 3-6, 3-8
positioning 5-144,5-149

file status information 5-146,5-337
FILE structure 3-8
file type 4-11
file, opening a 3-13
filelength 5-111
filenames and pathnames

as DOS path name
delimiter 1-17

backslash (\), use of 1-17
case sensitivity 1-17

significance of case
sensitivity 1-17

conventions 1-17
delimiters 1-17
spawn family 1-17
system delimiters 1-18

fileno 5-113
files 1-1,5-111

adding data 5-95
appending 5-95
closing 3-15,5-46
creating 5-54, 5-246, 5-318
determining length of 5-111
locking 5-203
maximum number open A-6
maximum size A-6
ming 5-284
opening 5-54, 5-246,5-318
positioning file pointer 5-211,

5-371
reading characters 5-278
setting modification time 5-393
status information 5-146,5-337
temporary 5-234
update 5-95
writing characters 5-403

files, include 4-2
files, including 1-11

X-9

finding A-74, A-76
text strings A-74, A-76

flag bits A-71
flag mnemonics A-71
float.h, contents 4-5
floating-point 1-21

clearing the status word 5-42
data 1-21
error messages A-4
exceptions 4-5
floating-point exceptions A-4

denormal A 4
underflow A-4

not loaded A-2
support 1-21

floating-point numbers 5-72
converting to strings 5-91, 5-155

floating-point operations

_control87 5-47
floating-point ranges 4-5
floating-point routines

_ status87 5-340
floor 1-21,3-18,5-114

floating-point support 1-21
flushall 5-115
flushing buffers 3-10, 5-101
fmalloc 3-20
fmod 1-21,3-18,5-118

floating-point support 1-21
fmsbintoieee 3-18,5-109
fopen 3-8,5-120

changing default translation
mode 1-19

overriding default translation
mode 1-19

stream 1/0 3-8
formatted 1/0 5-51,5-126

FP _OFF 3-24, 5-123

FP _ SEG 3-24, 5-123
fpreset 3-18
fprintf 5-126

limitations on argument type­
checking 1-15

X-10

fputc 5-128
fputchar 5-128
fputs 5-130
fread 1-24,5-131

huge models 1-24
free 3-20, 5-133

storage allocation 3-20
freect 3-20
freeing storage blocks 5-133
freopen 5-137
frexp 1-21,3-18,5-140

floating-point support 1-21
fscanf 5-142
fseek 5-144
fstat 5-146
ftell 5-149
ftime 5-151

time routines 3-30
functions

advantages over macros 1-10
declarations 1-14
open 5-248
using 1-13
using library functions 1-12
with variable arguments 1-15

fwrite 1-24, 5-153
huge models 1-24

G
gcvt 5-155
getc 5-157
getch 5-159
getchar 5-157
getche 5-160
getcwd 5-161
getenv 5-163

miscellaneous routines 3-32
getpid 3-26,5-165
gets 5-166
getting current working

directory 5-161
getw 5-167

global variables
daylight 5-382
environ 5-164,5-267
errno 5-252
sys_errlist 5-252
sys _ nerr 5-252
timezone 5-382
tzname 5-382

global variables in run-time routines

_amblksiz 2-3
_doserrno 2-6
_fmode variable 2-7
_osmajor 2-8
_osminor 2-8
_osmode 2-8
_pgmptr 2-2
_psp 2-9
dayl ight 2-4
default value 2-5
environ 2-9
errno.h 4-4
sys_errlist 2-6, 4-4
sys_nerr 2-6
timezone 2-4
tzname 2-4

gmtime
time routines 3-30

H
halloc 1-24,3-20,5-171

huge models 1-24
handles, predefined 3-14
handling interrupt signals 5-310
handling, file 3-5

access 3-5
chmod 3-5
chsize 3-5
filelength 3-5
fstat 3-5
isatty 3-5
locking 3-5
mktemp 3-5

handling, file (continued)
remove 3-5
rename 3-5
setmode 3-5
stat 3-5
umask 3-5
unlink 3-5

hardware requirements 1-3
hexadecimal representation 1-5
hfree 1-24,3-20,5-173

huge models 1-24
how this book is organized
huge 4-7
huge arrays, use with library func­

tions 1-24
storage models, use of with huge

arrays and huge pointers 1-24
huge models 1-23
hyperbolic cosine 5-49
hyperbolic sine 5-316
hyperbolic tangent 5-369
hypot 1-21,3-18,5-175

floating-point support 1-21
hypotenuse 5-175

110 3-6,3-12
low-level 3-12
stream 3-6

110 functions 3-6
keyboard 3-6
port 3-6
stream 3-6

110 routines, keyboard and
port 3-16

identifiers in arguments A-76
identifying functions and macros

maximum length A-40
in syntax diagrams

_amblksiz variable 2-3
_ doserrno 2-6
_fmode 1-19,2-7
_osmajor 2-8

X-11

in syntax diagrams (continued)

osminor 2-8

_osmode 2-8
_psp 2-9
daylight 2-4
default value, TZ 2-5
errno.h 4-4
global variables in run-time rou-

tines 2-1

sys_errlist 2-6,4-4

sys _ nerr 2-6
timezone 2-4,
TZ environment 2-4
tzname 2-4

using _amblksiz to reserve
storage 2-3

variable-length argument list
routines 3-31

include file 3-8
stream I/O 3-8

include files 1-1
/math.h 4-6
/memory.h 4-7
/process.h 4-7
/search.h 4-8
/setjmp.h 4-8
/share.h 4-8
/stat.h 4-8
/string.h 4-13
/time.h 4-13
/timeb.h 4-13
/types.h 4-14
assert.h 4-2
character classification and con-

version 3-2
conio.h 4-2
conio.h 3-16
ctype.h 4-2
declaring functions 1-12
direct. h 4-3
DOS interface routines 3-24
dos.h 4-3
errno value error

messages A-66

X-12

include files (continued)
errno values A-67
errno.h 4-4
fcntl.h 4-4
float.h 4-5
function declarations 1-12
include files 4-1
including file 1-11
limits.h 4-5
locking.h 4-6
low-level I/O 3-13
macro definitions 1-12
malloc.h 4-6
manifest constants,

definitions 1-11
math errors A-70
math routines 3-17
maximum level of nesting A-40
miscellaneous routines 3-32
process control 3-25
process.h 4-7
routine declarations 4-1
searching and sorting 3-29
signal.h 4-8
stdarg.h 4-9
stddef.h 4-9
stdio.h 4-1 °
stdlib.h 4-12
stdlib.h 3-3
storage allocation 3-20
string manipulation 3-29
time routines 3-30, 3-31
time.h 4-13
tm 4-13

inexact A-4
initializing strings 5-350, 5-356
inp 5-176
input and output 3-6
input/output

buffered 3-6
intdos 3-24, 5-182
intdosx 3-24, 5-184
internal debugger error A-72, A-73

internal error messages A-7
interrupt signal 5-310
i nt86 3-24, 5-177
int86x 3-24,5-179
io.h 3-13,4-5

content 4-5
isalnum 5-187
isalpha 5-187
isascii 5-187
isatty 5-189
iscntrl 5-190
isdigit 5-190
isgraph 5-190
islower 5-190
isprint 5-190
ispunct 5-190
isspace 5-190
isupper 5-190
isxdigit 5-190
itoa 5-193

K
kbhit 5-195
keyboard

ungetting characters 5-389
keyboard and port 1/0 5-159

getch 5-159
getche 5-160
inp 5-176
kbhit 5-195
putch 5-266
ungetch 5-389

keyboard and port I/O
routi nes 3-16

cgets 3-16
cprintf 3-16
cputs 3-16
cscanf 3-16
getch 3-16

keyboard and port 1/0 routines (con-
tinued)

getche 3-16
include files 3-16
inp 3-16
kbhit 3-16
outp 3-16
putch 3-16
ungetch 3-16

keystrokes
testing for 5-195

keyword, in syntax diagram syntax

L
labs 5-196

miscellaneous routines 3-32
Idexp 1-21,3-18,5-197

floating-point support 1-21
length function 5-348
length of files 5-111
Ifind 1-24,3-28,5-198

huge models 1-24
library manager error

messages A-58
library routine

dieeetomsbin 5-64
math 5-64

dmsbintoieee 5-64
library routinelDOS

interface/dosexterr 5-68
library routines

_ status87 5-340
absolute value

fabs 5-87
binary search 5-26
buffer manipulation

movedata 5-237
character classification and con-

version
isalnum 5-187
isalpha 5-187
isascii 5-187
iscntrl 5-190
isdigit 5-190

X-13

library routines (continued)
character classification and con-

version (continued)
isg raph 5-190
islower 5-190
isprint 5-190
ispunct 5-190
iss pace 5-190
isupper 5-190
isxdigit 5-190

ctime 5-59
data conversion 5-19

at of 5-19
atoi 5-19
atol 5-19
ecvt 5-72
fcvt 5-91
fieeetomsbin 5-109
fmsbintoieee 5-109
gcvt 5-155
itoa 5-193

differential equations
bessel 5-24

directory control
chdir 5-36
chmod 5-38
getcwd 5-161

DOS interface
bdos 5-22
FP _OFF 5-123

FP _SEG 5-123
intdos 5-182
i ntdosx 5-184
int86 5-177
i nt86x 5-179

exit routines
onexit 5-244

exponential functions
exp 5-84
frexp 5-140
Idexp 5-197
log 5-206
log10 5-206

file handling 5-5
access 5-5

X-14

library routines (continued)
file handling (continued)

chsize 5-40
filelength 5-111
fstat 5-146
locking 5-203
remove 5-282
tempnam 5-376
tmpnam 5-376

floating-point

clear87 5-42

control87 5-47

status87 5-340
key-board and port input/output

getch 5-159
getche 5-160
inp 5-176
kbhit 5-195

logarithmic tunctions
log 5-206
log10 5-206

low-level inout/output
Iseek 5-211

low-level input/output
close 5-46
creat 5-54

low-level input/output/eot 5-74
math 5-7,5-13, 5-17, 5-340

clear87 5-42

control87 5-47
acos 5-7
asin 5-13
atan 5-17
atan2 5-17
bessel 5-24
cabs 5-29
ceil 5-33
cos 5-49
cosh 5-49
exp 5-84
tabs 5-87
floor 5-114
tmod 5-118
frexp 5-140

library routines (continued)
math (continued)

hypot 5-175
Idexp 5-197
log 5-206
log10 5-206

memory allocation

_expand 5-85

_nfree 5-241

_nmalloc 5-242

_nmsize 5-243
calloc 5-31
halloc 5-171
hfree 5-173
memavl 5-221
us.msize 5-239

miscellaneous 5-15
abs 5-4
assert 5-15
getenv 5-163
isatty 5-189
labs 5-196
longjmp 5-208

process 5-2, 5-76

_exit 5-82
abort 5-2
execl 5-76
execle 5-76
execlp 5-76
execlpe 5-76
execv 5-76
execvp 5-76
execvpe 5-76

process control
getpid 5-165

run-time library error
messages A-1

screen and port input/output
cgets 5-34
cputs 5-53
cscanf 5-57

screens and port input/output
cprintf 5-51

library routines (continued)
searching

bsearch 5-26
searching and sorting

Ifind 5-198
Isearch 5-198

storage allocation 5-9
alloca 5-9
free 5-133

stream I/O

va_arg 5-395

va_end 5-395

va_start 5-395
vfprintf 5-398
vprintf 5-398
vsprintf 5-398

stream input/output 5-374
fclose 5-89
fcloseall 5-89
fdopen 5-94
ferror 5-99
ttl ush 5-101
fgetc 5-105
fgetchar 5-105
fgets 5-107
fileno 5-113
flushall 5-115
fopen 5-120
fpri ntf 5-126
fputc 5-128
fputs 5-130
fread 5-131
freopen 5-137
fscanf 5-142
fseek 5-144
ftell 5-149
fwrite 5-153
getc 5-157
getchar 5-157
gets 5-166
getw 5-167
rmtmp 5-290
setvbuf 5-308
tmpfi Ie 5-374

X-15

library routines (continued)
string

strerror 5-346
string manipulation 5-359,5-360

strtol 5-360
strstr 5-359
time 5-11,5-59

asctime 5-11
ftime 5-151
localtime 5-201

trigonometric functions 5-7,
5-13,5-17

acos 5-7
asin 5-13
atan 5-17
atan2 5-17
cos 5-49
cosh 5-49
hypot 5-175

using huge arrays 1-24
using library functions 1-12

library routines?stream input/output
feof 5-97

limitations
compiler limits A-40
linker limits A-56
maximum length of a

string A-40
on argument type checking 1-15

limits.h, contents 4-5
lines

reading 5-107,5-166
writing 5-269

linker error messages and
limits A-42

linker limits A-56
LlNT_ARGS 1-1'

as an identifier 1-14
LlNT_ARGS 4-1

local time corrections 2-4, 5-201
local variables A-76
localtime 5-201, 5-382

time routines 3-30

X-16

locking 1-20, 5-203
DOS considerations 1-20

locking.h 4-6
log 1-21,3-18

floating-point support 1-21
log function 5-206
logarithmic functions

log 5-206
log10 5-206

logic errors 5-15
log10 1-21,3-18

floating-point support 1-21
log10 function 5-206
long integers 5-214
long pointers 5-123
longjmp 5-208

miscellaneous routines 3-32
low-level I/O 3-12,5-371

creat 5-54
dup 5-70
dup2 5-70
eof 5-74
Iseek 5-211
read 5-278
tell 5-371
write 5-403

low-level I/O operations
close 3-12
creat 3-12
dup 3-13
dup2 3-13
eof 3-13
eof condition 3-15
errno values A-67
I/O 3-12
include file 3-13
low-level inout/output 5-211
low-level input/output 3-6
Iseek 3-13
open 3-13,5-246
read 3-13
sopen 3-13, 5-318
tell 3-13
use of errno 1-16

low-level I/Ol
close 5-46

Isearch 3-28, 5-198
Iseek 5-211

low-level I/O 3-13
Itoa 5-214

data conversion
conversions 5-384
long integers to

strings 5-384

M
macros

advantages over functions 1-10
defined 1-9
maximum number of

arguments A-40
maximum size A-40
restrictions on use 1-10
side effects in macro

arguments 1-11
MAKE error messages A-62
malloc 3-20

memory allocation 5-216
storage allocation 3-20

malloc.h, contents 4-6
malloc.h 3-20
manifest constants, definitions

of 1-11
manipulating strings 3-29
math routines 5-24,5-84,5-118

_clear87 3-18
_control87 3-18
_fpreset
_status87
acos
asin
atan
atan2 5-17
bessel
cabs
ceil 5-33
cos 5-49

math routines (continued)
cosh 5-49
dieeetomsbin
dmsbintoieee
error handling 3-18
exp
fabs 5-87
fieeetomsbin
floor 5-114
fmod 5-118
fmsbintoieee
frexp 5-140
handling math routine

errors 1-16
hyperbolic sine 5-316

hypot 5-175
Idexp 5-197
log 5-206
log10 5-206
math errors A-70
math routines 1-16,3-17,5-7,

5-13,5-17
math.h 4-6
matherr 1-16
modf 5-236
pow
sin 5-316
sinh 5-316
sqrt 5-331
tan 3-18,5-369
tanh 3-18,5-369
trigonometric functions 3-17
use of errno 1-16

math.h 4-6
math.h error messages A-70
math.h 3-17
matherr 1-16, 3-18

errno value error
messages A-66

errno values A-67
math errors A-70
math routines 5-218

maximum length of a string A-40

X-17

maximum length of an
identifier A-40

maximum length of command
line A-6

maximum length of macro
argument A-40

maximum level of nesting
structu re A-40

maximum number of macro argu­
ments A-40

maximum number of open
files A-6

maximum size A-6
maximum size of a constant A-40
maximum size of environment

table A-6
maximum size of macro

definition A-40
memavl 3-20
member selection operators A-75
memccpy 1-24,3-1,5-223

huge models 1-24
memchr 1-24, 3-1,5-225

huge models 1-24
memcmp 1-24,3-1,5-226

huge models 1-24
memcpy 1-24,3-1,5-228

huge models 1-24
memicmp 1-24,3-1,5-229

huge models 1-24
memory allocation 5-31

_expand 5-85
_memavl 5-221

_msize 5-239
_ nfree 5-241

_nmalloc 5-242
_nmsize 5-243
halloc 5-171
hfree 5-173
memicmp 5-229

memory allocation routines 5-9
alloca 5-9

X-18

memory.h 4-7
memset 1-24,3-1,5-231

huge models 1-24
memsize 3-20
menu

file A-74, A-76
load A-74, A-76
shell A-74

options A-76
case sensitivity A-76

run A-75
restart A-75
start A-75

messages during compiling A-7
messages, library manager

error A-58
miscellaneous routines 5-4,5-275

abs
assert.h
getenv 5-163
include file 3-32
labs
longjmp 5-208
perror 5-252
putenv 3-32
rand 3-32
setjmp 3-32, 5-303
s rand 3-32, 5-332
swab 3-32

mkdir 5-232
mktemp 5-234
modf 1-21,3-18,5-236

floating-point support 1-21
modification time 5-393
movedata 3-1, 5-237
moving buffers 5-223

N
naming conventions 1-1
naming files 5-234
NDEBUG 3-32,4-2,5-15
nesti ng A-40

declarations A-40
include files A-40
maximum level for

structure A-40
preprocessor directives,

maximum length A-40
nfi Ie constant 4-11
nfree 3-20
nmalloc 3-20
nmsize 3-20
nonlocal goto 3-33, 5-208,5-303
notations used in this book 1-4

bold 1-4
brackets [] 1-5
command syntax notations 1-7
ellipses. 1-5
hexadecimal representation 1-5
italics 1-4
operating systems 1-6
small capital letters 1-5
typeface 1-4
vertical bar (I) 1-5

null 4-9
null constant 4-11
NULL pointer 3-8,4-11
null pointer assignment in

program A-2
NULL segment A-2
numbers as arguments A-72

o
o_binary 1-19, 2-7
O_TEXT 1-19
oflag 1-19
onexit 3-26

exit routines
onexit 5-244

open 5-246, 5-306
limitations on argument type­

checking 1-15
low-level 1/0 3-13
overriding default translation

mode 1-19
open flag 5-246,5-318

oflag 5-318
opening a stream 3-8

stdaux 3-9
stderr 3-9
stdin 3-9
stdout 3-9
stdprn 3-9

opening files 3-13,5-54,5-246,
5-318

opening streams 5-94,5-120,5-137
operand types A-75

incompatible operations A-75
operating systems 1-6
optional items in syntax 1-7
options

CodeView A-77
IS A-77

linker A-77
EXEPACK A-77

options menu
case sensitivity A-76

outp 5-250
OVERFLOW 5-219
overlay of parent process 5-324

X-19

p
parent process 5-76, 5-323
pathname delimiter 1-17
pathnames and filenames

. conventions 1-17
period operator (.) A-75
permission

changing 5-38
permission mask 5-385
permission setting 5-38, 5-54,

5-246,5-318
perror 1-16,5-252

errno value error
messages A-66

errno values A-67
miscellaneous routines 3-32
permission setting 5-5

PLOSS 5-219
pointer 5-9

to the reserved stack space 5-9
alloca function 5-9

portability 1-17
positioning file pointer 5-144,

5-371
pow 1-21,3-18

exponential functions 5-254
floating-point support 1-21
math routines 5-254

predefined handles 3-14
predefined stream pointers 3-9
prefixes

printf type A-71
with type specifiers A-71

preprocessor directives, maximum
length of nesting A-40

printf 5-255
printf type prefixes A-71
printf type specifiers A-71
printf.

floating-point support 1-21
limitations on argument type­

checking 1-15

X-20

printing 5-153
process 5-2, 5-82

exit 5-82 -
abort 5-2
exec I 5-76
execle 5-76
execlp 5-76
execlpe 5-76
execv 5-76
execve 5-76
execvp 5-76
execvpe 5-76
exit 5-82
spawnl 5-323
spawnle 5-323
spawnlp 5-323
spawnlpe 5-323
spawnv 5-323
spawnve 5-323
spawnvp 5-323
spawnvpe 5-323

process control 3-25

_exit 3-25
abort 3-25
exec family
execl
execle
execlp
execlpe 3-26
execv
execve
execvp
execvpe
exit
getpid 5-165
identify a process 3-25
include file 3-25

process.h 3-25
onexit
raise
signal 3-26, 5-310
spawn family 3-27
spawnl 3-26
spawnle 3-26

process control (continued)
spawnlp 3-26
spawnlpe 3-26
spawnv 3-26
spawnve 3-26
spawnvp 3-26
spawnvpe 3-26
start a new process 3-25
stop a process 3-25
system 3-26, 5-367

process identification 5-165
process.h 4-7
process.h, contents 4-7
process.h 3-25
producing a temporary file in

another directory 5-376
program limits at run-time A-6
Program Segment Prefix 2-9
pseudo random integers 5-275,

5-332
PSP (Program Segment Prefix) 2-9

ptrdiff t 4-9
punctuation, in syntax diagrams

brackets ([]) 1-8
colon (:) 1-8
comma (,) 1-8
equal sign (=) 1-8
question mark (?) 1-8
slashes (/) 1-8

putc 5-264
putch 5-266
putchar 5-264
putenv

miscellaneous routines 3-32,
5-267

puts 3-7, 5-269
stream 1/0 3-7

putw 3-7, 5-270
stream 1/0 3-7

Pythagorean formula 5-175

Q
qsort 1-24, 3-28

huge models 1-24
searching and sorting 5-272

quick sort 5-272

R
radix command A-71
raise 3-26
rand 5-274, 5-275

miscellaneous routines 3-32
random access 5-144,5-149
random number generator 5-275,

5-332
read 1-16, 5-278

end-of-file condition 1-16
low-level 110 3-13

read operations 5-105
binary int value from

stream 5-167
character from stdin 5-105,

5-157
character from stream 5-157
characters from file 5-278
data items from stream 5-131
formatted 5-57,5-142,5-293,

5-334
from keyboard 5-159

with echo 5-160
from port 5-176
from screen 5-34, 5-57
line from stdin 5-166
line from stream 5-107
scanning 5-142

reading and writing data 3-11,3-15
reading syntax diagrams 1-8
realloc 3-20

memory allocation 5-280
storage allocation 3-20

reallocation 5-280
redirection 3-9,3-14,5-137

X-21

Reentrant functions 8-1
register command A-71
register variables A-75
REGS

standard types 2-10
regs type 4-4
regular expressions A-74, A-76
remove

file handling 5-282
removing a file 5-282
rename 5-284
renaming directories. 5-284
renaming files 5-284
reopening streams 5-137
repeat symbol, in syntax

diagram 1-8
required items in syntax 1-7
requirements 1-3

minimum hardware 1-3
minimum software 1-4

reserving storage 2-3, 3-20
calloc 5-31
halloc 5-171
hfree 5-173

restart command A-74, A-75
reversing strings 5-355
rewind 3-7,5-286

stream I/O 3-7
rewinding a stream 5-286
rmdir

directory control 5-288
rmtm p 3-7, 5-290

stream 1/0 3-7
routine declarations 4-1, 4-2
routines, misceillaneous 3-32
run menu A-75

restart A-75
start A-75

run-time library error
messages A-1

run-time limits A-6
maximum length of command

line A-6
program limits at run-time A-6

X-22

run-time limits (continued)
runtime A-6

run-time routines by category 3-1
buffer manipulation 3-1

include file 3-1
memccpy 3-1
memchr 3-1
memcmp 3-1

chdir 3-4
direct. h 3-4
directory control 3-4
DOS interface routines 3-24
getcwd 3-4
I/O functions 3-6
keyboard and port lID

routi nes 3-16
cgets 3-16
cprintf 3-16
cputs 3-16
cscanf 3-16
getch 3-16
getche 3-16
inp 3-16
kbhit 3-16
outp 3-16
putch 3-16
ungetch 3-16

math 3-17,5-316
memicmp 3-1
memory.h 3-1
miscellaneous 3-32
mkdir 3-4
movedata 3-1
onexit 5-244
process control routines 3-25
rmdir 3-4
searching and sorting 3-28
stream routi nes 3-6
time routines 3-30
variable-length argument

list 3-31

S
sbrk 3-20, 5-291

storage allocation 3-20
scanf 3-7, 5-293

limitations on argument type­
checking 1-15

floating-point support 1-22
stream 1/0 3-7

screen and port 1/0 5-34
cgets 5-34
cprintf 5-51
cputs 5-53
cscanf 5-57

search command A-74, A-76
search.h 4-8

setjmp.h 4-8
search.h 3-29
searching

Ifind 5-198
Isearch 5-198

searching and sorting
bsearch 3-28
include file 3-29

search.h 3-29
Ifind 3-28
Isearch 3-28
qsort 3-28

searching and sorting
routi nes 5-26

searching buffers 5-225
searching strings 5-342,5-353,

5-357
searching strings for tokens 5-363
seed 5-332
segment registers 5-299

obtaining values 5-299
segment, NULL A-2
segread 3-24, 5-299
setbuf 3-8, 5-301

stream 1/0 3-8
setj m p 5-303

miscellaneous routines 3-32

setjmp.h 3-32
setmode 1-19,5-306
sets of function declarations 1-12
setting characters

buffers 5-231
setvbuf 3-8,5-308

stream 1/0 3-8
share.h 4-8
sharing flag 5-319

shflag 5-319 .
shell escape command A-74
SIGFPE 4-5
signal 3-26,5-310
signal settings

child process 5-323
signal.h 4-8
signal.h 3-25
signals 5-310
significance of case

sensitivity 1-17
sin 1-21,3-18,5-316

floating-point support 1-21
sine 5-316
SING 5-219
sinh 1-21, 3-18, 5-316

floating-point support 1-21

size_t 4-9
slash (I), Search Command A-74,

A-76
software requirements 1-4
sopen 5-318

DOS considerations 1-20
limitations on argument type­

checking 1-15
low-level 110 3-13

source mode A-74
spawn family 5-323

differences between spawn rou­
tines 3-27

path name delimiters 1-17
spawnl 3-26, 5-323

limitations on argument type­
checking 1-15

X-23

spawnle 3-26, 5-323
limitations on argument type-

checking 1-15
spawnlp 3-26, 5-323
spawnlpe 3-26, 5-323
spawnp

limitations on argument type-
checking 1-15

spawnv 3-26,5-323
spawnve 3-26, 5-323
spawnvp 3-26, 5-323
spawnvpe 3-26, 5-::323
sprintf 3-8, 5-329

limitations on argument type­
checking 1-15

stream I/O 3-8
sqrt 1-21, 3-18, 5-331

floating-point support 1-21
square root function 5-331
srand 5-332

miscellaneous routines 3-32
SREGS 2-10,4-4
sscanf 3-8, 5-334

limitations on argument type­
checking 1-15

stream 1/0 3-8
stack allocation 3-20
stack environment

restoring 5-208
saving 5-303

stack environments 3-20
stack overflow A-2
stack-checking

enabled routines, list of 1-13
stackavail 3-20,5-336
standard data types in run-time rou­

tines
complex 2-10
DOSERROR 2-10

exception 2-10
file 2-10

jmp_buf 2-10
listed 2-10
REGS 2-10

X-24

standard data types in run-time rou-
tines (continued)

SREGS 2-10
stat 2-11
timeb 2-11
tm 2-11
utimbuf 2-11

standard types 4-4
DOSERROR 5-68
exception 5-218
stat 5-146
timeb 5-151
utimbuf 5-393

standard types, stat 5-337
standard types,sregs 4-4
start-up A-72, A-74

command line A-72, A-74
start-up code A-74
stat 5-337

standard types 2-11
stat type 4-8, 5-146,5-337
stat.h 4-8
status87 3-18,5-340
stdarg.h, contents 4-9
stdaux 1-19,3-9

buffering 3-10
changing translation

mode 5-306
file handle 3-14
overriding default translation

mode 1-19
stddef.h, contents 4-9
stderr 1-19,3-9

buffering 3-10
changing translation

mode 5-306
file handle 3-14
overriding default translation

mode 1-19
stdin 1-19, 3-9

buffering 3-10
changing translation

mode 5-306
file handle 3-14

stdin (continued)
overriding default translation

mode 1-19
stdio.h 4-10
stdio.h 3-8
stdlib.h, contents 4-12
stdlib.h 3-32
stdout 1-19,3-9

buffering 3-10
changing translation

mode 5-306
file handle 3-14
overriding default translation

mode 1-19
stdprn 1-19,3-9

buffering 3-10
changing translation

mode 5-306
file handle 3-14
overriding default translation

mode 1-19
stopping a process 5-2
stopping compilation A-8
storage

reservi ng 2-3
storage allocation 5-31

_expand 3-20,5-85

_ffree 3-20

_fmalloc 3-20
_fmsize 3-20
_ freect 3-20

_memavl 3-20

_memsize 3-20

_nfree 3-20

_nmalloc 3-20

_nmsize 3-20
calloc 3-20
ffree 3-20
free 3-20
halloc 3-20,5-171
hfree 3-20, 5-173
malloc 3-20
realloc 3-20

storage allocation (continued)
sbrk 3-20, 5-291
stackavail 3-20

storage allocation routines 5-9
alloca 5-9

storage release A-74
strcat 5-342

string manipulation 3-29
strchr 5-342

string manipulation 3-29
strcmp 5-342

string manipulation 3-29
strcmpi 3-29, 5-342

string manipulation 3-29
strcpy 3-29, 5-342

string manipulation 3-29
strcspn 3-29, 5-342

string manipulation 3-29
strdup 5-342

string manipulation 3-29
stream 3-7, 3-8

include file 3-8
putw 3-7
rewind 3-7
rmtmp 3-7
scanf 3-7
setbuf 3-8
setvbuf 3-8
sprintf 3-8
sscanf 3-8
tempnam 3-8
tmpfile 3-8
tmpnam 3-8
ungetc 3-8
vfprintf 3-8
vprintf 3-8
vspri ntf 3-8

stream I/O 3-7,3-12
clearerr 3-7
error handling 3-12
fclose 3-7,5-89
fcloseall 3-7, 5-89
fdopen 3-7, 5-94
feof 3-7, 5-97

X-25

stream 1/0 (continued)
ferror 3-7, 5-99
fflush 3-7,5-101
fgetc 3-7,5-105
fgetchar 3-7, 5-105
fgets 3-7,5-107
fileno 3-7,5-113
flushall 3-7
fopen 3-7, 5-120
fprintf 3-7,5-126
fputc 5-128
fputchar 3-7
fputs 3-7, 5-130
fread 3-7, 5-131
freopen 3-7,5-137
fscanf 3-7, 5-142
fseek 3-7, 5-144
ftell 3-7, 5-149
fwrite 3-7,5-153
getc3-7,5-157
getchar 3-7, 5-157
gets 3-7,5-166
getw 3-7,5-167
printf 3-7, 5-255
putc 3-7, 5-264
putchar 3-7,5-128,5-264
puts 5-269
putw 5-270
rewind 5-286
scanf 5-293
setbuf 5-301
sprintf 5-329
sscanf 5-334
tmpfile 5-374
ungetc 5-387

va_arg 5-395

va_end 5-395

va_start 5-395
vfpri ntf 5-398
vprintf 5-398
vsprintf 5-398

stream input/output
rmtmp 5-290

X-26

stream inputloutput (continued)
setvbuf 5-308

stream operations 1-16
stream pointer 3-6
stream routines 3-6
streams

access mode 5-137
adding data 5-95
appending 5-95,5-120,5-137
binary mode 5-137
buffering 5-301
closing 5-89
file handles 5-113
flushall 5-115
formatted 1/0 5-142, 5-255,

5-293,5-329, 5-334
opening 5-94, 5-120
positioning file pOinter 5-144,

5-149, 5-286
reading characters 5-105,5-157
reading data items 5-131
reading lines 5-107,5-166
reopening 5-137
rewinding 5-286
text mode 5-137
translation mode 5-121,5-137
ungetting characters 5-387
updating 5-120,5-137
writing binary int value 5-270
writing characters 5-128,5-264
writing data items 5-153
writing lines 5-269
writing strings 5-130

streams, opening 3-8
strerror 5-346

string manipulation 3-29
strfup 3-29
stricmp 5-342

string manipulation 3-29
string manipulation 5-342

ok 5-363
strcat 3-29
strchr 3-29, 5-342
strcmp 3-29, 5-342

string manipulation (continued)
strcmpi 3-29,5-342
strcpy 3-29,5-342
strcspn 3-29, 5-342
strdup 3-29,5-342
strerror 3-29
stricmp 3-29
string.h 3-29
strlen 3-29, 5-348
strlwr 3-29, 5-349
strncat 3-29, 5-350
strncmp 3-29, 5-350
strncpy 3-29, 5-350
strnicmp 3-30, 5-350
strnset 3-30, 5-350
strpbrk 3-30, 5-353
strrchr 3-30, 5-354
strrev 3-30, 5-355
strset 3-30, 5-356
strspn 3-30,5-357
strstr 3-30, 5-359
strtod 5-360
strtok 3-30
strtol 5-360
strupr 3-30, 5-365

string routines
strerror 5-346
strstr 5-359

string.h 4-13
string.h 3-29
strings 1-18,5-19,5-51

comparing 5-342,5-350
ignoring case 5-342

concatenating 5-342, 5-350
converting to floating-point

values 5-19
converting to uppercase 5-365
copying 5-342, 5-350
initializing 5-350, 5-356
length of 5-348
reading from screen 5-34
reversing 5-355
searching 5-342, 5-353, 5-357
searching for tokens 5-363

strings (continued)
writing 5-130
writing to screen 5-53

strings as arguments A-73
strlen 5-348

string manipulation 3-29
strlwr

string manipulation 3-29
strings

converting to
lowercase 5-349

strncat 5-350
string manipulation 3-29

strncmp 5-350
string manipulation 3-29

strncpy 5-350
string manipulation 3-29

strnicmp 5-350
string manipulation 3-30

strnset 5-350
string manipulation 3-30

strpbrk 5-353
string manipulation 3-30

strrchr 5-354
string manipulation 3-30

strrev 5-355
string manipulation 3-30

strset 5-356
string manipulation 3-30

strspn 5-357
string manipulation 3-30

strstr 5-359
string manipulation 3-30

strtod 5-360
strtok 5-363

string manipulation 3-30
strtol 5-360
strupr 5-365

string manipulation 3-30
subdirectory 1-17

conventions 1-17
subdirectory, sys 1-17
suspension of parent

process 5-324

X-27

swab
miscellaneous routines 3-32,

5-366
swapping bytes 5-366
symbols in arguments A-76
syntax

arrows, use of 1-8
baseline 1-7
branch line 1-7
command diagrams,

explained 1-7
diagram terms used 1-7
diagrams, explained 1-7
diagrams, how to read 1-8
keyword 1-7
optional items 1-7
punctuation

brackets, square 1-8
colon (:) 1-8
comma (,) 1-8
equal sign (=) 1-8
question mark (?) 1-8
slashes (I) 1-8

repeat symbol 1-8
required items 1-7
variable 1-7

syntax diagram terms 1-7
syntax diagrams 1-8
sys subdirectory 1-17
sys_errlist 2-6

sys_errlist variable 4-4,5-252
sys_nerr 2-6

sys_nerr variable 5-252
system 1-6, 3-26

pathname delimiters 1-18
stat.h 3-5
system 5-367

X-28

T
tan 1-21,3-18,5-369

floating-point support 1-21
tangent 5-369
tanh 1-21,3-18,5-369

floating-point support 1-21
tell 5-371

low-level I/O 3-13
tempnam 3-8, 5-376

stream 1/0 3-8
temporary files 5-234
terminating a process 5-2, 5-82
testing characters 5-187,5-190
testing for character device 5-189
testing for keystroke at

keyboard 5-195
text files, identifying A-74
text mode 1-18,2-7,5-121
time 5-11, 5-201, 5-373

converting from long integer to
string 5-59

converting from structure to
string 5-11

correcting for local time 5-201
obtaining 5-151, 5-373
setting global variables 5-382
system time 5-373
time routines 3-30

timeroutines 5-11
asctime
ctime 5-59
difftime
ftime 5-151

types.h 3-31
gmtime
include file 3-30,3-31
localtime 5-201
time 5-373
time.h 3-30
timeb.h 3-31
types.h 3-31
tzset 5-382
utime 3-30, 5-393

time routines (continued)
utime.h 3-31

time.h 4-13
time.h 3-30, 3-31
timeb 2-11

type 5-151
timeb.h 4-13
ti mezone 2-4
timezone variable 5-382
TLOSS 5-219
tm 2-11
tm type 4-13
tmpfile 3-8,5-374

stream 1/0 3-8
tmpnam 3-8, 5-376

stream 1/0 3-8
toascii 5-379
tokens 5-363
tolower 5-379
tolower, side effects 3-3

tolower, using function
version 3-3

toupper 5-379
toupper, side effects 3-3

toupper, using function
version 3-3

tracepoint command A-71, A-75
translation mode, default 2-7
trigonometric functions 3-17,5-7,

5-13,5-17
acos 5-7
asin 5-13
atan 5-17
atan2 5-17
cos 5-49
cosh 5-49
hypot 5-175
sin 5-316
sinh 5-316
tan 5-369
tanh 5-369

type casting A-71
type specifiers A-71

typeface notation 1-4
types.h 4-14
types, definition of 1-11

TZ environment variable 2-4
TZ variable 5-201, 5-382
tzname 2-4
tzname variable 5-382
tzset 5-382

time routines 3-30

u
umask

file handle 5-385
permission 5-385

UNDERFLOW 5-219, A-4
ungetc 3-8, 5-387

stream 1/0 3-8
ungetch 5-389
ungetting characters 5-387, 5-389
unknown error A-8
unknown warning A-8
unlink

deleting files 5-391
di rectory control 5-391
files deleting 5-391
unlinking files 5-391

using C library routines 1-9
using floating-point data 1-21
using huge arrays in library func-

tions
file pOinter 3-6
huge, use library functions 1-24
predefined stream 3-9
stream pointer 3-6

utimbuf 2-11
utimbuf type 5-393
utime 5-393

time routines 3-30
utime.h 4-14

X-29

v
va_arg 3-31

va_end 5-395
va_start 5-395
variable-length argument list

routines 3-31

va_end 3-31
variable-length argument list

routines 3-31

va_start 3-31
variable-length argument list

routines 3-31
variable length argument list 3-31

va_arg 3-31

va_end 3-31

va_start 3-31
version number 2-8
vfprintf 3-8, 5-398

stream I/O 3-8
video modes A-77
view command A-74
vprintf 3-8, 5-398

stream I/O 3-8
vsprintf 3-8, 5-398

stream I/O 3-8

W
wait 5-400
warning error messages A-7, A-28
watch command A-71
watchpoint command A-71
watchpoint, defining A-71
wordregs type 4-4
write 3-13, 5-403

low-level 110 3-13
write operations

character to keyboard 5-389
character to stdout 5-128,5-264
character to stream 5-128,

5-264, 5-387
characters

ungetting 5-389

X-3~

write operations (continued)
characters top fi Ie 5-403
data items from stream 5-153
formatted 5-51,5-126, 5-255,

5-329
line to stream 5-269
printing 5-153
string to stream 5-130
to port 5-250
to screen 5-51, 5-266

writing and reading data 3-15
writing characters to port 5-250
writing to screen 5-51

z
zero, division by A-72

Notes:

Notes:

c IBM Corp. 1987
All rights reserved.

International Business
Machines Corporation .
P.O. Box 1328-W
Boca Raton,
Florida 33429-1328

Printed in the
United States of America

84X1794

--------- - ---- ----- - ---- - - -----------_ . ,

