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INTRODUCTION 

The introduction of linear programming (LP) has 
produced remarkable benefits in a number of 
industries. The early experimental applications of 
LP techniques in the petroleum industry as a refinery 
management tool had such profound effects that LP 
is now standard in almost every aspect of that 
industry. More recently LP has been employed in 
such areas as metal alloy blending, feed blending, 
ice cream blending, and food products blending -
always with dramatic effect. 

The first application of LP in the textile industry 
was designed to produce optimal plant e~ficiency, that 
is, allocate plant resources to production problems 
so as to achieve the highest practical return. The 
purpose of this manual is to demonstrate the appli
cation of LP in the blending of cotton. Because the 
cotton blending process involves complex quality 
control, it is particularly responsive to LP teclmiques. 
By the use of LP, the mill operator can determine 
the specific allocation of raw cottons required to 
produce a given blended yarn at minimum cost -
subject to any stated restrictions on yarn quality and 
raw cotton availabilities. The immediate and more 
obvious LP results enable the mill operator to: 

• Minimize the cost of cotton blends 
• Minimize substandard blends 
• Maintain accurate inventory records 
• Purchase and sell most economically 

The basis of the LP technique is the formulation 
of a mathematical model of the allocation problem. 
For problems of any practical size, this model is 
entered into a computer, and the computer LP system 
rapidly calculates the optimal (least-cost) solution. 
The system may also produce reports which indicate 
the effect on the optimal solutions of possible changes 
in the given prices, availabilities, specifications, etc. 

Little mathematical knowledge or skill is required 
to formulate an LP model. Nor do the operation of 
the computer and the analysis of computer results 
require any advanced technical skill. Linear 
programming does require the expression of all 
the elements in the process - individual cotton 
quality analyses, costs, yarn specifications, etc. 
in the form of linear equations. The equations will, 
of course, reflect the blending philosophy of the 
particular company using LP. The general 
principles of linear programming are discussed in 
the IBM data processing application manual 
An Introduction to Linear Programming (E20-8171), 
which should be read in conjunction with this manual. 
(IBM data processing application manual E20-0025 
provides a glossary of textile terms.) 

To demonstrate the methods and advantages of LP 
in cotton blending, we shall present a typical pro
duction problem as a basis for the development of an 
LP model which can be solved by an IBM linear 
programming system. 
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PROBLEM PROFILE AND ECONOMICS 

The fundamental problem is to produce a specified 
cotton yarn by feeding an appropriate blend of raw 
cottons into the opening-and-blending machine at 
the beginning of the yarn producing process. In 
order to produce a least-cost blend, the producer 
must consider a complex variety of factors including 
the prices, grades, and availabilities of a great many 
raw cottons. The crucial interrelations among the 
several qualities of raw cotton make it exceedingly 
difficult to determine a least-cost blend. 

In the past, the treatment of the blending problem 
has been to formulate a relatively simple blend ratio 
for a specified yarn, which is thEm empirically tested 
and corrected, often by the addition of expensive 
high-quality grades. This method frequently results 
in production delays and quality giveaway. Further, 
the initial difficulty of determining a proper blend is 
vastly compounded by common fluctuations in the 
availability and price of specific cottons, since the 
alteration of anyone component will alter all the 
relationships required for least-cost production. 
Some mills are already profiting from the application 
of linear programming to this problem, enabling 
the producer to examine all possible combinations 
and quickly determine the most economical cotton 
blend. The LP model can also be applied to "force" 
overstocked grades into minimum-cost blends, thus 
contributing to the achievement and maintenance of 
ideal inventory control. 

LP MODEL FORMULATION - SINGLE-BLEND 
PROBLEM 

A linear programming model for cotton blending is 
a mathematical representation, in the form of linear 
equations or inequalities, of all known and estimated 
factors relevant to the production of the specified 
blend. To demonstrate the method for formulating 
such a model, we postulate a simple problem - the 
production of a specified yarn from 20 available 
grades of raw cotton. In practice, a greater 
variety of cotton inventory may be available; but 
regardless of the number, price, and grade of 
available cotton (the factors which complicate manual 
calculation), they can easily be included in the LP 
model, increasing the model's size but not its 
complexity. 

INPUT DATA REQUIREMENTS 

The following basic data is required to formulate 
the LP model: 

1. Blend (yarn) specifications 
2. Quality analysis of each raw cotton available 
3. Price of each raw cotton 
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4. Inventory level of each raw cotton 
This information is available from purchasing, cost 
accounting, inventory accounting, and in the case 
of quality analysis, from an appropriate pilot plant 
or testing laboratory. 

SAMPLE PROBLEM 

The factors that most appropriately define yarn 
quality are not generally agreed upon throughout 
the industry. However, a model based on any set 
of quality characteristics can be constructed, so 
long as these characteristics are linear (or can be 
linearly approximated) and satisfy the manufacturer's 
needs. For this sample problem, we have taken the 
work of Waters and Philips (reference 7 in the 
Bibliography) as a basis and will treat yarn quality 
in terms of five parameters: fineness, staple 
length, fiber strength, yarn count, and grade index. 
These are defined as follows: 

Fineness. Fiber fineness is a relative measure 
of the diameter or linear density of an individual 
fiber. Cotton fineness is typically measured by an 
instrument, called a Micronaire, that determines 
the rate of airflow through a sample of fixed weight. 
The finer the fiber, the larger the total surface 
area in a standard sample, and hence, the more 
resistance to airflow. Micronaire fineness values 
are read directly from an air gage. Fineness is 
linear, directly proportional to the number of neps 
(tangles of fiber) per square inch and also to spinnable 
limit (the spinnable limit is the yarn count at which 
a particular blend meets the ends down specification). 
Since a high nep count must be avoided, the fineness 
must ordinarily fall within specific maximum and 
minimum limits depending on the yarn count desired. 

Staple length. Staple length is the length of the 
cotton fiber. It is directly proportional to spinnable 
limit in a relationship which is linear for all practical 
purposes. Of the various methods for determining 
staple length, the Fibrograph, an optical instrument 
which scans an appropriately prepared sample of 
cotton fibers, produces satisfactory data for LP use. 
The Fibrograph aids in determining both the mean 
length and the upper-half mean length to the nearest 
1/32 inch (these lengths are then usually converted 
to thousandths of an inch). The upper-half mean 
length is the average length of the fibers that have 
lengths greater than the sample mean. The mean 
length is the average length of all fibers in the sample 
that are longer than 1/4 inch. The fiber length 
uniformity of the sample may be expressed as the 
ratio between mean length and upper-half mean length. 

Fiber strength. Fiber strength is determined by 
breaking a carefully combed and straightened sample 



of 15 to 20 milligrams using a standard Pressley 
l!S-inch gage test. Fiber strength is directly 
proportional to yarn strength and spinnable limit. 
It is specified by the Pressley Index (P. 1. ). 

Yarn COWlt. The yarn count of in-process samples 
is determined by weighing, to the nearest grain, a 
skein of 120 yards of spWl yarn. One thousand 
divided by this weight is the yarn count. The yarn 
count is directly related to spinnable limit and 
represents an important factor in the quality of the 
finished woven goods. 

Grade index. The grade of a raw cotton is usually 
determined by a cotton classer on the. basis of 
source, age, cavitomic damage, color, feel, moisture 
content, trash content, appearance, and an intangible 
factor called character. The nine established grades 
can be converted for use in linear programming to a 
numerical scale with 100.0 as the "middling" value. 
A grade index below 100, then, represents lower 
quality, and a grade index above ~OO represents 
higher quality. 

The yarn to be produced in our sample problem 
will have the blend specifications listed in Figure 1. 
These describe the desired yarn quality in terms of 
the five parameters discussed above. 

Waters and Philips have shown that, for all 
practical purposes, the relationship of each of these 
cotton properties to spinnable limit is linear; hence 
these properties are suitable for a linear programming 

Fineness Staple Length Fiber Strength 

Property Minimwn Maximum 

Fineness (Micronaire) 4.35 

Staple length (Fibrograph - upper-half 

mean, inches) 1.075 

Fiber strength (1/8-inch gage, p. I.) 3.23 

Yarn count 21.3 

Grade index 100.2 

Figure 1. Blend specifications 

model. We propose to blend the specified cotton 
from 20 raw cottons of various origin, quality, and 
price. Figure 2 provides a quality analysis for each 
of the raw cottons. 

We will further assume that current inventory 
conditions make it desirable to "force" the use of 
the raw cotton we have designated XS; we will specify 
that the blend must contain at least 30% of this cotton. 
Limitations on the use of any particular raw cotton 
inventory could be introduced similarly by requiring 
that the blend contain more than some specific 
percentage of that cotton if inventory must be 
reduced, or less than some specific percentage if 
inventory is low. 

Cotton Group (Micron air e) (Upper-half Mean) (l/8-inch gage, P. I.) Yam Count Grade Index Price per lb. ($) 

Xl 4.45 1.05 3.13 21 105 0.3533 
X2 4.31 1.09 3.25 23 105 0.3549 
X3 4.39 1.06 3.08 20 100 0.3511 
X4 4.29 1.10 3.27 23 100 0.3549 
X5 4.42 1.05 3.12 21 95 0.3540 
X6 4.33 1.11 3.31 24 95 0.3530 
X7 4.50 1.07 3.28 23 90 0.3483 
X8 4.27 1.09 3.23 22 90 0.3496 
X9 4.45 1.05 3.15 22 110 0.3533 
XI0 4.35 1.10 3.30 24 110 0.3523 
X11 4.48 1.06 3.09 20 85 0.3479 
X12 4.33 1.09 3.28 23 85 0.3511 
X13 4.17 1.05 3.37 26 105 0.3724 
X14 4.00 1.08 3.62 32 105 0.3850 
X15 4.16 1.07 3.41 27 100 0.3828 
X16 3.98 1.10 3.58 31 100 0.3839 
X17 4.19 1.06 3.39 26 95 0.3673 
X18 4.04 1.08 3.61 31 95 0.3817 
X19 4.20 1.07 3.42 27 90 0.3851 
X20 4.01 1.09 3.57 31 90 0.3844 

Figure 2. Quality analyses of raw cottons for blending 
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An L~ model consists of a set of linear equations 
or inequalities called constraints. A constraint 
relates the value of some particular quality factor 
(or other factor, such as cost) in the final blend to 
the amounts of each raw material used in the blend, 
and expresses the final blend specification for this 
factor. For example, suppose three syrups are to 
be blended to produce a product which must have 
10% sugar content and no more than 15% corn starch. 
Assuming the three syrups have 5%, 12%, and 
20% sugar content and 30%, 3%, and 1 % corn starch, 
respectively, the sugar and corn starch constraints 
would be expressed as: 

5 S1 + 12 S2 + 20 S3 = 10 (Sugar) 

30 SI + 3 S2 + S3 ~ 15 (Starch) 

where SI, S2, and S3 are variables (unknowns) 
representing the percentage or proportion of each 
syrup in the final product. (With suitable changes in 
the coefficients and right-hand side, the variables 
could represent actual weights, volumes, etc., of 
each material used rather than proportions in the 
final blend. ) 

In the cotton blending LP model, a constraint 
similar to the above is formulated for each speci
fication and inventory limitation. A special cost 
constraint or "objective function" is formulated, 
using the unit prices of each raw material as 
coefficients, to express the total unit cost of the 
final blend. The LP system solves the problem by 
computing a set of values for the variables which 

simultaneously satisfies all the constraints and at 
the same time minimizes the total value of the 
objective function (cost). 

To set up the model in a format convenient for 
presentation to the computer LP system, the 
coefficients and right-hand sides of the constraints 
are arranged in a tabular array of columns and 'rows 
called a matrix. Figure 3 shows the completed 
matrix for our sample problem (we shall trace its 
formulation in detail below). 

Each raw cotton available for use in the blend 
(symbolized by Xl, X2, X3, ... , X20) appears at 
the head of a matrix column, which is called a 
problem activity. We wish to determine what 
fraction of the final blend each raw cotton should 
provide. These fractions are the variables which 
the LP system will compute. The figures appearing 
in each column are coefficients of the variable which 
heads the column. Thus the figure 0.3533 in the 
column headed Xl signifies that the first term in 
the COST equation (objective function) is O. 3533 
times Xl. The second term in the COST equation 
is 0.3549 times X2, and so on. 

This use of column headings in a matrix format 
avoids the need to repeat the variables in each of 
the constraint terms. 

Each row, called a problem constraint, is a sum 
of terms which expresses a particular specification 
or limitation identified by the row's symbolic name, 
or mnemonic (see Figure 4 for explanation of 
mnemonics). Thus, in effect, the data given in 

COTTON CROUPS 

~ ROW 
Xl X2 X3 X4 xs X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 RH5 

COST .3533 .3549 .3511 .3549 .3540 .3530 .3483 .3496 .3533 .3523 .3479 .3511 .3724 .3850 .3828 .3839 .3673 .3817 .3851 .3844 = MIN 

FIN 4.45 4.31 4.39 4.29 4.42 4.33 4.50 4.27 4.45 4.35 4.48 4.33 4.17 4.00 4.16 3.98 4.19 4.04 4.20 4.01 ~ 4.35 

LEN 1.05 1.09 1.06 1.10 1.05 1.11 1.07 1.09 1.05 1.10 1.06 1.09 1.05 1.08 1.07 1.10 1.06 1.08 1.07 1.09 ~ 1.075 

STR 3.13 3.25 3.08 3.27 3.12 3.31 3.28 3.23 3.15 3.30 3.09 3.28 3.37 3.62 3.41 3.58 3.39 3.61 3.42 3.57 ~ 3.23 

CNT 21.0 23.0 20.0 23.0 21.0 24.0 23.0 22.0 22.0 24.0 20.0 23.0 26.0 32.0 27.0 31.0 26.0 31.0 27.0 31.0 ~ 21.3 

CRA 105.0 105.0 100.0 100.0 95.0 95.0 90.0 90.0 110.0 110.0 85.0 85.0 105.0 105.0 100.0 100.0 95.0 95.0 90.0 90.0 ~loo.2 

INVA8 1.0 ~ .30 

SUM 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 = 1.0 

Figure 3. LP model matrix for single-blend problem 
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Figures 1 and 2 have been transferred to the model 
matrix of Figure 3. The formulation of each of 
the constraint rows is discussed below. 

Row Mnemonic Constraint Expressed 

COST Price per pound (objective function) 

FIN Fineness (Micronaue) 

LEN Staple length (Fibrograph, upper-half mean. inches) 

STR Fiber strength (lIS-inch. P. I.) 

CNT Yam count 

CRA Crade index 

INVA8 Inventory availability of cotton X8 

SUM Material balance 

Figure 4. Mnemonics used in model matrix 

Cost Constraint (Objective Function) 

The objective function to be minimized in this 
sample problem is the cost per pound of the specified 
blend. This function may be expressed by the linear 
equation. 

0.3533 Xl + 0.3549 X2 + ••. + O. 3S44 X20 = 
COST (MINIMIZE) 

where in each term the coefficient is the price per 
pound, and the variable is the proportion used in 
the final blend of the corresponding cotton. 
"MINIMIZE" signifies that the LP system will compute 
a set of values for the variables (representing the 
proportion of each raw cotton in the blend) which 
satisfies all the constraints and at the same time 
results in the lowest possible cost per pound for the 
blend. 

Specification Constraints 

The specifications for the desired cotton blend 
(Figure 1) establish five constraints for the 
model. The first constraint, fineness, is established 
as a maximum for this blend. All the others - stable 
length, fiber strength, yarn count, and grade index -
are minimum specifications. 

U sing the quality analysis of each raw cotton for 
these five factors (Figure 2), linear expressions 
which constrain the final blend to the desired 
specifications can be formulated. 

The fineness specification may be expressed as: 

(fineness of cotton Xl) x (proportion of Xl in 
blend) + (fineness of cotton X2) x (proportion of 
X2 in blend) + ... + (fineness of cotton X20) x 

(proportion of X20 in blend) must be equal to 
or less than 4. 35 

The second row (FIN) of Figure 3 incorporates this 
expression into the model matrix: 

4.45 Xl + 4. 31 X2 + 4. 39 X3 +. . . + 4. 01 X20 

$ 4.35 

The staple length (LEN) specification (directly 
proportional to spinnable limit, and hence a 
minimum specification) is formulated similarly: 
The staple length of each cotton is multiplied by 
the proportion of that cotton used in the blend, these 
products are summed, and the sum is set equal-to
or-greater-than the specified length: 

1. 05 Xl + 1. 09 X2 + 1. 06 X3 + ... + 1. 09 X20 
~ .1.075 

The specifications for fiber strength (STR), yarn 
count (CNT), and grade index (GRA) are formulated 
in precisely ~he same way: 

STR: 
3.13 Xl + 3.25 X2 + 3. OS X3 + .•. + 3.57 
X20 ~ 3.23 

CNT: 
21 Xl + 23 X2 + 20 X3 +. . . + 31 X20 
~ 21. 3 

GRA: 
105 Xl + 105 X2 + 100 X3 + ... + 90 X20 
~ 100.2 

These five expressions effectively constrain the 
final blend to the specifications. Should additional 
cotton groups become available (say, X21 through 
X50), they can be introduced as possible components 
for this blend simply by incorporating their prices 
and quality characteristics into these expressions -
that is, by adding new columns (but no new rows) to 
the matrix. 

Inventory Availability Constraint 

In setting up the sample problem, we specified that 
raw cotton XS must supply at least 30% of the final 
blend. Since the variables of the model matrix have 
been expressed as fractional proportions, we can 
incorporate this constraint by formulating a new 
row (INVAS) with the coefficient 1. 0 in column XS and 
~ 0.30 as its right-hand side. The row then 

expresses the simple relation: 

XS ~ 0.30 . 

Material Balance Constraint 

We have formulated the model matrix with the 
assumption that the variables representing raw 
cotton are expressed as fracti<:mal proportions of 
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the final blend. This condition must be stated 
explicitly in the model. To accomplish this we 
simply establish a row (SUM) with the coefficient 
1. 0 in every column and 1. 0 as its right-hand side. 
The relation thus expressed is: 

Xl + X2 + X3 +. . • + X20 = 1. 0 • 

This material balance constraint will result in a 
solution stating the proportions of raw cottons in 
the blend as fractions which, when summed, equal 1. 

Other Constraint Possibilities 

For this cotton blend problem the eight constraint 
rows formulated above complete a matrix model. 
The first of these rows is the objective function -
cost - which must be minimized within the quality 
specifications defined by the next five rows and the 
inventory availability constraint on cotton XS. The 
eighth row constrains the total cotton blended to one, 
that is, 100%. 
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It is also possible to formulate the model matrix 
with raw cotton activities stated as actual weights 
and a material balance constraint expressing the 
total blend quantity required. This formulation 
would be desirable if inventory of one or more raw 
cottons were extremely low or high and/or the 
quantity of yarn needed were critical <:>r very high. 
Inventory constraints could then be included in the 
model in terms of actual weights available. 

There is another possible formulation in which 
the anticipated selling price of the blend is included 
in the objective function, being given a sign opposite 
to that of the raw cotton terms. In this case the 
optimal solution is a blend that yields maximum 
profit rather than minimum cost. If actual weights 
are used, the solution indicates the maximum 
quantity of specified yarn that can be spun from 
available inventory on a maximum-profit basis. 
Such a formulation can be applied to develop 
optimal production and marketing plans, evaluate 
purchasing agreements, etc. This is discussed 
further in the section on product allocation models. 



MULTIBLEND MODEL FORMULATION 

Having once formulated a basic single-blend matrix 
model for the blending of a specified yarn, it is an 
easy matter to design a multiblend model. Such 
a model allows the producer to compute minimum
cost blends for a number of mills (or consecutive 
blends for the same mill), simultaneously, even 
if different blends are specified for each mill. 
As Figure 5 indicates, a multiblend model consists 
of a set of submatrices, each of which has the 
appropriate constraint rows to express blend 
specifications, and each of which has a unique 
designation for its column activities. That is, the 
raw cotton symbols for blend 1 are prefixed with a 
numeral 1, those for blend 2 are prefixed with a 2, 
and so on. Thus, in a single computer run the 

1X1 1X2 1X3 ••• 2X1 2X2 2X3 ••• 3X1 3X2 3X3 ••• 

Blend 1 

producer may determine how much of each raw 
cotton to use in each mill. 

Ideally, the model should be solved with no 
inventory constraints in order to determine optimal 
solutions. However, such constraints can be 
introduced, either into the submatrices (reflecting 
local warehouse stocks), or into the overall matrix 
(reflecting irremedial inventory limitations). This 
procedure will then permit computation of the optimum 
distribution of available. stock to each mill for 
minimum-cost overall blending. The most obvious 
advantage of the multiblend LP model is that, in a 
minimum of computer time, it allocates from all 
available inventory supplies to all the mills at 
optimal levels. Further, re-solutions based on 

)- Materials 

~ RHS 

Blend 1 
Specifica tions 

-----------------
Material Balance ---------

Blend 2 Blend 2 
Specifica tions 

--------
Material Balance 

Blend 3 Blend 3 
Specifications 

Material Balance 

Inventory 
Availability 
Constraints 

Figure 5. Schematic of multi blend model matrix 
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output report suggestions will respond to overall 
considerations of inventory and costs rather than to 
a single blend problem. It is important, however, 
to add what may be different handling costs to the 
basic price of raw cotton which must be moved to a 
number of different mills from a central warehouse. 
Quite conceivably, a multiblend model solution 
may indicate that a nonoptimal solution for one mill 
will allow the best overall use of inventory and mill 
capacity. 

OUTPUT REPORTS 

The linear programming system will employ the input 
data to compute a variety of output reports. We are 
here principally concerned with four basic reports 
which the system produces: 

• Basis variables report 
• Slacks report 
• DO. D/J report 
• Cost range report 
Each of these reports is discussed and illustrated 

below. 

BASIS VARIABLES REPORT 

The basis variables (BASIS. VARBLS) report provides 
a list of the raw cottons included in the "basis" 
(that is, the set of all activities appearing at a 
nonzero level in the optimal blend), and indicates 
the proportion required of each. 

The IBM 1620/1311 LP system provides the 
optimal blend shown in Figure 6 for the single-blend 
problem we have formulated. The total cost per 
pound of the blend (given in the slacks report to be 
discussed next) is $0.351. If the solution of 
Figure 6 is to be implemented without change, it 
can be disseminated immediately to both the cotton 
inventory accounting department and the mill. 
The inventory accounting department employs the 
record of raw materials consumed to maintain 
updated inventory records. The mill employs the 
solution as a work order to be followed in loading 
the opener, or as a standard blend. 

BASIS. 

VARBLS NAME ACTIVITY LEVEL 
X07 .170 
XOS .320 
Xl0 .510 

Figure 6. Basis variables report - optimal solution 
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At this point, the model may be adjusted to deal 
with full-bale quantities as a special raw material 
restriction. A 100-bale mix of the optimal blend 
would present no problem, since it requires 17 bales 
of X7, 32 bales of X8, and 51 tiales of Xl O. But 
suppose that mix of only 40 b~es is required. Since 
17% of 40 equals 6.8 bales, and we do not wish touse 
fractions of a bale, we can round off X7 to 7 bales. 
X7 will then comprise 7/40, or 17.5%, of the final 
blend. We simply revise the matrix by constraining 
X7 to exactly 17. 5% of the final blend and re-solve 
the matrix. 

Of course, imposing bale quantity constraints can 
upset the balance of qualities which meet the 
specifications for the final blend. It may, 
consequently, become necessary to obtain several 
re-solutions, with constraint- changes suggested by 
the previous solution. However, this approach to' 
controlling full-bale allocations has proved highly 
effective in actual application. As linear 
programming becomes more widely used in the 
industry, it may, quite possibly, suggest radical 
changes in cotton storing practices. 

SLACKS REPORT· 

The slacks report (Figure 7) provides a list of all 
the right-hand-side (row) mnemonics and indicates 
for each linear inequality the difference (or "slack"), 
if any, between its upper or lower bound and the 
actual value computed in the optimal solution. For 
each equality, or inequality, solved at a bound, the 
slacks report provides a figure called the simplex 
multiplier, which indicates the amount by which 
the optimal cost per pound of the blend would change 
if the right-hand side of the constraint were changed 
by one unit (assuming that ·no significant changes are 
made in the other matrix elements). 

SLACKS NAME ACTIVITY LEVEL SIMPLEX MULT. 
COST .351 
FIN .006 
LEN .017 
STR .044 
CNT 1.S90 
GRA .000 
INVAS 

Figure 7. Slacks report 

For example, the FIN figures indicate that the 
mJximum fineness specification was met at its 
upper bound (there is no slack), and the simplex 
multiplier indicates that if a slightly higher 



Micronaire fineness specification were possible, 
the final cost per pound of the blend would decrease 
by 0.6¢. (The same indication will occur more 
graphically in the DO. D/J report.) The report 
further reveals that fineness is the limiting 
specification since four of the remaining constraints 
were exceeded - length (LEN) has a slack of 0.017; 
strength (STR), 0.044; yarn count (CNT), 1. 89; and 
X8 availability (INVA8), O. 020 - and grade (GRA) 
was met exactly, having neither a slack nor a 
simplex multiplier. The first line in the slacks 
report (COST) gives the cost per pound of the 
optimal blend. 

DO. D/J REPORT 

The DO. D/J report (Figure 8) consists of two parts. 
The first part (VBLS) lists all the column activities 
- raw materials in this case - which are solved 
at a bound. Most often that bound is zero, an 
indication that the material, at its specific price, 
is not used in the optimal blend. For eabh of these 
materials, the report indicates its curretit price 
and the amount this price must drop, as well as the 
actual price to which it must drop, before th~ 
material may be introduced into the basis. 

For example, cotton Xl, which costs 35. 3¢, 
would tie with cotton X9 for entry into the optimal 
blend if its price dropped by 0.2¢ (REDUCED 
COST) to 35.1¢ per pound. Cotton XlI at 34. 8¢ 
has a reduced cost of zero, indicating that it ties 
with one of the cottons listed in the basis variables 
report and might be used, if inventory considerations 
dictated, in this blend. Notice that raw cottons Xl 
through Xl2 all have rather low reduced costs 

DO.D/J 
VBLS NAME CURRENT COST REDUCED COST BASIS 

XOl .353 .002 
X02 .355 .003 
X03 .351 .001 
X04 .355 .004 
X05 .354 .004 
x06 .353 .003 
X09 .353 .002 
Xll .348 .000 
X12 .351 .003 
X13 .372 .020 
X14 .385 .032 
X15 .383 .031 
X16 .384 .031 
X17 .367 .016 
X18 .382 .030 
X19 .385 .035 
X20 .384 .033 

ROWS NAME I NCR B VALUE DECR B VALUE 
FIN .006 
LEN 
STR 
CNT 
GRA 

Figure 8. 00.01] report 

(the highest being O. 4¢), while Xl3 through X20 
remain unlikely components for this blend, the 
reduced costs ranging as high as 3. 3¢. This cost 
data provides valuable information to the purchasing 
department, either for immediate use or as a 
guide for future buying when production requirements 
and cotton prices can be anticipated. 

Though we have no illustration here, sometimes 
an upper bound restrains the use of a blend component. 
In such a case the material would be listed, and the 
report would indicate the highest price at which the 
material would remain in the basis at its bound. 

The second part of the DO. D/J report (ROWS, at 
the bottom of Figure 8) makes graphic some of the 
information from the slacks report. This report 
lists all the row mnemonics. For each equation 
(and each inequality solved at a bound) the report 
indicates the "cost" of the quality or inventory 
limitation by giving the reduction in the cost per 
pound of blend which would be realized (in the 
neighborhood of the optimal solution) if the right-hand 
side were changed by one unit. (This figure is the 
simplex multiplier from the slacks report. ) 

For example, the first line under ROWS in 
Figure 8 indicates that if the fineness (FIN) 
maximum specification could be increased, the cost 
of the final blend would drop at the rate of O. 6¢ per 
pound for each unit of increase in the neighborhood 
of the optimal solution. The report indicates that 
no other specification affects the cost of this optimal 
blend. If a constraint solved at a lower bound were 
limiting the optimal cost, a positive value would be 
listed under DECR B VALUE for that row. (The 
listing of zero for GRA indicates that its relaxation 
would have no effect on the current optimal cost.) 

VALUE 
.351 
.352 
.350 
.351 
.350 
.350 
.352 
.348 
.348 
.353 
.353 
.352 
.353 
.351 
.352 
.350 
.351 
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COST RANGE REPORT 

The cost range (COST. R) report shown in Figure 9 
indicates for each activity which is included in the 
basis (optimal blend) the follOwing data: current 
cQst (that is, price per pound), highest cost before 
its quantity in the optimal solution changes, what 
other activity would enter the solution at that 
highest cost, lowest cost before its quantity in the 
optimal solution changes, what other activity would 
enter the solution at that lowest cost. 

The quantity of each raw cotton in the optimal 
blend (given by the basis variables report) will 
remain unchanged within the cost range indicated 
by the cost range report. For example, 17% of 
cotton X7 would be required in an optimal blend 
even if it cost 0.1~ per pound more. However, if 
its price rose above 34. 9~, some of it would be 
replaced by cotton X11. If its price dropped below 
32. 7~, probably much more of it would be used, 
and cotton Xl6 would enter the optimal blend to 
provide necessary quality. Similarly, cotton X8 
would be to some degree replaced by cotton Xl1 if 
its price rose above 35.1~. Below 34. 8~, however, 
a slack would appear in the fineness constraint, 
indicating that the optimal solution would give away 
fineness quality. Finally, cotton X3 would enter the 
optimal blend if XlO cost more than 35. 4~, and cotton 
Xl1 would enter the solution if XlO cost less than 
35.1~. 

The cost range report provides a gqod measure 
of sensitivity to price changes since it indicates at 
what prices the optimal solution will change, and 
what raw cottons may be used most appropriately 
to substitute for unavailable or overpriced stock. 

PRODUCT ALLOCATION MODEL FORMULATION 

Another important application of linear programming 
techniques enables mill management to determine 
the optimum product mix (that is, quantity and 
variety of different textile styles to be produced) 
in order to maximize profit over a specific 
production period. This product mix must be 
formulated within the inherent constraints set by 
maximum available production capacity at each step 
in the fabric manufacturing process (carding, 
drawing, roving, etc.). 

To demonstrate the formulation of this problem 
in linear programming terms we assume a 
hypothetical (though reasonably complete) mill and 
derive the LP model matrix for the production of 
six styles over one production period. The pro
duction rates for the styles differ. For example, 
the time required to draw the sliver used in 
spinning yarn for weaving one yard of style 1 is 
not the same as for one yard of style 2. At every 
step in the process, different production rates 
exist for each of the styles: 

The input data for this matrix consist principally 
of production rates on each of the machines used in 
the manufacturing process for each of the styles. 
In addition, we must know the total production time 
available for each machine, as well as the anticipated 
profit per yard for each of the styles and the minimum 
or maximum demand for each of the styles. The 
mill machine production time capacity for the subject 
period is detailed in Figure 10. 

Picker capacity 
Carding capacity 50 
Drawing capacity 24 
Roving capacity 500 
Filling-spindle capacity 10000 
Warp-spindle capacity 5000 
Spooler capacity 
Warper capacity 
Slasher capacity 1 
Loom capacity 500 

Figure 10. Mill machine availability in machine-weeks 

In the schematic model matrix (Figure 11) each 
of the six possible styles being considered for 
production is a problem activity, and each machine 
total capacity (available production time) is a 
problem constraint. Further, limitations on the 
amount of specific styles are introduced by bounding 
the corresponding variables. In other words, the 
constraint rows limit machine use to plant capacity. 

COST.R NAME CURRENT COST HIGHEST COST HI-VAR LO-VAR LOWEST COST 

X07 
x08 
Xl0 

Figure 9. Cost range report 
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.348 

.350 

.352 

.349 X 11 

.351 Xll 

.354 X03 

X16 
FIN 
X 11 

.327 

.348 

.351 



Style 1 Style 2 Style 3 

Objective Function Profit 1 Profit 2 Profit 3 

Picker Pick. Time 1 Pick. Time 2 Pick. Time 3 

Carding Card. Time 1 Card. Time 2 Card. Time 3 

Drawing Draw. Time 1 Draw. Time 2 Draw. Time 3 

Roving Rov. Time 1 Rov. Time 2 Rov. Time 3 

Filling Spindles Fill. Spin. Fill. Spin. Fill. Spin. 
Time 1 Time 2 Time 3 

Warp Spindles Warp Spin. Warp Spin. Warp Spin. 
Time 1 Time 2 Time 3 

Spooler Sp. Time 1 Sp. Time 2 Sp. Time 3 

Warper Warp. Time 1 Warp. Time 2 Warp. Time 3 

Slasher Slash. Time 1 Slash. Time 2 Slash. Time 3 

Loom Loom Time 1 Loom Time 2 Loom Time 3 

Botmded 
VI VI AI 

Variables < /Xl U 

Figure 11. Schematic matrix for product allocation model 

The solution will indicate the product mix which 
produces the maximum profit. If market conditions 
require certain levels of production, the quantity 
'of each style produced can be bounded. In the 
schematic, style 1 must be equal to or greater than 
A yds., style 2 equal to or greater than B yds. , 
styles 3 and 4 equal to or less than C and D yds. , 
respectively, and style 5 equal to or greater than 
E yds. and equal to or less than F yds. Style 6 
remains unbounded. 

The coefficients in the objective function (profit) 
row are the anticipated profits per yard for each of 
the styles. These figures are derived from such 
factors as production costs, distribution costs 
(where applicable), and selling price. The row 
expresses a total profit figure in the form: 

(profit per yard style 1) x (yards style 1 
produced) + (profit per yard style 2) x (yards 
style 2 produced) +. . . . . 

which the LP system will maximize within the 
constraints imposed by the matrix. 

Each coefficient in the body of the matrix is 
associated with a style and a machine and 
represents a production rate - the time in weeks 
required to process the cotton or yarn for one 
yard of a specific textile style. Thus, in the 

Style 4 Style 5 Style 6 RHS 

Profit 4 Profit 5 Profit 6 Profit (Maximum) 

Pick. Time 4 Pick. Time 5 Pick. Time 6 !:: 1 (Picker Time 
Capacity) 

Card. Time 4 Card. Time 5 Card. Time 6 !:: 50 (Ca.rdJng 
Capacity) 

Draw. Time 4 Draw. Time 5 Draw. Time 6 !:: 24 

Rov. Time 4 Rov. Time 5 Rov. Time 6 !::SOO 

Fill. Spin. Fill Spin. Fill. Spin. !::10000 
Time 4 Time 5 Time 6 

Warp Spin. Warp Spin. Warp Spin. ~ 5000 
Time 4 Time 5 Time 6 

Sp. Time 4 Sp. Time 5 Sp. Time 6 ~ 1 

Warp. Time 4 Warp. Time 5 Warp. Time 6 ~ 1 

Slash. Time 4 Slash. Time 5 Slash. Time 6 !:: 1 

Loom Time 4 Loom Time 5 Loom Time 6 ~SOO 

AI VI AI 

0 "-l"-

second row of the schematic matrix, "PICK. TIME 1" 
is the picker time in weeks required to process the 
cotton necessary to produce one yard of style 1. 
The right-hand side is the total picker capacity in 
machine-weeks available over the specified 
production period. Hence: 

(pick. time 1) x (yds. style 1) + (pick. time 2) x 
(yds. style 2) + ... + (pick. time 6) x 
(yds. style 6)!:: 1 machine-week. 

The remaining constraints are formulated similarly. 
The solution output for such a model will indicate 

not only the most profitable product mix, but the 
efficiency of the manufacturing chain as well. For 
instance, the slacks report will reveal how much of 
each machine's total capacity remains unused, and 
will also indicate the bottlenecks in the process and 
provide useful information on the "cost" of insufficient 
machine capacity which obviously lim~ts production. 
Such a model is an indispensable aid in planning 
for plant expansion, since, for any given product 
mix, it clearly identifies which machine capacities 
should be enlarged. 

The DO. D/J report will indicate for each style 
which does not enter an optimal product mix the 
additional profit per yard required before production 
of that style becomes desirable. The cost range 
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report will reveal, for each style in the optimal 
mix, the lowest and highest style profit figures 
which would leave that solution unchanged. Further, 
this report will reveal which styles would enter the 
solution if the profit margins on the styles in the 
<?ptimal mix were to fall outside the limits 
established by the cost range report. 

A product allocation model can be formulated 
which assumes that a week's production of any style 
in any quantity can be sold. Though such an 
unrestricted production model may be applicable for 
several weeks at a time under certain conditions, 
sales orders on hand and market forecasts ordinarily 
will establish certain maximum and minimum levels 
of production for each style. Such restrictions can 
easily be introduced into the model by bounding the 
variables (quantities of style produced) to meet 
requirements and forecasts, as indicated in Figure 11. 
LP application in this area allows management to 
compare rapidly an unrestricted optimal product mix 
with the product mix dictated by market conditions. 
Such a comparison may well influence future 
marketing decisions - it may suggest that certain 
styles should be curtailed and new markets 
developed for others, if the two types of solutions 
differ dramatically. 

SUMMARY 

The various output reports furnished by the LP 
system not only provide a detailed listing of the 
specific optimal solution, but also alert the producer 
to a variety of relationships, anyone of which may 
profoundly influence the total cost or profit. The 
computer enables the producer to re-solve the 
problem rapidly with a number of variations 
suggested by the output reports. He can, in effect, 
use the LP model as an aid in the solution of a 
series of different problems. What if the price of 
each raw cotton varies? What if certain inventory 
purchases are possible at specific prices? What 
if quality controls vary? These factors, together 
with changes in product market demand, determine 
the ideal frequency of solution for a specific mill. 
The LP solutions provide data which enables the 
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producer to make the most judicious policy decisions 
in matters of cotton blending, quality control, 
inventory control, product mix, purchasing, and 
product research. LP techniques make possible 
continuous management study - resulting in 
decreased costs, increased efficiency, and maximum 
profits. 
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