

--------- ----- ---- - ---- -- ----------_.-

APL

Personal Computer
Computer Language
Series

by IBM Madrid Scientific Center

First Edition (May 1983)

This product could include technical inaccuracies or typographical
errors.

Changes are periodically made to the information herein; these
changes will be incorporated in new editions of this publication.

The foHowing paragraph appiies only to the United States and
Puerto Rico: International Business Machines Corporation
provides this manual "as is" without warranty of any kind, either
express or implied, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose.
IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this manual at any time and
without notice.

Products are not stocked at the address below. Requests for copies
of this product and for technical information about the system
should be made to your authorized IBM Personal Computer
dealer.

A Reader's Comment Form is provided at the back of this
publication. If this form has been removed, address comments to:
IBM Corporation, Personal Computer, P.O. Box 1328-C, Boca
Raton, Florida 33432. IBM may use or distribute any of the
information you supply in any way it believes appropriate without
incurring any obligations whatever.

© Copyright International Business Machines Corporation 1983

Preface

APL is a general-purpose language that can be used in
many applications, such as commercial data processing,
system design, mathematical and scientific computation,
and the teaching of mathematics and other subjects.
This book describes the IBM Personal Computer APL
system.

The book consists of two parts. Part 1, "Operation
Guide," has four chapters that describe the use of the
system. Part 2, "APL Reference Guide," has eight
chapters that explain, in detail, the APL language as
implemented on the IBM Personal Computer. Part 1
assumes some familiarity with computing, as well as a
basic knowledge of APL which can be obtained from
Part 2.

Chapter 1, "Introduction," describes the use of the IBM
Personal Computer devices under APL, and should be
read by all who use the system. The chapter contains
information about the use of diskette drives and fixed
disks, the keyboard, display monitors, and the IBM
Graphics Printer. This chapter also introduces the APL
character set, and describes the full-screen APL input
editor.

Chapter 2, "Application Workspaces," describes a
number of functions provided with the system that allow
a person with a basic understanding of APL to use the
IBM Personal Computer's devices. A set of workspaces
has been provided to help you with the following
operations:

• Printer management
• Full-screen editing of APL defined functions
• Disk Operating System file management
• Asynchronous communications with an IBM

System/370 host
• Music samples

iii

iv

Chapter 3, "Auxiliary Processors," describes, in detail,
the auxiliary processors provided with the system,
which allow a knowledgeable APL user to create
specific application workspaces. The following
auxiliary processors have been included to help you
obtain greater control of the IBM Personal Computer's
devices:

• AP80:
• APIOO:
• AP205:
• AP210:
• AP232:
• AP440:

IBM Graphics Printer Control
BIOSIDOS interrupt handling
Full-screen display management
DOS file management
Asynchronous communications
Music generator

Chapter 4, "How to Build an Auxiliary Processor,"
describes auxiliary processors that can exchange
information with APL. A person who has both a good
knowledge of APL and the ability to program in the
IBM Macro Assembler language can use this chapter to
help produce his own auxiliary processor to perform a
specific application not currently supported by the APL
system.

Chapter 5, "Using APL," describes the major
characteristics of the APL language.

Chapter 6, "Fundamentals," shows some typical APL
statements, lists error messages with recommended
corrective actions, describes the APL character set, and
explains the terms used in APL.

Chapter 7, "Primitive Functions and Operators,"
describes the scalar and mixed primitive functions of
APL and the operators that may be used with them.

Chapter 8, "System Functions and System Variables ,"
describes the interaction between the APL language and
the system implementing it.

Chapter 9, "Shared Variables," describes the interface
that allows two independently operating processors to
exchange information.

Chapter 10, "Function Definition," describes the
various methods by which a defined function can be
established in an APL workspace. Ambi-valent
functions, localization of names, branching, labels,
comments, and the del (V) function editor are all
discussed in this chapter.

Chapter 11, "Function Execution," describes the
execution of defined functions, including the related
topics of halted execution, the state indicator, stop
control, trace control, locked functions, recursive
functions, and console input and output.

Chapter 12, "System Commands," describes the
various APL system commands that are used to control
the work session and to manage workspaces.

Three appendixes, "Alt Codes and Associated
Characters," "Printer Control Codes," and "Internal
Representation of Displayed Characters" are also
included.

v

Notes:

vi

Contents

Part 1. Operation Guide

Chapter 1. Introduction 1-1
Backing Up Your Diskette 1-8

Before You Begin 1-8
Protecting Your Original Diskette 1-8
Backing Up Diskette with One Drive 1-9
Backing Up Diskette with Two Drives ... 1-11

Installing APL on Your Fixed Disk 1-14
Getting APL Started from Either Diskette
or Fixed Disk 1-15

Including Options in the APL Command 1-16
The APL Character Set 1-17
The Keyboard 1-18

Function Keys 1-18
Typewriter Keyboard 1-19
Numeric Keypad 1-21
Special Key Combinations 1-22

Use of Displays 1-25
Disk(ette) Drives 1-26
The Printer 1-27
The APL Input Editor 1-28

APL Input Editor Special Keys 1-29
How to Make Corrections on the
Current Line 1-31

Chapter 2. Application Works paces 2-1
The PRINT Workspace 2-4
The EDIT Workspace 2-5
The FILE Workspace 2-8

Functions 2-9
Examples of Use 2-22

vii

The VM232 Workspace3 2-23
Selecting a Terminal 2-24
Saving Your Line Parameter
Definition 2-31

Connection with the Host 2-32
Functions 2-34
Example of Connection with the Host 2-38
Auxiliary Files on the Host 2-43

The :ivlUSIC Workspace 2-57

Chapter 3. Auxiliary Processors 3-1
The Printer Auxiliary Processor: AP80 3-4
BIOS/DOS Interrupt Auxiliary
Processor: AP 1 00 3-6

The Full-Screen Auxiliary
Processor: AP205 3-10

Screen Formatting 3-12
Control Commands 3-15
Interactive Use of the Screen 3-1 7
Return Codes 3-19

The File Auxiliary Processor: AP210 3-21
Control Commands 3-22
Control Subcommands 3-25
Return Codes 3-26

The Asynchronous Communications Auxiliary
Processor: AP232 3-28

Control Commands 3-29
The Music Auxiliary Processor: AP440 3-35

AP440 Command Syntax 3-36

Chapter 4. How to Build an Auxiliary
Processor 4-1

Access Control 4-4
Shared Variable Processor Services and
Return Codes 4-5

Format of Shared Data 4-9
Internal Structure of APL Variables 4-11
Information about Shared Variables 4-12
Auxiliary Processor Example with One

Shared Variable 4-12
Auxiliary Processor Example with Two

Shared Variables 4-15
APL Data Segment and Macros for Auxiliary

Processors 4-20

viii

Part 2. APL Reference Guide

Chapter 5. Using APL 5-1
Two Examples of the Use of APL 5-3

An Isolated Calculation 5-4
A Prepared Workspace 5-4

Characteristics of APL 5-5

Chapter 6. Fundamentals 6-1
Character Set 6-7
Spaces 6-8
Function 6-8
Order of Execution 6-9
Data 6-10

Arrays 6-10
Constants 6-13

W orkspaces and Libraries 6-14
Names 6-14
Implementation Limits 6-15

Chapter 7. Primitive Functions and
Operators 7-1

Scalar Functions 7-3
Plus, Minus, Times, Divide, and
Residue 7-7

Conjugate, Negative, Signum, Reciprocal,
and Magnitude 7-7

Boolean and Relational Functions 7-8
Minimum and Maximum 7-10
Floor and Ceiling 7-11
ROLL (Random Number Function) 7-11
Power, Exponential, General and Natural
Logarithm 7-12

Circular, Hyperbolic, and Pythagorean
Functions 7-13

Factorial and Binomial Functions 7-16
Operators 7-1 7

Reduction 7-1 7
Scan 7-19
Axis 7-20
Inner Product 7-22
Outer Product 7-24

Mixed Functions 7-26
Structural Functions 7-31
Selection Functions 7-39

ix

Selector Generators 7-44
Index Generator and Index Of 7-45
Membership 7-45
Grade Functions 7-46
Deal 7-50

Numeric Functions 7-50
Matrix Inverse and Matrix Divide 7-50
Decode and Encode 7-54

Data Transformations 7-56
Execute and Format 7-57
Picture Format 7-64

Chapter 8. System Functions and System
Variables 8-1

System Functions 8-3
Canonical Representation - OCR 8-5
Delay - ODL 8-6
Execute Alternate: - OEA 8-6
Expunge - DE X 8-7
Function Establishment - OFX 8-8
N arne Classification - ONC 8-8
N arne List - ONL 8-9
Peek/Poke - oPK 8-10
Transfer Form - OTF................. 8-11

System Variables 8-14
Latent Expression - DLX 8-16
Atomic Vector - OA V 8-1 7
Format Control - OFC 8-18
Horizontal Tabs - OHT 8-19

Chapter 9. Shared Variables 9-1
Offers 9-5
Access Control 9-7
Retraction 9-12
Inquiries 9-13

Chapter 10. Function Definition 10-1
Canonical Representation and Function
Establishment 10-3

The Function Header 10-5
Ambi-Valent Functions 10-6
Local and Global Names 10-7
Branching and Statement Numbers 10-8
Labels 10-9
Comments 10-10

x

Function Editing - The V Form 10-10
Adding a Statement 10-11
Inserting or Replacing a Statement 10-11
Replacing the Header 10-12
Deleting a Statement 10-12
Adding to a Statement or Header 10-12
Function Display 10-13
Leaving the V Form 10-15

Chapter 11. Function Execution 11-1
Halted Execution 11-4

State Indicator 11-5
State Indicator Damage 11-6

Trace Control 11-7
Stop Control 11-7
Locked Functions 11-8
Recursive Functions 11-9
Console Input and Output 11-10

Evaluated Input 11-12
Character Input 11-13
Interrupting Execution During Input 11-13
Normal Output 11-13
Bare Output 11-14

Chapter 12. System Commands 12-1
Active Workspace - Action Commands 12-7
Active Workspace - Inquiry Commands 12-10
Workspace Storage and Retrieval - Action
Commands 12-12

Libraries of Saved Works paces 12-12
Workspace Names 12-12

Workspace Storage and Retrieval - Inquiry
Commands 12-16

Sign-Off 12-1 7

Appendix A. ALT Codes and Associated
Characters A-I

Appendix B. Printer Control Codes B-1

Appendix C. Internal Representation of
Displayed Characters C-l

Index X-I

xi

Notes:

xii

Part 1. Operation Guide

Chapter 1. Introduction 1-1
Backing Up Your Diskette 1-8

Before You Begin 1-8
Protecting Your Original Diskette 1-8
Backing Up Diskette with One Drive 1-9
Backing Up Diskette with Two Drives 1-11

Installing APL on Your Fixed Disk 1-14
Getting APL Started from Either Diskette
or Fixed Disk 1-15

Including Options in the APL Command 1-16
The APL Character Set 1-17
The Keyboard 1-18

Function Keys 1-18
Typewriter Keyboard 1-19
Numeric Keypad 1-21
Special Key Combinations 1-22

Use of Displays 1-25
Disk(ette) Drives 1-26
The Printer 1-27
The APL Input Editor 1-28

APL Input Editor Special Keys 1-29
How to Make Corrections on the
Current Line 1-31

Chapter 2. Application W orkspaces 2-1
The PRINT Workspace 2-4
The EDIT Workspace 2-5
The FILE Workspace 2-8

Functions 2-9
Examples of Use 2-22

The VM232 Workspace 2-23
Selecting a Terminal 2-24
Saving Your Line Parameter
Definition 2-31

Connection with the Host 2-32
Functions 2-34
Example of Connection with the Host 2-38
Auxiliary Files on the Host 2-43

The :rvIUSIC Workspace 2-57

Chapter 3. Auxiliary Processors 3-1
The Printer Auxiliary Processor: AP80 3-4
BIOS/DOS Interrupt Auxiliary
Processor: AP 1 00 3-6

The Full-Screen Auxiliary
Processor: AP205 3-10

Screen Formatting 3-12
Control Commands 3-15
Interactive Use of the Screen 3-1 7
Return Codes 3-19

The File Auxiliary Processor: AP210 3-21
Control Commands 3-22
Control Subcommands 3-25
Return Codes 3-26

The Asynchronous Communications Auxiliary
Processor: AP232 3-28

Control Commands 3-29
The Music Auxiliary Processor: AP440 3-35

AP440 Command Syntax 3-36

Chapter 4. How to Build an Auxiliary
Processor 4-1

Access Control 4-4
Shared Variable Processor Services and
Return Codes 4-5

Format of Shared Data 4-9
Internal Structure of APL Variables 4-11
Information about Shared Variables 4-12
Auxiliary Processor Example with One

Shared Variable 4-12
Auxiliary Processor Example with Two

Shared Variables 4-15
APL Data Segment and Macros for Auxiliary
Processors 4-20

ii

Chapter 1. Introduction

Backing Up Your Diskette 1-8
Before You Begin 1-8
Protecting Your Original Diskette 1-8
Backing Up Diskette with One Drive 1-9
Backing Up Diskette with Two Drives I-II

Installing APL on Your Fixed Disk 1-14
Getting APL Started from Either Diskette
or Fixed Disk 1-15

Including Options in the APL Command 1-16
The APL Character Set 1-1 7
The Keyboard 1-18

Function Keys 1-18
Typewriter Keyboard 1-19
Numeric Keypad 1-21
Special Key Combinations 1-22

Use of Displays 1-25
Disk(ette) Drives 1-26
The Printer 1-27
The APL Input Editor 1-28

APL Input Editor Special Keys 1-29
How to Make Corrections on the
Current Line 1-31

1-1

Notes:

1-2

APL is a general-purpose language that enjoys wide use
in such diverse applications as commercial data
processing, system design, mathematical and scientific
computation, and the teaching of mathematics and other
subjects. It has proved particularly useful in data-base
applications, where its computational power and
communication facilities combine to increase the
productivity of both application programmers and end
users.

When implemented as a computing system, APL is
used from a typewriter-like keyboard. Statements that
specify the work to be done are typed and the computer
responds by displaying the result of the work at a device
such as a printer or video display. In addition to
work purely at the keyboard and its associated display,
entries may also specify the use of printers, disk files, or
other remote devices.

A programming language should be relevant. That is,
you should have to write only what is logically
necessary to specify the job you want done. This may
seem an obvious point, but many of the earlier
programming languages would have forced you to be
concerned as much with the internal requirements of the
machine as with your own statement of your problem.
APL takes care of those internal considerations
automatically.

A programming language needs both power and
simplicity. By power, we mean the ability to handle
large or complicated tasks. By simplicity, we mean the
ability to state what must be done briefly and neatly, in
a way that is easy to read and easy to write. You might
think that power and simplicity are competing
requirements, so that if you have one, you can't have
the other, but that is not necessarily so. Simplicity does
not mean the computer is limited to doing simple tasks,
but that the user has a simple way to write instructions
to the computer. The power of APL as a programming
language comes in part from its simplicity.

1-3

1-4

The letters, APL, originated with the initials of a book
written by K. E. Iverson,A Programming Language
(New York: Wiley, 1962). Dr. Iverson first worked on
the language at Harvard University, and then continued
its development at IBM with the collaboration of Adin
Falkoff and others at the IBM T.1. Watson Research
Center. The termAPL now refers to the language that is
an outgrowth of that work. APL is the language, and
IBM Personal Computer APL is the "brand-name" of
a particular implementation of that language, with
extensions. The implementation and extensions were
developed by the IBM Madrid Scientific Center. This
implementation, hereafter called APL, has the following
features:

• Shared variables, which allow the exchange of
information between independently operating
processors. This allows the separate loading of only
those auxiliary processors needed for a particular
work session or application. It also makes possible
the design of new auxiliary processors for an
application that may not be currently supported by
the system.

• Facilities for conversion between the internal form
and transfer form of APL objects, including)IN,
)OUT, and OTF, that allow workspaces to be
interchanged between different systems.

• Asynchronous communications with the IBM
Virtual Machine Facility/370 permits the exchange
of workspaces and data files between systems, and
allows devices attached to the host to be used.

• All dyadic-defined functions are ambivalent, which
allows them to be used monadicallY without
generating a syntax error. The system function,
ONe, can be applied to the left argument within a
function to determine, at execution time, whether
the function actually has been called as dyadic or
monadic.

• Improved error recovery is made possible by the
)RESET command, which clears the state indicator,
and OEA (execute alternate), which allows the
trapping of an APL interrupt and error message to
permit a programmed means of recovery .

• Event handling facilities are provided through an
APL interface to the BIOS/DOS interrupts, thus
allowing these interrupts to be trapped or generated
for more control of the system environment.

• The APL workspace consists of two parts:

The main workspace, which has a maximum
size of 64K bytes, where all APL statements are
executed and all APL obj ects are created and
modified.

The elastic workspace, which can use all
additional free memory. If space is needed for an
operation in the main workspace, every APL
object not currently referenced will be
automatically relocated to the elastic workspace,
and returned as needed.

• The following four data types are supported, and the
system automatically performs data-type
conversions whenever possible to minimize storage
space:

- Floating-point, with eight bytes per element

- Integer, with two bytes per element

- Character, with one byte per element

- Boolean, with one bit per element

• The IBM Personal Computer Math Co-Processor is
used for improved performance of floating-point
operations, such as the APL transcendental
functions.

1-5

1-6

• The ability to start an application automatically by
specifying an APL system command at load time,
before starting a work session. Functions that
imitate some of the system commands also are
provided, allowing the system environment to be
controlled from within a defined function.

• The execution of machine-code subroutines and the
PEEK and POKE of memory contents is provided
through the OPK system function.

• The appearance of numeric output can be improved
using picture format, and the dyadic grades allow
character data to be sorted in a specified collating
sequence.

• Dynamic switching between the APL and National
character sets on the keyboard provides access to an
extensive set of characters that can be entered with
one keystroke.

• Multiple display monitors can be used, with
dynamic switching between the following modes:

40-Column Color/Graphics

80-Column Color/Graphics

80-Column Monochrome (non-APL characters)

• A full-screen input and output capability provides a
full-screen input editor, which allow~ corrections to
be made to a previous line that can then be
re-entered for execution. A full-screen,
defined-function editor, and multiple line deletion
under the del (v) editor, increase the ease with
which programs can be created and edited.

• A file management capability allows the control of
either APL or DOS files, with sequential or direct
access of fixed length and variable length records.

• The optional IBM Graphics Printer can produce
APL characters, and can be used either as a system
log to provide a record of the work session, or to
selectively print a desired APL object or result.

• The speaker attached to the system unit of the IBM
Personal Computer can be used to generate music.

To use the IBM Personal Computer APL system, you
must have the following minimum configuration:

• Either the IBM Personal Computer or the IBM
Personal Computer XT

• 128K of random access memory

• The IBM Personal Computer Math Co-Processor

• One diskette drive

• The IBM Color/Graphics Adapter, to generate both
APL and non-APL characters

• The IBM Color Monitor or other monitor that
functions with the Color/Graphics Adapter, or a
television set and RF modulator. (Television sets
and RF modulators are not sold by IBM.)

• Optional IBM 80 CPS Graphics Printer, with either
the Parallel Printer Adapter or the Monochrome
Display and Printer Adapter.

• Optional Monochrome Display and Printer Adapter
with the Monochrome Display, to display ASCII
(non-APL) characters

• Optional IBM Personal Computer Expansion Unit

• Optional IBM Asynchronous Communications
Adapter

APL comes to you on a diskette, so you have to load it
into memory before you can use it. You should read this
entire chapter before trying to use the APL system.

1-7

Backing Up Your Diskette

Because you have only one copy of the APL system,
you should back it up before you begin to use APL.
Backing up a diskette means to copy a diskette's data
to another diskette. A backup, that is, the copy, saves
you the time, trouble, and sometimes the expense, of
recovering the information on a diskette that has been
lost, damaged, or accidentally written over.

It is a good practice to back up your important program
diskettes as soon as you purchase or create them. Then
store your original diskette properly in a place where
you can find them if you need to. Use the backup
diskettes for everyday operations.

Your data diskettes should be backed up every time you
add or change information on them.

Before You Begin

You will need these diskettes:

• The diskette you want to back up-we're going to
call this your original diskette. You may also see it
called the source diskette.

• The diskette that will become the backup diskette.
Other names for this diskette are target or
destination diskette.

• DOS diskette

Protecting Your Original Diskette

1-8

Hint: It's a good idea to put a tab over the
write-protect notch to make sure you don't accidentally
write on your original diskette. You may remove the tab
when the backup diskette has been made.

When the write-protect notch is covered, if the diskettes
get mixed up, a message similar to the following
appears:

Target diskette write protected
Correct, then strike any key

If you get this message:

1. Remove the original diskette from the drive.

2. Insert the backup diskette.

3. Press any key.

(You do not have to press the Enter key.)

Backing Up Diskette With One Drive

If you have only one diskette drive, you must remove
the original diskette and insert the backup. You may
have to make this switch several times; the Disk
Operating System (DOS) will tell you when.

The DISKCOPY command will give you the following
messages:

Insert source diskette in drive A:

Insert target diskette in drive A:

So you should:

INSERT:

Original diskette
Backup diskette

WHEN:

"source" message appears
"target" message appears

1-9

1-10

IMPORTANT: Read all of the following steps before
starting.

1. Make sure DOS is ready and A> is displayed.

2. Insert the DOS diskette in the drive, if it is not
already there.

3. Type:

diskcopy

and press the Enter key. The following message
appears:

Insert source diskette in drive A:

Strike any key when ready

BEFORE YOU PRESS A KEY:

a. Remove the DOS diskette that is in the drive.

b. Insert your original diskette.

c. NOW press any key.

4. You will see the in use light come on while the
original diskette is being read; then the following is
displayed:

Insert target diskette in drive A:

Strike any key when ready

BEFORE PRESSING A KEY:

a. Remove your original diskette.

b. Insert the backup diskette.

c. NOW press any key to tell DOS the correct
diskette has been inserted.

5. You will see the in use light come on while the
backup diskette is being written. Then the message
shown in Step 3 will appear again.

Hint: F or this procedure, you can remember
which diskette to insert if you remember
"Original = Source."

Insert your original diskette when DISKCOPY
asks for the source diskette.

6. Repeat Steps 3 and 4 until the following message
appears:

Copy complete

Copy another (YIN)?

7. Type

n

You don't have to press the Enter key.

8. The DOS prompt, A> , is displayed. Remove the
backup diskette from the drive. With a felt-tip pen,
mark the label with the contents, the date, and
perhaps, the word "Backup."

Backing Up Diskette With Two Drives

1. Make sure DOS is ready and A> is displayed.

2. Insert your DOS diskette in drive A.

1-11

1-12

3. Type:

diskcopy a: b:

and press the Enter key. The following message
appears:

Insert source diskette in drive A:

Insert target diskette in drive B:

Strike any key when ready

4. Remove your DOS diskette from drive A.

5. Insert your original diskette in drive A.

6. Insert your backup diskette in drive B.

Original Diskette

7. Press any key.

This tells DOS you are ready, and DOS starts
copying the diskette.

If the diskette had not previously been formatted
with the same format as the original diskette, a
formatting while copying message will appear.

All information is now being copied from the
diskette in drive A to the diskette in drive B.

You will see one in use light go on, then the other.

8. When the copy has been made, you will see a
message similar to the following:

Copy complete

Copy another (YIN)?

9. Remove your original diskette from drive A, and
insert your DOS diskette.

10. Type

n

and press the Enter key. The DOS prompt, A> ,
appears.

11. Remove both diskettes.

Use a felt-tip pen to label and date the backup
diskette. You may also want to write "Backup" on
the label as a reminder that this is a copy of
another diskette.

1-13

Installing APL On Your Fixed Disk

1-14

If you have an IBM Personal Computer XT or an IBM
Personal Computer Expansion Unit, you may wish to
install APL on your fixed disk. To do this,_ simply:

1. Start DOS from any drive, then make sure that the
prompt displayed is C>.

2. When the DOS prompt appears:

a. Insert your APL diskette in drive A.

b. Type

A:FDTRANS

and press the Enter key.

When you see the message

APL transfer complete

the following will have occurred:

• A subdirectory named "APL" was created on
your fixed disk.

• The files from your APL diskette were copied to
your fixed disk (in subdirectory "APL").

• A batch file named "APL.BA T" was copied to the
main directory on your fixed disk to make it easy
for you to start APL.

Getting APL Started From Either
Diskette or Fixed Disk

This section describes how to start APL from a diskette
and from a fixed disk.

• To start APL from diskette:

1. Insert your DOS diskette in drive A.

2. Switch on the power to your computer.

3. After you receive the DOS prompt, insert the
APL diskette in drive A and enter the
command

APL

• To start APL from your fixed disk:

1. Ensure APL is installed on your fixed disk.

2. Start DOS and enter the command, APL.

This will cause the batch file, APL.BAT, in
the main directory to be invoked.

After the APL command is executed, the following will
appear on the display screen:

IBM PERSONAL COMPUTER A P L
Version 1.00 (C) Copyright IBM Corp. 19S3
Produced by IBM Madrid Scientific Center

1-15

Including Options in the APL Command

You can include options in the APL command when
you bring up the system. The complete format of the
APL command is:

APL [EXAPL] [APx] [APy] ... [APz] [APL system command]

1-16

where the maximum number of names given after APL,
excluding the field, "APL system command," is six.

• EXAPL is the filename specification of the program
that has the dyadic formats (numeric format and
picture format). For more information, see
Chapter 7.

• APx, APy, and APz represent the filenames of
auxiliary processors, which are programs that carry
out special actions not included in the APL
language. You can also build your own auxiliary
processors (see Chapter 4). The following auxiliary
processors are included with the system:

- AP80: IBM Graphics Printer control
- AP 1 00: BIOSIDOS interrupt handling
- AP205: Full-screen display management
- AP210: DOS file management
- AP232: Asynchronous communications
- AP440: Music generator

• "APL system command" means that you can type
here any APL system command to be executed at
load time, thus giving you the possibility of
automatically starting an APL application. (For the
syntax of APL system commands, see Chapter 12.)
This field, if given, must always be the last one in
the line, and it must start with a right parenthesis.
All letters must be uppercase.

If you wish to always have EXAPL or some auxiliary
processor support, or automatically execute an APL
system command, you may create a batch file to do so
(see your IBM Personal Computer DOS manual).

The APL system command,) OFF ,is used to exit from
an APL work session and transfer control to DOS. The
active workspace is lost unless it was explicitly stored
earlier in the work session with a)SA VE or)OUT
command. Any variables actively shared with an
auxiliary processor will be automatically retracted upon
exit from the APL system.

Examples:

APL AP210 AP100)LOAD WORKSP

This starts APL and auxiliary processors AP210 and
AP100. Also, the workspace called WORKSP is
loaded. The Graphics Printer will not be available.

APL EXAPL AP80

This will start APL with the dyadic formats in EXAPL.
The printer is available.

The APL Character Set
The APL language has its own character set, which can
be divided into four main classes:

• Alphabetic, which consists of the Roman alphabet
in uppercase and lowercase form, and delta and
delta underlined.

• Numeric, which consists of the digits 0 through 9.

• Special APL characters (see Figure 3 in
Chapter 6).

• Blank.

1-17

The Keyboard

The APL system supports two different character-set
mappings of the IBM Personal Computer keyboard:
The APL character set and the National character set.
The APL mapping is normally active under the APL
system, and is automatically loaded with the system at
the start of a work session. The National character set
can be accessed under control of the APL system
through the Ctrl-Backspace key combination, as
described in the "Special Key Combinations" section.

The keyboard consists of three general areas:

• Function keys, labeled F 1 through FlO, on the left
side of the keyboard.

• The typewriter area in the middle, where you find
the familiar letter and number keys.

• The numeric keypad, which is similar to a
calculator keyboard, on the right side.

All keys are typem a tic , which means they repeat their
function for as long as you press them.

Function Keys

1-18

The only function keys currently supported by the APL
system are:

• Aft-Fl: switch to the Monochrome Display mode,
with 80 characters per line.

• Alt-F4: switch to the Color Graphics mode, with
40 characters per line.

• Alt-F8: switch to the Color Graphics mode, with
80 characters per line.

Typewriter Keyboard

The middle area of the keyboard behaves much like a
standard typewriter. Under APL, the capitalized
Roman alphabet and the numbers 0 through 9 are
generated when one of these keys is pressed. Most of
the APL special characters that represent the primitive
functions are encoded as upper-shift, and are generated
by holding down either of the Shift keys and pressing
the desired key.

Note: The Shift keys are in the bottom row of
the typewriter area and have a wide arrow pointing
upward.

When the National character set is active, the
lowercase Roman alphabet and the numbers 0 through
9 are generated when a key is pressed. The capital
letters and some other characters are obtained by
holding down either of the Shift keys and pressing the
desired key.

Enter: This key, sometimes called the Carriage
Return key, is the large key with the bent arrow symbol
on the right side of the typewriter area. You usually
have to press this key to enter information into the
computer. The Enter key is used to pass an APL
statement or a system command to the APL interpreter
for execution.

Esc (Escape): The Esc key (also known as the
Attention key) is in the upper-left comer of the
typewriter area. Pressing this key once generates a
weak interrupt that halts execution at the end of a
statement. The key also is used to halt a request for
literal input from a defined function.

Pressing the Esc key twice generates a strong interrupt
that will cause an execution within a statement to halt
as soon as the interrupt is detected.

1-19

1-20

Caps Lock: Although similar to a Shift Lock key on a
typewriter, the Caps Lock key affects only those keys
that produce the letters of the alphabet under the
National character-set mapping. Once the Caps Lock
key has been pressed, the alphabetic keys will continue
to generate upper-shift characters until the Caps Lock
key is pressed again.

Lower-shift characters can be obtained from the Caps
Lock state by holding down one of the Shift keys and
pressing the desired key. When you release the Shift
key, the keyboard returns to the Caps Lock state.

Backspace: The Backspace key is in the upper-right
comer of the typewriter area, and is marked with an
arrow pointing to the left. With the APL system, both
the APL and National mappings of the keyboard
interpret the Backspace key as a movement of the
cursor to the left without erasing what has been typed.
Under DOS or BASIC, characters are erased during
backspacing, but the APL backspace is non-destructive.

PrtSc (Print Screen): Just below the Enter key is a
key labeled with PrtSc and *. If the National character
set is active, pressing this key generates an asterisk; if
the APL character set is active, a not-equal sign (=!=) is
generated. When this key is pressed while one of the
Shift keys is being pressed, a signal is generated that
causes a copy of the currently-active screen to be
printed. If you are using the IBM Monochrome
Display, non-APL characters will appear on the screen
but will be translated to APL characters for the printer.
This operation can be performed only if you have the
IBM Graphics Printer attached to your system and you
loaded the printer auxiliary processor, AP80, at the
start of the APL work session.

Other "Shifts": Besides the upper-shift key
previously described, the typewriter keyboard has two
other "shift" keys-the Aft (Alternate) and the Ctrl
(Control) keys. Like the Shift key, these keys must be
held down while a desired key is pressed.

The Alt key is used with the APL character-set
mapping to produce lowercase letters, and some special
APL characters along the top row. The Alt key is also
used with the keys on the numeric keypad to enter
characters not encoded on the keys. This is done by
holding down the Alt key while typing the three-digit
decimal code for the desired character (see
Appendix A).

The Ctrl key is similarly used to generate certain codes
and characters not otherwise available from the
keyboard. The Ctrl-Backspace combination is used to
switch between the APL and National character-set
mappings.

Numeric Keypad

This area of the keyboard is normally used in
conjunction with the APL Input Editor, which is
described later in this chapter. The numeric keypad also
can be used as a calculator keypad by pressing one of
the Shift keys at the same time you press the keys on
the keypad, or by pressing the Num Lock key to enter
the Num Lock state. The Num Lock key affects the
keys of the numeric keypad in the same way the Caps
Lock key affects the alphabetic keys of the typewriter
keyboard. Pressing the Num Lock key once will cause
upper-shift numeric characters to be generated. You can
temporarily nullify this state by holding down a Shift
key. To return the keypad to its normal mode under the
APL Input Editor, press the N urn Lock key a second
time.

On the extreme right side of the keyboard are two
operation keys that are normally used with the numeric
keypad. When the National character set is active,
these keys generate a + (representing addition), and a
- (representing subtraction). With the APL character
set active, however, these keys generate a-+-(division)
and a + (addition).

1-21

Special Key Combinations

1-22

You should be aware of the special functions of the
folowing keys or combinations of keys:

• Ctrl-Backspace: Changes the keyboard from the
National character-set mapping to APL, or from the
APL character-set mapping to National.

• Ctrl-Alt-Del: Performs a system reset, which is the
same as switching the computer from off to on.
Hold down the CTRL and ALT keys, and press the
DEL key. Doing a system reset with these keys is
preferable to setting the Power switch otT and on
again, because the system will come up faster.

• Ctrl-PrtSc: This combination serves as an on-off
switch for sending display output to the printer as
well as the screen, provided you have previously
loaded the printer-handling auxiliary processor,
AP80 (see "Getting APL Started").

Press these keys to send display output to the
printer, then press them again to stop sending to the
printer. Although this action enables the printer to
function as a system log, it slows down some
operations because the computer waits during the
printing.

• Ctrl-Num Lock: Sends the computer into a pause
state. This can be used to temporarily stop printing
or program listing. The pause continues until any
key, except "shift" keys, the Break key, the
Ctrl-Num Lock keys, or the Ins key, is pressed.

Decals with the APL character set for the IBM
Personal Computer keyboard have been included with
this book and are in the plastic sleeve inside the back
cover. P,lace the decals on the key tops as shown in
Figure 1. Notice that the alternate-shift characters I, Itf ,
t,,i., ¢, Q, 8, (/9, IV,?'<, t , and I±I go on the fronts of the keys
along the top row.

Figure 2 shows the keyboard with the APL character
set.

1-23

-I N
~

Shift
Normal
Alternate

~

Function
Keys

Figure 2. Keyboard with APL Character Set

Typewriter Keyboard Numeric
Keypad

Use of Displays
APL enables you to work, sequentially, in the three
following modes during the same working session:
Monochrome Display, Color/Graphics Adapter with 40
characters per line, and Color/Graphics Adapter with
80 characters per line. Only the Color/Graphics
Adapter modes support APL characters. You may use
the Monochrome Display mode; however, some APL
characters will not be displayed. Instead, the
corresponding IBM Personal Computer ASCII
characters will be displayed.

Note: "Sequentially" means that at any time
during the work session, you can change modes
without leaving APL.

At load time, the configuration you are in is maintained .
. If you have both a Monochrome and Printer Adapter,
and a Color/Graphics Adapter, the Color Graphics
mode with 40 characters per line is activated.

If you want to change to the Monochrome Display
mode, press the Alt and F 1 keys at the same time. To
switch to the Color Graphics mode with 80 characters
per line, press the Alt and F8 keys. To switch to the
Color Graphics mode with 40 characters per line, press
the Alt and F4 keys. APL does not allow you to switch
to a monitor that is not available.

When you switch from one monitor to another, for
example, from monitor A to monitor B, the screen on
monitor B clears; however, the screen on monitor A
does not. Thus you can keep part of the session
displayed on monitor A (graphics, listing of APL
objects, etc.) and continue working with monitor B.

To clear a screen you are working with, switch to that
monitor by pressing the appropriate Alt-F key
combination. If you try to switch to a monitor that is not
physically connected or switched on, you can return to
the original monitor by pressing the appropriate Alt-F
key combination.

1-25

The mode you switch to when you press an Alt-F key
combination, is as follows:

Your
Configuration

Color 80
Color 40

Alt-FI

Color 80
Color 40

Alt-F4

Color 40
Color 40

Alt-F8

Color 80
Color 40

Monochrome Monochrome Monochrome Monochrome
Monochrome Monochrome Color 40 Color 80
& Color

Note: The APL system detects the IBM
Personal Computer configuration reflected in the
switch settings (see the Technical Reference
manual). If your actual configuration is different
(for example, you forgot to switch on your Color
Monitor), the system may switch to a monitor that
is not operating, and you will not be able to see
anything you type, although it can be executed if
you press the Enter key (more about this later). If
this happens, the best action is to return to the
active monitor by pressing the appropriate Alt-F
key combination.

Disk(ette) Drives

1-26

APL work~paces are collected into libraries, which are
identified by an integer number. Each disk drive of the
IBM Personal Computer represents an APL library,
with the following identification number:

Device

First diskette drive
Second diskette drive
First fixed disk
Second fixed disk

DOS Drive Spec. APL Library

A
B
C
D

1
2
3
4

Disk drives are usually controlled under APL by system
commands (see Chapter 12) relating to workspace
storage and retrieval. If no library number is specified
for these commands, the device that is the current DOS
default drive will be used. Specifying an invalid library
number that corresponds to a non-existent drive should
be avoided, because the system may perform an
unintended action.

The disk drives also can be controlled with the DOS file
management auxiliary processor, AP210, which is
discussed in Chapter 3, and the FILE workspace,
which is discussed in Chapter 2.

The Printer

The optional IBM Graphics Printer can be used to
produce both APL and non-APL characters, if the
printer auxiliary processor, AP80, is specified as a
parameter to the APL command at load time, before the
start of a work session. As described in a previous
section about the keyboard, the following key
combinations can be used to control the printer:

• Shift-PrtSe: A printed copy is made of the
currently-active screen. If you are using the IBM
Monochrome Display, the untranslated ASCII
characters displayed on the Screen will be printed
as their APL equivalents.

• Ctrl-PrtSe: Acts as an On/Off switch for sending
display output to the printer, as well as to the
screen. This allows the printer to be used as a
system log to provide a record of the work session.

The AP80 auxiliary processor also allows selective
printing of desired APL objects or results. Chapter 3
discusses, in detail, the use of AP80 to control the
printer with a shared variable, and Chapter 2 explains
the use of the PRINT workspace. Control codes can be
sent to the printer, but they will not affect the APL
special characters.

1-27

The APL Input Editor

1-28

The APL Input Editor is afull-screen editor. This
means that you can enter a line (with or without a
previous change) anywhere on the screen. To enter a
line for execution, the cursor must be on that line.

The cursor is a blinking underline or box appearing just
to the right of the last character typed. You can position
the cursor by using the APL Input Editor special keys,
which are described in the next section. The cursor
marks the position at which a character is to be typed,
inserted, or deleted.

The input editor can save much time during program
development by eliminating unnecessary re-typing. In
execution mode, the input editor can be used to make
changes to a previous line. When the changed line is
entered, it is echoed below the last entered line and
executed. The input editor also can be used within the
del (v) editor during function definition (see Chapter
10) to help create or modify programs.

A full-screen, defined-function editor is included with
the EDIT workspace and is described in Chapter 2.
This special editor provides additional features that help
make function definition even easier.

APL Input Editor Special Keys

You can use some of the keys on the numeric keypad,
and the Backspace key, to move the cursor on the
screen, to insert characters, or to delete characters. The
keys and their functions are:

• Up Arrow (Cursor Up-Numeric Keypad 8):
Moves the cursor up one line. If the cursor advances
beyond the upper end of the screen, it will move off
the screen and reappear at the lower end in the
same column.

• Down Arrow (Cursor Down-Numeric Keypad 2):
Moves the cursor down one line. If the cursor
advances beyond the lower end of the screen, it will
move off the screen and reappear at the upper end
in the same column.

• Left Arrow (Cursor Left-Numeric Keypad 4):
Moves the cursor one position to the left. The
cursor cannot advance beyond the left edge of the
screen.

• Right Arrow (Cursor Right-Numeric Keypad 6):
Moves the cursor one position to the right. The
cursor cannot advance beyond the right edge of the
screen.

• End (Numeric Keypad 1): Erases characters from
the current cursor position to the end of the line.

• Ins (Numeric Keypad 0): Sets Insert mode on or
off. If Insert mode is off, pressing this key will tum
it on. If Insert mode is already on, pressing this key
will tum it off.

1-29

1-30

You can tell when Insert mode is on, because the
cursor covers the character position on the
Monochrome Display, or blinks twice as fast as
normal on the Color Graphics monitor. When Insert
mode is on, the character at the cursor position, and
characters following the cursor, are moved to the
right as you type characters at the current cursor
position. After each keystroke, the cursor moves
one position to the right. If you try to write beyond
the right edge of the screen (regardless of the state
of Insert mode), you will hear a warning beep.

When Insert mode is off, any characters you type
will replace the existing characters on the line.

Pressing the Enter key when Insert mode is on will
automatically tum Insert mode off.

• Del (Numeric Keypad Decimal Point (.)):
Deletes the character at the current cursor position.
All characters to the right of the one deleted move
one position to the left to fill the empty space.

• Backspace (Left arrow to left ofNum Lock key):
Its function is the same as the Cursor-Left key,
because the APL backspace is non-destructive.

• Esc: When pressed anywhere in a line, Esc causes
the message INTERRUPT to be written, and the
entire line is ignored. The line is not passed to APL
for processing. If you press Esc once while a
defined APL function is executing (see Chapter 11),
the function is interrupted after the current line is
executed. This is called a weak interrupt. If you
press Esc more than once while a function is
executing, the function stops executing as soon as
the interrupt is detected. This is called a strong
interrupt.

• ~ (Tab): Treated the same as a blank character.

How to Make Corrections on the Current Line

Any line of text typed while APL is in the input state
will be processed by the line editor, so you can use any
of the keys described in the previous section. APL is in
the input state whenever the cursor is visible. When the
Enter key is finally pressed, the entire line in which the
cursor lies is passed to APL for processing. The cursor
is not visible during processing time. When the cursor
appears again, APL has returned to the input state.

Changing Characters: If you are typing a line and
discover you typed something incorrectly, use the
Cursor-Left, Backspace, or Cursor-Right keys to move
the cursor to where the mistake was made, then type the
correct characters over the incorrect ones. You can then
move the cursor back to the end of the line, using the
Cursor-Right key, and continue typing.

Erasing Characters: If you notice you have typed an
extra character in the line, you can erase (delete) the
character using the Del key. Use the Cursor-left or
other cursor-control keys to move the cursor to the
character you want to erase. Then press the Del key,
and the character is deleted. Use the Cursor-Right key
to move the cursor back to the end of the line and
continue typing.

Adding Characters: If you see that you have omitted
characters in the line you are typing move the cursor to
where you want to add the new characters. Press the Ins
key to set Insert mode on, then type the characters you
want to add. The characters you type will be inserted at
the cursor position. The character that was at the cursor
position, and those following the cursor, will be pushed
to the right. When you are ready to resume typing
where you left off, press the Ins key again to set Insert
mode off (the cursor will return to its ordinary form),
and use the Cursor-Right key to get back to your place
in the line. Then continue typing. If you forget to press
the Ins key to set Insert mode off, it will automatically
be turned off when you press the Enter key.

1-31

Erasing part of a Line: To end a line at the current
cursor position, press the End key. Then you can
continue typing.

Canceling a Line: To cancel a line that you are
typing, press the Esc key anywhere in the line. (You do
not have to press Enter.) The line is not passed to APL
for processing.

Chapter 2. Application Workspaces

The PRINT Workspace 2-4
The EDIT Workspace 2-5
The FILE Workspace 2-8

Functions 2-9
Examples of Use 2-22

The VM232 Workspace 2-23
Selecting a Terminal 2-24
Saving Your Line Parameter
Definition 2-31

Connection with the Host 2-32
Functions 2-34
Example of Connection with the Host 2-38
Auxiliary Files on the Host 2-43

The MUSIC Workspace 2-57

2-1

Notes:

2-2

The APL diskette has a number of workspaces in
transfer form (extension .AIO). These workspaces
contain functions that you can call from your programs
to perform the following applications:

• Using the printer from APL programs (PRINT)

• Using the APL full-screen function editor (EDIT)

• Using DOS file management routines (FILE)

• Uploading and downloading files (VM232 and
FILE)

• Using samples for the music auxiliary processor
(MUSIC)

These functions also can be used as examples of how to
program with the corresponding auxiliary processors in
the IBM Personal Computer APL system:

• PRINT uses AP80

• EDIT uses AP205

• FILE uses AP210

• VM232 uses FILE, AP232, and AP210

• MUSIC uses AP440

2-3

The PRINT Workspace

2-4

To use the printer from APL programs, you must
include the printer auxiliary processor, AP80, as a
parameter to the APL command at load time before you
begin an APL work session. For example,

APLAP80

To copy the PRINT workspace, you must enter:

)IN PRINT

This command will load two functions (PRINT and
FONTS into your active workspace.

The PRINT function can be used to selectively print
any APL object or result, of any rank or type (that is,
literal or numeric), from your APL program.

PRINT may be called from any other APL-defined
function, thus giving the program control of the printer.

The following examples show what is printed for
various entries.

Entry Printed

PRINT 2+2 4

PRINT 'ABCabc' ABCabc

PRINT 110 1 2 345 6 7 8 9 10

PRINT 2 3p' ABCDEF' ABC
DEF

(A variable can also be printed)

X+-'IS A VARIABLE'
PRINT 'X ',X X IS A VARIABLE

If the PRINT function is used to print a character string
beginning with OAVCOIO+255] , the remaining
characters in the string are sent to the printer in
alphameric mode. In this way, printer control codes can
be included and executed. These control codes are used
to obtain emphasized printing, large character sizes, and
other special printing functions. Appendix B shows
many of these control codes, and their functions.

The FONTS function contains several examples that
use the printer's alphameric mode to send control
commands to the printer.

If the first character in the string is not OA VCOI 0+ 2 55] ,
the whole string is printed as it is. Therefore, a single
'character can have a dual function, depending on the
selected printing mode.

The EDIT Workspace

The EDIT workspace provides an APL full-screen,
defined-function, editor. It is used with AP205.

To use the ED IT functions from APL programs, you
must include the full-screen auxiliary processor,
AP205, as a parameter to the APL command at load
time before you begin an APL work session. For
example,

APLAP205

When APL becomes ready, you must copy the ED IT
workspace into your active workspace by entering:

)IN EDIT

You can use the full-screen function editor in either
40- or 80-column mode.

2-5

2-6

If, for example, the name of the function you want to
create or edit is FN I, and you have an 80-column
display, enter the following line:

EDIT 'FNI'

If you have a 40-column display, enter:

40 EDIT'FNI'

The screen is cleared and the first page of the function
definition appears. You may now move the cursor, using
the four arrow keys on the numeric keypad, change any
character in the lines displayed, insert charaacters (with
the Ins key), delete characters (with the Del key), delete
to the end of a line (with the End key), and move the
cursor to the beginning of the next line (by pressing the
Tab key). The function keys can also be used as
indicated in the lowest line of the screen. The function
keys are described next.

FI Displays the top page of the function (TOP).

F2 Displays the bottom page of the function
(BOT).

F3 Ends function definition. All your
modifications to the function are kept
(END).

F 4 Clears the screen and displays only the
current line. You can use this key to edit lines
longer than the screen width. The maximum
line length this method allows is 160
characters (LIN).

F5 Inserts five empty lines after the current line
(INS).

F6 Copies a line: First move the cursor to the
line you want to be copied, then press F6. An
asterisk (*) will be displayed in the lowest
line of the screen, by the F6 key indicator.
The system is now in "copy" state. Then
move the cursor to the line after which the
preceding line is to be copied (possibly on
another page). And finally, press F6 again.
The asterisk is erased and the system is no
longer in "copy" state (COP).

F7 Executes the current line (XEC).

F8 Brings the cursor to the end of the current line
(EOL).

F20 (Shift-FlO) Cancels function definition. No
changes are kept. The function remains as it
was at the beginning of the session (CAN).

All other function keys are ignored.

OTHER SPECIAL KEYS

Tab

PgDn

PgUp

Esc

Enter

Moves the cursor to beginning of the next line.

Displays the next page.

Displays the preceding page.

Restores the state the current page had when
the last special key was pressed (special keys
are Esc, Enter, PgUp, PgDn, or any F key).
Esc also clears the "copy" state. All changes
made after a special key was pressed are lost.

Executes APL statements (excluding system
commands) that are typed in the topmost
unnumbered line of the screen. If this line
contains only a number (for example, 24), the
page starting at that line will be displayed. If
the Enter key is pressed while the cursor is on
any other line, the cursor will move to the
topmost line.

2-7

To delete a line, simply move the cursor to the
beginning of that line and press the End key. The line
will remain on the screen as a blank line, but will be
automatically deleted when F 3 is pressed to end the edit
session. Only the part of the line contained in the
currently displayed page will be erased. If the line to be
erased extends beyond the right edge of the screen, you
must press F 4 with the cursor on this line, and then
erase it using the End key.

Locked or halted functions cannot be changed with this
editor. This full-screen function editor can be used to
create new defined functions and modify existing ones.

The FILE Workspace

2-8

The FILE workspace has been designed to help you
work DOS files, and allows either sequential or random
access. It uses the auxiliary processor, AP2IO. This
workspace enables you to create a file, WRITE into it,
and READ from it. To do so, you WOPEN an old or
new file, and WRITE data into it. You then CLOSE
the file to save it on disk. If you only want to read data
from an old file, without writing any more data into it,
on the next access simply OPEN the file and READ in
records, either randomly or sequentially.

To use the FILE functions from APL programs, you
must include the file auxiliary processor, AP2IO, as a
parameter to the APL command at load time before you
begin an APL work session. For example,

APLAP210

When APL is ready, you must copy the FILE
workspace into your active workspace by entering:

)IN FILE

If this command executes successfully, the following set
of functions will be loaded into your active workspace.

Functions

The transfer file, FILE.AIO, has the functions for
manipulating DOS files, including:

• WOPEN
• OPEN
• CLOSE
• READ
• READV
• WRITE
• DELETE
• RENAME

Other functions in this file that are used for related
purposes are:

• PATCH
• IN
• PIN
• OUT
• COMPARE
• TYPE
• TYPEV

The following terms are used in the descriptions of the
syntax for the functions:

Brackets are used to indicate that a parameter is
optional.

CODE can be any of the following characters:

A (APL) The records in the file are APL objects
and their headers in APL internal form. Matrices,
vectors, and arrays of any rank may be stored and
recovered. Different records of a file may contain
objects of different types (for example, characters,
integers, or real numbers). An APL object in a
record may occupy up to the actual record length
(not necesarily the same number of bytes), but the
header fills a part of that area. (See Chapter 4,
"How to Build an Auxiliary Processor," for the
structure and memory requirements of an APL
header).

2-9

2-10

B (Bool) The records in the file contain strings of
bits without any header (packed eight bits per
byte). The equivalent APL object will be a
boolean vector. In this case, all records must be
equal to the selected record length.

C (Chars) The contents of the record is a string of
characters in APL internal code, without any
header. All records must be equal to the selected
record length, with each character occupying one
byte.

D (ASCII) The contents of the record is a string of
characters in ASCII code, without any header.
All records must be equal to the selected record
length, with each character occupying one byte.

file_number is a positive integer that you define for
future reference to a file when you open it.

filespec must be in the following DOS syntax (see
DOS manual):

[d:] filename [.ext]

Note: If the message, I/O ERROR, appears
when you are trying to access a file, either the door
of the drive is open, the incorrect diskette is
inserted, or the diskette is write-protected. See
Figur.e 17 in Chapter 12 for the recommended
action.

WARNING: Changing diskettes during an
input/output operation, or when
you have open files, may damage
your diskette.

WOPEN

OPEN

READ

This function opens a DOS data file for
reading or writing, with sequential or random access.
Up to four files may be open at one time. (See
"READ" and "WRITE" for descriptions of access
methods.)

The syntax of the function is:

file_number WOPEN 'filespec [,code],

If no file by that name has been previously created a
new file is created.

This function opens a DOS data file for read-only,
with sequential or random access. Up to four files may
be open at one time. (See "READ" and "WRITE" for
descriptions of access methods.)

file_number OPEN 'filespec [,code],

If no file by that name has been previously created an
error will result - error 255. (See "AP210: The File
Auxiliary Processor" in Chapter 3 for a listing of all
return codes.)

This function reads a DOS data file, sequentially or
randomly, that was opened using (W)OPEN. The
syntax is:

READ file_number [recorLnumber [recorLsize]]

o < record_number < 32767

o < recorLsize < 2048

file_number matches the number that you specified in
(W)OPENing the file.

2-11

READV

2-12

If no record_number is specified, the default is
sequential access to the file. Under sequential access,
the first record (record 0) will be accessed by either a
Read or Write command immediately after the
(W)OPEN; the second record (record 1) will be
accessed on the next command, and so on. The READ
and WRITE functions work from the same access
point, meaning that the access point is advanced
sequentially to the next record each time either of these
commands is issued.

Random access is designated by specifying a particular
record. RecorLsize can only be specified when using
random-access method. If the record_size is not
specified, the default is the record_size specified in the
previous operation. If the record_size is not specified
on the first READ or WRITE, the default is 128 bytes.

This function sequentially reads a variable-length record
DOS character file that was previously opened using
(W)OPEN. The syntax is:

READV file_number

The file_number matches the number that you defined
in (W)OPENing the file.

WRITE

This function writes to a DOS data file, either
sequentially or randomly, that was previously opened
using WOP EN. (Trying to WRITE to an unWOPENed
file will result in error 24; see" AP21 0: The File
Auxiliary Processor" for a listing of all return codes.)
When the WRITE function is issued, it will write over
any existing data in the currently accessed record.

The syntax for this function is:

file_number [rec_num [rec_size]] WRITE APLobj

o < rec_num < 32767

o < rec_ < 2048

file_number matches the number that you arbitrarily
defined in WOPENing the file.

If the record_number is not specified, the default is
sequential access to the file. Under sequential access,
the first record (record 0) will be accessed by either a
Read or Write command immediately after the
WOPEN; the second record (record 1) will be accessed
next, and so on. The READ and WRITE functions
work from the same access point, meaning that the
access point is advanced sequentially to the next record
each time either of these commands is issued.

Random access is designated by specifying a particular
record. If the record_size is not specified, the default
is the record_size specified on the previous READ or
WRITE.

If the record_size is not specified on the first READ
or WRITE, the default is 128 bytes.

2-13

CLOSE

This function closes a file that was previously opened
using (W)OPEN. The previously assigned file~umber
is available for reuse. «(W)OPENing a file_number
without having closed the corresponding file will cause
the file to be automatically closed and reopened.)

The syntax for CLOSE is:

CLOSE file_number

DELETE

This function deletes DOS data files. (Files may also be
erased in DOS using ERASE, or in APL using
)DROP .) The syntax for DELETE is:

DELETE' filespec'

RENAME

2-14

This function changes the name of the file specified in
the right argument to the name and extension specified
in the left argument. If a valid drive is specified in the
left argument, the drive is ignored. The syntax is:

'new_filespec' RENAME 'old_filespec'

PATCH

This function allows you to make hexadecimal patches
in DOS files (including .EXE files). It works
interactively. The patches are made one byte at a time.
First the address of the byte (relative to the beginning of
the file) is requested, then the present contents are
displayed, and finally, a prompt is made for the new
value. (It must be given as two hexadecimal digits.)
After the patch has been made, a new one can be
entered. Entering an empty line (pressing the Enter key
with no data) exits the function.

The syntax for PATCH is:

PATCH 'filespec'

Example:

PATCH 'FILE .EXE'
GIVE ADDRESS: 129A
IS 00
GIVE NEW VALUE OR EMPTY LINE TO CANCEL PATCH

: 07
GIVE ADDRESS: (press Enter key to leave PATCH)

2-15

IN

2-16

This function imitates the)IN command (see Chapter
12) under control of AP210. It can be called from
another APL function, thus effectively providing a
powerful IN facility . You can call this function in two
different ways.

• If you want to copy a whole file into your active
workspace, you must call the IN function in the
following way:

IN '[d:] filename'

where filename is the name of the file you want to
copy. You must not give an extension. APL
assumes an extension of .AIO and appends it to the
file name. The result is a 1 if the file exists;
otherwise the result is o.

Example:

IN 'MYFILE'

This line will copy the whole file, MYFILE.AIO,
into your active workspace.

• If you want to copy only part of a file (some
functions and/or variables) into your active
workspace, you must call the IN function in the
following way:

namelisLmatrix IN '[d:] filename'

In namelisLmatrix, you have to give the names of
the functions and variables (APL objects) you want
to copy. If there is more than one object, each name
must be given as a row of a character matrix. For
filename, see above. Only the mentioned objects
are copied into the active workspace. The function
returns a logical vector result - a 1 per object copied
and a 0 per object not copied.

PIN

Example:

(2 3p'FUNVAR') IN 'MYFILE'

The left argument of the IN function in the
preceding example is a 2-by-3 character matrix, the
first row of which is FUN and the second is V AR.
This line copies into your active workspace the
objects (functions and/or variables), FUN and
VAR, from MYFILE.AIO.

This function is a protected IN. It works like IN, except
that an object is copied only if the outstanding object in
the active workspace has no current value. You can call
this function in two different ways:

• If you want to copy a whole file into your active
workspace (with the restriction mentioned above),
you must call the PIN function in the following way.

PIN ' [d:] filename'

where filename is the name of the file you want to
copy . You must not give an extension. APL
assumes an extension of .AIO and appends it to the
file name. The result is a 1 if the file exists;
otherwise the result is O.

Example:

PIN 'MYFILE'

This line will copy the whole file, MYFILE.AIO,
into your active workspace.

2-17

2-18

• If you want to copy only part of a file (some
functions and/or variables) into your active
workspace, you must call the PIN function in the
following way:

namelisLmatrix PIN '[d:] filename'

In namelisLmatrix, you have to give the names of
the functions and variables (APL objects) you want
to copy. If there is more than one object, each name
must be given as a row of a character matrix. For
filename, see above. Only the mentioned objects
are copied into the active workspace. The function
returns a logical vector result - a 1 per object copied
and a 0 per object not copied.

Example:

VAR+-7
(2 3p' FUNVAR') PIN 'MYFILE'

The left argument of the PIN function in the
preceding example is a 2-by-3 character matrix, the
first row of which is FUN and the second is V AR.
This line copies into your active workspace only the
object FUN because V AR had a value before PIN
was executed (in VAR+-7 we set VAR to the value
of 7), and therefore the result of PIN is 1 O.

OUT

This function imitates the)OUT command (see
Chapter 12) under control of AP210, and can be called
from another APL function, thus effectively providing a
powerful 0 UT facility . You can call this function in two
different ways:

• If you want to copy your entire active workspace
(all functions and all variables) into an .AIO file
(that is, a transfer file), you must call the OUT
function in the following way:

OUT '[d:] filename'

where filename is the name of the transfer file. You
must not give an extension. APL assumes an
extension of .AIO and appends it to the file name.
The result is a 1 if the operation is successful;
otherwise, the result is O.

Example:

OUT 'MYFILE'

This line will copy all functions and variables of
your active workspace into the file, MYFILE.AIO.

• If you want to copy only part of your workspace
(some functions and/or variables) into a file, you
must call the OUT function in the following way:

namelisLmatrix OUT' [d:] filename'

In namelisLmatrix, you have to give the names of
the functions and variables (APL objects) you want
to copy. If there is more than one object, each name
must be given as a row of a character matrix. For
filename, see above. Only the mentioned objects
will be included in the file. The function returns a
logical vector result - a 1 per object copied and a 0
per object not copied.

2-19

Example:

(2 3p' FUNVAR') OUT 'MYFILE'

The left argument of the 0 UT function in the
preceding example is a 2-by-3 character matrix, the
first row of which is FUN and the second is V AR.
This line creates a transfer file called
MYFILE.AIO and writes into it, the objects FUN
and V AR in the transfer form.

COMPARE

2-20

This function compares two files. The syntax is:

recorLsize COMPARE filespec_matrix

The right argument is a two-row character matrix, each
row containing the filespec of one of the files to be
compared, followed by a comma, followed by the code
in which the file is to be read. The left argument
indicates the length of the record with which the files
are to be read.

The COMPARE function gives no result if both files
are identical. Otherwise, it lists the pairs of
corresponding records that are different. The function
also indicates which of the files is shorter, if applicable.

TYPE

TYPEV

Example:

80 COMPARE 2 11p 'FILE1.EXT,DFILE2.EXT,D'

This example compares files, FILE I.EXT and
FILE2.EXT, both of which are read with a record
length of 80 in ASCII code.

This function imitates the DOS TYPE command. The
syntax is:

recorLsize [0] TYPE 'filespec [,code],

recorLsize is the length of the record, the N first
characters of which are to be typed. The file with the
indicated filespec is displayed at the terminal. If N is
not given, the full recorLsize is typed.

This function imitates the DOS TYPE command for
variable record length character files. The syntax is:

TYPEV 'filespec'

2-21

Examples of Use

2-22

Following are examples of using the various DOS
file-handling functions.

1
4

1

1 WOPEN 'FILE. EXT' Creates a new file. Records
will contain APL objects
with header (default code).

1 WRITE t10

1 WRITE 2 3P16

CLOSE 1

1 OPEN 'FILE.EXT'

READ 1 1

2 3
5 6

READ 1 0

23456 7 8 9 10

CLOSE 1

DELETE 'FILE.EXT'

First record will be a vector
of elements from 1 to 10
(origin 1). Default
recorLnumber is 0;
default recorLsize is
128 bytes.

A matrix of two rows and
three columns, of elements
from 1 to 6, is written
sequentially to the file
(origin 1).

The file is closed.

Open the same file for
read-only operation.

Read the second record
first.

Here is the matrix

Now ask for the first
record.

A vector of integers.

Close the file.

Delete the file.

The VM232 Workspace

The VM232 workspace supports communications with
IBM Virtual Machine Facility/370 (VM/370) on an
IBM System/370 with an ASCII port, or an equivalent
machine.

To operate this application, you need:

• The IBM Personal Computer Asynchronous
Communications Adapter.

• Either a full duplex modem (either acoustic or direct
coupled), or a direct cable connection to the host
computer. (The communications program does not
support communications using a half-duplex
modem.)

To use this application from APL programs, you mU:Sl
include both the asynchronous communications
auxiliary processor, AP232, and the file management
auxiliary processor, AP210, as parameters to the APL
command at load time, before you begin an APL work
session. For example:

APL AP232 AP210

Then you must copy the files VM232 and FILE into
your workspace using the following commands:

)IN VM232
)IN FILE

You are now ready to start communications with the
host.

2-23

Selecting a Terminal

2-24

When you start up the communications program, you
are in the terminal-selection phase. A series of menus
lets you select which type of terminal the IBM Personal
Computer will simulate, and the detailed features of that
terminal.

The terminal-selection phase has three levels of menus.
The first-level menu lists the different line parameter
definitions that can be selected. When you select one of
these definitions, a second-level menu lists the terminal
options that can be specified for the selected definition.
When you select one of the options, a third-level menu
lists the possible choices for that option.

To start the terminal-selection phase, you have to call
the function, SETUP. The following will then appear:

SETUP
LINE PARAMETER DEFINITION. Select:

1: VM
2: Unused
3: Unused
4: Other
5: Current Definition

0:

• Menu item 1 ("VM") gives you a terminal that
operates with most IBM VM/370 System Control
Programs running on an IBM computer (see
"VM/370 Terminal" later in this chapter).

• Menu items 2 and 3 are listed for future use.

• Menu item 4 ("Other") lets you specify pertinent
parameters to define your own terminal (see "User
Specified Terminal" later in this chapter).

• Menu item 5 ("Current Definition") lets you use a
terminal specification that you have created in a
previous call to the function SETUP, and that you
have saved using the procedure described under
"Saving Your Line Parameter Definition" later in
this chapter. The application "remembers" whether
you created your current definition using menu item
1 or 4; when you type 5 and press Enter, it brings
up the corresponding second-level menu.

VM/370 Terminal

To access VM/370 and have your IBM Personal
Computer operate as a VM/370 terminal, you have to
type 1 and press the Enter key while in the LINE
PARAMETER DEFINITION menu. The following
menu then appears:

PARAMETER CHANGE. Select:
0: No change
1: Baud rate
2: Parity
3: Turnaround local

0:

This is the PARAMETER CHANGE menu. Using this
menu, you can change the baud rate, the type of parity
checking, and the line turnaround character sent to the
host. You can also return to APL if you type the
number 0 and then press the Enter key.

2-25

2-26

• Baud rate: Describes the speed at which
characters are sent across the communications line.
The higher the rate, the faster the transmission will
be. Generally, this rate is determined by the baud
rate that the transmission equipment can handle
and/or the baud rates available at the input port for
the host computer. If you want to change the baud
rate for your computer, type 1 on the
PARAMETER CHANGE menu and press the
Enter key. The following menu appears:

BAUD RATE. Select:
0: No change
1: 75
2: 110
3: 150
4: 300*
5: 600
6: 1200
7: 1800
8: 2400
9: 4800

10: 9600
D:

The asterisk (*) in item 4 indicates that the VM/370
terminal will start up with a communication-line
speed of 300 baud (or bits per second), unless you
change it. This is the currently-defined value. Type
the item number that corresponds to the baud rate
you are using. For example, if you are connecting to
a 1200-baud computer port, type 6 and press the
Enter key. This sets the line's bit rate to 1200 baud.
The PARAMETER CHANGE menu appears on
the screen again.

• Parity: Characters transmitted over an
asynchronous communications line are sent serially
as sequences of 1 's and O's that represent each
character. The parity bit is the eighth bit of the
ASCII character code and is added to the 7 -bit
code, depending on your selection, so that the
character may be checked for accuracy at the
receiving end. You have to set the parity to match
the type expected by the host computer. To set the
parity bit, enter 2 on the PARAMETER CHANGE
menu and press the Enter key. The following
appears:

PARITY. Select:
0: No change
1: NONE
2: ODD
3: EVEN
4: MARK *
5: SPACE

D:

The types of parity checked are:

NONE: No parity bit is added to the character
transmitted. Eight bits of data are transmitted
for each character.

ODD: The sum of all bits, including parity, of
the character transmitted, is odd.

EVEN: The sum of all bits, including parity,
of the character transmitted, is even.

MARK: The parity is always set to 1. This is
the default.

SPACE: The parity is always set to O.

To select the type of parity checking your host
system uses, type the corresponding item number
and press the Enter key. The PARAMETER
CHANGE menu appears on the screen again.

2-27

2-28

• Turnaround Local Character: To tell the host
computer that you have completed typing a line of
text, you press the Enter key. The character
produced when you press Enter is called the
turnaround local or line turnaround character sent
to the host. The turnaround character indicates the
end of a line of input sent to the host computer. The
host computer takes action on that line and sends
back a response.

The default value for this character is a Carriage
Return. If you wish to change the value of this
parameter, type 3 on the PARAMETER CHANGE
menu, and press the Enter key. The following
appears on the screen:

TURNAROUND LOCAL CHARACTER. Select:
0: No change

0:

1: CR (ODH) *
2: XON (11 H)
3: XOFF (13H)
4: EOT (04H)
5: LF (OAH)

If you want the turnaround character to be, for
example, the line feed (LF), type 5 and press the
Enter key. The PARAMETER CHANGE menu
appears on the screen again.

User-Specified Terminal

When you select item 4 ("Other") in the LINE
PARAMETER DEFINITION menu, you can specify
all of the terminal features to make your IBM Personal
Computer operate as a terminal for your particular host
system. The following menu appears:

PARAMETER CHANGE. Select:
0: No change

D:

1: Baud rate
2: Parity
3: No. of stop bits
4: Half/Full dpx.
5: Turnaround local
6: Delete chars.
7: End of line char.

To return to APL, type 0 and press the Enter key.

• Baud rate: See "VM/370 Terminal."

• Parity: See "VM/370 Terminal."

• No. of stop bits: Stop bits are sent by your IBM
Personal Computer after each character to keep the
line in synchronization. These bits let the receiver
detect the beginning of the next transmitted
character. Usually one stop bit is required (default).
The number of stop bits you select must match the
number required by your host system. To change
the number of stop bits, type 3 on the
PARAMETER CHANGE menu and press the
Enter key. The following menu appears:

NO. OF STOP BITS. Select:
0: No change
1: 1 *
2: 2

D:

2-29

2-30

To select two stop bits, type 2 and press the Enter
key. Pressing Enter returns you to the
PARAMETER CHANGE menu.

• Half/Full dpx: Although a full duplex modem is
required, this application does not sUpp'ort duplex
transmission protocol. Therefore, when you type 4
in the PARAMETER CHANGE menu, the
following message appears:

FULL DUPLEX NOT SUPPORTED

and the PARAMETER CHANGE menu is
displayed again.

• Turnaround local: Recognized by the host
computer as the "end-of-line" designator. To
change this character, type 5 in the PARAMETER
CHANGE menu and press the Enter key. For more
information, see "VM/370 Terminals."

• Delete chars: When you are in communication
with the host computer, the host may transmit
characters you do not want displayed on your
screen. Generally these are special ASCII
characters knows as control characters.

If you want to change the Delete characters, type 6
in the PARAMETER CHANGE menu and press
the Enter key. The following will appear on your
screen:

DELETE CHARS. Select up to 4:
0: No change
1: Unused
2: CR (DOH)
3: IF (OAH)
4: BELL (07H)
5: XON (1'1 H)
6: XOFF (13H)
7: ESC (1 BH)
8: TAB (09H)
9: BS (08H)

0:

Type the numbers of the characters you want to
delete. You can type a maximum of four numbers.
Then press the Enter key. Pressing Enter returns
you to the PARAMETER CHANGE menu.

• End of line char: The character selected from this
menu specifies the end-of-line character sent from
the host computer. This character indicates that a
new line should be started on the screen.

The default value provided is a Carriage Return. If
you wish to change the value of the end-of-line
character sent by the host, type 7 on the
PARAMETER CHANGE menu and press the
Enter key. The following is displayed:

END OF LINE CHAR. Select:
0: No change
1: CR (DOH) *
2: XON (11 H)
3: XOFF (13H)
4: EDT (04H)
5: IF (DAHl

D:

Type the number of the character you wish to use
and press the Enter key. Pressing Enter returns you
to the PARAMETER CHANGE menu.

Saving Your Line Parameter Definition

After you have defined the line parameters for your
system, you can save your new specifications by
executing:

)OUT name

where name is the name of the transfer file in which
your application will be stored (see Chapter 12 for a
description of the)0 UT command).

2-31

The parameter definition you have saved is now your
current definition. The next time you use your
application, you have to load if using the commands:

)CLEAR
)IN name

where name is the name you used when you saved the
application with the)OUT command (see Chapter 12
for a description of the)IN command).

If you do not want to change the new parameters again,
you need not call the function, SETUP.

Connection with the Host

2-32

When you have selected the communications
parameters, you must establish a connection with the
host computer by executing the following:

TERMINAL

A beep sounds and the following messages are
displayed:

Computer connection NOT established
You are starting up as a terminal
Check computer or modem connection
Starting in RECEIVE state
Press ESC key twice to go into SEND state

Depending on the type of connection between your IBM
Personal Computer and the host system, you must do
the following:

• Modem Connection: Read the instructions for the
modem carefully to understand how to use the
telephone set for voice and data transmission.

In general, what you must do is dial the number of
the host computer, either by using the telephone or
by typing the dial-up commands required by the
modem. When you use the dial-up commands, you
must go into SEND state by pressing the Esc key
twice. When you hear the modem's carrier (a
high-pitched tone), the connection has been made
and you must go to the following step.

• Direct Cable Connection or Modem Connection
Complete (you hear a carrier): At this stage, one
of two things may have happened:

Your IBM Personal Computer was not opened
as a terminal (cursor not visible on the screen).
You will have to press the Esc key twice to go
into SEND state. You may now have to send a
BREAK to the host computer (the application
will prompt you for it). You will answer
YES or NO, depending on the needs of your
host system. The use of BREAK is
system-dependent; check with the person who
has installed your host system. If your host
system requires a BREAK to be sent, sending it
will cause your IBM Personal Computer to
open as a terminal.

Your IBM Personal Computer has opened as a
terminal to the host computer . You will receive
the following:

VM/370 ONLINE

(cursor placed here)

Connection is established. You can proceed to
log on to your host system.

2-33

Each line is passed to the host for execution. There is
no transmission transparency yet: APL special
characters will be lost and not sent to the host. You
may, however, go into the host APL system and
execute system commands, load workspaces, and call
APL functions.

APL statements that are prefixed with the i-beam
character (I) are executed by the IBM Personal
Computer APL system, and are not passed to the host.
APL system commands cannot be executed in this way.

The entering of a line consisting of a single i-beam
character (I) is considered as a request to exit function
TERMINAL and go back into local APL mode.
However, transmission is not interrupted (that is, the
connection is not lost) until you expressly log off from
the remote system. You may also reenter terminal mode
by executing the TERMINAL function again. If you
had not disconnected the remote system, you should not
log on again at this point.

Note: If transmission fails at any point and your
terminal does not return control to you, press the
Esc key and execute the APL line:

You can then try to repeat the operation by invoking the
TERMINAL function again.

Functions

2-34

F our special functions are included in the workspace
and may be used for transferring files between the host
and the IBM Personal Computer.

These functions may be invoked in terminal mode by
preceding their names with an i-beam character (I).

The functions are:

• UPLOAD
• DOWNLOAD
• APLOUT
• APLIN

These functions assume that:

• Transmission has been established.

• The host VM/370 system contains the file, ED IT
EXEC, as described in the "Auxiliary Files on the
Host" section.

• The host VM/370 system contains an APL EXEC
file to load VSAPL.

• The host VM/370 system contains the APL
workspace, OUT, as described in the "Auxiliary
Files on the Host" section.

UPLOAD

Sends a file from disk(ette) to a minidisk in the host.
The file must be composed of DOS variable-length
records separated by a carriage-return character and a
line-feed character (in that order). The last record must
also end with these two characters. Transmission is
transparent; that is, all remaining 254 characters
(except the combination of carriage return and line feed)
may be sent.

When this function is invoked, it asks for thefilespec of
the source file to be sent (ENTER SOURCE fH.UU\ME). The
filespec must be given in DOS format
(fdrive.}name.ext). If the file does not exist, NOT FOUND
is written and the request is repeated. To exit, press
Enter.

Next the target filename is requested (ENTER TARGET FILE
NAME). It must be given in Conversational Monitor
System (eMS) format: filename filetype filemode. If
the target filename already exists, a warning is given
(FILE EXISTS. DO YOU WANT TO REPLACE?). If the answer is
YES, the old file will be deleted. Otherwise, uploading
stops. If everything is correct, the file is transferred and
converted to its final form to assure transparency. Some
operations (including invoking APL in the host and
executing an APL function) are automatically
performed by the function.

2-35

DOWNLOAD

Performs the opposite operation as UPLOAD. It sends
a file from a minidisk in the host to a disk(ette) in your
IBM Personal Computer.

Note: If you download a file that has the APL
character" -+ ", you will not be able to edit it with
the standard DOS editors, because they interpret
that symbol as an end-of-file character.

The transmission protocol does not allow a file to be
downloaded if the name of the file includes any of the
following characters: @, #, and $.

APLOUT

2-36

Takes an APL workspace in transfer form (extension
.AI 0) on the IBM Personal Computer and sends it to
the host. The final result of the execution of this
function is a CMS file with filetype AIO, which may be
loaded into a VSAPL workspace by means of the
following instructions:

)CLEAR
) SYMBOLS appropriate_size
)COPYOUTIN
, , IN 'filename'
)ERASE IN
) SAVE appropriate_name

APLIN

Performs the opposite operation as APLO UT. The
source workspace must be in normal VSAPL WS format
(that is, not in AIO form). The function automatically
invokes APL, loads the workspace, converts it into AIO
form with the help of the OUT workspace (see below)
and sends it to the Personal Computer with
transmission transparency. The final result is a file in
transfer form, which is created on the Personal
Computer's disk(ette), and which may be loaded
directly into the active workspace by means of the) IN
command.

Note: If you download a file that has the APL
character" -+", you will not be able to edit it with
the standard DOS editors, because they interpret
that symbol as an end-of-file character.

The transmission protocol does not allow a file to be
downloaded if the name of the file includes any of the
following characters: @, #, and $.

The correspondence between the alphabetic characters
on the IBM Personal Computer and the VM/370
system is as follows:

Caps
Function Capitals Lower Case Underlined

Upload to Capitals Lower Case N/A
370
Download Capitals Lower Case Special
from 370 Characters
APLIN Capitals Lower Case Lower Case
from 370
APLOUT Capitals Caps N/A
to 370 Underlined

2-37

Example of Connection with the Host

2-38

Load the VM232 and FILE workspaces.

)IN VM232
)IN FILE

Then create a fIle to be uploaded to the host.

37

1 WOPEN 'B:TEST,D'
A+'FIRST LINE' ,DTCCDIO+1 2J
A+A, 'SECOND LINE' ,DTCCDIO+1 2 J
A+A, 'LAST LINE' ,DTCCDIO+1 2J, '+'
pA

1 a 37 WRITE A
CLOSE 1
TYPE V , B : TEST'

FIRST LINE
SECOND LINE
LAST LINE

The file just created has three records with the indicated
information.

You will now have to call the function, SETUP, to
establish the characteristics of the type of terminal your
IBM Personal Computer will simulate, and the detailed
features of that terminal.

The IBM Personal Computer is connected to the host
computer through a duplex modem with a half-duplex
protocol.

To. connect your IBM Personal Computer to the host
computer, execute the function TERMINAL. The
following will appear on your screen:

TERMINAL
Computer connection NOT established
You are starting up as a terminal
Check computer or modem connection
Starting in RECEIVE state
Press ESC key twice to go into SEND state

You have to dial up here. When the connection is
established, you will receive the message

VM/370 ONLINE

and you can proceed to log on.

L user_name
ENTER PASSWORD:

HHHHHHHH
SSSSSSSS

password

2-39

Connection messages are received here. You may now
IPLCMS.

CMS

I UPLOAD A Request for the sending program
ENTER SOURCE FILE NAME A Prompt from UPLOAD function
8:TEST A Our answer
ENTER TARGET FILE NAME A Prompt fromUPLOAD function
TEST TEST A A Our answer
FILE EXISTS. DO YOU WANT TO REPLACE?

y
END OF TRANSMISSION
3 RECORDS SENT
APL

A Prompt from UPLOAD function
A Our answer
A From this point, the system
A automatically generates a
A set of lines that assure
A transparency of the

V SAP L 4.0 A transmission.

CLEAR WS

)LOAD OUT

SAVED 10:13:47 02/01/83

CMSIN 'TEST TEST A'

RO;

lOFF HOLD

R;

ERASE TEST HID A

R;

2-40

At this point, uploading is complete and the terminal
opens. You are again connected to CMS.

TYPE TEST TEST A

FIRST LINE
SECOND LINE
LAST LINE

R;
I DOWNLOAD
ENTER TARGET FILE NAME
8:TEST1
ENTER SOURCE FILE NAME
TEST TEST A

APL

v SAP L 4.0

CLEAR WS

)lOAD OUT

SilVED 10:37:47 02/0i /83

CMSOUT 'TEST TEST A'

R28;

lOFF HOLD

R;

10
ERAS E TEST HID A

R;

A CMS command typed by the user

A System answer

A Request for a DOWNLOAD
A Prompt from DOWNLOAD function
A Our answer
A Prompt from DOWNLOAD function
A Our answer
AWe are sending back the file
A The next commands are
A generated automatically.

2-41

END OF TRANSMISSION
10 RECORDS RECEIVED A Records are sent in blocks of 10.

A Therefore, the number given is
A rounded up to a multiple of 10.
A We are again under CMS.

I I A A single i-beam followed by Enter
A is a request to return to IBM

TYPEV'B:TEST1 '
FIRST LINE
SECOND LINE
lAST LINE

TERMINAL

Q PRT

NO PRT FILES
R;

LOG

A Personal Computer APL.

AWe go back to terminal state.
A Startup messages are received here.
A This is a CMS command.

CONNECT= 00:12:10 VIRTCPU= 000:02.56 TOTCPU= 000:11.05
LOGOFF AT 10:47:08 EST TUESDAY 02/01/83

VM/370 ONLINE

2-42

The VM/370 system is now in receive state. To return
to IBM Personal Computer APL, you have to press Esc
and then -+.

The terminal opens now, and you are back in IBM
Personal Computer APL.

Auxiliary Files on the Host

To be able to use this application, your host system
must have the following files in your minidisk A.

• EDITEXEC
• The APL workspace OUT
• APLEXEC

EDIT EXEC

&CONTROL OFF
CP TERMINAL ESCAPE OFF CHARDEL OFF

LINEND OFF LINEDEL OFF LINESIZE 165
CP SET MSG OFF WNG OFF ACNT OFF
SET BLIP OFF
SET TERMINAL LINESIZE 255
&ST ACK CASE M
&STACK RECFM V
EDIT &1 &2 &3 &4 &5 &6 &7

The APL Workspace OUT

The functions in this workspace can be divided into
three different sets:

• Those that perform EXPORT/IMPORT:

CMSOUT Converts 256-character files into
ASCII-compatible files.

CMSIN Converts ASCII-compatible files
into 256-character files.

APLOUT Like CMSOUT, but underlined
letters are replaced by lowercase
letters.

APLIN Like CMSIN, but lowercase letters
are replaced by underlined letters.

2-43

2-44

• Auxiliary to EXPORT/IMPORT:

CIN Used by CMSIN, APLIN

COUT Used by CMSOUT, APLOUT

GASC Used by CMSIN, APLIN,
CMSOUT, APLOUT

XUL Used by APLOUT

XULI Used by APLIN

CMS Used by CMSIN, APLIN,
CMSOUT, APLOUT

• IN/OUT Functions:

IN Equivalent to the) IN command
(see "The FILE Workspace").

OUT Equivalent to the)OUT command
(see "The FILE Workspace").

In the function listings on the following pages, some
non-APL characters are included. These characters
have been indicate that they must be
generated terminal in "APL OFF" mode.
The only functions containing these non-APL
characters are: CIN, COUT, GASC, XUL, and
XULI.

Functions

APLIN APLOUT CIN CMS CMSIN CMSOUT
COUT GASC IN OUT XUL XULI

(14)

V APLIN X;A;SH;N;I;DIO;ASG;N1;N2;AUX

[1J lliO+O

[2J N+X ~' HIO(192'

[3J A+-110 OS'VO 'N'

[4J -+(0;t:1 tA+-N) /E

[5J -+(A/ 0 1 1 =3tA)/E

[6J GMS 'ERAS E ',X ~' AIO'

[7J SH+-X ~' AIO(192 FIX'

[8J A+-110 OS'VO 'SH'

[9 J -+(v/ 0 1 1 ;t:3tSH)/E

[10 J CASG

[11J L:-+(O=pA+-N)/O

[12J SH+-80tXUL1 GIN A

[13J -+L

[14J E: 'ERROR'

2-45

(14)

V APLOUT X;A;B;SH;N;I;DIO;ASC;N1;N2;AA

[1J DIO+-O

[2J N+X, ' AIO(192'

[3J A+110 DSVO 'N'

[4J -+(0;t1 tA+N) /E

[5J -+(A/ 0 1 1 =3tA)/E

[6J CMS 'ERASE ' ,X, ' HIO'

[7J SH+X,' HIO(192'

[8J A+110 [JS'VO 'SHY

[9 J -+(v/ 0 1 1 ;t3tSH)/E

[10J CASC

[11J L:-+(O=pA+N)/O

[12 J SH+COUT XUL A

[13J -+L

[14 J E:' ERROR'

V

2-46

(6)

V Z+CIN X;OIO;I;J

[1J DIO+O

[2J X+(I+ZE,I_')/tpZ+X,((-1tX)E,I_,)/"

[3J X+(N1,N2)[((pN1)xZ[X]='_')+ASCtZ[X+1JJ

[4J Z+(~IVJ+-1¢I)/Z

[5J Z+(~I+(~J)/I)\Z

[6J Z[I/tpIJ+X

v

(4)

V CMS X;CP;I

[1 J CP+ , CMS'

[2J I+100 OSVO 'cpt

[3J CP+X

[4J 'R',("fCP),';'

v

2-47

(14)

V CMSIN X;A;SH;N;I;DIO;ASC;N1;N2;AUX

[1J lliO+o

[2J N+-((Xl' ')tX),' HIO(192'

[3J A+110 []SVO 'N'

[4J -+(0;t1 tA+N) /E

[5J -+(/\/ 0 1 1 =3tA)/E

[6J CMS 'ERASE ' ,X

[7J SH+X, ' (192 '

[8J A+110 OSVO ISH'

[9 J -+(v/ 0 1 1 ;t3tSH)/E

[10J CASC

[11J L:-+(O=pA+N)/O

[12 J SH+-CIN A

[13J -+L

[14J E:' ERROR'

V

2-48

(14)

V CMSOUT X;A;B;SH;N;I;OIO;ASC;Nl;N2;AA

[lJ OIo+-O

[2J N+-(X+-C Xl ' ')tX),((Xl'

[3J A+-ll0 OSVO 'N'

[4J -r(O;tl tA+-N) /E

[5J -reAl 0 1 1 =3tA)/E

[6J CMS 'ERASE ' ,X, , HIO'

[7J SH+-X,' HIO(192'

[8J A+-ll0 OSVO 'SH'

[9J -r(v/ 0 1 1 ;t3tSH)/E

[10J GASC

[11J L:-r(O=pA+-N)/O

[12J SH+-COUT A

[13J -rL

[14J E:' ERROR'

V

')+X),'(192'

2-49

(10)

V Z+COUT X;I;J;DIO

[1J DID*-O

[2J Z+,X

[3J X~ZE(~ASCEDAV[23 30 J)/ASC

[4J I+,~(2 ,pI)p ,-_, [I;?;pN1 J, (ASC ,ASC) [I+(N1 ,N2) lX/Z J

[5J Z+(~X)/Z

[6J J+(~X)/0,-1++\X+1

[7J X+((+ /X)+pX)pO

[8J X[JJ+1

[9J Z+X\Z

[10J Z[(~X)/lpXJ+I

V

2-50

(11)

\j GASC;DIO

[1J DIO+-O

[2J ASC+-" ,DAV[23J,' "()*+,-./0123456789: ;<=>

ilABCDEFGHIJKLMNOPQRSTUVWXYZ'

[3J ASC+-ASC,' , ,DA V[30 J

[4J N1+-OAV[0 248J, 'E-' ,DAV[224 244 229 249 12 225

11 245 230 246 226J

[5J N1+-N1,DAV[231 234 251 227 247 232 22 24 25 228

233 237 238 31J

[6J N1+-N1,DAV[15 14J, 'dll' ,DAV[(1+18),(16+14),21,

(26+14),(32+13),131J

[7 J N1+-N1, 'li' ,DA V[30 J , 'XYZll-IO··\j~awnuc::JIx~O~r L I

[8J N2+-'7!p1E~T¢Qef\\~44t+~~~~o[A' ,DTC[O 2 1J

[9J N2+-N2, 'UMN' ,DAV[240 239J, 'QQ' ,DAV[241J, 'FEGHl',

DA V[2 0 J , ' CK' , DA V[219 220 J

[10J N2+-N2, 'L' ,DAV[222 223 242J, 'PRST' ,DAV[243J,

'f',DAV[(203+14), 235 236J

[11J N2+-N2,DAV[(207+112) , 221 250 23 252 253 254 255

132 13J

2-51

(33)

V ZR+LS IN SH1 ;ZX2 ; ZXM;ZXA ;ZX1 ;OPP;DIO

[1J OP~15+DI0+1+ZR+0

[2J SH1 +SH1 , (('" , '€SH1)/' AIO'), '(192 FIX'

[3J DWA+110 OSVo 'SH1'

[4J +(O;z!1 tSH1) /0

[5J ZR+1

[6J +(O=pLS) /ZXL2

[7J ZR+(1 tpLS)pO

[SJ ZXL2: ZXA+' ,

[9J ZXL3:+(O=pZX1+SH1)/O

[10 J ZXA+ZXA,1+-S 0[1+(1tZX1)€'CE'J+ZXl

[11J +«1tZX1)€' C')/ZXL3

[12J ZXM+-(ZXA 1 ' 'HZXA

[13J ZXA+(ZXA1' ,)tZXA

[14J +(O=pLQ)jZXL1

[15J +«pZXA»2+1+pLS)/ZXL2

[16J +("'1€LSA.=(1+pLS)t1+ZXA)/ZXL2

[17J ZXL1:ZX1+~(ZXM1' ')tZXM

2-52

[1SJ ZX~(ZXM1' ')+ZXM

[19J ZX2+10

[20J ZXL4:+(ZX1=0)/ZXL5

[21J XZ2+ZX2,~(ZXM1' ')tZXM

[22J ZX~(ZXM1' 'HZXM

[23J +ZXL4,ZX1+ZX1-1

[24J ZXL5:+('FC'=1tZXA)/ZXL6,ZXL7

[25J ~(1+ZXA),'+' ,(~ZX2),((0~pZX2)/'p'),ZXM,(0~pZX2)/' 0'

[26J +ZXLS

[27J ZXL6:ZX1+' '=O\OpOFX ZX2pZXM

[2SJ +ZXL9

[29J ZXL7:~(1+ZXA),'+' ,(~ZX2),((0~pZX2)/'p'),'ZXM'

[30J ZXLS:ZX1+1

[31J ZXL9:+(OEpLS)/ZXL2

[32J ZR[(LSA.=(1+pLS)t1+ZXA)11J+ZX1

[33J +ZXL2

v

2-53

(22)

V ZR+ZXM OUT SH1; ZXA ; ZXl ; OFF; CMS

[lJ OFP+-16

[2J +(~OEpZXM)/ZXLl

[3J ZX~(A/ZXMv.~((-ltpZXM),3)t~ 3 3 p'OUTSH1ZXM')fZXM+

DNL 2 3

[4J ZXL1: ZR~-O~DNC ZXM

[5J ZXLO:+(O=pZXM)/O

[6J ZXA+lt((ZX1+3=DNC ZXM[DIO;J)/'F'),'CN'[DIO+-lt~'O',

(2=DNC ZXM[DIO;J)/' ,~"O=O\Op' ,ZXM[DIO;J,""J

[7J ZX1+~(ZX1/'DCR"'),ZXM[DIO;J,ZX1/""

[8J ZXA+ZXA, ((' '~ZXM[DIO; J) /ZXM[DIO; J),' " (~(ppZX1),

p ZXl) " '" l" ZX 1

[9J ZXA+(((-l+ltpZXA)p' I), 'X'),ZXA+(ZX1,79)t((ZX1+f

(pZXA)+71),71)pZXA,71p' ,

[10J +(2=OSVO'SH1')/ZXL2

[llJ CMS+'CMS'

[12J DWA+l00 OSVO 'CMS'

[13J CMS+'ERASE' ,SH1,' AIO'

[14 J ' R' , ("f CMS) , , ; ,

[15J SH1+SHi,' AIO(192 FIX'

[16J DWA+l10 OSVO 'SHi'

[17J ~(O~ltSH1)/'+ZR+O'

[18J ZXL2:SHi+ZXA[DIO; J

[19J ZXA+ 1 0 +ZXA

2-54

[20J +(0~1tpZXA)/ZXL2

[21J ZX~ 1 0 +ZXM

[22J +ZXLO

v

(2)

v R+XUL X;I;J

[1J J+26~I+'ABCDEFGHIJKLMNOPQRSTUVWXYZ'lR+,X

[2J R[J/lpRJ+ [J/IJ

V

(2)

V R+XUL1 X;I;J

[1J J+26~I+ , lR+,X

[2J R[J/lpRJ+'ABCDEFGHIJKLMNOPQRSTUVWXYZ'[J/IJ

V

2-55

Typical APL EXEC File

2-56

Your host system also needs a file calledAPL EXEC
from which you can access APL. The content of this
file is system-dependent. An example of a typical APL
EXEC file follows.

&TRACE OFF
&IF .&FILEMODE EQ .S2 &SKIP 3
&IF .&FILEMODE EQ .Y2 &SKIP 2
&TYPE * APL DISK must be accessed as Y /S or Z/Y *
&EXIT 99
CONTYPE
&TERMCLA ~ &PIECE OF &RETCODE 1 2
&TERMTYP = &PIECE OF &RETCODE 3 2
&TERM=GRAF
&IF &TERMCLA EQ 80 &IF &TERMTYP NE 80

&TERM= LINE
&IF &TERM = LINE CP TERM ATTN OFF
&IF &TERM = LINE CP SET LINED IT OFF
CP TERM APL ON
* Remove FI for APLD UMP if dumps not wanted
* You will get one every time if GDDM not installed
FI APLDUMP PRINTER
CP SET EMSG OFF
CP SET IMSG OFF
APL4 &1 &2 &3 &4 &5 &6 &7 &8 &9 &10 &11 &12
FI APLDUMP CLEAR
CP TERM APL OFF
&IF &TERM = LINE CP TERM ATTN ON
&IF &TERM = LINE CP SET LINEDIT ON
CP SET EMSG TEXT
CP SET IMSG ON

The MUSIC Workspace
The MUSIC workspace provides a sample of the use of
the AP440 auxiliary processor, which makes it possible
to create music in your IBM Personal Computer at the
attached speaker.

To use the speaker from APL programs, you must
include the music auxiliary processor, AP440, as a
parameter to the APL command at load time before you
begin an APL work session. For example,

APLAP440

To copy the MUSIC workspace into your active
workspace, you must enter:

)IN MUSIC

The following melodies are included in the MUSIC
workspace. Each melody is a part of a well-known
musical piece.

Sakura
Bug
Scales

Pop
Humor
Dandy

Stars
Forty
March

Blue
Hat

To perform them, you have to execute the following:

PLAY name

where name is the title of the melody.

2-57

Notes:

2-58

Chapter 3. Auxiliary Processors

The Printer Auxiliary Processor: AP80 3-4
BIOS/DOS Interrupt Auxiliary
Processor: AP 1 00 3-6

The Full-Screen Auxiliary
Processor: AP205 3-10

Screen Formatting 3-12
Control Commands 3-15
Interactive Use of the Screen 3-1 7
Return Codes 3-19

The File Auxiliary Processor: AP210 3-21
Control Commands 3-22
Control Subcommands 3-25
Return Codes 3-26

The Asynchronous Communications Auxiliary
Processor: AP232 3-28

Control Commands 3-29
The Music Auxiliary Processor: AP440 3-35

AP440 Command Syntax 3-36

3-1

Notes:

3-2

The auxiliary processors discussed in this chapter are:

• AP80
• APIOO
• AP205
• AP210
• AP232
• AP440

IBM Graphics Printer control
BIOSIDOS interrupt handling
Full-screen display management
DOS file management
Asynchronous communications
Music generator

Each auxiliary processor requires storage space in
addition to that required for APL and the shared
variable processor ($SVP). When you start APL with
an auxiliary processor, the shared variable processor is
loaded with it. If you load more than one auxiliary
processor, only one copy of the shared variable
processor is loaded. (Shared variables are described in
Chapter 9.)

The following table gives approximate sizes for the
auxiliary processors, APL, shared variable processor,
and EXAPL (dyadic formats). Notice that EXAPL
does not require the shared variable processor.

Module

APL
EXAPL
$SVP
AP80
APIOO
AP205
AP210
AP232
AP440

Approximate Size (K-bytes)

71.0
7.6
1.6
1.2
0.8
8.3
3.8
5.0
1.5

3-3

The Printer Auxiliary Processor: AP80

3-4

The AP80 auxiliary processor can be accessed from
APL on the IBM Personal Computer and provides a
way to control the IBM Graphics Printer from APL
functions. It allows you to specify the printing
parameters and to print character strings. The entire
APL character set is supported.

To use this auxiliary processor, you must include AP80
as a parameter to the APL command at load time
before you begin an APL work session. For example,

APLAP80

The following APL line must be executed before the
auxiliary processor can be used:

80 OSVo I name I

where name is the name of the APL variable being
shared with the auxiliary processor.

The result of the preceding line will be a 1 if the
variable name has been accepted by the shared variable
processor. This auxiliary processor accepts only one
variable.

The following line must be executed next:

OSVO 'name'

The execution of this line must give a result of 2. If not,
the auxiliary processor is not active, or a different
variable has been shared with it and has not been
retracted.

Any character string (vector or scalar) assigned to the
variable defined by name, will be interpreted as a
command to the auxiliary processor.

If the first character in the string is DA V[DI 0+ 2 5 5] ~ the
remaining characters in the string are sent to the printer
in alphameric mode. In this way, printer control codes
can be included and executed. Appendix B shows many
of these control codes. When a carriage-return
character is found, the print head returns to the
beginning of the same line. A line-feed character sends
the print head to the beginning of the next line.

If the first character in the string is not DA V[DIO+ 2 55] ,
the whole string is printed according to the current print
mode. A carriage-return character sends the print head
to the beginning of the next line, as does a 1ine~feed
character.

Therefore, a character can have a dual function,
depending on the selected printing mode.

Example:

DIO+l
80 OSVO' X'

1
OSVO 'X'

2
X+-f ABCD' ,DTC[2]

X+[]AV[256] , '+-E'

X+-f ABCD' ,DTC[2]

DSVR 'X'
2

Offer the variable for
sharing

Is it accepted?
Yes
The printer prints the
string, ABCD, followed
by a carriage return to
the beginning of the next
line (DTC[2]).
Set emphasized mode
(this is a printer control
code).
The printer prints
ABCD in emphasized
mode, followed by a
carriage return.
Retract the variable.

3-5

BIOS/DOS Interrupt Auxiliary Processor:
APIOO

3-6

The AP 1 00 auxiliary processor provides an interface to
generate BIOS and DOS interrupts or function calls.

To use this auxiliary processor, you must include
AP 1 00 as a parameter to the APL command at load
time before you begin an APL work session. For
example,

APLAPIOO

The following APL line must be executed before the
auxiliary processor can be used.

100 OSVO 'name'

where name is the name of the APL variable being
shared with AP 1 00.

The result of the previous line will be a 1 if the variable
name is accepted by the shared variable processor. This
auxiliary processor accepts only one variable.

The following line must be executed next.

OSVO 'name'

It must give a result of 2. If not, either the auxiliary
processor is not active, or a different variable has been
shared with it and has not been retracted.

Any character vector with at least 1 7 elements assigned
to the variable name, will be interpreted as a command
to the auxiliary processor to generate a BIOS/DOS
interrupt.

In the foll<:>wing discussion, an index origin of 0 will
always be implied. Unless specifically stated, all
characters will be considered equivalent to the one-byte
integers that are equal to the position of each on the
APL atomic vector (OAV).

Example:

If you have to send the number 22 to the auxiliary
processor, send it in the following way:

DAV[22J

If the auxiliary processor returns the character" V " its
value will be determined by executing the expression:

DAVl'V'

The elements of the vector must contain the following
information:

• Element ° gives the interrupt number desired.

• Elements 1 to 14 give the character contents of the
machine registers that must be passed to the BIOS/
DOS interrupt service programs, in the following
order: AL, AH, BL, BH, CL, CH, DL, DH,
lower byte of SI, higher byte of SI, lower byte of
DI, higher byte of DI, lower byte of BP, higher byte
ofBP.

• Element 15 should always to ° to assure future
compatibility.

• Element 16 should be either 0, 64, 128, or 192, and
is used to control the translation of the contents of
the AL register (see below).

Element 16 governs how all AL values are sent and
returned. If element 16 is 128 or 192, AL values are
considered as internal APL characters, and are
translated to their ASCII equivalents before the
interrupt takes effect. (See the following diagram.)

3-7

If no more elements are given, the interrupt is executed
only once. On the other hand, if the vector has more
than 17 elements, all the remaining ones are considered
as successive values for the AL register. The same
interrupt may thus be executed several times in
succession, with all the registers except AL containing
the same values.

When the command has been executed, a character
vector with the same number of elements as the
command is returned to the shared variable, with the
following information:

• Element 0 is the interrupt number just executed.

• Element 1 and those after element 16 (if any) will
contain the successive values of register AL after
each instance of the interrupt was executed. If
element 16 of the command was 0 or 128, the
values are passed as they are. However, if element
16 of the command was 64 or 192, the AL values
are considered as ASCII characters, and are
translated to their internal APL equivalents (see
diagram below).

• Elements 2 to 14 are the new values of the machine
registers, after the last execution of the interrupt, in
the same order indicated above.

• Elements 15 and 16 contain the machine flags after
the last execution of the interrupt, as described in
the appendix, "Assembly Instruction Set
Reference" of the Technical Reference manual.
The low-order byte is passed in element 15, and the
high-order byte in element 16.

Element 16 0 64 128 192

Output of AL as is as is APL~ASCII APL~ASCII

Return of AL as is ASCII~APL as is ASCII"-APL

3-8

.
The types of errors that may be found in the command
are:

• rank error (when a value is not a vector)

• length error (when there are less than 17 elements
or too many for the buffer in the auxiliary
processor)

• domain error (when a character vector is not given)

In those cases, an error return code (the integer scalar
2) is passed back to the shared variable.

Example of Use:

To read an ASCII character struck from the keyboard,
using BIOS interrupt 16H and APIOO, you can execute
the following function (see the Technical Reference
manual for information about BIOS interrupts):

V Z+INKEY;X;DIO

[lJ DIO+O

[2J Z+100 OSVO 'X'

[3J Z+OS'VO 'X'

[4J X+OA V[22, 16pO J

[5J Z+OA V1X[1 2 J

• Line 1 sets the origin to O.

• Lines 2 and 3 share variable X with APIOO.

3-9

• Line 4 assigns to the shared variable X, the input
needed to address interrupt 16H; that is:

Element 0 is the number of the interrupt desired
(22 is equivalent to hexadecimal 16).

Element 2, the contents of AH, is set to O.

Elements 15 and 16 are set to O.

The contents of the remaining elements are not
important.

• Line 5 returns the result of the interrupt:

Element 1 returns the contents of AL, the struck
key code.

Element 2 returns the contents of AH, the key
scan code.

When you call the function, INKE Y, the system stops
processing when line 4 is executed. The system waits
for you to press any key. When you do so, the function
returns a two-element vector: the first element is the
key code, and the second is the scan code (see
"Keyboard Encoding and Using" in the Technical
Reference manual).

The Full-Screen Auxiliary Processor:
AP205

3-10

The full-screen auxiliary processor, AP205, is used to
manage the Monochrome or the Color/Graphics display
screens. It can be used to:

• Divide the screen into rectangular areas

• Read from or write to the screen.

• Produce highlighting, reverse video, colors, etc.

• Allow you to modify the text or graphics displayed
in certain preselected areas in an interactive way.

To use this auxiliary processor, you must include
AP205 as a parameter to the APL command at load
time before you begin an APL work session. For
example:

APLAP205

Two shared variables are required to process the screen
- a control variable and a data variable. They can be
offered in any order. The name of the data variable
must always begin with the letter "D"; the control
variable must begin with the letter "C." The remaining
characters in both names (possibly none) need not be
the same for this auxiliary processor. This auxiliary
processor accepts only one pair of shared variables.

The control variable is used to select the operation to
perform and to control each input or output operation.
The function of the data variable is to transfer actual
data.

The following APL lines must be executed before the
auxiliary processor can be used:

205 OSVO 'Cname'

205 OSVO 'Dname'

where name is the remainder of the name of each
variable.

The preceding two instructions should give a result of 1.
You then should test if the variables have been accepted
by AP205 by entering:

OSVO 'Cname'

OSVO 'Dname '

3-11

Both entries must give a result of 2; otherwise, AP205
is not active or has already accepted other variable
names that have not been retracted.

When this auxiliary processor is used from a defined
function, the following steps are usually performed:

1. Offer the variables for sharing and test acceptance.

2. Specify data (if any) in the data variable.

3. Specify a request command and a field number (if
any) in the control variable.

4. Check the return code from the control variable.

5. Get data (if any is returned) from the data variable.

6. Repeat Steps 2 through 5.

Screen Formatting

3-12

The screen is considered to be divided into rectangular
areas called fields . It is only in these areas that data can
be displayed or entered. Each field is defined by the
following six elements:

SR
SC
HT
WD
T
A

where:

• SR and SC are the screen coordinates (row and
column, respectively) of the upper-left corner
(starting position) of the field relative to the
upper-left comer of the screen.

• HT and WD are the numbers of rows (height) and
columns (width) in the field

• T is the type of field

• A is the field's attribute.

If a field is defined beyond the right edge and/or lower
end of the screen, an error return code will result, with
one exception: if the defined field has only one row, it
may reach beyond the right edge of the screen and
follow on the next sequential lines of the screen. In this
way you can define, for example, a field with 1 row and
2000 columns occupying the whole screen.

The following field types are supported:

• 0: Field is read/write.

• 2: Field is read-only (that is, you are not allowed
to type new information in this field).

The attribute of the field is a positive integer, not
greater than 255, that defines certain characteristics
applicable to all characters displayed in the field, such
as color, normal/reverse video, highlighting, blinking,
underlining, etc. (See the Technical Reference manual
for more information.)

Following is a list of several commonly-used attributes
for the Monochrome Display, and the effect they
produce.

Attribute

o

1
7
9

15
112
120
129
135
137
143
240
248

Effect

Invisible field. Characters are accepted but
not displayed.
Underlined characters.
Normal characters.
Highlighted underlined characters.
Highlighted characters.
Reverse video.
Highlighted reverse video.
Blinking underlined characters.
Blinking normal characters.
Blinking highlighted underlined characters.
Blinking highlighted characters.
Blinking reverse video.
Blinking highlighted reverse video.

3-13

3-14

For the grapics mode with 80 characters per line,
attributes are ignored.

When using a color/graphics display with 40 characters
per line, the attribute of a field is selected by specifying
an integer number N. For Nz.O" the attribute is given
by the remainder of N f 4 (or the residue 4/ N). The
color/graphics attributes are:

0: invisible
1: cyan
2: red
3: white

All fields must be defined together. Their definitions are
passed as an integer six-column matrix, each row
corresponding to one field. The maximum number of
different fields is 50. If fields overlap, unpredictable
effects may arise.

Once the screen format has been defined, each field is
identified by its position in the matrix, beginning at 1.
Thus, the first row in the matrix defines field number 1,
the second corresponds to field number 2, and so forth.

Example: The following matrix divides the screen into
three rectangular fields:

2 2
12 20
20 1

10 10
1 1
1 40

2 7
o 135
2 15

The first field is a square starting at row 2, column 2,
and occupying 10 rows and columns. It is a read-only
field (that is, you cannot type in it, but the program
can), and characters are displayed normally.

The second field is a single character at row 12, column
20. It CaR be overwritten (type is 0), and will blink if the
Monochrome Display is used.

Finally, the third field is a single line, 40 characters
wide, at the beginning of row 20. It is a read-only field.
If the Monochrome Display is used, characters written
by the program are displayed with double intensity (that
is, high-lighted).

All other portions of the screen not specifically defined
are dark.

Control Commands

Once the control variable has been shared, each value
you assign to it is considered to be a command that
describes the operation to perform.

The following commands are accepted:

Command Function

° Clears the screen immediately

O,n Dynamically switches screen modes and
clears the new screen. n must be 1, 4, or 8
(monochrome, 40-column color,
80-column color).

1 Establishes new screen format as defined
in the data variable.

1,fn Redefines field, the number of which (fn)
is given by its position in the matrix
defining the screen format.

2,fn Writes a character vector in the indicated
field (fn). The actual information is
passed in the data variable.

2,fn,1 Writes a boolean vector in the indicated
field (fn). The actual information is
passed in the data variable. Each element
corresponds to a picture element on the
screen. A 1 means that the element is
visible, and a 0, invisible.

3-15

2,fn,2

2,fn,3

2,fn,4

3

4,fn

4,fn,1

4,fn,2

4,fn,3

4,fn,4

5,fn

3-16

Performs the logical AND operation
between the contents of the indicated field
(fn) and the boolean vector contained in
the data variable. The result is displayed
in the field.

The same as the preceding command, but
this one performs an OR operation.

The same as the preceding, but this one
performs an EXCL US/VE OR operation.

Goes into interactive mode. You may now
type in any of the allowed fields, as
described below.

Writes a character vector in the indicated
field (fn). The actual information is
passed in the data variable.

Writes a boolean vector in the indicated
field (fn). The actual information is
passed in the data variable. Each element
corresponds to a picture element on the
screen. A 1 means that the element is
visible, and a 0, invisible.

Performs the logical AND operation
between the contents of the indicated field
(fn) and the boolean vector contained in
the data variable. The result is displayed
in the field.

The same as the preceding command, but
this one performs an OR operation.

The same as the preceding command, but
this one performs an EXCLUS/VE OR
operation.

Reads the present contents of field fn as a
character vector returned through the data
variable.

5,fn,1 Reads the current contents of field fn as a
boolean vector, and returns it in the data
variable.

8

9

9,fn

12

Goes into interactive mode. You may now
type in any of the allowed fields, as
described below.

Reads the current definition of all the
fields.

Reads the current definition of field fn.

Sets the cursor position on the screen.
The desired position is passed in the data
variable as a three-element numeric
vector, giving the field number and the
row / column coordinates of the desired
point relative to the beginning of that
field.

Interactive Use of the Screen

When commands 3 or 8 are requested, the auxiliary
processor enters a Wait state, allowing you to type at
the keyboard, thus changing the contents of one or more
read/write fields. While in this mode, the following
special keys may be used:

• The four arrow keys at the right of the
keyboard: these move the cursor in the direction
indicated by the arrow. Any point on the screen
may be accessed.

• The Ins, Del, and End keys: these have the same
function as described under" APL Input Editor
Special Keys" in Chapter 1.

3-17

3-18

• The Tab key: positions the cursor at the beginning
of a line within a read/write field according to the
following priority:

1. The next sequential line of the same field, or

2. The first line of the next read/write field, or

3. The first line of the first read/write field

• The Ctrl-Backspace keys: switch between the
APL keyboard and the National keyboard.

You signal the end of the interactive use of the screen
by pressing any of the following keys:

• A function key
• A function key in Shift mode
• A function key in etrl mode
• The Enter key
• The Esc key
• The PgUp key
• The PgDn key

When one of these keys is pressed, AP205 returns
control to the APL. The data variable returns a vector
of five numeric elements, which contain the following
information:

KT, KN, CF, CR, CC

where KT, KN is a pair of numbers defining the key
that was pressed to end the operation:

KT KN Key

0 2 Enter
1 2 Esc
1 3 PgUp
1 4 PgDn
2 n Function

Normal function keys are assigned numbers from 1 to
10, Shift function keys from 11 to 20, and Ctrl function
keys from 21 to 30. Alt function keys are reserved for
internal system use.

CF, CR, and CC give the present position of the
cursor. CF is the number of the field where the cursor
is, and CR and CC are the row/column coordinates of
the cursor's position relative to the beginning of that
field.

Return Codes

The following is a list of the possible return codes for
all the commands:

0: Successful
1: Command not recognized
2: Data variable erroneous
3: Data variable not shared
4: Buffer overflow
5: Attempt to use a non-existent display

Example of Use:

The following executable lines are assumed to be the
lines of an APL-defined function. Results of individual
lines are shown for clarity, but should not appear on the
screen (for example, by assigning them to some
variable). Otherwise, if the APL input editor is allowed
to act, the full-screen application will not work
correctly, because the screen is cleared whenever
control is transferred between the APL Input Editor and
the AP205 auxiliary processor.

1 1

2 2

205 OSVO 2 1p' CD' The variables are offered
to AP205.

DSVO 2 1p' CD' Are they accepted?
Yes, they are.

3-19

~3 6p2 2 10 10 2 7 12 20 1 1 0 135 20 1 1 40 2 15

The data variable is
assigned the desired
screen format (see above
for an explanation of the
format).

C+-1
C Ask for the return code.

0 Successful operation.
Ift-'FIELD l' This text will be written

in field 1.
C+-2 1 This is the command to

write.
C Return code.

0 Success.
C+-3 Allow the user to type in

the predefined fields. To
leave this state you have
to press either Esc,
Enter, PgUp, PgDn, or
any F key.

C Wait until a return code
has been assigned to C.

0 Now.
D Shows how the user

ended.
122 1 1 The user pressed the Esc

key (1 2) and left the
cursor in the first
position (1 1) of field 2.

C+-5 2 Let us read (5) the
contents of field 2.

C
0 Operation successful.

D
A The user has typed an A

in that field.
DSVR 2 1p' CD' The shared variables are

2 2 retracted.

3-20

The File Auxiliary Processor: AP210
The file auxiliary processor, AP2l0, is used to read
from or write to, fixed-length disk files under control of
the DOS file system. The reading and writing can be
either sequential or random.

To use this auxiliary processor, you must include
AP2l0 as a parameter to the APL command at load
time, before you begin an APL work session. For
example:

APLAP210

Two shared variables are required to process a file - a
data variable and a control variable. They can be
offered in any order. The name of the data variable
must always begin with the letter "D," and the control
variable must begin with the letter "C." The remaining
characters in both names (possibly none) must be the
same, because the coupling of both variables is
recognized by their name. Examples of valid pairs are:
C andD, Cl andDl, and CXjj and DXjj. The control
variable is used to identify the file to be worked with,
and the particular operation to be performed. It is also
used to activate each input or output action. The data
variable contains the information being read or written.
Up to four pairs of variables may be shared at one time.

The following APL lines must be executed before the
auxiliary processor can be used:

210 OSVO 'Cname'

210 OSVO 'Dname'

where name is the common part of the names of both
variables.

3-21

The preceding two instructions must give a result of 1.
You then test if the variables have been accepted by
AP210 by executing the following:

OSVO 'Cname'

OSVO 'Dname'

Both must give a result of 2. Otherwise, AP21 0 is not
active or has already accepted four pairs of variable
names.

Control Commands

3-22

Once the control variable has been shared, the first
value you assign to it should be a character vector,
which is considered to be a command that describes the
file name and specifies the function to be performed.
The following commands are accepted:

IRjilespec[,code]
IW jilespec[,code]
DLjilespec
RN jilespec jilename [. ext]

Open for read-only
Open for read/write
Delete file
Rename file

wherejilespec is the DOS file identification, of the
form:

[d:] filename [.ext]

d: is a letter that identifies the drive (typically A, B, C,
etc.). filename is a valid DOS file name (up to eight
characters), and the extension of the name has no more
than three characters (see your DOS manual).

code is a single letter selecting a given interpretation of
the file data. Four different interpretations are
supported:

Code Interpretation of Data

A (APL) The records in the file contain APL
objects, with their headers. In this way,
matrices, vectors, and arrays of any
rank may be stored and recovered.
Different records of a file may contain
objects of different types (for example,
characters, integers, or real numbers).
An APL object in a record may occupy
up to the actual record length (not
necessarily the same number of bytes),
but the header fills a part of that area.
(See Chapter 4, "How To Build an
Auxiliary Processor," for the structure
and memory requirements of an APL
header.)

B (BOOL) The records in the file contain strings
of bits without any header (packed
eight bits per byte). The equivalent
APL object will be a boolean vector.
In this case, all records must be equal
to the selected record length.

C (CHARS) The contents of the record is a string of
characters in APL internal code,
without any header. All records must
be equal to the selected record length.

D (ASCII) The contents of the record is a string of
characters in ASCII code, without any
header. All records must be equal to
the selected record length.

3-23

3-24

If the code is not stated specifically, code A is the
default.

Note: If the I/O ERROR message appears
when you are trying to access a file, either the door
of the drive is open, the incorrect diskette is
inserted, or the diskette is write-protected. See
Figure 17 in Chapter 12 for the recommended
action.

WARNING: Changing diskettes during an
input/output operation, or when
you have open files, may damage
your diskettes.

The IR command opens the file for read-only
operations. If the operation is successful, the control
variable passes into the subcommand state. You must
then specify which data transfer operation you want to
perform. (See "Control Subcommands" below.) The
IW command works in a similar way, but the file is
opened for both read and write operations. If the file
cannot be opened, the control variable remains in the
command state.

When the D L command is received, the file with the
specifiedjilespec is erased from the designated drive (or
the default if no drive was specified). Then the control
variable returns to the command state.

When the RN command is received, the name and
extension of the file specified in the first parameter is
changed to the name and extension given in the second
parameter. A valid drive specified in the second
parameter is ignored. After this command has been
executed, the control variable returns to the command
state.

Once a command has been received and executed, a
return code is passed back to APL through the control
variable, indicating whether or not the command was
executed successfully and, if not, the reason for the
failure.

Control Subcommands

Once a file has been opened for input (command IR) or
input/output (command IW), the control variable
passes into the subcommand state. It now accepts the
assignment of numeric vectors specifying the operation
to perform, with the following structure:

[op [Dr [rs]]]

where op is 0 (read operation) or 1 (write operation;
this is not allowed if the subcommand state was entered
through the IR command). Dr is the record number to be
read or written, where the first record in the file has a
record number of o. Finally, rs is the record length or
size.

If rs is not specified, the value used in the previous
operation applies. If such a previous operation does not
exist (as in the first read/write subcommand after
opening the file), a default record length of 128 bytes is
used.

If Dr is not specified, the value used in the preceding
operation is increased by 1 (thus, sequential access is
possible, as well as direct access). If not specifically
stated, the first value of Dr after opening a file is 0 (that
is, the first record in the file).

If the control variable is assigned an empty vector while
in the subcommand state, the file is closed and the
control variable reverts to the command state.

Once an operation has been requested, the data variable
is used as a buffer, where the actual transfer of records
takes place. If the operation is a read, the value of the
record can be found in the data variable after the
successful completion of the requested operation
(confirmed by the return code passed through the
control variable). If the desired operation is a write, the
value of the record must be assigned to the data variable
before the corresponding subcommand is assigned to the
control variable.

3-25

Return Codes

3-26

The following is a list of the possible return codes for all
the different commands and subcommands.

Return
Code Interpretation

o Successful.

1 Read: End of file reached. The data
variable returns an empty vector in this case.

Write: Disk full.

3 Read: The last record in the file is
incomplete. In this case, its contents are
passed anyway, padded by the characters,
DA VCOIO] up to the requested record size.

20 Command not recognized.

21 Subcommand not recognized.

22 Auxiliary processor buffer overflow;
command too large.

23 Data variable not found.

24 Data type error. This can happen on input if
code A has been requested and the record
does not contain a valid APL object, in which
case the data variable returns an empty
vector to the APL processor. This can also
happen on output if the data variable contains
an object incompatible with the code selected
in the command; or if the size of the record
exceeds the specified record length.

255 IR: File not found.
IW: File not found, or disk directory full.
DL: File not found.
RN: File not found, or duplicate name.

Examples of Use:

210 OSVO 2 2p' C1D1 'Offer two variables (Cl
and D 1) to auxiliary
processor 210.

1 1 SVP answer.
OSVO 2 2p , C1D1 ' Test to see whether the

varibles have been
accepted.

2 2 OK.
C1+' IW ~B : FILE .EXT' Creation of a new file.

Records will contain
APL objects with header
(default code).

C1 Return code.
o Success. The file is open.

You are now in
subcommand mode.

D1+110 First record will be a
vector of elements from 1
to 10.

C1 +1 Subcommand to write
the record in the file.
Default record number is
0, default record size is
128 bytes.

C1 Return code.
o Success.

D1+2 3p 16 A matrix of two rows
and three columns of
elements from 1 to 6, is
assigned to the data
variable.

C1+1 Write sequentially on the
file.

C1 Return code.
D CorrecL

C1 +' , An empty vector closes
the file and puts the
control variable in
command mode.

C1+' IR ,B : FILE .EXTt Open the same file for
read-only operation.

3-27

Ci Return code.
0 Success.

Ci+0 1 Read the second record
first.

Ci Return code.
0 All right.

Di Ask for the record
contents.

1 2 3 Here is the matrix.
4 5 6

C1+0 0 Ask now for the first
record.

C1 Return code.
0 OK.

Di Record contents is a
1 2 3 4 5 6 7 8 9 10 vector of integers.

Ci+10 Close the file and go into
command state.

Ci+'RN,B:FILE.EXT,NEWFILE.XXX'
Rename the file.

C1 Return code.
0 The file has been

renamed.
C1+'DL.B:NEWFILE.XXX' Delete the file.
C1 Return code.

0 The file no longer exists.
DSVR 2 2p'C1D1' Retract the shared

variable.
2 2 All done.

The Asynchronous Communications
Auxiliary Processor: AP232

3-28

The AP232 auxiliary processor can be accessed from
APL on the IBM Personal Computer and provides an
interface for communications between the IBM
Personal Computer and a host (IBM System/370). (See
"Asynchronous Communications Adapter" in the
Technical Reference manual.)

To use this auxiliary processor, you must include
AP232 as a parameter to the APL command at load
time before you begin an APL work session. For
example,

APLAP232

The following APL line must be executed before the
auxiliary processor can be used:

232 OSVO 'name'

where name is the name of the APL variable being
shared with the auxiliary processor.

The result of the preceding line will be a 1 if the
variable name has been accepted by the shared variable
processor. This auxiliary processor accepts only one
variable.

The following line must be entered next:

DSVO 'name'

It must give a result of 2. If not, the auxiliary processor
is not active or a different variable has been shared with
it and has not been retracted.

Control Commands

Once the control variable has been shared, the first
value you assign to it must be a character string
representing a command which indicates the function
that the auxiliary processor has to perform. The
functions are the following:

• Initialize (0)
• Transmit (1)
• Receive (2)
• Get port status (3)
• Set break (4)
• Get buffer size (5)

3-29

All commands are strings of a least two characters. The
first one is a number that indicates the function to be
performed (see above). The second is the port address
and must always be 1.

If you do not issue a valid command, an error code is
returned (see below for return codes).

This auxiliary processor has three buffers:

1. A 1000-byte buffer to communicate with the APL
interpreter. If the buffer ever gets full, a code of 2 is
returned.

2. A 255-byte buffer to transmit data to the host. The
auxiliary processor does not allow it to get full.

3. A 2000-byte buffer to store the data received from
the host. (See the command "Receive" below.)

F or an example of how to use this auxiliary processor,
look at the functions included in the VM232 workspace.

Initialize (0)

3-30

This command is used to initialize the port. It consists
of a string of characters of the form:

C
N
B
P
S
X

where:

• C indicates the type of the command. It must be O.

• N is the port address (always 1).

• B indicates the desired transmission baud rate. It
can have one of the following values:

Value of B Baud Rate

0 75
1 110
2 150
3 300
4 600
5 1200
6 1800
7 2400
8 4800
9 9600

• P indicates the parity, as shown in the following
table:

Value of P Parity

0 None
1 Odd
2 Even
3 Mark
4 Space

• S indicates the number of stop bits you want. It can
be either 1 or 2.

• X indicates the word length in bits. Its value ranges
from 5 through 8.

The return code produced by this command is a
numeric scalar indicating:

• -1: success

• 3: error

3-31

Transmit (1)

This command consists of a string of characters of the
following form:

C
N
S

where:

• C indicates the type of the command. It must be 1.

• N is the port address. It must be 1.

• S represents the string of ASCII characters that is
to be sent.

The return code is always the numeric scalar, -1.

Receive (2)

3-32

The command consists of a string of characters of the
form:

C
N
T
E
D

where:

• C indicates the type of the command. It must be 2.

• N is the port address. It must be 1.

• T represents the turnaround character.

• E is the end-of-line character sent by the host.

• D represents four delete characters. If you want to
give fewer than four delete characters, the remaining
positions must be filled by blanks. Blank is never a
delete character.

The system returns a string of characters, the first
character of which is one of the following:

DAV[DIO]
DAV[OIO+9]
DAV[DIO+12]
DAV[DIO+13]

Success
Buffer empty (no character read)
Buffer overflow
Character error in buffer

The rest of the characters returned form the string
received from the host.

Get Port Status (3)

This command returns the content of both the modem
status register (MSR) and the line status register (LSR).

The command consists of a string of characters of the
form:

C
N
where:

• C indicates the type of the command. It must be 3.

• N is the port address. It must be 1.

The return code is a boolean vector in which bits 1
through 8 represent the content of the MSR, and bits 9
through 16, the content of the LSR, as shown by the
following:

~------- Port Status Bits •
1
I
7

2
I
6

3 4 5 6 7 8 9 10 11 12 13 14 15 16
I I I I I I I I I I I I I I
54321076543210

~--MSRBits--......j.~ LSRBits--~

3-33

Set Break (4)

The Set Break command sends a break to put the host
in the receive state.

The command consists of a string of characters of the
form:

C
N
where:

• C indicates the type of the command. It must be 4.

• N is the port address. It must be 1.

The return code is always the numeric scalar, -1.

Get Buffer Size (5)

3-34

This command is used to ask for the size of contents of
the buffer that is currently occupied (either transmit or
receive buffer).

The syntax of the command is:

C
N
o

where:

• C indicates the operation. It must be 5.

• N is the port address (must be 1).

• 0 is the operational type of the buffer ("R" for the
receive buffer, "W" for the transmit buffer).

This command returns a two-element numeric vector, in
which the first element is one of the following codes:

• -1: Success
• 10: Buffer more than three-quarters full

• 11: Buffer overflow

The second element is the number of bytes occupied by
the contents of the buffer.

The Music Auxiliary Processor: AP440
The AP440 auxiliary processor provides an easy way
to create music at the attached speaker. To use this
auxiliary processor, you should have an elementary
knowledge of music and its notation.

To use this auxiliary processor, you must include
AP440 as a parameter to the APL command at load
time, before you begin an APL work session. For
example,

APLAP440

The APL line:

440 OSVO 'name'

must be executed before the auxiliary processor can be
used. name is the name of any APL variable.

The result of the preceding line will be aI, if the
variable name is accepted by the shared variable
processor. This auxiliary processor accepts only one
variable.

3-35

The line:

osvo 'name'

must be executed next and must give a result of 2. If
not, the auxiliary processor is not active or a different
variable has been shared with it and has not been
retracted.

Any character string assigned to name will be
interpreted as a set of commands to the auxiliary
processor to play music. Commands may be joined
within a single character string in any way you desire,
or passed through another variable which is then
assigned to the shared variable.

AP440 Command Syntax

3-36

{[tempo] [octave] [mode] [length] [NOTESPEC] [pause]}

Brackets indicate an optional parameter.

where:

[tempo]: Tn n = 0 to 6; default 4
[octave]: On[{+ -}] n = 0 to 6; default 3
[mode]: Mn n = 0 to 2; default 1
[length]: In n = 0 to 6; default 0
[NOTESPEC]tone[{# + -}][n][.] tone = A to G

n = 0 to 6; default 0
[pause] P[n][.] n = 0 to 6; default 0

NOTESPEC A to G, optionally followed by # + or
- , and a digit (0 to 6), optionally
followed by a period.

Plays the indicated note in the current
octave. # or + specifies a sharp, and -
specifies a flat. The digit, if given,

length

mode

specifies the length of the note,
according to the following:

o complete note
1 half note
2 quarter note
3 quaver note
4 semiquaver note
5 quarter quaver note
6 half-quarter quaver note

If a period is given, the note is played
as a dotted note; that is, its length is
multiplied by 3/2. Additional dots are
ignored, if present.

Ln, where n is a digit from 0 to 6, sets
a given length (according to the
previous table) applied to all later notes
in this or different strings of
commands, unless a new Ln command
is found or a note has its own length
given, which takes priority. If no Ln
command has ever been given, LO is
assumed as the default.

Mn, where n is a digit from 0 to 2,
selects the music mode, according to
the following table:

o Music staccato. Each note will
play 3/4 of the length. The rest will
be a pause.

1 Music normal. Each note will play
7/8 of its length.

2 Music legato. Each note will play
its full length.

If no Mn command has ever been
given, M 1 is assumed.

3-37

octave

pause

tempo

3-38

On, where n is a digit from 0 to 6,
optionally followed by a + or - sets the
current octave. Each octave goes from
C- to B+. Octave 3 contains middle A
(440 Hertz). If + or - is not present,
the number given is the absolute
octave. A + sign specifies a relative
displacement to higher octaves. A
sign corresponds to a relative
displacement to lower octaves. If no
On command has ever been given, 03
is assumed.

P, optionally followed by a digit from 0
to 6, optionally followed by a period,
defines a pause or rest. The digit, if
given, specifies the length of the pause.
This length may be enlarged to 3/2 its
value if a period follows. The length
values are interpreted according to the
same table indicated in the
note-definition command.

Tn, where n is a digit from 0 to 6, sets
the tempo of the play, according to the
following table:

o Largo (54 quarter notes per minute)
1 Largetto (66 per minute)
2 Adagio (78 per minute)
3 Andante (96 per minute)
4 Moderato (120 per minute)
5 Allegro (156 per minute)
6 Presto (198 per minute)

If no Tn command has ever been given,
T 4 is assumed.

To play tied notes, connect the expressions of the two
notes. You can also assign sub-tunes to any APL
variable (not shared with AP440) and call them
repetitively with different tempos, octaves, or lengths,
by assigning that variable to name.

F or an example of how to use this auxiliary processor,
examine the variables included in the MUSIC
workspace.

3-39

Notes:

3-40

Chapter 4. How to Build an
Auxiliary Processor

Access Control 4-4
Shared Variable Processor Services

and Return Codes 4-5
Format of Shared Data 4-9
Internal Structure of APL Variables 4-11
Information about Shared Variables 4-12
Auxiliary Processor Example with

One Shared Variable 4-12
Auxiliary Processor Example with

Two Shared Variables 4-15
APL Data Segment and Macros for
Auxiliary Processors 4-20

4-1

Notes:

4-2

To build your own auxiliary processors, you must have
a good understanding of APL, APL data types,
assembler language, and the information in this chapter.
You will need the IBM Personal Computer Macro
Assembler if you desire to build your own auxiliary
processors.

Essentially, an auxiliary processor (AP) provides a
service that involves exchange of data. One obvious
service is accessing a data set. However, the services
that an AP can provide are limited only by the facilities
available in the system and the imagination of the
designer.

Auxiliary processors exchange information with the
APL processor through shared variables. A variable
becomes shared when you offer to share it and the
auxiliary processor accepts the offer . You and the AP,
in effect, then become partners. Each partner can assign
a value to the shared variable (specify it) and get its
latest value (reference it).

The shared variable processor (SVP) is a part of the
APL processor and manages all shared-variable offers
and information exchange. This processor is loaded in
main memory only if at least one auxiliary processor
using its services (the name of which begins with "AP")
has been selected at APL load time.

4-3

Access Control

4-4

It is often necessary for the partners to control the
sequence in which they access a shared variable. If the
access is not controlled, one partner can specify a
variable twice before the other can reference the first
value, or one partner can reference a variable twice
before the other can specify a second value.

Each shared variable has associated with it, a 4-bit
control vector that provides a means of regulating
access to the variable. Each partner presents its own
version of the access-control vector to the SVP. The
effective, or combined, access-control vector is the
logical OR of the two. Thus, each partner can impose
more discipline on the other, but neither can impose less
on itself.

The meaning of each of the four bits, as given by an
auxiliary processor to the SVP, is:

Bit Meaning

o If 1, disallow my successive specification until
my partner has accessed the variable (either
referenced or specified it).

1 If 1, disallow my partner's successive
specification until I have accessed the variable.

2 If 1, disallow my successive reference until my
partner has specified the variable.

3 If 1, disallow my partner's successive reference
until I have specified the variable.

The SVP allows or disallows each access according to
the variable's access state. The access state at any point
in time depends on the variable's combined
access-control vector and the prior accesses by each
partner.

Shared Variable Processor Services and
Return Codes

The following is a listing of all the SVP macros in the
file $APMAC.ASM on the APL diskette, and the
expected arguments and return codes. These macros use
certain memory positions ($P 1, $P2, $P3, $P4,
$IFLOT, and $IFLOT+ 2) to pass information about
the operation the auxiliary processor is requesting. The
contents of these data objects should be changed only in
the cases indicated below. They should never be used as
intermediate positions for internal calculations. Since
the definition of these objects depends on register BP,
the contents of register BP should also remain
unchanged.

Each auxiliary processor should have a buffer (the size
of which depends on the application) where the values
of the shared variables may be passed through, or
received from, the SVP. This buffer and all the
remaining data areas needed for each particular
application should be in the same segment as the
program itself (CS:), because the data segment register
must point to the APL data area, where some of the
required transfer positions are.

In all the following functions, $P4 is assumed to contain
the AP number.

$P3, in those functions that need it, should pass a
pointer to the shared variable control block.

$P 1 and $P2 pass the buffer address when needed. $P 1
is the segment register, $P2 the displacement.

$IFLOT and $IFLOT+ 2 may pass additional
information (described later in the chapter).

$IFLOT returns the result of the operation or the return
code. $SVSC also returns $IFLOT+2.

4-5

The SVP macros are: $SVSN, $SVSF, $SVSC,
$SVSH, $SVRT, $SVSA, $SVGA, $SVPR, $SVSZ,
$SVPW, $SVCP, $SVRD, $SVWR, $SVRL, and
$SVWA. They are included in a file called
SAPMAC.ASM, with all the macros needed to build
an auxiliary processor.

All the SVP macros, except $SVWA, maintain the
values of $P 1, $P2, $P3 and $P4. Registers AX, BX,
and BP are also maintained. All others are lost.
$/FLOT and $/FLOT+2 are changed by SVP.
$SVWA keeps only the value of $P4.

SSVSN (Sign On to the SVP)

Sign-on identifies an auxiliary processor to the SVP. It
must be successfully carried out before any other
service can be obtained. Each processor is identified by
a number, between 2 and 32767. Two different
processors cannot have the same number.

Input: $P4
Output: 0, -5, -6.

SSVSF (Sign Off to the SVP)

Sign-off disconnects an auxiliary processor from the
SVP and retracts all the processor's shared variables.
Processor sign-off is also automatic when you exit APL
through the)OFF command.

Input: $P4
Output: 0, -11.

SSVSC (Scan for Offers)

4-6

This function scans the SVP tables for an offer to this
processor. Only offers after a given chronology are
scanned. The SVP maintains a counter, which is
increased by 1 each time a new variable is offered. The
value of this counter is stored in the variable control
block and is called its chronology.

Input: $P4, $IFLOT+2 = initial chronology.
Output: 0 (no offer), -11, or the control block

pointer. $IFLOT+ 2 has the updated
chronology.

$SVSH (Share a Variable)

This function offers a variable for sharing, or requests
the present state of the variable, if previously shared.

Input: $P4, $P3
Output: 0, rejected; 1, offered; 2, shared.

$SVRT (Retract a Variable)

Retraction of a shared variable ends an auxiliary
processor's connection to that variable. If the partner
has already retracted, the variable is no longer shared.

Input: $P4, $P3
Output: Previous condition of variable.

$SVSA (Set Access-Control Vector)

Set-access-control changes the auxiliary processor's
setting of a shared variable's access-control vector. The
request can be issued at any time after the variable has
been offered. The first setting (0 0 0 0) is provided
when a variable is offered.

Input: $P4, $P3, $IFLOT = new access vector, in
decimal (15 = 1 1 1 1)

Output: Joint access vector, in decimal.

$SVGA (Get Access-Control Vector)

This function requests the present value of the
access-control vector as previously set by both users.

Input: $P4, $P3
Output: Joint access vector, in decimal.

4-7

$SVPR (Pre-Read), $SVSZ (Seize),
$SVPW (Pre-Write)

If the variable is not under the control of the partner,
the access state and control vectors are examined to
determine if a use is permissible. If so, the variable is
registered in SVP as being under the control of the
auxiliary processor. When successful, the amount of
storage required for the value is also returned.

Input: $P4, $P3
Output: If positive, number of bytes.
Errors: -1, -8, -9.

$SVCP (Copy), $SVRD (Read)

The value of the shared variable is transferred to the
auxiliary processor's buffer. For Copy, the access state
is not changed and control of the variable is not
released. For Read, control is released and the access
state is changed to show that the auxiliary processor has
used the value.

Input: $P4, $P 1, $P2, $P3
Output: 0, -1, -7,-9

$SVWR (Write)

The value in the auxiliary processor's buffer is
transferred to the SVP. The access state is changed to
show that the auxiliary processor has set the variable.
Control of the variable is released.

Input: $P4, $P 1, $P2, $P3, $IFLOT = number of
bytes

Output: 0, -7, -9.

$SVRL (Release the Variable)

4-8

Control of the variable, if held by the auxiliary
processor, is released. The access state is not changed.

Input: $P4, $P3
Output: 0,-9

SSVWA (Wait)

Wait releases control and allows other auxiliary
processors and the APL processor to get control. The
wait state is left (that is, control is given back to this
processor) when: an offer is extended to this
processor; a shared variable is referenced, specified, or
retracted by the partner; the access-control vector is
changed by the partner.

Input: $P4
Output: None

SVP Macros Error Return Codes

o Success
-1 Value error
- 5 Already signed on
- 6 Processor table full
-7 Invalid sequence
- 8 Variable locked
-9 Variable not shared
-11 Not signed on

Format of Shared Data

APL data on the IBM Personal Computer has a special
internal format. Data passed from APL to the auxiliary
processor, and data passed back to APL, must be in
that same format. If you pass invalid data to APL,
unpredictable errors may occur. Each variable contains
information that describes its data type, shape, and size.

An APL variable is one of four types:

• real (floating point)
• integer
• logical (boolean)
• literal (character)

4-9

4-10

Regardless of a variable's data type, its elements always
occupy some number of words. If the variable has more
than one dimension, its elements are stored in row order
(as if the APL primitive ravel had been applied to the
variable).

Elements of a real variable are represented in long
floating-point format, with eight bytes per element.

Elements of an integer variable are represented as
binary numbers, with two bytes (one word) per element.
Actual values must belong to the interval (-32767,
32767).

Elements of a logical variable are represented as logical
values (0 or 1), with one bit per element. The bytes of a
logical variable, and the bits within the byte, are in row
order. The word containing the last element can have
undefined elements on the right. For example, the
elements of a 19-element logical variable are stored in
four bytes (two words) in the sequence shown below.
Unused elements of the fourth byte are undefined.

01234567 01234567 012xxxxx

Elements of a character variable are represented in
APL internal code, with one byte per element in row
order. The word containing the last element can have
one undefined byte on the right.

When you receive numeric data from APL, you should
be prepared to accept the data in any representation and
to convert between different representations.

The rank of a variable defines its shape. A scalar has a
rank of 0 and is a variable with no dimension. It has
only one element and contains no size information.

A variable with rank greater than 0 includes size
information: as many dimensions as the value of its
rank. Each dimension must be a two-byte integer, the
value of which belongs to the interval (0, 32767). The
maximum rank of a variable is 63.

Internal Structure of APL Variables

The variable is supposed to have been copied in the
auxiliary processor's buffer, which we will call $BUF.

$PTR EQU WORD PTR $BUF ; A pointer. Should
; be ignored by the
; auxiliary processor

$NB EQU WORD PTR $BUF+2 ; Total number of
; bytes in this
; APL object
; Note: The number of
; bytes of an APL object MUST
; ALWAYS be rounded up to
; EVEN.

$NELM EQU WORD PTR $BUF+4 ; Total number of
; elements in this
; APL object

$TYPE EQU BYTE PTR $BUF+6 ; APL object type
; 0= Logical, 1 = Integer,
; 2= Real, 3= Character

$RANK EQU BYTE PTR $BUF+7 ; Rank of APL object
; (between 0 and 63)

$ DIM EQU WORD PTR $BUF+8 ; First dimension (if any).
; As many dimensions as
; value of $RANK follow.

; Immediately after dimensions,
; values themselves appear in
; row order, packed according
; to type of data object:
; Logical: one bit/element.
; Integer: one word/element.
; Real: eight bytes/element.
; Character: one byte/element.

4-11

Information About Shared Variables

The shared-variable control block is created and
accessed by the SVP. Its address is passed to the
auxiliary processors in variable $P 3. Its contents are as
follows:

$ACB EQU WORD PTR [$P3] ; Pointer to the symbol table
; element of this variable.
; Remaining bytes used only
; by the SVP.

APL contains additional information about a shared
variable in the APL Symbol Table. The address of this
information block is contained in the shared-variable
control block ($ACB). Its contents are as follows:

; First seven bytes used only by APL.

$ONC EQU BYTE PTR [$ACB+7] ; Number of characters in
; the name of the variable.
; (Maximum number is 12.)

$ONA EQU BYTE PTR [$ACB+8] ; First character in the
; name of the variable.
; Remaining characters are
; consecutively stored.

Auxiliary Processor Example With
One Shared Variable

DGROUP

APxxx

4-12

The auxiliary processor shown in this section illustrates
the use of macros and segment registers. It can establish
a single connection, using a shared variable.

GROUP

INCLUDE
NAME
SEGMENT
ASSUME

AP xxx ; xxx should be replaced by
; AP identification number

$APMAC .ASM ; APL data segment
APxxx
PUBLIC 'DGROUP'
CS:DGROUP,DS:$SQ

; Assume seg registers

$PAPL ; APL environment macro
$APxxx PROC FAR ; All APs are considered

; as FAR procedures
JMP $ BEGIN ; Jump over data area

$SHV DW 0 ; Shared variable block
; address stored here
; Value of zero means
; "not shared"

$BUF DB 512 DUP(?) ; The AP buffer
; Other aux processor data words should be included here
$PTR EQU WORD PTR $BUF ; APL data object
$NB EQU WORD PTR $BUF+2 ; Total number of bytes
$NELM EQU WORD PTR $BUF+4 ; Number of elements
$ TYPE EQU $BUF+6; Data object type
$RANK EQU $BUF+7; Rank (0-63)
$SCALAR EQU $BUF+8; Address of value if scalar

; ($RANK= 0)
$BEGIN: $SA VE APL SA VE macro

MOV $P4, xxx Load AP identification
into $P4

$SVSN Sign on to SVP
EW: $SVWA Wait for requests

Set initial chronology for SCAN
MOV $IFLOT+2,O

Set $P3 equal to the shared variable block address
MOV AX, CS: $SHV

MOV $P3,AX

CMP AX,O

JNE EO

EWO: $SVSC

MOV AX ,$IFLOT

CMP AX,O

JE EW

MOV $P3,AX

Is the variable shared?
; Jump ifso
; Scan for offers
; $IFLOT has the offer

or a zero if no offers
Wait again if no offers
There was an offer.

Save its block address in $P3
$SVSH ; Accept the offer
CMP $IFLOT, 2 ; Was it successful?
JNE EW ; Wait again if not
MOV AX, $P3 Otherwise save the block
MOV CS:$SHV,AX ; address in $SHV
MOV $IFLOT, 15 Prepare to set access

control vector
$SVSA Set it
JMP El and go to read the value

4-13

; The variable was previously shared
EO : $SVSH Question share state

CMF $IFLOT, 2 Is it still shared?
JE El Go to read if so

E01: $SVRT Retract the variable
MOV $SHV, 0 Indicate variable is

no longer shared
JMF EWO Go to scan for new offers

Read the value of the variable
El: $SVPR Pre-read

CMP $IFLOT, -9 Retract variable if
JE EO 1 no longer shared
CMF $IFLOT , 0 Positive return code
JG E3 means a value
JMP EW Wait if not so

the variable has a value we can read
E3: PUSH CS ; $P 1 must point to segment

E2:

4-14

pop $Pl containing buffer
LEA AX ,$BUF and $P2 to buffer itself
MOV $P2 ,AX within the segment
CMF $IFLOT ,512 Is value larger than

JBE

$SVRL

JMP

$SVRD

E2

ER

buffer?
Jump if not
Buffer overflow: release
variable
and go to prepare an
appropriate error code
Read value of variable
into buffer

THE ACTUAL OPERATION OF AUXILIARY
PROCESSOR WILL BE INCLUDED HERE

INC

AND

$NB

$NB, -2

; Round up to even the
; number of bytes of the
; result

...
EWRT: $SVPW ; Prepare to write return

; value or return code
MOV AX ,$NB ; $IFLOT must contain
MOV $IFLOT,AX ; total number of bytes

; in value passed back
$SVWR ; Pass value to APL
JMP EW ; Wait for a further event

ER: MOV $NB ,10 ; Error return code
; Number of bytes will be 10

MOV $NELM,1 ; Number of elements is 1
MOV $TYPE,O ; Type is logical
MOV $RANK,O ; Rank is 0 (scalar)
MOV $SCALAR,128; Value is 1 (First bit)
JMP EWRT ; Go to write return code

$APxxx ENDP

APxxx ENDS

END

Auxiliary Processor Example with
Two Shared Variables

Our second example is an auxiliary processor designed
to establish up to four connections of two shared
variables each. The first one is a control variable that is
used by APL to send commands to the AP, and by the
AP to return the corresponding return code. The second
variable of the pair is a data variable, used by both
processors to exchange data objects.

DGROUP GROUP APxxx

INCLUDE $APMAC .ASM

NAME APxxx

APxxx SEGMENT PUBLIC 'DGROUP'

; xxx should be replaced
; by the AP id number
; APL data segment

4-15

ASSUME CS : DGROUP ,DS : $SQ ; Assume segment registers
$PAPL ; APL environment macro

$APxxx PROC FAR ; All APs considered
as FAR procedures

JMP $BEGIN ; Jump over data area
$CTL DB 0 ; CTL-DAT toggle
$LBUF EQU 2058 ; Length of buffer
$BUF DB $LBUF DUP(?) ; Buffer of AP

DB ? ; One extra byte
$PTR EQU WORD PTR $B UF ; APL data object in buffer
$NB EQU WORD PTR $BUF+2 ; Total number of bytes
$NELM EQU WORD PTR $BUF+4 ; Number of elements
$TYPE EQU BYTE PTR $BUF+5 ; Type
$RANK EQU BYTE PTR $BUF+7 ; Rank
$CR EQU WORD PTR $BUF+8 ; Value of return code
$LCB EQU 52 Size of block for each

CTL variable
$LTCB EQU 4*$LCB There are 4 CTL variables
$LDB EQU 4 Size of block for DAT vars
$LTDB EQU 4*$LDB There are 4 DAT vars

; Do not change order of following four instructions

$DAT DB $LTDB DUP(0) ; DA T block area
$DATE LABEL NEAR ; End of DAT block area
$SRV DB $LTCB DUP(0) CTL block area
$SRVE LABEL NEAR End of CTL block area
$SVPT EQU WORD PTR [BX] First word of block
$STPT EQU WORD PTR [BX+2] Second word of block
$ aNA EQU BYTE PTR [SI+8] ; Name of variable in APL

; symbol table
$BEGIN: $SA VE ; APL SA VE macro

MOV $P4. xxx Load AP number into $P4
$SVSN Sign on to SVP

EW: $SVWA Wait for an event
LEA BX,$DAT Point to DAT blocks
MOV $CTL,O Toggle to DAT vars

EOOO: MOV $IFLOT+2.0 Start chronology
E01: CMF CS:$SVPT,O Is variable shared?

JE E02 Jump to E02 if not
JMP E2 Otherwise go to E2

4-16;

E02: $SVSC Scan for offers
MOV AX .$IFLOT Is there an offer?
CMF AX,O

JNE E1 Jump if so
E03: TEST $CTL .1 Go to E030 if this

JNZ E030 ; is a CTL variable
ADD EX ,$LDE Increment for DA T variables
CMF EX ,OFFSET $DATE ; End of DAT blocks?
JNE E01 ; Retry if not
MOV $CTL .1 ; Next we will try CTL vars
JMF EOOO Jump back and retry

E030: ADD EX .$LCE ; Increment for CTL vars
CMF EX ,OFFSET $SHVE ; End of CTL blocks?
JNE E01 Retry if not
JMP EW ; Wait for next event

There was an offer

E1: MOV $P3,AX Save offer in $P 3
MOV SI,AX Get pointer to this var
MOV SI. [SI] in APL symbol table
MOV cs: $STPT ,SI ; and save it in block
CMF $ONA .64 ; Is first letter a "C"?
JE EQ1 Jump to EQI ifso
CMP $ONA,65 Is first letter a "D"?
JNE E02 Reject variable if not
TEST $CTL,1 Reject it if CTL variable
JNZ E02

JMP SHORT EQO Otherwise accept it
EQ1: TEST $CTL.1 Reject it if DAT variable

JZ E02

EQO: $SVSH Share variable
CMF $IFLOT,2 Try next block
JNE E03 if not success
MOV AX,$P3 Save $P3 in first
MOV cs: $SVPT ,AX ; word of block
TEST $CTL,1 ; If DAT variable,
JZ E03 ; all done
MOV $IFLOT.15 ; CTL var must have access
$SVSA vector equal to 1 1 1 1
JMF E03 ; All done for this block

4-17

; This variable had been shared before

E2: MOV AX, CS : $SVPT Load$P3
MOV $P3,AX

$SVSH Question variable state
CMF $IFLOT,2 If still shared,
JE E20 go to E20

The variable is no longer shared

E3: $sllRT

MOV CS:$SVPT,O

JMP E02

The variable is still shared

E20: TEST $CTL,1

JNZ E20A

E20B: JMF E03

E20A: $SVPR

Retract variable
Show it is not shared
Try new offers

All done if DAT variable

Get control of variable to read
CMF $IFLOT,-9 Retract if no longer
JE E3 shared
CMF $IFLOT,O ; Number of bytes must
JLE E20B be positive
CALL EAUX Read value
JNC EQ2 Successful read?
JMF ER2 Else, error message

EQ2:

Insert here the appropriate code for the AP
INC $NB ; Round up to even the
AND $NB, - 2 ; number of bytes of result

ER2: MOV

EFN4: MOV

MOV

XOR

MOV

MOV

4-18

AL,22

DX , CS : $SVPT

$P3,DX

AH,AH

$NB ,10

$TYPE,1

Error return code=22
All return codes come here
Load $P 3 for CTL variable
Return code is in AL

; A scalar integer
; occupies 10 bytes
; Set type as integer

GMF AL,l If AL = 0, 1, it is logical
JA EFN5

MOV $TYPE,O Therefore, type is logical
ROR AL,l Put byte in place

(Remember byte reversal
in two-byte words)

EFN5: MOV $RANK,O Rank is ° (scalar result)
MOV $NELM,l ; Number of elements is 1
MOV $GR ,AX ; Put result in buffer
$sVPw Prepare to write
MOV $IFLOT,10 Number of bytes is 10
$SVWR Write the return code
JMF EW and wait for next event

$APxxx ENDP

; This routine reads the value of a shared variable
EAUX PROG NEAR

PUSH GS ; $P 1 must point to segment
pop $Pl ; of buffer
LEA AX ,$BUF ; $P2 must point to $B UF
MOV $P2,AX ; within the segment
GMF $IFLOT, $LB UP Is buffer length sufficient?
JA EAUl Jump if not
$SVRD Read value into the buffer
GLG Clear carry (success)
RET and return to caller

EAU1: $SVRL Release variable
STG set carry (fail)
RET and return to caller

EAUX ENDP

APxxx ENDS

END

4-19

APL Data Segment and Macros for
Auxiliary Processors

$SVSN

$SVSF

$SVSC

$SVSH

$SVRT

$SVSA

$SVGA

$SVPR

$svpw

$svsz

$SVRD

4-20

The macros and data segments for auxiliary processors
are in the file, SAPLMAC.ASM.

IFl
MACRO
MOV $PPTR,O
. CALL $SVP
ENDM
MACRO
MOV $PPTR,l
CALL $svp
ENDM
MACRO
MOV $PPTR,2
CALL $SVP
ENDM
MACRO
MOV $PPTR,3
CALL $svp
ENDM
MACRO
MOV $PPTR,4-
CALL $svp
ENDM
MACRO
MOV $PPTR,5
CALL $svp
ENDM
MACRO
MOV $PPTR,6
CALL $svp
ENDM
MACRO
MOV $PPTR,7
CALL $SVP
ENDM
MACRO
MOV $PPTR,8
CALL $svp
ENDM
MACRO
MOV $PPTR,9
CALL $svp
ENDM
MACRO
MOV $PPTR ,10
CALL $svp
ENDM

$SVCp MACRO
MOV $PPTR,11
CALL $SVP
ENDM

$SVWR MACRO
MOV $PPTR,12
CALL $SVP
ENDM

$SVRL MACRO
MOV $PPTR,13
CALL $SVP
ENDM

$SVWA MACRO
MOV $PPTR,14
CALL $SVP
ENDM

$SVSV MACRO
MOV $PPTR,15
CALL $SVP
ENDM

$PAPL MACRO
$Pl EQU WORD PTR[BP]
$P2 EQU WORD PTR[BP+2]
$P3 EQU WORD PTR[BP+4]
$P4 EQU WORD PTR[BP+6]
$P5 EQU WORD PTR[BP+8]
$P6 EQU WORD PTR[BP+l0]
$PPTR EQU WORD PTR[BP+8]
$PLKB EQU WORD PTR[BP+10]

ENDM
,
$SAVE MACRO

PUSH AX
PUSH BX
PUSH BP
PUSH $P6
PUSH $P5
PUSH $P4
PUSH $P3
PUSH $P2
PUSH $P1
MOV BP,SP
ENDM
ENDIF

$SQ SEGMENT COMMON
$WBEGl LABEL BYTE
$SVP EQU DWORD PTR $WBEG1+371H ;SVP LINK
$APLOFF EQU $WBEG1 +4ACH ;ASCII TO APL T. TABLE
$APLON EQU $WBEG1+5ACH ;APLON KEYBOARD TABLE
$ASCII EQU $WBEG1+6ACH ;APL TO ASCII T.TABLE
$PMR EQU WORD PTR $WBEG1 +8ACH ;APLDFN START ADDRESS
$L EQU $PMR+52*TYPE $PMR ;INTERPRETER WORK AREA

;DO NOT USE IT.
$IFLOT EQU $L+56*TYPE $L ;RETURN CODES WORD
$SQ ENDS

4-21

Notes:

4-22

Part 2. APL Reference Guide

Chapter 5. Using APL 5-1
Two Examples of the Use of APL 5-3

An Isolated Calculation 5-4
A Prepared Workspace 5-4

Characteristics of APL 5-5

Chapter 6. Fundamentals 6-1
Character Set 6-7
Spaces 6-8
Function 6-8
Order of Execution 6-9
Data 6-10

Arrays 6-10
Constants 6-13

Workspaces and Libraries 6-14
Names 6-14
Implementation Limits 6-15

Chapter 7. Primitive Functions
and Operators 7-1

Scalar Functions 7-3
Plus, Minus, Times, Divide,
and Residue 7-7

Conjugate, Negative, Signum, Reciprocal,
and Magnitude 7-7

Boolean and Relational Functions 7-8
Minimum and Maximum 7-10
Floor and Ceiling 7-11
ROLL (Random Number Function) 7 -11
Power, Exponential, General and Natural
Logarithm 7-12

Circular, Hyperbolic, and Pythagorean
Functions 7-13

Factorial and Binomial Functions 7-16

Operators 7-1 7
Reduction 7-1 7
Scan 7-19
Axis 7-20
Inner Product 7-22
Outer Product 7-24

Mixed Functions 7-26
Structural Functions 7-31
Selection Functions 7-39

Selector Generators 7-44
Index Generator and Index Of 7 -45
Membership 7-45
Grade Functions 7-46
Deal 7-50

Numeric Functions 7-50
Matrix Inverse and Matrix Divide 7-50
Decode and Encode 7-54

Data Transformations 7-56
Execute and Format 7-57
Picture Format 7 -64

Chapter 8. System Functions and
System Variables 8-1

System Functions 8-3
Canonical Representation - 0 CR 8-5
Delay - ODL 8-6
Execute Alternate - 0 EA 8-6
Expunge - 0 EX 8-7
Function Extablishment - 0 FX 8-8
Name Classification - ONC 8-8
Name List - ONL 8-9
Peek/Poke - 0 PK 8-10
Transfer Form - 0 TF 8-11

System Variables 8-14
Latent Expression - 0 LX 8-16
Atomic Vector - OAV 8-17
Format Control- OFC 8-18
Horizontal Tabs - 0 HT 8-19

ii

Chapter 9. Shared Variables 9-1
Offers 9-5
Access Control 9-7
Retraction 9-12
Inquiries 9-13

Chapter 10. Function Definition 10-1
Canonical Representation and Function
Establishment 10-3

The Function Header 10-5
Ambi-Valent Functions 10-6
Local and Global Names 10-7
Branching and Statement Numbers 10-8
Labels 10-9
Comments 10-10

Function Editing - The V Form............ 10-10
Adding a Statement 10-11
Inserting or Replacing a Statement 10-11
Replacing the Header 10-12
Deleting a Statement 10-12
Adding to a Statement or Header. 10-12
Function Display 10-13
Leaving the V Form 10-15

Chapter 11. Function Execution 11-1
Halted Execution 11-4

State Indicator 11-5
State Indicator Damage 11-6

Trace Control 11-7
Stop Control 11-7
Locked Functions 11-8
Recursive Functions 11-9
Console Input and Output 11-10

Evaluated Input 11-12
Character Input 11-13
Interrupting Execution During Input 11-13
NormalOutput 11-13
Bare Output 11-14

iii

Chapter 12. System Commands. 12-1
Active Workspace - Action Commands 12-7
Active Workspace - Inquiry Commands 12-10
Workspace Storage and Retrieval - Action
Commands 12-12

Libraries of Saved W orkspaces 12-12
Workspace Names 12-12

Workspace Storage and Retrieval - Inquiry
Commands 12-16

Sign-Off 12-1 7

Appendix A. ALT Codes and
Associated Characters A-I

Appendix B. Printer Control Codes B-1

Appendix C. Internal Representation of
Displayed Characters C-l

Index X-I

iv

Chapter 5. Using APL

Two Examples of the Use of APL 5-3
An Isolated Calculation 5-4
A Prepared Workspace 5-4

Characteristics of APL 5-5

5-1

Notes:

5-2

APL takes one APL statement at a time, converts it to
machine instructions (the computer's internal
language), executes it, then proceeds to the next line. In
contrast to program compilers that convert complete
programs to machine language before executing any
statements, APL allows you a high degree of interaction
with the computer. If something you enter is invalid,
you will get quick feedback on the problem before you
go any further.

Two Examples of the Use of APL
A statement entered at the keyboard may contain
numbers or symbols, such as + - X-+-, or names
formed from letters of the alphabet. The numbers and
special symbols stand for the primitive objects and
functions of APL--primitive in the sense that their
meanings are permanently fixed, and therefore
understood by the APL system without further
definition. A name, however, has no significance until a
meaning has been assigned to it.

Names are used for two major categories of objects.
There are names for collections of data that is
composed of numbers or characters. Such a named
collection is called a variable. Names may also be used
for programs made up of sequences of APL statements.
Such programs are called defined functions. Once they
have been established, names of variables and defined
functions can be used in statements by themselves or in
conjunction with the primitive functions and objects.

5-3

An Isolated Calculation

If the work to be done can be adequately specified
simply by typing a statement made up of numbers and
symbols, names will not be required; entering the
expression to be evaluated causes the result to be
displayed. For example, suppose you want to compare
the rates of return on money at a fixed interest rate but
with different compounding intervals. For 1000 units at
6% compounded annually, quarterly, monthly, or daily
for 10 years, the entry and response for the transaction
(assuming a printing precision (OFP) equal to 6) would
look like this:

OFP+-6
1000 x (1+.06+1 4 12 365)*10x1 4 12 365

1790.85 1814.02 1819.4 1822.03

(The largest gain is apparently obtained in going from
annually to quarterly; after that the differences are
relatively insignificant.)

Several characteristic features of APL are illustrated in
this example: familiar symbols such as + X +- are
used where possible; symbols are introduced where
necessary (as the * for the power function); and a group
of numbers can be worked on together.

A Prepared Workspace

5-4

Although many problems can be solved by typing the
appropriate numbers and symbols, the greatest benefits
of using APL occur when named functions and data are
used. Because a single name may refer to a large array
of data, using the name is far simpler than typing all of
its numbers. Similarly, a defined function, specified by
entering its name, may be composed of many individual
APL statements that would be burdensome to type
again and again.

Once a function has been defined, or data collected
under a name, it is usually desirable to retain the
significance of the names for some period of time -
perhaps for just a few minutes - but more often for much
longer, possible months or years. For this reason APL
systems are organized around the idea of a workspace,
which might be thought of as a notebook in which all
the data items needed during some piece of work are
recorded together. An APL workspace will thus contain
defined functions, data structures, and a state indicator.

Characteristics of APL

The remaining chapters of this part of the book describe
APL in detail, giving the meaning of each symbol and
discussing the various features of APL for the IBM
Personal Computer. These details should be considered
in light of the major characteristics of APL, which may
be summarized as follows:

• The primitive objects of the language are arrays
(lists, tables, lists of tables, etc.). For example, A + B
is meaningful for any conformable arrays A and B,
the size of an array(pA} is a primitive function, and
arrays may be indexed by arrays, as in A [3 1 4 2 J.

• The syntax is simple: there are only three
statement types (name assignment, branch, or
neither), there is no function precedence hierarchy,
functions have either one, two, or no arguments, and
primitive functions and defined functions (programs)
are treated alike.

• The semantic rules are few: the definitions of
primitive functions are independent of the
representations of data to which they apply, all
scalar functions are extended to other arrays in the
same way (that is, item-by-item), and primitive
functions have no hidden effects (so-called
side-effects).

5-5

5-6

• The sequence control is simple: one statement
type embraces all types of branches (conditional,
unconditional, computed, etc.), and the completion
of the execution of any function always returns
control to the point of use.

• External communications are established by means
of variables which are shared between APL and
other systems or subsystems (such as auxiliary
processors). These shared variables are treated
both syntactically and semantically like other
variables. A subclass of shared variables - system
variables - provides convenient communications
between APL programs and their environment.

• The usefulness of the primitive functions is vastly
expanded by operators, which modify their behavior
in a systematic manner. For example, reduction
(denoted by /) modifies a function to apply over all
elements of a list, as in + / L for summation of the
items of L. The remaining operators are scan
(running totals, running maxima, etc.), the axis
operator which, for example, allows reduction and
scan to be applied over a specified axis (rows or
columns) of a table, the outer product, which
produces tables of values as in RA TEo. *YEARS
for an interest table, and the inner product, a simple
generalization of matrix product that is very useful
in data processing and other non-mathematical
applications.

• The number of primitive functions is few enough
that each is represented by a single, easily-read and
easily-written symbol, yet the set of primitives
embraces operations from simple addition to grading
(sorting) and formatting. The complete set can be
classified as follows:

Arithmetic: + - x -;- * flil 0 I L I ! iii

Boolean and Relational: v 1\ "i '" ~ < ~ = ;;0: > ;t

Selection and Structural: / \ f , [;] t + p , cjl lsi e

General: E 1 ? .L T l' ~ ~ w

Chapter 6. Fundamentals

Character Set 6-7
Spaces 6-8
Function 6-8
Order of Execution 6-9
Data 6-10

Arrays 6-10
Constants 6-13

W orkspaces and Libraries 6-14
Names 6-14
Implementation Limits 6-15

6-1

Notes:

6-2

A typical statement in APL is of the form:

AREA+-3x4

The effect of the statement is to assign to the name
AREA the value of the expression 3x4 to the right of
the specification arrow +-; the statement may be read
informally as "AREA is three times four."

The statement is the normal unit of execution. Two
primitive types occur: the specification shown above,
and the branch, which serves to control the sequence in
which the statements in a defined function (see Chapter
10) are executed. There is also a third type of statement
that may specify the use of a defined function without
either a specification or a branch.

A variant of the specification statement produces a
display of a result. If the leftmost part of a statement is
not a name followed by a specification, the result of the
expression is displayed. For example:

12

14

PERIMETER+-2 x (3+4)
PERIMETER

The result of any part of a statement can be displayed
by including the characters 0+- at the appropriate point
in the statement. Moreover, any number of specification
arrows may occur in a statement. For example:

X+-2+0+-3+Y+-4
12

x
14

Y
4

6-3

6-4

Entry of a statement that cannot be executed will cause
an error report, which indicates the nature of the error
and the point at which execution stopped. For example:

X+-5
3+(YxX)

VALUE ERROR
3+(YxX)

A

Following is a list of error messages, with information
about the cause and suggested corrective action.

DEFN

DOMAIN

D--IMPLICIT

INDEX

INTERRUPT

Misuse of V or 0 symbols:

1. Invalid function header.

2. Use of other than a name
alone in reopening a function.

3. Improper request for a line
edit or display.

Argument is not valid.

The system variable 0 (for
example, DID) has been set to
an inappropriate value, or has
been localized and not been
assigned a value.

Index value out of range.

1. The input line being typed is
ignored. Begin typing again.

2. The input/output operation
attempted was not completed.

LENGTH

RANK

SIDAMAGE

STACK FULL

SYMBOL TABLE
FULL

SYNTAX

3. Execution was suspended
within an APL statement.

TO RESUME
EXECUTION, ENTER A
BRANCH TO THE
STATEMENT
INTERRUPTED

Shapes not conformable.

Ranks not conformable.

The state indicator (an internal
list of suspended and pendent
functions) has been damaged in
editing a function or in carrying
out an)ERASE .

Too many nested functions
called. Definition of a very large
function with V, OFX , OTF or
)IN.

Too many names used. This
problem can be corrected by
executing the following
sequences of commands:

)OUT,) CLEAR ,)IN
or)OUT,) CLEAR ,

) SYMBOLS ,)IN
or)ERASE,)OUT,) CLEAR,

)IN

Invalid syntax; for example, two
variables adjoining; function
used without an appropriate
number of arguments;
unmatched parentheses.

6-5

6-6

SYSTEM Fault in internal operation of the
system.

COMPLETE READER'S
COMMENT FORM AT THE
BACK OF THE BOOK AND
SEND TO IBM.

SYSTEM LIMIT An implementation limit has
been reached.

VALUE Use of name that does not have
a value, or an attempt to use a
numeric constant whose
magnitude is too large or too
small for internal representation.

WORKSPACE
FULL

ASSIGN A VALUE TO THE
VARIABLE, DEFINE THE
FUNCTION, OR CHANGE
THE VALUE OF THE
CONSTANT

Workspace is filled (perhaps by
temporary values produced in
evaluating a compound
expression, or by values or
shared variables).

CLEAR STATE
INDICATOR, ERASE
NEEDLESS OBJECTS, OR
REVISE CALCULATIONS
TO USE LESS SPACE.

Character Set

The characters that may occur in a statement fall into
four main classes: alphabetic, numeric, special, and
blank. The alphabetics comprise the roman alphabet
in uppercase italic font, the same alphabet in
lowercase, delta (l1), and delta underline (~). The
complete set is shown in Figure 3 with suggested
names.

ABCDEFGHIJKLMNOPQRSTUVWXYZl1
abc d e f 9 h i j k 1 m n 0 p q r stu v w x y z l1
o 1 2 3 4 5 6 7 8 9

<
:S

~

>
;t

dieresis

overbar

less

not greater

equal

not less

greater

not equal

v~ or

" and

+
x

bar

divide

plus

times

? query

UJ omega

E epsilon

p rho

tilde

t up arrow

+ down arrow

-+ right arrow

+ left arrow

o circle

Figure 3. APL Character Set

.a
r
L

o

D
(
)
[
]
c

alpha

upstile

downstile

underbar

del

delta

null

quote

quad

left paren

right paren

left bracket

right bracket

left shoe

:::> right shoe

n cap

U cup

.L base

T top

semicolon

colon

comma

dot

space

nor

nand

del stile

delta stile

circle stile

circle slope

circle bar

log

I-beam

del tilde

base null

top null

slope bar

slash bar

A cap null

[!] quote quad

quote dot

iii domino

I stile

* star

1 iota

\ slope

/ slash

l1 delta underbar

6-7

The names suggested are for the symbols themselves
and not necessarily for the functions they represent. For
example, the downstile (L) represents both the
minimum, a function of two arguments, and the floor (or
integer part), a function of one argument. In general,
most of the special characters (such as +, -, X, and -:
are used to denote primitive functions that are assigned
fixed meanings, and the alphabetic characters are used
to form names that may be assigned and re-assigned
significance as variables, defined functions, and other
objects.

Spaces

The blank character is used primarily as a separator.
The spaces that one or more blank characters produce
are needed to separate names of adjacent defined
functions, constants, and variables. For example, if F is
a defined function, then the expression 3 F 4 must be
entered with the indicated spaces. The exact number of
spaces used in succession is not important, and extra
spaces may be used freely. Spaces are not required
between primitive functions and constants or variables,
or between a succession of primitive functions, but they
may be used if desired. For example, the expression 3+4
may be entered with no spaces.

Function

6-8

The word/unction derives from a word that means to
execute or perform. A function executes some action on
an array (or arrays), called its argument(s), to produce
an array as a result. The result may serve as an
argument to another function. For example:

3x4
12

2+(3 x4)
14

(-6)-i-3
2

A function (such as the negation used on the previous
page) that takes one argument is said to be monadic,
and a function (such as times) that takes two arguments
is said to be dyadic. All APL functions are either
monadic or dyadic or, in the case of defined functions
only, niladic (taking no argument). The argument of a
monadic function always appears to the right of the
function. The arguments of a dyadic function appear on
each side of the function, and are called the left
argument and right argument. Certain of the special
symbols are used to denote two different functions, one
monadic and the other dyadic. For example, X - Y
denotes subtraction ofY from X (a dyadic function),
and - Y denotes negation of Y (a monadic function).

Each of the primitive functions is denoted by a single
character or by an operator applied to such a character
(see "Primitive Functions and Operators"). For
example, + and x are primitive functions as are + / and
x / (since / denotes an operator).

Order of Execution

Parentheses are used in the usual way to control the
order of execution in a statement. Any expression
within matching parentheses is evaluated before
applying to the result, any function outside the matching
pair.

In conventional notation, the order of execution of an
unparenthesized sequence of monadic functions may be
stated as follows: the (right-hand) argument of any
function is the value of the entire expression to the right.
For example, LOG SIN ARCTAN X means the Log of
Sin Arctan X, which means Log of Sin of Arctan X. In
APL, the same rule applies to dyadic functions as well.
Moreover, all functions, both primitive and defined, are
treated alike; there is no heirarchy among functions,
such as multiplication being done before addition or
subtraction.

6-9

Data

Arrays

6-10

An equivalent statement of this rule is that an
unparenthesized expression is evaluated in order from
right to left. For example, the expression 3x8r3* 15-7
is equivalent to 3x (8r (3* (1 (5-7)) » . Their result
is 27. A consequence of the rule is that the only
concrete use of parentheses is to form the left argument
ofafunction. For example, (12f3)x2 is 8 and 12f3x2
is 2. However, redundant pairs of parentheses can be
used to help improve readability. Thus, the expressions
12 f 3 x 2 and 12 f (3 x 2) are evaluated identically, with
a result of 2.

Data used in APL is one of two types - numeric or
character.

Data is produced by: (1) explicit entry at the
keyboard, (2) execution of APL functions or operators,
and (3) use of shared variables and system variables.

Data is organized in ordered collections called arrays.
Arrays are characterized by their content (character or
numeric), their number of axes or dimensions (rank),
and the number of elements along each axis (shape).
All elements of an array must be of the same type -
character or numeric. Arrays range from scalars, which
are dimensionless, to multi-dimentional arrays or
arbitrary rank and shape. These arrays are referred to
by the following terms:

• A scalar is an array having no dimensions.

• A vector is an array having one dimension.

• A matrix (or table) is an array having two
dimensions.

Arrays having more than two dimensions can also be
created.

An empty array is an array with one or more of its
dimensions equal to O. Such an array is either character
or numeric, but contains no elements.

A vector can be formed by listing its elements as
described in the discussion of constants. For example:

V+2 3 5 7 11 13 17 19
A+'ABCDEFGH'

The elements of a vector may be selected by indexing.
F or example:

V[3 1 5J
5 2 11

A[8 5 1 4J
HEAD

Arrays of more complex structure may be formed with
the reshape dyadic function denoted by p.

M+2 4pV
M

2 3 5 7
11 13 17 19

ABCD
EFGH

B+2 4pA
B

These results have two dimensions or axes and are
called tables or matrices. A matrix has two axes and is
said to be of rank 2; a vector has one axis and is of
rank 1. The left argument 2 4 in the preceding
examples specifies the shape of the resulting array.
Arrays of random shape and rank may be produced by
the same scheme. For example:

ABCD
EFGH
IJKL

MNOP
QRST
UVWX

T+2 3 4p'ABCDEFGHIJKLMNOPQRSTUVWX'
T

6-11

6-12

The shape of an array can be determined by the
monadic function denoted by p •

pV pM pT
8 2 4 234

Elements may be selected from any array (other than a
scaler) by indexing in the manner shown for vectors,
except that indexes must be given for each axis:

M[2;3J T[2;1;4J
17 P

M[2 1;2 3 4J T[2;1 2 3;1 2 3 4J
13 17 19 MNOP

3 5 7 QRST
UVWX

The indexing used in the preceding examples is called
i-origin, because the first element along each axis is
selected by the index 1. One may also use O-origin
indexing by setting the index origin to O. The index
origin is a system variable denoted by [lID (see "System
Functions and System Variables"). Thus:

235

G

[lI0+-1
V[1 2 3J

B[2;3J
a

235

G

[lIO+-O
V[O 1 2J

B[1;2J

All remaining examples assume I-origin unless
otherwise stated.

Constants

A constant is a scalar or vector, either character or
numeric, that appears explicitly in an APL statement.

All numbers entered or displayed are in decimal, either
in conventional form (including a decimal point if
appropriate) or in scaled form. The scaled form consists
of an integer or decimal fraction . called the multiplier
followed immediately by the symbol E then an integer
(which must not include a decimal point) called the
scale. The scale specifies the power of 10 by which the
multiplier is to be multiplied. Thus 1. 44E2 is equivalent
to 144.

Negative numbers are represented by an overbar
immediately preceding the number; for example, -1 .44
and -144E-2 are equivalent negative numbers. The
overbar can be used only as part of a constant and is to
be distinguished from the bar that denotes negation, as
in -x.

A scalar numeric constant is a number entered by
itself. A vector numeric constant is entered by listing
the component numbers in order, separated by one or
more spaces.

A scalar character constant may be entered by placing
the character between quotation marks; a vector
character constant may be entered by listing no
characters, or two or more characters, between
quotation marks. The system displays such a vector as
the sequence of characters, with no enclosing quotes
and with no separation of the successive elements. The
quote character itself must be entered as a pair of
quotes. Thus, the abbreviation of cannot is entered as
, CAN' 'T' and prints as CAN'T .

6-13

Workspaces and Libraries

The common organizational unit in an APL system is
the workspace. When in use, a workspace is said to be
active, and is located in main storage. Part of each
workspace is set aside to serve the internal workings of
the system, and the remainder is used, as required, to
store items of information and to hold transient
information generated during a computation.

The names of variables (data items) and defined
functions (programs) used in calculations always refer
to objects known by those names in the active
workspace; information about the progress of program
execution is maintained in the state indicator of the
active workspace, and control information affecting the
form of output is held within the active workspace.

Inactive workspaces are stored in libraries, where they
are identified by random names . ,They occupy space on
disk and cannot be worked with directly. When
required, copies of stored workspaces can be made
active, or selected information can be transferred from
them into an active workspace.

Workspaces and libraries are managed by system
commands, as described under "System Commands."

Names

6-14

N ames of workspaces, functions, and variables may be
formed from any sequence of alphabetic and numeric
characters that starts with an alphabetic and contains no
blank. Some additional restrictions on names exist for
APL on the IBM Personal Computer:

• The number of significant characters in the name of
an APL object is 12.

• Workspace names are subject to IBM Personal
Computer DOS file-naming restrictions, with a
maximum length of 8 alphameric characters (see
your DOS book).

• Lowercase letters, delta, and delta underlined are
not allowed as part of a workspace name.

The environment in which APL operations take place is
limited by the active workspace. Hence, the same name
may be used to designate different objects (that is,
functions or variables) in different workspaces, without
interference. Also, because workspaces themselves are
never the subject of APL operations, but only of system
commands, a workspace can have the same name as an
object it holds.

Implementation Limits

The APL interpreter for the IBM Personal Computer
has the following implementation limits:

• The maximum value of any dimension of an APL
object is 32767.

• The maximum number of elements in a variable is
32767.

• The maximum size of an APL object is 32767
bytes.

• The maximum number of lines in a function is
1000.

• The maximum size of the symbol table is 8K bytes.

• The maximum size of the stack is 8K bytes.

6-15

6-16

An APL workspace consists of two parts:

• The main workspace. It occupies a maximum of
64K bytes. It is in this part where all APL
statements are executed, and where all APL objects
are created and modified.

• The elastic workspace. It occupies all memory that
is still available. Its size has no limit other than the
physical size of the memory. All APL objects not
part of an execution are moved to the elastic
workspace if the space they occupy in the main
workspace is needed for other purposes.

Chapter 7. Primitive Functions and
Operators

Scalar Functions 7-3
Plus, Minus, Times, Divide, and
Residue 7 -7

Conjugate, Negative, Signum, Reciprocal,
and Magnitude 7 -7

Boolean and Relational Functions 7-8
Minimum and Maximum 7-10
Floor and Ceiling 7-11
ROLL (Random Number Function) 7-11
Power, Exponential, General and Natural
Logarithm 7-12

Circular, Hyperbolic, and Pythagorean
Functions 7-13

Factorial and Binomial Functions 7 -16
Operators 7-17

Reduction 7 -1 7
Scan 7-19
Axis 7-20
Inner Product 7 -22
Outer Product 7-24

Mixed Functions 7-26
Structural Functions 7-31
Selection Functions 7-39

Selector Generators 7-44
Index Generator and Index Of 7-45
Membership 7-45
Grade Functions 7 -46
Deal 7-50

Numeric Functions 7-50
Matrix Inverse and Matrix Divide 7-50
Decode and Encode 7-54

Data Transformations 7-56
Execute and Format 7-57
Picture Format 7 -64

7-1

Notes:

7-2

The primitive functions fall into two classes - scalar and
mixed. Scalar functions are defined in scalar arguments
and are extended to other arrays item-by-item. Mixed
functions are defined in arrays of various ranks and may
give results that differ from the arguments in both rank
and shape. Five primitive operators apply to scalar
dyadic functions and to certain mixed functions to
produce many new functions.

The definitions of certain functions depend on system
variables whose names begin with the symbol 0 (as in
oro and OCT). These system variables are discussed in
more detail in "System Functions and System
Variables. "

Scalar Functions
A monadic scalar function extends to each item of an
array argument; the result is an array of the same shape
as the argument, and each item of the result is obtained
as the monadic function applied to the corresponding
item of the argument.

A dyadic scalar function extends similarly to a pair of
arguments of the same shape. To be conformable, the
arguments must agree in shape, or at least one of them
must be a scalar or a one-element array. If one of the
arguments has only one item, that item is applied in
determining each element of the result. If both
arguments have one item but different ranks, the result
has the higher rank. For example:

1 2 3x4 5 6
4 10 18

3+4 5 6
7 8 9

2 3+4 5 6
LENGTH ERROR

2 3+4 5 6
1\

7-3

Each of the scalar functions is defined on all real
numbers with two general exceptions: the five boolean
functions are defined only on the numbers 0 and 1, and
the functions = and ;t: are defined on characters as well
as numbers. Specific exceptions (such as 4 .;. 0) will be
noted where appropriate.

The scalar functions are summarized in Figure 4 with
their symbols and brief definitions or examples, which
should clarify their use. The remainder of this chapter is
devoted to more detailed definitions.

Monadic form f B Dyadic form A f B
f

Definition or Example Name Name Definition or Example

+B is B Conjugate + Plus 2+3.2 is 5.2
-B is O-B Negative - Minus 2-3.2 is -1.2
xB is (B>O)+B<O Signum x Times 2x3.2 is 6.4
+B is 1+B Reciprocal Divide 2+3.2 is 0.625
'-3.14 is 3.14 Magnitude I Residue AlB ~ B-AxLB+A+A=O

B LB rB Floor L Minimum 3L7 is 3
3.14 3 4 Ceiling r Maximum 3r 7 is 7 -3.14 4 - 3

?B is Random choice from tB Roll ? Deal A Mixed Function (see Figure 8)
*B is (2.71828 ••)*B Exponential * Power 2*3 is 8
~*B is B is *~B Natural logarithm ~ General logarithm A~B is Log B base A

A~B is (~B)+~A

oB is Bx3.14159 ••• Pi times o Circular, Hyperbolic Pythagorean (see table at left)
!O is 1 Factorial ! Binomial AlB is (!B)+(!A)x!B-A
!B is Bx lB-1 2!5 is 10 3! 5 is 10
or !B is Gamma (B+1)
~1 is 0 ~O is 1 Not ~

A And A B AAB AvB A'I'<B AYB
0 0 0 0 1 1 (-A)OB A AOB

V Or

(1-B*2)*.5 (1-B*2)*.5
'I'< Nand 0 1 0 1 1 0

0
Nor 1 0 0 1 1 0

B
¥

Arcsin 1 Sine B 1 1 1 1 0 0
B Arcos 2 Cosine B

Arctan B 3 Tangent B
(1+B*2)*.5 4 (1+B*2)*.5 < Less Relations
Arsinh B 5 Sinh B :5: Not greater Result is 1 if the relation holds,
Arcosh B 6 Cosh B = Equal o if it does not:
Artanh B 7 Tanh B ~ Not less 3Q is 1

Table of Dyadic 0 Functions > Greater 7-;;,3 is 0
;t Not Equal

Figure 4. Primitive Scalar Functions

7-4

A dyadic function F may possess a left identity element
L, such that L F X equals X for any X, or a right
identity element R ,such that X F R equals X • For
example, one is a right identity element of + , since
X -;. 1 is X; zero is a left or right identity of + ; one is a
left or right identity of x ,and the general logarithm
function ® has no identity element.

Identity elements become important as the appropriate
result of applying a function over an empty vector; for
example, the sum over an empty vector is 0 (the identity
element of +), and the product over an empty vector is 1
(the identity element of x). These matters are discussed
further in the treatment of the reduction operator, which
concerns such applications of dyadic functions over
vectors.

Figure 5 lists the identity elements of the dyadic scalar
functions. The relational functions <, :::;, =, ~, >, and
~ have no true identity elements, except when
considered as boolean functions; that is, when restricted
to the domains 0 and 1. These identity elements are
included in the figure.

7-5

Dyadic Identity Left-
Function Element Right

Plus + 0 L R

Minus 0 R

Times x 1 L R

Divide .. 1 R

Residue I 0 L

Minimum L (Note 1) L R

Maximum r (Note 2) L R

Power * 1 R

Logarithm e None

Circle 0 None

Binomial L

And A 1 L R

Or V 0 L R

Nand 1'< None

Nor It/' None

Less < 0

}
L

Not greater :::;; Apply for L

Equal = boolean L R

Not less ;:::: 1 arguments R

Greater > 0 only R

Not equal 7:- 0 L R

Notes:
1. The largest representable number.

2. The greatest in magnitude of representable negative numbers.

Figure 5. Identity Elements of Primitive Scalar Dyadic Functions

7-6

Plus, Minus, Times, Divide, and Residue

The definitions of the first four of these functions agree
with the familiar definitions, except that the
indeterminate case 0 -;- 0 is defined to give the value 1.
For X;tO , the expression Xi-O causes a domain error.

If A and B are positive integers, the result of the residue
function AlB is the remainder when dividing A into B.
The following definition covers all values of A and B.

1. If A = 0, then AlB equals B .

2. If A;tO , then AlB lies between A and 0 (being
permitted to equal 0 but not A), and is equal to
B-NxA for some integer N .

For example:

112.385
0.385

-31 -3 2 1 0 1 2 3
o 210 210

015.8 31-3 -2 -1 0 1 2 3
5.8 o 1 201 2 0

Conjugate, Negative, Signum, Reciprocal, and
Magnitude

The conjugatefunction +X yields its argument
unchanged, the negative function - X yields the argument
reversed in sign, and the reciprocal function .;-X is
equivalent to 1-;-X . For example, if X+-4 - 5 , then:

+X
4 5 4 5

-X ';-X
0.25 -0.2

7-7

The result of the signum function xX depends on the
sign of its argument (-1 if X <0, 0 if X=O, and 1 if X>O).
The magnitude function I X (also called absolute value)
yields the greater of X and - X; in terms of the signum
function, it is equivalent to XxxX . For example:

x 304
101

Boolean and Relational Functions

7-8

The boolean functions AND, OR, NAND (not-AND),
and NOR (not-OR) apply only to boolean arguments;
that is, 0 and 1. If 0 is interpreted as false, and 1 is true,
then the definitions of these functions are evident from
their names. For example, AI\B (read as A and B) equals
1 (is true) only if A equals 1 (is true) and B equals 1.
All cases are covered by the following examples:

A+-O 0 1 1
B+-O 1 0 1
AI\B AVB

o 0 0 1 0 111
A'f'<B

1 110
A¥B

100 0

The monadic function NOT yields the logical
complement of its argument; that is "'0 is 1, and "'1 is o.

The relational functions apply to any numbers, but yield
only boolean results; that is 0 or 1. The result is 1 if the
indicated relation holds, and 0 otherwise. For example:

3 5<5 3 3 5 7 ;t 7 5 3
1 0 101

The comparisons in determining the results of the
relational functions are not absolute, but are made to a
certain tolerance specified by the comparison tolerance
OCT. Two scalar quantities A and B are considered to be
equal if the magnitude of their difference does not
exceed the value of OCT multiplied by the larger of the
magnitudes of A and B; that is, if (I A -B) is less than or
equal to OCTx (I A) riB Similarly, A2B is considered
to be true of (A - B) is greater than or equal to
-OCTx (I A) r (I B), and A> B is considered true if A2B is
true and A=B is not.

The comparison tolerance OCT is typically set to the
value 1E-13 . The setting DCT+O is also useful, because it
yields absolute comparisons, but may lead to
unexpected results because of the finite precision of the
representation of numbers. For example, if the
maximum precision is 15 decimal digits, and all digits
are displayed in printing, then:

[JPP+15
OCT+O
X+0.666666666666667
X

0.666666666666667
Y+3xX
Y-2

2.22044604925031E-15
2=Y

o

1

DCT+1E-13
2=Y

7-9

When applied to boolean arguments only, the relations
are, in effect, boolean functions, and denote functions
that may be familiar from the study of logic, although
referred to by different names and symbols. For
example, X~Y is the exclusive-OR of X and Y, and X~Y
is material implication. This association should be
clear from the following table, which lists in the first two
columns, the four possible sets of values of two boolean
arguments, and in the remaining columns the values of
the 16 boolean functions, with the symbols of the
boolean and relational functions of APL appended to
appropriate columns.

A B A f B
0 0 0 0 0 0 o 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

A > < ~ V It/' = ~ S 1'<

The 10 functions listed at the bottom of this table
embrace all non-trivial boolean functions of two
arguments. Consequently, any boolean expression of
two arguments X and Y can be replaced by a simple
APL expression as follows: evaluate the expression
for the four possible cases, find the corresponding
column in the table, then use the function symbol at the
bottom of the column, or, if none occurs, use X or Y or
"'x or '" Y or 0 or 1, as appropriate.

Minimum and Maximum

7-10

The dyadic functions, minimum and maximum,
denoted by Land r , perform as expected from their
names. For example:

X+-3 2 1 0 123
Y+3 2 1 0 1 2 3
Xry

3 2 101 2 3
XLY
-3 2 1 0 1 2 3

Floor and Ceiling

The monadic functionfloor, denoted by L , yields the
integer part of its argument; that is, LXyields the largest
integer that does not exceed X. Similarly, the ceiling
function denoted by r X, yields the smallest integer that
is not less than X. For example:

4 2

4 2

X+--3.14 2.718
LX

-r-x

rx
3 3

-L-X
3 3

The ceiling and floor functions are affected by the
comparison tolerance OCT as follows: if there is an
integer I for which I X-I does not exceed the value of
OCTx1 r I I, then both LX and r X equal!. For example, if
results are represented and printed to 15 decimal digits,
then:

X+-3xO.666666666666667
OCT+-1E-13 OCT+-~

LX LX
2 2

rx rx
2 3

ROLL (Random Number Function)

The roll function is a monadic function named by
similarity with the roll of a die; thus? 6 yields a
(pseudo-) random choice from 1 6 that is the first six
integers beginning with either 0 or 1 according to the
value of the index origin orO. For example:

orO+-1
?6 ?6

1 5 3
?6 6 6 6 6 6 6 6 6 6 6 6 6

421 5 5 6 345 114 5
orO+-Q
?6 6 6 6 6 6 6 6 6 6 6 6 6

o 2 024 3 5 5 3 0 324

?6

7-11

The domain of the roll function is limited to positive
integers.

The roll function uses an algorithm by D. H. Lehmer.
The result for each scalar argument X is a function of X
and of the random link variable r]RL. The result of the
roll function is system-dependent, but typically for
X<2*31 is equal to orO plus the integer part of
XxORL+-1+2*31.

Power, Exponential, General and Natural
Logarithm

7-12

For non-negative integer right arguments, the power
function X*N is simply defined as the product over N
repetitions of X. It is generalized to non-positive and
non-integer arguments to preserve the relation that
X*A+B shall equal (X*A)x (X*B). Familiar consequences
of this extension are that X*-N is the reciprocal of X*N ,
and X*+N is the Nth root of X. For example:

2*-3 2 1 0 1 2 3
0.125 0.25 0.5 1 2 4 8

64*+1 2 3 4 5 6
64 8 4 2.828427125 2.29739671 2

The indeterminate case 0*0 is defined to have the
value 1.

The domain of the power function X * Y is restricted in
two ways: if X =0, then Y must be non-negative; if
X <0, then Y must be an integer or a (close
approximation to a) rational number with an odd
denominator. For example, -8*.5 yields a domain
error, but-8*1+3'and -8*2+3 yield -2 and 4,
respectively.

The exponential function *X is equivalent to the
expression E*X , where E is the base of the natural
logarithms (approximately 2.71828). For example:

*-2 1 0
0.1353352832 0.3678794412 1

*1 2
2.718281828 7.389056099

The natural logarithm function ~X is the inverse of the
exponential; that is, *~X and ~*Xboth equal X. For
example:

®1 234
0 0.6931471806 1.098612289 1.386294361

*~1 2 3 4
1 2 3 4

®*1 2 3 4
1 2 3 4

The domain of the natural logarithm function is limited
to positive numbers.

The general logarithm function B~X is defined as
(~X) ~~B . It is inverse to the power function in the
following sense: B*B®X and Bfl9B*X both equal X.
Limitations on the domain follow directly from the
defining expression.

Circular, Hyperbolic, and Pythagorean
Functions

The symbol 0 denotes a monadic function whose result
equals pi times its argument. For example:

01 2 .5
3.141592654 6.283185307 1.570796327

7-13

7-14

The symbol 0 is also used dyadically to denote a family
of 15 related functions as follows: the expression IoX
is defined for integer values of I from -7 to 7, and is in
each case equivalent to one of the circular, hyperbolic,
or pythagorean functions, as indicated in Figure 4.

The circular functions, sin, cos, and tan (1 oX , 20X , and
30X), require an argument in radians. For example:

PI+o1
10PI'-'2 3 4

1 0.8660254038 0.7071067812

The hyperbolic functions, SINH and COSH (soX and
60X), are the odd and even components of the
exponential function; that is, SoX is odd, 60X is even,
and the sum(50X)+(60X)is equivalent to*X.
Consequently:

soX equals .5 x (*X)-(*-X)
60X equals .5 x (*X)+(*-X)

The definition of the hyperbolic tangent function,
TANH (70X), is similar to that of the tangent~ that is
70X equals (50X)'-' 60X .

The pythagorean functions OOX, 40X , and -40X are
defined as shown in Figure 4, and are related to the
properties of a right triangle as indicated in Figure 6.
They may also be defined as follows:

-40X equals 50-60X
oox equals 20-10X or 10-20X
40X equals 60-50X

E

~---_--c.----~D

Figure 6. The Pythagorean Functions

AC=1
AB=OoBC
BC=OoAB
AE=4oDE
DE=-4oAE

Each of the family of functions, IoX, has an inverse in
the family; that is, (-I)oX is the inverse of IoX . Certain
of the functions are not monotonic, and their inverses
are therefore many-valued. The principal values are
chosen in the following intervals:

Arcosh R+--6oX R~O

R+--4oX R~O

Arctan R+--30X (IR)~oo. 5

Arccos R+--2oX (R?'O)I\(R~o1)

Arcsin R+--1oX (IR)~oO. 5
R+-OoX R?O
R+-4oX R~O

7-15

Factorial and Binomial Functions

7-16

Thefactorial function, ! N, is defined, for positive
integer arguments, as the product of all positive integers
up to N . An important consequence of this definition is
that !N equals Nx !N-1, or equivalently, !N-1 equals
(! N) f N . This relation is used to extend the function to
all arguments except negative integers. For example:

N+1 2 3 4 5
!N

1 2 6 24 120
(!N)fN

1 1 2 6 24
!O 1 2 3 4

1 1 2 6 24
F+.5 1 1.5 2 2.5
!F

0.8862269255 1 1.329340388 2 3.32335097
(!F)fF

1.772453851 1 0.8862269255 1 1.329340388
! 5 0 .5 1 1.5

1.772453851 1 0.8862269255 1 1.329340388

This extension leads to the expression (! 0) f 0 or 1 f 0 for
! -1, and -1 is therefore excluded from the domain of
the factorial function, as are all negative integers.

The binomial function,M!N, is defined, for non-negative
integer arguments, as the number of distinct ways in
which Mthings can be chosen from N things. The
expression (!N)f(!M)x(!N-M) yields an equivalent
definition that is used to extend the definition to all
numbers. Although the domain of factorial excludes
negative integers, the domain of the binomial does not,
because any implied division by 0 in the numerator ! N
is usually accompanied by a corresponding division by
o in the denominator; the function, therefore, extends
smoothly to all numbers, except where N is a negative
integer and M is not an integer.

The result of I! N is equivalent to coefficient I in the
binomial expansion (X+1)*N. For example:

o 1 2 3!3
1 3 3 1

Operators

An operator may be applied to a function to get a
different function. For example, the outer product
operator, denoted by the symbols o. may be applied to
any of the primitive scalar dyadic functions to derive a
corresponding "table function," as shown in the
following for times and power:

A+1 2 3 4
Ao .xA Ao .*A

1 2 3 4 1 1 1 1
2 4 6 8 2 4 8 16
3 6 9 12 3 9 27 81
4 8 12 16 4 16 64 256

F our of the APL operators - reduction, scan, inner
product, and outer product - may apply to any
primitive scalar dyadic function. The axis operator
applies to functions derived from reduction and scan,
and also to certain of the mixed functions.

Reduction

Reduction is denoted by the symbol/and applies to the
function that precedes it. For example, if V+1 2 3 4 5,
then + / V yields the sum of the items of V, and x / V yields
their product:

+/V x/V
15 120

7-17

7-18

In general, an expression of the form f / V is equivalent
to the expression obtained by placing the function
symbol f between adj acent pairs of items of the vector
V:

5

3

rlv

-IV
5

1-2-3-4-5
3

The last example emphasizes that the general rule for
the order of execution from right to left is applied, and
that as a consequence, the expression - IV yields the
alternating sum of the items of V. The alternating sum is
the sum obtained after first weighting the items by
multiplying alternate elements by 1 and -1. Thus:

A~1 1 1 1 1
VxA -1 2 3 4 5
+IVxA

3
-IV

3

Similarly, f I V yields the alternating product:

V*A
1 0.5 3 0.25 5

xIV*A
1.875

flV
1.875

The result of applying reduction to any scalar or vector
is a scalar; the value for a scalar or one-element vector
argument is the single item itself. (The application of
reduction to other arrays is treated in the discussion of
the axis operator.)

Scan

Reduction of an empty vector by any function is
defined as the identity element of the function, if one
exists, and as a domain error if one does not. Thus if V
is an empty vector, +/V equals 0, and A/V equals 1.

The reason for this definition is the extension to empty
vectors of an important relation between the reductions
of two vectors, P and Q, and the reduction of the vector
V+P ,Q which is obtained by chaining them together.
F or example:

+/V equals (+/P)+(+/Q)
x/v equals (x/P)x(x/Q)

If P is an empty vector, then + / P must equal 0 (the
identity element of +), and x / P must equal 1.

The scan operator is denoted by the symbol \ and
applies to the function that precedes it. When the
resulting function is applied to a vector V, it yields a
vector of the same shape, the Kth element of which is
equal to the corresponding reduction over the first K
elements ofv. For example:

+\1 2 3 4 5
1 3 6 10 15

x\1 2 3 4 5
1 2 6 24 120

v\O 0 1 0 1
0 0 1 1 1

A\1 1 0 1 0
1 1 0 o 0

<\0 0 1 0 1 1 0
0 0 1 o 0 0 0

The extension of scan to arrays other than vectors is
treated in the discussion of the axis operator.

7-19

Axis

7-20

A matrix can be viewed as a collection of either
columns or rows, and an array of higher rank can be
viewed as a collection of planes or hyperplanes. For
example, a three-dimensional array of shape 2 3 4 is
normally represented as two planes of 3-by-4 matrices,
but it can also be viewed as three planes of 2-by-4
matrices, or as four planes by 2-by-3 matrices. For any
chosen representation, the resulting (hyper)planes are
orthogonal to the chosen axis, and are said to lie along
that axis. Thus, in the preceding example, the 3-by-4
matrices lie along the first axis.

In previous sections, the reduction, and scan operators
were defined for a vector. This definition is extended to
arrays of higher rank by applying the function argument
of the operator between successive (hyper)planes. As
the preceding example shows, a multi-dimensional array
can be viewed as a collection of arrays of lesser rank
which lie along any chosen axis. The axis operator is
used to select the chosen axis, and determines the
direction of application of the scan or reduction
operators.

The axis operator is denoted by brackets immediately
following a scan or reduction operator. The brackets
enclose an expression yielding the index of the desired
axis as a scalar or one-element vector. If a scan or
reduction operator is applied to any array without the
axis operator, the direction of application will be along
the last axis. For example:

O+-M+3 4P112
1 2 3 4
5 6 7 8
9 10 11 12

+\[1]M +/[1]M
1 2 3 4 15 18 21 24
6 8 10 12

15 18 21 24
+\[2]M +/[2]M

1 3 6 10 10 26 42
5 11 18 26
9 19 30 42

+\M +/M
1 3 6 10 10 26 42
5 11 18 26
9 19 30 42

The result of the scan operation has the same shape as
the argument. The result of a reduction operation has a
shape similar to the shape of the argument, but with the
indicated axis of reduction removed. Indexing of axes is
dependent on the current value of the index origin, orO.
With orO+1, the leftmost or first axis has an index value
of 1. The symbols f and \: also denote reduction and
scan operations, which are equivalent to the standard
reduction and scan operators when used with the axis
operator. When used without an axis operator however,
these symbols cause the reduction or scan operation to
be applied along the FIRST axis.

The axis operator is also used to specify the axis of
application of the mixed functions, reverse, rotate,
catenate, compress, and expand. The axis operator
cannot be used with the inner product or outer product
operators.

7-21

Inner Product

7-22

If P and Q are vectors of the same shape, the expression
+/pxQhas a variety of useful interpretations. For
example, if P is a list of prices and Q a list of
corresponding order quantities, then + /PxQ is the total
cost. Expressions of the same form using functions
other than + and x are equally useful, as suggested by
the following examples (where B is used to denote a
boolean vector):

A/P=Q Comparison of P and Q

+ / P=Q Count of agreements between P and Q

L /P+Q Minimum distance for shipment to a particular
destination, where P represents the distances
from source to possible intermediate shipping
points, and Q the distances from these points to
the destination.

+ /PxB Sum over a subset of P specified by B

x/P*B Product over a subset of P specified by B

The inner product operator produces functions
equivalent to expressions of this form; it is denoted by a
dot and applies to the two functions that surround it.
Thus P+. xQ is equivalent to +/PxQ, and px. *B is
equivalent to x/P*Band, in general,Pf. gQ is equivalent
to f / PgQ , if 'p and Q are vectors.

The inner product is extended to arrays other than
vectors along certain fixed axes, namely the last axis of
the first argument and the first axis of the last argument.
The lengths of these axes must agree. The shape of the
result is obtained by deleting these axes and chaining
the remaining shape vectors. The consequences for
matrix arguments are shown in Figure 7.

A Af.gB

~-------

R
r--------

B

Figure 7. Inner Product

I r
I I
I I
I C l
I I
I I
I I
I I

Rf.gc

pA pB
IJ JK

\!
IK

pAf. gB

The consequences for the shape of inner products on
some other arrays are shown in the following example.

pA pB pC pD pE pF pC pH

3 5 5 2 7 7 9 9 8 8 6 7 7

I I I I ------ I -------

I I I I I
3 2 7 7 6 scalar

pAf. gB pCf.gD pEf.gF pCf.gH

Formally, pAf. gB equals C-l{-pA), l{-pB .

7-23

The inner product M+. xN is commonly called the matrix
product. Examples of it also are shown in the following.

P+2 3 5 7
M+(14)o.':::14

M MA. =M
1 1 1 1 0 0 o 1
0 1 1 1 0 0 o 0
0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0

M+.xM M-.xM
1 2 3 4 1 0 1 0
0 1 2 3 0 1 0 1
0 0 1 2 0 0 1 0
0 0 0 1 0 0 0 1

M+.xP px.*M
17 15 12 7 2 6 30 210

P+.xM MA. =0 011
2 5 10 17 0 0 1 0

Either argument of an inner product may be a scalar or
a one-element vector; it is extended in the usual way.
F or example, A + • x 1 is equivalent to + / A , and 1 + • xA is
equivalent to +fA.

Outer Product

7-24

The outer product operator, denoted by the symbols 0 •

preceding the function symbol, applies to any dyadic
primitive scalar function, so that the function is
evaluated for each member of the left argument paired
with each member of the right argument. For example,
if A+1 2 3 and B+1 '2 3 4 5 , then:

Ao .xB
1 234 5
2 4 6 8 10
3 6 9 12 15

Ao .<B
01111
00111
o 0 0 1 1

Such tables may be better understood if they are labeled
in a way that is widely used in elementary arithmetic
texts: values of the arguments are placed beside and
above the table, and the function whose outer product is
being computed is shown at the corner. Thus:

B
x 1 2 3 4 5

1 1 2 3 4 5
A 2 2 4 6 8 10

3 3 6 9 12 15

B
< 1 2 3 4 5

1 0 1 1 1 1
A 2 0 0 1 1 1

3 0 0 0 1 1

In the preceding example, the shape of the result A 0 • xB
is clearly equal to (pA) , (pB). This expression yields
the shape for any arguments A and B . Thus, if
R+A 0 • +B, and A is a matrix of shape 3 4, and B is a
three-dimensional array of shape 5 6 7, then R is a
five-dimensional array of shape 3 4 5 6 7. Moreover,
R[I;J;K;L ;MJ equals A[I ;JJ+B[K;L ;MJ for all
possible scalar values of the indexes.

7-25

Mixed Functions

Name

The mixed functions are grouped in five classes
according to whether they concern the structure of
arrays, selection from arrays, generation of selector
information for use by selection functions, numeric
calculations, or transformations of data, such as that
between characters and numbers. All are listed in
Figure 8, with brief definitions or examples.

Those functions that may be changed by an axis
operator may also be used without an axis operator, in
which case the axis is the last or, for the functions
denoted bye, ~,and f , the first axis.

Figure 8 summarizes the restrictions on the ranks of
arguments that may be used with each mixed function.

Sign (1) Definition or Example (2)

Functions Concerning the Structure of Arrays

Shape

Reshape

Ravel

Reverse

(3)

Rotate

(3)

pA

VpA

,A

A¢A

pP is 4
pE is 3 4
p5 is 10
Reshape A to dimension V

3 4p 112 is E
12pE is 112
OpE is 10
,A is "c xl pA)pA
,E is 112
p ,5 is 1

DCBA
¢Xis HGFE

LKJI
IJKL

¢[1 JX is eX is EFGH
ABCD

¢p is 7 5 3 2
3¢P is 7 2 3 5 is -1 ¢P

BCDA
1 0 -1¢X is EFGH

LIJK
Figure 8 (Part 1 of 4). Primitive Mixed Functions
See notes on page 7-29.

7-26

Name Sign (1) Definition or Example (2)

Functions Concerning the Function of Arrays (cont)

Catenate,

Laminate

Transpose

(4)

A,A

~A

~A

P , 1 2 is 2 3 5 7 1 2
'T' , 'HIS' is 'THIS'
P , [• 5 JP is 2 3 5 7

2 357
Coordinate I of A becomes coordinate

V[I] of result

AEI
2 l~X is BFJ

CGK
DHL

1 l~E is 1 6 11
Reverse order of coordinates

~Eis 2 l~E

Functions Concerning Selection from Arrays

Take VtA

Drop Vi-A
Compress VIA

(3)

2 3tX is ABC
EFG

2tP is 5 7

Take or drop I V[I] first (V[I J;;:::O)
or last (V[I]<O) elements of

coordinate I
2 3i-X is L 2i-P is 2 3
1 o 1 OIP is 2 5
1 o 1 OlE is 1 3

5 7
9 11

1 0 1/[l]E is 1 2 3 4 is 1 0 1/E

Expand V\A
(3)

Indexing V[A]
(4,5)

M[A ;A]

A[A; ••
.. ;AJ

9 10 11 12
1 0 1\ 12 is 1 o 2

A BCD
1 0 1 1 1 \X is E FGH

I JKL
P[2 J is 3
P[4 3 2 1] is 7 5 3 2
E[l 3;3 2 lJ is 3 2 1

11 10 9
E[l;] is 1 2 3 4
E[;lJ is 1 5 9

ABeD
'ABCDEFGHIJKL' [E] is EFGH

IJKL

Figure 8 (Part 2 of 4). Primitive Mixed Functions
See notes on page 7-29.

7-27

Name Sign (1) Definition or Example (2)

Functions That Generate Selector Information

Index 18

Generator

(4)

Index of V1A
(4)

Membership AEA

Grade up 4v
(4)

First S integers

14 is 1 2 3 4

lOis an empty vector

Least index of A in V, or 1 +p V
P13 is 2

5 1 2 5
P1E is 3 5 4 5

5 5 5 5
4 414 is 1

pWEY is pW

PE 14 is 1 1 0

0 1

EEP is 1 0

0 0

!3 5 3

0

1 0

1 0

0 0

2 is 4 1 3
The permutation that would order

V (ascending or descending)

2

Grade down tv t3 5 3 2 is 2 1 3 4
(4)

Grade up A4A 'ABCDE' 4' DEAL' is 3 1 2 4
(dyadic)

(4)

Grade down AtA , ABCDE' 'f ' DEAL' is 4 2 1 3

(dyadic)

(4)

Deal

(4)

S?S W? Y is Random deal of W elements

from lY

Functions That I nvolve Numeric Calculations

Matrix rnM ~2 2p1 1 0 1 is 1 1

inverse 0 1

Arguments may be scalars,

vectors, or matrices

Matrix ~ (2 2pP)~2 2p1 1 0 1

division

Decode AlA 10.L1 7 7 6 is 1776

24 60 60J.1 2 3 is 3723

Encode ATA 24 60 60T3723

60 60T3723 is 2

Figure 8 (Part 3 of 4). Primitive Mixed Functions
See notes on page 7-29.

7-28

is 1 2 3

3

is -
3 4

5 7

Name Sign (1) Definition or Example (2)

Functions That Involve Data Transformation

Execute .tV .1'1+2' is 3
.t 'P' is 2 3 5 7

Format "fA , - 1.5'A.='f 1.5 is 1
(Monadic) p"fE is 3 12

X is 'fX
Format V"fA 4 1"fP is 2.0 3.0 5.0 7.0

-
(Dyadic) 8 1'fP is 2EOOO 3EOOO 5EOOO

, 0 , 55 ''f Pis 0 , 020 , 030 , 050 ,07

Notes:

1. Restrictions on argument ranks are indicated by: S for scalar, V for
vector, M for matrix, and A for any array (see Figure 9).

Conformability requirements are given in the text where each
function is defined.

2. Arrays used in examples:

P
2 3 5 7

E
1 2 3 4
5 6 7 8
9 10 11 12

X
ABeD
EFGH
IJKL

3. The function is applied along the last axis; the symbols I ' \; ,and e
are equivalent to / ' \ ,and <t> ' respectively, except that the function
is applied along the first axis. In general, the relevant axis is determined
by [VJ or [5 J after the function symbol.

4. Function depends on index origin.

5. Elision of any index selects all along that axis.

Figure 8 (Part 4 of 4). Primitive Mixed Functions

7EOOO

7-29

Figure 9 shows for what mixed functions and under
what conditions scalar and vector arguments may be
substituted for each other.

1. A scalar may be used in place of a one-element vector.
a. as left argument of:

reshape 3p4 "*---+
take 3t15 +---+
drop 3+15 "*---+
expand 1\~5 "*---+
tranpose 1~~5 +---+

(~ 3)p4
(~3)t15
(~3)+15
(~1)\~5
(~ 1)~ ~ 5

format 5" 3 • 2 "*---+ (~5)"3.2 "*--+ 0 5 l" 3.2

b. as right argument of:

execute .t'P' "*---+ .t ~ 'P'
branch -+4 "*---+ +~4

2. A scalar is extended to conform as necessary:
a. as left argument of:

compress 1/ 13 "*---+ 1 1 1 / 13
rotate 1<P2 2P14 "*--+ 1 1 <P 2 2p 14

b. as right argument of:

compress 1 0 1 / 2 "*--+ 1 0 1 / 2 2
expand 1 0 1 \ 2 "*---+ 1 0 1 \ 2 2
take 2 3 t3 "*--+ 2 3 t 1 1p3

3. A one-element vector is permitted in place of a scalar.
a. as left argument of:

compress (~1)/13 "*---+ 1/13
deal (~3)?5 "*---+ 3?5
rotate (~2)<p2 3 5 7 "*---+ 2<P 2 3 5

b. as right argument of:

index generator 1 ~ 5 "*---+ 15
deal 3?~5 "*---+ 3?5

Figure 9. Scalar Vector Substitutions for Mixed Functions

7-30

2

7

Structural Functions

In the monadic structure functions, the argument may
be any type: numeric or character. In the dyadic
selection and structure functions, one argument may be
any type, and the other (which serves as an index or
other selection indicator) must be numeric, and in two
cases (compression and expansion), is further restricted
to be boolean.

Shape, Reshape, and Ravel

The shape function is the monadic function P. When
applied to an array A, it yields the shape of A; that is, a
vector whose components are the dimensions of A. For
example, if A is the matrix of three rows and four
columns:

1 2 3 4-
S 6 7 8
9 10 11 12

then pA is the vector 3 4-.

Because pA has one component for each axis of A, the
expression p pA is the rank of A. The following table
shows the values of pA and p pA for arrays of nink 0
(scalars) up to rank 3. In particular, the function p
applied to a scalar yields an empty vector.

Type of Array pA ppA

Scalar 0
Vector N 1
Matrix MN 2
3-Dimensional LMN 3

7-31

7-32

The monadic function ravel is denoted by a comma.
When applied to any array A, it produces a vector
whose elements are the elements of A in row order. For
example, if A is the matrix

A+3 4p2 4 6 8 10 12 14 16 18 20 22 24
A

246 8
10 12 14 16
18 20 22 24

and if V+ ,A then V is a 12-element vector containing the
integers 2 4 6 8 10 ... 24. If A is a vector, then ,A is
equivalent to A; if A is a scalar, then ,A is a vector of
length 1.

The reshape function is the dyadic function p, which
reshapes its right argument to the shape specified by its
left argument. If M+Dp V, then M is an array of dimension
D whose elements are the elements of V. For example,
2 3p1 2 3 4 5 6 is the matrix:

123
456

If N, the total number of elements required in the array
Dp V, is equal to the dimension of the vector V, then the
ravel of Dp V is equal to V. If N is less than p V, then only
the first N elements of V are used; if N is greater than p V,
then the elements of V are repeated cyclically. For
example:

121
212

2 3p1 2
100
010
001

3 3p1 0 0 0

More generally, if A is any array, then DpA is equivalent
to Dp ,A. For example:

If:

A+2 3p1 2 3 4 5 6
A

1 2 3
4 5 6

Then:

3 5pA
1 2 3 4 5
6 1 2 3 4
5 6 1 2 3

The expressions OpX and 0 3pX and 0 OpX are all valid;
anyone or more of the axes of an array may have zero
length. Such an array is called an empty array. If D is
an empty vector, then DpA is a scalar.

Reverse and Rotate

The monadic function reverse is denoted by cj>; if X is a
vector and K+cI>X, then K is equal to X, except that the
items appear in reverse order. The axis operator applies
to reversal and determines the axis along which the
vectors are to be reversed. For example:

123
456

A
456
123

cj>[1JA
321
654

cj>[2JA

The expression cj>A denotes reversal along the last
coordinate of A, and eA denotes reversal along the first
coordinate. For example, if A is of rank 3, then cj>A is
equivalent to cj>[3 JA, and eA is equivalent to cj>[1 JA. The
axis operator applies to e, and e[JJA is equal to cj>[JJA.

7-33

7-34

The dyadic function rotate is also denoted by <1>. If K is a
scalar or one-element vector, and X is a vector, then K<1>X
results in a cyclic rotation of X, where K specifies the
number of positions that every element is to be shifted.
For K>O, the elements are rotated to the left; for K<O, the
rotation occurs to the right. If the magnitude of K is
larger than the number of elements in X, the rotation will
be more than one full cycle. Formally, K<1>Xis defined as
X[1+(pX) 1-1+K+1PXJ. For example, if X+2 3 5 7 11,
then 2<j>X is equal to 5 7 11 2 3, and - 2<1>X is equal to
7 11 2 3 5. In zero-origin indexing, the definition for
K<1>Xbecomes X[(pX) IK+lpXJ.

If the rank of X exceeds 1, the coordinate J, along which
rotation is to be performed, may be specified by the axis
operator in the form Z+K<1>[JJX . Moreover, the shape of
K must equal the remaining dimensions of X, and each
vector along the Jth axis of X is rotated as specified by
the corresponding element of K. A scalar or one-element
vector K is extended to conform as required.

For example, if pXis 3 4, and Jis 2, the shape of K
must be 3, and Z[I; J is equal to K[IJ<1>X[I; J. If Jis 1,
pKmust be 4, and Z[;IJ is equal to K[IJ<1>X[;IJ. For
I"V~:I1',.,nll"·
...... .L~"..&..J.. ... y.J..'"".

M+3 4p1 2 3 4 ... 12
M

1 2 3 4
5 6 7 8
9 10 11 12

0 1 2 3 <1>[1JM 1 2 3 <1>[2JM
1 6 11 4 2 3 4 1
5 10 3 8 7 8 5 6
9 2 7 12 12 9 10 11

The expression KeX denotes rotation along the first axis
of X. The axis operator applies to e, and Ke[JJX is equal
to K<1>[JJX.

Catenate and Laminate

Catenate, denoted by a comma, chains vectors (or
scalars) to form a vector. For example:

X+-2 3 5 7 11
X,X

2 3 5 7 11 2 3 5 7 11

For vectors, the dimension of X ,Yis equal to the total
number of elements in X and Y. A non-empty numeric
vector cannot be catenated with a non-empty character
vector.

The axis operator applies to catenation and determines
the axis along which vectors are to be catenated. In the
absence of an axis operator, catenation occurs along the
last axis. For example:

ABC
DEF
CHI

ABC
DEF
CHI
ABC
DEF
CHI

M+3 3p'ABCDEFCHI'
M

M, [l]M M, [2]M
ABCABC
DEFDEF
CHICHI

M,M
ABCABC
DEFDEF
CHICHI

7-35

Two arrays are conformable for catenate along axis I if
all other elements of their shapes agree. Moreover, two
arrays may be catenated along axis I if they differ in
rank by 1, and if the shape vector of the array of lower
rank is identical to the shape vector of the array of
higher rank after dropping its Ith dimension. For
example:

V+'PQR'
M,[lJV M,[2]V

ABC ABCP
DEF DEFQ
GHI GHIR
PQR

ABCP
DEFQ
GHIR

M,V

A scalar argument of catenate will be replicated to form
a vector, or higher rank array, as required. For example:

1.!.I.!.FfP .. i~
I±IABCli!
IilDEffiI
i±lGHlffi
~
8:!:EEEJ

C+'i±I'
C , (C , [1 JM , [1 J C) , C

Laminate joins two arrays of the same rank and shape
along a new axis. The position of the new axis relative
to the existing axes is indicated by a fractional axis
number. For example, if the new axis is to be inserted
between the existing axes, 1 and 2 , the axis number
must have a value between 1 and 2 . If the new axis is
to be inserted ahead of the present first axis of the right
argument, the axis number must be between 0 and 1
(or, if zero-origin indexing is used, between -1 and 0).
Similarly, if the new axis is to be after the last of the
present axes, the axis number must exceed the index of
the present, last axis by a fraction between 0 and 1 .

The result of lamination has rank 1 greater than the
rank of the arguments, and has the same shape except
for the interpolation of the new axis, along which it has
length 2. The comma, which normally denotes
catenation, followed by an axis operator associated with
a non-integral index, produces lamination. For example:

ABC
DEF
GHI

123
456
789

ABC
DEF
GHI

123
456
789

ABC
123

DEF
456

GHI
789

M~3 3p'ABCDEFGHI'
N~3 3p'123456789'
M

N

M, [.5 IN

M, [1.5 IN

Ai
B2
C3

D4
E5
F6

G7
H8
I9

M, [2.5 IN

The shapes of the preceding laminations are 2 3 3 and
3 2 3 and 3 3 2; the position of the 2 shows the
point where the new axis is inserted in each case.

7-37

A scalar argument of laminate is extended as required.
For example:

1x
2x

3x
4x

B+2 2p'1234'
B,[2.5J'x'

,B , [2 • 5 J ' x ,
1x2x3x4x

Transpose

7-38

The expression 2 1~M yields the transpose of the
matrix M; that is, if R+2 1~M, then each element
R[I ;JJ is equal to M[J ;IJ. For example:

M+3 4p1 2 3 ... 12
M 2 1~M

9 1 2 3 4
5 6 7 8
9 10 11 12

1 5
2 6 10
4 8 12

If P is any permutation of the indexes of the axes of an
array A, then the dyadic transpose P~A is an array
similar to A , except that the axes are permuted: the Ith
axis becomes the P[IJ th axis of the result. Hence, if
R+P~A ,then (pR) [PJ is equal to pA. For example:

A+2 3 5 7Pl210
pA

235 7
P+2 3 4 1
pP~A

7 2 3 5

More generally, Q~A is a valid expression if Q is any
vector equal in length to the rank of A, which is
complete in the sense that if its items include any
integer N, they also include all positive integers less
than N. For example, if ppA is 3, then 1 1 2 and
2 1 1 and 1 1 1 are suitable values for Q , but
1 3 1 is not. Just as for P~A ,where P is a
permutation, the Ith axis becomes the Q[IJth axis of
Q~A . However, in this case, two or more of the axes of
A may map into a single axis of the result, thus

producing a diagonal section of A, as shown by the
following:

A+-3 3p 19 B+-3 5P115
A B

1 2 3 1 2 3 4 5
4 5 6 6 7 8 9 10
7 8 9 11 12 13 14 15

1 1~A 1 1~B
1 5 9 1 7 13

The monadic transpose ~A reverses the order of the
axes of its argument. Formally, ~A is equivalent to
(¢ 1 P pA) ~A . In particular, for a matrix A, this reduces
to 2 1~A and commonly is called the transpose of a
matrix.

Selection Functions

The selection functions are all dyadic. One of the
arguments may be an array of any type. The other,
which will be called the selector, because it specifies the
selection to be made, must be numeric and, for expand
and compress, is further restricted to boolean.

7-39

Take and Drop

7-40

The take function is denoted by the up arrow (l'). If S
is a non-negative scalar integer, and V is a vector, then
S1' V results in a vector of shape S , which is obtained
by taking the first S elements of V followed (if S> p V)
by zeros if V is numeric, and by spaces if it is not. For
example:

31'2 3 5 7
235

31' 'ABCDE'
ABC

71'2 3 5 7
2 3 5 7 0 0 0

(71" ABCDE') , 'Iil'
ABCDE ffi

If S is a negative integer, then S l' V takes elements as
above, but takes the last elements of V and fills as
needed on the left. The resulting vector is thus right
justified, and the original ordering of the elements is
maintained. For example:

-31'2 3 5 7
357

71'2 3 5 7
o 0 0 2 3 5 7

If A is any array, then W1'A is valid only if the vector
W has one element for each axis of A , and W[I]

determines how many elements are to be taken along
the Ith axis of A. For example:

A-+-3 4Pl12
A 2 3tA

1 2 3 4 2 3 4
5 5 7 8 5 7 8
9 10 11 12

2 31'A 2 5tA
1 2 3 5 5 7 8 0 0
5 5 7 9 10 11 12 0 0

The function drop (-}) is defined similarly, except that
the indicated number of elements is dropped rather than
taken. For example, -1 1 -}A is the same matrix as the
result of 2 -31'A displayed in the preceding paragraph.

If the number of elements to be dropped along any axis
equals or exceeds the length of that axis, the resulting
shape has a zero length for the axis.

The rank of the result of take and drop functions is the
same as the length of the left argument.

Compress and Expand

Compression of X by U is denoted by the expression
U I X . If U is a boolean vector, and X is a vector of the
same dimension, then U I X produces a vector of + I U
elements chosen from those elements of X that
correspond to non-zero elements of U. For example, if
X+-2 3 5 7 11 and U+-1 0 1 1 0, then U I X is 2 5 7,
and ("'U) I X is 3 11.

C+-' THIS IS AN EXAMPLE'
D+-C:~.' ,
C1+-DIC
C1

THISISANEXAMPLE

If U is all zeros, then U IX is an empty vector.

To be conformable, the dimensions of the arguments
must agree, except that a scalar or one-element vector
argument on the left, or a scalar on the right, is
extended. So, 1IX and (,1) IX are equal to X .

Expansion is the converse of compression and is
denoted by U\X. If Y+-U\X, then U I Y is equal to X and
("'U) I Y is an array of zeros or spaces, depending on
whether X is numeric or character. In other words,
U\X expands X to the format indicated by the ones in
U and fills in zeros or spaces. To be conformable, +IU

must equal pX. Continuing our previous example:

D\C1
THIS IS AN EXAMPLE

7-41

The axis operator applies to both compress and expand
and determines the axis along which they apply. If the
axis operator is omitted, the last axis is used. The
symbols f and \ also denote compression and
expansion, but when used without an axis operator,
apply along the first axis.

For example:

ABCD
EFGH
IJKL

ABCD
EFGH

IJKL

ABCD
EFGH

IJKL

Q+3 4p'ABCDEFGHIJKL'
Q

1 1 0 1\[1]Q
BC
FG
JK

1 1 0 1\;Q ABCD
IJKL

ABCD
IJKL

o 1 1 O/Q

1 0 1/[1]Q

1 0 1fQ

If the right argument is a scalar, the result is a vector;
otherwise, the rank of the result of compress or expand
equals the rank of the right argument.

Indexing

7-42

Indexing may be either O-origin or I-origin, as
discussed in "Arrays." The following discussion
assumes I-origin. If X is a vector and I is a scalar,
then XCI] denotes the Ith element of X . For example,
if X+2 3 5 7 11 then X[2] is 3 .

If the index I is a vector, then XCI] is the vector
obtained by selecting from X the elements indicated by
successive components of I . For example, X[1 3 5]
is 2 5 11 and X[5 4 3 2 1] is 11 7 5 3 2. If the
elements of I do not belong to the set of indexes of X ,
the expression XCI] causes an index error report.

In general pX[IJ equals pI . In particular, if I is a
scalar, then X[IJ is a scalar, and if I is a matrix, then
X[IJ is a matrix. For example:

A+' ABCDEFG'
I+4 3p3 1 4 2 1 441 2 414
I A[IJ

3 1 4 CAD
2 1 4 BAD
4 1 2 DAB
4 1 4 DAD

If M is a matrix, it is indexed by a two-part list of the
form I;J, where I selects the row (or rows), and J
selects the column (or columns). For example:

M+3 4P112
M M[2;3J

1 2 3 4 7
5 6 7 8 M[1 3;2 3 4J
9 10 11 12 2 3 4

10 11 12

In general, pM[I; J J is equal to (pI) ,pJ . Hence, if I
and J are both vectors, then M[I ;JJ is a matrix; if
both I and J are scalars, M[I ;JJ is a scalar, if I is a
vector and J is a scalar (or vice versa), M[I ;JJ is a
vector. The indexes are not limited to vectors, but may
be of higher rank. For example, if I is a 3-by-4 matrix,
and J is a vector of dimension 6, then M[I ;JJ is of
dimension 3 4 6, and M[J;I J is of dimension 6 3 4-.
In particular, if T , P, and Q are matrices, and if
R+T[P;QJ, then R is an array of rank 4, and
R[I;J;K;L J is equal to T[P[I ;JJ ;Q[K;L J J

The form M[I; J indicates that all columns are selected;
the form M[;JJ indicates that all rows are selected. For
example, M[2 ; J is 5 6 7 8, and M[; 2 1 J is the
matrix with rows 2 1 and 6 5 and 10 9.

7-43

The following example shows a matrix indexing a
matrix to get a three-dimensional array:

M+2 4p3 1 4 2 1 4 4 1
M M[;MJ

432 1
322 3

314 2
144 1

4 1 1 4
1 1 1 1

An indexed variable may appear to the left of a
specification arrow if (1) the expression is executable in
the environment, and (2) the values of the expression on
the left and right are denoted by Land R , then
1=x/ pR or (1t!pL) / pL must equal (1t!pR) / pR . For
example:

X+2 3 5 7 11
X[1 3J+6 8
X

6 3 8 7 11

Selector Generators

7-44.,.

All functions in this group have integer results which,
although they are commonly useful as the selector
argument in selection functions, are often used in other
ways as well. For example, the grade-up function (it) is
commonly used to produce indexes needed to reorder a
vector into ascending order (as in X[itXJ), but may also
be used in the treatment of permutations as the inverse
function; that is, itP yields the permutation inverse to
P . Similarly, 1 N generates a vector of N successive
indexes, but .1X1N generates a grid of values with an
interval of . 1 .

Index Generator and Index Of

The index generator 'l applies to a non-negative
integer N to produce a vector of length N that contains
the first N integers in order, beginning with the value of
the index origin DIO. For example, 'l5 yields
1 2 3 4 5 (in I-origin) or 0 1 2 3 4 (in O-origin),
and 'lO yields an empty vector. A one-element array
argument is treated as a scalar.

The index of function is dyadic. If V is a vector and S is
a scalar, then V'lS yields the index (in the origin in
force) of the earliest occurrence of S in V; that is, the
index of S in V. If S differs from all items of V, then 1 S
yields the first index outside the range of V; that is,
DIO+pV.

If S is any array, then V'lS yields an array with the
shape of S, each item being determined as the index in
V of the corresponding item of S. For example:

8 5

A+'ABCDEFGHIJKLMNOPQRSTUVWXYZ '
J+A'l 'HEAD CHIEF'
J

1 4 27 38956
A[J] M+2 5p'HEAD CHIEF'

HEAD CHIEF M
A [<j>J] HEAD

FEIHC DAEH CHIEF
A'l' VAR3' A'lM

22 1 18 28 8 5 1 4 27
3 8 9 5 6

Membership

The membership function, XEY , yields a boolean array
of the same shape as X. Any particular element of XEY
has the value I if the corresponding element of X
belongs to Y; that is, if it occurs as some element of Y.
F or example, ('l 7) E 3 5 is equal to 0 0 1 0 1 0 0
and' ABCDEFGH' E' COFFEE' equals 0 0 1 0 1 -1 0 o.
The right argument Y may be of any rank.

7-45

The selector argument of compression is commonly
given by applying the membership function, alone or in
combination with the scalar boolean and relational
functions.

Grade Functions

7-46

The grade-up function, Lh. V , grades the items of vector
V in ascending order; that is, it yields a result of the
same dimension as V whose first item is the index (in
the origin in force) of the smallest item of V, whose
second item is the index of the next smallest item, and
so on. Consequently, V[Lh. VJ yields the elements of V in
ascending order. For example, if V+-8 3 7 5, then Lh. V
is 2 4 3 1, and V[! VJ is 3 5 7 8.

If the items of V are not all distinct, the ranking among
any set of equal elements is determined by their
position. For example, yields
3 6 2 4 1 5.

The grade-down function, tv, grades the items of V in
descending order. Among equal elements, the ranking is
determined by position, just as for grade-up.
Consequently, tv equals the reversal of ! V only if the
items of V are distinct. For example:

A+-7 2 5 11 3 B+-4 3 134 2
Lh.A I1B

2 5 314 3 6 241 5
tA tB

4 1 352 1 5 246 3

The monadic grade functions apply only to numeric
vectors.

Grade Down (Dyadic): Z+-L'fR

R may be any non-scalar character array, as may L. Z
is an integer vector of shape 1 t pR , containing the
permutation of t 1 t pR that puts the sub-arrays along the
first axis of R in non-ascending order according to the
collating sequence L.

Collation works by searching in L (in row-major order)
for each element of R, and then attaching a significance
dependent on where it was first found. The significance
depends on both the location and the rank of L.

Any elements of R not found in L have collating
significance as if they were found immediately past the
end of L. Z leaves the order among elements of equal
collating significance undisturbed.

Examples:

'ABCDE' 'f 'DEAL'
421 3

DEAL
LEAD
DEAD
DEED
DALE

R +- 5 4p'DEALLEADDEADDEEDDALE'
R

'ABCDE' t R
24135

7-47

The last axis of L is the most significant for collating,
and the first axis of L is the least significant. Thus, in
the following example, differences in spelling have
higher significance than differences in case:

dea 1
Deal
dead
Dead
DEED

abcde
ABCDE

R + 5 4p'dealDealdeadDeadDEED'
R

L + 2 5p'abcdeABCDE'
L

Z + L t R
Z

5 2 143

DEED
Deal
deal
Dead
dead

R[Z;]

oro is an implicit argument of dyadic grade down.

Grade Up (Dyadic): Z + L A R

7-48

R may be any non-scalar character array, as may L.
Z is an integer vector of shape 1 t pR , containing the
permutation of 11 tpR that puts the sub-arrays along the
first axis of R in non-descending order according to the
collating sequence L.

Collation works by searching in L (in row-major order)
for each element of R, and then attaching a significance
dependent on where it was first found. The significance
depends on both the location and the rank of L. Any
elements of R not found in L have collating significance,

as if they were found immediately past the end of L.
Z leaves the order among elements of equal collating
significance undisturbed.

'ABCDE' Lt 'DEAL'
3 124

DEAL
LEAD
DEAD
DEED
DALE

R + 5 4p'DEALLEADDEADDEEDDALE'
R

'ABCDE' Lt R
5 314 2

The last axis of L is the most significant for collating,
and the first axis of L is the least significant. Thus, in
the following example, differences in spelling have
higher significance than differences in case:

deal
Deal
dead
Dead
DEED

abcde
ABCDE

R + 5 4p'dealDealdeadDeadDEED'
R

L + 2 5p'abcdeABCDE'
L

Z + L ! R
Z

34125

dead
Dead
deal
Deal
DEED

R[Z;J

DIG is an implicit argument of dyadic grade up.

7-49

Deal

The deal function, M? N , produces a vector of length M,
which is obtained by making M (pseudo-) random
selections, without replacement, from the population

. Both arguments are limited to scalars or one
element vectors. Each selection is made by appropriate
application of the scheme described for the function
roll.

The expression, N? N , yields a random permutation of
the items of 1N . The expression, P[M?pP] , selects M
distinct elements from the population defined by the
items of a vector P. For example:

BGD

) CLEAR
P+'ABCDEFGH'
P[3?pP] P[(pP)?pP]

EBAFHDGC

Numeric Functions
The numeric mixed functions apply only to numeric
arguments and produce numeric results.

Matrix Inverse and Matrix Divide

7-50

The domino (iii) represents two functions that are
useful for a variety of problems, including the solution
of systems of linear equations, determining the
projection of a vector on the subspace spanned by the
columns of a matrix, and determining the coefficients of
a polynomial that best fits a set of points in the
least-square sense.

When applied to a non-singular matrix A, the
expression, lilA (matrix inverse), yields the inverse of
A, and X+BliJA (matrix divide) yields a value of X that
satisfies the relation AI ,B=A+. xX and is therefore the
solution of the system of linear equations conventionally
represented as AX = B.

For example:

A+(14)o.~14

A ~ A+.x~

1 0 0 0 1 0 0 0 1 0 o 0
-1 1 0 0 1 1 0 0 0 1 o 0

1 1 1 0 0 1 1 0 0 0 1 0
1 1 1 1 0 0 1 1 0 0 0 1

B+1 3 6 10
X+B~ A+.xX
B 1 3 6 10

1 3 6 10 (1±]A)+.xB
X 1 2 3 4

1 2 3 4
C+4 2p1 235 6 9 10 14
Y+~

C
1 2
3 5
6 9

10 14
Y A+.xY (1±\A)+.xC

1 2 1 2 1 2

2 3 3 5 2 3
3 4 6 9 3 4
4 5 10 14 4 5

The last example above shows that if the left argument
is a matrix C, then ~ yields a solution of the system
of equations for each column of C.

If A is non-singular, and I is an identity matrix of the
same dimension, then the matrix inverse ~ is
equivalent to the matrix divide lffiA . More generally,
for any matrix P, the expression Ii\P is equivalent to the
expression ((lR) 0 • = lR)Ii\P, where R is the number of
rows in P.

The domino functions apply more generally to non
square matrices, and to vectors and scalars; any
argument of rank greater than 2 is rejected (RANK
ERROR). For matrix arguments A and B, the
expression X+B~ is executed only if:

1. A and B have the same number of rows, and

7-51

7-52

2. The columns of A are linearly independent.

If X+BIIJA is executable, then pX is equal to
(1+pA), 1+pB, and X is determined so as to minimize
the value of + / ,(B-A +. xX)*2.

The domino functions apply to vector and scalar
arguments as follows, except that:

1. The shape of the result is determined as specified
above.

2. A vector is treated as a one-column matrix.

3. A scalar is treated as a one-by-one matrix.

The reasoning for this interpretation of a vector as a
one-column (rather than one-row) matrix is that the
right argument is treatedgeometrically (as will be seen
in a later example) as defining a space spanned by its
column vectors, and the left argument was seen (in an
earlier example) to be treated so as to yield a solution
for each of its column vectors. Indeed, a one-row
matrix, right argument (unless I-by-l) would be
rejected under condition 2 above.

For scalar arguments X and Y, the expression ffiY is
equivalent to + Y and, except that it yields a domain
error for offio , the expression, XffiY , is equivalent to
X+Y.

The use of ffi for a non-square right argument can be
illustrated as follows: if X is a vector, and Y+F X,
then YillX 0 • * 0 , 1 D yields the coefficients of the
polynomial of degree D, which best fits (in the
least-square sense) the function F at the points, X.

The definition of BfM has certain useful geometric
interpretations. If B is a vector, and A is a matrix, then
saying that + / (B-A +. xBfM)*2 is a minimum, is
equivalent to saying that the length of vector
B-A+. xBIR4. is a minimum. But A+. xB!iIA is a point in
the space spanned by the column vectors of A, and is
therefore the point in this space that is closest to B. In
other words, P+A + • xB!iIA is the projection of B on the
space spanned by the columns of A. Moreover, the
vector B - P must be normal to every vector in the
space; in particular, (B-P)+. xA is a zero vector.

If A and B are single-column matrices, then B!iIA is a
1-by-1 matrix, and A+. xB!iIA is equivalent to AxS ,
where S is the scalar' 'pB!iIA . If A and B are vectors,
then BffiA is a scalar, and the projection of B on A is
therefore given by the simpler expression, A xBfM . For
example:

A+4.5 1.7
B+2 5

P+AxBfM
P

3.403197926 1.28565255
N+B-P
N

1.403197926 3.71434745
N+.xA

3.552713679E-15

Similar analysis shows that if A is a vector, then fM is
a vector in the direction of A; that is, lilA is equal to
SxA for some scalar S. Moreover, A+. xfM is equal to
1. In other words, IR4. is the image of vector A obtained
by inversion in the unit circle (or sphere).

7-53

Decode and Encode

7-54

For vectors R and X, the decode (or base-value)
function R.LX yields the value of the vector X evaluated
in a number system with radices R[1] ,R[2] ~ •.. ,R[pR].
For example, if R+24 60 60 and X+1 2 3 is a vector
of elapsed time in hours, minutes, and seconds, then
R.LX has the value 3723, and is the corresponding
elapsed time in seconds. Similarly, 10 10
10 10.L1 7 7 6 is equal to 1776, and
2 2 2 .L 1 0 1 is equal to 5. Formally, R.LX is equal to
+/WxX , where W is the weighting vector determined as
follows: W[pW] is equal to 1 and WeI -1] is equal to
R[I] xW[I]. For example, if R is 24 60 60, then W is
3600 60 1.

Scalar (or one-element vector) arguments are extended
to conform, as required. For example, 10.L1 7 7 6
yields 1776. The arguments are not restricted to
integers; for example, if X is a scalar, then X.LC is the
value of the polynomial, with coefficients C arranged in
descending order on the powers of X.

The decode function is extended to arrays in the manner
of the inner product: each of the radix vectors along
the last axis of the first argument is applied to each of
the vectors along the first axis of the second argument.
There is one difference; if either of these distinguished
axes is of length 1, it will be extended as necessary (by
replication of the element) to match the length of the
other argument. Except for this different treatment of
unit axes, the shape of the result of A.LB is determined
as the shape of the inner product, namely
(-1 +pA) , 1 +pB .

The encode or representation function RTX is, for
certain arguments, inverse to the decode function. For
example:

1776

R+-10 10 10 10
RJ.1 7 7 6

RT1776
1 7 7 6

F or a radix R having positive integer elements,
RJ.(RTX) equals (x/R) IX rather than X. For example:

10 10 10 10T123 10 10 10T123
o 1 2 3 123

10 10T123 10T123
2 3 3

More precisely, the definition of the encode function is
based on the definition of the residue function; for a
vector left argument and scalar right argument, encode
is equivalent to the function, E, whose representation is
shown at the left below:

Z+-A E B 2 2 2T13
Z+-OxA 101
I+-pA 2 2 2T13
L:-+(I=O)/O 1 1 1
Z[I]+-A[I] IB 2 0 2T13
-+(A[I]=O)/O 0 6 1
B+-(B-Z[I]) -i-A [I] 2 2 2T-13
I+-I-1 0 1 1
-+L 2 2 2T13

0 1 1

7-55

The basic definition of RTX concerns a vector R and a
scalar X, and produces a result of the shape of R. It is
extended to arrays as follows: each radix vector along
the first axis of R is applied to get the representation of
each item of X, the resulting representations being
arrayed along the first axis of the result. For example:

10 10 10T215 486 72 219 3
2 4 0 2 0
1 8 7 1 0
5 6 2 9 3

R+10 10 10,[1.5J8 8 8
R

10 8
10 8
10 8

RT123
1 1
2 7
3 3

The expression for the shape of the result of RT X is the
same as for the shape of the outer product, namely
(pR), pX .

Data Transformations

7-56

Of the two functions in this class, the format is a true
type transformation, being designed to produce a
character array that represents the data in its numeric
argument. Over a certain class of arguments, the
execute function is inverse to the format and is therefore
considered as a type transformation as well, although its
applicability is, in fact, much broader.

Execute and Format

Any character vector or scalar can be regarded as a
representation of an APL statement (which mayor may
not be well-formed). The monadic function denoted by
.1 (execute) takes as its argument, a character vector or
scalar, and evaluates or executes the APL statement it
represents. When applied to an argument that might be
interpreted as a system command or the opening of
function definition, an error will necessarily result when
evaluation is attempted, because neither of these is a
well-formed APL statement.

The execute function may appear anywhere in a
statement, but it will successfully evaluate only valid
(complete) expressions, and its result must be at least
syntactically acceptable to its context. Thus, execute
applied to a vector that is empty, contains only spaces,
or starts with -r (branch symbol) or A (comment
symbol), produces no explicit result, and therefore can
be used only on the extreme left. For example:

.1 ' ,
Z+.t' ,

VALUE ERROR
Z+.t' ,
/\

The domain of .1. is any character array of rank less
than 2, and RANK and DOMAIN errors are reported
in the usual way:

7

C+' 3 4'
+/.tC

.11 3pC
RANK ERROR

.11 3pC
/\

.13 4
DOMAIN ERROR

.13 4
/\

7-57

7-58

An error can also occur in the attempted execution of
the APL expression represented by the argument of .t;
such an indirect error is reported by the error type
prefaced by the symbol .t and followed by the
character string and the caret marking the point of
difficulty. For example:

.t'4~O'

.! DOMAIN ERROR
4~O

/\

.t')WSID'
.t VALUE ERROR

)WSID
/\

The symbol "f denotes two format functions, which
convert numeric arrays to character arrays. These
functions have several significant uses, besides the
obvious one for composing tabular output. For example,
the use offormat is complementary to the use of
execute in treating bulk input and output, and in the
management of combined alphabetic and numeric data.

The monadic format function produces a character
array that will display the same as the display normally
produced by its argument, but makes this character
array explicitly available. For example:

) CLEAR
M+2=?4 4p2
R+wM
M R

0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
1 0 1 1 1 0 1 1
0 0 1 1 0 0 1 1

pM pR
4 4 4 8

R[;2 x 14] pW2 5
0101 3
0011 /\/ ,R=wR
1011 1
0011 w'ABCD'

ABCD
X+34
'THE VALUE OF X IS ',wX

THE VALUE OF X IS 34

The monadic format function applied to a character
array yields the array unchanged, as shown by the last
two examples. For a numeric array, the shape of the
result is the same as the shape of the argument, except
for the required expansion along the last coordinate,
with each number going, in general, to several
characters. The format of a scalar number is always a
vector.

The printing normally produced by APL systems may
vary slightly from system to system, but the result
produced by the monadic format will have no final
column of all spaces, and no initial spaces for a vector
or scalar argument.

The dyadic format function accepts only numeric arrays
as its right argument, and uses variations in the left
argument to provide progressively more detailed control
over the result. Thus, for Z+LwR, the argument L may
be a numeric or character vector.

Note: You will get a SYNTAX ERROR
message if you try to execute dyadic format and
have not previously loaded EXAPL (see
Chapter 1).

7-59

7-60

If numeric, L may be a single number, a pair of
numbers, or a vector of length 2 x -1 t 1 , pR. In general, a
pair of numbers controls the result: the first
determines the total width of a number field, and the
second sets the precision. For decimal form, the
precision is specified as the number of digits to the right
of the decimal point, and for scaled form, it is specified
as the number of digits in the multiplier. The form to be
used is determined by the sign of the precision indicator,
with negative numbers indicating scaled form. Thus:

A+-3 2p12.34
p[}-A

12.34
0

- 0.26
3 2

pO+-12 3lP'A
12.340

.000

.260
3 24

3 18

R+-9 2lP'A
3+-9 -2"fA
p[}-R

12.34 34.57
.00
.26

12.00
123.45

p[}+-3
1.2EOOl -3.5EOOl
O.OEOOO 1.2EOOl
2.6E-001-l.2E002

3 18

34.567 0 12 0.26

34.567
12

123.45

34.567
12.000

123.450

p[}+-6 OlP'A
12 -35

3 12

o
o

12
123

p[}+-7 -lTA
lEOOl 3EOOl
OEOOO lEOOl
3E-00l lE002

3 14

123.45

If the width indicator of the control pair is 0, a field
width is chosen so that at least one space will be left
between adjoining numbers. If only a single control
number is used, it is treated as a number pair with a
width indicator of 0:

p[fr~wA p[fr- 2"1fA
12.34 34.57 1.2E001 3.5E001

.00 12.00 O.OEOOO 1.2E001

.26 123.45 2.6E-001 1.2E002
3 15 3 20

p[frO 2wA p[frO 2wA
12.34 34.57 1.2E001 3.5E001

.00 12.00 O.OEOOO 1.2E001

.26 123.45 2.6E-001 1.2E002
3 15 3 20

Each column of an array can be individually composed
by a left argument that has a control pair for each:

p[frO 2 0 2wA
12.34 -34.57

.00 12.00

.26 123.45
3 15

p[fr6 2 12 3 'fA
12.34 3.46E001

.00 1.20E001

.26 1.23E002
3 18

p[fr8 3 0 2"fA
12.340 -34.57

.000 12.00

.260 123.45
3 16

3 18

p[fr8 0 0 -2"fA
12 3.5E001
o 1.2E001
o 1.2E002

6 2 8 3 3 0 4 0 5 0 12 4W,A
12.34 34.567 0 12 0 123.4500

7-61

7-62

The format function applied to an array of rank greater
than 2 applies to each of the planes defined by the last
two axes. For example:

) CLEAR
L+2=?2 2 5p2
L 4 llfL

0 1 0 1 0 .0 1.0 .0 1.0 .0
0 1 1 1 0 .0 1.0 1.0 1.0 .0

1 1 0 0 1 1.0 1.0 .0 .0 1.0
1 0 0 0 0 1.0 .0 .0 .0 .0

Tabular displays incorporating row and column
headings, or other information between columns or
rows, are easily set up using the format function and
catenation. For example:

JAN
APR
JUL
OCT

) CLEAR
ROWHDS+4 3p' JANAPRJULOCT'
YEARS+75+1.4
TBL+.001x-4E5+?4 4p8E5
(' ',[1]ROWHDS),(2¢9 0~YEARS),[lJ9

76 77 78 79
294.77 204.48 33.08 26.21
224.83 362.36
347.75 -93.20
372.34 357.23

143.09
15.53
23.76

143.44
264.77
136.92

2~TBL

The left argument of format has obvious restrictions,
because the width of a field must be large enough to
hold the requested form. If the specified width is
inadequate, the result will be a DOMAIN error.
However, the width does not have to provide open
spaces between adjoining numbers. For example,
boolean arrays can be tightly packed:

0101
0011
1011
0011

) CLEAR
1 0"f2=?4 4p2

The following formal characteristics of the format
function need not concern the general user, but may be
of interest in certain applications:

• The least width needed for a column of numbers C
with precision P is:

W+(V/R<O)+(~PEO -1)+(Ip)
+(5,r/0,(R~0)+L10~IR+R=0)[1+P~OJ

where R is the rounded value of C given by

• The expressions, (M"fA) ,N-wB and (M ,N)-wA ,B are
equivalent if M and N are full control vectors; that
is, if ((pM) = 2 x - 1 t p A) A (P N) = 2 x - 1 t P B • If 2 = pM ,
then (M"fA) ,M"fB and M"fA ,B are equivalent.

7-63

Picture Format

7-64

If the left argument L is a character vector, it is a
pattern for the result z. The length of the last dimension
of Z will be an exact multiple of the length of L, and
numbers in R will appear in numerical field positions
shown in the pattern, along with different kinds of
decorations. Formally, -1tpZ will equal KxpL, where
K is an integer. If L has more than one numerical field,
then K will be 1. The system variable ope is an implicit

. argument of picture format.

A numerical field is defined as a sequence of characters
bounded by blanks and containing at least one decimal
digit (numeric character). The digits appearing in a field
are both place holders and control characters for that
field. Non-digits in the pattern are decorators, which fall
into three classes: simple, controlled, or conventional.

A simple decoration may be imbedded in a numerical
field or stand alone. Such a decoration always appears
in the result in the same relative position as in the
pattern, regardless of the numerical values being
formatted.

A candidate for a controlled decoration is one that is
immediately adj acent to the leftmost or rightmost digit
in a numerical field. It becomes controlled if one of the
digits 1, 2 or 3 appears in the field.

The dot and comma are conventional decorators
because they specify decimal points or group separators
according to known conventions. If a dot appears in the
pattern between two digits, and it is the only such dot in
the field, then it will be regarded as a decimal point and
be reproduced in the result if there are fractional digits
to be displayed. Similarly, a comma in the pattern that
is bordered by digits on both sides will be regarded as a
conventional decoration. In this case, any number of
occurrences in a field are admissible, and the
corresponding commas in the result will be included
only if bordered by digits there as well.

Control functions of numeric characters are:

o Pad zeros outward from the decimal point

1 Float nearest decorators if number is negative

2 Float nearest decorators if number is non-negative

3 Float nearest decorators

4 Do not float nearest decorator

5 Normal digit

6 Field ends at first non-digit character other than a
decimal point or a comma

7 Exponential symbol replaced by next non-digit
character other than a decimal point or a comma

8 Fill with OFe[3] (* for "check-protection") when
otherwise blank

9 Pad zeros outward to this position if non-zero

If more than one numeric control character appears in a
field, each one controls the side of the field that it is
nearest to.

7-65

7-66

The normal digit to use in the pattern is 5. A field of
only 5's will suppress leading and trailing zeros. If there
is only one field, it is used for every column of numbers
in R:

1

28

Z + , 555.55' ~ 1 0 10.1 100
Z

10.1 100
Z

If there is more than one field, there must be one for
every column of numbers in R:

Z + , 5 5.5 5.55' ~ 1.12 2.12 3.12
Z

1 2.1 3.12
pZ

11

A 0 can be used in the field to pad zeros to a particular
point:

Z + , 005 5.50 5.550' ~ 1.12 2.12 3.12
Z

001 2.12 3.120
pZ

15

Embedded decorators may be included:

Z + 'HERE: 5 5.5 ;THERE: 5.55' w 1.12 2.12 3.12
Z

HERE: 1 2.1 ;THERE: 3.12
pZ

24

A single field may have embedded decorators:

Z + '05/05/05' ~ 70481
Z

07/04/81
pZ

8

A 1 can be used in the field to float a decorator in
against a number for negative values only:

32

Z + , -551.50' W 1 a 10 100
Z

-1.00
pZ

.00 10.00 -100.00

A floating decorator may be on both sides of a number:

32

Z + '(551.50)' W 1 a 10 100
Z

(1.00) .00 10.00 (100.00)
pZ

A 2 can be used in the field to float a decorator in
against a number for non-negative values only:

32

Z + , +552.50' W 1 a 10 100
Z

1.00 +.00 +10.00 100.00
pZ

A 3 can be used in the field to float a decorator in
against a number for all values:

32

Z + , $553.50' W 1 a 10 100
Z

$1.00 $.00 $10.00 $100.00
Z

A 4 can be used with aI, 2, or 3 in the field to mix
non-floating and floating decorators. It blocks the
floating effect of aI, 2, or 3 on its side of the pattern.

-1

36

Z + , -551.45*' W 1 a 10.1 100
Z

* * 10.1 * -100 *
pZ

7-67

7-68

A 6 can be used to end a field that is otherwise
continued. It allows any character other than a digit,
decimal point, or comma to end a field.

Z + '06/06/06' W 7 4 81
Z

07/04/81
pZ

8

A 7 can be used to specify a double field for scaled
formatting. The next decorator to the right of a 7
replaces the E in scaled form.

Z + '1.70*00' W 12345
Z

1.23*04
pZ

7

An 8 can be used in the field to have otherwise blank
positions in the result filled with OFe[3] :

z + , 8555.50' W 1 0 10 100
Z

1.00 *.00 **10.00 *100.00
pZ

32

A 9 can be used in the field to pad zeros to a particular
point only for non-zero numbers.

21

Z + , 555.59' v 1 a 100
Z

1.00
pZ

100.00

If ope[4] is not a 0, then it is used to fill a field that
would otherwise be an error, because the number is too
large.

Z + , 555.59' v 1 1000 100
DOMAIN ERROR

21

Z+' 555.59'v1 1000 100
/\

DFC[4] + I?'

Z + , 555.59' v 1 1000 100
Z

1.00 ????? 100.00
pZ

For more examples, refer to the Format Control system
variable (OFC).

7-69

Notes:

7-70

Chapter 8. System Functions and
System Variables

System Functions 8-3
Canonical Representation - 0 CR 8-5
Delay - ODL 8-6
Execute Alternate: - OEA 8-6
Expunge - 0 EX 8-7
Function Establishment - 0 FX 8-8
Name Classification - ONC 8-8
Name List - ONL 8-9
Peek/Poke - 0 PK 8-10
Transfer Form - OTF 8-11

System Variables 8-14
Latent Expression - 0 LX 8-16
Atomic Vector - OAV 8-17
Format Control- OFC 8-18
Horizontal Tabs - OHT 8-19

8-1

Notes:

8-2

Although the primitive functions of APL deal only with
abstract objects (arrays of numbers and characters), it is
often desirable to bring the power of the language to
bear on the management of the concrete resources or
the environment of the system in which APL operates.
This can be done within the language by identifying
certain variables as elements of the interface between
APL and its host system, and using these variables for
communications between them. Although still abstract
objects to APL, the values of such system variables
may have any required concrete significance to the host
system.

In principle, all necessary interaction between APL and
its environment could be managed with a complete set
of system variables. However, in some situations it is
more convenient, or otherwise more desirable, to use
functions based on the use of system variables that may
not themselves be made explicitly available. Such
functions are called system functions.

System variables and system functions are denoted by
distinguished names that begin with a quad (0). The
use of such names is reserved for the system and cannot
be applied to user-defined objects. They cannot be
erased; those that denote system variables can appear in
function headers, but only to be localized (see Chapter
10, "Function Definition"). Within APL statements,
distinguished names are subject to all the normal rules
of syntax.

System Functions

Like the primitive abstract functions of APL, the system
functions are available throughout the system, and can
be used in defined functions. They are monadic or
dyadic, as appropriate, and have explicit results. In
most cases they also have implicit results, in that their
execution causes a change in the environment. The
explicit result always indicates the status of the
environment relevant to the possible implicit result.

8-3

Function

OCR A

DDL S

DEX A

DFX M

ONCA

A ONL N

ONL N

Altogether, 17 system functions are provided. Six of
these are for managing the shared-variable facility and
are described in Chapter 9, "Shared Variables." The
other 11 are shown in Figure 10 and are described after
the figure.

Requirements

Rank Domain Effect on Environment Explicit Result

1~ppA Array of characters None Can onical representation
of object named by A.
The result of anything
other than an unlocked
defined function is size
00.

O=ppS Numeric value None, but requires S secs. Scalar value of actual
to complete. delay.

2~ppA Array of characters Erase objects named by A boolean vector whose
rows of A, except labels Ith element is 1 if the Ith
or halted functions. name is now free.

2=ppM Matrix of characters Fix definition of function Vector that represents
represented by M, unless name of function
its name already used establ ished, or scalar
for an ob ject other than row index of fault that
function that is not prevented establishment.
halted.

2~ppA Array of characters None Vector giving the usage of
the name in each row
of A:

o name available
1 label
2 variable
3 function
4 other

1~ppN A/NE1 2 3 None Same as monadic form,
Elements of A except only names
must be alphabetic. starting with letters in A

will be included.

1~ppN A/NE1 2 3 None Matrix of rows (in
accidental order) that
represents names of
designated kinds in
dynamic environment:
1, 2, 3 for labels,
variables, and functions.

Figure 10 (Part 1 of 2). System Functions

8-4

Requirements

Function Rank Domain Effect on Environment Explicit Result

A OEA B 12ppB Characters None Executes B. For error,

12ppA executes A.

N oPKA O=ppN N is a scalar None Peek memory contents.
positive integer. Result is character

1=ppA A is a numeric
vector of elements
of OAV.

vector of two
elements.

12ppN Character scalar / Changes memory Poke memory contents.
vector. Result is character vector.

with previous contents.

1=ppA Numeric vector
of 2 elements.

oPKA 1=ppA See dyadic oPK Depends on user Executes machine
programs. language program.

Returns register
contents and flags.

OTF A 12ppA Character scalar/ Generate transfer If A is a name, result is
vector. form or fix new the transfer form. If A

object in WS. is a transfer form, result
is name of object fixed.

Figure 10 (Part 2 of 2). System Functions

Canonical Representation - OCR

The canonical representation of a defined function, as
defined in Chapter 10, is obtained by applying the
system function OCR to the character array representing
the name of the function. When applied to any
argument that does not represent the name of an
unlocked defined function, it yields a matrix of
dimension 0 by O. Possible error reports for OCR are
RANK error, if the argument is not a vector or a scalar,
or DO MAIN error if the argument is not a character
array. The use of OCR is further described in
Chapter 1 0.

8-5

Delay- DDL

The delay function, denoted by ODL ,causes a pause in
the execution of the statement in which it appears. The
argument of the function determines the duration of the
pause, in seconds, but the accuracy is limited by other
possible demands on the system at the moment of
release. Moreover, the delay can be ended by a strong
interrupt. The explicit result of the delay function is a
scalar value equal to the actual delay. If the argument of
ODL is not a scalar with a numeric value, a RANK or
DO MAIN error will be reported.

The delay function can be used freely in situations
where repeated tests may be required at intervals to
determine if an expected event has taken place. This is
useful in certain kinds of interactions between users and
programs.

Execute Alternate: - D EA

8-6

If you execute the statement

Z+L OEA R

and there is an error in the expression R, or if R is
interrupted, then execution of R is ended without an
error message, and L is executed instead. In that case,
Z is the value of the APL expression in L. If the
expression has no value, then L OEA R has no value.
Execution of L is subject to normal error handling.

Rand L must be character vectors or scalars. Both
must contain only valid APL characters.

R is taken to represent an APL expression, and is
executed in the context of the statement in which it is
found. Z js the value of the APL expression in R. If the
expression has no value, then L OEA R has no value.

Examples:

, 1 2' DEA 'l4'
1 234

, 1. 2' OEA '1. 4 • 5 '
1 2

'-+' OEA '1. 4 • 5 '
, 1 2 • 3' DEA 'l 4 • 5

DOMAIN ERROR
1.2.3
/\

If R calls a defined function F, then the statements
executed by F are also under control of the error trap.
In particular, R could call a long running function, and
L could be an error recovery function.

Expunge - 0 EX

Certain name conflicts can be avoided by using the
expunge function DEX to eliminate an existing use of a
name. Thus OEX 'PQR' will erase the object PQR
unless it is a label or a halted function. The function
returns an explicit result of 1 if the name is now
unencumbered, and a result of 0 if it is not, or if the
argument does not represent a well-formed name. The
expunge function applies to a matrix of names and then
produces a logical vector result. OEX will report a
RANK error if its argument is of higher rank than a
matrix, or a DO MAIN error if the argument is not a
character array. A single name may also be presented
as a vector or scalar.

8-7

Function Establishment - OFX

The definition of a function can be established or fixed
by applying the system function DFX to its character
representation. The function OFX produces, as an
explicit result, a character vector that represents the
name of the function being fixed while replacing any
existing defintion of a function with the same name.

An expression of the form OFX M will establish a
function if both the following conditions are met:

1. M is a valid representation of a function. Any
matrix that differs from a canonical matrix only in
the addition of non-significant spaces is a valid
representation. A row of M consisting of only
spaces will appear as an empty statement in the
resulting function.

2. The name of the function to be established does
not conflict with any existing use of the name for a
halted function (defined in "Function Execution")
or for a label or variable.

If the expression fails to establish a function, then no
change occurs in the workspace, and the expression
returns a scalar index of the row in the matrix argument
where the fault was found. If the argument of []FX is
not a matrix, a RANK error will be reported, and if it is
not a character array a DOMAIN error will result.

Name Classification - ONC

8-8

The monadic function ONe accepts a matrix of
characters and returns a numerical indication of the
class of the name represented by each row of the
argument. A single name may also be presented as a
vector or scalar.

The result of ONL is a suitable argument for ONC, but
other character arrays may also be used, in which case
the possible results are integers ranging from 0 to 4. The
significance of 1, 2, and 3 are as for ONL; a result of 0
signifies that the corresponding name is available for
any use; a result of 4 signifies that the argument is not
available for use as a name. The latter case may arise
because the argument is a distinguished name or not a
valid name at all.

Name List- DNL

The dyadic function ONL yields a character matrix,
each row of which represents the name of an object in
the dynamic environment. The right argument is an
integer scalar or vector that determines the class of
names produced as follows: 1, 2, and 3 invoke the
names of labels, variables, and functions. The left
argument is a scalar or vector of alphabetic characters
that restricts the names produced to those with an initial
letter occurring in the argument. The ordering of the
rows of the result is random.

The monadic function ONL behaves analogously with
no restriction of initial letters. For example, ONL 2
produces a matrix of all variable names, and either of
ONL 2 3 or DNL 3 2 produces a matrix of all variable
and function names.

The uses of ONL include the following:

• In conjunction with DEX , all the objects of a certain
class can be dynamically erased, or a function can
be readily defined that will clear a workspace of all
but a preselected set of objects.

• In conjunction with OCR, functions can be written
to automatically display the definitions of all or
certain functions in the workspace, or to analyze the
interactions among functions and variables.

• The dyadic form of ONL can be used as a
convenient guide in the choice of names while
designing or experimenting with a workspace.

8-9

Peek/Poke - 0 PK

8-10

This function has three different uses that may be
requested as follows:

1. Peek the memory contents.

R+N OPK AR,ADDR

where:

N is the number of bytes desired

ADDR is the starting address (in decimal code)

AR may be 0 or 1. If 0, ADDR is absolute. If 1,
ADDR is relative to workspace origin.

R is a character vector with the contents of the
selected memory positions as elements of DA V
(that is, if the contents of a byte is 120, the
corresponding result will be the 120th element of
DA V in zero origin).

2. Poke the memory contents.

R+V OPK AR ,ADDR

where:

V is a character vector with the values to be
inserted in memory as elements of DA V .

AR and ADDR are interpreted as in 1 above.

R is the previous contents of the changed memory.

3. Execute memory.

R+OPK AR,ADDR

executes the machine language program contained
in the indicated address and returns in R the final
contents of the registers and flags in the following
order: AL, AH, BL, BH, CL, CH, DL, DH, low
SI, high SI, low DI, high DI, low BP, high BP, low
flags, high flags.

Executable programs must end with a long RET
assembly language instruction (it is considered as a
far procedure). The program must return the stack
as it was found on entry.

Transfer Form - DTF

In the expression:

Z+OTF R

if R is the name of a variable or a defined function, then
Z is a character vector, which is the transfer form for
that object. If the transfer form cannot be formed, then
Z is an empty character vector (' ,).

R must be a character scalar or vector. Z is a character
vector.

If R is the transfer form of a variable or a defirted
function, then that object is established in the
workspace, and Z is a character vector containing its
name. If the transfer form is invalid, then Z is an empty
character vector (' ,). This is called the inverse transfer
form.

8-11

8-12

Inverse transfer form ignores name class conflicts. That
is, if there is a variable named X in the active
workspace, an inverse transfer form may be performed
to establish a function with the same name X. Similarly,
if there is a function named X in the active workspace,
an inverse transfer form may be performed to establish
a variable with the same name X. Additionally, if there
is a shared variable named X in the active workspace,
and if an inverse transfer form is performed to establish
a variable with the same name X, then the old variable
is expunged before the new variable is formed, so that
any share on that variable is retracted.

The migration transfer form is a character vector. It
represents the name and value of a variable, or a
displayable defined function. It is produced by the
monadic system function OTF R, where R is the name
of the object.

The migration transfer form vector consists of four
parts:

1. A data type code header character:

• 'F' for a function

• 'N' for a numeric array

• 'C' for a character array

2. The name of the object, followed by a blank.

3. A character representation of the rank and shape
of the array, followed by a blank.

4. A character representation of the array elements in
row major order (any numeric conversions are
done to 15 digits).

A defined function is treated as the character matrix of
its canonical form.

Examples:

THIS +- 2 3pt6
Z +- OTF 'THIS'
Z

NTHIS 2 2 3 1 2 3 4 5 6
pZ

24
THAT +- 3 4p'ABCDEFGHIJKL'
Z +- OTF 'THAT'
Z

CTHAT 2 3 4 ABCDEFGHIJKL
pZ

24

V Z+-L PLUS R
[1J Z+-L+R

V

Z +- OTF 'PLUS'
Z

FPLUS 2 2 10 Z+-L PLUS RZ+-L+R
pZ

33

V V+-PRIMES N;OIO;M
[1J 0ID*-1
[2J M+-tN
[3J V+-(1=0+.=(1+M)o.IM)/M

V

Z +- OTF 'PRIMES'
Z

FPRIMES 2 4 21 V+-PRIMES N;OIO;M OIO+-1
M+-tN V+-(1=O+.=(1+M)o.IM)/M

pZ
99

8-13

System Variables

8-14

System variables are instances of shared variables (see
"Shared Variables"). The characteristics of shared
variables that are most significant here are:

• If a variable is shared between two processors, the
value of the variable when used by one of them may
well be different from what that processor last
specified, and

• Each processor is free to use or not use a value
specified by the other, according to its own internal
workings.

System variables are shared between a workspace and
the APL processor. Sharing occurs automatically each
time a workspace is activated and, when a system
variable is localized in a function, each time the
function is used.

Figure 11 lists the system variables and gives their
significance and use. Two classes can be distinguished:

1. Comparison tolerance, format control, horizontal
tabs, index origin, latent expression, random link,
printing precision, and printing width. In these
cases, the value you specify (or that is available in
a clear workspace) is used by the APL processor
during the execution of operations to which they
relate. Except for the latent expression (see
below), if this value is inappropriate, or if no value
has been specified after localization, an
IMPLICIT error will result at the time of
execution.

2. Account information, atomic vector, line counter,
time stamp, terminal control, terminal type, user
load, and work area. In these cases, localization or
your setting is immaterial. The APL processor will
always res,et the variable before it can be used
again.

Name

OCT

OPC

OHT

DIG

DLX

OFP

OFW

ORL

OAI

OAV

OLC

OTS

Value in
Clear WS

1E 13

10

1

, ,

10

79

10

Meaningful
Range

o 1

characters

115

30-80

1 1+2*31

Figure 11 (Part 1 of 2). System Variables

Purpose

Comparison tolerance used in

monadic r L
dyadic <::;;=2:>:;r!E 1

Format control used in dyadic 'lJf
(picture format)

This variable is ignored by the
system.

I ndex origin: used in indexing

and in ? 1 4 'f ~ OPX

Latent expression executed on
activation of workspace

Printing precision: affects
numeric output and monadic 'lJf

Printing width: affects all but
bar~ output and error reports

Random link: used in ?

Account information:
identification, computer time,
connect time, keying time (all
times in milliseconds and
cumulative during sessions)

Atomic vector

Line counter: statement numbers
of functions in execution or
halted, most recently activated
first

Time stamp: year, month, day
(of month), hour (on 24-hour
clock), minute, second,
millisecond

8-15

Name

OTC

OTT

OUL

DWA

Value in
Clear WS

Meaningful

Range Purpose

Terminal control: a three
element vector containing the
backspace, new line, and
line-feed characters, in that
order

Terminal type: always zero

User load: always 1

Working area available (in bytes):
main workspace size plus elastic
workspace size

Figure 11 (Part 2 of 2). System Variables

Latent Expression - 0 LX

8-16

The APL statement represented by the latent
expression is automatically executed whenever the
workspace is activated.

Formally, DLX is used as an argument to the execute
function ~DLX, and any error message, will be
appropriate to the use of that function.

Common uses of the latent expression include the form
OLX+' G' , used to invoke an arbitrary function G; the
form,

LX+' " FOR CHANGES IN THIS WS ENTER: NEW' , ,

is used to print a message upon activation of the
workspace, and the form OLX+' ~LC' is used to
automatically restart a suspended function. The variable
OLX may also be localized within a function and
respecified therein to furnish a different latent
expression when the function is suspended. For
example:

DLX+'F'
IJ F;DLX

[1J DLX+'--?OLC,pD+-" RESUME LESSON'"
[2J 'WE NOW BEGIN LESSON 2'
[3J DRILLFUNCTION

IJ
)SAVE ABC

On the first activation of workspace ABC, the function
F would be automatically invoked; if it were later saved
with F halted, subsequent activation of the workspace
would automatically continue execution from the point
of interruption.

Atomic Vector- DAV

The atomic vector DA V is a 256-element character
vector, containing all possible characters. Certain
elements of DA V may be screen-control characters,
such as carriage return or line feed. The indexes of any
known characters can be determined by an expression
such as OA Vl 'ABCabc '.

8-17

Format Control- OFC

8-18

This is a five-element character vector containing
control characters implicitly used by the picture format.
The value in a clear workspace is '., *0_'.

The element definitions are:

OFC[1J Use for decimal point

OFC[2J Use for comma

OPC[3J Fill when otherwise blank for digit 8

OFC[4J Fill when otherwise DOMAIN ERROR for
overflow

OPC[5J Print as blank (may not be , .0123456789)

Elements of OPC beyond 5 are not defined.

OPC[1 J is used wherever a decimal point is needed in
picture format:

OFC[1 J +- ','
'5.5555' ~ 3.1415

3,1415

OFC[2 J is used wherever a comma is needed in picture
format:

OFC[2J +- '.'
'555,555,555' ~ 123456789

123.456.789

OPC[3 J is used where a field containing an 8 would
otherwise be blank in picture format:

OPC[3J +- '0'
'855555' ~ 1234

001234

!]FC[4] is used to fill where a field is too small for a
number or a non-scalar item in picture format:

????

!]FC[4] -+- '?'
'5555' "If 123456

If OPC[4] is '0' (which is the default), then a field that
is too small will result in DOMAIN error.

OPC[5] is replaced by a blank without ending a field
wherever it is used in picture format:

$ 12

!]FC[5] -+- 'e'
'$e355' "If 12

Horizontal Tabs - D HT

The value of OHT is ignored by the IBM Personal
Computer APL system.

8-19

Notes:

8-20

Chapter 9. Shared Variables

Offers 9-5
Access Control 9-7
Retraction 9-12
Inquiries 9-13

9-1

Notes:

9-2

Two otherwise independent, concurrently-operating
processors can communicate, and thereby be made to
cooperate, if they share one or more variables. Such
shared variables constitute an interface between the
processors, through which information may be passed to
be used by each processor for its own purposes. In
particular, variables may be shared between an APL
workspace and some other processor that is part of the
overall APL system, to achieve a variety of effects,
including the control and use of devices such as
printers, communication links, and disk drives.

In an APL workspace, a shared variable may be either
global or local, and is syntactically indistinguishable
from ordinary variables. It may appeear to the left of an
assignment, in which case its value is said to be set, or
elsewhere in a statement, where its value is said to be
used. Either form of reference is an access.

At any instant a shared variable has only one value -
the value last assigned to it by one of its owners.
Characteristically however, a processor using a shared
variable will find its value different from what it might
have set earlier.

A given processor can simultaneously share variables
with several other processors. However, each sharing is
bilateral; that is, each shared variable has only two
owners. This restriction does not represent a loss of
generality in the systems that can be constructed, and
commonly useful arrangements are easily designed. For
example, a shared file can be made directly accessible
to a single control processor that communicates
bilaterally with (or is integral with) the file processor
itself. In tum, the central processor shares variables
bilaterally with each of the using processors, controlling
their individual access to the data, as required.

9-3

Function

P OS'VO N

OS'VO N

C OS'VC N

OS'VC N

It was noted in "System Functions and System
Variables" that system variables are instances of shared
variables in which the sharing is automatic. It was not
pointed out, however, that access sequence disciplines
are also imposed on certain of these variables, although
one effect of this was noted; namely, variables, like the
time stamp, accept any value specified, but continue to
provide the proper information when used. The
discipline that accomplishes this effect is an inhibition
against two successive accesses to the variable, unless
the sharing processor (the system) has set it in the
interim.

When ordinary, "undistinguished" variables are to be
shared, explicit actions are necessary to accomplish the
sharing and establish a desired access discipline. Six
system functions are provided for these purposes - three
for the actual management, and three to provide related
information. These are summarized in Figure 12.

Requirements 11]
Effect on Explicit

Rank Length Domain Environment Result

2?ppN (x/pP)El, - HpN PEH12*15 Tenders offer to Degree of
processor P if coupling now
first (or only) in effect for

[2] name of pair is the name pair.
not previously Dimension:
offered and -
not already in ,xl l+pN.

use as the name
of an object
other than a
variable.

2?ppN None [2] None Degree of
coupling now
in effect for
the name pair.
Dimension:

-,xl l+pN.

2?ppN (l?ppC)Al=x/pC AICEO 1 Sets access New setting of
2?ppC control. access control.

or [2] Dimension:

(pC)=(- l+pN) ,4 (-HpN) ,4

2?ppN None [2] None Existing access
control.

Figure 12 (Part 1 of 2). System Functions

9-4

Requirements [11

Effect on Explicit
Function Rank Length Domain Environment Result

OSVR P 2"?ppN None [21 Retracts Degree of
offer (ends coupling before
sharing) retraction.

Dimension:
-,xl HpN

-OSVQ N l"?ppP l"?p,P PE1il 1+2*15 None If O=pP:
Vector of IDs of
processors making
offers to this user.

If l=x/pP:
Matrix of names
offered by
processor P but
not yet shared.

Notes:

1. If a requirement is not met, the function is not executed, and a corresponding error report is printed.

2. Each row of N (or N itself if 2"?ppN) must represent a name or pair of names. If a pair of
names is used for an offer (dyadic DSVO), either the pair, or the first name only, can be used for
the other functions.

Figure 12 (Part 2 of 2). System Functions

Offers

A single offer to share is of the form P DSVO N, where
P is the identification of another processor, and N is a
character vector representing a pair of names. The first
of this pair is the name of the variable to be shared, and
the second is a substitute name. The name of the
variable may be its own substitute, in which case only
the one name need be used, rather than two.

The substitute names have no effect.

The explicit result of the expression P DSVO N is the
degree of coupling of the name in N: 0 if no offer has
been made, 1 if an offer has been made but not
matched, 2 if sharing is completed.

9-5

9-6

An offer to any processor (other than the offering
processor itself) increases the coupling of the name
offered, if the name has zero coupling and is not the
name of a label or a function. An offer never decreases
the coupling.

The monadic function OSVO does not affect the
coupling of the name represented by its argument, but
does not report the degree of coupling as its explicit
result. If the degree of coupling is 1 or 2, a repeated
offer has no further implicit result, and either monadic
or dyadic OSVO may be used for inquiry. The following
is an example of a defined function for offering a name
(to be entered on request) to a processor P:

Z+OFFER P;Q
~'NAME: '
~(' 'A.=Q~)/Z+O

Z+P OSVO Q
~(2=Z+OSVO Q)/L
'NO DEAL'
~O

L: 'ACCEPTED'

If the arguments of OSVO fail to meet any of the basic
requirements listed in the following figure, the
appropriate error report results, and the function is not
executed. An offer to a processor will be acknowledged,
whether or not the processor happens to be available.

The value of a shared variable, when sharing is first
completed, is determined thus: if both owners had
assigned values previously, the value is that assigned by
the first to have offered; if only one owner had, that
value obtains; if neither had, the variable has no value.
N ames used in sharing are subject to the usual rules of
localiz ation.

A set of offers can be made by using a vector left
argument (or scalar or one-element vector that is
automatically extended) and a matrix right argument,
each of which rows represents a name or a name pair.
The offers are then treated in sequence and the explicit
result is the vector of the resulting degrees of coupling.

Auxiliary processors are identified by positive integers
between 2 and 32767.

Access Control
In most practical applications, it is important to know
that a new value has been assigned between successive
uses of a shared variable, or that use has been made of
an assigned value before a new one is set. Because, as a
practical matter, this cannot be left to chance, an access
control mechanism is embodied in the shared variable
facility.

The access control operates by inhibiting the setting or
use of a shared variable by one owner or the other,
depending on the access state of the variable and the
value of an access control matrix, which is set jointly by
the two owners, using the dyadic form of the system
function OSVC. If one user had followed his offer to
share V by the expression 1 1 1 1 OSVC 'V', the
following sequence would have been enforced: the use
of V by the second processor would be automatically
delayed until V is set by the first one, and the use by the
latter would be delayed until V is set by the former.

9-7

9-8

Figure 13 shows the three access states possible for a
shared variable, the possible transitions between states,
and the potential inhibitions imposed by the access
control matrix (ACM). The first row of the ACM is
associated with setting of the variable by each owner,
and the second with its use. The permissible operations
for any state are indicated by the zeros in ACMAASM,
where ASM is the representation of the access state
shown in the figure. This can be confirmed by using the
figure to validate each of the following statements:

• If ACM[1; 1 J=1 , then two successive sets by A
require an intervening access (set or use) by B.

• If ACM[1; 2 J=1 , then two successive sets by B
require an intervening access by A.

• If ACM[2 ; 1 J = 1 , then two successive uses by A
require an intervening set by B.

• If ACM[2 ; 2 J = 1 , then two successive uses by B
require an intervening set by A.

Legend:

SA SB UA UB: Denote set or use by A or B.
ACM: Access Control Matrix
ASM: Access State Matrix

A one in an element of ACM inhibits the associated access. Allowable
accesses are given by the zeros in ACMAASM. Access control vectors

as seen by A and B, respectively, are ,ACM and ,c!>ACM.

The access state matrix represents the last access: ones occurs in the last
row if it is not a set, and in a column if it is, the first column if set by A
and the last if set by B.

Figure 13. Access Control of a Shared Variable

9-9

9-10

The value of the access state representation is not
directly available to you, but the value of the access
control matrix is given by the monadic function OSVC .
For a shared variable V, the result of the exptession
OSVC 'V' executed by user A is the access control
vector ,ACM (the four-element ravel of ACM).
However, if user B executed the same expression, he
would obtain the result ,<j>ACM. The reason for the
reversal is that sharing is symmetric: neither owner
has precedence over the other, and each sees a control
vector in which the first one of each pair of control
settings applies to his own accesses. This symmetry is
evident in the figure; if it were redrawn to interchange
the roles of A and B, the control matrix would be the
row-reversal of the matrix shown.

The setting of the access control matrix for a shared
variable is determined in a way that maintains the
functional symmetry. An expression of the form
L OSVC 'V' executed by user A assigns the value of
the logical left argument L to a four-element vector
which, for the purposes of the present discussion, will
be called QA. Similar action by user B sets QB. The
value of the access control matrix is determined as
follows:

ACM+(2 2pQA)v<j>2 2pQB

Because ones in ACM inhibit the corresponding
actions, it is clear from this expression that one user can
only increase the degree of control imposed by the other
(although he can, by using OSVC with a left argument of
zeros, restore the control to that minimum level at any
time).

Access control can be imposed only after a variable is
offered, either before or after the degree of coupling
reaches 2. "The initial values of QA and QB when
sharing is first offered are zero.

The access state when a variable is first offered (degree
of coupling is 1) is always the initial state shown in the
figure. If the variable is set or used before the offer is
accepted, the state changes accordingly. Completion of
sharing does not change the access state.

Figure 14 lists a number of settings of the access
control vector that are of common practical interest.
Anyone of them can be represented by a simplification
of Figure 13 obtained by omitting the control matrix
and deleting the lines representing those accesses that
are inhibited in the particular case. For example, with
maximum constraints, all the inner paths would be
removed from the figure.

Access Control Vector
as Seen by:

A B

o 0 0 0 0 0 0 0

0011 0011

11001100

1 1 1 1

o 1 1 0

1 1 1 1

100 1

Comments

No constraints

Half-duplex. Ensures each use is preceded
by a set by partner.

Half-duplex. Ensures each set is preceded
by an access by partner.

Reversing half-duplex. Maximum constraint.

Simplex. Controlled communications
from B to A.

Figure 14. Some Useful Settings for the Access Control Vector

A group of N access control matrices can be set at once
by applying the function OSVC to an N-by-4 matrix left
argument and an N-rowed matrix right argument of
names. The explicit result is an N-by-4 matrix giving
the current values of the (ravels of) control matrices.
When control is being set for a single variable, the left
argument may be a single 1 or 0 if all inhibits or none
are intended. A scalar, a one-element vector, or a
four-element vector left argument L is treated as the
N-by-4 matrix (N,4)pL.

9-11

Retraction

9-12

Sharing offers can be retracted by the monadic function
OSVR applied to a name or matrix of names. The
explicit result is the degree (or degrees) of coupling
before the retraction. The implicit result is to reduce the
degree of coupling to zero.

Retraction of sharing is automatic if you sign off or load
a new workspace. Sharing of a variable is also retracted
by its erasure or, if it is a local variable, upon
completion of the function in which it appeared.

The nature of the shared-variable implementation is
often such that the current value of a variable set by a
partner will not be represented within a user's
workspace until actually required to be there. This
requirement obtains when the variable is to be used,
when sharing is ended, or when a SAVE command is
issued (since the current value of the variable must be
stored). Under any of these conditions, it is possible for
a WS FULL error to be reported. In all cases, the prior
access state remains in effect, and the operation can be
retried after corrective action.

Inquiries

There are three monadic inquiry functions that produce
information concerning the shared variable environment
but do not alter it: the functions OSVO and OSVC,
already discussed, and the function OSVQ . A user who
applies the OSVQ function to an empty vector obtains a
vector result containing the identification of each user
making a specific and unmatched sharing offer to him.
A user who applies this function to a non-empty
argument obtains a matrix of the names offered to him
by the processor identified in the argument. This matrix
includes only those names that have not been accepted
by counter-offers.

The expression (O;tDSVO M)/[1] M+ONL 2 can be used
to produce a character matrix whose rows represent the
names of all shared variables in the dynamic
environment.

9-13

Notes:

9-14

Chapter 10. Function Definition

Canonical Representation and Function
Establishment 10-3

The Function Header 10.-5
Ambi-Valent Functions 10-6
Local and Global Names 10-7
Branching and Statement Numbers 10-8
Labels 10-9
Comments 10-10

Function Editing - The V Form 10-10
Adding a Statement 10-11
Inserting or Replacing a Statement 10-11
Replacing the Header 10-12
Deleting a Statement 10-12
Adding to a Statement or Header 10-12
Function Display 10-13
Leaving the V Form 10-15

10-1

Notes:

10-2

A defined function can be established in an APL
workspace in three ways:

1. It can be copied from a stored workspace using a
system command, as described in "System
Commands."

2. It can be establisheq in execution mode, using the
system function DFX, either in direct keyboard
entry or in the course of execution of another
defined function.

3. It can be established in function definition mode.

Regardless of which method has been used for
establishing a function, its definition can be displayed or
modified either in the function definition mode, in which
certain editing capabilities are built-in, or by the
combined use of the system functions OCR and OFX.

Canonical Representation and Function
Establishment

The character representation of a function is a
character matrix satisfying certain constraints: the first
row of the matrix represents thefunction header and
must be one of the forms specified below under "The
Function Header." The remaining rows of the matrix, if
any, constitute the function body, and may consist of
any sequence of characters. If the character
representation satisfies additional constraints, such as
left justification of the non-blank characters in each row,
then it is said to be a canonical representation.

10-3

10-4

Applying DCR to the character array representing the
name of an already established function will produce its
canonical representation. For example, if OVERTIME
is an available function:

DEF+fJCR 'OVERTIME'
DEF

PAY+R OVERTIME H;TIME
TIME+ofH-40
PAY+Rx1.5xTIME

pDEF
3 21

The function DCR applied to any argument that does
not represent the name of an unlocked defined function
yields a matrix of shape 0 o.

The use of DCR does not change the status of the
function OVERTIME, which remains established and
can be used for calculations. Thus:

7 5 8 OVERTIME 35 40 45
o 0 60

If OVERTIME should be expunged:

DEX 'OVERTIME'
1

it is no longer available for use:

7 5 8 OVERTIME 35 40 45
SYNTAX ERROR

7 5 8 OVERTIME 35 40 45
A

The function can be re-established by DFX:

DFX DEF
OVERTIME

The function [JFx produces as its explicit result, the
vector of characters that represents the name of the
function being fixed, while replacing any existing
definition of a function with the same name. The
function OVERTIME can now be used again:

7 5 8 OVERTIME 35 40 45
o 0 60

An expression of the form DFX M will establish a
function if the conditions described under "Function
Establishment" are met.

The Function Header

The valence of a function is defined as the number of
explicit arguments that it takes. A defined function may
have a valence of 0, 1, or 2, and mayor may not yield
an explicit result. These cases are represented by six
forms of header as follows:

Type

Dyadic
Monadic
Niladic

Valence

2
I

°

Result No Result

R+-A F B A F B
R+-F B F B
R+-F F

The names used for the arguments of a function become
local to the function, and additional local names may be
designated by listing them after the function name and
argument, separated from them and from each other by
semicolons; the name of the function is global. The
significance of these distinctions is explained below.

10-5

Except that the function name itself may be repeated in
the list of local names, a name may not be usefully
repeated in the header. Nor is it obligatory for the
arguments of a defined function to be used within the
body, or for the result variable to be specified in the
course of function execution.

Ambi-Valent Functions

10-6

Defined functions with a valence of 2 may be called
either monadic ally (without a left argument) or
dy adic ally . All dyadic defined functions are thus
ambi-valent; that is, a left argument is not required
when the function is called in context. In such a case,
the left argument will be undefined (will have no value)
inside the function, and its name class will be zero.

For example, the function ROOT calculates the Nth
root of its right argument. If no left argument is
provided when the function is called, a default value is
supplied:

\f Z+-N ROOT A
[1J -+(O~DNC 'N') /RN
[2J N+-2
[3J RN: Z+-A*~N

\f

2 ROOT 64 729 4096
8 27 64

ROOT 64 729 4096
8 27 64

3 ROOT 64 729 4096
4 9 16

Local and Global Names

In the execution of a defined function, it is often
necessary to work with intermediate results or
temporary functions that have no significance either
before or after the function is used. The use of local
names for these purposes, so designated by their
appearance in the function header, avoids cluttering the
workspace with many objects introduced for such
transient purposes, and allows greater freedom in the
choice of names. Names used in the function body, and
not so designated, are said to be global to that function.

A local name may be the same as that for a global
object, and any number of names local to different
functions may be the same. During the execution of a
defined function, a local name will temporarily exclude
from use a global object of the same name. If the
execution of a function is interrupted (leaving it either
suspended, or pendent, as described in Chapter 11,
"Function Execution"), the local objects keep their
dominant position during the execution of later APL
operations, until such time as the halted function is
completed. However, system commands and the del
form of function definition (see below) continue to
reference global objects under these circumstances.

The localization of names is dynamic in the sense that
it has no effect except when the defined function is
being executed. Furthermore, when a defined function
uses another defined function during its execution, a
name localized in the first (or outer) function continues
to exclude global objects of the same name from the
range of the second (or inner) function. This means that
a name localized in an outer function has the
significance assigned to it in that function when used
without further localization in an inner function. The
same name localized in a sequence of nested functions
has the significance assigned to it at the inner-most level
of execution. The shadowing of a name by localization
is complete, in the sense that once a name has been
localized, its global and outer values are nullified, even
if no significance is assigned to it during execution of
the function in which it is 'localized.

10-7

Branching and Statement Numbers

10-8

Statements in a function are normally executed
successively, from top to bottom, and execution stops at
the end of the last statement in the sequence. This
normal order can be modified by branches. Branches
are used in the construction of iterative procedures, in
choosing one out of a number of possible continuations,
or in other situations where decisions are made during
the course of function execution.

To facilitate branching, the successive statements in a
function definition have reference numbers associated
with them, starting with the number 1 for the first
statement in the function body and continuing with
successive integers, as required. Thus, the expression
-+-4 signifies a branch to the fourth statement in the
function body, and when executed, causes statement 4
to be executed next, regardless of where the branch
statement itself occurs. (In particular -+4 may be
statement 4, in which case the system will simply
execute this "tight loop" indefinitely, until interrupted
by an action from the keyboard. This is a trap to be
avoided.)

A branch statement always starts with the branch
arrow (or right arrow) on the left, and this can be
followed by any expression. For the statement to be
effective, however, the expression must be an integer,. or
a vector whose first element is an integer, or an empty
vector; any other value results in a DOMAIN or
RANK error. If the result of the expression is a valid
result, the following rules apply:

1. If the result is an empty vector, the branch is
empty and execution continues with the next
statement in the function if there is one, or else the
function ends.

2. If the result is the number of a statement in the
function, then that statement is the next to be
executed.

Labels

3. If the result is a number out of the range of
statement numbers in the function, then the
function ends. The number 0 and all negative
integers are outside the range of statement
numbers for any function.

Because zero is often a convenient result to compute,
and is not the number of a statement in the body of any
function, it is often used as a standard value for a
branch intended to end the execution of a function. It
should be noted that in the function definition mode
described below, zero is used to refer to the header.
This has no bearing on its use as a target for a branch.

An example of the use of a branch statement is shown
in the following function, which computes the greatest
common divisor of two scalars:

Z+-M GCD N
E: Z+-M
M+-MIN
N+-Z
-+(O'#.M) IE

The compression function in the form U I V gives V if U
is equal to 1, and an empty vector if U is equal to o.
Thus, the fourth statement in GCD is a branch
statement that causes a branch to the first statement
when the condition O'#.M is true, and a branch with an
empty vector argument, that is, normal sequence, when
the condition is false. In this case, there is no next
statement and so execution of the function ends.

If a statement occurring in the body of a function
definition is prefaced by a name and a colon, the name
is assigned a value equal to the statement number. A
name used in this way is called a label. Labels are used
to advantage when it is expected that a function
definition may be changed for one reason or another,
since a label automatically assumes the new value of
the statement number of its associated statement as
other statements are inserted or deleted.

10-9

The name of a label is local to the function in which it
appears, and must be distinct from other label names
and from the local names in the header.

A label name may not appear immediately to the left of
a specification arrow. In effect, it acts as a (local)
constant.

Comments

The lamp symbol A (the cap-null) signifies that what
follows is a comment for illumination only and is not to
be executed; it may occur only as the first character in a
statement, or as the first character following a label and
colon.

Function Editing - The V Form

10-10

The functions OCR and DFX together form a basis for
establishing and revising functions. Convenient
definition and/or editing with them, however, requires
the use of prepared editing functions, which must be
defined, stored in a library, and explicitly activated
when needed. The del form described here provides
another means for function entry and revision, which is
always present for use.

When you enter the del character (V) followed by the
name of a defined function, the system responds by
displaying [N+1J, where N is the number of statements
in the function. It is now possible to:

• add, insert, or replace statements

• replace the header

• modify the header or a statement

• delete statements

• display all or part of the definition

A new function is started by entering the desired header
on the same line as the opening V . Once the function
definition mode has thus been entered, the treatment of
a new function is identical to that for a function already
defined.

Adding a Statement

If the response to the display of statement number
[N+l J is a statement, it is accepted as a line added at
the end of the definition. The system response is
[N+2] . Additional statements may continue to be
added to the definition in this way. If an empty
statement is entered, the system will re-display the line
number in brackets.

Inserting or Replacing a Statement

If the response to the statement number displayed by
the system is [N], where N is any positive number
with or without a fractional part, the system will display
[N] . A statement entered will replace an existing
statement N.

The system continues by displaying the next
appropriate number. For example, if the statement
number entered was [3], the next number displayed
will be [4-]; if [3. 0 2], then [3. 0 3]; if [3. 29], then
[3 • 3] , and so forth.

A statement may be submitted with line number [N]; it
will be inserted or will replace an existing statement in
the way described. The response of the system in this
case is to display the next statement number.

10-11

Replacing the Header

If you enter [0 J , the system responds with [0 J . You
may now enter any legal header, which will replace the
existing header. Following this, the system displays
[1 J . The entire operation may be done by entering
[0 J and, on the same line, the header.

Deleting a Statement

A statement may be deleted by entering a delta in
brackets followed by the statement number, for
example, [D. 2 J . The response of the system is to
display the next statement number. In the example, the
response will be [3 J . Several statements may be
deleted at a time, as in [D.2 3 5 J.

Adding to a Statement or Header

10-12

One or more characters can be added to the end of
statement N, or statement N can be corrected, by
entering [N!J0 J. In response, the system displays
statement N; the cursor moves to the end of the
statement, and the keyboard unlocks. The statement
may be extended, or modified, by using the normal
revision procedures for entry. In response, the system
displays the next statement number and awaits entry.

The header may be modified in this way by entering
[oDoJ.

Function Display

The canonical representation of a function includes the
header and body displayed as a character matrix. The

'V form permits display of a canonical representation
modified as follows:

1. Labeled lines and comments are offset one space
to the left.

2. Statement numbers in brackets are appended to the
left of the statements.

3. A del character ('V) is prefixed to the header,
separated by one space.

4. A final line is added, consisting of spaces and a del
character, aligned with the del character which
prefixes the header.

Figure 15 shows the canonical representation and
function display of a function for computing the
determinant of a matrix.

10-13

DCR'DET' VDET[DJv

Z+-DET A;B;P;I V Z+DET A;B;P;I

I~O [lJ I~O

Z+-l [2J Z+-l

L:P+-(IA[;IJ hf / IA[;IJ [3J L:P+-(IA[;IJhf /IA[;IJ

-+(P=I)/LL [4J -+(P=I)/LL

A[I ,P; J+-A[P ,I; J [5J A[I,P; J+-A[P,I; J

Z+--Z [6J Z+--Z

LL:Z+-zxB+-A[I;IJ [7J LL:Z+-ZxB+-A[I;IJ

-+(0 1 v.=Z,ltpA)/O [8J -+(0 1 v.=Z,ltpA)/O

A+-l 1 +A-(A[;I};-B)o.xA[I;J [9J A+-l 1 +A-(A[;IJ.;-B)o.xA[I;J

-+L [10J -+L

AEVALUATES A DETERMINANT [llJ AEVALUATES A DETERMINANT

Figure 15. Canonical Representation and Function Display

10-14

While in function definition mode, display of the entire
definition can be requested by responding with [D].
The statements will be listed in numeric order, taking
into account deletions and insertions. Following the last
statement, the next appropriate line number will be
displayed. The definition from statement N onward can
be similarly displayed by entering [ON].

Statement N alone can be displayed by entering [NO];
in this case the statement number N is repeated by the
system after the display of the statement itself.
Statements N to M can be displayed by entering
[NOM] .

Leaving the v Form

The del form may be left by typing a V on a line by
itself, or as the last character on any entry. In
particular, it can follow a request for display or a
function statement, and either can be included in the
same entry that both opens and closes the definition
mode. For example, VDET[OJv displays the function
DET, and VDET[10 J --'rL V modifies the contents of line
10 in the function DET. On leaving the del form, the
statements are reordered according to their statement
numbers, and the statement numbers are replaced by
the integers 1, 2, 3, and so on.

A function definition can be locked by either opening or
closing the definition mode with a del-tilde, ltJ. The use
of this is explained in Chapter 11.

10-15

Notes:

10-16

Chapter 11. Function Execution

Halted Execution 11-4
State Indicator 11-5
State Indicator Damage 11-6

Trace Control 11-7
Stop Control 11-7
Locked Functions 11-8
Recursive Functions 11-9
Console Input and Output 11-10

Evaluated Input 11-12
Character Input 11-13
Interrupting Execution during Input 11-13
NormalOutput 11-13
Bare Output 11-14

11-1

Notes:

11-2

A defined function may be used like a primitive
function, except that it cannot be the argument of a
primitive operator. In particular, a defined function may
be used within its own definition or that of another
defined function. When a function is called, or put into
use, its execution begins with the first statement, and
continues with successive statements, except as this
sequence is altered by branch instructions.

Consider the function OVERTIME.

PAY+R OVERTIME H;TIME
TIME+oiH-40
PAY+Rx1.5xTIME

If this function is invoked by a statement such as
X OVERTIME Y, the effect is to assign to the local name
R the value of X, and to H the value of Y, and then
execute the body of the function OVERTIME. Except
for having a value assigned initially, the argument
variable is treated as any other local variable and, in
particular, may be respecified within the function.

A function like OVERTIME, which produces an
explicit result, may properly be used in compound
expressions. In the OVERTIME function, the last value
received by PAY during execution is the explicit result
of the function. For example:

YTDAT+100 200 150
YTDAT+YTDAT+OT+5 7 6 OVERTIME 35 40 45
OT

o 0 45
YTDAT

100 200 195

PAY, itself, is a local variable and therefore has no
significance after the function is executed:

PAY
VALUE ERROR

PAY
1\

11-3

Defined dyadic functions may be called monadically
(without a left argument). In such a case, the left
argument will not have a value during execution, and its
name class will be O.

Halted Execution

11-4

The execution of a function F may be stopped before
completion in a variety of ways: by an error report, by
an attention signal, or by the stop control, which is
treated below. When this happens, the function is said
to be suspended, and its progress can be resumed by
entering a branch statement from the keyboard.
Whatever the reason for suspension, the name of the
function is displayed, with a statement number beside it.
In the case of an error stop or an interrupt, the
statement itself is also displayed, with an appropriate
message and an indication of the point of interruption.
Unless a specification appears in the statement to the
right of this point, the state of the computation has been
restored to the condition obtaining before the statement
started to execute.

In general, therefore, the displayed number is that of the
statement that should be executed next if the function is
to continue normally. Execution can be resumed at that
point by entering a branch to that number specifically, a
branch to an empty vector, or a branch to OLe.
Entering -+0, or a branch to another number outside the
range of statement numbers, causes an immediate exit
from the function and it is no longer suspended.

In the suspended state, all normal activities are
possible, but names used refer to their local
significance, if any. The system can execute statements
or system commands, resume execution of the function
at an arbitrary point, or enter definition mode to work
on the suspended function, or some other. Pendent
functions can be edited with the del (\j) editor.

State Indicator

Entering the system command)SI causes a display of
the state indicator; a typical display has the following
form:

)SI
* H[7]

G[2]
F[3]

This display indicates that execution was halted before
completing (perhaps before starting) execution of
statement 7 of function H, that the current use of
function H was invoked in statement 2 of function G,
and that the use of function G was in tum invoked in
statement 3 of F. The * appearing to the left of H [7]
indicates that the function H is suspended. The
functions G and F are said to be pendent, because their
execution cannot be restarted directly, but only as a
consequence of function H resuming its course of
execution. The term halted is used to describe a
function that is either pendent or suspended.

Further functions can be invoked in the suspended state.
Thus, if G were now invoked and a further suspension
occurred in statement 5 of Q (Q was invoked in
statement 8 of G), a subsequent display of the state
indicator would appear as follows:

)SI
* Q[S]

G[8]

* H[7]
G[2]
F[3]

Because the line counter, OLe ~ holds the current
statement numbers of functions that are executing, its
value at this point would be the vector S 8 7 2 3.

11-5

The sequence from the last to the preceding suspension
can be cleared by entering a right arrow (-+}. This
behavior is illustrated by continuing the foregoing
example as follows:

)SI
* H[7]

G[2]
F[3]

OLC
723

Repeated use of -+ will clear the state indicator
completely and restore OLc to an empty vector. The
cleared state indicator displays as if a blank line had
been enetered. The same effect can be obtained with
commands)SI CLEAR or)RESET.

State Indicator Damage

11-6

If the name of a function occurs in the state indicator
list, then erasure of the function or replacement of the
function by copying a function with the same name
(even another instance of the same function) will make
it impossible for the original course of execution to be
resumed. In such an event, an SI DAMAGE report is
given. In addition, the APL system will give an SI
DAMAGE report if a halted function is edited to
change the order of its labels or to modify its header.

If an SI DAMAGE report is given for a suspended
function, it will not be possible to resume its execution
by entering a branch statement, but the function can be
invoked again, with or without prior clearance of the
state indicator.

In case of SI DAMAGE, display of the state indicator
will show the damage by giving -1 as the current
statement number of the affected function.

Trace Control

A trace is an automatic display of information
generated by the execution of a function as it
progresses. In a complete trace of a function, the
number of each statement executed is displayed in
brackets, preceded by the function name and followed
by the final value produced by the statement. The trace
of a branch statement shows a branch arrow followed
by the number of the next statement to be executed.
The trace is useful in analyzing the behavior of a
defined function, particularly during its design.

The tracing of a function PROFIT is controlled by the
trace control for PROFIT, denoted by Tl:.PROFIT.1f
one sets Tl:.PROFIT+2 3 5, then statements 2, 3, and 5
will be traced in any later execution of PROFIT.
Tl:.PROFIT+-l0 discontinues tracing of PROFIT. A
complete trace of PROFIT is obtained by
Tl:.PROFIT+1N, where N is the number of statements in
PROFIT. In general, the trace control for any function
is designated by prefixing Tl:. to the function name.

Stop Control

A function can be caused to execute up to a certain
statement and then stop in the suspended state. This is
frequently useful in analyzing a function, for example
by experimenting with local variables or intermediate
results. The stops are set by the stop control in the
same manner as the trace. For example, stops that will
stop execution of the function PROFIT before lines 4
and 12 are executed can be set by entering
Sl:.PROFIT+4 12.

At each stop, the function name and line number are
displayed, as described above for suspended functions.
To go to the next stopping point after the first,
execution must be explicitly restarted by entering an
appropriate branch statement.

11-7

Trace control and stop control can be used in
conjunction. Moreover, either of the controls may be set
within functions. In particular, they may be set by
expressions that initiate tracing or stops as a result of
certain conditions that may develop during function
execution, such as a particular variable taking on a
particular value. They may only be used as the left
argument of specification. They may not be used by
themselves or as the argument to a function.

Locked Functions

11-8

If the symbol Ii} (called del-tilde) is used inste ad of V to
open or close a function definition, the function
becomes locked. A locked function cannot be revised or
displayed in any way. Any associated stop control or
trace control is nullified after the function is locked.

A locked function is treated essentially as a primitive,
and its inner workings are concealed as much as
possible. Execution of a locked function is ended by
any error occurring within it, or by a strong interrupt. If
execution stops, the function is never suspended but is
immediately abandoned. The message displayed for a
stop is DOMAIN ERROR, if an error of any kind
occurred; WORKSPACE FULL and the like, if the
stop resulted from a system limitation, or
INTERRUPT.

Moreover, a locked function is never pendent, and if an
error occurs in any function invoked either directly or
indirectly by a locked function, the execution of the
entire sequence of nested functions is abandoned. If the
outermost locked function was invoked by an unlocked
function, that function will be suspended; if it was
invoked by a keyboard entry, the error message will be
displayed with a copy of that statement.

Similarly, when a weak interrupt is encountered in a
locked function, or in any function that was ultimately
invoked by a locked function, execution continues
normally up to the first interruptable point--either the
next statement in an unlocked function that invoked the
outermost locked function, or the completion of the
keyboard entry that used this locked function. In the
latter case, the weak interrupt has no net effect.

Locked functions may be used to keep a function
definition proprietary, or as part of a security scheme
for protecting other proprietary information. They are
also used to force the kind of behavior just described,
which sometimes simplifies the use of applications.

Recursive Functions

A defined function whose name has not been made
local and is used in the body of the function defmition is
said to be defined recursively. For example, one
definition of the greatest-common-divisor function states
that the greatest common divisor of zero and any
number N is N; for any other pair of numbers it is the
greatest common divisor of the residue of the second
number by the first, and the first number. The words
"greatest common divisor" are used in the definition.
This suggests that a greatest -common-divisor function
GCD R can be written whose canonical representation
is:

DCR'GCDR'
R+A GCDR B
R+B
-+(O=A) /0
R+(AIB)GCDR A

18 GCDR 45
9

This can be compared to the equivalent function GCD
defined iteratively in Chapter 10.

11-9

Executing an erroneously-defined recursive function
will often result in a STACK FULL report. The
non-trivial execution of a properly-defined recursive
function may also have this effect because of the very
deep nesting of function calls that is often required.

Console Input and Output

11-10

In many significant applications, such as text
processing, for example, it is necessary that you supply
information as the execution of the application
programs progresses. It is also often convenient, even in
the use of an isolated function, to supply information in
response to a request, rather than as arguments to the
function as part of the original entry. This is illustrated
by considering the use of the function CI, which
determines the growth of a unit amount invested at
periodic interest rate R for a number of periods T:

DCR'CI'
A+R CI T
A+(1+R)*T

For example, the value of 1000 dollars at 5 percent for
7 years, compounded quarterly, might be found by:

1000 x (.05+4) CI7x4
1415.992304

The casual user of such a function might, however, find
it difficult to remember which argument of CI is which,
how to adjust the rate and period stated in years for the
frequency of compounding, and whether the interest rate
is to be entered as the actual rate (for example, 0.05) or
as a percentage (for example, 5). An exchange of the
following form might be more suitable:

INVEST
ENTER CAPITAL AMOUNT IN DOLLARS
D:

1000
ENTER NUMBER OF TIMES COMPOUNDED IN ONE YEAR
D:

4
ENTER ANNUAL INTEREST RATE IN PERCENT
D:

5
ENTER PERIOD IN YEARS
D:

7
VALUE IS 1415.992304

Each of the entries (1000, 4, 5, and 7) occurring in such
an exchange must be accepted, not as an ordinary entry
(which would only evoke the response 1000, etc.), but
as data to be used within the function INVEST.
Facilities for this are provided in two ways-evaluated
input and character input. A definition of the function
INVEST, which uses evaluated input, is as follows:

DCR'INVEST'
INVEST;C;R;T;F
'ENTER CAPITAL AMOUNT IN DOLLARS'
C+{]
'ENTER NUMBER OF TIMES COMPOUNDED IN ONE YEAR'
F+{]
'ENTER ANNUAL INTEREST RATE IN PERCENT'
R+{]+Fx100
'ENTER PERIOD IN YEARS'
T+FxD
'VALUE IS ',wCxR CI T

11-11

Evaluated Input

11-12

The quad symbol (D) appearing anywhere other than
immediately to the left of a specification arrow signifies
a request for keyboard input as follows: the two
symbols D: are displayed, and the keyboard is unlocked
on the next line, indented from the left margin. Any
valid expression entered at this point is evaluated, and
the result substituted for the quad. Suppose F is a
function whose definition includes a quad symbol:

DCR'F'
Z+F
Z+4xD

F
D:

3+2
20

An invalid entry in response to a request for quad input
causes an appropriate error report, after which input is
again awaited. For example, entering an expression that
has no result produces a value error. Function definition
mode (the editing or display of functions, or creation of
new functions) is not permitted during D entry. In
general, a system command entered during D input is
executed, but the system's response to the command is
not treated as a response to D . After execution of a
command, valid input is again awaited (unless the
command was one that replaced the contents of the
active workspace). An empty input (one containing
nothing other than zero or more spaces) is rejected and
the system again awaits input.

Character Input

The quote-quad symbol ~ (that is, a quad overstruck
with a quote) appearing anywhere other than
immediately to the left of a specification arrow is a
request for character input; entry is permitted at the left
margin and data entered is accepted as characters. For
example:

x+{!]
CAN'T

X
CAN'T

(Quote-quad input, not indented)

Interrupting Execution During Input

The response -+ entered in response to 0 abandons
execution of the function and any pendent functions
leading up to it.

A request for ~ input can be interrupted by pressing the
Esc key.

Normal Output

The quad symbol appearing immediately to the left of a
specification arrow indicates that the value of the
expression to the right of the arrow is to be displayed in
the standard format (subject to the printing precision
[JPp and the printing width [JPW). Hence, [}-X is
equivalent to the statement X. The longer form [}+-X is
useful when employing multiple specification. For
example, [}-Q+X* 2 assigns to Q the value X*2, then
prints the value of X*2.

The maximum length of a line or normal display
(measured in characters) is called the printing width
and is given by the value of the system variable OPW . A
display whose lines exceed the printing width is ended
at or before the maximum length, and continued on
subsequent lines.

11-13

Bare Output

11-14

Normal output includes a concluding new-line signal so
that the succeeding display (either input or output) will
begin at a standard position on the following line. Bare
output, denoted by expressions of the form [!}+-X, does
not include this signal if it is followed either by another
bare output or by character input (of the form X+[!]).

Character input following a bare output is treated as
though you had spaced over to the position occupied at
the conclusion of the bare output, so that the characters
received in response will be prefixed by the characters
displayed in the bare output. This allows for the
possibility that, after the keyboard is unlocked, you
backspace into the area occupied by the preceding
output. The following function prompts you with
whatever message is supplied as its argument, and
evaluates the response:

OCR 'PROMPT'
Z+PROMPT MSG
[!}+-MSG
Z+{!]

Using such a function, the expression

PROMPT 'ENTER CAPITAL: '

would have the following effect:

displayed by system:
ENTER CAPITAL: 1000

entered by user

The value of Z is the string of characters contained in
MSG, followed by the characters you entered, not
including explicitly-entered trailing blanks.

The new-line signals that would be supplied by the
system to break lines that exceed the printing width are
not supplied with bare output. However, because an
expression of the form [!}+-X entered directly from the
keyboard (rather than being executed as part of a
defined function) must necessarily be followed by
another keyboard entry, the output it causes is
concluded with a new-line signal.

11-15

Notes:

11-16

Chapter 12. System Commands

Active Workspace - Action Commands 12-7
Active Workspace - Inquiry Commands 12-10
Workspace Storage and Retrieval -
Action Commands 12-12

Libraries of Saved W orkspaces 12-12
Workspace Names 12-12

Workspace Storage and Retrieval -
Inquiry Commands 12-16

Sign-Off 12-1 7

12-1

Notes:

12-2

An APL system recognizes two broad classes of
instructions - statements and system commands.
System commands control the start and end of a work
session, saving and reactivating copies of a workspace,
and transferring data from one workspace to another.

System commands can be invoked only by individual
entries from the keyboard and cannot be executed
dynamically as part of a defined function. They are
prefixed by a right (closing) parenthesis.

The system commands are summarized in Figure 16,
and will be discussed under three main headings:

1. The active workspace.
a. Action.
b. Inquiry.

2. Workspace storage and retrieval.
a. Action.
b. Inquiry.

3. Access to the system.

12-3

Normal

Form Purpose Response

Active Workspace - Action Commands

) CLEAR Activate a clear WS CLEAR WS
) SYMBOLS pi Set size of symbol WAS number

table CLEAR WS
)STACK

,
WAS number pi Set size of

execution stack CLEAR WS
) ERASE nms Erase objects from

active WS
)IN wsid Copy all objects SA VED time date

from WS to active
WS

)IN wsid nms Copy named objects SA VED time date
from WS to active
WS

)SI CLEAR Clear the state
indicator

) RESET Clear the state
indicator

Active Workspace - I nquiry Commands

) SYMBOLS Give size of symbol number number
table and available
space in bytes

)STACK Give size of number
execution stack

)FNS List defined (names)
functions

)VARS List variables (names)

)SI List halted state indicator
functions

)SINL List halted state indicator
functions and and names
names

Workspace Storage and Retrieval - Action Commands

)WSID wsid

)SAVE wsid

)SAVE

)LOAD wsid

Change ID of
active
workspace

Replace named WS
with copy of
active WS

Place copy of
active workspace
in library

Activate copy of
named workspace

WAS wsid

time date

time date

time date

Figure 16 (Part 1 of 2). System Commands

12-4

Trouble
Reports

4

4·

4

4,6,8

1,2,4,9,10,12

1,2,4,5,9,10,12

4

4

4

4

4

4

4

4

4

3,4,7,12

3,4,7,12

1,4, 11

Form

)oUT wsid

Purpose

Generate a file in
transfer form with
all objects in the
active workspace

)oUT wsid nms Generate a file in

) DROP

transfer form
with the objects
in nms

Drop workspace or
file from library

Normal
Response

time date

time date

Workspace Storage and Retrieval - Inquiry Commands

)WSID

) LIB

Give identification
of active workspace

List workspaces or
files in desired
library

Access to the System

) OFF End use of APL

Notes:

1. Items in parentheses are optional.

2. Abbreviations and Meanings:

• WS: workspace

• wsid: a workspace name

possibly preceded by a library number

• pi: positive integer

• nms: list of names

(number) name

(names)

3. The commands,)ERASE ,)FNS ,and) VARS have variants

that are system functions.

Figure 16 (Part 2 of 2). System Commands

2,3,4

Trouble
Reports

2,3,4,5

1,4

4

4, 12

4

A system command that is not recognizable, or is
improperly formed, is rejected with the report
COMMAND ERROR. Certain commands may also
result in more specific trouble reports; these are
discussed in the appropriate context and are
summarized in Figure 17.

Once the execution of a system command has started, it
cannot be interrupted, although display of the system's
response to the command can be suppressed by an
interrupt signal.

12-5

12-6

In the text that follows, each system command is shown
in a sample form. The meaning of the symbols used in
the sample command forms is shown in Figure 18. In
use, the appropriate names or numbers should, of
course, be substituted.

A
L1BNO

WSNAME
FILENAME
EXT
NAME

OBJ

()

<>

A letter of the alphabet
A library number (that is, the number of a disk drive).
If this field is not given, the default drive is assumed.
A workspace name
A DOS file name
A DOS file extension
A string formed by numbers and uppercase letters,
starting with a letter
The name of an object within a workspace (that is, a
function or a variable)
Items enclosed in parentheses may, in some cases,
be omitted.
Items enclosed in angles may, in some cases, be
omitted; when items are omitted, the system supplies
default values.

Figure 18. Symbols Used in Command Definitions

Active Workspace - Action Commands

The following system commands affect or modify the
active workspace, the environment in which
computation takes place and, in which, names have
meaning. In particular, the active workspace contains
the settings of the state indicator (discussed in Chapter
11) and other elements of the computing environment,
mediated by several of the system variables (discussed
in Chapter 8, "System Functions and System
Variables").

) CLEAR

This command is used to make a fresh start, discarding
the contents of the active workspace, and resetting the
environment to standard initial values (see Figure 19).
At sign-on, you receive a clear workspace characterized
by these same initial values.

12-7

Symbol table size

Horizontal tabs, OHT
Index origin, DIO
Latent expression, OLX
Line counter, OLC
State indicator

Workspace name

Printing precision, OFF
Printing width, OFW
Comparison tolerance, OCT
Random link, ORL
Format control, OFC
Work area available, OWA

2000 bytes

Empty

1

Empty

Empty

Cleared

None (CLEAR WS)

10

79
1E-13

16807

• ~ *0_
Depends on PC memory size

Figure 19. Environment within a Clear Workspace

12-8

)SYMBOLS N OR)STACK N

Sets the size of the symbol table or the execution stack,
in bytes. New values of the maximum may be set only
in a clear workspace. An attempt to change the
maximum once the workspace is no longer clear, or to
set it outside the range permitted by the system, is
rejected with the report COMMAND ERROR. Valid
use of the command results in a report showing the
former limit. .

)ERASE (OBJ1 OBJ2 OBJ3 •••)

The objects named are erased from the workspace;
shared variable offers with respect to any of them are
retracted.

If a halted function is erased, the report SI DAMAGE
is displayed. It is not possible to resume the execution
of an erased function, and you should enter one or more
right arrows to clear the state indicator of indications of
damage.

If an object named in the command cannot be found,
the report NOT ERASED is displayed, followed by a
list of the objects not found.

)IN <LIBNO> WSNAME <OBJl (OBJ2 ... »

The indicated objects or system variables are copied
from the indicated transfer file (WSNAME) into the
active workspace. The system reports the date and time
at which the transfer file was last saved.

If the list of objects to be copied is omitted, all objects
and system variables are copied from the transfer file.

If the indicated transfer file is unavailable for some
reason, copying cannot take place. In this case the
message NOT FOUND will be reported. If any objects
are specifically requested but not found in the transfer
file, then a list of such names is reported, followed by
NOT FOUND.

When an object to be copied has the same name as a
global object in the active workspace, the copied object
replaces it. If there was a shared variable offer with
respect to the variable thus replaced, the offer is
retracted. This command can only be executed if no
function is pending in the state indicator. The message
NOT WITH UNCLEAR SI will appear if that is not
the case, and the command is abandoned.

12-9

The following trouble reports may arise during copying:

• WORKSPACE FULL

There is not enough space to accommodate all the
material to be copied. However, those objects
copied before space was exhausted remain in the
active workspace.

• SYMBOL TABLE FULL

New names occurring in the copied material
exhaust the capacity of the symbol table. Those
objects copied before the symbol table was
exhausted remain in the active workspace.

• I/O ERROR

- The door of the drive you want to access is
open, or

- The inserted diskette is not the correct one.

)RESET 0 r)SI CLEAR

The state indicator is cleared.

Active Workspace-Inquiry Commands

The following commands report aspects of the
workspace environment, but produce no change in it.

) SYMBOLS

12-10

Gives two numbers: the first one shows the current size
of the symbol table, in bytes; the second one, shows the
current size of the available space in the symbol table,
in bytes.

)8TACK

)FNS

Gives the current size of the execution stack, in bytes.

Reports a list of the functions in the active workspace,
in ONL order.

)VARS

)81

Reports a list of the variables in the active workspace,
in ONL order.

Displays the state indicator, showing the status of
halted functions, with the most-recently-halted first. The
list shows the name of the function and the number of
the statement at which work is halted. The actions that
you can take with respect to a halted function are
described in "Function Execution."

Suspended functions are marked in the state indicator
by an asterisk, while pendent functions appear in the
state indicator without an asterisk. Damage to the state
indicator is shown by a statement number of - 1 beside
the name of the affected function.

)8INL

Displays the state indicator in the same way as)SI , but
in addition, with each function listed, lists names that
are local to its execution.

12-11

Workspace Storage and Retrieval
Action Commands

You may request that a duplicate of the currently active
workspace be saved for later use. When a duplicate of a
saved workspace is reactivated later, the entire
environment of computation is restored, except that
variables that were shared in the active workspace are
not automatically shared again when the workspace is
reactivated.

Libraries of Saved Workspaces

Each disk drive in the IBM Personal Computer is called
a library (see Chapter 1). Library identifications are
usually consecutive numbers. You must be careful not
to use numbers corresponding to nonexistent drives,
because the action of the system is unpredictable.
(U sually it will try to perform the requested operation in
one of the existing drives.)

Workspace Names

A saved workspace must be named. The name of a
workspace may duplicate a name used for an APL
object within the workspace.

Workspace names are subject to DOS file-naming
restrictions, and may be composed of up to eight
alphabetic and numeric characters, but not spaces or
special symbols; workspace names must begin with an
alphabetic character.

)WSID <LIBNO> WSNAME

Assigns th~ name indicated and, optionally, the library
number indicated, to the active workspace.

Setting of the active workspace's identification is
acknowledged by the report WAS • •• followed by the
former name.

)SA VE < <LIBNO> WSNAME>

A duplicate of the active workspace is saved
(optionally, in the indicated library) under the indicated
name. If the workspace name is omitted, it is supplied
from the workspace identification. After saving, the
active workspace has the same identification (including
library number and name) as the saved workspace.

Although saving does not affect the state of sharing in
the active workspace, current values of the shared
variables are saved in the stored copy.

Saving is acknowledged by a report showing the date
and time at which the workspace was saved.

The command to save the active workspace may be
rejected, with trouble reports as follows:

• NOT SAVED

Saving is not permitted when the name given in the
command matches the identification of an existing
saved workspace but does not match the
identification of the active workspace. This
restriction prevents you from accidently overwriting
one workspace with another.

This message may also appear if the workspace has
no name (is a CLEAR WS) and the)SA VE
command does not assign a new name to it.

• LIBRARY FULL

There is not enough space on the disk to
accommodate the workspace.

• I/O ERROR

The door of the drive you want to access is
open, or

The inserted diskette is not the correct one or is
write-protected.

12-13

)OUT <LIBNO> WSNAME <OBJ1 (OBJ2 ••• »

12-14

This command writes the transfer form of objects in the
active workspace to a transfer file. The optional list
specifies what objects to transfer. The default is to
transfer all the objects and system variables in the
workspace.

This command may be rejected with trouble reports as
follows:

• NOT FOUND

If any objects are specifically requested but not
found in the active workspace, a list of such names
is reported followed by NOT FOUND.

• LIBRARY FULL

The LIBRARY FULL error message may be
reported if the selected disk does not have enough
space for the transfer file.

• I/O ERROR

- The door of the drive you want to access is
open, or

- The inserted diskette is not the correct one or is
write-protected.

"00AD <LIBNO> WSNAME

A duplicate of the indicated workspace (including its
entire computing environment) becomes your active
workspace.

Shared variable offers in the former active workspace
are retracted. Following a successful)LOAD, the system
reports the date and time at which the loaded workspace
was last saved. The system then immediately executes
the latent expression (OLX).

Invalid requests to load a workspace may result in the
reports:

• NOT FOUND

If the indicated workspace cannot be found on the
selected drive.

Note: A file that has not been created by a) SA VE
command cannot be)LOADed, even though its
extension is .APL.

• I/O ERROR

- The door of the drive you want to access is
open, or

The inserted diskette is not the correct one.

)DROP <LIBNO> FILENAME <.EXT>

The named file is removed from the indicated library. If
no extension is given, the default is .APL. Dropping a
workspace has no effect on the active workspace.

You may get the following trouble reports:

• NOT FOUND

If the workspace you want to drop does not exist.

• I/O ERROR

The door of the drive you want to acces_s is
open, or

The inserted diskette is not the correct one or is
write-protected.

12-15

Workspace Storage and Retrieval
Inquiry Commands

)WSID

Reports the identification of the active workspace,
showing the library number if explicitly stated, and the
workspace name.

)LIB <LIBNO> <NAME> <.EXT>

12-16

Displays those files, the names of which start with
NAME, and that have the given extension .EXT in the
indicated drive LIBNO. If no extension is given, all
files starting with NAME are listed. If no name is
given, all files with the given extension are listed.

Examples:

) LIB 1 Lists all files in the drive 1

) LIB 1 APL Lists all files with name starting with
"APL"

) LIB 1 .APL Lists all saved workspaces

) LIB 1 .AIO Lists all works paces in transfer form

) LIB 1 .EXE Lists all EXE files in the drive

) LIB 1 . Lists all files with a blank extension

)LIB AP • EXE Lists all files on the default drive with
names starting with "AP" and having an
extension of EXE

You will get the error message I/O ERROR if you try to
access a drive that is not currently available.

Sign-Off

) OFF

Gets out of APL and gives control back to the Disk
Operating System. The active workspace is lost.

12-17

Notes:

12-18

Appendix A. Alt Codes and
Associated Characters

The following table lists all the Alt codes (in decimal)
and the characters that they produce, under the APL
mapping of the keyboard. (Alt codes and characters
produced for the National keyboard mapping are given
in Appendix C.)

000 001 002 003 004

EJ ~ 00 [!] [!]
005 006 007 008 009

[±J [!] B BACK B SPACE

010 011 012 013 014

@] @] [2J CARR. [IJ FEED RETURN

015 016 017 018 019

D B EJ IT] DIJ
020 021 022 023 024

[TI] rn EJ [I] LJ
025 026 027 028 029

[!] [IJ I ESCAPE I ~ EJ
Figure 20 (Part 1 of 6). Alt Codes and Associated Characters

A-I

030 031 032 033 034

~ ~ I SPACE I LJ []
035 036 037 038 039

EJ ~ EJ 0 OJ
040 041 042 043 044

GJ [J 0 EJ D
045 046 047 048 049

[±] D [2] [QJ IT]
050 051 052 053 054

rn IT] @] rn []J
055 056 057 058 059

ITJ [[J W [] OJ
060 061 062 063 064

IT] 0 [J [SJ LJ
065 066 067 068 069

EJ 0 [OJ [g [§J
070 071 072 073 074

[:J ~ 0 QJ ~
075 076 077 078 079

D [QJ CJ [2J [QJ
Figure 20 (Part 2 of 6). Alt Codes and Associated Characters

A-2

080 081 082 083 084

0 IT] 0 ca EJ
085 086 087 088 089

OJ [Q] B 0 rn
090 091 092 093 094

0 EJ 0 [[] ~
095 096 097 098 099

EJ 0 ~ [ID [g
100 101 102 103 104

~ ffiJ [EJ [Q] ffiJ
105 106 107 108 109

[IJ [IJ 00 [bJ [MJ
110 111 112 113 114

[RJ [QJ 00 [QJ [ID
115 116 117 118 119

[]] IT] [!I] [YJ ~
120 121 122 123 124

[K] [YJ ~ EJ 5J
125 126 127 128 129

0 IT] ~ NAT. [IJ lliJ
Figure 20 (Part 3 of 6). Alt Codes and Associated Characters

A-3

130

[IJ
135

[IJ
140

[IJ
145

[EJ
150

~
155

lliJ
160

[I]
165

o
170

§]
175

IT]

131

[]J
136

@]
141

W
146

[I]
151

o
156

IT]
161

rn
166

[£J
171

ffiJ
176

DOTS
ON 1/4

132

[[]
137

~
142

@J
147

[KJ
152

[ill
157

162

[ill
167

G
172

~
177

DOTS
ON 1/2

133

W
138

143

OJ
148

[ill
153

rn
158

OJ
163

[ill
168

[EJ
173

OJ
178

DOTS
ON 3/4

Figure 20 (Part 4 of 6). Alt Codes and Associated Characters

A-4

134

[I]
139

o
144

~
149

lliJ
154

[j]
159

6J
164

[!J
169

~
174

OJ
179

IT]

180 181 182 183 184

BJ BJ BIJ 5iJ EiJ
185 186 187 188 189

BIJ [[] 6LJ ~ E!J
190 191 192 193 194

E!J 5J [g E9 Ed
195 196 197 198 199

rn B EB rn DB
200 201 202 203 204

Qg rn eg Eia DB
205 206 207 208 209

B BE E§j eg ffi
210 211 212 213 214

5d ~ [g ca Cia
215 216 217 218 219

BB EE EJ Cd
220 221 222 223 224 .- IJ [J ~ Ipts I
225 226 227 228 229

~ [IJ [ill [ill [ill
Figure 20 (Part 5 of 6). Alt Codes and Associated Characters

A-5

230 231 232 233 234

[ill @] [IJ []] W
235 236 237 238 239

ITJ IT] [IJ [XJ [X]
240 241 242 243 244

IT] ~ rn rn ~
245 246 247 248 249

~ [§ @] ~ G
250 251 252 253 254

[0 00 []] [NJ W
255

[R]

Figure 20 (Part 6 of 6). Alt Codes and Associated Characters

A-6

Appendix B. Printer Control Codes

The following is a subset of the printer control codes.

Code Printer Function

Bell (OAV[232]) Sounds the printer's buzzer

~ (ALT 014) Sets double width on * (ALT 247) Sets compressed mode on

t (ALT 018) Turns off compressed mode

9T (ALT 020) Turns off double width

+--1

+--0

+-0

+-1

+-2

Sets underline on

Turns off underline

Sets paper feeding to 1/8 inch

Sets paper feeding to 7/72 inch

Sets paper feeding to 1/6 inch

+- 3n Sets paper feeding to m/216 inch, where n is any
ASCII character and m is its equivalent decimal
ALT code

+-F

+- SI

+- SO

+-T

Sets emphasized on

Turns off emphasized

Sets double strike on

Turns off double strike

Sets subscript mode on

Sets superscript mode on

Turns off subscript/superscript mode

B-1

Notes:

B-2

Appendix C. Internal Representation
of Displayed Characters

The National keyboard character set for the IBM
Personal Computer has been modified to include some
APL characters. The following table contains all the Alt
codes (in decimal and hexa-decimal) and the characters
that they produce, under the National mapping of the
keyboard. (Alt codes and characters produced by the
APL keyboard mapping are given in Appendix A.)

Note: Some alternate codes are reserved for
system control functions, and will not generate a
displayable character. The reserved codes are:

Alt Code Control Function

007 Beep

008 Backspace

009 Tab

010 Line Feed

013 Carriage Return

027 Escape (Interrupt)

127 National to APL

C-l

DECIMAL , 0 16 32 48 64 80 96 112 VALUE

HEXA-

5 6 7 • DECIMAL 0 1 2 3 4
VALUE

0 0 NULL ~ SPACE 0 @ p ,
P

1 1 c;;) , 1 A Q a q
•

2 2 • t II 2 B R b r
3 3 , , , =#= 3 C S c s ••

4 4 • crT $ 4 D T d t
5 5 4- § % 5 E U e u
6 6 • - & 6 F V f v
7 7 • ~

,
7 G W g W

8 8 r (8 H X h x
9 9 0 !) 9 I Y •

1 y
J Z

•
10 A *

• J z ----. •

11 B (j + • K [k { ~ ,
12 C Q L < L " 1 I ,

I

13 D) ~ - - M] m }
14 E ~ A • > N /\ n ~
15 F -¢- T / ? 0 0 ~ • -

Internal Representation of Displayed Characters

C-2

DECIMAL It 128 144 160 176 192 208 224 240 VALUE

IHEXA-

8 9 A B D E F • Im:r.IM41 C
IVALUE

0 0 ct 0 /' DOTS 11 ex: f a ON 1/4

1 1 · . [!] ~ DOTS {J \ u 1 ON 1/2

2 2 /'" fE /'" DOTS C > e 0 ON 3/4 II -
3 3 /\ /\ /" lL < a 0 u I-- ::> -
4 4 .. •• -., b R ;t a 0 n ~

.......,
5 5 N = F tAl X a 0
6 6 0 1\ a == P • a u ..-- • -

7 7 ~
.......... 0 ¥ 11 u 11 -

8 /\
T • cp 0 8 e ~ =,
• • d 9 9 • • 0 - e w e r
• • IL 10 A U ---, ~ 0 ¥ e

11 B · . ¢ ~ v ~ 1 Fi I--

12 C A £ U bJ 1 t 1
13 D

.........

..L • U (S) -
1

,
. .

bd u E 14 E A Pts <I>
••

n
15 F A I .t n FORM

11 FEED

Internal Representation of Displayed Characters

C-3

Notes:

C-4

INDEX

A
access control 4-4, 9-7
access control matrix
(ACM) 9-8

access control vector 4-4,
9-10

access sequence
disciplines 9-4

access state of shared
variable 4-4, 9-8

account information 8-14
active workspace 2-16, 2-1 7
6-14, 12-7 '

copying to 12-9
inquiry commands 12-10
list of functions in 12-11
list of variables in 12-11
settings of state
indicator 12-11

transfer form of objects
in 12-14

activities in suspended
state 11-4

adding a statement 10-11
adding characters 1-3 1
adding to a header 10-12
adding to a statement 10-12
Alt codes 1-21
AL register 3-7
alphabetic character
set 1-17,6-7

Alt key 1-20
alternating product 7-18
alternating sum 7-18
ambi-valent functions 10-6
AND, boolean function 7-8

APL
applications 1-3
as a computing system 1-3
character set 1-1 7, 6-7
classes of instructions 12-3

statements 6-3
system commands 12-3

command format 1-16
data used in 6-10
data variable,

structure of 4-9
environment 6-15, 12-8
examples of use 5-3
fundamentals 6-3
header 3-23
Input Editor 1-28
internal code 3-23
library numbers 1-26
loading 3-3
major characteristics
of 5-5

objects 3-23
variables 4-9

application workspaces 2-3
AP80 printer auxiliary
processor 3-4

AP 1 00 auxiliary
processor 3-6

AP205 full-screen auxiliary
processor 3-10

AP210 file auxiliary
processor 3-21

AP232 asynchronous
communications auxiliary
processor 3-28

AP440 auxiliary
processor 3-35

X-I

arguments 10-5
boolean 7-6, 7-8
character 7-47
functions 6-8
left and right 6-9, 7-30
matrix 7-26, 7-31
rank of 7-31
scalar 7-31
shape 7-31
vector 7-30

arithmetic symbols 5-6, 6-7
arrays

conformable 7-36, 7-41
determining shape of 6-10
elements 6-10
empty 6-11,7-33
indexing of 7 -4 2
multi-dimensional 6-10
number of dimensions 6-10
selecting elements 6-11,

7-42
shape 6-10
sizeof 7-31
structure of 7-31
vector 6-10

ASCII codes 1-21,3-23
assignment statement 6-3
atomic vector 8-14, 8-17
attention signal 11-4
attributes for Monochrome
Display 3-13

auxiliary files on host 2-43
auxiliary processors 1-16

AP80 3-4
API00 3-6
AP205 3-10
AP210 3-21
AP232 3-28
AP440 3-35

axis indexing 7-42
axis operator 7 -20
axis, permutation of 7-38

X-2

B
backing up diskette

with one drive 1-9
with two drives 1-11

Backspace key 1-20
bareoutput 11-14
baud rate 2-26
bilateral sharing of
variables 9-3

binomial
domain of 7-16
function 7-16

BIOS 3-6
BIOS/DOS interrupt
service programs 3-7

blank character 6-8
boolean functions 7-8
boolean and relational

symbols 5-6
branch 6-3, 10-8
branch statement 10-8,

11-4
branch symbol 10-8
buffer, shared variable 4-5

c
calculation, isolated 5-4
cancelling a line 1-32
canonical representation 8-5,

10-3
Caps Lock key 1-20
catenate function 7-35
changing display modes 1-25
changing incorrect
characters 1-31

changing keyboard between
APL and National character
set 1-22

character input 11-13

character representation of
function 10-3

character set
APL 1-17, 6-7
classes 1-17, 6-7
National 1-18

circular functions 7-14
classes of instructions

statennents 6-3
systenn connnnands 12-3

clear workspace
connnnand 12-7
environnnent 12-8

clearing the screen 1-1 7
closing a file 2-14
collating sequence 7-47
color/graphics 1-7
Color/Graphics Adapter
nnode 1-25

COMMAND ERROR
report 12-5, 12-8

connnnands 6-14
connnnent synnbol 7-57, 10-10
connnnunication with
VM/370 2-23

connparison tolerance 7-9,
8-14

connpress function 7-41
configuration nnininnunn
requirennents 1-7

confornnable arrays 7-36,
7-41

conjugate function 7 -7
connection with host 2-32
constants 6-13
contents of nnachine
registers 3-7

control block, shared
variable 4-5

control characters 7-64
controlled decorators 7-64
conventional decorators 7 -64
conventional notation 6-13

converting nunneric data 4-10
copying defined
function 10-3

copying to active
workspace 12-9

coupling of nanne 9-5
coupling of variables 3-21
Ctrl key 1-20
cursor 1-29
cyclic rotation 7-33

D
data 6-10
data segnnent register 4-5
data transfornnation 7-56
deal function 7-50
decode function 7 -54
decorators 7 -64
defined function 5-3, 10-3

annbi-valent 10-6
execution 11-3
full-screen editor 2-5
nannes 6-14

definition nnode 10-10
DEFN error nnessage 6-4
Del key 1-30
delay function 8-6
delete control

characters 2-30
deleting a statennent 10-12
deleting characters 1-30
disk(ette) drives 1-26
display nnodes 1-25
DOMAIN error nnessage 6-4
donnino function 7-50
DOS file systenn 3-21
double field 7-68
down arrow key 1-19
downloading files 2-36
drop function 7-40

X-3

dropping a workspace 12-15
dyadic format 1-16, 7-59

numeric 7-60
picture 7 -64

dyadic function 6-8, 10-5

E
EDIT workspace 2-5
editing functions 10-10
element, identity 7-6
elements of screen field 3-12
embedded decorators 7-64
empty array 6-11, 7-33
empty input 11-12
empty vector 6-11,7-33
encode function 7-54
End key 1-29
end of line character 2-31
Enter key 1-19
entering a line on the
screen 1-28,1-31

environment in clear
workspace 12-8

erasing characters 1-31
error messages

DEFN 6-4
DOMAIN 6-4
D--IMPLICIT 6-4
INDEX 6-4
INTERRUPT 6-4
LENGTH 6-5
RANK 6-5
SI DAMAGE 6-5
STACK FULL 6-5
SYMBOL TABLE
FULL 6-5

SYNTAX 6-5
SYSTEM 6-6
SYSTEM LIMIT 6-6
VA,-,UE 6-6
WORKSPACE
FULL 6-6

X-4

error report 6-4, 11-4
error stop 11-4
error trap 8-6
Esc key 1-19, 1-30, 1-32
establishing functions 10-3
evaluated input 11-12
EXAPL 1-16, 3-3
exclusive-OR 7-8
execute function 7-57
execution

mode 10-3
of defined function 11-3
order of 6-9

expand 7-41
exponential function 7-12
expunge system function 8-7

F
factorial function 7 -16
file control functions 2-9
file transfer functions 2-34
FILE workspace 2-8
fixed-length disk files 3-21
floor function 7-11
FONTS function 2-4
format control 8-18
format, dyadic

numeric 7-60
picture 7 -64

format, scaled 6-13,
7-68

format of APL
command 1-16

formatting screen 3-12,
3-14

forms of headers 10-5
forms of numbers

conventional 6-13
scaled 6-13

function
ambi-valent 10-6
boolean 7-8
catenate 7-35
character
representation 10-3

circular 7-13
deal 7-50
decode 7-54
defined 10-3
domino 7-50
drop 7-40
dyadic 6-9, 10-5, 11-4
encode 7-54
establishing 10-3
execute 7-57
executing 11-3
exponential 7 -12
factorial 7-16
floor 6-5
format 7-58
general logarithm 7 -12
grade down 7-46
grade up 7-46
halted 11-4
hyperbolic 7-14
index of 7-45
inverse 7-50
membership 7-45
minus 7-7
mixed 7-26
monadic 6-9
names of 6-14
natural logarithm 7-13
negative 7-7
niladic 6-9
pendent 11-4, 12-11
pendent execution 11-4
plus 7-7
power 7-12
primitive 11-2
pythagorean 7-14

reciprocal 7-7
relational 7-8
reshape 6-31
residue 7-7
reverse 7-33
revising 10-10
roll 7-11
rotate 7-33
shape 7-31
signum 7-7
stopping execution 11-4
structural 7-31
suspended execution 11-4
system 8-3
take 7-40
times 7-7
unlocked defined 8-5,

10-15, 11-8
valence of 10-5

function body 10-3
function definition
mode 10-10

function display 10-13
function editing 10-10
function header 10-5
function keys 1-18,

1-25,3-19
functions for manipulating
DOS files 2-9

G
general logarithm

function 7-12
general symbols 5-6, 6-7
generating selector
information 7-44

global names 10-7
global shared variable 9-3
grade down function 7-46
grade up function 7-46

X-5

H
halted execution 11-4
halting printing
temporarily 1-22

header forms 10-5
hexadecimal patches 2.:.15
horizontal tabs 8-19
hyperbolic functions 7-14

I
I/O ERROR report 12-6
identity elements 7-6
IMPLICIT error 8-14
inactive workspace 6-14
INDEX error message 6-4
index generator 7 -45
index of function 7-45
index origin 6-12 8-14
indexing 6-11, 7-45

array elements 6-12
one-origin 6-12, 8-15
zero-origin 6-12 8-15

inner product operator 7 -22
input editor

special keys 1-29
input state 1-31
inquiry commands . '
actIve workspace 12-10

Ins key 1-29
Insert mode 1-29
inserting a statement 10-11
inserting characters 1-31
installing APL on fixed
disk 1-14

interactive use of screen 3-1 7
internal APL code 3-23
interpretations of file
data 3-23

X-6

interrupt 1-19
INTERRUPT message 1-30,
6-4, 11-8

interrupt number 3-7
it~.terrupting execution during
Input 11-13

inverse function 7-50
inverse transfer form 8-11
isolated calculation 5-4

K
keyboard 1-18, 1-24
key combinations 1-22

L
labels 10-9
laminate function 7-36
latent expression 8-16
left argument 6-9
left arrow key 1-29
left identity elements 7-6
LENGTH error message 6-5
LIBRARY FULL
report 12-6

library identification 1-26,
12-16

line counter 8-14
line editor 1-31
line parameter
definition 2-24

line signal 11-14
loading APL 3-3
local names 10-7
local shared variable 9-3
locked function 11-8
logarithm functions 7-13

M
machine flags 3-8
machine language
program 8-10

machine registers 3-7
magnitude function 7 -7
making corrections to
current line 1-31

managing resources 8-3
matrix

access control 9-8
axes 6-10
character 10-3

matrix divide 7-50
matrix inverse 7-50
matrix product 7-24
matrix transposition 7-38
maximum function 7-10
membership function 7-45
messages, error 6-4
migration transfer form
vector 8-12

minimum function 7-10
minus function 7 -7
mixed functions 7-26
monadic function 6-9, 10-5
Monochrome Display
attributes 3-13

Monochrome Display
mode 1-25

multi-dimensional arrays 6-10
MUSIC workspace 2-57

N
name assignment
statement 6-3

name class 8-8
name coupling 9-5

names
as label 10-9
defined functions 6-14
localization 10-7
system functions 8-3
system variables 8-3
variable 6-14
workspace 6-14

NAND, boolean
function 7 -8

National character set 1-18
natural logarithm
function 7-13

negative function 7-7
negative numbers 6-13
niladic function 6-9
non-integral index 7-36
numeric constant 6-13
NOR, boolean function 7-8
normal output 11-13
NOT ERASED report 12-6
NOT FOUND report 12-6,
NOT SAVED trouble
report 12-6

NOT WITH UNCLEAR SI
message 12-6

NOT function 7-8
Num Lock 1-21
numeric character set 1-17,
6-7

numeric constant 6-13
numeric format 7-60
numeric functions 7-50
numeric keypad 1-18, 1-21

o
offers to share 9-5
opening a file 2-11
operators 7-1 7
options in APL

command 1-16

X-7

OR, boolean function 7-8
order of execution 7-12
outer product 5-6, 7-24
overbar 6-13

p

parentheses 6-9
parity 2-27
pause state 1-22
pendent function 11-4, 12-11
permutation of axes 7-38
picture format 7-64,8-18
playing music 2-57
plus function 7 -7
power function 7-12
precision indicator 7-60
prepared workspace 5-4
primitive function 5-6, 11-3

classes of 7-3
primitive operator 11-3
primitive types 6-3
PRINT function 2-4
printer as system log 1-22,

1-27
printing copy of screen 1-20,

1-27
printing precision 8-14
printing width 8-14, 11-13
processor, auxiliary 1-16
program execution
program, machine
language 8-10

programs 5-3
PrtSc key 1-20
pythagorean function 7-14

Q
quad symbol 6-7, 8-3, 11-12
quote-quad symbol 6-7,

11-13

X-8

R
radians 7-14
random link 7-12, 8-14
RANK error message 6-5
ravel 7-31
reading records from
a file 2-11

reciprocal function 7-7
recursive functions 11-9
reduction operator 7 -1 7
relational functions 7-8
replacing a statement 10-11
replacing header 10-12
report, error 6-4
request for character
input 11-13

reshape function 6-11, 7-32
residue function 7-7
retract a variable 4-7
retraction of sharing 9-12
reverse function 7-33
revising functions 10-10
right argument 6-9
right arrow key 1-29
right identity elements 7-6
roll function 7 -11
rotate function 7 -3 3
rules, semantics 5-5

s
saving a file 2-8
saving line parameter
definition 2-31

saving workspace 12-12
scalar 7-3
scaled formatting 7-64
scan operator 7 -19
screen control
characters 8-16

screen fields 3-12
screen formatting 3-12, 3-14

selection and structural
symbols 5-6

selection from arrays 6-12,
7-20,7-45

selection functions 7-39
semantic rules 5-5
sending display output to the
printer 1-22, 1-27

sequence control 5-5
setting size of symbol
table 12-8

shape function 7-31
shape of array 6-10
shared variable buffer 4-5
shared variable offers 9-5
shared variable processor 4-3

functions 4-5
macros 4-5
sign-off 4-6
sign-on 4-6

shared variables 9-3
Shift keys 1-19, 1-20
SI DAMAGE error
message 6-5,11-6

signing off 1-1 7, 12-1 7
signum function 7-7
special APL characters 1-17,
6-7

special key
combinations 1-22

specification arrow 6-3
STACK FULL error
message 6-5, 11-10

starting APL 1-15
state indicator 11-5, 12-11

clearing 11-6
damage 11-6
list 11-4
setting in active
workspace 12-8

statement 6-3
entering of 1-19
form of typical 6-3

stop bits 2-29
stop control 11-7
stopping execution of
function 11-4

strong interrupt 1-19, 1-30
structural functions 7-22
structure of APL data
variable 4-9

structure of arrays 7-31
suspended function 11-4,

12-11
suspended state 11-4
SVP 4-3
switching monitors 1-25
symbol table 12-8
SYMBOL TABLE FULL
error message 6-5

symbols 5-6
syntax 5-5
SYNTAX error message 6-5
system commands 12-3
SYSTEM error message 6-6
system functions 8-2
SYSTEM LIMIT error
message 6-6

system log 1-22, 1-27
system reset 1-22
system variables 8-14, 9-4

T
Tab key 1-30
take function 7-40
temporarily halting
printing 1-22

terminal control 8-14
terminal input and
output 11-10

terminal selection 2-24
terminal type 8-14
terminating work
session 12-17

X-9

time stamp 8-14
times function 7 -7
tolerance 8-14
trace control 11-7
transfer file 2-3, 12-9
transfer form of
objects 12-14

transformation of data 7-56
trouble reports 12-6
turnaround local

character 2-28
typematic keys 1-18
typewriter keyboard 1-19

u
unlocked defined
function 8-5,10-15,11-8

up arrow key 1-29
uploading files 2-35
user load 8-14
using screen
interactively 3-1 7

using the printer 2-4

v
valence of function 10-5
VALUE error message 6-6
variables

coupling of 3-21
names 6-8, 6-9
system 8-14, 9-4

vector
access-control 4-4, 9-10
boolean 3-23
elements of 6-10
empty 6-11,7-33
forming 6-11
shape 7-31
4-bit control 4-2

VM232 workspace 2-23

x-tO

w
WAS report 12-4
weak interrupt 1-19, 1-30,

11-9
width indicator 7-60
width of number field 7-60
work area 8-14
work session

initiation 1-15
termination 12-1 7

workspace
active 2-16, 6-14

copying to 12-9
inquiry commands 12-10
list of functions
in 12-11

list of variables in 12-11
transfer form of objects

in 12-14
dropping of 12-15
inactive 6-14
inquiry commands 12-10
management of 6-14
names of 6-14
prepared 5-4
retrieval 12-12
saving copies 12-12
state indicator 6-14
storage 12-12

WORKSPACE FULL error
message 6-6

write-protect notch 1-8
writing data into a file 2-13

z
zero-origin indexing 8-15

The Personal Computer

Reader's Comment Form

APL 1502219

Your comments assist us in improving the usefulness of our
publication; they are an important part of the input used for
revisions.

IBM may use and distribute any of the information you
supply in any way it believes appropriate without incurring
any obligation whatever. You may, of course, continue to use
the information you supply.

Please do not use this form for technical questions regarding
the IBM Personal Computer or programs for the IBM
Personal Computer, or for requests for additional
publications; this only delays the response. Instead, direct
your inquiries or request to your Authorized IBM Personal
Computer Dealer.

Comments:

:1

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 321 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE
P.O. BOX 1328-C
BOCA RATON, FLORIDA 33432

aJaLj PIO.:!

aldelS lOU OD aSealrl

NO POSTAGE
NECESSARY
IF MAILEO

IN THE
UNITED STATES

adel

The Personal Computer

Reader's Comment Form

APL 1502219

Your comments assist us in improving the usefulness of our
publication; they are an important part of the input used for
revisions.

IBM may use and distribute any of the information you
supply in any way it believes appropriate without incurring
any obligation whatever. You may, of course, continue to use
the information you supply.

Please do not use this form for technical questions regarding
the IBM Personal Computer or programs for the IBM
Personal Computer, or for requests for additional
publications; this only delays the response. Instead, direct
your inquiries or request to your Authorized IBM Personal
Computer Dealer.

Comments:

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 321 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE
P.O. BOX 1328-C
BOCA RATON, FLORIDA 33432

aJa4 PIO.:!

~lrlP.l~ lOll on ~~P.~I..J

NO POSTAGE
NECESSARY
IF MAILEO

IN THE
UNITED STATES

",,,h:> ,

Continued from inside front cover

SOME STATES DO NOT ALLOW THE
EXCLUSION OF IMPLIED
WARRANTIES, SO THE ABOVE
EXCLUSION MAY NOT APPLY TO
YOU. THIS WARRANTY GIVES YOU
SPECIFIC LEGAL RIGHTS AND YOU
MAY ALSO HAVE OTHER RIGHTS
WHICH VARY FROM STATE TO
STATE.

IBM does not warrant that the functions
contained in the program will meet your
requirements or that the operation of the
program will be uninterrupted or error
free.

However, IBM warrants the diskette(s) or
cassette(s) on which the program is fur
nished, to be free from defects in materials
and workmanship under normal use for a
period of ninety (90) days from the date of
delivery to you as evidenced by a copy of
your receipt.

LIMITATIONS OF REMEDIES

IBM's entire liability and your exclusive
remedy shall be:

1. the replacement of any diskette(s) or
cassette(s) not meeting IBM's "Limited
Warranty" and which is returned to IBM
or an authorized IBM PERSONAL
COMPUTER dealer with a copy of your
receipt, or

2. if IBM or the dealer is unable to deliver a
replacement diskette(s) or cassette(s)
which is free of defects in materials or
workmanship, you may terminate this
Agreement by returning the program
and your money will be refunded.

IN NO EVENT WILL IBM BE LIABLE
TO YOU FOR ANY DAMAGES,
INCLUDING ANY LOST PROFITS,
LOST SAVINGS OR OTHER
INCIDENTAL OR CONSEQUENTIAL

DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE SUCH
PROGRAM EVEN IF IBM OR AN
AUTHORIZED IBM PERSONAL
COMPUTER DEALER HAS BEEN
ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES, OR FOR ANY
CLAIM BY ANY OTHER PARTY.

SOME STATES DO NOT ALLOW THE
LIMITATION OR EXCLUSION OF
LIABILITY FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES SO
THE ABOVE LIMITATION OR
EXCLUSION MAY NOT APPLY TO
YOu.

GENERAL

You may not sublicense, assign or
transfer the license or the program
except as expressly provided in this
Agreement. Any attempt otherwise to
sublicense, assign or transfer any of the
rights, duties or obligations hereunder is
void.

This Agreement will be governed by the
laws of the State of Florida.

Should you have any questions
concerning this Agreement, you may
contact IBM by writing to IBM Personal
Computer, Sales and Service, P.O. Box
1328-W, Boca Raton, Florida 33432.

YOU ACKNOWLEDGE THAT YOU
HA VE READ THIS AGREEMENT,
UNDERSTAND IT AND AGREE TO
BE BOUND BY ITS TERMS AND
CONDITIONS. YOU FURTHER
AGREE THAT IT IS THE COMPLETE
AND EXCLUSIVE STATEMENT OF
THE AGREEMENT BETWEEN US
WHICH SUPERSEDES ANY
PROPOSAL OR PRIOR AGREEMENT,
ORAL OR WRITTEN, AND ANY
OTHER COMMUNICATIONS
BETWEEN US RELATING TO THE
SUBJECT MATTER OF THIS
AGREEMENT.

---- ------- - ---- -.--- - ---- - - ------------_. -
®

International Business Machines Corporation

P.O. Box 1328-W
Boca Raton, Florida 33432

1502219
Printed in United States of America

