

IBM Macro Assembler/2™ Computer Language Series

Language Reference

Programming Family

--------- - ---- ---- - ---- - - ----------_.-

First Edition (1987)

The following paragraph does not apply to the United Kingdom or any
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This publication could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or infor
mation about, IBM products (machines and programs), programming,
or services that are not announced in your country. Such references
or information must not be construed to mean that IBM intends to
announce such IBM products, programming, or services in your
country.

Requests for copies of this publication and for technical information
about IBM products should be made to your IBM Authorized Dealer or
your IBM Marketing Representative.

Macro Assembler/2 is a trademark of IBM Corporation.

Operating System/2 and OS/2 are trademarks of IBM Corporation.

© Copyright International Business Machines Corporation 1987.
All rights reserved. No part of this publication may be reproduced or
distributed in any form or by any means without prior permission in
writing from the International Business Machines Corporation.

I
~

About This Book

This book is part of the library covering the IBM Macro
Assemblerl2TM.1 The other two books in the library are the IBM Macro
Assemblerl2 Fundamentals book and the IBM Macro Assemblerl2
Assemble, Link, and Run book.

This book contains detailed descriptions of pseudo operations
(pseudo-ops) and instructions used by the IBM Macro Assembler/2.

This book is intended for experienced assembler language program
mers. It is not expected, however, that you are experienced with the
IBM Macro Assembler/2, or with any particular personal computer
operating system environment.

Library Guide

If You Want To ... Refer to ...

Install the product Assemble, Link, and Run

Learn basic facts about the Fundamentals
language

Know the syntax of an i nstruc- Language Reference
tion

Understand error messages Language Reference

Debug a program Assemble, Link, and Run

Assemble a program Assemble, Link, and Run

Link a program Assemble, Link, and Run

1 TMMacro Assembler/2 is a trademark of the IBM corporation.

iii

If You Want To ... Refer to ...

Write a program Fundamentals, Language Ref-
erence, and Assemble, Link,
and Run

Related Publications

The following books will provide additional detailed information:

IBM Disk Operating System Reference

IBM Disk Operating System Technical Reference

IBM Operating Systeml2™ 2 User's Reference

IBM Operating Systeml2 Technical Reference

IBM Operating Systeml2 Programmer's Guide.

IBM Operating Systeml2 User's guide

2 Operating System/2™ is a trademark of IBM Corporation.

iv

Contents

Chapter 1. Introduction 1-1
Notational Conventions 1-1

Hexadecimal Representation 1-2
Operating Systems 1-3

Reference Material 1-3

Chapter 2. Getting Started 2-1
Pseudo Operations 2-1

Conditional Pseudo-Ops 2-2
Conditional Error Pseudo-Ops 2-3
Data Pseudo-Ops 2-4
Listi ng Pseudo-Ops 2-4
Macro and Repeat Block Pseudo-Ops 2-7
Mode Pseudo-Ops 2-16
Segment Order Pseudo-Ops 2-17

Instructions 2-18
8087 Instructions 2-18
80286 Instructions 2-18
80287 Instructions 2-19
I nstruction Fields 2-19
Instruction Symbols and Definitions 2-21

Chapter 3. Pseudo Operations 3-1
.186 Set 80186 Mode 3-1
.286C Set 80286 Mode 3-2
.286P Set 80286 Protected Mode 3-3
.287 Set 80287 Floating Point Mode 3-4
.8086 Reset 80286 Mode 3-5
.8087 Set 8087 Mode 3-6
& Special Macro Operator 3-7
;; Special Macro Operator 3-8

< > Literal-Text Operator 3-9
! Special Macro Operator 3-10
% Special Macro Operator 3-11
= Equal Sign 3-12

.ALPHA 3-13
ASSUME
COMMENT

3-14
3-16

.CREF/.XCREF 3-17

v

DB Define Byte 3-18
DD Define Doubleword 3-20
DQ Define Quadword 3-22
DT Defi ne T enbytes 3-24
DW Defi ne Word 3-26
ELSE 3-28
END 3-29
ENDIF 3-31
ENDM 3-32
ENDP 3-33
ENDS 3-34
EQU 3-35
.ERR/.ERR1/.ERR2 3-36
.ERRB/.ERRNB 3-38
.ERRDEF/.ERRNDEF 3-39
.ERRE/.ERRNZ 3-40
.ERRIDN/.ERRDIF 3-41
EVEN 3-42
EXITM 3-43
EXTRN 3-44
GROUP 3-46
IFxxxx Conditional Pseudo-ops 3-48
iNCLUDE 3-54
IRP 3-56
IRPC 3-58
LABEL 3-59
.LALLI.SALLI.XALL 3-61

.LFCOND (List False Conditionals) 3-62
.L1ST/;XLlST 3-63

LOCAL 3-64
MACRO 3-65
NAME 3-68
ORG 3-69
0/0 OUT 3-70
PAGE 3-71
PROC 3-73
PUBLIC 3-75
PURGE 3-76
.RADIX 3-77
RECORD 3-79
REPT 3-82
SEGMENT 3-83

.SEQ 3-86

vi

.SFCOND 3-87
STRUC 3-88
SUBTTL 3-90

.TFCOND 3-91
TITLE 3-92

Chapter 4. Instruction Mnemonics 4-1
AAA ASCII Adjust for Addition 4-2
AAD ASCII Adjust for Division 4-5
AAM ASCII Adjust for Multiply 4-6
AAS ASCII Adjust for Subtraction 4-7
ADC Add with Carry 4-10

Memory or Register Operand with Register Operand 4-11
Immediate Operand to Accumulator 4-12
Immediate Operand to Memory or Register Operand 4-14

ADD Addition 4-15
Memory or Register Operand with Register Operand 4-16
Immediate Operand to Accumulator 4-17
Immediate Operand to Memory or Register Operand 4-18

AND Logical AND 4-19
Memory or Register Operand with Register Operand 4-20
Immediate Operand to Accumulator 4-21
Immediate Operand to Memory or Register Operand 4-22

ARPL (80286P) Adjust Requested Privilege Level 4-23
BOUND (80286) Detect Value Out of Range 4-25
CALL Call a Procedure 4-27

Direct Intra-Segment or Intra-Group 4-29
Di rect Inter-Segment 4-29
Indi rect Inter-Segment 4-29
Indirect Intra-Segment or Intra-Group 4-31

CALL (80286P) Call a Procedure 4-32
Direct Intra-Segment and Indirect Intra-Segment 4-33
Direct (IP-Relative) Intra-Segment 4-34
Indi rect Intra-Segment 4-34
Direct Virtual Address and Indirect Virtual Address (VA in DWORD

Variable) 4-35
Indirect Virtual Address (VA in DWORD variable) 4-37

CBW Convert Byte to Word 4-38
CLC Clear Carry Flag 4-39
CLD Clear Direction Flag 4-40
CLI Clear Interrupt Flag (Disable) 4-41
CL TS (80286P) Clear Task Switched Flag 4-42
CMC Complement Carry Flag 4-44

vii

CMP Compare Two Operands 4-45
Memory or Register Operand with Register Operand 4-45
Immediate Operand with Accumulator 4-46
Immediate Operand with Memory or Register Operand 4-47

CMPS/CMPSB/CMPSW Compare Byte or Word String 4-48
CWD Convert Word to Doubleword 4-51
DAA Decimal Adjust for Addition 4-52
DAS Decimal Adjust for Subtraction 4-53
DEC Decrease Desti nation by One 4-54

Register Operand (Word) 4-55
Memory or Register Operand 4-55

DIV Division, Unsigned 4-56
ENTER (80286) Make Stack Frame for Procedure Parameters 4-59
ESC Escape 4-61
F2XM 1 (8087) 2 to the X power -1 4-62
FABS (8087) Absolute value 4-64
FADD (8087) Add Real 4-65
FADD (no operands) Stack form 4-65
FADD (source) Real Memory Form 4-66
FADD (destination,source) Register form 4-68
FADDP (8087) Add Real and Pop 4-70
FBLD (8087) Packed Decimal (BCD) Load 4-72
FBSTP (8087) Packed Decimal (BCD) Store and Pop 4-74
FCHS (8087) Change Sign 4-76
FCLEX (8087) Clear Exceptions 4-77
FCOM (8087) Compare Real 4-78

8087 stack top with Memory short_real 4-79
8087 stack top with Memory long_real 4-79
8087 stack top with Register on 8087 stack 4-80

FCOMP (8087) Compare Real and Pop 4-82
8087 stack top with Memory short_real 4-83
8087 stack top with Memory long_real 4-83
8087 stack JoP with Register on 8087 stack 4-84

FCOMPP (8087) Compare Real and Pop Twice 4-86
FDECSTP (8087) Decrease 8087 Stack Poi nter 4-88
FDISI (8087) Disable Interrupts 4-90
FDIV (8087) Divide Real 4-91
FDIV (no operands) 8087 Stack Form 4-92
FDIV (source) Real Memory Form 4-93
FDIV (destination,source) Register Form 4-95
FDIVP (8087) Divide Real and Pop 4-97
FDIVR (8087) Divide Real Reversed 4-99
FDIVR (no operands) 8087 stack form 4-100

viii

FDIVR (source) Real memory form 4-101
FDIVR (destination,source) Register form 4-103
FDIVRP (8087) Divide Real Reversed and Pop 4-105
FENI (8087) Enable Interrupts 4-107
FFREE (8087) Free Register 4-108
FIADD (8087) Integer Add 4-109
FICOM (8087) Integer Compare 4-111

8087 stack top with Memory short integer 4-112
8087 stack top with Memory word integer 4-113

FICOMP (8087) Integer Compare and Pop 4-114
8087 stack top with Memory short integer 4-115
8087 stack top with Memory word integer 4-116

FIDIV (8087) Integer Divide 4-117
FIDIVR (8087) Integer Divide Reversed 4-119
FILD (8087) Integer Load 4-121
FIMUL (8087) Integer Multiply 4-123
FINCSTP (8087) Increase 8087 Stack Pointer 4-125
FINIT/FNINIT (8087) Initialize Processor 4-126
FIST (8087) Integer Store 4-127
FISTP (8087) Integer Store and Pop 4-129
FISUB (8087) Integer Subtract 4-131
FISUBR (8087) Integer Subtract Reversed 4-133
FLO (8087) Load Real 4-135

Register operand to ST 4-136
Memory operand to ST 4-137

FLD1 (8087) Load +1.0 4-139
FLDCW (8087) Load Control Word 4-141
FLDENV (8087) Load Environment 4-143
FLDL2E (8087) Load Log 4-145
FLDL2T (8087) Load Log 4-147
FLDLG2 (8087) Load Log 4-149
FLDLN2 (8087) Load Log Base e of 2 4-151
FLDPI (8087) Load PI 4-153
FLDZ (8087) Load Zero 4-155
FMUL (8087) Multiply Real 4-157
FMUL (no operands) 8087 stack form 4-158
FMUL (source) Real memory form 4-159
FMUL (destination,source) Register form 4-160
FMULP (8087) Multiply Real and Pop 4-162
FNCLEX (8087) Clear Exceptions 4-164
FNDISI (8087) Disable Interrupts 4-165
FNENI (8087) Enable Interrupts 4-166
FNINIT (8087) Initialize Processor 4-167

ix

FNOP (8087) No Operation 4-168
FNRSTOR (8087) Restore State 4-169
FNSA VE (8087) Save State 4-170
FNSTCW (8087) Store Control Word 4-173
FNSTENV (8087) Store Environment 4-174
FNSTSW (8087) Store Status Word 4-176
FNSTSW AX (80287) Store Status Word 4-178
FPATAN (8087) Partial Arc Tangent 4-180
FPREM (8087) Partial Remainder 4-182
FPTAN (8087) Partial Tangent 4-184
FRNDINT (8087) Round to Integer 4-186
FRSTOR (8087) Restore State 4-187
FSA VE (8087) Save State 4-188
FSCALE (8087) Scal e 4-189
FSETPM (80287) Set Protected Mode 4-191
FSQRT (8087) Square Root 4-192
FST (8087) Store Real 4-194
FST ST to Register operand 4-195
FST ST to Memory operand 4-196
FSTCW (8087) Store Control Word 4-197
FSTENV (8087) Store Environment 4-198
FSTP (8087) Store Real and POP 4-200
FSTP ST to Register operand 4-201
FSTP ST to Memory operand 4-202
FSTSW (8087) Store Status Word 4-204
FSTSW AX (80287) Store Status Word 4-205
FSUB (8087) Subtract Real 4-207
FSUB (no operands) 8087 stack form 4-208
FSUB (source) Real memory form 4-209
FSUB (destination,source) Register form 4-210
FSUBP (8087) Subtract Real and POP 4-212
FSUBR (8087) Subtract Real Reversed 4-214
FSUBR (no operands) 8087 stack form 4-215
FSUBR (source) Real-memory form 4-216
FSUBR (destination,source) Register form 4-217
FSUBRP (8087) Subtract Real Reversed and POP 4-219
FTST (8087) Test 4-221
FWAIT (8087) Wait (CPU Instruction) 4-223
FXAM (8087) Examine 4-225
FXCH (8087) Exchange Registers 4-227
FXCH (No Operands) 4-228
FXCH (destination) 4-229
FXTRACT (8087) Extract Exponent and Significand 4-230

x

FYL2X (8087) Y * LOg2X 4-232
FYL2XP1 (8087) Y * Log 4-234
H L T Halt 4-236
IDIV Integer Division, Signed 4-237
IMUL Integer Multiply 4-240
IMUL (80286) Integer Immediate Multiply 4-242
IN Input Byte or Word 4-244

Fixed Port 4-245
Variable Port 4-245

INC Increase Destination by One 4-246
Register Operand (Word) 4-247
Memory or Register Operand 4-247

INS/INSB/INSW (80286) Input from Port to String 4-249
INT Interrupt 4-251
INT (80286P) Interrupt 4-253
INTO Interrupt If Overflow 4-256
IRET Interrupt Return 4-258
J{condition) Jump Short If Condition Met 4-260
JMP Jump 4-263

Intra-Segment or Intra-Group Direct 4-264
Intra-Segment Direct Short 4-264
Inter-Segment Direct 4-265

Inter-Segment Indirect 4-265
Intra-Segment or Intra-Group Indirect 4-266

JMP (80286P) Jump 4-267
Direct Virtual Address 4-269
Indirect Virtual Address 4-269

LAHF Load AH from Flags 4-270
LAR (80286P) Load Access Rights 4-271
LOS Load Data Segment Register 4-273
LEA Load Effective Address 4-275
LEAVE (80286) High Level Procedure Exit 4-277
LES Load Extra Segment Register 4-279
LGDT (80286P) Load Global Descriptor Table 4-281
LlDT (80286P) Load Interrupt Descriptor Table 4-283
LLDT (80286P) Load Local Descriptor Table 4-285
LMSW (80286P) Load Machine Status Word 4-287
LOCK Lock Bus 4-289
LODS/LODSB/LODSW Load Byte or Word Stri ng 4-291
LOOP Loop Until Count Complete 4-294
LOOPE/LOOPZ Loop If Equal/If Zero 4-296
LOOPNE/LOOPNZ Loop If Not Equai/if Not Zero 4-298
LSL (80286P)--Load Segment Limit 4-300

xi

L TR (80286P) Load Task Register 4-302
MOV Move 4-303
TO Memory FROM Accumulator 4-304
TO Accumulator FROM Memory 4-304
TO Segment Register FROM Memory-or-Register Operand 4-305
TO Memory-or-Register FROM Segment Register 4-305
To Register From Register 4-306
To Register From Memory-or-Register Operand 4-306
To Memory-or-Register Operand From Register 4-306
TO Register FROM Immediate-data 4-307
TO Memory-or-Register Operand FROM Immediate-data 4-308
MOVS/MOVSB/MOVSW Move Byte or Word Stri ng 4-309
MUL Multiply, Unsigned 4-312
NEG Negate, Form Two's Complement 4-314
NOP No Operation 4-316
NOT Logical Not 4-317
OR Logical Inclusive Or 4-319

Memory or Register Operand with Register Operand 4-320
Immediate Operand to Accumulator 4-321
Immediate Operand to Memory or Register Operand 4-322

OUT Output Byte or Word 4-323
Fixed Port 4-324
Variable Port 4-324

OUTS/OUTSB/OUTSW (80286) Output String to Port 4-325
POP Pop Word Off Stack to Destination 4-327

Register Operand 4-328
Segment Register 4-328
Memory or Register Operand 4-329

POPA (80286) Pop All General Registers 4-330
POPF Pop Flags Off Stack 4-331
PUSH Push Word onto Stack 4-333

Register Operand (Word) 4-334
Segment Register 4-334
Memory-or-Register Operand 4-335

PUSH (80286) Push Immediate onto Stack 4-336
PUSHA (80286) Push All General Registers 4-338
PUSHF Push Flags onto Stack 4-339
RCL Rotate Left Through Carry 4-340
RCL (80286) Rotate Left Through Carry 4-343
RCR Rotate Right Through Carry 4-346
RCR (80286) Rotate Right Through Carry 4-348
REP/REPZ/REPE/REPNE/REPNZ .br Repeat String Operation 4-351
RET Return from Procedure 4-354

xii

Intra-Segment 4-355
Intra-Segment and Add Immediate to Stack Pointer 4-356
Inter-Segment and Add Immediate to Stack Pointer 4-357
Inter-Segment 4-357

ROL Rotate Left 4-358
ROL (80286) Rotate Left 4-360
ROR Rotate Right 4-363
ROR (80286) Rotate Ri ght 4-366
SAHF Store AH in Flags 4-369
SALISHL Shift Arithmetic Left/Logical Left 4-370
SALISHL (80286) Shift Arithmetic Left/Shift Logical Left 4-373
SAR Shift Arithmetic Right 4-376
SAR (80286) Shift Arithmetic Right 4-378
SBB Subtract with Borrow 4-381

Memory or Register Operand and Register Operand 4-382
Immediate Operand from Accumulator 4-383
Immediate Operand from Memory or Register Operand 4-384

SCAS/SCASB/SCASW Scan Byte or Word Stri ng 4-385
SGDT (80286P) Store Global Descriptor Table 4-388
SHR Shift Logical Right 4-390
SHR (80286) Shift Logical Right 4-393
SIDT (80286P) Store Interrupt Descriptor Table 4-396
SLDT (80286P) Store Local Descriptor Table 4-398
SMSW (80286P) Store Machine Status Word 4-399
STC Set Carry Flag 4-400
STD Set Direction Flag 4-401
STI Set Interrupt Flag (Enable) 4-402
STOS/STOSB/STOSW Store Byte or Word Stri ng 4-403
STR (80286P) Store Task Register 4-405
SUB Subtract 4-407

Memory or Register Operand and Register Operand 4-408
Immediate Operand from Accumulator 4-409
Immediate Operand from Memory or Register Operand 4-409

TEST Test (Logical Compare) 4-411
Memory or Register Operand with Register Operand 4-412
Immediate Operand with Accumulator 4-413

Immediate Operand with Memory or Register Operand 4-413
VERR (80286P) Verify Read Access 4-414
VERW (80286P) Verify Write Access 4-416
WAIT Wait 4-418
XCHG Exchange 4-419

Register Operand with Accumulator 4-420
Memory or Register Operand with Register Operand 4-420

xiii

XLAT Translate 4-421
XOR Exclusive OR 4-422

Immediate Operand to Accumulator 4-423
Immediate Operand to Memory or Register Operand 4-424

Appendix A. Error Messages and Exit Codes A-1
Error Messages A-1
SALUT Error Messages A-1
Macro Assembler Error Messages A-2
Unnumbered Error Messages A-12
Linker Error Messages and Limits A-14
CodeView Error Messages A-30
CREF Error Messages A-37
Library Manager Error Messages A-38
MAKE Error Messages A-42
EXEMOD Error Messages A-44
Exit Codes A-46

How Batch Files Use Exit Codes A-46
Exit Codes for Programs in the IBM Macro Assembler/2

Package A-47
How MAKE Uses Exit Codes A-48

Appendix B. Instructions and Pseudo-Ops Listed by Task 8-1
8088 Instructions 8-2

Movi ng Data B-2
Moving Data - Related to Flags 8-2
Moving Data - Related to Stacks 8-2
Doing Arithmetic 8-2
Processing Logic 8-4
Manipulating Strings 8-4
Changing Control 8-5
Controlling the Processor 8-7

8087 Instructions 8-8
Movi ng Data 8-8
Making Comparisons 8-8
Doing Arithmetic 8-9
Calculating Functions 8-10
Load i n g Constants 8-10
Controll i ng the Processor 8-11

80286 Instructions 8-12
Moving Data 8-12
Controlling the Processor 8-12
Verifying Fields 8-12

xiv

Preparing for High Level Language 8-13
Doing Arithmetic 8-13
Processing Logic 8-13

80287 Instructions 8-13
Setting Mode 8-13
Controlling the Processor 8-13

Pseudo-ops 8-14
Using Conditionals 8-14
Using Conditional Errors 8-15
Ordering Segments 8-16
Manipulating Data 8-17
Controlling Listings 8-17
Using Macros 8-18
Changing Modes 8-18

Index X-1

xv

xv;

Chapter 1. Introduction

This book provides you with instruction mnemonics and pseudo oper
ations (pseudo-ops) that you need to use the IBM Macro Assembler/2.
Before using this book, you need to be aware of the material in this
chapter.

Notational Conventions

Certain conventions in this book define commands, formats of
instructions and pseudo-operations, and terms:

• Items in square brackets [] are optional.

Note: Do not confuse this convention with the square bracket
notation used with registers, as described in "The Operand
Field" section in the chapter, "Assembler Language
Format" of the IBM Macro Assemblerl2 Fundamentals book.

• Items separated by a vertical bar (I) mean that you can enter one
of the separated items. For example:

oNioFF

Means you can enter ON or OFF, but not both.

• An Ellipsis (...) shows that you can repeat an item as many times
as you want.

• You must include all punctuation (commas, parentheses, angle
brackets, slashes, or semicolons), except square brackets, where
it is shown.

• Ctrl + Break and Ctrl + C perform the same function. Anytime
Ctrl + Break is documented, you may also use Ctrl + C.

• The term assembler refers to the IBM Macro Assembler/2.

• Italics are used for:

New terms when they are first defined in a book.
Example: An object module is produced ...

Variables, including all-caps variables, in command formats
and within text. You supply these items.

1-1

Example: TIME [hh.mm.ss.xx]

Book titles.
Example: IBM Macro Assemblerl2 Fundamentals.

Boldface is used for:

Anything that you must type exactly as it appears in the book.
Example: Now, type dlr and press ...

Anything that appears on a screen that is referred to in text.
Example: The Stack Overflow message tells you ...

Single alphabetic keys on the keyboard.
Example: Type Sand ...

• Small capital letters are used for:

Sample file names in text.
Example: Use the AUTO EXEC file ...

DOS programming commands.
Example: The COpy command ...

Suffixes (file or language extensions) used alone.
Example: A .BAT file is required ...

All acronyms and other fully capitalized words.
Example: IBM

Library names.
Example: LlB1.LlB.

Hexadecimal Representation

This book represents hexadecimal numbers with the letter H, such as
59H.

1-2

Operating Systems

Throughout these books, the references to operating systems have
the following meaning:

Abbreviation

DOS

Meaning

IBM Disk Operating System Version 3.30

IBM Operati ng System/2

Reference Material

The following books provide additional information about topics dis
cussed in this book:

IBM Macro Assembler/2 Fundamentals, included with this product.

IBM Macro Assembler/2 Assemble, Link, and Run, included with this
product.

The 8086 Book (includes the 8088), Rector, Russell and Alexy,
George, Osborne/McGraw-Hili, Berkeley, California, 1980.

The iAPX 86,88 User's Manual 210201, The 8086 Family User's
Manual 9800722, Literature Department, Intel®2 Corporation, 3065
Bowers Avenue, Santa Clara, California, 95051.

For 8087 users: The 8086 Family User's Manual Numerics Supple
ment 121586, Literature Department, Intel Corporation, 3065 Bowers
Avenue, Santa Clara, California, 95051.

For 80286 users: The iAPX 286 Programmer's Reference Manual
(includes the iAPX 286 Numeric Supplement 210498), Literature
Department, Intel Corporation, 3065 Bowers Avenue, Santa Clara,
California, 95051.

1 OS/2TM is a trademark of the IBM Corporation.

2 Intel® is a registered trademark of the Intel Corporation.

1-3

1-4

Chapter 2. Getting Started

This chapter describes the IBM Macro Assembler/2 pseudo operations
and instructions. It describes macro definitions and also discusses
the 8088, 8087,80286, and 80287 instruction sets, instruction fields,
and instruction symbols.

Pseudo Operations

Pseudo operations, also called pseudo-ops, tell the assembler what
to do with conditional branches, data, listings, and macros. Pseudo
operations are sometimes called directives to the assembler.
Pseudo-ops (except for certain data definition pseudo-ops) do not
produce machine language code, although they have mnemonics
similar to the mnemonics of the assembler instructions.

Each pseudo-op is described in more detail in Chapter 3, "Pseudo
Operations," in this book. The pseudo-ops are arranged in alphabet
ical order in that chapter for ease of reference.

For the purpose of describing general information, this chapter
groups the pseudo-ops by type. The seven types of pseudo-ops are:

• Conditional
• Conditional Error

• Data
• Listing
• Macro

• Mode
• Segment Order.

2-1

Type Pseudo-ops

Conditional ELSE IFDEF IFNB
ENDIF IFDIF IFNDEF
IF IFE IF!
IFB IFIDN IF2

Conditional .ERR .ERRE .ERRNZ

Error
.ERRB .ERRIDN .ERR1
.ERRDEF .ERRNB .ERR2
.ERRDIF .ERRNDEF

Data ASSUME ENDS NAME
COMMENT EQU ORG
DB = (Equal PROC
DD Sign) PUBLIC
DQ EVEN .RADIX
DT EXTRN RECORD
DW GROUP SEGMENT
END INCLUDE STRUC
ENDP LABEL

Listing .CREF PAGE TITLE
. LALL .SALL .XALL
.LFCOND .SFCOND .XCREF
. LIST SUBTTL . XLIST
%OUT .TFCOND

Macro ENDM IRPC PURGE
EXITM LOCAL REPT
IRP MACRO

Mode .186 .286P .8086
.286C .287 .8087

Segment .ALPHA .SEQ

Order

Conditional Pseudo-Ops

The conditional pseudo-ops can be nested to any level. They are not
limited to usage within a macro. Any operand of a conditional
pseudo-op must be known on pass 1 to avoid errors and incorrect
evaluation. Each IFXX pseudo-op must be matched with a corre
sponding ENDIF pseudo-op. All conditional pseudo-ops use the format:

2-2

IFxx operand

[ELSE]

ENDIF

Note: Do not confuse the assemble-time conditional pseudo-ops IFXX,

ELSE, and ENDIF with the run-time conditional run structure
statements $IF, $ELSE, and $ENDIF used by SALUT. See the dis
cussion of SALUT in the IBM Macro Assemblerl2 Assemble,
Link, and Run book and in the IBM Macro Assemblerl2 Funda
mentals book for more detail on $IF, $ELSE, and $ENDIF.

Conditional Error Pseudo-Ops

The conditional error pseudo-ops and the errors they produce are
listed in the table below. You can use these pseudo-ops to debug
programs. By inserting a conditional error pseudo-op at a key point
in your code, you can test assemble-time conditions at that point.
You also can use these pseudo-ops to test for boundary conditions in
macros.

All conditional error pseudo-ops, except .ERR1, produce unrecover
able errors. Like other unrecoverable assembler errors, those the
conditional error pseudo-ops produce cause the assembler to return
exit code 7. If the assembler finds an unrecoverable error during
assembly, it erases the object module.

Pseudo-op # Message

.ERR1 87 Forced error - pass1

.ERR2 88 Forced error - pass2

.ERR 89 Forced error

.ERRE 90 Forced error - expression equals 0

.ERRNZ 91 Forced error - expression not equal 0

.ERRNDEF 92 Forced error - symbol not defined

.ERRDEF 93 Forced error - symbol defined

.ERRS 94 Forced error - string blank

.ERRNB 95 Forced error - string not blank

.ERRIDN 96 Forced error - strings identical

.ERRDIF 97 Forced error - strings different

2-3

Refer to the individual conditional pseudo-ops in Chapter 3, "Pseudo
Operations," in this book.

Data Pseudo-Ops

Refer to the individual data pseudo-ops in Chapter 3, "Pseudo
Operations," in this book.

Listing Pseudo-Ops

False Conditional Blocks

The listing of false conditional blocks is controlled by the pseud()~:ops:
.LFCOND (List False Conditionals), .SFCOND (Suppress False Condi
tionals), and .TFCOND (Toggle False Conditionals).

2-4

In the following example, one or the other of the %OUT statements is a
false conditional block, depending on which pass the assembler is
running.

IF2
%OUT END OF IBM VERSION

ELSE
%OUT START OF IBM VERSION

ENDIF

The assembler can either list or suppress the listing of false condi
tional blocks of an IF conditional pseudo-op. The decision to list or
suppress is based on the following conditions.

At assemble start time, the default mode is to suppress the printing of
false conditionals. You can set the default mode control to print false
conditional blocks. To do this, use the IX option on the MASM
command line.

When the assembler has started, the definition of the default condi
tion can be toggled, that is, switched to its opposite condition, by
including in the source file the pseudo-op, .TFCOND, Toggle False Con
dition. If the default condition is suppress, the .TFCOND changes the
default to list. On the other hand, if the default condition is list, the
.TFCOND sets the default to suppress.

Putting a .TFCOND at the start of the source has the same effect as
entering the Ix option on the MASM command line. However, having
.TFCOND at the start of the listing and the Ix on the command line
produces the same effect as doing neither the pseudo-op nor the
option.

Instead of allowing the default state to control the printing of false
conditionals, you can expressly state, for a particular section of the
code, that the default state is to be ignored and false conditionals are
to be listed by including within the source the pseudo-op, .LFCOND, List
False Conditionals. Similarly, false conditionals can be suppressed
regardless of the default state by expressly using in the source the
pseudo-op, .SFCOND, Suppress False Conditionals.

At the end of the particular section of code whose false conditionals
are either to be listed or suppressed as commanded by the .LFCOND or
.SFCOND pseudo-ops, you can tell the assembler to return to its default
state regarding false conditionals by including within the source the
pseudo-op, .TFCOND. This pseudo-op, however, not only indicates the

2-5

end of the section expressly controlled, but also, as previously stated,
toggles the default state. If you want to end the section under
express control and to return to the default state, issue the .TFCOND

twice, and the second one toggles the default state definition back
like it was.

Note: The listing of false conditionals defined within MACROS is sup
pressed unless the .LALL pseudo-op is used. For the Ix option,
.LFCOND, .SFCOND, and .TFCOND to be effective within MACROS, the
. LALL pseudo-op must also be used.

This chart shows the effects of the three pseudo-ops when found with
the Ix and no Ix options given on the MASM command line. If you
used these pseudo-ops in the following order, this is what the result
would be:

PSEUDO-OP IX NO IX

(default) list suppress

.SFCOND suppress suppress

.LFCOND list list

.TFCOND suppress list

.TFCOND list suppress

.SFCOND suppress suppress

.TFCOND suppress list

.TFCOND 1 i st suppress

.TFCOND suppress list

Note: The .SFCOND and .LFCOND pseudo-ops are absolute overrides.

2-6

The .TFCOND pseudo-op toggles the default state. Vertical
ellipses are intervening lines of code.

Macro and Repeat Block Pseudo-Ops

The macro facilities provided by the IBM Macro Assembler/2 include
MACRO, REPT, IRP, and IRPC. The ENDM pseudo-op ends each of these
four macro operations.

Terms Used

These terms are used with the MACRO, REPT, IRP, and IRPC pseudo-ops:

• A dummy represents a dummy parameter. All dummy parame
ters are valid symbols that appear in the body of a macro expan
sion.

• A dummylist is a list of dummies separated by commas.

• An < operandlist> is a list of operands separated by commas.
The <operandlist> must be delimited by angle brackets. Two
angle brackets with no intervening character entries « » or two
commas with no intervening character entries become a null
operand in the list. An operand is a character or series of char
acters ended by a comma or the end angle bracket (». With
angle brackets that are nested inside an <operandlist> , one
level of brackets is removed each time the bracketed operand is
used in an <operandlist>. A quoted string is an acceptable
operand.

• A parmlist is used to represent a list of actual parameters sepa
rated by commas. No delimiters are required (the list is ended by
the end of line or a comment).

• A macro is a set of assembler statements that you can use
several times in a program, with some optional changes each
time.

Using a Macro

To properly use a macro, you must:

• Define a macro using the MACRO and ENDM pseudo-ops.
• Call the macro by using the name of the macro just as if it were

an opcode.

You must define a macro before you call it. Once defined, a macro
can be used, then redefined.

2-7

Defining a Macro: To define a macro, you must first understand the
various parts of a MACRO definition:

• The beginning of a macro definition is the MACRO pseudo-op.
• The end of a macro definition is the ENDM pseudo-op.
• The body of a macro is all the lines of assembler statements

between MACRO and ENDM.

• The name of the macro (the pseudo-op that is used to call it) is
defined in the name field of the MACRO pseudo-op.

• The parameters (optional) are a series of one or more dummy
symbol names listed as operands on the MACRO pseudo-op. If
more than one parameter is used, the dummy symbols must be
separated by commas or blanks. In some cases, there are no
parameters. The number of parameters is limited to the number
you can define on a 128-character MACRO pseudo-op statement.

This example shows the naming of the macro and the dummy param
eter list. In this example, the string VAL 1 is put wherever the dummy
ARG1 appears in the macro, and VAL2 for ARG2.

; This source file defines and uses the macro ADD2.
; The name of the macro is ADD2. ARGI and ARG2 are dummies.
ADD2 MACRO ARGl,ARG2 " The beginning

MOV AX,ARGI " The body
ADD AX,ARG2 " argl and arg2 will be substituted
ENDM " The end

DSEG SEGMENT
VAll OW 0
VAL2 OW 0
DSEG ENDS

ASSUME CS:CSEG,DS:DSEG
CSEG SEGMENT

ADD2 VAll, VAL2

DSEG ENDS
END

;; Macro invocation statement
;; MASM expands the macro here at
" assemble time with VALl &VAL2
;; as the actual parameters

Macro Parts: The body of the macro can have several parts:

• LOCAL - The local pseudo-op creates unique labels for use in
macros. Normally, if a macro containing a label is used more
than once, the assembler displays an error message indicating
that the file contains a label or symbol with multiple definitions,
because the same label appears in both expansions.

2-8

If this pseudo-op is used, it must be the next statement following
the MACRO pseudo-op. No comment, not even a blank line, may
appear between MACRO and LOCAL. The assembler substitutes a
unique label for the label you used, so each time the macro is
called, a different label is produced; this avoids duplication. MUl
tiple, consecutive LOCAL statements are allowed.

Macro example for LOCAL pseudo-op:

LOOPZERO MACRO ARGI
LOCAL LOOPLABEL

MOV AX,ARGI
LOOPLABEL:

DEC AX
JNZ LOOPLABEL
ENDM

• Remarks or Comments - They are indicated either by the
COMMENT pseudo-op or by a semicolon. They are listed in a
macro expansion only if they are under the .LALL mode. A
comment beginning with double semicolons is not listed when the
macro is called.

• Pseudo-ops and Instructions - These statements become effec
tive only when the MACRO containing them is called. For example,
a MACRO definition can be contained within the body of another
macro. The inner macro is not defined until the outer macro is
called, as shown in the following example:

2-9

TITLE SAMPLE MACRO REDEFINING ITSELF
.LALL ;set print mode

so (;) comments print
CALLSUB MACRO

JMP SHORT SKIP
;;Produce the subroutine,
;; one time only
SUBRT PROC NEAR

(body of subroutine here)
RET ;return from subrt

to main caller
SUBRT ENDP
SKIP: CALL SUBRT
;Redefine the 'callsub' macro so

SUBRT is produced once only.
CALLSUB MACRO
CALL SUBRT

ENDM ;end of inner macro

ENDM ;end of outer macro
;**********************************
CSEG SEGMENT

ASSUME CS:CSEG
MAIN PROC FAR

CALLSUB ;produce subrt,
then call it

CALLSUB ;just call subrt
MAIN ENDP
CSEG ENDS

END

Another useful operator is the IRP pseudo-op. It causes a block of the
macro to be repeated. The block that gets repeated is from the IRP

line to the next ENDM, which does not end the macro, just the
repeating block. Using the double semicolon to suppress comments
in the macro expansion is also illustrated in this example. Only com
ments preceded by a single semicolon show up when the Macro
Assembler expands the macro. The IRPC is used in a similar fashion,
but repeats once for each character in a string instead of once for
each parameter in the parameter list.

2-10

:XAM MACRO AI,A2,A3
IRP X,<AI,A2,A3>
MOV AX,X
PUSH AX
ENDM
CALL Al
ENDM

)SEG SEGMENT
fAll OW 0
fAL2 OW 0
fAU OW 0
)SEG ENDS

;; 'X' is the dummy
;This comment appears in listing
;;This one doesn't
;;End the repeating part
;;Non-repeating part
;;End the macro

ASSUME CS:CSEG,DS:DSEG
:SEG SEGMENT

EXAM VALl,VAL2,VAL3 ;Call the macro
MOV AX,VALl ;This comment gets listed
PUSH AX
MOV AX,VAL2
PUSH AX
MOV AX, VAL3
PUSH AX
CALL VAll

:SEG ENDS
END

;This comment gets listed

;This comment gets listed

The section between the IRP and the first ENDM was repeated once for
each symbol in the operand list, thereby pushing the values on the
stack. The comment with the single semicolon was listed three times
because it is in the repeating part, which had three parameters, and,
therefore, repeated three times.

The example below illustrates the REPT pseudo-op, which repeats by
a counter instead of for each parameter on a list like the IRP

pseudo-op. The block between REPT line and the next ENDM will be
repeated n times where n is a call argument at assembly time that
has a numerical value associated with it. The % operator is also
shown. It causes the numerical value of a symbol to be used in place
of the symbol. In the first line %CNT is converted to the value of CNT;

in the last line the % is left off and you can see that CNT was substi
tuted in the expansion rather than the value of CNT. The & operator is
used to substitute a dummy parameter in a string. If the & operator
had been left out, the text would have read STRINGS instead of
STRINGLENGTH.

2-11

SHOWOPS MACRO X,Y
CNT = 0

REPT X
MKLINE %CNT, Y ;;The value of cnt will be used

CNT = CNT + 1
ENDM ; ;end rept
MKLINE CNT, Y
ENDM

; The symbo 1 'cnt' wi 11 be used
;;End the macro

;THIS MACRO IS CALLED BY
MKLINE MACRO A,B
LINE&A DB 'THE STRING&B' ,0

ENDM

DSEG SEGMENT
DSEG ENDS

ASSUME CS:CSEG,DS:DSEG
CSEG SEGMENT

'SHOWOPS'

SHOWOPS 3,LENGTH ;invoke the macro 'SHOWOPS'
LINEO DB 'THE STRINGLENGTH',O
LINEl DB 'THE STRINGLENGTH',O
LINE2 DB 'THE STRINGLENGTH',Q
LINECNT DB 'THE STRINGLENGTH' ,0
CSEG ENDS

END

Implementing Macro Libraries

The INCLUDE pseudo-op provides an excellent way of implementing
macro libraries. You should create a source or include file that con
tains the macro definitions. Place the INCLUDE statement at the begin
ning of your source program. It specifies the include file, for
instance, MACLlB.INC. Thus, MACLlB.INC is a separate text file that con
tains all macro definitions.

You can speed up assembly and print time if you run INCLUDE only on
pass 1 by using the conditional pseudo-op IF1, as in:

I Fl
INCLUDE maclib.inc

ENDIF

2-12

The macro definitions are not listed (because printing the listing is a
pass 2 operation). Also, on pass 2, this file is not opened and read
again, which is an unnecessary operation. This use of IF1 before the
INCLUDE is not allowed if:

• The library contains source statements that actually produce
code.

• MACRO redefined itself on the first call, as shown in the preceding
example.

However, IF1 is useful if the library has macro definitions only. (The
library can also have the definitions of structures and records but no
expansions of these.)

The parameters are defined on the MACRO pseudo-op and are sepa
rated by commas. These parameters are position dependent.

Faa MACRO Pl,P2,P3

P1 is the first parameter, P2 is the second, and P3 is the third.

These symbols, defined as parameters, can appear anywhere in the
body of the macro.

An example of instructions using these parameters within a macro is:

MOV AX,Pl
P2 P3

When this macro is called (expanded), the macro call statement is
whatever has been defined in the name field of a previously defined
MACRO pseudo-op. The call statement can specify parameters that
correspond by relative position to the dummy parameters defined in
the macro definition. For example:

Faa WORDVAR,INC,AX

In this example, WORDVAR is the first parameter, INC is the second, and
AX is the third. The macro processor uses these specific character
strings as direct replacements for the dummy parameters:

P1 is replaced by WORDVAR
P2 is replaced by INC
P3 is replaced by AX.

2-13

Now the instructions within the body of the macro are produced,
showing the above substitutions, and become:

MOV AX.WORDVAR
INC AX

One parameter is used as a variable name, another as an opcode,
and the last as a register name.

A dummy parameter within the body of a macro must be separated by
commas, or it is not recognized as a dummy parameter and is not
substituted. If the body has this statement:

JMP TAPI
TAPl: ;TAPI is a label

the symbol TAP1 is considered a label. The P1 portion is not replaced
by the first parameter taken from the call statement. However, a
dummy parameter can be recognized within a string by prefixing it
with the ampersand (&) sign. For example:

JMP TA&Pl

This time the operand is substituted, producing:

JMP TAWORDVAR

An instruction op-code can be built by joining together several pieces
in this manner using the ampersand. For example:

LEAP MACRO COND.LAB
J&COND LAB
ENDM

When called by:

LEAP Z.THERE

Producing:

JZ THERE

The equal sign (=) pseudo-op is also helpful within a macro because
it can be used to redefine the value of a counter. For example:

BUMP MACRO
CNTR CNTR+l

ENDM

Note: Initialize CNTR before calling BUMP.

2-14

This counter has a value that you can get by using the special prefix,
%, before the parameter in a macro call statement:

ERRMSG MACRO TEXT
CNTR CNTR+l

MSG %CNTR,TEXT
ENDM

MSG MACRO COUNT,STRING
MSG&COUNT DB STRING

ENDM

Note: In the above example, one macro calls another.

Call the fi rst macro by:

ERRMSG 'SYNTAX ERROR'

Which produces:

MSGI DB 'SYNTAX ERROR'

Call it again with:

ERRMSG 'INVALID OPERAND'

Which produces:

MSG2 DB 'INVALID OPERAND'

The % prefix causes a different kind of substitution, a substitution of
the value of a parameter, not the character string of the name of that
parameter.

On closer examination of your results, you may wonder what hap
pened to the CNTR = CNTR + 1 statement, because the macro expan
sion does not show anything for this line. Apparently, the CNTR

variable is being increased, as shown by the two variable names,
MSG1 and MSG2. For a solution, try putting .LALL at the top of the
source. The previous try was done in the .XALL mode (by default),
which suppresses the listing of any statement that does not produce
code.

2-15

Mode Pseudo-Ops

The mode facilities provided by the IBM Macro Assembler/2 include
the /R and /E options and the .186, .286C, .286P, .287, .8086, and .8087
pseudo-ops. The Mode pseudo-ops, the IR option, and the IE option
allow the IBM Macro Assembler/2 to be used with various machine
setups and microprocessors.

Note: See Chapter 3, "Pseudo Operations," in this book for details on
each of the mode pseudo-ops, and see the discussion of the /R and IE
options in the IBN Macro Assemblerl2 Assemble, Link, and Runbook .

. ~ .

The IBM Macro Assembler/2 can assemble instructions for various
machine setups and microprocessors.

For example:

• 8086/8088-based IBM Personal Computers and IBM Personal
System/2 Computers

• 8086/8088-based IBM Personal Computers and IBM Personal
System/2 Computers with the 8087 Math Coprocessor feature

• 80286/80386-based IBM Personal Computers and IBM Personal
System/2 Computers

• 80286/80386-based IBM Personal Computers and IBM Personal
System/2 Computers with the 80287 Math Coprocessor feature.

The instructions are considered upwardly compatible at the source
code level and generally upwardly compatible at the object-code
level. This means that the instructions that are only for the 80286 are
not compatible with the instructions for the 8088. However, the 8088
type instructions are compatible with the 80286 instructions. The IBM

Macro Assembler/2 can recognize the different types of instructions.
The mode pseudo-ops tell the Macro Assembler what type of
instructions to accept.

The default mode is 8088/8086. In this mode, the 8087, 80287, and
80286 instructions cause a syntax error during assembly.

2-16

The functions of each mode pseudo-op are described below:

• A .186 mode pseudo-op allows the Macro Assembler to recognize
8086 instructions and instructions for the 80186 microprocessor.

• A .286C mode pseudo-op is required for the Macro Assembler to
recognize 80286 nonprotected instructions in addition to 8088 or
8086 instructions.

• A .286P mode pseudo-op is required for the Macro Assembler to
recognize 80286 protected instructions, in addition to 8088,8086,
and 80286 nonprotected instructions.

• A .287 mode pseudo-op is required for the assembly of 80287
floating-point coprocessor instructions. You can use the IE or IR
options for the Macro Assembler to generate 80287-type
instructions. If you specify .287 and IE, all 80287 instructions will
be generated with an FWAIT instruction.

• The .8087 mode pseudo-op lets you assemble 8087 instructions.
You can use the IE or IR assembly options to produce 8087-type
instructions, but these options are not required.

• The .8086 mode pseudo-op lets you assemble 8086 instructions
and the identical 8088 instructions. This is the default mode.

Segment Order Pseudo-Ops

The segment order pseudo-ops tell the assembler how to order the
segments from the source file when organizing the object file. These
pseudo-ops cancel the I A and Is options.

Refer to the individual segment order pseudo-ops in Chapter 3,
"Pseudo Operations," in this book.

2-17

Instructions

Each instruction is described in detail in Chapter 4, "Instruction
Mnemonics," in this book. The instructions are arranged in alphabet
ical order for ease of reference.

8087 Instructions

Some instructions are available for 8088-based IBM Personal Com
puters with the 8087 Math Coprocessor. These 8087 instructions can
be recognized by "(8087)," which appears next to the instruction
headings in Chapter 4, "Instruction Mnemonics," in the table of con
tents, and in the index of this book.

For example:

• FADD (8087) I Add Real
• FDIV (8087) I Divide Real
• FIST (8087) I Integer Store.

Note: All 8087 instructions begin with the letter F, making them
easier to distinguish from other instructions.

80286 Instructions

The 80286 has two modes of operation:

• Real address mode
• Protected virtual address mode.

See Chapter 6 of the IBM Macro Assemblerl2 Fundamentals book for
details about the 80286 architecture, and Chapter 3 of the IBM Macro
Assemblerl2 Fundamentals book for information on addressing
memory in protected mode.

The 80286 instructions can be recognized by "(80286)," which
appears next to the instruction headings in Chapter 4, "Instruction
Mnemonics," in the table of contents, and in the index of this book.
These instructions can be used only on an 80286/80386-based IBM

Personal Computer or IBM Personal System/2.

2-18

=or example:

• PUSHA (80286) Push All General Registers
• POPA (80286) Pop All General Registers
• INS/INSB/INSW (80286) Input from Port to String.

Some of the (80286) instructions are enhanced variations of 8088
instructions. For example, compare IMUL with IMUL (80286) as
described in Chapter 4, "Instruction Mnemonics," in this book.

80287 Instructions
The 80287 instruction set consists of all 8087 instructions, plus three
additional instructions: FSETPM, FSTSW, and FNSTSW.

Instruction Fields

In Chapter 4, "Instruction Mnemonics," the encoding section of each
instruction shows what the assembled code looks like. There are 1
to 4 bytes represented, depending on the particular instruction or
form of the instruction.

The general format of an assembled instruction is:

operation-code-byte [addressing-mode-byte[displacements]]

The operation-code byte determines if there is an
addressing-mode-byte; and this, in turn, determines if displacements
(disp(s)) are added to the end of the instruction.

The second instruction byte, if required, is the addressing mode byte
(modregrlm), consisting of the mode field (mod), register field (reg),
and registerlmemory field (rim).

Mode Field:

If mod = 00, then disp = 0, disp-Iow and disp-high are absent (unless,
mod = 00 and rim = 110); then EA = disp-high and
disp-Iow.

Note: See the section that follows, "Instruction Symbols
and Definitions," for clarification of EA, disp-high, and
disp-Iow.

2-19

If mod = 01, then disp = disp-Iow sign extended to 16 bits; disp-high
is absent.

If mod = 10, then disp = disp-high and disp-Iow.

If mod = 11, then rim is a reg field.

Register Field: Each of the general 8-bit, general 16-bit, base (BX and
BP), and index (81 and DI) registers can be used in arithmetic and
logical operations.

The following table shows the 3-bit binary code assignment for the
general, base, and index registers and the 2-bit binary code assign
ment for the segment registers. w is a 1-bit field in an instruction,
identifying byte instructions (w=O) and word instructions (w= 1).

8-Sit 16-Sit Segment
Registers Registers Registers
(w = 0) (w = 1)

AL = 000 AX = 000 ES = 00
CL = 001 CX = 001 CS = 01
OL = 010 OX = 010 SS = 10
SL = 011 SX = 011 OS = 11
AH = 100 SP = 100
CH = 101 SP = 101
OH = 110 SI = 110
SH = 111 01 = 111

Register/Memory Field

If rim = 000, then EA = [SX] + [SI] + disp
If rim = 001, then EA = [SX] + [01] + disp
If rim = 010, then EA = [SP] + [SI] + disp
If rim = 011, then EA = [SP] + [01] + disp
If rim = 100, then EA = [SI] + disp
If rim = 101, then EA = [01] + disp
If rim = 110, then EA = [SP] + disp
If rim = 110, and mod = 00,

then EA = disp-high and disp-Iow
If rim = 111, then EA = [SX] + disp

2-20

Flag Register

X NT IOPL OF DF IF TF SF ZF X AF X PF X CF
15 8 7 0

x = Reserved

CF = Carry Flag

PF = Parity Flag

AF = Auxiliary Carry Flag

ZF = Zero Flag

SF = Sign Flag

For the 80286 only:

NT = Nested Task Flag (1-bit)

TF = Trap Flag

IF = Interrupt Flag

DF = Direction Flag

OF = Overflow Flag

IOPL = Input Output Privilege Level (2-bit)

These fields are reserved for the 8088.

Instruction Symbols and Definitions

The abbreviations and symbols that are used in assembler
instructions are defined below. Abbreviations specific to protected
mode instructions are listed separately after the more general
symbols are defined.

2-21

Registers:

AX

AH

AL

BX

BH

BL

CX

CH

CL

OX

OH

OL

SP

BP

01

SI

CS

OS

2-22

Word Accumulator (16 bits), which can be
addressed as two 8-bit registers (AH and AL).

High-order byte of Word Accumulator (AX).

Byte Accumulator (low-order byte of Word Accu
mulator AX).

Data Base Register (16 bits), which can be
addressed as two 8-bit registers (BH and BL).

High-order byte of ax register.

Low-order byte of ax register.

Count Register (16 bits), which can be addressed
as two 8-bit registers (CH and CL).

High-order byte of cx register.

Low-order byte of ex register.

Data Register (16 bits), which can be addressed as
two 8-bit registers (OH and OL).

High-order byte of OX register.

Low-order byte of OX register.

Stack Pointer (16 bits).

Base Pointer (16 bits).

Destination index register (16 bits).

Source Index register (16 bits).

Code Segment register (16 bits).

Data Segment register (16 bits).

E5

55

IP

Flags

Operands:

REGS

REG16

L5RC,R5RC

Extra Segment register (16 bits).

Stack Segment register (16 bits).

Instruction Pointer (16 bits).

16-bit register word, where 9 flags reside.

The name or encoding of an 8-bit CPU register
location.

The name or encodi ng of a 16-bit CPU register
location.

Refer to operands of an instruction, generally left
source and right source when two operands are
used. The left-most operand is also called the des
tination operand, and the right-most is called the
source operand.

Addressing Mode Byte:

modregrlm

mod

reg

rIm

The second byte of the instruction (usually identi
fies the operands of the instruction).

Bits 7 and 6 of the modregr/m byte. This 2-bit field
defines the addressing mode.

Bits 5, 4, and 3 of the modregr/m byte. This 3-bit
field usually specifies REG8 or REG16 in the
description of an instruction, or three op-code bits
of an 8087 instruction.

Bits 2, 1, and 0 of the modregr/m byte used in
getting memory operands. This 3-bit field defines
EA with the mode and w fields. (EA and ware
defined below.)

2-23

Other:

ST

ST{i)

(i)

EA

w

s

d

(...)

The 8087 current top of the stack register.

An 8087 register stack element which is the ith reg
ister below the current top of stack register.

Bits 2, 1, and 0 of the modregr/m byte used in
getting 8087 register stack element operands.

Effective address (16 bits).

A 1-bit field in an instruction, identifying byte
instructions (w = 0) and word instructions (w = 1).

If s=O, 2-byte immediate. If s=1, 1-byte immediate;
sign bit extended to 16 bits.

A 1-bit field, d, identifies direction. For d = 0, reg
ister is the source. For d = 1, register is the destina
tion.

Parentheses mean the contents of the enclosed
register or memory location.

(BX) The contents of the BX register, which is the
address of an 8-bit operand.

({ex» An 8-bit operand, which is the contents of the
memory location pointed to by the contents of reg
ister BX.

(BX) +1:(BX) The address (of a 16-bit operand) whose low-order
8 bits reside in the memory location pointed at by
the contents of register BX and whose high-order 8
bits reside in the next sequential memory location,
(BX) + 1.

({BX) + 1:(BX» The 16-bit operand that resides at address (BX) +
1 :(BX).

2-24

Concatenation For example, ((OX) + 1 :(DX)). A word that is the
concatenation of two 8-bit bytes, the low-order byte
in the memory location pointed to by OX and the
high-order byte in the next sequential memory
location.

addr Address (16 bits) of a byte in memory.

addr-Iow Byte, least significant of an address.

addr-high Byte, most significant of an address.

addr + 1 :addr Addresses of two consecutive bytes in memory,
beginning at addr.

data Immediate operand (8 bits if w = 0; 16 bits if w = 1).

data-low Least significant byte of 16-bit data word.

data-high Most significant byte of 16-bit data word.

disp 16-bit displacement.

disp-Iow Least significant byte of 16-bit displacement.

disp-high Most significant byte of 16-bit displacement.

<- Assignment.

Assignment or equals.

+ Addition.

Subtraction.

* Multiplication.

Division.

% Modulo.

& AND.

2-25

lOR Inclusive OR.

XOR Exclusive OR.

The abbreviations and symbols used for protected mode instructions
are:

CPL Current privilege level.

OPL Descriptor privilege level.

EA Effective address.

ecode Error code.

EPL Effective privilege level.

GOT Global descriptor table.

GOTR Global descriptor table register.

GP General protection.

lOT Interrupt descriptor table.

IEM Interrupt enable mask.

IOPL Input output privilege level.

LOT Local descriptor table.

LOTR Local descriptor table register.

M5W Machine status word.

NP Not present fault.

PL Privilege level.

RPL Requested privilege level.

55 Stack segment.

2-26

TOS Top of stack.

TR Task register.

TSS Task state segment.

UD Undefined fault.

VA Virtual address.

VADW Virtual address double word.

2-27

2-28

Chapter 3. Pseudo Operations

The pseudo-ops are arranged in this chapter in alphabetical order for
ease of reference. Refer to Chapter 2, "Getting Started," in this book
for general information on pseudo operations .

. 186
Set 80186 Mode

Purpose

The .186 pseudo-op tells the Macro Assembler to recognize and
assemble 8086 or 8088 instructions and the additional instructions for
the 80186 microprocessor.

Format

.186

Remarks

The .186 does not have an operand. Use it only for programs that run
on an 80186 microprocessor.

Note: See "Mode Pseudo-Ops" in Chapter 2, "Getting Started," in
this book for general information.

3-1

.286C
Set 80286 Mode

Purpose

The .286C pseudo-op tells the Macro Assembler to recognize and
assemble nonprotected 80286 instructions. The 80286 nonprotected
instruction set also includes all 8088 and 8086 instructions.

Format

.286C

Remarks

The .286C does not have an operand. You can end this mode by
issuing the .8086 pseudo-op.

Note: See "Mode Pseudo-Ops" in Chapter 2, "Getting Started," in
this book for general information.

3-2

.286P
Set 80286 Protected Mode

Purpose

The .286P pseudo-op tells the Macro Assembler to recognize and
assemble the protected instructions of the 80286 in addition to the
8086, 8088, and non-protected 80286 instructions.

Format

.286P

Remarks

The .286P pseudo-op does not have an operand. Use it only for pro
grams run on an 80286 processor using both protected and non
protected instructions.

Note:

See "Mode Pseudo-Ops" in Chapter 2, "Getting Started," in
this book for general information.

3-3

.287
Set 80287 Floating Point Mode

Purpose

The .287 pseudo-op tells the Macro Assembler to recognize and
assemble instructions for the 80287 floating-point math coprocessor.
The 80287 instruction set consists of all 8087 instructions, plus three
additional instructions.

Format

.287

Remarks

The .287 pseudo-op does not have an operand. Use it only for pro
grams that have 80287 floating-point instructions and run on an 80287
math coprocessor.

Note:

See "Mode Pseudo-Ops" in Chapter 2, "Getting Started," in this book
for general information.

3-4

.8086
Reset 80286 Mode

Purpose

The .8086 pseudo-op tells the Macro Assembler not to recognize and
assemble 80286 instructions. This pseudo-op assembles only 8086
and 8088 instructions. (The 8088 instructions are identical to the 8086
instructions.) The Macro Assembler assembles 8086 instructions by
default.

Format

.8086

Remarks

The .8086 does not have an operand. This pseudo-op ends the Macro
Assembler 80286 assembler mode.

Notes:

1. The .8086 pseudo-op does not end the Macro Assembler
8087/80287 mode.

2. See "Mode Pseudo-Ops" in Chapter 2, "Getting Started," in this
book for general information.

3-5

.8087
Set 8087 Mode

Purpose

The .8087 pseudo-op tells the Macro Assembler to recognize and
assemble 8087 instructions and data formats. The Macro Assembler
assembles 8087 instructions by default.

Format

.8087

Remarks

The .8087 does not have an operand. Even though a source file may
contain the .8087 pseudo-op, the Macro Assembler also requires the
IE option on the MASM command line if the machine that the program
will be run on does not have an 8087 math coprocessor. The .8087
pseudo-op has the same effect as issuing the IR parameter on the
MASM command line.

Note: See "Mode Pseudo-Ops" in Chapter 2, "Getting Started," in
this book for general information.

3-6

&
Special Macro Operator

Purpose

An ampersand (&) in a macro expansion forces the assembler to
replace a dummy value with its corresponding actual parameter
value.

Format

&dummy or dummy&

Remarks

The assembler does not substitute a dummy parameter that is in a
quoted string or not preceded by a delimiter in the expansion unless
it is immediately preceded by an ampersand (&). To form a symbol
from text and a dummy, put an ampersand (&) between them.

Example

ERRGEN
ERROR&X:
ABX
AB&X

MACRO X
PUSH BX
MOV BX,"A"
JMP ERROR
ENDM

The statement ERRGEN A produces this code:

ERRORA: PUSH BX
ABX MOV BX, "A"
ABA JMP ERROR

3-7

" Special Macro Operator

Purpose

In a MACRO or repeat, a comment preceded by two semicolons (;;) is
not produced as part of the expansion.

Format

;;text

Remarks

When two semicolons (;;) are used, the comment does not appear in
the listing even when the .LALL pseudo-op is used. However, a
comment preceded by one semicolon (;) is preserved and appears in
the macro expansion.

Note: Under the default option of .XALL, a single semicolon remark is
not printed because it does not produce any machine code.
Whether or not regular comments are listed in macro expan
sions depends on the use of .LALL, .XALL, and .SALL.

The double semicolon can significantly reduce the amount of memory
workspace used by the definition of a macro. As a macro definition is
read, a single semicolon comment is kept in memory; the double
semicolon comment is immediately discarded.

The double semicolon comment can be used on a line by itself or can
be used on the comment fields of individual instructions or other
statements.

3-8

<>
Literal-Text Operator

Format
<text>

Purpose

The literal-text operator directs the assembler to treat text as a single
literal element regardless of whether it contains commas, spaces, or
other separators. The operator is most often used with macro calls
and the IRP pseudo-op to ensure that values in a parameter list are
treated as a single parameter.

The literal text operator can also be used to force MASM to treat
special characters such as the semicolon (;) or the ampersand (&) lit
erally. For example, the semicolon inside angle brackets <;>
becomes a semicolon, not a comment indicator.

MASM removes one set of angle-brackets each time the parameter is
used in a macro. When using nested macros, you will need to supply
as many sets of angle brackets as there are levels of nesting.

3-9

!
Special Macro Operator

Purpose

When you use an exclamation point (!) in an operand, the Macro
Assembler treats the next character literally. (!) is typically used to
treat special characters such as the semicolon (;) or the ampersand
(&) literally.

Format

!character

Remarks

For example, !; and <; > are equivalent entries.

3-10

0/0
Special Macro Operator

Purpose

The % special macro operator converts the expression that follows
(usually a symbol) to a number in the current RADIX. During macro
expansion, the number derived from converting the expression is
substituted for the dummy.

Format

%expression

Remarks

The percent sign (%) is used only in a macro operand. Using the %
special operator allows a macro call by value. Usually, a macro call
is a call by reference with the text of the macro operand substituti ng
exactly for the dummy.

Example

MAKERR MACRO X
LB 0

REPT X
LB LB+l

MAKLIB %LB
ENDM ;;END OF REPT
ENDM ;;END OF MACRO

MAKLIB ~lACRO Y
ERR&Y: DB 'ERROR &Y' ,0

ENDM

MAKERR 3
ERRl: DB 'ERROR 1',0
ERR2: DB 'ERROR 2',0
ERR3: DB 'ERROR 3',0

3-11

Equal Sign

Purpose

The = pseudo-op lets you set and then redefine constant symbols.
You can redefine the symbol more than once.

Format

symbol = expression

Remarks

The = pseudo-op is similar to the EQU pseudo-op except you can
redefine the symbol without producing any message. However,
unlike EQU, the = pseudo-op is limited only to numeric expressions
(no text strings) that may also include assigning a type by using the
PTR operator.

Example

EMP = 6 ;THIS IS THE SAME AS EMP EQU 6
EMP EQU 6 ;ERROR, EMP CANNOT BE REDEFINED

BY EQU
EMP = 7 ;EMP CAN BE REDEFINED
EMP = EMP+l ;CAN REFER TO ITS PREVIOUS

DEFINITION

Note: Optionally, a TYPE attribute can be assigned to the symbol by
using the PTR operator. For example:

VECTOR DWORD PTR 4

Note: If that value were to be changed by some subsequent =, the
typing symbol and PTR should be repeated, or the attribute of
the symbol will be changed. For example:

VECTOR DWORD PTR VECTOR+4

3-12

.ALPHA

Purpose

...
. ALPHA tells the assembler to arrange the segments in the object file
in alphabetical order, by segment names.

Format

.ALPHA

Remarks

.ALPHA cancels the /s option used on the MASM command line.

Example

.ALPHA
DATA SEGMENT

DATA ENDS

CODE SEGMENT

CODE ENDS

Segment CODE will precede segment DATA in the object module.

3-13

ASSUME

Purpose .' ASSUME tells the assembler the segment register to which a segment
belongs. When the assembler encounters a seg-name, it automat
ically assembles the seg-name reference under the proper segment
register. ASSUME NOTHING cancels any previous ASSUME for the indi
cated register.

Format

ASSUME seg-reg: seg-name[, ...]
or
ASSUME NOTHING

Remarks

The valid seg-reg entries are CS, os, ES, and SS.

The possible entries for seg-name are:

• The name of a segment declared with the SEGMENT pseudo-op
• The name of a group declared with the GROUP pseudo-op
• An expression, either:

SEG variable-name
or
SEG label-name

• The keyword NOTHING.

Note: If you do not use ASSUME or if you enter NOTHING for seg-name,
you must prefix each seg-name type reference with a segment
register override.

If you temporarily use a seg-reg to contain a value other than the
seg-id identified in the ASSUME statement, then you should use the
ASSUME NOTHING to indicate that the seg-reg no longer has the old
value. You can use this redefined seg-reg in an explicit reference.
When the contents of the seg-reg are used for addressability, a
seg-reg should never have a val ue that contradicts what the ASSUME

says it has.

3-14

:xample

ASSUME DS:DATA,SS:DATA,CS:CGROUP,ES:NOTHING
MOV SI,OFFSET SOURCE
MOV Dr,OFFSET DEST
MOV CX,LENGTH SOURCE

REP MOVS BYTE PTR [DIJ ,ES: [SIJ ;ES WILL BE USED AS THE
BASE REG FOR BOTH SOURCE AND DEST

Narning: If the ASSUME cs:seg-name is placed before the code
:;egment it is referencing, the assembler will ignore the ASSUME. The
~SSUME cs:seg-name statement must follow the SEGMENT definition
:;tatement of the code segment it is referencing.

rhe ASSUME statement for the cs register should be placed imme
::tiately following the code SEGMENT statement, before any labels are
::tefined in that code segment. See the SKELCOM.ASM, SKELEXE.ASM, and
)KELEXEP.ASM sample files included on your IBM Macro Assembler/2
::tiskettes for examples of ASSUME usage.

3-15

COMMENT

Purpose

COMMENT lets you enter comments about your program without having
to enter semicolons (;) for each line.

Format

COMMENT delimiter text delimiter

Remarks

The first non-blank character after COMMENT is the first delimiter. The
COMMENT pseudo-op causes the assembler to treat all text between
delimiter and delimiter as a comment. The text must not contain the
delimiter character. This pseudo-op is used for multiple-line com
ments. A COMMENT defined in the body of a macro does not appear
unless .LALL is requested.

Note: Do not use the COMMENT pseudo-op in structured Assembler
source code to be processed by the SALUT utility.

Example

COMMENT *You can enter as many lines
of text between the delimiters

as you need to describe your program.*

3-16

.CREF/.XCREF

Purpose

The output of the cross-reference information is controlled by these
pseudo-ops. The default condition is the .CREF pseudo-op. When the
assembler finds a .XCREF pseudo-op, cross-reference information
results in no output until the assembler finds .CREF.

Format

.CREF
or

.XCREF [operand]

Remarks

You must use the cross-reference utility to let these pseudo-ops func
tion.

Note: See the discussion of the Cross-Reference Utility (CREF) in the
IBM Macro Assemblerl2 Assemble, Link, and Run book for
more information.

The .XCREF pseudo-op can have an optional operand consisting of a
list of one or more variable names suppressed in the cross-reference
listing.

3-17

DB
Define Byte

Purpose

DB defines a variable or initializes memory. DB reserves one or more
bytes (8 bits).

Format

[variable-name] DB expression[, ...]

Remarks

If you enter a variable-name, the DB pseudo-op defines variable-name
as a variable. Do not follow the variable-name with a colon (:). If the
variable-name is followed by a colon (:), it is no longer a
variable-name but is considered a code-relative label with the attri
bute of NEAR and is addressable only in the code (cs) segment.

The expression entry can be one of the following:

• A constant expression. The number of constants is limited only
by the length of the line. Use a comma to separate the elements.
Each element must have a value of 255 or less.

• The question mark (?), for undefined initialization.

• A character string (ASCII characters occupying succeeding char
acter positions).

• A duplicated clause, for example:

repeat count DUP(expression) ...

Note: If you use an expression in the form of repeat count DUP(?) as
the only operand of a DB, OW, DO, DT, or DQ definition statement,
it produces an uninitialized data block. This data block is suit
able for references to locations, which cannot or should not be
overwritten by the loader. Any other form of ? initializes the
data block with data of an unknown value.

3-18

Example

NUM_BASE DB 16
FILLER DB?

INITIALIZE WITH INDETERMINATE VALUE
ONE_CHAR DB 'B'
MULT_CHAR DB 'JENNIFER JEFFREY AMARYLLES TOM'
MSG DB 'MSGTEST' ,13,10

MESSAGE, CARRIAGE RET, & LINEFEED
BUFFER DB 10 DUP(?)
TABLE DB 100 DUP(5 DUP(4),7)

100 COPIES OF BYTES=4,4,4,4,4,7
NEW_PAGE DB OCH

PRINTER CONTROL
ARRAY DB 1,2,3,4,5,6,7

3-19

DD
Define Doubleword

Purpose

Use the DD pseudo-op to define a variable or to initialize memory. DD

reserves two words (4 bytes).

Format

[variable-name] DD expression[, ...]

Remarks

If you enter a variable-name, the DD pseudo-op defines variable-name
as a variable. Do not follow variable-name with a colon (:). If vari
able-name is followed by a colon (:), it is considered a code-relative
label with the attribute of NEAR and addressable only in the code (cs)
segment.

The expression entry can be one of the following:

• A constant, in which case:

Integers are produced unless a decimal point or scientific
notation is used. Then floating point is produced.

Note: Refer to the assembler options IR and IE for their effect
on floating-point constants.

The number of constants is limited only by the length of the
line. Use a comma to separate the elements.

• A question mark (?) for unknown initialization.

• An address expression, which produces a 16-bit offset, then the
16-bit segment base-value of the symbol. (Vector).

• A duplicated clause; for example:

repeat-count DUP(expression) ...

Note: If you use an expression in the form of repeat count DUP(?) as
the only operand of a DB, DW, DD, DT, or DO definition statement,
it produces an uninitialized data block. This data block is suit
able for references to locations, which cannot or should not be

3-20

overwritten by the loader. Any other form of? initializes the
data block with data of an unknown value.

Example

OBPTR DO TABLE ; 16-bit OFFSET,
THEN 16-bit SEG
BASE VALUE

LIST DO 2 OUP(?)
HIGH_NUM DD 4294967295 ;MAXIMUM
LOW_NUM DO -4294967295 ;MINIMUM
PI DO 3.14159 ; FLOATING POINT

SINGLE PRECISION
EPSILON OD 1.0E-7 ; FLOATING POINT

SCIENTIFIC NOTATION

3-21

ilQ
Define Quadword

Purpose

Use the DO pseudo~op to define a variable or to initialize memory. DO
reserves four words (8-bytes).

Format

[variable-name] DQ expression[, ...]

Remarks

, If you enter a variable-name, the DO pseudo-op defines variable-name
as a variable. Do not follow variable-name with a colon (:). If vari
able-name is followed by a colon (:), it is considered a code-relative
label with the attribute of NEAR, and only addressable in the code (cs)
segment.

The expression entry can be one of the following:

• A constant, in which case:

Integers are produced unless a decimal point or scientific
notation is used. Then floating point is produced.

Note: Refer to the assembler options IR and IE for their effect
on floating-point constants.

The number of constants is limited only by the length of the
line. Use a comma to separate each element.

• A question mark (?) for undefined initialization.

• A duplicated clause, for example:

repeat-count DUP expression

Note: If you use an expression in the form of repeat count DUP(?) as
the only operand of a DB, DW, DD, DT, or DO definition statement,
it produces an uninitialized data block. This data block is suit
able for references to locations, which cannot or should not be
overwritten by the loader. Any other form of? initializes the
data block with data of an unknown value.

3-22

The expression entry cannot be:

• An external reference
• A variable
• A label.

Example

LONG_REAL DQ 3.14159265 ;DECIMAL MAKES IT REAL
STRING DQ 'AB' ;NO MORE THAN 2 CHARS
HIGH_NUM DQ 18446744073709551615 ;MAXIMUM
LOW_NUM DQ -18446744073709551615 ;MINIMUM
SPACER DQ 2 DUP(?) ;UNINITIALIZED DATA
FILLER DQ 1 DUP(?,?) ;INITIALIZE WITH

INDETERMINATE VALUE
HEX_REAL DQ OFDCBA9A98765432105R
PI DQ 3.14159 ; FLOATING POINT

DOUBLE PRECISION
EPSILON DQ 1.0E-14 ; FLOATING POINT

SCIENTIFIC NOTATION

3-23

DT
Define Tenbytes

Purpose

Use the DT pseudo-op to define a variable or to initialize memory. DT

produces 10 bytes of packed decimal.

Format

[variable-name] DT expression[, ...]

Remarks

If you enter variable-name, the DT pseudo-op defines variable-name
as a variable. Variable-name must not be followed by a colon (:). If
variable-name is followed by a colon (:), it is considered a code
relative label with the attribute of NEAR, and only addressable in the
code segment (cs).

The expression entry can be one of the following:

• A constant, in which case:

Packed decimal is produced unless a decimal point or scien
tific notation is used. Then 10-byte temporary format floating
point is produced.

Note: Refer to the assembler options IR and IE for their effect
on floating-point constants.

The number of constants is limited only by the length of the
line. Use a comma to separate each element.

• A question mark (?) for undefined initialization.

• A duplicated clause, for example:

repeat-count DUP (expression) ...

Note: If you see an expression in the form of repeat count DUP(?) as
the only operand of a DB, OW, DO, DT, or DQ definition statement,
it produces an uninitialized data block. This data block is suit
able for references to locations, which cannot or should not be

3-24

overwritten by the loader. Any other form of? initializes the
data block with data of an unknown value.

The expression entry cannot be:

• An external reference

• A variable

• A label.

Example

ACCUMULATOR DT
STRING DT 'CD' ;NO MORE THAN

2 CHARACTERS
PACKED_DECIMAL DT 1234567890
TEMP_REAL DT 3.14159 ;FLOATING POINT

TEMP REAL FORMAT
EPSILON DO 1.0E-16 ;FLOATING POINT

SCIENTIFIC NOTATION

3-25

DW
Define Word

Purpose

Use the DW pseudo-op to define a variable or to initialize memory. DW
reserves one word (2 bytes).

Format

[variable-name] OW expression[, ...]

Remarks

If variable-name is entered, the DW pseudo-op defines variable-name
as a variable. Variable-name must not be followed by a colon (:). If
variable-name is followed by a colon (:), it is considered to be a code
relative label with the attribute of NEAR, and only addressable in the
code (cs) segment.

The expression entry can be one of the following:

• A constant. The number of constants is limited only by the length
of the line. Use a comma to separate the elements.

• A question mark (?) for undefined initialization.

• An address expression.

• A duplicated clause, for example:
repeat-count OUP (expression) ...

Note: If you use an expression in the form of repeat count DUP(?) as
the only operand of a DB, DW, DD, DT, or DQ definition statement,
it produces an uninitialized data block. This data block is suit
able for references to locations, which cannot or should not be
overwritten by the loader. Any other form of? initializes the
data block with data of an unknown value.

3-26

Example

ITEMS OW TABLE,TABLE+I0,TABlE+20 ;OFFSETS
SEGVAL OW OFFFOH
BSIZE OW 4 * 128
LOCATION OW TOTAL + 1
AREA OW 100 DUP(?)
CLEARED DW 50 DUP(O)
SERIES DW 2 DUP(2,3 DUP(l)) ;2,1,1,1,2,1,1,1
DISTANCE DW START_TAB - END_TAB

DIFFERENCE OF LABELS IS CONSTANT

3-27

ELSE

Purpose

Each conditional pseudo-op can be used with the ELSE pseudo-op to
provide the statements to be considered for conditional assembly.
The ELSE pseudo-op allows the assembly of the statements following
it when the IF condition is not true.

Format

ELSE

Remarks

Only one ELSE is permitted for a given IF. A conditional pseudo-op
with more than one ELSE or an ELSE without a conditional pseudo-op
causes an error. ELSE does not have an operand.

Note: The conditional pseudo-ops can be nested to any level. Their
use is not limited to use within a macro. Any operand to a con
ditional must be known on pass 1 to avoid errors and incorrect
evaluation. All conditional pseudo-ops use the format:

IFxx operand

[ELSE] (optional)

ENDIF

Example

IF DEFBUF
BUF DB 100 DUP(O)

ELSE
EXTRN BUF:BYTE

ENDIF

3-28

END

Purpose

The END pseudo-op has two functions:

• END identifies the end of the source program.
• The expression on the END pseudo-op identifies the symbol that is

the name of the entry point (starting address).

Format

END [expression]

Remarks

All source files must have the END pseudo-op as the last statement.
Any lines following the END statement are ignored by the assembler.

When LINK builds an application program from one or more object
modules, it needs to know where the entry poi nt is for DOS to pass
initial control. If you do not specify an entry point, none is assumed.
Only one module can identify a label as the entry pOint by specifying
that label on its END statement. Any module lacking a DOS entry point
must not have an entry point identified on its END statement. If you
fail to define an entry point for the main module, your program may
not be able to initialize correctly. It will assemble and link without
error, but it cannot run.

Note: For applications that are .COM files, the entry point must be at
100H. This entry point must be identified on the END statement
of the first module in the list of linked .OBJ modules. Other
wise, an error occurs during the EXE2BIN conversion process.

For example, observe the use of the END statements in the two sample
source modules, TRYCOM1 and TRYCOM2, which are included with the
IBM Macro Assembler/2 software.

3-29

Example

The following example is the END statement for the section of code
that starts with the name BEGIN.

END BEGIN

3-30

ENDIF

Purpose

ENDIF ends the corresponding IF conditional pseudo-op. Each IF condi
tional pseudo-op must be ended by a matching ENDIF conditional
pseudo-op.

Format

ENDIF

Remarks

If the IF conditional pseudo-op is not ended by an ENDIF, an untermi
nated conditional message is produced at the end of each pass of the
assembler. An ENDIF without a matching IF causes an error. ENDIF

does not have an operand.

Note: The conditional pseudo-ops can be nested to any level. They
are not limited to use within a macro. Any operand to a condi
tional must be known on pass 1 to avoid errors and incorrect
evaluation. All conditional pseudo-ops use the format:

IFxx [expression]

[ELSE] (opti onal)

ENDIF

Example
IF debug

EXTRN dump:FAR
EXTRN trace:FAR
EXTRN breakpoint:FAR

ENDIF

3-31

ENDM

Purpose

End each MACRO, REPT, IRP, and IRPC pseudo-op with the ENDM

pseudo-op.

Format

ENDM

Remarks

If the ENDM pseudo-op is not used with the MACRO, REPT, IRP, and IRPC

pseudo-ops, an error occurs. An unmatched ENDM also causes an
error.

If the assembler produces an error message stating that it found the
end-of-file on the source and cannot find an END statement when there
was an END, the likely cause is a missing ENDM or ENDIF statement.
Without ENDM, the assembler treats the rest of the source as part of
the MACRO definition.

Note: The name field is not allowed. Do not confuse the ENDM

pseudo-op with other ending pseudo-ops that do require the
name of the block being ended, such as ENDP or ENDS.

Example

add up MACRO adl,ad2,ad3
MOV AX,adl first parameter in AX
ADD AX,adZ add next two parameters
ADD AX,ad3 leave sum in AX
ENDM

3-32

ENDP

Purpose

Every PROC pseudo-op must be ended with the ENDP pseudo-op.

Format

procedure-name ENDP

Remarks

If the ENDP pseudo-op is not used with the PROC pseudo-op, an error
occurs. An unmatched ENDP also causes an error.

Note: See the PROC pseudo-op in this chapter for more detail and
examples of ENDP use.

Example

PUSH AX Push third parameter
PUSH BX Push second parameter
PUSH CX Push first parameter
CALL ADDUP Call the procedure
ADD SP,6 Bypass the pushed parameters

ADDUP PROC NEAR Return address for near call
takes two bytes

PUSH BP Save base pointer - takes two more
so parameters start at 4th byte

MOV BP,SP Load stack into base pointer
MOV AX, [BP+4] Get first parameter

4th byte above pointer
ADD AX, [BP+6] Get second parameter

6th byte above pointer
ADD AX, [BP+8] Get third parameter

8th byte above pointer
POP BP Restore base
RET Return

ADDUP ENDP

In this example, three numbers are passed as parameters for the pro
cedure ADDUP. Parameters are often passed to procedure~ by
pushing them before the call so that the procedure can read them off
the stack.

3-33

ENDS

Purpose

Every SEGMENT and STRUC pseudo-op must end with a corresponding
ENDS pseudo-op.

Format

structure-name ENDS
or

segname ENDS

Remarks

If the ENDS pseudo-op is not used with the corresponding SEGMENT or
STRUC pseudo-op, an error occurs. An unmatched ENDS also causes
an error.

Note: See SEGMENT and STRUC pseudo-ops in this chapter for more
details and examples of the use of ENDS.

Example
CONST SEGMENT word public 'CONST'
SEGI DW ARRAY_DATA
SEG2 DW MESSAGE_DATA
CONST ENDS

3-34

EQU

Purpose

The EQU pseudo-op assigns the value of expression to name.

Format

name EQU expression

Remarks

If the name already has a value other than expression or if
expression is external, a message is produced. Unlike the = (equal
sign), the name entry for EQU cannot be redefined to be different from
a previous EQU definition of that same symbol.

The expression entry can be any of the followi ng:

• A symbol
• An index reference
• A segment prefix and operands
• An instruction name

• A record expression
• A 16-bit absol ute constant
• A floating-point value.

Example

B EQU [BP+8] ;(an index reference)
P8 EQU OS: [BP+8] ; (a seg prefix and operand)
CBD EQU AAO ; (an instruction name)
EMP EQU 6 ;(a constant value)

Note: Optionally a TYPE attribute can be assigned to the symbol by
using the PTR operator. For example:

VECTOR EQU OWORD PTR 4

3-35

.ERR/.ERR1/.ERR2

Purpose

The .ERR, .ERR1, and .ERR2 pseudo-ops cause errors at the points at
which they occur in the source file.

Format

.ERR
or

.ERR1
or

.ERR2

Remarks

The .ERR pseudo-op causes an error regardless of the pass .. ERR1

causes an error on the fi rst pass only .. ERR2 causes an error on the
second pass only. If you use the /0 option to request a first pass
listing, the ,ERR1 error message appears on the screen and in the
listing file. Unlike the other conditional error pseudo-ops, it causes a
warning, not an unrecoverable error.

You can place these pseudo-ops within conditional assembly blocks
and macros to tell which blocks are being expanded.

3-36

Example

This example ensures that you define either the DOS or the XENIX

symbol. If you define neither, the assembler assembles the nested
ELSE condition and produces an error message. The .ERR pseudo-op
causes an error on each pass.

IFDEF DOS

ELSE

ENDIF

IFDEF XENIX

ELSE
.ERR
ENDIF

3-37

.ERRB/.ERRNB

Purpose

The .ERRB and .ERRNB pseudo-ops test the given string.

Format

.ERRB <string>
or

.ERRNB < string>

Remarks

If string is blank, the .ERRB pseudo-op produces an error. If string is
not blank, .ERRNB produces an error. The string can be a name,
number, or expression. You must provide the angle brackets « ».

You can test for the existence of parameters by using these
pseudo-ops within macros.

Example

WORK MACRO REALARG,TESTARG
.ERRB <REALARG> " ERROR IF NO PARAMETERS
.ERRNB <TESTARG> " ERROR IF MORE THAN ONE PARAMETER

ENDM

In this example, the pseudo-ops ensure that only one argument is
passed to the macro. If no argument is passed to the macro, the
.ERRB pseudo-op produces an error. If more than one argument is
passed, the .ERRNB pseudo-op produces an error.

3-38

.ERRDEF/.ERRNDEF

Purpose

The .ERRDEF and .ERRNDEF pseudo-ops test whether name has been
defined.

Format

,ERRDEF name
or

,ERRNDEF name

~emarks

f name is defined as a label, a variable, or a symbol, the .ERRDEF

Jseudo-op produces an error. If you have not defined name, .ERRNDEF

Jrodtlces an error. When name is a forward reference, the assembler
::onsiders it undefined on the first pass and defined on the second
Jass.

:xample

n this example, .ERRDEF ensures that SYMBOL is not defined before
mtering the blocks, and .ERRNDEF ensures that you defined SYMBOL

;omewhere within the blocks.

ERRDEF SYMBOL
FDEF CONFIGI

SYMBOL EQU 0

NDIF
FDEF CONFIG2

SYMBOL EQU 1

NDIF
ERRNDEF SYMBOL

3-39

.ERRE/.ERRNZ

Purpose

The .ERRE and .ERRNZ pseudo-ops test the value of an expression.

Format

.ERRE expression
or

.ERRNZ expression

Remarks

If the expression evaluates to be false (zero), the .ERRE pseudo-op
produces an error. If the expression evaluates to be true (not zero),
the .ERRNZ pseudo-op produces an error. The expression must eval
uate to an absolute value and cannot contain forward references.

Example

BUFFER MACRO COUNT,BNAME
.ERRE COUNT LE 128 ;; RESERVE MEMORY, BUT
BNAME DB COUNT DUP (0);; NO MORE THAN 128 BYTES
ENDM

BUFFER 128,BUFl
BUFFER 129,BUF2

DATA RESERVED - NO ERROR
ERROR PRODUCED

In this example, the .ERRE pseudo-op checks the boundaries of a
parameter that the program passes to the macro BUFFER. If COUNT is
less than or equal to 128, the expression that the pseudo-op tests is
true (not zero) and the pseudo-op produces no error. If COUNT is
greater than 128, the expression is false (zero) and the pseudo-op
produces an error.

3-40

.ERRIDN/.ERRDIF

Purpose

The .ERRIDN and .ERRDIF pseudo-ops test whether two strings are iden
tical.

Format

.ERRIDN < string1 > , < string2 >
or

.ERRDIF <string1 >, < string2 >

Remarks

If the strings are identical, the .ERRIDN pseudo-op produces an error.
To be identical, each character in string1 must match the corre
sponding character in string2. These tests are case-sensitive. If the
strings are different, .ERRDIF produces an error. The strings can be
names, numbers, or expressions. You must provide the angle
brackets « ».

Example

ADDEM MACRO AD1,AD2,SUM
.ERRIDN <ax>,<AD2> ;; ERROR IF AD2 IS ax
.ERRIDN <AX>,<AD2> ;; ERROR IF AD2 IS AX
MOV AX,ADl ;; WOULD OVERWRITE IF AD2 WERE AX
ADD AX,ADZ
MOV SUM,AX ;; SUM MUST BE REGISTER OR MEMORY
ENDM

In this example, the .ERRIDN pseudo-op protects against passing the AX

register as the second parameter, because the macro does not work
if this happens. This example uses the .ERRIDN pseudo-op twice to
protect against the two most likely spellings.

3-41

EVEN

Purpose

The EVEN pseudo-op causes the program counter to go to an even
boundary (an address that begins a word). This ensures that the
code or data that follows is aligned on an even boundary.

Format

EVEN

Remarks

If the program counter is not already at an even boundary, EVEN

causes the assembler to add a NOP (no operation) so that the counter
reaches an even boundary. An error message occurs if EVEN is used
with a byte-aligned segment. If the program counter is already at an
even boundary, EVEN does nothing.

Example

Before: PC points to 0019 hex (25 decimal).

EVEN

After: PC points to 001A hex (26 decimal).

3-42

EXITM

Purpose

Use the EXITM pseudo-op when a block contains a pseudo-op that tests
for some condition and you want to end the REPT, IRP, IRPC, or MACRO

call when the test proves that the remainder of the expansion is not
required. When an EXITM pseudo-op is run, the expansion is stopped
immediately, and any remaining expansion or repetition is not
produced.

Format

EXITM

Remarks

If the block containing EXITM is nested within another block, the outer
level continues to be expanded; however, in all cases, the assembler
still checks for an ENDM for the MACRO or repeat pseudo-op and still
returns an error if ENDM is missing. ENDM and EXITM are not inter
changeable.

Example

DSEG SEGMENT

SYM (:)
REPT 16

;;CHECK FOR PARA BOUNDARY
IF ($-DSEG) MOD 16 EO 0
EXITM ;;QUIT IF PADDED TO BOUNDARY
ENDIF

SYM SYM + 1
DB SYM ;;PRODUCE NUMBERED PADDING
ENDM

3-43

EXTRN

Purpose

The EXTRN pseudo-op specifies symbols used in this assembler
module whose attributes are defined in another assembler module.

Format

EXTRN name:type[, ...]

Remarks

The symbol in the other assembler module must be declared PUBLIC.

If the EXTRN pseudo-op is given within a segment, the assembler
assumes that the symbol is located within that segment. If the
segment is not known, place the EXTRN pseudo-op outside all seg
ments and either use an explicit segment prefix or an ASSUME

pseudo-op.

The name entry is the symbol that is defined in another assembler
module. The type entry can be BYTE, WORD, DWORD, aWaRD, TBYTE, NEAR,

FAR, or ABS.

Note: If the type of EXTRN is ABS, the defining module must define it as
a constant.

For example:

FOO
PUBLI C FOO

3-44

Example

IN THE SAME SEGMENT IN ANOTHER SEGMENT

IN MODULE 1: IN MODULE 1:

CSEG SEGMENT CSEGA SEGMENT
PUBLIC TAGN PUBLIC TAGF

TAGN: TAGF:

CSEG ENDS CSEGA ENDS

IN MODULE 2: IN MODULE 2:

CSEG SEGMENT EXTRN TAGF:FAR
EXTRN TAGN:NEAR CSEGB SEGMENT

JMP TAGN JMP TAGF
CSEG ENDS CSEGB ENDS

3-45

GROUP

Purpose

The GROUP pseudo-op associates a group name with one or more seg
ments, and causes all labels and variables defined in the given seg
ments to have addrcesses relative to the beginning of the group,
rather than to the segments where they are defi ned.

Format

name GROUP seg-name [, ...]

Remarks

The seg-name entry can be

• A unique segment name assigned by the SEGMENT pseudo-op.
• A SEG variable operator.
• A SEG label operator.

The GROUP pseudo-op does not affect the order in which segments of
a group are loaded. You can specify the loading order by:

• Using the IA or IS options when activating the assembler
• Specifying the 'class' entry in the SEGMENT pseudo-op
• Responding to the Object Module prompt of the linker by speci

fying the object modules in the desired order.

Segments in a group need not be contiguous. Segments that do not
belong to the group can be loaded between segments that do belong
to the group. The only restriction is that the distance (in bytes)
between the first byte in the first segment of the group and the last
byte in the last segment must not exceed 65535 bytes.

Group names can be used with the ASSUME pseudo-op and as an
operand prefix with the segment override operator (:).

Note: A group name must not be used in more than one GROUP

pseudo-op in any source file. If several segments within the
source file belong to the same group, all segment names must
be given in the same GROUP pseudo-op.

3-46

Example

The following example shows how to use the GROUP pseudo-op to
combine segments:

In Module A:

CGROUP GROUP XXX,YYY
XXX SEGMENT

ASSUME CS:CGROUP

XXX ENDS
YYY SEGMENT

ASSUME CS:CGROUP

YYY ENDS

In Module B:

CGROUP GROUP III
ZZl SEGMENT

ASSUME CS:CGROUP

ZZl ENDS

The next example shows how to set os with the paragraph number of
the group called OGROUP.

As immediate:

MOV AX,DGROUP
MOV DS,AX

In assume:

ASSUME DS:DGROUP

As an operand prefix:

MOV BX,OFFSET DGROUP:~OO
DW Foa
DW DGROUP:FOO

3-47

Notes:

1. DW Faa returns the offset of the symbol within its segment.
2. DW DGROUP:FOO returns the offset of the symbol within the group.

The next example shows how you can use the GROUP pseudo-op to
create a .COM file type.

PAGE ,132
TITLE GRPCOM - USE GROUP TO CREATE .COM FILE

;USE EXE2BIN TO CONVERT GRPCOM.EXE
; TO GRPCOM.COM.
CG GROUP CSEG,DSEG ;ALL SEGS IN ONE GROUP
DISPLAY MACRO TEXT

LOCAL MSG
DSEG SEGMENT BYTE PUBLIC 'DATA'
MSG DB TEXT,13,lO,"$"
DSEG ENDS
;;MACRO PRODUCES PARTLY IN DSEG,
; ; PARTLY IN CSEG

MOV AH,9
MOV DX,OFFSET CG: MSG

;;NOTE USE OF GROUP NAME
;;IN PRODUCING OFFSET

INT 2lH
ENDM

DSEG SEGMENT BYTE PUBLIC 'DATA'
;INSERT LOCAL CONSTANTS AND WORK AREAS HERE
DSEG ENDS
CSEG SEGMENT BYTE PUBLIC 'CODE'

ASSUME CS:CG,DS:CG,SS:CG,ES:CG ;SET BY LOADER
ORG lOOH ;SKIP TO END OF THE PSP

ENTPT PROC NEAR ;COM FILE ENTRY AT lOOH
DISPLAY "USING MORE THAN ONE SEGMENT"
DISPLAY "YET STILL OBEYING .COM RULES"

RET ;NEAR RETURN TO DOS
ENTPT ENDP
CSEG ENDS

END ENTPT

I Fxxxx
Conditional Pseudo-ops

Purpose

You can use each conditional pseudo-op with the ELSE and ENDIF

pseudo-ops to provide the statements to be considered for conditional
assembly. The Macro Assembler assembles the statements following
the IF pseudo-op only if this condition is true.

3-48

Format

Conditional pseudo-ops use the format:

IFxxxx operand

[ELSE] (opt i ona 1)

ENDIF

Remarks

You can nest the conditional pseudo-ops to any level. They are not
limited to use within a macro. The assembler must know any
operand to a conditional on pass 1 to avoid errors and incorrect eval
uation.

IF

Format

IF expression

Remarks

This is true if expression is not O.

3-49

IFE

Format

IFE expression

Remarks

This is true if expression is O.

IF1

Format

IF1

Remarks

This is true on pass 1. IF1 does not have an operand.

Note: See the discussion of Pass 1 and Pass 2 in the IBM Macro
Assemblerl2 Assemble, Link, and Run book.

IF2

Format

IF2

Remarks

This is true on pass 2. IF2 does not have an operand.

Note: See the discussion of Pass 1 and Pass 2 in the IBM Macro
Assemblerl2 Assemble, Link, and Run book.

3-50

IFDEF

Format

IFDEF symbol

Remarks

This is true if symbol has been defined as a label, variable, or
symbol.

IFNDEF

Format

IFNDEF symbol

Remarks

This is true if symbol has not yet been defined as a label, variable, or
symbol.

IFB

Format

I FB < operand>

Remarks

This is true if the operand is blank. The angle brackets around
< operand> are required.

IFNB

Format

IFNB < operand>

3-51

Remarks

This is true if the operand is not blank. Use IFB and IFNB for testing
when dummy parameters are supplied. The angle brackets around
the < operand> are required.

IFIDN

Format

IFIDN <operand-1 >, <operand-2>

Remarks

This is true if the string operand-1 is identical to the string operand-2.
The angle brackets around the operands are required.

IFDIF

Format

I FDI F < operand-1 > , < operand-2 >

Remarks

This is true if the string operand-1 is different from the string
operand-2. The angle brackets around the operands are required.

ENDIF

Format

ENDIF

Remarks

Each IF pseudo-op must have a matching ENDIF to end the conditional;
otherwise, the instruction produces an unterminated conditional
message at the end of each pass of the assembler. An ENDIF without
a matching IF causes an error. ENDIF does not have an operand.

3-52

ELSE

Format

ELSE

Remarks

You can use each conditional pseudo-op with the ELSE pseudo-op,
which allows the assembler to produce alternate code when the
opposite condition exists. Only one ELSE is permitted for a given IF. A
conditional pseudo-op with more than one ELSE or an ELSE without a
conditional pseudo-op causes an error. ELSE does not have an
operand.

3-53

INCLUDE

Purpose

The INCLUDE pseudo-op inserts source statements from an alternate
source file into the current source file. If you use the INCLUDE

pseudo-op, you need not repeat a sequence of statements that are
common to several source files.

Format

INCLUDE [drive:][path]filename[.ext]

Remarks

The filename entry can be any valid DOS file specification.

You can specify directories in INCLUDE path names with either the
backslash (\) or the forward slash (I).

If you plan to set a search path with the II option, you should specify a
filename but no path name with the INCLUDE pseudo-op.

The assembler first looks for the INCLUDE filename in any paths speci
fied with the II option. It then checks the current directory. If the
named file is not found, the assembler displays an error message
and stops.

When the assembler finds an INCLUDE pseudo-op, it opens the source
file and assembles its statements. When the assembler reaches the
end of the file, assembly resumes with the statement following the
pseudo-op.

The assembler prints the letter C between the assembled code and
the source listirig of each line that is assembled from an INCLUDE file.

The assembler allows nested INCLUDES; however, each open INCLUDE

file requires an additional block of memory from available work
space.

When nesting INCLUDE files using DOS, you need to add a FILES = n
parameter to the CONFIG.SYS file, where n is greater than the default

3-54

of 8. Otherwise, if there is any nesting of INCLUDES, the assembler
may not be able to open all of the INCLUDE files, plus the necessary
output files required by MASM. For each level of nesting of INCLUDE,

the assembler must open one more output file. An error will result if
the assembler attempts to open more files than the currently speci
fied number of FILES in CONFIG.SYS.

Example

IFI
INCLUDE B:MYMACR.LIB
ENDIF

3-55

IRP

Purpose

The IRP pseudo-op, used in combination with the ENDM pseudo-op,
designates a block of statements to be repeated, once for each
parameter in the list enclosed by angle brackets. Each repetition
substitutes the next item in the < operandlist> entry for every occur
rence of dummy in the block.

Format

IRP dummy, < operandlist>

ENDM

Remarks

You must enclose the < operand/ist> entry in angle brackets. If a
null « » parameter is found in < operand/ist > , the dummy name is
replaced by a null value. If the parameter list is empty, the IRP

pseudo-op is ignored and no statements are copied. The assembler
processes the block once with each occurrence of < dummy>
replaced by an element from < operand/ist>.

The IRP-ENDM block does not have to be within a macro definition.

3-56

Example

In this example, the assembler produces the code DB 1 through DB 10.

IRP X,<1,2,3,4,5,6,7,8,9,10>
DB X
ENDM

In the next example:

IRP DUMMY,<"first line",13,lO,"second line",13,lO>
DB DUMMY
ENDM

The assembler produces the code:

DB "first line"
DB 13
DB 10
DB "second line"
DB 13
DB 10

3-57

IRPC

Purpose

The assembler repeats the statements in the block once for each
character in the string. Each repetition substitutes the next character
in the string for every occurrence of dummy in the block.

Format

IRPC dummy,string (or < string»

EN OM

Remarks

The IRPC pseudo-op is similar to the IRP pseudo-op except that a string
is used instead of < operandlist> , and the angle brackets around the
string are optional. The string should be enclosed with angle
brackets « » if it contains spaces, commas, or other separating
characters.

The IRPC-ENDM block does not have to be within a macro definition.

Example

In this example, the assembler produces the code DB 1 through DB 8:
IRPC X,12345678
DB X
ENDM

3-58

LABEL

Purpose

The LABEL pseudo-op defines the attributes of name:

• Segment: current segment being assembled
• Offset: current position within this segment

• Type: an operand.

Format

name LABEL type

Remarks

The type entry must be one of the following:

For data areas:

• BYTE

• WORD

• DWORD

• aWaRD

• TBYTE

• structure name
• record name

For executable code:

• NEAR

• FAR

3-59

Example

To refer to a data area but use a length different from the original
definition of that area:

BARRAY LABEL BYTE
ARRAY DW 100 DUP(O)

ADD AL,BARRAY[99] ;ADD 100th BYTE
TO AL

ADD AX,ARRAY[98] ;ADD 50th WORD
TO AX

To define multiple entry points within a procedure:

SUBRT PROC FAR

SUB2 LABEL FAR ;SHOULD HAVE

RET
SUBRT ENDP

3-60

SAME ATTRIBUTE
AS CONTAINING
PROC

.LALL/.SALL/.XALL

Purpose

You use the .LALL pseudo-op to list the complete macro text for all
expansions. The .LALL pseudo-op also allows for the display of false
conditional blocks by using the pseudo-ops .TFCOND, .LFCOND, .SFCOND

or the MASM command line option Ix.

The .SALL pseudo-op suppresses listing of all text and object code that
the macros produce.

The .XALL pseudo-op is the default condition; the assembler lists a
source line only if it produces object code.

Format

.LALL
or
.SALL
or
.XALL

3-61

·LFCOND
(List False Conditionals)

Purpose

You use the .LFCOND (List False Conditionals) to list conditional blocks
that are evaluated as false.

Format

.LFCOND

Remarks

.LFCOND does not have an operand. You can end this state either by
issuing .TFCOND, which reverts to the default state concerning listing
of false conditionals (but with the default state redefined as being in
the opposite state,) or by issuing the .SFCOND, which suppresses the
listing of false conditionals.

The assembler does not print false conditionals within macros when
. LALL is set.

Note: See the discussion of false conditional blocks in Chapter 2,
"Getting Started," in this book for details.

3-62

.LIST I.XLIST

Purpose

These two pseudo-ops control output to the listing file.

Format

. LIST
or
.XLlST

Remarks

If a listing is not being created, these pseudo-ops have no effect. The
.LlST is the default condition. When the assembler finds an .XLlST, the
assembler does not list the source and the object code until it finds a
.LlST pseudo-op.

3-63

LOCAL

Purpose

LOCAL lets you code multiple macro calls which contain labels. When
you run LOCAL, the assembler creates a unique symbol for each
dummy entry in dummylist and substitutes that symbol for each
occurrence of the dummy in the expansion. You use these unique
symbols to define a label within a macro, thus eliminating duplicate
definitions of labels on successive expansions of the macro.

Format

LOCAL dummylist

Remarks

The assembler allows the LOCAL pseudo-op only inside a MACRO

pseudo-op. The symbols created by the assembler range from
??OOOO to ??FFFF. You must avoid using the form ??nnnn for your own
symbols, because doing so produces a label or a symbol with mul
tiple definitions. If you use LOCAL statements, they must be the first
statements in the MACRO pseudo-op. You cannot place COMMENT or
semicolon remarks between MACRO and LOCAL.

You can use multiple LOCAL statements if the dummylist is too long to
fit on one line, or if you want a vertical list of LOCAL symbols.

Example

DISPLAY MACRO TT
LOCAL AGAIN

;; DISPLAY MSG POINTED TO BY BX TT TIMES
MOV CX,TT
MOV AH,9
MOV DX,BX

AGAIN: INT 21H
LOOP AGAIN
ENDM

3-64

MACRO

Purpose

This pseudo-op produces a given sequence of statements from
various places in your program, even though different parameters
may be required each time you call the sequence.

Format

name MACRO [dummylist]

ENDM

Remarks

Use PURGE to delete the macro. Use the name entry to call the macro.

A macro consists of three essential parts:

• The MACRO pseudo-op, defining the name and the dummylist
• The body of the macro, containing the prototypes of statements to

produce when you call the name of the macro.
• The ENDM pseudo-op, ending the definition of the macro.

The calling of a macro specifies the macro name (defined in the name
field of the MACRO definition statement) as a pseudo-op optionally fol
lowed, after at least one blank, with the parmlist. For example:

name [parmlist]

Each time the name of the macro is called, the assembler produces
the statements in the body of the macro and marks them in the
assembler listing with a plus (+) symbol located to the left of the
source line.

The dummylist is a series of one or more symbols, separated by a
comma, defining the symbols that are replaced when referred to
within the body of the macro. When the macro is expanded, each

3-65

symbol defined in the dummylist is replaced by an entry in the
parmlist, specified on the macro call statement. The parmlist is a
series of elements separated by a comma.

The relative positions of the elements are important, because dummy
parameters correspond to parmlist symbols in order. The assembler
replaces the first symbol defined in the dummylist with the first
element defined in the parmlist of the calling statement, the second
symbol with the second element, and so on for the entire list. The
substitution is a replacement of the dummy symbol with the character
string specified as the corresponding parameter. The number of
parameters used when the macro is called need not be the same as
the number of dummylist entries. If you have more parameters than
dummylist entries, the assembler ignores the extra ones; if fewer, the
extra dummylist entries become nulls. If the parameter has a prefix
of % in the parmlist, the assembler substitutes the dummy with the
value of the parameter. If the parameter does not have a prefix of %
in the parmlist, the assembler substitutes the dummy with the char
acter string of the parameter.

Because the assembler treats a blank after an element in the parmlist
as a null value for the next positional parameter, blanks must not
appear in the parmlist. To show that you want a parameter to contain
a significant blank or comma, enclose the entire parameter element
in angle brackets. For example:

PUSHVEC MACRO PARMl,PARM2
MOV AX, PARMI
PUSH AX
MOV AX,PARM2
PUSH AX
ENDM

PUSHVEC DS,<OFFSET VARNAME>
;PUSH DWORD VECTOR OF VARNAME ONTO STACK

You can also use angle brackets to produce variable lengths of
results. For example:

STRING MACRO NUMBERS
DB NUMBERS
ENDM

STRING <1,2,3,4>
;PRODUCE 4 BYTES OF INTEGER NUMBERS

3-66

Note: The assembler recognizes a dummy parameter in a MACRO

only as a dummy parameter. The assembler changes register
names such as AL and BX in the expansion if they are used as
dummy parameters. The assembler does not replace dummy
parameters in comments. See Chapter 2, "Getting Started," in
this book for additional information about macros.

Example

GEN MACRO XX,YY,ZZ
MOV AX,XX
ADD AX,YY
MOV ZZ,AX
ENDM

When the call is made, for example:

GEN ED,KISER,SUM

The assembler produces the following code:

MOV AX,ED
ADD AX,KISER
MOV SUM,AX

3-67

NAME

Purpose

The NAME pseudo-op assigns a module a name.

Format

NAME module-name

Remarks

The module-name cannot be a reserved word.

The assembler names every module and selects the name from the
following list in the order shown:

1. The module-name in the NAME pseudo-op statement. The assem
bler allows only one NAME pseudo-op per assembly.

2. If a NAME pseudo-op is not present, the first six characters of text
in a TITLE statement, if these six characters are valid for use in the
name field.

3. If a TITLE statement is not present or if the first six characters are
not valid for use in a name field, the default name A becomes the
module name.

The assembler passes the module-name to the linker and the Library
Manager.

3-68

ORG

Purpose

The ORG pseudo-op sets the location counter to the value of
expression. Subsequent instructions are generated beginning at this
new location.

Format

ORG expression

Remarks

The assembler must know all names used in expression on pass 1,
and the value must be either absolute or in the same segment as the
location counter.

The expression must evaluate to a 2-byte absolute number.

You can use the dollar sign ($) to refer to the current value of the
location counter.

Example

ORG 120H
ORG $+2 ;SKIP NEXT 2 BYTES

To conditionally skip to the next 256-byte boundary:

CSEG SEGMENT PAGE
BEGIN = $

IF ($-BEGIN) MOD 256
;IF NOT ALREADY ON 256 BYTE BOUNDARY

ORG ($-BEGIN}+256-«$-BEGIN) MOD 256}
ENDIF

3-69

%OUT

Purpose

The O/OOUT pseudo-op displays progress through a long assembly or
displays the value of conditional assembly parameters.

Format

O/OOUT text

Remarks

The assembler lists the text entry on the display during assembly
when the assembler finds %OUT.

Note: The assembler sends O/OOUT text to the screen even if the output
list file is also sent to the screen by CON.

Example

Example 1:

IF IBM
%OUT IBM VERSION
ENDIF

IF2
%OUT STARTING SECOND PASS ...
ENDIF

Example 2:

INNER MACRO TEXT,VAL
%OUT TEXT VAL
ENDM

HERE $ - CSEG
INNER <CURRENT LOCATION>,%HERE

3-70

PAGE

Purpose

The PAGE pseudo-op controls the length and width of each listing
page. Place the PAGE pseudo-op in the source file to control the
format of the listing file produced during assembly.

Format

PAGE [operand-1] [,operand-2]
or

PAGE +

Remarks

Using the PAGE pseudo-op without the operand entries causes the
printer to go to the top of the page and increases the page
number by 1.

Each page of the listing produced by the assembler contains a
chapter number and a page number separated by a dash. The
assembler increases the page number when a page is full or when
PAGE (no operand) is encountered. The assembler increases the
chapter number only when it finds PAGE +. Both cause the printer to
go to the top of the next page.

The operand-1 entry can be:

• A number from 10 to 255 showing the number of lines printed per
page (length). The page length without a specified number is 58.

Note: The assembler prints a printer eject character on the 58th
line of each page if you do not specify a number. This
setting allows a margin at the top and bottom of each page
with the standard 66 lines per page.

• The + sign shows that the chapter number is to be increased by
1 and the page number set to 1. If you use the + sign, it cannot
be used with any other operand.

3-71

Use the operand-2 entry to control the width of the page. The page
width without a specified number is 80. You can specify operand-2
from 60 to 132.

Note: The PAGE pseudo-op does not set the printer to the desired line
width. For proper formatting of the listing, initialize the printer
to operate at a corresponding line width. Do this before
printing the listing file by some other method, such as the DOS

MODE command.

You can imbed the printer control characters that set the character
size into the comment field of the PAGE statement. (For an example,
see the SKELEXE.ASM example file included with the IBM Macro
Assembler/2 software).

3-72

PROC

Purpose

The PROC pseudo-op identifies a block of code. By dividing the code
into blocks, each of which performs a distinct function, you can clarify
the overall function of the complete module.

The PROC pseudo-op also identifies the type of linkage used by any
RET instruction contained within a block of code.

Format

procedure-name PROe NEAR
or

procedure-name PROe FAR

RET

procedure-name ENDP

Remarks

You can execute the block of code identified by the PROC pseudo-op
in-line, jump to it, or start it with a CALL. For the procedure-name to
be accessible to any external CALL or other external reference, you
must also use the PUBLIC pseudo-op. If the PROC is the entry point of an
.EXE module that is called directly by the DOS loader, code the PROC

attribute as FAR. If the PROC is called from code that has another
ASSUME CS value, you must use the FAR attribute.

The NEAR specification causes any RET coded within the procedure to
be an intra-segment return that pops a return offset from the stack.
You can call a NEAR subroutine only from the same segment.
However, FAR causes RET to be an inter-segment return that pops both
a return offset and a segment base from the stack. You can call a FAR

subroutine from any segment; a FAR subroutine is usually called from
a segment other than the one containing the subroutine.

3-73

Example

In this example, the lower subroutine is called by the upper subrou
tine.

PUBLIC FAR_NAME
FAR_NAME PROC FAR

CALL NEAR_NAME
RET ;POPS RETURN OFFSET AND SEG BASE VALUE

FAR_NAME ENDP

PUBLIC NEAR_NAME
NEAR_NAME PROC NEAR

RET . ;POPS ONLY RET OFFSET
NEAR_NAME ENDP

You can call the lower subroutine directly from a NEAR segment by
using:

CALL NEAR_NAME

A FAR segment can indirectly call the second subroutine by first
calling the upper subroutine with:

CALL FAR_NAME

A CALL to a forward-referenced symbol assumes the symbol is NEAR.

If that symbol is FAR, the CALL must have an override, for example:

CALL FAR PTR FORREF

3-74

PUBLIC

Purpose

The PUBLIC pseudo-op makes defined symbols available to other pro
grams that are to be linked. The information referred to by the PUBLIC

pseudo-op is passed to the linker.

Format

PUBLIC symbo/[, ...]

Remarks

Symbol can be a variable or a label (including PROC labels). Register
names and any symbols defined by EQU or = to floating-point
numbers or integers larger than 2 bytes are incorrect entries.

Note: You should use the PUBLIC pseudo-op to identify any symbol
names you would like to reference within the CodeView
debugger. See the IBM Macro Assemblerl2 Assemble, Link,
and Run book for information about CodeView.

Example

PUBLIC GETINFO
GETINFO PROC FAR

PUSH BP ;SAVE CALLER'S REG
MOV BP,SP ;GET AOOR PARMS

;BOOY OF SUBROUTINE
POP BP ;RESTORE CALLER'S REG
RET ;RETURN TO CALLER

GETINFO ENOP

3-75

PURGE

Purpose

The PURGE pseudo-op deletes the definition of a specified MACRO

entry, letting you reuse space.

Format

PURGE macro-name[, ...]

Remarks

It is not necessary to PURGE a MACRO before redefining it. You may
use PURGE to recover memory during assembly by deleting the con
tents of unreferenced macros. An Out of Memory condition can occur
if a large, general-purpose macro library is included.

Example

The pseudo-op:

PURGE MACRONAME

performs the same function as redefining a macro with no contents,
as in:

MACRO NAME MACRO
ENDM

In the following example, assume that MAC1 is a macro included in
MACRO.LlB.

INCLUDE MACRO. LIB
PURGE MACI
MACI ;CALLS THE PURGED MACRO

; BUT PRODUCES NOTHING

3-76

·RADIX

Purpose

The .RADIX pseudo-op lets you change the default RADIX (decimal) to
any base from 2 to 16.

Format

. RADIX expression

Remarks

The expression entry is in decimal RADIX regardless of the current
RADIX.

The .RADIX pseudo-op does not affect real numbers initialized as vari
ables with DD, DO, or DT. Please note that this works differently from
the IBM Macro Assembler Version 2.00, which always ignored the
current RADIX when initializing variables with DD, DO, or DT.

When using .RADIX 16, be aware that if the hex constant ends in either
B or D, the assembler thinks that the B or D is a request to cancel the
current RADIX specification with a base of BINARY or DECIMAL, respec
tively. In such cases, add the H base override (just as if .RADIX 16
were not in use).

Example

The statement:

.RADIX 16
DW 120B

produces an error, because 2 is not a valid binary number.
The correct specification is:

DW 120BH

3-77

The following example:

.RADIX 16
DW 89CD

also produces an error, because C is not a valid decimal number.
The correct specification is:

DW 89CDH

The dangerous case is when no error is produced. For example:

.RADIX 16
DW 120D

produces a constant whose value is 120 decimal, not '1200' hex,
which might have been the intended value.

The following two move instructions are the same:

MOV BX,OFFH
.RADIX 16
MOV BX,OFF

The following example:

.RADIX 4
DO 15.0 ;Treated as decimal

produces a constant whose value is 15 decimal because 15.0 is a real
number. However, if you leave off the decimal point, the following:

.RADIX 4
DO 15 ;uses current radix

produces a syntax error because 5 is not a valid number in RADIX 4.

3-78

RECORD

Purpose

A record is a bit pattern you define to format bytes and words for bit
packing. The recordname itself becomes a pseudo-op used to
reserve memory.

Format

recordname RECORD fieldname:width[= exp H, ...]

Remarks

The recordname and fieldname entries are unique identifiers and you
must use them. You must enter the colon (:) between the fieldname
and width. The fieldname entry is the name of the field. The value of
fieldname, when used in an expression, is the shift count needed to
move the field to the far right. The MASK operator returns a bit mask
for the field.

The width entry evaluates to a constant frol1l1 to 16, and specifies the
number of bits defined by fieldname. If the total width is larger than 8
bits, the assem bier uses 2 bytes; otherwise, it uses 1 byte. If the total
number of bits defined is fewer than 8 (a byte) or 16 (a word), the
assembler right-justifies the fields into the least-significant bit posi
tions of the byte or word.

The exp entry contains the default value for the field. If the field is at
least 7 bits wide, you can initialize it to an ASCII character (for
example, FIELD:7 = 'Z/).

Records can be used in expressions in the form:

recordname <[init-list]>

The < [init-Iist] > entry is an optional list of the initialization values.
The angle brackets must be coded as shown, but the values do not
have to be given.

3-79

To initialize a record, use the form:

[name] recordname <[~][, ...]>
or

[name] recordname ~ DUP«[~][, ...]»

The name entry is an optional name for the first byte or word of the
reserved memory. The recordname specifies the name you assigned
to the record from the RECORD pseudo-op that defines the format and
optional default field values. The < [exp][, ...] > entry specifies a list
of field-initialization or optional override values so that trailing fields
default.

In the second form above, the angle brackets (shown outside the
square brackets) around the second exp are required. If you leave
[exp] blank, either the default value applies, or the value is unknown.

Example

Define the record fields; begin with most significant fields first:

MODULE RECORD R:7,E:4,D:5

Fields are 7 bits, 4 bits, and 5 bits; the assembler gives no default
value. Most significant byte first, this looks like:

RRRR RRRE EEED DDDD

To reserve its memory:

STG_FLD MODULE <7,,2>

This defines R = 7 and D = 2, and leaves E unknown; it produces 2
bytes, the least significant byte first:

02 OE

Define the record fields:

AREA RECORD FLA:8='A' ,FLB:8='B'

To reserve its memory:

CHAR_FLD AREA <, 'P'>

This defines FLA = 'A' (the default) and changes FLB = 'P'.

Note: Be aware of the 132-character limit on the length of lines
allowed by the assembler when defining a RECORD. Because of
the 132-character limit, you might want to select short names

3-80

for the fields in order to fit them on one line. See the FNSTSW

instruction in Chapter 4, "Instruction Mnemonics," in this book
for a sample RECORD defining the status bits in the 8087 STATUS

WORD.

To use a field in the record:

DEFFIELD RECORD X:3,Y:4,Z:9

TABLE DEFFIELD 10 DUP«0,2,255»

MOV DX,TABLE[2]
;MOVE DATA FROM RECORD TO REGISTER
; OTHER THAN SEGMENT REGISTER

AND OX, MASK Y
;MASK OUT FIELDS X AND Z

TO REMOVE UNWANTED FIELDS
The MASK of Y equals 1E00H
0001111000000000B (lE00H) IS THE VALUE

MOV CL,Y ;GET SHIFT COUNT
9 IS THE VALUE

SHR DX,CL ;FIELD TO LOW-ORDER
BITS OF REGISTER, OX IS NOW EQUAL TO
THE VALUE OF FIELD Y

MOV CL,WIDTH Y ;GET NUMBER OF
BITS IN FIELD
4 IS THE VALUE

The WIDTH of Y equals 4.

3-81

REPT

Purpose

The assembler repeats the block of statements between REPT and
EN OM the number of times in the expression entry.

Format

REPT expression

ENDM

Remarks

If the expression entry contains any external or undefined terms, an
error is produced.

The REPT-ENOM block does not have to be within a macro definition.

Example

This example produces a series of ordered bytes up to a paragraph
boundary.
DSEG SEGMENT

SYM 0
REPT 16

;;CHECK FOR PARA BOUNDARY
IF ($-DSEG) MOD 16 EO 0
EXITM
ENDIF

SYM SYM + 1
DB SYM
ENDM

3-82

SEGMENT

Purpose

At run time, each instruction and each variable of your program lies
within some segment. Use the SEGMENT pseudo-op to define all code
producing instructions as being within a segment. Your assembly
module can be a part of a segment, a whole segment, parts of several
segments, several whole segments, or a combination of these.

Format

segname SEGMENT [align-type][combine-type] [I class I]

segname ENDS

Remarks

The assembler assigns the symbol entry for a segment attribute of an
align-type entry, a combine-type, and a character string defining
'class' (if present); the assembler also keeps the length of the
segment.

Note: If you specify two or three attributes, separate them with a
space.

The align-type entry can be PARA, BYTE, WORD, or PAGE. The definition
of these types are:

• PARA (Default): This align-type specifies that the segment begin on
a paragraph boundary (the address is divisible by 16). That is,
the least significant hexadecimal digit of the address equals OH.

• BYTE: This align-type specifies that the segment can begin any
where.

• WORD: This align-type specifies that the segment begins on a word
boundary (an even address where the least significant bit of the
address equals 0).

3-83

• PAGE: This align-type specifies that the segment begins on a page
boundary (an address divisible by 256 and whose two least
significant hexadecimal digits are equal to OOH).

The combine-type entry can be PUBLIC, COMMON, AT expression, STACK,

or no entry (which defaults to not combinable). The definitions for
these types are:

• PUBLIC: This combine-type specifies that this segment is con
nected to others of the same name when linked.

• COMMON: This combine-type specifies that this segment and all
other segments of the same name that are linked together begin
at the same address, and thus overlap. The length of a linked
COMMON is the maximum of the linked segments.

• AT expression: This combine-type specifies that this segment is
located at the 16-bit paragraph number evaluated from a given
expression. The expression can be any valid constant; however,
it cannot be a forward reference. You cannot use the AT

expression to force loading of code at a fixed address; rather, it
permits you to define labels or variables at fixed offsets within
fixed areas of memory, such as Read Only Memory or the vector
space in low memory. No code is produced for this segment.

• STACK: This combine-type specifies that this segment is part of the
run-time stack segment, called last-in, first-out (LIFO) using the
assembler instructions such as: PUSH, POP, CALL, INT, IRET, POPF,

PUSHF, and RET. If you are writing the application to be an .EXE

file, a STACK segment is required; if a .COM file, a STACK segment
should not be assembled. The linker issues a warning message
if no STACK segment is defined. Ignore that linker warning
message if you are converting the application from an .EXE file to
a .COM file.

• MEMORY: This combine-type, although recognized by the assem
bler, cannot be used with the linker and should not be used in
your code. If used, it is treated as PUBLIC.

The 'class' entry is the name (must be enclosed in single quotes)
used to group segments at link time.

You can nest segment definitions. When segments are nested, the
assembler acts as if they are not nested and processes them by
attaching the second part of the split segment to the first. When the

3-84

assembler detects the ENDS pseudo-op, the assembler takes up the
next segment, completes it, and continues. Overlapping segments
are not permitted.

Example

The following example combines logical segments into a physical
segment:

In module A-
SEGA SEGMENT PUBLIC

ASSUME CS:SEGA

SEGA ENDS

In module 8-
SEGA SEGMENT PUBLIC

ASSUME CS:SEGA
· (Note: LINK adds this
· segment to same named
· segment in module A)

SEGA ENDS

Nesting of Segments:

CSEG SEGMENT

MOV AX,BX
DSEG SEGMENT

Pl DW 6
DSEG ENDS

(CSEG continues ...)

CSEG ENDS

3-85

.SEQ

Purpose

.SEQ tells the assembler to arrange the segments in the object file in
the order they appear in the source file.

Format

.SEQ

Remarks

.SEQ cancels the / A option or .ALPHA pseudo-op.

Example

.SEQ
DATA SEGMENT

DATA ENDS

CODE SEGMENT

CODE ENDS

Segment DATA will precede segment CODE in the object module.

3-86

.SFCOND

Purpose

.SFCOND suppresses the listing of false conditional blocks.

Format

.SFCOND

Remarks

.SFCOND does not have an operand. End the state caused by .SFCOND

either by issuing .TFCOND (which reverts to the default state con
cerning listing of false conditionals but with the default state rede
fined as being in the opposite state) or by issuing .LFCOND (which
forces the listing of false conditionals).

Note: See the discussion of false conditional blocks in Chapter 2,
"Getting Started," in this book for detail.

3-87

STRUC

Purpose

The STRUC pseudo-op is like the RECORD pseudo-op except that STRUC

has a multi-byte capability. Reserving memory for and initializing the
values in a STRUC block is the same as for the RECORD pseudo-op.

Format

structurename STRUC

[fieldnames] (a DEFINE pseudo-op) exp

structurename ENDS

Remarks

The structurename itself becomes a pseudo-op that reserves
memory. Inside the STRUC-ENDS block, DB, OW, DO, DQ, and DT

pseudo-ops can reserve space. It is not necessary for a data field
defined within a STRUC to have a variable name. Any labels on a
DEFINE pseudo-op inside the STRUC-ENDS block become the fieldnames.
First values given in the STRUC-ENDS block are default values for the
various fields. These values, or fields are of two types:

• Overridable
• Not overridable.

A simple field (a field with only one entry) can be overridden. A mul
tiple field (a field with more than one entry) cannot be overridden.

If the field contains a string, another string can override it. However,
if the overriding string is shorter than the initial string, the assembler
pads the space to the right with blanks. If the overriding string is
longer, the assembler cuts off the extra characters.

3-88

The format that refers to an item defined within the STRUC-ENDS block
(for example, an operand) is:

variable.field

where the variable represents a variable. The field entry represents
a label given to a define data pseudo-op inside the STRUC-ENDS block.
(Code the period as shown.) The value of the field entry is the offset
within the addressed structure.

You cannot use any pseudo-ops, except DB, DO, DQ, DT, and OW, within
a STRUC-ENDS structure definition.

Note: A simple DO field initialized with 0 or any value other than "?"
cannot be overridden by an address; it can only be overridden by a
constant value. You must initialize a DO field with "?" in a STRUC if you
want to later override that DO field with an address. This differs from
the previous version of the Macro Assembler, the IBM Personal Com
puter Macro Assembler Version 2.00, which did allow addresses to
override DO fields regardless of how the field was initialized.

Example

Definition:

STR STRUC
FIELD1 DB 1,2
FIELD2 DB 10 DUP(?)
FIELD3 DB 5
FIELD4 DB 'BREINER'
FIELD5 DD ?
FIELD6 DD 0
STR ENDS

Allocation:

;CANNOT BE OVERRIDDEN
;CANNOT BE OVERRIDDEN
;CAN BE OVERRIDDEN
;CAN BE OVERRIDDEN
;CAN BE OVERRIDDEN
;CANNOT BE OVERRIDDEN BY AN ADDRESS

DB_AREA STR <,,7, 'TOM C'> ;OVERRIDES 3rd & 4th
FIELDS ONLY

Reference:

MOV AL,[BXJ.FIELD3
MOV AL,DB_AREA.FIELD3

3-89

SUBTTL

Purpose

The SUBTTL pseudo-op specifies a subtitle listed on the line after the
title on each page heading.

Format

SUBTTL [text]

Remarks

The text entry is cut off after 60 characters. You can give any number
of SUBTTLS in a program.

Subtitles are turned off unless the SUBTTL pseudo-op is used. To turn
off subtitles again for a portion of the listing after the SUBTTL

pseudo-op is given, use another SUBTTL pseudo-op but with a null
entry in the text string.

SUBTTL does not cause a skip to the top of the page.

SUBTTL is usually followed by PAGE.

3-90

.TFCOND

Purpose

The .TFCOND pseudo-op toggles the default setting that controls the
listing of false conditionals, then sets the current condition to that of
the new default, thus ending the effect of a .SFCOND or .LFCOND

pseudo-ops.

Format

.TFCOND

Remarks

The .TFCOND pseudo-op does not have an operand. The .TFCOND

pseudo-op sets the current and default setting to the non-default con
dition. If the Ix option is given on the MASM command line for a file
that contains .TFCOND, the Ix option reverses the effect of the .TFCOND

pseudo-op.

Note: See the discussion of false conditional blocks in Chapter 2,
"Getting Started," in this book for details.

3-91

TITLE

Purpose

The TITLE pseudo-op specifies a title to be listed on the second line of
each page.

Format

TITLE text

Remarks

If more than one TITLE is given, an error results. The fi rst six charac
ters of the title are used as the module name unless a NAME

pseudo-op is used. If you do not use a NAME or TITLE pseudo-op, the
module name defaults to "A".

If a TITLE is not given, or if any of the six characters of the TITLE text
are not valid in a name field, the TITLE is not used for the name.

The TITLE pseudo-op is placed in the source file to control the format
ting and the printing of the listing file produced during assembly.

The text entry is limited to 60 characters.

3-92

Chapter 4. Instruction Mnemonics

This chapter describes the instructions used by your IBM Macro
Assembler/2.

The instructions are arranged in alphabetical order for ease of refer
ence.

See Chapter 2, "Getting Started," in this book for general information
about instructions.

4-1

AAA
ASCII Adjust for Addition

Purpose

AAA corrects the result in AL of adding two unpacked decimal oper
ands, resulting in an unpacked decimal sum.

Format

AAA

Remarks

If the lower half-byte (4 bits) of AL is greater than 9 or if the auxiliary
carry flag has been set, 6 is added to AL and 1 is added to AH. AF and
CF are set. The new value of AL has an upper half-:-byte of all zeroes,
and the lower half-byte is the number between 0 and 9 created by the
above addition.

Logic

if ((AL) & OFH) > 9 or (AF) = 1 then
(AL) <- (AL) + 6
(AH) <- (AH) + 1
(AF) <- 1
(CF) <- (AF)
(AL) < - (AL) & OFH

Flags

Affected- AF,CF
Undefined- OF,PF,SF,ZF

Encoding

00110111

37

4-2

Example

AAA ;AFTER THE ADDITION

4-3

AAD
ASCII Adjust for Division

Purpose

AAD adjusts the dividend in AL before a following instruction divides
two unpacked decimal operands, so that the result of the division is
an unpacked decimal quotient.

Format

AAD

Remarks

The high-order byte (AH) of the accumulator is multiplied by 10 and
added to the low byte (AL). The result is stored into AL. AH is set to
zero.

Logic

(AL) <- (AH)*OAH + (AL)
(AH) <- 0

Flags

Affected- PF,SF,ZF
Undefined- AF,CF,OF

Encoding

11010101 00001010

D5 OA

Example

AAD ;BEFORE THE DIVISION

4-4

AAM
ASCII Adjust for Multiply

Purpose

AAM corrects the result in AX of multiplying two unpacked decimal
operands, resulting in an unpacked decimal product.

Format

AAM

Remarks

The contents of AH are replaced by the result of dividing AL by 10.
Then, the contents of AL are replaced by the remainder of that divi
sion, that is, by AL module 10.

Logic

(AH) <- (AL)/OAH
(AL) <- (AL)%OAH

Flags

Affected- PF,SF,ZF
Undefined- AF,CF,OF

Encoding

11010100 00001010

D4 OA

Example

AAM ;AFTER THE MULTIPLICATION

4-5

AAS
ASCII Adjust for Subtraction

Purpose

AAS corrects the result in the AL register of subtracting two unpacked
decimal operands, resulting in an unpacked decimal difference.

Format

AAS

Remarks

If the lower half of AL is greater than 9, or if the auxiliary carry flag is
set, 6 is subtracted from AL and 1 is subtracted from AH. The AF and
CF flags are set. The old value of AL is replaced by a byte whose
upper half-byte is all zeroes and whose lower half-byte is a number
from 0 to 9 created by the above subtraction.

Logic

if ((AL) & OFH) > 9 or (A F) == 1 then
(AL) <- (AL) - 6
(AH) <- (AH) - 1
(AF) <- 1
(CF) <- (AF)
(AL) <- (AL) & OFH

Flags

Affected- AF,CF
Undefined- OF,PF,SF,ZF

Encoding

00111111

3F

4-6

Example

AAS ;AFTER THE SUBTRACTION

4-7

ACC
Add with Carry

Purpose

ADC adds the two operands, adds 1 if the CF flag is set, and returns the
result to the destination (left-most operand).

Format

ADC destination,source

Remarks

If the carry flag is set to 1, ADC adds 1 to the sum of the two operands
before storing the result into the destination (left-most operand). If
the carry flag is set to 0, 1 is not added.

Logic

If (CF) = 1, (DEST) <- (LSRC) + (RSRC) + 1
ELSE (DEST) <- (LSRC) + (RSRC)

Flags

Affected- AF,CF,OF,PF,SF,ZF

4-8

Memory or Register Operand with Register Operand

Encoding

000100dw modregr/m

10 + dw modregr/m

If d = 1, LSRC = REG, RSRC = EA,OEST = REG
If d = 0, LSRC = EA, RSRC = REG, OEST = EA

Example

ADC AX,SI
ADC D1,BX
ADC CH,BL

ADC DX,MEM_WORD
ADC AX,BETA[SIJ
ADC CX,ALPHA[BXJ [SIJ

ADC BETA[D1J,BX
ADC ALPHA[BXJ [srJ ,Dr
ADC MEM_WORD,AX

4-9

Immediate Operand to Accumulator

Encoding

0001010w data

14 + w data

If w = 0, LSRC = AL, RSRC = data, DEST = AL
If w = 1, LSRC = AX, RSRC = data, DEST = AX

Example

ADC AL,3
ADC AL,VALUE_13_IMM
ADC AX,333
ADC AX,IMM_VAL_777

4-10

Immediate Operand to Memory or Register Operand

Remarks

If an immediate-data byte is added to a register or memory, that byte
is sign-extended to 16 bits before the addition. For this situation, the
instruction byte is 83H (the sand w bits are both set).

Encoding

100000sw mod010r/m data

80 + sw mod010r/m data

LSRC = EA,RSRC = data,DEST = EA

Example

ADC BETA[SI],4
ADC ALPHA[BX] [DI],IMM4
ADC MEM_LOC,7396

ADC BX,IMM_VAL_987
ADC DH,65
ADC CX,432

4-11

ADD
Addition

Purpose

ADD adds the two operands and returns the result to the destination
operand.

Format

ADD destination,source

Remarks

ADD stores the sum of the two operands into the destination (leftmost)
operand.

Logic

(DEST) <- (LSRC) + (RSRC)

Flags

Affected- AF,CF,OF,PF,SF,ZF

4-12

Memory or Register Operand with Register Operand

Encoding

OOOOOOdw modregr/m

00 + dw modregr/m

If d = 0, LSRC = REG,RSRC = EA, DEST = REG
If d = 1, LSRC = EA, RSRC = REG, DEST = EA

Example

Register to register:

ADD AX.BX
ADD eX.DX
ADD 01.51
ADD BX.BP

Memory to register:

ADD eX.MEM_WORD
ADD AX.BETA[SIJ
ADD DX.ALPHA[BXJ [DIJ

Register to memory:

ADD GAMMA[BPJ [DIJ .BX
ADD BETA[DIJ,AX
ADD MEM_WORD,ex
ADD MEM_BYTE,BH

4-13

Immediate Operand to Accumulator

Encoding

0000010w data

04 + w data

If w=O, LSRC = AL,RSRC = data, OEST = AL.
If w = 1, LSRC = AX, RSRC = data, OEST = AX.

Example

ADD AL,3
ADD AX,456
ADD AL,IMM_VAL_12
ADD AX,IMM_VAL_8529
ADD AX,IMM_VAL_6AB9H ;DESTINATION AX

4-14

Immediate Operand to Memory or Register Operand

Remarks

If an immediate-data byte is added from a register or memory word,
that byte is sign-extended to 16 bits before the addition. For this situ
ation, the instruction byte is 83H (the sand w bits are both set).

Encoding

100000sw modOOOr/m data

80 + sw modOOOr/m data

LSRC = EA, RSRC = data, DEST = EA

Example

Immediate to memory:
ADD MEM_WORD,48
ADD GAMMA[DI] ,IMM_84
ADD DELTA[BX],IMM_SENSOR_5

Immediate to register:

ADD BX,ORIG_VAL
ADD CX,STANDARD_COUNT
ADD DX,1776

4-15

AND
Logical AND

Purpose

AND does the bit logical conjunction of the two operands and returns
the result to the destination operand.

Format

AND destination,source

Remarks

The two operands are ANDed, the result having a 1 only in those bit
positions where both operands had a 1, with zeroes in all other bit
positions. The result is stored into the destination (leftmost) operand.
The carry and overflow flags are reset to O.

Logic

(DEST) <- (LSRC) & (RSRC)
(CF) <- 0
(OF) <- 0

Flags

Affected- CF,OF,PF,SF,ZF.
Undefined- AF

4-16

Memory or Register Operand with Register Operand

Encoding

001000dw modregr/m

20 + dw modregr/m

If d = 1, LSRC = REG,RSRC = EA, DEST = REG
If d = 0, LSRC = EA, RSRC = REG, DEST = EA

Example

Register to register:

AND AX,BX
AND CX,DI
AND BH,CL

Memory to register:

AND SI,MEM_NAME_WORD
AND DX,BETA[BX]
AND BX,GAMMA[BX] [SI]
AND AX,ALPHA[DI]
AND DH,MEM_BYTE

Register to memory:

AND MEM_NAME_WORD,BP
AND ALPHA[DI] ,AX
AND GAMMA[BX] [D1],S1
AND MEM_BYTE,AL

4-17

Immediate Operand to Accumulator

Encoding

0010010w data

24 + w data

If w = 0, LSRC = AL, RSRC = data, DEST = AL
If w = 1, LSRC = AX, RSRC = data, DEST = AX

Example

AND AL,7AH
AND AH,OEH
AND AX,IMM_VAL_MASK3

4-18

Immediate Operand to Memory or Register Operand

Encoding

1000000w mod100r/m data

80 + w mod100r/m data

LSRC = EA, RSRC = data, DEST = EA

Example

Immediate to register:

AND BL,lOOllllOB
AND CH,3EH
AND DX,7A46H
AND SI,987

Immediate to memory:
AND MEM_WORD,7A46H
AND MEM_BYTE,46H
AND GAMMA[DI],IMM_MASK14
AND CHI_BYTE[BX][SI],lllOOlllB

Another example:

FLAGS DB
BITMASK EQU 20H

AND FLAGS,OFFH-BITMASK ;TURN OFF
; FLAG BIT

4-19

ARPL (80286P)
Adjust Requested Privilege Level

Purpose

ARPL is used to ensure that a selector option to a subroutine requests
no more privilege than allowed. The right operand is the return link
selector of the caller, a copy of the cs which defines the CPL of the
caller.

Format

ARPL destination,source

Remarks

ARPL adjusts the RPL (requested privilege level) field of a selector in
the first operand (a memory location or register) to the maximum of
its original value and the value of the RPL field in the second operand
(a register). If the ARPL instruction changes the RPL field of the left
operand, the assembler sets the zero flag. Otherwise, the zero flag is
cleared.

You must use the .286P pseudo-op to enable this instruction.

See Chapter 6, "80286/80386-8ased Personal Computers," in the IBM

Macro Assembler/2 Fundamentals book for information about the
80286 architecture.

Logic

if LSRC.RPL < RSRC.RPL then
LSRC.RPL <- RSRC.RPL
(ZF) <-1

else (ZF) < - 0

4-20

Flags

Affected- ZF

Encoding

01100011 modregr/m
63 modregr/m

Example

ARPL BX,CX
ARPL [BP].ARG2,AX

4-21

BOUND (80286)
Detect Value Out of Range

Purpose

BOUND is used to ensure that a signed array index is within the limits
defined by a 2-word block of memory.

Format

BOUND destination,source

Remarks

The first operand (a register) must be above or equal to the first word
in the memory location referred to by the second operand, and below
or equal to the second word in that memory location. The source
operand must refer to memory.

The .286C pseudo-op is required.

Logic

if ((REG16) < (RSRC)) or ((REG16) > ((RSRC) + 2)) then
(SP) <- (SP)-2
((SP) + 1 :(SP)) <- FLAGS
(IF) <- 0
(TF) <- 0
(SP) <- (SP)-2
((SP) + 1 :(SP)) <- (CS)
(CS) <- (16H)
(SP) <- (SP)-2
((SP) + 1 :(SP)) <- (IP)
(IP) <- (14H)

Flags

None

4-22

Encoding

01100010 modregr/m

62 modregr/m

Example
DW
DW

ARRAY DW
ARRAY_END EQU

$+4 ;Beginning address of ARRAY
ARRAY_END ; DESCRIPTORS
20 DUP(O)
$

BOUND SI,DWORD PTR ARRAY-4

4-23

CALL
Call a Procedure

Purpose

CALL pushes the offset address of the next instruction onto the stack
(for an inter-segment call, the cs segment register is pushed first) and
then transfers control to the target operand.

Direct calls and jumps can only be made to labels relative to CS, not
to variables.

The assembler g~erates a NEAR or FAR call depending on whether
the target procedure name is defined as NEAR or FAR. As shown in the
indirect-call examples that follow, calls through variables can use the
PTR operator to show the intended use of one word for NEAR calls, or
two words for calls to FAR labels or procedures. Indirect calls using
word registers (without square brackets) are of necessity NEAR calls.

Format

CALL target

Remarks

If this is an inter-segment call:

1. The stack poi nter is decreased by 2, and the contents of the cs
register are pushed onto the stack. cs is filled by the second
word (segment) of the doubleword inter-segment pointer.

2. The stack pointer is decreased by 2.

3. The contents of the Instruction Pointer (IP) are pushed onto the
stack.

4. The contents of the IP are replaced by the offset of the target des
tination (the offset of the procedure's first instruction).

An intra-segment or intra-group call performs steps 2, 3, and 4 only.

4-24

Logic

1) if inter-segment then
(SP) <- (SP) - 2

((SP) + 1 :(SP)) <- (CS)
(CS) <- SEG

2) (SP) <- (SP) - 2
3) ((SP) + 1 :(SP)) <- (IP)
4) (IP) <- DEST

Flags

None

4-25

Direct Intra-Segment or Intra-Group

Encoding

11101000 disp-Iow disp-high

E8 disp-Iow disp-high

DEST = (IP) + disp

Example

CALL NEAR_LABEL
CALL NEAR_PROC

Direct Inter-Segment

Encoding

10011010 offset-low offset-high seg-Iow seg-high

9A offset-low offset-high seg-Iow seg-high

DEST = offset, SEG = seg

Example

CALL FAR_LABEL
CALL FAR_PROC

Indirect Inter-Segment

Encoding

11111111 mod011 rIm

FF mod011 rIm

DEST = (EA),SEG = (EA + 2)

4-26

Example

CALL DWORD PTR [BX]
CALL DWORD PTR VARIABLE_NAME[SI]
CALL MEM_DOUBLE_WORD

4-27

Indirect Intra-Segment or Intra-Group

Encoding

11111111 mod010r/m

FF mod010r/m

DEST = (EA)

Example

CALL WORD PTR [BX] ; BX HAS OFFSET I N DATA
; SEGMENT OF WORD THAT HAS
; OFFSET OF ENTRY POINT

CALL WORD PTR VARIABLE_NAME
CALL WORD PTR [BX] [SI]
CALL WORD PTR [Dl]
CALL WORD PTR VARIABLE_NAME [BP] [SI]
CALL MEM_WORD
CALL BX ;REG HAS OFFSET IN CODE

; SEGMENT TO ENTRY POINT

os is the implicit segment register in a register-indirect call, unless
you use BP or specify an override. Use the implicit segment register
to build the address that contains the offset (and segment, if a FAR
call) of the target of the call. If BP is used, the segment register ss is
used. However, if a segment prefix byte is explicitly specified; such
as:

CALL WORD PTR ES: [BP] [01]

then the segment register ES is used. An implicit segment register for
indirect calls through variables or address-expressions is determined
by the address-expression in the source line and the applicable
ASSUME pseudo-op. See Chapter 3, "Pseudo Operations," in this
book.

When you use CALL to transfer control, a RETurn is implied. With indi
rect CALLS, you must carefully ensure that the type of the CALL
matches the type of matches the type of RETurn, or errors can result
that are difficult to trace. Be sure cs is saved and restored.

The type of RETurn is determined by the PROC pseudo-op.

4-28

CALL (80286P)
Call a Procedure

Purpose

CALL pushes the offset of the next instruction onto the stack (for an
inter-segment call the cs segment register is pushed first) and then
transfers control to the target operand.

Direct calls and jumps can only be made to labels relative to cs, not
to variables. NEAR is assumed unless FAR is stated in the instruction
or in the declaration of the target label.

As shown in the indirect-call examples that follow, calls through vari
ables can use the PTR operator to show the intended use of one word
for NEAR calls, or two words for calls to FAR labels or procedures.
Indi rect calls using word registers (without square brackets) are of
necessity NEAR calls.

See Chapter 6, "80286/80386-8ased Personal Computers," in the IBM

Macro Assembler/2 Fundamentals book for information about the
80286 architecture.

Format

CALL target

4-29

Direct Intra-Segment and Indirect Intra-Segment

Remarks

There are two types of intra-segment calls. One is direct; the other is
indirect. Use a NEAR label as the target address to specify a direct
(IP-relative) intra-segment call. In this case, the 16-bit displacement
is relative to the first byte of the next instruction.

For an indirect intra-segment call, the target address is taken from a
register or variable pointer without modification; thus, it is not IP-rela
tive. The indirect call is specified when the operand is any (16-bit)
general, base, or index register or when the operand is a word vari
able. When the effective address is a variable, os is the implied
segment register for all EAS not using BP.

The return link, which is pushed to the TOS during the CALL, is the
address of the instruction following the CALL.

Logic

if di rect then
IP <- IP + disp
(SP) <- (SP - 2)
((SP + 1):(SP)) < - return link

else
IP <- (addr)
(SP) < - (SP -2)
((SP) + 1:(SP)) <- return link

Flags

None are affected, except when the task switch occurs; then all are
affected.

4-30

Direct (lP-Relative) Intra-Segment

Encoding

11101000 disp-Iow disp-high

E8 disp-Iow disp-high

Example

CALL NEAR_LABEL

Indirect Intra-Segment

Encoding

11111111 mod010r/m

FF mod010r/m

Example

CALL SI ;SI is a 16-bit index register
CALL WORD PTR [SI] ;operand is a word variable
CALL POINTER_TO_PLACE ;operand is a word variable

4-31

Direct Virtual Address and Indirect Virtual Address (VA in
DWORD Variable)

Remarks

The long calls transfer control using a Virtual Address Double Word
(VAOW), which can be included in the instruction itself or found in a
OWORO variable. The selector part of the VAOW determines the type of
control transfer as follows:

1. If the selector names a descriptor for an executable segment, that
selector replaces cs and the offset part of the VAOW replaces IP,

according to protection mechanism addressability and visibility.
2. If the selector names a call-gate descri ptor, the offset part of the

VAOW is ignored, and the virtual address of the routine being
entered is taken from the call-gate. If the routi ne bei ng entered is
more privileged, then a new stack (both ss and sp) is called from
save areas in the task state segment for the new PL, and the
wordcount field of the gate then determines how many words of
argument list are copied from the old stack to the new. The VAOW

of the top of the old stack is pushed onto the new stack before the
arguments are transferred, and the arguments are followed by
the VA ow return link.

3. If the selector names a task gate descriptor, the context of the
current task is saved in its Task State Segment (TSS), and the TSS

named in the task-gate is usedto load the new context. The
selector for the outgoing task (from TR) is stored into the new
TSS'S link field, and the new task's Nested Task flag is set. The
outgoing task is left marked busy, the new TSS is marked busy,
and running resumes at the point at which the new task was last
suspended.

4. If the selector names a TSS, the current task is suspended and the
new task initiated as described above, except that there is no
intervening gate.

4-32

In general, for the task-state to be considered correct, the following
constraints upon the contents of the segment registers must be
adhered to:

• For CS, the selector must name an executable segment. The RPL

field of cs defines the CPL.

• SS must name a writable segment with privilege equal to CPL.

• DS and ES must either be zero (a value which represents an
unloaded condition because it selects entry 0 in the GDT, which is
incorrect), or must select a readable segment which is visible at
the CPL. A segment is visible to any CPL which has a numerically
smaller privilege level. Also, conforming segments, which must
be able to be run, but which may be readable, are visible to any
privilege level.

For long calls that do not cause a task-switch, the return link is the
Virtual Address of the instruction following the CALL (that is, the cs
and updated IP of the caller). Task switches called by CALL are linked
by storing the TSS selector of the outgoing task in the incoming TSS

link field and setting the Nested Task flag in the new task. Nested
tasks must be ended by an IRET. IRET releases the nested task and
follows the link to the calling task if the NT flag is set.

Logic

if executable segment selector then
(SP) < - (SP - 2)
((SP) + 1:(SP)) <- (CS)
(SP) < - (SP - 2)
((SP) + 1 :(SP)) < - (IP)
(CS) < - selector
(IP) < - offset

else if call gate selector then
if gate.DPL = CPL then

(SP) < - (SP - 2)
((SP + 1):(SP)) < - (CS)
(SP) < - (SP - 2)
((SP + 1):(SP)) <- (IP)

else if gate.DPL < CPL then
CPL = gate.DPL
(SS) < - (TSS.SS)
(SP) < - (TSS.SP)
(CS) < - (call-gate.selector)

4-33

(IP) < - (call-gate.offset)
else if call taskgate selector then

(TSS.backlink) < - (TR)
(TR) < - (task-gate.selector)
(flags.NT) < - 1

else if call task state segment then
(newTSS.backlink) <- (TR)
(TR) < - instruction.selector
(flags.NT) < - 1

Flags

Affected- AF,CF,DF,IF,NF,OF,PF,PLF,SF,TF,ZF

Encoding

10011010 VADW offset VADW selector

9A VADW offset VADW selector

Example

CALL FAR_LABEL
CALL CALL_GATE
CALL TASK_GATE
CALL TASK

Indirect Virtual Address (VA in DWORD variable)

Encoding

11111111 mod011 rim

FF mod011 rim

Example

CALL DWORD PTR XXX

4-34

CBW
Convert Byte to Word

Purpose

CBW does a sign extension of the AL register into the AH register.

Format

CBW

Remarks

If the lower byte of the accumulator (AL) is less than 80H, AH is made
zero. Otherwise, AH is set to FFH. This is equal to repeating bit 7 of AL

through AH.

Logic

if (AL) < 80H then
(AH) <- 0

else
(AH) <- FFH

Flags

None

Encoding

10011000

98

Example

CBW

4-35

CLC
Clear Carry Flag

Purpose

CLC clears the CF flag.

Format

CLC

Remarks

The carry flag is reset to zero.

Note: See STC for the opposite function.

Logic

(CF) <- 0

Flags

Affected- CF

Encoding

11111000

F8

Example

CLC

4-36

CLD
Clear Direction Flag

Purpose

CLO clears the OF flag, causing the string operations to automatically
increase the operand poi nters.

Format

CLO

Remarks

The di rection flag is reset to zero.

Note: See sro for the opposite function.

Logic

(OF) <- 0

Flags

Affected- OF

Encoding

11111100

FC

Example

CLD

4-37

Cli
Clear Interrupt Flag (Disable)

Purpose

eLi clears the IF flag and disables maskable external interrupts, which
appear on the INTR line of the processor. (eLi does not disable non
maskable interrupts that appear on the NMI line.)

Format

eLi

Remarks

The interrupt flag is reset to zero.

Note: See STI for the opposite function.

In protected mode, eLi clears the IF flag if the current privilege level is
at least as privileged as IOPL.

logic

(IF) <- 0

Flags

Affected- IF

Encoding

11111010

FA

Example

eLI

4-38

CL TS (80286P)
Clear Task Switched Flag

Purpose

CLTS clears the task switched flag in the Machine Status Word (MSW).

Format

CLTS

Remarks

The task switched flag (TS flag) is set every time a task switch occurs.
The TS flag is used to manage the 80287 math coprocessor in the fol
lowing way. It traps every run of a WAIT or ESCAPE instruction
(instructions used to control the math coprocessor) if the MSW.MP

(math unit present) flag is set and the MSW.TS flag is set. Therefore, if
the math unit is present and a task switch has been made since the
last math-unit instruction was begun, the context of the math unit
must be saved before a new instruction can be issued. The fault
routine saves the context and resets the MSW.TS flag, or puts the task
requesting the math unit in queue until the current instruction is com
pleted. CLTS is a privileged instruction; it can be executed at level 0
only.

See Chapter 6, "80286./80386-8ased Personal Computers," in the IBM

Macro Assemblerl2 Fundamentals book for information about the
80286 architecture.

You must use the .286P pseudo-op to enable this instruction.

Logic

if CPL = 0 then
MSW.TS <- 0

Flags

Affected- TS flag in MSW

4-39

Encoding

00001111 00000110
OF 06

Example

CLTS

4-40

CMC
Complement Carry Flag

Purpose

CMC complements the CF flag.

Format

CMC

Remarks

If the carry flag is 0, it is set to 1. If it is a 1, it is reset to O.

Logic

(CF) < 1- (CF)

Flags

Affected- CF

Encoding

11110101

F5

Example

CMC

4-41

CMP
Compare Two Operands

Purpose

CMP subtracts the two operands causing the flags to be affected but
does not return the result.

Format

CMP destination,source

Remarks

The source (rightmost) operand is subtracted from the destination
(leftmost) operand. The flags are altered, but the operands remain
unaffected.

The source (rightmost) operand must be of the same type (byte or
word) as the destination operand. The only exception for CMP is com
paring an immediate data byte with a memory word.

Logic

(LSRC) - (RSRC)

Flags

Affected- AF,CF,OF,PF,SF,ZF

Memory or Register Operand with Register Operand

Encoding

001110dw modregr/m

38 + dw modregr/m

If d = 1, LSRC = REG, RSRC = EA.
If d = 0, LSRC = EA, RSRC = REG.

4-42

Example

Register with register:

CMP AX,OX
CMP SI,BP
CMP BH,CL

Register with memory:

CMP ~·1EM_WORO, 51
CMP MEM_BYTE,CH
CMP ALPHA[OI],OX
CMP BETA[BXJ[SI] ,CX

Memory with register:

CMP 01,MEM_WORO
CMP CH,MEM_WORO
CMP AX,GAMMA[BP] [SIJ

Immediate Operand with Accumulator

Encoding

0011110w data

3C + w data

If w = 0, LSRC = AL, RSRC = data.
If w = 1, LSRC = AX, RSRC = data.

Example

CMP AL,6
CMP AL,IMM_VALUE_DR1VE
CMP AX,IMM_VAL_909
CMP AX,999

4-43

Immediate Operand with Memory or Register Operand

Remarks

If an immediate-data byte is compared from a register or memory
word, that byte is sign-extended to 16 bits before the comparison. For
this situation, the instruction byte is 83H (the sand w bits are both
set).

Encoding

100000sw mod111 rIm data

80 + sw mod111 rIm data

LSRC = EA, RSRC = data

Example

Immediate with register:

CMP BH,7
CMP CL,19_1MM_BYTE
CMP DX,1MM_DATA_WORD
CMP 51,798

Immediate with memory:

CMP MEM WORD,1MM DATA BYTE
CMP GAMMA[BX],IMM_BYTE
CMP [BX] [DI],6ACEH

4-44

CMPS/CMPSB/CMPSW
Compare Byte or Word String

Purpose

CMP8 subtracts the byte (or word) operand addressed by 01 from the
operand addressed by 81; CMPS affects the flags but does not return
the result. As a repeated operation, two strings are compared. With
the appropriate repeat prefix, you can determine after which string
element the two strings become unequal, thereby establishing an
ordering between the strings.

Note that the operand indexed by 01 is the rightmost operand in this
instruction and that this operand is addressed using the ES register
only. You cannot cancel this default.

Format

CMPS source-string,dest-string
or

CMPSB
or

CMPSW

Remarks

Using 01 as an index into the extra segment, the dest-string right-most
operand is subtracted from the source-string (left-most operand),
which uses SI as an index. (This is the only string instruction where
the ol-indexed operand appears as the right-most operand.) Only the
flags are affected, not the operands. 81 and 01 are then increased, if
the direction flag is reset (zero), or they are decreased, if OF= 1. (See
the CLO and 8TO instructions.) Thus, they point to the next element of
the strings being compared. The increase is 1 for byte strings, 2 for
word stri ngs.

4-45

Logic

(L5RC) - (R5RC)
if (OF) = 0 then

(51) <- (51) + DELTA
(01) <- (01) + DELTA

else
(51) <- (51) - DELTA
(01) <- (01) - DELTA

Flags

Affected- AF,CF,OF,PF,5F,ZF

Encoding

1010011w

A6 + w

If w = 0, L5RC = (51), R5RC = (01),
DELTA = 1 (BYTE).

Ifw=1, L5RC = (51)+1:(51), R5RC = (01)+1:(01),
DELTA = 2 (WORD).

Example

MOV SI,OFFSET STRINGl
MOV DI,OFFSET STRING2
CMPS STRING1,STRING2

or
CMPS DS:BYTE PTR[SI],ES:[DI]

or
CMPSB

4-46

The string instructions are unusual in that you:

1. Load SI with the offset of the source string.

2. Load 01 with the offset of the destination string.

3. Can code each with or without symbolic memory operands:

• If symbolic operands are coded, the assembler can check the
addressability of them for you.

• References that use hardware defaults should be coded using
the forms without operands (CMPSS and CMPSW) to avoid the
additional pointer information.

• Do not use [sx] or [sp] addressing modes with the string
instructions.

• If operands are coded, you can cancel only the source
segment, os, not the destination segment, ES.

4. If the instruction mnemonic is coded without operands, the
segment registers are as follows:

• SI defaults to an offset in the segment addressed by os.

• olis required to be an offset in the segment addressed by
ES.

4-47

CWO
Convert Word to Ooubleword

Purpose

cwo does a sign extension of the AX register into the ox register. See
the IOIV instruction in this chapter.

Format

cwo

Remarks

The high-order bit of AX is repeated throughout ox.

Logic

if (AX) < 8000H then
(OX) <- 0

else (OX) <- FFFFH

Flags

None

Encoding

10011001

99

Example

cwo

4-48

DAA
Decimal Adjust for Addition

Purpose

DAA corrects the result in AL of adding two packed decimal operands,
resulting in a packed decimal sum.

Format

DAA

Remarks

If the lower half-byte (4 bits) of AL is greater than 9 or if the auxiliary
carry flag has been set, 6 is added to AL and AF is set. If AL is greater
than 9FH or if the carry flag has been set, 60H is added to AL and CF is
set to 1.

Logic

if ((AL) & OFH) > 9 or (AF) = 1 then
(AL) <- (AL) + 6
(AF) <- 1

if (AF) > 9FH or (CF) = 1 then
(AL) <- (AL) + 60H
(CF) <- 1

Flags

Affected- AF,CF,PF,SF,ZF
Undefined- OF

Encoding

00100111

27

Example

DAA

4-49

DAS
Decimal Adjust for Subtraction

Purpose

DAS corrects the result in the AL register of subtracting two packed
decimal operands, resulting in a packed decimal difference.

Format

DAS

Remarks

If the lower half-byte (4 bits) of AL is greater than 9 or if the auxiliary
flag has been set, 60H is subtracted from AL and CF is set.

Logic

if ((AL) & OFH) > 9 or (AF) = 1 then
(AL) <- (AL) - 6
(AF) <- 1

if (AL) > 9FH or (CF) = 1 then
(AL) <- (AL) - 60H
(CF) <- 1

Flags

Affected- AF,CF,PF,SF,ZF

Encoding

00101111

2F

Example

DAS

4-50

DEC
Decrease Destination by One

Purpose

DEC subtracts 1 from the operand and returns the result to that
operand.

Format

DEC destination

Remarks

DEC decreases the specified operand, destination, by 1.

Logic

(DEST) <- (DEST) - 1

Flags

Affected- AF,OF,PF,SF,ZF

4-51

Register Operand (Word)

Encoding

01001 reg

48 + reg

DEST=REG

Example

DEC AX
DEC D1
DEC S1

Memory or Register Operand

Encoding

1111111 w mod001 rim

FE + w mod001 rim

DEST=EA

Example

DEC MEM_BYTE
DEC MEM_BYTE[DI]
DEC MEM_WORD
DEC ALPHA[BX] [sr]
DEC BL
DEC CH

4-52

DIV
Division, Unsigned

Purpose

DIV does an unsigned division of the double-length NUMR operand con
tained in the accumulator and its extension (AL and AH for 8-bit opera
tion, or AX and DX for 16-bit operation) by the DIVR operand, contained
in the specified source operand. It returns the single-length quotient
(QUO operand) to the accumulator (AL or AX), and returns the single
length remainder (the REM operand) to the accumulator extension (AH

for 8-bit operation or DX for 16-bit operation).

Format

DIV source

Remarks

If the quotient is greater than MAX (when division by zero is
attempted), QUO and REM are undefined, and a type 0 interrupt is
produced. Flags are undefined in any DIV operation. Non-integral
quotients are rounded to integers.

If the division results in a value larger than appropriate registers can
hold, an interrupt of type 0 is produced. Flags are pushed onto the
stack; IF and TF are reset to 0, and the cs register contents are pushed
onto the stack. cs is then filled by the word at location 2. The current
IP is pushed onto the stack, and IP is then filled with the word at O.
Thus, this sequence includes a FAR call to the interrupt handling pro
cedure whose segment and offset are stored at locations 2 and O.

If the division result can fit in the appropriate registers, the quotient is
stored in AL or AX (for word operands) and the remainder in AH or DX.

4-53

Logic

(temp) <- (NUMR)
if (temp)/(DIVR) > MAX,
THE FOLLOWING SEQUENCE:

(QUO),(REM) undefined
(SP) <- (SP) - 2
((SP) + 1 :(SP)) <- FLAGS
(IF) <- 0
(TF) <- 0
(SP) <- (SP) - 2
((SP) + 1 :(SP» <- (CS)
(CS) <- (2)

;CONTENTS OF LOCATIONS 2 AND 3
(SP) <- (SP) - 2
((SP) + 1 :(SP)) <- (IP)
(IP) <- (0)

;CONTENTS OF LOCATIONS 0 AND 1
else

(QUO) <- (temp)/(DIVR)
(REM) <- (temp)%(DIVR)

Flags

Affected- No valid flags result
Undefined- AF,CF,OF,PF,SF,ZF

Encoding

1111011w mod110r/m

F6 + w mod110r/m

If w=O, NUMR=AX, DIVR=EA, QUO=AL,
REM=AH, MAX=FFH.

If w=1, NUMR=DX:AX, DIVR=EA, QUO=AX,
REM=DX, MAX=FFFH.

In the following examples, each memory operand can be any variable
or valid expression so long as its type is the same as that of the
source operand. For example, you could replace the
NUMERATOR_WORD in the first example with the expression:

ARRAY_NAME[BX][SI] + 67

4-54

when ARRAY_NAME is of type WORD. Similarly, DIVISOR_BYTE
could be:

RATE_TABLE [BPJ [DI}

when RATE_TABLE is of type BYTE.

Example

To divide a word by a byte:

MOV AX,NUMERATOR_WORD
DIV DIVISOR_BYTE
:QUOTIENT IN AL, REMAINDER IN AH

To divide a byte by a byte:

MOV AL,NUMERATOR_BYTE
CBW ;CONVERTS BYTE IN AL TO WORD IN AX
DIV DIVISOR_BYTE
;QUOTIENT IN AL, REMAINDER IN AH

To divide a doubleword by a word:

MOV OX, NUMERATOR_HIJ~ORD
MOV AX,NUMERATOR_LO_WORD
DIV DIVISOR_WORD
;QUOTIENT IN AX REMAINDER IN OX

To divide a word by a word:

MOV AX,NUMERATOR_WORD
XOR DX,DX ;CLEAR HIGH WORD OF DX:AX DOUBLEWORD
DIV DIVISOR_WORD
;QUOTIENT IN AX, REMAINDER IN OX

4-55

ENTER (80286)
Make Stack Frame for Procedure Parameters

Purpose

Use ENTER to create the stack frame required by most block
structured, high-level languages.

Format

ENTER immediate-word,immediate-byte

Remarks

The first operand specifies how many bytes of dynamic memory are
reserved on the stack for the routine the assembler is entering. The
second operand gives the nesting level of the routine within the high
level-language source code. ENTER determines how many stack-frame
pointers the assembler copies into the new stack frame from the pre
ceding frame. The assembler uses BP as the current stack frame
pointer.

If the second operand is 0, ENTER pushes BP, sets BP to SP, and sub
tracts the fi rst operand from SP.

See Chapter 6, "80286/80386-Based Personal Computers," in the IBM

Macro Assembler/2 Fundamentals book for information about the
80286 architecture.

The .286C pseudo-op is required.

Logic

(SP) <- (SP)-2
((SP) + 1 :(SP)) <- (BP)
(FP) <- (SP)
if LEVEL> 0 then

Repeat (Level-1) times
(BP) <- (BP)-2
(SP) <- (SP)-2
((SP) + 1 :(SP)) <- (BP)

4-56

End Repeat
(SP) <- (SP)-2
«SP) + 1 :(SP)) <- (FP)

End if
(BP) <- (FP)
(SP) <- (SP) - (LSRC)

Flags

Affected- None
Undefined- None

Encoding

11001000 data-low data-high

C8 data-low data-high

Example

A procedure with 12 bytes of local variables would have an

ENTER 12,0

at its entry paint and a LEAVE instruction before every RET. The 12
local bytes would be addressed as negative offsets from [BP].

4-57

ESC
Escape

Purpose

ESC allows other processors to receive their instructions from the
instruction stream and to use the addressing modes. The processor
does no operation for the ESC instruction other than to get a memory
operand and place it on a bus.

Format

ESC external-opcode,source

Logic

if mod =1= 11, then data bus <- (EA)
if mod = 11, no operation.

Flags

None

Encoding

11011xxx modxxxr/m

08 + xxx modxxxr/m

Example

ESC EXTERNAL_OPCODE, ADDRESS

Note: This opcode is a 6-bit number, which is split into the two 3-bit
fields shown as xxx above.

4-58

F2XM1 (SOS7)
2 to the X power -1

Purpose

F2XM1 calculates the function Y = 2x-1. x is taken from the top of the
floating-point stack and must be in the range 0 ~ x ~ 0.5. The
result Y replaces x at the top of the floating-point stack.

Format

F2XM1

Remarks

F2XM1 produces an accurate result even when x is close to zero. To
obtain Y = 2x, add 1 to the result. You can raise values other than 2
to a power of x. For example:

lOX = 2X * 1092 10
eX = 2X * 1092 e
YX = 2X • 1092 Y

The 8087 has instructions, described in this chapter, for loading the
constants log2 10 and log2 e, and you can use the FYL2X to calculate
x * log2 Y.

Note: See FYL2X, FLDL2T, and FLDL2E for related information.

Logic

ST <- 2ST - 1

Exception Flags

U,P (operands not checked)

Encoding

1 0011 011 11 011 001 1111 0000

98 D9 FO

Without FWAIT:

4-59

11011001 11110000

D9 FO

Example

F2XMl ;Y = 2 TO THE X POWER MINUS 1

4-60

FABS (8087)
Absolute value

Purpose

FABS changes the top element in the 8087 stack to its absolute value.

Format

FABS

Remarks

FABS makes the sign of the top element in the 8087 stack positive.

Logic

ST <- I ST I

Exception Flags

Encoding

100 11 011 11 011 00 1 111 0000 1

9B D9 E1

Without FWAIT:

11 011 001 111 0000 1

D9 E1

Example

FABS

4-61

FADD (8087)
Add Real

Purpose

FADD adds the source and destination operands and returns the sum
to the destination.

Format

FADD
or

FADD source
or

FADD destination,source

Remarks

FADD stores the sum of the two operands in the destination (leftmost)
operand. You can write FADD without operands, with only a source, or
with a destination and a source.

Note: See FADDP and FIADD for related information.

Exception Flags

I,D,O,U,P

FADD (no operands) Stack form

Format

FADD [8T(1),8T]

Note: sT(1),ST are implied operands; they are not coded and are
shown here for information only.

4-62

Remarks

FADD picks the source operand from the top of the 8087 stack and the
destination operand from the next element in the 8087 stack. It then
pops the 8087 stack, does the operation, and returns the result to the
new top of the 8087 stack.

Note: FADD (no operands) is similar to the FADDP instruction, with STU)
being sT(1).

Logic

5T(1) <- 5T(1) + 5T
pop 8087 stack

Encoding

1 0011 011 11 01111 0 11 000001

98 DE C1

Without FWAIT:

11011110 11000001

DE C1

Example

FADD ;ADD REAL

FADD (source) Real Memory Form

Format

FADD short_real
or

FADD long_real

4-63

Remarks

The real-memory form permits you to use a real number in memory
directly as a source operand. The destination operand is the top of
the 8087 stack (register ST). It is implied in this form of the instruction.

Note: You can use any memory-addressing mode to define the
source operand.

Logic

ST <- ST + mem-op

Encoding

10011011 11011000 modOOOr/m disp-Iow disp-high
98 D8 modOOOr/m disp-Iow disp-high

Without FWAIT:

11011000 mod100r/m disp-Iow disp-high

D8 mod100r/m disp-Iow disp-high

Example

FADD SHORT_REAL

Encoding

10011011 11011100 modOOOr/m disp-Iow disp-high
98 DC modOOOr/m disp-Iow disp-high

Without FWAIT:

11011100 mod100r/m disp-Iow disp-high

DC mod100r/m disp-Iow disp-high

4-64

Example

FADD LONG_REAL

FADD (destination,source) Register form

Remarks

Specify the 8087 stack top as one operand and any register on the
8087 stack as the other operand.

Format

FADD ST,STU)

Logic

ST <- ST + ST(i)

Encoding

100110111101100011000(i)

98 D8 CO + (i)

Without FWAIT:

11011000 11000(i)

D8 CO + (i)

Example

FADD ST, ST(1)
FADD ST,ST(8)
FADD ST,ST(7)

Format

FADD ST(i),ST

;ADD REAL
;DOUBLE TOP OF STACK

4-65

Logic

ST(i) <- ST(i) + ST

Encoding

10011011 11011100 11000(i)

98 DC CO + (i)

Without FWAIT:

11011100 11 000(i)

DC CO + (i)

Example

FADD ST(1),ST
FADD ST(7) ,ST

4-66

FADDP (8087)
Add Real and Pop

Purpose

FADDP adds the source and destination operands, returns the sum to
the destination, and pops the 8087 stack.

Format

FADDP destination, source

Remarks

FADDP stores the sum of the two operands into the destination (left
most) operand. FADDP picks the source operand from the ST register
(the top element in the 8087 stack) and the destination operand from
an ST(i) element. It then pops the 8087 stack, does the operation, and
returns the result to the STU) 8087 stack.

Note: FADD (no operands) is similar to the FADDP instruction with ST(i)

being ST(1).

Logic

STU) <- ST(i) + ST
pop 8087 stack

Exception Flags

I,D,O,U,P

4-67

Encoding

100110111101111011000(i)

98 DE CO + (i)

Without FWAIT:

11011110 11000(i)

DE CO + (i)

Example

FADDP 5T(7) ,5T

4-68

;ADD REAL AND POP

FBLD (8087)
Packed Decimal (BCD) Load

Purpose

FBLD converts a packed decimal to temporary real and loads (pushes)
the result onto the 8087 stack.

Format

FBLD source

Remarks

FBLD converts the content of the source operand from packed decimal
to temporary real and loads (pushes) the result onto the 8087 stack.
FBLD preserves the sign of the source, including negative zero. FBLD

is an exact operation; it loads the source with no rounding error.

FBLD assumes the packed decimal digits of the source are in the
range (0-9)H. The instruction does not check for incorrect digits (A-F)H

and the result of trying to load an incorrect digit is undefined.

Logic

push 8087 stack
ST <- mem-op

Exception Flags

4-69

Encoding

10011011 11011111 mod100r/m disp-Iow disp-high

98 DF mod100r/m disp-Iow disp-high

Without FWAIT:

11011111 mod100r/m disp-Iow disp-high

DF mod100r/m disp-Iow disp-high

Example

FBLD PACKED_DECIMAL ;PACKED DECIMAL (BCD) LOAD

4-70

FBSTP (8087)
PClcked Decimal (BCD) Store and Pop

Purpose

FBSTP converts the top element in the 8087 stack toa packed decimal
integer, stores the result at the destination in memory, and pops the
8087 stack.

Format

F8STP destination

Remarks

FBSTP produces a rounded integer from a non-integral value by
adding 0.5 to the value and then setting the fractional part to zero,
resulting in the nearest integer.

Note: If you are concerned about rounding, precede FBSTP with
FRNDINT.

Logic

mem-op <- ST
pop 8087 stack

Exception Flags

Encoding

10011011 11011111 mod110r/m disp-Iow disp-high

98 OF mod110r/m disp-Iow disp-high

Without FWAIT:

11011111 mod110r/m disp-Iow disp-high

OF mod110r/m disp-Iow disp-high

4-71

Example

FBSTP PACKED_DECIMAL
;PACKED DECIMAL (BCD) STORE AND POP

4-72

FCHS (SOS7)
Change Sign

Purpose

FCHS reverses the sign of the top element of the 8087 stack.

Format

FCH8

Remarks

FCHS complements the sign of the top element of the 8087 stack.

Logic

8T <- -8T

Exception Flags

Encoding

10011011 11011001 11100000

98 09 EO

Without FWAIT:

11011001 11100000

09 EO

Example

FCHS ;CHANGE SIGN

4-73

FCLEX (8087)
Clear Exceptions

Purpose

FCLEX clears all exception flags, the interrupt request flag, and the
busy flag in the status word.

Format

FCLEX

Remarks

The INT and BUSY lines of the 8087 become inactive.

FNCLEX is the alternate no-wait form for the FCLEX instruction.

Note: An exception handler must issue this instruction before
returning to the interrupted computation, or the assembler
produces another interrupt request immediately, and an
endless loop can result.

Logic

Clear 8087 exceptions

Exception Flags

None

Encoding

10011011 11011011 11100010

98

Example

FCLEX

4-74

D8 E2

;CLEAR EXCEPTIONS

FCOM (8087)
Compare Real

Purpose

FCOM compares the top element of the 8087 stack to the source
operand.

Format

FCOM
or

FCOM source

Remarks

The source operand can be a register on the 8087 stack, or a short or
long real memory operand. If you do not code an operand, FCOM

compares 5T to 5T(1).

Note: Positive and negative forms of zero compare identically as if
they were unsigned.

Logic

Following the instruction, the condition codes in the 8087 status word
reflect the order of the operands as follows:

If ST> source then C3 = 0 and CO = 0
Else if ST < source then C3 = 0 and CO = 1
Else if ST = source then C3 = 1 and CO = 0
Else C3= 1 and CO= 1.

Note: FCOM cannot compare NaNs and 00; they return C3 = 1 and
CO = 1, as shown above.

Exception Flags

I,D

4-75

8087 stack top with Memory short_real

Format

FCOM short_real

Remarks

FCOM compares ST to a short real memory operand.

Encoding

10011011 11011000 mod010r/m disp-Iow disp-high

98 08 mod010r/m disp-Iow disp-high

Without FWAIT:

11011000 mod010r/m disp-Iow disp-high

08 mod010r/m disp-Iow disp-high

Example

FCOM SHORT_REAL

8087 stack top with Memory long_real

Format

FCOM long_real

Remarks

FCOM compares ST to a long real memory operand.

Encoding

10011011 11011100 mod010r/m disp-Iow disp-high

98 DC mod010r/m disp-Iow disp-high

4-76

Without FWAIT:

11011100 mod010r/m disp-Iow disp-high

DC mod010r/m disp-Iow disp-high

Example

FCOM LONG_REAL

8087 stack top with Register on 8087 stack

Format

FCOM (no operand)

Remarks

FCOM compares ST to ST(1).

Encoding

100110111101100011010001

98 08 01

Without FWAIT:

11011000 11010001

08 01

Example

FCOM

Format

FCOM ST(i)

Remarks

;COMPARE REAL

FCOM com pares ST to STU).

4-77

Encoding

100110111101100011010(i)

98 08 DO + (i)

Without FWAIT:

11011000 11010(i)

08 DO + (i)

Example

FCOM 5T (7)

4-78

;COMPARE REAL

FCOMP (8087)
Compare Real and Pop

Purpose

FCOMP compares the top element of the 8087 stack to the source
operand and pops the 8087 stack.

Format

FCOMP
or
FCOMP source

Remarks

FCOMP operates like FCOM and also pops the 8087 stack. The source
operand can be a register on the 8087 stack, or a short or long real
memory operand. If you do not code an operand, FCOMP compares ST

to sT(1).

Note: Positive and negative forms of zero compare the same as if
they were unsigned.

Logic

Following the instruction, the condition codes in the 8087 status word
reflect the order of the operands as follows:

If ST > source then C3 = 0 and CO = 0
Else if ST < source then C3 = 0 and CO = 1
Else if ST = source then C3 = 1 and CO = 0
ElseC3=1 andCO=1.

Note: FCOMP cannot compare NaNs and 00; they return C3 = 1 and
CO = 1, as shown above.

Exception Flags

I,D

4-79

8087 stack top with Memory short_real

Format

FCOMP short_real

Remarks

FCOMP compares ST to a short real memory operand.

Encoding

10011011 11011000 mod011 rim disp-Iow disp-high

98 D8 mod011 rim disp-Iow disp-high

Without FWAIT:

11011000 mod011 rim disp-Iow disp-high

D8 mod011 rim disp-Iow disp-high

Example

FCOMP SHORT_REAL ;COMPARE REAL AND POP

8087 stack top with Memory long_real

Format

FCOMP long_real

Remarks

FCOMP compares ST to a long real memory operand.

Encoding

10011011 11011100 mod011 rim disp-Iow disp-high

98 DC mod011 rim disp-Iow disp-high

4-80

Without FWAIT:

11011100 mod011r/m disp-Iow disp-high

DC mod011 rim disp-Iow disp-high

Example

FCOMP LONG_REAL ;COMPARE REAL AND POP

8087 stack top with Register on 8087 stack

Format

FCOMP (no operand)

Remarks

FCOMP compares ST to sT(1).

Encoding

100 110 11 110 11000 110 1100 1

98 08 09

Without FWAIT:

110 11 000 11 011 001

08 09

Example

FCOMP

Format

FCOMP ST(i)

Remarks

;COMPARE REAL AND POP

FCOMP compares ST to ST(i).

4-81

Encoding

10011 011 11 011 000 11 011 (i)

98 08 08 + (i)

Without FWAIT:

11 011 000 11 011 (i)

08 08 + (i)

Example

FCOMP ST(l)

FCOMP sT(7)

4-82

;COMP REAL AND POP
;SAME AS FCOMP (no operands)
;COMP REAL AND POP

FCOMPP (8087)
Compare Real and Pop Twice

Purpose

FCOMPP compares the top element of the 8087 stack to sT(1) and pops
the 8087 stack twice.

Format

FCOMPP

Remarks

FCOMPP operates like FCOM and also pops the 8087 stack twice, dis
carding both operands. FCOMPP compares ST to sT(1).

Note: Positive and negative forms of zero compare the same as if
they were unsigned.

Logic

Following the instruction, the condition codes in the 8087 status word
reflect the order of the operands as follows:

If 5T>5T(1) then C3=0 and CO=O
Else if 5T<5T(1) then C3=0 and CO=1
Else if 5T = 5T(1) then C3 = 1 and CO = 0
Else C3=1 and CO=1.

Note: FCOMPP cannot compare NaNs and 00; they return C3 = 1 and
CO = 1, as shown above.

Exception Flags

I,D

4-83

Encoding

100110111101111011011001

98 DE D9

Without FWAIT:

11 0 1111 0 11 011 001

DE D9

Example

FCOMPP

4-84

;COMPARE REAL AND POP TWICE

FDECSTP (8087)
Decrease 8087 Stack Pointer

Purpose

FDECSTP subtracts 1 from the 8087 stack top pointer (TOP) in the status
word.

Format

FDECSTP

Remarks

FDECSTP does not change tags or register contents, nor does it
transfer data. FDECSTP is not the same as pushing the 8087 stack.

Note: Decreasing the 8087 stack pointer when TOP=O produces
Top=7.

Logic

If TOP = 0 then
TOP <-7

Else TOP <- TOP-1

Exception Flags

None

4-85

Encoding

1 0011011 11 011001 11110110

98 D9 F6

Without FWAIT:

11011 001 1111011 0

09 F6

Example

FDECSTP

4-86

;DECREASE 8087 STACK POINTER

FDISI (8087)
Disable Interrupts

Purpose

FOISI sets the interrupt enable mask (IEM) in the control word and pre
vents the 8087 from issuing an interrupt request.

Format

FDISI

Remarks

FOISI disables interrupts.

Notes:

1. If the assembler decodes WAIT with pending exceptions, the 8087
produces an interrupt, masked or not.

2. FNDISI is the alternate no-wait form for the FDISI instruction. Refer
to FNOISI, FENI, FNENI, and the 8087 control word for rei ated i nfor
mation.

Logic

(IEM) = 1

Exception Flags

None

Encoding

10011011 11011011 11100001

9B

Example

FDISI

DB E1

;DISABLE INTERRUPTS

4-87

FDIV (8087)
Divide Real

Purpose

FDIV divides the destination by the source and returns the quotient to
the destination.

Format

FDIV
or

FDIV source
or

FDIV destination,source

Remarks

You can write FDIV without operands, with only a source, or with a
destination and a source.

Exception Flags

I,D,Z,O,U,P

4-88

FDIV (no operands) 8087 Stack Form

Format

FDIV [ST(1),ST]

Note: sT(1),ST are the implied operands; they are not coded and are
shown here for information only.

Remarks

FDIV picks the source operand from the 8087 stack top and the desti
nation operand from the next 8087 stack element. It then pops the
8087 stack, does the operation, and returns the result to the new 8087
stack top.

Note: FDIV (no operands) is similar to the FDIVP instruction with ST(i)

being sT(1).

Logic

ST(1) <- ST(1) -7- ST
pop 8087 stack

Encoding

1 0011 011 11 01111 0 11111 001

98 DE F9

Without FWAIT:

11 01111 0 11111 001

DE F9

Example

FDIV ;DIVIDE REAL

4-89

FDIV (source) Real Memory Form

Format

FOIV short_real
or

FOIV long_real

Remarks

With the real memory form, you can use a real number in memory
directly as a source operand. The destination operand is the top of
the 8087 stack (register ST). It is implied in this form of the instruc
tion.

Note: You can use any memory-addressing mode to define the
source operand.

Logic

ST <- ST -+- mem-op

Encoding

10011011 11011000 mod110r/m disp-Iow disp-high
98 08 mod110r/m disp-Iow disp-high

Without FWAIT:

11011000 mod110r/m disp-Iow disp-high

08 mod110r/m disp-Iow disp-high

Example

FDIV SHORT_REAL ;DIVIDE REAL

4-90

Encoding

10011011 11011100 mod110r/m disp-Iow disp-high
98 DC mod110r/m disp-Iow disp-high

Without FWAIT:

11011100 mod110r/m disp-Iow disp-high

DC mod110r/m disp-Iow disp-high

Example

FDIV LONG_REAL ;DIVIDE REAL

4-91

FDIV (destination,source) Register Form

Remarks

Specify the 8087 stack top as one operand and any register on the
8087 stack as the other operand.

Format

FOIV ST,STU)

Logic

ST <- ST -7- ST(i)

Encoding

100110111101100011110(i)

98 08 FO + (i)

Without FWAIT:

11011000 11110(i)

08 FO + (i)

Example

FDIV 5T,ST(1) ;DIVIDE REAL
FDIV 5T,ST(7) ;DIVIDE REAL

Format

FOIV ST(i),ST

Logic

ST(i) <- ST(i) -7- ST

4-92

Encoding

10011011 11011100 11111 (i)

98 DC Fa + (i)

Without FWAIT:

11 0 111 00 11111 (i)

DC Fa + (i)

Example

FDIV ST(l),ST ;DIVIDE REAL
FDIV ST(7),ST ;DIVIDE REAL

4-93

FDIVP (8087)
Divide Real and Pop

Purpose

FDIVP divides the destination by the source, returns the quotient to the
destination, and pops the 8087 stack.

Format

FDIVP destination,source

Remarks

FDIVP picks the source operand from the ST register, or top of the 8087
stack, and the destination operand from an ST(i) element. It then pops
the 8087 stack, does the operation, and returns the result to STU).

Note: FDIV (no operands) is similar to the FDIVP instruction with ST(i)

being sT(1).

Logic

ST(i) <- STU) -7- ST
pop 8087 stack

Exception Flags

I,D,Z,O,U,P

4-94

Encoding

10011011 11011110 11111 (i)

98 DE F8 + (i)

Without FWAIT:

11 01111 0 11111 (i)

DE F8 + (i)

Example

FDIVP ST(l),ST ;DIVIDE REAL AND POP
FDIVP ST(7),ST ;DIVIDE REAL AND POP

4-95

FDIVR (SOS7)
DividA Real Reversed

Purpose

FDIVR is a reversed division instruction. FDIVR divides the source
operand by the destination operand and returns the quotient to the
destination.

Format

FDIVR
or

FDIVR source
or

FDIVR destination,source

Remarks

You can write FDIVR without operands, with only a source, or with a
destination and a source.

Exception Flags

I,D,Z,O,U,P

4-96

FDIVR (no operands) 8087 stack form

Format

FDIVR [ST(1),ST]

Note: sT(1),ST are the implied operands; they are not coded and are
shown here for information only.

Remarks

FDIVR picks the source operand from the 8087 stack top and the desti
nation operand from the next 8087 stack element. It then pops the
8087 stack, does the operation, and returns the result to the new 8087
stack top.

Note: FDIVR (no operands) is si milar to the FDIVRP instruction with STU)
being sT(1).

Logic

ST(1) <- ST -:- ST(1)
pop 8087 stack

Encoding

100110111101111011110001

98 DE F1

Without FWAIT:

11011110 11110001

DE F1

Example

FDIVR ;DIVIDE REAL REVERSED

4-97

FDIVR (source) Real memory form

Format

FOIVR short_real
or

FOIVR long_real

Remarks

The real-memory form permits you to use a real number in memory
directly as a source operand. The destination operand is the top of
8087 stack (register ST). It is implied in this form of the instruction.

Note: You can use any memory-addressing mode to define the
source operand.

Logic

ST <- mem-op -7 ST

Encoding

10011011 11011000 mod111 rIm disp-Iow disp-high
98 08 mod111 rIm disp-Iow disp-high

Without FWAIT:

11011000 mod111 rIm disp-Iow disp-high

08 mod111 rIm disp-Iow disp-high

Example

FDIVR SHORT_REAL ;DIVIDE REAL REVERSED

4-98

Encoding

10011011 11011100 mod111 rIm disp-Iow disp-high
98 DC mod111 rIm disp-Iow disp-high

Without FWAIT:

11011100 mod111 rIm disp-Iow disp-high

DC mod111 rIm disp-Iow disp-high

Example

FDIVR LONG_REAL ;DIVIDE REAL REVERSED

4-99

FDIVR (destination,source) Register form

Remarks

Specify the top element of the 8087 stack as one operand and any
register on the 8087 stack as the other operand.

Format

FOIVR ST,ST(i)

Logic

ST <- ST(i) -:- ST

Encoding

10011011 11011000 11111 (i)

98 08 F8 + (i)

Without FWAIT:

11 011 000 11111 (i)

08 F8 + (i)

Example

FDIVR ST,ST(l) ;DIVIDE REAL REVERSED
FDIVR ST,ST(7) ;DIVIDE REAL REVERSED

Format

FOIVR ST(i),ST

Logic

STU) <- ST -:- ST(i)

4-100

Encoding

1 0011 011 11 0111 00 1111 0 (i)

98 DC FO + (i)

Without FWAIT:

11 0111 00 1111 0 (i)

DC FO + (i)

Example

FDIVR ST(l),ST ;DIVIDE REAL REVERSED
FDIVR ST(7),ST ;DIVIDE REAL REVERSED

4-101

FDIVRP (8087)
Divide Real Reversed and Pop

Purpose

FDIVRP is a reversed division instruction. FDIVRP divides the source
operand by the destination operand, returns the quotient to the desti
nation, and pops the 8087 stack.

Format

FDIVRP destination,source

Remarks

FDIVRP picks the source operand from the ST register, or top of 8087
stack, and the destination operand from an ST(i} element. It then pops
the 8087 stack, does the operation, and returns the result to the ST(i)
8087 stack.

Note: FDIVR (no operands) is similar to the FDIVRP instruction with sT(i)
being sT(1}.

Logic

ST(i) <- ST -;- ST(i)
pop 8087 stack

Exception Flags

I,D,Z,O,U,P

4-102

Encoding

100110111101111011110(i)

98 DE FO + (i)

Without FWAIT:

11011110 11110(i)

DE FO + (i)

Example

FDIVRP ST(l),ST ;DIVIDE REAL REVERSED AND POP
FDIVRP ST(7),ST ;DIVIDE REAL REVERSED AND POP

4-103

FENI (8087) .
Enable Interrupts

Purpose

FENI clears the interrupt enable mask (IEM) in the control word,
allowing the processor to produce interrupt requests.

Format

FENI

Remarks

FEN I allows the 8087 to produce interrupt requests.

Note: FNENI is the alternate no-wait form for the FENI instruction. See
FNENI, FDISI, FNDISI, and 8087 control word for related informa
tion.

Logic

(IEM) =0

Exception Flags

None

Encoding

10011011 11011011 11100000

9B

Example

FENI

4-104

DB EO

;ENABLE INTERRUPTS

FFREE (8087)
Free Register

Purpose

FFREE changes the tag of the destination register to empty.

Format

FFREE destination

Remarks

The content of the destination register is not affected.

Note: Refer to the 8087 tag word described in the IBM Macro
Assemblerl2 Fundamentals book for additional information.

Logic

TAG(i) <- 11 (empty)

Exception Flags

None

Encoding

1 0011 011 11 0111 01 11 000 (i)

98 DO CO + (i)

Without FWAIT:

11011101 11000(i)

DO CO + (i)

Example

FFREE ST(1)
FFREE ST (7)

;FREE STACK REGISTER ONE
;FREE STACK REGISTER SEVEN

4-105

FIADD (8087)
Integer Add

Purpose

FIADD adds the source and destination operands and returns the sum
to the destination.

Format

FIADD source

Remarks

FIADD permits you to use a binary integer in memory directly as a
source operand. The source operand can be either a short integer or
a word integer. The destination operand is the top of the 8087 stack
(register ST). It is implied in this instruction. FIADD stores the sum of
the two operands into the top of the 8087 stack (register ST).

Note: You can use any memory-addressing mode to define the
source operand.

Logic

8T <- 8T + mem-op

Exception Flags

I,D,O,P

4-106

Encoding

SHORT_INTEGER

10011011 11011010 modOOOr/m disp-Iow disp-high
98 DA modOOOr/m disp-Iow disp-high

Without FWAIT:

11011010 modOOOr/m disp-Iow disp-high

DA modOOOr/m disp-Iow disp-high

Example

FIADD SHORT_INTEGER ;INTEGER ADD

Encoding

10011011 11011110 modOOOr/m disp-Iow disp-high
98 DE modOOOr/m disp-Iow disp-high

Without FWAIT:

11011110 modOOOr/m disp-Iow disp-high

DE modOOOr/m disp-Iow disp-high

Example

FIADD WORD_INTEGER ;INTEGER ADD

4-107

FICOM (8087)
Integer Compare

Purpose

FICOM compares the top element in the 8087 stack to the source
operand.

Format

FICOM source

Remarks

FICOM permits you to use a binary integer in memory directly as a
source operand. The source operand can be either a short integer or
a word integer. FICOM converts the source operand, which can refer
to a word or short binary integer variable, to temporary real and com
pares the top of the 8087 stack to it.

Note: The assembler compares positive and negative forms of zero
the same as if they were unsigned.

Logic

Following the instruction, the condition codes in the 8087 status word
reflect the order of the operands as follows:

If 8T> source then C3 = 0 and CO = 0
Else if 8T < source then C3 = 0 and CO = 1
Else if 8T = source then C3 = 1 and CO = 0
ElseC3=1 andCO=1.

Note: FICOM cannot compare NaNs and 00; they return C3 = 1 and
CO = 1, as shown above.

Exception Flags

I,D

4-108

8087 stack top with Memory short integer

Format

FICOM short_integer

Remarks

FICOM compares ST to a short integer memory operand.

Encoding

1001101111011010 mod010r/m disp-Iow disp-high

98 DA mod010r/m disp-Iow disp-high

Without FWAIT:

11011010 mod010r/m disp-Iow disp-high

DA mod010r/m disp-Iow disp-high

Example

FICOM SHORT_INTEGER ;INTEGER COMPARE

4-109

8087 stack top with Memory word integer

Format

FICOM word_integer

Remarks

FICOM compares ST to a word integer memory operand.

Encoding

10011011 11011110 mod010r/m disp-Iow disp-high

98 DE mod010r/m disp-Iow disp-high

Without FWAIT:

11011110 mod010r/m disp-Iow disp-high

DE mod010r/m disp-Iow disp-high

Example

FICOM WORD_INTEGER ;INTEGER COMPARE

4-110

FICOMP (8087)
Integer Compare and Pop

Purpose

FICOMP compares the top element in the 8087 stack to the source
operand and pops the 8087 stack.

Format

FICOMP source

Remarks

FICOMP operates in the same way as FICOM and also discards the value
in ST by popping the 8087 stack. FICOMP permits you to use a binary
integer in memory directly as a source operand. The source operand
can be either a short integer or a word integer. FICOMP converts the
source operand, which can refer to a word or short binary integer
variable, to temporary real and compares the top element in the 8087
stack to it.

Note: The assembler compares positive and negative forms of zero
the same as if they were unsigned.

Logic

Following the instruction, the condition codes in the 8087 status word
reflect the order of the operands as follows:

If 8T> source then C3 = 0 and CO = 0
Else if 8T < source then C3 = 0 and CO = 1
Else if 8T=source then C3= 1 and CO=Q
Else C3= 1 and CO= 1.

Note: FICOMP cannot compare NaNs and 00; they return C3 = 1 and
CO = 1 as shown above.

Exception Flags

I,D

4-111

8087 stack top with Memory short integer

Format

FICOMP short_integer

Remarks

FICOMP compares ST to a short integer memory operand.

Encoding

10011011 11011010 mod011 rim disp-Iow disp-high

98 DA mod011 rim disp-Iow disp-high

Without FWAIT:

11011010 mod011 rim disp-Iow disp-high

DA mod011 rim disp-Iow disp-high

Example

FICOMP SHORT_INTEGER ;INTEGER COMPARE

4-112

8087 stack top with Memory word integer

Format

FICOMP word_integer

Remarks

FICOMP compares ST to a word integer memory operand.

Encoding

1001101111011110 mod011r/m disp-Iow disp-high

98 DE mod011 rim disp-Iow disp-high

Without FWAIT:

11011110 mod011 rim disp-Iow disp-high

DE mod011 rim disp-Iow disp-high

Example

FICOMP WORD_INTEGER ;INTEGER COMPARE

4-113

FIDIV (8087)
Integer Divide

Purpose

FIDIV divides the destination by the source and returns the quotient to
the destination.

Format

FIDIV source

Remarks

FIDIV permits you to use a binary integer in memory directly as a
source operand. The source operand can be either a short integer or
a word integer. The destination operand is the top of the 8087 stack
(register ST). It is implied in this instruction. FIDIV stores the quotient
of the operands into the top of the 8087 stack (register ST).

Note: You can use any memory-addressing mode to define the
source operand.

Logic

ST <- ST -;- mem-op

Exception Flags

I,D,Z,O,U,P

4-114

Encoding

10011011 11011010 mod110r/m disp-Iow disp-high
98 DA mod110r/m disp-Iow disp-high

Without FWAIT:

11011010 mod110r/m disp-Iow disp-high

DA mod110r/m disp-Iow disp-high

Example

FIDIV SHORT_INTEGER ;INTEGER DIVIDE

Encoding

10011011 11011110 mod11 Or/m disp-Iow disp-high
98 DE mod110r/m disp-Iow disp-high

Without FWAIT:

11011110 mod110r/m disp-Iow disp-high

DE mod110r/m disp-Iow disp-high

Example

FIDIV WORD_INTEGER ;INTEGER DIVIDE

4-115

FIDIVR (SOS7)
Integer Divide Reversed

Purpose

FIDIVR, a reversed division instruction, divides the source operand by
the destination operand and returns the quotient to the destination.

Format

FIDIVR source

Remarks

FIDIVR permits you to use a binary integer in memory directly as a
source operand. The source operand can be either a short integer or
a word integer. You can use any memory-addressing mode to define
the source operand. The destination operand is the top of the 8087
stack (register ST). It is implied in this instruction. FIDIVR stores the
quotient of the operands into the top of the 8087 stack (register ST).

Logic

ST <- mem-op -7- ST

Exception Flags

I,D,Z,O,U,P

Encoding

SHORT_INTEGER

10011011 11011010 mod111 rim disp-Iow disp-high
98 DA mod111 rim disp-Iow disp-high

Without FWAIT:

11011010 mod111 rim disp-Iow disp-high

DA mod111 rim disp-Iow disp-high

4-116

Example

FIDIVR SHORT_INTEGER ;INTEGER DIVIDE REVERSED

Encoding

1001101111011110 mod111r/m disp-Iow disp-high
98 DE mod111 rIm disp-Iow disp-high

Without FWAIT:

11011110 mod111 rIm disp-Iow disp-high

DE mod111 rIm disp-Iow disp-high

Example

FIDIVR WORD_INTEGER ;INTEGER DIVIDE REVERSED

4-117

FILD (8087)
Integer Load

Purpose

FILD converts the source memory operand from its binary integer
format to temporary real and loads (pushes) the result onto the 8087
stack.

Format

FILD source

Remarks

FILD tags the new top element in the 8087 stack zero if all bits in the
source were zero and tags it valid otherwise. FILD permits you to use
a binary integer in memory directly as a source operand. The source
operand can be a short integer, a word integer, or a long integer.
The destination operand is the top of the 8087 stack (register ST). It is
implied in this instruction.

Note: You can use any storage-addressing mode to define the source
operand.

Logic

push 8087 stack
ST <- mem-op

Exception Flags

Encoding

SHORT_INTEGER

10011011 11011011 modOOOr/m disp-Iow disp-high
9B DB modOOOr/m disp-Iow disp-high

Without FWAIT:

4-118

11011011 modOOOr/m disp-Iow disp-high

08 modOOOr/m disp-Iow disp-high

Example

FILD SHORT_INTEGER ;INTEGER LOAD

Encoding

1001101111011111 modOOOr/m disp-Iow disp-high
98 OF modOOOr/m disp-Iow disp-high

Without FWAIT:

11011111 modOOOr/m disp-Iow disp-high

OF modOOOr/m disp-Iow disp-high

Example

FILD WORD_INTEGER ;INTEGER LOAD

Encoding

10011011 11011111 mod101 rim disp-Iow disp-high
98 OF mod101 rim disp-Iow disp-high

Without FWAIT:

11011111 mod101r/m disp-Iow disp-high

OF mod101 rim disp-Iow disp-high

Example

FILD LONG_INTEGER ;INTEGER LOAD

4-119

FIMUL (8087)
Integer Multiply

Purpose

FIMUL multiplies the destination by the source and returns the product
to the destination.

Format

FIMUL source

Remarks

FIMUL permits you to use a binary integer in memory directly as a
source operand. The source operand can be either a short integer or
a word integer. The destination operand is the top of the 8087 stack
(register ST). It is implied in this instruction. FIMUL stores the product
of the operands into the top of the 8087 stack (register ST).

Note: You can use any memory-addressing mode to define the
source operand.

Logic

ST <- ST * mem-op

Flags

I,D,O,P

Encoding

SHORT_INTEGER

10011011 11011010 mod001r/m disp-Iow disp-high
98 DA mod001 rim disp-Iow disp-high

Without FWAIT:

11011010 mod001 rim disp-Iow disp-high
DA mod001 rim disp-Iow disp-high

4-120

Example

FIMUL SHORT_INTEGER ;INTEGER MULTIPLY

Encoding

10011011 11011110 mod001 rIm disp-Iow disp-high
98 DE mod001 rIm disp-Iow disp-high

Without FWAIT:

11011110 mod001r/m disp-Iow disp-high
DE mod001 rIm disp-Iow disp-high

Example

FIMUL WORD_INTEGER ;INTEGER MULTIPLY

4-121

FINCSTP (8087)
'Increase 8087 Stack Pointer

Purpose

FINCSTP adds 1 to the 8087 stack top pointer (TOP) in the status word.

Format

FINCSTP

Remarks

FINCSTP does not change tags or register contents nor does it transfer
data. Using FINCSTP is not the same as popping the 8087 stack,
because FINCSTP does not set the tag of the previous 8087 stack top to
empty.

Note: Increasing the 8087 stack pointer when Top=7 produces
TOP=O.

Logic

TOP <- TOP + 1

Flags

None

Encoding

10011011 11011001 11110111

98 D9 F7

Without FWAIT:

1101100111110111
D9 F7

Example

FINCSTP

4-122

;INCREASE STACK POINTER

FINIT/FNINIT (8087)
Initialize Processor

Purpose

FINIT does the functional equivalent of a hardware reset to the 8087,
except that it does not affect the instruction-fetch synchronization of
the 8087 and the 8088.

Format

FINIT (no operands)

Remarks

FINIT sets the control word to 03FFH, empties all floating pOint 8087
stack elements, and clears exception flags and busy interrupts. If you
run FINIT while a previous 8087 memory-referencing instruction is
running, the 8087 bus cycles in progress end abruptly.

Note: FNINIT is the alternate no-wait form for the FINIT instruction. See
the sections on the 8087 Control Word and 8087 Initialization in
the IBM Macro Assemblerl2 Fundamentals book for additional
information. See also the description of FNINIT in this chapter.

Logic

initialize 8087

Flags

None

Encoding

1 0011 011 11 011 011 111 00011

9B

Example

FINIT

DB E3

;INITIALIZE PROCESSOR

4-123

FIST (8087)
Integer Store

Purpose

FIST rounds the content of the 8087 stack top to an integer according
to the RC field of the control word and transfers the result to the desti
nation.

Format

FIST destination

Remarks

The destination can define a word or short integer variable.

Note: FIST stores negative zero in the same internal representation as
positive zero: 0000 ... 00.

Logic

mem-op <- ST

Flags

I,P

Encoding

SHORT_INTEGER

10011011 11011011 mod010r/m disp-Iow disp-high
9B DB mod010r/m disp-Iow disp-high

Without FWAIT:

11011011 mod010r/m disp-Iow disp-high
DB mod010r/m disp-Iow disp-high

Example

FIST SHORT_INTEGER ;INTEGER STORE

4-124

Encoding

10011011 11011111 mod010r/m disp-Iow disp-high
98 OF mod010r/m disp-Iow disp-high

Without FWAIT:

11011111 mod010r/m disp-Iow disp-high
OF mod010r/m disp-Iow disp-high

Example

FIST WORD_INTEGER ;INTEGER STORE

4-125

FISTP (8087)
Integer Store and Pop

Purpose

FISTP rounds the content of the 8087 stack top to an integer according
to the RC field of the control word and transfers the result to the desti
nation. FISTP pops the 8087 stack following the transfer.

Format

FISTP destination

Remarks

FISTP operates like FIST and also pops the 8087 stack following the
transfer. The destination can define a word or short integer variable.
The destination can be any of the binary integer data types.

Note: FISTP stores negative zero in the same internal representation
as positive zero: 0000 ... 00.

Logic

mem-op <- ST
pop 8087 stack

Flags

I,P

Encoding

10011011 11011011 mod011 rIm disp-Iow disp-high
9B DB mod011 rIm disp-Iow disp-high

Without FWAIT:

11011011 mod011 rIm disp-Iow disp-high
DB mod011 rIm disp-Iow disp-high

4-126

Example

FISTP SHORT_INTEGER ;INTEGER STORE AND POP

Encoding

10011011 11011111 mod011 rIm disp-Iow disp-high
98 OF mod011 rIm disp-Iow disp-high

Without FWAIT:

11011111 mod011 rIm disp-Iow disp-high
OF mod011 rIm disp-Iow disp-high

Example

FISTP WORD_INTEGER ;INTEGER STORE AND POP

Encoding

10011011 11011111 mod111 rIm disp-Iow disp-high
98 OF mod111 rIm disp-Iow disp-high

Without FWAIT:

11011111 mod111 rIm disp-Iow disp-high
OF mod111 rIm disp-Iow disp-high

Example

FISTP LONG_INTEGER ;INTEGER STORE AND POP

4-127

FISU B (8087)
Integer Subtract

Purpose

FISUB subtracts the source operand from the destination and returns
the difference to the destination.

Format

FI5U8 source

Remarks

FISUB permits you to use a binary integer in memory directly as a
source operand. The source operand can be either a short integer or
a word integer. You can use any memory-addressing mode to define
the source operand. The destination operand is the top of the 8087
stack (register ST). It is implied in this instruction. FISUB stores the
difference of the two operands in the top of the 8087 stack (register
ST).

Logic

5T <- 5T - mem-op

Flags

I,D,O,P

Encoding

10011011 11011010 mod100r/m disp-Iow disp-high
98 DA mod100r/m disp-Iow disp-high

Without FWAIT:

11011010 mod100r/m disp-Iow disp-high
DA mod100r/m disp-Iow disp-high

4-128

Example
FISUB SHORT_INTEGER ;INTEGER SUBTRACT

Encoding

1001101111011110 mod100r/m disp-Iow disp-high
98 DE mod100r/m disp-Iow disp-high

Without FWAIT:

11011110 mod100r/m disp-Iow disp-high
DE mod100r/m disp-Iow disp-high

Example
FISUB WORD_INTEGER ;INTEGER SUBTRACT

4-129

FISUBR (8087)
Integer Subtract Reversed

Purpose

FISUBR is a reversed subtraction instruction. FISUBR subtracts the des
tination from the source and returns the difference to the destination.

Format

FISUBR source

Remarks

FISUBR permits you to use a binary integer in memory directly as a
source operand. The source operand can be either a short integer or
a word integer. You can use any memory-addressing mode to define
the source operand. The destination operand is the top of the 8087
stack (register ST). It is implied in this instruction. FISUBR stores the
difference of the operands in the top of the 8087 stack (reg!ster ST).

Logic

ST <- mem-op - ST

Flags

I,D,O,P

Encoding

SHORT_INTEGER

10011011 11011010 mod1 01 rim disp-Iow disp-high
9B DA mod101 rim disp-!ow disp-high

Without FWAIT:

11011010 mod101 rim disp-Iow disp-high
DA mod101 rim disp-Iow disp-high

4-130

Example

FISUBR SHORT_INTEGER ;INTEGER SUBTRACT REVERSED

Encoding

10011011 11011110 mod101 rIm disp-Iow disp-high
98 DE mod101r/m disp-Iow disp-high

Without FWAIT:

11011110 mod101 rIm disp-Iow disp-high
DE mod101 rIm disp-Iow disp-high

Example

FISUBR WORD_INTEGER ;INTEGER SUBTRACT REVERSED

4-131

FLO (8087)
Load Real

Purpose

FLO loads (pushes) the source operand onto the top of the 8087 reg
ister stack.

Format

FLO source

Remarks

FLO loads (pushes) the source operand onto the top of the 8087 stack
by decreasing the 8087 stack pointer by 1 and then copying the
content of the source to the new 8087 stack top. The source can be a
register on the 8087 stack sT(i) or any of the real data types in
memory. FLO converts short and long real source operands to tempo
rary reals.

Note: Coding FLO ST(O) copies the 8087 stack top.

Flags

I,D

4-132

Register operand to 5T

Logic

T1 <- ST(i)
push 8087 stack
ST <- T1

Encoding

100110111101100111000(i) (register)

98 D9 CO + (i) (register)

Without FWAIT:

11011001 11000(i) (register)
D9 CO + (i) (register)

Example

FLO ST(0) ; LOAD REAL (DUPES TOP OF STACK)
FLO ST(7) ;LOAD REAL STACK REGISTER SEVEN ST(7)

4-133

Memory operand to ST

Logic

push 8087 stack
5T <- mem-op

Encoding

10011011 11011001 modOOOr/m disp-Iow disp-high
98 D9 modOOOr/m disp-Iow disp-high

Without FWAIT:

11011001 modOOOr/m disp-Iow disp-high
09 modOOOr/m disp-Iow disp-high

Example

FLD SHORT_REAL ;LOAD REAL

Encoding

10011011 11011101 modOOOr/m disp-Iow disp-high
98 DO modOOOr/m disp-Iow disp-high

Without FWAIT:

11011101 modOOOr/m disp-Iow disp-high
DO modOOOr/m disp-Iow disp-high

Example

FLD LONG_REAL ;LOAD REAL

4-134

Encoding

TEMP _REAL

10011011 11011011 mod101 rIm disp-Iow disp-high
9B DB mod101 rIm disp-Iow disp-high

Without FWAIT:

11011011 mod101r/m disp-Iow disp-high
DB mod101 rIm disp-Iow disp-high

Example

FLO TEMP_REAL ;LOAD REAL

4-135

FLD1 (8087)
Load + 1.0

Purpose

FL01 loads (pushes) + 1.0 onto the 8087 stack.

Format

FLD1

Remarks

FL01 is a constant instruction that loads (pushes) a value of + 1.0 onto
the 8087 stack. The value has full temporary real precision of 64 bits
and is accurate to approximately 19 decimal digits.

Note: Temporary real constants occupy 10 memory bytes, and con
stant instructions are only 2 bytes long, saving memory and
improving execution speed.

Logic

push 8087 stack
ST <-1.0

Flags

4-136

Encoding

10011011 1101100111101000

98 D9 E8

Without FWAIT:

11 011 001 111 01 000
D9 E8

Example

FLDl ; LOAD +1.0

4-137

FLDCW (SOS7)
Load Control Word

Purpose

FLDCW replaces the current processor control word with the word
defined by the source operand.

Format

FLDCW source

Remarks

Typically you use FLDCW to establish or change the mode of operation
of the 8087. When you change modes, it is recommended to first
clear any exceptions and then load the new control word.

Note: If you set an exception bit in the status word, loading a new
control word that unmasks that exception and clears the inter
rupt enable mask produces an immediate interrupt request
before the assembler executes the next instruction.

Logic

8087 control word <- mem-op

Flags

None

4-138

Encoding

10011011 11011001 mod101 rIm disp-Iow disp-high

98 09 mod101 rIm disp-Iow disp-high

Without FWAIT:

11011001 mod101 rIm disp-Iow disp-high
09 mod101r/m disp-Iow disp-high

Example

FLDCW TWO_BYTES ;LOAD CONTROL WORD

4-139

FLDENV (8087)
Load Environment

Purpose

FLDENV reloads the 8087 environment from the memory area defined
by the source operand.

Format

FLDENV source

Remarks

This data should have been written by a previous FSTENV/FNSTENV

instruction. The 8088 instructions (that do not refer to the envi ron
ment image) can immediately follow FLDENV, but do not execute an
8087 instruction that follows without an intervening FWAIT or
assembler-produced WAIT.

Note: Loading an environment image that contains an unmasked
exception causes an immediate interrupt request from the 8087
(assuming IEM = 0 in the environment image).

Logic

8087 environment <- mem-op

Flags

None

4-140

Encoding

10011011 11011001 mod100r/m disp-Iow disp-high

98 09 mod100r/m disp-Iow disp-high

Without FWAIT:

11011001 mod100r/m disp-Iow disp-high
09 mod100r/m disp-Iow disp-high

Example

FLDENV FOURTEEN_BYTES ;LOAD ENVIRONMENT

4-141

FLDL2E (8087)
Load Log

Purpose

FLDL2E loads (pushes) the value log2e (log base 2 of e) onto the 8087
stack.

Format

FLDL2E (no operands)

Remarks

FLDL2E is a constant instruction that loads (pushes) a value of log2e
onto the 8087 stack. The value has full temporary real precision of 64
bits and is accurate to 19 decimal digits.

Note: Temporary real constants occupy 10 memory bytes and con
stant instructions are only 2 bytes long, saving memory and
improving execution speed.

Logic

push 8087 stack
ST <-log2e

Flags

4-142

Encoding

100110111101100111101010

98 09 EA

Without FWAIT:

1101100111101010
09 EA

Example

FLDL2E ;LOAD LOG BASE 2 OF e

4-143

FLDL2T (8087)
Load Log

Purpose

FLDL2T loads (pushes) the value log210 (log base 2 of 10) onto the 8087
stack.

Format

FLDL2T

Remarks

FLDL2T is a constant instruction that loads (pushes) a value of log210
onto the 8087 stack. The value has full temporary real precision of 64
bits and is accurate to approximately 19 decimal digits.

Note: Temporary real constants occupy 10 memory bytes and con
stant instructions are only 2 bytes long, saving memory and
improving execution speed.

Logic

push 8087 stack
ST <- log210

Flags

4-144

Encoding

100110111101100111101001

98 D9 E9

Without FWAIT:

11 011 001 111 01 001
D9 E9

Example

FLDL2T ;LOAD LOG BASE 2 OF 10

4-145

FLDLG2 (8087)
Load Log

Purpose

FLDLG2 loads (pushes) the value log102 (109 base 10 of 2) onto the top
of the floating-point stack.

Format

FLDLG2

Remarks

FLDLG2 is a constant instruction. A constant instruction loads a com
monly used constant in a way that uses less memory and runs faster
than without the instruction. A constant instruction also simplifies
programming. The constant has temporary real precision of 64 bits
and accuracy of approximately 19 decimal digits.

Note: Temporary real constants occupy 10 memory bytes and con
stant instructions are only 2 bytes long, saving memory and
improving execution speed.

Logic

push 8087 stack
ST <- 109102

Flags

4-146

Encoding

10011 011 11 011 001 111011 00

98 09 EC

Without FWAIT:

11 011 001 111011 00
09 EC

Example

FLDLGZ ;LOAD LOG BASE 10 OF Z

4-147

FLDLN2 (8087)
Load Log Base e of 2

Purpose

FLDLN2 loads (pushes) the value loge2 (log base e of 2) onto the top of
the floating-point stack.

Format

FLOLN2

Remarks

FLDLN2 is a constant instruction. A constant instruction loads a com
monly used constant in a way that uses less memory and runs faster
than without the instruction. A constant instruction simplifies pro
gramming. The constant has temporary real precision of 64 bits and
accuracy of approximately 19 decimal digits.

Note: Temporary real constants occupy 10 memory bytes and con
stant instructions are only 2 bytes long, saving memory and
improving execution speed.

Logic

push 8087 stack
ST <-10ge2

Flags

Encoding

1 0011 011 11 011 001 111 011 01

98 09 EO

Without FWAIT:

1101100111101101

4-148

09 ED

:xample

;LDLN2 ;LOAD LOG BASE e OF 2

4-149

FLDPI (SOS7)
Load PI

Purpose

FLOPI loads (pushes) the value 11: onto the top of the floating point
stack.

Format

FLOPI

Remarks

FLOPI is a constant instruction. A constant instruction loads a com
monly used constant in a way that uses less memory and runs faster
than without the instruction. A constant instruction simplifies pro
gramming. The constant has temporary real precision of 64 bits and
accuracy of approximately 19 decimal digits.

Note: Temporary real constants occupy 10 memory bytes and con
stant instructions are only 2 bytes long, saving memory and
improving execution speed.

Logic

push 8087 stack
ST <-11:

Flags

4-150

::ncoding

10011011 11011001 11101011

9B D9 EB

Nithout FWAIT:

11 011 001 111 01 011
D9 EB

:xample

"LOPI ;LOAO PI

4-151

FLDZ (8087)
Load Zero

Purpose

FLDZ loads (pushes) the value +0.0 onto the top of the floating point
stack.

Format

FLDZ

Remarks

FLDZ is a constant instruction. A constant instruction loads a com
monly used constant in a way that uses less memory and runs faster
than without the instruction. A constant instruction simplifies pro
gramming. The constant has temporary real precision of 64 bits and
accuracy of approximately 19 decimal digits.

Note: Temporary real constants occupy 10 memory bytes and con
stant instructions are only 2 bytes long, saving memory and
improving execution speed.

Logic

push 8087 stack
ST <- +0.0

Flags

4-152

Encoding

10011011 11011001 11101110

98 D9 EE

Without FWAIT:

11 011 001 111 0111 0
D9 EE

Example

FLDZ ;LOAD +0.0

4-153

FMUL (8087)
Multiply Real

Purpose

FMUL multiplies the destination operand by the source and returns the
product to the destination.

Formal

FMUL
or

FMUL source
or

FMUL destination,source

Remarks

FMUL stores the product of the two operands into the destination (left
most) operand. You can write FMUL without operands, with only a
source, or with a destination and a source.

Flags

I,D,O,U,P

4-154

FMUL (no operands) 8087 stack form

Format

FMUL [ST(1),ST]

Note: ST(1),ST are the implied operands; they are not coded and are
shown here for information only.

Remarks

FMUL picks the source operand from the top of the 8087 stack and the
destination operand from the next 8087 stack element. It then pops
the 8087 stack, does the operation, and returns the result to the new
top element in the 8087 stack.

Note: FMUL (no operands) is similar to the FMULP instruction with
sT(i) being sT(1).

Logic

ST(i) <- ST(i) * ST
pop 8087 stack

Encoding

10011011 11011110 11001001

98 DE C9

Without FWAIT:

11 011110 11001 001
DE C9

Example

FMUL ; MULTI PLY REAL

4-155

FMUL (source) Real memory form

Format

FMUL short_real
or

FMUL long_real

Remarks

The real memory form permits you to use a real number in memory
directly as a source operand. The destination operand is the top of
the 8087 stack (register ST). It is implied in this form of the instruction.

Note: You can use any memory-addressing mode to define the
source operand.

Logic

ST <- ST * mem-op

Encoding

SHORT_REAL

10011011 11011000 mod001 rim disp-Iow disp-high
98 08 mod001 rim disp-Iow disp-high

Without FWAIT:

11011000 mod001 rim disp-Iow disp-high
08 mod001 rim disp-Iow disp-high

Example

FMUL SHORT_REAL

Encoding

1001101111011100 mod001r/m disp-Iow disp-high
98 DC mod001 rim disp-Iow disp-high

4-156

Without FWAIT:

11011100 mod001 rim disp-Iow disp-high
DC mod001 rim disp-Iow disp-high

Example
FMUL LONG_REAL

FMUL (destination,source) Register form

Remarks

Specify the top of the 8087 stack as one operand and any register on
the 8087 stack as the other operand.

Format

FMUL ST,ST(i)

Logic

ST <- ST * ST(i)

Encoding

10011 011 11 011 000 11 001 (i)

98 D8 C8 + (i)

Without FWAIT:

11011000 11001 (i)
D8 C8 + (i)

Example

FMUL ST, ST (1)
FMUL ST,ST(0)
FMUL ST,ST(7)

;MULTIPLY REAL
;SQUARE TOP OF STACK

4-157

Format

FMUL ST(i),ST

Logic

ST(i) <- ST(i) * ST

Encoding

10011011 11011100 11001 (i)

98 DC C8 + (i)

Without FWAIT:

11 0111 00 11 001 (i)
DC C8 + (i)

Example
FMUL ST(1) ,ST
FMUL ST (7) , ST

4-158

FMULP (8087)
Multiply Real and Pop

Purpose

FMULP multiplies the destination operand by the source, returns the
product to the destination, and pops the floating-point stack.

Format

FMULP destination,source

Remarks

FMULP stores the product of the two operands into the destination (left
most) operand. FMULP picks the source operand from the ST register
or top of the 8087 stack and the destination operand from an ST(i)

element. It then pops the 8087 stack, does the operation, and returns
the result to the ST(i) 8087 stack.

Note: FMUL (no operands) is similar to the FMULP instruction with ST(i)

being sT(1).

Logic

ST(i) <-ST(i) *ST
pop 8087 stack

Flags

I,D,O,U,P

4-159

Encoding

100110111101111011001(i)

98 DE C8 + (i)

Without FWAIT:

11011110 11001 (i)
DE C8 + (i)

Example
FMULP ST(7),ST

4-160

;MULTIPLY REAL AND POP

FNCLEX (8087)
Clear Exceptions

Purpose

FNCLEX clears all exception flags, the interrupt request flag, and the
busy flag in the status word.

Format

FNCLEX

Remarks

An exception handler must issue FNCLEX or FCLEX before the exception
handler returns to the interrupted instruction. If not, the assembler
produces a new exception immediately, causing an endless loop.

FNCLEX is the no-wait form of FCLEX, and you should use it only when
there is danger of producing an infinite wait.

Note: See FCLEX and status word for related information.

Logic

Clear 8087 exceptions

Flags

None

Encoding

110 110 11 111000 10

DB E2

Example

FNCLEX ;CLEAR EXCEPTIONS NO WAIT

4-161

FNDISI (8087)
Disable Interrupts

Purpose

FNDISI sets the interrupt enable mask in the control word and prevents
the processor from issuing an interrupt request.

Format

FNDISI

Remarks

FNDISI is the no-wait form of FDISI; use it only when there is danger of
producing an infinite wait.

Notes:

1. If the assembler decodes WAIT with pending exceptions, the 8087
produces an interrupt, masked or not.

2. See FDISI, FENI, FNENI, and the 8087 control word for related infor
mation.

Logic

(IEM) = 1

Flags

None

Encoding

1101101111100001

DB E1

Example
FNDISI ;DISABLE INTERRUPTS NO WAIT

4-162

FNENI (8087)
Enable Interrupts

Purpose

FNENI clears the interrupt enable mask in the control word, allowing
the processor to produce interrupt requests.

Format

FNENI

Remarks

FNENI is the no-wait form of this instruction; use it only when there is
danger of producing an infinite wait.

Note: See FENI, FDISI, FNDISI, and 8087 control word for related infor
mation.

Logic

(IEM)=O

Flags

None

Encoding

11 011011 111 00000

DB EO

Example

FNENI ;ENABLE INTERRUPTS NO WAIT

4-163

FNINIT (8087)
Initialize Processor

Purpose

FNINIT does the functional equivalent of a hardware reset to the 8087,
except that it does not affect the instruction - fetch synchronization of
the 8087 and the 8088.

Format

FNINIT

Remarks

FNINIT sets the control word to 03FFH, empties all floating - point stack
elements, and clears exception flags and busy interrupts. If FNINIT is
run while a previous 8087 memory-referencing instruction is running,
the 8087 bus cycles in progress end abruptly.

Note: FNINIT is the alternate no-wait form for the FINIT instruction. Use
it only when there is danger of producing an infinite wait. See
FIN IT, 8087 control word, and 8087 initialization for additional
information.

Logic

initialize 8087

Flags

None

Encoding

11 011 011 111 00011

DB E3

Example

FNINIT ;INITIALIZE PROCESSOR NO WAIT

4-164

FNOP (8087)
No Operation

Purpose

FNOP causes no operation.

Format

FNOP

Remarks

FNOP stores the top of the 8087 stack to the top of the 8087 stack and
thus, effectively, does no operation. You can use FNOP to replace a
deleted instruction in an assembled program. This allows you to run
the altered code without reassembling it.

Logic

ST <- ST

Flags

None

Encoding

10011011 11011001 11010000

98 09 DO

Without FWAIT:

11011001 11010000
09 DO

Example

FNOP ;NO OPERATION

4-165

FNRSTOR (8087)
Restore State

Purpose

FNRSTOR, the restore state instruction, no-wait form, reloads the 8087
from the 94-byte memory area defined by source operand. A pre
vious FSAVE/FNSAVE instruction should write this information.

Format

FNRSTOR source

Remarks

CPU (8088) instructions that do not refer to the save image can imme
diately follow the FNRSTOR instruction. However, an FWAIT instruction
should precede any 8087 instruction following this instruction. The
saved image requires 94 bytes of memory.

Note: The 8087 reacts to its new state at the finish of the FNRSTOR; it
produces an immediate interrupt if the exception and mask bits
in the memory image so indicate.

Logic

8087 state <- mem-op

Flags

None

Encoding

11011101 mod100r/m disp-Iow disp-high

DD mod100r/m disp-Iow disp-high

Example
FNRSTOR SAVE_STATE ;RESTORE STATE

4-166

FNSA VE (SOS7)
Save State

Purpose

FNSAVE writes the full 8087 state (environment plus register stack) to
the memory location specified in the destination operand and initial
izes the 8087.

Format

FNSAVE destination

Remarks

This is the no-wait form of FSAVE. Use it only when there is danger of
producing an infinite wait.

If an instruction is running at the time the assembler decodes an
FNSAVE instruction, the assembler allows the instruction to complete
running before it performs FNSAVE. This means that the save reflects
the state of the processor following the completion of any active
instruction.

Note: See FSAVE, and 8087 save state for related information.

Logic

mem-op <- 8087 state

Flags

None

Encoding

11011101 mod110r/m disp-Iow disp-high

DD mod110r/m disp-Iow disp-high

4-167

Example

FNSAVE SAVE_STATE ;SAVE CURRENT STATE OF 8087

4-168

FNSTCW (8087)
Store Control Word

Purpose

FNSTCW writes the current 8087 control word to the memory location
defined by destination.

Format

FNSTCW destination

Remarks

FNSTCW is the no-wait form of FSTCW. Use this form only when there is
danger of producing an infinite wait.

The control word stores all exception masks, the interrupt enable
mask, and fields for precision control, rounding control, and infinity
control.

Note: See FSTCW, and the 8087 control word for related information.

Logic

mem-op <- 8087 control word

Flags

None

Encoding

11011001 mod111r/m disp-Iow disp-high

09 mod111 rIm disp-Iow disp-high

Example

FNSTCW SAVE_CONTROL ;STORE CONTROL WORD

4-169

FNSTENV (8087)
Store Environment

Purpose

FNSTENV writes the basic status (control, status, and tag words) of the
8087 and exception pointers to the memory location defined by the
destination operand.

Format

FNSTENV destination

Remarks

This is the no-wait form of FSTENV. Use this form only if there is
danger of producing an infinite wait.

Both FSTENV and FNSTENV set all exception masks in the 8087 after the
environment is saved; it does not affect the interrupt enable mask.
The assembler must allow FNSTENV to finish before it decodes any
other instruction. An explicit FWAIT should precede the next 8087
instruction. There is no risk of the following FWAIT causing an infinite
wait, because FNSTENV masks all exceptions, thus preventing an inter
rupt request from the 8087. If the assembler decodes FNSTENV while
another instruction is running concurrently in the NEU (8087 numeric
execution unit), the 8087 does not store the environment until the
other instruction has completed. The data saved by this instruction
reflects the state of the 8087 after the assembler executes any previ
ously decoded instruction.

Note: See FSTENV and 8087 environment for related information.

Logic

mem-op <- 8087 environment
set all exception masks

Flags

None

4-170

Encoding

11011001 mod110r/m disp-Iow disp-high

D9 mod110r/m disp-Iow disp-high

Example

:NSTENV STORE_ENVIRONMENT ;STORE ENVIRONMENT

4-171

FNSTSW (SOS7)
Store Status Word

Purpose

FNSTSW writes the current value of the 8087 status word to the memory
location defined by the destination operand.

Format

FNSTSW destination

Remarks

This is the no-wait form of this instruction. Use this form only when
there is danger of producing an infinite wait.

Use FNSTSW or its companion instruction FSTSW to poll the status of the
processor. Then you can use this status information to do conditional
branching. You can use FNSTSW (no-wait) to tell if the 8087 is busy.

Note: See FSTSW and the 8087 status word for related information.

Logic

mem-op <- 8087 status word

Flags

None

Encoding

11011101 mod111 rim disp-Iow disp-high
DO mod111 rim disp-Iow disp-high

4-172

Example

This is an example showing a method to poll the status of the 8087
looking for a not-busy condition.

CSEG SEGMENT PARA PUBLIC 'CODE'
ASSUME CS:CSEG,DS:CSEG

STATUS OW 0 ;8087 STATUS
STAT RECORD STBUSY:l,STC3:1,STTOP:3,STC2:1,
STCl:l,STCO:l,STINT:l,STRES:l,STPFLG:l,STUFLG:l
,STOFLG:l,STZFLG:l,STDFLG:l,STIFLG:l
;The previous instruction
; (STAT RECORD ... STIFLG:l)
; must be contained on one line of code.
;LOOP HERE UNTIL THE 8087 IS NOT BUSY
POLL: FNSTSW STATUS ;STORE STATUS WORD

TEST STATUS,MASK STBUSY
JNZ POLL

CSEG ENDS
END

4-173

FNSTSW AX (80287)
Store Status Word

Purpose

FNSTSW AX writes the current value of the 80287 status word directly to
the AX register.

Format

FNSTSW AX

Remarks

This is the no-wait form of this instruction. As a special 80287 instruc
tion, FNSTSW AX writes the current value of the 80287 status word
directly into the 80286 AX register. This instruction optimizes condi
tional branching in numeric programs, where the 80286 processor
must test the condition of various NPX status bits. This instruction
does not check for unmasked numeric exceptions. When the assem
bler executes this instruction, the 80286 AX register is updated with
the NPX status word before the processor executes any further
instructions. In this way, the 80286 can immediately test the NPX

status word without requiring any WAIT or other synchronization
instructions.

You must use the .287 pseudo-op to use this instruction.

Note: See FSTSW AX for related information.

Logic

AX < - 80287 status word

Flags

None

4-174

Encoding

1101111 11100000

DF EO

Example
FNSTSW AX

4-175

FPATAN (8087)
Partial Arc Tangent

Purpose

FPATAN computes the () = ARCTAN(Y/X) function. FPATAN takes x from
the top element in the 8087 stack and Y from the next 8087 stack
element. The instruction pops the 8087 stack and returns () to the new
8087 stack top, overwriti ng the Y operand.

Format

FPATAN

Remarks

The FPATAN instruction assumes that the operands are valid and in
range. The valid range for x and y is:

o<y<x<+oo

To be considered valid, an operand must be normalized. If an
operand is either incorrect or out of range, the instruction produces
an undefined result without signaling an exception.

Logic

T1 <- ARCTAN (ST(1)/ST)
pop 8087 stack
ST <- T1

Flags

U,P (operands not checked)

4-176

Encoding

1 0011 011 11 011 00 1 1111 0011

98 D9 F3

Without FWAIT:

11011001 11110011
D9 F3

Example

FPATAN ;PARTIAL ARC TANGENT

4-177

FPREM (8087)
Partial Remainder

Purpose

FPREM modulo divides the 8087 stack top element ST by the next 8087
stack element sT(1). The sign of the remainder is the same as the
sign of the original dividend.

Format

FPREM

Remarks

FPREM operates by doing successive subtractions. It can reduce a
magnitude difference of up to 264 in one run. If FPREM produces a
remainder that is less than the modulus sT(1), the function is com
plete and FPREM clears bit c2 of the status word condition code. If the
function is incomplete, FPREM sets c2 to 1. The result in ST is then
called the partial remainder.

You can use software to inspect c2 by storing the status word fol
lowing the running of FPREM and running the instruction again (using
the partial remainder in ST as the dividend) until c2 is cleared. An
alternate possibility is comparing ST with sT(1) to determine when the
function is complete. If ST > sT(1), you must run FPREM again. If
ST = sT(1), the remainder is 0 and the run is complete. If
S1 < sT(1), the remainder is ST and the run is complete. FPREM

produces an exact result. The precision exception does not occur.

An important use for FPREM is to reduce arguments (operands) of
transcendental functions to the range permitted by these instructions.
For example, the FPTAN (tangent) instruction requires its argument to
be less than n/4. Using n/4 as a modulus, FPREM reduces an argu
ment so that it is in range of FPTAN. Because FPREM produces an exact
result, the argument reduction does not introduce round-off error into
the calculation-even if several iterations are required to bring the
argument into range.

4-178

FPREM also provides the least-significant 3 bits of the quotient gener
ated by FPREM (in c3,C1,cO). This is also important for transcendental
argument reduction because it locates the original angle in the
correct one of 8 n/4 segments of the unit ci rcle.

Logic

ST <- repeat (ST-ST(1))
If ST > ST(1) then C2 = 1, PREM = ST
Else if ST = ST(1) then C2 = 0, REM = 0
Else C2 = 0, REM = ST

Flags

I,D,U

Encoding

100110111101100111111000

98 D9 F8

Without FWAIT:

11 011 001 11111 000
09 F8

Example

FPREM ;PARTIAL REMAINDER

4-179

FPT AN (8087)
Partial Tangent

Purpose

FPTAN computes the y/x = TAN (0) function. FPTAN takes the value 0
from the top element of the 8087 stack (ST). The result of the operation
is a ratio; Y replaces 0 in the 8087 stack and x is pushed, becoming
the new 8087 stack top.

Format

FPTAN

Remarks

The FPTAN Instruction assumes that the operand is valid and in-range.
The value of 0 must be in the range 0 S 0 < n/4. To be considered
valid, an operand must be normalized. If the operand is incorrect or
out-of-range, the instruction produces an undefined result without sig
naling an exception.

The ratio result of FPTAN and the ratio argument of FPATAN optimize the
calculation of the other trigonometric functions including SIN, COS,

ARCSIN and ARCTAN. You can get these functions from TAN and ARCTAN

using standard trigonometric identities.

Logic

Y/X <- TAN(ST)
ST <- Y
push 8087 stack
ST <-X

Flags

I,P (operands not checked)

4-180

Encoding

10011011 11011001 11110010

98 09 F2

Without FWAIT:

11011001 11110010
09 F2

Example

FPTAN ;PARTIAL TANGENT

4-181

FRNDINT (8087)
Round to Integer

Purpose

FRNDINT rounds the 8087 stack top element ST to an integer.

Format

FRNOINT

Remarks

The setting of the RC field of the control word determines the rules for
rounding. There are four modes of rounding available:

RC = 00

RC = 01
RC = 10
RC = 11

Logic

Round to nearest integer; if exactly midway, FRNDINT

chooses the even integer. (This is the default mode.)
Round downward (toward - 00)

Round upward (toward + 00)
Chop (round toward 0)

ST <- nearest integer (ST)

Exception Flags

I,P

Encoding

1 0011011 11011 001 111111 00
98 09 FC

Without FWAIT:

1101100111111100
09 Fe

Example

FRNDINT

4-182

;ROUND TO INTEGER

FRSTOR (SOS7)
Flestore State

)urpose

=RSTOR, the restore state instruction, reloads the 8087 from the
~4-byte memory area defined by source operand. A previous
=SAVE/FNSAVE instruction should write this information.

Format

FRSTOR source

Remarks

~PU (8088) instructions that do not refer to the save image can imme
diately follow the FRSTOR instruction. However, an FWAIT instruction
should precede any 8087 instruction following this instruction. The
saved image requires 94 bytes of memory.

Note: The 8087 reacts to its new state at the fi nish of the FRSTOR; it
produces an immediate interrupt if the exception and mask bits
in the memory image so indicate.

Logic

8087 state <- mem-op

Exception Flags

None

Encoding

1001101111011101 mod100r/m disp-Iow disp-high

98 DO mod100r/m disp-Iow disp-high

Example

FRSTOR SAVE_STATE ;RESTORE STATE

4-183

FSA VE (8087)
Save State

Purpose

FSAVE writes the full 8087 state (environment plus register stack) to
the memory location specified in the destination operand, and initial
izes the 8087.

Format

FSAVE destination

Remarks

After FSAVE writes the image to memory, it initializes the 8087 as if
you had run FINIT/FNINIT.

Note: See FNSAVE, FINIT, and 8087 save state for related information.

Logic

mem-op <- 8087 state

Exception Flags

None

Encoding

1001101111011101 mod110r/m disp-Iow disp-high

98 DO mod110r/m disp-Iow disp-high

Example

FSAVE SAVE_STATE ;SAVE CURRENT STATE OF 8087

4-184

FSCALE (8087)
Scale

Purpose

FSCALE interprets the value contained in sr(1) as an integer and adds
this value to the exponent of the number in ST.

Format

FSCALE

Remarks

FSCALE rapidly multiplies or divides by integral powers of 2. It is
especially useful for scaling the elements of a vector.

The value contained in sr(1) must be an integer in the range
_2 15 ::; ST(1) < 215. If the value in sr(1) is out of range or
o < sT(1) < 1, the instruction produces an undefined result and
does not signal an exception. Loading the scale factor from a word
integer ensures correct operation.

Note: If the value is not an integer, but is in range and greater in
magnitude than 1, FSCALE uses the nearest integer smaller in
magnitude.

Logic

ST <- ST*2ST(1)

Exception Flags

I,O,U

4-185

Encoding

100110111101100111111101

98 09 FO

Without FWAIT:

11 011 00 1 111111 01
09 FO

Example

FSCALE ;SCALE

4-186

FSETPM {80287}
Set Protected Mode

Purpose

FSETPM sets the operating mode of the 80287 to Protected Virtual
Address mode.

Format

FSETPM

Remarks

FSETPM is meant to be executed in the power-up initialization routine
of the 80286, when the 80286 is put into Protected Mode. Once FSETPM

is run, the 80287 remains in Protected Mode until the next hardware
reset - even after running FINIT, FSAVE, or FRSTOR.

You must use the .287 pseudo-op to enable this instruction.

Logic

Set Protected Mode

Flags

None

Encoding

11011011111001000000000000000000
DB E4 0 0

Example

FSETPM

4-187

FSQRT (8087)
Square Root

Purpose

FSORT replaces the content of the 8087 stack top element ST with its
square root.

Format

FSQRT

Remarks

FSORT runs rapidly and is comparable to normal division. This allows
an application that would normally run slowly because of the pres
ence of square root calculations to achieve normal speed. ST must be
in the range:

-0 s ST s + 00

Note: The square root of -0 is defined to be -0.

Logic

ST <- .JST

Exception Flags

I,D,P

4-188

Encoding

10011011 11011001 11111010

98 D9 FA

Without FWAIT:

11 011 00 1 11111 01 0
D9 FA

Example

FSQRT ;SQUARE ROOT

4-189

FST (8087)
Store Real

Purpose

FST transfers the 8087 stack top ST to the location defined by the desti
nation operand.

Format

FST destination

Remarks

FST transfers the top of the 8087 stack to the destination, which can be
another 8087 stack element or a short or long real memory operand.
If the contents of the 8087 stack top are longer than the destination,
FST rounds the contents of the 8087 stack top according to the RC

(rounding control) field in the control word. If the 8087 stack top is
tagged a special value (it contains 00, a NaN, or a denormal), FST

does not round the 8087 stack top significand. In this case, the
assembler deletes the least-significant bits of the 8087 stack top to fit
the destination. It treats the exponent in the same way. This pre
serves the identification of the value as a special value so that you
can properly load and tag it later in the program, if you want.

Exception Flags

I,O,U,P

4-190

FST ST to Register operand

Format

FST ST(i)

Remarks

Transfer ST to 8087 stack element ST(i).

Logic

ST(i) <- ST

Encoding

1 0011 011 11 0111 01 11 01 0 (i)

98 DD DO + (i)

Without FWAIT:

1101110111010(;)
DD DO + (i)

Example

FST ST(5) ;STORE REAL

4-191

F5T 51 to Memory operand

Format

FST short_real
or

FST long_real

Logic

mem-op <- ST

Encoding

1001101111011001 mod010r/m disp-Iow disp-high
98 09 mod010r/m disp-Iow disp-high

Without FWAIT:

11011001 mod010r/m disp-Iow disp-high
09 mod010r/m disp-Iow disp-high

Example

FST SHORT_REAL ;STORE REAL

Encoding

10011011 11011101 mod010r/m disp-Iow disp-high
98 00 mod010r/m disp-Iow disp-high

Without FWAIT:

11011101 mod010r/m disp-Iow disp-high
00 mod010r/m disp-Iow disp-high

Example

FST LONG_REAL ;STORE REAL

4-192

FSTCW (8087)
Store Control Word

Purpose

FSTCW writes the current 8087 control word to the memory location
defined by the destination.

Format

FSTCW destination

Remarks

An assembler-produced WAIT instruction precedes the FSTCW form of
this instruction. This is the normal form of this instruction. FNSTCW

does not cause the assembler to produce a WAIT.

Note: See FNSTCW and the 8087 control word for related information.

Logic

mem-op <- 8087 control word

Exception Flags

None

Encoding

1001101111011001 mod111r/m disp-Iow disp-high

98 09 mod111 rIm disp-Iow disp-high

Example
FSTCW CONTROL_CONTROL_WORD ;STORE CONTROL WORD

4-193

FSTENV (8087)
Store Environment

Purpose

FSTENV writes the status (control, status and tag words of the 8087,
and exception pointers) to the memory location defined by the desti
nation operand.

Format

FSTENV destination

Remarks

An assembler-generated WAIT instruction precedes the FSTENV form of
this instruction. This ensures that any instruction currently active
completes its execution before FSTENV stores the environment, and
that the environment stored is current. After storing, FSTENV sets all
exception masks in the processor; it does not affect the interrupt
enable mask. Use FNSTENV when you do not want an 8088 WAIT.

You must allow FSTENV/FNSTENV to finish before you decode any other
8087 instruction. When FSTENV is coded, an assembler-produced WAIT

should precede the next 8087 instruction.

Note: See FNSTENV and the 8087 environment for related information.

Logic

mem-op <- 8087 environment

Exception Flags

None

4-194

Encoding

10011011 11011001 mod110r/m disp-Iow disp-high

98 D9 mod110r/m disp-Iow disp-high

Example

FSTENV STORE_ENVIRONMENT ;STORE ENVIRONMENT

4-195

FSTP (8087)
Store Real and POP

Purpose

FSTP transfers the 8087 stack top element ST to the location defined by
the destination operand. FSTP then pops the top element of the 8087
stack from the 8087 stack.

Format

FSTP destination

Remarks

The destination can be another 8087 stack element or memory
operand (short-real, long-real, or temporary-real). If the destination
is short or long real memory, FSTP rounds the significand to the width
of the destination according to the RC field of the control word and
converts the exponent to the width and bias of the destination format.

FSTP permits storing temporary real numbers in a memory operand
while FST does not. FSTP ST(O} is the same as popping the 8087 stack
with no data transfer.

Note: See FST for related information.

Exception Flags

I,O,U,P

4-196

F5TP 5T to Register operand

=ormat

=STP ST(i)

~emarks

fhis moves ST to the 8087 stack element ST(i) and pops the 8087 stack.

Logic

3T(i) <- ST
:lOP 8087 stack

Encoding

100110111101110111011(i)

98 DD D8 + (i)

Without FWAIT:

11 0111 01 11 011 (i)
DD D8 + (i)

Example

~STP ST(5) ;STORE REAL AND POP

4-197

FSTP ST to Memory operand

Format

FSTP short_real
or

FSTP long_real
or

FSTP temp_real

Remarks

Transfer ST to memory operand and pop the 8087 stack.

Encoding

10011011 11011001 mod011 rim disp-Iow disp-high
98 09 mod011 rim disp-Iow disp-high

Without FWAIT:

11011001 mod011 rim disp-Iow disp-high
09 mod011 rim disp-Iow disp-high

Example

FSTP SHORT_REAL ;STORE REAL AND POP

Encoding

10011011 11011101 mod011 rim disp-Iow disp-high
98 00 mod011 rim disp-Iow disp-high

Without FWAIT:

11011101 mod011 rim disp-Iow disp-high
00 mod011 rim disp-Iow disp-high

4-198

Example

FSTP LONG_REAL ;STORE REAL AND POP

Encoding

TEMPORARY_REAL

10011011 11011011 mod111 rIm disp-Iow disp-high
9B DB mod111 rIm disp-Iow disp-high

Without FWAIT:

11011011 mod111 rIm disp-Iow disp-high
DB mod111 rIm disp-Iow disp-high

Example

FSTP TEMPORARY_REAL ;STORE REAL AND POP

4-199

FSTSW (8087)
Store Status Word

Purpose

FSTSW writes the current value of the 8087 status word to the memory
location defined by the destination operand.

Format

FSTSW destination

Remarks

An assembler-generated WAIT instruction precedes the FSTSW form of
this instruction. In special cases where you do not want this WAIT, use
the FNSTSW instruction.

This is a useful instruction to trigger various conditional branching
routines by determining the state of the fields in the status word.

If you use the WAIT form (FSTSW) with an outstanding unmasked excep
tion, a deadlock results.

Note: See FNSTSW and the 8087 status word for related information.

Logic

mem-op <- 8087 status word

Exception Flags

None

Encoding

1001101111011101 mod111r/m disp-Iow disp-high
98 DO mod111 rim disp-Iow disp-high

Example

FSTSW STORE_STATUS_WORD ;STORE STATUS WORD

4-200

FSTSW AX (80287)
Store Status Word

Purpose

FSTSW AX writes the current value of the 80287 status word directly to
the AX register.

Format

FSTSW AX

Remarks

As a special 80287 instruction, FSTSW AX writes the current value of the
B0287 status word directly into the 80286 register. This instruction
optimizes conditional branching in numeric programs, where the
B0286 processor must test the condition of various NPX status bits.
This instruction checks for unmasked numeric exceptions. When the
assembler executes this instruction, the 80286 AX register is updated
with the NPX status word before the processor executes any further
instructions. In this way, the 80286 can immediately test the NPX

status word without requiring any WAIT or other synchronization
instructions.

An assembler-generated WAIT instruction precedes the FSTSW form of
this instruction. In special cases where you do not want this WAIT, use
the FNSTSW instruction.

This is a useful instruction to start various conditional branching rou
tines by determining the state of the status bits in the status word.

If you use the WAIT form (FSTSW AX) with an outstanding unmasked
exception, a deadlock results.

You must use the .287 pseudo-op to use this instruction.

Note: See FNSTSW AX for related information.

Logic

AX <- 80287 status word

4-201

Exception Flags

None

Encoding

10011011 11011111 11100000

98

Example

FSTSW AX

4-202

OF EO

FSUB (8087)
Subtract Real

Purpose

FSUB subtracts the source operand from the destination operand and
returns the difference to the destination.

Format

FSUB
or

FSUB source
or

FSUB destination, source

Remarks

FSUB stores the difference of the two operands in the destination (left
most) operand. You can write FSUB without operands, with only a
source, or with a destination and a source.

Note: See FSUBP and FISUB for related information.

Exception Flags

I,D,O,U,P

4-203

FSUB (no operands) 8087 stack form

Format

FSU8 [ST(1),ST]

Note: sT(1),ST are the implied operands; they are not coded, and are
shown here for information only.

Remarks

FSUB picks the source operand from the 8087 stack top and the desti
nation operand from the next 8087 stack element. It then pops the
8087 stack, does the operation, and returns the result to the new 8087
stack top.

Note: FSUB (no operands) is similar to the FSUBP instruction with STU)

being sT(1).

Logic

ST(1) <- ST(1) - ST
pop 8087 stack

Encoding

10011011 11011110 11101001

98 DE E9

Without FWAIT:

11011110 11101001
DE E9

Example

FSUB

4-204

;SUBTRACT REAL

FSUB (source) Real memory form

Format

FSUB short_real
or

FSUB long_real

Remarks

The real memory form permits a real number in memory to be used
directly as a source operand. The destination operand is the top of
the 8087 stack (register ST). It is implied in this form of the instruction.

Note: You can use any memory-addressing mode to define the
source operand.

Logic

ST <- ST - mem-op

Encoding

10011011 11011000 mod100r/m disp-Iow disp-high
9B 08 mod100r/m disp-Iow disp-high

Without FWAIT:

11011000 mod100r/m disp-Iow disp-high
08 mod100r/m disp-Iow disp-high

Example

FSUB SHORT_REAL ;SUBTRACT REAL

4-205

Encoding

10011011 11011100 mod100r/m disp-Iow disp-high
98 DC mod100r/m disp-Iow disp-high

Without FWAIT:

11011100 mod100r/m disp-Iow disp-high
DC mod100r/m disp-Iow disp-high

Example

FSUB LONG_REAL ;SUBTRACT REAL

FSUB (destination,source) Register form

Remarks

Specify the 8087 stack top as one operand and any register on the
8087 stack as the other operand.

Format

FSU8 ST,ST(i)

Logic

ST <- ST - ST(i)

Encoding

1 0011011 11011000 11100 (i)

98 08 EO + (i)

Without FWAIT:

11011000 11100(i)
08 EO + (i)

4-206

Example

FSUB ST, ST (1) ;SUBTRACT REAL
FSUB ST, ST (7)

Format

FSU8 ST(i),ST

Logic

ST(i) <- ST(i) - ST

Encoding

1 0011 011 11 0111 00 111 01 (i)

98 DC E8 + (i)

Without FWAIT:

11 0111 00 111 01 (i)
DC E8 + (i)

Example

FSUB ST (1) ,ST
FSUB ST (7) , ST

;SUBTRACT REAL

4-207

FSUBP (8087)
Subtract Real and POP

Purpose

FSUBP subtracts the source operand from the destination operand and
returns the result to the destination operand. Then FSUBP pops the
floating-point 8087 stack.

Format

FSUBP destination, source

Remarks

FSUBP stores the difference of the two operands in the destination
(leftmost) operand. FSUBP picks the source operand from the ST reg
ister, or top of the 8087 stack, and the destination operand from an
STU) element. It then pops the 8087 stack, does the operation, and
returns the result to the STU) 8087 stack. You can use FSUBP to get the
8087 stack top as the source operand and then discard it by popping
the 8087 stack.

See FSUB and FISUB for related information.

Note: FSUB (no operands) is similar to the FSUBP instruction with ST(i)

being sT(1).

Logic

STU) <- ST(i) - ST
pop 8087 stack

Exception Flags

I,O,O,U,P

4-208

Encoding

10011011 11011110 11101 (i)

98 DE E8 + (i)

Without FWAIT:

11011110 11101 (i)
DE E8 + (i)

Example

FSUBP ST (7), ST ;SUBTRACT REAL AND POP

4-209

FSUBR (8087)
Subtract Real Reversed

Purpose

FSUBR subtracts the destination operand from the source operand and
returns the result to the destination.

Format

FSUBR
or

FSUBR source
or

FSUBR destination,source

Remarks

FSUBR reverses the normal order of operation. All other properties
are the same as the FSUB instruction.

FSUBR stores the difference of the two operands in the destination
(leftmost) operand. You can write FSUBR without operands, with only
a source, or with a destination and a source.

Note: See FSUB, FSUBP, FSUBRP and FISUB for related information.

Exception Flags

I,D,O,U,P

4-210

FSUBR (no operands) 8087 stack form

Format

FSU8R [ST(1),ST]

Note: sT(1) and ST are the implied operands; they are not coded, and
are shown here for information only.

Remarks

FSUBR picks the source operand from the 8087 stack top and the desti
nation operand from the next 8087 stack element. It then pops the
8087 stack, does the operation, and returns the result to the new 8087
stack top.

Note: FSUBR (no operands) is similar to the FSUBRP instruction with
ST(i) being ST(1).

Logic

ST(1) <- ST - ST(1)
pop 8087 stack

Encoding

100110111101111011100001

98 DE E1

Without FWAIT:

11011110 111 00001
DE E1

Example

FSUBR ;SUBTRACT REAL

4-211

FSUBR (source) Real-memory form

Format

F5UBR short_real
or

F5UBR long_real

Remarks

The real-memory form permits a real number in memory to be used
directly as a source operand. The destination operand is the top of
the 8087 stack (register ST). It is implied in this form of the instruction.

Note: Any memory-addressing mode can be used to define the
source operand.

Logic

5T <- mem-op - 5T

Encoding

1001101111011000 mod101r/m disp-Iow disp-high
9B D8 mod1 01 rim disp-Iow disp-high

Without FWAIT:

11011000 mod101 rim disp-Iow disp-high
D8 mod101 rim disp-Iow disp-high

Example

FSUBR SHORT_REAL

Encoding

10011011 11011100 mod101 rim disp-Iow disp-high
9B DC mod101 rim disp-Iow disp-high

4-212

Without FWAIT:

11011100 mod101 rim disp-Iow disp-high
DC mod101 rim disp-Iow disp-high

Example

FSUB LONG_REAL

FSUBR (destination,source) Register form

Remarks

Specify the top element of the 8087 stack as one operand and any
register on the 8087 stack as the other operand.

Format

FSUBR ST,ST(i}

Logic

ST <- ST(i} - ST

Encoding

10011011 11011000 11101 (i)

9B 08 E8 + (i)

Without FWAIT:

11 011000 111 01 (i)
08 E8 + (i)

Example

FSUBR ST. ST (1)
FSUBR ST. ST (7)

Format

FSUBR STU},ST

;SUBTRACT REAL

4-213

Logic

ST(i) <- ST - STU)

Encoding

10011011 11011100 111 00 (i)

98 DC EO + (i)

Without FWAIT:

11 0111 00 111 00 (i)
DC EO + (i)

Example
FSUBR ST(l),ST
FSUBR ST(7),ST

4-214

FSUBRP (8087)
Subtract Real Reversed and POP

Purpose

FSUBRP subtracts the destination operand from the source operand
and returns the result to the destination. FSUBRP then pops the top
element of the 8087 stack.

Format

FSUBRP destination, source

Remarks

FSUBRP reverses the normal order of operation. All other properties
are the same as the FSUBP instruction.

FSUBRP stores the difference of the two operands into the destination
(leftmost) operand. FSUBRP picks the source operand from the ST reg
ister or top of the 8087 stack, and the destination operand from an
ST(i) element. It then pops the 8087 stack, does the operation, and
returns the result to the ST(i) 8087 stack. You can use FSUBRP to get
the top element of the 8087 stack as the source operand, and then
discard it by popping the 8087 stack.

See FSUB, FSUBR, FSUBP, and FISUBR for related information.

Logic

ST(i) <- ST - STU)
pop 8087 stack

Exception Flags

I,D,O,U,P

4-215

Encoding

10011011 11011110 11100(i)

98 DE EO + (i)

Without FWAIT:

11011110 111 00(i)

DE EO + (i)

Example

FSUBRP ST(7),ST

4-216

;SUBTRACT REAL AND POP

FTST (8087)
Test

Purpose

FTST tests the floating-point 8087 stack top element by comparing it to
zero. FTST posts the result to the condition code of the status word.

Format

FTST

Remarks

FTST posts the results to the condition code as follows:

C3

o
o
1

co

o
1
o

Result

ST > 0
ST < 0
ST = 0
ST is not comparable (for example, it
is a NaN or projective (0)

Note: See FCOM, FCOMP, FCOMPP, FICOM, FICOMP, and FXAM for other
comparison instructions.

Logic

ST <- ST - 0

Exception Flags

I,D

4-217

Encoding

100110111101100111100100

98 D9 E4

Without FWAIT:

11011001 11100100
D9 E4

Example

FTST ;TEST

4-218

FW AIT (8087)
Wait (CPU Instruction)

Purpose

FWAIT causes the 8088 to wait until the current 8087 instruction is com
pleted before the 8088 performs the "ext instru~tion.

Format

FWAIT

Remarks

FWAIT synchronizes the 8087 to the 8088. Use the FWAIT instruction for
this purpose and not the 8088 WAIT instruction, which could cause an
infinite wait.

FWAIT is an alternate mnemonic for the 8088 WAIT instruction. FWAIT

and WAIT assemble with the same object code when you use the IR
assembler option and with different object code when you use the IE
assembler option.

Note: Use FWAIT instead of WAIT if you want 8087 emulator compat-
ibility.

The routines that change an object program for 8087 emulation
change any FWAITS to NOPS but do not change any WAITS. The program
waits forever if it finds a WAIT during an emulated run because there
is no active 8087 to drive the test pi n of the 8088.

Logic

8088 wait

Exception Flags

None

4-219

Encoding

10011011

98

Example

This example shows how the FWAIT instruction can be used to force
the CPU to WAIT until the variable STATUS has been updated by the 8087
instruction FNSTSW to ensure that the information in STATUS is the most
recently updated information.

FNSTSW STATUS
FWAIT ;Wait for FNSTSW
MOV AX,STATUS

4-220

FXAM (8087)
Examine

Purpose

FXAM examines the contents of the 8087 stack top element (ST) and
posts the result in the condition code field of the status word.

Format

FXAM

Remarks

The result of FXAM is posted to the condition code field of the status
word as follows:

C3 C2 C1 CO Interpretation

0 0 0 0 + Unnormal
0 0 0 + NaN
0 0 0 - Unnormal
0 0 - NaN
0 0 0 + Normal
0 0 1 +00
0 1 0 - Normal
0 1 - 00

0 0 0 +0
0 0 Empty
0 0 -0
0 1 Empty

0 0 + Denormal
0 Empty

0 - Denormal
Empty

Note: Although four different internal representations can be
returned for an empty register, bits c3 and cO of the condition
code are both 1 in all internal representations. Bits c2 and c1
should be ignored when examining for empty.

4-221

Exception Flags

None

Encoding

10011011 11011001 11100101

98 D9 E5

Without FWAIT:

11011001 11100101
D9 E5

Example

FXAM ;EXAMINE

4-222

FXCH (8087)
Exchange Registers

Purpose

FXCH swaps the contents of the destination and the 8087 stack top reg
isters. If the destination is not coded explicitly, sT(1) is used.

Format

FXCH
or
FXCH destination

Remarks

Many 8087 instructions operate only on the 8087 stack top. FXCH pro
vides a way of effectively using these instructions on the lower 8087
stack elements.

Exception Flags

4-223

FXCH (No Operands)

Format

FXCH

Logic

Tl <- ST(1)
ST(1) <- ST

ST <- Tl

Encoding

1 0011 011 11 011 001 11001 000

98 09 C8

Without FWAIT:

1101100111001000
09 C8

4-224

FXCH (destination)

Format

FXCH destination

Logic

Tl <- ST(i)
STU) <- ST
ST <- Tl

Encoding

1 0011 011 11 011 001 11 001 (i)

98 D9 C8 + (i)

Without FWAIT:

11 011 001 11 001 (i)
D9 C8 + (i)

Example
FXCH ST(3) ;EXCHANGE REGISTERS
FSQRT
FXCH ST(3)

This example takes the square root of the the third register from the
top of the 8087 stack.

4-225

FXTRACT (8087)
Extract Exponent and Significand

Purpose

FXTRACT factors the number in the 8087 stack top into a significand
and an exponent expressed in real numbers. The exponent replaces
the original operand in the 8087 stack top; then FXTRACT pushes the
significand onto the 8087 stack.

Format

FXTRACT

Remarks

FXTRACT is useful with FBSTP for converting numbers in 8087 temporary
real format to decimal representations (for example, for printing or
displaying). It can also be useful for debugging, because it allows
you to examine the exponent and significand parts of a real number.

Note: Numbers are stored internally in a biased exponent format. In

Logic

this format a true zero exponent is expressed as 16383 or
3FFFH. FXTRACT converts this biased notation into true notation.

T1 <- exponent(ST)
T2 <- significand(ST)
ST <- T1
push 8087 stack
ST <- T2

Exception Flags

4-226

Encoding

1 0011011 11 011001 1111 0100

98 09 F4

Without FWAIT:

11011001 11110100
09 F4

Example

FXTRACT ;EXTRACT EXPONENT AND SIGNIFICAND

4-227

FYL2X (8087)
Y * LOg2X

Purpose

FYL2X calculates the Z = Y*log2X function.

Format

FYL2X

Remarks

x is taken from the top of the 8087 stack and Y from sT(1). FYL2X pops
the 8087 stack and returns z to the new 8087 stack top, replacing the Y

operand.

The following function optimizes the calculation of log to any base
other than 2 because a multiplication is required.

10gnX = (1-;-.(log2n)) * log2X

Note: The operands must be in the ranges:

Logic

O<X<oo
-oo<Y< +00

T1 <- 8T(1) * log2(8T)
pop 8087 stack
8T <- T1

Exception Flags

p (operands not checked)

4-228

Encoding

10011011 11011001 11110001

98 09 F1

Without FWAIT:

11 011 001 11110001
09 F1

Example

FYL2X ;Y TIMES LOG BASE 2 OF X

4-229

FYL2XP1 (8087)
y* Log

Purpose

FYL2XP1 calculates the Z = Y*log2(X + 1) function.

Format

FYL2XP1 (no operands)

Remarks

The value x is taken from the top of the 8087 stack and must be in the
range 0 < IXI < (1-";2/2). The value Y is taken from ST(1) and must
be in the range -00 < Y < + 00. FYL2XP1 pops the 8087 stack and
returns Z at the new 8087 stack top, replacing Y.

This instruction provides improved accuracy over FYL2X when com
puting the log of a number very close to 1.

Note: See FYL2X for related information.

Logic

T1 <- ST + 1
T2 <- ST(1) * 1092T1
pop 8087 stack
ST <- T2.

Exception Flags

P (operands not checked)

4-230

Encoding

1 0011 011 11 011 001 11111 001

98 D9 F9

Without FWAIT:

11011001 11111001
D9 F9

Example

FYL2XPI ;Y TIMES LOG BASE 2 OF (X+l)

4-231

HLT
Halt

Purpose

The HL T instruction causes the processor to enter its halt state.

Format

HLT

Remarks

The halt state is cleared by an enabled external interrupt or reset.

In protected mode, HLT is a privileged instruction which runs from
privilege level 0 only.

Flags

None

Encoding

11110100

F4

Example

HLT

4-232

IDIV
Integer Division, Signed

Purpose

IDIV divides a dividend (NUMR) in the accumulator and its extension, by
a divisor (DIVR) from the source operand. If the source operand is a
Byte operand, AX is divided by the byte. IDIV returns the quotient (Quo)

to AL and the remainder (REM) to AH. If the source operand is a Word
operand, AX:DX is divided by the word. The quotient (Quo) is returned
in AX and the remainder (REM) is returned in DX.

Format

IDIV source

Remarks

If the quotient is positive and greater than the maximum (MAX) or if
the quotient is negative and less than O-MAX-1 (as when division by
zero is attempted), then QUO and REM are undefined, and the assem
bler produces type 0 interrupt. IDIV truncates non-integral quotients
and returns a remainder with the same sign as the numerator.

If the division results in a value larger than the appropriate registers
can hold, the assembler produces an interrupt of type O. The flags
are pushed onto the stack, IF and TF are reset to 0, and the cs register
contents are pushed onto the stack. cs is then filled by the word at
location 2. The current IP is pushed onto the stack and IP is then filled
with the word at O. This sequence thus includes a FAR call to the
interrupt handling procedure whose segment and offset are stored at
locations 2 and O.

If the division result can fit in the appropriate registers, the quotient is
stored in AL or AX (for word operands) and the remainder in AH or DX,

respectively.

4-233

Logic

(temp) <- NUMR
if (temp)/(DIVR) > 0
~nd (temp)/(DIVR) > MAX

or (temp)/(DIVR) < 0
and (temp)/(DIVR) < 0-MAX-1

then

else

(QUO),(REM) undefined
(SP) <- (SP) - 2
((SP) + 1 :(SP)) <- FLAGS
(IF) <- 0
(TF) <- 0
(SP) <- (SP) - 2
((SP) + 1 :(SP)) <- CS
(CS) <- (2)
(SP) <- (SP) - 2
((SP) + 1 :(SP)) <- (IP)
(IP) <- 0

(QUO) <- (temp)/(DIVR)
(REM) <- (temp)%(DIVR)

Flags

Affected- No valid flags result
Undefined- AF, CF, OF, PF, SF, ZF

Encoding

1111011w mod111r/m

F6 + w mod111r/m

If w = 0, NUMR = AX, DIVR = EA, QUO = AL,
REM=AH, MAX=7FH.

If w = 1, NUMR = DX:AX, DIVR = EA, QUO = AX,
REM=DX, MAX=7FFFH.

4-234

Example

To divide a word by a byte:

MOV AX,NUMERATOR_WORD[BX]
IDIV DIVISOR_BYTE[BX]

To divide a word by a word:

MOV AX,NUMERATOR_WORD
CWD ;CONVERTS WORD TO DOUBLEWORD
IDIV DIVISOR_WORD

To divide a doubleword by a word:

MOV DX,NUM_HI_WORD
MOV AX,NUM_LO_WORD
IDIV DIVISOR_WORD[SI]

(SEE DIV instruction)

4-235

IMUL
Integer Multiply

Purpose

IMUL does a signed multiplication of the accumulator (AL or AX) and
the source operand.

Format

IMUL source

Remarks

If the source is a Byte operand, then source is multiplied by AL and
the 16-bit signed result is left in AX. If source is a Word, then source
is multiplied by AX and the 32-bit signed result is in DX and AX. (The
low-order 16 bits go in AX and the high-order 16 bits go in DX.) If the
high order half of the result is the sign extension of the low order half,
the carry and overflow flags are set to zero; otherwise, they are set to
1.

Logic

(DEST) <- (LSRC)*(RSRC)
where * is signed multiply

if (EXT) = sign-extension of (LOW) then
(CF) <- 0

else (CF) <- 1
(OF) <- (CF)

Flags

Affected- CF, OF

Undefined-AF, PF, SF, ZF

4-236

Encoding

1111011w mod101 rIm

F6 + w mod101 rIm

If w = 0, LSRC = AL, RSRC = EA, DEST = AX,
EXT=AH, LOW=AL.

If w = 1, LSRC = AX, RSRC = EA, DEST = DX:AX

Example

Any of the memory operands in the following examples could be an
indexed address-expression of the correct TYPE. LSRC_BYTE could be
ARRAY[SI] if A were of type BYTE, and RSRC_WORD could be TABLE[BX][DI]

if TABLE were of type WORD.

To multiply a byte by a byte:

MOV AL,LSRC_BYTE
IMUL RSRC_BYTE ;RESULT IN AX

To multiply a word by a word:

MOV AX,LSRC_WORO
IMUL RSRC_WORO
;HIGH-HALF RESULT IN OX, LOW-HALF IN AX

To multiply a byte by a word:

MOV AL,MUL_BYTE
CBW ;CONVERTS BYTE IN AL TO WORD IN AX
IMUL RSRC_WORO
;HIGH-HALF RESULT IN OX, LOW-HALF IN AX

4-237

IMUL (80286)
Integer Immediate Multiply

Purpose

IMUL Immediate does a signed multiplication of a value by an imme
diate value allowing you to choose a destination register other than
the combination of ox and AX.

Format

IMUL destination, immediate
or
IMUL destination, source, immediate

Remarks

IMUL Immediate requires three arguments:

• The immediate value
• The effective address of the second operand
• The register where the result is to be placed.

The two operands are the immediate value and the data at an effec
tive address (which may be the same register where the result is
placed, another register, or a memory location).

If the immediate operand is a byte, the processor sign extends it to 16
bits before multiplying. The result must be placed in one of the
general-purpose registers. The result cannot exceed 16 bits without
causing an overflow and only the lower 16 bits of the result are
saved.

IMUL Immediate can also be used with unsigned operands because
the low 16 bits of a signed or unsigned multiplication of two 16-bit
values is the same.

If the high order half of the result is the sign extension of the low
order half, the carry and overflow flags are reset; otherwise, they are
set.

You must use the .286C pseudo-op to enable this instruction.

4-238

Logic

(DEST)<-(LSRC)*(RSRC)
where * is signed multiply

if (EXT) = sign-extension of (LOW)
then (CF)<-O

else (CF)<-1
(OF)<-(CF)

Flags

Affected- CF, OF

Undefined-AF, PF, SF, ZF

Encoding

011010s1 data [data if s=O]

69 + s data [data if s = 0]

Example

In this example, IMUL replaces the contents of BX with the product of
the contents of 51 and an immediate value of 7.

IMUL BX,SI,7

In this example, IMUL replaces the contents of BX with the product of
the contents of BX and an immediate value of 7.

IMUL BX,7

4-239

IN
Input Byte or Word

Purpose

The contents of the accumulator are replaced by the contents of the
designated port.

Format

IN accumulator,port

Remarks

IN transfers a byte or word from an input port to the AL register (or AX

register). The port is specified either with an inline data byte,
allowing fixed access to ports 0 through 255, or with a port number in
the DX register, allowing variable access to 64K input ports.

The destination for input must be AX or AL and must be specified in
order for the assembler to know the type of the input. The port names
must be immediate values between 0 and 255, as used in the fol
lowing example. The register name is DX, which must contain the
requisite port location.

In protected mode, you can run IN only at a privilege level less than or
equal to the value of IOPL in the flags register.

Logic

(DEST) <- (SRC)

Flags

None.

4-240

Fixed Port

Encoding

1110010w port

E4 + w port

If w = 0, SRC = port, DEST = AL.
If w = 1, SRC = port + 1, DEST = AX.

Example

IN AX,WORD_PORT ;INPUT WORD TO AX
IN AL,BYTE_PORT ;INPUT A BYTE TO AL

Variable Port

Encoding

1110110w

EC + w

If w=O, SRC=(DX), DEST=AL.
If w = 1, SRC = (DX) + 1 :(DX), DEST = AX.

Example

IN AX,DX ;INPUT A WORD TO AX
IN AL,DX ;INPUT A BYTE TO AL

4-241

INC
Increase Destination by One

Purpose

INC adds the operand and 1 and returns the result to the operand.

Format

INC destination

Remarks

The specified operand is increased by 1. There is no carry-out of the
most significant bit.

Logic

(DEST) <- (DEST) + 1

Flags

Affected- AF, OF, PF, SF, ZF

4-242

Register Operand (Word)

Encoding

01000reg

40 + reg

DEST=REG

Example
INC AX
INC DJ

Memory or Register Operand

Encoding

1111111w modOOOr/m

FE + w modOOOr/m

DEST=EA

Example

Increase register:
INC CX
INC BL

4-243

Increase memory:

INC MEM_BYTE
INC MEM_WORD[BX]
INC BYTE PTR[BX]
;BYTE IN DATA SEGMENT AT OFFSET [BX]
INC ALPHA[DI] [BX]
INC BYTE PTR [SI][BP]
;BYTE IN STACK SEGMENT AT OFF [SI + BP]
INC WORD PTR [BX]
;INCREASES THE WORD IN DATA SEGMENT AT
; OFFSET [BX]

4-244

INS/INSB/INSW (80286)
Input from Port to String

Purpose

INS transfers a byte or word string element from an input port num
bered by the ox register to the memory at ES:OI. The type of the first
operand to INS determines whether a byte or a word is moved.

Format

INS destination-string ,port
or

INSB
or

INSW

Remarks

The address of the destination is determined only by the contents of
01, not by the first operand to INS. You must load the correct index
value into 01 before running the INS, INSB, or the INSW instructions. The
operand is used only to validate ES segment addressability and to
determine the data type. The operand must be addressable from the
ES register; no segment override is possible.

The port is addressed through the ox register; the port number cannot
be specified as an immediate value.

INSB and INSW are synonyms for the byte and word INS instructions.
They are simpler to use, requiring no operands; however, INSB and
INSW do not check type or segment.

01 is advanced after the transfer is done. If the direction flag is 0, 01

increases; if the di rection flag is 1, 01 decreases. 01 is altered by 1 if a
byte was moved, by 2 if a word was moved.

INS, INSB, and INSW can be preceded by the REP prefix for a block input
of ex bytes or words. See the REP instruction for the detai Is of this
operation.

4-245

Note: Not all input port devices can handle the speed at which this
instruction runs.

Logic

(DEST)<-(SRC)

Flags

None.

Encoding

0110110w

6C + w

If w = 0, DEST = byte
If w= 1, DEST=word

Example

INS BSTRING.DX ;INPUT BYTE
INS WSTRING.DX ;INPUT A WORD
INSB ;INPUT BYTE
INSW ;INPUT A WORD

4-246

INT
Interrupt

Purpose

INT pushes the flag registers (as in PUSHF), clears the TF and IF flags,
and transfers control with an indirect call through anyone of the 256
vector elements. The 1-byte form of this instruction produces a type-3
interrupt.

Format

INT interrupt-type

Remarks

INT decreases the Stack Pointer by 2 and pushes all flags into the
stack. The interrupt and trap flags are then reset. SP is then
decreased by 2 and the current contents of the cs register are pushed
onto the stack. CS is then filled with the high order word of the
doubleword interrupt vector (the segment base-address of the inter
rupt handling procedure for this interrupt-type).

SP is then decreased by 2 and the current contents of the Instruction
Pointer are pushed onto the stack. IP is then filled with the low order
word of the interrupt vector, located at absolute address TYPE*4.
This completes an inter-segment FAR call to the procedure that is to
process this interrupt-type.

See PUSHF, INTO, and IRET instructions.

Logic

(SP) <- (SP) - 2
((SP) + 1 :(SP)) <- FLAGS
(IF) <- 0
(TF) <- 0
(SP) <- (SP) - 2
((SP) + 1 :(SP)) <- (CS)
(CS) <- (TYPE*4 + 2)

(SP) <- (SP) - 2

4-247

((SP) + 1:(SP)) <- (IP)
(IP) <- (TYPE*4)

Flags

Affected- IF, TF

Encoding

11 0011 Ov type

cc + v type

If v = 0, type = 3.
If v= 1, type = TYPE.

Note: The operand must be immediate data, not a register or a
memory reference.

Example

INT 3 ;ONE BYTE:(11001100)
INT 2 ;TWO BYTES: (11001101 00000010)
INT 67 ;TWO BYTES: (11001101 01000011)
IMM_44 EQU 44
INT IMM_44 ;TWO BYTES:(11001101 00101100)

4-248

INT (80286P)
Interrupt

Purpose

INT pushes the flag registers (as in PUSHF), clears the TF and IF flags,
and transfers control with an indirect call through anyone of the 256
vector elements. The 1-byte form of this instruction produces a type-3
interrupt.

Format

INT interrupt-type

Remarks

There are four types of interrupts: non-maskable external, maskable
external, type-implicit internal, and type-explicit internal. All inter
ruptsuse the Interrupt Descriptor Table, or lOT, implicitly, and the
interrupt type selects a descriptor in the lOT in the same way as the
index field of a VA selector selects the descriptor in GOT or LOT. For
external interrupts, which include the protection faults (PF), either
type is implied (NMI and PF), or it is given to the 80286 by external
hardware in response to the interrupt acknowledge signal, INTA.

Internal interrupts can also specify type in two ways: general inter
rupts (opcode = OCOH) include the type in the instruction's second
byte, while single-byte interrupts (opcode = OCOH, type = 3), interrupt
on overflow (opcode = OCEH, type =4), and array bounds-check inter
rupt (type=5) all have implicit types.

Only three types of descriptors can appear in the lOT: fault gates,
interrupt gates, and task gates. If the interrupt is fielded by a fault or
interrupt gate, the 80286 responds identically except for the handling
of IF in the service routine. The interrupt gates clear the flag, disa
bling further maskable external interrupts, while fault gates do not
alter the IF value. Aside from the IF disposition, both cases cause the
following sequence of events:

1. The new cs and IP are loaded from the gate and validated.
Internal interrupts may only get access to visible gates to rou
tines that are equally or more privileged than CPL.

4-249

2. If the interrupt results in a privilege level transition (that is, if the
descriptor named by the selector in the int/fault gate has a
numerically. lower priviiege level than CPL), then a new stack
selector and stack pointer are loaded from the TSS save areas
that correspond to the new privilege level, and the old ss and SP

are pushed onto the new stack.

3. The flags of the interrupted task are pushed, followed by the VADW

(CS:IP) of the interrupted instruction. Interrupts are considered to
occur before or during the performance of an instruction. The TF

and NC flags are both cleared.

4. If the interrupt was a TS, NP, SS, or GP protection fault, then the
error code word determined by the fault type is pushed onto the
stack.

5. The interrupt service routine begins as directed by the new
values of CS:IP.

Fielding the interrupt with a task gate results in a task switch, and the
outgoing task remains marked as busy. The incoming task is linked
to the old task by storing the old contents of the task register (TR) in
the link field of the new TSS and setting the nested-task flag (NT) of the
neW task. If an error code was defined by a protection fault, it is
pushed onto the stack of the new task.

See Chapter 6, "80286/80386.:.Based Personal Computers," in the IBM

Macro Assemblerl2 Fundamentals book for information about the
80286 architecture.

Logic

If trap gate or interrupt gate then
If CPL > DPL of segment named by gate selector then

(SP) < - (SP) - 2
((SP)) < - (current TSS.SS)
(SP) < - (SP) - 2
((SP)) < - (current TSS.SP)

endif
(SP) <- (SP) - 2
((SP)) < - FLAGS
(SP) <- (SP) - 2
((SP)) < - (CS)
(SP) <-(SP)-2

4-250

((SP)) <- updated IP
if type selects interrupt gate then FLAGS.IF <-0
if error code defined then

(SP) <- (SP) - 2
((SP)) < - error.code

endif
(FLAGS.NT) < - 0
(FLAGS.TF) < - 0

endif
if task gate then

switch tasks, setting FLAGS.NT in new task
(new TSS.link) < - (old TR)
if errorcode defined then

(SP) < - (SP) - 2
((SP)) < - error.code

endif
endif

Flags

Affected- N,PL,O,D,I,T,S,Z,A,P,C

Encoding

1100110v type

cc + v type

If v=O, type = 3.
If v= 1, type = TYPE.

Note: The operand must be immediate data, not a register or a
memory reference.

Example

INT 3 ;ONE BYTE: (11001100)
INT 2 ;TWO BYTES: (11001101 00000010)
INT 67 ;TWO BYTES: (11001101 01000011)
IMM_44 EQU 44
INT IMM_44 ;TWO BYTES: (11001101 00101100)

4-251

INTO
Interrupt If Overflow

Purpose

INTO pushes the flag registers (as in PUSHF), clears the TF and IF flags,
and transfers control with an indirect call through vector element 4
(location 10H) if the OF flag is set (trap on overflow). If the OF flag is
not set, no operation takes place.

Format

INTO (no operands)

Remarks

If the OF is zero, no operation occurs. If OF is 1, INTO decreases the
Stack Pointer by 2 and saves all flags onto the stack. The trap and
interrupt flags are reset. SP is again decreased by 2 and the contents
of cs are pushed into the stack. cs is then filled with the second word
(segment) of the doubleword interrupt vector for a type 4 interrupt.

SP is again decreased by 2, and the current Instruction Pointer
(pointing to the next instruction after INTO) is pushed onto the stack. IP

is then filled with the first word of the type 4 doubleword interrupt
vector, located at absolute location 16 (10H). This word is the offset of
the procedure to handle type 4 interrupts. The segment base address
must already be in CS. This completes a FAR call to the proper proce
dure.

4-252

Logic

if (OF) <- 1 then
(SP) <- (SP) - 2
«SP) + 1 :(SP)) <- FLAGS
(IF) <- 0
(TF) <- 0
(SP) <- (SP) - 2
«SP) + 1 :(SP)) <- (CS)
(CS) <- (12H)
(SP) <- (SP) - 2
«SP) + 1 :(SP)) <- (IP)
(IP) <- (10H)

Flags

IF=O, TF=O

Encoding

11001110

CE

Example

INTO

4-253

IRET
Interrupt Return

Purpose

IRET transfers control to the return address saved by a previous inter
rupt operation and restores the saved flag registers (as in POPF).

Format

IRET

Remarks

The Instruction Pointer is filled with the word at the top of the stack.
The Stack Pointer is then increased by 2, and the cs register is filled
with the word now at the top of the stack. This returns control to the
point where the interrupt was found.

SP is again increased by 2, and the flags are restored from the appro
priate bits of the word now at the top of the stack. (See the POPF

instruction in this chapter.) SP is again increased by 2.

Logic

(IP) <- ((SP) + 1 :(SP»
(SP) <- (SP) + 2
(CS) <- ((SP) + 1 :(SP))
(SP) <- (SP) + 2
FLAGS <- ((SP) + 1 :(SP»
(SP) <- (SP) + 2

For the 80286:

If FLAGS.NT= 1 then
new task = current TSS.link

else
if return selector RPL = CPL then

(IP) < - ((SP) + 1 :(SP»
(SP) <- (SP) + 2
(CS) <- ((SP) + 1:(SP»

4-254

(SP) <- (SP) + 2
FLAGS < -«SP) + 1 :(SP))
(SP) <- (SP) + 2

else return to outer privilege level:
(IP) < - «SP) + 1 :(SP))
(SP) <- (SP) + 2
(CS) < - «SP) + 1 :(SP))
(SP) <- (SP) + 2
FLAGS < - «SP) + 1 :(SP))
(SP) <- (SP) + 2
TEMP < - «SP) + 1 :(SP))
(SP) <- (SP) + 2
(SS) < - «SP) + 1 :(SP))
(SP) <- TEMP
if OS or ES not val id at new CPL then

(REG) <- 0

Flags

Affected- All

Protected mode:

Affected- All

Encoding

11001111

CF

Example

IRET

4-255

J{condition)
Jump Short If Condition Met

Purpose

J(condition) transfers control to the target operand. Conditional short
jumps (except for JCxz) test the flags. JCXZ tests the contents of the cx
register for zero, rather than checking the flags.

Format

J(condition) short-label

Remarks

If the condition is true, then control takes a short jump to the label
provided as the operand. The condition for each mnemonic is given
in the following table along with the corresponding internal represen
tation and description.

The target label must be within -128 to + 127 bytes of the next
instruction. This range is necessary for the assembler to construct a
1-byte signed displacement from the beginning of the next instruction.
If the label is out of range, or if the label is a FAR label, then the
assembler must perform a jump with the opposite condition around
an unconditional jump to the non-short label.

Note: Above and below refer to the relation between two unsigned
values. Greater and less refer to the relation between two
signed values.

Logic

If Condition Met then
(IP) <- (IP) + disp (sign-extended to 16-bits)

Note: See the following table for JUMP SHORT instructions and their
conditions to be tested.

4-256

Inst Jump short if Condition Internal
Representation

JA above CF=O and ZF=O 77 disp

JAE above or equal CF=Q 73 disp

JB below CF= 1 72 disp

JBE below or equal CF= 1 or ZF= 1 76 disp

JC carry CF= 1 72 disp

JCXZ CX register is zero (CF or ZF) =0 E3 disp

JE equal ZF=1 74 disp

JG greater ZF=Q and SF=OF 7F disp

JGE greater or equal SF=OF 7D disp

JL less (SF xor OF) = 1 7C disp

JLE less or equal ((SF xor OF) or ZF) = 1 7E disp

JNA not above CF= 1 or ZF= 1 76 disp

JNAE not above nor equal CF=1 72 disp

JNB not below CF=Q 73 disp

JNBE not below nor equal CF=Q and ZF=O 77 disp

JNC not carry CF=O 73 disp

JNE not equal ZF=O 75 disp

JNG not greater ((SF xor OF) or ZF) = 1 7E disp

JNGE not greater nor (SF xor OF) = 1 7C disp
equal

JNL not less SF=OF 7D disp

JNLE not less nor equal ZF=O and SF=OF 7F disp

JNO not overflow OF=O 71 disp

JNP not parity PF=O 7B disp

JNS not sign SF=O 79 disp

JNZ not zero ZF=O 75 disp

JO overflow OF=1 70 disp

JP parity PF=1 7A disp

JPE parity even PF=1 7A disp

JPO parity odd PF=O 7B disp

4-257

Inst Jump short if Condition Internal
Representation

JS sign SF=1 78 disp

JZ zero ZF=1 74 disp

Flags

None

Encoding

01110111 disp (for JA/JNBE)

77 disp (for JA/JNBE)

Note: See the previous table for other JUMP SHORT instructions and
their internal representations.

Example

JA TARGET_LABEL
JNBE TARGET_LABEL

4-258

JMP
Jump

Purpose

JMP transfers control to the target operand.

Format

JMP target

Remarks

The jump is relative to the segment base address in the es register.
A direct jump uses the offset (and segment, if FAR) byte that follows
the instruction byte. Indirect jumps use the contents of the location
addressed by the bytes that follow the instruction byte.

The Instruction Pointer is replaced by the offset of the target in all
inter-segment jumps and in intra-segment (or intra-group) indirect
jumps.

When the jump is a direct intra-segment or intra-group, the distance
from the end of the instruction to the target label is added to the IP.

Inter-segment jumps first replace the contents of es, using the second
word following the instructions (direct) or using the second word fol
lowing the indicated data address (indirect).

Logic

If inter-segment then (CS) <- SEG
(IP) <- DEST

Flags

None

4-259

Intra-Segment or Intra-Group Direct

Encoding

11101001 disp-Iow disp-high

E9 disp-Iow disp-high

DEST= (IP) + disp

Example

JMP NEAR_LABEL

Intra-Segment Direct Short

Encoding

11101011 disp

EB disp

DEST= (IP) + disp (sign extended to 16 bits)

Example

JMP TARGET_LABEL
JMP SHORT NEAR_LABEL

Note: The target label must be within -128 to + 127 bytes of the next
instruction.

4-260

Inter-Segment Direct

Encoding

11101010 offset segment

EA offset segment

DEST = offset, SEG = seg

Example

JMP LABEL_DECLARED_FAR
JMP FAR PTR LABEL_NAME
JMP FAR PTR NEAR_LABEL

Inter-Segment Indirect

Encoding

11111111 mod101r/m

FF mod101 rIm

DEST = (EA), SEG = (EA + 2)

Example

JMP VAR_DOUBLEWORD
JMP DWORD PTR [BX][SI]
JMP ALPHA [BP][DI]

4-261

Intra-Segment or Intra-Group Indirect

Encoding

11111111 mod100r/m

FF mod100r/m

DEST=(EA}

Example

JMP TABLE[BXJ
JMP WORDPTR [BX][DI]
JMP BETA_WORD
JMP AX
JMP 5I
JMP BP

Note: These last three replace the Instruction Pointer by the contents
of the named register. This causes a jump directly to the byte
with that offset past es. This is different from the direct intra
segment jumps, which are self-relative, causing an add to the
IP.

4-262

JMP (80286P)
Jump

Purpose

JMP transfers control to the target operand.

Format

JMP target

Remarks

The long jumps transfer control using a VADW, which may be either
included in the instruction itself or found in a DWORD variable. The
type of control transfer is determined by the selector part of the VADW

as follows:

1. If the selector names a descriptor for an executable segment,
then that selector replaces cs and the offset part of the VADW

replaces IP, subject to protection mechanism addressability and
visibility.

2. If the selector names a call-gate descriptor, then the offset part of
the VADW is ignored, and the virtual address of the routine being
entered is taken from the call-gate.

3. If the selector names a task gate descriptor, then context of the
current task is saved in its Task State Segment (TSS), and the TSS

named in the task-gate is used to load the new context. The out
going task is marked not-busy, the new TSS mar~ed busy, and
running resumes at the point at which the new task was last sus
pended.

4. If the selector names a TSS, then the current task is suspended
and the new task is initiated as in the list item above, except that
there is no intervening gate.

4-263

In general, for the task-state to be considered valid, you must follow
these limits to the contents of the segment registers:

• For CS, the selector must name an executable segment.

• ss must name a writable segment with privilege equal to CPL.

• os and ES must either be zero (a value which represents an
unloaded condition because it selects entry 0 in the GOT), or must
select a readable segment which is visible at the CPL. A segment
is visible to any CPL which has a numerically smaller privilege
level. Also, conforming segments, which must be executable but
which may be readable, are visible to any privilege level.

See Chapter 6, "80286/80386-8ased Personal Computers," in the IBM

Macro Assembler/2 Fundamentals book for information about the
80286 architecture.

Logic

Jump segment descriptor:
(CS) < - selector
(IP) <- offset
Jump call gate:
(CS) < - call-gate.selector
(IP) < - call-gate. offset
Jump task gate:
(TR) < - task.gate selector
Jump task state segment:
(TR) < - selector

Flags

Affected - N,PL,O,D,I,T,S,Z,A,P,C

4-264

Direct Virtual Address

Encoding

1110 1010 offset selector
E A offset selector

DEST = offset, SEG = selector

Example

JMP FAR_LABEL
JMP CALL_GATE
JMP TASK_GATE
JMP TASK_XXX

Indirect Virtual Address

Encoding

11111111 mod101r/m
F F mod1 01 rim

DEST = offset or gate. offset,
SEG = selector or gate.selector

Example

JMP CASE_TABLE[BX]

4-265

LAHF
Load AH from Flags

Purpose

LAHF transfers the flag registers SF, ZF, AF, PF, and CF into specific bits
of the AH register. The bits shown as x are unspecified.

Format

LAHF (no operands)

Remarks

Specific bits of AH are filled from the following flags: The sign flag fills
bit 7. The zero flag fills bit 6. The auxiliary carry flag fills bit 4. The
parity flag fills bit 2. The carry flag fills bit O. Bits 1, 3, and 5 of AH are
unknown.

Logic

(AH) <- (SF):(ZF):X:(AF):X:(PF):X:(CF)

Flags

None

Encoding

10011111

9F

Example

LAHF

4-266

LAR (80286P)
Load Access Rights

Purpose

If the descriptor shown by the selector in the right operand is visible
at the CPL, LAR loads a word consisting of the access rights byte of the
descriptor in the high byte and a low byte of zero into the left
operand.

Format

LAR destination, source

Remarks

The source operand (the right operand) can be a memory location or
a register. The destination operand (the left operand) must be a reg
ister. ZF is set if the descriptor was visible, and it is cleared other
wise.

The .286P pseudo-op must be used to enable this instruction.

See Chapter 6, "80286/80386-Based Personal Computers," in the IBM

Macro Assembler/2 Fundamentals book for information about the
80286 architecture.

Logic

If the descriptor named by the selector in right operand is visible at
CPL then
ZF <-1
left operand (reg) < - descriptor access rights

else ZF <- 0

Flags

Affected- ZF

4-267

Encoding

00001111 00000010 modregr/m
OF 02 modregr/m

Example

LAR AX,SI
or

LAR BX,SELECTOR

4-268

LOS
Load Data Segment Register

Purpose

LDS transfers a pointer-object (a 32-bit object containing an offset
address and a segment address) from the doubleword source
operand (which must be a memory operand) to a pair of destination
registers. The segment address is transferred to the DS segment reg
ister. The offset address can be transferred to any 16-bit general,
pointer, or index register you specify (not a segment register).

Format

LOS destination,source

Remarks

The contents of the specified register are replaced by the lower
addressed word of the doubleword memory operand.

The contents of the DS register are replaced by the higher-addressed
word of the doubleword memory operand.

In protected mode, the doubleword source operand is a virtual
address. The second word is a selector instead of a segment
address. The loading of DS initiates automatic loading of the
descriptor information associated with the selector into the hidden
part of the segment register and validation of both selector and
descriptor information.

Logic

(REG) <- (EA)
(OS) <- (EA + 2)

Flags

None

4-269

Encoding

11000101 modregr/m

C5 modregr/m

For mod =1= 11.
If mod = 11, undefined operation.

Example

LOS BX,AOOR_TABLE[SI]
LOS SI,DWORO PTR NEWSEG[BX]

4-270

LEA
Load Effective Address

Purpose

LEA transfers the offset address of the source operand to the destina
tion register operand. The contents of the specified register are
replaced by the offset of the indicated variable, label or address
expression.

Format

LEA destination,source

Remarks

The source operand must be a symbol defining a memory location
and the destination operand can be any 16-bit general, pointer, or
index register.

LEA allows the source to be subscripted. This is not allowed using the
MOV instruction with the OFFSET operator. Also, the latter operation
uses the offset of the variable in the segment where it was defined.
LEA, however, takes into account a group offset if the group is the only
possible access route via the latest ASSUME pseudo-op. (See Chapter
3, "Pseudo Operations," in this book.)

Logic

(REG) <- EA

Flags

None

4-271

Encoding

10001101 modregr/m

80 modregr/m

For mod =1= 11.
If mod = 11, undefined operation.

Example

LEA BX.VARIABLE_7
LEA DX.BETA[BX] [Sl]
LEA AX. [BPJ[DI]

4-272

LEAVE (80286)
High Level Procedure Exit

Purpose

LEAVE performs a procedure return for a high-level language.

Format

LEAVE

Remarks

LEAVE is the complementary operation to ENTER; it reverses the effects
of that instruction. The LEAVE instruction frees all local variables and
restores the SP and BP registers to their values immediately after the
procedure's call.

LEAVE releases the stack space used by a procedure by copying BP to
SP. The old frame pointer is now popped into BP, restoring the frame
of the caller, and a subsequent RET nn instruction follows the back
link and removes any arguments pushed on the stack for the exiting
procedure.

Do not confuse LEAVE with the $LEAVE SALUT structure statement. See
the discussion of SALUT structure statements in the IBM Macro
Assemblerl2 Assemble, Link, and Run book.

The .286C pseudo-op is required.

Logic

(SP) <- (BP)
(BP) <- ((SP) + 1 :(SP))
(SP) <- (SP) + 2

Flags

Affected- None
Undefined- None

4-273

Encoding

11001001

C9

Example

LEAVE

4-274

LES
Load Extra Segment Register

Purpose

LES transfers a pointer (an offset address and a segment address)
from the doubleword source operand (which must be a memory
operand) to a pai r of destination registers. LES transfers the segment
address to the ES segment register. LES transfers the offset address to
a 16-bit general, pointer, or index register (not a segment register).

Format

LES destination,source

Remarks

LES replaces the contents of the specified register by the lower
addressed word of the doubleword memory operand. LES replaces
the contents of the ES register by the higher-addressed word of the
doubleword memory operand.

In protected mode, the doubleword source operand is a virtual
address. The second word is a selector instead of a segment
address. Loading ES starts automatic loading of the descriptor infor
mation associated with the selector into the hidden part of the
segment register; loading also starts validation of both selector and
descriptor information.

Logic

(REG) <- (EA)
(ES) <- (EA + 2)

Flags

None

4-275

Encoding

11000100 modregr/m

C4 modregr/m

For mod i= 11.
If mod = 11, undefined operation.

Example

LES BX,ADDR_TABLE[SI]
LES DI,DWORD PTR NEWSEG[BX]

4-276

LGDT (80286P)
Load Global Descriptor Table

Purpose

LGDT loads the Global Descriptor Table Register from the memory
pointed to by source.

Format

LGDT source

Remarks

The operand addresses a 6-byte area in memory. The LIMIT field of
GDTR loads from the fi rst word at the EA; the next 3 bytes go to the
BASE field of GDTR. LGDT is a privileged instruction that can only be run
at level O.

The SlOT and SGDT 80286 protected mode instructions operate on
6-byte quantities. Since the assembler has no way to define a 6-byte
data item, it uses the first 6 bytes of the next largest type of data item,
which is a QWORD. There are several ways of specifying the source
operand for these instructions:

• a data item defi ned with DO

• a symbol defined with EXTRN X:OWORD

• a symbol defined using LABEL QWORD

• use the OWORD PTR override.

See Chapter 6, "80286/80386-8ased Personal Computers," in the IBM

Macro Assembler/2 Fundamentals book for information about the
80286 architecture.

You must use the .286P pseudo-op to enable this instruction.

4-277

Logic

if CPL = 0 then
GDTR.BASE <- (EA + 4:EA + 2)
GDTR.LlMIT < - (EA + 1 :EA)

Flags

None

Encoding

00001111 00000001 mod010r/m
OF 01 mod010r/m

Example

DATA

VAR2
VAR3
VAR4
DATA
CODE

4-278

.286P
EXTRN
SEGMENT
ASSUME
DQ
LABEL
DB
ENDS
SEGMENT
ASSUME

LIDT
LGDT
LIDT
LGDT

VARl:QWORD

DS:DATA

QWORD
6 DUP(?)

CS:CODE

VARI
VAR2
VAR3
QWORD PTR VAR4

;external data item
;data field of type QWORD
;label of type QWORD
;explicit override

LIDT (80286P)
Load Interrupt Descriptor Table

)urpose

JDT loads the Interrupt Descriptor Table Register from the 6-byte
")ource.

Format

:..IDT source

Flemarks

The operand addresses a 6-byte area in memory. The LIMIT field of
the IDTR loads from the fi rst word; the next 3 bytes go to the BASE field
::>f the register. L1DT is a privileged instruction and can only be run at
levelO.

The L1DT and LGDT 80286 protected mode instructions operate on
5-byte quantities. Since the assembler has no way to define a 6-byte
data item, it uses the first 6 bytes of the next largest type of data item,
which is a aWORD. There are several ways of specifying the source
::>perand for these instructions:

• a data item defi ned with Da

• a symbol defined with EXTRN x:aWORD

• a symbol defined using LABEL aWORD

• use the aWORD PTR override.

See Chapter 6, "80286/80386-8ased Personal Com puters," in the IBM
Assembler/2 Fundamentals book for information about the 80286
architecture.

You must use the .286P pseudo-op to enable this instruction.

4-279

Logic

if CPL = 0 then
IDTR.BASE < - (EA + 4:EA + 2)
IDTR.LlMIT < - (EA + 1 :EA)

Flags

None

Encoding

00001111 00000001 mod011 rim
OF 01 mod011 rim

Example

See the example under the LGDT description in this chapter.

4-280

LLDT (80286P)
Load Local Descriptor Table

Purpose

LLDT loads the Local Descriptor Table Register from the source
operand.

Format

LLDT source

Remarks

The source operand can be either a register or a memory location.
The operand should contain a selector pointing to a Global Descriptor
Table Entry. This entry should be a Local Descriptor Table descriptor
which will be loaded into the LDTR. The hidden descriptor fields for
the segment registers are not affected and the LDT field of the TSS is
not changed. If the source operand is 0, the LDTR is marked incorrect
and all descriptor references cause GP faults with error codes of zero.
LLDT works only at privilege level O.

See Chapter 6, "80286/80386-8ased Personal Computers," in the IBM

Macro Assembler/2 Fundamentals book for information about the
80286 architecture.

You must use the .286P pseudo-op to enable this instruction.

Logic

if CPL = 0 then
LDTR < - OPERAND

Flags
None

4-281

Encoding

00001111 00000000 mod010r/m
OF 00 mod010r/m

Example

LLDT BX
or

LLDT MEMLOC

4-282

LMSW (80286P)
Load Machine Status Word

Purpose

LMSW loads the Machine Status Word (MSW) from the source operand
and can be used to switch to protected mode.

Format

LMSW source

Remarks

The source operand can be either a register or a memory location.
LMSW works in either real mode or in protected mode at level O.

If LMSW is used to switch to protected mode, it must be followed by an
intra-segment jump to clear the instruction queue. LMSW cannot be
used to switch back to real mode.

See Chapter 6, "80286/80386-8ased Personal Computers," in the IBM

Macro Assembler/2 Fundamentals book for information about the
80286 architecture.

You must use the .286P pseudo-op to enable this instruction.

Logic

if CPL=O then
MSW <- OPERAND

Flags

None

4-283

Encoding

00001111 00000001 mod110r/m
OF 01 mod110r/m

Example

LMSW BX
or

LMSW MEMABC

4-284

LOCK
Lock Bus

Purpose

A special 1-byte lock prefix can precede any instruction. It causes the
processor to assert a bus-lock signal during the operation caused by
the instruction. In multiple processor systems with shared resources,
you must provide mechanisms to enforce controlled access to those
resources. Such mechanisms, while generally provided through
operating systems, require hardware assistance. A mechanism for
accomplishing this is a locked exchange (also called test-and-set
lock). See the XCH6 instruction description in this chapter.

Format

LOCK

Remarks

The instruction that is most useful in this context is an exchange reg
ister with memory. You can use a simple software lock with the fol
lowing code sequence.

In protected mode, LOCK requires, at minimum, IOPL.

Flags

None

Encoding

11110000

FO

4-285

Example

CHECK: MOV AL,l ;SET AL TO 1
(IMPLIES LOCKED)

LOCK XCHG SEMO,AL ;TEST AND SET LOCK
TEST AL,AL ;SET FLAGS BASED ON AL
JNZ CHECK ;RETRY IF LOCK ALREADY SET

MOV SEMO,0 ;CLEAR THE LOCK WHEN DONE

4-286

LODS/LODSB/LODSW
Load Byte or Word String

Purpose

LODS transfers a byte (or word) operand from the source operand
addressed by SI to accumulator AL (or AX) and adjusts the SI register
by delta. Delta is 1 if a byte was moved, 2 if a word was moved. This
operation normally would not be repeated.

Format

LODS source-string
or

LODSB
or

LODSW

Remarks

The assembler determines from the source operand if the reference
is a byte or a word. The source byte (or word) is loaded into AL (or
AX). The Source Index is increased by 1 (or 2, for word strings) if the
Direction FI~g is reset; otherwise, SI is decreased by 1 (or 2).

The other two forms of this instruction, LODSB and LODSW, require no
operand since the mnemonic itself specifies whether the operation is
for a byte or a word string.

Logic

(DEST) <- (SRC)
If (DF) = 0, (SI) <- (SI) + DELTA.
Else (SI) <- (SI) - DELTA.

Flags

None

4-287

Encoding

1010110w

AC + w

Ifw=O,
5RC = (51), DE5T = AL, DELTA = 1.
If w=1,
5RC = (51) + 1:(51), DE5T = AX, DELTA = 1.

Example

CLD ;CLEARS DIRECTION FLAGS SO
SI WILL BE INCREASED

MOV SI,OFFSET BYTE_STRING
LODS BYTE_STRING ;SI=SI+1

STD ;SETS (DF) SO SI
WILL BE DECREASED

MOV SI,OFFSET WORD_STRING
LaDS WORD_STRING ;SI=SI-2

In the above example, (OF) = 1 implies that the variable word_string
names the last or highest-addressed word in the string. The operand
named in the LOOS instruction is used only by the assembler to verify
type and accessibility using correct segment register contents. LOOS

uses only SI to point to the location whose contents are to be loaded
into the accumulator, without using the name given in the source
instruction.

4-288

The string instructions are unusual in several aspects:

1. They load SI with the offset of the source-string.

2. They load 01 with the offset of the destination-string.

3. You can code each with or without symbolic memory operands.

• If you code symbolic operands, the assembler can check
whether you can address them.

• Code references that use hardware defaults using the
operand-less forms (LOOSB and LODSW), to avoid the additional
pointer information.

• Do not use [BX] or [BP] addressing modes with the string
instructions.

4. If you code the instruction mnemonic without operands, SI

defaults to an offset in the segment addressed by os.

4-289

LOOP
Loop Until Count Complete

Purpose

LOOP decreases the ex (count) register by 1 and transfers control to
the target operand (short-label) if ex is not zero.

Format

LOOP short-label

Remarks

LOOP decreases the Count register (ex) by 1. If the new ex is not zero,
LOOP adds the distance from the end of this instruction to the target
label, short-label, to the instruction pointer, causing the jump. If ex =
0, no jump occurs.

The target label must be within -128 to + 127 byte of the next
instruction.

Logic

(ex) <- (CX) - 1
If (CX) =I- 0 then

(IP) <- (IP) + disp (sign-extended to 16-bits)

Flags

None

Encoding

11100010

E2

4-290

Example

The following sequence computes the 16-bit check-sum of a non-null
array:

MOV CX,LENGTH ARRAY
MOV AX,Q
MOV SI,AX

NEXT: ADD AX, ARRAy[SI]
ADD 51, TYPE ARRAY
LOOP NEXT
MOV CKS,AX

In the following example, the assembler runs the instructions from FIB

to LL N times and stores into the FIBONACCI array the first N terms of
the sequence. (1,1,2,3,5,8,13,21 ...)

MOV AX,Q
MOV BX,l
MOV CX,N ;NUMBER OP TERMS
MOV DI,AX

FIB: MOV 5I,AX
ADD AX,BX
MOV BX,SI
MOV FIBONACCI[DI],AX
ADD DI,TYPE FIBONACCI

LL: LOOP FIB

4-291

LOOPE/LOOPZ
Loop If Equal/If Zero

Purpose

LOOPE or LOOPZ decreases the ex register by 1 and transfers control to
short-label if ex is not zero and if the ZF flag is set to 1.

Format

LOOPE short-label
or

LOOPZ short-label

Remarks

The Count register (ex) is decreased by 1. If the zero flag is set and
(ex) is not yet 0, the distance from the end of this instruction to the
target label, short-label, is added to the instruction pointer, causing
the jump. No jump occurs if (ZF) = 0 or if (ex) = O.

The target label must be within -128 to + 127 bytes of the next
instruction.

Logic

(CX) <- (CX) - 1
If (ZF) = 1 and (CX) ::j:. 0 then

(lP) <- (IP) + disp (sign-extended to 16-bits)

Flags

None

Encoding

11100001 disp

E1 disp

4-292

Example

The following sequence finds the first non-zero entry in a byte array:

MOV CX,LENGTH ARRAY
MOV SI,-l

NEXT: INC SI

OKENTRY:

CMP ARRAY[SI], 0
LOOPE NEXT
JNE OKENTRY

;ARRIVE HERE IF COMPLETE
; ARRAY IS ZERO

;SI TELLS WHICH ENTRY
IS NOT ZERO

4-293

LOOPNE/LOOPNZ
Loop If Not Equal/If Not Zero

Purpose

LOOPNE or LOOPNZ decreases the ex register by 1 and transfers control
to short-label if ex is not 0 and the ZF flag is zero.

Format

LOOPNE short-label
or

LOOPNZ short-label

Remarks

LOOPNE or LOOPNZ decreases the Count register (ex) by 1. If the new
(ex) is not 0 and the zero flag is reset, LOOPNE or LOOPNZ adds the dis
tance from the end of this instruction to the target label, short-label,
to the instruction pointer, causing the jump. If (ex) = 0 or if (ZF) = 1,
no jump occurs.

The target label must be within -128 to + 127 bytes of the next
instruction.

Logic

(CX) <- (CX) - 1
If (ZF) = 0 and (CX) i= 0 then

(IP) <- (IP) + disp (sign-extended to 16-bits)

Flags

None

Encoding

11100000 disp

EO disp

4-294

Example

The following sequence computes the sum of 2 byte arrays, each of
length N, only up to the point of finding zero entries in both arrays at
the same time. At that point, the expression sl-1 gives the length of
the nonzero sum arrays.

MOV AX,O
MOV SI-l
MOV CX,N

NOZERO: INC SI
MOV AL,ARRAYl [S1]
ADD AX,ARRAY2[SI]
MOV SUM[SI] ,AX
LOOPNZ NOZERO

The following sequence searches down a linked list for the last
element. This is the element with a zero in the word that normally
contains the address of the next element. This word is located the
same number of bytes past the beginning of each list element. LINK is
the name for that absolute number of bytes, for example:

LINK EQU 7
MOV AX,OFFSET HEAD_OF_LIST
MOV CX,lOOO ;SEARCH AT MOST 1000

ENTRIES
NEXT: MOV BX,AX

MOV AX, [BX] + LINK
CMP AX,O
LOOPNE NEXT

4-295

LSL (80286P)
Load Segment Limit

Purpose

LSL loads a word consisting of the limit field of the descriptor into the
left operand, if the descriptor shown by the selector in the right
operand is visible at the CPL.

Format

LSL destination,source

Remarks

The destination (left) operand must be a register. The source (right)
operand can be a register or memory location. If the loading is per
formed (the descriptor was visible), the zero flag is set. Otherwise,
the zero flag is cleared. LSL returns only the limit field of segments,
TSSS and LOTS.

See Chapter 6, "80286/80386-8ased Personal Computers," in the IBM

Macro Assembler/2 Fundamentals book for information about the
80286 architecture.

You must use the .286P pseudo-op to enable this instruction.

Logic

If the descriptor named by the selector in the right operand is visible
at CPL then

ZF <- 1
REG16 <- RSRC

else ZF <- 0

Flags

Affected-ZF

4-296

Encoding

00001111 00000011 modregr/m
OF 03 modregr/m

Example

LSL AX,S1
or

LSL BX,SELECTOR

4-297

L TR (80286P)
Load Task Register

Purpose

LTR loads the Task Register from the source operand.

Format

LTR source

Remarks

The source operand can be either a register or memory location. The
processor marks the loaded TSS busy by setting bit 1 of the access
byte to 1. L TR works only in protected mode at level O.

See Chapter 6, "80286/80386-8ased Personal Computers," in the IBM

Macro Assemblerl2 Fundamentals book for information about the
80286 architecture.

You must use the .286P pseudo-op to enable this instruction.

Logic

if CPL = 0 then
TR <- SRC

Flags

None

Encoding

00001111 00000000 mod011 rim
OF 00 mod011 rim

Example

LTR 8X
or

LTR AREA

4-298

MOV
Move

Purpose

MOV copies the source operand to the destination operand. The
source operand is not changed.

Format

MOV destination,source

Remarks

The types of move instructions are described below. Each type has
multiple uses and internal representations, depending on the type of
data being moved and the location of that data. The assembler
produces the correct internal representation based on the type and
location of data. If the destination is a register, the bit shown as "d" is
a 1; otherwise, it is a O. If the type is a word, the bit shown as "w" is
a 1; otherwise, it is a o.

Logic

(DEST) <- (SRC)

Flags

None

4-299

TO Memory FROM Accumulator

Encoding

1010001w addr-Iow addr-high

A2 + w addr-Iow addr-high

If w = 0, SRC = AL, DEST = addr.
If w = 1, SRC = AX, DEST = addr + 1 :addr.

Example

MOV ALPHA_MEM,AX
MOV GAMMA_BYTE, AL
~10V CS:DATUM_BYTE,AL
MOV ES:ARRAY[BX][SI],AX

TO Accumulator FROM Memory

Encoding

1010000w addr-Iow addr-high

AO + w addr-Iow addr-high

If w = 0, SRC = addr, DEST = AL.
If w = 1, SRC = addr + 1 :addr, DEST = AX.

Example

MOV AX,BETA_MEM
MOV AL,GAMMA_BYTE
MOV AX,ES:ARRAY[BX] [SI]
MOV AL,SS:OTHER_BYTE

4-300

TO Segment Register FROM Memory-or-Register
Operand

Encoding

10001110 modregr/m

BE modregr/m

If reg =I- 01 then SRC = EA, DEST = REG else undefined operation.

Example

MOV ES,OX
MOV OS,AX
MOV SS,BX
MOV ES,SS:NEW_WORO[OI]

Note: CS is incorrect as a destination here.

TO Memory-or-Register FROM Segment Register

Encoding

10001100 modregr/m

BC modregr/m

SRC = REG, DEST = EA, (DEST) = (SRC)

Example

MOV OX,OS
MOV BX,ES
MOV ARRAY[BX] [SI],SS
MOV BETA_MEM_WORD,OS
MOV GAMMA,CS

Note: CS is correct as a source here.

4-301

To Register From Register

See "To Memory-Or-Register Operand From Register" below.

To Register From Memory-or-Register Operand

See "To Memory-Or-Register Operand From Register" below.

To Memory-or-Register Operand From Register

Encoding

100010d1 modregr/m addr-Iow* addr-high*

89 + d modregr/m addr-Iow* addr-high*

If d = 1, SRC = EA, DEST = REG
else SRC = REG, DEST = EA

If d = 0, SRC = REG, DEST = EA.

These bytes are omitted in register to register moves, when mod = 1,

MOV CX,OX

and also when the address-expression to memory is register-indirect
with no variable-name-displacement, for example:

MOV [BX][SI] ,ox
MOV AX,[BP][OI]

Example

To register from register:

MOV AX,BX
MOV CL,OH
MOV cX,or

4-302

To register from memory or register:

~ov AX,MEM_VALUE
~OV DX,ARRAY[SI]
~OV 01 ,MEM[BX] [DIJ

To memory or register from register:

~OV ARRAY[DI] ,OX
~ov MEM_VALUE,AX
~OV [BX][SI],DI

TO Register FROM Immediate-data

Encoding

1011 w reg data data-high*

B + w + reg data data-high*

SRC = data, DEST = REG

*Present only if w = 1

Example

MOV AX,77
MOV BX,VALUE_14_IMM
MOV SI,EQU_VAL_9
MOV 01,618

4-303

TO Memory-or-Register Operand FROM
Immediate-data

Encoding

1100011w modOOOr/m data data-high*

C6 + w modOOOr/m data data-high*

SRC = data, DEST = EA *Present only if w = 1

Example

MOV ARRAY [BXJ [SlJ ,OATA_4
r~ov MEM_BYTE,lMM_BYTE_3
MOV BYTE PTR [OlJ ,66
MOV MEM_WORO,1999
MOV BX,84
MOV OS: ~1EM_WORO [BPJ ,3989

4-304

MOVS/MOVSB/MOVSW
Move Byte or Word String

Purpose

MOVS transfers a byte (or word) operand from the source operand
addressed by Sl to the destination operand addressed by 01, and
adjusts the SI and 01 registers by delta (number of bytes specified by
the operand TYPE). Delta is 1 if a byte was moved, 2 if a word was
moved. As a repeated operation, this provides for moving a string
from one location in memory to another.

Format

MOVS dest-string,source-string
or
MOVSB
or

MOVSW

Remarks

The source string whose offset is in the Source Index is moved into
the location in the ES. The offset of the ES is in the 01. SI and 01 are
then both increased, if the direction flag is zero, or both decreased, if
(OF) = 1. (See the CLO and STO instructions.) The increase or
decrease is 1 for byte strings, 2 for word strings.

Logic

(DEST) <- (SRC)
If (OF) = 0 then

(SI) <- (SI) + DELTA
(01) <- (01) + DELTA

else
(SI) <- (SI) - DELTA
(01) <- (01) - DELTA

Flags

None

4-305

Encoding

1010010w

A4 + w

If w = 0, SRC = (SI), OEST = (01), DELTA = 1.
If w = 1, SRC = (SI) + 1 :(SI), OEST = (01) + 1 :(01),

DELTA = 2

Example

For this example, assume type source = BYTE.

SOURCE DB
DEST DB

CLD
MOV
MOV
MOV

REP MOVS
or

REP MOVS
or

REP MOVSB

17 DUP
17 DUP (?)

;CLEAR DF TO AUTO-INCREMENT
SI,OFFSET SOURCE
DI,OFFSET DEST
CX,LENGTH SOURCE ;PASS NUMBER OF

BYTES IN SOURCE
DEST,SOURCE

ES:BYTE PTR[DI],DS:[SI]

The above sequence moves the complete source string (in any
segment that can be reached by current segment registers) into the
destination locations in the extra segment (the ES register is used for
01 operands in string operations). See also "REP." The operands
named in the string operation are used only by the assembler to
verify type and accessibility using the contents of the current segment
register. MOVS moves the byte poi nted at by SI to the byte poi nted at
by 01 in ES, without using the names given in the source MOVS instruc
tion.

The string instructions are unusual in several aspects:

1. They load SI with the offset of the source-string.

2. They load 01 with the offset of the destination-string.

3. They can be coded with or without symbolic memory operands.

4-306

• If you code symbolic operands, the assembler can check the
addressability of them for you.

• Code references that use hardware defaults should be coded
using the operand-less forms (MOVSB and MOVSW), to avoid the
additional pOinter information.

• Do not use [BX] or [BP] addressing modes with the string
i nstructi ons.

4. If you code the instruction mnemonic without operands, the
segment registers are as follows:

• SI defaults to an offset in the segment addressed by os.
• 01 is required to be an offset in the segment addressed by ES.

4-307

MUL
Multiply, Unsigned

Purpose

MUL does an unsigned multiplication of the accumulator and the
source operand.

Format

MUL source

Remarks

If source is a Byte operand, then it is multiplied by AL and the 16-bit
result is left in AX. If source is a Word, then it is multiplied by AX and
the 32-bit result goes in DX:AX, with OX containing the high-order 16
bits of the product. If the high-order half of the result is zero, the
carry and overflow flags are reset; otherwise, they are set.

logic

(OEST) <- (LSRC) * (RSRC),
where * is unsigned multiply

if (EXT) = 0 then (CF) <- 0
else (CF) <- 1;
(OF) <- (CF)

Flags

Affected- CF,OF
Undefined- AF,PF,SF,ZF

Encoding

1111011w mod100rim

F6 + w mod100rim

Ifw = 0,
LSRC = AL, RSRC = EA, OEST = AX,

4-308

EXT = AH.
If w = 1,
LSRC = AX, RSRC = EA, DEST = DX:AX,
EXT = DX.

Example

Any of the following memory operands could be an indexed address
expression of the correct TYPE. LSRC_BYTE could be ARRAY[SI] if ARRAY

were of type BYTE, and RSRC_WORD could be TABLE[BX][DI] if TABLE were
of type WORD.

To multiply a byte by a byte:

MOV AL,LSRC_BYTE
MUL RSRC_BYTE ;RESULT IN AX

To multiply a word by a word:

MOV AX,LSRC_WORD
MUL RSRC_WORD
;HIGH-HALF RESULT IN DX, LOW-HALF IN AX

To multiply a byte by a word:

MOV AL,MUL_BYTE
CBW ;CONVERTS BYTE IN AL TO WORD IN AX
MUL RSRC_WORD

4-309

NEG
Negate, Form' Two's Complement

Purpose

NEG does a subtraction of the operand from zero, adds 1, and returns
the result to the operand. This forms the two's complement of the
specified operand.

Format

NEG destination

Remarks

NEG subtracts the specified operand, destination, from all 1's (OFFH for
bytes, OFFFFH for words), adds 1, and stores the result back in destina
tion.

Logic

(EA) <- (SRC) - (EA)
(EA) <- (EA) + 1 (affecting flags)

Flags

Affected- AF, CF, OF, PF, SF, ZF

Encoding

1111011w mod011 rIm

F6 + w mod011 rIm

If w=O, SRC = OFFH.
If w= 1, SRC = OFFFFH.

4-310

Example

If AL contains 13H (00010011),

NEG AL

causes AL to contain: -13H or OEDH (11101101).

If MEM_BYTE contai ns OAFH (10101111),

NEG MEM_BYTE

causes MEM_BYTE to contain: -OAFH or 51H (01010001).

If 81 contains 2FC3H,

NEG S1

causes 81 to contain: OD03DH.

4-311

NOP
No Operation

Purpose

NOP causes no operation. The next sequential instruction is then run.

Format

NOP

Remarks

The next sequential instruction is run.

Flags

None

Encoding

10010000

90

Example

NOP

4-312

NOT
Logical Not

Purpose

NOT forms the one's complement of (inverts) the operand and returns
the result to the operand. Flags are not affected.

Format

NOT destination

Remarks

NOT subtracts the specified operand, destination, from OFFH (or OFFFFH,

if a word) and stores the result back into destination.

Logic

(EA) <- SRC - (EA)

Flags

None

Encoding

1111011w mod010r/m

F6 + w mod010r/m

If w = 0, SRC = OFFH.
If w = 1, SRC = OFFFFH.

Example

If AH contains 13H (00010011), then

NOT AH

causes AH to contain OECH (11101100).

If MEM_BYTE contains OAFH (10101111), then

4-313

NOT MEM_BYTE

causes MEM_BYTE to contain SOH (01010000).

If OX contains 2FC3H, then

NOT ox

causes OX to contain 0003CH.

4-314

OR
Logical Inclusive Or

Purpose

OR does the bit-logical inclusive disjunction of the two operands and
returns the result to the fi rst operand.

Format

OR destination,source

Remarks

Each bit position in the destination (leftmost) operand becomes 1,
unless it and the corresponding bit position of the source (rightmost)
operand were both o. In other words, each bit position of the result
has a 1 if either operand had a 1 in that position; if both had a 0, that
position of the result has a zero. The carry and overflow flags are
both reset.

Logic

(DEST) <- (LSRC) OR (RSRC)
(CF) <- 0
(OF) <- 0

Flags

Affected- CF,OF,PF,SF,ZF
Undefined- AF

4-315

Memory or Register Operand with Register Operand

Encoding

000010dw modregr/m

08 + dw modregr/m

If d = 1,
LSRC = REG, RSRC = EA, DEST = REG.

If d = 0,
LSRC = EA, RSRC = REG, DEST = EA.

Example

OR register with register:

OR AH,BL ;RESULT IN AH, BL UNCHANGED
OR SI,DX ;RESULT IN SI, OX UNCHANGED
OR CX,DI ;RESULT IN CX, 01 UNCHANGED

OR memory with register:

OR AX,MEM_WORD
OR CL,MEM_BYTE[SI]
OR SI,ALPHA[BX] [DIJ

OR register with memory:

OR BETA[BXJ[DI],AX
OR MEM_BYTE,DH
OR GAMMA[DI],BX

4-316

Immediate Operand to Accumulator

Encoding

0000110w data

OC + w data

Itw = 0,
LSRC = AL, RSRC = data, DEST = AL.

It w = 1,
LSRC = AX, RSRC = data, DEST = AX.

Example

OR immediate (byte):

OR AL,11110110B
OR AL,OF6H

OR immediate (word):

OR AX,23F6H
OR AX,75Q
OR AX,23F6H

4-317

Immediate Operand to Memory or Register Operand

Encoding

1000000w mod001 rim data

80 + w mod001 rim data

LSRC = EA, RSRC = data, DEST = EA

Example

OR immediate with register:

OR AH,OF6H
OR CL,37
OR DI,23F5H

OR immediate with memory:

OR MEM_BYTE,3DH
OR GAMMA[BX][DI],OFACEH
OR ALPHA[DI],VAL_EQU_33H

Another example:

BITMASK EQU 20H
FLAGS DB

OR FLAGS,BITMASK ;TURN ON FLAG BIT

4-318

OUT
Output Byte or Word

Purpose

OUT replaces the contents of the designated port by the contents of
the accumulator.

Format

OUT port,accumulator

Remarks

OUT transfers a byte (or word) from the AL register (or AX register) to
an output port. The port is specified either with an inline data byte,
allowing fixed access to ports 0 through 255, or with a port number (0
to 65535) in the ox register, allowing variable access to 64K output
ports.

In protected mode, the current privilege level must be less than or
equal to the value of IOPL in the flags register.

Logic

(DEST) <- (SRC)

Flags

None

4-319

Fixed Port

Encoding

1110011w port

E6 + w port

If w = 0, SRC = AL, OEST = port.
If w = 1, SRC = AX, OEST = port + 1 :port.
(0 < port < 255)

Example

OUT BYTE_PORT_VAL,AL
OUTPUTS A BYTE FROM AL

OUT WORD_PORT_VAL,AX
OUTPUTS A WORD FROM AX

OUT 44,AX ;OUTPUTS A WORD FROM AX
THROUGH PORT 44

Variable Port

Encoding

1110111w

EE + w

If w = 0, SRC = AL, OEST = (OX).
If w = 1, SRC = AX, OEST = (OX) + 1 :(OX).

Example

OUT DX,AL ;OUTPUTS A BYTE FROM AL
THROUGH VARIABLE PORT IN OX

OUT DX,AX ;OUTPUTS A WORD FROM AX
THROUGH VARIABLE PORT IN AX

4-320

OUTS/OUTSB/OUTSW (80286)
Output String to Port

Purpose

OUTS transfers a byte or word string element from memory at OS:SI to
the port numbered by the ox register. The type of the second operand
to OUTS determines whether a byte or a word is moved.

Format

OUTS port,source-string
or

OUTSB
or

OUTSW

Remarks

The address of the source data is determined only by the contents of
SI, not by the second operand to OUTS. You must load the correct
index value into SI before running the OUTS, OUTSB, or the OUTSW

instructions. Use the operand only to verify segment addressability
and to determine the data type. The segment addressability of the
operand determines if a segment override byte is produced, or if the
default segment register os is used.

You must address the port through the ox register; the port number
cannot be specified as an immediate value.

OUTSB and OUTSW are synonyms for the byte and word OUTS

instructions. They are simpler to use, requiring no operands;
however, the assembler does not check type or segment.

These instructions advance SI after the transfer is done. If the direc
tion flag is 0 (CLO was run), SI increases; if the direction flag is 1 (STO

was run), SI decreases. SI is altered by 1 if a byte was moved, by 2 if a
word was moved.

4-321

OUTS, OUTSB, and OUTSW can be preceded by the REP prefix for a block
input of cx bytes or words. See the REP instruction for the details of
this operation.

Note: Not all output devices can handle this speed.

In protected mode, the CPL must be less than or equal to the value of
IOPL in the flags register.

You must use the .286C pseudo-op to enable this instruction.

Logic

(DEST) <- (SRC)

Flags

None

Encoding

0110111w

6E + w

If w=O, SRC=byte
If w= 1, SRC=word

Example

OUTS DX,BSTRING ;OUTPUT BYTE
OUTS DX,WSTRING ;OUTPUT A WORD
OUTSB ;OUTPUT BYTE
OUTSW ;OUTPUT A WORD

4-322

POP
Pop Word Off Stack to Destination

Purpose

POP replaces the contents of the destination by the word at the top of
the stack. POP increases the stack poi nter by 2.

Format

POP destination

Remarks

POP transfers a word operand from the stack element addressed by
the sp register to the destination operand and then increases sp by 2.

There are three separate types of POP instructions, for different desti
nations. (register, segreg, or memory.)

In protected mode, if the destination operand is a segment register,
the value popped is a selector. Loading the selector loads the
descriptor information associated with that selector into the hidden
part of the segment register, and validates both the selector and
descriptor information. You may not use POP CS.

Logic

(DEST) <- ((SP) + 1 :(SP))
(SP) <- (SP) + 2

Flags

None

4-323

Register Operand

Encoding

01011reg

58 + reg

DEST = REG

Example

POP ex ;(01011001)
POP ox ;(01011010)

Segment Register

Encoding

000reg111

07 + reg

If reg i= 01 then DEST = REG else undefined operation.

Note: POP CS is not valid.

Example

POP SS; (00010111)
POP OS;(00011111)

4-324

Memory or Register Operand

Encoding

10001111 modOOOr/m

8F modOOOr/m

DEST = EA

Example

pop ALPHA ;(10001111 00000110)
POP ALPHA[BX]; (10001111 10000111)

4-325

POPA (80286)
Pop All General Registers

Purpose

POPA restores the eight general-purpose registers 01, SI, BP, SP, BX, OX,

CX, and AX saved on the stack by PUSHA, except that the SP value is
discarded instead of loaded into SP.

Format

POPA

Remarks

POPA reverses a previous PUSHA, restoring the general purpose regis
ters to their values before PUSHA was run.

The .286C pseudo-op is required.

Logic

Pop DI,SI,BP,SP,BX,DX,CX,AX

Flags

None

Encoding

01100001

61

Example

paPA

4-326

POPF
Pop Flags Off Stack

Purpose

POPF transfers specific bits of the stack element addressed by the sp
register to the flag registers and then increases Sp by 2.

Format

POPF

Remarks

POPF fills the flag registers from the appropriate bit positions of the
word at the top of the stack:

overflow flag = bit 11

direction flag = bit 10

interrup flag = bit 9

trap flag = bit 8

sign flag = bit 7

zero flag = bit 6

auxiliary carry flag = bit 4

parity flag = bit 2

carry flag = bit 0

Then the stack pointer is increased by 2.

On the 80286 processor, the entire flag register is popped from the
stack. The flags are as follows:

undefined

nested task

I/O privilege level flag

overflow flag

= bit 15

= bit 14

= bits 12 & 13

= bit 11

4-327

direction flag = bit 10

interrupts enabled flag = bit 9

trap flag = bit 8

sign flag = bit 7

zero flag = bit 6

undefined = bit 5

auxiliary carry flag = bit 4

undefined = bit 3

parity flag = bit 2

undefined = bit 1

carry flag = bitO

The 1/0 privilege level will be altered only when executing at privi
lege level O. The interrupt enable flag will be altered only when exe
cuting at a level at least as privileged as the 1/0 privilege level. (Real
Address mode is equivalent to privilege level 0.) If you execute a POPF

instruction with insufficient privilege, there will be no exception nor
will the privileged bits be changed.

Logic

Flags <- ((SP) + 1 :SP))
(SP)<-(SP) + 2

Flags

Affected- All

Encoding

10011101

9D

Example

POPF

4-328

PUSH
Push Word onto Stack

Purpose

PUSH decreases the stack poi nter SP by 2 and then transfers a word
from the source operand to the stack element currently addressed by
SP.

Format

PUSH source

Remarks

The stack pointer (sp) is decreased by 2. The contents of the speci
fied operand are placed on the top of the stack at the location pointed
to by SP. The contents of SP are used as an offset to the base address
of the stack in register SS.

The 80286 PUSH SP instruction pushes the value of SP as it existed
prior to the instruction. This differs from the 8086/8088 instruction
set, which pushes the new (decreased by 2) value.

There are three separate types of PUSH instructions depending on the
type of operand supplied.

Logic

(SP) <- (SP) - 2
((SP + 1):(SP))<-(SRC)

Flags

None

4-329

Register Operand (Word)

Encoding

01010reg

50 + reg

Example

PUSH AX ;(01010000)
;(50)

PUSH S1; (01010110)
;(56)

Segment Register

Encoding

See example.

Example

PUSH SS ;(00010110)
; (16)

PUSH ES ;(00000110)
;(06)

Note: PUSH CS is valid.

4-330

Memory-or-Register Operand

Encoding

11111111 mod 11 0 r / m

FF mod110r/m

Example

PUSH BETA ; (11111111 00110110)
;(FF 36)

PUSH BETA[BX] ; (11111111 10110111)
;(FF B7)

PUSH BETA[BX] [DI] ; (11111111 10110001)
;(FF B1)

4-331

PUSH (80286)
Push Immediate onto Stack

Purpose

The PUSH immediate instruction decreases the stack pointer SP by 2
and then transfers the immediate data to the stack element currently
addressed by SP.

Format

PUSH immediate

Remarks

The data can be either immediate byte or immediate word. Byte data
is sign-extended to a word before it is pushed onto the stack, because
all stack operations are done on word data.

The stack pointer (sp) is decreased by 2. The contents of the speci-
fied operand are placed on the top of the stack at the location pointed I

to by SP. The contents of SP are used as an offset to the base address
of the stack in register SS.

The .286C pseudo-op is required.

Logic

(SP) <- (SP)-2
((SP + 1):(SP))<-(SRC)

Flags

None

Encoding

011010s0 data [dataifs=O]

68 + s data [data if s = 0]

4-332

Example

PUSH 2790H (01101000 00100111 10011101)
(68 27 90)

PUSH 90H (01101010 10011101)
;(6A 90)

4-333

PUSHA (80286)
Push All General Registers

Purpose

PUSHA saves the the contents of the eight general-purpose registers
on the stack: AX, ex, OX, BX, original sP, BP, SI, and 01.

Format

PUSHA

Remarks

PUSHA decreases the stack pointer SP by 16 to hold the eight word
values. Since the registers are pushed onto the stack in the order
above, they appear in the 16 new stack bytes in the reverse order.

Note: PUSHA does not save any of the segment registers, the instruc-
tion pointer, or the flag register.

The .286C pseudo-op is required.

Logic

Push AX,CX,DX,BX,original SP,BP,SI,DI

Flags

None

Encoding

01100000

60

Example

PUSHA

4-334

PUSHF
Push Flags onto Stack

Purpose

PUSHF decreases the SP register by 2 and transfers all the flag regis
ters into specific bits of the word operand (stack element) addressed
by SP.

Format

PUSHF

Remarks

PUSHF decreases the stack pointer by 2; then, the flags replace the
appropriate bits of the word at the top of the stack (see POPF).

Logic

(SP) <- (SP) - 2
((SP) + 1 :(SP)) <- Flags

Flags

Affected- All

Encoding

10011100

9C

Example

PUSHF

4-335

RCL
Rotate Left Through Carry

Purpose

RCL rotates the operand left through the CF flag register by count bits.

Format

RCL destination, 1
or

RCL destination,CL

Remarks

The specified destination (leftmost) operand is rotated left through the
carry flag a number of times (count). The second operand is either
exactly 1, specified by an immediate value 1, or it is the number held
in the CL register.

CF is rotated into bit 0 of the destination. The highest-order bit of the
destination is rotated into CF. All other bits in the destination move
left one position. The rotation continues until the count is exhausted.

OF is set if the operation changes the high-order (sign) bit of the desti
nation operation on single-bit rotates. That is, if the second operand
has a value of 1 and the two highest-order bits of the original destina
tion value are unequal (one 0 and one 1), the OF is set to O. If they are
equal, OF is reset. If the second operand does not have a value of 1,
OF is undefined and does not have a reliable value.

Logic

(temp) <- COUNT
do while (temp) f:. 0

(tmpcf) <- (CF)
(CF) <- high-order bit of (EA)
(EA) <- (EA)*2 + (tmpcf)
(temp) <- (temp) - 1

if COUNT = 1 then
if high-order bit of (EA) f:. (CF)

4-336

then (OF) <- 1
else (OF) <- 0

else (OF) undefi ned

Flags

Affected- CF, OF

Encoding

110100vw mod010r/m

DO + vw mod010r/m

If v = 0, COUNT = 1.
If v = 1, COUNT = (CL).

Example

Rotate register, count immediate:

RCL AH,l
RCL BL,l
RCL CX,l
VAL_ONE EQU 1
RCL DX,VAL_ONE
RCL SI,VAL_ONE

Rotate memory, count immediate:

RCL MEM_BYTE,l
RCL ALPHA[DI] ,VAL_ONE

Rotate register, count in CL:

MOV CL,3
RCL DH,CL ;ROTATES 3 BITS LEFT
RCL AX,CL

4-337

Rotate memory, count in CL:

MOV CL, 6
RCL MEM_WORD,CL ;ROTATES 6 TIMES
RCL GAMMA_BYTE,CL
RCL BETA[BX] [Dr] ,CL

4-338

RCL (80286)
Rotate Left Through Carry

Purpose

RCL rotates the operand left through the CF flag register by count bits.

Format

RCl destination, 1
or

RCl destination,Cl
or

RCl destination,count

Remarks

RCL rotates the specified destination (leftmost) operand left through
the carry flag a number of times (1,Cl, or count). The second
operand can be an immediate number from 1 to 31, or it is the
number held in the CL register.

CF is rotated into bit 0 of the destination. The highest-order bit of the
destination is rotated into CF. All other bits in the destination move
left one position. The rotation continues until the count is exhausted.

OF is set if the operation changes the high-order (sign) bit of the desti
nation operand on single-bit rotates. That is, if the second operand
has a value of 1 and the two highest-order bits of the original destina
tion value are unequal (one 0 and one 1), the OF is set to o. If they
were equal, OF is reset. If the second operand does not have a value
of 1, OF is undefined and does not have a reliable value.

Note: The 80286 does not allow rotation counts greater than 31. Only
the lower 5 bits of the rotation count are used if a rotation count
greater than 31 is attempted. The 8088 does not mask rotation
counts.

The .286C pseudo-op is required to enable RCL using an immediate
operand greater than 1.

4-339

Logic

(temp) <- COUNT
do while (temp) =1= 0

(tmpcf) <- (CF)
(CF) <- high-order bit of (EA)
(EA) <- (EA)*2 + (tmpcf)
(temp) <- (temp)-1

if COUNT = 1 then
if high-order bit of (EA) =1= (CF)

then (OF) <- 1
else (OF) <- 0

else (OF) undefi ned

Flags

Affected- CF, OF

Encoding

For an immediate value of 1, or CL:

110100vw mod010r/m
DO + vw mod010r/m

If v = 0, COUNT = 1.
If v = 1, COUNT = (CL).

Encoding

For an immediate value of 2-31:

1100000w mod010r/m
CO + w mod010r/m

4-340

Example

Rotate register, count immediate:
RCL AH,l
RCL BL,l
RCL CX,l
RCL CX,5
VAL_ONE EQU 1
RCL DX,VAL_ONE
RCL SI,VAL_ONE

Rotate memory, count immediate:
RCL MEM_BYTE,l
RCL MEM_BYTE,5
RCL ALPHA[DI] ,VAL_ONE

Rotate register, count in CL:
MOV CL,3
RCL DH,CL ;ROTATES 3 BITS LEFT
RCL AX,CL

Rotate memory, count in CL:
MOV CL, 6
RCL MEM_WORD,CL ;ROTATES 6 TIMES
RCL GAMMA_BYTE,CL
RCL BETA[BX] [DI] ,CL

4-341

RCR
Rotate Right Through Carry

Purpose

RCR rotates the operand right through the CF flag register by count
bits.

Format

RCR destination, 1
or

RCR destination,CL

Remarks

RCR rotates the specified destination (leftmost) operand right through
the carry flag by either exactly 1, specified by an immediate value of
1, or by the number held in the CL register.

CF is rotated into the high-order bit of the destination. The lowest
order bit of the destination is rotated into CF. All other bits in the des
tination move right one position. The rotation continues until the
count is exhausted.

OF is set if the operation changes the high-order (sign) bit of the desti
nation operand on single-bit rotates. That is, if the second operand
has a value of 1 and the two highest-order bits of the original destina
tion value are unequal (one 0 and one 1), the overflow flag is set. If
they are equal, OF is reset. If the second operand does not have a
value of 1, OF is undefined and has no reliable value.

Logic

(temp) <- COUNT
do while (temp) "1= 0

(tmpcf) <- (CF)
(CF) <- low-order bit of (EA)
(EA) <- (EA)/2
high-order bit of (EA) <- (tmpcf)

4-342

(temp) <- (temp) - 1
f COUNT = 1 then

if high-order bit of (EA) =I
next-to-high-order bit of (EA)

then (OF) <- 1
else (OF) <- 0

else (OF) undefined

:Iags

~ffected- CF,OF

::ncoding

110100vw mod011 rIm
)0 + vw mod011 rIm

If v = 0, COUNT = 1.
If v = 1, COUNT = (CL).

Example

Rotate register, count immediate:

iCR AH,l
iCR BL,l
iCR CX,l
VAL_ONE EQU 1
RCR OX,VAL_ONE
RCR S1, VAL_ONE

Rotate memory, count immediate:

RCR MEM_BYTE,l
RCR ALPHA[OI],VAL_ONE

Rotate register, count in CL:

MOV CL,3
RCR DH,CL ;ROTATES 3 BITS RIGHT
RCR AX,CL

Rotate memory, count in CL:

MOV CL, 6
RCR MEM_WORO,CL ;ROTATES 6 TIMES
RCR GAMMA_BYTE,CL
RCR BETA[BX][OI],CL

4-343

chapter

RCR (80286)
Rotate Right Through Carry

Purpose

RCR rotates the operand right through the CF flag register by count
bits.

Format

RCR destination, 1
or

RCR destination,CL
or

RCR destination,count

Remarks

RCR rotates the specified destination (leftmost) operand right through
the carry flag a number of times (1 ,CL,or count). The second operand
can be an immediate value from 1 to 31, or it can be the number held
in the CL register.

CF is rotated into the high-order bit of the destination. RCR rotates the
lowest-order bit of the destination into CF. All other bits in the desti
nation move right one position. The rotation continues until the count
is exhausted.

OF is set if the operation changes the high-order (sign) bit of the desti
nation operand on single-bit rotates. That is, the second operand has
a val ue of 1 and the two highest-order bits of the original destination
value are unequal (one 0 and one 1), the overflow flag is set. If they
are equal, OF is reset. If the second operand does not have a value of
1, OF is undefined and has no reliable value.

Note: The 80286 does not allow rotation counts greater than 31. Only
the lower 5 bits of the rotation count are used if a rotation count
greater than 31 is attempted. The 8088 does not mask rotation
counts.

4-344

Logic

The .286C pseudo-op is required to enable RCR using an immediate
operand greater than 1.

(temp) <- COUNT
do while (temp) =1= 0

(tmpcf) <- (CF)
(CF) <- low-order bit of (EA)
(EA) <- (EA)/2
high-order bit of (EA) <- (tmpcf)
(temp) <- (temp)-1

if COUNT = 1 then
if high-order bit of (EA) =1=

next-to-high-order bit of (EA)
then (OF) <- 1

else (OF) <- 0
else (OF) undefined

Flags

Affected- CF, OF

Encoding

For an immediate value of 1, or CL:

110100vw mod011 rIm
DO + vw mod011 rIm

If v = 0, COUNT = 1.
If v = 1, COUNT = (CL).

Encoding

For an immediate value of 2-31:

1100000w mod011 rIm
CO + w mod011 rIm

4-345

Example

Rotate register, count immediate:

RCR AH,l
RCR BL,l
RCR CX,l
RCR CX,5
VAL_ONE EQU 1
RCR OX, VAL_ONE
RCR SI,VAL_ONE

Rotate memory, count immediate:

RCR MEM_BYTE,l
RCR MEM_BYTE,5
RCR ALPHA[OI],VAL_ONE

Rotate register, count in CL:

MOV CL,3
RCR OH,CL ;ROTATES 3 BITS RIGHT
RCR AX,CL

Rotate memory, count in CL:

MOV CL, 6
RCR ME~i_WORO,CL ;ROTATES 6 TIMES
RCR GAMMA_BYTE,CL
RCR BETA[BX] [Dr] ,CL

4-346

REP/REPZ/REPE/REPNE/REPNZ
Repeat String Operation

Purpose

REP causes the primitive string operation that follows to be done
repeatedly while (cx) is not zero. For CMPS and SCAS, if after any
repetition of the primitive operation the ZF flag differs from the "z" bit
of the repeat prefix, the repetition is ended. This prefix can be com
bined with the segment override and/or LOCK prefixes. With multiple
prefixes, interrupts must be disabled, because the return from an
interrupt returns control to the interrupted instruction or to at most
one prefix byte before that instruction.

Format

REP ;Set z bit to 1
or

REPZ ;Set z bit to 1
or

REPE ;Set z bit to 1
or

REPNE ;Set z bit to 0
or

REPNZ ;Set z bit to 0

Remarks

The specified string operation is carried out until (cx) is decreased to
O. cx is decreased by 1 after each iteration.

The compare and scan string operations exit the loop when the zero
flag is unequal to the value of bit 0 of this instruction byte.

• If the count in cx ran out, cx is zero, and the index register points
one past the last byte of the string.

• If the ZF flag ended the repeat, the index register is one byte past
the byte that caused the ZF condition, and cx is correspondingly
smaller, requiring further adjustments; for example:

4-347

X:

Logic

REPE SCASB
JE
DEC
INC

x
DI
CX

Do while (CX) #- 0

EXIT BECAUSE UNEQUAL?
YES, ADJUST INDEX
AND COUNT REG

service pending interrupt (if any)
run primitive string operation

in the succeeding byte
(CX) <- (CX) - 1
if primitive operation is CMPS, or

SCAS and (ZF) #- z bit of the
repeat prefix, then exit from while loop

Flags

See individual string operations.

Encoding

1111001z

F2 + z

Example

REP MOVS DEST,SQURCE ;SEE MOVS

REPE CMPS DEST,SOURCE
;LOOP WILL BE EXITED BEFORE (Cx)=o ONLY
;IF (zF)=o, ONLY IF THE BYTE AT (Dr) IS NOT
;EQUAL TO THE BYTE AT (SI). SEE CMPS.

REPNZ SCAS DEST ;SEE SCAS
;ONLY IF (ZF)=l, (AL) = DEST, WILL
; THIS LOOP BE EXITED BEFORE (CX) = °
Note:

4-348

REPNZ (nonzero) = REPNE (not equal)
REPZ (zero) = REPE (equal)

Code one of the forms of these instructions immediately pre
ceding (but separated by at least one blank) the primitive string
mnemonic (for example REPNZ SCASW). This specifies that the
string operation is to be repeated the number of times deter
mined by cx.

4-349

RET
Return from Procedure

Purpose

RET transfers control to the return address pushed by a previous CALL
operation and optionally adds an immediate constant, pop-value, to
the sp register to discard stack parameters. If this is an inter
segment RET (it was assembled under a procedure labeled FAR), RET
replaces the IP and the cs using the two words at the top of the stack.
Otherwise, RET replaces only the IP, using only one word from the top
of the stack.

Format

RET [pop-value]

Remarks

RET replaces the instruction pointer by the word at the top of the stack
(offset of top is in the stack pointer). SP is increased by 2. For inter
segment returns, RET replaces the cs register by the word now at the
top of the stack, and SP is again increased by 2. If an immediate
value pop-value, was specified on the RET statement, that value is
now added to sP.

When using indirect CALLS, you must ensure that the type of CALL
matches the type of RETurn in the procedure:

CALL WORD PTR [BX]

must not call a FAR procedure. And:

CALL DWORD PTR [BX]

must not call a NEAR orocedure.

In protected mode, an inter-segment return may cause a privilege
level change, but only to a lesser privileged level. If such a change is
made, the lesser privileged stack VADW is assumed to be on the stack
above the return cs by some fixed displacement. RETS may optionally
add a constant to the stack pOinter, effectively removing any argu
ments to the called routine which were pushed prior to the CALL. If an

4-350

inter-segment return-and-add format is used, then the VADW for the old
stack is found above the arguments on the new stack, and arg is
removed from both the old and new stacks.

See Chapter 6, "80286/80386-8ased Personal Computers," in the IBM

Macro Assembler/2 Fundamentals book for information about the
80286 architecture.

Logic

(IP) <- ((SP) + 1 :(SP))
(SP) <- (SP) + 2
if inter-segment then

(CS) <- ((SP) + 1 :(SP))
(SP) <- (SP) + 2

if Add immediate to Stack Pointer
then (SP) <- (SP) + data.

For protected mode:

if no immediate constant, Data = 0
if intra-segment then

(IP) <- ((SP) + 1 :(SP))
(SP) <- (SP) + DATA

else
if inter-segment then

if return selector RPL = CPL then
(CS) <- ((SP) + 3:(SP) + 2)
(IP) <- ((SP) + 1 :SP)
(SP) <- (SP) + DATA

else
(IP) <-((SP) + 1:(SP))
(CS) < - ((SP) + 3:(SP) + 2)
(SP) < - ((SP) + 4:(SP) + 5) + DATA
(SS) < - ((SP) + 6:(SP) + 7) + DATA

Flags

None.

Intra-Segment

4-351

Encoding

11000011

C3

Example

RET

Intra-Segment and Add Immediate to Stack Pointer

Encoding

11000010 data-low data-high

C2 data-low data-high

Example

RET 4
RET 12

Note: These values cause parameter words 2 and 6 earlier stored on
the stack to be discarded. Si nce most stack operations are on
words, these values are usually even numbers (2 bytes per
word).

4-352

Inter-Segment and Add Immediate to Stack Pointer

Encoding

11001010 data-low data-high

CA data-low data-high

Example

RET Z ;INTER-SEGMENT RETURNS
RET 8 ;RESTORE IP FIRST, THEN CS

I nte r-Seg ment

Encoding

11001011 (CBH)

CB (CBH)

Example

RET

4-353

ROL
Rotate Left

Purpose

ROL rotates the operand left by count bits.

Format

ROL destination, 1
or

ROL destination,CL

Remarks

ROL rotates the specified destination (leftmost) operand left by one or
by the value held in the CL register.

The high-order bit of the destination operand replaces the carry flag,
whose original value is lost. All other bits in the destination move left
one position. The vacated bit-position 0 is filled by the new CF (the
old high-order bit).

OF is set if the operation changes the high-order (sign) bit of the desti
nation operand on single-bit rotates. That is, if the second operand
has a value of 1 and the new value of CF is not equal to the new high
order bit, the overflow flag is set; if (CF) does equal that high-order
bit, OF becomes o. However, if the second operand does not have a
value of 1, OF is not defined and has no reliable value.

LogiC

(temp) <- COUNT
do while (temp) i= 0

(CF) <- high-order bit of (EA)
(EA) <- (EA) * 2 + (CF)
(temp) <- (temp) - 1

if COUNT = 1 then
if high-order bit of (EA) i= (CF)

then (OF) <- 1

4-354

else (OF) <- 0
else (OF) undefined

Flags

Affected- CF,OF

Encoding

110100vw modOOOr/m

DO + vw modOOOr/m

If v = 0, COUNT = 1.
If v = 1, COUNT = (Cl).

Example

Rotate register, count immediate:

ROL AH,l
ROL BL, 1
ROL CX,l
VAL_ONE EQU 1
ROL DX,VAL_ONE
ROL DI,VAL_ONE

Rotate memory, count immediate:

ROL MEM_BYTE,l
ROL ALPHA[DI],VAL_ONE

Rotate register, count in CL:

MOV CL,3
ROL DH,CL ;ROTATES 3 BITS LEFT
ROL AX,CL

Rotate memory, count in CL:

MOV CL,6
ROL MEM_WORD,CL ;ROTATES 6 TIMES
ROL GAMMA_BYTE,CL
ROL BETA[BX] [DI],CL

4-355

ROL (80286)
Rotate Left

Purpose

ROL rotates the specified destination (leftmost) operand left count
times.

Format

ROL destination, 1
or
ROL destination,CL
or

ROL destination,count

Remarks

Count can be an immediate value from 1 to 31, or it is the number
held in the CL register.

If the second operand is a 1, then the high-order bit of the destination
replaces the carry flag, whose original value is lost. All other bits in
the destination move left one position. The vacated bit-position 0 is
filled by the new CF (the old high-order bit). as

OF is set if the operator changes the high-order (Sign) bit of the desti
nation operand on single-bit rotates. That is, if the second operand
has a value of 1 and the new value of CF is not equal to the new high
order bit, the overflow flag is set; if (CF) does equal that high-order
bit, OF becomes O. However, if the second operand does not have a
value of 1, OF is not defined and has no reliable value.

Note: The 80286 does not allow rotation counts greater than 31. Only
the lower 5 bits of the rotation count are used if a rotation count
greater than 31 is attempted. The 8088 does not mask rotation
counts.

4-356

Logic

(temp) <- COUNT
do while (temp) i= 0

(CF) <- high-order bit of (EA)
(EA) <- (EA) * 2 + (CF)
(temp) <- (temp) - 1

if COUNT = 1 then
if high-order bit of (EA) i= (CF)

then (OF) <- 1
else (OF) <- 0

else (OF) undefined

Flags

Affected- CF,OF

Encoding

For an immediate value of 1, or CL:

110100vw modOOOr/m
DO + vw modOOOr/m

If v = 0, COUNT = 1.
If v = 1, COUNT = (CL).

Encoding

For an immediate value of 2-31:

1100000w m odOOO r / m
CO + w modOOOr/m

Example

Rotate register, count immediate:

ROL AH,l
ROL BL,l
ROL eX,l
ROL eX,5
VAL_ONE EQU 1
ROL DX,VAL_ONE
ROL DI,VAL_ONE

4-357

Rotate memory, count immediate:

ROL MEM_BYTE,l
ROL MEM_BYTE,5
ROL ALPHA[DI],VAL_ONE

Rotate register, count in CL:

MOV CL,3
ROL DH,CL ;ROTATES 3 BITS LEFT
ROL AX,CL

Rotate memory, count in CL:

MOV CL,6
ROL MEM_WORD,CL ;ROTATES 6 TIMES
ROL GAMMA_BYTE,CL
ROL BETA[BX] [DI],CL

4-358

ROR
Rotate Right

Purpose

ROR rotates the operand right by count bits.

Format

ROR destination, 1
or

ROR destination,CL

Remarks

ROR rotates the specified destination (leftmost) operand right by 1 or
CL times. Its low-order bit replaces the carry flag, whose original
value is lost. All other bits in the destination move right one position.
The vacated high-order position is filled by the new CF (the old value
of position 0).

OF is set if the operation changes the high-order (sign) bit of the desti
nation operand on single-bit rotates. That is, if the second operand
has a value of 1 and the new high-order value is not equal to the old
high-order value, the overflow flag is set; if they are equal, (OF) = O.
However, if the second operand does not have a value of 1, OF is
undefined and has no reliable value.

Logic

(temp) <- COUNT
DO WHILE (temp) t= 0

(CF) <- low-order bit of (EA)
(EA) <- (EA)/2
high-order bit of (EA) <- (CF)
(temp) <- (temp) - 1

if COUNT = 1 then
if high-order bit 9f (EA) t=

next-to-high-order bit of (EA)
then (OF) <- 1

4-359

else (OF) <- 0
else (OF) undefined

Flags

Affected- CF,OF

Encoding

110100vw mod001 rim

DO + vw mod001 rim

If v = 0, COUNT = 1.
If v = .1, COUNT = (CL).

4-360

Example

Rotate register, count immediate:

ROR AH,l
ROR BL,l
ROR CX,l
VAL_ONE EQU 1
ROR OX,VAL_ONE
ROR SI, VAL_ONE

Rotate memory, count immediate:

ROR MEM_BYTE,l
ROR ALPHA[DI] ,VAL_ONE

Rotate register, count in CL:

MOV CL,3
ROR OH,CL ;ROTATES 3 BITS RIGHT
ROR AX,CL

Rotate memory, count in CL:

MOV CL,6
ROR MEM_WORO,CL ;ROTATES 6 TIMES
ROR GAMMA_BYTE,CL
ROR BETA[BX] [DI] ,CL

4-361

ROR (80286)
Rotate Right

Purpose

ROR rotates the specified destination (leftmost) operand right count
times.

Format

ROR destination, 1
or

ROR destination,CL
or

ROR destination,count

Remarks

Count can be an immediate value from 1 to 31, or it is the number
held in the CL register.

If the second operand is a 1, then the low-order bit of the destination
replaces the carry flag, whose original value is lost. All other bits in
the destination move right one position. The vacated high-order posi
tion is filled by the new CF (the old value of position 0).

OF is set if the operation changes the high-order (sign) bit of the desti
nation operand on single-bit rotates. That is, if the second operand
has a value of 1 and the new high-order value is not equal to the old
high-order value, the overflow flag is set; if they are equal, (OF) <- O.
However, if count was not 1, OF is undefined and has no reliable
value.

Note: The 80286 does not allow rotation counts greater than 31. Only
the lower 5 bits of the rotation count are used if a rotation count
greater than 31 is attempted. The 8088 does not mask rotation
counts.

The .286C pseudo-op is required to enable ROR using an immediate
operand greater than 1.

4-362

Logic

(temp) <- COUNT
DO WHILE (temp) =t- 0

(CF) <- low-order bit of (EA)
(EA) <- (EA)/2
high-order bit of (EA) <- (CF)
(temp) <- (temp) - 1

if COUNT = 1 then
if high-order bit of (EA) =t

next-to-high-order bit of (EA)
then (OF) <- 1

else (OF) <- 0
else (OF) undefined

Flags

Affected- CF, OF

Encoding

For an immediate value 6f 1 or CL:

110100vw mod001 rIm
DO + vw mod001 rIm

If v = 0, COUNT = 1.
If v = 1, COUNT = (CL).

Encoding

For an immediate value of 2-31:

1100000w mod001 rIm
CO + w mod001 rIm

4-363

Example

Rotate register, count immediate:

ROR AH,l
ROR BL,l
ROR CX,l
ROR CX,5
VAL_ONE EQU 1
ROR OX, VAL_ONE
ROR SI,VAL_ONE

Rotate memory, count immediate:

ROR MEM_BYTE,l
ROR MEM_BYTE,5
ROR ALPHA[OI],VAL_ONE

Rotate register, count in CL:

MOV CL,3
ROR OH,CL ;ROTATES 3 BITS RIGHT
ROR AX,CL

Rotate memory, count in CL:

MOV CL,6
ROR MEM_WORO,CL ;ROTATES 6 TIMES
ROR GAMMA_BYTE,CL
ROR BETA[BX] [01] ,CL

4-364

SAHF
Store AH in Flags

~urpose

3AHF transfers specific bits of the AH register to the flag registers SF,

IF, AF, PF, and CF. The bits of AH indicated by "X" in the operation are
ignored.

Format

SAHF

Remarks

SAHF replaces the five flags shown by specified bits from AH, the high
order byte of the accumulator:

(SF) = bit 7
(ZF) = bit 6
(AF) = bit 4
(PF) = bit 2
(CF) = bit O.

Logic

(SF):(ZF):X:(AF):X:(PF):X:(CF)<-(AH)

Flags

Affected- AF, CF, PF, SF, ZF

Encoding

10011110

9E

Example

SAHF

4-365

SAL/SHL
Shift Arithmetic Left/Logical Left

Purpose

SAL and SHL shift the operand left by 1 or CL bits, shifting in low-order
zero bits.

Format

SAL destination, 1
or

SAL destination,CL

SHL destination, 1
or

SHL destination,CL

Remarks

SAL/SHL shift the specified destination (leftmost) operand left by 1 or
by the value contained in CL. The high-order bit of the destination
operand replaces the carry flag, whose original value is lost. All
other bits in the destination move left one pOSition. The vacated low
order bit-position is filled by O.

In a single-bit shift, OF is set if the value of the high-order (sign) bit of
the destination operand was changed by the operation. If the sign bit
did not change then OF is cleared. Following multiple bit shifts,
however, the value of OF is always defined.

4-366

,ogic

temp) <- (COUNT)
10 while (temp) =1= 0
(CF) <- high-order bit of (EA)
(EA) <- (EA)*2
(temp) <- (temp) - 1

f COUNT = 1 then
if high-order bit of (EA) =1= (CF)

then (OF) <- 1
else (OF) <- 0
~Ise (OF) undefined

=lag5

~ffected- CF,OF,PF,SF,ZF
Jndefined- AF

:ncoding

110100vw mod100r/m

DO + vw mod100r/m

If v = 0, COUNT = 1.
If v = 1, COUNT = (CL).

4-367

Example

Shift register, count immediate:

SHL AH,l
SHL BL, 1
SHL CX,l
VAL_ONE EQU 1
SHL SI,VAL_ONE
SHL SI,VAL_ONE

Shift memory, count immediate:

SHL MEM_BYTE,l
SHL ALPHA[DI],VAL_ONE

Shift register, count in CL:

MOV CL,3
SHL DH,CL ;SHIFT 3 BITS LEFT
SHL AX,CL

Shift register, count in CL:

MOV CL,6
SHL MEM_WORo,CL ;SHIFT 6 TIMES
SHL GAMMA_BYTE,CL
SHL BETA[BX] [01] ,CL

4-368

SAL/SHL (80286)
Shift Arithmetic Left/Shift Logical Left

Purpose

SAL and SHL shift the operand left by count bits, shifting in low-order
zero bits.

Format

SAL destination, 1
or

SAL destination,Cl
or

SAL destination,count

SHl destination, 1
or

SHl destination,Cl
or

SHl destination, count

Remarks

SAL/SHL shift the specified destination (leftmost) operand left 1, Cl, or
count

The high-order bit of the destination replaces the carry flag, whose
original value is lost. All other bits in the destination move left one
position. The vacated low-order bit-position is filled by O.

The second operand can be an immediate value from 1 to 31, or the
value held in the CL register.

In a single-bit shift, OF is set if the value of the high-order (sign) bit of
the destination operand was changed by the operation. If the sign bit
did not change then OF is cleared. Following multiple bit shifts,
however, the value of OF is always undefined.

Note: The 80286 does not allow shift counts greater than 31. Only the
lower 5 bits of the shift count are used if a shift count greater
than 31 is attempted. The 8088 uses all 8 bits of the shift count.

4-369

The .286C pseudo-op is required to enable SAL and SHL using an
immediate operand greater than 1.

Logic

(temp) <- (COUNT)
do while (temp) i= 0

(CF) <- high-order bit of (EA)
(EA) <- (EA)*2
(temp) <- (temp) - 1

if COUNT = 1 then
if high-order bit of (EA) i= (CF)

then (OF) <- 1
else (OF) <- 0

else (OF) undefined

Flags

Affected- CF,OF,PF,SF,ZF
Undefined- AF

Encoding

For an immediate value of 1, or CL:
110100vw mod100r/m
DO + vw mod100r/m

If v = 0, COUNT = 1.
If v = 1, COUNT = (CL).

Encoding

For an immediate value of 2-31:

1100000w mod100r/m
CO + w mod100r/m

4-370

Example

Shift register, count immediate:

SHL AH,l
SHL BL,l
SHL CX,l
SHL CX,5
VAL_ONE EQU 1
SHL S1, VAL_ONE
SHL S1,VAL_ONE

Shift memory, count immediate:

SHL MEM_BYTE,l
SHL ME~~_BYTE, 5
SHL ALPHA[D1] ,VAL_ONE

Shift register, count in CL:

MOV CL,3
SHL DH,CL ;SH1FT 3 BITS LEFT
SHL AX,CL

Shift register, count in CL:

MOV CL,6
SHL MEM_WORD,CL ;SHIFT 6 TIMES
SHL GAMMA_BYTE,CL
SHL BETA[BX][D1],CL

4-371

SAR
Shift Arithmetic Right

Purpose

SAR (shift arithmetic right) shifts the destination operand right by 1 or
CL bits, shifting in high-order bits equal to the original high-order bit
of the operand (sign extension).

Format

SAR destination, 1
or

SAR destination,CL

Remarks

SAR shifts the specified destination (leftmost) operand right 1 or CL
times. The low-order bit of the destination operand replaces the
carry flag, whose original value is lost. All other bits in the destina
tion move right one position. The vacated high-order position retains
its old value. (If the original high-order bit value was 0, zeroes are
shifted in). If that value was 1, ones are shifted in.

In a single-bit shift, OF is set if the value of the high-order (sign) bit of
the destination operand was changed by the operation. If the sign bit
did not change then OF is cleared. Following multiple bit shifts,
however, the value of OF is always undefined.

Flags

Affected- CF,OF,PF,SF,ZF
Undefined- AF

Encoding

110100vw mod111 rim

DO + vw mod111r/m

4-372

If v = 0, COUNT = 1.
If v = 1, COUNT = (CL).

Logic

(temp) <- COUNT
do while (temp) #- 0

(CF) <- low-order bit of (EA)
(EA) <- (EA)/2, where / is equivalent to signed

division, rounding down
(temp) <- (temp) - 1

if COUNT = 1 then
if high-order bit of (EA) #

next-to-high-order bit of (EA)
then (OF) <- 1
else (OF) <- 0

else (OF) <- undefined

Example

Shift register, count immediate:

SAR AH,l
SAR BL,l
SAR CX,l
VAL_ONE EQU 1
SAR OX, VAL_ONE
SAR SI,VAL_ONE

Shift memory, count immediate:

SAR MEM_BYTE,l
SAR ALPHA[OI] ,VAL_ONE

Shift register, count in CL:

MOV CL,3
SAR OH,CL ;SHIFTS 3 BITS RIGHT
SAR AX,CL

4-373

SAR (80286)
Shift Arithmetic Right

Purpose

SAR (shift arithmetic right) shifts the destination operand right by
count bits, shifting in high-order bits equal to the original high-order
bit of the operand (sign extension).

Format

SAR destination, 1
or

SAR destination,Cl
or

SAR destination,count

Remarks

SAR shifts the specified destination (leftmost) operand right 1, Cl, or
count times. The second operand can be an immediate value from 1
to 31, or it can be the number held in the CL register.

The low-order bit of the destination replaces the carry flag, whose ori
ginal value is lost. All other bits in the destination move right one
position. The vacated high-order position retains its old value. (If the
original high-order bit value was 0, zeroes are shifted in; if that value
was 1, ones are shifted in.)

In a single-bit shift, OF is set if the value of the high-order (sign) bit of
the destination operand was changed by the operation. If the sign bit
did not change then OF is cleared. Following multiple bit shifts,
however, the value of OF is always undefined.

Note: The 80286 does not allow shift counts greater than 31. Only the
lower 5 bits of the shift count are used if a shift count greater
than 31 is attempted. The 8088 uses all 8 bits of the shift count.

The .286C pseudo-op is required to enable SAR using an immediate
operand greater than 1.

4-374

.ogic

:temp) <- COUNT
jo while (temp) i= 0

(CF) <- low-order bit of (EA)
(EA) <- (EA)/2, where / is equivalent to signed

division, rounding down
(temp) <- (temp) - 1

if COUNT = 1 then
if high-order bit of (EA) i=

next-to-high-order bit of (EA)
then (OF) <- 1

else (OF) <- 0
else (OF) <- undefined

Flags

Affected- CF,OF,PF,SF,ZF
Undefined- AF

Encoding

For an immediate value of 1 or CL:

110100vw mod111 rIm

DO + vw mod111 rIm

If v = 0, COUNT = 1.
If v = 1, COUNT = (CL).

Encoding

For an immediate value of 2-31:

1100000w mod111 rIm
CO + w mod111r/m

4-375

Example

Shift register, count immediate:

SAR AH,l
SAR BL,l
SAR CX,1
SAR CX,5
VAL_ONE EQU 1
SAR OX,VAL_ONE
SAR S1,VAL_ONE

Shift memory, count immediate:

SAR MEM_BYTE,l
SAR MEM_BYTE,5
SAR ALPHA[01] ,VAL_ONE

Shift register, count in CL:

MOV CL,3
SAR OH,CL ;SHIFTS 3 BITS RIGHT
SAR AX,CL

4-376

SBB
Subtract with Borrow

Purpose

SBB does a subtraction of the two operands, subtracts one if the CF

flag is set, and returns the result to one of the operands.

Format

SBB destination, source

Remarks

SBB subtracts the source (rightmost) operand from the destination
(leftmost). If the carry flag was set, SBB subtracts 1 from the above
result. The result replaces the original destination operand.

Logic

If (CF) = 1, (DEST) <- (LSRC) - (RSRC) - 1
Else (DEST) <- (LSRC) - (RSRC)

Flags

Affected-AF,CF,OF,PF,SF,ZF

4-377

Memory or Register Operand and Register Operand

Encoding

000110dw .modregr/m

18 + dw modregr/m

If d = 1, LSRC = REG, RSRC = EA, DEST = REG.
If d = 0, LSRC = EA, RSRC = REG, DEST = EA.

Example

Subtract register from register:

SBB AX,BX
SBB CH,DL

Subtract memory from register:

SBB DX,MEM_WORD
SBB DI,ALPHA[SI]
SBB DL,MEM_BYTE[DI]

Subtract register from memory:

SBB MEM_WORD,AX
SBB MEM_BYTE[DI],BX
SBB GAMMA[BX][DI],SI

4-378

Immediate Operand from Accumulator

Encoding

)001110w data data*

1C + w data data*

If w = 0, then LSRC = data, DEST = AL.
If w = 1, then LSRC = data, DEST = AX.

*Present only if w = 1.

Example

Subtract immediate (byte):

SBB AL,4
VAL_SIXTY EQU 60
SBB AL,VAL_SIXTY

Subtract immediate (word):

SBS AX,660
SBB AX,VAL_SIXTY*6

4-379

Immediate Operand from Memory or Register Operand

Encoding

100000sw mod011 rim data

80 + sw mod011 rim data

LSRC = EA, RSRC = data, DEST = EA

If an immediate-data byte is being subtracted from a register-or
memory word, the byte is sign-extended to 16 bits before the sub
traction. For this situation, the instruction byte is 83H (the sand w
bits are both set).

Example

Subtract immediate from register:

SBB BX,2001
SBB CL,VAL_SIXTY
SBB SI,VAL_SIXTY*9

Subtract immediate from memory:

SBB MEM_BYTE,12
SBB MEM BYTE[DI] ,VAL SIXTY
SBB MEM=WORD[BX],79-
SBB GAMMA[DI] [BX],1984

4-380

SCAS/SCASB/SCASW
Scan Byte or Word String

Ilurpose

SCAS subtracts the destination byte (or word) operand addressed by
ES:OI from AL (or AX) and affects the flags but does not return the
result. As a repeated operation, this provides for scanning for the
occurrence of, or departure from, a given value in a string. See the
REP instruction in this chapter.

Format

SCAS dest-string
or

SCASB
or

SCASW

Remarks

The destination-string element specified by offset 01 in the extra
segment is subtracted from the value in the accumulator, but the
operation affects flags only. The destination index is then increased
(if the di rection flag is zero) or decreased (if (DF) = 1) by 1 for byte
strings or 2 for words. (See the CLO and STO instructions.)

Logic

(LSRC) - (RSRC)
if (OF) = 0, then

(01) <- (01) + OEL TA
else (01) <- (01) - OEL TA

Flags

Affected- AF,CF,OF,PF,SF,ZF

4-381

Encoding

1010111w

AE + w

If w=O, LSRC = AL, RSRC = (01), DELTA = 1. If w= 1, LRSC = AX,
RSRC = (D) + 1:(01), DELTA = 2.

Example

CLD ;CLEARS DF, CAUSES DI INCREASING
MOV DI,OFFSET DEST_8YTE_STRING
~10V AL,' M'
SCAS DEST_BYTE_STRING

or
SCAS ES:BYTE PTR[DI]

or
SCASB

STD ;SETS DF, CAUSES DI DECREASING
MOV DI,OFFSET WORD_STRING
MOV AX, 'MD'
SCAS WORD_STRING

The operand named in the SCAS instruction is used only by the assem
bler to verify type and accessibility using current segment register
contents. The operation of this instruction uses 01 to point to the
location to be scanned, without using the operand named in the
source line.

The string instructions are unusual in several aspects:

1. Load SI with the offset of the source-string.

2. Load 01 with the offset of the destination-string.

3. Each can be coded with or without symbolic memory operand.

4-382

• If symbolic operand is coded, the assembler can check the
addressabilityof it for you.

• References that use hardware defaults should be coded using
the operand-less forms (scAsa and SCASW), to avoid the addi
tional pointer information.

• Do not use [ax], [SI], or rap] addressing modes with the string
instructions.

4. If the instruction mnemonic is coded without operands, the
segment registers are as follows:

• Sl defaults to an offset in the segment addressed by os.
• 01 is required to be an offset in the segment addressed

by ES.

4-383

SGDT (80286P)
Store Global Descriptor Table

Purpose

SGDT stores the Global Descriptor Table Register in 6-bytes of
memory addressed by the destination operand.

Format

SGDT destination

Remarks

The effective address of the destination operand must be in memory.
The LIMIT field of GDTR is the first word; the next 3 bytes are the BASE
field of GDTR, and the sixth byte is undefined.

The SIDT and SGDT 80286 protected mode instructions operate on
6-byte quantities. Since the assembler has no way to define 6-byte
data item, it uses the first 6 bytes of the next largest type of data item,
which is a aWORD. There are several ways of specifying the source
operand for these instructions:

• a data item defined with Da

• a symbol defined with EXTRN x:aWORD

• a symbol defined using LABEL aWORD

• use the aWORD PTR override.

See Chapter 6, "80286/80386-8ased Personal Computers" in the IBM
Macro Assembler/2 Fundamentals book for information about the
80286 architecture.

You must use the .286P pseudo-op to enable this instruction.

4-384

Logic

((addr) + 5) < - undefined

((addr) + 4:(addr)) < - GDTR.base
((addr) + 1 :(addr)) < - GDTRlimit

Flags

None

Encoding

00001111 00000001 modOOOr/m
OF 01 modOOOr/m

Example

.286P
EXTRN VARl:QWORD

DATA SEGMENT
ASSUME DS:DATA

VAR2 DQ
VAR3 LABEL QWORD
VAR4 DB 6 DUP(?)
DATA ENDS
CODE SEGMENT

ASSUME CS:CODE

srDT VARI ;external data item
SGDT VAR2 ;data field of type QWORD
SrDT VAR3 ;label of type QWORD
SGDT QWORD PTR VAR4 ;explicit override

4-385

SHR
Shift Logical Right

Purpose

SHR shifts the operand right, shifting in high-order zero bits.

Format

SHR destination, 1
or

SHR destination, CL

Remarks

SHR shifts the specified destination (leftmost) operand right 1 or CL
times. The low-order bit of the destination operand replaces the
carry flag, whose original value is lost. All other bits in the destina
tion move right one position. The vacated high-order position is filled
by O.

In a single-bit shift, OF is set if the value of the high-order (sign) bit of
the destination operand was changed by the operation. If the sign bit
did not change then OF is cleared. Following multiple bit shifts
however, the value of OF is always undefined.

Flags

Affected- CF,OF,PF,SF,ZF
Undefined- AF

Encoding

110100vw mod101 rim

DO + vw mod101 rim

If v = 0, COUNT = 1.
If v = 1, COUNT = (CL).

4-386

Logic

(temp) <- COUNT
do while (temp) =1= 0

(CF) <- low-order bit of (EA)
(EA) <- (EA)/2, where / is equivalent
to unsigned division

(temp),<- (temp) - 1
if COUNT = 1 then

if high-order bit of (EA) =1=

next-to-high-order bit of (EA)
then (OF) <- 1

else (OF) <- 0
else (OF) <- undefined

4-387

Example

Shift register, count immediate:

SHR AH,l
SHR BL,l
SHR CX,l
VAL_ONE EQU 1
SHR OX, VAL_ONE
SHR S1,VAL_ONE

Shift memory, count immediate:

SHR MEM_BYTE,l
SHR ALPHA[DI] ,VAL_ONE

Shift register, count in CL:

MOV CL,3
SHR DH,CL ;SHIFTS 3 BITS RIGHT
SHR AX,CL

4-388

SHR (80286)
Shift Logical Right

Purpose

SHR shifts the operand right, shifting in high-order zero bits.

Format

SHR destination, 1
or

SHR destination,Cl
or

SHR destination,count

Remarks

SHR shifts the specified destination (leftmost) operand right 1, Cl, or
count times. The second operand can be an immediate value from 1
to 31, or it is the number held in the CL register. The low-order bit of
the destination replaces the carry flag, whose original value is lost.
All other bits in the destination move right one position. The vacated
high-order position is filled by O.

In a single-bit shift, OF is set if the value of the high-order (sign) bit of
the destination operand was changed by the operation. If the sign bit
did not change then OF is cleared. Following multiple bit shifts,
however, the value of OF is always undefined.

Note: The 80286 does not allow shift counts greater than 31. Only the
lower 5 bits of the shift count are used if a shift count greater
than 31 is attempted. The 8088 uses all 8 bits of the shift count.

The .286C pseudo-op is required to enable SHR using an immediate
operand greater than 1.

4-389

Logic

(temp) <- COUNT
do while (temp) =1= 0

(CF) <- low-order bit of (EA)
(EA) <- (EA)/2, where I is equivalent to signed

division, rounding down
(temp) <- (temp) - 1

if COUNT = 1 then
if high-order bit of (EA) =1=

next-to-high-order bit of (EA)
then (OF) <- 1

else (OF) <- 0
else (OF) <- undefined

Flags

Affected- CF,OF,PF,SF,ZF
Undefined- AF

Encoding

For an immediate value of 1 or CL:

110100vw mod101 rIm

DO + vw mod101r/m

If v = 0, COUNT = 1.
If v = 1, COUNT = (CL).

Encoding

For an immediate value of 2-31:

1100000w mod101 rIm
CO + w mod101r/m

4-390

Example

Shift register, count immediate:

SHR AH,l
SHR BL,l
SHR CX.l
SHR CX.5
VAL_ONE EQU 1
SHR OX.VAL_ONE
SHR SI,VAL_ONE

Shift memory, count immediate:

SHR MEM_BYTE.l
SHR MEM_BYTE,5
SHR ALPHA[D1] • VAL_ONE

Shift register, count in CL:

MOV CL,3
SHR DH,CL ;SHIFTS 3 BITS RIGHT
SHR AX,CL

4-391

SlOT (80286P)
Store Interrupt Descriptor Table

Purpose

SlOT stores the Interrupt Descriptor Table Register in 6-bytes of
memory addressed by the destination operand.

Format

SlOT destination

Remarks

The effective address of the destination operand must be in memory.
The LIMIT field of the IDTR is the first word; the next 3 bytes are the
BASE field of the IDTR; and the sixth byte is not defined.

The LlDT and LGDT 80286 protected mode instructions operate on
6-byte quantities. Since the assembler has no way to define a 6-byte
data item, it uses the first 6 bytes of the next largest type of data item,
which is a aWaRD. There are several ways of specifying the source
operand for these instructions:

• a data item defi ned with DO

• a sym bol defi ned with EXTRN x: aWaRD

• a symbol defined using LABEL aWaRD

• use the aWaRD PTR override.

See Chapter 6, "80286/80386-based Personal Computers" in the IBM

Macro Assembler/2 Fundamentals book for information about the
80286 architecture.

You must use the .286P pseudo-op to enable this instruction.

4-392

Logic

(EA + 5) <- UNDEFINED
(EA + 4:EA + 2) <- RIDT.BASE
(EA + 1 :EA) <- RIDT.L1MIT

Flags

None

Encoding

00001111 00000001 mod001 rim
OF 01 mod001 rim

Example

See the example under the SGDT description in this chapter.

4-393

SLDT (80286P)
Store Local Descriptor Table

Purpose

SLDT stores the Local Descriptor Table Register in the 2-byte destina
tion operand.

Format

SLOT destination

Remarks

The destination operand can be either a register or a memory
location.

See Chapter 6, "80286/80386-8ased Personal Computers" in the IBM

Macro Assembler/2 Fundamentals book for information about the
80286 architecture.

You must use the .286P pseudo-op to enable this instruction.

Logic

OPERAND <- LDTR

Flags

None

Encoding

00001111 00000000 modOOOr/m
OF 00 modOOOr/m

Example

SLDT BX
or

SLDT REP

4-394

SMSW (80286P)
Store Machine Status Word

Purpose

SMSW stores the Machine Status Word (MSW) in the destination
operand.

Format

SMSW destination

Remarks

The destination operand can be either a register or a memory
location.

You must use the .286P pseudo-op to enable this instruction.

See Chapter 6, "80286/80386-8ased Personal Computers" in the IBM

Macro Assembler/2 Fundamentals book for information about the
80286 architecture.

Logic

OPERAND <- MSW

Flags

None

Encoding

00001111 00000001 mod100r/m
OF 01 mod100r/m

Example

SMSW BX
or

SMSW THING

4-395

STC
Set Carry Flag

Purpose

STC sets the CF flag.

Format

STC

Remarks

STC sets the carry flag to 1.

Note: See CLC for the opposite function.

Logic

(CF) <- 1

Flags

Affected- CF

Encoding

11111001

F9

Example

STC

4-396

STD
Set Direction Flag

Purpose

STD sets the DF flag causing the string operations to automatically
decrease the operand indexes.

Format

STO

Remarks

STD sets the di rection flag to 1.

Note: See CLD for the opposite function.

Logic

(OF) <- 1

Flags

Affected- OF

Encoding

11111101

FO

Example

STD ;CAUSES DECREASING OF DI (AND SI)
IN STRING OPERATIONS

4-397

STI
Set Interrupt Flag (Enable)

Purpose

STI sets the IF flag, enabling maskable external interrupts after the
performing of the next instruction.

Format

STI

Remarks

STI sets the interrupt flag to 1.

Note: See ell for the opposite function.

In protected mode, STI must have a minimum of IOPL.

Logic

(IF) <- 1

Flags

Affected- IF

Encoding

11111011

FB

Example

STI ;ENABLES INTERRUPTS

4-398

STOS/STOSB/STOSW
Store Byte or Word String

Purpose

STOS transfers a byte (or word) operand from AL (or AX) to the destina
tion operand addressed by DI and adjusts the DI register by DELTA. As
a repeated operation (see REP), this provides for filling a string with a
given value. The operand named in the STOS instruction is used only
by the assembler to verify type and accessibility using current
segment register contents. The actual operation of the instruction
uses only DI to point to the location being stored into.

Format

STOS destination-string
or

STOSS
or

STOSW

Remarks

The byte (or word) in AL (or AX) replaces the contents of the byte (or
word) pointed to by DI in the extra segment. The instruction then
increases DI if the direction flag is zero; the instruction decreases DI if
DF = 1. The change is 1 for bytes, 2 for words.

Logic

(OEST) <- (SRC)
if (OF) = 0 then

(01) <- (01) + DELTA
else (01) <- (01) - DELTA

Flags

None

4-399

Encoding

1010101w

AA + w

If w=O, SRC = AL, OEST = 1.
If w= 1, SRC = AX,

OEST = (01) + 1 :(01), OEL TA = 2.

Example

Store byte:

MOV DI,OFFSET BYTE_DEST_STRING
STOS BYTE_DEST_STRING

Store word:

MOV DI,OFFSET WORD_DEST
STOS WORD_DEST

The string instructions are unusual in several aspects:

1. Load SI with the offset of the source-string.

2. Load 01 with the offset of the destination-string.

3. Each can be coded with or without symbolic memory operands.

• If symbolic operands are coded, the assembler can check
whether you can address them.

• References that use hardware defaults should be coded using
the operand-less forms (STOSB and STOSW) to avoid the addi
tional pointer information.

• 00 not use [BX] or [BP] addressing modes with the string
instructions.

4. If the instruction mnemonic is coded without operands, SI defaults
to an offset in the segment addressed by os.

4-400

STR (80286P)
Store Task Register

Purpose

STR stores the Task Register in the destination operand.

Format

STR destination

Remarks

The destination operand can be either a register or a memory
location.

See Chapter 6, "80286/80386-8ased Personal Computers" in the IBM

Macro Assembler/2 Fundamentals book for more information about
the 80286 architecture.

You must use the .286P pseudo-op to enable this instruction.

Logic

OPERAND <- TR

Flags

None

4-401

Encoding

00001111 00000000 mod001 rim
OF 00 mod001 rim

Example

STR BX
or

STR PLACE

4-402

SUB
Subtract

Purpose

SUB does a subtraction of the source operand from the destination.
The result goes to the destination operand.

Format

SUB destination,source

Remarks

SUB subtracts the source (rightmost) operand from the destination
(leftmost) operand and stores the result in the destination.

Logic

(DEST) <- (LSRC) - (RSRC)

Flags

Affected- AF,CF,OF,PF,SF,ZF

4-403

Memory or Register Operand and Register Operand

Encoding

001010dw modregr/m

28 + dw modregr/m

If d = 1,
LSRC = REG, RSRC = EA, DEST = REG.

If d = 0,
LSRC = EA, RSRC = REG, DEST = EA.

Example

Subtract register from register:

SUB AX,BX
SUB CH,DL

Subtract memory from register:

SUB DX,MEM_WORO
SUB DI,ALPHA[SI]
SUB BL,MEM_BYTE[DI]

Subtract register from memory:

SUB MEM_WORO,AX
SUB MEM_BYTE[DI],BL
SUB GAMMA[BX] [OIJ,SI

4-404

Immediate Operand from Accumulator

Encoding

0010110w data

2C + w data

If w = 0, LSRC = AL, RSRC = data, DEST = AL.
If w = 1, LSRC = AX, RSRC = data, DEST = AX.

Example

Subtract immediate from register (byte):

SUB AL,4
VAL_SIXTY EQU 60
SUB AL,VAL_SIXTY

Subtract immediate from register (word):

SUB AX,660
SUB AX,VAL_SIXTY*6
SUB AX,6606

If an immediate-data byte is being subtracted from a register-or
memory word, the byte is signed extended to 16 bits before the sub
traction. For this situation, the instruction is 83H (the sand w bits are
both set).

Immediate Operand from Memory or Register Operand

Encoding

100000sw mod101 rIm data

80 + sw mod101 rIm data

LSRC = EA, RSRC = data, DEST = EA

4-405

Example

Subtract immediate from register:

SUB BX,2001
SUBM CL,VAL_SIXTY
SUB SI,VAL_SIXTY*9

Subtract immediate from memory:

SUB MEM BYTE,12
SUB MEM-BYTE[DI],VAL SIXTY
SUB MEM=WORD[BX],79-
SUB GAMMA[DI] [BX] ,1984

4-406

TEST
Test (Logical Compare)

Purpose

TEST does the bit-to-bit logical conjunction of the two operands,
causing the flags to be affected, but does not return the result.

Format

TEST destination,source

Remarks

TEST performs the AND operation on the operands to affect the flags,
but neither operand is changed. The carry and overflow flags are
reset.

The source (rightmost) operand must be of the same type (byte or
word) as the destination operand. The only exception for TEST is
testing an immediate-data byte with a memory word.

Logic

(LSRC) & (RSRC)
(CF) <- 0
(OF) <- 0

Flags

Affected- CF,OF,PF,SF,ZF
Undefined- AF

4-407

Memory or Register Operand with Register Operand

Encoding

1000010w modregr/m

84 + w modregr/m

LSRC = REG, RSRC = EA

Example

Register with register:

TEST AX,OX
TEST SI, BP
TEST BH,CL

Register with memory:

TEST MEM_WORO,SI
TEST MEM_BYTE,CH
TEST ALPHA[OIJ,DX
TEST BETA[BXJ [SI],CX

Memory with register:

TEST D1,MEM_WORD
TEST CH,MEM_BYTE
TEST AX,GAMMA[BPJ [SIJ

4-408

Immediate Operand with Accumulator

Encoding

1010100w data

A8 + w data

If w = 0, LSRC = AL, RSRC = data.
If w = 1, LSRC = AX, RSRC = data.

Example

TEST AL,6
TEST AL,IMM_VALUE_DRIVE
TEST AX,999

Immediate Operand with Memory or Register
Operand

Encoding

1111011 w modOOOr/m data

F6 + w modOOOr/m data

LSRC = EA, RSRC = data

Example

Immediate with register:

TEST BH,7
TEST CL,19_IMM_BYTE
TEST DX,IMM_DATA_WORD
TEST SI,798

Immediate with memory:

TEST MEM WORD,IMM DATA BYTE
TEST GAMMA[BX],IMM_BYTE
TEST [BP] [DI],6ACEH

4-409

VERR (80286P)
Verify Read Access

Purpose

VERR lets you verify that the segment, marked by the selector con
tained in the operand, is readable and can be read from the current
privilege level without your having to load the selector into Q segment
register and risk a fault.

Format

VERR source

Remarks

The operand can be either a register or a location of a word in
memory. The verification is the same as if the selector were loaded
into OS/ES, except that the zero flag receives the result of the verifica
tion instead of a possible fault occurring. If the verification passes,
the zero flag is set to 1; if the verification fails, the zero flag is set to
O.

To set the zero flag, these conditions must be true:

• The selector must mark a descriptor within the bounds of the
table (GOT or LOT).

• The selector must mark the descriptor of a code or data segment.

• The segment must be readable.
• If the segment is a readable and conforming code segment, its

Descriptor Privilege Level can be any value; otherwise, the DPL
must be greater than or equal to both the Current Privilege Level
(CPL) and the selector's Requested Privilege Level (RPL).

The only faults that can occur are those produced by incorrectly
addressing the memory operand that contains the selector. The
selector is not loaded into a segment register and no faults attributed
to the selector operand are produced.

See Chapter 6, "80286/80386-8ased Personal Computers" in the IBM

Macro Assemblerl2 Fundamentals book for information about the
80286 architecture.

4-410

You must use the .286P pseudo-op to enable this instruction.

Logic

perform read-validity check on selector in register
or memory operand

if check succeeds, then ZF <- 1
else ZF <- 0

Flags

Affected- ZF

Encoding

00001111 00000000 mod100r/m
OF 00 mod100r/m

Example

VERR BX
or

VERR MEMWORD

4-411

VERW (80286P)
Verify Write Access

Purpose

VERW lets you verify that the segment, shown by the selector con
tained in the operand, is writable and can be reached from the
current privilege level without loading the selector into a segment
register and risking a fault.

Format

VERW source

Remarks

Source can either be a register or a location of a word in memory.
The verification that is performed is the same as if the selector was
loaded into DS/ES, except that the zero flag receives the result of the
verification instead of a possible fault occurring. If the verification
passes, the zero flag is set to 1; if the verification fails, the zero flag is
set to O.

For you to set the zero flag, these conditions must be true:

• The selector must mark a descriptor within the bounds of the
table (GDT or LDT).

• The selector must mark the descriptor of a code or data segment.
• The segment must be writable.
• The DPL of the segment must be greater than or equal to both CPL

and the selector's RPL.

The only faults that can occur are those produced by incorrectly
addressing the memory operand that contains the selector. The
selector is not loaded into a segment register and no faults attributed
to the selector operand are produced.

See Chapter 6, "80286/80386-8ased Personal Computers" in the IBM

Macro Assemblerl2 Fundamentals book for information about the
80286 architecture.

You must use the .286P pseudo-op to enable this instruction.

4-412

Logic

perform write-validity check on selector in register
or memory operand

if check succeeds, then ZF < - 1
else ZF <- 0

Flags

Affected- ZF

Encoding

00001111 00000000 mod1 01 rIm
OF 00 mod101 rIm

Example

VERW BX
or

VERW THING

4-413

WAIT
Wait

Purpose

This instruction allows the processor to synchronize itself with
external hardware by placing the processor in a wait state until an
external interrupt occurs.

Format

WAIT

Flags

None

Encoding

10011011

98

Example

WAIT

4-414

XCHG
Exchange

Purpose

XCHG exchanges the byte or word source operand with the destination
operand.

Format

XCHG destination, source

Remarks

A Bus Lock is asserted for the duration of the exchange.

The segment registers cannot be operands of XCHG.

There are two forms of the XCHG instruction, one for switching the
contents of the accumulator with those of some other general word
register, and one for switching a register and a memory-or-register
operand.

The exchange is performed by the following operations:

1. The contents of the destination (leftmost operand) are temporarily
stored in an internal word register:

(Temp) <- (DEST)

2. The contents of the destination are replaced by the contents of
the source (rightmost) operand:

(DEST) <- (SRC)

3. The former contents of the destination are moved from the work
register into the source operand:

(SRC) <- (Temp)

4-415

Logic

(Temp) <- (DEST)
(DEST) <- (SRC)
(SRC) <- (Temp)

Flags

None

Register Operand with Accumulator

Encoding

10010reg

90 + reg

XCHG AX,BX
XCHG SI,AX
XCHG CX,AX

Memory or Register Operand with Register Operand

Encoding

1000011w modregr/m

86 + w modregr/m

SRC = EA, DEST = REG

Example

XCHG BETA_WORD,CX
XCHG BX,DELTA_WORD
XCHG DH,ALPHA_BYTE
XCHG BL,AL

4-416

XLAT
Translate

Purpose

XLAT does a table lookup byte translation. The AL register is used as
an index into a table (256 bytes at most) addressed by the DS:BX. The
byte operand so addressed is transferred to AL.

Format

XLAT source-table

Remarks

The operand is the variable name whose address was moved to BX.

The SEG component of this operand lets the assembler determine if
the segment of the table is currently accessible. The TYPE attribute of
the operand must be BYTE, or explicitly overridden with BYTE PTR. The
content of AL is replaced by a byte from a table. The starting address
of the table has been moved into register BX. The original contents of
AL is the number of bytes past that starting address, where the
desired translation byte is to be found. It replaces the contents of AL.

Logic

(AL) <- ((8X) + (AL))

Flags

None.

Encoding

11010111

07

Example

MOV AL,IMMED_BYTE
MOV BX, OFFSET TABLE_NAME
XLAT TABLE_NAME

4-417

XOR
Exclusive OR

Purpose

XOR does the bit-to-bit logical exclusive disjunction of the operands
and returns the result to the destination operand.

Format

XOR destination , source

Remarks

XOR sets each bit in the destination (leftmost) operand to 0 if the cor
responding bit positions in both operands are equal. If they are
unequal, XOR sets the bits to 1.

Logic

(DEST) <- (LS~C) XOR (RSRC)
(CF) <- 0
(OF) <- 0

Flags

Affected- CF,OF,PF,SF,ZF
Ul1defined- AF

Encoding

001100dw modregr/m

30 + dw modregr/m

If d = 1, LSRC = REG, RSRC = EA, DEST = REG.
If d = 0, LSRC = EA, RSRC = REG, DEST = EA.

4-418

Example

Register with register:
XOR AH,BL ;RESULT IN AH, BL UNCHANGED
XOR SI,DX ;RESULT IN S1, OX UNCHANGED
XOR CX,D1 ;RESULT IN CX, 01 UNCHANGED

Memory with register:
XOR AX,MEM_WORD
XOR CL,MEM_BYTE[SI]
XOR S1,ALPHA[BX] [S1]

Register with memory:

XOR BETA[BX] [01] ,AX
XOR MEM_BYTE,DH
XOR GAMMA[D1],BX

Immediate Operand to Accumulator

Encoding

0011010w data

34 + w data

If w = 0, LSRC = AL, RSRC = data, DEST = AL.
It w = 1, LSRC = AX, RSRC = data, DEST = AX

Example

Immediate (byte):

XOR AL,11110110B
XOR AL,OF6H

Immediate (word):

XOR AX,23F6H
XOR AX,75Q
XOR AX,23F6H ;AX DESTINATION

4-419

Immediate Operand to Memory or Register Operand

Encoding

1000000w mod110r/m data

80 + w mod110r/m data

LSRC = EA, RSRC = data, DEST = EA

Example

Immediate with register:

XOR AH,OF6H
XOR CL,37
XOR D1,23F5H

Immediate with memory:

XOR MEM_BYTE,3DH
XOR GAMMA [BX] [01] ,OFACEH
XOR ALPHA[D1],VAL_EQU_33H

Another example:

BITMASK EQU
FLAGS DB

XOR

4-420

20H

FLAGS,B1TMASK ;TOGGLE STATE
; OF FLAG BIT

Appendix A. Error Messages and Exit
Codes

Error Messages

SALUT Error Messages

When SALUT detects an error, it inserts the word SALUTERR with the
error message text line in both the formatted output and in the pre
processed output. When editing to fix the error, you do not have to
delete this error line. If you assemble the .ASM file containing SALUT

error messages, the Assembler will flag that line as containing an
undefined op-code, thus adding it to its count of errors.

The text of the SALUTERR statement consists of one of the following:

• Structure mismatch
• Invalid continuation

• Invalid condition
• No structure active
• Invalid parameter
• Required parameter missing

• Extra characters on line
• Invalid structure indent
• Invalid opcode column
• Invalid operand column
• Invalid remark column

A-1

Macro Assembler Error Messages

If you have any errors in your assembler program, the assembler
either:

• Inserts the error message into the listing file or
• Displays the error message on the screen.

After you check and correct your source program, assemble it again.

The Macro Assembler error messages are:

Code 0 - Block nesting error
Nested procedures, segments, structures, macros, IRPe, IRP, or
REPT are not properly ended. For example, outer level of nesting
is closed with inner level(s) still open.

Code 1 - Extra characters on line
This occurs when enough information to define the instruction
directive is on a statement line, but extra characters beyond the
end are also present.

Code 2 - Register already defined
This occurs only if the assembler has internal logic errors.

Code 3 - Unknown symbol type
The symbol statement has an unknown size type in a label or
external declaration. Rewrite the declaration with a valid type
such as BYTE, WORD, NEAR, etc.

Code 4 - Redefinition of symbol
If a symbol is defined in 2 places, this error occurs in pass 1 on
the second declaration of the symbol. See errors 5 and 26.

Code 5 - Symbol is multi-defined
If a symbol is defined in 2 places, this error occurs in pass 2 on
each declaration of the symbol. See errors 4 and 26.

Code 6 - Phase error between passes

A-2

The program has ambiguous instruction directives, so the
location of a label in the program changed in value between pass
1 and pass 2 of the assembler. For example, if a forward refer
ence is coded without a segment override where one is required,
an additional byte (the segment override) is generated in pass 2,
causing the location of the next label to change. You can use the

10 option to produce a listing to aid in resolving phase errors
between passes. (See the discussion of phase errors in the IBM

Macro Assemblerl2 Assemble, Link, and Run book.)

Code 7 - Already had ELSE clause
You attempted to define an ELSE clause within an existing ELSE

clause.

Code 8 - Not in conditional block
You specified an ENOIF or ELSE without an active conditional
assembly pseudo-op.

Code 9 - Symbol not defined
You used a symbol that has no definition.

Code 10 - Syntax error
The syntax of the statement is incorrect.

Code 11 - Type illegal in context
The type specified is the wrong size.

Code 12 - Should have been group name
The assembler expected a group name, but you entered some
thing else.

Code 13 - Must be declared in pass 1
An item was referenced before it was defined in pass 1.

Code 14 - Symbol type usage illegal
The use of a PUBLIC symbol is incorrect.

Code 15 - Symbol already different kind
You attempted to define a symbol differently from its previous
definition.

Code 16 - Symbol is reserved word
You attempted to use an assembler reserved word incorrectly (for
example, to declare MOV as a variable).

Code 17 - Forward reference is illegal
You attempted to make a reference to something qefore it is
defi ned in pass 1.

Code 18 - Must be register
The assembler expected a register as an operand, but you fur
nished a symbol.

A-3

Code 19 - Wrong type of register
The directive or instruction expected one type of register, and
another was specified. For example, ASSUME AX was used instead
of ASSUME seg-reg.

Code 20 - Must be segment or group
The assembler expected a segment or group and something else
was specified.

Code 22 - Must be symbol type
You should have used WORD, DW, DQ, BYTE, or a similar desig
nation but you specified something else.

Code 23 - Already defined locally
You tried to define a symbol as EXTRN that had already been
defined locally.

Code 24 - Segment parameters are changed
The list of arguments to SEGMENT was not identical to the list the
first time this segment was used.

Code 25 - Not proper align/combine type
The SEGMENT parameters were incorrect. Check the align and
com bi ne types.

Code 26 - Reference to multi-defined
The instruction refers to something that is defined more than
once. For example, a symbol is defined in 2 places, or the
location of a label has changed in value between pass 1 and pass
2. See errors 4 and 5.

Code 27 - Operand was expected
The assembler expected an operand, but received something
else.

Code 28 - Operator was expected
The assembler expected an operator, but received something
else.

Code 29 - Division by 0 or overflow
You gave an expression that results in division by 0 or a number
larger than can be represented.

Code 30 - Shift count is negative

A-4

A shift expression is produced that results in a negative shift
count.

Code 31 - Operand types must match
The assembler received different kinds or sizes of arguments in a
case where they must match. For example, MOV AX, BH is illegal.
80th operands must be WORD or both must be BYTE.

Code 32 - Illegal use of external
You used an external incorrectly. For example, DB M DUP(?) where
M is declared external.

Code 34 - Must be record or field name
The assembler expected a record name or field name but did not
receive it.

Code 35 - Operand must have size
The assembler expected the size of the operand but did not
receive it. Often this error can be remedied by using the PTR

operator to specify the size type.

Code 36 - Must be var, label or constant
The assembler expected a variable, label, or constant but
received something else.

Code 38 - Left operand must have segment
You used something in the right operand that required a segment
in the left operand; for example, ":symbol" is not correct; use
"seg:symbol" .

Code 39 - One operand must be constant
This is an incorrect use of the addition operator.

Code 40 - Operands must be same or 1 abs
This is an incorrect use of the subtraction operator.

Code 41 - Normal type operand expected
The assembler received STRUC, BYTE, WORD, or some other invalid
operand when expecting a variable label.

Code 42 - Constant was expected
The assembler expected a constant but received an item that
does not evaluabe to a constant. For example, a variable name
or an external symbol.

Code 43 - Operand must have segment
This is an incorrect use of SEG directive.

A-5

Code 44 - Must be associated with data
You used a code-related item where a data-related item was
expected. For example, using the os override of a procedure
would cause this message.

Code 45 - Must be associated with code
You used a data-related item where a code-related item was
expected.

Code 46 - Already have base register
More than one base register was used in an operand.

Code 47 - Already have index register
More than one index register was used in an operand.

Code 48 - Must be index or base register
The instruction requires a base or index register, and you speci
fied some other register within square brackets ([]).

Code 49 - Illegal use of register
You used a register with an instruction where there is no valid
processor instruction possible.

Code 50 - Value is out of range
The value is too large for the expected use. For example, moving
a ow to a byte register would cause this error.

Code 51 - Operand not in IP segment
Getting access to the operand is impossible because it is not in
the currently executing segment.

Code 52 - Improper operand type
You used an operand such that the op code cannot be produced.

Code 53 - Rela~ive jump out of range
Conditional jumps must be within the range from -128 through
+127 bytes of the current instruction, and the specified jump is
beyond this range. You can usually correct the problem by
reversing the condition of the conditional jump and using an
unconditional jump (JMP) to the out of range label.

Code 55 - Illegal register value
The register value specified does not fit into the reg field (the
value field is greater than 7).

Code 56 - No immediate mode

A-6

You specified immediate data as an operand for an instruction
that cannot accept the immediate. For example, MOV OS,OATA.

Code 57 - Illegal size for Item
The size of the referenced item is incorrect. For example, shift of
a double word.

Code 58 - Byte register Is illegal
You used one of the byte registers in an incorrect context. For
example, PUSH AL is not correct.

Code 59 - CS register illegal usage
You tried to use the cs register incorrectly. For example, XCHG CS,

AX is not correct.

Code 60 - Must be AX or AL
You specified some register other than AX or AL where only these
are acceptable. For example, the IN instruction requires AX or AL

as an operand.

Code 61 - Improper use of segment register
You specified a segment register where this is incorrect. For
example, an immediate move to a segment register is not
correct.

Code 62 - Missing or unreachable CS
You tried to jump to an unreachable label.

Code 63 - Operand combination illegal
You specified a two-operand instruction where the combination
specified is incorrect.

Code 64 - Near JMP/CALL to different CS
You attempted to do a NEAR jump or call to a location in a different
code segment defined with a different ASSUME:CS.

Code 65 - Label cannot have segment override
This is an incorrect use of segment override.

Code 66 - Must have opcode after prefix
You used one of the prefix instructions, REPE, REPNE, REPZ, or
REPNZ, without specifying the opcode after it.

Code 67 - Cannot override ES segment
You tried to override the ES segment in an instruction where this
override is not legal. For example, STOS DS:TARGET is illegal.

Code 68 - Cannot address with segment register
There is no ASSUME that makes the variable reachable.

A-7

Code 69 - Must be in segment block
You attempted to produce code when it was not in a segment.

Code 70 - Cannot use EVEN on BYTE segment
A segment was declared to be a byte segment, and you
attempted to use the EVEN pseudo-op.

Code 71 - Forward needs override or FAR
A FAR label is used in a CALL or JUMP before it is declared as being
FAR.

Code 72 - Illegal value for DUP count
OUP counts must be a constant that evaluates to a positive integer
greater than O.

Code 73 - Symbol is already external
You attempted to define a symbol as local when it was already
external.

Code 74 - DUP is too large for linker
Nesting of OUP operators created too large a record for the linker.

Code 75 - Usage of? (indeterminate) bad
This is an incorrect use of the undefined operand (?). For
example, ?+5 causes this error.

Code 76 - More values than defined with
Too many initial values were given when defining a variable
usi ng a REC or STRUC type.

Code 77 - Only initialized list legal
You used STRUC name without angle brackets « ».

Code 78 - Pseudo-op illegal in STRUC
All statements incorrect within STRUC blocks must be either com
ments preceded by a semicolon (;) or one of the define
pseudo-ops (08, ow, DO, DO, DT).

Code 79 - Override with DUP is illegal
In a STRUC initialization statement, you tried to use OUP in an over
ride.

Code 80 - Field cannot be overridden
In a STRUC initialization statement, you tried to give a value to a
field that cannot be overridden.

Code 83 - Circular chain of EQU aliases
An EOU alias eventually points to itself.

A-8

Code 84 - Cannot emulate 8087 opcode
Either the 8087 opcode or the operands you used with it produce
an instruction that the emulator cannot support.

Code 85 - End of file, no END pseudo-op
Either you forgot an END statement, or there is a nesting error.
Possibly, an ENDM or ENDIF is missing. Also, you may have some
thing between a LOCAL and MACRO statement.

Code 86 - Data emitted with no segment
Code that is not located within a segment attempted to produce
data. An example is shown below:

code SEGMENT

code ENDS
push ax

test DW
END

Either of the two statements near the end of the example
produces the error. Any statement that produces code or
reserves data must be in a segment.

Code 87 - Forced error - pass1
You forced an error with the .ERR1 pseudo-op.

Code 88 - Forced error - pass2
You forced an error with the .ERR2 pseudo-op.

Code 89 - Forced error
You forced an error with the .ERR pseudo-op.

Code 90 - Forced error - expression equals 0
You forced an error with the .ERRE pseudo-op.

Code 91 - Forced error - expression not equal 0
You forced an error with the .ERRNZ pseudo-op.

Code 92 - Forced error - symbol not defined
You forced an error with the .ERRNDEF pseudo-op.

Code 93 - Forced error - symbol defined
You forced an error with the .ERRDEF pseudo-op.

Code 94 - Forced error - string blank
You forced an error with the .ERRS pseudo-op.

A-9

Code 95 - Forced error - string not blank
You forced an error with the .ERRNB pseudo-op.

Code 96 - Forced error - strings identical
You forced an error with the .ERRIDN pseudo-op.

Code 97 - Forced error - strings different
You forced an error with the .ERRDIF pseudo-op.

Code 98 - Override value is wrong length
The override value for a structure field is too large to fit in the
field. An example is shown below:

x STRUC
xl DB "A"
x ENDS

y x <"AB">

In this example, the override value is a string consisting of two
bytes, while the structure declaration only provided room for one.

Code 99 - Line too long expanding symbol
A symbol defined by an EQU or equal-sign (=) pseudo-op is so
long that expanding it will cause the internal buffers of the
assembler to overflow. This message may indicate a recursive
text macro.

Code 100 - Impure memory reference
The code contains an attempt to store data in the code segment
when the .826p pseudo-op and the IP option are in effect. An
example of storing code to the code segment is shown below:

code SEGMENT
ASSUME cs:code

mov cs:c_word,data
code ENDS

The IP option checks for such statements that are acceptable in
non protected mode but that can cause problems in protected
mode.

A-10

Code 101 - Missing data; zero assumed
An operand is missing from a statement. For example:

mav ax,

The code is assembled as if it were:

mav ax,O

This is a warning error. The assembler does not delete the
object file as it does with severe errors.

A-11

Unnumbered Error Messages

In addition to the above messages, the assembler can display the fol
lowing unnumbered messages.

file(linenumber): Out of memory error
Either the source is too big or too many symbols are in the
symbol table. If an Out of Memory condition occurs with the
assembler, there is insufficient work space to continue. To
recover from such a condition, try rerunning the assembler but
specifying only the oject file. On one run, get the listing; on
another, the OBJ file. Some items that use up work space are:
open INCLUDE files, many symbol names, long symbol names,
open OUTPUT files, defined STRUCS, and MACROS. You can regain
space by a PURGE of a MACRO after calling the MACRO for the last
time before defining another MACRO. In MACRO definitions, sepa
rate fields with TAB characters, not a series of blanks, to conserve
space. Avoid single semicolon comments in macros; use double
semicolon comments instead.

Fatal assembler error
You should note the conditions when the error occurs and contact
your authorized IBM Personal Computer dealer.

Error in expression analyzer
You should note the conditions when the error occurs and contact
your authorized IBM Personal Computer dealer.

Include file filename not found

Error defining symbol symbol from command line

You defined a symbol using the IDsymbol option, but you used a
character that the assembler does not allow in a symbol name.
For example, if you specified Ifoo#, you would get an error
because the character # is not allowed in a symbol name.

End of file encountered on input file
You get this error when an end-of-file condition occurs before the
END statement is processed.

Unable to open CREF file filename

Write error on object file
The file is read-only or the disk is full.

A-12

Write error on listing file
The file is read-only or the disk is full.

Write error on cross-reference file
The file is read-only or the disk is full.

Unable to open input file filename
The file could not be opened for reading.

Unable to access input file filename
The file could not be repositioned at the beginning for second
pass.

Unable to open listing file filename
The file could not be opened for writing.

Unable to open object file filename
The file could not be opened for writing.

Extra filename ignored
The assembler displays this message when you give more than
four file names.

Line invalid, start again
This error occurs when you give a directory/drive for source file,
but no file name.

Buffer size expected after Ib
You gave the /b option without the buffer size.

Path expected after II
You gave the /I option without a path.

Unknown case switch c
You gave an -MC but did not specify c as u, x, or I.

Unknown switch c
You gave a -c but did not specify c as a valid option character.

Read error on stdin
The assembler encountered end-of-file on STDIN while prompting
for a file name (STDIN redirected to a null or empty file, or CTL-Z

entered).

Out of heap space
The assembler ran out of memory while it was storing the file
names.

A-13

Linker Error Messages and Limits

This section lists error messages produced by the IBM linker, LINK.

Limits imposed by the linker are described at the end of this section.

Fatal errors cause the linker to stop running. Fatal error messages
have the following format:

location: fatal error L 1 xxx:
message text

Non-fatal errors indicate problems in the executable file. LINK

produces the executable file (and sets the error bit in the header if for
protected mode). Non-fatal error messages have the following
format:

location: error L2xxx:
message text

Warnings indicate possible problems in the executable file. LINK

produces the executable file (it does not set the error bit in the
header if for protected mode). Warnings have the following format:

location: error L4xxx:
message text

In these messages, location is the input file associated with the error,
or LINK if there is no input file. If the input file is a module definitions
file, the line number wi" be included, as shown below:

foo.def(3): fatal error L 1030: missing
internal name

If the input file is an .OBJ or .L1B file and has a module name, the
module name is enclosed in parentheses, as shown in the following
examples:

A-14

SLlBC.LlBLfile) MAIN.OBJ(main.asm)

The following error messages may appear when you link object files
with LINK.

L 1001 option: option name ambiguous
A unique option name does not appear after the option indicator
(I). For example, the command

LINK IN main;

produces this error, since LINK cannot tell which of the three
options beginning with the letter N is intended.

L 1002 option: unrecognized option name
An unrecognized character followed the option indicator (I), as in
the following example:

LINK IABCDEF main;

L 1003 option: MAP symbol limit too high
The specified symbol value limit following the MAP option is
greater than 32767, or there is not enough memory to increase
the limit to the requested value.

L 1004 option: invalid numeric value
An incorrect value appeared for one of the linker options. For
example, a character string is entered for an option that requires
a numeric value.

L 1005 option: packing limit exceeds 65536 bytes
The number following the IPACKCODE option is greater than 65536.

L 1006 option: stack size exceeds 65534 bytes
The size you specified for the ISTACK option is more than 65534
bytes.

L 1007 option: interrupt number exceeds 255
You gave a number greater than 255 as a value for the
IOVERLAYINTERRUPT option.

Ll008 option: segment limit set too high
The specified limit on the ISEGMENTS option is greater than 1024.

Ll009 option: CPARMAXALLOC: illegal value
The number you specified in the /CPARMAXALLOC option is not in
the range 1 to 65535.

A-15

L 1020 no object modules specified
You did not specify any object-file names to the linker.

L 1021 cannot nest response files
A response file occurs within a response file.

L 1022 response line too long
A line in a response file is longer than 127 characters.

L 1023 terminated by user
You entered Ctrl + C.

L 1024 nested right parentheses
You typed the contents of an overlay incorrectly on the command
line.

L 1025 nested left parentheses
You typed the contents of an overlay incorrectly on the command
line.

L 1026 unmatched right parenthesis
A right parenthesis is missing from the contents specification of
an overlay on the command line.

L 1027 unmatched left parenthesis
A left parenthesis is missing from the contents specification of an
overlay on the command line.

L 1030 missing internal name
In the module definitions file, when you specify an import by entry
number, you must give an internal name, so the linker can iden
tify references to the import.

L 1031 module description redefined
In the module definitions file, a module description specified with
the DESCRIPTION keyword is given more than once.

L 1032 module name redefined
In the module definitions file, the module name is defined more
than once with the NAME or LIBRARY keyword.

L 1040 too many exported entries
An attempt is made to export more than 3072 names.

L 1041 resident-name table overflow
The total length of all resident names, plus three bytes per name,
is greater than 65534.

A-16

L 1042 nonresident-name table overflow
The total length of all nonresident names, plus three bytes per
name, is greater than 65534.

L 1043 relocation table overflow
There are more than 65536 load-time relocations for a single
segment.

L 1044 imported-name table overflow
The total length of all the imported names, plus one byte per
name, is greater than 65534 bytes.

L 1045 too many TYPDEF records
An object module contains more than 255 TYPDEF records. These
records describe communal variables. This error can only
appear with programs produced by compilers that support com
munal variables.

L 1046 too many external symbols in one module
An object module specifies more than the limit of 1023 external
symbols. Break the module into smaller parts.

L 1047 too many group, segment, and class names in one module
The program contains too many group, segment, and class
names. Reduce the number of groups, segments, or classes and
recreate the object files.

L 1048 too many segments in one module
An object module has more than 255 segments. Split the module
or combine segments.

L 1049 too many segments
The program has more than the maximum number of segments.
The SEGMENTS option specifies the maximum allowed number; the
default is 128. Relink using the /SEGMENTS option with an appro
priate number of segments.

L 1050 too many groups in one module
The linker found more than 21 group definitions (GRPDEF) in a
single module. Reduce the number of group definitions or split
the module.

L 1051 too many groups
The program defines more than 20 groups, not counting DGROUP.

Reduce the number of groups.

A-17

L 1052 too many libraries
An attempt is made to link with more than 32 libraries. Combine
libraries, or use modules that require fewer libraries.

L 1053 symbol table overflow
The program has more than 256K bytes of symbolic information,
such as public, external, segment, group, class, and file names).
Combine modules or segments and recreate the object files.
Eliminate as many public symbols as possible.

L 1054 requested segment limit too high
The linker does not have enough memory to allocate tables
describing the number of segments requested (the default is 128
or the value specified with the ISEGMENTS option). Try linking
again using the ISEGMENTS option to select a smaller number of
segments (for example, use 64 if the default was used previ
ously), or free some memory by eliminating resident programs or
shells.

L 1056 too many overlays
The program defines more than 63 overlays.

L 1057 data record too large
A LEDATA record (in an object module) contained more than 1024
bytes of data. This is a translator (compiler or assembler) error.
Note which translator produced the incorrect object module and
the circumstances, and contact your authorized IBM dealer or rep
resentative.

L 1070 segment size exceeds 64K
A single segment contains more than 64K bytes of code or data.
Try compiling, or assembling, and linking using the large model.

L 1071 segment _TEXT larger than 65520 bytes
This error is likely to occur only in small-model C programs, but it
can occur when any program with a segment named _TEXT is
linked using the IDOSSEG option of the LINK command. Small
model C programs must reserve code addresses 0 and 1; this is
increased to 16 for alignment purposes.

L 1072 common area longer than 65536 bytes
The program has more than 64K bytes of communal variables.
This error cannot appear with object files produced by the IBM

Macro Assembler/2. It occurs only with programs produced by
IBM C/2 or other compilers that support communal variables.

A-18

L 1073 file-segment limit exceeded
There are more than 255 physical or file segments.

L 1074 name: group larger than 64K bytes
A group contained segments which total more than 65536 bytes.

L 1075 entry table larger than 65535 bytes
There is a limit of 65535 bytes imposed by OS/2 on the Entry Table
in an OS/2 executable (program or library). An Entry Table entry
is generated for each exported name in a dynlink library, so
reducing the number of exported names may solve the problem.

L 1080 cannot open list file
The disk or the root directory is full. Delete or move files to make
space.

L 1081 out of space for run file
The disk on which the .EXE file is being written is full. Free more
space on the disk and restart the linker.

L 1082 stub .EXE file not found
The stub file specified in the module definitions file is not found.

L 1083 cannot open run file
The disk or the root directory is full. Delete or move files to make
space.

L 1084 cannot create temporary file
The disk or root directory is full. Free more space in the directory
and restart the linker.

L 1085 cannot open temporary file
The disk or the root directory is full. Delete or move files to make
space.

L 1086 scratch file missing
Internal error. You should note the conditions when the error
occurs and contact your authorized IBM dealer or representative.

L 1087 unexpected end-of-file on scratch file
The disk with the temporary linker-output file is removed.

L 1088 out of space for list file
The disk on which the listing file is being written is full. Free
more space on the disk and restart the linker.

A-19

L 1089 filename: cannot open response file
The linker could not find the specified response file. This usually
indicates a typing error.

L 1090 cannot reopen list file
The original disk is not replaced at the prompt. Restart the linker.

L 1091 unexpected end-of-file on library
The disk containing the library probably was removed. Replace
the disk containing the library and run the linker again.

L 1092 cannot open module definitions file
The specified module definitions file cannot be opened.

L 1100 stub .EXE file invalid
The stub file specified in the definitions file is not a valid .EXE file.

L 1101 invalid object module
One of the object modules is non-valid. If the error persists after
recompiling, contact your authorized IBM dealer or represen
tative.

L 1102 unexpected end-of-file
A non-valid format for a library was found.

L1103 attempt to access data outside segment bounds
A data record in an object module specified data extending
beyond the end of a segment. This is a translator (compiler or
assembler) error. Note which translator produced the incorrect
object module and the circumstances, and contact your author
ized IBM dealer or representative.

L1104 filename: not valid library
The specified file is not a valid library file. This error causes the
linker to stop running.

L1110 DOSALLOCHUGE failed
Internal error. You should note the conditions when the error
occurs and contact your authorized IBM dealer or representative.

L1111 DOSREALLOCHUGE failed
Internal error. You should note the conditions when the error
occurs and contact your authorized IBM dealer or representavie.

L1112 DOSGETHUGESHIFT failed
Internal error. You should note the conditions when the error
occurs and contact your authorized IBM dealer or representative.

A-20

L1113 unresolved COMDEF; internal error
You should note the conditions when the error occurs and contact
your authorized IBM dealer or representative.

L 1114 file not suitable for IEXEPACK; relink without
For the linked program, the size of the packed load image plus
the packing overhead is larger than that of the unpacked load
image. Relink without the EXEPACK option.

L2000 imported entry point
A MODEND, or starting address record, referred to an imported
name. Imported program-starting addresses are not supported.

L2001 fixup(s) without data
A fix-up record occurred without a data record immediately pre
ceding it. This is probably an assembler error. See the IBM
Operating Systeml2 Programmer's Guide for more information on
fix-up.

L2002 fixup overflow near number in frame seg segname target
seg segname target offset number
The following conditions can cause this error:

• A group is larger than 64K bytes.
• The program contains an intersegment short jump or inter

segment short call.
• The name of a data item in the program conflicts with that of

a subroutine in a library included in the link.
• An EXTRN declaration in an assembler-language source file

appeared inside the body of a segment. For example:

code SEGMENT public 'CODE'
EXTRN main:far

start PROC far
call mai n
ret

start ENDP
code ENDS

The following construction is preferred:

EXTRN main:far
code SEGMENT pub 1 i c ' CODE'
start PROC far

call main
ret

start ENDP
code ENDS

Revise the source file and recreate the object file.

A-21

L2003 intersegment self-relative fixup
An intersegment self-relative fixup is not allowed.

L2004 LOBVTE-type fixup overflow
A LOBYTE fixup produced an address overflow.

L2005 fixup type unsupported
A fixup type occurred that is not supported by the linker. This is
probably a compiler error. You should note the conditions when
the error occurs and contact your authorized IBM dealer or repre
sentative.

L2010 too many fixups in UDATA record
There are more fixups applying to a UDATA record than
will fit in the linker's 1024-byte buffer. The buffer is divided
between the data in the UDATA record itself and run-time relo
cation items, which are 8 bytes apiece, so the maximum varies
form 0 to 128. This is probably a translator (compiler or assem
bler) error.

L2011 'name' : NEAR/HUGE conflict
Conflicting NEAR and HUGE attributes are given for a communal
variable. This error can occur only with programs produced by
compilers that support communal variables.

L2012 'name' : array-element size mismatch
A far communal array is declared with two or more different
array-element sizes (for example, an array declared once as an
array of characters and once as an array of real numbers). This
error cannot occur with object files produced by the IBM Macro
Assembler/2. It occurs only with IBM C/2 and any other compiler
that supports far communal arrays.

L2013 UDAT A record too large
A UDATA record in an object module contains more than 512 bytes
of data. Most likely, an assembly module contains a very
complex structure definition or a series of deeply-nested DUP

operators. For example, the following structure definition causes
this error:

alpha DB 10 DUP(11 DUP(12 DUP(13 DUP(...))))

Simplify the structure definition and reassemble. (UDATA is a DOS

term).

L2020 no automatic data segment
No group named DGROUP is declared.

A-22

L2021 library instance data not supported in real mode
ThE:: library module is directed to have instance data. This works
in protected mode only.

L2022 name alias internalname.: export undefined
A name is directed to be exported but is not defined anywhere.

L2023 name alias internalname.: export imported
An imported name is directed to be exported.

L2024 name: symbol already defined
One of the special overlay symbols required for overlay support
is defined by an object.

L2025 'name' : symbol defined more than once
Remove the extra symbol definition from the object file.

L2026 multiple definitions for entry ordinal number
More than one entry point name is assigned to the same ordinal.

L2027 name: ordinal too large for export
You tried to export more than 3072 names.

L2028 automatic data segment plus heap exceeds 64K
The size of DGROUP near data plus requested heap size is greater
than 64K.

L2029 unresolved externals
One or more symbols are declared to be external in one or more
modules, but they are not publicly defined in any of the modules
or libraries. A list of the unresolved external references appears
after the message, as shown in the following example:

exit in file(s)
-main.obj (main.c)

fopen in files(s)
-fileio.obj(fileio.c) main.obj(main.c)

The name that comes before in file(s) is the unresolved external
symbol. On the next line is a list of object modules which have
made references to this symbol. This message and the list are
also written to the map file, if one exists.

L2030 starting address not code (use class 'CODE')

The program or dynamic link library has defined a starting
address, or initial CS:IP, whose segment is not a code segment.
Change the definition of the starting segment so that it has a
class name ending in I CODE I.

A-23

L4000 seq disp. included
This message is generated by the /WARNFIXUP switch (q.v.).

L4001 frame-relative fixup, frame ignored
A fixup occurred with a frame segment different from the target
segment where either the frame or the target segment is not
absolute. Such a fixup is meaningless in protected mode, so the
target segment is assumed for the frame segment.

L4002 frame-relative absolute fixup
A fixup occurred with a frame segment different from the target
segment where both frame and target segments were absolute.
This fixup is processed using base-offset arithmetic, but the
warning is issued because the fixup may not be valid in the OS/2

environment.

L4010 invalid alignment specification
The number following the IALIGNMENT option is not a power of 2
or is not in numerical form.

L4011 PACKCODE value exceeding 65500 unreliable
Code segments of length 65501-65536 may be unreliable on the
80286 processor.

L4012 load-high disables EXEPACK
The options IHIGH and IEXEPACK are mutually exclusive.

L4013 invalid option for new-format executable file ignored
If an OS/2 environment format program is being produced, then
the options ICPARMAXALLOC, IDSALLOCATE, IEXEPACK,
INOGROUPASSOCIATION, and IOVERLAYINTERRUPT are mean
ingless, and the linker ignores them.

L4014 invalid option for old-format executable file ignored
If a DOS format program is produced, the options IALIGNMENT,
INOFARCALLTRANSLATION, and IPACKCODE are meaningless,
and the linker ignores them.

L4020 name: code-segment size exceeds 65500
Code segments of length 65501-65536 may be unreliable on the
80286 processor.

A-24

L4021 no stack segment
The program does not contain a stack segment defined with
STACK combine type. This message should not appear for
modules compiled with IBM C/2, but it could appear for an
assembler-language module. Normally, every program should
have a stack segment with the combine type specified as STACK.

You can ignore this message if you have a specific reason for not
defining a stack or for defining one without the STACK combine
type.

L4022 name1, name2 : groups overlap
Two groups are defined such that one starts in the middle of
another. This may occur if you defined segments in a module
definitions file or assembly file and did not correctly order the
segments by class.

L4023 exportname : export internal-name conflict
An exported name, or its associated internal name, conflict with
an already-defined public symbol.

L4024 name: multiple definitions for export name
The name name is exported more than once with different
internal names. All internal names except the first are ignored.

L4025 name: import internal-name conflict
An imported name, or its associated internal name, is also
defined as an exported name. The import name is ignored. The
conflict may come from a definition in either the module defi
nitions file or an object file.

L4026 modulename : self-imported
The module definitions file directed that a name be imported from
the module being produced.

L4027 name: multiple definitions for import internal-name
An imported name, or its associated internal name, is imported
more than once. The imported name is ignored after the first
mention.

L4028 name: segment already defined
A segment is defined more than once with the same name in the
module definitions file. Segments must have unique names for
the linker. All definitions with the same name after the first are
ignored.

A-25

L4029 name: DGROUP segment converted to type data
A segment which is a member of DGROUP is defined as type CODE

in a module definition file or object file. This probably happened
because a CLASS keyword in a SEGMENTS statement is not given.

L4030 name: segment attributes changed to conform with auto-
matic data segment
The segment named name is defined in DGROUP, but the shared
attribute is in conflict with the instance attribute. For example,
the shared attribute is NONSHARED and the instance is SINGLE, or
the shared attribute is SHARED and the instance attribute is MUL

TIPLE. The bad segment is forced to have the right shared attri
bute and the link continues. The image is not marked as having
errors.

L4031 name: segment declared in more than one group
A segment is declared to be a member of two different groups.
Correct the source file and recreate the object files.

L4032 name: code-group size exceeds 65500 bytes
Code segments of length 65501-65536 may be unreliable on the
80286 processor.

L4034 more than 239 overlay segments; extra put in root
The IBM C/2 overlay manager has a limit of 238 code segments
which can go in overlays (data segments go in the root). Any
code segments encountered after the limit is reached are
assigned to the root. This error will not be applicable to the IBM

Macro Assembler/2.

L4036 no automatic data segment
The program or dynamic link did not define a group named
"DGROUP", which is recognized by the linker as the automatic
data segment.

L4040 NON-CONFORMING: obsolete
In the module definitions file, NON-CONFORMING is a valid keyword
for earl ier versions of LINK and is now obsolete.

L4041 HUGE segments not yet supported
This feature is not yet implemented in the linker.

L4042 cannot open old version
An old version of the EXE file, specified with the OLD keyword in
the module definitions file, could not be opened.

A-26

L4043 old version not segmented-executable format
The old version of the .EXE file, specified with the OLD keyword in
the module definitions file, does not conform to segmented
executable format.

L4045 <name> : is name of output file
The user created a dynlink library file without specifying an
extension. In such cases the linker supplies an extension of
".DLL". This is to warn the user in case he expected an ".EXE"
file to be generated.

L4046 module name different from output file name
The user specified a module name via the NAME or LIBRARY
statement in the definitions file which is different from the output
file (.EXE or .DLL) name. This will likely cause problems in
BINDing the file or in using it in protected mode so the user
should rename the file to match the module name before it is exe
cuted.

L4050 too many public symbols
The IMAP option is used to request a sorted listing of public
symbols in the map file, but there were too many symbols to sort
(the default is 2048 symbols). The linker produces an unsorted
listing of the public symbols. Relink using IMAP:number where
number> 2048.

L4051 filename: cannot find library
The linker could not find the specified file. Enter a new file name,
a new path specification, or both.

L4053 VM.TMP : illegal file name; ignored
VM.TMP appears as an object-file name. Rename the file and
rerun the linker.

L4054 filename: cannot find file
The linker could not find the specified file. Enter a new file name,
a new path specification, or both.

Linker Limits

The table below summarizes the limits imposed by the linker. If you
find one of these limits, you may adjust your program so that the
linker can accommodate it.

A-27

Item Limit

Symbol table 256K

Load-time relocations Default is 32K. If
(for DOS programs) IEXEPACK is used,

the maximum is 512K.

Public symbols The range 7700-8700
can be used as a
guideline for the
maximum number of
public symbols
allowed; the actual
maximum depends on
the program.

External symbols per 1023
module

Groups Maximum number is
21, but the linker
always defi ned
DGROUP so the effec-
tive maximum is 20.

Overlays 63

Segments 128 by default;
however, this
maximum can be set
as high as 1024 by
using the ISEGMENTS
option of the LINK

command.

Libraries 32

Group definitions per 21
module

A-28

Item limit

Segments per module 255

Stack 64K

A-29

CodeView Error Messages

CodeView® 1 displays an error message whenever it detects a
command it cannot run. You may see any of the followi ng error mes
sages. Most errors (start-up errors are the exception) end the
CodeView command under which the error occurred but do not end
CodeView.

Bad address
You specified the address in an invalid form. For example, you
may have entered an address containing hexadecimal characters
when the radix is decimal.

Bad breakpoint command
You typed an invalid breakpoint number with the BREAKPOINT

CLEAR, BREAKPOINT DISABLE, or BREAKPOINT ENABLE command. The
number must be in the range of 0 through 19.

Bad flag
You specified an invalid flag mnemonic with the REGISTER dialog
command (R). Use one of the mnemonics displayed when you
enter the command RF.

Bad format string
You specified an invalid type specifier following an expression.
The valid type specifiers are d, i, u, 0, x, X, f, e, E, g, G, c, and s.
Some type specifiers can be preceded by the prefix h or I.

Bad radix (use 8, 10, or 16)
CodeView only uses octal, decimal, and hexadecimal radixes.

Bad register
You typed the REGISTER command (R) with an invalid register
name. Use AX, BX, ex, OX, SP, BP, SI, 01, OS, ES, 55, e5, IP, or
F.

Bad type cast
This applies to C or BASIC programs only. Refer to the appro
priate IBM Language Reference book.

1 CodeView® is a trademark of Microsoft Corporation

A-30

Badly formed type
The type information in the symbol table of the file you are
debugging is incorrect. If this message occurs, note the circum
stances of the error and contact your authorized IBM Personal
Computer dealer.

Breakpoint # or ' , expected
You entered the BREAKPOINT CLEAR (BC), BREAKPOINT DISABLE (BD),
or BREAKPOINT ENABLE (BE) commands with no argument. These
commands require that you specify the number of the breakpoint
to be acted on, or that you specify an asterisk (*), indicating that
all breakpoints are to be acted on.

Cannot use struct or union as scalar
Applies to C or BASIC programs only. A struct or union variable
cannot be used as a scalar value. Such variables must be fol
lowed by a file specifier or preceded with the address-of oper
ator.

Cannot find file name
CodeView could not find the executable file you specified when
you started. You probably misspelled the file name, or the file is
in a different directory.

Constant too big
CodeView cannot accept a constant number larger than
4294967295 (OxFFFFFFFF).

Divide by zero
An expression in an argument of a dialog command attempts to
divide by zero.

Expression too complex
An expression given as a dialog command argument is too
complex. Simplify the expression.

Extra input ignored
You specified too many arguments to a command. CodeView
evaluates the valid arguments and ignores the rest. Often in this
situation, CodeView may not evaluate the arguments the way you
intended.

Floating point error
This message should not occur, but if it does, note the circum
stances of the error and contact your authorized IBM dealer or
representative.

A-31

Internal debugger error
If this message occurs, note the circumstances of the error and
contact your authorized IBM dealer or representative.

Invalid argument
One of the arguments you specified is not a valid CodeView
expression.

Missing"
You specified a string as an argument to a dialog command, but
you did not supply a closing double quote mark.

Missing '('
An argument to a dialog command was specified as an
expression containing a right parenthesis but no left parenthesis.

Missing ')'
An argument to a dialog command was specified as an
expression containing a left parenthesis but no right parenthesis.

Missing ']'
An argument to a dialog command was specified as an
expression containing a left bracket but no right bracket. This
error can also occur if a regular expression is specified with a
right bracket but no left bracket.

No closing single quote
You specified a character in an expression used as a dialog
command argument, but the closing single quote is missing.

No code at this line number'
Applies only to C or BASIC programs. You tried to set a break
point on a source line that does not correspond to code. For
example, the line may be a data declaration or a comment.

No match of regular expression
Applies only to C or BASIC programs. No match was found for
the regular expression you specified with the SEARCH command or
with the Find selection from the Search menu.

No previous regular expression
You selected Previous from the Search menu, but there was no
previous match for the last regular expression specified.

No program to debug
You have reached the end of the program you are debugging.
You must restart the program (using the RESTART command)
before using any command that runs code.

A-32

No source lines at this address
Applies only to C or BASIC programs. The address you specified
as an argument for the View command (V) does not have any
source lines. For example, it could be an address in a library
routine or an assembler-language module.

No such file/directory
A file you specified in a command argument or in response to a
prompt does not exist. For example, the message appears when
you select Load from the FILE menu, and then enter the name of a
nonexistent file.

No symbolic information
Applies only to C or BASIC programs. The program file you spec
ified is not in the CodeView format. You cannot debug in source
mode, but you can use assembly mode.

Not a text file
You attempted to load a file using the Load selection from the FILE
menu or using the VIEW command, but the file is not a text file.
CodeView determines if a file is a text file by checking the first
128 bytes for characters that are not in the ASCII ranges of 9
through 13 and of 20 through 126.

Not an executable file
Applies only to C or BASIC programs. The file you specified to be
debugged when you started CodeView is not an executable file
having the extension .EXE or.COM.

Not enough space
You typed the SHELL ESCAPE command (!) or selected Shell from
the File menu, but there is not enough free memory to run the
command processor. The message also occurs with assembler
language programs that do not specifically release memory.

Object too big
You entered a TRACEPOINT command with a data object (such as
an array) that is larger than 128 bytes. You can watch data
objects larger than 128 bytes by using the memory version of the
TRACEPOINT command.

Operand types incorrect for this operation
An operand had a type incompatible with the operation applied to
it. For example, if p is declared as char *, then? p*p produces
this error, because a pointer cannot be multiplied by a pointer.

A-33

Operator must have a struct/union type
You used the one of the member selection operators (-> or.) in
an expression that does not refer to an element of a structure or a
union.

Operator needs Ivalue
You specified an expression that does not evaluate to an Ivalue
as in an operation that requires an Ivalue. For example, ? 3 = 100
is nonval id.

Program terminated normally (number)
You ran your program to the end. The number displayed in
parentheses is the exit code returned to DOS or OS/2 by your
program. You must use the RESTART command (or the START menu
selection) to start the program before running more code.

Register variable out of scope
You tried to specify a register variable using the period (.) oper
ator and a function name. For example, if you are in a third-level
function, you can display the value of a local variable called local
in a second-level function called parent with the following
command:

? parent. 1 oca 1

However, this command does not work if local is declared as reg
ister variable. Instead, the message above is displayed.

Regular expression too complex
The regular expression specified is too complex for CodeView to
evaluate.

Regular expression too long
The regul·ar expression specified is too long for CodeView to
evaluate.

Syntax error
You specified an invalid command line for a dialog command.
Check for an invalid command letter. This message also appears
if you enter an invalid assembler-language instruction using the
Assemble command. The error will be preceded by a caret that
points to the first character CodeView could not interpret.

Too many breakpoints
You tried to specify more than 20 breakpoints, which is the
maximum allowed by CodeView.

A-34

Too many open files
You do not have enough files handles for CodeView to operate
correctly. You must specify more files in your CONFIG.SYS file.
See your IBM Disk Operating System Reference or IBM Operating
Systeml2 User's Reference book for information about using the
CONFIG.SYS file.

Type conversion too complex
Applies only to C or BASIC programs. You tried to type cast an
element of an expression in a type other than the simple types or
with more than one level of indirection. An example of a complex
type would be type casting to a struct or union type. An example
of two levels of indirection would be char **.

Unable to open file
A file you specified in a command argument or in response to a
prompt cannot be opened. For example, the message appears
when you select Load from the FILE menu, and then enter the
name of a file that is corrupted or has its file attributes set so that
it cannot be opened.

Unknown symbol
You specified an identifier that is not in the symbol table of
CodeView. Check for a misspelling. A symbol name spelled with
letters of the wrong case will not be recognized unless the Case
Sense selection on the OPTIONS menu has been turned off.
Another potential cause for this message is if you are trying to
use a local variable in an argument when you are not in the func
tion where the variable is defined.

Unrecognized option option
Valid options: IB ICcommand IF IS IT IW. You entered an invalid
option when starting CodeView. Retype the command line.

Usage: cv ffloptions" file fflarguments"
You failed to specify an executable file when you started
CodeView. Try again with the syntax shown in the message.

Video mode changed without IS option
The program changed video modes (from or to one of the
graphics modes) when screen swapping was not specified. You
must use the /S option to specify screen swapping when debug
ging graphics programs. You can continue debugging when you
get this message, but the output screen of the debugged program
may be damaged.

A-35

Warning: packed file
You started CodeView with a packed file as the executable file.
You can attempt to debug the program in assembly mode, but the
packing routines at the start of the program may make this diffi
cult.

A-36

CREF Error Messages

The Cross-Reference Utility, CREF, ends operation and displays one of
the following messages when it finds an error. The following error
messages are in alphabetical order:

can't open cross-reference file for reading
The .CRF file is not found. Make sure the file is on the specified
disk and that the name is spelled correctly in the command line.

can't open listing file for writing
May indicate that the disk is full or write protected, that a file with
the specified name already exists, or that the specified device is
not available.

cref has no switches
You specified an option in the command line with the slash (/) or
dash (-) character, but CREF has no options.

extra file name ignore
You specified more than two files in the file name. CREF creates
the reference file using only the first two files given.

line invalid, start again
You provided no .CRF file in the command line or at the prompt.
CREF will display this message followed by a prompt asking for a
.CRF file.

out of heap space
CREF cannot find enough memory to process the files. Try again
with no resident programs or shells, or add more memory.

premature eof
You specified a file that is not a valid .CRF file, or the file is
damaged.

read error on stdin
This error occurs if the program receives a Ctrl + Z from the key
board or from a redirected file.

A-37

Library Manager Error Messages

Error messages produced by the IBM Library Manager, LIB, have one
of the following formats:

• fflfilenameILlB": fatal error U1xxx : messagetext
• fflfilenameILlB": warning U4xxx : messagetext

The message begins with the input file name (filename), if one exists,
or with the name of the utility. LIB may display the following error
messages:

U1150 page size too small
The page size of an input library is too small, which indicates a
non-valid input .LlB file.

U1151 syntax error: illegal file specification
You gave a command operator, such as a minus sign (-), without
a module name following it.

U1152 syntax error: option name missing
You gave a forward slash (I) with a value following it.

U1153 syntax error: option value missing
You gave the IPAGESIZE option without a value following it.

U1154 option unknown
An unknown option is given. Currently, LIB recognizes the
IPAGESIZE option only.

U1155 syntax error: illegal input
The given command did not follow correct LIB syntax.

U1156 syntax error
The given command did not follow correct LIB syntax.

U1157 comma or new line missing
A comma or carriage return is expected in the command line, but
did not appear. This may indicate an inappropriately placed
comma, as in the following line:

LIB math.lib,-mod1 + mod2;

The line should have been entered as follows:

A-38

LIB math.lib -mod1 + mod2;

U1158 terminator missing
Either the response to the Output library: prompt or the last line
of the response file used to start LIB did not end with a carriage
return.

U1161 cannot rename old library
LIB could not rename the old library to have a .BAK extension
because the .BAK version already existed with read-only pro
tection. Change the protection of the old .BAK version.

U1162 cannot reopen library
The old library could not be reopened after it was renamed to
have a .BAK extension.

U1163 error writing to cross-reference file
The disk or root directory is full. Delete or move files to make
space.

U1170 too many symbols
More than 4609 symbols appeared in the library file.

U1171 insufficient memory
LIB did not have enough memory to run. Remove any shells or
resident programs and try again, or add more memory.

U1172 no more virtual memory
You should note the conditions when the error occurs and contact
your authorized IBM dealer or representative.

U1173 internal failure
You should note the conditions when the error occurs and contact
your authorized IBM dealer or representative.

U1174 mark: not allocated
You should note the conditions when the error occurs and contact
your authorized IBM dealer or representative.

U1175 free: not allocated
You should note the conditions when the error occurs and contact
your authorized IBM dealer or representative.

U1180 write to extract file failed
The disk or root directory is full. Delete or move files to make
space.

A-39

U1181 write to library file failed
The disk or root directory is full. Delete or move files to make
space.

U1182 filename: cannot create extract file
The disk or root directory is full, or the specified extract file
al ready exists with read-only protection. Make space on the disk
or change the protection of the extract file.

U1183 cannot open response file
The response file was not found.

U1184 unexpected end-of-file on command input
An end-of-file character is received prematurely in response to a
prompt.

U1185 cannot create new library
The disk or root directory is full, or the library file already exists
with read-only protection. Make space on the disk or change the
protection of the library file.

U1186 error writing to new library
The disk or root directory is full. Delete or move files to make
space.

U1187 cannot open VM.TMP
The disk or root directory is full. Delete or move files to make
space.

U1188 cannot write to VM
You should note the conditions when the error occurs and contact
your authorized IBM dealer or representative.

U1189 cannot read from VM
You should note the conditions when the error occurs and contact
your authorized IBM deaker or representative.

U1190 DOSALLOCHUGE failed
You should note the conditions when the error occurs and contact
your authorized IBM dealer or representative.

U1191 DOSREALLOCHUGE failed
You should note the conditions when the error occurs and contact
your authorized IBM dealer or representative.

U1192 DOSGETHUGESHIFT failed
You should note the conditions when the error occurs and contact
your authorized IBM dealer or representative.

A-40

U1200 name: invalid library header
The input library file has a non-valid format. It is either not a
library file, or it has been corrupted.

U1203 name: invalid object module near location
The module specified by name is not a valid object module.

U4150 modulename : module redefinition ignored
A module is specified to be added to a library, but a module with
the same name is already in the library. Or, a module with the
same name is found more than once in the library.

U4151 symbol(modulename) : symbol redefinition ignored
The specified symbol is defined in more than one module.

U4152 filename: cannot create listing
The directory or disk is full, or the cross-reference listing file
already exists with read-only protection. Make space on the disk
or change the protection of the cross-reference listing file.

U4153 number: page size too small; ignored
The value specified in the IPAGESIZE option is less than 16.

U4155 modulename : module not in library; ignored
The specified module is not found in the input library.

U4156 libraryname: output-library specification ignored
An output library is specified in addition to a new library name.
For example, specifying

LIB new.lib + one.obj,new.lst,new.lib

where new.lib does not already exist causes this error.

U4157 filename: cannot access file
LIB is unable to open the specified file.

U4158 libraryname: invalid library header; file ignored
The input library has an incorrect format.

U4159 filename: invalid format hexnumber; file ignored
The signature byte or word, hexnumber, of an input file is not one
of the recognized types.

A-41

MAKE Error Messages

Error messages displayed by the IBM Program Maintenance Utility,
MAKE, have one of the following formats:

• fflfilenameIMAKE": fatal error U1xxx : messagetext
• fflfilenamel MAKE" : warni ng U4xxx : messagetext

The message begins with the input file name (filename), if one exists,
or with the name of the utility. MAKE produces the following error
messages:

U1001 macro definition larger than number
A single macro is defined to have a value string longer than the
number stated. Try rewriting the MAKE description file to split the
macro into two or more smaller ones.

U1002 infinitely recursive macro
A circular chain of macros is defined, as in the following
example:

• A = $(8)

• 8 = $(C)

• C = $(A)

U1003 out of memory
MAKE ran out of memory for processing the MAKE description file.
Try to reduce the size of the MAKE description file by reorganizing
or spl itting it.

U1004 syntax error: macro name missing
The MAKE description file contained a macro definition with no left
side (that is, a line beginning with =).

U1005 syntax error: colon missing
A line that should be an outfilelinfile line lacked a colon indi
cating the separation between outfile and infile. MAKE expects
any line following a blank line to be an outfile/infile line.

U1006 targetname: macro expansion larger than number
A single macro expansion, plus the length of any string it may be
concatenated to, is longer than the number stated. Try rewriting
the MAKE description file to split the macro into two or more
smaller ones.

A-42

U1007 multiple sources
An inference rule is defined more than once.

U1008 name: cannot find file or directory
The file or directory specified by name could not be found.

U1009 command: argument list too long
A command line in the MAKE description file is longer than 128
bytes, which is the maximum that DOS allows. Rewrite the com
mands to use shorter argument lists.

U1010 filename: permission denied
The file specified by filename is a read-only file.

U1011 filename: not enough memory .
Not enough memory is available for MAKE to run a program.

U1012 filename: unknown error
You should note the conditions when the error occurs and contact
your authorized IBM dealer or representative.

U1013 command: error errcode (ignored)
One of the programs or commands called in the MAKE description
file returned with a nonzero error code. If MAKE is run with the /I
option, MAKE displays (ignored) and continues. Otherwise, MAKE

stops running.

U4000 filename: target does not exist
This usually does not indicate an error. It warns you that the
target file does not exist. MAKE runs any commands given in the
block description since in many cases the outfile file will be
created by a later command in the MAKE description file.

U4001 dependent filename does not exist; target filename not built
MAKE could not continue because a required infile file did not
exist. Make sure that all named files are present and that they
are spelled correctly in the MAKE description file.

U4014 usage: make fflln" fflld" fflli" fflls" fflname = value ... " file
MAKE has not been called correctly. Try entering the command
line again with the syntax shown in the message.

A-43

EXEMOD Error Messages

Error messages from the IBM EXE File Header Utility, EXEMOD, have
one of the following formats:

• [filenameIExEMoD]: fatal error U1xxx : messagetext

• [filenameIExEMoD]: warning U4xxx : messagetext

The message begins with the input file name (filename), if one exists,
or with the name of the utility. EXEMOD produces the following error
messages:

U1050 usage: exemod file ffl-/h" ffI-/stack n" ffI-/max n" ffl-/min n"
You did not specify the EXEMOD command line properly. Try again
using the syntax shown. Note that the option indicator can be
either a slash (/) or a dash (-). The single brackets (ffl") in the
error message show your optional choices.

U1051 invalid .EXE file: bad header
The specified input file is not an executable file or has an incor
rect file header.

U1052 invalid .EXE file: actual length less than reported
The second and third fields in the input-file header indicate a file
size greater than the actual size.

U1053 cannot change load-high program
When the minimum allocation value and the maximum allocation
value are both zero, you cannot change the file.

U1054 file not .EXE
EXEMOD adds the .EXE extension to any file name without an exten
sion. In this case, no file with the given name and an .EXE exten
sion was found.

U1055 filename: cannot find file
The file specified by filename was not found.

U1056 filename: permission denied
The file specified by filename is a read-only file.

U4050 packed file
The given file is a packed file. This is a warning only.

A-44

U4051 minimum allocation less than stack; correcting minimum
If the minimum allocation value is not enough to accommodate
the stack (either the original stack request or the changed
request), the minimum allocation value is adjusted. This is a
warning message only; the change is still performed.

U4052 minimum allocation greater than maximum; correcting
maximum
If the minimum allocation value is greater than the maximum
allocation value, the maximum allocation value is adjusted. This
is a warning message only; the change is still performed.

A-45

Exit Codes

All the executable programs in the IBM Macro Assembler/2 package
return a code (sometimes called an error-level code) that batch files
or other programs such as MAKE use. If the program finishes without
errors, it returns a code of O. The code returned varies if the program
finds an error. This appendix lists the return codes for the Macro
Assembler. The sections are divided into the type of exit code: Macro
Assembler, CREF, LIB, MAKE, and EXEMOD.

How Batch Files Use Exit Codes

If you prefer to use batch files, you can test the code returned with the
IF ERRORLEVEL command. The sample batch file below, ASMBL.BAT or
ASMBL.CMD (for OS/2 mode), illustrates how to do this:

MASM %1;
IF NOT ERRORLEVEL 1 LINK %1;
IF NOT ERRORLEVEL 1 %1

If you run this sample batch file with a command,

ASMBL test

DOS fi rst runs the command,

MASM test;

and returns a code of 0, if the assembler finds no fatal errors, or a
higher code if the assembler finds an error. In the second line, DOS

tests to see if the code returned by the previous line is 1 or higher. If
it is not (that is, if the code is 0), DOS performs the command:

LINK test;

and again returns a code that is tested by the third line, which exe
cutes the program if the LINK step returned a code of O.

A-46

Exit Codes for Programs in the IBM Macro Assembler/2
Package

When a program in the assembler package runs with no fatal errors,
it returns an exit code of O. When there are warning errors, the
program also returns an exit code of O. Some programs can return
various codes to distinguish different kinds of errors. Other programs
always return an exit code of 1 to indicate an error. The exit codes
for each program in the assembler package are listed below:

Macro Assembler Exit Codes

No error (Code 0)
Argument error (Code 1)
Unable to open input file (Code 2)
Unable to open listing file (Code 3)
Unable to open object file (Code 4)
Unable to open cross-reference file (Code 5)
Unable to open include file (Code 6)
Assembly error (Code 7)

Note: If the exit code is 7, the assembler erases the incorrect
object file.

Memory allocation error (Code 8)
Error defining symbol from command line (Code 10)
User interrupted (Code 11)

CREF Exit Codes

No error (Code 0)
Any CREF fatal error (Code 1)

LIB Exit Codes

No error (Code 0)
All LIB fatal errors not listed below (Code 1)
Internal error (Code 4)
Too many symbols (Code 13)

4609 symbols is the maximum.

Page size too small (Code 16)
Page size must be 16 or more.

A-47

Mark: not allocated, 4 (internal error)
Free: not allocated, 4 (internal error)

Internal error, contact your authorized IBM dealer or represen
tative.

An exit code of 0 means no errors.

How MAKE Uses Exit Codes

When an error is found, MAKE stops the program execution and dis
plays the exit code as part of the error message.

For example, assume the MAKE description file TEST contains the fol
lowing lines:

test.obj: test.asm
MASM test;

If the source code in TEST contains an assembly error, you would see
this message the first time you use MAKE with the file TEST:

make: MASM test; - error 7

This error message shows that the command

MASM test;

in the MAKE description file returned code 7.

MAKE Exit Codes

No error (Code 0)
Any MAKE fatal error (Code 1)

If a program called by a command in the MAKE description file
produces an error, the MAKE error message displays the exit code.

EXEMOD Exit Codes

No error (Code 0)
Any EXEMOD fatal error (Code 1)

A-48

~ppendix B. Instructions and Pseudo-Ops
Listed by Task

8-1

8088 Instructions

Moving Data

Instruction
IN
LDS
LEA
LES
MOV
OUT
XCHG
XLAT

Meaning
Input Byte or Word
Load Data Segment Register
Load Effective Address
Load Extra Segment Register
Move
Output Byte or Word
Exchange
Translate

Moving Data - Related to Flags

Instruction
LAHF
SAHF

Meaning
Load AH from Flags
Store AH in Flags

Moving Data - Related to Stacks

Instruction
POP
POPF
PUSH
PUSHF

Doing Arithmetic

DOing Addition

Instruction
AAA
ADC
ADD
DAA
INC

B-2

Meaning
Pop Word Off Stack to Destination
Pop Flags Off Stack
Push Word onto Stack
Push Flags onto Stack

Meaning
ASCII Adjust for Addition
Add with Carry
Addition
Decimal Adjust for Addition
Increase Destination by One

Doing Subtraction

Instruction
AAS
DAS
DEC
SBB
SUB

Doing Multiplication

Instruction
AAM
IMUL
MUL

Doing Division

Instruction
AAD
DIV
IDIV

Meaning
ASCII Adjust for Subtraction
Decimal Adjust for Subtraction
Decrease Destination by One
Subtract with Borrow
Subtract

Meaning
ASCII Adjust for Multiply
Integer Multiply
Multiply, Unsigned

Meaning
ASCII Adjust for Division
Division, Unsigned
Integer Division, Signed

Comparing, Negating, Converting

Instruction
CBW
CMP
CWD
NEG

Meaning
Convert Byte to Word
Compare Two Operands
Convert Word to Doubleword
Negate, Form Two's Complement

B-3

Processing Logic

Using Logical Operators

Instruction
AND
NOT
OR
TEST
XOR

Rotating

Instruction
RCL
RCR
ROL
ROR

Shifting

Instruction
SALISHL
SAR
SHR

Meaning
Logical AND

Logical NOT

Logical Inclusive OR

Test (Logical Compare)
Exclusive OR

Meaning
Rotate Left Through Carry
Rotate Right Through Carry
Rotate Left
Rotate Right

Meaning
Shift Arithmetic Left/Logical Left
Shift Arithmetic Right
Shift Logical Right

Manipulating Strings

Instruction Meaning
CMPS/CMPSB/CMPSW Compare Byte or Word String
LODS/LODSB/LODSW Load Byte or Word String
MOVS/MOVSB/MOVSW Move Byte or Word Stri ng
REP IRE PZ/RE PE/RE PN E/REPNZ

SCAS/SCAS B/SCASW
STOS/STOSB/STOSW

B-4

Repeat String Operation
Scan Byte or Word String
Store Byte or Word String

Changing Control

Calling Procedures

Instruction
CALL
RET

Interrupting

Instruction
INT
INTO
IRET

Jumping

Instruction
J(condition)
JMP

Looping

Instruction
LOOP
LOOPE/LOOPZ
LOOPNE/LOOPNZ

Meaning
Call a Procedure
Return from Procedure

Meaning
Interrupt
Interrupt If Overflow
Interrupt Return

Meaning
Jump Short If Condition Met
Jump

Meaning
Loop Until Count Complete
Loop If Equal/If Zero
Loop If Not Equal/If Not Zero

8-5

Controlling the Processor

Changing Flags

Instruction
CLC
CLD
CLI
CMC
STC
STD
STI

Other

Instruction
ESC
HLT
LOCK
NOP
WAIT

B-6

Meaning
Clear Carry Flag
Clear Di rection Flag
Clear Interrupt Flag (Disable)
Complement Carry Flag
Set Carry Flag
Set Direction Flag
Set Interrupt Flag (Enable)

Meaning
Escape
Halt
Lock Bus
No Operation
Wait

8087 Instructions

Moving Data

Moving Packed Decimal Data

Instruction
FBLD
FBSTP

Moving Integer Data

Instruction
FILD
FIST
FISTP

Moving Real Data

Instruction
FLD
FST
FSTP

Moving Registers

Instruction
FXCH

Meaning
Packed Decimal (BCD) Load
Packed Decimal (BCD) Store and Pop

Meaning
Integer Load
Integer Store
Integer Store and Pop

Meaning
Load Real
Store Real
Store Real and Pop

Meaning
Exchange Registers

Making Comparisons

Instruction
FCOM
FCOMP
FCOMPP
FICOM
FICOMP
FTST
FXAM

Meaning
Compare Real
Compare Real and Pop
Compare Real and Pop Twice
Integer Compare
Integer Compare and Pop
Test
Examine

B-7

DOing Arithmetic

Doing Addition

Instruction
FADD
FADDP
FIADD

Doing Subtraction

Instruction
FISUB
FISUBR
FSUB
FSUBP
FSUBR
FSUBRP

DOing Multiplication

Instruction
FIMUL
FMUL
FMULP

Doing Division

Instruction
FDIV
FDIVP
FDIVR
FDIVRP
FIDIV
FIDIVR

B-8

Meaning
Add Real
Add Real and Pop
Integer Add

Meaning
Integer Subtract
Integer Subtract Reversed
Subtract Real
Subtract Real and Pop
Subtract Real Reversed
Subtract Real Reversed and Pop

Meaning
Integer Multiply
Multiply Real
Multiply Real and Pop

Meaning
Divide Real
Divide Real and Pop
Divide Real Reversed
Divide Real Reversed and Pop
Integer Divide
Integer Divide Reversed

Other

Instruction
FA8S
FCHS
FPREM
FRNOINT
FSCALE
FSQRT
FXTRACT

Meaning
Absolute Value
Change Sign
Partial Remainder
Round to Integer
Scale
Square Root
Extract Exponent and Significant

Calculating Functions

Instruction
FPATAN
FPTAN
FYL2X
FYL2XP1
F2XM1

Loading Constants

Instruction
FLOLG2
FLOLN2
FLOL2E
FLOL2T
FLOPI
FLOZ
FL01

Meaning
Partial Arc Tangent
Partial Tangent
Y * Log2X
Y * Log2(X + 1)
2 to the X power-1

Meaning
Load Log102
Load Log base e of 2
Load Log2e
Load Log210
Load PI

Load Zero
Load + 1.0

8-9

Controlling the Processor

Storing/Restoring

Instruction
FNSTCW
FNSTENV
FNSTSW
FRSTOR
FSTCW
FSTENV
FSTSW

Other

Instruction
FCLEX
FDECSTP
FDISI
FENI
FFREE
FINCSTP
FINIT
FLDCW
FLDENV
FNCLEX
FNDISI
FNENI
FNINIT
FNOP
FNSAVE
FSAVE
FWAIT

8-10

Meaning
Store Control Word
Store Environment
Store Status Word
Restore State
Store Control Word
Store Environment
Store Status Word

Meaning
Clear Exceptions
Decrease 8087 Stack Poi nter
Disable Interrupts
Enable Interrupts
Free Register
Increase 8087 Stack Pointer
Initialize Processor
Load Control Word
Load Environment
Clear Exceptions
Disable Interrupts
Enable Interrupts
Initialize Processor
No Operation
Save State
Save State
Wait (cpu Instruction)

80286 Instructions

Note: The (P) indicates a protected mode instruction.

Moving Data

Instruction Meaning
ARPL (P) Adjust Requested Privilege Level
INS/INSBIINSW Input from Port to String
LAR (P) Load Access Rights
LGDT (P) Load Global Descriptor Table
LlDT (P) Load Interrupt Descriptor Table
LLDT (P) Load Local Descriptor Table
LMSW (P) Load Machine Status Word
LSL (P) Load Segment Limit
L TR (P) Load Task Register
OUTS/OUTSB/OUTSW

POPA
PUSH
PUSHA

Output String to Port
Pop All General Registers
Push Immediate onto Stack
Push All General Registers

Controlling the Processor

Instruction
CLTS (P)
SGDT (P)
SIDT (P)
SLDT (P)
SMSW (P)
STR (P)

Verifying Fields

Instruction
BOUND
VERR (P)
VERW (P)

Meaning
Clear Task Switched Flag
Store Global Descriptor Table
Store Interrupt Descriptor Table
Store Local Descriptor Table
Store Machine Status Word
Store Task Register

Meaning
Check Array Index Against Bounds
Verify Read Access
Verify Write Access

B-11

Preparing for High Level Language

Instruction
ENTER
LEAVE

Doing Arithmetic

Instruction
IMUL

Processing Logic

Instruction
RCL
RCR
ROL
ROR
SALISHL
SAR
SHR

Meaning
Make Stack Frame for Procedure Parameters
High Level Procedure Exit

Meaning
Integer Immediate Multiply

Meaning
Rotate Left Through Carry
Rotate Right Through Carry
Rotate Left
Rotate Right
Shift Arithmetic Left/Shift Logical Left
Shift Arithmetic Right
Shift Logical Right

80287 Instructions

Setting Mode

Instruction
FSETPM

Meaning
Set Protected Mode

Controlling the Processor

Instruction
FSTSW AX
FNSTSW AX

8-12

Meaning
Store Status Word in AX (Wait)
Store Status Word in AX (No Wait)

Pseudo-ops

Using Conditionals

Pseudo-op Meaning
ELSE Else
ENDIF End If
IF If
IFB If Blank
IFDEF If Defined
IFDIF If Different
IFE If Zero
IFIDN If Identical
IFNB If Not Blank
IFNDEF If Not Defi ned
IF1 If Pass 1
IF2 If Pass 2

8-13

Using Conditional Errors

Pseudo-op
.ERR
.ERRB
.ERRDEF
.ERRDIF
.ERRE
.ERRIDN
.ERRNB
.ERRNDEF
.ERRNZ
.ERR1
.ERR2

B-14

Meaning
Error
Error String Blank
Error Symbol Defined
Error Strings Different
Error Expression Equals 0
Error Strings Identical
Error String Not Blank
Error Symbol Not Defined
Error Expression Not Equal 0
Error Pass 1
Error Pass 2

Ordering Segments

Pseudo-op
.ALPHA
.SEQ

Meaning
Alphabetic Order
Source File Order

8-15

Manipulating Data

Pseudo-op
ASSUME
COMMENT
DB
DD
DQ
DT
DW
END
ENDP
ENDS
EQU

EVEN
EXTRN
GROUP
INCLUDE
LABEL
NAME
ORG
PROC
PUBLIC
.RADIX
RECORD
SEGMENT
STRUC

Meaning
Identify Segment Register for Segment
Enter Program Comments
Define Byte
Define Doubleword
Define Quadword
Define Tenbytes
Define Word
End
End PROC

End SEGMENT and STRUC

Equal
Equal Sign
Even Boundary
External Assembly Module
Segments Under One Name
Statements From Alternate Source File
Create a Variable or Label
Set Module Name
Set Location Counter
Block of Code and Linkage
Public Use Symbols
Change Default RADIX (Decimal)
Defi ne Record Type for 8 or 16 Bit Record
Define a Segment
Define Type Definition for Structure

Controlling Listings

Pseudo-op
.CREF
.LALL
.LFCOND
.L1ST
0/0 OUT
PAGE
.SALL
.SFCOND
SUBTTL
.TFCOND
TITLE

B-16

Meaning
Control Cross Reference Information
List Complete Macro Text
List False Conditions
Control Output to Listing File
Display Assembly Progress
Control Listi ng Page Size
Suppress Listing
Suppress False Conditional Listing
Specify Subtitle
Control False Conditional Listi ng
Specify Title

XALL
XCREF
XLiST

Using Macros

Pseudo-op
::NDM
::XITM
lAP
iRPC
LOCAL
MACRO
PURGE
REPT

Changing Modes

Pseudo-op
,186
,286C

,286P

,287
.8086
.8087

List Source Line
Control Cross Reference Listing
Control Output to Listing File

Meaning
End MACRO, REPT, IRP, and IRPC

End When Expansion Not Required
Repeat Block of Statements
Repeat Block of Statements
Create Symbols for Labels
Produce Sequence of Statements
Delete MACRO Definition
Repeat Block of Statements

Meaning
Enable Assembly of 80186 Instructions
Enable Assembly of 80286 Real Mode
Instructions
Enable Assembly of 80286 Protected Mode
Instructions
Enable Assembly of Floating Point Instructions
Enable Assembly of 8088 and 8086 Instructions
Enable Assembly of 8087 Instructions

B-17

8-18

Index

Special Characters
;; operator 3-8
.ALPHA pseudo-op 3-13
.ERR/.ERR1/.ERR2

pseudo-ops 3-36
.ERRS/.ERRNS pseudo-ops 3-38
.ERRDEF/.ERRNDEF

pseudo-ops 3-39
.ERRE/.ERRNZ pseudo-ops 3-40
.ERRIDN/.ERRDIF pseudo-ops 3-41

.LALL 2-4,2-8,2-15,3-8
.LALL pseudo-op 3-61

.LFCOND 2-4
.SALL pseudo-op 3-61
.SEQ pseudo-op 3-86

.SFCOND 2-4

.TFCOND 2-4

.XALL 2-15, 3-8
.XALL pseudo-op 3-61
.XCREF 3-17
.186 2-16
.186 pse udo-op 3-1
.286C 2-16
.286C pseudo-op 3-2
.286P 2-16
.286P pseudo-op 3-3
.287 2-16
.287 pseudo-op 3-4
.8086 2-16
.8086 pseudo-op 3-5
.8087 2-16
.8087 pseudo-op 3-6
< > operator 3-10
& operator 3-7
& special macro operator 2-14
!; operator 3-10
! operator 3-10
I A option 3-46

10 option 3-63
IE option 2-16, 3-6
IR option 2-16, 3-6
IS option 3-46
IX option 2-5, 2-6, 3-91
IX, option 3-61
% operator 3-11
% Special Macro Operator 2-14
%OUT 2-4
%OUT pseudo-op 3-70
= (equal sign) pseudo-op 3-12
= Special Macro Operator 2-14

A
AAAI ASCII Adjust for Addition 4-2

AAA/ASCIl A.djust for
Addition 4-2

AADJASCII Adjust for Division 4-4
AAM/ASCII Adjust for Multiply 4-5
AAS/ASCII Adjust for

Subtraction 4-6
ASS 3-44
Absolute Value (8087)

instruction 4-61
access rights, loading 4-267
ADCI Add with Carry 4-8
Add Real (8087) instruction 4-62
Add Real and Pop (8087)

instruction 4-67
Add with Carry instruction 4-8
ADD/Addition 4-12
addition

adding one 4-242
Addition instruction 4-12

Integer Add (8087) 4-106
addition instructions

add real (8087) 4-62
add real and pop (8087) 4-67
add with carry 4-8

X-1

addition instructions (continued)
addition 4-12
ASCII adjust for addition 4-2
decimal adjust for addition 4-49

addressing mode byte 2-19
Adjust Requested Privilege Level

(80286P) instruction 4-20
adjusting RPL 4-20
align-type

byte 3-83
page 3-83
paragraph 3-83
word 3-83

ampersand, special macro
operator 3-7

AND/Logical AND 4-16
arc tangent, partial,

calculating 4-176
arithmetic right, shift (SAR

80286) 4-374
ARPL (80286P)/Adjust Requested

Privilege Level 4-20
ASCII Adjust for Addition

instruction 4-2
ASCII Adjust for Division

instruction 4-4
ASCII Adjust for Multiply

instruction 4-5
ASCII Adjust for Subtraction instruc-

tion 4-6
assembler exit codes A-46
ASSUME nothing pseudo-op 3-14
ASSUME pseudo-op 3-14
at combine-type 3-84
attribute

FAR 3-73
NEAR 3-73

X-2

B
block-structured languages 4-56
BOUND (80286)/Detect Value Out of

Range 4-22
bounds, checking 4-22
branching 4-174
branching, conditional 4-201
bus, locking 4-285
busy, 80287 4-174
byte

addressing mode 2-19
opcode 2-19
operation code 2-19

byte align-type 3-83

C
Call a Procedure instruction 4-24,

4-29
CALL(80286)/Call a

Procedure 4-29
CALL/Call a Procedure 4-24
carry flag, clearing 4-36
carry flag, complementing 4-41
carry flag, setting 4-396
CBW/Convert Byte to Word 4-35
Change Sign (8087)

instruction 4-73
changing sign 4-310
class 3-84
CLC/Clear Carry Flag 4-36
CLD/Clear Direction Flag 4-37
Clear Carry Flag instruction 4-36
Clear Direction Flag

instruction 4-37
Clear Exceptions (8087)

instruction 4-74,4-161
Clear Interrupt Flag (Disable)

instruction 4-38
Clear Task Switched Flag instruc

tion 4-39
CLI/Clear Interrupt Flag

(Disable) 4-38

CL TS (80286P)/Clear Task Switched
Flag 4-39

CMC/Complement Carry Flag 4-41
CMP/Compare Two Operands 4-42
CMPS/CMPSB/CMPSW/ Compare

Byte or Word String 4-45
CodeView error messages A-30
combine-type

at 3-84
common 3-84
public 3-84

COMMENT 2-8,2-9
COMMENT pseudo-op 3-16
common combine-type 3-84
Compare Byte or Word String

instruction 4-45
Compare Real (8087)

instruction 4-75
Compare Real and Pop (8087)

instruction 4-79
Compare Real and Pop Twice (8087)

instruction 4-83
Com pare Two Operands

instruction 4-42
comparing

byte strings 4-45
integer compare (8087) 4-108
integer compare and pop

(8087) 4-111
stack top with + 0.0

(8087) 4-217
stack top with source 4-75, 4-79
stack top with ST(1) 4-83
two operands 4-42
word strings 4-45

Complement Carry Flag
instruction 4-41

condition codes, 8087 4-221
conditional error pseudo-ops 2-3
Conditional pseudo-op 2-2
conditionals. 2-5
conditionals, false 2-4
constant instructions

FLDLG2 (8087)/load log base 10
2 4-146

constant instructions (continued)
FLDLN2 (8087)/load log base e of

2 4-148
FLDL2E (8087)lIoad log base 2

e 4-142
FLDL2T (8087)/load log base 2

10 4-144
FLDPI (8087)/Load PI 4-150
FLDZ (8087)/Load Zero 4-152
load + 1.0 (8087) 4-136

constants
redefining 3-12
setting 3-12

control word, storing 4-169,4-193
convention rules 1-1
Convert Byte to Word

instruction 4-35
Convert Word to Doubleword 4-48
converting

byte to wo rd 4-35
packed decimal 4-69, 4-71
word to doubleword 4-48

converting to numbers 3-11
CREF pseudo-op 3-17
cross-reference output 3-17
CWO/Convert Word to

Doubleword 4-48

D
DAA/Decimal Adjust for

Addition 4-49
DAS/Decimal Adjust for

Subtraction 4-50
data pseudo-op 2-4
DB (define byte) pseudo-op 3-18
DEC/Decrease Destination by

One 4-51
Decimal Adjust for Addition instruc

tion 4-49
Decimal Adjust for Subtraction

instruction 4-50
Decrease Desti nation by One

instruction 4-51

X-3

Decrease 8087 Stack Pointer (8087)
instruction 4-85

Descriptor Table Register
local, loading 4-281

Descriptor Table Register (80286P)
global, loading 4-277
global, storing 4-384
interrupt, loading 4-279
interrupt, storing 4-392
local, storing 4-394

Detect Value Out of Range 4-22
direction flag 4-45, 4-305, 4-381
direction flag, clearing 4-37
direction flag, setting 4-397
d i recti ves 2-1
Disable Interrupts (8087)

instruction 4-87,4-162
DIV/Division, Unsigned 4-53
Divide Real (8087) instruction 4-88
Divide Real and Pop (8087) instruc-

tion 4-94
Divide Real Reversed (8087)

instruction 4-96
Divide Real Reversed and Pop

(8087) instruction 4-102
division

signed integer 4-233
division instructions

ASCII adjust for division 4-4
divide real (8087) 4-88
divide real and pop (8087) 4-94
divide real reversed (8087) 4-96
divide real reversed and pop

(8087) 4-102
integer divide (8087) 4-114
integer divide reversed

(8087) 4-116
modulo division (8087) 4-178
unsigned 4-53

division, modulo (8087) 4-178
Division, Unsigned instruction 4-53
double semicolons, special macro

operator 3-8

X-4

DO (Define Quadword) 3-22
DT (define Tenbytes)

pseudo-op 3-24
dummy 2-13
dummy list, MACRO

pseudo-op 2-7
DW (Define Doubleword)

pseudo-op 3-20
DW (define word) pseudo-op 3-26

E
ELSE pseudo-op 3-28
Enable Interrupts (8087)

instruction 4-104,4-163
END 3-29
ENDIF pseudo-op 3-31
ENDM 2-7
ENDM pseudo-op 3-32
ENDP 3-73
ENDP pseudo-op 3-33
ENDS 3-88
ENDS pseudo-op 3-34
ENTER (80286)/Make Stack Frame

for Procedure Parameters 4-56
environment, storing 4-140,4-167,

4-170
EOU pseudo-op 3-35
equal sign (=) pseudo-op 3-12
error messages A-1

CodeView A-3D
Macro Assembler A-2
MAKE A-42
SALUT A-1
unnumbered A-12

ESC/Escape 4-58
Escape instruction 4-58
even boundary 3-42
EVEN pseudo-op 3-42
Examine (8087) instruction 4-221
Exchange instruction 4-415
exchange registers (8087) instruc-

tion 4-223

exclamation operator 3-10
Exclusive OR instruction 4-418
exit codes A-46

batch files A-46
CREF A-47
EXEMOD A-48
LIB A-47
Library Manager A-47
macro assembler A-47
MAKE A-48

exiting, high level procedure 4-273
EXITM pseudo-op 3-43
Extract Exponent and Significand

(8087) instruction 4-226
EXTRN pseudo-op 3-44

F
FABS (8087)/Absolute Value 4-61
FADD (8087)/Add Real 4-62
FADDP (8087)/Add Real and

Pop 4-67
false conditionals 2-4
FAR type attribute 3-73
FBLD (8087)/Packed Decimal (BCD)

Load 4-69
FBSTP (8087)/Packed Decimal

(BCD) Store and Pop 4-71
FCHS (8087)/Change Sign 4-73
FCLEX (8087)/Clear

Exceptions 4-74
FCOM (8087)/Compare Real 4-75
FCOMP (8087)/Compare Real and

Pop 4-79
FCOMPP (8087)/Compare Real and

Pop Twice 4-83
FDECSTP (8087)/Decrease 8087

Stack Pointer 4-85
FDISI (8087)/Disable

Interrupts 4-87
FDIV (8087)/Divide Real 4-88
FDIVP (8087)/Divide Real and

Pop 4-94

FDIVR (8087)/Divide Real
Reversed 4-96

FDIVRP (8087)/Divide Real
Reversed and Pop 4-102

FENI (8087)/Enable
Interrupts 4-104

FFREE (8087)/Free Register 4-105
FIADD (8087)lInteger Add 4-106
FICOM (8087)/lnteger

Compare 4-108
FICOMP (8087)lInteger Compare

and Pop 4-111
FIDIV (8087)/1 nteger Divide 4-114
FIDIVR (8087)/lnteger Divide

Reversed 4-116
field, mode 2-19
field, rIm (register/memory

field) 2-19
field, register 2-20
fields, instruction 2-19
FILD (8087)/lnteger Load 4-118
FIMUL (8087)/lnteger

Multiply 4-120
FINCSTP (8087)lIncrease 8087 Stack

Pointer 4-122
FINIT (8087)/lnitialize

Processor 4-123
FIST (8087)/lnteger Store 4-124
FISTP (8087)lInteger Store and

Pop 4-126
FISUB (8087)/lnteger

Subtract 4-128
FISUBR (8087)lInteger Subtract

Reversed 4-130
flag register 2-21
flag registers

filling 4-327
pushing, in interrupt if

overflow 4-252
restoring saved flag

registers 4-254
saving 4-335
store AH in 4-365
transferring into AH

register 4-266

X-5

flag, clear direction 4-37
flags 2-21

carry flag, clearing 4-36
carry flag, complementing 4-41
carry flag, setting 4-396
clearing 4-74,4-161
direction flag, clearing 4-37
direction flag, setting 4-397
interrupt flag, clearing 4-38
interrupt flag, setting 4-398
task switched flag,

clearing 4-39
FLO (8087)/Load Real 4-132
FLOCW (8087)/Load Control

Word 4-138
FLOENV (8087)/Load

Environment 4-140
FLOLG2 (8087)/load log base 10

2 4-146
FLOLN2 (8087)/load log base e of

2 4-148
FLOL2E (8087)lIoad log base 2

e 4-142
FLOL2T (8087)lIoad log base 2

10 4-144
FLOPI (8087)/Load PI 4-150
FLOZ (8087)/Load Zero 4-152
FL01 (8087)/Load + 1.0 4-136
FMUL (8087)/Multiply Real 4-154
FMULP (8087)/Multiply Real and

Pop 4-159
FNCLEX (8087)/Clear

Exceptions 4-161
FNOISI (8087)/Oisable

Interrupts 4-162
FNENI (8087)/Enable

Interrupts 4-163
FNINIT (8087)lInitialize

Processor 4-164
FNOP (8087)/No Operation 4-165
FNRSTOR (8087)/Restore

State 4-166
FNSAVE (8087)/Save State 4-167

X-6

FNSTCW (8087)/Store Control
Word 4-169

FNSTENV (8087)/Store
Environment 4-170

FNSTSW (8087)/Store Status
Word 4-172

FNSTSW AX (80287)/Store Status
Word 4-174

FPATAN (8087)/Partial Arc
Tangent 4-176

FPREM (8087)/Partial
Remainder 4-178

FPTAN (8087)/Partial
Tangent 4-180

Free Register (8087)
instruction 4-105

FRNOINT (8087)/Round to
Integer 4-182

FRSTOR (8087)/Restore
State 4-183

FSAVE (8087)/Save State 4-184
FSCALE (8087)/Scale 4-185
FSETPM (80287)/Set Protected

Mode 4-187
FSQRT (8087)/Square Root 4-188
FST (8087)/Store Real 4-190
FSTCW (8087)/Store Control

Word 4-193
FSTENV (8087)/Store

Environment 4-194
FSTP (8087)/Store Real and

Pop 4-196
FSTSW (8087)/Store Status

Word 4-200
FSTSW AX (80287)/Store Status

Word 4-201
FSUB (8087)/Subtract Real 4-203
FSUBP (8087)/Subtract Real and

Pop 4-208
FSUBR (8087)/Subtract Real

Reversed 4-210
FSUBRP (8087)/Subtract Real

Reversed and Pop 4-215

FTST (8087)/Test 4-217
functions, calculating

partial arc tangent (8087) i nstruc-
tion 4-176

partial tangent (8087) 4-180
square root (8087) 4-188
Y = 2 to the X power -1 4-59
Z = Y * log base 2 (X+ 1) 4-230
Z = Y * log2X 4-228

FWAIT (8087)/Wait (CPU
Instruction) 4-219

FXAM (8087)/Examine 4-221
FXCH (8087)/exchange

registers 4-223
FXTRACT (8087)/Extract Exponent

and Significand 4-226
FYL2X (8087)/Y * log2X 4-228
FYL2XP1 (8087)/Y * log base 2

(X+ 1) 4-230
F2XM 1 (8087)/2 to the X power

-1 4-59

G
general registers

restoring (80286) 4-326
savi ng (80286) 4-334

global descriptor table register,
loading 4-277

Global Descriptor Table Register,
storing 4-384

GROUP pseudo-op 3-46

H
halt instruction 4-232
halt state

clearing 4-232
entering 4-232

hardware reset 4-123, 4-164
High Level Procedure Exit (80286)

i nstructi on 4-273
HL T/Halt 4-232

IDIVllnteger Division, Signed 4-233
IFxxxx pseudo-op 3-48
IMUL (80286)lInteger Immediate

Multiply 4-238
IMULllnteger Multiply 4-236
INllnput Byte or Word 4-240
INCllncrease Destination by

One 4-242
INCLUDE 2-12
INCLUDE pseudo-op 3-54
Increase Destination by One instruc

tion 4-242
Increase B087 Stack Pointer (8087)

instruction 4-122
infinite wait 4-174
Initialize Processor (80B7) instruc

tion 4-123, 4-164
Input Byte or Word

instruction 4-240
Input from Port to String

instruction 4-245
input instructions

input byte or word 4-240
input from port to string 4-245

INSIINSBIINSW (80286)lInput from
Port to String 4-245

instruction
addressing mode byte 2-19
description 2-22
fields 2-19
format 2-19
mode field 2-19
notations 2-22
operation code byte 2-19
register field 2-20
register/memory field 2-20
symbols 2-22

instruction symbol definitions 2-22
instructions 2-18,2-19,2-20

AAD/ASCII Adjust for
Division 4-4

AAMI ASCII Adjust for
Multiply 4-5

X-7

instructions (continued)
AAS/ASCII Adjust for

Subtraction 4-6
ADC/ Add with Carry 4-8
ADD/Addition 4-12
Addressing Mode Byte 2-19
AND/Logical AND 4-16
ARPL (80286P)/Adjust Requested

Privilege Level 4-20
BOUND (80286)/Detect Value Out

of Range 4-22
calculating functions B-10
CALL(80286)/Call a

Procedure 4-29
CALl/Cali a Procedure 4-24
CBW/Convert Byte to Word 4-35
changing control B-5
CLC/Clear Carry Flag 4-36
CLD/Clear Direction Flag 4-37
CLI/Clear Interrupt Flag

(Disable) 4-38
CL TS (80286P)/Clear Task

Switched Flag 4-39
CMC/Complement Carry

Flag 4-41
CMP/Compare Two

Operands 4-42
CMPS/CMPSB/CMPSW/

Compare Byte or Word
String 4-45

controlling the processor B-7,
B-11, 8-12, B-13

CWO/Convert Word to
Doubleword 4-48

DAA/Decimal Adjust for
Addition 4-49

DAS/Decimal Adjust for Sub
traction 4-50

DEC/Decrease Destination by
One 4-51

DIV/Division, Unsigned 4-53
doing arithmetic B-2, B-9, B-13
ENTER (80286)/Make Stack

X-8

Frame for Procedure Parame
ters 4-56

instructions (continued)
ESC/Escape 4-58
FABS (8087)/Absolute

Value 4-61
FADD (8087)/Add Real 4-62
FADDP (8087)/Add Real and

Pop 4-67
FBLD (8087)/Packed Deci mal

(BCD) Load 4-69
FBSTP (8087) Packed Decimal

(BCD) Store and Pop 4-71
FCHS (8087)/Change Sign 4-73
FCLEX (8087)/Clear

Exceptions 4-74
FCOM (8087)/Compare

Real 4-75
FCOMP (8087)/Compare Real

and Pop 4-79
FCOMPP (8087)/Compare Real

and Pop Twice 4-83
FDECSTP (8087)/Decrease 8087

Stack Pointer 4-85
FDISI (8087)/Disable

Interrupts 4-87
FDIV (8087)/Divide Real 4-88
FDIVP (8087)/Divide Real and

Pop 4-94
FDIVR (8087)/Divide Real

Reversed 4-96
FDIVRP (8087)/Divide Real

Reversed and Pop 4-102
FENI (8087)/Enable

Interrupts 4-104
FFREE (8087)/Free

Register 4-105
FIADD (8087)/Integer Add 4-106
FICOM (8087)/Integer

Compare 4-108
FICOMP (8087)/Integer Compare

and Pop 4-111
FIDIV (8087)lInteger

Divide 4-114
FIDIVR (8087)/Integer Divide

Reversed 4-116

instructions (continued)
fields 2-19
FILD (BOB7)lInteger Load 4-11B
FIMUL (BOB7)/lnteger

Multiply 4-120
FINCSTP (BOB7)/lncrease BOB7

Stack Pointer 4-122
FINIT (BOB7)/lnitialize

Processor 4-123
FIST (BOB7)/lnteger Store 4-124
FISTP (BOB7)lInteger Store and

Pop 4-126
FISUB (BOB7)/lnteger

Subtract 4-12B
FISUBR (BOB7)/lnteger Subtract

Reversed 4-130
FLD (BOB7)/Load Real 4-132
FLDCW (BOB7)/Load Control

Word 4-13B
FLDENV (BOB7)/Load Environ

ment 4-140
FLDLN2 (BOB7)/load log base e of

2 4-14B
FLDL2E (BOB7)/load log base 2

e 4-142
FLDL2T (BOB7)lIoad log base 2

10 4-144
FLDPI (BOB7)/Load PI 4-150
FLDZ (BOB7)/Load Zero 4-152
FLD1 (BOB7)/Load + 1.0 4-136
FMUL (BOB7)/Multiply

Real 4-154
FMULP (BOB7)/Multiply Real and

Pop 4-159
FNCLEX (BOB7)/Clear

Exceptions 4-161
FNDISI (BOB7)/Disable

Interrupts 4-162
FNENI (BOB7)/Enable

Interrupts 4-163
FNINIT (BOB7)/lnitialize

Processor 4-164
FNOP (BOB7)/No

Operation 4-165

instructions (continued)
FNRSTOR (BOB7)/Restore

State 4-166
FNSAVE (BOB7)/Save

State 4-167
FNSTCW (BOB7)/Store Control

Word 4-169
FNSTENV (BOB7)/Store Environ

ment 4-170
FNSTSW (BOB7)/Store Status

Word 4-172
FNSTSW AX (B02B7)/Store Status

Word 4-174
format 2-19
FPATAN (BOB7)/Partial Arc

Tangent 4-176
FPREM (BOB7)/Partial

Remainder 4-17B
FPTAN (BOB7)/Partial

Tangent 4-1BO
FRNDINT (BOB7)/Round to

Integer 4-1B2
FRSTOR (BOB7)/Restore

State 4-1B3
FSAVE (BOB7)/Save State 4-1B4
FSCALE (BOB7)/Scale 4-1B5
FSETPM (B02B7)/Set Protected

Mode 4-1B7
FSQRT (BOB7)/Square

Root 4-1BB
FST (BOB7)/Store Real 4-190
FSTCW (BOB7)/Store Control

Word 4-193
FSTENV (BOB7)/Store Environ

ment 4-194
FSTP (BOB7)/Store Real and

POP 4-196
FSTSW (BOB7)/Store Status

Word 4-200
FSTSW AX (B02B7)/Store Status

Word 4-201
FSUB (BOB7)/Subtract

Real 4-203
FSUBP (BOB7)/Subtract Real and

POP 4-20B

X-9

instructions (continued)
FSUBR (8087)/Subtract Real

Reversed 4-210
FSUBRP (8087)/Subtract Real

Reversed and POP 4-215
FTST (8087)/Test 4-217
FWAIT (8087)/Wait (CPU Instruc

tion) 4-219
FXAM (8087)/Examine 4-221
FXCH (8087)/exchange

registers 4-223
FXTRACT (8087)/Extract Expo

nent and Significand 4-226
FYL2X (8087)/Y * log2X 4-228
FYL2XP1 (8087)/Y * log base 2

(X+ 1) 4-230
F2XM 1 (8087)/2 to the X power

-1 4-59
HL T/Halt 4-232
IDIVllnteger Division,

Signed 4-233
IMUL (80286)/lnteger Immediate

Multiply 4-238
IMULllnteger Multiply 4-236
INllnput Byte or Word 4-240
INC/Increase Destination by

One 4-242
INSIINSB/INSW (80286)lInput

from Port to Stri ng 4-245
INT (80286P)lInterrupt 4-249
INT/lnterrupt 4-247
INTO/Interrupt If Overflow 4-252
IRET/lnterrupt Return 4-254
J(condition)/Jump Short If Condi-

tion Met 4-256
JA/Jump if Above 4-257
JAE/Jump If Above or

Equal 4-257
JB/Jump If Below 4-257
JBE/Jump If Below Or

Equal 4-257
JC/Jump If Carry 4-257
JCXZ/Jump If CX Is Zero 4-257
JE/Jump If Equal 4-257

X-10

instructions (continued)
JG/Jump If Greater 4-257
JGE/Jump If Greater or

Equal 4-257
JLlJump If Less 4-257
JLE/Jump If Less or

Equal 4-257
JMP/Jump 4-259,4-263
JNA/Jump If Not Above 4-257
JNAE/Jump If not Above nor

Equal 4-257
JNB/Jump If Not Below 4-257
JNBE/Jump if Not Below or

Equal 4-257
JNC/Jump If No Carry 4-257
JNE/Jump If Not Equal 4-257
JNG/Jump If Not Greater 4-257
JNGE/Jump If Not Greater nor

Equal 4-257
JNLlJump If Not Less 4-257
JNLE/Jump If Not Less nor

Equal 4-257
JNO/Jump If No overflow 4-257
JNP/Jump If No Parity 4-257
JNS/Jump If No Sign/lf

Positive 4-257
JNZ/Jump If Not Zero 4-257
JO/Jump On Overflow 4-257
JP/Jump On Parity 4-257
JPE/Jump If Parity Even 4-257
JPO/Jump If Parity Odd 4-257
JS/Jump On Sign 4-257
JZ/Jump If Zero 4-257
LAHF/Load AH from

Flags 4-266
LAR (80286)/Load Access

Rights 4-267
LOS/Load Data Segment

Register 4-269
LEA/Load Effective

Address 4-271
LEAVE (80286)/High Level Proce

dure Exit 4-273
LES/Load Extra Segment Reg

ister 4-275

instructions (continued)
LGDT(80286P)/Load Global

Descriptor Table 4-277
LlDT(80286P)/Load Interrupt

Descriptor Table 4-279
list of 8-1
LLDT(80286P)/Load Local

Descriptor Table 4-281
LMSW(80286P)/Load Machine

Status Word 4-283
loading constants 8-10
LOCK/Lock 8us 4-285
LODS/LODS8/LODSW/ Load 8yte

or Word String 4-287
LOOP/Loop Until Count

Complete 4-290
LOOPE/LOOPZ/Loop If Equaillf

Zero 4-292
LOOPNE/LOOPNZ/Loop If Not

Equal/Not Zero 4-294
LSL(80286P)/Load Segment

Limit 4-296
L TR(80286P)/Load Task

Register 4-298
making comparisions 8-8
manipulating strings 8-4
mode field 2-19
MOV/Move 4-299
moving data 8-2, 8-8, 8-12
MOVS/MOVS8/MOVSW/ Move

8yte or Word String 4-305
MULlMultiply, Unsigned 4-308
NEG/Negate, Form Two's Com-

plement 4-310
NOP/No Operation 4-312
NOT/Logical Not 4-313
OR/Logical Inclusive Or 4-315
OUT/Output 8yte or Word 4-319
OUTS/OUTS8/0UTSW

(80286)/Output String to
Port 4-321

POP/Pop Word Off Stack to Desti
nation 4-323

POPA (80286)/Pop All General
Registers 4-326

instructions (continued)
POPF/Pop Flags Off Stack 4-327
preparing for high level lan

guages 8-13
processing logic 8-4,8-13
PUSH (80286)/Push Immediate

onto Stack 4-332
PUSH/Push Word onto

Stack 4-329
PUSHA (80286)/Push All General

Registers 4-334
PUSHF/Push Flags onto

Stack 4-335
RCL (80286)/Rotate Left Through

Carry 4-339
RCLlRotate Left Through

Carry 4-336
RCR (80286)/Rotate Right

Through Carry 4-344
RCR/Rotate Right Through

Carry 4-342
register field 2-20
register/memory field 2-20
REP/Repeat String

Operation 4-347
REPE/Repeat String

Operation 4-347
REPNE/Repeat String

Operation 4-347
REPNZ/Repeat String

Operation 4-347
REPZ/Repeat Stri ng

Operation 4-347
RET/Return from

Procedure 4-350
ROL (80286)/Rotate Left 4-356
ROll Rotate Left 4-354
ROR (80286)/Rotate Right 4-362
ROR/Rotate Right 4-359
SAHF/Store AH in Flags 4-365
SAL (80286)/Shift Arithmetic

Left 4-369
SALlShift Arithmetic Left 4-366
SAR (80286)/Shift Arithmetic

Right 4-374

X-11

instructions (continued)
SAR/Shift Arithmetic

Right 4-372
SBB/Subtract with

Borrow 4-377
SCAS/SCASB/SCASW / Scan Byte

or Word String 4-381
setting the mode B-13
SGDT(80286P)/Store Global

Descriptor Table 4-384
SHL (80286)/Shift Logical

Left 4-369
SHLlShift Logical Left 4-366
SHR (80286)/Shift Logical

Right 4-389'
SHR/Shift Logical Right 4-386
SIDT(80286P)/Store Interrupt

Descriptor Table 4-392
SLDT(80286P)/Store Local

Descriptor Table 4-394
SMSW(80286P)/Store Machine

Status Word 4-395
STC/Set Carry Flag 4-396
STD/Set Direction Flag 4-397
STI/Set Interrupt Flag

(Enable) 4-398
STOS/STOSB/STOSW/ Store Byte

or Word String 4-399
STR(80286P)/Store Task

Register 4-401
SUB/Subtract 4-403
TEST/Test (Logical

Compare) 4-407
verifying fields B-12
VERR (80286P)/Verify Read

Access 4-410
VERW(80286P)/Verify Write

Access 4-412
WAIT/Wait 4-414
XCHG/Exchange 4-415
XLAT/Translate 4-417
XOR/Exclusive OR 4-418

instructions,80286 2-18

X-12

instructions,80287 2-19
instructions, 8087 2-18
INT (80286P)/lnterrupt 4-249
INT/lnterrupt 4-247
integer add (8087)

instruction 4-106
Integer Compare (8087)

instruction 4-108
Integer Compare and Pop (8087)

instruction 4-111
Integer Divide (8087)

instruction 4-114
Integer Divide Reversed (8087)

instruction 4-116
integer division, signed

instruction 4-233
Integer Immediate Multiply (80286)

instruction 4-238
Integer Load (8087)

instruction 4-118
Integer Multiply (8087)

instruction 4-120
Integer Multiply instruction 4-236
Integer Store (8087)

instruction 4-124
Integer Store and Pop (8087)

i nstructi on 4-126
Integer Subtract (8087)

i nstructi on 4-128
Integer Subtract Reversed (8087)

instruction 4-130
Interrupt Descriptor Table Register,

loading 4-279
Interrupt Descriptor Table,

storing 4-392
interrupt flag, clearing 4-38
interrupt flag, setting 4-398
Interrupt If Overflow

instruction 4-252
Interrupt instruction 4-247,4-249
interrupti ng 4-247, 4-249

clearing interrupt enable mask
(8087) 4-163

enable interrupts 4-104

interrupting (continued)
if overflow 4-252
preventing 4-87
returning 4-254
setting interrupt enable mask

(8087) 4-162
INTOllnterrupt If Overflow 4-252
IRETllnterrupt Return 4-254
IRP pseudo-op 3-56
IRPC pseudo-op 3-58

J
J(condition)/Jump Short If Condition

Met 4-256
JA/Jump if Above 4-257
JAE/Jump If Above or Equal 4-257
JB/Jump If Below 4-257
JBE/Jump If Below Or Equal 4-257
JC/Jump If Carry 4-257
JCXZ/Jump If CX Is Zero 4-257
JE/Jump If Equal 4-257
JG/Jump If Greater 4-257
JGE/Jump If Greater or

Equal 4-257
JLlJump If Less 4-257
JLE/Jump If Less or Equal 4-257
JMP/Jump 4-259,4-263
JNA/Jump If Not Above 4-257
JNAE/Jump If not Above nor

Equal 4-257
JNB/Jump If Not Below 4-257
JNBE/Jump if Not Below or

Equal 4-257
JNC/Jump If No Carry 4-257
JNE/Jump If Not Equal 4-257
JNG/Jump If Not Greater 4-257
JNGE/Jump If Not Greater nor

Equal 4-257
JNLlJump If Not Less 4-257
JNLE/Jump If Not Less nor

Equal 4-257
JNO/Jump If No overflow 4-257

JNP/Jump If No Parity 4-257
JNS/Jump If No Sign/If

Positive 4-257
JNZ/Jump If Not Zero 4-257
JO/Jump On Overflow 4-257
JP/Jump On Parity 4-257
JPE/Jump If Parity Even 4-257
JPO/Jump If Parity Odd 4-257
JS/Jump On Sign 4-257
Jump instruction 4-259,4-263
Jump Short If Condition Met instruc-

tion 4-256
jumping 4-259,4-263

short, if condition met 4-256
JZ/Jump If Zero 4-257

L
LABEL pseudo-op 3-59
LAHF/Load AH from Flags 4-266
LALL pseudo-op 3-61
LAR (80286)/Load Access

Rights 4-267
LOS/Load Data Segment

Register 4-269
LEA/Load Effective Address 4-271
LEAVE (80286)/High Level Proce

dure Exit 4-273
LES/Load Extra Segment

Register 4-275
LFCOND pseudo-op 2-5, 3-62
LGDT (80286P)/Load Global

Descriptor Table 4-277
LlDT (80286P)/Load Interrupt

Descriptor Table 4-279
LIST pseudo-op 3-63
listing pseudo-ops 2-4
listing, page size 3-71
literal-text operator 3-9
LLDT (80286P)/Load Local

Descriptor Table 4-281
LMSW (80286P)/Load Machine

Status Word 4-283

X-13

Load + 1.0 (8087) instruction 4-136
Load Access Rights (80286) instruc

tion 4-267
Load AH from Flags

instruction 4-266
Load Byte or Word String

instruction 4-287
Load Control Word (8087) instruc

tion 4-138
Load Data Segment Register

instruction 4-269
Load Effective Address

instruction 4-271
Load Environment (8087)

instruction 4-140
Load Extra Segment Register

instruction 4-275
Load Global Descriptor Table

(80286P) instruction 4-277
Load Interrupt Descriptor Table

(80286P) instruction 4-279
Load Local Descriptor Table

(80286P) instruction 4-281
load log base e of 2 (8087) instruc

tion 4-148
load log base 102 (8087)

instruction 4-146
load log base 2 10 (8087)

instruction 4-144
load log e (808?) instruction 4-142
Load Machine Status Word (80286P)

instruction 4-283
Load PI (8087) instruction 4-150
Load Real (8087) instruction 4-132
Load Segment Limit (80286P)

instruction 4-296
Load Task Register (80286P)

instruction 4-298
Load Zero (8087) instruction 4-152
loading

access rights 4-267
AH from flags 4-266
byte or word string 4-287
data segment register 4-269

X-14

loading (continued)
effective address 4-271
extra segment register 4-275
Global Descriptor Table

Register 4-277
Interrupt Descriptor Table Reg

ister 4-279
Local Descriptor Table

Register 4-281
Machine Status Word 4-283
segment limit 4-296
Task Register 4-298

LOCAL 2-8
Local Descriptor Table Register,

loading 4-281
Local Descriptor Table,

storing 4-394
Lock Bus instruction 4-285
LOCK/Lock Bus 4-285
LODS/LODSB/LODSW/ Load Byte or

Word Stri ng 4-287
Logical AND instruction 4-16
Logical Inclusive Or

instruction 4-315
logical instructions

exclusive OR 4-418
logical AND 4-16
Logical Inclusive Or 4-315
Logical Not 4-313
Test (logical compare) 4-407

Logical Not instruction 4-313
Loop If Equal/If Zero

instruction 4-292
Loop If Not Equal/Not Zero instruc

tion 4-294
Loop Until Count Complete instruc

tion 4-290
LOOP/Loop Until Count

Complete 4-290
LOOPE/LOOPZ/Loop If Equal/If

Zero 4-292
looping

if equal 4-292
if not equal 4-294

looping (continued)
if not zero 4-294
if zero 4-292
until count complete 4-290

LOOPNE/LOOPNZ/Loop If Not
Equal/Not Zero 4-294

LSL (80286P)/Load Segment
Limit 4-296

L TR (80286P)/Load Task
Register 4-298

M
Machine Status Word,

loading 4-283
Machine Status Word,

storing 4-395
Macro Assembler error

messages A-2
macro operator, special 3-10
macro operators, special 3-7, 3-8,

3-11
MACRO pseudo-op 3-65
macro pseudo-ops 2-7
MAKE error messages A-42
Make Stack Frame for Procedure

Parameters (80286)
instruction 4-56

MASK operator 3-79, 3-81
masks

clearing interrupt enable
mask 4-104

clearing interrupt enable mask
(8087) 4-163

setting interrupt enable
mask 4-162

memory
saving 3-8
workspace 3-8

memory combine-type 3-84
memory 3-84

MODE command, printer 3-72
mode field 2-19

mode of operation, 8087 4-138
mode pseudo-ops 2-16
modulo division (8087) 4-178
MOV /Move 4-299
Move Byte or Word String instruc

tion 4-305
Move instruction 4-299
moving 4-299

byte or word stri ng 4-305
MOVS/MOVSB/MOVSW/ Move Byte

or Word String 4-305
MSW, storing 4-395
MULlMultiply, Unsigned 4-308
multiplication

integer 4-236
integer immediate 4-238
unsigned 4-308

multiplication instructions
ASCII adjust for multiply 4-5
integer multiply (8087) 4-120
multiply real (8087) 4-154
multiply real and pop

(8087) 4-159
Multiply Real (8087)

instruction 4-154
Multiply Real and Pop (8087)

instruction 4-159
Multiply, Unsigned

instruction 4-308

N
NAME pseudo-op 3-68
NEAR type attribute 3-73
NEG/Negate, Form Two's Comple-

ment 4-310
Negate, Form Twos Complement

instruction 4-310
No Operation (8087)

instruction 4-165
No Operation instruction 4-312
NOP/No Operation 4-312
NOT/Logical Not 4-313

X-15

number, converting to 3-11

o
opel'and list, MACRO

pseudo-op 2-7
operations, pseudo 2-1
operations, pseudo-op 3-1
operator

MASK 3-79,3-81
ops, pseudo 2-1
option /X 3-61
option, /A 3-46
option, /0 3-63
option, /E 2-16,3-6
option, /R 2-16, 3-6
option, /S 3-46
option, /X 2-5, 2-6, 3-91
OR/Logical Inclusive Or 4-315
ORG pseudo-op 3-69
OUT (%OUT) 3-70
OUT/Output Byte or Word 4-319
Output Byte or Word

instruction 4-319
output instructions

output byte or word 4-319
output string to port 4-321

Output String to Port
instruction 4-321

OUTS/OUTSB/OUTSW
(80286)/Output String to
Port 4-321

p
Packed Decimal (BCD) Load (8087)

instruction 4-69
Packed Decimal (BCD) Store and

Pop (8087) instruction 4-71
page align-type 3-83
PAGE pseudo-op 3-71
para align-type 3-83
parameter list, MACRO

pseudo-op 2-7

X-16

parameter, dummy 3-7
parameters, MACRO

pseudo-op2-7
parameters, pseudo-op 2-8
Partial Remainder (8087)

instruction 4-178
Partial Tangent (8087)

i nstructi on 4-180
percent operator 3-11
Pop All General Registers (80286)

instruction 4-326
Pop Flags Off Stack

instruction 4-327
Pop Word Off Stack to Destination

instruction 4-323
POP/Pop Word Off Stack to Destina

tion 4-323
POPA (80286)/Pop All General Reg

isters 4-326
POPF/Pop Flags Off Stack 4-327
popping stack

add real and pop (8087) 4-67
compare real and pop

(8087) 4-79
compare real and pop twice

(8087) 4-83
divide real and pop (8087) 4-94
divide real reversed and pop

(8087) 4-102
flags off stack 4-327
general registers, all 4-326
integer compare and pop

(8087) 4-111
integer store and pop

(8087) 4-126
multiply real and pop

(8087) 4-159
packed decimal store and pop

(8087) 4-71
store real and pop (8087) 4-196
subtract real and pop

(8087) 4-208
subtract real reversed and pop

(8087) 4-215

popping stack (continued)
word off stack to

destination 4-323
Y * log2X function 4-228

privilege level, adjusting 4-20
PROC pseudo-op 3-73
procedure

call i ng 4-24, 4-29
processor control word, replace

ment 4-138
processor, reset 4-164
protected mode, setting

(80287) 4-187
pseudo-operations,

introduction 2-1
pseudo-ops

;; macro operator 3-8
.ALPHA 3-13
.CREF 3-17
.ERR/.ERR1/.ERR2 3-36
.ERRB/.ERRNB 3-38
.ERRDEF/.ERRNDEF 3-39
.ERRE/.ERRNZ 3-40
.ERRIDN/.ERRDIF 3-41
.LALL 3-61
.LFCOND 2-5
.LFCOND (List False Condi-

tionals) 3-62
.LlST 3-63
.RADIX 3-77
.SALL 3-61
.SEQ 3:-86
.SFCOND 2-5, 3-87
.TFCOND 2-5, 3-91
.XALL 3-61
.XCREF 3-17
.XLlST 3-63
.186 (Set 80186 Mode) 3-1
.286C (Set 80286 Mode) 3-2
.286P (Set 80286 Protected

Mode) 3-3
.287 (Set 80287 Floating Point

Mode) 3-4
.8086 (Reset 80286 Mode) 3-5

pseudo-ops (continued)
& macro operator 3-7
% macro operator 3-11
%OUT 3-70
= (equal sign) 3-12
ASSUME 3-14
ASSUME NOTHING 3-14
changing modes B-18
COMMENT 3-16
Conditional 2-2
conditional error 2-3
controlling listings B-17
Data 2-4
DB (define byte) 3-18
DO (Define Doubleword) 3-20
DO (Defi ne Ouadword) 3-22
DT (define Tenbytes) 3-24
OW (define word) 3-26
ELSE 3-28
END 3-29
ENDIF 3-31
EN OM 3-32
ENDP 3-33
ENDS 3-34
EOU 3-35
EVEN 3-42
EXITM 3-43
EXTRN 3-44
GROUP 3-46
IFxxxx 3-4~

INCLUDE 3-54
IRP 3-56
IRPC 3-58
LABEL 3-59
list of B-1
Listing 2-4
LOCAL 3-64
MACRO 2-7,3-65
macro forms 3-8, 3-11
macro operators 3-8, 3-11
manipulating data B-17
Mode 2-16
NAME 3-68
ordering segments B-16

X-17

pseudo-ops (continued)
ORG 3-69
OUT (%OUT) 3-70
PAGE 3-71
PROC 3-73
PUBLIC 3-75
PURGE 3-76
RECORD 3-79
REPT 3-82
SEGMENT 3-83
segment order 2-17
STRUC 3-88
SUBTTL 3-90
TITLE 3-92
using conditional errors B-15
using conditionals B-14
using macros B-18
width 3-81

PTR operator 3-12,3-35
public combine-type 3-84
PUBLIC pseudo-op 3-75
PURGE pseudo-op 3-76
PUSH (80286)/Push Immediate onto

Stack 4-332
Push All General Registers (80286)

instruction 4-334
Push Flags onto Stack

instruction 4-335
Push Immediate onto Stack (80286)

instruction 4-332
Push Word onto Stack

instruction 4-329
PUSH/Push Word onto Stack 4-329
PUSHA (80286)/Push All General

Registers 4-334
PUSHF/Push Flags onto

Stack 4-335
pushing

word onto stack 4-329
pushing stack

flags onto stack 4-335
general registers, all

(80286) 4-334
immediate onto stack 4-332

X-18

pushing stack (continued)
integer load (8087) 4-118
load + 1.0 (8087) 4-136
load log base e of 2

R

(8087) 4-148
load log base 102 (8087) 4-146
load log base 2 10 (8087) 4-144
load log e (8087) 4-142
load PI (8087) 4-150
load real (8087) 4-132
load zero (8087) 4-152
packed decimal (BCD) load

(8087) 4-69
with calling a procedure 4-24,

4-29

rIm field (register/memory
field) 2-19

RADIX pseudo-op 3-77
RCL (80286)/Rotate Left Through

Carry 4-339
RCLlRotate Left Through

Carry 4-336
RCR (80286)/Rotate Right Through

Carry 4-344
RCR/Rotate Right Through

Carry 4-342
read access, verifying 4-410
RECORD 3-79
redefining constants 3-12
register field 2-20
register, flag 2-21
reloading environment 4-140
reloading 8087 4-166,4-183
REP/REPZ/REPE/REPNE/REPNZ/Repec

String Operation 4-347
repeat block pseudo-ops 2-7
Repeat String Operation

instruction 4-347
REPT pseudo-op 3-82
requested privilege level,

adjusting 4-20

resetting
80286 Mode 3-5

Restore State (8087)
instruction 4-166, 4-183

restoring general purpose
registers 4-326

restoring saved flag
registers 4-254

RET/Return from Procedure 4-350
retu rn codes A-46
Return from Procedure

instruction 4-350
reversed direction instructions

divide read reversed
(8087) 4-96

divide real reversed and pop
(8087) 4-102

integer divide reversed
(8087) 4-116

integer subtract reversed
(8087) 4-130

subtract real reversed
(8087) 4-210

ROL (80286)/Rotate Left 4-356
ROLlRotate Left 4-354
ROR (80286)/Rotate Right 4-362
ROR/Rotate Right 4-359
Rotate Left instruction 4-354,4-356
Rotate Left Through Carry (80286)

instruction 4-339
Rotate Left Through Carry instruc

tion 4-336
Rotate Right instruction 4-359,

4-362
Rotate Right Through Carry (80286)

instruction 4-344
Rotate Right Through Carry instruc

tion 4-342
rotating

left 4-354
left (80286) 4-356
left through carry 4-336
left through carry (80286) 4-339
right 4-359

rotating (continued)
right (80286) 4-362
right through carry 4-342
right through carry

(80286) 4-344
Round to Integer (8087)

instruction 4-182
rounding instructions

integer store (8087) 4-124
integer store and pop

(8087) 4-126
rounding to integer (8087) 4-182

RPL, adjusting 4-20
rules, conventions 1-1

5
SAHF/Store AH in Flags 4-365
SAL (80286)/Shift Arithmetic

Left 4-369
SALlShift Arithmetic Left 4-366
SALL pseudo-op 3-61
SALUT error messages A-1
SALUTERR A-1
SAR (80286)/Shift Arithmetic

Right 4-374
SAR/Shift Arithmetic Right 4-372
Save State (8087)

instruction 4-167,4-184
SBB/Subtract with Borrow 4-377
Scale (8087) instruction 4-185
Scan Byte or Word String

instruction 4-381
SCAS/SCASB/SCASW / Scan Byte or

Word String 4-381
segment 3-83

pseudo-op 3-83
segment limit, loading 4-296
segment order pseudo-ops 2-17
semicolons, double 3-8
Set Carry Flag instruction 4-396
Set Direction Flag

instruction 4-397

X-19

Set Interrupt Flag instruction 4-398
Set Protected Mode (80287) instruc

tion 4-187
setting

.8087 (Set 8087-80287
Mode) 3-6

! macro operator 3-10
macro forms 3-10
macro operators 3-10
80186 Mode 3-1
80286 Mode 3-2
80286 Protected Mode 3-3
80287 Floating Point Mode 3-4

setting constants 3-12
SFCOND pseudo-op 2-5, 3-87
SGDT (80286P)/Store Global

Descriptor Table 4-384
Shift Arithmetic Left (80286) instruc

tion 4-369
Shift Arithmetic Left

instruction 4-366
Shift Arithmetic Right

instruction 4-372
Shift Logical Left (80286)

instruction 4-369
Shift Logical Left instruction 4-366
Shift Logical Right (80286) instruc

tion 4-389
Shift Logical Right

instruction 4-386
shifting

arithmetic left 4-366
arithmetic left (80286) 4-369
arithmetic right 4-372
arithmetic right (80286) 4-374
logical left 4-366
logical left (80286) 4-369
logical right 4-386
logical right (80286) 4-389

SHL (80286)/Shift Logical
Left 4-369

SHLlShift Logical Left 4-366
SHR (80286)/Shift Logical

Right 4-389

X-20

SHRIShift Logical Right 4-386
SIDT (80286P)/Store Interrupt

Descriptor Table 4-392
sign, reversing 4-73
SLDT (80286P)/Store Local

Descriptor Table 4-394
SMSW (80286P)/Store Machine

Status Word 4-395
special

macro forms 3-7
macro operators 3-7

Square Root (8087)
instruction 4-188

stack combine-type 3-84
stack 3-84

stack frame, creating 4-56
stack pointer

decreasing 4-85
increasing 4-122

stack top
comparing 4-75,4-79,4-83,

4-108, 4-111
examining (8087) 4-221
extracti ng exponent and

significand (8087) 4-226
reversing sign 4-73
rounding 4-124
transferring 4-190,4-196

state, saving 4-167,4-184
status word AX, storing 4-201
status word AX, storing

(80287) 4-174
status word, storing 4-172,4-200
status, storing 4-170,4-194
STC/Set Carry Flag 4-396
STD/Set Direction Flag 4-397
STIiSet Interrupt Flag

(Enable) 4-398
Store AH in Flags instruction 4-365
Store Byte or Word String instruc

tion 4-399
Store Control Word (8087) instruc

tion 4-169,4-193

Store Environment (8087) instruc
tion 4-170,4-194

Store Global Descriptor Table
(80286P) instruction 4-384

Store Interrupt Descriptor Table
(80286P) instruction 4-392

Store Local Descriptor Table
(80286P) instruction 4-394

Store Machine Status Word (80286P)
instruction 4-395

Store Real (8087) instruction 4-190
Store Real and Pop (8087) instruc

tion 4-196
Store Status Word (8087)

instruction 4-172, 4-200
Store Status Word AX (80287)

instruction 4-174,4-201
Store Task Register (80286P)

instruction 4-401
storing instructions

byte or word stri ng 4-399
integer store (8087) 4-124
integer store and pop

(8087) 4-126
packed decimal store and pop

(8087) 4-71
save state (8087) 4-167
store real (8087) 4-190
store real and pop (8087) 4-196
storing control word

(8087) 4-169,4-193
storing environment

(8087) 4-170
storing status word

(8087) 4-172,4-200
storing status word AX

(80287) 4-174,4-201
task register (80286P) 4-401

STOS/STOSB/STOSW/ Store Byte or
Word String 4-399

STR (80286P)/Store Task
Register 4-401

STRUC pseudo-op 3-88

SUB/Subtract 4-403
Subtract instruction 4-403
Subtract Real (8087)

instruction 4-203
Subtract Real and Pop (8087)

instruction 4-208
Subtract Real Reversed (8087)

instruction 4-210
Subtract Real Reversed and Pop

(8087) instruction 4-215
Subtract with Borrow

instruction 4-377
subtraction 4-403

with borrow 4-377
subtraction instructions

ASCII adjust for subtraction 4-6
decimal adjust for

subtraction 4-50
decrease destination by

one 4-51
integer subtract (8087) 4-128
integer subtract reversed

(8087) 4-130
subtract real (8087) 4-203
subtract real and pop

(8087) 4-208
subtract real reversed

(8087) 4-210
subtract real reversed and pop

(8087) 4-215
SUBTTL pseudo-op 3-90
swapping registers (8087) 4-223
symbol definitions 2-22

T
tag-changing instructions

free register 4-105
tangent, partial, calculating 4-180
Task Register, loading 4-298
Task Register, storing 4-401
task switched flag, clearing 4-39
Test (8087) instruction 4-217

X-21

Test instruction 4-407
TEST/Test (Logical

Compare) 4-407
testing

assembly-time conditions 2-3
boundary conditions 2-3

TFCOND pseudo-op 2-5, 3-91
TITLE pseudo-op 3-92
transcendental functions, reducing

arguments of 4-178
Translate instruction 4-417
two semicolon operator 3-8

U
unnumbered error messages A-12

V
VA 4-32
VADW 4-32
vector, scaling elements of 4-185
Verify Read Access (80286P)

instruction 4-410
Verify Write Access (80286P)

instruction 4-412
VERR (80286P)/Verify Read

Access 4-410
VERW (80286P)/Verify Write

Access 4-412
Virtual Address 4-32
Virtual Address Double Word 4-32

W
Wait (8087) instruction 4-219
Wait instruction 4-414
WAIT/Wait 4-414
width operator, usage 3-81
word align-type 3-83
write access, verifying 4-412

X-22

X
XALL pseudo-op 3-61
XCHG/Exchange 4-415
XCREF pseudo-op 3-17
XLAT/Translate 4-417
XLiST pseudo-op 3-63
XOR/Exclusive OR 4-418

y
Y * log base 2 (X + 1) (8087) instruc

tion 4-230
Y * log2X (8087) instruction 4-228
Y = 2 to the X power -1 (8087)

instruction 4-59

Numerics
80186 Mode, setting 3-1
80286 i nstructi ons 2-18
80286 Mode, resetting 3-5
80286 Mode, setting 3-2
80286 Protected Mode, setting 3-3
80286/80386-based IBM personal

computers 2-16
80287 Floating Point Mode,

setting 3-4
80287 instructions 2-19
80287 math coprocessor

feature 2-16
8087 instructions 2-18
8087 math coprocessor

feature 2-16
8087, reloading 4-166,4-183
8088-based IBM personal com

puters 2-16

Notes:

Notes:

Notes:

Notes:

Notes:

Notes:

Notes:

Notes:

© IBM Corp. 1987
All rights reserved.

International Business
Machines Corporation .
PO. Box 1328-W
Boca Raton,
Florida 33429-1328

Printed in the
United States of America

OOF8619

---------- - ---- ----- -- ---- - - ------------_ . - ,.

