
I

T

--- ------ - ---- ---- - ---- - - ----_._----_.,,-
Personal Computer
Computer Language
Series

Disk
Operating
System

First Edition Revised (January 1982)

Changes are periodically. made:to the information herein; these
changes will be incorporated in new editions of this publication.

Products are not stocked at the address below. Requests for copies of
. this product and for technical information abollt the system:should
be made to your authorized IBM Personal Computer Dealer.

A BroductComment Form 'is provided at the back of this
publication. If this formha:s been removed, address comment to:
IBM Corp., Personal Computer, P.O. Box 132S-C, Boca Raton,
Florida 33432. IBM may use or distribute any of the information
you supply in any way it believes appropriate without incurring
any obligations whatever.

©Copyright International.Business Machines Corporation 19S1

(
I;

CONTENTS

Preface vii
Prerequisite Publication . . vii
Organization of this manual vii
Data Security viii

CHAPTER 1. INTRODUCTION 1-1
What is DOS? 1-3

What are the parts of DOS? . 1-3
A Few Words about Files . . . 1-5

What is a file? 1-5
What can I name my files? . 1-5
How many files can I have? 1-6
How does DOS keep track of my files? 1-6
Why is this information important to me? 1-6
Formatting your diskettes 1-7
Why you should back up your diskettes 1-7

CHAPTER 2. STARTING DOS . . . 2-1
How to Start DOS 2-3

If Your Computer Power is Off 2-3
If Your Computer Power is Already On 2-4
How to Enter the Date 2-5
Specifying the Default Drive 2-6

Automatic Program Execution 2-7
Single-Drive Systems 2-8
Control Keys 2-10
DOS Editing Keys 2-15

Examples of Ways to Use DOS Editing
Keys 2-19

CHAPTER 3. DOS COMMANDS 3-1
Introduction 3-3
Types of DOS Commands 3-4
Format Notation 3-5
DO S Command Parameters 3-6

Reserved Device Names 3-8
Global Filename Characters 3-9

iv

Detailed Descriptions of the DOS Commands
Information Common to All DOS

Commands
Batch Processing

The AUTOEXEC.BAT File .. .
Creating a .BAT File With Replaceable

Parameters
Executing a .BAT File With Replaceable

Parameters
CHKDSK (Check Disk) Command
COMP (Compare Files) Command
COpy Command
DATE Command
DIR (Directory) Command
DISKCOMP (Compare Diskette) Command
DISKCOPY (Copy Diskette) Command
ERASE Command
FORMAT Command
MODE Command ..
PAUSE Command
REM (Remark) Command
RENAME Command . .
SYS (System) Command .
TIME Command
TYPE Command
Summary of DOS Commands

CHAPTER 4. THE LINE EDITOR (EDLIN)
In troduction
How to Start the EDLIN Program
The ED LIN Command Parameters
The ED LIN Commands

Information Common to All EDLIN
Commands

Append Lines Command
Delete Lines Command
Edit Line Command
End Edit Command . .
Insert Lines Command
List Lines Command .
Quit Edit Command
Replace Text Command
Search Text Command .
Write Lines Command
Summary of ED LIN Commands

3-12

3-12
3-14
3-15

3-16 I

3-17
3-19
3-21
3-23
3-27
3-29
3-32
3-34
3-37
3-38
3-41
3-43
3-44
3-45
3-46
3-47
3-49
3-50

4-1
4-3
4-4
4-6
4-9

4-9
4-11
4-12
4-16
4-18
4-19
4-22
4-26
4-27
4-30
4-33
4-34

CHAPTER 5. THE LINKER (LINK) PROGRAM. 5-1
Introduction 5-3
Files 5-4

Input Files . 5-4
Output Files 5-4
VM.TMP (Temporary File) 5-5

Definitions . 5-6
Segment 5-6
Group . 5-7
Class . . 5-7

Command Prompts 5-8
Detailed Descriptions of the Command

Prompts 5-10
Object Modules: 5-10
Run File: 5-11
List File [run-filename.MAP] : 5-11
Libraries [] : 5-12
Publics [No]: 5-13
Line Numbers [No] : 5-13
Stack Size [Object file stack] : 5-13
Load Low [Yes]: ... 5-14
DSAllocation [No]: . . 5-15

Special Command Characters 5 -16
How to Start LINK 5-17

Before You Begin . . . 5-1 7
Example of an Automatic Response File 5-19
Example Linker Session 5-20
Load Module Memory Map 5-24
How to Determine the Absolute Address

of a Segment 5-25
Messages 5-26

CHAPTER 6. THE DEBUG PROGRAM 6-1
Introduction 6-3
How to Start the DEBUG Program . . . 6-4
The DEBUG Command Parameters. . . 6-6
The DEBUG Commands 6-10

Information Common to All DEBUG
Commands 6-10

Dump Command 6-12
Enter Command 6-15
Fill Command 6-1 8
Go Command . . 6-19
Hexarithmetic Command 6-22
Input Command 6-23
Load Command 6-24

v

Move Command 6-27
Name Command 6-28
Output Command 6-30
Quit Command . . 6-31
Register Command 6-32
Search Command . 6-37
Trace Command 6-38
Unassemble Command 6-40
Write Command 6-43
Summary of DEBUG Commands 6-47

APPENDIX A. MESSAGES . . . A-3

APPENDIX B. DOS TECHNICAL
INFORMATION B-1

DOS Structure B-1
DOS Initialization B-2
The Command Processor B-3

Replacing the Command Processor B-4
Available DOS Functions B-5
Diskette/File Management Notes B-6
The Disk Transfer Area (DT A) B-7
Error Trapping B-7
General Guidelines B-8
Example of Using DOS Functions B-9

APPENDIX C. DOS DISKETTE ALLOCATION C-l
DOS Diskette Directory C-3
DOS File Allocation Table C-6

How to Use the File Allocation Table C-8

APPENDIX D. DOS INTERRUPTS AND
FUNCTION CALLS D-l

Interrupts D-l
Function Calls D-7

APPENDIX E. DOS CONTROL BLOCKS AND
WORK AREAS E-l

DOS Memory Map . . . E-1
DOS Program Segment E-2
File Control Block . . . E-7

APPENDIX F. EXE FILE STRUCTURE AND
LOADING F-l

INDEX . . .X-1

vi

Preface

This reference manual explains how to use the IBM
Personal Computer Disk Operating System (DOS) ..
It provides information on how to issue commands to
DOS to create, edit, link, debug, and execute programs.

Prerequisite PUblication.

Regardless of your background or previous programming
experience, you should look at the Guide to Operations
before reading this manual. The chapter on "Using
DOS" should be especially helpful to you before you
approach the more detailed information that appears in
this manual.

Organization of this manual

This manual has six chapters and six appendixes.

Chapter I has some introductory information about DOS
and files.

Chapter 2 contains informatien about starting DOS, as
well as directions on how to use the control keys and
DOS editing keys.

Chapter 3 contains detailed descriptions of the
commands you can issue to DOS. These commands
enable you to manage files, maintain diskettes, and
create and execute programs.

Chapter 4 describes how to use the Line Editor (EDLIN)
program to create, alter, and display source language
files and text files.

Chapter 5 describes how to use the linker (LINK)
program to link programs together before execution.

Chapter 6 describes how the DEBUG program pn~vides
a controlled test environment so you can monitor and
control the execution of a program to be debugged; by
altering, displaying, and executing object files.

vii

, Appendix A lists messages generated by the programs
,described in this manual.

Appendix B oon tains general technical infonnation, and
introouces::the technical ilaformation in Appendixes
C-E.

Appendix C describes allocation of space on diskettes.

Appendix D describes.thesystem ,interrupts and
function calls.

App-endix E describes control l3locksand work areas,
in;cl:udinga Memory Map, Program Segment, and File
Control Block.

Appendix F contains detailed information about .EXE
file structure and loading.

Data'Security

viii

The IBM -Personal Computer is a powerful and useful
tool to hel!) you with your personal and business
information processing needs. (As with any information
system:;oinadvertent errors may occur and information
may be misused.) We suggest that when processing
sensitive or highly valuable information, you take steps
to ensure your data .andprograms are protected from
accidental or unauthorized disclosure,modification,
destruction or misuse. Simple measures, such as:
removing diskettes when notinuse, keeping backup
copies of valuable information, or installing the
equi'pment in a secure facility, can goa long way to
maintain the integrity and;privacy of your information.

CHAPTER 1. INTRODUCTION

-Contents

What-is DOS? 1-3
What are ,the parts of DOS? . 1-3

A Few Words about:'Files. . . . 1-5
What is a file? 1-5
Whatcan I name my files? . 1-5
'How many files can I have? . 1-6
,How does DOS keep track ,of my files? . 1-6
Why:is this information important to me? . 1-6
Formatting your diskettes 1-7
Why Y0u,'Should hack up your diskettes. . 1-7

1-1

1-2

What is DOS?

The IBM Personal Computer Disk Operating System
(DOS) is a collection of programs designed to make it
easy for you to create and manage files, run programs,
and use the system devices (for example, the printer
and the disk drives) attached to your computer.

What are the parts of DOS?

There are four programs on your DOS diskette. These
four programs are the "heart" of your DOS:

1. The boot record. This program resides at the
beginning of your diskette. It is automatically
loaded into memory each time you start DOS.
The boot record is responsible for loading the
rest of DOS. It is placed on all diskettes by the
FORMAT program. FORMAT isa program that
is supplied with DOS and will be discussed later in
this chapter, and also in Chapter 3.

2. The fBMB/O.COM program. IBMBIO.COM is an
I/O (input/output) device handler program that
reads and writes data to and from the computer
memory and the devices attached to the computer.
This program is on your DOS diskette, but it is
not listed when you list the files on the diskette.
IBMBIO.COM is also put on your diskette by the
FORMAT program and occupies a specific
location on the diskette.

3. The fBMDOS.COM program. This program also
resides on your DOS diskette. Like IBMBIO.COM,
its filename does not appear when you list the files
in the directory.

1-3

1-4

IBMDOS.COM contains a file manager and a series
of service functions that can be used by any
program which is designed to run under DOS's
control.

4. The COMMAND. COM program. The
COMMAND.COM program is a command processor
that accepts commands you enter and runs the
appropriate programs.

All the programs on your DOS diskette are
designed to run under DOS's control.

A Few Words about Files

What is a file?

A file is a collection of related information. A file on
your diskette is like a folder in a file cabinet.

Nearly every business office has one or more filing
cabinets containing folders of information. Usually all
the information in a given folder is related. For
example, one folder might contain the names and
addresses of all employees. You might name this file
the Employee Master File. A file on your diskette
could also contain this information and could also be
named the Employee Master File.

All the programs on your diskette reside in files, each
with a unique name. You create a file whenever you
enter and save data.

Files are kept track of by their names.

What can I name my files?

With few exceptions, you can give your files any names
you want. Your diskette filenames can be 1-8 characters
in length and can be followed by a filename extension.
Filename extensions start with a period and can be 1-3
characters in length. For example, the Employee Master
File could be named EMPMSTR.FLE.

Filenames and filename extensions are discussed in
Chapter 3, in the section called "DOS Command
Parameters. "

1-5

How many files can I have?

Each diskette can contain up to 64 files. Files on your
diskette vary in size just like files in a file cabinet. If
your files contain a lot of information, your diskette
fills up with fewer than 64 files.

How does DOS keep track of my files?

The names of your files are kept on your diskette in a
system area known as the directory. The directory also
contains pertinent information concerning the size of
your files, their location on the diskette, and the dates
they were created or last updated.

The directory occupies four sectors at a specific
location on each diskette. For information concerning
sectors, refer to the "Using DOS" chapter in your Guide
to Operations.

Next to the directory is a system area known as a File
Allocation Table. Its job is to keep track of which
sectors belong to which files. The File Allocation Table
also keeps track of all available space on the diskette so
that you can create new files.

Each diskette has one directory and two copies of the
File Allocation Table. If the system has a problem
reading the first copy of the File Allocation Table, it
reads the second.

Why is this information important to me?

1-6

How DOS keeps track of your files is important to you
because these system areas are required on all diskettes
that DOS is expected to recognize (not just your DOS
diskette, but your other diskettes as well). The only
way to get this information on a diskette is to use the
FORMAT program-it comes on the DOS diskette.

Formatting your diskettes

You must format every diskette before it can be used
by DOS. You do not need to use FORMAT every time
you want to put information on a diskette-only the
first time you use a diskette.

FORMAT writes on every sector of your diskette, sets
up the directory and Fik Allocation Table, and puts the
boot record program at the beginning of your diskette.

FORMAT also creates a copy of DOS on a new diskette
if you specify it in your command. This way, you can
create a diskette containing DOS and have plenty of
space for your own <data on the same diskette. Keep in
mind that only DOS files are copied when you run
FORMAT-Rone of the other files you may have on
your DOS diskette are copied.

For more information about FORMAT, refer to
Chapter 3.

Why you should back up your diskettes

IBM strongly recommends that you make backup copies
of all your diskettes. If a diskette somehow becomes
damaged, or if files are accidentally erased, y'Ou wilLstill
have all your information.

Note: Don't forget, if the diskette you plan to use
as the backup diskette is new, you must FORMAT
it before you copy infonnation from the existing
diskette.

1-7

1-8

There are two ways to create a backup diskette:

• Use the DISKCOPY command: DISKCOPY
creates an exact image of an entire diskette on
another diskette. You can use this command to
either capy the DOS diskette or your own
diskette. DISKCOPY is the fastest way af co.pying
a diskette because it capies everything, including
DOS if it exists, in ane aperation.

• Use the COpy cammand to capy all files to. a new
diskette also. This is a slower method than
DISKCOPY, but it praduces the same end result
with one difference-yaur files will be written
sequentially (ane right after the ather).

If you use COpy and yau want the new diskette to.
cantain a copy af DOS, yau must first FORMAT
the diskette with the apprapriate option; then use
COPY. Unlike DISKCOPY, COpy will not copy
the system files for you.

Note: If either diskette involved in the capy
has defective tracks, ar if the diskette you
want to. capy fram has had a large amount of
file creatian/erasure activity, the COPY
method is recammended. COpy compensates
for the randam placement o.f data caused by
the creatian/erasure activity and results in
better performance.

The dates stared in the directary for each file are
unaffected by copying, whether yau use COpy ar
DISKCOPY.

Far more infarmatian abaut the COpy and DISKCOPY
commands, refer to Chapter 3.

Now that you are more familiar with DOS and files,
let's start up DOS.

CHAPTER 2. STARTING DOS

Contents·

How to Start DOS 2-3
If Your Computer Power is. Off 2-3
If Your Computer Power is Already- On 2-4
How to Enter the Date 2-5
Specifying the Default Drive 2-6

Autom'atic Program Execution 2-7

Single-Drive Systems 2-8

Control Keys 2-10

DOS Editing Keys 2-15
Exam pIes of Ways to Use DOS Editing Keys . 2-19

2-1

2-2

How to Start DOS

There are two ways to start DOS:

• If your computer power is off

• If your computer power is already on

If Your Computer Power is Off

1. Insert your DOS diskette in drive A.

2. Close the drive door.

3. If you have a printer, place the power switch
in the on position.

4. If your monitor has a separate power switch,
place the power switch in the on position.

5. Place the system unit power switch in the on
position.

2-3

If Your Computer Power is Already On

2-4

1. Insert your DOS diskette in drive A.

2. Close the drive door.

3. Press and hold both the Ctrl and Alt keys;
then, press the Del key. Release the three
keys. This procedure is known as a system
reset.

Either of these procedures automatically loads DOS into
memory. Loading DOS takes from 3 to 45 seconds,
depending on the memory size.

Once DOS is loaded, DOS searches your DOS diskette
for the COMMAND.COM program and loads it into
memory. Remember, the COMMAND program is a
command processor that accepts commands you enter
and runs the appropriate programs.

Now you must enter the date.

How to Enter the Date

When the command processor is loaded, the following
message will be displayed:

Enter today's date (m-d-y):_

where:

m is a one- or two-digit number from 1-12
d is a one- or two-digit number from 1-31
y is a two-digit number from 80-99 (the 19 is assumed),

or a four-digit number from 1980-2099.

Any date is acceptable as today's date as long as the
digits are in the correct ranges and the delimiters
(separators) between the numbers are either slashes
(/) or hyphens (-).

If you enter an invalid date or delimiter, the system
repeats the date prompt.

After you enter a valid date, you see this:

The IBM Personal Computer DOS
Version 1.00 (C) Copyright IBM Corp. 1981
A>

The command processor is now ready to accept your
commands. The date you enter is recorded in the
directory entry for any files that you create or change.

A> is the DOS prompt from the command processor.
Whenever you see A>, the system is waiting for you to
enter a command.

You have now completed the steps for starting DOS.

Note: If you did not receive the system messages
described, repeat the steps for starting DOS.

2-5

Specifying the Default Drive

2-6

The A in the prompt designates the default drive. DOS
searches the diskette located in the default drive to find
any filenames that you enter unless you specify another
drive.

You can change the default drive in the prompt by
entering the new designation letter followed by a colon.
For example:

A> (original prompt)
A>B: (new drive designation)
B> (new prompt)

Now, B is the default drive. DOS searches the diskette
located in drive B to find any filenames that you enter,
unless you specify a drive.

Remember, if you do not specify a drive when you enter
a filename, the system automatically searches the
diskette located in the default drive.

Automatic Program Execution

You may want to start a specific program every time
you start DOS. You can do this with the DOS command
processor by using automatic program execution.

Every time you start up DOS, the command processor
searches for a file named AUTOEXEC.BAT on the DOS
diskette. This filename is special because it refers to a
batch file that is automatically executed whenever you
start the system. With this facility, you can execute
programs or commands immediately every time you
start DOS.

If DOS finds the AUTOEXEC.BAT file, the file is
immediately executed by the command processor. The
date prom"pt will be bypassed.

If DOS does not find the AUTOEXEC.BAT file, it
issues the date prDmpt:· Refer to "Batch Processing" in
Chapter 3 for details on how to create an
AUTOEXEC.BAT file.

2-7

Single-Drive Systems

2-8

On:a single-drive system, you enter the commands the
same way'you would on a multi..;drive system.

You should think of the single-drive system as having
two drives-(drive A and drive B). Instead of A and B
representing two physical drives as on a multi-drive
system,the A and B represent diskettes.

If you specify drive B when the "drive A diskette" was
last used, you are prompted to insert the diskette for
drive B. For exam pIe:

A>COPY COMMAND.COM B:
Insert diskette for drive B:
and strike any key when ready

1 File(s) copied
A>_

If you specify drive A when the "drive -B diskette" was
last used, you are again prompted to change diskettes.
This time, the system prompts you to insert the "drive
A diskette."

The same procedure is used if a command is executed
from a batch file. The system waits for you to insert
the appropriate diskette and press any key before it
continues.

Note: Rememberthat the letter displayed in the
system prompt represents the default drive where
DOS looks to find a file whose name is entered
without a drive specifier. The letter in the system
prompt does not represent the last diskette used.

For example, assume that A: is the default drive.
If the last operation performed was DIR B:, DOS
believes the "drive B diskette" is still in the drive;
however, the system prompt is still A> because A
is still the default drive. If you issue DIR A:,
DOS prompts you for the "drive A diskette."

Now that you know how to start the system and specify
drives, you should learn about the keys on your
keyboard that you can use with DOS.

2-9

Control Keys'

Use the.. control keys when you are entering commands
or input lines to any program. Where two keys are
specified; fOE e-xample Ctrl-Break, you must press and'
hold down the first key ang·then press the- second key.

Here is a summary of the control keys, their function}:_
andtineir-Iocatiofl on the keyboard:

Control Key Function

Ctrl,;.Break

2-10

This: is the Enter key. Once you press the
Enter key, the displayed line is sent to the
req uesting program.

Ends the current operation.

Control Key

Ctrl-Enter

Ctrl-NumLock

Function

Allows you to go to the next display line
on the screen to continue entering the
line being typed.

Suspends system operation. You must press
any character key to resume operation. This
is useful when a large amount of screen
output is being generated. You can press
Ctrl-NumLock to temporarily suspend the
display of your output so you can review
it. You can then press any other character
key to restart the display.

2-11

Control Key

Ctrl-PrtSc

2-12

Function

These keys serve as an on/off switch for
sending display output to the printer as
well as to the screen.

You can press these keys to print display
output on the printer and press them
again to stop printing display output on
the printer.

Although this allows the printer to function
as a system log, it slows down some
operations because the computer waits
during the printing.

Note: This function is disabled when
you run Disk and Advanced BASIC.

Control Key

Esc

Shift-PrtSc

Function

Cancels the current line and moves to the
next display line. A back slash (\) is
displayed to indicate the cancelled line.

Sends a copy of what is currently displayed
on the screen to the printer. This, in
effect, prints a "snapshot" of the screen.

2-13

Control Key

2-14

Function

Backspaces and removes a character from
the screen. This is the key to the left of
NumLock, not key 4 on the numeric
keypad.

DOS Editing Keys

Use the DOS ooiting keys to make corrections to
commands and input lines as they are being entered.

The DOS editing keys are used to edit within a line.
The.· Line Editor (EDLIN) program operates on complete
lines within a file or document. When you are working
withEDLIN;£lnd want to edit within a line; however,
use the DOS editing keys. For more information about
EDLIN, refer to Chapter 4.

Note: Some word processing programs define
special editing rules; therefore, the DOS editing
keys may not work as described in this chapter.
You can also define special editiNg rules when
using the BASIC Program Editor used while

, programming in BASIC.

Any line you enter from the keyboard is retained in an
input buffer when you press'·Enter. The line is then
made available to your program for processing.

Since the line remains in the input buffer, you can use
'that .line as a template for editing purposes .. The ~DOS
editing keys operate on that copy of the line. You
can::repeat ·or change the line by usinR.the DOS~editing
keys, or you can enter an entirely new line.

Here is a summary ofihe DOS editing keys, their
function, and their location on the keyboard:

2-15

DOS EditingKey Function.

Del Skips over one character in the template.

Esc

2-16

The cursor does not move.

Cancels the line'currentIy being displayed.
The template remains unchanged.

Copies one character from the tern pIa te
and displays it.

DOS Editing Key Function

F2 Copies all characters up to' a specified
chara'ctec

F3 Copies all remaining characters from the
template to ,the screen.

F4 Skips over all characters up to a specified
character. (F4is the opposite of F2.)

2-17

DOS Editing, Key Function

F5 ,Accepts an ,;edited 'line for, continued
~editing~the, currently displayed line
becomes"the template, but it is not sent
to the n~questing'program.

Ins Allows ,you to insert characters within a
line.

'I::, IU-\Uor-\'r-','"
F1 Fa ~,,~ur.-c..r.;--L.(ULl7~-""'-J':'

F9 Fi'6
11r---~~--------~--~I~~,

2-18

Examples of Ways to Use DOS Editing Keys

The following examples show how you use the DOS
editing keys with the Line Editor (EDLIN) program.

If you want to try these examples, you must use the
EDLIN program. The EDLIN program is on your DOS
diskette and is discussed in Chapter 4. You do not have
to review the EDLIN chapter to complete these
examples-just follow the steps provided.

Note: Because the DOS diskette shipped with
your IBM Personal Computer is write protected,
you cannot create the file used in the following
examples on that diskette. You must use a copy
of your DOS diskette to complete these examples.
Refer to the section called "Write Protect Notch"
in the DOS section of your Guide to Operations
for more information about write protected
diskettes.

To Start EDLIN:

1. Insert your DOS diskette into drive A.

2. Create a file named EXAMPLES.

2-19

2-20

If you want the EXAMPLES file to reside on the
diskette in your default drive, enter:

ED LIN EXAMPLES

or

If you want the EXAMPLES file to reside on the
diskette in another drive, you must specify the
drive, as in:

EDLIN B:EXAMPLES

This command tells DOS to load the ED LIN
program and create a file called EXAMPLES.

The following message and prompt will be
displayed:

New file

*

Notice that the prompt for EDLIN is an asterisk
(*).

3. Now, enter the letter I.

This tells EDLIN that you want to begin inserting
lines in the file named EXAMPLES.

The screen looks like this:

New file
*1

1:*_

4. Type This is a mail order file. on line I and press
Enter.

5. Type Editing is easy. on line 2 and press Enter.

You now have two lines of text in your
EXAMPLES file.

6. Press the Ctrl-Break keys.

Pressing Ctrl-Break will end the insert mode of
operation and return you to the EDLIN prompt.

7. Enter the number 1.

This tells EDLIN that you want to display line 1
on the screen.

The screen looks like this:

1 :*This is a mailorder file.
1 :*

You are now ready to begin the examples.

Note: If you encounter any problems while trying
these examples, press the Ctrl-Break keys. The
EDLIN prompt will be displayed and you can start
over.

Example 1

Let's delete the first two characters in the word This and
then copy the remainder of the line.

1. Press the Del key twice to delete the first two
characters.

2. Press F3 to copy the remainder of the line to the
screen. The screen looks like this:

1 :*This is a mailorder file.
1 :*is is a mailorder file.

2-21

2-22

If you want to continue with the next example:

1. Press Ctrl-Break to return to the EDLIN prompt.
(The changes you made to line I will not be
saved.)

2. Enter the number 1.

Example 2

Now we'll change line I; then, using Esc, we will cancel
the change. A back slash (\) will be displayed to
indicate that the displayed line has been cancelled.

Note: If the insert mode is on, the system
automatically turns it off when you use Esc.

The screen looks like this:

1: *This is a mail order file.
1 :*

To change line I to Sample file:

1. Type Sample file, but do not press Enter.

1 :*This is a mailorder file.
1 :*Sample file_

2. To cancel the line we just entered, press the Esc
key.

l:*This is a mailorder file.
1 :*Sample file\

Now we can continue to edit the original line
This is a mailorder file.

3. Press F3 to copy the original line to the screen.

The screen looks like this:

1 :*This is a mailorder file.
1 :*Sample file\

This is a mailorder file._

If you want to continue with the next example:

1. Press Ctrl-Break to return to the EDLIN'prompt.

2. Enter the number 2.

Example, .. 3

Now let's copy one character by using F I or --+. (F I or
--+ is the opposite of Del. Del skips over one character

in the template.)

The, screen looks like this:

2:*Editing is easy.
2:*

1. Press the FI or --+ key three times.

The screen-.looks like this:

2:*Editing is easy.
2:*Edi

Each time you press the F I or --+ key, one more
character appears.

If you want to continue with the next,example:

1. Press Ctrl-Break to return to the EDLIN prompt.

2. Enter the number 2.

2-23

2-24

Example 4

Now let's use the F2 key. Remember, the F2 key copies
"all characters from the template to the screen up to, but

. not including, the first occurrence ofaspecified
character.

You must always specify a character when using this
key. If the specified character is not present in the
template, nothing is copied.

The screen looks like this:

2:*Editing is easy.
2:*

1. Press the F2 key and enter the letter g.

The screen looks like this:

2:*Editing is easy.
2:*Editin

Now we'll copy all the remaining characters in the
template to the screen by using the F3 key.

(If you pressed Enter now, only, Editin would be
saved in the EXAMPLES file as line 2.)

2. Press the F3 key.

The screen looks Jike this:

2:*Editing is easy.
2:*Editing is easy._

If you want to continue with the next example:

1. '" P,ress-Gtrl-'Break to'return to the EDLIN prompt.

2. Enter the number 1.

Example 5

Now let's.scan and locate specific characters within the
template by using the F4 key. This is a way to skip
over characters. The cursor does not move when you
use this key and no characters are displayed.

You must always specify a character after you press the
F4 key.. If the specified character is not present in the
template, no characters in the template will be skipped.

We will also use the F3key to copy the remaining
characters in the template to the screen.

The screen looks like this:

1 :*This is a mailorder file.
1 :*

1. Press the F4 key and enter the letter o. (No
characters are displayed.)

2. Press the F3key to copy the remainder of the line.

The screen looks like this:

1 :*This is a mailorder file.
1 :*order file.

If you want to continue ,with the next.example:

1. Press Ctrl-Breaktoreturnto the EDLIN- prompt.

2. Enter the number 1.

2-25

2-26.

Example 6

Now we'll move" the currently displayedJine into the
template by using the FS key. Pressing FS is the same
as pressing Enter, eX8ept thatthe line is not sent to your
program. An @ character is displayed to indicate that
the new line is now the template.

Note: If the insert mode is on, the system
automatically turns itoff when you use FS.

Ohce you press FS, you can continue to make changes
to a line. When you are finished, press Enter to send
the line to your program.

The screen looks like this:

1: *This is a mail order file.
1:*

1. Type This is not a sample file.

The screen looks like this:

1 :*This is a mailorder file.
1 :*This is not a sample file._

2. Press FS.

The result is:

1 :*This is a mail order file.
1 :*This is not a sample file.@

The replacement line' Thi&is.not a sample file. is
now in the template-. The replacement line is
acceptable, but let's~cQntinue to edit;it.

3. To remove the word not from the replacement
line, press F I eight times:

1 :*This is a mailorder file.
1 :*This is not a sample file.@

4. Press Del four times to remove one blank space
and the word not.

5. Press F3 to copy the remaining characters to the
screen.

The screen looks like this:

1: *This is a mailorder file.
1 :*This is not a sample file.@

This is a sample file._

6. Press Enter to make the replacement line This is a
sample file. the template in place of the original
line and to send the line to your program.

(If you want to do more editing without sending the
line to your program, press F5 again to put the
displayed line into the template.)

Note: Pressing Enter immediately after
pressing F5 empties the template.

If you want to continue with the next example:

1. Press Ctrl-Break to return to the EDLIN prompt.

2. Enter the number 1.

Example 7

Let's look at an example using the Ins key. The Ins
key serves as an on/off switch for entering and leaving
insert mode. You can press the Ins key to enter insert
mode, and press the Ins key again to leave the insert
mode.

2-27

2-28

While in the insert mode of operation, any characters
that you enter are inserted in the line being displayed.
The characters do not replace characters in the
template.

When you are not in the insert mode of operation, any
characters that you enter replace characters in the
template. If you are entering characters at the end of a
line, the characters will be added to the line.

The screen looks like this:

1 :*This is a sample file.
1 :*

Let's change the word sample to salary.

1. Press the F2 key and enter the letter m.

The screen looks like this:

1 :*This is a sample file.
1 :*This is a sa

2. Press the Ins key and en ter the characters lary.

The screen looks like this:

1 :*This is a sample file.
1 :*This is a salary_

Notice that the characters lary were inserted, but
no characters from the template were replaced.

3. Now, press Ins again to leave the insert mode.

4. Enter one blank space and the three characters
tax.

1 :*This is a sample file.
1 :*This is a salary tax_

5. Press F3 to copy the remaining characters in the
template to the screen.

1 :*This is a sample file.
1 :*This is a salary tax file._

Notice that we inserted lary and we replaced
mple with tax.

6. Now press Enter to make the replacement line
the template in place of the original line and send
the line to the requesting program.

You have now completed the examples.

To return to the A> prompt:

1. Press Ctrl-Break.

2. Enter the letter Q.

Q tells DOS that you don't want to save the
EXAMPLES file and that you want to quit the
editing session. EDLIN will prompt you with this
message:

Abort edit (YIN)?

to make sure you don't want to save the file.

3. Enter the letter N.

The next chapter contains detailed information about
the DOS commands.

2-29

2-30

CHAPTER 3. DOS 'COMMANDS

Contents

Introduction 3-3

Types oiDOS Commands 3-4

Format Notation 3-5

DOS Command Parameters ,3-6
Reserved Device Names 3-8
Global Filename Characters '3-9

The ? Character 3-9
The * Character ... 3-9
Examples of Ways to Use? and * 3:-10

. Detailed Descriptions of the DOS Commands 3-12
Information Common to All.DOS

Com,mands 3-12

. Batch Processing 3-14
The,AUTOEXEC.BAT File 3-15
Creating a .BAT File With Replaceable
;Parameters 3-16

Executing a .BAT File With Replaceable
Parameters 3-1 7

CHKDSK (Check Disk) :Command 3-19

COMP (Compare Files) Command 3-21

COpy Command 3-23

DATE Command 3-27

'DIR (Directory) Command 3-29

DISKCOMP (Compare Diskette) Command 3-32

3-1

3-2

DISKCOPY (Copy Diskette) Command

ERASE ,Command ..

FORMAT Command

MODE,Command '.

PAUSE Co'mmand.

REM-(Remark):Command .

RENAME'CQffimand ..

SYS(Systeln) Command-

TIME Command

TYPE Command

Summary of DOS Commantis·." ..

3-34

3-37

3-38

3-41

3-43

3-44

3-45

3-46

3-47

3-49

3-50

Introduction

This chapter explains how to use the DOS commands.

You can use DOS commands to: .

• Compare, copy, display, erase·, and rename fi1es.

• Compare, copy; and format diskettes.

• Execute system programs such as EDLIN and
DEBUG, plus your own programs.

• Analyze and. list directories.

• Enter date, time, and remarks.

• Set various printer and screen options.

• Transfer DOS to another diskette.

• Request the system to waiL

3-3

Types of'DOS 'Commands

3-4

There are two types of DOS commands:

• Internal

• External

Internal commands execute immediately because they
are'built-jn to the command processor.

External commands reside on diskette as program files;
therefore, they must be read'from diskette before they
execute. ' This means that the diskette containing the
command mu-sf already be in a drive, or DOS is unable
to find the command.

Any file with a fil~name extension of .COM or ;EXE is
oonsidered an Bxterllal comm,and. By adding the
extension .COM or .EXE to your filenames, you can
develop and add your own unique commands to the
system.

When you enter an ,external command, do not include
the filename extension.

Format Notation

We will use the following notation to indicate how the
DOS commands should be formatted:

• You must enter any words shown in capital letters.
These words are called keywords and must be
entered exactly as shown. You can, however,
enter keywords in any combination of upper /
lowercase. DOS will automatically convert
keywords to uppercase.

• You must supply any items shown in lowercase
italic letters. For example, you should enter the
name of your file when filename is shown in the
format.

• Items in square brackets ([]) are optional. If you
want to include optional information, you do not
need to type the brackets, only the information
inside the brackets.

• An ellipsis (. ..) indicates that you can repeat an
item as many times as you want.

• You must include all punctuation (except square
brackets) such as commas, equal signs, question
marks, colons, or slashes where shown.

3-5

DOS Command Parameters

Parameters are items that can be included in your DOS
command statements. They are used to specify
additional information to the system. Some parameters
are required in your commands, others are optional.
If you do not include some parameters, DOS provides
a default value. Default values that DOS provides are
discussed in the detailed descriptions of the DOS
commands. Use the following parameters in your
DOS command statements:

Parameter Definition

d:

filename

3-6

Denotes when you should specify a drive. Enter
a drive letter followed by a colon to specify the
drive. For example, A: represents the first drive
on your system, B: represents the second. If
you omit this parameter, DOS assumes the
default drive.

Diskette filenames are 1-8 characters in length,
and can be followed by a filename extension.

The following characters can be used for
filenames:

A-Z 0-9 $
%
<
\

&

>
1\

(
{

@

)
} -,

Any other characters are invalid. An invalid
character is assumed to be a delimiter, in which
case the filename is truncated.

Refer also to "Reserved Device Names" in this
chapter for more information about filenames.

Parameter

.ext

filespec

Definition

The optional filename extension consists of a
period and 1-3 characters. When used, filename
extensions immediately follow filenames.

The following characters can be used for
filename extensions:

A-Z 0-9 $
%
<
\

&

>
1\

(
{

@

)
} -,

Any other characters are invalid.

Remem ber to include the extension when you
refer to a file that has a filename extension;
otherwise, DOS will be unable to locate the file.

[d:] filename [.ext]

Examples:

B:myprog.COB
A:yourprog
DATAFILE.pas
cobfile

3-7

Reserved Device Names

Certain names have special meaning to DOS. DOS
reserves the following names as system devices:

Reserved Nrune Device

CON:

AUX:
or
COM I:

LPTI:
or
PRN:

NUL:

3-8

Console keyboard/screen. If used as an
input device, you can press the F6 key;
then press the Enter key to generate an
end-of-file indication, which ends CON:
as an input device.

First Asynchronous Communications
Adapter port.

Printer (as an output device only).

Nonexistent (dummy) device for testing
applications. As an input device,
immediate end-of-file is generated. As
an output device, the write operations
are simulated, but no data is actually
written.

Notes:

1. The reserved device names can be used in
place of a filename.

2. Any drive specifier or filename extension
entered with these device names will be
ignored.

3. The colon following the reserved device word
is optional.

Global Filename Characters

Two special characters? and * can be used within a
filename and its extension. These special characters give
you greater flexibility with the DOS commands.

The ? Character

A ? in a filename or in a filename extension indicates
that any character can occupy that position. For
example,

DIR AB?DE.XYZ

lists all directory entries on the default drive with
filenames that have five characters, begin with AB, have
any next character, are followed by DE, and have an
extension of XYZ.

Here are some examples of the files that might be
listed by the DIR command:

ABCDE.XYZ
ABIDE.XYZ
ABODE.XYZ

The * Character

An * in a filename or in a filename extension,·indicates
that any character can occupy that position and all the
remaining positions in the filename or extension. For
example,

DIR AB*.XYZ

lists all directory entries on the default drive with
filenames that begin with AB and have an extension of
XYZ. In this case, the filenames may be from 2-8
characters in length.

3-9

3-10

I-Iere are some example files that might be listed by the
DIR command:

ABCDE .XYZ
ABC357 .XYZ
ABIDE .XYZ
ABIIOU .XYZ
ABO$$$.XYZ
AB .XYZ

Examples of Ways to Use ? and *

Example 1

To list the directory entries for all files named INPUT
onddve A (regardless of their filename extension),
enter:

DIR A:INPUT.???
or

DIR A:INPUT.*

Example 2

To list the directory entries for all files on drive A
(regardless of their filenames) with a filename extension
of XYZ, enter:

OIR A:????????XYZ
or

DIR A:*.XYZ

Example 3

To list the directory entries for all files on drive A with
filenames beginning with ABC and extensions beginning
with E, enter:

DIR A:ABC?????E??
or

DIR A:ABC*.E*

3-11

Detailed Descriptions of the DOS" Commands

This section presents a detailed description of how to
use the DOS commands. The ,commands appear in
alphahetical order; each with its purpose, format, and
type. Examples are provided where appropriate.

Information Common to All DOS Commands

3-12

The following information applies to all DOS commands:

• With the exception of the DATE and TIME
commands, commands are usually followed by one
or more parameters.

• Commands and parameters may be entered in
uppercase OT lowercase, or a combination of both ..

• Commands and parameters must be separated by
delimiters (space, comma, semicolon, equal sign, or
the tab key). The. delimiters can be different
within one command. For example, you could
enter:

COpy oldfile.rel;newfile.rel
RENAME,thisfile thatfile

• The three parts of filespec (d :fikname.ext) must
not be separated by delimiters. The (:) and (.)
already serve as delimiters.

• In this book, we will usually use a space as the
delimiter in the, commands fOT readability.

• Files are not required to have filename
extensions when you create or rename them;
however, you must include the filename extension
when referring to a file that has a filename
extension.

• You can end commands while they are running by
pressing Ctrl-Break. Ctrl-Break is recognized only
while the system is reading from the keyboard or
printing characters on the screen. Thus, the
command may not end immediately when you
press Ctrl-Break.

• Commands become effective only after you press
the Enter key.

• Global filename characters and device names are
not allowed in a command name. You may only
use them in command parameters.

• For commands producing a large amount of
output, you can press Ctrl-NumLock to suspend
the display of the output. You can then press any
other key to restart the display.

• You can use the control keys and the DOS editing
keys described in Chapter I while entering the
DOS commands.

• The prompt from the command processor is the
default drive designation letter plus>, such as A>.

• Drives will be referred to as source drives and
target drives. A source drive is the drive you will
be transferring information from. A target drive is
the drive you will be transferring information to.

3-13

Batch Processing

Purpose: Executes the commands contained in the specified file
from the designated or default drive.

Format: [d: lfilename [parametersl

Type: Internal External

Remarks: A batch file is a file containing one or more commands
that DOS executes one at a time. All batch files must
have a filename extension of .BAT.

3-14

You can pass parameters to the filename.BAT file when
the file executes. Therefore, the file can do similar
work with different data during each execution.

You create a batch file by using the Line Editor
(EDLIN), or by using the COpy command directly
from the console.

Notes:

1. Do not enter the name BATCH (unless the
name of the file you want to execute is
BATCH.BAT).

2. Only the filename must be entered. Do not
enter an extension.

3. The commands in the file named
filename.BAT are executed.

Batch Processing

4. If you press Ctrl-Break while in batch mode,
this prompt appears:

Terminate batch job (YIN)?

If you press Y, the remainder of the commands
in the batch file are ignored and the system
prompt appears.

If you press N, only the current command
ends and batch processing continues with the
next command in the file.

5. If you remove the diskette containing a batch
file being processed, DOS prompts you to
insert it again before the next command can
be read.

The AUTOEXEC.BAT File

The AUTOEXEC.BAT file is a special batch file. When
you start or restart DOS, the command processor
searches for the AUTOEXEC.BAT file. If this file is
present on the DOS diskette, DOS automatically
executes the file whenever you start DOS.

For example, if you want to load BASIC and run a
program called MENU automatically, create an
AUTOEXEC.BAT file as follows:

1. Enter:

COpy CON: AUTOEXEC.BAT

This statement tells DOS to copy the information
from the console (keyboard) into the
AUTOEXEC.BAT file.

3-15

Batch Processing

2. Now, enter:

BASIC MENU

This statement goes into the AUTOEXEC.BAT
file. It tells DOS to load BASIC and to run the
MENU program whenever DOS is started.

3. Press the F6 key; then press the Enter key to put
the command BASIC MENU in the
AUTOEXEC.BAT file.

The MENU program will now run automatically
whenever you start DOS.

To run your own BASIC program, enter the name of
your program in place of MENU in the second line
of the example. Remember, you can enter any DOS
command, or series of commands, in the
AUTOEXEC.BAT file.

Note: If you use AUTOEXEC, DOS does not
prompt you for the current date unless you
include a DATE command in the
AUTOEXEC.BAT file.

Creating a .BAT File With Replaceable Parameters

3-16

Within a batch file you may include dummy
parameters that can be replaced by values supplied
when the batch file executes.

For example, enter:

A..-'>Copy con: ASMFllE.BAT
Copy %1.MAC %2.MAC
Type %2.PRN
Type %O,BAT

BatchProcessIDg

Now ; press F6; then press Enter.

The system responds with this message:

1 File(s) copied
A>_

The file ASMFILE.BAT, which consists of three
commands, now resides on the diskette in the default
drive.

The dummy parameters %0, % 1, and %2 are replaced
sequentially by the parameters you supply when you
execute the file. The dummy parameter %0 is always
replaced by the drive designator, if specified, and the
filename of the batch file.

Notes:

1. Up to 10 dummy parameters (%0-%9) can be
specified.

2. If you wan t to use % as part of a filename
within a batch file, you must specify it twice.
For exam,ple,-tospecify the file ABC%.EXE
you must enter it as ABC%%.EXE in the
batch file.

Executing a .BAT,File With Replaceable Parameters

To execute the ASMFILE.BAT file and pass
parameters, enter the batch filename followed by the
parameters you want sequentially substituted for % 1,
%2, etc.

3-17

Batch. Processing.

3-18

FOI example, you can enter:

ASMFllE A:PROGl B:PROG2

ASMFILE is substituted for %0, A:PROGI fnr %1,
and B:PROG2 for %2.

The result is the same as if you entered each of the
three commands (in the ASMFILE.BAT file) from the
console with their parameters; as follows:

Copy A:PROG1.MAC B:PROG2.MAC
Type B:PROG2.PRN
Type ASMFILE.BAT

Remember that-the dummy parameter %0 is always
rephrced by the drive"desigRa·toI:~ if specified, and the
filename of the batch file.

CHKDSK (Check Disk)
Command

Purpose: Analyzes the directory and the File Allocation Table on
the designated or default drive and produces a diskette
and memory status report.

Format: CHKDSK [d:]

Type: Internal External

Remarks: CHKDSK temporarily makes the drive specified in d:
the default drive. If CHKDSK ends prematurely, the
default drive changes to the drive that CHKDSK was
checking. CHKDSK might end prematurely if you
replied A to a diskette error message.

After checking the diskette, any error messages are
displayed. A complete listing of error messages can be
found in Appendix A.

The following status report is also displayed:

XX disk files
XXX XXX bytes total disk space
XXXXXX bytes remain available

XXXXXXX bytes total memory
XXXXXXX bytes free

The X's represent decimal integer values.

3-19

CHKDSK (Check Disk)
Command

3-20

The system does not wait for you to insert a diskette.
CHKDSK assumes that the diskette to be checked is
in the specified -drive. Therefore, on a single-drive
system, it is especially important that the specified
drive is different from the default drive, unless you
are checking the DOS diskette itself.

You should run CHKDSK occasionally for each diskette
to ensure the integrity of the file structures.

COMP (Compare Files)
Command

Purpose: Compares the contents of one file to the contents of
another file.

Note: This command compares two files; the
DISKCOMP command compares two entire
diskettes.

Fonnat: COMP [filespec] [d:] [filename [.ext]]

Type: Internal External

Remarks: The files that you compare may be on the same drive or
on different drives. Both filenames are optional, but if
you omit them, DOS prompts you for them. You are
also prompted to insert the appropriate diskettes.
COMP waits for you to press a key before it starts
com paring the files.

COMP compares the files byte-for-byte. Unequal bytes
result in error messages that give the hexadecimal offset
of the unequal comparison and the bytes that were
compared, as follows:

Compare error at offset XXXXXXXX
File 1 XX
File 2 = XX

In this example, File I is the first filename entered; File
2 is the second.

After ten unequal comparisons, COMP concludes that
further comparing would be useless; processing ends;
and the following message is displayed:

10 Mismatches - aborting compare 3-21

COMP (Compare Files)
Command

3-22

After a successful comparison, COMP displays:

Files compare ok

After a comparison ends, COMP displays:

Enter pi'imarv file name
Or strike the EI~TE R key to

You now have the option to compare two more files or
to end the comparison. If you want to compare two
more files, enter the filespec of the first file. COMP
prompts you for the second.

If you want to end COMP processing, press Enter.

Notes:

1. The two files you want to compare can have
the same name-provided they are on different
diskettes. In this case the specified drives must
be different.

2. If you only specify a drive for the second file,
it is assumed that the second filename is the
same as the first filename. In this case the
specified drives must be different.

3. Use of the global characters? and * in the
filenames do not cause multiple file
comparisons. Only the first file matching
each name is compared. For more information
on the global characters, refer to "Global
Filename Characters" in this chapter.

4. A comparison does not take place if the
file sizes are different. DOS prompts you to
compare other files.

COpy
Command

Purpose: Copies one or more files to another diskette and
optionally, gives the copy a different name if you
specify it in the COpy command.

Format:

Type:

COPY also copies files to the same diskette. In this case,
you must give the copies different names; otherwise,
the COpy is not permitted.

You can also use COpy to transfer data between any
of the system devices. (An example of how to copy
information that you enter at the keyboard to a
diskette file is provided at the end of the description
of COPY.)

COpy filespec [d:] [filename [.ext]]

Internal External

Remarks: The first parameter, filespec, is the source file. The
second parameter, [d:] [filename [.ext]], is the target
file.

You can use the global characters? and * in the
filename and in the extension parameters of both the
original and duplicate files. For more information
about global characters, refer to "Global Filename
Characters" in this chapter.

The COpy command has two format options:

Option 1

Use this option to copy a file with the copied file having
the same filename and extension. For example:

1-23

COpy
Command

3-24

COpy filespec

or

COpy filespec d:

In the first example, we want to copy a file to the
default drive. In the second example, we specified the
target drive. In both examples, because we did not
specify the second filename, the copied file will have
the same filename as the source file. Because we did
not specify a name for the second file, the source drive
and the target drive must be different; otherwise, the
copy is not permitted.

For example, assume the default drive is A:. The
command:

COpy B:MYPROG

copies the file MYPROG from the diskette in drive B,
to the diskette in default drive A, with no change in the
filename. The command:

COpy *.* B:

copies all the files from the diskette in default drive A
to the diskette in drive B, with no change in the
filenames or in the extensions. This method is very
useful if the files on the diskette in drive A are
fragmented.

Option 2

Use this option when you want the copied file to have a
different name from the file that is being copied. For
example:

(

COpy
Command

COpy filespec filename[.ext]

or

COpy filespec d:filename [.ext]

In the first example, we copied a file, filespec, and
renamed the copy, filename [.ext]. We did not
specify a drive, so the default drive was used. In the
second example, we copied a file and renamed the copy
also. In this example, we did specify the target drive.
Because we changed the name of the file, the source
drive and the target drive do not have to be different.

For example:

COpy MYPROG.ABC B:*.XXX

copies the file MYPROG .ABC from the diskette in
default drive A to the diskette in drive B, naming the
copy MYPROG.XXX.

You can also use reserved device names for the copy
operation. For example:

COpy CON: fileA
COpy CON: AUX:
COpy CO N: LPT1:
COpy fileA CON:
COpy fileB AUX:
COpy fileC LPT1:

. COPY AUX: LPT1:
COpy AUX: CON:

Also, NUL: can be used in any variation.

Refer to "Reserved Device Names" for information
about system devices.

3-25

COpy
Command

Example: This example shows how to use "COpy to put what you
enter at the consoleinto a diskette file:

3-26

A>COPY CON: fileA
Type a line and press Enter.
Type ynur next line and press Enter.
•
•
•
Type your last line and press Enter.
Now, press f6 and then press Enter.

When you press F6, and then press Enter, the COPY
operation ends and saves the information you entered.
In this example, the information is saved in a file named
fileA.

DATE
Command

Purpose: Permits you to enter a date or change the date known
to the system. The date is recorded in the directory
entry for any files you create or alter.

Format: DATE

Type: Internal External

Remarks: The DATE command issues the following prompt:

Current date is mm-dd-yy
Enter new date:

where:

m is a one- or two-digit number from 1-12
d is a one- or two-digit number from 1-31
y is a two-digit number from 80-99 (the 19 is assumed)

or a four-digit number from 1980-2099

You can change the date from the console or from a
batch file. Remember, when you start the system, it
does not prompt you for the date if you use an
AUTOEXEC.BAT file. You may want to include a
DATE command in that file. For more information
about the AUTOEXEC.BAT file, refer to "Batch
Processing" in this chapter.

3-27

DATE
Command

Notes:

1. To leave the date as is, press Enter.

2. The valid delimiters within the, date are
hyphens (-) and slashes (j).

3. Any date is acceptable as today's. date, as long
as the digits are in the correct ranges.

4. If you enter an invalid date or delimiter, you
receive an Invalid date message.

Example: In this example, once you press Enter, the date known
to the system is 7/24/82.

3-28

A>DATE
Current date is 07-17-82
Enter new date: 7/24/82

DIR (Directory)
Command

Purpose: Either lists all the directory entries, or only lists those
for specified files. The information provided in the
display for each file includes its size in decimal bytes
and the date the file was last written to.

Format:

Type:

Note: Directory entries for system files
IBMBIO.COM, IBMDOS.COM, and BADTRACK
are not listed, even if present.

DIR [d:] [filename [.ext]]

Internal External

Remarks: You can use the global characters? and * in the filename
and extension parameters. For more information about
the global characters, refer to "Global Filename
Characters" in this chapter.

The DIR command has two format options:

Option 1

Use this option to list all the files in a directory. For
example:

DIR

or

DIR d:

::l-29

DIR (Directory)
Command

3-30

In the first example, we want to list all directory
entries on the default drive. In the second example,
we want to list all directory entries on the specified
drive.

The directory listing might look like this:

F~ LE I .A HUJ 11-'1'1-81
FILE:~ . /.\ H!4'155 12,-01-·32
9X 2fHlll 02.-:~3,,9t.

Option 2

Use this option to list selected files from a directory.
For example:

DIR filename.ext

or

DIR d:filename.ext

In the first example, we want to list all the files in the
directory of the default drive that have the specified
filename.ext. In the second example, we want to list
all the files in the directory of the specified drive that
have the specified filename .ext.

Using the previous example, if you enter:

DiR Fi

the screen might look like this:

A>DIB F~lE:lA
F It E:~ J\ 1 OL], 15 5
A>

If you enter:

DIR *.A

DIR (Directory)
Command

the screen might look like this:

tt';cD~R *.(1,

F E'i .A
fH.E3 .14.
!;~,>

lUIO
1114155

~ 1-·11·8'!
11 :£.-ll1 ··~,2

3-31

DISKCOMP (Compare Diskette)
Command

Purpose: Compares the contents of the diskette in the first
drive to the contents of the diskette in the second
drive. Usually, you would run DISKCOMP after a
DISKCOPY operation to ensure that the two
diskettes are identical.

Format:

Type:

Note: This command compares two entire
diskettes; the COMP command compares two
files.

DISKCOMP [d:] [d:]

Internal External

Remarks: You can specify the same drive or different drives in
this command. If you specify the same drives, a
single-drive comparison is performed. You are
prompted to insert the diskettes at the appropriate
time. DISKCOMP waits for you to press any key
before it continues.

3-32

DISKCOMP compares all 40 tracks on a track-for-track
basis and issues a message if the tracks are not equal.
The message indicates the unequal track number (0-39).

After completing the comparison, DISKCOMP
prompts:

Compare more diskettes? (Y IN)_

If you press Y, the next comparison is done on the same
drives that you originally specified, after you receive
prompts to insert the proper diskettes.

DISKCOMP (Compare Diskette)
Command

To end the command, press N.

Notes:

1. If you omit both parameters, a single-drive
comparison is performed on the default drive.

2. If you omit the second parameter, the default
drive is used as the secondary drive. If you
specify the default drive in the first parameter,
this also results in a single-drive comparison.

3. On a single-drive system, all prompts are for
drive A, regardless of any drive specifiers
entered.

4. -·DISKCOMP attempts to keep the number of
diskette insertions to a minimum by reading
the. maximum amount of data that memory

';can hold before comparing it, and by reversing
the order of diskette reads each time.
Depending on the amount of available
memory,this can result in 2, 4, 8, or 10
tracks cjf data being read for each diskette
inserted.

5. DISKCOMP does not usually issue a Diskettes
compare OK message if you try to compare
a backup diskette created by the COpy
command with the diskette you copied from.
The COPY operation produces a copy that
contains the same information, but places the
information at different locations on the
target diskette from those locations used on
the source diskette. In this case, you should
use theCOMP command to compare
individual files on the diskettes.

3-33

DISKCOPY (Copy Diskette)
Command

Purpose: Copies the contents of the diskette in the source drive
to the diskette in the target drive.

Format: DISKCOPY [d:] [d:]

Type: Internal External

Rem·arks: The first paramete.r you specify is the source drive. The
second parameter is the target drive.

3-34

You can specify the same drives or you may specify
different drives. If the drives are the same, a single-drive
copy operation is performed. You are prompted to
insert the diskettes at the appropriate times. DISKCOPY
waits for you to press any key before continuing.

After copying, DISKCOPY prompts:

Copy another? (Y IN)_

If you press Y, the next copy is done on the same drives
that you originally specified, after you are prompted
to insert the proper diske ttes.

To end the command, press N.

Notes:

1. If you omit both parameters, a single-drive
copy operation is performed on the default
drive.

DISKCOPY (Copy Diskette)
Command

2. If you omit the second parameter, the default
drive is used as the target drive.

3. If you omit the second parameter and you
specify the default drive as the source drive,
a single-drive copy operation is performed.

4. On a single-drive system, all prompts will be
for drive A, regardless of any drive specifiers
you may enter.

5. DISKCOPY attempts t!J keep the number of
diskette insertions to a minimum by reading
the maximum amount of data that memory
can hold before writing it to the target
diskette. Depending on the amount of
available memory, this can result in 2, 4, 8,
or 10 tracks of data being processed for each
pair of diskette insertions.

6. Diskettes that have had a lot of file creation
and deletion activity become fragmented
because diskette space is not allocated
sequentially. The first free sector found is
the next sector allocated, regardless of its
loca tion on the diskette.

A fragmented diskette can cause degraded
performance due to excessive head movement
and rotational delays involved in finding,
reading, or writing a file.

3-35

DISKCOPY (Copy Diskette)
Command

3-36

If this is the case, it is recommended that you
use the COpy command, instead of
DISKCOPY, to eliminate the fragmentation.

For example:

COpy A:*.* B:

copies all the files from the diskette in drive A
to the diskette in drive B.

7. You should runDISKCOMP after a successful
DISKCOPY to ensure that the diskettes are
identical.

ERASE
Command

Purpose: Deletes the file with the specified filename from the
designated drive, or deletes the file from the default
drive if no drive was specified.

Format: ERASE filespec

Type: In ternal External

Remarks: You can use the global characters? and * in the filename
and in the extension. Global characters should be used
with caution, however, because multiple files can be
erased with a single command. For more information
about global characters, refer to "Global Filename
Characters" in this chapter.

To erase all files on a diskette, enter:

ERASE [d:] *.*

Note: The system files IBMBIO.COM,
IBMDOS.COM, and BADTRACK cannot be erased.

Example: In this example, the file myprog.l will be erased from
the diskette in drive A.

A>ERASE A:myprog.l

3-37

FORMAT
Command

Purpose: Initializes the diskette in the designated or default drive
to a recording format acceptable to DOS; analyzes the
entire diskette for any defective tracks; and prepares the
diskette to accept DOS files by initializing the directory,
File Allocation Table, and system loader.

Format: FORMAT [d:] [/S]

Type: Internal External

Remarks: You must run FORMAT on all new diskettes before
they can be used by DOS.

3-38

If you specify /S in the FORMAT command, the
operating system files are also copied from the
diskette in the default drive to the new diskette in the
following order:

IBMBIO.COM
IBMDOS.COM
COMMAND.COM

Notes:

1. Formatting destroys any previously existing
data on the diskette.

2. During the formatting process, any defective
tracks are allocated to a file called
BADTRACK. This prevents the tracks from
being allocated to a data file.

FORMAT
Command

3. Directory entries for IBMBIO.COM,
IBMDOS.COM, and BADTRACK will not
appear in any directory searches-including
the DIR command.

4. To determine whether there are any defective
tracks, you can analyze the status report
displayed by the CHKDSK command.

CHKDSK should report zero disk files if you
did not specify IS in the FORMAT command.
If one disk file is reported, that means
defective tracks were found and the file
being reported is BADTRACK.

If you did specify IS in the FORMAT
command, CHKDSK should report three files
present; a report of four files means defective
tracks were found.

Example: By issuing the following command, the diskette in drive
B will be formatted and the operating system files will
also be copied:

The system issues the following message:

After you insert the appropriate diskette and strike any
key, the system issues this message:

while the diskette formatting is taking place.

3-39

FORMAT
Command

3-40

Once the formatting is complete, the system issues this
message:

Formatting ... Format complete
System tra nsferred
Format another (V IN)?_

Press Y to format another diskette.

Press N to end the FORMAT program.

(

MODE
Command

Purpose: Sets. the mode of operation on a printer or on a.display
connected to the Color/Graphics Monitor Adapter.

Format:

Type:

Note: This command has no effect on a display
connected to the IBM Monochrome Display Printer
Adapter.

MODE [LPT#:] [n] [,m] [,T]

Internal External

Remarks: A missing or invalid n ·or m parameter means that the
mode of operation for that parameter is not changed.

The MODE command has two format options:

Option 1 (For the Printer)

MODE LPT#: [n] [,m]

where:

is 1, 2, or 3 (the printer number)
n is 80 or 132 (characters per line)
m is 6 or 8 (lines per inch vertical spacing)

For example:

MODE LPT1: 132,8

sets the mode of operation of printer 1 to 132 characters
per line and 8 lines per inch vertical spacing.

3-41

'MODE
C-ommand

3-42

The power-on default options for the printer are 80
characters perJine and 6 lines per inch.

Option 2 (For display connected to
Color/Graphics Monitor Adapter)

M on E [n] [,m] [, T]

where:

n -is 40 or 80 (characters per line)
mis R or L (shift display right or left)
T requests a test pattern used to align the display.

For readability, you can shift the display one character
(for 40-column) or two characters (for 80-column) in
either direction. If you specify T in the MODE
command, a prompt will ask you if the screen is aligned
properly. If you enter Y the command ends. If you
enter N the shift is repeated followed by the same
prompt. For example,

MODE aO,R,T

sets the mode of operation to 80 characters per line and
shifts the display two character positions to the right.
The test pattern is displayed to give you the opportunity
to further shift the display without having to enter the
command again.

PAUSE
Command

Purpose: Suspends system processing and issues the message
Strike·a key when ready_ ...

Format: PAUSE [remark]

Type: Internal External

Remarks: You can insert PAUSE commands within a batch file to
display messages and to give you the opportunity to
change diskettes between commands. To resume
execution of the batch file, press any key except
Ctrl-Break. (Ctrl-Break ends processing.)

If you include the optional remark, the remark is also
displayed. The optional remark can be any string of
characters up to 121 bytes long.

You can control how much of a batch file you want to
execute by placing PAUSE commands at strategic
points in the file. At each PAUSE command, the
system stops .and gives you time to decide whether to
end processing. To end processing, press Ctrl-Break.
To cont.inue pnnc.essing, press any other key.

Example: If you enter this PAUSE command in a batch file, the
following message is displayed:

A>PAUSE Change diskette in drive A
Strike a key when ready ... _

This PAUSE enables you to change diskettes between
commands.

3-43

REM (Remark)
Command

Purpose: Displays remarks from within a batch file.

Format: REM [remark]

Type: Internal External

Remarks: The remarks are displayed when the batch execution
reaches the remark.

Remarks can be any string of characters up to 123 bytes
long.

You can use REM commanus without remarks for
spacing within your batch file; for read ability .

Example: If the following REM command is issued in a batch file,
this remark is displayed:

REM Th is is the daily checkout program.

3-44

RENAME
Command

Purpose: Changes the name of the file specified in the first
parameter to the name and extension given in the
second parameter. If a valid drive is specified in the
second parameter, the drive is ignored.

Fonnat: RENAME filespec filename[.ext]

Type: In ternal External

Remarks: You can use the global characters? and * in the
parameters. For more information about global
characters, refer to "Global Filename Characters" in
this chapter.

Example: The command:

RENAME B:ABODE HOME

renames the file ABODE on drive B to HOME.

The command:

RENAME B:ABODE *.XY

renames the file ABODE on drive B to ABODE.XY.

3-45

SYS (System)
Command

Purpose: Transfers the operating system files from the default
drive to the specified drive, in the following order:

Format:

Type:

IBMBIO.COM
IBMDOS.COM

SYS d:

Internal External

Remarks: The diskette in the specified drive must already be
formatted by a FORMAT d:/S command to contain a
copy of DOS. If you did not format the diskette with
the IS option, the system cannot be transferred because
the specific diskette locations required for the system
files have not been allocated.

3-46

Note: SYS lets you transfer a copy of DOS to an
application program diskette designed to use DOS,
but sold without it. In this case, the specific
diskette locations required for the DOS files have
already been allocated, although the DOS files are
not actually present. The SYS command will
transfer the files to the allocated space.

TIME
Command

Purpose: Permits you to enter or change the time known to the
system . You can change the time from the console or
from a batch file.

Format: TIME

Type: Internal External

Remarks: The TIME command issues the following prompt:

Cmn.'mt time is hh:mm:ss . .Kx
Enter W:?'II'\I time:

where:

hh is a one- or two-digit number from 0-23
(representing hours)

mm is a one- or two-digit number from 0-59
(representing minutes)

ss is a one- or two-digit number from 0-59
(representing seconds)

xx is a one- or two-digit number from 0-99
(represen ting hundredths of a second)

Notes:

1. To leave the time as is, press Enter.

2. If you enter any information (for example,
just the hours, and press Enter), the remaining
fields are set to zero.

3. Any time is acceptable as long as the digits
are within the defined ranges.

3-47

TIME
Command

4. The valid delimiters within the time are the
colon C:) separating the hours, minutes, and
seconds, and the period C.) separating the
seconds and the hundredths of a second.

5. If you specify an invalid time or delimiter,
you receive an Invalid time message.

Example: In this example, once you press Enter, the time known
to the system is changed to 13:55:00.00.

3-48

A>TIME
Current time is 00:25: 16.65
Enter new time: 13: 55

TYPE
Command

Purpose: Displays the contents of the specified file on the
screen.

Format:

Type:

TYPE filespec

Internal External

Remarks: . The data is unformatte_d except that tab characters.are
expanded to an eight-character bo.undary;that is,
columns 8, 16, 24, etc.

Notes:

1. . ' Press CtrbPrtSc if you want the contents of a
fiie tobeprinted as they are -being displayed.

2. Text fules.appear in a legible format; however,
other files, such as object program files, may
appear .unreadable due to the presence of
non~alphabetic or non-num"edc characters.

Example: In this example, the file myprog.one on the diskette in
drive B is displayed on the screen.

TYPE B:mypfng.one

3-49

Summary of DOS' Commands

Command

(Batch)

CHKDSK

COMP

COpy

DATE

DIR

The following chart is provided for quick 'reference.
The sectia'n called "Format Notation" at the beginning
of this chapter explains the notation used in the format
of the commands.

Note: In the column labeled Type, the I stands for
Internal and the E stands for External.

Type Purpose Format

I Executes batch [d:]filename
file [parameters]

E Checks disk and CHKDSK [d:]
reports status

E Compares files COMP [filespec]
[d:] [filename [.ext]]

I Copies files COpy filespec
[d:] [filename [.ex t]]

E Enter date DATE

I Lists filenames DIR [d:]
[filename [.ex t]]

DISKCOMP E Compares DISKCOMP [d:] [d:]
diskettes

DISKCOPY E Copies DISKCOPY [d:] [d:]
diskettes

ERASE I Deletes files ERASE filespec

FORMAT E Formats FORMAT [d:] US]
diskette

3-50

Command Type Purpose Format

MODE E Sets mode. on MODE [LPT#:] [n]
printer / display [,m} [,T]

PAUSE I Ptovides..a PAUSE [remark]
system wait

REM I Displays REM [remark]
remarks

RENAME I Renames files RENAME filespec
filename [.ex t]

SYS E Transfers DOS SYS d:

TIME E Enter time TIME

TYPE I Displays file TYPE filespec
contents

3-51

3-52

CHAPTER 4. THE LINE EDITOR (EDLIN)

Contents

Introduction 4-3

How to Start the ED LIN Program 4-4

The ED LIN Command Parameters 4-6

The ED LIN Commands 4-9
Information Common to All EDLIN

Commands 4-9

Append Lines Command 4-11

Delete Lines Command 4-12

Edit Line Command 4-16

End Edit Command . 4-18

Insert Lines Command 4-19

List Lines Command 4-22

Quit Edit Command 4-26

Replace Text Command 4-27

Search Text Command 4-30

Write Lines Command 4-33

Summary of EDLIN Commands 4-34

4-1

4-2

Introduction

In this chapter, you will learn how to use the Line
Editor (ED LIN) program.

You can use the Line Editor (EDLIN) to create, change,
and display source files or text files. Source files are
unassembled programs in source language format. Text
files appear in a legible format.

EDLIN is a line text editor which can be used to:

• Create new source files and save them.

• Update existing files and save both the updated
and original files.

• Delete, edit, insert, and display lines.

• Search for, delete, or replace text within one or
more lines.

The text of files created or edited by EDLIN is divided
into lines of varying length, up to 253 characters per
line.

Line numbers are dynamically generated and displayed
by EDLIN during the editing process, but are not
actually present in the saved file.

When you insert lines, all line numbers following the
inserted text advance automatically by the number of
lines inserted. When you delete lines, all line numbers
following the deleted text decrease automatically by
the number of lines deleted. Consequently, line
numbers always go consecutively from I through the
last line.

4-3

How to Start the EDLIN Program

4-4

To start EDLIN, enter:

ED LIN filespec

• If the specified file exists on the designated or
default drive, the file is loaded into memory until
memory is 75% full. If the entire file is loaded,
the following message and prompt is displayed:

End of input file
*

You can then edit a file.

Notice that the prompt for EDLIN is an asterisk
(*).

• If the entire file cannot be loaded into memory,
EDLIN loads lines until memory is 75% full, then
displays the * prompt. You can then edit the
portion of the file that is in memory.

To edit the remainder of the file, you must write
some of the edited lines to diskette in order to free
memory so that you can load unedited lines from
diskette into memory. Refer to the Write Lines
and Append Lines commands in this chapter for
the procedure you will use.

• If the specified file does not exist on the drive, a
new file is created with the specified name. The
following message and prompt is displayed:

New file

*

You can now create a new file by entering the
desired lines of text. To begin entering text, you
must enter an I command to insert lines.

When you have completed the editing session, you can
save the original and updated (new) files by using the
End Edit command. The End Edit command is
discussed in this chapter in the section called "The
EDLIN Commands." The original file is renamed to
an extension of .BAK, and the new file has the filename
and extension you specified in the EDLIN command.

Notes:

1. You cannot edit a file with a filename
extension of .BAK with EDLIN because the
system assumes it is a backup file. If you find
it necessary to edit such a file, rename the file
to another extension; then start EDLIN and
specify the new name.

2. When you start EDLIN, EDLIN erases the
backup copy (.BAK) of the file, if one exists,
to ensure adequate space on the diskette for
the updated file. EDLIN then allocates a new
file with the filename that you specify in
the EDLIN command and an extension of
.$$$. The file with an extension of $$$
contains the updated file, and is ultimately
renamed to the specified filespec by the End
Edit command.

4-5

The EDLIN Command Parameters

Parameter Definition

line Denotes when you must specify a line number.

There are three possible entries that you can
make using this parameter:

1. Enter a decimal integer from 1-65529. If
you specify a number greater than the
number of lines-that are in memory, the
line will be added after the last line that
exists.

Line numbers must be separated from each
other by a comma or a space.

OR

2. Enter a pound sign (#) to specify the line
after the last line in memory. Entering
a # has the same effect as specifying a
number greater than the number of lines
in memory.

4-6

Parameter Defmition

line OR

3. Enter a period (.) to specify the current
line.

The current line indicates the location
·of the last change to the file, but is not
necessarily the last line displayed. The
current line is marked by an asterisk (*)
between the line number and the first
character of text in the line. For
example:

IO:*FIRST CHARACTER OFTEXT

n Denotes when you must specify lines.

Enter the number of lines that you want to
write to diskette or load from diskette.

You only use this parameter with the Write
Lines and Append Lines commands. These
commands are meaningful only if the file to
be edited is too large to fit in memory.

4-7

Parameter

string

4-8

Definition

Denotes when you must enter one or more
characters to represent text to be found,
replaced, deleted; or to replace other text.

You only use this parameter with the Search
Text and Replace Text commands.

The EDLIN Commands

This section describes the EDLIN commands and tells
how to use them. The commands are in alphabetical
order; each with its purpose and format. Examples
are provided where appropriate.

Information Common to All EDLIN Commands

The following information applies to all EDLIN
commands:

• With the exception of the Edit Line command, all
commands are a single letter.

• With the exception of the End Edit and Quit Edit
commands, commands are usually preceded and/or
followed by parameters.

• Enter commands and string parameters in uppercase
or lowercase, or a combination of both.

• Separate commands and parameters by delimiters
for readability; however, a delimiter is only
required between two adjacent line numbers.
Remember, delimiters are spaces or commas.

• Commands become effective only after you press
the Enter key.

• End commands by pressing the Ctrl-Break keys.

• For commands producing a large amount of
output, press Ctrl-NumLock to suspend the display
so that you can read it before it scrolls away. Press
any other character to restart the display.

4-9

4-10

• Use the control keys and DOS editing keys,
described in Chapter I, while using EDLIN. They
are very useful for editing within a line, while the
EDLIN commands can be used for editing
operations on entire lines.

• The prompt from EDLIN is an asterisk (*).

Append Lines
Command

Purpose: Adds the specified number of lines from diskette to
the file being edited in memory. The lines are added at
the end of the current lines in memory.

Format: [n] A

Remarks: This command is only meaningful if the file being edited
is too large to fit in memory. As many lines as possible
are read into memory for editing when you start EDLIN.

To edit the remainder of the file that will not fit into
memory, you must write edited lines in memory to
diskette before you can load unedited lines from diskette
into memory by using the Append Lines command.
Refer to the Write Lines command for information on
how to write edited lines to diskette.

Notes:

1. If you do not specify the number of lines,
lines are appended to memory until available
memory is 75% full. No action is taken if
available memory is already 75% full.

2. The message End of input file is displayed
when the Append Lines command has read
the last line of the file into memory.

4-11

Delete Lines
Command

Purpose: Deletes a specified range of lines.

Format: [line] [,line] D

Remarks: The line following the deleted range becomes the
current line, even if the deleted range includes the last
line in memory. The current line and all the following
lines are renumbered.

4-12

Default values are supplied if either one or both of the
parameters are omitted.

If you omit the first parameter, as in:

,lineD

deletion starts with the current line and ends with the
line specified by the second parameter. The beginning
comma is required to indicate the omitted first
parameter.

If you omit the second parameter, as in:

lineD

or

line,D

only the one specified line is deleted.

If you omit both parameters, as in:

D

Delete Lines
·,Command

only the current line is deleted, and the line that
follows becomes the current line.

Example: Assume that you want to edit the following file. The
current line is line 29.

1: This is a sample file
2: used to demonstrate
3: line deletion
4: and dynamic
5: line number generation.
•
• •

25: See what happens
26: to the lines
27: and line numbers
28: when lines are
29:*deleted.

If you want to delete a range of lines, from 5-25, enter:

5,25 D

The result is:

1: This is a sample file
2: used to demonstrate
3: line deletion
4: and dynamic
5:*to the lines
6: and line numbers
7: when lines are
8: deleted.

4-13

Delete ·Unes
Command

4-14

Lines 5-25 are deleted from the file. Lines 26-29 are
renumbered to 5-8. Line 5 becomes the current line.

If you want to delete the current and the following line,
enter:

,6 D

The result is:

1: This is a sample file
2: used to demonstrate
3: line deletion
4: and dynamic
5:*when lines are
6: deleted.

Lines 5-6 are deleted from the file. Lines 7-8 are
renumbered to 5-'6; Line 5 is still the current line, but
now it has different text.

If you want to delete a single line, say line 2, enter:

2 0

The result is:

1: This is a sample file
2:*line deletion
3: and dynamic
4: when lines are
5: deleted.

Line 2 is deleted. Lines 3-6 are renumbered to 2-5.
The new line 2 becomes the current hne.

If you want to delete only the current line, enter:

D

The result is:

1: This is a sample file
2:*and dynamic
3: when lines are
4: deleted.

Delete Lines
Command

The current line, line 2, is deleted. Lines 3-5 are
renumbered to 2:-4. The new line 2 becomes the current
line.

4-15

-

Edit.Line
Command

Purpose: Allows you to edit a line of text. You must enter the
line number of the line to be edited,or enter a period
(.) to indicate the current line.

Format: [line]

. Remarks: If Y0U just press Enter, Sou specify that the line after
the ,current line is to be edited.

The 1ine~number and its text are displayed and the line
number is repeated .on the line below.

,y ou can use the control keys and the editing keys,
described in Chapter I, to edit the line, or you can
replace the entire,line by typing new text.

When you press the Enter key, the edited line is placed
in the file and becomes the current line.

If you decide not to save the changed line, either press
Esc or:'press Ctrl-Break. The original line remains
l:mchanged. Pressing the Enter key with the cursor at
the beginning of the line has the same effect as

"pressing Esc or Ctrl..;Break .

. If the 'cursor is in any posFtioo other than the beginning

. or the end ofa line, pressing Enter·truncates the rest of
the line.

Example: Assume that you want to edit line 6. The following
display would appear on the screen:

*6

4-16

6: This is a sample unedited line.
6:*

Edit Line
Command

The first line is your request to edit line 6, followed by
the two-line display response.

If you want to move the cursor to the letter u, press F2
and enter:

u

The result is:

*6
6: This is a sample unedited line.
6: This is a sample_

If you want to delete the next two characters and keep
the remainder of the line, press Del twice; then press
F3.

The result is:

*6
6: This is a sample unedited line.
6: This is a sample edited line.

Now you can take one of the following actions:

• Press Enter to save the changed line.

• Extend the changed line by typing more text. You
are automatically in insert mode when the cursor
is at the end of a line.

• Press F5 to do additional editing to the changed
line without changing the original line.

• Press Esc or Ctrl-Break to cancel the changes you
made to the line. The original contents of the line
will be preserved.

4-17

End Edit
Command

Purpose: Ends EDLIN and saves the edited file.

Format: E

Remarks: The edited file is saved by writing it to the drive and
filename specified when you started EDLIN.

4-18

The original file, the one specified when EDLIN was
started, is renamed by giving it a .BAK filename
extension. A .BAK file will not be created if there is
no original file; that is, if you created a new file instead
of updating an old file during the editing session.

EDLIN returns to the DOS command processor, which
issues the command prompt.

Note: Be sure your diskette has enough free space
to save the entire file. If your diskette does not
have enough free space, only a portion of the file
is saved. The portion in memory that is not
written to diskette is lost.

Insert Lines
Command

Purpose: Inserts lines of text immediately before the specified
line.

Format: [line] I

Remarks: If you do not specify a line, or if you specify line as a
period (.), the insert is made immediately before the
current line.

If the line number you specify is greater than the
highest existing line number, or if you specify # as the
line number, the insertion is made after the last line in
memory.

EDLIN displays the appropriate line number so that
you can enter more lines, ending each line by pressing
Enter. During the insert mode of operation,
successive line numbers appear automatically each time
Enter is pressed.

You must press Ctrl-Break to discontinue the insert
mode of operation.

The line that follows the inserted lines becomes the
current line, even if the inserted lines are added to the
end of the lines in memory. The current line and all
the remaining lines are renumbered.

When you create a new file, you must enter the Insert
Lines command before text can be inserted.

4-19

Insert Lines
Command

Example: Assume that you want to edit the following file. Line 3
is the current line.

4-20

1: This is a sample file
2: used to demonstrate
3:*line deletion
4: and dynamic
5: line number generation.

If you want to insert text before line 4, the entry and
immediate response looks like this:

*41
4:*

Now, if you want to insert two new lines of text, enter:

*4
4:*First new line of text
5:*Second new line of text
6:*

and press Ctrl-Break.

The original lines 4 and 5 are now renumbered to lines
6 and 7.

If you display the file with a List Lines command, the
file looks like this:

1: This is a sample file
2: used to demonstrate
3: line deletion
4: First new line of text
5: Second new line of text
6:*and dynamic
7: line number generation.

Insert Lines
Command

If the two lines that were inserted had been placed at
the beginning of the file, the screen would look like this:

1: First new line of text
2: Second new line of text
3:*This is a sample file
4: used to demonstrate
5: line deletion
6: and dynamic
7: line number generation.

If the two lines that were inserted had been placed
immediately before the current line (3 I or . I or I), the
screen would look like this:

1: This is a sample file
2: used to demonstrate
3: First new line of text
4: Second new line of text
5:*line deletion
6: and dynamic
7: line number generation.

If the two inserted lines had been placed at the end of
the file (6 I or # I), the screen would look like this:

1: This is a sample file
2: used to demonstrate
3: line deletion
4: and dynamic
5: line number generation.
6: First new line of text
7: Second new line of text

4-21

List Lines
Command

Purpose: Displays a specified range of lines.

The current line remains unchanged.

Format: [line] [,line] L

Remarks: Default values are provided if either one or both of the
parameters are omitted.

4-22

If you omit the first parameter, as in:

,line L

the display starts ·11 lines before the current line and
ends with the specified line. The beginning comma is
required to indicate the omitted first parameter.

Note: If the specified line is more than 11 lines
before the current line, the·,display is the same as
if you omitted both parameters. (An example
is provided in this section showing both
parameters omitted.)

If you omit the second parameter, as in:

line L

or

line, L

atotal of2~3 lines are displayed, starting with the
specified line.

If you omit both parameters, as in:

L

List Lines
Command

a total of 23 lines-are displayed-the 11 lines 'before the
current line, the current line, and the 11 lines after the
current line. If there aren't 11 lines before the current
line, the extra. lines. after the ccurrent line are displayed
to make a,wtal of 23 lines.

Example: Assume that you want to edit the following file. Line 15
is the current line.

1: This is a sample file
2: used to demonstrate
3: line deletion
4: and dynamic
5: line number generation.
•
• •

15:*This is the current line (note the asterisk)
•
• •

25: See what· happens
26: to the lines
27: and line numbers
28: when lines are
29: deleted.

If,.you want to' display ,a Tange ofhne.s, from 5-25, enter:

5,25 l

4-23

List Lines
Command

4-24

The screen looks like this:

5: line number generation.
• • •

15: *This is the current line (note the asterisk)
• •
•

25: See what happens

If you want to display the first three lines, enter:

1,3 L

The screen looks like this:

1: This is a sample file
2: used to demonstrate
3: line deletion

If you want to display 23 lines of the file, starting with
line 3, enter:

3 L

The screen looks like this:

3: line deletion
4: and dynamic
5: line number generation.
• • •

15:*This is the current line (note the asterisk)
• • •

25: See what happens

List Lines
Command

If you want to display 23 lines centered around the
current line, enter:

l

The screen looks like this:

4: and dynamic
5: line number generation.
•
• •

15:*This is the current line (note the asterisk)
•
•
•

25: See what happens
26: to the lines

4-2~

Quit Edit
Command

Purpose: Quits the editing session without saving any changes
you may have entered.

Format: Q

Remarks: EDLIN prompts you to make sure you really don't
want to save the changes.

Enter Y if you want to quit the editing session. No
editing changes are saved and no .BAK file is created.
Refer to the End Edit command for information about
the .BAK file.

Enter N, or any other character, if you want to
continue the editing session.

Note: When started, EDLIN erases any previous
backup copy of the file (filename.BAK) to make
room for saving the new copy. Therefore, if you
reply Y to the Abort edit (Y IN)? message, your
previous backup copy will no longer exist.

Example: Q

Abort edit (YIN)?

4-26

Replace Text
Command

Purpose: Replaces all occurrences of the first string in the
specified range of lines with the second string.

Note: If you omit the second string, Replace
Text deletes all occurrences of the first string
within the specified range of lines.

Displays the changed lines each time they are changed.
The last line changed becomes the current line.

Format: [line] [,line] [?] Rstring[<F6>string]

Remarks: You can specify the optional parameter? to request a
prompt (O.K.?) after each display of a modified line.
Press the Y, or the Enter key if you want to keep the
modification.

Enter any other character if you don't want the
modification. In either case, the search continues for
further occurrences of the first string within the range
of lines, including multiple occurrences within the
same line.

Defaults occur if either one or both of the parameters
is missing.

If you omit the first line, the search begins with line 1.
If you omit the second line, the search ends with the
last line in memory. If you omit both line parameters,
the system will search all the lines in memory for
occurrences of the first string.

4-27

Replace Text
Command

Note: The first string begins with the character in
the position immediately following the R, and
continues until you press F6 or Ctrl-Z (or by
pressing the Enter key if the second string is
omitted). If you omit the first string, no search
can be made, so the command ends immediately
and the Not found message is displayed.

The second string begins immediately after you
press F6 or Ctrl-Z and continues until you press
Enter.

Example: Assume that you want to edit the following file. Line 7
is the current line.

4-28

1: This is a sample file
2: used to demonstrate
3: the Replace and Search Text commands.
4: This includes the
5: optional parameter?
6: and required string
7: *parameter.

To replace all occurrences of and with or in the file,
enter:

1,7 Rand

Then press F 6 or Enter.

The result is:

3: The Replace or Search Text commors.
6: or required string

Line 6 becomes the current line in the file because line 6
was the last line changed. Notice that lines I, 2,4, 5,
and 7 are not displayed because they were not changed.

Replace Text
Command

Greater selectivity can be achieved by requesting a
prom pt (by using the ? parameter) after each display of
a modified line. If you request a prompt,the screen
loa ks like this:

*l,7?Rand
3: the

O.K.? Y
3: the

O.K.? N

(Press F6 or Enter)
Replace or Search Text commands.

Replace or Search Text commors.

6: or required string
O.K.? Y
*

Lines 3 and 6 are displayed like this:

3: the Replace or Search Text commands.
6: or required string

4-29

Search Text
Command

Purpose: Searches a specified range· of lines in order to locate a
specified string.

Format: [line] [,linel [?] Sstring

Remarks: The first line to contain the specified string is displayed
and the. search ends (unless you use the? parameter}.
The first line found· that matches the specified string
becomes the current line.

4-30

You should specify the-optional parameter. ? if you
would like a prompt (O.K.?) after each display of a line
containing the specified string.

If the specified string is not found, the search ends and
the message Not found is displayed . The currentline
remains unchanged.

If you press the Enter key or the Y key, the line that
matches the specified string becomes the current line
and the search ends. Enter any otheT character to
con tinue the search until another string is found, or
until all lines within the range are searched. Once all
the lines within the range are searched, the Not found
message is displayed.

The system provides default values if you omit the first,
second, orboth line parameters. If you omit the first
line parameter, the system defaults to line 1. If you
omit the second line parameter, the system defaults to
the last line in your file. If you omit both line
parameters, the system searches all lines in memory.

Search Text
Command

Note: The string begins with the character in the
position immediately following the S, and continues
until you end the search by pressing the Enter key.
If the string parameter is omitted, no search can
be made so the command ends immediately with
the Not found message.

Example: Assume that you want to edit the following file. Line 7
is the current line.

1: This is a sample file
2: used to demonstrate
3: the Search Text command.
4: This includes the
5: optional parameter ?
6: and required string
1:*parameter.

If you wantto search for the first occurrence of and in
the file, enter:

1,1 Sand
or

1, Sand
or

,7 Sand
or

Sand

The result is:

3: the Search Text command.
*

4-11

Search Text
Command

4-32

The and is part of the word command. Notice that line
3 becomes the current line in the file.

Perhaps this is not the and you were looking for. To
continue the search; enter a new starting line number
(4); press F3 to copy the remainder of the previous S
command to the screen; then press Enter to execute
the S command starting at line 4.

The screen looks like this:

Line 6 now becomes the current line in the file.

You can also search for strings by requesting a prompt
(by means of the? parameter) after each display of a
matching line. In this case, the screen looks like this:

Write Lines
Command

Purpose: Writes a specified number of lines to diskette from the
lines that are being edited in memory. Lines are written
beginning with line number 1.

Format: [n] W

Remarks: This command is only meaningful if the file you are
editing is too large to fit in memory. When you start
EDLIN, EDLIN reads lines into memory until memory
is 75% full.

To edit the remainder of your file, you must write
edited lines in memory to diskette before you can load
additional unedited lines from diskette into memory by
using the Append Lines command.

Note: If you do not specify the number of lines,
lines are written until 25% of available memory is
used. No action is taken if available memory is
already less than 25% used. All lines are
renumbered so that the first remaining line
becomes number 1.

4-33

Summary of EDLIN Commands

The following chart is provided for quick reference.

Command

Append Lines

Delete Lines

Edit Line

End Edit

Insert Lines

List Lines

Quit Edit

Replace Text

Search Text

Write Lines

4-34

Note: The section called "Format Notation" in
Chapter 3 explains the notation used in the
format of the following commands.

Format

[n] A

[line] [,line] D

[line]

E

[line] I

[line] [,line] L

Q

[line] [,line] [?] Rs tring [< F 6> string]

[line] [,line] [?] Sstring

[n] W

CHAPTER 5. THE LINKER (LINK)
PROGRAM

Contents

In trod uction

Files
Input Files
Output Files
VM.TMP (Temporary File)

Definitions .
Segment
Group .
Class ..

Command Prompts

Detailed Descriptions of the Command
Prompts

Object Modules:
Run File:
List File [run-filename.MAP] :
Libraries [] :
Publics [No]:
Line Numbers [No] :
Stack Size [Object file stack] :
Load Low [Yes]: ...
DSAllocation [No]: . .

Special Command Characters

5-3

5-4
5-4
5-4
5-5

5-6
5-6
5-7
5-7

5-8

5-10
5-10
5-11
5-11
5-12
5-13
5-13
5-13
5-14
5-15

5-16

5-1

How to Start LINK 5-1 7
Before You Begin 5-17
Example of an Automatic Response File 5-19
Example Linker Session 5-20
Load Module Memory Map 5-24
How to Determine the Absolute Address

of a Segment 5-25
Messages 5-26

5-2

Introduction

The Linker (LINK) program.is a program that:

• Combines separately produced object modules.

• Searches library files for definitions of unresolved
external references.

• Resolves external cross-references.

• Produces a printable listing that shows the
resolution of external references and error messages.

• Produces a relocatable load module.

In this chapter, you will learn how to start LINK at the
end of the chapter. You should read all of this chapter
before you start LINK.

5-3

·Files

The linker processes the foHowinginput, output, and
temporary files:

. Input Files

Default Override Produced
Type .ext .ext by

Object :OBJ Yes Compiler
and

Assembler

Library (none) (none) Compiler

Automatic (none) . (none) User
Response

Output Files

Default Override
Type .ext .ext Used by

Listing .MAP Yes User

Run ~EXE No Relocatable
loader
(COMMAND.COM)

5-4

VM.TMP (Temporary Files)

LINK uses as much memory as is available to hold the
data that defines the load module heing created. If the
module is too large to be processed with the available
amount of memory , the linker may need additional
memory space. If this happens, a temporary diskette
file called VM.TMP is created on the DOS default
drive.

A message is displayed to indicate when the overflow to
diskette has begun. Once this temporary file is created,
you should not remove the diskette until LINK ends.
When LINK ends, the VM.TMP file is deleted.

If the DOS default drive already has a file by the name
of VM.TMP, it will be deleted by LINK and a new file
will be allocated ... The contents of the previous file are
destroyed; therefore, you should avoid using VM.TMP
as one of your own filenames.

5-5

Definitions

Segment

5-6

Segment, group, and class are terms that appear in this
chapter and in some of the messages in Appendix A.
These terms describe the underlying function of LINK.
An understanding of the concepts that define these
terms provides a basic understanding of the way LINK
works.

A segment is a contiguous area of memory up to 64K
bytes in length. A segment may be located anywhere
in memory on a paragraph (l6-byte) boundary. Each of
the four segment registers defines a segment. The
segments can overlap. Each 16-bit address is an offset
from the beginning of a segment. The contents of a
segment are addressed by a segment register/offset pair.

The contents of various portions of the segment are
determined when machine language is generated.

Neither size nor location is necessarily fixed by the
machine language generator because this portion of the
segment may be combined at linker time with other
portions forming a single segment.

A program's ultimate location in memory is determined
at load time by the relocation loader facility provided
in COMMAND .COM, based on your response to the
Load Low prompt. The Load Low prompt will be
discussed in this chapter.

Group

Class

A group is a collection of segments that fit together
within a 64K-byte segment of memory. The segments
are named to the group by the assembler or compiler.
A program may consist of one or more groups.

The group is used for addressing segments in memory.
The various portions of segments within the group are
addressed by a segment base pointer plus an offset. The
linker checks that the object modules of a group meet
the 64K-byte constraint.

A class is a collection of segments. The naming of
segments to a class affects the order and relative
placement of segments in memory. The class name is
specified by the assembler or compiler. All portions
assigned to the same class name are loaded into
memory contiguously.

The segments are ordered within a class in the order that
the linker encounters the segments in the object files.
One class precedes another in memory only if a segment
for the first class precedes all segments for the second
class in the input to LINK. Classes are not restricted in
size. The classes will be divided into groups for
addressing.

5-7

Command Prompts

Prompt

After you start the linker session, you receive a series of
nine prompts. You can respond to these prompts from
the keyboard, or you can use a special diskette file that
is called an automatic response file to respond to the
prompts. An example of an automatic response file is
provided in this chapter. Refer to the section called
"How to Start LINK" in this chapter for information
on how to start the Linker session.

LINK prompts you for the names of object, run, list,
and library files. LINK also prompts you for optional
parameters that govern the linker session. When the
session is finished, LINK returns to DOS. The DOS
prompt is displayed when LINK has finished. If the
LINK is unsuccessful, LINK will display a message.

The prompts are described in their order of appearance
on the screen. The default is shown in square brackets
([]), in the response column. Prompts that are not
followed by a default require a response from you.

Responses

Object Modules: filespec [filespec . ..]

Run File: filespec [fP]

List File [filename.MAP] : [filespec]

Libraries [] : [filespec [filespec . ..]]

5-8

!

I

I

I

Prompt Responses

Publics [No] : Y or N: Y lists all global symbols
with definitions.

Line Numbers [No] : Y or N: Y includes line numbers
in LIST file.

Stack Size [Object file Non-zero decimal value sets
stack] : stack size in RUN file.

Load Low [Yes] : Y or N: Y causes RUN file to be
loaded in low memory when
executed.

DSAllocation [No] : Y or N: Y loads data at
high-end of data segment.

Notes:

1. For the prompts that require a Yes or a No,
only the first character of the response is
interpreted. The first character must either
be a Y or an N. Any additional characters
that you may provide are ignored by the
linker. You can also press the Enter key
instead of responding with a Y or an N. If
you press Enter, default values are provided.
The default values that are provided will be
discussed in the detailed descriptions of the
command prompts in this chapter.

2. If you enter a filespec without specifying the
drive, the default drive is assumed.

3 . You can end the linker session prior to its
normal end by pressing Ctrl-Break.

5-9

Detailed Descriptions of the
Command Prompts

The following detailed descriptions contain information
about the responses that you can enter to the prompts.

Object Modules:

5-10

Enter one or more filespecs for the object modules to
be linked. If the extension is omitted, LINK assumes
the filename extension .OBJ. If an object module has
another filename extension, the extension must also be
specified.

Filespecs must be separated by single commas (,) or by
spaces.

LINK loads segments into classes in the order
encountered.

If you specify an object module, but LINK cannot
locate the file, a prompt requests you to insert the
diskette containing the specific module. This permits
.OBJ files from several diskettes to be included.

To avoid a conflict with VM.TMP (which may be
allocated on the DOS default drive), these modules
should be specified as residing on the other drive whose
diskette can safely be exchanged. On a single-drive
system, diskette exchanging can be done safely only if
VM.TMP has not been opened. A message will
indicate if VM.TMP has been opened. The VM.TMP
file is discussed in this chapter.

IMPORTANT: If a VM.TMP file has been opened, you
should not remove the diskette containing the VM.TMP
file. Remember, once a VM.TMP file is opened, the
diskette it resides on cannot be removed.

Run File:

If a VM.TMP file has been opened and you receive a
prompt to insert another diskette, you must either
specify another driv.e whose diskette can safely be
exchanged, or press theCtrl-Break keys. Pressing
Ctrl-Break allows you to end LINK. Then you can set
up your files to allow space for the VM.TMP file before
rerunning LINK.

The filespec you enter is created to store the Run
(executable) file that results from the LINK session.
All Run files receive the filename extension .EXE,
even if you specify an extension. If you specify an
.extension, your specified extension is ignored.

As an option, you can respond to RUN FILE: with
filespec/Po This tells LINK to display a message to
you. This message will request you to insert the
diskette that is to receive the Run file. If you use the
/P option, the Run file should be explicitly directed
to the non-default drive.

List File [run-filename.MAP] :

The List file will be placed on the diskette that contains
the Run file, unless overridden. If the Run file is not
directed to the default drive (where VM.TMP is
allocated), you should send the List file to either the
default drive, or to a drive whose diskette is not going
to be removed. If the diskette that the List file is being
sent to is removed in -response to any of the prompts
requesting diskette changes, the directory of the
replace,ment diskettejs invalid-which causes any files
it may have contained to be lost.

5-11

The List file contains an entry for each segment in the
input (object) modules. Each entry also shows the
offset (addressing) in the Run file.

The Run filename with the default extension .MAP is
used if you do not enter a filespec.

Note: The diskette that the .MAP file is allocated
to must not be removed until the LINK has
ended. If a prompt requests that you remove the
.MAP diskette; end. the LINK by pressing the
Ctrl-Break keys; then reorganize the files needed
for the LINK on the appropriate diskettes.

To avoid generating the .MAP file on a diskette,
you can specify the console as the List file device.
For example:

List File [run-filename.MAP] : CON

If you direct the output to your console, you can
also print a copy of the output by pressing the
Ctrl-PrtSc keys.

Libraries []:

5-12

The valid responses are either listing the library filespecs,
or pressing the Enter key. If you just press the Enter
key, LINK defaults to the library provided as part of
the Compiler package. For linking objects from just the
Assembler, there is no automatic default library search.

When LINK attempts to reference a library file and
cannot find it, a prompt requests you to enter the drive
identifier containing the library.

Note: FOF PASCAL, LINK already knows the
library name; therefore, you do not need to
specify one.

You can enter from 1-8 library filespecs. The filespecs
must be separated by single commas or spaces.

LINK searches the library files in the order they are
listed to resolve external references. When it finds the
module that defines the external symbol, the module is
processed as another object module.

Publics [No] :

The only valid responses are Y and N, or you can simply
press the Enter key. Pressing only the Enter key defaults
to N.

A Y response directs LINK to list all public (global)
symbols defined in the input modules. For each
symbol, LINK lists its value and segment-offset
location in the Run file. The symbols are listed at the
end of the List file.

Line Numbers [No] :

The only valid responses are Y and N, or you can sim ply
press the Enter key. Pressing only the Enter key defaults
to N.

For PASCAL, a Y response directs LINK to include the
line numbers and addresses of the source statements in
the input modules in the List file.

For modules produced by the Assembler, the response is
assumed to be N.

Stack Size [Object file stack] :

Valid responses are any positive decimal value up to
65536 bytes, or you can simply press the Enter key. If
your response is 0, or if you just press the Enter key,
you specify that the original stack size provided by the
assembler or compiler is to be used.

5-13

If you specify a value greater than 0 but less than 512,
the value 5 12 is used. This response is used to override
the size of the stack that the assembler or compiler has
provided for the load module being created.

If the. size of the stackis too small, the results of
executing the resulting load module are unpredictable.

At least one input (object) module must contain a
stack allocation statement. This is automatically
provided by compilers. For the assembler, the source
must contain a SEGMENT command that has the
com bine type of STACK .. If a stack allocation statement
was not provided, LINK returns a Warning: No Stack
statement message.

Load Low [Yes] :

5-14

The only valid responses are Y and N, or you can simply
press the Enter key. Pressing only the Enter key defaults
to Y.

A Y response to LINK will cause the loader to place the
Run image as low as possible in memory. An N response
to LINK will cause the loader to place the Run file as
high as possible without overlaying the transient portion
of COMMAND.COM, which occupies the highest area
of m'emory when loaded.

Note: For PASCAL, the Y is required.

The Load·Low response is used by LINK in conjunction
with the:DSAllocation response.

DSAllocation [No] :

The only valid responses are Y and N, or you can simply
press the Enter key. Pressing only the Enter key defaults
to N. If a group exists with a name of DGROUP, it will
always be loaded lower than all the other segments within
the load module.

A Y response directs LINK to load all data defined to be
in DGROUP at the high-end of the data segment. At
run time, the data space starts at the lowest possible
address that still allows addressability to all data elements
of the group. If the Load Low response is N (module
loaded high), this allows any available memory below
the specifically allocated area within DGROUP to be
allocated dynamically by your application and still be
addressable by the same data space pointer.

Note: The maximum amount of memory which
can be dynamically allocated by the application
will be 64K (or the amount actually available)
minus the allocated portion of DGROUP.

An N response directs LINK to load all data defined to
be in the group whose group name is DGROUP, at the
low-end of the data segment, beginning at an offset of
O. The only memory thus referenced by the data space
pointer should be only that specifically defined as
residjng in the group.

All other segments of any type in any GROUP other
than DG ROUP will be loaded at the low-end of their
respective groups, as defined under the N response.

5-15

Special Command Characters

LINK recognizes two special command characters:

Character Definition

& Use the ampersand (&) to extend the current line.
To enter a large number of responses (each of
which can be very long), enter an ampersand at the
end of the line to extend the logical line, then
continue to enter responses to the command prompt.
Do not press the Enter key until all responses for
the current prompt are entered.

! Use a single exclamation point (!) followed
immediately by pressing the Enter key at any time
after the first two prompts (from List File: on)
to select default responses to the remaining
prompts. This feature saves time and overrides the
need to keep pressing the Enter key.

Note: Once the exclamation point has been
entered, you can no longer respond to any of
the remaining prompts for that linker
session. Therefore, do not use the exclamation
point to skip over some prompts, only use the
Enter key.

5-16

How to Start LINK

Before Yon Begin

• Make sure the files you will be using for the LINK
are on the appropriate diskettes.

• Make sure you have enough free space on your
diskettes to contain your files and any generated
data.

Yau can start the Linker program by using one of two
options:

Option I-Console Responses

From your keyboard, enter:

LINK

The linker is loaded into memory and displays a series
of nine prompts, one at a time, to which you must enter
the requested responses. Detailed descriptions of the
responses that you can enter to the prompts are
discussed in this chapter in the section called "Command
prompts."

If you enter an erroneous response, such as the wrong
filespec or an incorrectly spelled filespec, you must
press Ctrl-Break to exit LINK, then you must restart
LINK. If the error has been typed but not entered, you
may delete the erroneous characters, for that line only.

An example of a Linker session, using the console
response option, is provided in this chapter in the section
called "Example Linker Session."

5-17

5-18

Option 2-Au tornatic Responses

From your keyboard, enter:

UN K filespec

For this option, you enter the filespec of an Automatic
Response File. An example of an Automatic Response
File is provided in this chapter.

Before using this option, you must create the Automatic
Response File. It contains several lines of text, each of
which is the response to a linker prom pt. These
responses must be in the same order as the linker prompts
that were discussed earlier in this chapter. If desired, a
long response may be contained across several lines by
using the ampersand to continue the same response onto
the next line.

Use of the filename extension is optional and may be any
name. There is no default extension.

Use of this option permits the command that starts
LINK to be entered from the keyboard or within a
batch file without requiring any response from you.

Angle brackets may be included in a response line to
perform two functions:

1. The text contained within the brackets is treated
as a prompting remark that is displayed on the
screen, but otherwise ignored.

2. After the responses on the line containing the
angle bracket comment have been acted upon by
LINK, execution pauses waiting for a response
from the keyboard. You may then enter additional
items (ending them by pressing the Enter key), or
you may just press the Enter key. The linker
continues processing with the next statement from
the Automatic Response File.

Example of an Automatic Response File

The Automatic Response File shown below contains:

• The names of standard modules (MODA ... MODF).

• A prompt asking you for additional object module
names <YOUR MODULE?>.

• Answers to the other eight prom pts.

Notes:

1. In this example, the use of the ampersand
causes the modules listed in the first two
lines and any module entered by the
operator in response to the <YOUR
MODULE?> entry to be considered as the
response to the Object Modules prompt.

2. Each of the above lines ends when you
press the Enter key.

5-19

ExampleUnker Session

5-20

This example shows you the type of infonnation that is
displayed during a -linker session.

Once you enter:

A>b:link

the system responds with the following messages:

iBM Personal Computer linker
Version 1.00 (C) Copyright IBM Corp 1981
Object Modules: example
RUIl file: example
list File [EXAMPLE,MAP] :pm
libraries []:
Publics [No]: y
line Numbers [No]: y
Stack size [Object file st!1ck]:
load low [Yes]:
DSAlIocation [No]:

Notes:

1. By responding pm to the List file prompt, we
sent our output to the printer.

2. By just pressing Enter in response to the
Libraries prompt, an automatic library search
is performed.

3. By resp,onding y to the Publics prompt, we
get both an alphabetic listing and a
chronological listing of publicsym boIs.

4. By responding y to the Line Numbers prompt,
LINK gives us a listing of lllliine numbers for
all modules. (A y response to the Line
Numbers prompt can generate a large amount
of output.)

If LINK cannot locate a library on the specified drive,
the following message is displayed:

cannot find library A:PASCAl.UB
enter new drive letter:

The drive that the indicated library is located on must
be entered.

Once LINK loea tes allJibraries, the Linker .MAP
displays a list of segments in the relative order of their
appearance within the load module. The list looks like
this:

Start Stop length Name Class

OOOOOH O[)028H 0029H MAl N OJ1 CODE
OOOJOH OOOF6H O[]C7H ENTXOQ CODE
0010llH 00100H OOOOH iNIXOn CODE
00100H 038D3H 37D4H FllVQQ_COIJE CODE
038!J4H 04921H 104EH FllUQQ_CODE CODE ..
41

•
074AOH 074AOH OOOOH HEAP MEMORY
014AOH 074AOH OOOOH MEMORY MEMORY
074AOH 0159FH 0100H STACI{ STACK
075AOH 07925H 0386H DATA DATA
07930H 082A9H 097AH CONST CONST

The information in the Start and Stop columns shows a
20-bit hex address of each segment relative to location
zeTO. Locahon zero is the beginning of the load module.
The addresses displayed are not the absolute addresses
of where these segments are loaded. To find the
ab501ute -address of where a segment is actually loaded,
you must determine where the segment listed as being :.i

at relative zero is actually loaded; then add the absolute
address to the relative address shown in the .MAP
listing. The procedure you use to determine where
relative zero is actually located is discussed in this
chapter, in the section .called "How to Determine the
Absolute Address of a Segment."

5-21

5-22

Now, because we responded y to the Publics prompt,
the public symbols are displayed by name and by value.
For example:

Address

0492: O[lOJH
[]6CD: !129F H
tru49l2:[lOA3H
[mCIJ:!f.UH31H

Publics by Name

ABSruo.U
!-\BSRUn
.AiJIJNOQ
AODRo.n

The addresses of the public symbols are also in the
segment:offset format, showing the location relative to
zero as the beginning of the load module. In some cases,
an entry may look like this:

This entry appears to be the address of a load module
that is almost one megabyte in size. Actually, the area
being referenced is relative to a segment base that is
pointing to a segment below the relative zero beginning
of the load module. This condition produces a pointer
that has effectively gone negative. The chart on the
following page is provided to illustrate this poin 1.

When LINK has completed, the following message is
displayed:

5-23

Load Module Memory Map

Data Segment
Base

64K Segment

Data elements have
large offsets from
the data segment
bases

5-24

Low Memory

,r--- - - - -

Data Area

Code

High Memory

-
Relat

~modu
locati

ive to the load
Ie, this
on is below
or negative zero,

,. Relative Zero

Load Module

)

How to Determine the Absolute Address of a Segment

The Linker .MAP displays a list of segmen ts in the
relative order of their appearance within the load
module. The information displayed shows a 20-bit
hex address of each segment relative to location zero.
The addresses that are displayed are not the absolute
addresses of where these segments are actually located.
To determine where relative zero is actually located, we
must use DEBUG. DEBUG is discussed in Chapter 6.

Using DEBUG,

1. Load the application.

Note the segment value in CS and the offset within
that segment to the en"try point as shown in IP.
The last line of the Linker .MAP also describes this
entry point, but uses relative values, not the
absolute values shown by CS and IP.

2. Subtract the relative entry as shown at the end of
the .MAP listing from the CS:IP value. For
example, let's say CS is at 05DC and IP is at zero.

The Linker .MAP shows the entry point at
0100:0000. (0100 is a segment ID or paragraph
number; 0000 is the offset into that segment.)

In this example, relative zero is located at
04DC:0000, which is 04DCO absolute.

If a program is loaded low, the relative zero location is
located at the end of the Program Segment Prefix, or in
the value in DS plus 100H.

5-25

Messages

5-26

All messages, except for the warning messages, cause the
LINK session to end. Therefore, after you locate and
correct a problem, you must rerun LINK.

Refer to Appendix A for a complete listing of messages.

CHAPTER 6. THE DEBUG PROGRAM

Contents

futroduction 6-3

How to Start the DEBUG Program 6-4

The DEBUG Command Parameters 6-6

The DEBUG Commands 6-10
Infonnation Common to All DEBUG

Commands 6-10

Dump Command 6-12

En ter~Command 6-15

Fill Command 6-18

Go Command . 6-19

Hexarithmetic Command 6-22

fuput Command 6-23

Load Command . 6-24

Move Command 6-27

:Name Command ·6-28

Output Command 6-30

Quit Command . . 6-31

Register Command 6-32

Search Command 6-37

Trace Command 6-38

6-1

6-2

Un assemble Command

Write Command

Summary of DEBUG COlnmands

6-40

6-43

6-47

Introduction

This chapter explainschowto use the DEBUG program:.

The DEBUG program Ganbe. used to:

• Provide a controlled test environment so you caR
monitor and control the execution of a program
to be debugged. You can fix problems in your
program directly" and then execute the program
immediately to determine if the problems have
been resolved, You do not need to reassemble a
program to find out if your changes worked.

• Load ,alter ,_ or display any file.

• Execute object files. Obje:ct files are executable
program.s in 'machine language format.

How to Start the DEBUG Program

6-4

To start DEBUG, enter:

E

If you enter a filespec, the DEBUG program loads the
specified file into memory. You may now enter
oommands to alter, display, or execute the contents of
the specified file.

If you do not enter a filespec, you must either work with
the present memory contents, or load the required file
into memory by using the Name and Load commands.
Then you can enter commands to alter, display, or
execute the memory contents.

When the DEBUG program starts, the registers and flags
are set·,to the following values for the program being
debugged:

• The segment registers (CS, DS, ES, and SS) are set
to the bottom of free memory; that is, the first
segment after the end of the DEBUG program.

• The Instruction Pointer (IP) is set to X'O 100'.

• The Stack Pointer (SP) is set to the end of the
segment, or the bottom of the transient portion of
COMMAND.COM, whichever is lower. The segment
size at offset 6is reduced by X' 100' to allow for a
stack of that size.

• The re'maining registers (AX, BX, CX, DX, BP, SI,
and DI)are set to zero. However, if you start the
DEBUG program with a filespec, the CX register
contains the length of the file in bytes.

• The flags are set to their cleared values. (Refer to
the Register command.)

• The default disk transfer address is set to X'80' in
the code segment.

Notes:

1. If a file loaded by DEBUG has an
extension of .EXE, DEBUG does the
necessary relocation and sets the segment
registers, stack pointer, and Instruction
Pointer to the values defined in the file.
The DS and ES registers, however, will
point to the Program Segment Prefix at
the lowest available segment. The CX
register is set to zero.

The program is loaded at the high end of
memory if the appropriate parameter
was specified when the linker created the
file. Refer to ".EXE File Structure and
Loading" in Appendix F for more
information about loading .EXE files.

2. If a file loaded by DEBUG has an
extension of .HEX, the file is assumed
to contain ASCII representation of
hexadecimal characters, and is converted
to binary while being loaded.

6-5

The DEBUG Command Parameters

Parameter Definition

address Enter a one- or two-part designation in one of
the following formats:

• An alphabetic segment register designation,
plus an offset value, such as:

CS:OIOO

• A segment address, plus an offset value,
such as:

4BA:OlOO

• An offset value only, such as:

100

(In this case, each command uses a default
segment.)

Notes:

1. In the first two formats, the colon is
required to separate the values.

2. All numeric values are hexadecimal
and may be entered as 1-4 characters.

3. The memory locations specified in
address must be valid; that is, they
must actually exist. Unpredictable
results will occur if an attempt is
made to access a nonexisten t memory
location.

byte Enter a one or two character hexadecimal value.

6-6

Parameter

drive

filespec

list

portaddress

range

Definition

Enter a single digit (for example, a for drive A
or 1 for drive B) to indicate which drive data is
to be loaded from or written to.

(Refer to the Load and Write commands.)

Enter a one- to three-part file specification
consisting of a drive designation, filename, and
filename extension. All three fields are optional.
However, for the Name command to be
meaningful, you should at least specify a drive
designator or a filename.

(Refer to the Name command.)

Enter one or more byte and/or string values.
For example:

E CS: 100 F3 'XYZ' 8D 4 "abed"

has five items in the list (that is, three byte
entries and two string entries having a total of
10 bytes).

Enter a 1-4 character hexadecimal value to
specify an 8- or 16-bit port address.

(Refer to the Input and Output commands.)

Enter either of the following formats to specify
the lower and upper addresses of a range:

• address address

For example:

CS: 100 110

Note: Only an offset value is allowed in
the second address. The addresses must
be separated by a space or a comma.

6-7

Parameter

range

Definition

• address L value

where value is the number of bytes in
hexadecimal to be processed by the
command. For example:

CS: 100 L 11

Notes:

1. The limit for range is X' 1 0000'. To
specify that value within four
hexadecimal characters, enter 0000
(or 0).

2. The memory locations specified in
range must be valid; that is, they must
actually exist. Unpredictable results
will occur if an attempt is made to
access a non-existent memory location.

registername Refer to the Register command.

sector sector Enter 1-3 character hexadecimal values to
specify the starting relative sector number and
the number of sectors to be loaded or written.

string

6-8

In DEBUG, relative sectors are sequentially
numbered from 0-13F, beginning at track 0
sector 1.

The maximum number of sectors that can be
loaded or written with a single command is
X'80'. A sector contains 512 bytes.

(Refer to the Load and Write commands.)

Enter characters enclosed in quotation marks.
The quotation marks can be either single (') or
double (").

The ASCII values of the characters in the string
are used as a list of byte values.

Parameter Definition

string Within a string, the opposite set of quotation
marks can be used freely as characters. However,
if the same set of quotation marks (as the
delimiters) must be used within the string, then
the quotation marks must be doubled. The
doubling does not appear in memory. For
example:

1. 'This "literal" is correct'

2. 'This' 'literal' , is correct'

3. 'This 'literal' is not correct'

4. 'This" "literal" " is not correct'

5. "This 'literal' is correct"

6. "This" "literal" " is correct"

7. "This "literal" is not correct"

8. "This' 'literal' ' is not correct"

In the second and sixth cases above, the word
literal is enclosed in one set of quotation marks
in memory. In the fourth and eighth cases
above, the word literal is not correct unless you
really want it enclosed in two sets of quotation
marks in memory.

value Enter a 1-4 character hexadecimal value to
specify that:

• The numbers to be added and subtracted
(refer to the Hexarithmetic command), or

• The number of instructions to be executed
by the Trace command, or

• The number of bytes a command should
operate on. (Refer to the Dump, Fill,
Move, Search, and Unassemble commands.)

6-9

The DEBUG Commands

This section presents a detailed description of how to
use the commands to the DEBUG program. The
commands appear in alphabetical order; each with its
format and purpose. Examples are provided where
appropriate.

Information Common to All DEBUG Commands

6-10

The following information applies to the DEBUG
commands:

• A command is a single letter, usually followed by
one or more parameters.

• Commands and parameters can be entered in
uppercase or lowercase, or a com bination of
both.

• Commands and parameters may be separated
by delimiters. Delimiters are only required,
however, between two consecutive hexadecimal
values. Thus, these commands are equivalent:

dcs:100 110
des: 100 110
d,cs:100,110

.• Press Cttl-Breakto end commands.

• Gommands become effe·ctive only after you press
the En ter key.

• For commands producing a large amount of
output,you can press Ctrl"'NumLock to suspend
the display to read it before it scrolls away. Press
any other characterio"'festart the display.

• You can use the··control keys and the DOS editing
keys, described in Chapter I, while using the
DEBUG program.

• If a syntax error is encountered, the line is
displayed with the error pointed outasJollows:

des: 1 00 CS: 11 0
A error

In this case~ the Dump command is expecting the
second address to contain only a hexadecimal
offset value. It finds the S, which is not a valid
hexadecimal character.

• The prompt from the DEBUG program is a
hyphen (-).

6-11

Dump
Command

Purpose: Displays the contents of a portion of memory.

Format: D [address]

or

D [range]

Remarks: The dump is displayed in two parts:

6-12

1. A hexadecimal portion. Each byte is displayed in
hexadecimal.

2. An ASCII portion. The bytes are displayed as
ASCII characters. Unprintable characters are
indicated by a period (.).

With a 40-column system display format, each line
begins on an 8-byte boundary and shows 8 bytes.

With an 80-column system display format, each line
begins on a 16-byte boundary and shows 16 bytes.
There is a hyphen between the 8th and 9th bytes.

Note: The first line may have fewer than 8 or 16
bytes if the starting address of the dump is not
on a boundary. In this case, the second line of the
dump begins on a boundary.

Dump
Command

The Dump command has two format options:

Option 1

Use this option to display the contents of X'40' bytes
(40-column mode) or X'80' bytes (80-column mode).
For example:

D address

or

D

The contents are dumped starting with the specified
address.

If you do not specify an address, the D command
assumes the starting address is the location following
the last location displayed by a previous D command.
Thus, it is possible to dump consecutive 40-byte or
80-byte areas by entering consecutive D commands
without parameters.

If no previous D command was entered, the location is
offset X'O 100' into the segment originally initialized
in the segment registers by DEBUG.

Note: If you enter only an offset for the starting
address, the D command assumes the segment
contained in the DS register.

6-13

Dump
Command

6-14

Option 2

Use this option to display the contents of the specified
address range. For example:

D range

Note: If you enter only an offset for the starting
address, the D command assumes the segment
contained in the DS register. If you specify an
ending address, enter it with only an offset value.

For example:

D cs:100 10C

A 40-column display format might look like this:

04BA:0100 42 45 52 54 41 20 54 00
BERTA T.

04BA:0108 20 42 4F 52 47
BORG

Enter
Command

Purpose: The Enter command has two modes of operation:

• Replaces the contents of one or more bytes,
starting at the specified address, with the values
con tained in the list. (See Option 1.)

• Displays and allows modification of bytes in a
sequential manner. (See Option 2.)

Fonnat: E address [list]

Remarks: If you enter only an offset for the address, the E
command assumes the segment contained in the DS
register.

The Enter command has two format options:

Option 1

Use this option to place the list in memory beginning
at the specified address.

E address list

For example:

E ds: 1 00 F3 "xyz" 80

Memory locations ds: 100 through ds: 104 are filled with
the five bytes specified in the list.

Option 2

Use this option to display the address and the byte of a
location, then the system waits for your input.

6-15

Enter
Command

6-16

For example:

E address

Now you can take one of the following actions:

1. Enter a one or two character hexadecimal value
to replace the contents of the byte; then take any
of the next three actions:

2. Press the space bar to advance to the next address.
Its contents are displayed. If you want to change
the contents take action 1, above.

To advance to the next byte without changing the
current byte, press the space bar again.

3. Enter a hyphen (-) to back up to the preceding
address. A new line is displayed with the preceding
address and its contents. If you want to change the
contents take action 1, above.

To back up one more byte without changing the
current byte, enter another hyphen.

4. Press the Enter key to end the Enter command.

Note: Display lines can have 4 or 8 bytes of data,
depending on whether the system display format
is 40- or 80-column. Spacing beyond an 8-byte
boundary causes a new display line, with the
beginning address, to be started.

Enter
Command

For example:

might cause this display:

To change the contents of04BA:0100 from X'EB' to
X'41 ',enter 41.

To ;see the contents of the next three locations, press
the space bar three times. The screen might look like
this:

To change the contents of the .current location
(04BA:0103) from X'BC' to X'42', enter 42.

Now, suppose you want to back up and change the
X' 10' to X'6F'. This is what the screen would look like
after entering two hyphens and the replacement byte:

Press the Enter key to end the Enter command. You
will see the hyphen (-) prompt.

{\-17

Fill
Command,

Purpose: Fills the memory locations in the range with the values
in the Jist.

Format: F range list

Rem'arks: If the list contains fewer bytes than the address range,
the list is used repeatedly until all the designated
memory locations are filled.

If the list contains more bytes than the address range,
the extra list items are ignored.

Note: If you enter only an offset for the starting
address of the range, the:Fill command assumes
the segment contained, in the DS register.

Example: F 4BA: 100 L 5 F3 "XYZ" 80

6-18

Memory locations 04BA: 100 through 04BA:I 04 are
filled with the 5 bytes specified. Remembe.,y that the
ASCII values of the list"characters"are stored. Thus"
locations 100-104 will contain F3 58 59 5A 8D.

Go
Command

Purpose: Executes the program you are debugging.

Stops the execution when the instruction at a specified
address is reached (breakpoint), and displays the
registers, flags, and the next instruction to be executed.

Format: G [=address] [address [address . ..]]

Remarks: Program execution' begins with the current instruction,
whose address is determined by the contents of the CS
and IP registers, unless overridden by the, =address
parameter (the = must be entered). If =address is
specified, program execution begins with CS:=address.

The Go command has two format options:

Option 1

Use this option to execute the program you are
debuggingcwithout breakpoints. For example:

G [=add ress]

This option is useful when testing program execution
with different parameters each time. (Refer to the
Name command.) Be certain the CS:IP values are set
properly before issuing the G command, if not using
=address.

6-19

Go
Command

6-20

Option 2

This option performs the same function as Option 1
but, in addition, allows breakpoints to be set at the
specified addresses. For example:

G [=address] address
[address . ..]

This method causes execution to stop at a specified
location so the system/program environment can be
examined.

You can specify up to ten breakpoints in any order.
You may wish to take .advantage of this if your program
has many paths, and you want to stop the execution
no matter which path the program takes.

The DEBUG program replaces the instruction codes at
the breakpoint addresses with an interrupt code
(X~CC'). If anyone breakpoint is reached during
execution, the execution is stopped, the registers and
flags are displayed, and all the breakpoint addresses are
restored to their original instruction codes. If no
breakpoint is reached, the instructions are not restored.

Notes:

1. Make sure that the address parameters refer to
locations that contain valid 8088 instruction
codes. If you specify an address that does
not contain the first byte valid instruction,
unpredictable results will occur.

2. The stack pointer must be valid and have 6
bytes available for the Go command;
otherwise, unpredictable results will occur.

Go
Command

3. If only an offset is entered for a breakpoint,
the G command assumes the segment
contained in the CS register.

For example:

Execution begins with the current instruction,
whose address is the current values of CS: IP. The
=address parameter was not used.

Three breakpoints are specified; assume that the
second is reached. Execution stops before the
instruction at location CS: I EF is executed, the
original instruction codes are restored, all three
breakpoints are removed, the display occurs, and
the Go command ends.

Refer to the Register command for a description of
the display.

6-21

Hexarithmetic
Command

Purpose: Adds the two hexadecimal values, then subtracts the
second from the first.

Displays the sum and difference on one line.

Format: H value value

Example: H OF 8
17 07

6-22

The hexadecimal sum of OOOF and 0008 is 0017, and
their difference is 0007.

Input
Command

Purpose: Inputs and displays (in hexadecimal) one byte from the
specified port.

Format: I portaddress

Example: I 2F8
68

The single hexadecimal byte read from port 02F8 is
displayed (6B).

6-23

Load
Command

Purpose: Loads a file or absolute diskette sectors into memory_

Format: L [address [drive sector sector]]

Remarks: The maximum number of sectors that can be loaded
with a single Load command is X'80'.

6-24

Note: DEBUG displays a message if a diskette
read error occurs. The read operation can be
retried by pressing F3 to re-display the Load
command, then press the Enter key.

The Load command has two format options:

Option 1

Use this option to load data from the diskette specified
by drive, and place the data in memory beginning at
the specified address. For example:

L address drive sector sector

The data is read from the specified starting relative
sector (first sector) and continues until the requested
number of sectors is read (second sector).

Note: If you only enter an offset for the
beginning address, the L command assumes the
segment contained in the CS register.

For example, to load data, you might enter:

Load
Command

The data is loaded from the diskette in drive Band
placed in memory beginning at 4BA: 100. X'6D' (109)
consecutive sectors of data are transferred, starting with
relative sector X'OF' (15) (the 16th sector on the
diskette).

Option 2

When issued without parameters, or with only the
address parameter, use this option to load the file whose
filespec is properly formatted in the file control block
at CS: 5C. For example:

L

or

L address

This condition is met by specifying the filespec when
starting the DEBUG program, or by using the Name
command.

Note: If DEBUG was started with a filespec and
subsequent Name commands were used, a new
Name command may have to be entered for the
proper filespec before issuing the Load command.

The file is loaded into memory beginning at CS: lOO (or
the location specified by address), and is read from the
drive specified in the filespec (or from the default drive,
if none was specified).

6-25

Load
. Command

6-26

The CX register is set to the number of bytes read;
however, if the file being loaded has an extension of
.EXE,CX is set to zero and the file may be loaded at
the high end of memory. Refer to the notes in "How to
Start the DEBUG Program" at the beginning of this
chapter for the conditions that are in effect when .EXE
or .HEX files are loaded.

For example:

DEBUG
-N myprog
-l

The file named myprog is loaded from the default
diskette and placed in memory beginning at location
CS:OIOO.

Move
Command

Purpose: Moves the contents of the memory locations specified
by range to the locations beginning'at the address
specified.

Format: M range .address

Remarks: Overlapping moves are always performed without loss of
data during the transfer. (The source and destination
areas share some of the same memory locations.)

The data in the source .area remains unchanged unless
overwritten by the move.

Notes:

1. If you only enter an offset for the beginning
address of the range~ the M command
assumes the segment contained in the DS
register. If you specify an e.nding address for
the range, enter it with only an offset value.

2. If you only enter an offset for the address of
the destination .area, the.M command assumes
the s6gmen t contained in the DS register.

Example: M CS: 100 110 500

The 17 bytes of data from CS: 100 throughCS: 110 are
moved to the area of memory·'hegi-nning at DS: 500.

6-27

Name
Command

Purpose: The Name command has two functions:

• Formats file control blocks for the first two
filespecs, at CS:5C and CS:6C. (Starting DEBUG
with a filespec also formats a file control block at
CS:5C.)

The file control blocks are set up for the use of the
Load and Write commands, and to supply required
filenames for the program being debugged.

• All specified filespecs and other parameters are
placed exactly as entered, including delimiters, in a
parameter save area at CS:81, with CS:80
containing the number of characters entered.

Format: N filespec [filespec ...]

Remarks: If you start the DEBUG program without a filespec,
you must use the Name command before a file can be
loaded with the L command.

Example: DEBUG

6-28

-N myprog
-l

To define filespecs or other parameters required by the
program being debugged, enter:

DEBUG myprog
-N filel file2

Name
Command

In this example, DEBUG loads the file myprog at
CS: 100, and leaves the file control block at CS:5C
formatted with the same filespec. Then, the Name
command formats file control blocks for filet and file2
at CS:5C and CS:6C, respectively. The file control
block for myprog is overwritten.

The parameter area at CS:81 contains all characters
entered after the N, including all delimiters, and CS: 80
contains the count of those characters (X'OC').

6-29

•

Output
Command

Purpose: Sends the byte to the specified output port.

Format: 0 portaddress byte

Example: To send the byte value 4F to output port 2F8, enter:

o 2F8 4F

6-30

Purpose: Ends the DEBUG program.

Format: Q

Quit
Command

Remarks: The file that you are working on in memory is no t saved
by the Quit command. You must use the Write
command to save the file.

DEBUG returns to the command processor which then
issues the normal command prompt.

Example: -0
A>

6-31

Register
Command

Purpose: The Register command has three functions:

Format:

• Displays the hexadecimal contents of a single
register, with the option of changing those
contents, or

• Displays the hexadecimal contents of all the
registers, plus the alphabetic flag settings, and the
next instruction to be executed, or

• Displays the eight 2-letter alphabetic flag settings,
with the option of changing any or all of them.

R [registername]

Remarks: When the DEBUG program starts, the registers and
flags are set to certain values for the program being
debugged. (Refer to "How to Start the DEBUG
Program" at the beginning of this chapter.)

6-32

Display a Single Register

The valid registemames are:

AX
BX
CX
DX
SP

BP
SI
DI
DS
ES

SS
CS
IP
PC
F

Both IP and PC refer to the instruction pointer.

Register
Command

For example, to display the contents of a single
register, you might enter:

The system might respond with:

Now you may take one of two actions: press Enter to
leave the contents unchanged, or change the contents
of the AX register by entering a 1-4 character
hexadecimal value, such as X'FFF'.

Now pressing Enter changes the contents of the AX
register to X'OFFF'.

Displa y All Registers and Flags

To display the contents of all registers and flags (and
the next instruction to be executed), enter:

The system might respond with:

6-33

Register"
Com:mand

6-34

The first four, lines display the hexadecimal contents of
the registers and the eight alphabetic flag settings. The
last line indicates the location of the next instruction to'
be executed, and its hexadecimal and unassembled
formats. This is the instruction pointed to,by CS:IP.

Note: A system with an 8-0-column display shows:

1 st line - 8 registers
2nd line - 5 registers and-8 flag settings
3rd line - next instruction information

A system with a 40-columndisplay shows:

1 st line - 4 registers
2nd line - 4 registers
3rd line - 4 registers
4 th line - 1 register and 8 flag settings
5th line - next instruction information

Display All Flags

There are eight flags" each with 2~letter codes to indicate
either a set condition or a clear condition.

The flags appear in displays in the same orderas
presented in.the,followingtable:

Flag Name

Overflow (yes/no)

Direction (decrement/increment)

Interrupt (enable/disable)

Sign (negative/positive)

Zero (yes/no)

Auxiliary carry (yes/no)

Parity (even/odd)

Carry (yes/no)

To display all flags, enter:

R F

Set

OV

DN

EI

NG

ZR

AC

PE

CY

Register
Command

Clear

NV

UP

DI

PL

NZ

NA

PO

NC

If all the flags are in a set condition, the response is:

OV ON EI NG ZR AC PE CY -

Now you can take one of two actions:

1. Press Enter to leave the settings unchanged.

2. Change any or all of the settings.

6-35

Register
Command

6-36

To change a flag, just enter its opposite code. The
opposite codes can be entered in any order-with or
without intervening spaces. For example, to change the
first, third, fifth, and seventh flags, enter:

OV ON EI NG ZR AC PE CY - PONZOINV

They are entered in reverse order in this example.

Press Enter and the flags are modified as specified, the
prompt appears, and you can enter the next command.

If you want to see if the new codes are in effect, enter:

R F

The response will be:

NV ON 01 NG NZ AC PO CY -

The first, third, fifth, and seventh flags are changed as
requested. The second, fourth, sixth, and eighth flags
are unchanged.

Note: A single flag can be changed only once per
R F command.

Search
Command

Purpose: Searches the range for the character(s) in the list.

Format: S range list

Remarks: All matches are indicated by displaying the addresses
where matches are found.

A display of the prompt (-) without an address means
that no match was found.

Note: If you enter only an offset for the starting
address of the range, the S command assumes the
segment contained in the DS register.

Example: If you want to search the range of addresses from
CS: 100 through CS: 110 for X'41', enter:

S CS:100 110 41

If two matches are found the response might be:

04BA:0104
04BA:Ol0D

If you want to search the same range of addresses as in
the previous example for a match with the 4-byte-Iong
list, enter:

S CS:l00 l 11 41 "AB" E

The starting addresses of all matches are listed. If no
match is found, no address is displayed.

6-37

Trace
Command

Purpose: Executes one or more instructions starting with the
instruction at CS:IP, or at =address if it is specified. The
= must be entered. One instruction is assumed, but you
can specify more than one with value.

Displays the contents of all registers and flags after each
instruction executes. For a description of the display
format, refer to the Register command.

Format: T [=address] [value]

Remarks: The display caused by the Trace command continues
until value instructions are executed. Therefore, when
tracing multiple instructions, remember you can
suspend the scrolling at any time by pressing
Ctrl-NumLock. Resume scrolling by entering any other
character.

Example: T

6-38

If the IP register contains 0 llA, and that location
contains B40E (MOV AH,OEH), this might be displayed:

AX=OEOO BX=OOFF CX=0007 DX=01 FF
SP=0390 BP=OOOO SI=005C DI=OOOO
DS=04BA
IP=011 C
04BA:011C

ES=04BA SS=u4BA GS=u4BA
NV UP 01 NG NZ AC PE rue

CD21 INT 21

This displays the results after the instruction at 011 A is
executed, and indicates the next instruction to be
executed is the INT 21 at location 04BA:OIIC.

T 10

Trace
Command

Sixteen instructions are executed (starting at CS: IP).
The contents of all registers and flags are displayed
after each instruction. The display stops after the 16th
instruction has been executed. Displays may scroll off
the screen unless you suspend the display by pressing
the Ctrl-NumLock keys.

6-39

Unassemble
Command

Purpose: Unassembles instructions and displays their addresses
and hexadecimal values, together with assembler-like
statements. For example, a display might look like this:

Format:

04BA:0100
04BA:Ol03
04BA:0104

U [address]

or

U [range]

206472
Fe
7665

AND [SI+72] ,AH
ClD
JBE 016B

Remarks: The number of bytes unassembled depends on your
system display format (whether 40 or 80 columns), and
which option you use with the Unassemble command.

6-40

Notes:

1. In all cases, the number of bytes un assembled
and displayed may be slightly more than
either the amount requested or the default
amount. This happens because the instructions
are of variable lengths; therefore, to
unassem ble the last instruction may include
more bytes than expected.

2. Make sure that the address parameters refer to
locations containing valid 8088 instruction
codes. If you specify an address that does not
contain the first byte of a valid instruction,
the display will be erroneous.

Unassemble
Command

3. If you enter only an offset for the starting
address, the U command assumes the segment
contained in the CS register.

The Unassemble command has two format options:

Option 1

Use this option to either unassemble instructions
without specifying an address, or to unassemble
instructions beginning with a specified address. For
example:

U

or

U address

16 bytes are unassembled with a 40-column display. 32
bytes are unassem bled with an 80-column display.

Instructions are unassembled beginning with the
specified address.

If you do not specify an address, the U command
assumes the starting address is the location following the
last instruction unassembled by a previous U command.
Thus, it is possible to unassemble consecutive locations,
producing continuous unassembled displays, by entering
consecutive U commands without parameters.

If no previous U command is entered, the location is
offset X'D 1 00' into the segment originally initialized in
the segment registers by DEBUG.

6-41

Unassemble
Command

6-42

Option 2

Use this option to unassemble instructions in a specified
address range. For example:

U range

All instructions in the specified address range are
unassembled, regardless of the system display format.

Note: If you specify an ending address, enter it
with only an offset value.

For example:

U 04ba:Ol00 108

The display response might be:

04BA:0100
04BA:Ol03
04BA:Ol04
04BA:Ol06

206412
Fe
1665
201370

AND [SI+12],AH
CLD
JBE 016B
AND [BP+DI+10] ,DH

The same display appears if you enter:

U 04BA:100 l 1

or

U 04BA:100 l 8

or

U 04BA:l00 l 9

Write
Command

Purpose: Writes the data being debugged to diskette.

Format: W [address [drive sector sector]]

Remarks: The maximum number of sectors that can be written
with a single Write command is X'80'.

DEBUG displays a message if a diskette write error
occurs. The write operation can be retried by pressing
F3 to re-display the Write command, then press the
Enter key.

The Write command has two format options:

Option 1

Use this option to write data to diskette beginning at a
specified address. For example:

W address drive sector sector

The data beginning at the specified address is written to
the diskette in the indicated drive. The data is written
starting at the specified starting relative sector (first
sector) and continues until the requested number of
sectors are filled (second sector).

Notes:

1. Be extremely careful when you write data to
absolute sectors because an erroneous sector
specification will destroy whatever was on
the diskette at that location.

6-43

Write
Command

644

2. If only an offset is entered for the beginning
address, the W command assumes the segment
contained in the CS register.

3. Remember, the starting sector and the sector
count are both specified in hexadecimal.

For example:

W 1 FD 1 100 A

The data beginning at CS:OIFD is written to the
diskette in drive B, starting at relative sector X' I 00'
(256) and continuing for X'OA' (10) sectors.

Option 2

This option allows you to use the Write command
wi thou t specifying parameters or only specifying the
address parameter. For example:

W

or

W address

When issued without parameters (or when issued with
only the address parameter), the Write command writes
the file (whose filespec is properly formatted in the file
control block at CS: 5C) to diskette.

Write
Command

This condition is met by specifying the filespec when
starting the DEBUG program, or by using the Name
command.

Note: If DEBUG was started with a filespec and
subsequent Name commands were used, a new Name
command may have to be entered for the proper
filespec before issuing the Write command.

In addition, the ex register must be set to the number
of bytes to be written. It may have been set properly
by the DEBUG or Load commands, but might have
been changed by a Go or Trace command. You must
be certain the ex register contains the correct value.

The file beginning at es: 100, or at the location specified
by address, is written to the diskette in the drive
specified in filespec or the default drive if none was
specified.

The debugged file is written over the original file that
was loaded into memory, or into a new file if the
filename in the FeB didn't previously exist.

Note: An error message is issued if you try to
write a file with an extension of .EXE or .HEX.
These files must be written in a specific format
that DEBUG cannot support.

If you find it necessary to modify a file with an
extension of .EXE or .HEX, and the exact
locations to be modified are known, use the
following procedure:

6-45

•

•

Write
Command

6-46

1. REN AME the file to an extension other than
.EXE or .HEX.

2. Load the file into memory using the DEBUG
or Load command.

3. Modify the file as needed in memory, but do
not try to execute it with the Go or Trace
commands. Unpredictable results would
occur.

4. Write the file back using the Write command.

5. RENAME the file back to its correct name.

Summary of DEBUG Commands

Command

Dump

Enter

Fill

Go

The following chart is provided for quick reference.

The section called "Format Notation" in Chapter 3
explains the notation used in the format of the
following commands.

Purpose Format

Displays memory D [address]
or

D [range]

Changes memory E address [list]

Changes memory F range list
blocks

Executes with G [=address]
optional breakpoints [address

[address . ..]]

Hexarithmetic Hexadecimal H value value
add-subtract

Input Reads/ displays I portaddress
input byte

Load Loads file or absolute L [address [drive
diskette sectors sector sector]]

Move Moves memory block M range address

Name Defines files and N filespec
parameters [filespec . ..]

Output Sends output byte 0 portaddress byte

Quit Ends DEBUG Q
program

Command Purpose Fonnat

Register Displays R [registername]
registers/ flags

Search Searches for S range list
characters

Trace Executes and T [=address] [value]
displays

Unassemble Unassembles U [address]
instructions or

U [range]

Write Writes file or W [address [drive
absolute diskette sector sector]]
sectors

6-48

APPENDIXES

Contents

APPENDIX A. MESSAGES A-3

APPENDIX B. DOS TECHNICAL
INFORMATION B-1

DOS Structure B-1
DOS Initialization B-2
The Command Processor B-3

Replacing the Command Processor B-4
Available DOS Functions B-S
Diskette/File Management Notes B-6
The Disk Transfer Area (DTA) B-7
Error Trapping B-7
General Guidelines B-8
Example of Using DOS Functions B-9

APPENDIX C. DOS DISKETTE
ALLOCATION C-I

DOS Diskette Directory C-3
DOS File Allocation Table ... C-6

How to Use the File Allocation Table C-8

APPENDIX D. DOS INTERRUPTS AND
FUNCTION CALLS D-I

Interrupts D-I
Function Calls D-7

APPENDIX E. DOS CONTROL BLOCKS
AND WORK AREAS ... E-I

DOS Memory Map . . . E-l
DOS Program Segment E-2
File Control Block . . . E-7

APPENDIX F. EXE FILE STRUCTURE
AND LOADING. F-l

A-I

A-2

APPENDIX A. MESSAGES

The first word of the description of each message is the
name of the program or command that generated the
message.

Allocation error for file filename

CHKDSK. An invalid sector number was found in the
file allocation table. The file was truncated at the end
of the last valid sector.

Attempt to access data outside of segment bounds

LINK. An object file is probably invalid.

Attempted write-protect violation

FORMAT. The diskette being formatted cannot be
written on because it is write-protected. You are
prom pted to insert a new diskette and press a key to
restart formatting.

Aux 1/0 error

DOS. An input or output error occurred while trying
to use the Asynchronous Communications Adapter.

Bad command or filename

DOS. The command just entered is· not a valid internal
command, and a file called command-name .COM or
command-name .EXE could not be found on the
specified (or default) drive.

A-3

A-4

Bad or missing Command mterpreter

STARTUP. The diskette in drive A does not contain a
copy of COMMAND.COM, or an error occurred while
the diskette was being loaded. If System Reset fails to
solve the problem, copy COMMAND.COM from a
backup diskette to the diskette that failed.

BF

DEBUG. Bad flag. An invalid flag code setting was
specified. Try the Register (R F) command again with
the correct code.

BP

DEBUG. Breakpoints. More than ten breakpoints were
specified for the Go command. Try the Go (G)
command again with ten or fewer breakpoints.

BR

DEBUG .. Bad re:gister. An invalid register name was
specified. Try. the Register (R) command again with a
correct register name.

XXXXXXXXXX by;tes disk space freed

CHKDSK. Diskette space marked as allocated was not
allocated. Therefore, the space was freed and made
available.

Cannot compare file to itself

COMPo The two filenames entered refer to the same
file on the same diskette. COMP assumes an error was
made in entering one of the filenames.

Cannot edit .BAK file-rename file

EDLIN. .BAK files are considered to be backup files,
with more up-to-date versions of the files assumed to
exist. Therefore, .BAK files usually shouldn't be edited.

If it is necessary to edit the .BAK file, either rename the
file, or copy it and give the copy a different name.

Cannot open temporary file

LINK. The directory is full.

Compare error at offset XXXXXXXX

COMPo The files being compared contain different
values at the displayed offset (in hexadecimal) into the
file. The differing values are also displayed in
hexadecimal.

Compare error(s) on track nn

DISKCOMP. One or more locations on the indicated
track contain differing information between the
diskettes being compared.

Data error reading drive x
Abort, Retry, Ignore?

DOS. See the message Disk error reading drive x.

Data error writing drive x
Abort, Retry, Ignore?

DOS. See the message Disk error reading drive x.

A-5

A-6

DF

DEBUG. Double flag. Conflicting codes were specified
for a single flag. A flag can be changed only once per
Register (R F) command.

Directory error-file: filename

CHKDSK. No valid sectors were allocated to the file.
The filename is removed from the directory.

Disk boot failure

DOS. An error occurred while trying to load DOS into
memory. If subsequent attempts to start the system
also fail, use a backup DOS diskette.

Disk error reading drive x
Abort, Retry, Ignore?

DOS. A disk read or disk write error has occurred. The
operation was repeated three times without success.
The system now waits until one of the following
responses is made.

• Enter A for Abort. The system ends the program
that requested the disk read or write.

• Enter R for Retry. The system tries the disk read
or write operation again.

• Enter I for Ignore. The system pretends the error
did not occur and continues the program.

To recover from an error condition, the responses are
generally made in the following order:

R to retry the operation because the error may not
occur again.

A to abort the program.

I to ignore the error condition and continue the
program. (This response is not recommended
because data is lost when you use it.)

Note: When executing DEBUG, the second line of
the message does not appear. To retry the disk
operation, press F3 to re-display the Load or Write
command, and then press the Enter key.

Disk error writing drive x
Abort, Retry, Ignore?

DOS. See the message Disk error reading drive x.

Disk full-file write not completed

EDLIN. An End Edit command ended abnormally
because the diskette does not have enough free space
to save the entire file.

Some of the file may be saved on diskette, but the
portion in memory not saved is lost.

Disk unsuitable for systeln disk

FORMAT. A defective track was detected where the
DOS files were to reside. The diskette can be used only
for data.

A-7

A-8

Diskette not initialized

CHKDSK. During its analysis of the diskette, CHKDSK
could not recognize the directory or file allocation table.
The diskette should be formatted again before further
use (it may be possible first to copy files to another
diskette in order to preserve as much data as possible).

Divide overflo w

DOS. A program attempted to divide a number by
zero, or the program had a logic error that caused an
internal malfunction. The system simulates
CTRL-BREAK processing.

Dup record too cOlnplex

LINK. Problem resides in object module created from
an assembler source program. Debug machine language
processor source program; then rerun LINK.

Duplicate filename or file not found

RENAME. You tried to rename a file to a filename that
already exists on the diskette, or the file to be renamed
could not be found on the specified (or default) drive.

Enter primary file name
Or strike the Enter key to end

COMP. Enter the filespec of the first of two files to be
compared.

En ter 2nd file name or drive id

COMPo Enter the filespec of the second of two files to
be compared, or just enter the drive designator if the
filename is the same as the primary filename.

Entry error

EDLIN. Correct the syntax error on the last command.

EOF mark not found

COMPo An unsuccessful attempt was made to locate the
end of valid data in the last block of the files being
compared. This message usually occurs. when comparing
nontext files; it should not occur when comparing text
files.

Error in EXE file

DOS. An error was detected in the relocation
infonnation placed in the file by the LINK program.

Error in EXEjHEX file

DEBUG. The file contained invalid records or
characters.

EXEjHEX file cannot be written

DEBUG. The data would require a backwards
conversion that DEBUG doesn't support.

File allocation table bad, drive x
Abort, Retry, Ignore?

DOS. See the message Disk error reading drive X. If this
error persists, the disk is unusable and should be
formatted again.

A-9

A-tO

File cannot be copied onto itself

DOS. A request is made to COpy a file and place the
copy (with the same name) on the same diskette as the
original. Either change the name given to the copy or
put it on another diskette.

File creation error

DOS .. An unsuccessful attempt was made to add a new
filename to the directory. Run CHKDSK to determine
if the directory is· full, or if some other condition caused
the error.

FileR empty

COMPo File n can represent either the first or second
filename entered. In either case, the file contains no
valid data.

File n not found

COMP. The first or second file specified does not exist
on the specified (or default) drive.

File not found

DEBUG and DOS. A file named in a command or
command parameter does not exist on the diskette in
the specified (or default) drive.

File size error for file filename

CHKDSK. The file size shown in the directory is
different from the actual size allocated for the file. The
size in the directory is adjusted, up or down, to show
the actual size (rounded to a 512-'byte boundary).

Files 'are different sizes

COMPo The sizes of the files to be compared do not
match. The comparison cannot be done because one of
the files contains data which the other does not.

Files cross-linked: filename and filename

CHKDSK. The same data blockis allocated to both files.
No corrective action is taken automatically, so you must
correct the problem. For example, you can:

• Make copies of both files (use COpy command).

• Delete the original files (use ERASE command).

• Review the files for validity and edit as necessary.

Fixup offset exceeds field width

LINK. A machine language processor instruction refers
to an address with a NEAR attribute instead of a FAR
attribute. Edit assembler source program and process
again.

Format failure

FORMAT. A disk error was encountered during the
formatting process. The diskette is unusable.

lliegal Device Name

MODE. The specified printer must be LPTI:, LPT2:, or
LPT3:.

A-II

A-12

Incompatible system size

SYS. The target diskette contained a copy of DOS that
is smaller than the one being copied. The system
transfer does not take place. A possible solution might
be to format a blank diskette (use the FORMAT IS
command) and then copy any files to the new diskette.

Insert disk with batch file and strike any key when ready

DOS. The diskette that contained the batch file being
processed was removed. The batch processor is trying
to find the next command in the file. Processing will
continue when you insert the diskette in the appropriate
drive and press a key.

Insert DOS disk in drive nand strike any key when ready

DOS and FORMAT. Either DOS is trying to reload the
command processor, or FORMAT is trying to load the
DOS files, but the default drive does not contain the
DOS diskette.

Insufficient disk space

DOS. The diskette does not contain enough free space
to contain the file being written. If you suspect this
condition is invalid, run CHKDSK to determine the
status of the diskette.

Insufficient memory

DEBUG, DISKCOMP, DISKCOPY, and EDLIN. The
amount of available memory is too small to allow these
commands to function.

Insufficient space on disk

DEBUG. A Write command was issued to a diskette that
doesn't have enough free space to hold the data being
written.

Invalid COMMAND.COM in drive n

DOS. While trying to reload the command processor, the
copy of COMMAND.COM on the diskette was found to
be an incorrect version. You are prompted to insert a
correct DOS diskette and press a key to continue.

Invalid date

DATE. An invalid date or delimiter was entered. The
only valid delimiters in a date entry are hyphens (-) and
slashes (/).

Invalid drive specification

DOS and commands. An invalid drive specification was
just entered in a command or one of its parameters.

Invalid numeric parameter

LINK. Numeric value not in digits.

Invalid object module

LINK. Object module(s) incorrectly formed or
incomplete (as when the language processor was
stopped in the middle).

Invalid parameter

CHKDSK, DISKCOMP, DISKCOPY, FORMAT, and
SYS. The parameter entered for these commands was
not a drive specifier. Be sure to en ter a valid drive
specifier, followed by a colon.

A-I3

A-14

Invalid time

TIME. An invalid time or delimiter was entered. The
only valid delimiters are the colon between the hours
and minutes, and the minutes and seconds; and a period
between the seconds and hundredths of a second.

Invalid Y IN parameter

LINK. Response to a prompt did not begin with Y, N,
or simply the Enter key.

Line too long

EDLIN. Upon replacing a string, the replacement
causes the line to expand beyond the 253-character
limit. The Replace Text command is ended abnormally.

Split the long line into shorter lines; then issue the
Replace Text command again.

Missing file name

RENAME. The second of the two required filenames
is not specified.

No room for systeln on destination disk

SYS. The destination diskette did not already contain
the required reserved space for DOS; therefore, the
system cannot be transferred. A possible solution would
be to format a blank diskette (use the FORMAT /S
command), and then copy any other files to the new
diskette.

. ,

No room in directory for file

EDLIN. The specified diskette already contains the
maximum of 64 files .

No room in disk directory

DEBUG. The diskette in the drive specified by the
Write command already contains the maximum of 64
files.

Non-SystelTI disk or disk error
Replace and strike any key when ready

STARTUP. There is no entry for IBMBIO.COM or
IBMDOS.COM in the directory; or a disk read error
occurred while starting up the system. Insert a DOS
diskette in the drive.

Not found

EDLIN. Either the specified range of lines does not
contain the string being searched for by the Replace
Text or Search Text commands; or if a search is
resumed by replying N to the OK? prompt, no further
occurrences of the string were found.

Not ready error reading drive x
Abort, Retry, Ignore?

DOS. See the message Disk error reading drive x. In
this case, the operation is only performed once.

Not ready error writing drive x
Abort, Retry, Ignore?

DOS. See the message Disk error reading drive x. In
this case, the operation is only performed once.

A-IS

A-16

Out of paper

DOS. Either the printer is out of paper or the printer is
not powered ON.

Out of space on list file

LINK. This error usually occurs when there is not
enough disk space for the List file.

Out of space on run file

LINK. This error usually occurs when there is not
enough disk space for the Run file (.EXE).

Out of space on VM.TMP

LINK. No more disk space remained to expand the
VM.TMP file.

Prin ter error

MODE. The MODE command (option I) was unable to
set the printer mode because of an I/O error, out of
paper (or POWER OFF), or time out (not ready)
condition.

Printer fault

DOS. The printer cannot accept data because the printer
is offline.

Program size exceeds capacity of LINK

LINK. Load module is too large for processing.

Program too big to fit in memory

DOS. The file containing the external command cannot
be loaded because it is larger than the available memory.

Requested stack size exceeds 64K

LINK. Specify a size'::;; 64K bytes when the Stack Size:
prompt appears.

Sector not found error reading drive x
Abort, Retry, Ignore?

DOS. See the message Disk error reading drive x.

Sector not found error writing drive x
Abort, Retry, Ignore?

DOS. See the message Disk error reading drive x.

Seekerror reading drive x
Abort, Retry, Ignore?

DOS. See the message Disk error reading drive x.

Seekerror writing drive x
Abort, Retry, Ignore?

DOS. See the message Disk error reading drive x.

Segment size exceeds 64K

LINK. Attempted to'combine identically named
segments which resulted in a segment requirement of
greater than 64K bytes. The addressing limit is 64K
bytes.

Symbol defined more than once

LINK. The Linker found two or more modules that
define a single symbol name.

A-17

A-18

Symbol table capacity exceeded

LINK. Very many, very long names were entered. The
names exceeded approximately 50K bytes. Use shorter
and/or fewer names.

Terminate batch job (Y /N)?

DOS. This message appears when you press Ctrl-Break
while DOS is processing a batch file. Press Y to stop
processing the batch file. Pressing N only ends the
command that was executing when Ctrl-Break was
pressed; processing resumes with the next command in
the batch file.

Target diskette unusable

DISKCOPY. This message follows an unrecoverable
read, write, or verify error message. The copy on the
target diskette is incomplete because of the
unrecoverable I/O error.

Target diskette write protected
Correct, then strike any key

DISKCOPY. You are trying to produce a copy on a
diskette that is write-protected.

Too many external symbols in one module

LINK. The limit is 256 external symbols per module.

Too many groups

LINK. The limit is 256 groups.

Too many libraries specified

LINK. The limit is eight libraries.

Too luany public symbols

LINK. The limit is 1024 public symbols.

Too many segments or classes

LINK. The limit is 256 (segments and classes taken
together).

Track 0 bad-disk unusable

FORMAT. Track 0 is where the boot record, file
allocation table, and directory must reside.

Unexpected end of file onVM.TMP

LINK. The diskette- containing VM.TMP has been
removed.

Unrecoverable read error on drive x

DISKCOMP. Six attempts were made to read the data
from the diskette in the specified drive~

Unrecoverable read error on source

DISKCOPY. Six attempts were made to read the
data from the source diskette. DISKCOPY is unable to
continue; therefore, the copy is incomplete.

Unrecoverable verify error on target

DISKCOPY. Six attempts were made to verify the write
operation to the target diskette. DISKCOPY is unable
to continue; therefore, the copy is incomplete.

A-19

A-20

Unrecoverable write error on target

DISKCOPY. Six attempts were made to write the data
to the target diskette. DISKCOPY is unable to
continue; therefore, the copy is incomplete.

Unresolved externals: list

LINK. The external symbols listed were not defined in
the modules or library files that you specified.

Warning: no stack segment

LINK. None of the object modules specified contain a
statement allocating stack space, but you responded
with a non-zero entry to the STACK SPACE: prompt.

Write error

FORMAT. A write error occurred while DOS was
writing the boot record or system files.

Write fault error writing drive x
Abort;" R-etry, Ignore?

DOS. See the. message Disk error reading drive x.

Write protect error writing drive x
Abort, Retry, Ignore?

DOS. See the me.ssage Disk error reading,.drive x.

10 Mismatches-'-aborting compare

COMPo Ten mismatched locations were detected in the
files being compared. COMPassumes that the files are
so different that further comparisons would serve no
purpose.

APPENDIX B. DOS TECHNICAL
INFORMATION

Appendixes B-E are intended to supply technically
oriented users with information about the structure,
facilities, and program interfaces of DOS. It is assumed
that the reader is familiar with the 8088 architecture,
interrupt mechanism, and instruction set.

DOS Structure

DOS consists of the following three components:

1. The boot record resides on the first sector of every
diskette formatted by the FORMAT command. It
is put on all diskettes in order to produce an error
message if you try to start up the system with a
non-DOS diskette in drive A.

2. The Read-Only Memory (ROM) BIOS interface
module (file IBMBIO.COM) provides a low-level
interface to the ROM BIOS device routines. It also
contains routines to trap and report, via console
messages, divide-by-zero, printer out-of-paper, and
Asynchronous Communications Adapter error
situations.

3. The DOS program itself (file IBMDOS.COM)
provides a high-level interface for user programs.
It consists of file management routines, data
blocking/deblocking for the disk routines, and a
variety of built-in functions easily accessible by
user programs. (Refer to Appendix D.)

B-1

When these function routines are invoked by a
user program, they accept high-level information
(for device input/output) via register and control
block contents, then (for device operations)
translate the requirement into one or more calls
to IBMBIO to complete the request.

DOS Initialization

B-2

When the system is started (either System Reset or
power ON with the DOS diskette in drive A), the boot
record is read into memory and given control. It checks
the directory to assure that the first two files listed are
IBMBIO.COM and IBMDOS.COM, in that order. (An
error message is issued if not.) The boot record then
reads these two files into memory from absolute diskette
sectors (the file allocation table is not used to locate the
sectors for these files), starting at segment X'60', offset
o (absolute memory address X'600'), and jumps to that
location (the first byte of IBMBIO.COM).

The beginning of IBMBIO.COM contains a jump to its
initialization code, which is located at the high-address
end of the program. This area will later be used as stack
space by IBMBIO.COM. The initialization code
determines equipment status, resets the diskette system,
initializes the attached devices, and sets the low
numbered interrupt vectors. It then relocates
IBMDOS.COM downward to segment X'BO' and calls
the first byte of DOS.

As in IBMBIO.COM, offset 0 in DOS contains a jump to
its initialization code, which will later be overlaid by a
data area and the command processor. DOS initializes
its internal working tables, determines the correct
memory locations for file allocation table (1 per drive),
directory and data buffers, initializes interrupt vectors
for interrupts X'20' through X'27' and builds a
Program Segment Prefix (see Appendix E) for
COMMAND.COM at the lowest available segment, then
returns to IBMBIO.COM.

The last remaining task of initialization is for
IBMBIO.COM to load COMMAND.COM at the
location set up by DOS initialization. IBMBIO.COM
then passes control to the first byte of COMMAND.

The Command Processor

The command processor supplied with DOS (file
COMMAND .COM) consists of three distinctly separate
parts:

1. A resident portion resides in memory immediately
following IBMDOS.COM and its data area. This
portion contains routines to process interrupt types
X'22' (terminate address), X'23' (CTRL-BREAK
handler), X'24' (critical error handling) and X'27'
(terminate but stay resident), as well as a routine to
reload the transient portion if needed. (When a
program terminates, a checksum methodology
determines if the program had caused the transient
portion to be overlaid. If so, it is reloaded.) Note
that all standard DOS disk error handling is done
within this portion of COMMAND. This includes
displaying error messages and interpreting the
reply of Abort, Retry, or Ignore. (See message
Disk error reading drive x in Appendix A.)

2. An initialization portion follows the resident
portion and is given control during startup. This
section contains the AUTOEXEC file processor
setup and also the date prompt routine (used if no
AUTOEXEC file is found). The initialization
portion determines the segment address at which
programs can be loaded. It is overlaid by the first
program COMMAND loads because it's no longer
needed.

13-3

B-4

3. A transient portion is loaded at the highest end of
memory. This is the command processor itself,
containing all of the internal command processors,
the batch file processor, and a routine to load and
execute external commands (files with filename
extensions of .COM or .EXE). This portion of
COMMAND produces the system prompt (such as
A>), reads the command from the keyboard (or
batch file) and causes it to be executed. For
external commands, it builds a Program Segment
Prefix control block immediately following the
resident portion of COMMAND, loads the program
named in the command into the segment just
created, sets the terminate and CTRL-BREAK exit
address (interrupt vectors X'22' and X'23 ') to
point to the resident portion of COMMAND, then
gives control to the loaded program.

Note: Files with an extension of .EXE which
are designated to load into high memory are
loaded immediately below the transient
portion of COMMAND to prevent the loading
process from overlaying COMMAND itself.

Appendix E contains detailed information describing the
conditions in effect when a program is given control by
COMMAND.

Replacing the Command Processor

Though the command processor is an important part of
DOS, its functions may not be needed in certain
environments. Therefore, it has been designed as a user
program to allow its replacemen t.

Note: COMMAND.COM should only be replaced
by experienced programmers because of the
significant amount of function in the DOS
command processor.

If you decide to replace it with your own command
processor:

1. Name your program file COMMAND.COM.

2. The entry conditions are the same as for all .COM
programs.

3. Be sure to set the terminate and CTRL-BREAK exit
addresses in the interrupt vectors and in your own
Program Segment Prefix to transfer control to your
own code.

4. You must provide code to handle (and set the
interrupt vectors for) interrupt types X'22'
(terminate address), X'23' (CTRL .. BREAK handler),
X'24' (critical error handling) and if needed X'27'
(terminate but stay resident). Your
COMMAND .COM is also responsible for reading
commands from the keyboard and loading and
executing programs, if needed.

Available DOS Functions

DOS provides a number of functions to user programs,
all available through issuance of a set of interrupt codes.
There are routines for keyboard input (with and without
echo and CTRL-BREAK detection), console and printer
output, constructing file contr01 blocks, memory
management, date and time functions, and a variety of
diskette and file handling functions. See "DOS Interrupts
and Function Calls" in Appendix D for detailed
information.

B-5

Diskette/File Management Notes

B-6

Through the INT 21 (function call) mechanism, DOS
provides methods to create, read, write, rename, and
erase files. Files are not necessarily written sequentially
on diskette-space is allocated one sector at a time as it
is needed, and the first sector available is allocated as
the next sector of a file being written. Therefore, if
considerable fite creation and erasure activity has taken
place, newly created files will probably not be written
in sequential sectors.

However, due to the mapping (chaining) of file sectors
via the File Allocation Table, and the fields defined in
the File Control Block, any file can be used in either a
sequential or random manner. By using the current
block and current record fields of the FCB, and the
sequential disk read or write functions, you can make
the file appear sequential-DOS will do the calculations
necessary to locate the proper sectors on the diskette.
On the other hand, by using the random record field,
and random disk functions, you can cause any record
in the file to be accessed directly-again, DOS will
locate the correct sectors on the diskette for you.
Among the most powerful functions are the random
block read and write functions, which allow reading or
writing a large amount of data with one function call
this is how DOS loads programs. As above, DOS will
handle locating the correct sectors on diskette to
provide the image of sequential processing-you need
not be concerned about the physical location of data
on diskette.

The Disk Transfer Area (DTA)

The Disk Transfer Area (also commnnly called buffer)
is the memory area DOS will use to contain the data for
all disk reads and writes. This area can be at any
location within memory, and should be set by your
program. (See function call X' 1 A' .)

Only one DT A can be in effect at a time, so it is the
program's responsibility to inform DOS what memory
location to use before using any disk read or write
functions. Once set, DeS continues to use that area
for all disk operations until another function call X' I A'
is issued to define a new DTA. When a program is given
control by COMMAND, a defaultDTA has already been
established at X'80' into the program'sProgr.am Segment
Prefix, large enough to hold 128 bytes.

Error Trapping

DOS provides a method by which a program can receive
control whenever a disk read/writec'error occurs, or when
a bad memory image of the file allocation table is
detected. When these events occur, DOS executes an
INT X'24' to pass control to the error handler. The
default error handler resides in COMMAND.COM, but
any program can establish its own by setting the INT
X'24' vector to point to the new error handler. DOS
provides error information via the registers and provides
Abort, Retry, or Ignore support via return codes.
(Refer to DOS Interrupts and Function Calls in
Appendix D.)

Unlike the terminate and CTRL-BREAK exit addresses,
DOS does not preserve the original contents of the
critical error exit address when a program is given
control. It is your program's responsibility to preserve
the original contents (two words) of the-INT X'24'
vector prior to setting this vector, and to restore the
original contents before terminating.

General Guidelines

The following guidelines and tips should assist in
developing applications using the DOS disk read and
write functions:

1. All disk operations require a properly constructedl
FCB that the program must supply.

2. Remember to set the Disk Transfer Are'a address
(function X' 1 A') before performing any reads or
writes to a file.

3. All files must be opened (or created, in the case
of a new file) before being read from or written to.
Files which have been written to must also be
closed to ensure accurate 'directory information.

4. A program may define its own logical record size
by placing the desired size into the FCB. DOS
then uses that value to determine a record's
location within the file. If using the file size
function call, this field must be set by the calling
program prior to the function call. If using the
disk read and write routines, the field should be
set after opening (or creating) the file but before
any read or write functions are used. (Open
function sets the field to a default value of 128
bytes.)

5. New files must be created (function call X'16')
before they can be written to. This call creates a
new directory entry and opens the file.

6. If the amount of data being transferred is less than
one sector (512 bytes), DOS will buffer the data
for the requesting program in an internal buffer
within IBM DOS .COM. Because there is only one
disk buffer , performing less-than-sector-size
operations in a random manner or against multiple
files con curren tly causes DOS to frequently
change the contents of the buffer. If such
operations are in output mode, this forces DOS
to write a partially full sector to make the buffer
available for any other diskette operation.

Subsequently, the partially full sector would have
to be re-read before further data could be written
to the file. This is called thrashing and can be very
time-consuming. To correct this situation, use of
the Random block read and write routines is
recommended, with a data transfer size as large as
possible. (An entire file can be read this way,
provided enough memory exists.) This method
bypasses the buffering described above, by reading
or writing directly to or from the DT A for as
much of the data as possible. If the file size is not
a multiple of 512 bytes, only the last portion of
the file (the portion past the last 512-byte
multiple) is buffered by DOS.

Example of Using DOS Functions

This example illustrates the steps necessary for a
program named TEST .COM to:

1. Create a new file named FILE 1.

2. Load and execute a second program named
PGM I.COM from the diskette in drive B.

B-9

B-lO

The program is in a file named TEST.COM, and was
invoked from the keyboard by the command TEST
FILEI B:PGMl.COM.

When the program (TEST) receives control, the Program
Segment Prefix has been set up as shown in Appendix
E. The terminate and CTRL-BREAK exit addresses in
the Program Segment Prefix are the ones which the host
(calling program) had established and should not be
modified-they are restored to interrupt X'22' and
X'23' vectors when this program terminates. The FCBs
at X'5C' and X'6C' are formatted to contain file names
of FILE 1 and PGM l.COM, respectively-the first FCB
reflects the default drive and, the second, drive B. The
default DTA is set to X'80' into the segment (the
unformatted parameter area of the Program Segment
Prefix).

Creating File FILEl

Because it is known that the data in the FCB at X'6C'
is needed to load and execute the program whose name
it contains in a subsequent step, that FCB must be
preserved; opening the FCB at X'5C' would cause it to
be overlayed. The program should:

l. Copy the FCB at X'6C' to an area within itself.

2. Using the FCB at X'5C'; call function X' 11' to be
sure FILE 1 does not already exist-if it did exist,
it would be overwritten by this program.

3. Assuming it did not exist, create the file (function
call X' 16')-the file is now open.

4. Set the FCB current record and random record
fields to zero, and the record size field to the
desired size.

S. Build the memory image of the file's data.

6. Set the DT A to point to the memory image
(function call X' 1 A').

7. Use the sequential write (X' IS'), random write
(X'22'), or random block write (X'28') calls to
write the file, ensuring the FCB fields and DT A are
set properly for each call. In the case of call X'28'
(the preferred method), the entire file can be
written with one call by setting CX to the number
of records to be written (in terms of the FCB
record size field).

8. Close the FCB at X'SC'-the directory and file
allocation table are updated, and any partial data in
DOS's disk buffer (if it were performing blocking)
are written to disk.

Loading and Executing Program PGMl.COM
from Drive B.

Assume that the current program (TEST) wished to
control the action taken if CTRL-BREAK is entered.
(Until now, the CTRL-BREAK address still pointed to
COMMAND.COM, which would terminate program
TEST if CTRL-BREAK were pressed).

TEST should:

1. Set the terminate and CTRL-BREAK exit vectors
(call X'2S') to point to code within itself (the
terminate address is where the program to be loaded
will return to when it terminates).

B-11

B-12

2. Determine where PGM I.COM should reside in
memory and set up a segment for it, including a
Program Segment Prefix (call X'26'). This copies
the terminate and CTRL-BREAK exit addresses
just set into the new segment's Program Segment
Prefix.

3. Set the DTA to offset X'l 00' into the just-created
segment (be sure the DS register contains the
correct segment address). This is the offset at
which PGM I.COM will be loaded.

4. Open the FCB that had been copied earlier (for
PGM I.COM). The FCB file size field will be filled
in by open to a default value of 128 bytes.

5. Set the FeB record size field to the desired size.
Setting it to I is very useful in this case.

6. Set the CX register to the number of records (based
on the record size field) to read. If the record size
was set to I, then the number of records to read
does not have to be computed-it can be obtained
directly from the FCB file size field. In any case,
if the product of the record size field and contents
of the CX register are equal to or greater than the
file size, then the entire file is read in the following
step.

7. Read the file, using the Random Block Read
function (call X'27'), into the new segment at
offset X' 100'. (See step 3 above.) There is no
need to close the file since it was not written to.

8. Prepare the DS, ES, SS and SP registers for the
loaded program and push a word of zeros on the tOI
of its stack.

9. Set the DT A to offset X'80' into the new segmen t.

10. Give con tr01 to the loaded program. An in terseg
ment jump is ideal, since it does not use stack space.
When the called program terminates via INT X'20',
DOS restores interrupt vectors X'22' and X'23'
from the values in the terminating program's
Program Segment Prefix (the values established in
step 1) and passes control to the terminate exit
address. TEST is now back in control, and can
itself issue an INT X'20', which will cause its caller
(COMMAND.COM) to regain control.

Note: The example just presented was
intentionally simplified by using a memory
image (.COM) program and by omitting
discussions of checking the return codes
provided by the DOS function calls.

Loading an .EXE file is more complicated due
to the file's structure and the need to resolve
addresses. Refer to Appendix F f'Or detailed
information about the .EXE file .structure and
loading.

B-13

B-14

APPENDIX C. DOS DISKETTE
ALLOCATION

The single-sided 40-track (0-39) diskettes have eight
sectors per track, with 512 bytes per sector.

DOS allocates space on the diskette as follows:

Track 0 sector 1 Boot record written by the
FORMAT command.

Track 0 sectors 2-3 Two copies of the File Allocation
Table (FAT), one in each sector.

Track 0 sectors 4-7

Track 0 sector 8
to

Track 39 sector 8

Directory.

Data area.

Detailed descriptions of the directory and File Allocation
Table are presented in this appendix.

Files are not necessarily written sequentially on the
diskette. Diskette space for a file in the data area is
allocated one sector at a time, skipping over sectors
already allocated. The first free sector found will be
the next sector allocated, regardless of its location on
the diskette. This permits the most efficient utilization
of diskette space because sectors made available by
erasing files can be allocated for new files. (Refer to the
description of the File Allocation Table.)

C-l

C-2

The minimum allocation unit is one sector; therefore,
all files begin on a sector boundary.

Note: If the diskette contains a copy of DOS, it
is placed in the data area as follows:

IBMBIO.COM - track 0 sector 8 through
track I sector 3

IBMDOS.COM - track I sector 4 through
track 2 sector 8

These two programs must reside at the specific
locations indicated so that the boot record can
successfully load them when the system is started.

DOS Diskette Directory

FORMAT builds the directory for each diskette on
track 0 sectors 4-7 , a total of 2048 bytes. The directory
has room for 64 entries, each 32 bytes long. Each
directory entry is formatted as follows. Byte offsets are
in decimal.

0-7 Filename. (X'ES' in byte 0 means this directory
entry is not used.)

8-10 Filename extension.

11 File attribute. Contents can be X'02' for a
hidden file and X'04' for a system file. (Both
files are excluded from all directory searches
unless an extended FCB with the appropriate
attribute byte is used.) For all other files this
byte contains X'OO'. A file can be designated
as hidden when it is created.

12-23 Reserved.

24-25

<
15
y

Date the file was created or last updated. The
mm/dd/yy are mapped in the bits as follows:

25
14 13 12 11
y y y y

where:

mm is 1-12
dd is 1-31

>< 24
10 9 8 7 6 5 432
y ymmmmddd

yy is 0-119 (1980-2099)

>
1 0
d d

26-27 Starting sector; the relative sector number of the
first block in the file.

C-4

(For file allocation purposes only, relative sector
numbers start at 000 with track a sector 6. This
is in contrast with DEBUG and the absolute disk
read/write routines, interrupts X'25' and X'26',
which number relative sectors from the beginning
of the diskette.)

Note: Relative sectors 000 and 00 1 are the
last two sectors of the directory. Therefore,
the data area (track 0 sector 8) starts with
relative sector 002.

The relative sector number is stored with the
least significant byte first.

To calculate the absolute track/sector:

1. Add 5 to the relative sector number (to
include the five sectors before relative
sector 000).

2. Divide by 8 (8 sectors per track).

3. The quotient is the track number.

4. The remainder is one less than the sector
number.

28-31 File size in bytes. The first word contains the
low-order part of the size. Both words are
stored with the least significant byte first.

Note: If the diskette was formatted with
the IS option (FORMAT command), the
first three files in the directory are
IBMBIO.COM, IBMDOS.COM, and
COMMAND.COM. A special file
(BADTRACK) is present if defective tracks
were found during the disk initialization
process. Any defective tracks are allocated
to this file to prevent them from being
allocated to a user file.

The first two system files are placed on
specific sectors. Because they occupy
specific sectors and cannot be moved, they
are protected from accidental erasure or
destruction by being excluded from all
directory searches. (See the file-attribute
byte in the directory.)

C-5

DOS File Allocation Table

C-6

The File Allocation Table (FAT) is used by DOS to
allocate diskette space for a file, one sector at a time.

The FAT consists of a 12-bit entry 0.5 bytes) for each
sector, starting with track a sector 6 and continuing
through track 39 sector 8.

Note that the first two FAT entries map the last two
sectors of the directory; so, these FAT entries contain
indicators of the size and format of the directory. (The
last two sectors of the directory are track a sectors 6-7;
for allocation purposes, they are relative sectors 000
and 001.)

The third F AT en try begins the mapping of the data
area starting with track a sector 8 (relative sector 002).

Each entry contains three hexadecimal characters,
either:

000 if the sector is unused and available,
or

FFF to indicate the last sector of a file,
or

XXX any other hexadecimal characters that are the
relative sector number of the next sector in the
file. The relative sector number of the first
sector in the file is kept in the file's directory
entry.

A copy of the FAT for the last used diskette in each
drive is kept in memory, and is written to track 0 sectors
2 and 3 whenever the status of diskette space changes.
(See the DOS Memory Map.)

C-7

How to Use the File Allocation Table

C-8

Obtain the starting sector of the file from the directory
entry. Calculate the absolute track/sector as follows:

1. Add 5 to the relative sector number (to include the
5 sectors before relative sector 000).

2. Divide by 8 (8 sectors per track).

3. The quotient is the track num ber.

4. The remainder is one less than the sector number.

Now, to locate the next sector of the file:

1. Multiply the relative sector number just used by
1.5 (each FAT entry is 1.5 bytes long).

2. The whole part of the product is an offset into the
FAT, pointing to the entry that maps the sector
just used. That entry contains the relative sector
number of the next sector of the file.

3. Use a MOY instruction to move the word at the
calculated FAT offset into a register.

4. If the last relative sector used was an even number,
keep the low-order 12 bits of the register;
otherwise, keep the high-order 12 bits.

5. If the resultant 12 bits are all l's (X'FFF'), there
are no more sectors in the file. Otherwise, the 12
bits contain the relative sector number of the next
sector in the file.

APPENDIX D. DOS INTERRUPTS AND
FUNCTION CALLS

Interrupts

DOS reserves interrupt types X'20' to X'3F' for its use.
This means absolute memory locations X'80' to X'FF'
are the transfer address locations reserved by DOS. The
defined interrupts are as follows with all values in
hexadecimal.

20 Program terminate. Issuing Interrupt X'20' is the
normal way to exit from a program. This vector
transfers to the logic in DOS for restoration of the
terminate and CTRL-BREAK exit addresses to the
values they had on entry to the program. All file
buffers are flushed to diskette. All files changed in
length should be closed (see function call X' 10')
prior to issuing this interrupt. If the changed file
is not closed, its length is not recorded correctly
in the directory.

Note: Every program must ensure that the
CS register contains the segment address of its
Program Segment Prefix control block prior
to issuing INT X'20'.

21 Function request. Refer to "Function Calls" in
this appendix.

D-l

D-2

22 Terminate address. The address represented by this
interrupt is the address to which control transfers
when the program terminates. This address is
copied into the program's Program Segment Prefix
at the time the segment is created. If a program
wishes to execute a second program it must set the
terminate address prior to creating the segment into
which the new program will be loaded. Otherwise,
when the second program executes, its termination
would cause transfer to its host's termination
address. This address, as well as the CTRL-BREAK
address below, may be set via DOS function call
X'2S'.

23 CTRL-BREAK exit address. If the user enters
CTRL-BREAK during keyboard input or display
output, an interrupt type X'23' is executed. If
the CTRL-BREAK routine saves all registers, it
may end with a return-from-interrupt instruction
(IRET) to continue program execution. If the
CTRL-BREAK interrupts functions 9 or 10,
buffered I/O, then a back slash, carriage-return, and
linefeed are output. If execution is then continued
with an IRET, I/O continues from the start of the
line. When the interrupt occurs, all registers are
set to the value they had when the original function
call to DOS was made. There are no restrictions
on what theCTRL-BREAK handler is allowed to
do, including DOS function calls, as long as the
registers are unchanged if IRET is used.

If the program creates a new segment and loads in
a second program which itself changes the
CTRL-BREAK address, the termination of the
second program and return to the first causes the
CTRL-BREAK address to be restored to the
value it had before execution of the second program.
(It is restored from the second program's Program
Segment Prefix.)

24 Critical error handler vector. When a critical
error occurs within DOS, control is transferred with
an INT 24H. On entry to the error handler, AH
will have its bit 7=0 (high-order bit) if the error
was a hard disk error (probably the most common
occurrence), bit 7= 1 if not.

Currently, the only error possible when AH bit 7= 1
is a bad memory image of the file allocation table.

If it is a hard error on diskette, register AL contains
the failing drive number (0 = drive A, etc.); AH
bits 0-2 indicate the affected disk area and whether
it was a read or write operation, as follows:

Bit 0=0 if read operation,
1 if write operation.

Bits 2-1 (affected disk area)

o 0 DOS area (system files)
o 1 file allocation table
1 0 directory
1 1 data area

The registers will be set up for a retry operation,
and an error code will be in the lower half of the
DI register with the upper half undefined. These
are the error codes:

Error code Description

o Attempt to write on write-protected
diskette

2 Drive not ready
4 Data error
6 Seek error
8 Sector not found
A Write fault
C General disk failure

D-3

D-4

The user stack will be in effect (the first item
described below is at the top of the stack), and will
contain the following from top to bottom:

IP
es
FLAGS

AX
BX
ex
DX
SI
DI
BP
DS
ES

IP
es
FLAGS

DOS registers from issuing INT X'24'

User registers at time of original
INT X'21 ' request

From the original interrupt X'21 '
from the user to DOS

The registers are set such that if an IRET is
executed, DOS will respond according to (AL) as
follows:

(AL)=0 ignore the error.

= 1 retry the operation (If this option is used,
then the stack, SP, SS, DS, BX, ex, and
DX must not be modified.)

=2 end the program.

Notes:

1. Before giving this routine control for
disk errors, DOS perfonns three retries.

2. For disk errors, this exit is taken only
for errors occurring during an INT X'21'
function call. It is not used for INT
X'25' or X'26'.

3. If you set this vector, be sure to preserve
the original contents and restore them
before your program ends. Otherwise,
unpredictable results will occur.

4. If you decide to handle the error
yourself without returning to DOS, be
sure to restore your registers from the
stack (above). The first and last three
words shown should be removed from
the stack and discarded. Also, this
routine should enable interrupts because
it was entered with interrupts disabled.

25 Absolute disk read. This transfers control directly
to the DOS BIOS. Upon return, the original flags
are still on the stack (put there by the INT
instruction). This is necessary because return
information is passed back in the current flags.
Be sure to pop the stack to prevent uncontrolled
growth. For this entry point records and sectors
are the same size. The request is as follows:

(AL)

(eX)
(DX)
(DS:BX)

Drive number (for example, Q=A or
I=B)
Number of sectors to read
Beginning logical record number
Transfer address

D-S

The number of records specified are transferred
between the given drive and the transfer address.
Logical record numbers are obtained by nllmbering
each sector sequentially starting from zero and
continuing across track boundaries. For example,
logical record num ber 0 is track 0 sector 1, whereas
logical record number X' 12' i~ track 2 sector 3.

All registers except the segment registers are
destroyed by this call. If the transfer was
successful the carry flag (CF) will be zero. If the
transfer was not successful CF= 1 and (AL) will
indicate the error as follows:

X'80' Attachment failed to respond
X'40' SEEK operation failed
X'20' Controller failure
X'IO' Bad CRC on diskette read
X'08' DMA overrun on operation
X'04' Requested sector not found
X'03' Write attempt on write-protected diskette
X'02' Address mark not found

26 Absolute disk write. This vector is the counterpart
of interrupt 25 above. Except for the fact that this
is a write, the description above applies.

27 Terminate but stay resident. This vector is used by
programs that are to remain resident when
COMMAND regains control. After initializing
itself, the program must set DX to its last address
plus one in the segment in which it is executing
(the offset at which COMMAND can load other
programs), then execute an INT 27H. COMMAND
then considers the program as an extension of DOS,
so the program is not overlaid when other programs
are executed. This concept is very useful for
loading programs such as user-written interrupt
handlers which must remain resident.

Note: This interrupt must not be used by
.EXE programs which are loaded into the
high end of memory.

Function Calls

DOS functions are called by placing a function num,ber
in the AH register, supplying additional information in
other registers as necessary for the specific function,
then executing an interrupt type X'21 '. When DOS
takes control it switches to an internal stack. User
registers are preserved unless information is passed
back to the requester as indicated in the specific requests.
The user stack needs to be sufficient to accommodate
the interrupt system. It is recommended that it be
X'80' in addition to the user needs.

There is an additional mechanism provided for pre
existing programs that were written with different
calling conventions. The function number is placed in
the CL register, other registers are set according to the
function specification, and an intrasegment call is
made to location 5 in the current code segment. That
location contains a long call to the DOS function
dispatcher. Register AX is always destroyed if this
mechanism is used ; otherwise, it is the same as normal
function calls. This method is valid only for function
calls 0-24 (hexadecimal).

D-7

O-R

The functions are as follows with all values in
hexadecimal.

o Program terminate. The terminate and
CTRL-BREAK exit addresses are restored to the
values they had on entry to the terminating
program, from the values saved in the Program
Segment Prefix. All file buffers are flushed, but
any files which have been changed in length but
not closed will not be recorded properly in the
directory. Control transfers to the terminate
address.

Note: This call performs exactly the same
function as INT 20H. It is the program's
responsibility to ensure that the CS register
contains the segment address of its Program
Segment Prefix control block prior to calling
this function.

Keyboard input. Waits for a character to be typed
at the keyboard (unless one is ready), then echos
the character to the display and returns it in AL.
The character is checked for a CTRL-BREAK. If
CTRL-BREAK is detected an interrupt X'23' is
executed.

Note: For functions 1, 6, 7, and 8, extended
ASCII codes will require two function calls.
(See the IBM Personal Computer BASIC
manual for a description of the extended
ASCII codes.) The first call returns 00 as an
indicator that the next call will return an
extended code.

2 Display output. The character in DL is output to
the display. The backspace character results in
moving the cursor left one position, writing a space
at this position and remaining there. If a
CTRL-BREAK is detected after the output an
in terrupt X'23' is executed.

3 Auxiliary (Asynchronous Communications
Adapter) input. Waits for a character from the
auxiliary input device, then returns that character
in AL.

Notes:

1. Auxiliary support is unbuffered and
non-interrupt driven.

2. At start-up, DOS initializes the first
auxiliary port to 2400 baud, no parity,
one stop bit, and 8-bit word.

3. The auxiliary function calls (3 and 4) do
not return status or error codes. For
greater control, it is recommended that
the ROM BIOS routine (INT X' 14') be
used.

4 Auxiliary (Asynchronous Communications
Adapter) output. The character in DL is output
to the first auxiliary device.

5 Printer output. The character in DL is output to
the first printer.

6 Direct console I/O. If DL is X'FF', AL returns
with a keyboard input character if one is ready,
otherwise 00. If DL is not X'FF', then DL is
assumed to have a valid character which is output
to the display. This function does not check for
CTRL-BREAK.

7 Direct console input without echo. Waits for a
character to be typed at the keyboard (unless one
is ready), then returns the character in AL. As with
function 6, no checks are made on the character.

D-10

8 Console input without echo. This function is
identical to function 1, except the key is not
echoed.

9 Print string. On entry, DS:DX must point to a
character string in memory terminated by a $
(X'24'). Each character in the string will be
output to the display in the same form as
function 2.

A Buffered keyboard input. On entry, DS:DX points
to an input buffer. The first byte must not be
zero and specifies the number of characters the
buffer can hold. Characters are read from the
keyboard and placed in the buffer beginning at the
third byte. Reading the keyboard and filling the
buffer continues until Enter is pressed. If the
buffer fills to one less than the maximum number
of characters it can hold, then each additional
character typed is ignored and causes the bell to
ring, until Enter is pressed. The second byte of
the buffer is set to the number of characters
received excluding the carriage return (X'OD'),
which is always the last character. Editing of this
buffer is described in Chapter 1.

B Check keyboard status. If a character is available
from the keyboard, AL will be X'FF'. Otherwise,
AL will be 00. If a CTRL-BREAK is detected, an
interrupt type X'23' is executed.

C Clear keyboard buffer and invoke a keyboard input
function. Clear the keyboard buffer of any
pre-typed characters, then execute the function
number in AL (only 1,6,7,8, and A are allowed).
This forces the system to wait until a character is
typed.

D Disk reset. Selects dnve A as the default drive,
sets the disk transfer address to DS:80, and flushes
all file buffers. Files changed in size but not
closed are not properly recorded in the disk
directory. This function need not be called before
a diskette change if all files written have been
closed.

E Select disk. The drive specified in DL (O=A, I=B)
is selected (if valid) as the default drive. The
number of drives is returned in AL. (A value of
2 is returned on a single-drive system to be
consistent with the philosophy of thinking of the
system as having logical drives A and B. BIOS
equipment determination (lNT IIH) can be used
as an alternative method, returning the actual
number of physical drives.)

F Open file. On entry, DS:DX point to an
unopened file control block (FCB). The
directory is searched for the named file and AL
returns X'FF' if it is not found. If it is found, AL
returns 00 and the FCB is filled as follows:

If the drive code was 0 (default drive), it is
changed to actual drive used (1=A, 2=B). This
allows changing the default drive without
interfering with subsequent operations on this
file. The current block field (FCB bytes C-D) is
set to zero. The size of the record to be
worked with (FCB bytes E-F) is set to the
system default of X'80'. The size of the file
and the date are set in the FCB from information
obtained from the directory.

0-11

D-12

It is your responsibility to set the record size (FCB
bytes E-F) to the size you wish to think of the file
in terms of, if the default X'80' is insufficient. It is
also your responsibility to set the random record
field and/or current record field. These actions
should be done after open but before any disk
operations are requested.

10 Close file. This function must be called after file
writes to insure all directory information is updated.
On entry, DS:DX point to an opened FCB. The
disk directory is searched and if the file is found,
its position is compared with that kept in the FCB.
If the file is not found in its correct position in the
directory, it is assumed the diskette was changed
and AL returns X'FF'. Otherwise, the directory
is updated to reflect the status in the FCB and AL
returns 00.

11 Search for the first entry. On entry, DS:DX point
to an unopened FCB. The disk directory is searched
for the first matching filename (name could have
"?"s indicating any letter matches) and if none are
found AL returns X'FF'. Otherwise, AL returns
00 and the locations at the disk transfer address
are set as follows:

If the FCB provided for searching was an
extended FCB, then the first byte at the disk
transfer address is set to X'FF', followed by
five bytes of zeros, then the attribute byte from
the search FCB, then the drive number used
(1 =A, 2=B), then the 32 bytes of the directory
entry. Thus, the disk transfer address contains
a valid unopened extended FCB with the same
search attributes as the search FCB.

If the FeB provided for searching was a normal
FeB, then the first byte is set to the drive number
used (1 =A, 2=B), and the next 32 bytes contain
the matching directory entry. Thus, the disk
transfer address contains a valid unopened normal
FCB.

Refer to the section called "DOS Diskette
Allocation" in Appendix C for the format of
directory entries.

12 Search for the next entry. After function 11 has
been called and found a match, function 12 may
be called to find the next match to an ambiguous
request (?s in the search filename). Both inputs
and outputs are the same as function 11. The
reserved area of the FCB keeps information
necessary for continuing the search, so no disk
operations may be performed with this FCB
between a previous function 11 or 12 call and this
one.

13 Delete file. On entry, DS:DX point to an unopened
FeB. All matching directory entries are deleted.
If no directory entries match, AL returns X'FF',
otherwise AL returns 00.

14 Sequential read. On entry, DS:DX point to an
opened FCB. The record addressed by the current
block (FCB bytes C-D) and the current record
(FCB byte 1 F) is loaded at the disk transfer
address, then the record address is incremented.
(The length of the record is determined by the
FCB record size field.) If end-of-file is encountered,
AL returns either 01 or 03. A return of 0 1
indicates no data in the record, 03 indicates a
partial record is read and filled out with zeros. A
return of 02 means there was not enough space
in the disk transfer segment to read one record; so,
the transfer was ended. AL returns 00 if the
transfer was completed successfully.

D-13

D-14

15 Sequential write. On entry, DS:DX point to an
opened FCB. The record addressed by the current
block and current record fields (size determined
by the FCB record size field) is written from the
disk transfer address (or, in the case of records
less than sector sizes, is buffered up for an eventual
write when a sector's worth of data is accumulated).
The record address is then incremented. If the
diskette is full AL returns 01. A return of 02 means
there was not enough space in the disk transfer
segment to write one record, so the transfer was
ended. AL returns 00 if the transfer was
completed successfully.

16 Create file. On entry, DS :DX point to an
unopened FCB. The disk directory is searched for
a matching entry and if found, it is re-used. If no
match was found, the directory is searched for an
empty entry, and AL returns FF if none is found.
Otherwise, the entry is initialized to a zero-length
file, the file is opened (see function F), and AL
returns 00.

The file may be marked hidden during its creation
by using an extended FCB containing the
appropriate attribute byte.

17 Rename file. On entry, DS:DX point to a
modified FCB which has a drive code and file name
in the usual position, and a second file name
starting 6 bytes after the first (DS:DX+X'll ') in
what is normally a reserved area. Every matching
occurrence of the first name is changed to the
second (with the restriction that two files cannot
have the same name and extension). If?s appear
in the second name, then the corresponding
positions in the original name will be unchanged.
AL returns FF if no match was found or if an
attempt was made to rename to a filename that
already existed, otherwise 00.

18 Not used

19 Current disk. AL returns with the code of the
current default drive (O=A, l=B).

1 A Set disk transfer address. The disk transfer
address is set to DS:DX. DOS does not allow disk
transfers to wrap around within the segment, or
overflow into the next segment.

lB Allocation table address. On return, DS:DX
point to the file allocation table for the current
drive, DX has the number of allocation units, AL
has the number of records per allocation unit, and
CX has the size of the physical sector.

IC Not used

lD Not used

IE Not used

IF Not used

D-I5

D-16

20 Not used

21 Random read. On entry, DS:DX point to an
opened FeB. The current block and current record
fields are set to agree with the random record field,
then the record addressed by these fields is read
into memory at the current disk transfer address.
If end-of-file is encountered, AL returns either 01
or 03. If 01 is returned, no more data is available.
If 03 is returned, a partial record is available filled
out with zeros. A return of 02 means there was
not enough space in the disk transfer segment to
read one record, so the transfer was ended. AL
returns 00 if the transfer was completed
successfully.

22 Random write. On entry, DS :DX point to an
opened FeB. The current block and current record
fields are set to agree with the random record field,
then the record addressed by these fields is
written (or in the case of records not the same as
sector sizes-buffered) from the disk transfer
address. If the diskette is full AL returns 0 I. A
return of 02 means there was not enough space in
the disk transfer segment to write one record; so,
the transfer was ended. AL returns 00 if the
transfer was completed successfully.

23 File size. On entry, DS:DX point to an unopened
FeB. The diskette directory is searched for the
first matching entry and if none is found, AL
returns FF. Otherwise, the random record field
is set to the number of records in the file (in terms
of the record size field rounded up) and A L returns
00.

Note: Be sure to set the FeB record size field
before using this function call; otherwise,
erroneous information will be returned.

24 Set random record field. On entry, DS:DX point
to an opened FCB. This function sets the random
record field to the same file address as the current
block and record fields.

25 Set interrupt vector. The interrupt vector table
for the interrupt type specified in AL is set to the
4-byte address contained in DS:DX.

26 Create a new program segment. On entry, DX has
a segment number at which to set up a new
program segment. The entire X'IOO' area at
location zero in the current program segment is
copied into location zero in the new program
segment. The memory size information at location
6 in the new segment is updated and the current
termination and CTRL-BREAK exit addresses
(from interrupt vector table entries for interrupt
types 22 and 23) are saved in the new program
segment starting at X'OA'. They are restored from
this area when the program terminates.

27 Random block read. On entry, DS:DX point to an
opened FCB, and CX contains a record count that
must not be zero. The specified number of records
(in terms of the record size field) are read from the
file address specified by the random record field
into the disk transfer address. If end-of-file is
reached before all records have been read, AL
returns either 01 or 03. A return of 01 indicates
end-of-file and the last record is complete. A
return of 03 indicates the last record is a partial
record. If wrap-around above address X'FFFF' in
the disk transfer segment would have occurred,
as many records as possible are read and AL
returns 02. If all records are read successfully,
AL returns 00. In any case, CX returns with the
actual number of records read, and the random
record field and the current block/record fields
are set to address the next record (the first record
not read).

D-17

D-18

28 Random block write. Essentially the same as
function 27 above, except for writing and a write
protect check. If there is insufficient space on the
disk, AL returns a 1 and no records are written.
If CX is zero upon entry, no records are written,
but the file is set to the length specified by the
random record field, whether longer or shorter
than the current file size. (Allocation units are
released or allocated as appropriate.)

29 Parse filename. On entry, DS:SI point to a
command line to parse, and ES: D I point to a
portion of memory to be filled with an unopened
FCB. If AL= 1 on entry, then leading separators
are scanned off the command line at DS: SI. If
AL=O, then no scan-off of leading separators takes
place.

Filename separators include the following
characters :.;, = + / " [] plus TAB and
SPACE. Filename terminators include all of these
characters plus any con trol characters.

The command line is parsed for a filename of the
form d :filename.ext, and if found, a corresponding
unopened FCB is created at ES:DI. If no drive
specifier is present, the default drive is assumed. If
no extension is present, it is assumed to be all
blanks. If the character * appears in the filename
or extension, then it and all remaining characters
in the name or extension are set to ?

If either? or * appears in the filename or extension,
AL returns a I; if the drive specifier is invalid AL
returns FF; otherwise 00.

DS: SI will return pointing to the first character
after the filename and ES:DI will point to the first
byte of the formatted FCB. If no valid filename is
present, ES :DI+ 1 will con tain a blank.

2A Get date. Returns date in CX:DX. CX has the year
(1980-2099 in binary), DH has the month (1-Jan,
2-Feb, etc) and DL has the day. If the time-of-day
clock rolls over to the next day, the date is
adjusted accordingly, taking into account the
number of days in each month and leap years.

2B Set date. On entry, CX:DX must have a valid date
in the same format as returned by function 2A,
above. If the date is indeed valid and the set
operation is successful, AL returns 00. If the date
is not valid, AL returns FF.

2C Get time. Returns with time-of-day in CX:DX.
Time is actually represented as four 8-bit binary
quantities as follows. CH has the hours (0-23),
CL has minutes (0-59), DH has seconds (0-59), DL
has 1/100 seconds (0-99). This format is readily
converted to a printable form yet can also be used
for calculations, such as subtracting one time
value from another.

2D Set time. On entry, CX:DX has time in the same
format as returned by function 2C, above. If any
com ponen t of the time is not valid, the set
operation is aborted and AL returns FF. If the
time is valid, AL returns 00.

D-19

D-20

APPENDIX E. DOS CONTROL BLOCKS
AND WORK AREAS

DOS Memory Map

0000:0000 Interrupt vector table

0040:0000 ROM communication area

0050:0000 DOS communication area

0060:0000 IBMBIO.COM-DOS interface to ROM I/O routines

OOBI :0000 IBMDOS.COM - DOS interrupt handlers, service
routines (lNT 21 functions)

Directory buffer

Disk buffer

Drive parameter block/file allocation table (one
per drive)

XXXX:OOOO Resident portion of COMMAND.COM-Interrupt
handlers for interrupts X'22' (terminate), X'23'
(CTRL-BREAK), X'24' (critical error), X'27'
(terminate but stay resident), and code to reload
the transient portion.

XXXX:OOOO External command or utility-(.COM or EXE file)

XXXX:OOOO User stack for .COM files (256 bytes)

XXXX:OOOO Transient portion of COMMAND.COM-Command
interpreter, internal commands, external command
processor, batch processor.

E-l

Notes:

1. Memory map addresses are in segmen t: offset
format. For example, 0060:0000 is absolute
address X'0600'.

2. The DOS Communication Area is used as
follows:

0050:0000 Print screen status flag store

o Print screen not active or
successful print screen
operation

Print screen in progress

255 Error encountered during
print screen operation

0050:0004 Single-drive mode status byte

o Diskette for drive A: was
last used

Diskette for drive B: was
last used

DOS Program Segment

E-2

When you enter an external command, the COMMAND
processor determines the lowest available address
(immediately after the resident portion of
COMMAND.COM) to use as the start of available
memory for the program invoked by the external
command. This area is called the Program Segment.

At offset 0 within the Program Segment, COMMAND
builds the Program Segment Prefix control block. (See
below.) COMMAND loads the program at offset X' 100'
and gives it control. (.EXE files can be loaded into high
memory just below the transient portion of
COMMAND.COM, but the Program Segment Prefix
will still be in low memory.)

The program returns to COMMAND by a jump to offset
o in the Program Segment Prefix by issuing an INT 20,
or by issuing an INT 21 with register AH=O. (The
instruction INT 20 is the first item in the control block.)

Note: It is the responsibility of all programs to
ensure that the CS register contains the segment
address of the Program Segment Prefix when
terminating via any of these methods.

All three methods result in an INT 20 being issued,
which transfers control to the resident portion of
COMMAND.COM. It restores interrupt vectors X'22'
and X'23' (terminate and CTRL-BREAK exit addresses)
from the values saved in the Program Segment Prefix
of the terminating program. Control is then given to the
terminate address. If this is a program returning to
COMMAND, control transfers to its transient portion.
If a batch file was in process, it is continued; otherwise,
COMMAND issues the system prompt 'and waits for
the next command to be entered from the keyboard.

E-3

E-4

When a program receives control, the following
conditions are in effect:

For all programs:

• Disk transfer address (DT A) is set to X'80' (default
DT A in the Program Segment Prefix).

• File control blocks at X'5C' and. X'6C' are
formatted from the first two parameters entered
when the command was invoked.

• Unformatted parameter area at X'81' contains all
the characters entered after the command name
(including leading and embedded delimiters), with
X'80' set to the number of characters.

• Offset 6 (one word) contains the number of bytes
available in the segment. If the resident portion
of COMMAND.COM is within the segment, this
value is reduced by its size.

• Register AX reflects the validity of drive specifiers
entered with the first two parameters as follows:
- AL=FF if the first parameter contained an

invalid drive specifier (otherwise AL=OO)
- AH=FF if the second parameter contained an

invalid drive specifier (otherwise AH=OO)

For .EXE programs:

• DS and ES registers are set to point to the Program
Segment Prefix. (A diagram of the Program
Segment Prefix is provided in this section.)

• CS, IP, SS, and SP registers are set to the values
passed by the linker.

For .COM programs:

• All four segment registers contain the segment
address of the Program Segment Prefix control
block.

• The Instruction Pointer (lP) is set to X' 100'.

• SP register is set to the end of the program's
segment, or the bottom of the transient portion of
COMMAND.COM, whichever is lower. The
segment size at offset 6 is reduced by X' 100' to
allow for a stack of that size.

• A word of zeros is placed on the top of the stack.

The Program Segment Prefix (with offsets iFl
hexadecimal) is formatted as follows.

PROGRAM SEGMENT PREFIX
(offsets in hex)

O~--------~------~-------T--------------~
Total Long call to

INT X'20' memory Reserved DOS function dis
size! patcher (5 bytes)2

8~--------~----~------~~~--------~
.l' ermiRa te . admess
(IP, CS)

CTRLBREAK
exit ad.dress
(IP)

10 J----------+-------------------I.-------t
.. CTRL-BREAK
.. exit address
'~CS)

Reserved

Formatted Parameter Area 1
formatted as standard unopened FCB

Formatted Parameter Area 2
formatted as standard unopened FeB
(overlaid if FCB at X'5C' is opened)

80~------------------------------------~

... ~ Unformatted parameter area '"'

J (default disk transfer area) J
100~----------------------------------~-

1. Memory size is in segment (paragraph) form (for example,
X'IOOO' would represent 64K).

2. The word at offset 6 contains the number of bytes
available in the segment.

0

8

16

24

32

FILE CONTROL BLOCK
-7 r--,-------------

I X'FF' I Zeros

I Drive Filename (8 bytes) or Reserved device name

Filename extension Curren t block

(Offsets are in decimal)

Unshaded areas must be filled in by the using program.

Shaded areas are filled in by DOS and must not be modified.

- - T - -I
FCB

I Attribute I extension

Record size

Standard
FCB

~ =:
("D

(j
o
=
o -=:1 -o
n
~

S3X)(]N3ddV

T:' 0

Standard File Control Block

The standard file control block (FCB) is defined as
follows, with the offsets in decimal:

Byte Function

o Drive number. For example,

Before open: 0 - default drive
1 - drive A
2 - drive B

After open: I - drive A
2 - drive B

A 0 is replaced by the actual drive number
during open.

1-8 Filename, left-justified with trailing blanks.
If a reserved device name is placed here (such
as LPTl), do not include the optional colon.

9-11 Filename extension, left-justified with trailing
blanks (can be all blanks).

12-13 Current block number relative to the
beginning of the file, starting with zero (set
to zero by the open function call). A block
consists of 128 records, each of the size
specified in the logical record size field. The
current block number is used with the current
record field (below) for sequential reads and
writes.

14-15 Logical record size in bytes. Set to X'80' by
the open function call. If this is not correct,
you must set the value because DOS uses it to
determine the proper locations in the file for
all disk reads and writes.

Byte Function

16-19 File size in bytes. In this 2-word field, the
first word is the low-order part of the size.

20-21 Date the file was created or last updated. The
mm/dd/yy are mapped in the bits as follows:

< 21 > < 20 >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
y y y y y y ymmmmddddd

where:

mm is 1-12
dd is 1-31
yy is 0-119 (1980-2099)

22-31 Reserved for system use.

32 Current relative record number (0-127) within
the current block. (See above.) You must set
this field before doing sequential read/write
operations to the diskette. (This field is not
initialized by the open function call.)

33-36 Relative record number relative to the
beginning of the file, starting with zero. You
must set this field before doing random
read/write operations to the diskette. (This
field is not initialized by the open function
call.)

If the record size is less than 64 bytes, both
words are used. Otherwise, only the first
three bytes are used. Note that if you use the
File Control Block at X'5C' in the program
segment, the last byte of the FCB overlaps
the first byte of the unformatted parameter
area.

Notes:

1. Bytes 0-15 and 32-36 must be set by the
user program. Bytes 16-31 are set by DOS
and must not be changed by user programs.

2. All word fields are stored ~ith the least
significant byte first. For example, a
record length of 128 is stored as X'80' at
offset 14, and X'OO' at offset 15.

Extended File Control Block

The extended File Control Block is used to create or
search for files in the diskette directory that have
special attributes.

It adds a 7 -byte prefix to the FCB, formatted as
follows:

Byte

FCB-7

Function

Flag byte containing X'FF' to
indicate an extended FCB.

FCB-6 to FCB-2 Reserved.

FCB-l Attribute byte to include hidden files
(X'02') or system files (X'04') in
directory searches. IBMBIO.COM,
IBMDOS.COM, and BADTRACK are
considered system files. There are no
"hidden" files supplied on the DOS
diskette. This function is present to
allow applications to define their own
files as "hidden", and thereby exclude
them from directory searches. This
prevents them from being accidentally
erased or overwritten by a COpy
command.

Any reference in the DOS Function Calls (refer to
Appendix D) to an FCB, whether opened or unopened,
may use either a normal or extended FCB. If using an
extended FCB, the appropriate register should be set
to the first byte of the prefix, rather than the drive
number field.

APPENDIX F. EXE FILE STRUCTURE
AND LOADING

The .EXE files produced by the Linker program consist
of two parts:

• control and relocation information

• the load module itself

The control and relocation information, which is
described below , is at the beginning of the file in an
area known as the header. The load module
immediately follows the header. The load module
begins on a sector boundary and is the memory image
of the module constructed by the linker.

The header is formatted as follows:

Hex Offset Contents

00-0 I X'4D', X'5A'-This is the LINK program's
signature to mark the file as a valid .EXE file.

02-03 Reserved for future use.

04-05 Size of the file in512~byte increments (pages),
including the header.

06-07 Num'ber of relocation table items that follow
the formatted portion of the header.

08-09 Size of the header in 16-byte increments
(paragraphs). This is used to locate the
beginning of the load module in .the file.

1:' 1

Hex Offset Contents

OA-OB

OC-OD

OE-OF

10-11

12-13

14-15

16-17

18-19

lA

Reserved for future use.

High/low loader switch. If 0, the load module
is to be loaded into high memory. If X'FFFF',
the load module is to be loaded into low
memory.

Offset of stack segment in load module (in
segment form).

Value to be in the SP register when the module
is given control.

Word checksum-sum of all the words in the
file, ignoring overflow.

Value to be' in the IP register when the module
is given control.

Offset of code segment within load module
(in segment form).

Offset of the first relocation item within the
file.

Reserved for future use.

The relocation table follows the formatted area just
described. The relocation table is made up of a
variable number of relocation items. The number of
items is contained at offset 06-07. The relocation
item contains two fields-a 2-byte offset value,
followed by a 2-byte segment value. These two fields
contain the offset into the load module of a word which
requires modification before the module is given
con tro1. This process is called relocation and is
accomplished as follows:

1. A Program Segment Prefix is built following the
resident portion of the program that is performing
the load operation.

2. The formatted part of the header is read into
memory (its size is at offset 08-09).

3. The load module size is determined by subtracting
the header size from the file size. Offsets 04-05
and 08-09 can be used for this calculation. Based
on the setting of the high/low loader switch, an
appropriate segment is determined to load the
load module. This segment is called the start
segment.

4. The load module is read into memory beginning
at the start segment.

5. The relocation table items are read into a work area
(one or more at a time).

6. Each relocation table item segment value is added
to the start segment value. This calculated
segment, in conjunction with the relocation item
offset value, points to a word in the load module
to which is added the start segment value. The
resul t is placed back in to the word in the load
module.

7. Once all relocation items have been processed, the
SS and SP registers are set from the values in the
header and the start segment value is added to SS.
The ES and DS registers are set to the segment
address of the Program Segment Prefix. The start
segment value is added to the header CS register
value. The result, along with the header IP value,
is used to give the module control.

INDEX

Special Characters

. - period 4-7, 4-1 6
..... backspace key 2-14
& - LINK command

character 5 -16
! - LINK command

character 5-16
$$$ - filename extension 4-5
* - asterisk 2-20
* - EDLIN prompt 2-20,4-4,

4-10
* - global filename

character 3-9
- (DEBUG prompt) 6-11
..... key 2-16,2-23

/P option 5-11
/S option 3-46, C-5
% (percent sign) 3-17
? - global filename

character 3-9
- pound sign 4-6
@ character 2-26
= equal sign 3-5
\ back slash 2-13, 2-22
"Enter key 2-10

A
A> prompt 2-5,3-13
a bort program B-7
absolute disk read D-5
absolute disk write D-6
absolute diskette sectors B-2
absolute sectors 6-43
absolute segment address 5-25
absolute track/sector,

calculate C-4, C-8

AC flag set condition 6-35
access, random B-6
adding hexadecimal

values 6-22
address-DEBUG

parameter 6-6
address terminate interrupt D-l
address, disk transfer 6-5
Advanced BASIC 2-12
AH register D-7
allocating diskette space B-6,

C-6
allocation table address D-15
allocation, diskette C-l
Alt key 2-4
am persand - LINK command

character 5-16, 5-18
analyze

diskettes 3-38
the directory 3-19
the File Allocation

Table 3-19
angle brackets 5-18
Append Lines command 4-11,

4-34
architecture, 8088 B-1
ASCII characters 6-12
ASCII codes,

extended D-8
ASCII representation 6-5
ASCII values 6-8
Assem bIer 5-4
asterisk 2-20

EDLIN prompt 2-20, 4-4,
4-10

global filename
character 3-9

Asynchronous Communications
Adapter B-1, D-9

attribute, byte E-I0
attribute, file C-3
AUTOEXEC file B-4
AUTOEXEC.BAT file 2-7,

3-15,3-27
Automatic Program

Execution 2-7
Automatic Response File 5-18

example of 5-19
AUX: -reserved device

name 3-8
Auxiliary Asynchronous

Communications Adapter B-1,
D-9

auxiliary carry flag 6-35
auxiliary input D-9
auxiliary output D-9
available functions, DOS B-5
AX register 6-4, 0-4, 0-8

B
back slash (\) 2-13, 2-22, 0-2
backing up diskettes 1-7
backspace key (~) 2-14
backup diskette 1-7,3-33
backup file, edit 4-5
BADTRACK 3-29,3-37,

3-38, C-5
BAK filename extension 4-5,

4-18, 4-26
BASIC Program Editor 2-15
BAT filename extension 3-14
batch file 2-7, 3-14, 3-43, 3-44,

3-47,3-50
batch file processor B-4
batch processing 3-14
BIOS D-5
BIOS interface module B-1
block number, current E-8
block read, random 0-16
block write, random D-16,

0-18

blocking/ de blocking,
data B-1

boot record program 1-3, 1-7,
B- 1 , B-2, C-l

boundary 5-6
paragraph 5-6

boundary, l6-byte 6-12
boundary, 8-byte 6-12
BP register 6-4, 0-4
brackets, square 3-5
Break key 2-10
breakpoint 6-19
buffer,input 2-15
buffered keyboard input 0-10
buffers, file 0-1
built-in functions B-1
BX register 6-4, D-4
byte-DEBUG parameter 6-6
byte contents 6-15

display 6-15
fill 6-18
replace 6-15

byte, attribute E-lO
byte, flag E-I0

c
calculate absolute track/

sector C-4, C-8
calls, function D-7
carry flag 6-35
chaining file sectors B-6
change date 3-27
change diskettes 3-43
change filenames 3-45
change tim e 3 -47
check keyboard status 0-10
checksum methodology B-3
CHKOSK command 3-19,

3-39,3-50
CL register 0-8
class 5-7
clear condition 6-34
close file D-12

codes, error D-3
codes,return B-13
codes, 8088 instruction 6-20
colon 3-5
ColorlGraphics Monitor

Adapter 3-41
COMofilena;me extensio1l3-4,

B-4
COM.pEugrams E-5
comma 3-5
command .parameters

DEBUG 6-6
DOS 3-6
EDLIN 4-6

command pro:cessor 1-4, 2-5,
2-7, B-3

command proce-ssor, replacing
the B-4

command processor, resident
portion of B-3

oommand prompt,
DEBUG 6-11

command prompt, DOS 2-5
command prompts,

LINK 5-8
COMMAND.COM 1-4,2-4,

3-38, 6-4, B-3, C-4, E-3
replacing B-4

commands
DEBUG 6-10
DOS 3-12
EDLIN 4-9

commands, end 3-13
commands, summary of

DEBUG 6-47-6-48
DOS 3-50-3-51
EDLIN 4-34

Communications Adapter,
Auxiliary Asynchronous B-1,
D-9

COMP command 3-21,3-33,
3-50

comparing diskettes 3-32
comparing files 3-21
Compiler 5-4

COM 1 : -reserved device
name 3-8

CON:--reserved name for
console/keyboard 3-8

console I/O, direct D-9
console/keyboard 3-8
:console/keyboard routines B-5
control blacks B-1
controlkeys 2-10,3-13,4-9,

6-11
COPY command 1-8,3-14,

3-23, 3-33, 3-36, 3-50
copying diskettes 1-7, 3-34
copying DOS files 1-7
copying files 3-23
correcting input lines 2-15
create file D-14
creating a .BAT file 3-16
creating a backup diskette 1-7
creating a batch file 3-14
creating a new file 4-19
critical error handler B-3, B-5
critical error handler vector D-3
critical error handling B-3
CS register 6-4, 6-19, 6-21, 6-24,

6-41,6-44, D-l, D-4, E-3, E-4
Ctrl key 2-4, 2-10
CTRL-BREAK exit address B-4,

B-5, D-2
CTRL-BREAK handler B-3, B-5
Ctrl-Break keys 2-10,2-21,3-13,

3-15,3-43,4-9,4-16, 4·J9, 5-9,
5-17, 6-10

Ctrl-Enter keys 2-11
Ctrl-NumLock keys 2-11,

3-13,4-9, ,6-10
·Ctrl-PrtSc keys 2-12, 3-49,

5-12
Ctrl-Z keys 4-28
current block number E-8
current disk D-15
current relative record

number E-9
CX register 6-4, 6-5, 6-26, 6-45,

D-4
CY flag set condition 6-35

D
d: 3-6

default 3-6
parameter 3-6

data an~a C-1
data blocking/deblocking B-1
date 2-4

change 3-27
delimiters 3-28
enter 2-4, 3-27
get D-19
set D-19

DATE command 3~27, 3-50
date file created or updated E-9
de blocking/blocking, data B-1
DEBUG program 6-3.

command parameters 6-6
commands 6-1;0"
common information 6-1@·
how to end 6-31
how to start 6-4
pro·mpt 6-11
summary of

commands 6-47 -6-48
default disk transfer

address 6-5
default drive 2-5, 3-6

changing the 2 -5
specifying the 2-5

default prompts 5-9
default segment 16-6
defective tracks 3-38, C-4
Del key 2-16, 2-21
delete file D-13
Delete Lines command 4-12,

4-34
deleting files 3-37
delimiters 3-12, 4-9, 6-10
destination area 6-27
device handler, I/O 1-3
device names, reserved 3-8,

3-13,3-25
DGROUP 5-15
DI flag clear condition 6-35
DI register 6-4, D-3, D-4

DIR command 3-9,3-29,3-39,
3-50

direct console I/O D-9
direction flag 6-35
directory, anaJyze 3-19
directory 1-6, C-1
directory entries, listing 3-29
directory searches C-3
disk D-l1

current D-15
reset D-11
select D-11

Disk BASIC 2-12
disk error handling B-3
disk read, absolute D-5
disk transfer address 6-5, EA
disk transfer address, set D-15
Disk Transfer Area (DTA) B-7
disk write, absolute D-6
DISKCOMP command 3.;.32,

3-36,3-50
DISKCOPY command, 1-8,

3-32 1 3-34, 3-50.
Diskette/File Management B~6
diskettes 1-5:

allocating space B-6, C-6
allocation C-1
analyze 3-38
back up 3-33
backing up 1-7
change 3-43
comparing 3-32
copying 1-7, 3-34
creating a backup 1-7
damaged 1-7
defective tracks 1-8,3-38,

C-4
directory C-3
filenames 3-6
form atting 1-7
fragmented 3-35
handling routines B-5
initialize 3-38
new 1-7
preparing, 3-38
recording format 3-38
status report 3-19

display
byte contents 6-15
flags 6-33
instructions 6-40
lines 4-22
registers 6-33
remarks 3-44

display output D-2, D-8
displaying ill'emory 6-12
divide-by-zero B-1
DN flag set condition 6-35
DOS 1-3, 2--5

available functions B-5
command parameters 3-6
control blocks E-1
copying DOS files 1-7
default. 5-9
diskette allocation C-1
diskette directory C-3
how to start 2-3
Initialization B-2
memory map E-' 1
parts of 1-3
program segmsnt E-2
prompt 2-5
structure B-1
technical information B-1
work areas E-1

DOS commands 3-4
common inf orma tion 3-12
external 3-4
in ternal 3-4
summary of 3-50-3-51
types of 3-4

DOS editing keys 2-1 5," 2-19 ,
3-1 3, 4-9, 6-1 1

examples using 2-19-2-29
drive 3-6
drive-DEBUG parameteT 6-7
DS register 6-4,6-5,6-15,6-18,

6-27, D-4, E-4
DSAllocation prompt 5-9,5-15
DT A (Disk Transfer Area) B-7
dummy device 3-8
dummy parameters 3-16, 3-18
Dump com'mand 6-12,6-47
OX register 6-4, D-4

E
edit 4-5

backup file 4-5
existing file 4-5
partial file. 4-1 1

Edit Line command 4-16,4-34
editing keys 2-15,3-13,4-9,

6-11
editing temp1a,te 2-15
EDLIN 2-15,2-19,3-14,4-3,

4-4
prompt 4-4
command parameters 4-6
commands 4-9
common information 4-9
how to start 4-4

EDLIN commands., summary
of 4-34

EDLIN prompt 2-20
EI flag set. condition 6-34-
ellipsis 3-5
emptying the template 2-27
End Edit command 4-5, 4-1.8,

4-33
ending. comm;ands 3-13
Enter com·mand.. 6-15, 6-47
enter date 2-4; 3 ... 27
Enter key 2-10,2-1.5,3,.8,4-9
enter time 3-47
entries, search for D-1-2
equal sign (=) 3-5
ERASE command 3 .. 37, 3-50
erasing files 3-37
error codes D-3
error handler B-7
error handling B-3

critical R-3
disk B-3

error messages A-3
error trapping B-7
error, syntax 6-11
ES register 6-4, 6-5, D-4, E-4
Esc key 2-13,2-16,2-22,4-16
exclamation point-LINK

command character 5-16
EXE file structure F-1

EXE filename extension 3-4,
5-11, 6-5, 6-26, 6-45, B-4, E-3

EXE files, load F-l
EXE programs D-7, E-4
execute instructions 6-38
execute program 6-1 9
executing a .BAT file 3-17
existing file, edit 4-5
.ext 3-7
extended ASCII codes D-8
extensions 3-7
extensions, filename 1-5

.BAK 4-5,4-18,4-26

.COM 3-4, B-4

.EXE 3-4, 5-11, 6-5, 6-26,
6-45, B-4, E-3

.HEX 6-5,6-26,6-45

.MAP 5-12

.OBJ 5-10
$$$ 4-5
length in characters 1-5

external commands 3-4, B-4

F
FAT (see File Allocation

Table)
FCB (see File Control

Block)
file 1-5

attribute C-3
auto.matic response 5-4
close D-12
create D-14
date created or updated E-9
delete D-13
displaying contents of 3-49
erasing 3-37
fragmen ted 3-24
hidden C-3, D-14, E-lO
how DOS keeps track of 1-6
input 5-4
length in characters 1-5
library 5-4
listing 5-4
naming convention 1-5

object 5-4, 6-3
object program 3-49
open D-ll
output 5-4
per diskette 1-5
random B-6
rename D-'15
run 5-4
sectors B-6
seq uen tia1 B-6
size D-16
source 4-3
systemE-10
text 3-49, 4-3

File Allocation Table (FAT) 1-6
B-2, J3..,-6, C-1, C-6

how to use C-8
file buffers D-l
File ControJBlock (FCB) 6-28,

B-6, E-7
file sectors B-6

.chainiflg B-6
mapping B-6

file size E-9
file structure, .EXE F-1
filename characters, global 3-9
filename extensions 1-5, 3-4,

3-7, C-3, E-8
.BAK 4-5,4-18,4-26
.BAT 3-14
.COM 3-4, B-4
.EXE 3-4, 5-11, 6-5, 6-26,

6-45, B-4, E-3
.HEX 6-5, 6-26, 6-45
.MAP 5-12
.OBJ 5-10
$$$ 4-5
characters, valid 3-7
length in characters 1-5
separators D-18
terminators D-18

filename, parse D-18
filenames 3-6,3-8, C-3, E-8

characters, valid 3-6
length of 3-6
renaming 3-45

filespec 3-7

filespec-DEBUG parameter 6-7
Fill command 6-18, 6-47
First Asynchronous

Communications Adapter
port 3-8

flag byte E-I0
flag values 6-32
flags 6-4
flags, display 6-34
FORMAT command 1-3, 1-7,

1-8, 3-38, 3-46, 3-50, C-3
format notation 3-5
formatting diskettes 1-7
fragmented diskettes 3-35
fragmented files 3-24
function calls D-7
functions, available DOS B-5
functions, built-in B-1
F 1 key 2-16, 2-23, 2-26
F2 key 2-17, 2-24
F3 key 2-17, 2-21, 2-22, 2-24,

6-24
F4 key 2-17, 2:-25
F5 key 2-18,2-26,4-17
F6 key 3-8, 3-16, 3-26, 4-28

G

generating line numbers 4-3
get

date D-19
time D-19

global filename characters 3-9,
3-13,3-22,3-23,3-29,3-37,
3-45

examples using 3-10
global symbols 5-8
Go command 6-19, 6-45, 6-47
group 5-7

H
header F-l
HEX filename extension 6-5,

6-26,6-45

Hexarithmetic command 6-22,
6-47

hidden file C-3, D-14, E-l 0
high memory 5-15,6-5, B-4
high/low loader switch F-3

I

I/O device handler 1-3
IBMBIO.COM 1-3,3-29,3-37,

3-38, B-1, B-2, B-3, C-4
location on diskette C-2

IBMDOS.COM 1-3,3-29,
3-37, 3-38, B-1, B-2, C-4

location on diskette C-2
initialization, DOS B-2
initialize diskettes 3-38
input buffer 2-15
Input command 6-23,6-47
input files 5-4
input, auxiliary D-9
Ins key 2-18, 2-27
Insert Lines command 4-19,

4-34
insert mode 2-22, 2-26, 2-27,

4-19
inserting characters 2-27
inserting lines 4-3
instruction codes, 8088 6-20
Instruction Pointer (lP) 6-4
instruction set, 8088 B-1
instructions 6-38

display 6-40
execute 6-38
unassem ble 6-40
variable length 6-40

INT X'24' B-7
INT 21 B-6
interface module, BIOS B-1
internal command

processors B-4
internal commands 3-4
interrupt codes 6-20
interrupt flag 6-35
interrupt mechanism,

8088 B-1

interrupt vectors B-2
interrupt X'20' D-l
interrupt X'22' B-4, B-5, D-l
interrupt X'23' B-4, B-5, D-2
interrupt X'24' B-5, D-3
interrupt X'25' D-5
interrupt X'26' D-6
interrupt X'27' B-5, D-6
interrupt, set D-17
interrupts D-l
IP (Instruction Pointer) 6-4
IP register 6-19,6-32, D-4, E-4
IRET D-2

K

keyboard 3-8
keyboard input D-8
keyboard input, buffered D-I0
keyboard status, check D-I0
keys, control 2-10,3-13,4-9,

6-11
keys, DOS editing 2-15, 3-13,

4-9, 6-11
keywords 3-5

L
Libraries prompt 5-8, 5-12
line-EDLIN parameter 4-6
Line Editor Program 2-15,

2-19,4-3
line numbers 4-3
Line Numbers prompt 5-9, 5-13
linefeed D-2
lines, renumber 4-12, 4-19
LINK 5-3

example session 5-20
how to start 5-1 7

LINK command prompts 5-8
linker files 5-4
Linker program 5-3
Linker, example session 5-20
list-DEBUG parameter 6-7

y-~

List File prompt 5-8,5-11
List Lines command 4-22, 4-34
listing directory entries 3-9,

3-29
Load command 6-24, 6-45,

6-47
Load Low prompt 5-6, 5-9,

5-14
load module 5-13,5-23
load module memory

map 5-24
loading .EXE files F-I
locate next sector C-6, C-8
logical record num bers D-6
logical record size E-8
low memory 5-11,5-15
LPT1 :-reserved name for

printer 3-8

M
MAP filename extension 5-12
mapping file sectors B-6
memory 5-11

high 5-15,6-5, B-4
low 5-11, 5-15

memory management
routine B-6

memory map E-1
memory status report 3-19
memory, display 6-12
memory, loading files into 4-4
messages A-3
messages, LINK 5-26
MODE command 3-41, 3-51
Monochrome Display Printer

Adapter 3-41
MOV instruction C-8
Move command 6-27, 6-47
multi-drive system 2-8

N
n-EDLIN parameter 4-7

NA flag clear condition 6-35
Name command 6-25, 6-28,

6-47
NC flag set condition 6-35
new diskette 1-7
NG flag set condition 6-35
notation, format 3-5
NUL:-reserved device

name 3-8
numbers, line 4-3, 4-12
NV flag clear condition 6-35
NZ flag clear condition 6-35

o
OBJ filename extension 5-10
object files 6-3
Object Modules prompt 5-8,

5-10
object program files 3-49
open file D-l 1
operation, suspend

system 2-11, 3-43
optional remarks, PAUSE

command 3-43
Output command 6-30, 6-47
output files 5-4
output routines B-5
output, auxiliary D-9
output, display D-2, D-8
OV flag set condition 6-35
overflow flag 6-35

p

paragraph boundary 5-6
parameters 3-6, 4-6, 6-10

DEBUG 6-6
DOS 3-6
dummy 3-16,3-18
EDLIN 4-6
save area E-4
testing with different 6-19

pari ty flag 6-35

parse filename D-18
partial file, edit 4-11
PASCAL 5-12,5-14
PAUSE command 3-43,3-51
PC register 6-32
PE flag set condition 6-35
percen t sign (%) 3-1 7
period (.) 4-7, 4-16
PL flag clear condition 6-35
PO flag clear condition 6-35
portaddress-D EB UG

parameter 6-7
pound sign (#) 4-6
prepare diskettes 3-38
print displayed output 2-12
print screen output 2-13
print string D-lO
printer 2-12,3-8,3-41
printer output D-9
printer output routines B-5
PRN :-reserved name for

printer 3-8
program execution, stop 6-19
program segment D-l 7, E-2

create new D-17
Program Segment Prefix 6-5,

B-3, B-5, B-7, E-4, E-6
program tenninate D-8
public symbols 5-11, 5-22
Publics prompt 5-8, 5-13
punctuation 3-5

Q
question mark 3-5
Quit command 6-31, 6-47
Quit Edit command 4-26, 4-34
quotation marks 6-8

R
random access B-6
random block read B-6, D-17
random block write B-6, D-18

random read D-16
random record field, set D-17
random write D-16
range-DEBUG parameter 6-7-

6-8
Read-Only Memory (ROM) B-1
read, random D-16
read, random block D-17
read, sequential D-13
record number, relative E-9
record numbers, logical D-6
record size, logical E-8
recording format, diskette 3-38
Register command 6-32, 6-48
registername-DEBUG

parameter 6-8
registernames, valid 6-32
registers, display 6-33
relative record number E-9
relative record number,

current E-9
relative sector number 6-8, C-3
relative zero 5-22
relocatable loader 5-4
relocation F-2
REM command 3-44, 3-51
remarks, display 3-44
remarks, PAUSE

command 3-43
REN AME command 3-45,

3-51, 6-46
rename file D-15
renumber lines 4-12,4-19
replace byte contents 6-15
Replace Text command 4-27,

4-34
replacing characters 2-27
replacing the command

processor B-4
reserved device names 3-8,

3-13,3-25
reset, disk D-11
reset, system 2-4, B-2
resident portion of command

processor B-3
return codes B-13

V 11\

ROM (Read-Only
Memory) B-1

ROM BIOS routine D-9
routines B-1

console/keyboard B-5
device B-1
diskette handling B-5
keyboard input B-5
memory management B-6
output B-5
printer output B-5
ROM BIOS D-9
time function B-5

Run File prompt 5-8, 5-11

s
save area, parameter E-4
screen 3-8
screen display 2-12

restart 2-12
suspend 2-12

screen output, print 2-13
Search command 6-37, 6-48
search for entries D-12
Search Text command 4-30,

4-34
sector-DEBUG parameter 6-8
sector boundary C-1
sector number, relative 6-8,

C-3
sector, locate next C-6, C-8
sector, starting C-3
sectors 1-6, 3-35, 6-8

absolute 6-43
sectors, file B-6
segments 5-1 °
segment 5-6
SEGMENT command 5-14
segment registers 6-4, 6-41
segment, create new

program D-17
segment, default 6-6
segment, start F-3
segments 5-7

select disk D-I I
semicolon delimiter 3-12
separators, filename D-18
sequential read D-13
seq uen tial write D-I 4
set

I date D-19
interrupt D-17
random record field D-17
time D-19

set condition 6-34
set disk transfer address D-15
Shift key-PrtSc keys 2-13
SI register 6-4, D-4
sign flag 6-35
single-drive system 2-8, 3-33,

3-35, D-ll
size, file D-16, E-9
slashes 3-5
source area 6-26
source drive 3-13
source files 4-3
SP (Stack Pointer) 6-4
SP register E-4, E-5
space allocation B-6, C-l
space delimiter 3-12
special characters 3-9
specifying a drive 3-6
square brackets 3-5
SS register 6-4, E-4
stack allocation statement 5-14
Stack Pointer (SP) 6-4
Stack Size prompt 5-9, 5-13
stack space B-2
stack, user D-4
start segment F-3
starting DEBUG 6-4
starting DOS 2-3

computer power off 2-3
computer power on 2;-4

starting ED LIN 4-4
starting LINK 5-17
starting sector C-3
status report 3-19
stop program execution 6-19
string-DEBUG

parameter 6-8-6-9

string-EDLIN
parameter 4-8, 4-9

structure, DOS B-1
suspend screen output 2-12
suspend system operation 2-1 1,

3-43
switch, high/low loader F-3
symbols 5-8

global 5-8
public 5-11

syntax error 6-11
SYS command 3-46, 3-51
system devices 3-8
system file E-IO
syste.m files, transfer 3-46
system prompt 2-8,3-13, B-4
system. reset 2-4, B-2

T
target drive 3-13
technical information, DOS B-1
template 2-15
temporary file, VM.TMP 5-5
terminate address B-5
terminate address interrupt D-l
terminate bu t stay resident B-3
terminate commands 3-13
terrhina te program D-8
terminate program interrupt D-l
terminators, filename D-18
text files 3-49, 4-3
thrashing B-9
time 3-47

change 3-47
enter 3-47
get D-19
set D-19

TIME command 3-47, 3-5 1
time function routines B-5
Trace command 6-38,6-45,

6-48
track/sector, calculate

absolute C-4
tracks, defective 3-38, C-4,
transfer address, disk E-4

V11

transfer system files 3-46
transient portion of command

processor B-3
TVPEcommand3-49, 3-51
types of DOS commands 3-4

u
Unassemble command 6-40,

6-48
unassem ble instructions 6-40
unprintable characters 6-12
UP flag clear condition 6-35

. user stack D-4

v
value 6-9
variable length

instructions 6-40
VM.TM·P temporary file 5-5,

5-10,5-11

w
work areas B-1
Write command 6-43,6-48
WriteLinescommand 4-33,4-34
write, random D-16
write, random block D-18
,wri te ,sequential D-14

z
zero flag 6-35
ZRflag set condition 6-35

X-12

--- ------ ----- ---- - ---- - - ----------_.-

Product Comment Form

Disk Operating System

The Personal Computer
Software Library

6172220

Your comments assist us in improving our products.
IBM may use and distribute any of the information
you supply in anyway it believes appropriate without
incurring 'any obligation whatever. You'may, of
course, continue to use the. information you supply.

Comments:

If you wish a reply,'provide your name and address in
this space.

~arne ______________________________________ _

Address ________________ _

City ________ _ State ______________ _

Zip Code _____ _

1

Hili I
BUSIN'ESS REPLY 'MAIL
FIRST CLASS 'PERMIT NO. 123 BOCA RATON, FLORIDA 33432

POSTAGE WILL BEPAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE
P.O. BOX 1328-C
BOCA RATON, FLORIDA 33432

9J94 PIO::!

91delS lOU op 9se91d

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

9del.

--- ------ ----- ---- - ---- - - ----------_.-

Product Comment Form

Disk Operating System

The Personal Computer
Software Library

6172220

Your comments assist us in improving our products.
IBM may use and distribute any of the information
you supply in anyway it believes appropriate without
incurring any obligation whatever. You may, of
course, continue to use the information you supply.

Comments:

If you wish a reply, provide your name and address in
this space.

~ame ___ _

Address _________________ _

City _______ _ State _______________ _

Zip Code _______ _

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 123 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE
P.O. BOX 1328-C
BOCA RATON, FLORIDA 33432

aJa4 PIO:!

ardelS lOU op aseard

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

adel.

--- ------ ----- ---- - ---- - - ----------_.-

Product Comment Form

Disk Operating System

The Personal Computer
Software Library

6172220

Your comments assist us in improving our products.
IBM may use and distribute any of the information
you supply in anyway it believes appropriate without
incurring any obligation whatever. You may, of
course, continue to use the information you supply.

Comments:

If you wish a reply, provide your name and address in
this space.

~ame ______________________________________ _

Address ______________________________________ __

City _____________ _ State _______________ _

Zip Code _____ _

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 123 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE
P.O. BOX 1328-C
BOCA RATON, FLORIDA 33432

9J94 PIO::l

aldelS lOU Op aseald

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

adeJ.

--- ------ ----- ---- - ---- - - ----------_.-

Product Comment Form

Disk Operating System

The Personal Computer
Software Library

6172220

Your comments assist us in improving our products.
IBM may use and distribute .any of the information
you supply in anyway it believes appropriate without
incurring any obligation whatever. You may, of
course, continue to use the information you supply.

Comments:

If you -wish a reply, provide your name and address in
this space.

~ame ______________________________________ _

Address __________________________________ __

City _____________ _ State _______________ _

Zip Code _____ _

111111

BUSINESS,~REPL Y MAIL
FIRST CLASS PERMIT NO. 123 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

J8M PERSONAL C.OMPUTER
SALES &SERVICE
'P.O. BOX 1328-C
··SOCAR'ATON,FLOHIDA a3432

aJa4 PIO::!

aldelS lOU .op .aseald

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

ade.l

Continued from inside front cover

SOME STATES DO NOT ALLOW THE
EXCLUSION OF IMPLIED
WARRANTIES, SO THE ABOVE
EXCLUSION MAY NOT APPLY TO
YOu. THIS WARRANTY GIVES YOU

I SPECIFIC LEGAL RIGHTS AND YOU
MA Y ALSO HAVE OTHER RIGHTS
WHICH VARY FROM STATE TO
STATE.

IBM does not warrant that the functions
contained in the program will meet your
requirements or that the operation of the
program will be uninterrupted or error
free.

However, IBM warrants the diskette(s)
or cassettes on which the program is
furnished, to be free from defects in
materials and workmanship under
normal use for a period of ninety (90)
days from the date of delivery to you as
evidenced by a copy of your receipt.

LIMIT A TIONS OF REMEDIES

IBM's entire liability and your exclusive
remedy shall be:

1. the replacement of any diskette or
cassette not meeting IBM's "Limited
Warranty" and which is returned to

IBM or an authorized IBM
PERSONAL COMPUTER dealer
with a copy of your receipt, or

2. if IBM or the dealer is unable to
deliver a replacement diskette or
cassette which is free of defects in
materials or workmanship, you may
terminate this Agreement by
returning the program and your
money will be refunded.

IN NO EVENT WILL IBM BE LIABLE
TO YOU FOR ANY DAMAGES,
INCLUDING ANY LOST PROFITS,
LOST SAVINGS OR OTHER
INCIDENTAL OR CONSEQUENTIAL

DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE SUCH
PROGRAM EVEN IF IBM OR AN
A UTHORIZED IBM PERSONAL
COMPUTER DEALER HAS BEEN
ADVISED OF THE POSSIBLITY OF
SUCH DAMAGES, OR FOR ANY
CLAIM BY ANY OTHER PARTY.

SOME STATES DO NOT ALLOW THE
LIMIT A TION OR EXCLUSION OF
LIABILITY FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES SO
THE ABOVE LIMITATION OR
EXCLUSION MAY NOT APPLY TO
YOU.

GENERAL

You may not sublicense, assign or
transfer the license or the program
except as expressly provided in this
Agreement. Any attempt otherwise to
sublicense, assign or transfer any of the
rights, duties or obligations hereunder is
void.

This Agreement will be governed by the
laws of the State of Florida.

Should you have any questions
concerning this Agreement, you may
contact IBM by writing to IBM Personal
Computer, Sales and Service, P.O. Box
1328"';W, Boca Raton, Florida 33432.

YOU ACKNOWLEDGE THAT YOU
HA VE READ THIS AGREEMENT,
UNDERSTAND IT AND AGREE TO
BE BOUND BY ITS TERMS AND
CONDITIONS. YOU FURTHER
AGREE THAT IT IS THE COMPLETE
AND EXCLUSIVE STATEMENT OF
THE AGREEMENT BETWEEN US
WHICH SUPERSEDES ANY
PROPOSAL OR PRIOR AGREEMENT,
ORAL OR WRITTEN, AND ANY
OTHER COMMUNICATIONS
BETWEEN US RELATING TO THE
SUBJECT MATTER OF THIS
AGREEMENT.

