File No. 7090-27
Form C28-6389-1

Systems Reference Library

IBM 7090/7094 IBSYS Operating System
Version 13

IBJOB Processor

This publication describes the 1M 7090/7094 18jOB Processor,
a subsystem of the 7090/7094 1Bsys Operating System, Version 13.
The 1BjoB Processor, 7090-PR-929, translates programming lan-
guages. It consists of the following components:

Processor Monitor (18joB)—7090-SV-801

FORTRAN 1v Compiler (1BrrC)—7090-FO-805

cosoL Compiler (18cBC)--7090-CB-806

Macro Assembly Program (1smap)—7090-SP-804

Loader (18LDR)—7090-SV-802

Subroutine Library (18L1B)—7090-LM-803

Debugging Processor (1BpBL)—7090-PR-807

This publication is divided into three parts. The first part de-
scribes the procedures for the applications programmer to follow
in using the system. The second part describes the operations of
each component for use by the systems programmer. The third
part contains the text of all the error messages for each component
with the appropriate explanations.

Preface

This publication provides procedural information for
using the 1BM 7090/7094 18j0B Processor in the follow-
ing capacities: compiling, assembling, loading, execu-
tion, and debugging. The primary objective of this
publication is to help the reader to use these capa-
bilities efficiently. For this reason, the organization,
layout, and reference aids (diagrams, flowcharts, ap-
pendixes, and cross-references) are designed to follow
a job-processing sequence.

This material is divided into three parts. The first

part contains instructions for the FORTRAN 1v, COBOL, or -

MAP programmer. It gives the basic information re-
quired to run a job. Once the programmer has be-
come familiar with this material, he can use the control
card checklists in the appendixes for quick reference.

The second part contains a more detailed explana-
tion of the operations and functions of the various
components for the programmer who is responsible for
modification and maintenance of the system.

Tha third ok
AT G LJa.lL

sages generated by the 1joB Processor, with explana-
tions for all messages that are not self-explanatory.

It is not necessary that each reader cover all of the
material in this manual. For example, the FORTRAN 1v
programmer need only be concerned in the first part
with the Processor Monitor, the ForTraN 1v Compiler,
and the Subroutine Library sections. He can then find

Mmor Revision (July 1965)

This edition, Form C28-6389-1, is a reprint of Form C28-
6389-0, incorporating changes released in the following Tech-
nical Newsletters:

FORM NOS. PAGES DATED

N28-0140-0 23, 33, 38, 39, 101, April 7, 1965
104, 126

N28-0154-0 3,4, 45, 46, 47, 48, May 18, 1965
49, 107, 158, 159, 161,
176-203

N28-0138-0 4, 14,17, 18, 19, June 11, 1965

20, 22, 25, 26, 30,

35, 58, 62, 96, 106,

126-133, 141, 149, 150,

164, 165, 167, 173, 174,

201-206, 208
Form C28-6389-0 and the Technical Newsletters are not ob-
soleted.

additional information in the respective sections of the
second part of the publication.

The reader should be familiar with the publication
that describes the particular language he is using.
These publications are:

IBM 7090/7094 IBSYS Operating System, Version 13:

FORTRAN 1V Language, Form C28-6390.

IBM 7090/7094 IBSYS Operating System, Version 13:
COBOL Language, Form C28-6391.

IBM 7090/7094 IBSYS Operating System, Version 13:
Macro Assembly Program (MAP) Language, Form
C28-6392.

The programmer who wants to use the 18j0B debug-
ging facilities should read the publication IBM 7090/
7094 IBSYS Operating System, Version 13: IBJOB
Processor Debugging Package, Form C28-6393.

The yap programmer should be familiar with the
contents of one of the following publications: IBM
7090 Principles of Operation, Form A22-6528; or IBM
7094 Principles of Operation, Form A-22-8703. The
MaP programmer who uses the Input/Output Control
System should also read the publication IBM 7090/
7094 IBSYS Operating System, Verson 13: Input/Out-
put Control System, Form C28-6345.

All readers should be familiar with the contents of
the publication IBM 7090/7094 IBSYS Operating Sys-
tem, Version 13: System Monitor (IBSYS), Form
C28-6248.

The machine configuration required for the opera-
tion of the 1BjoB Processor is described in Appendix G.

Copies of this and other IBM publications can be obtained at IBM Branch Offices.

Address comments concerning the contents of this publication to:

IBM Corporation, Programming Systems Publications, Dept. D91, 1271 Avenue of the Americas, New York, N. Y. 10020

©International Business Machines Corporation, 1$65

Part 1: Programming Fundamentals

Introduction
Control Card Format
Core Storage Allocation

IBJOB Processor Dictionaries

.........

Processor Monitor
System Monitor Control Cards
$JOB Card
SEXECUTE Card
IBJOB Processor Control Card
$IBJOB Card
Component Control Cards
End-of-File Card
Optional Control Cards
$IBSYS Card
$IDCard
$STOP Card
$PAUSE Card
$* Card
$ENTRY Card
$DATA Card
SENDREEL Card
$POST Card
$IBREL Card .
$TITLE Card
Input/Output Control Cards
Input/Output Editor
$IEDIT Card
$OEDIT Card
Altering an Input Deck
Sample Deck Format Using an Alternate Input Unit. . . .

FORTRAN IV Compiler (IBFTIC)
SIBFTC Card
Sample FORTRAN IV Deck Format

COBOL Compiler (IBCBC)
$IBCBC Card
$CBEND Card
Debugging for COBOL Programs

Sample COBOL Deck Format

Macro Assembly Program (IBMAP)
SIBMAP Card
Sample MAP Deck Format

Debugging Package
Compile-Time Debugging
$IBDBC Card
Load-Time Debugging
$IBDBL Card
*DEND Card
Postprocessor Routines
Sample Load-Time Debugging Deck Format

Relocatable Binary Decks.
Column Binary Format

Lloader (IBLDR)
Object Program Files
Loader Name Conventions

Component Control Card for the Loader
$IBLDR Card .

Contents

Loader Control Cards
$FILE Card
SLABEL Card
SPOOL Card
$GROUP Card
$USE Card
SOMIT Card
$NAME Card
$SIZE Card
SETC Card

Input/Output Buffer Allocation
General Buffer Assignment
Buffer Assignment with $POOL and $GROUP Cards. . .

Unit Assignment

Unit Assignment Notation

Unit Assignment Specifications

Intersystem Unit Assignment

Order of Assignment

Overlay Feature of the Loader

The Overlay Structure

Overlay Control Cards
$ORIGIN Card
S$INCLUDE Card

CALL Transfer Vector

Subroutine Library (IBLIB)
FORTRAN Mathematics Library
Calling Sequences to FORTRAN IV Mathematics
Subroutines
Error Handling for FORTRAN IV Mathematics
Subroutines
Floating Point Trap Subroutines
7090 Double-Precision Simulation
Evaluating Accuracy
Subroutine Reference Tables
FORTRAN Utility Library
Machine Indicator Test Subroutines
Dump Subroutine
FORTRAN Files
Constant Units
Variable Units

Programming in Sections
Examples of Programming in Sections
Grouping FORTRAN Source Decks
COBOL-FORTRAN Program Adjustments

Part 2: System Programmer’s Information

Processor Monitor Information.
Job Control Operations
ACTION Routine for Calling IBJOB Components
Process Control Operations
Initialization of the Input/Output Editor
Control Card Search
Process Control Option Scan
Process Control Error Procedure Routine
Input/Output Editor Operations
IOEDIT Routine
Input Editor
Output Editor
Punch Editor
IBJOB Processor Maintenance Cards
$DUMP Card
$PATCH Card

FORTRAN IV Compiler Information 62
Structure of the FORTRAN IV Compiler 62
Phase A 63
Phase B 65
Assembly Processing 65

Internal Formula Number (IFN) Generation...... ... 65

Internal Instruction Formats (IIF’s) for Main File. ... 66
Internal Instruction Formats (IIF’s) for Dotag File.... 66
Internal Instruction Formats (IIF’s) from Relcon

Analysis Routine 66
Table Handling 67
Diagnostic Handling 67
Preliminary Error Handling 67
Error Message Processor Action 68
COBOL Compiler Information. 69
SEGMENT 1 69
The COBOL Supervisor 69
General Purpose Subroutines 69
File and Table Control Blocks 70
Transfer Table 70
Communication Words 70
SEGMENT II 70
ENVIRONMENT I 70
DATATL ... 71
DATAIL 71
PROCEDURE I 71
PROCEDURE II 71
ENVIRONMENT II 71
DATA IIT 71
PROCEDURE III 72
Subscript Calculations 73
Treatment of Incoming Procedure-Names at Point of
Definition 73
Computation of Variable Lengths 73
Instruction Generators 73
Cleanup 73
Assembler Information 74
Assembler Design 74
Phase 1 74
Initialization e 74
Pass 1 75
Phase 2 76
Interlude 76
Pass 2 77
Load-Time Debugging Processor Information 79
Load-Time Debugging Operations 79
Debugging Compiler Routines 80
Debugging Actions by the Assembler 80
Debugging Actions by the FORTRAN Compiler 80
Debugging Actions by the Loader 80
Execution Time Routines 80

Postprocessing: The Editor and Translator Routines. ... 81

Loader Information 82
Absolute Address Assignment 82
Program Loading 83
Library Subroutines 83
Tnput/Output Environment 83
Overlay 83
Load-Time Debugging 83
Communications from the Loader 83

Configurations of the Loader 83

Loader Operations 84
Initialization 84
Section 1 84
Section 2 . ‘ 86
Section 3 88
Section 4 89
Section 5 91
Control of Program Execution 91
External Storage for Text 92

Loader Input 93

Load File Binary Cards 94
Even Storage Feature 98
Subroutine Library Information 100
System Subroutines 100
FORTRAN 1V Input/Output Library 101
Standard FORTRAN 1V Input/Output Package 102
Alternate FORTRAN IV Input/Output Package 104
Correspondence Between FORTRAN Symbolic Units and
System Files 105
FORTRAN IV Utility Libraryo........ 107
COBOL Subroutinesccc.o... 108
MOVPAK Subroutines 108
COBOL Input/Output Subroutines 116
Additional COBOL Subroutines 118
Librarion 122
Subroutine Library Maintenance 122
Librarian Control Cards 122
$EDIT Card 122
$REPLACE Card 122
$ASSIGN Card cciiiiiiiii.. 123
$INSERT Card 123
$AFTER Card 123
$DELETE Card 123
Restrictions Using Disk 123
Restrictions Using Drum 123
Part 3: IBJOB Processor Error Messages 124
IBJOB Monitor Error Messages 125
FORTRAN IV Compiler Error Messages 127
COBOL Compiler Error Messages 134
Assembler Error Messages. 145

Load-Time Debugging Processor Error Messages .. 149

Loader Error Messages 151
Subroutine Library Error Messages 158
Appendixes. 163
Appendix A: Control Card Format Index 163
Appendix B: Control Card Check List 169
Appendix C: IBJOB Communication Region... 170
Appendix D: Sample Control Card Deck 172
Appendix E: Procedure for Selecting the 7094

Optional Conversion Routine 173
Appendix F: Core Storage Load Map 174

Appendix G: Machine Configuration Required for
IBJOB Processor Operation 175

Appendix H: FORTRAN IV Mathematics
Subroutines— Algorithms, Accuracy, and Speeds .. 176

Single-Precision Subroutines 177
Double-Precision Subroutines 190
Complex Subroutines 195
Miscellaneous Subroutines 198
Appendix I: Storage Requirements for FORTRAN IV
Mathematics Library Subroutines 200

Appendix J: Procedure for Using the 7090
AsteriskDeck 201

Glossary. 202

PART 1:

The 18j0B Processor is one of several system programs
operating under the 1BM 7090/7094 18sys Operating
System. These programs operate under the control of
the first-level monitor, the System Monitor (1Bsys).

The 18jOB Processor is a versatile monitored system
that can translate several source language program
decks within a single job. It can compile, assemble,
load, and execute program decks written in the
FORTRAN 1Iv, COBOL, and/or MaP languages. It can also
load and execute previously assembled object pro-
gram decks. In addition, program decks written in dif-
ferent programming languages can be combined with
previously assembled decks to form a single executable
object program. Finally, a debugging program aids in
program checkout.

A program deck is a series of card images headed by
a control card that calls a component to translate the
deck, and ended by a control card that transfers control
back to the 1BjoB Monitor. Any number of program
decks can be run at one time. Some may operate like
closed subroutines or subprograms. All these decks
grouped together can form a Processor application,
which is the basic unit of work that can be performed
by the 1BjoB Processor. In processing an application one
or more operations may be performed, such as com-
pilations, assemblies, or the loading of relocatable pro-
grams that were previously assembled.

Figure 1 illustrates the operation of the 1BjoB Proc-
essor on source language programs. The following
seven components may be used in these operations:

1. The Processor Monitor (1Bjos), which is the su-
pervisory component of the 18j08 Processor. The Mon-
itor provides communication with the 1Bsys Monitor,
positious the system tape, brings the various compo-
nents into storage according to processing require-
ments, and regulates the input/output phasing of the
components,

The Processor Monitor reads control cards that spec-

ify the actions to be performed in a Processor applica-
tion,

PROGRAMMING FUNDAMENTALS

Introduction

2. The rorTtrAN 1v Compiler (1BFrC), which com-
piles and assembles programs written in the FORTRAN 1v
language. It produces input to the Loader.

3. The coBoL Compiler (mBcBc), which compiles
programs written in the cosoL language and produces
input to the Macro Assembly Program.

4. The Macro Assembly Program (1Bmar), which
processes MAP language source programs and MAP pro-
grams produced by the cosor Compiler, and produces
input to the Loader.

5. The Debugging Package, which allows the pro-
grammer to obtain dumps of specified areas of core
storage and machine registers during program execu-
tion for the purpose of debugging a program with a
minimum of programming effort. Two separate facil-
ities are provided: compile-time debugging for cosor
programs (18pBCc) and load-time debugging (1BDBL)
for FORTRAN 1v and MaP language programs.

6. The Loader (1BLDR), which processes and com-
bines several relocatable binary programs to form one
absolute binary object program. The Loader loads
separately assembled program segments combined
with any required subroutines from the Subroutine
Library, allocates core storage for common data and
input/output buffers, generates necessary initialization
sequences for program use of input/output operations,
and provides a listing of core storage allocation.

7. The Subroutine Library (1sL18), which contains a
group of relocatable subroutines available for system
and programming use. Subroutines may be edited
through the Librarian.

Control Card Format
The following control card notation is used in the
control card formats throughout this publication:

1. Upper-case letters must be punched exactly as
shown.

2. Lower-case letters indicate that a substitution
must be made.

3. Braces { } indicate that a choice of the contents
is mandatory.

Introduction 5

Source Language Input Result
LOAD-TIME LOAD-TIME
DEBUGGING DEBUGGING
REQUESTS COMPILER
FORTRAN com- Subroutine
piler produces Library
FORTRAN «| relocatable
PROGRAM binary decks
COBOL compiler Macro Assembly The Loader combines
COBOL o | produces Macro .| Program assembles A relocatable binary Single
PROGRAM Assembly Program input into P decks, loader control Executable
input relocatable cards, and library Program
binary decks subroutines
COMPILE-TIME /
DEBUGGING
REQUESTS
(COBOL)

MAP LANGUAGE
PROGRAM

LOADER
CONTROL
CARDS

Relocatable
decks from
previous
assemblies

Figure 1. Operation of the 18BjoB Processor on Source Language Programs

4. Brackets [] contain an option that may be omitted
or included by the programmer.

5. Options that are underlined are the standard op-
tions. When no option is specified on a control card,
the Processor uses the standard option.

6. Commas are used to separate options. Embedded
blanks should not be used.

7. Except where noted specifically, the options on
a control card may be punched in any order.

Core Storage Allocation

The core storage arrangement of the 1BjoB Processor
components is illustrated in Figure 2. The location of
the object program during execution is also shown.

IBJOB Processor Dictionaries

The Loader is able to combine decks coded in different
source languages by using dictionaries common to all
the decks. Control dictionaries, assembled by the map
Assembler and the rortrRAN 1v Compiler, contain
deckname entries and control section name entries.
File diclivnaries contain file names.

Deck Names

A deck name identifies a deck produced by either the
FORTRAN 1v Compiler or the Assembler from one

6

source language. The programmer defines a deck name
by punching it on a component control card (see
“sisrrc Card,” “steee Card,” and “stBMaP Card”). A
deck name may be used to identify or qualify control
section names within a deck. The use of deck names
and the rules for forming deck names are described
under “Deck Name Rules.”

Control Section Names

A control section name refers to an area of coding or
data within a program deck. These areas, called control
sections, can be referred to by other decks.

The cosoL and ForTrAN iv Compilers make up con-
trol section names for the programmer during process-
ing. The Map programmer designates control section
names using the cONTRL and ENTRY pseudo-operations.
The rules for creating MAP control section names are
listed under “Control Section Rules.” Control sections
may be renamed, replaced, or deleted at load time
(see “Loader Control Cards”).

File Names

File names identify files nsed by a program. The map
programmer creates file names using FILE pseudo-
operations or the sFiLE card. The FORTRAN programmer
uses the FiLE routines. The coBoL user describes a file
by making a file description entry in the Data Division.

Machine~Criented Locations 0
1BSYS [_the Communication Rogion, or Nuslews GBnv) _ _ _ _ _ _ _ _ _ _ _ _ __ __|
T l The Input/Output Executor (IOEX)
1BJOB
Supervisor Object
(1BSUP) | _ _lOCS Used by the System | Program
E tH
IBJOB Monitor Utility Routines xecution
| _ Job Control and Action Routine _ _ _ _ _ _ _ _ _ _ _ _ _ __ |
————— Input/Qutput Editor
Editor ~ [T T TToOoOT T T T T T T T T T T T
(IBEDT) Process Control and Input/Output Buffers
I1BJOB and IOCS Communications Aress T T e o e —
D e R I e M Library
Overflow Load=-Time | FORTRAN IV | COBOL Macro Loader Subroutines
from Utility | Debugging | Compiler Compifer | Assembly | (IBLDR)
Routines if Compiler (IBFTC) (1BCBC) Program
1301 or 7340 | (1BDBL) (IBMAP)
coding exists 3 loader instructions re-
;nOICOSEX and main at end of loading
|
Space Available for Installation Accounting Routines, etc.
N — N — N e m— N —— N, —— N — 77777(8)
s . Durin . . . Duri
During During _g . During During During 119
IBSYS BJOB Pod-Time poprRaN cOBOL maAP Object
Control Control eOU8aINg Compilation Compilation Assembly rogram
Compilation Loading

Figure 2. Core Storage Allocation of the Operating System Components

The rules for making up file names are listed in the
section “File Name Rules.”

Additional Index Register Mode
The 1BjoB Processor always operates in the additional
index register mode. It enters this mode upon receiving
control from the 1Bsys System Monitor, and it leaves
the additional index register mode before giving con-
trol back to 1Bsys. Compilers operating under control
of the 1BjoB Processor use the additional index register
mode, and 1BjoB Processor object programs are
normally executed in this mode.

A compiled program may call a mar language pro-
gram that uses the multiple-tag mode. If this occurs,

the MaP language must restore the additional index
register mode, as well as all index registers used, before
it returns control to the calling program.

When a »Map language program that uses the
multiple-tag mode calls a compiled program, the com-
piled program automatically enters the additional
index register mode. Thus, the instruction in the map
language program immediately following the call to
the compiled program should be to re-enter the
multiple-tag mode.

Floating-Point Trap Mode

All programs compiled by the 18joB Processor operate
in floating-point trap mode. The floating-point trap
routine is loaded with every object program.

Introduction 7

Processor Monitor

The Processor Monitor is the major component of the
1BjoB Processor. Its primary function is to control com-
munication between the System Monitor (1Bsys) and
the components of the 18joB Processor. The Processor
Monitor is called into core storage when the 1Bsys
Monitor reads a sexecute card on which 1BJOB is
specified.

System Monitor Control Cards

The following 1Bsys System Monitor control cards may
be required for an 1BjoB Processor application.

$JOB Card

The Processor Monitor transfers control to the resident
portion of the System Monitor, called the Nucleus
(m~uc), when the Processor Monitor reads a sjos card.
If system units have not been reassigned or made un-
available during the last job and if a between-jobs inter-
rupt condition does not exist, the Processor Monitor
regains control and transfers control to the installation
accounting routine, If there is no installation accounting
routine, the sjoB card is listed on both the system
printer and the system output unit, where it causes a
page to be ejected before listing of the card, and the
Processor Monitor retains control.

If units have been reassigned or made unavailable
during the last job and/or if a between-jobs interrupt
condition exits, the System Monitor retains control
until a sexecuTk card is read.

The format of the sjoB card is:

1 16
$JOB

Columns 16 through 72 are normally used to identify
a job and may contain any combination of alphameric
characters and blanks. The information is printed
in the program listing as punched, but it has no effect
on the program except as a match when a SRESTART
card is used. (See publication IBM 7090/7094 IBSYS
Operating System: System Monitor (IBSYS), Form
(C28-6248.) A deck name in columns 8-13 is printed in
the listing, but has no effect on the program.

any text

$EXECUTE Card

The sexecuTE card specifies the 1Bsys subsystem to be
used in processing a program. It must precede a Proc-
essor application within a job if one of the following
conditions exists:

1. The Processor application is the first unit of work
to be performed within the job.

8

2. The previous Processor application resulted in
execution of an object program.

3. Another subsystem was in control.

The Processor Monitor checks the subsystem name.
If the name is 18jOB, no action is taken. If the name is
anything other than 1BjoB, this information is relayed
to the 1Bsys Monitor. The Processor Monitor then
transfers control to the 1Bsys Monitor.

The format of the sexecuTE card is:

1 16
$SEXECUTE

The subsystem name consists of six or fewer Bcp

characters beginning in column 16.

subsystem name

IBJOB Processor Control Card

The following control card is required for an 1BjoB
Processor application.

$IBJOB Card
The siBjos card must be the first control card read by
the Processor Monitor for a given application. The
options specified in the siBjoB control card determine
the manner in which an application is to be processed.
The format of the sisjos card is:
1 16
$IBJOB
The options, which start in column 16, are described
in the following text.
Execution Option

%60}]

co—The object program is executed after it is loaded.

~Noco—The object program is not executed, even if it
is loaded. If this option is specified, the object program
is loaded only when LocIC, pLOGIC, Or MAP is specified
in the siBjoB card.

If neither co nor Noco is specified, the object pro-
gram is to be executed (co).

Logic Options

NOLOGIC
LOGIC ,'
DLOGIC

NoLOGIC—A cross-reference table is not wanted.

rocic—A cross-reference table of the program sec-
tions and of the system subroutines required for exe-
cution is generated. The origin and length of each
program section and subroutine, and the buffer as-
signments, are also given. When this option is specified
for a Subroutine Library editing execution, a listing

[, options]

of the control section dependencies in the generated
library is produced.

pLoGIC—A cross-reference table of the program sec-
tions and of the origin and length of each program
section is generated. The system subroutines and buffer
assignments are not given if this option is chosen.

If neither NoLoGIC, LOGIC, nor DLOGIC is specified, a
cross-reference table is not generated (NOLOGIC).

MAP Options
[,% NOMAP %]

MAP

NOMAP—A core storage map is not wanted. This map
is also called “memory map” and “load map.”

Map—A core storage map showing the origin and the
amount of core storage used by the mBsys Operating
System, the object program, and the input/output buf-
fers is generated. The file list and buffer pool organiza-
tion are also given. When this option is specified for a
Librarian execution, a listing of all subroutines in the
generated library is produced. A sample core storage
map is shown in Appendix F.

If neither NoMAP nor MAP is specified, a storage map
is not generated (NOMAP).

File List Options
[% NOFILES }]

’ | FILES

NoriLEs—A listing of the input/output unit assign-
ments and mounting instructions to the operator are
printed on-line.

FILES—A listing of the input/output unit assignments
and mounting instructions to the operator are printed
on-line and off-line.

If neither NOFILEs nor FILEs is specified, the list is
printed only on-line (NOFILES).

Input Deck Options
E% SOURCE z :I

NOSOURCE

sourcé—The application contains at least one com-
pilation or assembly.

~NosourcE—The application contains only relocatable
binary program decks. These decks are loaded from
the system input unit.

If neither SOURCE nor NOSOURCE is specified, it is as-
sumed that a compilation and/or assembly is required
in the application (SOURCE).

Input/Output Options

IOEX \

gMINIMUM ,

, BAsSIC {

LABELS

FIOCS }
ALTIO

10Ex—The object program uses the Input/Output
Executor for trap supervision. The only 10cs routine
available is for on-line printing.

MINiMUM—The Minimum level of 10cs is to be
loaded with the object program. Internal files cannot
be used. The following routines are available:

.OPEN

.CLOSE

.READ

WRITE

.BSR

READR] if IOCS has been assembled
RELES { for disk or drum storage.

Basic—The Basic level of 10cs is to be loaded with
the object program. In addition to the Minimum level

routines, Basic contains:
.BSF
.CKPT
JOIN
.REW
STASH
.WEF
raBeLs—The Labels level of 10cs is to be loaded with
the object program. In addition to the Basic level rou-
tines, the Labels level contains routines for label check-
ing and preparation.
Fiocs—A reduced form of Minimum 10cs is to be
loaded for use by a FORTRAN 1v program.
aLtio—The FORTRAN Alternate Input/Output pack-
age is to be loaded for use by a FORTRAN 1v program.

The FORTRAN Iv programmer can best use ALTIO
when core storage is limited, input/output activity is
low, or mixed mode files are required. Otherwise, F1ocs
should be used. If the ForRTRAN 1v programmer chooses
no option, the Minimum level of 1ocs is loaded auto-
matically.

MAP programmers can choose 10Cs options according
to the routines needed by their programs, although the
Loader provides an additional check for all levels ex-
cept aLtio. Normally, if an object program requires a
more comprehensive level of 1ocs than that specified
by the programmer, the Loader loads the required
level. But if artro is specified for a FORTRAN program,
and the program requires a higher level of 10cs, aLTI0
is still loaded, and an error message is generated.

Because the Loader automatically loads the correct
level of 10cs, the coBoL programmer does not need to
specify any level. The Loader also loads Random 10cs
with the object program, if the program contains a
reference to a Random 1ocs routine.

The levels of 10cs are described in the publication
IBM 7090/7094 IBSYS Operating System: Input/Out-
put Control System, Form C28-6345. The two FORTRAN
1v input/output packages, Fiocs and Alternate Input/
Output, are described in the section “Subroutine Li-
brary Information.”

Overlay Options

[FLOW
>} NOFLOW]

Processor Monitor 9

rLow—Execution of the object program is not per-
mitted if the rules concerning references between links
are violated. These rules are stated in the section “Over-
lay Feature of the Loader.”

~NorLow—Execution is allowed even though the rules
governing references between links are violated.

If neither FLow nor NoFLOW is specified, execution of
the object program is not permitted when the rules
governing references between links are violated
(FLOW).

Component Control Cards

Each component operating within the 18joB Processor
has a unique control card that causes the Processor
Monitor to load the component. These component
control cards are:

FORTRAN Compiler $IBFTC
COBOL Compiler SIBCBC
Macro Assembly Program SIBMAP
Debugging Compiler (Load-Time) SIBDBL
Debugging Processor (Compile-Time) S$IBDBC
Loader SIBLDR
Subroutine Library (Librarian) $EDIT

Each of these cards will be described in detail in
the respective component section of this publication.

End-of-File Card

The end-of-file card is an 1BM 1401 utility program con-
trol card. The end-of-file card must be the last card
in a Processor application. An end-of-file card is either
a card with a 7 and 8 punch in card column 1 or any
control card that causes a file mark to be written by a
peripheral program.

Optional Control Cards

The following cards are optional System Monitor con-
trol cards frequently used in an 1BjoB Processor
application:

$IBSYS Card
The Processor Monitor prints the message
RETURNING TO IBSYS
on-line and transfers control to the Bsys System Moni-
tor when the siBsys card is read.
The format of the siBsys card is:
1
$IBSYS

$ID Card

The sip card causes the Processor Monitor to transfer
control to the installation accounting routine if one
exists. ‘L'he distributed version of the Operating Sys-
tem does not contain an installation accounting routine.
Therefore, the only action that occurs is the listing of
the sip card.

10

The format of the sip card is:
1 7

$ID any text
Columns 7-72 may contain any combination of alpha-
meric characters and blanks.

$STOP Card

The ssTop card transfers control to the System Monitor.
In effect, the sstop card defines the end of a deck of
jobs.

The format of the sstop card is:

1

$STOP

$PAUSE Card

The spauUsE card causes the machine to halt temporarily
for operator action, '

The contents of the variable field of the spause card
are printed on-line. The spause card allows the pro-
grammer to interrupt processing for specific operator
action. When the spausk card is used, the variable field
should contain explicit instructions to the operator so
that immediate action can be taken. Processing is re-
sumed when the operator presses the sTarT key.

The format of the spausE card is:

1 16
SPAUSE

Columns 16-72 may contain any combination of

alphameric characters and blanks.

instructions to the operator

$* Card
The s* card is a comments card. The contents are
printed on-line and off-line. No further action occurs.

The format of the s* card is:
1 3

$* any text
Columns 3-72 may contain any combination of alpha-
meric characters and blanks.

$ENTRY Card

The sextry card specifies the location of the initial

transfer to the object program at execution time. The

variable field contains an external name to which the

initial transfer is to be made. If the sENTRY card is

omitted or if the variable field is blank, the initial

transfer is either to the standard entry point of the

first deck retained or to an entry point whose name is

“....7 (consists of six periods, the name compiled as

the standard entry point to FORTRAN 1v main programs).
The format of the sexTRY card is:

1 16

$ENTRY [%Exname E :'

Deckname

where the variable field contains either an external
name to which the initial transfer is to be made or a
deck name, in which case the initial transfer is to the
standard entry point of that deck.

A sENTRY card is not needed when one of the follow-
ing conditions exists:

1. The main program is a FORTRAN IV program.

2. The main program is processed first, and the de-
sired entry point is the standard entry point of that
program.

When a sEnTRY card is used, it must immediately
follow the source deck. The sExTRY card precedes
either an end-of-file card or a spara card.
$DATA Card
The spata card is an M 1401 utility program control
card. The spata card indicates the beginning of a data
file on the input unit. An end-of-file card performs the
same function and may be used in this capacity. The
data file must be followed by an end-of-file card.

The format of the spaTa card is:

1

$DATA

$ENDREEL Card

The sENDREEL card causes a reel switch involving the
system input unit (sysiNi) and the secondary input
unit (sysix2). The sexpReeL card must be preceded by
an end-of-file card. This card must not appear in the
middle of a data file.

The format of the sENDREEL card is:
1
SENDREEL
$POST Card
The spost card causes the Processor Monitor to call
the Debugging Postprocessor. This card is only used to
restart a Processor Monitor application (1) that has
failed during execution of the object program and (2)
in which debugging information has been written on
sysck2. The on-line message

DEBUG INFORMATION ON SYSCK2 (unit)

is printed indicating this condition.

The format of the spost card is:
1
SPOST

$IBREL Card
The siBreL card indicates that no more compilations
or assemblies follow on the system input unit (sysini).
The 1Bj0B Processor Monitor then reads the load file
for the Loader until a file mark is read, at which time
the input file on the system input unit is read until the
end of the Processor Monitor application. In effect,
the stBREL card supplements the sovrcr option on the
siBjoB card. A program may have compilations and
assemblies up to this point, but this card indicates
that no more will follow. The Loader gains control
when the siBreL card is recognized.

The format of the siBrReL card is:
1
S$IBREL

$TITLE Card

The stiTLE card causes the information contained in
columns 16-72 to be printed as the heading for the

next Compiler and/or Assembler output (pre-
empting the normal or installation accounting routine
heading).

The format of the stiTLE card is:
1 8 16
$TITLE [NODAT] any text

If the ~NopAT option is specified, a date is not printed.

=ty

TE Ll n bl 30 sk armonibaAd dha Aads fonc s Cerodasn
11 L11C UPL[UI‘ 1> 110U DPUUIIIUU, LT UdicT 11ulll o belclll

Date word (syspaT) is printed.

Input/Ovutput Control Cards

Input/Output Editor

The input/output editor, which is a part of the Proc-
essor Monitor, regulates the input/output operations
of the 1BjoB Processor. The input/output editor reads
from the system input unit (sysiNi) or from a unit
specified by the programmer. Both punched output
(written on the system peripheral punch unit [syspp])
and listing output (written on the system output unit
[sysou1]) are prepared by the input/output editor.
The programmer can specify a temporary alternate
unit for the system output unit.

The input/output editor also writes the output from
both compilers and reads the input for the Assembler

~and the Loader.

The 1BjOB Processor uses the following system units:

1. System input units (sysiN1 and sYsIN2)

2. System output units (sysoui and sysou2)

3. System peripheral punch units (syspp1 and
SYSPPZ)

4. System utility units (SYSUT1, sYsuT?, sysuts, and
SYSUT4)

Figure 3 illustrates the flow of control and the input/
output flow through the 18jOB Processor.

The control cards used-to specify input/output con-
figurations and formats are the stEpiT and soEpIT cards.
When these control cards are used, they must precede
the component control card of the deck that is affected
by them. The specifications on the control card remain
in effect either until the end of the application or until
another steprT or soEDIT card changes the specifications.
The standard specifications are used uniil one or both
of these control cards change them. The formats of
the steprT and soepit cards and explanations of their
options are given in the following text.

$IEDIT Card

The stepIT card sets input specifications for the re-
mainder of the application or until the next sieprt card
is read.

Processor Monitor 11

(4]

System

Monitor
(IBSYS)
-~ 7

SYSOU1/5YSOU2
' re
7
Processor
Monitor Y
(18JOB) N
~
Load
Input Fite
SYSINI/SYSIN2 SYSUT2
or SY Sxxx
Y
SYSINI/SYSIN2 SYSOU1/5YSOU2 SYSINT/SYSIN2 SYSOU1/SYSOU2
or SY Sxxx or SYSxxx or SYSxxx or SY Sxxx
Load
File Input
. Y . N Y . AN \ , N y ;
SYSUT2 \\ #'SYs0U1 /5YS0U2 W rormaniy 7 SYSINI/sYSINZ N qay 77 SYSOU1 /5YSOU2 W Macro 4
Loader or SYSxxx A or SYSxxx N or SYSxxx Assembly
(IBLDR) Compiler Compiler Prouran,
UBFTQ) I _ sysPp1/svspp (1BCBO) - sysut4 | (1BMAR)
N B Punched \\ Compil
N Output ompiler
SYSINT/SYSINZ N \ Output
or SY Sxxx \ \
SYSLBI
4 N Sysur \ SYSUT4
® ® ®
syscKe File SYSPP1/SYSPP2
\\
Debug
Files N \ W SYSUT2
\\ Load-Time Lood
~ . Debugging | _ oa
™~ !?blf:r; Compiler > File
e (1BDBL) SYSCK2
~
~
Debug
Files
y
: ®

The flow of conirol is designated by solid lines, whereas input/output flow is designated by dotted lines.

Figure 3. Flow of Control and Input/Output Flow Through IB;OB Processor

The format of the siepit card is:
1 16
SIEDIT

The options in the variable field are described in the
following text.
Input Options

[SYSIN1
> SYSxxx

sysini—The source, symbolic, or object program im-
mediately follows the component control card on the

System mput umvt { SYSIN

[, options]

i)

sysxxx—The source, symbolic, or object program is on
the specified alternate input unit. Only those system
unit names not used by the 1BjoB Processor may be
used (SYSCK1, SYSCK2, SYSLB2, SYSLB3, SYSLB4).

If neither the system input unit nor an alternate
input unit is specified, the input is read from the
system input unit (SYSIN1).

NotE: sysck2 is not available as an alternate input
unit if debugging has been requested. sysLB2, sYSLB3,
and sysLB4 may not be available if used to store system
components.

Search Options

(NOSRCH
IE{SRCHn }:l

SCHFn

~NosrcH—The specified alternate input unit is posi-
tioned correctly.

srcHn—Search through the designated number of files
(n files) on the specified alternate input unit, for the
source, symbolic, or object program whose deck name
is the same as the deck name in the component control
card.

scarn—Search the designated file (nth file) on the
specified alternate input for the source, symbolic, or
object program whose deck name is the same as the
deck name in the component control card. This option
cannot be used if the alternate input unit is disk storage
or drum storage.

The n may be a one- or two-digit decimal number.
If a comma or a blank immediately follows the srcu
or scHF portions of the options, the number is assumed
to be 1.

If neither NosrCH, SRCHn, nor scurn is specified, the
alternate input unit is not searched (NosrcH).

Alter Options
I {NOALTER] 7
U)ALTER § |

NoaLTER—There are no alter cards within the deck.

ALTER—There are alter cards in the deck.

If neither NOALTER nor ALTER is specified, it is as-
sumed that there are no alter cards (NoALTER). For a
description of the ALTER procedure, see “Altering An
Input Deck.”

$OEDIT Card
The soeprr card sets output specifications for the re-
mainder of the application or until another soepiT card
is read.

The format of the soeniT card is:
1 16
SOEDIT

[, options]

The options in the variable field are described in the
following text.
Output Options

[{SYSOUL]| T
Roerad

sysoui—The output listings for this deck are placed
on the system output unit.

sysxxx—The output listings for this deck are placed on
the specified alternate output unit. Only those function
names not used by the 1BjoB Processor may be used
(SYSCK1, SYSCK2, SYSLB2, SYSLB3, SYSLB4).

If neither sysou1 nor an alternate output unit is speci-
fied, the output is written on the system output unit
(sysoui).

NoTE: sysck? is not available as an alternate output
unit if debugging has been requested. sysLB2, sysLBs,
and sysLB4 may not be available if used to store system
components.

Assembler Prest Options
I:’ 3 NOPREST %]

PREST

NOPREST—A Prest symbolic deck is not wanted.

PREST—A compressed form of the symbolic input to
the Assembler is written on the system peripheral
punch unit. The deck produced is called the Prest
deck. The rortraN Compiler does not produce input
to the Macro Assembly Program; therefore, a Prest
deck cannot be obtained for a ForTRAN compilation. If
this option is specified for a FORTRAN compilation, it is
ignored.

Programs in Prest format must be submitted in the
following sequence:

$JOB
SEXECUTE $IBJOB
$IBJOB [options]

[component control card in BCD format ($IBMAP, SIBFTC, or
SIBCBC) appropriate to the IBJOB component that processes
the deck]

[deck in Prest format as punched out]
[end-of-file card]

SIBSYS

SSTOP

In resubmitting decks in Prest format for processing,
the programmer should reinsert any $-control cards
used in the original source program, except the sCBEND
card. For example, if two decks in a source program are
separated by a soricix card, a duplicate soriciN card

Processor Monitor 13

must be inserted between the corresponding Prest or
Cprest decks.

Prest cards consist of series of field counts, string
counts, and strings, which have been formed by scan-
ning each field of an input card. A string consists of
those characters in a field other than the leading blanks.
Prest cards, generated in column-binary format, do not
include control cards.

A field, and therefore a string, may not exceed 67s.
For example, if there are 72 (110s) consecutive char-
acters but never more than two consecutive blanks,

the field would be coded as:

FIELD STRING FIELD STRING
COUNT COUNT STRING COUNT COUNT STRING
67s 67s XXXXX... 218 218 XXXXX...

The characters 77 signify the end of the encoded
input card. Trailing blanks on the input card are not
encoded.

The following examples illustrate Prest output:

The input card
1 8

PRESbbbCLAbbbbbXYZb...............b
is encoded as:
0404PRESOB0SCLAIOOSXYZ

———
i

The input card
1 8

bbbbABCbXYZbbDEFbb.................. b
is encoded as:
2014ABCbXYZbbDEF 77..........

The following is an illustration of a column binary
card containing 22 data words. Positions 4-7 distinguish
a Prest from a Loader or relocatable deck.

WORD POSITION CONTENTS

1 S, 1 11 (examine bit 3)
2 check-sum control bit
0=verify check sum
1= do not verify check sum
3 0 (standard IBJOB Processor deck)
4 1 1\ (Prest deck)
5.7 111f
8-12 01010
13-17 word count (beginning with word 3)
21-35 card sequence number
2 S,1-35 logical check sum of word 1 and all data
words on the card
3-24 S,1-35 22 words containing either instructions or

data from the program.

The contents of a column-binary card are described
more fully in the “Loader Input” section of “Loader
Information.”

If neither NOPREST nor PREST is specified, the Prest
deck is not generated (NOPREST).

Compiler Prest Options

Ranadl

14

NocPR—A Prest symbolic deck of the source input
to either the ForTRAN or the coBoL Compiler is not
wanted. ‘

cPresT—A Prest deck of the source input to either
compiler is written on the system peripheral punch
unit. Programs in Compiler Prest format can be sub-
mitted for processing in the same manner as Prest
programs (see “Assembler Prest Options™).

The format of cards which form a Compiler Prest
deck is the same as for the cards which form an As-
sembler Prest deck.

If neither NOCPR nor CPREST is specified, a Prest deck
is not generated (NOCPR).

If both PresT and cPREsT are specified in the soEDIT
card that precedes a source deck, both compiler input
and output are written, in that order, on the system
peripheral punch unit in.

Altering an Input Deck

Any symbolic, source, or Prest input deck can be modi-
fied. To change an input deck, ALTER must be specified
on the siEprT card, and Alter control cards must be
used. These control cards are described later in the
text.

If an alternate input unit is not specified on the sieprr
card, it is assumed that the Alter control cards must
follow a component control card and precede the input
deck on the system input unit. Before the deck can be
altered, the Alter control cards are moved to the
system utility unit (sysutz). When the deck has been
altered, the system utility unit (sysute) is repositioned
to be used for load file output.

If an alternate input unit is specified on the steprT
card, the input deck must be on the alternate input
unit and the Alter deck must be on the system input
unit. The input deck must be preceded by a com-
ponent control card. The Alter deck must also be
preceded by a component control card of the same
type and with the same deck name.

The Alter feature does not produce an updated
source or symbolic tape.

Alter Numbers

The contents of columns 73-80 of an input card are
used as Alter numbers. An Alter number is generated
before compilation or assembly when a Prest deck is
requested as output. This generated number appears
on the assembly or compilation listing, where columns
73-80 (identification field) of a card are normally
printed. The numbers are a maximum of eight right-
justified sequential digits with leading blanks.

Tf a source deck or symbolic deck is to be altered,
the existing identification fields are used as Alter num-
bers. They are replaced on the listing with generated
Alter numbers if a Prest deck is requested as output.
This is necessary to enable alteration of the Prest deck.

Alter Control Cards
A source, symbolic, or Prest deck may be altered by
using the following control cards:

1. To insert cards into a deck, a control card with
the following format is used:
1 8 16
m *ALTER nl

Fields m and n are the contents of the identification
field (columns 73-80) of a control card in the input
deck, if the deck is a source or symbolic deck. If the
input deck is a Prest deck, fields m and nl are the
generated Alter number. The first blank character ap-
pearing in the identification field indicates that all prior
characters constitute field m. The characters remaining
after the blank or blanks constitute field nl. In the
identification field, field m is left-justified and field
nl is right-justified. If the identification field contains
no blank characters, field m may be omitted or may
consist of no more than the first six characters of the
identification field. Field nl then consists of the re-
maining characters that were not placed in field m.
Fields m and nl must have a total number of char-
acters equal to the number of characters in the identi-
fication, excluding leading or embedded blanks. For
example, if the identification in columns 73-80 is
LABEL090, the format for this identification, on an Alter
control card, could be in any of the following forms:

1 8 16

LABEL *ALTER 090

LABELO *ALTER 90

LAB *ALTER EL090
*ALTER LABELO090

If the identification in columns 73-80 is LaBELbbY,
the format for this identification is:
1 8 16
LABEL *ALTER 9

If there are embedded blanks in the identification,
the Alter control card must have the preceding format.
Cards following the Alter control card up to, but not
including the next Alter control card, are inserted
immediately before card mn.

2. To delete and/or insert cards in a deck, a control
card with the following format is used:

1 8 16
m *ALTER

nl, n2

Fields m and nl are defined in item 1. Fields m and
n2 are either the same as m and nl, in which case
only card mnl is deleted, or they identify a card fol-
lowing card mnl, in which case cards mnl through
mn2 are deleted. In addition, any cards following this
Alter control card, up to but not including the next
Alter control card, are inserted in place of the deleted
cards.

3. To end the Alter deck, a control card with the
following format is used:

1 8
*ENDAL

This control card denotes the end of the Alter deck
and must be the last control card in every Alter deck.

Sample Deck Format Using an Alternate Input Unit
Figure 4 shows the control cards that are necessary
for the compilation and/or assembly and simultaneous
execution of program decks located on both the system
input unit and an alternate input unit.

$ENTRY DECK3 ‘
A sowee aead)

(MAP source deck)
$IBMAP DECK4 '
$IBFTC DECK3 ‘
$IBMAP DECK2
$IEDIT SYSLB4
[f 7
(MAP source deck) ~
$IBMAP l
$IBJOB

$EXECUTE 1BJOB
$JOB

‘
(FORTRAN source deck)
$IBFTC DECK3 |
A
(MAP source deck) ’
$IBMAP DECK2

SYSINI

._
o)
&
2
)
@
¢l
~
r
Q
"t
<
W
(<]
Q
L= 2]
b=
=]
o
=
4]
o]
=}
0
-~
[¢]

Figure 4. Sample Contro
Input Unit

After the sjoB, sEXECUTE, and siBjoB cards have been
read, the sequence of operations is:

1. The siBMAP card is read from the system input
unit (sysiN1), and the map language deck is assembled.

2. The siepiT card, specifying the system Library
unit (sysLB4) as the alternate input unit, is read. This
causes all input except the component control card to
be read from the system Library unit (sysLs4).

3. The s1BMAP card, specifying DECKe, is read from
the system input unit (sysivi). The data in columns
1-15 on this stBmMaP card and on the corresponding
siBMAP card on the system Library unit (sysLBi) is
matched, and the Map language deck on sysLB4 is as-
sembled.

4. The siBrTC card, specifying DECK3, is read from the
svstem input unit {sysix1). The data in columns 1-15
on this siBrrc card and on the corresponding sIBFTC
card (sysLB+) is matched, and the FORTRAN 1v language
deck on the sysLB4 is compiled and assembled.

5. The steprT card, specifying the system input unit
(sysin1), is read. This causes the 1BjoB Processor to
resume the reading of input from the system input unit
(sysinNt).

Processor Monitor 15

6. The siBmAP card, specifying pECk4, is read from
the system input unit (sysiv1), and the map language
deck is assembled.

7. The seNTRY card, specifying pECk3, is read from
the system input unit (sysin1). This indicates that con-
trol is to be transferred to the standard entry point of
pECK3 when the object program is loaded.

16

8. The file mark is read on the system input unit
(sysin1). Since the Noco specification did not appear
in the 1BjoB card, the reading of the file mark causes
the loading and execution of all program decks com-
piled and/or assembled by the 1BjoB Processor during
the application.

The rortrAN v Compiler translates programs written
in the FORTRAN 1v language, assembles these programs,
and produces relocatable binary input to the Loader.

$IBFTC Card

The worTRAN v Compiler is called into core storage
when the Processor Momtor reads a siBrrC card. The
SIBFTC card contains the name of the deck that will fol-
low, output options (list and punch operations), and
machine-oriented options that increase the efficiency
of the object program.

The format of the siBrrC card is:*

1 8 16
$IBFTC [, options]

where deckname names the deck that follows. A deck
name of six or fewer characters must be punched in
columns 8-13. Characters that cannot be used in the
deck name are parentheses, commas, slashes, quotation
marks, equal signs, and embedded blanks.

The variable field starts in column 16. The options
that may appear in this field are described in the fol-
lowing text.

deckname

List Options

[(NOLIST
i
FULIST

NOLIST —
wanted. .

L1ST — A MaP language listing of the object program,
three instructions per line, is generated. Only the rela-
tive locations and symbolic information are listed. See
Figure 5 for an example of such a listing.

FULIST — A MAP language listing of the object pro-
gram is generated, one instruction per line. This listing
includes generated octal information and resembles
the example in Figure 8.

If neither NoLisT, LIsT, nor FULIST is specified, a list-
ing of the object program is not generated (NoList).

A listing of the object program is not

FORTRAN IV Compiler (IBFTC)

Punch Options

b NGBk |

DECK — The object program deck is written on the
system perlpheral punch unit.

NoDECK — A punched deck is not wanted.

If neither pECk nor NopEck is specified, the object
program deck is written on the system peripheral
punch unit (peEck). If Prest and Cprest decks have also

been requested, the object deck is written last.

="

§

Instruction Set Options

[,]
*SM9%4
M94/2

M90 — The map language program uses only 7090
machine instructions. MaP language double-precision
operations are simulated by system macros, and EVEN
pseudo-operations are treated as commentary.

M94 — The Map language program uses only 7094
machine instructions.

M94/2 — The Map language program uses 7094 ma-
chine instructions. MaApP language Evex pseudo-opera-
tions are treated as commentary.

If neither m90, M94, nor M94/2 is specified, the mMap
language program uses only 7090 machine instructions
(Mo90). FORTRAN programmers should specify mo4 if
the machine they are using is a 7094 and mo94/2 if the
machine they are using is a 7094, model 2.

Index Register Options

XR3
I: gXRng :l

xg3 — The Mar language program uses three index
registers (1, 2, and 4).

xrn — The amap language program uses n index
registers (n is a number from 4 to 7).

If neither xr3 nor xmn is specified, the map lan-
guage program uses only three index registers (xr3).

A listing of the source program, however, is always porTraN programmers should specify the number of
generated. index registers available on the machine they are using.
BINARY CARD (NC1 PUNCHED)

00032 USE «PROLe 00032 USE oMAINe 00071 USE +TRST.

00071 USE +ERAS, 00073 USE «STORe. 00073 I BSS 1.+X

00074 v BSS 1,F 00032 USE oMAIN. 00032 29. NULL

00032 1A NULL 00032 1AA STZ =# 00033 31. NULL

00033 2aA NULL 00033 AXC 141 00034 32. NULL

00034 STZ I 00035 2aA1 FSCA 1,1 00040 3A NuLL

00040 3AA CLA #= 00041 3AB FOP #% 00042 XCA

00043 3AC FAD *= 00044 FDP =2,

Figure 5. Listing of Object Program, Three Instructions per Line
* Note that the symbol table option is no longer available.

FORTRAN IV Compiler (IBFTC) 17

Debugging Dictionary Options

]

~NopD — A debugging dictionary is not wanted.

pp — A full debugging dictionary is desired. All sym-
bols used in the assembled program will appear in the
debugging dictionary. In the case of a FORTRAN Iv
program, the debugging dictionary includes all state-
ment numbers, all programmer-specified symbols, and
all symbols generated by the FortRaAN Compiler.

spp — A short debugging dictionary is desired. Only
those symbols will appear in the debugging dictionary
that are specified through kP pesudo-operations sup-
plied by the MaP programmer. In the case of a FORTRAN
v program, the Compiler generates XEeP operations for
statement numbers and programmer-specified symbols
when spp is chosen.

If neither Nopp, pp, nor sop is specified, a debugging
dictionary is not generated (NooD).

End of File

$IBJOB
ECUTE IBJOB
$JOB

SEX

Figure 6. Sample Control Card Deck for One FORTRAN 1V
Compilation

18

Sample FORTRAN 1V Deck Format

Figure 6 shows the control cards necessary for compila-
tion and execution of one FORTRAN 1v language deck.

Figure 7 shows the control cards necessary for com-
pilation and execution of two FORTRAN 1v language
decks. When execution begins, control is transferred to
the first instruction in the first deck. ForTrAN decks
grouped together as shown permit phasing during
FORTRAN 1v compilation. (See “FORTRAN 1v Compiler
Information” for a discussion of phasing.)

[[— 7
(data file deck) .

$SDATA |
[7
(FORTRAN source decl@
SIBFTC DECK2 ‘
[7
FORTRAN source deck ’

$IBFTC DECKI
$1BJOB
$EXECUTE I1BJOB

$JOB

Figure 7. Sample Control Card Deck for Two FORTRAN IV
Compilations

A data file for the object program follows the source
language decks. The spata card that precedes the data
file causes a file mark to be written when it is recog-
nized by the peripheral input/output program. When
the 1BjOB Processor reads the file mark, loading and
execution of the object program begin.

The cosoL Compiler translates programs written in the
coBoL language and produces MaP language input to
the Assembler.

$IBCBC Card

The cosoL Compiler is called into core storage when
the Processor Monitor reads a siBcec card. The s1BCBC
card contains the name of the deck that will follow,
output options (list and punch operations), and ma-
chine-oriented options that increase the efficiency of
the object program.

The format of the siBcac card is:

1 8 16

$IBCBC [, options]

where deckname names the deck that follows. A
deck name of six or fewer alphanumeric characters
must be punched in columns 8-13. At least one char-
acter must be alphabetic or a period. Characters that
cannot be used in the deck name are parentheses, com-
mas, slashes, quotation marks, equal signs, hyphens,
and embedded blanks.

The variable field starts in column 16, The options
that may appear in this field are described in the fol-
lowing text.

List Options

NOLIST
>4 LIST
FULIST

NoLisT — A listing of the symbolic object program
input to the Assembler is not wanted. Error messages
produced by the Assembler are listed.

LIsT — A MAP language listing of the symbolic object
program input to the Assembler, three instructions per
line, is generated. Only the relative locations and sym-
bolic information are listed. The format shown in Fig-
ure 5 for FORTRAN is used also for cosoL.

FULIST — A MAP language listing of the object pro-
gram is generated, one instruction per line. This list-
ing includes generated octal information. An example
of such a program listing is shown in Figure 8. Read-

deckname

COBOL Compiler (IBCBC)

ing from left to right, the first 5 digits show the relative
location of the instruction within the deck. (Note that
the pseudo-operation NuLL has no number, since it
does not appear in the object program.) The next 12
digits are the instruction in octal form. The 5 bits
following are relocation bits {see “Relocatable Binary
Text” in the section “Loader Information”). Next fol-
lows the instruction in symbolic form. ENxxx numbers
are “equivalent names,” ie., MAP symbols that the
coBoL Compiler generates for names in the source
program. cNxxx numbers are supplementary symbols
needed to translate the program into map language.

If no option is specified, a listing of the source pro-
gram is generated, but not of the program output to the
Assembler (NOLIST).

Symbol Table Options
o]

’ {REF

~NOReF — A sorted dictionary and a cross-reference
table are not wanted.

REF — A sorted dictionary of the source language
names and their associated equivalent name (ENxxx)
numbers and a cross-reference table of the symbols
used in the object program are generated. The follow-
ing is an example of a cross-reference dictionary:

SOURCE PROGRAM NAME EQUIVALENT NAME NUMBER

FIELD1 EN0255
FIELD2 EN0257
OUTPUT-FILE EN0244, 0250
OUTPUT-RECORD EN0251
WORK-RECORD EN0254

If neither NorEF nor rer is specified, the dictionary
and table are not generated (NOREF).
Punch Options

[{%6BEcx!]
NODECK
pEck — The object program input to the Loader is

written on the system peripheral punch unit (syspp1).
~NopECK — A punched deck is not wanted.

00C70 ENG251 NULL
COC70 0074 00 4 00232 10001 ENO252 TSX GN0O12+4
C0071 0441 00 € 00210 10001 LoI MR]
C0072 0604 00 0 02C00 10011 STI «CAREF
00073 0441 00 C 00142 10001 LDI PI+1 ENO244
COC74 0604 00 ¢ 02400 10011 STI - CBREF
00075 0074 00 4 03000 10011 TSX <CMPK3,4
BINARY CARD (NOT PUNCHED)
00C76 1 00006 1 06CO0 10011 TXI <CANALy 146
C0C77 0074 00 4 00232 10001 TSX GNOO12,4

Figure 8. Object Program Instructions Generated One Instruction per Line from a COBOL

Program

FORTRAN 1V Compiler (IBFTC) 19

If neither pEck nor NoDECK is specified, the object
program is written on the system peripheral punch unit
(DECK).

Instruction Set Options

M90
IE M94 :l
M94/2

M90 — The Mar language program uses only 7090
machine instructions. map language double-precision
operations are simulated by system macros, and EVEN
pseudo-operations are treated as commentary.

M94 —The Map language program uses only 7094
machine instructions.

M94/2 — The Mmap language program uses 7094 ma-
chine instructions. MAP language EVEN pseudo-opera-
tions are treated as commentary.

At present, only the M90 option is used by the Com-
piler, regardless of the specification made.

Index Register Options
XR3
[]

xRr3 — The Map language program uses three index
registers (1, 2, and 4).

XR7 — The MAP language program uses seven index
registers.

If neither xr3 nor xr7 is specified, the map language
program uses only three index registers (xr3). coBoL
programmers should specify the number of index regis-
ters available on the machine they are using.

Code Options

[’ %IN LINE% 7
TIGHT § |

INLINE — The object program’s computational and
MOVE tasks are optimized for speed.

TIGHT — The object program’s computational and
MoOVE generated coding is shorter, thereby conserving
object-time core storage.

If neither INLINE nor TIGHT is specified, the object
program’s computational and MovE tasks are optimized
for speed (INLINE).

Tape Error Options
[, IOEND

READON

10END — Errors in reading tape at object time cause
irrecoverable error conditions.

READON — Errors in reading tape at object time are
ignored. This option may be used to allow high-volume

20

data processing to continue while ignoring low-volume
error conditions.

If neither 10END nor READON is specified, these errors
cause irrecoverable error conditions (I0END).

Collating Sequence Options

Lifrsta t]

coMmsiQ — The object program uses the commercial
collating sequence.

BINSEQ — The object program uses the binary scien-
tific collating sequence.

If neither comseQ nor BINSEQ is specified, the object
program uses the commercial collating sequence
(coMsEQ).

Debugging Dictionary Options

NODD
5572t]

~opp — A debugging dictionary is not wanted.

pp — A debugging dictionary is desired. A debugging
dictionary helps in debugging a MAP program gener-
ated by the coBoL Compiler. The cosoL Compiler takes
no action on this option except to pass it to the Assem-
bler. The Assembler then produces a dictionary con-
taining all 1ecec and 1BMaP generated symbols.

If neither Nopp nor b is specified, a debugging dic-
tionary is not produced (NobD).

$CBEND Card
Every cosoL source deck must be followed immediately
by a scBEND card.
The format of the scBEND card is:
1
$CBEND

Debugging for COBOL Programs

The cosor Compiler can also provide debugging aids
during compilation of coBor decks. This optional fa-
cility is described under “Compile-Time Debugging.”

Sample COBOL Deck Format

Figure 9 shows the control cards necessary for compila-
tion and execution of a single coBoL language deck.

Figure 10 shows the control cards necessary for
compilation and execution of two coBoL language
decks. When execution begins, control is transferred to
the standard entry point of the first deck.

Note: Any number of coBoL source decks or MAP or
FORTRAN source decks may appear between the sjos
and end-of-file cards.

End of File
$CBEND

s S T ~
(COBOL source deck) l_‘

['s18cBC DECKI

$1BJOB
$EXECUTE I1BJOB
B

Figure 9. Sample Control Card Deck for One COBOL Com-

pilation

$JOB

End o
$CBEND

$1

{COBOL source deck)
$IBCBC DECK1
$1BJOB

$EXECUTE IBJOB

pilations Which Co

7
(COBOL source deck) ‘

BCBC DECK2

-) ’

—‘

f File

mpile As a Single Job

COBOL Compiler (IBCBC)

Figure 10. Sample Control Card Deck for Two COBOL Com-

21

Macro Assembly Program (IBMAP)

The Macro Assembly Program (the Assembler) proc-
esses programs written in the MAP language as well as
generated MaP programs that are output from the
cosoL Compiler. The output from the Assembler can
be either in relocatable binary form or in absolute
binary form. The relocatable binary output is proc-
essed, if required, by the Loader. The Loader is used
for processing and loading when either co, LocIc,
DLOGIC, or MAP is specified in the siBjoB card. An ex-
planation of these options can be found in the section
“sigjoB Card.” The object program, which is a result of
assembling and loading, is composed of machine in-
structions that are generated by the Assembler, the
input/output routines that are part of the Subroutine
Library, and possibly the rortrRaN 1v mathematical
subroutines from the Subroutine Library. The use of the
mathematical subroutines by the map programmer is
described in the section “Subroutine Library (mBLiB).”

$IBMAP Card
The Assembler is called into core storage when the
Processor Monitor reads a siBMAP card. The siBMAP
card contains the name of the deck that follows, the
type of assembly to be performed, output operations
(list and punch options), and restrictions on the use
of the MaP language in the deck that follows.
The format of the siBMaP card is:
1 8 16
$IBMAP

deckname [, options]

BINARY CARD (NCT PUNCHEC)

where deckname identifies the deck that follows. A
deck name of six or fewer alphameric characters must
be punched in card columns 8-13. Characters that can-
not be used in the deck name are parentheses, commas,
slashes, quotation marks, equal signs, and embedded
blanks.

The options in the variable field, which starts in col-
umn 16, are described in the following text,

Card Count Option
[,count]

The card count option is an estimate of the number
of symbolic language cards in the deck. The number
may not exceed 32,767. If a card count is not speci-
fied, a count of 2,000 is assumed.

List Options

LIST
b ivott]

L1sT — A listing of the object program is generated.

~NoLisT—A listing of the object program is not wanted.

If neither LisT nor Nouist is specified, a listing of the

object program is generated (LisT).
Symbol Table Options

REF
[’;NOREF%]

REF — A cross-reference table of the symbols used in
the object program deck is generated. The deck listed

in Figure 11 would result in the cross-reference table
shown in Figure 12. In this table, under “Class,” each

00000 0774 00 1 60011 10000 START AXT 9,1
00001 0500 00 1 00625 10001 CLA NUMBER+10,1
00002 0400 CC 1 00026 10001 LOCP ADD NUMBER+11,1
00003 2 000CC1 1 00002 10001 TIX LOCP, 1,1
00004 0601 00 0 00025 10001 STC SUM
00005 000000000CC0C 00G10 CALL DUMP (NUMBER y SUM+1,2)
00005 0074 0G 4 02000 10011
00006 1 00003 0 01005 10011
00007 0 00C26 0 00006 10100
00010 0 00060 0 00013 10001
00011 O 0000C 0 00026 10001
00012 0 00000 G 00002 10000
00013 00000C000CO1 10000 NUMBER DEC 112+3,4+51647+8,9,10
00014 000G0000GC0O2 10000
00015 000000000003 10000
00016 00000C000C04 10000
00017 0CO000000C05 10000
00020 000000CQ0CO6 10000
00921 000C0Q000CCT 1000¢C
BINARY CARD (NCT PUNCHEL)
00022 000C00000G10 10000
00023 (000000000C11 10000
00024 0COC0C00OCL2 10000
00025 260000000C0L 00001 SUM BSS 1
00026 0C0000000000C 10000 *LDIR
00027 235163212260 10000
C0000 01111 END START

Figure 11. Program That Would Result in Cross-Reference Table Shown in Figure 12

22

CRTAB
SYMBOL REFERENCE DATA

REFERENCES TO DEFINED SYMBOLS.

CLASS SYMBOL VALUE REFERENCES
Lacep 00002 3
NUMBER 00013 12410
LCTR BLCTR
QUAL UNQS
LCTR 1/
START 00000 30
SUM 00025 4911

REFERENCES TO VIRTUAL SYMBOLS.

pumMp 2 5

Figure 12. Cross-Reference Table Resulting from Program
Listed in Figure 11

symbol is classified by the types of defined symbols:
ordinary symbols, location counter symbols, qualifying
symbols, file names and symbols defined by soor,
LBOOL, RBOOL, or SET pseudo-operations. Under “Sym-
bol” each symbolic name defined in the program is
listed. “BLcTrR” (blank location counter) and “//”
(blank comMoN) are location counter symbols supplied
by the Assembler. “ungs” is aqualifying symbol supplied
by the Assembler. Under “Value” is shown the relative
location assigned to each defined symbol within the
deck. Under “References” are listed the relative loca-
tions at which the symbols are referred to. “References
to Virtual Symbols” are the same as for defined symbols,
except that “Value” is the number of the entry that the
name occupies in the control dictionary for this deck
after the preface entry.

NOREF — A cross-reference table is not wanted.

If neither REF nor NOREF is specified, a cross-reference
table is generated (REF).

Punch Options

[DECK]
’INODECK

pEck — The object program deck is written on the
system peripheral punch unit.

~NobECK — A punched deck is not wanted.

If neither pECK nor NODECK is specified, the object
program deck is written on the system peripheral
punch unit (pECK).

System Symbol Options

ot
1< MONSYM]
_ yoBsYM

NosyM — No symbols are predefined by the Assem-
bler.

MONsYM — The 1Bsys Operating System symbols in
the nucleus and Input/Output Executor (10EX) com-
munication regions and in the system unit function
table, and the symbols sysorc and sysexp, are prede-
fined by the Assembler. These symbols are defined as

being in the qualification section “s.s” and, therefore,
may be redefined at any point in the program. They
are described in the publication IBM 7090/7094 IBSYS
Operating System: System Monitor (IBSYS), Form
C28-6248.

joBsyM — This option is effective only in an absolute
mode assembly (aBsmop). If it appears on a SIBMAP
card that does not also specify ABSMOD, MONSYM is
assumed. The mBsys Operating System symbols, plus
the 1B8joB Processor system symbols used for subcom-
ponent communication (see Appendix C), are prede-
fined by the Assembier, as described for MONSYM.

If neither NOSYSM, MONSYM, nor JoBsYM is specified,
all symbols referred to in an aBsMOD assembly must
be defined by the source program (NosYM).

Instructions Set Options

L]

M90 — The Assembler generates only 7090 machine
instructions. Double-precision operations are simulated,
and EVEN pseudo-operations are treated as commentary.

M9+ — The Assembler generates only 7094 machine
instructions.

M94/2 — The Assembler generates only 7094 machine
instructions, and EVEN pseudo-operations are treated as
commentary.

If neither M0, M94, nor M94/2 is specified, the object
program uses only 7090 machine instructions (M90).

Assembly Mode Options

RELMOD
*4 SYSMOD
ABSMOD

RELMOD — The object program is assembled in re-
locatable binary form.

sysmop — The object program, which has an absolute
origin, is assembled in relocatable binary form.

ABsMoD — The object program is assembled in abso-
lute binary form.

If neither RELMOD, SYSMOD, nor ABSMOD is specified,
the program is assembled in relocatable binary form
(RELMOD).

Parentheses Options

NO
[Tkt]

~o()—Parentheses should not be used in MAP sym-
bols. If parentheses are used in a symbol in the location
field, a warning message is printed, but assembly is
permitted.

()ok — Parentheses may be used in MaP symbols.

If neither No() nor ()ok is specified, parentheses

should not be used in MaP symbols [no()].
Built-In Function Options

[, NOMEFTC]
MFTC

Macro Assembly Program (IBMAP) 23

NOMFTC — The built-in functions of the FORTRAN 1v
Compiler are not used by the object program.

MFTC — The built-in functions of the FORTRAN 1v
Compiler are used by the object program. These func-
tions are described in the publication IBM 7090/7094
IBSYS Operating System: FORTRAN IV Language,
Form C28-6390.

If neither NoMFTC nor Mr1C is specified, the object
program does not use the built-in functions (NOMFTC).

Debugging Dictionary Options

Rl

Nopp — A debugging dictionary is not wanted.

pp — A full debugging dictionary is desired. All sym-
bols used in the assembled program are included.

spp — A short debugging dictionary is desired. Only
those symbols that are specified by the map pseudo-
operation KEEP appear in the debugging dictionary.

If neither Nobp, pp, nor sop is specified, a debugging
dictionary is not produced (~opb).

Sample MAP Deck Format
Figure 13 shows the control cards necessary for the
assembly and execution of a MaP language deck.

Figure 14 shows the control cards necessary for the
assembly and execution of two Map language decks.

24

When execution begins, control is transferred to the
standard entry point of the first deck.

(MAP source deck) .

$1BMAP DECKI
$1BJOB

$EXECUTE 1BJOB
B

Figure 13. Sample Control Card Deck for One MAP Assembly

T 20000 7
(MAP source deck) '
AP DE

$1BM, CK2

z = 7
(MAP source deck) '
$IBMAP DECKI1
$1BJOB

$EXECUTE IBJOB
$JOB

Figure 14. Sample Control Card Deck for Two MAP Assemblies

The Debugging Package enables the programmer to
manipulate data, control processing, and obtain dumps
of the contents of any locations in core storage at speci-
fied locations within his program. There is no limit on
the number of requests that may be given for a single

program. The publication IBM 7050/7054 IBSYS Oper-
ating System, IBJOB Processor Debugging Package,
Form C28-6393, describes the procedure for coding de-
bug requests.

This package provides the programmer with two
types of debugging: compile-time debugging and load-
time debugging.

Compile-Time Debugging

Compile-time debugging may be used with the cosoL
Compiler at compilation to specify dumps at various
points in a COBOL source program. Debug requests are
similar to coBoL procedural statements and almost all
procedural capabilities of the compiler may be used.

$IBDBC Card

The siBpBc card heads each compile-time debug re-
quest. The smpBC card serves two functions: it identi-
fies individual requests, and it defines the point at
which the request is to be executed.

The format of the siBpBC card is:
1 8 16
$IBDBC location [, FATAL]

where name is an optional user-assigned control sec-
tion name which permits deletion of the request at load
time. This name must be a unique control section
name consisting of up to six alphabetic and numeric
characters, at least one of which must be alphabetic.
Location is the coBoL section-name or paragraph-
name (qualified, if necessary) indicating the point in
the program at which the request is to be executed.
In effect, debug requests are performed as if they
were physically placed in the source program following
the section- or paragraph-name, but preceding the text
associated with the name. Two siBpBC cards in the same
request packet may not refer to the same location.
FATAL, when specified, prevents loading and execu-
tion of the object program when an error of a level
corresponding to the cosoL error level E or greater
occurs within a debug request statement. If FATAL is
not specified, a cosoL error of level E or less, when en-
countered within the procedural text of a debug re-
quest, does not prevent loading and execution of the
object program. In this situation an attempt is made

[name]

Debugging Package

to interpret the statement. If the interpretation at-
tempt is unsuccessful, the invalid statement is disre-
garded. If the request consists of more than one state-
ment, only the invalid statement is disregarded.

The text of the debug request follows immediately
after the s1epBC card. The text may consist of any valid
procedural statements conforming to the requirements
of the copoL language and format and the count-con-
ditional statement. The only restriction on these state-
ments is that they may not transfer control outside of
the debug request itself. Display statements in a debug
request are written on sysoul.

An end-of-file card or any $-control card terminates
the compile-time debugging packet.

Load-Time Debugging

The load-time debugging facility allows FORTRAN 1v
MAP programmers to insert debug requests at load
time that are to be executed with the object program.
The language for load-time debug requests is derived
from the FORTRAN 1v language, with changes made for
debugging purposes. All load-time requests for a par-
ticular Processor application are grouped together in
what is called the debugging packet. The load-time
debugging packet is placed immediately following the
siBjos card at the beginning of the job deck, preceding
the source and/or object decks.

$IBDBL Card

The siBpBL card heads all load-time debugging packets
and provides options governing the amount of debug-

ging output.

The format of the s1BpBL card is:
1 16
$IBDBL [, options]

The variable field starts in column 16. Columns 16-72
are scanned in full and therefore may contain blanks
for legibility purposes. The options that may appear in
this field are described in the following text.

Debugging Output Options
[, TRAP MAX=ni] [, LINE MAX=nz]

TRAP MAX = n; — All debugging action ceases after
n; requests have been executed. The symbol m; is an
integer. In octal, the number of requests may range
from 01 to 077777. (Any integer containing a leading
zero is recognized as an octal number.) If the number
of requests is expressed in decimal, the range is from

Debugging Package 25

1 to 32,767. Each time program execution is halted for
debugging action, irrespective of any resultant action,
an executed request is counted. If no TRAP Max is
specified, the debugging routines allow a maximum of
30,000 traps.

LINE MAX = np — All dumping ceases after approxi-
mately n, print lines of debugging output have been
written on tape; the postprocessor prints no more than
n, lines. The symbol n, is an integer. In octal, the num-
ber of lines may range from 01 to 077777. (Any integer
containing a leading zero is recognized as an octal
number.) If the number of print lines is expressed in
decimal, the range is from 1 to 32,767. If no LINE MAX
is specified, the debugging routines allow a maximum
of 1,000 lines.

The number of lines produced by a postmortem
dump taken at the completion of execution is not in-
cluded in the line count. To avoid the possibility of
unlimited dumping during an uncontrolled loop, an
approximation based upon LINE MAX is used to limit
the number of words written on sysckz during execu-
tion. This feature does not limit or prevent the uncon-
trolled loop.

Either or both of these options, in any order, may
be used to control the amount of debugging output.

Message Listing Option
[, NOMES]

26

When specified, the NoMmEs option eliminates the
object-time messages. Debugging output is unchanged,
except that a preliminary list of the dumps and any
TRAP MAX and LINE MAX messages are eliminated.

*DEND Card

The *pEND card is the last card in the load-time de-
bugging packet.

The format of the *peND card is:
1

*DEND

Postprocessor Routines

The Postprocessor routines of the Load-Time Debug-
ging Processor control the format of debugging output.
This occurs following execution of the object program.
If a Processor Monitor application fails during exe-
cution, the operator must initiate a restart using the
sposT card. See the publication IBM 7090/7094 IBSYS
Operating System: Operator's Guide, Form C28-6355,
for descriptions of the spost card and the restart pro-
cedure,

Sample Load-Time Debugging Deck Format
Figure 15 shows the control cards necessary for a

Processor Monitor application that uses compile-time
and load-time debugging.

End-of-File

(Map Source Deck)

(Object Deck)

$IBLDR

Compile-Time
Debugging Pccker‘//—-i
for SIBCBC Deck P ; >‘ -

]

e

(Debug Requests)

SIBDBC

(COBOL Source Deck)

SIBCBC

Load-Time
Debugging
Packet for
SIBLDR and
SIBMAP
Deck

‘ (Debug Requests)

$IBDBL

$1BJOB

SEXECUTE 1BJOB

$JOB

Figure 15. Sample Control Card Deck for Debugging

Debugging Package 27

Relocatable Binary Decks

A deck produced by the Assembler or the FORTRAN 1v
Compiler for the Loader is in relocatable binary for-
mat. Such a deck, called an object deck, is written on
input/output unit sysppi to be punched out when the
DECK option is specified on the control card for the
component assembling the deck (siBFrC, siBCBC, OF
siBMAP card). The siBjoB card for the program within
which the deck appears will also be punched out in
BCD format.

The programmer can save compile and assembly
time by using previously assembled object decks as
part or all of a program that must be resubmitted for
processing. In a case where the entire program is com-
posed of object decks, the programmer can add control
cards to the decks as follows and resubmit them for
loading and execution:

$JOB

SEXECUTE IBJOB

[$IBJOB card and decks as punched out]
[end-of-file card]

$STOP

Note: When an object deck follows another deck
in a program, the siBjoB card punched out with the
object deck should be deleted.

However, in resubmitting binary decks, the pro-
grammer must supply again any $POOL, SGROUP, SLABEL,
SENTRY, SSIZE, SUSE, SOMIT, SNAME, SORIGIN, OI SINCLUDE
cards he used in the original source deck. The sorGIN
and sINCLUDE cards must precede the decks to which
they apply. In the following example the sjoB, sExk-
CUTE, SORIGIN, SINCLUDE, ssize, end-of-file, and ssTop
cards were inserted by the programmer:

1 16
$JOB
$EXECUTE IBJOB

[$IBJOB card and relocatable binary deck #1 as punched out]

SORIGIN A

SINCLUDE SIN [Subroutine from Subroutine
Library]

[relocatable binary deck #2 as punched out with $IBJOB card

deleted]

$ORIGIN A

[relocatable binary deck #3 as punched out with $IBJOB card

deleted]

$SIZE
end-of-file card

$STOP

//=500

An object deck of load-time debugging reference
tables cannot be obtained. For this reason, even when
a job is submitted as an assembled object deck, any
associated load-time debugging requests must be made
as a source deck, and time for compiling the request
packet must be expected.

28

Norte:If the original source program did not request
a debugging dictionary, the object decks punched out
from the program cannot be used later with a load-
time debugging request deck.

Column Binary Format

Column binary format is punched on a standard Bm
card, 80 columns by 12 rows. Columns 73-80 are used
for Bcp identification only; they are not used by the
Loader.

The remaining 72 columns are actually 24 sets of
3 columns each. Since each set of 3 columns has 12
rows, the set has 36 punch positions, corresponding to
the 36 possible bits in a machine word.

The bits are read downward, starting with the first
column to the left in a word. If the programmer divides
the 12 rows in each column into groups of 3 bits each,
he can read 4 octal numbers per column. The top
bit in each group represents a 4, the middle bit a 2, and
the last a 1.

For example, in Figure 16 column 19 reading down-
ward shows 0-53-0-0 octal; column 20, 0-0-1-0; and
column 21, 4-0-1-2. Put together to represent the con-
tents of one word, the numbers are:

0500 00 1 04012
—_— ——— — ——
operation unused tag address
code
or
CLA 04012,1

The programmer will find it easier to read column
binary when the cards are punched on an IBM 704
Column Binary Card, Form 121-N-2,

Figure 16. Binary Word Punched in Column Binary Format

The Loader processes relocatable binary program decks
produced by the Assembler or the ForTraN Compiler
and combines any required subroutines from the Sub-
routine Library with the program decks. The program
decks produced by the Assembler contain control in-
formation as well as the relocatable binary text of the
program. This control information is of two types:
information describing the file(s) to be used by the
object program, and information that enables the
Loader to resolve cross-referencing between sections of
the program.

In addition to assigning absolute core storage loca-
tions to the relocatable binary text of the program and
resolving cross-references, the Loader also allocates
core storage for pools of input/output buffers and
attaches files to the buffer pools. This is done auto-
matically by the Loader, but a programmer can modify
this procedure by using control cards.

The Loader processes one or more relocatable binary
program decks, prepares one executable object pro-
gram from these decks, and transfers control to the
object program. In a tape-oriented system, a program
deck consists of a series of card images on tape. Any
number of program decks can be run at one time. All
of these decks can constitute a Processor application
when they are grouped together. A Processor applica-
tion can apply to one program deck or many, some of
which may operate similarly to closed subroutines or
subprograms.

A program deck may contain external names that
refer to areas of coding or data within other program
decks. These areas, called control sections, are acces-
sible to other programs. The Loader recognizes that
control sections are equivalent to one another by their
identical names. Only one of each named reference
item is included by the Loader, which adjusts all cross-
referencing to the retained item. Therefore, the pro-
grammer may refer symbolically in one program to the
name of a control section in another program, and the
Loader performs the desired cross-referencing. External
names may be designated using the mar pseudo-
operations CONTRL, ENTRY, and SAVE; they may be re-
named, replaced, or deleted at load time, using Loader
control cards.

Object Program Files

Input to the Loader that defines object program files
comes from two sources: sFILE control cards and file

Loader (IBLDR)

dictionaries. These are normally produced by the As-
sembler in processing the FiLE pseudo-operation. The
Loader constructs file blocks from this information for
the object program to use during execution.

The MmaP language programmer uses FILE pseudo-
operations for his file descriptions, whereas the FORTRAN
user relies on the FILE routines that establish the rela-
tion between FORTRAN logical units and system units.
The cosoL user describes a file by making a file descrip-
tion entry in the Data Division, and assigns units in the
File-Control Paragraph of the Environment Division.

The file specifications generated by the Assembler on
the sFiLE card are described in the section “sriLe Card.”

If a map language program contains FiLE pseudo-
operations but makes no reference to an 1ocs Library
subroutine such as .0PEN, 10cs is not loaded, and no
buffer pools are attached to the files.

Loader Name Conventions

The use of alphameric literals as external identifiers of
object program quantities is basic to the design and
mechanization of the Loader. Three types of names
are used in the Loader:

1. Deck names, which identify decks and may be
used to identify or qualify control section names within
a deck.

2. Control section names, which identify data and
procedure sections within the program. When using
Loader control cards, named sections in one deck may
be replaced by a section with the same name in another
deck. These sections may also be renamed or deleted
from the program.

3. File names, which identify files within the pro-
gram.

Deck Name Rules

The use of deck names and the rules for forming deck
names are:

1. A deck name is composed of six or fewer alpha-
meric characters, excluding parentheses, commas,
slashes, quotation marks, equal signs, and embedded
blanks.

2. In producing the binary deck, the Assembler
places the contents of the deckname field of the Com-
piler and Assembler cards (siBMAP, s1BCBC, and SIBFTC)
in the deckname field (columns 8-13) of the Bcp cards
that delimit the major sections of a program deck. The
names of the Bcp cards are SIBLDR, $FDICT, STEXT, SCDICT,
spPICT, and $DKEND.

Loader (IBLDR) 29

3. The deck name may be punched in columns 8-13
of any other Loader control card, but it is ignored by
the Loader.

4. The deck name defines a control section that en-
compasses the entire deck; therefore, the entire deck
is a control section.

5. The deck name may be punched in the variable
field of the sNxaME, suse, and somrT cards to qualify a
control section name. Action taken on the named con-
trol section is thus restricted to the deck named.

6. The deck names of routines in the Subroutine
Library may not be used as control section name
qualifiers.

7. A deck name may not be changed by a sNAME
card. However, the control section with that name may
be renamed by a sxaME card.

Control Section Rules

The use of control sections and the rules for forming
control section names are:

1. A control section name is composed of six or fewer
alphameric characters. Alphameric characters that can-
not be used in the control section name are parentheses,
commas, slashes, quotation marks, equal signs, and
blanks. A control section name is always left-justified
before processing or comparison, and unused trailing
positions are filled with blanks.

2. A control section is a bounded section of coding;
its length is the difference between the relative location
of the first word within it and the relative location of
the last word within it plus 1.

3. A real control section is any control section re-
ferred to in a deck that has a relative location assigned
within that deck.

4. A virtual control section is any control section
referred to in a deck that has no known origin or length
in that deck. A virtual control section must be supple-
mented by a real control section with the same external
reference name in either another input deck or in a
deck in the Subroutine Library. If a virtual control
section is not supplemented by a real control section,
an error message is written on the system output unit.

5. Normally, if the six-character external reference
names of two or more control sections are identical, the
Loader retains the first control section encountered
and deletes the control sections with duplicate names.

6. In the absence of explicit inclusion through suse
cards, the first real section with a given name that is
physically encountered while loading is retained, and
all succeeding occurrences of it are deleted. A1l refer-
ences to the given name are adjusted to refer to the
storage assigned to the retained section, including any
orG pseudo-operations that may have referred to the
deleted section.

30

7. Explicit inclusion of two control sections with
the same name (by using deck name qualifications on
a susk card) results in a multiple definition of that sec-
tion. Consequently, an error message is written on the
system output unit.

8. Each control section that is referred to by text
must be defined (assigned an absolute location by the
Loader) or execution will not be allowed. For ex-
ample, if a reference is made to a section mentioned
on a somIT card and no other section with the same
name is encountered, an error message is written on
the system output unit.

9. Control sections can be nested (i.e., control sec-
tions can be placed within the boundaries of other con-
trol sections), but each inner nest must be entirely
within the next outer level of nesting. If an outer level
of nesting is deleted, all control sections within the
boundaries of this nest are deleted. If an inner level
of nesting is deleted or inserted, any references to loca-
tions between the end of the inner section and the
end of the outer section are not adjusted. In Figure
16A, for example, if control section A is deleted from
within control section B, all references to the locations
in area C will be incorrect. They will, in fact, refer in
the final absolute program to instructions in control
section D. This problem does not arise with an EVEN
control section which coincides with the beginning of
another control section, since the EVEN is not treated
as a nested control section in this case.

Relative
Location

1 3

2 — Relative

Location
3~ 1 —
4 — 2
A
5— 3
B

/

Figure 16A. Nested Control Sections Where Inner Level is
Deleted

10. Explicit inclusion of a control section through
specification of a suse card does not necessarily force
the inclusion of all embedded control sections.

11. A subroutine in the Subroutine Library is called
automatically if a control section name in a Library
subroutine is identical to that of a virtual control
section and no real control section with that name is
contained in any input program deck.

12. Control sections of routines in the Subroutine
Library may not be renamed.

13. A control section name specified by an ENTRY,
CONTRL, or save pseudo-operation should not be the
same as the name of the deck that contains it.

14. If an EVEN appears within a control section, it

must be at the same relative location as the beginning
of the control section.

15. Text that is placed in a control section by means
of an orc pseudo-operation (as in the case of data
entered in a coMmMoN block by a FORTRAN IV BLOCK DATA
subprogram) is never deleted. Instead, it is loaded into
the retained control section. (See rule 6 above.)

File Name Rules

The following list defines the rules for the formation
and usage of file names:
i. A file name is composed of up to 18 alphameric
characters, excluding parentheses and quotation marks.
2. Whenever a file name appears on a Loader con-
trol card, it must be enclosed in quotation marks (4-8
punch). If the file name is qualified by a deck name,

30.1

the entire expression is enclosed in quotation marks
and the file name is enclosed in parentheses.

3. A file may be renamed through specification on a
sNAME card. If the new name that the programmer
species on the sNAME card does not already exist, the
programmer must insert a sFiLE card containing this
name.

4. File names cannot be specified on sUse or soMrt
cards.

5. If a file is renamed, any control card that refers
to the old name is ignored.

6. If the 18-character names of two or more files are
identical within a program, the Loader retains the in-
formation contained in the first sFILE card encountered
and ignores any subsequent sFE cards with the same
file name.

Component Control Card for the Loader

The following card instructs the IBJOB Monitor that
only the Loader is needed to process the deck headed
by the card.

$IBLDR Card
The first card in a relocatable binary deck is the stBLor
card in Bcp format. The siBLDR card is generated by the
Assembler.

The format of the siBLDR card is:
1 8 16
$IBLDR deckname [, options]
where deckname identifies the deck to be processed.
The deck name must be six or fewer alphameric char-
acters. Characters that cannot be used in the deck name
are parentheses, commas, slashes, quotation marks,
equal signs, and embedded blanks.

The variable field begins in column 16. The options
of the variable field are described in the following text.
These variable field options can be changed by the
programmer.

Input Options

NQLIBE
HLIBE %]

~NoLiBE—The object program is in the current input
file.

LiBE—The object program is in the Subroutine
Library.

When L1BE is specified, the application must consist
entirely of object programs from the Subroutine
Library. LiBE and NOLIBE specifications cannot be used
within the same application. If neither LiBE nor NOLIBE
is specified, it is assumed that the object program is
in the current input file (NOLIBE).

Text Options

[, TEXT
NOTEXT

TEXT—When this option is specified, the Loader loads
the text section of the deck that follows.

~NotExT—The sections of the deck that contain control
information are loaded, but the text section is not
loaded.

If neither TEXT nor NoTEXT is specified, the Loader
loads the text section of the deck that follows (TEXT).

Loader Control Cards

This section provides the format specifications for the
control cards that the Loader processes. These control
cards describe file and program loading modifications
for an entire object program and, therefore, are not re-
quired for most Processor applications. The Loader
control cards may be used to:

1. Override file or label descriptions that appear in
the object program.

2. Modify the control section retention scheme used
by the Loader. (In the control section retention scheme,
the Loader uses the first control section that it en-
counters with a given name.)

3. Depart from the standard buffer assignment. The
section “Input/Output Buffer Allocation” contains
further information.

4. Modify control section names or file names.

5. Delete control sections.

$FILE Card

The Assembler normally generates a sFiLE card in proc-
essing a FILE pseudo-operation. But, since the Loader
retains the first sFILE card it reads for any given file as
its proper definition, the programmer may override
certain options in an Assembler-generated sriLE card by
placing a sFiLE card of his own at the beginning of the
deck involved. These rules, however, must be followed:

1. Any file specifications that are not changed must
be repeated on this card.

2. The file usage option may not be changed.

3. The mode option may not be changed.

4. The block size option may be changed only within
the limits of the MmN and MuLTr specifications in the
IBMAP FILE pseudo-operation.

5. The unit assignment option may not be changed to
a non-Hypertape unit if HYPER was specified in the
IBMAP FILE pseudo-operation.

6. The unit assignment option may not be changed
to specify card equipment if the no-Hollerith-conver-
sion option (NoHCVN) was specified on the 1BMAP FILE
pseudo-operation. The unit may not be changed to
specify tape, disk, or drum equipment if the required
Hollerith-conversion option (REQHCV) was specified.

A sETC card can be used to extend the variable field
of a sFiLE card.

The format of the sFiLE card is:

1 16
$FILE

‘filename’ [options]

Loader (IBLDR) 31

where ‘filename’ is an alphameric name of 18 or fewer
characters that identifies the file. The ‘filename’ must be
enclosed by quotation marks (4-8 punch), and it must
begin in column 16. The specifications for the options
may be entered in any order thereafter. Specifications
are separated from the file name and from each other
by commas.

Unit Assignment Options
[, unit 1, umit 2]

The unit 1 specification is the primary unit; the unit
2 specification is the secondary unit used for reel
switching, Unit specifications are described in the sec-
tion “Unit Assignment.”

Mounting Options

MOUNT
DEFER
READY

’ or
MOUNTiI
DEFERi
READYi

MOUNT — The message is printed before execution,
and a stop occurs for the required operator action.

pEFER — The operator message and stop are deferred
until the file is opened.

READY — The message is printed before execution,
but a stop does not occur. System units are normally
given the Reapy option if a mounting option is not
specified.

The operator is notified by an on-line message of the
impending use of an input/output unit. These options
refer to both unit 1 and unit 2. They govern the type
of message to be printed and the operator action re-
quired when an input/output unit is to be put into use.

The operation for the alternate options is the same
as the MOUNT, DEFER, or READY options except that i
refers to a particular unit, as follows:

i=1 unit 1
i=2 unit 2

If one of these units is specified, it supersedes any
general mounting option specified for unit i. The
following option, for example, causes the MouNT op-
eration for unit 1 and the pEFER operation for unit 2:

MOUNT,DEFER2

If none of the options is specified, the message is
printed before execution, and a stop occurs for the
required operator action (MOUNT).

File List Options

[LIST
> INOLIST]

LisT — The file appears in the operator’s mounting
instructions.

~oList — The file does not appear in the operator’s
mounting instructions.

If neither LisT nor NoLiST is specified, the file appears
in the operator’s mounting instruction (vist).

32

File Usage Options

INPUT

OUTPUT

INOUT

CHECKPOINT

or

CKPT
vPUT — The file is an input file.
outpuTt — The file is an output file.
wout — The file may be either an input file or an
output file. The object program sets the appropriate
bits in the file block.

cueckPOINT or cKPT — The file is a checkpoint file.

If neither INPUT, OUTPUT, INOUT, CHECKPOINT NOI
ckpt is specified, the file is an input file (1nPUT).

Block Size Option

BLOCK
’ or = XXXX
BLK

The symbol xxxx represents a number (0000-9999)
that specifies the block size for this file. The field may
be omitted provided the file is included in a pool or
group where the block size can be determined.

If SEQ, SEQUENCE, or cksuM is specified in the sFILE
card, the block size number must include the count for
the one-word checksum and the block sequence word.

Activity Option
[,ACT=xx]

The symbol xx represents a number (00-99) that
specifies the relative activity of this file with respect to
other files. The higher the number, the more active the
file. If this field is omitted, the activity is assumed to be
01. This value is used in determining the number of
output buffers to assign to each buffer pool in the
object program.

Reel Switching Options for Unlabeled Files

ONEREEL
MULTIREEL
or

REELS

oNEREEL — Reel switching should not occur.

MULTIREEL or REELS — Reel switching should occur.
The publication IBM 7090/7094 IBSYS Operating Sys-
tem: Input/Output Control System, Form C28-6345,
contains a discussion of reel switching facilities. Every
output file switches reels if an end-of-tape condition
occurs.

If no option is specified, the Loader assumes that reel
switching should not occur (ONEREEL).

Reel Searching Options for Labeled Files

QM&C._H
[’ | SEARCII E]

NOSEARCH — If an incorrect label is detected when
opening an input file, 10cs stops for operator action.

SEARCH — 10Cs initiates a multireel searching pro-
cedure for the file with the desired label.

k]

If neither NOSEARCH nor SEARCH is specified, it is
assumed that 1ocs will stop for operator action
(NOSEARCH).

File Density Options

HIGH Trailer label operations are always per-

LOW formed in the same density as that of the
? €200 file.
556
L 1800

HIGH — The tape density switch is assumed to be set
so that the execution of an spH instruction will result
in the correct density being used.

Low — The tape density switch is assumed to be set
so that execution of an spL instruction will result in the
correct density being used.

200 — The tape density switch is assumed to be set
so that the execution of an spL instruction will result in
a file recording density of 200 cpi.

556 — The tape density switch is assumed to be set
so that the execution of an spL instruction will result in
a file recording density of 556 cpi.

800 — The tape density switch is assumed to be set so
that the execution of an spH instruction will result in a
file recording density of 800 cpi.

This field specifies the density at which the file is to
be read or written. If a system unit is assigned to this
file, the specification for this unit supersedes any of the
preceding specifications.

If neither uiGH, LOw, 200, 556, nor 800 is specified, the
tape density switch is assumed to be set so that execu-
tion of an spH instruction will result in the correct
density being used (HicH).

Mode Options

BCD

, BIN
MXBCD
MXBIN

Bcp — The file is in Bcp mode.

BIN — The file is in binary mode.

MxBCD — The file is in mixed mode, and the first
record is BCD.

MXBIN — The file is in mixed mode, and the first
record is binary.

If neither Bcp, BIN, MXBCD, nor MXBIN is specified, it
is assumed that the file is in Bco mode (Bcp).

The MxBcD and MxBIN options may not be specified
for a file unless a look-ahead word is attached to each
physical record of the file. Since this word is not
written by 1ocs and cannot be programmed using
FORTRAN Iv or COBOL languages, the MxBcp and MXBIN
options can be used with compiled programs only
when output it handled by programs coded in the
MAP language.

Label Density Options
SLABEL

HICABEL
> LOLABEL
FLABEL

sLABEL — All header label operations are performed
in the installation standard label specified density.

HILABEL — All header label operations are performed
in high density.

LoLABEL — All header label operations are performed
in low density.

FLABEL — All header label operations are performed
in the same density as that of the file.

If neither SLABEL, HILABEL, LOLABEL, nor FLABEL is
specified, the standard label density specification, de-
fined by the assembly parameter sLABEL, is used to
process labels. As distributed, the standard specifica-
tion is high density. An installation can change the
standard specification by changing the assembly param-
eter sLABEL, which is in the Loader.

Only the use of the Map pseudo-operation LABEL or
of a sLABEL card denotes a labeled file, whether one of
the label density options is specified or not.

Block Sequence Options

'NOSEQ
b

or
SEQUENCE

~NOseQ — This specifies that the block sequence num-
ber is not written or checked.

SEQ or SEQUENCE — If reading, check the block se-
quence number. If writing, form and write a block
sequence number.

If neither NOSEQ, SEQ, nor SEQUENCE is specified, the
block sequence number is not written or checked
(NOSEQ).

Check Sum Options

[NOCKSUM
’{CKSUM

~NocksuMm — This specifies that the checksum is not
written or checked.

cksuM — If reading, check the checksum. If writing,
form and write the checksum. cksuM can only be speci-
fied when sEQ or sEQUENCE has been specified in the
SFILE card.

If neither NocksuM nor cksuM is specified, the check-
sum is not written or checked (~Nocksum).

Checkpoint Options

[NOCKPTS]
*1CKPTS

NockpTs — This specifies that no checkpoints are
initiated by this file.

Loader (IBLDR) 33

ckpts — Checkpoints are initiated by this file.

If neither NockPTs nor ckpis is specified, no check-
points are initiated (NOCKPTS).

Checkpoint Location Option

[, AFTERLABEL]

AFTERLABEL — Checkpoints are written following the

be used when the file is labeled.

If the ckprts option is specified and this field is blank,
checkpoints are written on the checkpoint files when
a reel switch occurs.

33.1

File Close Options

SCRATCH
PRINT

> \PUNCH
HOLD

scrATCH — The file is rewound upon termination of
the application.

PRINT — The file is to be printed. It is rewound and
unloaded upon termination of the application. PRINT
appears in the removal message that is printed on-line
at the end of execution,

puNcH — The file is to be punched. It is rewound and
unloaded upon termination of the application. puncu
appears in the removal message that is printed on-line
at the end of execution.

HoLD — The file is to be saved. It is rewound and un-
loaded upon termination of the application. HOLD ap-
pears in the removal message that is printed on-line at
the end of execution.

If the unit assigned is the system input unit, the sys-
tem output unit, or the system peripheral punch unit,
there is no rewind and no message is printed.

If neither SCRATCH, PRINT, PUNCH, NOr HOLD is speci-
fied, the file is rewound upon termination of the appli-
cation (SCRATCH).

Starting Cylinder Number Option

CYL (x
A ={
CYLINDER XXX

The symbol x is the number (0-9) of the starting
cylinder number of this file if it is on drum storage. If
the file is on disk storage, the symbol xxx is the number
(000-249) of the starting cylinder number. The equal
sign is required. The programmer must specify the
starting cylinder number when disk-storage or drum
storage is specified for the file. This field does not apply
if a system unit function that is assigned to disk storage
or drum storage is specified for the file.

Cylinder Count Option

[{CYLCOUNT} {xx }:l
CYLC'I?r XXX/

xx is the number (00-10) of consecutive cylinders
used by this file if it is on drum storage. If the file is
on disk storage, xxx is the number (000-250) of con-
secutive cylinders used by this file. The equal sign is
required. The programmer must specify the cylinder
count when disk storage or drum storage is specified
for the file. This field does not apply if a system unit
function that is assigned to disk storage or drum stor-
age is specified for the file.

Disk and Drumn Write Clieching Option
[, WRITECK]

Write checking is performed after each disk and
drum write sequence for this file.

34

Hypertape Reel Switching Options

HNRNFP
HRFP

> YHRNFP
HNRFP

For reel switching to occur, the programmer should
specify whether the Hypertape is to be rewound and/
or protected.

HNRNFP — Designates that the Hypertape is not to be
rewound or file protected.

HRFP — Designates Hypertape rewind and file pro-
tection.

HRNFP — Designates Hypertape rewind, but no file
protection.

HNRFP — Designates that the Hypertape is not to be
rewound, but is to be file protected.

If no option is specified, HNBRNFP is assumed by the
Loader.

$LABEL Card

The sLABEL card provides label information for the file.
Omission of this control card indicates that the file is
unlabeled. The fields that are present must appear in
the order shown in the format. However, all fields ex-
cept the first and last may be omitted by using adjacent
commas (, ,). The last field is considered to be 18 char-
acters long, with embedded blanks allowed. Files
which are assigned units sysoui, sysou2, sysppi, or
syspp2 may not be labeled.

All pertinent information must be on this control
card. sErc cards are not allowed.

The format of the sLABEL card is:
1 16
SLABEL

‘filename’, serial , [reel]
home ‘

address

(date
’ [{ or }:I , [name]
days

where ‘filename’ is an alphameric literal of 18 or fewer
characters that identifies the file. It must be enclosed
by quotation marks (4-8 punch). The ‘filename’ must
start in column 16.

Serial Number Option

serial
> or
home address.

serial — If a tape label is desired, serial represents
an alphameric field of five or fewer characters. Standard
input labels are checked against this serial number if
it is present. Standard output labels for this file will
contain this serial number only if a reel number greater
than 1 is specified in the reel sequence number field.
Output serial numbers are normally taken from the
label already present on the tape on which the first
reel of the file is written.

home address — If a labeled disk file or drum file is
desired, this field must contain two Bcp characters that
specify the home address —2.

The 1BjoB Processor itself requires a home address
of 00 when using disk or drum as a file during proc-
essing.

NortE: The serial number option does not change disk
or drum format, but only tells the object program the
content of the format.

Reel Sequence Number Option
The reel sequence number option is;

[, reell

This is a numerical field of four or fewer characters.
It specifies the reel sequence number of the first reel
of a file. When the field is omitted, the sequence num-
ber is assumed to be 1 for an output file or 0 for an
input file. The reel sequence number is adjusted at ob-
ject time to reflect reel switching, and it is checked in
standard input labels. If the field is omitted for an input
file, the test is bypassed. If a disk label or drum label
is desired, this field must be omitted by using two
adjacent commas.

Retention Cycle Options

]

date — A date can be entered in this field. The format
is y/d where y is a one-digit or two-digit number in-
dicating the year, and d is a number of three or fewer
digits indicating the day of the year. The slash is used
to separate the two numbers. This entry is not checked
and is used merely to provide additional information
in the label.

days — This is a numeric field of four or fewer char-
acters. It specifies the number of days a tape is to be
retained from the date it is written. An attempt to
write a labeled file on this tape before the end of the
retention period results in an error message. If the field
is omitted, a value of zero is assumed.

File Identification Option

[, name]

This is an alphameric literal of 18 or fewer char-
acters that specifies the file identification name in the
label. This name is checked with the name in the input
label. This field must follow the last comma on the card.
If this field is omitted for an input file, the file identifi-
cation is not checked. For an output file, this name is
placed in the output label. If this field is omitted for an
output file, the file identification on the existing output
label is set to zeros.

$POOL Card

The spooL card designates the files that are to share
common buffer areas. A serc card can be used to exterid
the variable field for a spooL card. The format of the
sPOOL card is:

1 16

$POOL ‘filenamey’ . .. ‘filenamen’
- (DpT O -
HEEECK% =xxx | [, BUFCT=xx]

where each ‘filename’ is the name of a file to be included
in the pool. Each ‘filename’ is an alphameric literal of 18
or fewer characters and is enclosed in quotation marks
(4-8 punch). Deck name qualification is meaningless,
since the Loader assigns only one file block for each
unique file name in the application. An error message
results if a file specified as NopooL in the 1BMAP FILE
pseudo-operation is also specified on a spooL or scrOUP
card, or if any other file dictionary entries for this
named file require a pool. In this event, the NoprooL
option is ignored.

Block Size Option
I {BLOCK
I: 3BLK % =xxxx:|

The symbol xxxx represents a number {0000-9999)
that specifies the block size for this pool. If this field
is omitted, the pool block size used is the same as the
largest block size of a file in the pool.

Buffer Count Option

[, BUFCT =xxx]

xxx is a number (001-999) that specifies the number
of buffers to be assigned to the pool. Tt must be equal
to or larger than the open count of the pool specified
on the scroup card. If this field is omitted, the Loader
attempts to assign at least two buffers to each file.

For further information concerning buffer pools, see
“Input/Output Buffer Allocation.”

$GROUP Card
The scroup card is used to allocate buffer areas and to
specify how the buffers are to be shared by a group of
files. A sETC card can be used to extend the variable
field of the scroup card. If the scrouP card is not used,
the Loader attempts to assign at least two buffers to
each file.
The format of the scroup card is:
1 16
SGROUP

‘Blenamer’. . . ‘Alenames
[, OPNCT=xx] [, BUFCT=xxx]

where each ‘filename’ is the name of a file to be included
in the group. Each ‘filename’ is an alphameric literal of
18 or fewer characters and is enclosed in quotation
marks. Deck name qualification is meaningless, since
the Loader assigns only one file block for each unique
file name in the application. An error message results
if a file specified as NorooL in the 1BMAP FILE pseudo-
operation is also specified on a sPooL or scrouP card, or
if any other file dictionary entries for this named file
require a pool. In this event, the NopooL option is
ignored.

Loader (IBLDR) 35

Open Count Option
[, OPNCT=xx]

The symbol xx represents a number (01-99) that
specifies the number of files within the group that are
open concurrently during the execution of the program.
This count determines the minimum buffer count
necessary for processing the group of files. If this field
is omitted, the count is assumed to be equal to the
number of files in the group.

Buffer Count Option
[, BUFCT =xxx]

The symbol xxx represents a number (001-999) that
specifies the number of buffers to be assigned to this
group. It must be equal to or larger than the open
count of the group. If this field is omitted, the Loader
attempts to assign at least two buffers to each file.

For further information concerning buffer pools, see
“Input/Output Buffer Allocation.”

$USE Card
The suse card provides a method of specifying a par-
ticular control section that is to be used with the object
program at execution time. Normally, the first occur-
rence of a control section is retained, and sections with
the same name in other decks are deleted. The sUSE
card causes the control section in a specified deck to
be retained and all control sections with the same name
in other decks to be deleted. A setc card can be used
to extend the variable field of the suse card.

The format of the susk card is:
1 16
$USE
where the fields in the variable field consist of alpha-
meric literals. The first six or fewer characters of the
field are the deck name. Following the deck name is
the external name of the control section consisting of
six or fewer characters enclosed in parentheses.

deckname(exname), . . .

$OMIT Card

The somir card provides a method of deleting a con-
trol section from a specific deck or from all decks in
which it appears. To delete the control section from a
single deck, the external name for the control section
must be preceded by the name of the deck. To delete
the control section from all decks in which it occurs,
it is only necessary to specify the external name for the
control section. A seTc card can be used to extend the
variable field of the somrt card.
The format of the somrr card is:

1 16
SOMIT exname, . ..
deckname(exname), . ..

where the fields in the variable field consist of alpha-
meric literals. A literal may contain just the external
name (six or fewer characters) of a control section, or

36

it may contain a deck name of six or fewer characters
followed by the external name of a control section en-
closed in parentheses.

$NAME Card

The sxaME card may be used to change the name of a
file or control section. A name change is required when
the same name has been used in different decks for two
or more distinct files or control sections, in which case
one of them must be renamed with a unique name.
This control card may also be used when two different
names are used to refer to the same file or control sec-
tion, in which case one name is replaced by the other.
A sETC card can be used to extend the variable field of
the sNAME card.
The format of the sNnaME card is:

1 16
$SNAME deckname(exname) =exname, . . .
exname = exname, . . .
‘deckname (filename)’
=‘filename’, . ..

‘filename’=‘filename’, . . .

where the entry in the variable field consists of two
alphameric names separated by an equal sign. The
name on the left consists of an external name that may
be qualified by a deck name. This external name is re-
placed by the name to the right of the equal sign. If
files are to be renamed, the name and the qualifier
must be enclosed by quotation marks.

If the external name on the left is not qualified, it is
replaced by the name on the right wherever it occurs.
If the name is qualified by a deck name, it is replaced
by the name on the right only in the deck named.

$SIZE Card
The ss1ze card allows the programmer to specify the
size of blank comMmMoN.
The format of the ssize card is:
1 16
$SIZE //=n

where n is a decimal number that specifies the size of
blank common. The double slash and the equal sign
are required. If n is less than the largest blank common
required by an object program and its subroutines, this
specification is ignored by the Loader.

Blank common is located in such a way that the last
location occupied is the highest available core storage
location as defined by the 1BjoB communication loca-
tion 1BjcoR. The starting location of blank common is
always an even core storage location.

$ETC Card

The serc card may be used to extend the variable field
of a SFILE, $POOL, $GROUP, SUSE, SOMIT, SNAME, or another
seTC card. It may not be used to extend the variable
field of a sLABEL card. The presence of a serc card in-

dicates that more information is associated with the
control card immediately preceding the setc card.
Therefore, the order in which seTc cards occur is very
important, and all seTc cards for a particular control
card must immediately follow that control card. Infor-
mation appearing in the variable field may be any
information allowed on the control card that the seTC
card is extending, but an individual field cannot be
split between two cards.
The format of the serc card is:

i 1

[<>]

$ETC variable field information

Input/Ovutput Buffer Allocation

The rules of storage allocation pertaining to input/
output buffer pools and the effect of spoor and scroup
cards on such allocation procedures are described in
this section.

The Loader normally assigns core storage not used
by an object program as input/output buffers. Storage
is not allocated by the Loader when the programmer
is programming at the Input/Output Executor (10EX)
level or when the programmer generates his own file
control blocks. Since each object program is entirely
relocatable and the amount of usable core storage can
only be determined by the Loader, the Loader does
the following:

1. The storage not assigned to the system or to the
object program is apportioned as input/output buffers
for the files of the object program.

2. The 10Cs initialization sequences of DEFINE and
ATTACH are generated and loaded in front of the object
program. At the end of these calling sequences, an in-
struction is generated to transfer control to the first
instruction to be executed.

3. 10cs is coded so that any 10cs-detected error that
would have resulted in a machine stop causes the call-
ing of an error routine that closes all files in use and
proceeds to the next job segment or Processor applica-
tion.

4. If the Loader encounters a file dictionary entry
specifying NopooL, the named file is processed for unit
assignment only. It is not attached to a buffer pool, and
the file does not appear in the generated file list.

General Buffer Assignment

In the absence of spooL and scrouP cards, the rules of
input/output buffer storage allocation are:

1. Each file is a separate reserve group.

2. A different buffer pool is created for each distinct
blocking size encountered. All files that have the same
blocking size are assigned to the same pool, regardless
of whether they are input or output files.

3. Storage is assigned to each pool in three steps:

a. The pool is given one buffer for each file. If
available storage is not sufficient for this al-
location, execution is terminated, and an
appropriate error message is printed.

b. An additional buffer for each file is allocated
to the pool. If available storage does not permit
this allocation, a weighing factor is formed
from the number of additional buffers desired,
multiplied by the total activity of the files in
that pool. The pool with the largest weighing
factor is then assigned one buffer, if possible.
If this assignment is not possible, the weighing
factor of the pool is set to zero. If this assign-
ment is possible, it is made and the weighing
factor of the pool is reduced. The pool that
now has the largest weighing factor is given
a buffer. This continues until all the weighing
factors are reduced to zero.

¢. The remainder of storage, if any, is appor-
tioned by the ratio of the output activity of
each pool, i.e., the sum of the activity of each
output file in that pool compared with the sum
of the total output file activity.

Storage is allocated first to the pool with the greatest
buffer size, so that the remainder may be assigned to
a smaller pool.

4. The amount of storage used by each buffer pool
is:

BUFCT*(BUFSIZ+2) +2

Buffer Assignment with $POOL and $GROUP Cards

spooL and sGroUP cards may be used to direct the as-
signment of input/output buffers to certain files, pools,
or groups. Normally, because each program requires
a relatively small amount of the total core storage,
sufficient storage is available to assign many buffers to
each pool. However, if the program is large or the num-
ber of files is great, the programmer may, by using
spooL and scrouP cards, specify a more efficient assign-
ment of buffers. The use of spooL and scrouP cards is
not considered the normal case.

1. spooL cards cause all files mentioned on the con-
trol card to be assigned to the same buffer pool. If any
of the files are also specified on scroup cards, all files
specified in that group are automatically associated
with the pool. No other files, not even those with block
size equal to that of the pool, are assigned to the speci-
fied pool.

2. If a buffer count is specified on a spooL card, that
pool is given exactly that number of buffers. Checks
are made to ensure that the specified count is sufficient.
A sufficient count is defined as the sum of the number
of nongrouped files in the pool plus the buffer counts

Loader (IBLDR) 37

of all groups of that pool. If a buffer count is not speci-
fied, the pool is allocated buffers as described in the
section “General Buffer Assignment.”

3. If block size is not specified on a spooL card, the
size is the maximum block size of the files assigned to
that pool.

4. scroup cards cause the specified files to be
grouped under a single reserve group control word. If
a buffer count is specified, this count is used and must
be at least equal to the open count of those files that
are open concurrently. If the open count is not speci-
fied, it is equal to the number of files in the group. If
the buffer count is not specified, extra buffers are allo-
cated to the pool to which that group is assigned. This
is described in item 3c of the section “General Buffer
Assignment.”

5. Groups can be created within specified pools by
naming at least one of the files in the group on a spooL
card, as well as on the scroup card.

Unit Assignment

This section describes the unit assignment specifica-
tions for the sFILE card, the use of intersystem unit as-

units.

Unit Assignment Notation

The following notation is used to explain unit assign-
ment specifications:

NOTATION EXPLANATION

a real channel (A through H)

a symbolic channel (S through Z)

an intersystem channel (J through Q)
a unit number (0 through 9)

the access mechanism number (0 or 1)
the module number (0 through 9)

the Data Channel Switch (also called inter-
face) (Oorl)

the model number of a 729 Magnetic Tape
Unit (I, IV, V, or VI)

a 1301/2302 Disk Storage

a 7340 Hypertape Drive

a 7320 Drum Storage

R L Y]

zmgo 2

Unit Assignment Specifications

NOTATION EXPLANATION

blank Use any available 729 Magnetic Tape Unit.

M Use any available 729 Magnetic Tape Unit,
model M, where M is either 11, IV, V, or VL.

X Use any available 729 Magnetic Tape Unit
on channel X.

r Use any available 725 Magnelic Tape Unit
on channel P.

X(k) Use the kth available 729 Magnetic Tape

Unit on channel X, The parentheses are re-
quired.

38

NOTATION EXPLANATION
PM Use any available 729 Magnetic Tape Unit,
model M, on channel P.
P(k)M Use the kth available 729 Magnetic Tape

Unit, model M, on channel P. The paren-

theses are required.
1(k) Use the kth available 729 Magnetic Tape
Unit on channel 1. The parentheses are re-
quired. This specification can be used for
input and output units.
Use the kth available 729 Magnetic Tape
Unit, model M, on channel I. The paren-
theses are required. This specification can be
used only for output units.
Use the kth available 729 Magnetic Tape
Unit on channel 1, and release the unit from
reserve status after the application has been
completed. The parentheses are required.
Use 1301/2302 Disk Storage on channel X,
access mechanism number a, module num-
ber m, and data channel switch s.
Use 7320 Drum Storage on channel X, access
mechanism number a (0), module number
m (0, 2, 4, 6, or 8), and data channel
switch s.
Use a 7340 Hypertape Drive on channel X,
unit number k, and data channel switch s.
Use the system input unit (SYSIN1) and the
alternate system input unit (SYSIN2) as the
primary and secondary units, respectively.

OU, OU1,0U2 Use the system output unit (SYSOU1) and

oo ATTa

I(k)M

I(k)R

XDam/s

XNam/s

XHk/s

IN, IN1, IN2

as the primary and secondary units, respec-
tively.

Use the system peripheral punch unit
(SYSPP1) and the alternate system periph-
eral punch unit (SYSPP2) as the primary
and secondary units, respectively.

UTk Use the system utility unit, number k.

PP, PP1, PP2

RDX Use the card reader on channel X. If a card
reader is specified, OPTHCV or REQHCV
must be specified in the FILE pseudo-
operation.

PRX Use the printer on channel X.

PUX Use the card punch on channel X. An as-

terisk in the unit 2 field indicates that the
secondary unit for a file is to be a unit on
the same channel and of the same model
type as the primary unit. This unit, if avail-
able, is assigned after all other unit assign-
ments have been made.

INT The file is an internal file.

NONE No unité are assigned. A file control block is
generated but does not refer to a unit control

block./

Intersystem Unit Assignment

To provide for the passage of data through a series of
related applications, intersystem unit assignments are
made. The use of this specification allows an object
program to write an intermediate output file on a unit
and to reserve that unit for later use as input or output
for an object program in a different application. This
is done by using symbolic channels J through Q.
When a sFiLE card for an input file is encountered
by the Loader, the primary intersystem channel and

relative unit, if present, are used for scanning the unit
control blocks to find a matching intersystem unit, i.e.,
a unit in reserve status that has the same intersystem
channel designation and relative unit. If a match is
found, the input file from the sFiLE card is assigned to
that physical unit. If a match is not found, a tape as-
signment error is noted and execution is not allowed.

For an intersystem unit designated as output, the
same scanning of the unit control blocks is performed.
However, unlike the input file processing, if a match
is not found, the intersystem channel is treated as a
symbolic channel (S through Z) and a reserve flag and
indicative data are placed in the unit control block.

If an error occurs, either prior to or during execution
of a program that uses intersystem output units, these
units are removed from reserve status and are returned
to the availability chain. Subsequent references to these
intersystem units as input causes a tape assignment
error, and an error message is written on the system
output unit.

Order of Assignment

Files are assigned to units in the following order:

1. All files on system or card units are assigned first.

2. Input files on intersystem channels are assigned.
If the designated unit does not already exist in reserve
status, a tape assignment error is noted and execution
is not allowed.

3. Files on specified (real) channels are assigned.

If during steps 1, 2, and 3 there are insufficient uniis
on the requested channels, a message is printed indicat-
ing that the object-time tape assignment can not be
completed because of insufficient units on the specified
channels,

4. Output files on intersystem channels are assigned.
Those intersystem channels with the largest require-
ment are processed first. Starting with the highest real
channel, the channels are processed to determine
whether the intersystem channel requirements can be
met. When a real channel is found that contains suf-
ficient available units for the intersystem channel, that
real channel is chosen. If there is no real channel that
can meet the intersystem channel requirements, a real
channel is chosen to assign as many of the intersystem
units to the channel as possible. The remaining inter-
system units are now assigned by again finding the
intersystem channel with the greatest requirements
and matching it with a real channel.

5. Files on symbolic channels are assigned. The pro-
cedure is the same as that described under intersystem
assignment.

6. Only files with model specifications are assigned.
Units are chosen, starting at the highest unit number
of the first available channel.

7. Files with omitted specifications are assigned. If,
during steps 4, 5, 6, or 7, there are insufficient units
available for assignment, a message is printed indicat-
ing that object time tape assignment can not be com-
pleted because of insufficient units on the system.

8. Secondary units are assigned with the primary
units and on the same channel as the primary units.
When the unit 2 specification is omitted, the secondary
unit is the same as the primary unit. If the primary unit
is a Hypertape drive, the secondary unit must also be
a Hypertape drive.

Overlay Feature of the Loader

The overlay feature provides a method for processing
programs that exceed the capacity of core storage. The
programmer divides the program to be executed into
links. A link can contain one or more program decks.
One of the links (called the main link) is loaded into
core storage with the overlay subroutine and the tables
required for program execution, and it remains in core
storage throughout the execution of the program. The
Loader writes the other links (called dependent links)
on an external storage unit. The external storage unit
can be disk storage, drum storage, or magnetic tape.
The dependent links are written in a scatter-load for-
mat and have block sizes of 464 words for 729 tape
and 1301 disk storage, 524 words for 7320 drum storage,
or 969 words for 2302 disk storage, depending on
which device the Loader is assembled for.

The Overlay Structure

Figure 17 is an example of the structure of an overlay
application. In Figure 17, the vertical lines represent
links into which the program is divided. The horizontal
lines from which the vertical lines proceed indicate the
logical origins of the links.

Note that, as Figure 17 implies, a continuous chain
of links is always in core storage, from the deepest link
required, back through whatever links precede it, to
the main link. For example, in Figure 17 the possible
configurations of links are:

1. link 0 (main link only)

2. links 0 and 1
. links O and 2
links 0 and 3
links 0 and 4
. links 0, 4, and 5
. links 0,4, and 6

The loading of a link is caused by the execution of
a call from a link that is presently in core storage to a
link that is not in core storage. When a link is loaded,

N < SIS, TG R

Loader (IBLDR) 39

it overlays the link in core storage with the same logical original link overlaid.
origin, and it overlays any links in core storage with As noted above, a continuous chain of links is always
deeper logical origins extending downward from the in core storage. For example, if link 6 in Figure 17

39.1

Deck 1
Link 0 (Main Link)
Deck 2
Origin A |
Deck ¢ T
Deck 6
Deck 3 - > Link 4
L Link 3
4 > Llink2
Deck 10
T Origin B
Deck 7 A
Deck 8
Deck 4
Deck 11 Deck 13> Link 6
—+ SLink1
> Link 5
Deck 5 _
A Deck 12
|

Figure 17. Example of Overlay Structure

were to be called from link 0, link 4 would also be
loaded, even though specific reference was not made
to link 4.

If a link already in core storage is called, it is not
reloaded.

Each deck within a link is called, or referred to, by
the map pseudo-operation carLL. The carL pseudo-
operation is the only operation that causes overlay.
FORTRAN and COBOL statements that are translated into
a caLL pseudo-operation that refers to another deck
can be used to cause overlay. A caLL statement is not
needed after every link.

The CALL Statement

The primary rule regarding CcALL statements that cause
links to be loaded is that, normally, no deck may either
directly or indirectly call for itself to be overlaid.

The following types of cALL statements are valid:

1. A call toward a deeper link in the same chain is
permissible. This type of call may or may not causc a
link to be loaded, depending on whether or not the
link is already in core storage.

2. A call within a link is always permissible. This
type of call does not cause a link to be loaded.

40

3. A call from a deeper link to decks within the same
chain of links toward the main link is permissible,
provided the deck that it calls does not cause the orig-
inating deck to be overlaid.

If an invalid cALL statement is used, the program is
not executed unless NorLow is specified in the variable
field of the siBjoB card.

Since the overlay structure is defined at load time, all
CALL statements that cause overlay must be defined at
load time. A caLL statement of the form:

CALL o

where the address is supplied at execution time, cannot
initiate overlay.

Referring to the overlay structure in Figure 17, the
following examples may be given:

1. A call from deck 3 to deck 4 is permitted. A call
within the same link never causes a link to be loaded.

2. A call from deck 2 to deck 12 is permitted. This
call from link 0 to link 5 initiates the loading of links
4 and 5.

3. A call from deck 12 to deck 9 is permitted. This
call is in the chain of links toward the main link.

4. A call from deck 13 to deck 3 is not permitted.

This call causes the loading of link 1, thereby overlay-

ing link 6, which contains the deck in which the caLL
statement originated.

5. A call from deck 11 to deck 9, followed by a call
from deck 9 to deck 13, is not permitted. This call from
deck 11 to deck 9 is valid, but, since deck 9 contains a
call to deck 13, link 6 would overlay link 5, which con-
tains the deck in which the caLL statement originated.

Virtual Control Sections

During the analysis of virtual control sections, virtual
control sections other than the caLL type are also
checked for validity. This type of virtual reference
cannot cause a link to be loaded, but may cause an
error if reference is made to a section that is not in core
storage. The following rules should be considered:

1. A reference to a control section in a deeper link
in the same chain is permissible, but it may be in error
if the deeper link has not been loaded into core storage.
If Locic or pLociC was specified on the siBjoB card, a
warning message is printed.

2. A reference within a link is always permissible.

3. A reference from a deeper link to a control section
within the same chain of links toward the main link is
always permissible.

4. A reference to a section that is not in the allow-
able chain of links is not permitted, since, by the
definition of overlay structure, the section referred to
would not be in core storage. If NorLow is specified in
the variable field of the siBjos card, this type of refer-
ence is permitted.

Storage Allocation During Execution

Figure 18 illustrates how the overlay structure in Figure
17 would be assjgned to core storage. Links having the
same logical ofigin are loaded starting at the same
absolute location, unless the programmer has specified
an absolute loading address for one or more links.

System

Link O

Library Subroutines

Link 4
Link 2

Link 3

Link 1

Link 5 Link 6

Unused Core Unused Core

Storage Storage

FORTRAN COMMON

Figure 18. Overlay Core Storage Allocation

Library subroutines in the main link are loaded fol-
lowing the input decks that constitute the main link.
Nearly all of the Library subroutines can be included
in deeper links by using a siNncLUDE card. The excep-
tions are noted under “sincLupe Card.” The input/
output buffers occupy the unused core storage area
between the longest possible link configuration and the
highest available core storage location. The FoRTRAN
COMMON area, if used, has priority and is assigned the
highest available core storage location and, therefore,
is assigned following the input/output buffers.

Overlay Control Cards

Two control cards are used with the overlay feature
of the Loader. The soricIN card is used to specify the
logical origin of links. The sixcLubE card is used to
specify a deck (or any control section) be loaded with
a link other than the one with which it would normally
be loaded.

The order in which options are specified on the con-
trol cards is not significant unless otherwise specified.

$ORIGIN Card

The logical origins that are specified on soricIN cards
govern the structure of an overlay deck. The decks
appearing first in the program are assigned to the main
link and are usually not preceded by a soricix card. A
soRIGIN card must precede the main link if the overlay
link-loading subroutine .Lovry is included in the
input program rather than being read from the Sub-
routine Library. When a soriciv card is used to desig-
nate the main link, the logical origin specified by this
card cannot be used on succeeding sORIGIN cards or an
error condition occurs, since more than one main link
would then be specified.

The soriGIN card initiates an overlay link for the
decks that follow. Decks following the soriGIN card
are assigned to the same link until the occurrence of
another soRIGIN card, a sENTRY card, or an end-of-file
condition.

All pertinent information must be on this control
card. The seTc card may not be used to extend the
variable field information.

The following text indicates the options that may be
specified on the soriGIN card.

The format of the soricin card is:

1 16

$ORIGIN logical origin [, options]

where the logical field must be specified and must be
the first information contained in the variable field.
The field contains an alphameric literal of six or fewer
characters, one of which must be nonnumeric. Char-
acters that cannot be used are parentheses, equal signs,
commas, slashes, quotation marks, and embedded
blanks.

Absolute Origin Option
Eabe)l}lte]

origin

This field contains five or fewer numeric characters
specifying an absolute location at which the link is to
be loaded. If the number is expressed in octal form, an
alphabetic O must precede the number. The field is
used only if a program requires that a link be loaded at
a specific location. It has no effect on the overlay struc-
ture. It merely determines the loading point for this
particular link and all those links following that are
without soriGIN cards to specify different absolute
origins.

Unit Specification Options
[, %SYSUT2 % :I

SYSxxx

This field specifies the input/output unit on which
the dependent links are written. Any of the following
seven system units may be specified:

SYSUT2 (or UT2) SYSLB4 (or LB4)
SYSUTS3 (or UT3) SYSCK1 (or CK1)
SYSLB2 (or LB2) SYSCK2 (or CK2)
SYSLB3 {or LB3)

Loader (IBLDR) 41

NortE: sysck? is not available if debugging has been
requested.

If the system library unit sYsLB2, SYSLB3, Or SYSLB4 is
specified and is also used to store the system com-
ponents, an error message is written on the system
output unit and execution is not allowed.

If the field is omitted, the system utility unit (sysuT2)
is assigned. It is assumed that the unit chosen is in
ready status and that it is not used for any purpose
other than loading links during execution.

Rewind Options

b

NOREW — The input/output unit containing the link
is not to be rewound after the link is loaded.

REW — The unit is to be rewournid.

If neither NOREW nor REW is specified, the unit is not
rewound (NOREW).

$INCLUDE Card

The siNcLUDE card specifies that the decks and/or the
control sections named in the variable field be included

$1BLDR

$IBLDR DECK4 Ill
$IBLDR DECK3 ||

$ORIGIN ALPHA

$IBLDR DECKT11 "
SORIGIN _ BETA

$IBLDR DECK10]'l
$IBLDR DECK9 'l
$ORIGIN BETA

$IBLDR DECK8 II
$SORIGIN ALPHA
$IBLDR DECK2 “l
$IBLDR DECK1 "
$I1BJOB ..

$EXECUTE 1BJOB

Figure 19. Sample Overlay Control Card Deck
42

DECK5
SORIGIN GAMMA

$IBLDR DECK7 1"
SORIGIN AMMA

in the link in which this control card appears, rather
than in the link to which they would normally be as-

signed.
The format of the siNcLUDE card is:
1 16
$INCLUDE gdeckname ; .
exname

The subfields of the variable field contain alphameric
literals that specify either a deck name (usually a
library subroutine) or a real control section name of
nonzero length (usually a block of data or coding) to
be included in this link.

If a library subroutine is specified, the deck name of
the subroutine (and not one of its entry points) must
be given. Library subroutines are placed automatically
in the main link, so that they are available to all sub-
sequent links. A library subroutine may, however, be
assigned to a dependent link by means of a siNcLUDE
card. A subroutine or control section cannot be loaded
in more than one link. If it is called from more than
one link, it must be loaded in a link that is available
to all calling links.

EOF
SENTRY

The following subroutines must always be in the
main link and, therefore, may not be specified on a
SINCLUDE card:

1. .FpTRP — Floating-Point Trap Subroutine

2. .Lxcox — Execution Control Subroutine

3. .Lovry — Overlay Link Loading Subroutine

4. The subroutine(s) designating the level of 10cs
used by the object program. The object-time debugging
routines, if used, may not be specified on a sINCLUDE

card. The Library 1ocs routines .IODEF, .IOCSS, .10CS,
JIOCSM, .IOCSD, .IOCSL may not hp Spe@_ﬁpr] on a SINCLUDE
card.

The variable field of a siNcLupE card may be ex-
tended over more than one card, using either the serc
card or another sixcLUDE card. The siNcLUDE card may
appear immediately following the soricix card specify-
ing the link, between the decks within the link, or

immediately following the last deck of the link.

Control Card Usage

Figure 19 illustrates how a deck would be set up to
produce the program structure given in Figure 20.

In Figure 19 the soriGIN card, which first uses logical
origin ALpHA, immediately follows the main link (decks
1 and 2). All links using logical origin ALpHA, therefore,
proceed from the main link. Every new logical origin
encountered on a soRIGIN card specifies that all links
using this logical origin will proceed from the previous
link. The soriGIN cards containing the logical origins
BETA and camMa are placed after the links from which
they proceed. In this manner, the soriGIN cards are used
to form the overlay structure.

Deck 1
Deck 2
ALPHA
Deck 8 Deck 3
-+
Deck 4
BETA GAMMA
Deck 11 Deck 5
l Deck 9 Deck 7
—_ — ——
Deck 10 Deck 6
£

Figure 20. Overlay Structure for Sample Control Card Deck

The following examples are given to aid the pro-
grammer in the use of overlay control cards. To in-
clude the subroutine FLoG and the control section xyz
in the link that contains deck 1, the sequence shown in
Figure 21 could be used.

When a deck or section is assigned to a link by means
of a sINCLUDE card, care must be taken that the link
incorporating the deck or control section be available
to all other links that refer to or call the deck or section.

If a siNncLUDE card is used to move a block of instruc-
tions or data from a deck to some other link, it is pos-
sible to cause the external link file to be written in a
format that cannot be used efficiently during execution.
For example, in Figure 22 the instructions or data in
section xyz that are to become part of link A are not
encountered by the Loader for processing until after
link A and a portion of link B have been written onto
the system utility unit (sysuts). Therefore, on sysuTs,
the information in section xvz is isolated from the main
portion of link A. If sysuTs is a tape file, some tape has
to be spaced over when loading link A in order to load
the xvz portion. This situation can usually be avoided
by specifying a unique unit for the storing of the link
that contains the siNcLUDE card.

It should be noted that the previously mentioned
condition occurs only when the section specified on
the stxcLUDE card is internal to some deck and contains
text. This condition does not occur when assigning
library subroutines or control sections that do not con-
tain text to other links by means of the siNcLUDE card.

SORIGIN ALPHA
$INCLUDE FLOG,XYZ

(DECK 1)

y
3
&
l\’)
4

. Overlay Control Cards to Include Subroutine FLOG
and Control Section XYZ in Link Containing Deck 1

-
. ®
-
o

$0XIGIN A,SYSUT3 (LINK A)

$INCLUDE XYz
$0RIGIN BsSYSUT3 (LINK B)
$IBLDR DECK1

»TbLDR DECK2Z {CONTAINS XYZ)

Figure 22. Inefficient Use of $INCLUDE Card to Include Con-
trol Section XYZ in Link A

Loader (IBLDR) 43

CALL Transfer Vector

During loading, an analysis is made of all caLL state-
ments in the program. If a caLL statement causes
overlay, the transfer address of the caLL statement is
modified to refer to a transfer vector of the form:

pfx entry point, , link number
TXI .LOVRY

For example, the statement:
CALL .SUBPR

may be modified by the Loader to:
CALL .TV001

and starting at location .Tvoo1, the Loader would gen-
erate the following two words:

pix .SUBPR, link number
TXI .LOVRY

44

This transfer vector is constructed by the Loader and
is stored with the object program in a generated con-
trol section called .LvEc. During execution, if the called
deck was loaded into core storage, pfx is set to TxL and
a transfer is made to the entry point. If the called deck
was not loaded into core storage, pfx is set to Txu and
a transfer is made to the link loading subroutine .LOVRY.
This subroutine loads the required links and resets
all the transfer vector words involved to indicate
properly the load status of the links.

If Locic is specified on the smBjoB card, the absolute
location of .Lvec is indicated in the logic listing.

$ENTRY Card With Overlay

When a sENTRY card is used to name the first instruction
to be executed in a program using overlay, the instruc-
tion named must be contained in the main link.

The Subroutine Library contains relocatable sub-
routines for use by both the system itself and the object
program. These subroutines are incorporated into the
object program at load time by the Loader, either at
the programmer’s request or automatically in response
to program requirements. Subroutines may be added to
and deleted from the Subroutine Library by using the
Librarian, as described in the section “The Librarian.”

The Subroutine Library consists of system, cosoL,
and FORTRAN 1v subroutines. The operating system uses
certain Library subroutines for maintaining control and
communication among the system programs. The coBoL
subroutines include subroutines needed for movement,
conversion, input, and output of data. The FORTRAN 1v
section of the Library includes the FORTRAN mathe-
matics library, the FORTRAN input/output library, and
the ForTRAN utility library. The ForTRAN mathematics
subroutines and certain FORTRAN utility subroutines
available for use by the applications programmer are
described in this section. The remainder of the sub-
routines are used only by the system and the compilers,
and are described in the section “Subroutine Library
Information.”

FORTRAN IV Mathematics Library

The FORTRAN Iv mathematics library contains three
types of subroutines: single-precision, double-precision,
and complex. FORTRAN 1v, MAP, and COBOL programmers
can use these subroutines to perform mathematical com-
putations. Some subroutines are capable of performing
more than one kind of computation. These capabilities
are called “functions.” Each function has its own entry
point in the subroutine.

The library exists in two versions: a 7090 version and
a 7094 version. The main difference between them is
the way double-precision functions are evaluated. In
the 7090 version the closed subroutine Fpas has been
added to simulate double-precision instructions. In
the 7094 version double-precision instructions perform
the computations. These instructions save time and
core storage space. They are also more accurate for
very small double-precision numbers when used in
conjunction with the double-precision floating-point
trap routine. This routine is described in the section
“Floating-Point Trap Subroutine.”

Subroutine Library (IBLIB)

Calling Sequences to FORTRAN IV
Mathematics Subroutines

The calling sequence to a subroutine function depends
on the programming language used. In each case, how-
ever, the programmer specifies an entry point and the
names of one or more core storage locations containing
arguments. Each function has its own entry point. The
name of this entry point is distinct from the name of
the subroutine containing it. These names are con-
sidered as control sections and as such can be changed
through the use of the snaME card. (See “sNAME card.”)

Input to a subroutine normally consists of arguments.
In a cosoL program there must also be a core storage
location in which the subroutine places the result of its
computation. The general form of a calling sequence in
each programming language is shown in Figure 23. The
specific forms for calling the various functions are
shown in Figures 25A, 25B, 25C, and 26.

Calling Sequences For Calling Sequences For
Source Functions Having Functions Having
Language One Argument Two Arguments
FORTRAN IV | y=entry point (argument) | y=entry point (arg1, arg2
The answer is stored The answer is stored
iny. iny.
MAP CALL entry point CALL entry point (argl,
(argument) arg2).
The answer is left in The answer is left in
the AC or AC-MQ. the AC or AC-MQ.
COBOL CALL ‘cobol entry point’ | CALL ‘cobol entry point’
USING result, argument.]| USING result, argl,
The answer is stored arg?).
in result. The answer is stored
in result.

Figure 23. General Form of Calling Sequences to FORTRAN 1V
Mathematics Subroutines

Arguments

Most arguments used in the mathematics subroutines
must be normalized floating-point numbers. (Excep-
tions are in the Fxp1, Fxp2, ¥pxi, and FMIN subrou-
tines.)

A double-precision argument is contained in two ad-
jacent core storage words. The first word contains the
high-order portion of the argument and is referred to
as its location. The second word contains the low-order
portion of the argument.

Subroutine Library (IBLIB) 45

A complex argument is also contained in two ad-
jacent words. The first word contains the real portion
of the argument and is referred to as its location. The
second word contains the imaginary part of the
argument.

MaAP programmers coding for the 7094 must use an
EVEN pseudo-operation to store each double-precision
or complex argument, starting at an even core storage
location. Otherwise, as soon as a double-precision in-
struction in a subroutine refers to the argument, a
floating-point trap occurs. On the 7090 or 7094 II such
core storage alignment is not necessary.

COBOL programmers using data-types 4 and 5 on a
7094 cannot use the double-precision or complex sub-
routines. (For a description of data-types, see IBM
7090/7094 IBSYS Operating System, Version 13;
COBOL Language, Form C28-6390.)

Results

Each function produces a single result. Double-
precision and complex functions produce two-word
results. For FORTRAN 1v programs, the single-precision
result is stored in the leftmost variable in the calling
sequence. For coBoL programs, the result is stored in
the result word specified. For mMar programs, results
are left in the ac. The high-order portion of double-
precision results is left in the ac, and the low-order
portion in the mQ. The real portions of complex answers
are left in the ac, and the imaginary portions in the MQ.

Error Handling for FORTRAN IV Mathematics
Subroutines

There are certain limits on the range of numbers over
which an input argument yields meaningful results.
These ranges are shown in Figures 25A, 25B, 25C, and
26 for each subroutine.

When the valid argument range for a subroutine is
exceeded in a program, the execution-error-monitor
subroutine FXEM prints an error message. It then either
terminates execution or supplies a conventional answer
and returns control to the program. The Fxem sub-
routine is described under “rorTraN v Utility Library”
in the section “Subroutine Library Information” in
Part 2.

Among the conventional answers that Fxem may
give is the largest possible positive floating-point num-
ber. This is 212"~ 21% ip single-precision numbers, or
2127— 273 for double-precision numbers. For brevity, the
number is written as © in Figures 25A, 25B, and 25C.

The distributed version of ¥xem always supplies a
conventional answer when entered from a mathematics
subroutine. Except in exceptional circumstances, how-
ever, it is safer to terminate execution. The user can
provide for termination by presetting the Fxem control
bits as described under “rortraN 1v Utility Library.”

46

Error Codes

In each of Figures 25A, 25B, and 25C there is a column
headed “Error Code.” The numbers in this column cor-
respond to the respective option control bit position
in the first and third words of the FXEm control section,
i.e., the orTwp1 and opTwp3 described under “FORTRAN
v Utility Library.”

As an illustration of how this code is used, consider
what happens when the single-precision square root
subroutine encounters a negative (i.e., invalid) argu-
ment. In this case, the square root subroutine, upon
detecting the negative argument, makes an entry into
the FXEM subroutine, specifying error code 13. Upon
receiving the error code, rxeM examines bit 13 of
oprwpi. If bit 13 is zero, FxEM prints the appropriate
error message and terminates execution. If bit 13 is one,
this means that the option for computing the square
root of the absolute value of the argument will be
taken; accordingly, after printing a warning message,
FXEM returns control to the square root subroutine,
which changes the sign of the argument and proceeds
upon its normal course.

Floating-Point Trap Subroutines

The computer must be in the floating-point trap mode
for the proper operation of the FORTRAN 1v mathematics
subroutines. It is in this mode at the start of object
program execution and continues so until it executes
an LFTM instruction. Floating-point traps are handled
by the standard floating-point subroutine on a 7090
and by the standard or its alternate on the 7094. The
difference between these subroutines is discussed under
“Alternate 7094 Floating-Point Trap Subroutine.”

Floating-Point Overflow

Except for the subroutines dealing with complex num-
bers, floating-point overflow will never occur because
the arguments are screened upon entry. If an argument
is such that it could cause an overflow, it is immediately
treated as out of range and control passes to the Fxem
subroutine.

For some of the complex subroutines the occurrence
of floating-point overflow is possible even though both
the real and imaginary parts of a given argument them-
selves lie within the valid argument range. This is be-
cause either the real or the imaginary part of certain
complex answers is a function of both the real and the
imaginary part of the argument. If this happens, it is
too costly in both core storage space and execution
time to screen out invalid arguments prior to the par-
ticular arithmetic operation that could cause the over-
flow. An occurrence of such an overflow causes a
floating-point trap and an overflow error message. Since
the floating-point trap subroutine sets an overflowed

register to Q before proceeding, the answer produced
by a complex subroutine is unreliable.

Floating-Point Underflow

Several of the mathematics subroutines can cause
floating-point underflow. An underflow causes a float-
ing-point trap. The floating-point trap subroutine then
sets the register involved to a signed zero and re-
turns control to the subroutine from which the trap
originated. Often an underflow is irrelevant to the
computation of the function involved. This is true with
low-order or remainder underflow for the single-
precision or complex function routines. Setting zero
into the involved register does not in any way influence
the accuracy of answers. Both a double-precision low-
order underflow and a high-order underflow are rele-
vant to the accuracy of answers.

A relevant underflow occurs only when the answer
iteslf is very close to the underflow threshold. Since
numbers below this threshold cannot be represented in
the machine registers, setting underflowed registers to
zeros yields the greatest possible accuracy.

Alternate 7094 Floating-Point Trap Subroutine

As distributed, the system tape for the 7094 Subroutine
Library has both a standard and an alternate floating-
point trap subroutine. Each has the entry point name of
.FPTRP. The user must select the subroutine he wants.

The two subroutines differ only in the treatment of
MQ underflow resulting from a double-precision in-
struction. The alternate subroutine returns control to
the trapped subroutine, with the MQ unchanged (i.e.,
not set to zero). Full 54-bit significance is thus retained.
No errors will result from this action except when a
MAP program attempts independent manipulation of
high-order and low-order parts of double-precision
numbers.

The alternate subroutine is considerably more accu-
rate when the result of the arithmetic operation is less
than 10—3%%7 in magnitude. It is also more accurate
when used with double-precision subroutines. The
accuracy figures for double-precision subroutines in
Appendix H are based on the use of the alternate sub-
routine. Figure 24 shows the difference in accuracy
between the two versions.

7090 Double-Precision Simulation

Most of the 7090 double-precision mathematics sub-
routines use Fpas, a common utility subroutine for the
rapid simulation of double-precision instructions. FpAs
may also be called by a 7090 mar program. The Fpas
calling sequence and specifications are shown in Ap-
pendix H.

Maximum Accuracy] Maximum Accuracy
Mathematical Argument Using Standard Using Alternate
Quhrantina Danaa Cuhrandina Cuhrantina
........... Range Subroutine Subroutine
—89.415986<x
FDXP
—70.701013
<=7 8 decimal digits 16 decimal digits
FDSC o<Ix<2%r

In addition, if 0 < Argument < 27'* and if the low-order part of
the argument is inexact because the alternate subroutine is absent,
then this inaccuracy is reflected in the answer produced by FDSQ
and FDAT. The answer is then accurate to a maximum of only 8
decimal digits.

Figure 24. Accuracy of Standard Versus Alternate 7094 Floating-
Point Trap Subroutines

Evaluating Accuracy
To evaluate the accuracy of the subroutines, see Ap-
pendix H, “rorTRAN 1v Mathematics Subroutines —
Algorithms, Accuracy, and Speed.” This appendix also
contains the algorithms that are the mathematical basis
for each subroutine.

Subroutine Reference Tables

Figures 25A, 25B, 25C, and 26 contain information on
the FORTRAN 1v mathematics subroutines for quick
reference.

Information such as algorithms, accuracy statistics,
and average speeds is contained in Appendix H. Core
storage requirements are listed in Appendix I. These
tables are self-explanatory, except for the symbol ,
which has been defined previously under “Error Han-
dling for ForTRAN v Mathematics Subroutines.”

Norte: Some of the ranges in the following figures are
represented in powers of 2. The corresponding ap-
proximate decimal values are as follows:

27 = 5.878 X 10™
2% = 1.049 X 10°

2% = 3.355 X 10"
2% = 1.126 X 10¥

Subroutine Library (IBLIB) 47

Calling Sequences Options
F =FORTRAN IV
M=MAP Error If Argument Then The
Subroutine Name Definition C =CoBOL Valid Argument Range Code Range Is Answer |s
F: y=SQRT(x)
square root FSQR y=x% M: CALL SQRT(x) 0<x 13 x<0 Ixt?
C: CALL ".CSQRT’
USING y, x.
F: y=EXP(x)
exponential FXPF y=e® M: CALL EXP(x) x<.88.029692 8 x>>88.029692 Q
C: CALL ‘.CEXP’
USING x, y.
exponentiation F: y=i**j i=£0, |=0 1 i=0 0
fixed-point base M: CALL XP1.(,) i=0
and fixed-point C: CALL “.CXP1’
exponent FXP1 y=V USING y, i, j. B i=0 0
i<o
exponentiation F: y=x**i x40, i20 3 x=0 0
floating-point base M: CALL XP2.(x, i) i=0
and fixed-point C: CALL '.CXP2’
exponent FXP2 y=x' USING y, x, i. x=0
4 > 0
i<0
- 5 *<0 Ii?
exponentiation F: y=x**a x>0 and a20 a7#=0
floating-point base M: CALL XP3. (x, a)
and floating-point C: CALL ".CXP3’ o x=0 0
exponent FXP3 y=x* USING y, x, a. a=0
x=0
7 a<0 0
F: y=ALOG(x) 9 x=0 —Q
y=logs(x) M: CALL ALOG(x) 0<x
C: CALL ".CALOG’
USING , x. 10 x<0 loge Ixd
logarithm FLOG
F: y=ALOG10(x) 9 x=0 o)
y =log1o(x) M: CALL ALOG10(x) 0<x
C: CALL “.CAL1O’
USING ¥, X 10 x<0 logm |x|
y =sine(x) F: y=SIN(x)
M: CALL SIN(x) Ix1<< 2% 12 IxI=>2% 0
(x expressed C: CALL ".CSIN’
in radians) USING y, x.
sine/cosine FSCN
y =cosine(x) F: y=COS{x)
M: CALL COS(x) Ix1<2"% 12 xI>2% 0
(x expressed C: CALL ".CCOS’
in radians) USING y, x.
tangent/cotangent F: y=TAN(x) 1x1<<2% and x may not 73 Ix12>2% 0
FTNC y=tan(x) M: CALL TAN(x) be an odd integral
(x expressed C: CALL .CTAN’ multiple of - (see x"=-'k% where k
in radians) USING y, x. note) 74 is an odd Q
integer

Figure 25A. Single-Precision Subroutines in the FORTRAN IV Mathematics Library

48

Calling Sequences
F =FORTRAN |V

Options

USING y, x.

M=MAP Error If Argument Then The
Subroutine Name Definition C =COBOL Valid Argument Range Code Range Is Answer Is
tangent/cotangent F: y=COTAN(x) 1x1<<2% and x may not 73 IxI>2% 0
FTNC (cont.) y =cot(x) M: CALL COTAN(x) be a multiple of =
(x expressed C: CALL “.CCOTN' (see note 1) 74 x==km where k Q
in radians) USING y, x. is an integer
F: y=ATAN(x) any argument inappli- inapplicable inapplicable
y =arctan(x) M: CALL ATAN(x) cable
{y expressed C: CALL “.CATAN'
in radians) USING vy, x.
arctangent FATN
y =arctan(xi/x2) F: y=ATAN2(x1,x2)
M: CALL ATAN2(xi,x2) n (%1, x2)=(0, 0) 0
(y expressed C: CALL ‘.CATN2’ (x1, x2)74(0, 0)
in radians) USING vy, xi, x2.
F: y=ARSIN(x)
y =arcsine(x) M: CALL ARSIN(x)
(y expressed C: CALL ".CARSN’ K< 72 d>1 °
. in radians) USING y, x.
arcsine/arccosine
A
FASC y=arecosine(x) | F: y=ARCOS(x)
M: CALL ARCOS(x) 1x<1 72 IxI>1 0
(y expressed C: CALL ‘.CARCS'
in radians) USING y, x.
F: y=SINH(x)
y=ke"—e™) ! M: CALL SINH(x) 1x1<88.029692 75 1x1>>88.029692 Q
| €: CALL “.cSINH'
hyperbolic USING yox.
sine/cosine FSCH y=§(e'+e_’) F: y=COSH(X)
M: CALL COSH(x) 1x1<88.029692 75 1x1>>88.029692 Q
C: CALL '.CCOSH’
USING y, x.
hyperbolic 7 gt F: y=TANH(x) inappli- inapplicable inapplicable
tangent FTNH Y= et e M: CALL TANH(x) any argument cable
C: CALL “.CTANH’
USING y, x.
F: y=ERF(x) any argument inappli- inapplicable inapplicable
2 X 2 PP
error function FERF y=—"—= fe-" du | M: CALL ERF(x) cable
VrJ, C: CALL “.CERF'
USING y, x.
w0 | F: y=GAMMA(x) 27 < x<(34.843 76 Q
y =f v e du M: CALL GAMMA(x) XL
o C: CALL "CGAMA' or
gamma/loggamma USING y, x. x-234.843
FGAM
log base e of F: y=ALGAMMA(x) 0<<x<2.0593x10% 77 x<0 Q
above M: CALL ALGAMMA (x) or
C: CALL “.CALGM' x222.0593x10%

Note: For more details on the valid argument ranges for the tangent/cotangent subroutine and how these ranges can be expanded or reduced
through the FMTN subroutine, see “Error Control Modification for the FTNC Subroutine—FMTN."

Figure 25A. Single-Precision Subroutines in the FORTRAN IV Mathematics Library (cont.)

Subroutine Library (IBLIB)

49

Calling Sequences Options
F =FORTRAN IV
M=MAP Error If Argument Then The
Subroutine Name Definition C =COBOL Valid Argument Range Code Range Is Answer [s
) F: y=DSQRT(x) 0<x 22 x<0 Ixt?
square root FDSQ y=x* M: CALL DSQRT(x)
C: CALL ".CDSQR’
USING y, x.
F: y=DEXP(x) x<88.029692 19 x>>88.029692 Q
exponential FDXP y=e” M: CALL DEXP(x)
C: CALL ".CDEXP'
USING y, x.
exponentiation F: y=x**j x#0 x=0
floating-point base y=x* M: CALL .DXP1. (x,i) | i=20 14 i=0 0
and fixed-point C: CALL ".CDXPV’
. x=
exponent FDX1 USING y, x, i. 15 <0 0
- _ 16 x<0 Ixt?
exponentiation F: y=x**a x>0 a740
floating-point base y=x* M: CALL .DXP2. (x,a)| d=>0
and floating-point C: CALL '.CDXP2’ 17 x=0)
exponent FDX2 USING y, x, a. a=0
x=0
18 a<0 0
F: y=DLOG(x) 0<x on o _0
y=loge (x) M: CALL DLOG(x) < T -
C oNe 21 *<0 loge Ix
logarithm FDLG
y=logw (x) F: y=DLOG10(x) 0<x 20 x=0)
M: CALL DLOG10(x)
N
F: y=DSIN(x) Ix<2%r 23 IxIZ=2%7 0
y =sine(x) M: CALL DSIN(x)
(x expressed | C: CALL “.CDSIN’
in radians) USING y, x.
sine/cosine FDSC
y=cosine(x) F: y=DCOS(x) IX<2"r 23 Ix1=22%7 0
M: CALL DCOS(x)
(x expressed C: CALL .CDCOS’
in radians) USING y, x.
F: y=DATAN(x) any argument inappli- inapplicable inapplicable
y = Arctan(x) M: CALL DATAN(x) cable
(y expressed | C: CALL ".CDATN’
in radians) USING y, x.
arctangent FDAT _ _ -
y=arctan(xi/x2) | F: y=DATAN2(x:,xs) (x1,x2)54(0,0) 24 (x1,x2)=(0, 0} 0
M: CALL DATAN2
(X1,X2)
(y expressed C: CALL ".CDAT2’
in radians) USING y,x1,x2.
see note F: y=DMOD (b,d) any argument inappli- inapplicable inapplicable
Modular M: CALL DMOD (b,d) cable
arithmetic—FDMD C: CALL '.CDMOD’
USING y,b.d.

Note: B modulo D is defined as B—[B/D] *D. The brackets indicate that only the integer portion of the expression within them is used in evaluating

the equation.

Figure 25B. Double-Precision Subroutines in the FORTRAN 1V Mathematics Library

49.1

Calling Sequences Options
Definition F =FORTRAN IV
Nogation: M=MAP Error If Argument Then The
Subroutine Name z=xFix2 C =COBOL Valid Argument Range Code Range Is Answer s
square root FCSQ y=z<% F: y=CSQRT(z) any argument inappli- inapplicable inapplicable
real y20 M: CALL CSQRT(z) (see note 1) cable
C: CALL '.CCSQR’
USING y,z.
F: y=CEXP(z) Qcos(x2) +
exponential FCXP y=e’ M: CALL CEXP(z) x1<88.029692 % x> 88.029692 isin(x2)]
C: CALL ".CCEXP’
USING y,z. Ixal 2% 27 Ixel 227 0+0i
exponentiation y=z' F: y=z**i z%0+0i 14 z=0+0i 0
complex base and M: CALL .CXP1, (z,i) i=0 i=0
fixed-point exponent C: CALL “.CCXP1’ oo
FDX1 USING y,zi. z=0T0
Y. 15 <0 0
F: y=CLOG(2) 2540+ 0i 28 z=0+0i —Q+0i
logarithm FCLG y =PV loge(z) M: CALL CLOG(2) (see note 1)
(see note 2) C: CALL '.CCLOG’
USING y,z.
F: y=CSIN@) Ixi1 <2 29 Ixil =2 0+0i
y =sin(z) M: CALL CSIN(z)
C: CALL “.CCSIN’
USING y,z. 1x:1<88.029692 30 ix.1>>88.029692 (see note 3)
sine/cosine FCSC
y=cos(z) F: y=CCOS() 112 29 il >2% 0+0i
M: CALL CCOS(z)
C: CALL *.CCCO¥’
USING y,z. 1x.1<88.029692 30 1x:4>>88.029692 (see note 3)
F: y=CABS(z) any argument inappli- inapplicable inapplicable
absolute value FCAB y=lzl M: CALL CABS(z) (see note 1) cable
C: CALL ‘.CCABS’
USING y,z.
F: y=zn* z2 any argument inappli- inapplicable inapplicable
y=nXz: M: CALL .CFMP.(z1,22) (see note 1) cable
C: CALL ‘.CCFMP’
USIN'G Yo X1,X2.
arithmetic FCAS
y=z+z F: y=z/2: any argument inappli- inapplicable inapplicable
M: CALL .CFPD.(z1,22) (see note 1) cable
C: CALL '.CCFDP'
USING y,x1,x2.

Note 1: Floating-point overflow can occur.
Note 2: PV =principal value. The answer given will be from that branch where the imaginary part lies between — 7 and . More specifically, — 1<y, <
unless x;<<0 and xo= —0, in which case y.= —m.

Note 3: The optional answers for complex sine/cosine are as follows:

Xz sin (z) cos {z)
Q Q .
> 88.029692 - [sinGx) +icos(x)] - [cos(x)) — isin{x)]
Q Q
< —88.029692 7 [sin{x;) —icos(x:)] —2' [cos(x1) + isin(x1)]

Figure 25C. Complex Subroutines in the FORTRAN IV Mathematics Library

49.2

Calling Sequences Options
F =FORTRAN IV
M=MAP Error If Argument Then The
Subroutine Nome Definition C =COBOL Valid Argument Range Code Range Is Answer Is
double precision floating-point entered only via trap inapplicable inappli- inapplicable inapplicable
floating-point trap trap subroutine cable
routine (7094
library only)
.FPTRP
FMTN resets accuracy F: CALL MTAN(k) o<k inappli- inapplicable inapplicable
(see note 1) guarantee for M: CALL MTAN(K) where k is an integer cable
single-precision | C: (not available)
tangent
subroutine
double-precision performs double- | F: not available any argument inappli- inapplicable inapplicable
arithmetic simulator precision M: (see note 2) cable
FDAS addition, C: not available
multiplication,
and division
on a 7090.

Note 1: A detailed description of the FMTN subroutine is in “Error Control Modification for the FTNC Subroutine — FMTN.”
Note 2: The MAP language calling sequences are described under “7090 Double-Precision Arithmetic Simulator — FDAS.”

Figure 26. Miscellaneous Subroutines in the FORTRAN IV Mathematics Library

FORTRAN Utility Library

This section describes the rorTRaN utility subroutines
for testing machine indicators and recording the status
of the console and selected portions of core storage.
Other ForTRAN utility subroutines are described in the
section “Subroutine Library Information.”

Machine Indicator Test Subroutines

The following subroutines are referred to by caLL
statements in the FORTRAN 1v language. In the descrip-
tions of the subroutines an I is used to specify any
integer expression, and a J is used to specify any
integer variable.

FSLITE Subroutine
The FsLITE subroutine is used to test sense lights. The
source program statements are:

CALL SLITE(I)
If I = 0, all sense lights are set oFr. If I = 1, 2, 3, or 4,
the corresponding sense light is set on.

CALL SLITET(LJ)
Sense light I (1, 2, 3, or 4) is tested and set oFF. If the
sense light is on, the variable J is set to 1; if it was
OFF, | is set to 2.

FSSWTH Subroutine

The FsswTH subroutine is used to test sense switches.
The source program statement is:

CALL SSWTCH(1,])
Sense switch I (1,2, 3,4, 5, or 6) is tested. If the sense
switch was oFF, | is set to 1; if it was o, J is set to 2.

49.3

The roverr subroutine is used to test the Overflow
Indicator. The source program statement is:

CALL OVERFL(])
If an overflow condition exists, the variable J is set to 1;
it a nonoverflow condition exists, J is set to 2. The
machine is always left in a nonoverflow condition after
execution.

FDVCHK Subroutine
The rpvcrK subroutine is used to test the Divide Check
Indicator. The source program statement is:

CALL DVCHK(])
If the divide check indicator was on, the variable J is
set to 1; if it was oOFF,] is set to 2. The divide check
indicator is always left in orr status after execution.

Dump Subroutine

The rpmp subroutine records select portions of core
storage on the system output unit. Either of two entry
points, DUMP or PpUMP, is specified, followed by the
limits of the dump and the dump format.

pUMP is the entry point for a dump of the object
program. Upon completion of the dump, the contents
of core storage are restored and control is returned to
.LXCON, the postexecution subroutine.

PDUMP is the entry point for a snapshot dump of
selected portions of core storage. After the dump has
been taken, the contents of core storage are restored,
control is returned to the object program, and execu-
tion of the program continues.

FORTRAN
Logical System
Unit File Mode Function
Standard Alternate
Package Package
01 SYSUT1 Binary Binary or BCD Input or output
02 SYSUT2 Binary Binary or BCD Input or output
03 SYSUT3 Binary Binary or BCD Input or output
04 SYSUT4 Binary Binary or BCD Input or output
05 SYSIN1 BCD BCD Input
06 SYSOU1 BCD BCD Output
07 SYSPP1 Binary Binary Output
08 System BCD BCD input or ouiput
Availability
Chain

Figure 27. Correspondence Between FORTRAN Logical Units and System Files

The dump subroutine can be used in a FORTRAN 1v
program, a MAP program, or a coBoL program. The
following caLL statements are used in both FORTRAN 1Iv
and MAP programs:

CALL DUMP(ALBLFy,.....,AiBiFi)

CALL PDUMP(ALBLFS, ,A1B;,Fi)
where A and B, which are symbolic addresses, specify
the limits of the area to be dumped.

F indicates the dump format and can be one of the
following integers:

0 octal dump

1 floating-point dump

2 integer dump

3 octal dump with mnemonics

After entering linkage mode, the following state-
ments can be used in a coBoL program to call the dump
subroutine:

CALL ‘DUMP’ USING data-name-1, data-name-2,
numeric-literal-1 [, data-name-3,
data-name-4, numeric-literal-2, 1
CALL ‘PDUMP’ USING data-name-1, data-name-2,
numeric-literal-1 [, data-name-3,
data-name-4, numeric-literal-2, . . .]

The data-names represent any working storage areas
or constants. If the data-name is a file-name, the file
control block for that file is written on the system out-
put unit.

The numerical literals are integers that specify the
format of the dump. The integers and the correspond-
ing dump formats are the same as those for a FORTRAN
IV Or MAP program,

If an integer for the format is not given when this
subroutine is used, the dump format is octal. If no
limits are specified following the entry point and if the
format is not specified, all of core storage is dumped
in octal.

FORTRAN Files

The input/output devices used in data transmission
are always referred to symbolically in FORTRAN 1v pro-
grams. Symbolic references may be made to a constant
FORTRAN logical unit or to a variable unit in the stand-

ard FORTRAN input/output package as well as the al-
ternate package.

Constant Units

Any FORTRAN Iv source program input/output state-
ment that refers to a constant unit (for example,
reaD(1, 10)A, where the reference is to the constant
FORTRAN logical unit 01) causes the library file routine
corresponding to that unit to be loaded with the object
program. A file routine contains a MAP language FILE
pseudo-operation that determines various file specifica-
tions, such as unit assignment, block size, and file type.
The unit assignment specification establishes corre-
spondence between FORTRAN logical units and symbolic
units. See Figure 27.

If additional logical units are desired, a file routine,
in the following format, must be inserted into the
user’s program:

ENTRY .UNxx.

.UNxx. PZE UNITxx
UNITxx FILE Specifications

where xx is a two-digit FortraN logical unit number.

If the additional logical units are to be permanent,
a file routine must be inserted in the Subroutine Li-
brary and an entry must be made in the table that
describes these routines in the Fvio subroutines.

Variable Units

Any FORTRAN IV source program input/output state-
ment that refers to a variable unit causes the rvio sub-
routine (.Fvio in the alternate input/output package)
and all file routines to be loaded with the object pro-
gram. The following is an example of such an input/
output statement:
WRITE (I,10)A

In this example, the FORTRAN input/output logical
unit I varies during execution of the program. The
Fvio subroutine (or .Fvio) takes the value of the
variable unit at the time the variable input/output
statement is to be executed, and refers to a table to de-
termine which file routine is required.

494

Programming in Sections

Under the 1BjoB Processor system a programmer can
submit jobs divided into sections. Each individual sec-
tion can be in MAP, FORTRAN, coBoL, or relocatable
binary. 18joB can thus process sections in different lan-
guages in the same job. This flexibility has useful con-
sequences:

1. Programmers can use the best features of each
language. For example, the flexibility in the control and
manipulation of data under the MaP language can be
combined with the simplicity of FORTRAN mathematical
capabilities.

2. Sections of a large job can be coded and tested by
different programmers at different times, and then
combined.

3. Jobs that have already been tested can be saved
in relocatable binary card form for later combination
with other sections, thus reducing compile and assem-
bly time.

Examples of Programming in Sections

Configurations that can be used in multilanguage pro-
gramming are shown in Figures 28, 29, and 30. Note
that any one of the decks shown in these examples can

1 8 16

$J0OB MAP MAIN PROGRAM CALLING FORTRAN SUBROUTINE
$EXECUTE 18J08B

$18J0B MAP

$1BMAP MAP1L
MAPLA SAVE

NODECK,M94

CALL FTC1A(P1,P2)

RETURN
END

MAP1A

be replaced by its relocatable binary equivalent (see
“Relocatable Binary Decks”).

Note: If the entry point to a called cosoL program
section is defined — as in Figure 28 — by the deckname
of the coBoL section, the call to the cosoL section
cannot include parameters and return must be made
through the sTop RuN verb (see a description of the
STOP RUN verb in the coBoL manual). But if the entry
point is defined — as in Figure 29 — by the ENTRY POINT
clause of the ENTER verb, return to the calling deck is
by the RETURN clause of the ENTER verb. The latter
method of definition is preferable.

Grouping FORTRAN Source Decks

To make the best use of the new ForTraN 1v Compiler
speed, the programmer should group all rForTRAN
source decks together in a multilanguage program.

COBOL-FORTRAN Program Adjustments

Programmers who wish to use coBoL and FORTRAN
decks in the same program should be aware that they
may encounter some problems. For example, FoRTRAN
and coBoL references to multidimensional arrays are
made on a different basis.

$*FOLLOWING IS A FORTRAN SUBROUTINE CALLING A COBGL SUBROUTINE

$IBFTC FTC1 NODECK ,M94, XR7
SUBROUTINE FTC1lA(A,B)

-

CALL cBC1

RETURN

END
$*FOLLOWING IS A COBOL SUBROUTINE WITH AN
$#ENTRY POINT THROUGH THE DECKNAME

$IBCBC CBC1 NGDECK 4 XR7
STOP RUN.

$CEEND

(END-OF-FILE CARD)

$STOP

Figure 28. MAP Main Program Calling FORTRAN Subroutine

50

1 8 16

$JOB FORTRAN MAIN PROGRAM CALLING MAP, COBOL
$EXECUTE IBJoB
$1BJOB MAP

$IBFTC MAIN NODECK s M94y XR7

CALL MAP1A{(A,B)

CALL CBC1A(C,4D)

STOP

END
=FOLLOWING IS A MAP SUBROUTINE CALLING A COBOL SUBROUTINE
$IBMAP MAP1 NODECK ;M4 4 XRT
MAP1A SAVE

CLA=* 344 (PICK UP MAIN PROGRAM ARGUMENT A)

SXA SVXR4& 34

CALL CBCIA(E,F)
SVXR4 AXT *kg {RESTORE XR4)

STO» bek (STORE IN MAIN PROGRAM ARGUMENT B)

RETURN MAP1A

END

$#*FOLLOWING IS A COBOL SUBROUTINE WITH ENTRY POINT DEFINED BY
$*ENTRY POINT CLAUSE
$IBCBC CBC1 NODECK,M%4, XR4

Pl. ENTER LINKAGE-MODE.
ENTRY POINT IS 'CBClA'
RECEIVE FACTOR
PROVIDE RESULT.

P2. ENTER COBOL.

P3. ENTER LINKAGE-MODE.
RETURN VIA 'CBC1lA'.
P4. ENTER COBOL.

STOP RUN.
$CBEND
(END-OF-FILE CARD)
$ST0OP

-Figure 29. FORTRAN Main Program Calling MAP and COBOL Subroutines, and MAP

Subroutine Calling COBOL Subroutine

Another problem occurs when a cosoL deck and a

Where coBoL and FOorRTRAN decks in a program refer

FORTRAN deck refer to the same physical input unit. In to the same physical output unit and the order of the
such a case, the 10cs look-ahead buffering feature could ~ data written on the file is not important, the pro-
disrupt the sequence of information read in. The pro- grammer can ignore the problem. If the cosoL file is
grammer can avoid the problem by placing the data closed first, however, it should be closed with no

referred to by each deck on a separate physical unit. rewind.

Programming In Sections

51

1 8 16

$J0B COBOL MAIN PROGRAM CALLING FORTRAN, MAP
$EXECUTE 18J08B
$1BJOB MAP

$IBCBC COBOL1 LIST

Pl. ENTER LINKAGE-MODE.
CALL *FTCLA' USING ADDEND, SUM.
CALL 'MAP1A' USING TAX, DISCOUNT,
RETURNING ERRDR-RETURN.

P2. ENTER COBOL.

ERROR-RETURN

STOP RUN.
$IBFTC FTC1 LIST
SUBROUTINE FTC1A({A,B)

RETURN
END
$IBMAP MAP1 LIST
MAPLA SAVE E
CLA= 344 (PICK UP FIRST ARGUMENT)
STO* b4 (STORE IN SECOND ARGUMENT)

RETURN MAP1A,1 (ERROR RETURN)

RETURN MAP1A (NORMAL RETURN)
END

$STOP

(END-OF-FILE CARD)

Figure 30. COBOL Main Program Calling FORTRAN and
MAP Subroutines

52

PART 2:

The Processor Monitor provides a common operating
environment for the mjoB language translators. It
supervises loading of the 1BjoB components and regu-
lates the compiling, assembling, loading, and executing
of a job. The Monitor consists of three parts: job con-
trol, process control, and the input/output editor.
Figure 31 shows the relationships among job control,
process control, and the other components in the BjoB
Processor system.

Job control is called into storage by the 1Bsys Moni-
tor when a sEXecute card specifying 1BjOB is en-
countered in a source program. It directs the over-all
processing of a job; it calls process control into storage
to supervise the assembly of a source program into
binary form for the Loader; it calls the Loader to load
the assembled program and to start its execution.
Process control returns to job control at the end of the
assembly process. The Loader returns when a job
cannot be executed. When assembly errors are serious
enough to halt processing or a program cannot be
executed, job control returns to the mBsys Monitor.

IBSYS |

Job
Control

v IA}A

[\

Process
Control

Object
Program

—] Loader >

I

SYSTEM PROGRAMMER’S INFORMATION

Processor Monitor Information

After execution the object program returns directly
to the 1Bsys Monitor, because the Loader has almost
entirely overlaid the 1BjoB Monitor with the object
program. Usually, the 1Bsys Monitor then reads the
input file to determine the requirements of the next job.
But if load-time debugging is requested for the pro-
gram just executed, the Bsys Monitor calls job control
back into storage. Job control calls in process control to
initiate processing of the debugging information ob-
tained during execution of the program.

Process control supervises the assembly of a source
program by calling into storage the l.oad-Time De-
bugging compiler, the Assembler, the cosor. Compiler,
or the rorTraN Compiler, as they are required to trans-
late the different types of decks. It also calls in the
debugging postprocessor routines after a program has
been executed for which load-time debugging is re-
quested. After the debugging listings are written on
the output tape, control returns to process control,
which looks for the next sexecute card on the output
file. If this card specifies 18joB, process control proceeds

Y Y

Y Y

X Load-Time
Load-Time MAP coBoL FORTRAN Debugging
Debugging Assembler [Compiler Compiler Post-
Compiler Processors

3

=3

Figure 31. Relationship among Job Control, Process Control, and other IBJOB Components

Processor Monitor Information 53

as usual to supervise the assembly of the next program.
If 1BJOB is not requested, process control returns to the
1BsYs Monitor.

The input/output editor is called into storage with
process control, which uses it to regulate the actions
of the Input/Output Executor whenever any Processor
input/output functions are to be performed.

The following is an example of how the three sections
of the Monitor control the flow of processing for a
typical program:

PROGRAM

$IBSYS
$JOB
$EXECUTE IBJOB

PROCESSOR ACTIONS

The IBSYS Monitor calls job con-
trol into storage. Job control calls
process control into storage.

$IBJOB MAP, Process control initializes the input/
LOGIC output editor and uses it to read
- the $IBJOB card. It scans options,
opens the load file for the Assem-
bler and FORTRAN Compiler out-
put to the Loader, and uses the
input/output editor to read the
next card on the input file.
$IBMAP NODECK, Process control calls the Assembler
M94 into storage.
(MAP deck with CALL The Assembler uses the input/out-

DUMP as last step) put editor to read the MAP deck
from the input file, then translates
the deck into binary form for
Loader processing. During assembly
the input/output editor writes the
Assembler output on the load file
for Loader processing and on the
output file for printed listings. The
Assembler returns control to process
control, which uses the input/output
editor to read the next card on the
Process control input file.

NODECK, Process control calls the FORTRAN
M94 Compiler into storage.

$IBFTC

(FORTRAN deck called
by MAP deck)

The FORTRAN Compiler uses the
input/output editor to read the
FORTRAN deck from the input
file. The Compiler assembles the
deck into binary form for Loader
processing. During assembly the
input/output editor writes the
Compiler output on the load and
output files. The Compiler returns
control to process control. Process
Control uses the input/output edi-
tor to read the next card on the
input file.

Process control returns control to
job control, indicating the program
can be loaded. Job control trans-
fers control to the Loader, which
loads the program. The Loader
uses the input/output editor to read
the load file and to write the core
storage map and cross-reference
table on the output file. The Loader
overlays all of the IBJOB Monitor
with the object program except for
a few saved communication words.

(end-of-file-card)

54

PROGRAM PROCESSOR ACTIONS

It transfers control to the object
program, which executes. The dump
routine called by the program
writes the dumped information on
the output file. The program post-
execution routine returns control to
the IBSYS Monitor.

$IBSYS

$STOP

Job Control Operations

Job control contains routines to determine whether it
should call process control or the Loader into storage.
It also contains an ActiON routine that can call the
IBJOB System components into storage.

When job control receives control from the 1Bsys
Monitor, it reads the system units position table into
the 1BJoB communication area (See Appendix C, “isjoB
Communication Area”) and then uses the table to call
process control into storage. The system units position
table lists the position of each record on the symbolic
input/output unit (usually sysLB1) on which the 18j0B
system programs are stored.

When a source program has been assembled, process
control transmits a word o job control. By testing this
word, job control determines whether processing
should be continued by calling the Loader into storage,
or whether it should be halted by transferring control
to the 1Bsys Monitor through location sysrer in the
1BsYs nucleus. If the program cannot be executed after
it is loaded, the Loader returns control to job control,
which returns to SYSRET.

ACTION Rovutine for Calling IBJOB Components

The acTiON routine is used by both job control and
process control to locate 18jJ0B components on the sys-
tem library file and to read them into storage when they
are needed. The routine can be used to position the
system library to a particular system record or to posi-
tion to and read one or more system records. It is not
necessary for the calling program to know the order or
format of the records on the system library. All that
the calling program need supply to the AcTioN routine
is the label of the required action. The AcTION routine
consults three tables and performs the desired action.
These tables are the action table, the action list, and
the system unit position table.

The action table is used to identify the action label
supplied by the calling program. Each entry consists
of two words, the first of which is:

BCI 1, label
where label is a six-character alphameric name of the
required action. The second word is either

PZE a

where a is the location of the action list, or
pfx n

where the second word is the action list itself, pfx is
either MzE or MON, and n is an entry in the system unit
position table. In this case, the action list is limited to
one word.

The action list may consist of any number of one-
word entries, the last of which must have a negative
prefix code. Each word is of the form:

pfx =n
where n is again an entry in the unit position table an
pfx is one of the following:

1. pze or MzE, which causes the system unit to be
positioned as indicated.

2. PON or MoN, which causes the system unit to be
positioned as indicated and the record at that position
to be read.

The unit position table consists of a one-word entry
for each standard record on the input/output unit(s)
where the 1BjoB system is stored. An entry is designated
by the n portion of an action list entry. The unit posi-
tion table can have either of two formats, depending
on whether the system is on one or more than one
magnetic tape unit, or on disk storage.

When tape is being used, the format for an entry is:

Cla

pfx rccnt, , flent

where pfx is the library tape number on which the
record exists and where rcent and flent indicate the
position of the record on that unit. Flent is the number
representing the file position of a particular component.
Reent is the number representing the record position
within the component file.

If pfx is poN, indicating system library unit 1 (sysLs1),
the file position is relative to the position of the first
1BjoB Processor file. When job control reads this rela-
tive position table into core storage for process control
use, it also converts the flent part of each entry to an
actual file position. The actual file position is the num-
ber of files between the load point and the system
component involved. If pfx is other than rox, flent is
already the actual file position.

When the system is stored on disk or drum, the unit
position table is automatically converted to a track posi-
tion table. The decrement portion of each entry con-
tains the starting track address of the address of the
record. These track addresses are obtained by scanning
the table of record names and track addresses contained
in the 1BsYs Supervisor.

System Record Format
Each standard system record is preceded by the fol-
lowing sequence:

IOCP SYSFAZ,, 1
BCI 1, recnm

This is followed by a command to read a transfer to
an entry point into the appropriate transfer location
in job control or the component involved.

The rest of the record is scatter-loaded, each section
being preceded by the proper 1ocx command, the last
of which must be 10cT.

Prepositioning Feature

The acrioN routines in the Processor Monitor are also
used to preposition a system library unit when possible.
If the system is assembled for disk, drum, or Hypertape,
the prepositioning feature is inoperative.

Using One Library Unit: If the mJoB Processor is
stored on an 1BM 729 Magnetic Tape Unit, the preposi-
tioning feature performs the following actions:

1BJoB Processor components are stored on a system
library tape in the following order: Monitor, Load-
Time Debugging compiler, coBor Compiler, Assembler,
Loader, and Library. The Assembler is read into core
storage in two stages. After the last record of the As-
sembler is read in, the next control card is read. If this
control card is a SIBFTC, SIBCBC, or SIBMAP card, a back-
space file operation is performed. If the next control
card is not one of these three cards, no action is per-
formed.

If the 1BjoB Processor is stored on either an 1M 729
Magnetic Tape Unit or an 1M 7340 Hypertape Drive,
the system tape is rewound after the last record of the
Loader has been read into core storage.

Using Multiple Library Units: Two different config-
urations are possible when multiple library units are
used to store the mBjoB Processor system programs.
Either two 1BM 729 Magnetic Tape Units can be used;
or one tape unit can be used for the Subroutine Library,
with the rest of the Processor system on disk or drum
storage.

The configuration of two tape units makes full use
of the prepositioning feature. Both units must, how-
ever, be on the same channel and all records of a com-
ponent of the 1BjoB Processor must be on the same tape.
If more than two units are used, the prepositioning
feature applies only to the unit that contains the
Processor Monitor. Any other units are not rewound
but only positioned when a record is required.

After the last record of the Assembler is read into
core storage, the next control card is read. If this con-
trol card is a SIBFTC, SIBCBC, or sIBMAP card, a backspace
file operation is performed for the tape that contains
the Processor Monitor. The other system tape is re-
wound. The backspace file operation is not begun if
neither of the compilers nor the Assembler is on the
tape that contains the Processor Monitor.

After the last record of the Loader has been read into
core storage, both system tapes are rewound.

Processor Monitor Information 55

The configuration using tape with drum or disk stor-
age requires that only the files for the Library be on
tape. The tape for the Library must be on an 1M 729
Magnetic Tape Unit. After the last record of the Loader
has been read into core storage, the Library tape is
rewound.

Process Control Operations

Process control contains routines to initialize the input/
output editor and direct its operations. It also contains
routines for controlling the assembly of a source pro-
gram and for calling the load-time debugging post-
processors. It uses a control card search routine mainly
to determine which component must be called into
storage during the assembly process and to obtain in-
formation for the input/output editor. It uses an option
scan routine to record job specifications for use by
the other 1BjoB components, and it uses an error pro-
cedure routine after each component has assembled
a deck, to evaluate the effect of program or machine
errors on future processing. Process control uses the
ACTION routine in job control to read the components
into storage.

Initialization of the Input/Output Editor

After being called by job control, process control scans
the system unit function table in the 1Bsys nucleus to
make sure that the necessary input/output units have
been assigned to Processor functions. It then attaches
and opens the files it will use and initializes the input/
output editor.

Process control initializes the input/output editor
by supplying to it through the entry point 10EDIT the
locations of the file control blocks for the input/output
units that will be used during processing and the loca-
tion of the Monitor communication word COMCEL.
Certain bits in coMcEL are used to store information
for the input/output editor. Process control opens and
closes all input/output editor files and positions them
when necessary. All file control blocks used by the
input/output editor are located in process control.
Process control and the input/output editor normally
use system units for the following purposes:

System Library Unit (SYSLBI): This is the storage
unit for the 1BjoB Processor. The system may also be
stored on several units. In this case, alternate units, such
as SYSLBE, sYsLB3, and sysLB4, would also be used.

System Input Unit (SYSINI): This is used for the
1B]J0oB Processor input. Alternate units may also be used
if required.

System Output Unit (SYSOU1): This is used for the
1BJoB Processor listing output. Alternate units may also
be used if required.

56

System Peripheral Punch (SYSPP1): This is used for
the 18J0B Processor punched output.

System Utility Unit 1 (SYSUTI): This is not used by
the process control or by the input/output editor.

System Utility Unit 2 (SYSUT2): This is used for the
1BJoB Processor load file.

System Utility Unit 3 (SYSUT3): This is not used by
process control or by the input/output editor.

System Utility Unit 4 (SYSUT4): This is used for
coBoL compiler output to the Assembler.

System Alternate Checkpoint Unit (SYSCK2): This
is used for the debugging file, which contains output
from the Load-Time Debugging compiler, the Loader,
and the Load-Time Debugging interpreter routines. It
is used by the Load-Time Debugging editor and trans-
lator as the input file. If the system is stored on more
than one unit, sysLB2, sysLB3, and sysLB4 may also be
used. Alternate units for input and output can also
be designated if required. -

Control Card Search

After initialization of the input/output editor, process
control starts to search for control cards. The control
card search routine calls the input/output editor to get
the next line of input. If the current job is to be loaded,
any card that contains a dollar sign in column 1 and is
not recognized as an 1BjoB Processor control card is
added to the load file, which is the basic input to the
Loader. An unrecognized card is ignored if the program
is not to be loaded. Each recognized card is listed and
may be printed on-line, and any necessary action, which
may include a scan for options, is taken. The option
scan routine is described under “Process Control
Option Scan.”

Cards without a dollar sign in column 1 are not
added to the load file. Binary cards that are not within
an object deck cause an error message to be written.
Programs that are assembled using the aBsmobp option
on the stBMAP card are not added to the load file.

$1BJOB Card Action

The siBjoB card must be the first card of every 1BjoB
Processor application. Unless either the NOSOURCE op-
tion or the NoGo option without a MAP, LoGIC, or DLOGIC
option is specified, process control starts a load file and
places the siBjos card in it as the first card. Any cards
that contain a dollar sign in column 1 and that are not
recognized by process control, as well as any object
decks and Assembler output, are placed in the load file.
If the NosOURCE option is present, signifying that there
is no compilation or assembly in this application, or a
sIBREL card is encountered, signifying that there are
only object decks from that card on, process control
returns control to job control. Job control, in turn, calls
the Loader to load from the system input unit.

Component Control Card Action

Cards that signal process control to call other 1BjOB
components into storage are listed below.

$IBDBL Card: When the smBpBL card is encoun-
tered, process control sets the input/output editor con-
trols for a debugging compilation and calls the
compiler section of the Load-Time Debugging Pro-
cessor, The Load-Time Debugging compiler calls the
input/output editor for this control card, which must
immediately precede every debugging request deck.

$IBFTC Card: Process control sets the input/output
editor controls for FORTRAN 1v compilation and calls the
rorTRAN 1v Compiler when the siBrrc card is encoun-
tered. The rorTraN 1v Compiler calls the input/output
editor for this control card, which must immediately
precede every FORTRAN Iv source deck, into storage.

$IBCBC Card: Process control sets the input/output
editor controls for a coBoL compilation and calls the
coBoL. Compiler when the siBcBc card is encountered.
The coBorL Compiler calls the input/output editor to
read this card. It must immediately precede every
coBoL source deck into storage. Process control auto-
matically calls the Assembler to assemble cosoL Com-
piler output if the error level permits assembly.

$SIBMAP Card: Process control sets the input/output
editor controls for a MaP assembly and calls the As-
sembler when a siBMAP card is encountered. The
Assembler calls the input/output editor to read this
control card. It must immediately precede every
symbolic deck into storage.

$IBLDR Card: Process control adds the siBLDR con-
trol card and either the object deck following this
control card, or its complement object deck if an alter-
nate input unit specified, to the load file if the program
is to be loaded. If the LiBE specification is found on the
SIBLDR control card, only this card is added to the load
file, and the alternate input is not sought. A siBLDR card
is the first card in the output deck of the Assembler.

Optional Control Card Action

Process control recognizes some control cards that can
be considered independent of components. Typically,
these cards control accounting functions or denote
input/output variations from normal procedure. These
cards are listed in the following text.

$ID Card: The s> control card causes process con-
trol to transfer to the installation accounting routine.

SIEDIT Card: Process control uses the variable field
of the siEDIT control card to set input specifications
for the application. It may appear at any place in a
program, and the specifications remain in effect for the
remainder of the application unless changed by an-
other stepiT card.

SOEDIT Card: Process control uses the variable field
of the soeprt card to set output specifications for the

application. It may appear at any place in a program,
and the specifications remain in effect for the remainder
of the application unless changed by another soEpit
card.

s* Card: The s* control card is a comments card, and
its contents are printed on-line. No other action is taken.
It may appear in any group of control cards.

$PAUSE Card: Processing halts when a spause card
is encountered. The starT button must be pressed in
order to proceed.

SENDREEL Card: A reel switch is performed be-
tween system input units sysiNt and sysiN2 when a
SENDREEL card is encountered. This control card must
be preceded by a file mark. This control card is recog-
nized only by the input/output editor and the mini-
mum, basic, and label levels of 10cs.

SIBREL Card: The siBreL card indicates to the Proc-
essor Monitor that no more compilations or assemblies
follow on the system input unit (sysini).

$TITLE Card: The information contained in columns
16-72 is placed in the appropriate words of the heading
buffer. The current date is also placed in the buffer
unless the NopAT option has been specified. The title is
printed on the text page, and a switch is set to indicate
that the next Processor or Assembler control card
should not cause the heading buffer to be reinitialized.

$DATA or End-of-File Card: Control is transferred
to the Loader, if loading can be performed, when a
spaTa or end-of-file card is encountered.

IBSYS Conirol Card Action

Control is transferred to the mBsys Monitor when a
$IBSYS, $JOB, SEXECUTE, or ssTOP card is read or when
execution of an object program has been completed.

Process Control Option Scan

An option scan may take place if a recognized control
card has options that can be specified. Process control
looks for all the options on siBjoB, SIBLDR, siEDIT, and
soEDIT cards and for the aBsmoD option only on sIBFTC,
siBCBC, and s1BMAP cards. Options on SIBDBL, SIBFTC,
SIBCBC, and sIBMAP cards are scanned only by the com-
ponent program except for the ABsMOD option on SIBFTC,
$IBCBC, Or sIBMAP cards. Scanning begins in column 16
and ends when a blank character is encountered. Each
set of characters terminated with a comma, or a blank
in the case of the last set, is treated as an option. The
option is compared to a dictionary of options and the
proper action is taken if a matching entry is found.
Unrecognized specifications are ignored in all cards but
the siepiT and soEDIT cards. If an unrecognized specifi-
cation is found on either of these cards, an error mes-
sage is given. If specifications are not found on a control
card, the standard option of the installation is assumed.

Processor Monitor Information 57

Process Control Error Procedure Routine

When the FortraN 1v Compiler, the coBor Compiler,
or the Assembler returns control to process control, an
error word is left in the accumulator. If no error was
detected by the subsystem, the accumulator address
and decrement portions contain zero. A suspected
machine error is indicated by a nonzero decrement,
and a source program error is indicated by an error
level number in the address. This error level number
determines the error procedure used by process con-
trol:

LEVEL PROCEDURE
1 Allow loading if requested.
2 Do not allow loading.

Do not allow loading. If the return is from the
cosoL Compiler, do not allow assembly.

Although the compiler section of the Load-Time De-
bugging Processor also prints error messages, the errors
do not prevent loading or execution of the source pro-
gram. If no source program errors are indicated, a
machine error indication causes process control to print
a message on-line specifying the possible operator op-
tions and then to pause. The options are to retry the
application, to go on to the next application, or to go
on to the next job. The operator must specify one of
the options and press start. If the retry option is
chosen, the system input, system output, and system
peripheral punch units are returned to their original
positions at the beginning of the application and con-
trol is returned to the control card search routine. No
alternate input or output units are repositioned by
process control.

If a source program error of level 2 or greater is
indicated, process control does not allow execution of
the program or retry options, but goes on to the next
control card, regardless of whether a machine error ac-
companied the source program error.

3 or greater

Input/Ovutput Editor Operations

The input/output editor performs all Processor input/
output functions. It provides a line of input or accepts
punch or listing output upon request. The input/output
editor writes coBor. Compiler output and reads it for
the Assembler. It also writes the load file and reads it
for the Loader, but it does not perform intermediate
input/output operations or on-line printing.

Process control transfers to the input/output editor
through the entry point 1o0eprt. All information taken
from stEDIT, SOEDIT, Or $1BJOB cards that affect the input/
output editor is transmitted through this entry point.

The input/output editor consist of four sections:

1. The 10EDIT utility routine, which initializes and
controls the other sections.

2. The input editor, which regulates input to the
Processor.

58

3. The output editor, which regulates all listing out-
put from the Processor.

4. The punch editor, which regulates all punched
output from the Processor.

IOEDIT Routine

The 10EDIT routine uses the information transmitted to
it by process control to select the proper editor section
for the job requested. It initializes this section by
setting flag bits in the required file control blocks, trun-
cating buffers and releasing them, and transferring con-
trol to the section.

Input Editor

The input editor contains two reading routines that use
the Input/Output Control System (1ocs). The primary
routine reads only the input file on the system input
unit (sysint). The secondary one reads an input file on
an alternate unit. This file may be the Assembler input
file (output from the cosor Compiler), the load file
input to the Loader (Load-Time Debugging compiler,
Assembler, or rortRAN Compiler output, or previously
assembled binary decks), an input file on an optional
unit specified on a stepIT card, or an Alter deck that the
Monitor has moved to the system utility unit (svsurz).
Only one secondary file can be open at a time. Primary
files and secondary files may consist of Bcp card images,
binary card images, or Prest input. Bcp card images
must be recorded in the Bcp mode, 84 characters per
card image. Binary card images must be recorded in
binary mode, of 168 characters per card image. The
last four characters of Bcp records and the last eight
characters of binary records must be standard look-
ahead bits. These bits are described in the publication
IBM 7090/7094 IBSYS Operating System, Version 13,
Operators Guide, Form C28-6355. The input editor
accepts blocked input of up to ten Bcp cards or up to
five binary cards in each physical record. s-control
cards must be unblocked.

After being called by a request for a line of input, the
input editor determines, from a control location set by
process control, whether input is to be read from the
primary file or from the secondary file. It then locates
the next line and returns control to the calling program,
leaving the location of this line and its word count in
the accumulator. To ensure that a line is saved, the
calling program must move it before requesting an-
other line.

If an error condition is sensed, the input editor re-
turns control to the calling program, sets the sign of the
accumulator to minus and puts a 1 in its address por-
tion. If an end-of-file condition is sensed, the input
editor returns control to the calling program, sets the

accumulator to minus and puts a 0 in the address por-
tion.

Files used by the input editor are opened, positioned
if necessary, and closed by process control. Process
control transmits the locations of the file control blocks
to the input editor to allow their initialization. This

transmission is performed through 1oepiT, the entry
point to the input/output editor.

Output Editor

The third section of the input/output editor is the out-
put editor. It can list on more than one output unit.

58.1

Normally, the listing file is on the system output unit
(sysout). If an alternate output unit has been specified
on a soeEpIT card, the output editor places the listing
output of the Processor Monitor on the system output
unit, but it uses the alternate output unit for all 1Bjos
Processor component listing output until the end of the
application or until a soeprT card specifying the system
output unit is encountered.

The output editor keeps page counts and line counts,
and it ejects pages and inserts page headings when
necessary. The page headings are given to the output
editor by process control through I10EDIT.

The output editor generates two types of output. The
contents of the word at location TyPou determines the
type of output generated. When location Typou is zero,
the output is in Bcp mode, blocked up to five lines per
block. This output can be printed on the M 720
Printer. When the contents of TyPou are nonzero, the
output is in binary mode, blocked up to five lines per
block. This output can be printed off-line, using the
1BM 1401 Peripheral Input/Output Program. The first
word of each output block is a block control word. The
word contains (7600000000xx)5, where xx is the num-
ber of records (in Bcp) contained in the block. The
first word of each record within the block is a record
control word. This word contains (5xxxxx200460),
where xxxxx is the number of characters (in Bcp) con-
tained in the record.

A call to the output editor initiates a new line when
it is requested by the calling sequence and when the
last line has already been filled.

Process control opens and closes files used by the
output editor and transmits the locations of the file
control blocks to the output editor by means of 10EDIT.

Punch Editor

The punch editor accepts 80-column card images for
three types of output. Card images may be either col-
umn binary or Bcp, and the three types of output are:

Punch file

Load file

Compiler ocutput file

All punch editor output files are in binary form. scp
card images for the punch file are recorded in column
binary form, without column binary bits, when they are
placed in the punch file. Bcp card images for the other
files are inserted in Bcp form and are written in binary
form. Duplicates of the siBjoB control cards are
punched when they are read.

If the punch editor determines that output is not
from the cosor Compiler, the card image is placed in
the punch file. If it is in Bcp form, the punch editor
records it in column binary form, without column
binary bits. The card is also placed in the load file if

the proper bit in the control word comceL has been
set.

File control blocks for the punch editor files are kept
in process control. Their locations, along with the loca-
tion of control flags, are transmitted to the punch editor
through the entry point 10£DIT.

IBJOB Processor Maintenance Cards

$DUMP Card
The spunMP card causes the specified portion of sys-
tem records to be dumped. The spump card must be
inserted in a source program after the siBjos card and
before the control card calling the component from
which the dumped information is to be taken. It can-
not, however, be placed within a particular deck. As an
example, consider the following sequence of cards:
$SIBJOB
[insertion point a]
$IBMAP

[MAP deck]
[insertion point b]
$SIBFTC

[FORTRAN deck]
A spump card referring to the rorTrRaN Compiler could
be inserted at either point a or point b. A card for the
Assembler, however, can be inserted only at point a.

The format of a spump card is:

1 6 8 16
$DUMP loc1/loc2, loc3/loc4, . .
where n is a digit that designates whether the output is
to be single-spaced or double-spaced. A 1 in column 6
designates single-spaced output. Any digit greater than
1 designates double-spaced output. If this field is omit-
ted, the output is single-spaced.

The field starting in column 8 contains an alphameric
character (c¢) and a five-digit octal number (xxxxx)
that specifies an absolute location. The alphameric
character is the sixth character of the name of the sys-
tem record whose loading causes a dump request to be
inserted. The dump occurs immediately before the
instruction at location xxxxx is executed. Location
xxxxx may, if needed, be outside the system designated
by character c. (See “Restrictions on Dump Re-
quests.”)

The field starting in column 16 contains the limits of
those portions of core storage to be dumped. Each por-
tion of core storage is specified by two five-digit octal
numbers. The lower limit is specified first and is sep-
arated from the upper limit by a slash. Consecutive sets
of limits must be separated by commas. The first blank
encountered in the variable field designates the end of
the control card. Another spump card that specifies the
same system record character and location may be used
to extend the variable field. The portions of core storage

N CXXXXX

Processor Monitor Information 59

are dumped in the reverse order of their appearance
on the card. The sbump card specifications are effective
only during the processing of the source program in
which they are inserted.

The first spump card that is read causes the dump
routine to be loaded into core storage starting at loca-
tion 76237;. If an accounting routine is in core storage,
it is overlaid by the dump routine, and locations sysr
and syspip in the communications region of the 1Bsys
nucleus are reset. The upper core storage limit in loca-
tion 1Bjcor in the Processor Monitor communication
area is set to 76236s.

Restrictions on Dump Requests

Dump requests have the following restrictions:

1. Certain system records (1BjOB, JDUMP, IBJOBB, and
BJjoBC) are already in core storage when dump requests
are made. For this reason a spump card specifying any
of these records has no effect. A dump request may,
however, be inserted into any location in core storage,
including the areas occupied by these records, by using
the sixth character of a more accessible record name.
For example, when the system record 1BMaPj is called
into core storage, a dump request specifying J11526
may be inserted, starting in column 8 on the spump
card. Location (11526); is actually in the 1BjoB system
record, which is in core storage at the same time as
BMAP]. In this way information can be dumped during
the operation of 1BjoB without actually specifying it.

If system record 1BMaP] were called into core storage
more than once after the spump card had been read, a
loop would occur. This is due to the method used for
inserting dump requests. This method is described in
item 4.

2. Dump requests may not be inserted in 10cs coding
or in output editor coding, since the dump routine uses
both 10cs and the output editor for processing output.
If dump requests are inserted in these areas, a loop
occurs.

3. The system records 1BLDRP and 1BLDRQ cannot be
dumped, since these records occupy the same area of
core storage as the dump routine.

4. spuMP requests may not replace TsX instructions
that are followed by parameters; they may not replace
instructions that are modified in any way; and they
may not be inserted where they will appear within
caLL psuedo-operation expansions. These restrictions
are due to the method used for inserting dump re-
quests. The method is:

a. The instruction at the location xxxxxs specified
on the spump card is saved in a table contained
in the dump routine.

b. An instruction to transfer control to the dump
routine is placed in the specified location.

60

c. When the transfer instruction has been ex-
ecuted, the specified portions of core storage
are dumped.

d. The instruction that was saved is placed in the
following sequence: ‘

Loc instruction

Loc+1 TRA xxxxx+1
Loc+2 TRA xxxxx+2
Loc+3 TRA xxxxx+3

e. When the dump is completed, control is trans-
ferred to location Loc.

$PATCH Card

The spatcH control card is used to insert temporary
patches in system records, thereby eliminating an un-
necessary system edit run. The spaTcH card is inserted
in a source program in the same position as a spuMP
card. The format of a spaTcH card is:

1 8 16

$PATCH instrl, instr2, . . .

where the field starting in column 8 contains an alpha-
meric character (c¢) and a five-digit octal number
(xxxxx) that specifies an absolute location. The alpha-
meric character is the sixth character of the name of the
system record whose loading causes a patch to be in-
serted. The patch is inserted starting at location xxxxxs.
Location xxxxx may, if necessary, be outside the system
designated by cc. (See “Restrictions on Patch Re-
quests.”)

The field starting in column 16 contains 12-digit
octal instructions that are to be loaded into core storage
starting at location xxxxxs. Consecutive instructions
must be separated by commas. The first blank en-
countered in the variable field designates the end of the
control card. Only four octal instructions may be placed
on one SPATCH card.

spATCH cards can be used to change or delete instruc-
tions in a system record. For example, the card:

$PATCH M23000 076100000000
changes the instruction at (23000)s in record 1BLDRM
to a NOP. sPATCH cards can also be used to add instruc-
tions. For example, to insert the instruction app 16000
between the following instructions in IBMAPJ:

CXXXXX

LOCATION OPERATION CODE OPERAND
12000 CLA 15000
12001 STO 14000

use the following spatcH card sequence:
INSTRUCTION

CONTROL CODE LOCATION IDENTIFIER IN OCTAL
$PATCH J12000 TRA 17000
$PATCII JI7000 CLA 13000
$PATCH JI7001 ADD 16000
$PATCH J17002 TRA 12001

where the locations 17000 through 17002 are available
for patching purposes.

Restrictions on Patch Requests
Patch requests have the following restrictions:

1. System records I1BJOB, JDUMP, 10CSB, 1BJOBB, and
BjosCc cannot be patched directly. They can be
patched, however, by using the sixth character of more
accessible record names. For example, a spatcH card

for record 1BLDRM specifying a location that is actually
within 1ocss will effectively patch 1ocss.

2. System records IBLDRP and IBLDRQ cannot be
patched, since they occupy the same area of core stor-
age as the dump routine, which contains the patch
routines.

Processor Monitor Information 61

FORTRAN IV Compiler Information

The 7090/7094 rorTrRAN 1v Compiler (1BFTC) translates
programs written in the FORTRAN 1v language into
machine language. The Compiler operates within the
IBSYS/1BJOB environment and produces text for the
Loader (1BLDR) compatible with that produced by the
Assembler (1BMAP).

The following important features of the FORTRAN 1v
Compiler should be noted:

1. It has its own assembly processor, which elimin-
ates the need for using the 1BMAP assembly program.

2. Itis a two-pass system, composed of an instruction
generation pass (phase A) and an assembly pass
(phase B).

3. It has a phasing technique for performing multiple
compilations when a processor application contains a
program set. (A program set is any group of con-
secutive FORTRAN IV source programs as shown in
Figure 32. Note that a control card other than a smBrFrC
card terminates a program set.) Phasing permits phase
A processing for all programs of a program set, fol-
lowed by phase B processing for all programs of the
set. When necessary, error message processing for all
programs of the set is then performed. The Compiler
is thus read into core storage only once for an entire
program set.

Structure of the FORTRAN IV Compiler

The Compiler is composed of the two processing phases
A and B and an error message processor. Phases A and
B are required for each compilation. The message proc-
essor, which contains all Bcp error messages, is read
into core storage only if an error has been found in one
or more programs of a program set. If the message
processor is required, it is called after phase B proc-
essing of the last program in a program set.

As a result of this arrangement, the FORTRAN 1v Com-
piler printout contains the following:

1. The source programs of a program set.

2. The storage maps {and assembled program listing
if requested by the sBrrC control card) in the same
order as the source programs.

3. Any diagnostic messages (again, in source pro-
gram order) that may be generated.

Phase A contains the statement scanners for all
source statements except the paTA and FORMAT state-
ments. Phase B contains the pata and FORMAT state-
ment scanners, the storage allocator routine, and the
assembly processor routine. The latter two routines

lEnd of File

[Data-File-Deck
I SDATA

| FORTRAN Source Deck
|SIBFTC DECK4 AN

[FORTRAN Source Deck

[$IBFTC DECK3

Program

| SORIGIN

I FORTRAN Source Deck
[siBFTC DECK2

[FORTRAN Source Deck

[siBFTC DECKI

I $1BJOB \ | Program

| SEXECUTE 1BJOB Set

—

$JOB

Figure 32. FORTRAN IV Program Sets in a Processor Application
62

Set

provide the output for the storage maps and the list-
ings, respectively.

The rForTRAN 1v Compiler may reside on tape, disk,
or drum storage. Regarded as a tape system, the Com-
piler consists of three records, containing phase A,
phase B, and the message processor, respectively. Core
storage is laid out in accordance with an overlay
principle. Routines and communication areas that are
common to all phases remain in the numerically lowest
part of core storage. Throughout compilatior\l, control
passes from general routines to particular routines and
then returns to the general routines at the completion
of particular-routine processing. Figure 33 shows the
overall flow of Compiler processing.

Control among parts of the Compiler is directed by
the ForTRAN 1v Compiler control routine (rcc). This

Compiler Control
Initialization

Phase A Processing
For First or Next

Program
nother
Yes FORTRAN 1V,
/\Progrcnm iy
This Set
N

No

Y

Phase B Processing
For First or Next
Program

| /Aréber

Yes ORTRAN IV
Program |/n>
This Sef

NG

N0

An
Errors During No
Q’hase Aor}—
Phase B

Yes

Error Message
Processor Produces
Error Messages

>3
-

y
Return

Figure 33. FORTRAN 1V Compiler Overall Flow of Processing

routine passes control first to phase A control, then to
phase B control, and finally, where relevant, to the
message processor. Phase A control and phase B con-
trol direct the activities of their respective phases and
call the required subprocessors during the time that
each has control. The subprocessors most frequently
use the following utility subroutines: the table routine
(1r), which handles all compiler table activity; the
scr collector routine, which is used by all statement
scanners for preliminary preparation of source state-
ments for translation; the subscript processor, which
handles subscript combinations; the conversion routine,
which converts constants to binary representation;
and the name table routine, which tabulates informa-
tion about all names used in the program.

Phase A

Figure 34 shows the flow of phase A processing. The
phase A source statement scanners perform complete
processing of all program statements except the paTa
and FORMAT statements. For nonexecutable statements,
processing results in the tabulation of information con-
tained therein. For executable statements, processing
consists of both tabulation and compilation. Compila-
tion is the process whose final resuit is the transforma-
tion of a source statement into a sequence of machine
instructions. Phase A compilation generates sequences
of one-word and sometimes two-word internal instruc-
tion formats (mF’s). If a sequence of 1¥’s is associated
with the same internal formula number (1¥N), a word is
added to the sequence to contain this number (see
“Internal Formula Number Generation”). Internal in-
struction formats generated by the statement processors
are called main file rir’s.

Main file uF’s are subsequently transformed by the
phase B assembly processor into machine instructions.
Certain main file s (such as those related to subscript
variables) are not complete when produced by the
statement processors. For these cases, supplementary
processing, such as is described later in Relcon analysis
and Nestag processing, provides the additional infor-
mation in time for the assembly processing.

Phase A processing proceeds in a statement-by-state-
ment manner. However, when the end of a po nest is
reached, that is, the final statement of an outermost po
has been processed, control is passed to the Nestag
processor. This routine performs an analysis of the
entire nest, resulting in the generation of indexing in-
structions associated with the nest. The po indexing
ur’s are called Dotag file ur’s. They are inserted at
various locations in the main file containing the po nest,
though they usually are at the beginnings and ends
of the separate pos of the nest. The fact that they must

FORTRAN IV Compiler Information 63

Initialize All
Processors for
This Program

(

Obtain First
(or Next)
Statement

Arithmetic Classify

o \
Non Arithmetic

Statement
*

_ _IForCALL_

I
!

Perform Arithmetic
Processing. Output
Main File [IFs

|

Y

Perform Executable
Statement Process~
ing Output Main

File IIFs
[

End of
Statement

* If entry is from B classify
current segment of statement

Figure 34. Phase A Flow of Control

64

End of
a DO Nest

Executable
Statement

y

Perform Non-
Executable
Statement Scan

Yes Perform Nestag
Processing QOutput
DotagFile HFs

End of
Program

be inserted implies that a merge of the main file and
Dotag file rFs must subsequently occur in phase B.

The final output from phase A is the interphase
tables file, which consists of tables required for phase
B processing.

The main file, the Dotag file, and the interphase
tables file are placed on the system utility tapes, sYsuTs,
sysuTt, and sysuTs, respectively. The main file and the
Dotag file are created and written through double
buffering during the course of phase A processing. The
interphase tables file is written directly from working
storage at the end of phase A processing. if a compila-
tion is not being phased, sysuT4 is not used.

Phase B

Figure 35 shows the flow of phase B processing. Input
to phase B is the main file, the Dotag file, and the inter-
phase tables file. Relcon nF’s (indexing instructions re-
ferring to statements that occur outside po nests) are
generated at the beginning of phase B. These instruc-
tions apply to subscripted variables with subscripts of
one or more integer variables.

After Relcon nr’s are generated, the pATA and FOR-
MAT statement processing is performed. Next, storage
is allocated, and the storage map is generated and
printed. Finally, ur’s from the main file and the Dotag
file, and Relcon 1F’s from storage tables, are merged
during the main assembly pass, resulting in the genera-
ation of Loader text. In addition, prologue (initializa-
tion) instructions are created where applicable.

Assembly Processing

In order that phase B of the compiler may perform the
assembly, all symbols of the program must be assigned
relative core storage locations prior to the start of the
assembly. For Internal Formula Numbers (1¢N’s) this
is accomplished by treating each 1rx as the beginning
of a specially tabulated block of coding. (See the sec-
tion “Internali Formula Number Generation.”} For
source program symbols, other than statement numbers
(External Formula Numbers or EFN’s), this is accom-
modated by the core storage layout of the program.
(The treatment of EFN’s is explained in the section “In-
ternal Formula Number Generation.”)

The core storage layout of the object program is such
that program data, consisting of program variables and
arrays, are assigned core storage locations ahead of the
executable program instructions. Program constants,
parameters, and intermediate storage are assigned
locations immediately following the program data.
Since information as to their total size is accessible

Y

Initialize All
Processors for
This Program

Perform Relcon
Processing-

M L 1IEL oo
VUIPUI s

a Relcon File

Any Yes

Relcons

hd

Y

DATA and
FORMAT
Statement
Processing

Storage Allocation
Routine. Odtput
a Storage Map

A

Main Assembly Pass
Merging Main File,
Dotag File, Relcon

File IIFs

Exit

Figure 35. Phase B Flow of Control

before the start of the second pass, this leaves the in-
determinately-sized part of the program for the last
stages of assembly. This part of the program may be
regarded as composed of proper instructions (consist-
ing of instructions from the main file, the Dotag file,
and Relcon processing) and prologue (initialization)
instructions. Prologue instructions are the most in-
determinate with respect to size since they are not
known until after the proper instructions have been
assembled. Therefore, the prologue instructions are
assembled last. They are appended to the end of the
assembled program, but are executed first.

Internal Formula Number (IFN) Generation

An 1FN is created when it appears possible that the
associated instruction may be referred to by another

FORTRAN IV Compiler Information 65

instruction in the program, or when it appears possible
that, at a subsequent stage of processing, additional
compiled instructions will be inserted at that point.
More generally, an 1¥N is created when a reference
may be made to the associated instruction either at
object time or during process time. In the latter case,
it is needed for the assembly merge.

IFN’s go into a sequentially increasing ordered table
that contains a count of the total number of ur’s gener-
ated for each 1FN of the table. More than one instruc-
tion generator may contribute to the 1r count for any
one IFN. Each 1FN table entry is created at the point
in the compilation where the 1¥~ is encountered.

For 1¥N’s associated with external formula numbers
(EFN’s), a different technique is used since the EFN is
often encountered before its proper sequential location
in a program. As an example, consider the statement

GO TO 50

where statement number (EFN) 50 occurs at a later
point in the program than the Go To statement. In this
case, the reference to the ¥~ that later will be associ-
ated with the EFN of 50 is made indirectly through the
EFN table entry created by “hashing” for value 50.
(“Hashing” is explained in the section “Table Con-
struction.”) When statement 50 is actually reached dur-
ing statement processing, the EFN entry is given a
pointer showing the true 1rn table entry.

The executable statement processors and the Nestag
routine in phase A, and the Relcon routine in phase
B, each contribute to the count recorded in the ¥~ table
entries. Thus, when the phase B assembly routine as-
sumes control, it can define the location of each 1FN
by using a simple cumulative totaling method. The
relative location of each 1FN is then defined as the total
count appearing before the 1N in the 1N table.

Internal Instruction Formats (IIF’s) for Main File

The primary contributors to main file instructions,
quantitatively, are usually the arithmetic translator,
which processes arithmetic and logical statements; the
input/output list processor; and the 1r and the co T0O
statement processors. Main file 11¥’s may be incomplete
with respect to address fields and index register (or
tag) fields. The address field of an nr generated by
either an 1F or a o 1O statement processor contains a
pointer to an EFN entry. This pointer is subsequently
replaced by a pointer to an 1¥~ table entry. The address
fields of F’s generated by the arithmetic translator and
the input/output list processor may be pointers to either
the NAME or the suBaxk table.

1f the field refers to a simple variable name, a pointer
to a NAME table entry is used. If the reference is to a
subscripted variable with constant subscripts, a pointer
is provided to a suBak table entry that consists of an

66

array name plus a constant addend. ur’s referring to
other subscripted variables may require an address field
that either refers to a suBax table entry or must be
initialized at object time. In addition, an index register
may be required for the urr.

The ForTAG table, which contains information con-
cerning subscripted variables appearing in the source
program, is used in supplementary processing (e.g.,
Nestag and Relcon routines) to provide the assembler
with this additional information.

Internal Instruction Formats (HF’s) for Dotag File

The Nestag routine produces Dotag instructions. These
are indexing instructions that arise from the configura-
tion of the following factors within a po nest: the po
statements comprising the nest, parameters of the po
statements, definition points for these po parameters,
subscripted array variables, definition points for integer
variables appearing in subscripts, and program trans-
fers. The preceding elements generate sets of instruc-
tions consisting mainly of the following major
categories:

1. Index register load value computation instructions
— occur at po beginnings.

2. Actual index register loading instructions — occur
at po beginning,

3. Index register increment value computation in-
structions — occur at po beginning.

4. Actual index register incrementing instructions —
occur at po endings.

5. End of po test value computation instructions —
occur at po beginnings.

6. Actual end of po testing instructions — occur at po
endings.

7. Computation instructions for 1ir address initializa-
tion — usually occur at po beginnings but may also
occur within the po.

8. po transition instructions

a. Bridge instructions for a normal exit from an
inner Do to an outer po — occur at both inner
po beginning and ending.

b. Trasto instructions for a transfer exit from an
inner po to an outer po — occur completely out-
side the nest.

Internal Instruction Formats (1IF's) from Relcon
Analysis Routine
The Relcon instructions are indexing instructions that
arise from the appearance of subscripted array vari-
ables outside of a po nest. The sets of ur’s generated
trom Relcon instructions fall into the following two
categories:

1. Index register load value computation instruc-
tions. These may be compiled either in-line or as

closed subroutines (called relcontines). In the latter
case, a 18X instruction linking to the relcontine is also
generated.

2. Actual index register loading instructions.

Both the Nestag routine and the Relcon routine per-
form index register assignment by relating rortac
table entries (corresponding to subscript combina-
tions) to specific 1irs which are otherwise complete.
Absolute index register assignments are passed to the
assembly routine by means of symap table entries.

These relate symbaolic registers to absolute registers,

Table Handling

Table handling is accomplished by the Table Routine,
which uses a pool of chained buffer areas. These areas
are called TR (table routine) buffers.

Temporary areas for the various Compiler processors
are included in these buffers. When a table or tem-
porary area is no longer needed, the relevant buffer
space is freed for subsequent use.

Tables in which duplicate entries must be found are
treated by a hashing technique to avoid sequential
searches for duplicates. Hashing provides the location
of a special, compact pointer table that, in turn, points
to the location of the entry in the Tr buffer area. The
purpose of this indirect referencing technique is to
avoid the scattering of table entries — with the con-
sequent loss of core storage space — that occurs with
most similar techniques.

The layout of the tables in the Tr buffer area shared
by all processors is such that one set of tables (the inter-
phase tables) is allocated core storage moving from
numerically high to numerically lower locations while
the remaining tables occupy storage moving in the
opposite direction. See Figure 36. A table-overflow stop
occurs during compilation only when these two areas
overlap. A diagnostic message is generated if this
happens.

Within the lower set of 1R tables, many of the tables
go into subsets applicable only to a current po nest. This
enables these particular tables to be erased when
Nestag processing for the po nest is complete. The
space can then be made available for further use.

The Table Routine is common to both phases A and
B. Processors in these phases accomplish their handling
of (storing of, searching for, retrieving, etc.) table
entries through the use of special macro-instructions,
each designed to perform a special table-handling func-
tion. The property of these macro-instructions that
makes them especially valuable is that the calling proc-
essor need not know the location of sequential table
entries, which may be in separate buffers with widely
differing core storage locations.

System Monitors
(iBSYS, iBJOB)

FORTRAN Compiler Communication Area

FORTRAN Compiler Control

COMMON Subroutines

Phase A Control Phase B Control Error Message -
Processor
Phase A Phase B Routine
{Used for TR Buffers)
CONDIG Table CONDIG Table CONDIGTable

TR Buffers Containing:

1. Interphase Tables (stored downward
from TR Control Words)

2. Other tables (stored upward from
CONDIG table)

(Phase A) (Phase B)
TR Control TR Control
Words Words ‘
1
{
(Phase A) (Phase B) !
i i

. .

¥
FORTRAN Communications Area (Program Information)

Installation Accounting Routines

32767

Figure 36. Core Storage Layout for FORTRAN IV Compiler

Diagnostic Handling

The error message processor is the last main component
of the ForTrAN 1v Compiler. Its function is to print
diagnostic information about errors discovered by the
various processors in phase A and phase B.

Preliminary Error Handling
The p1ac Routine is read into core storage along with
ForTRAN Compiler control, and it remains in storage
during compilation and assembly (phases A and B).
The p1ac routine constructs the control and diagnostic
(coxpic) table, which contains the following informa-
tion to be used by the error message processor:

1. The sequential number of the error; i.e., first error,
second, etc.

2. The message number that identifies the message.

3. The error level.

4. The Bcp message inserts.

FORTRAN IV Compiler Information 67

Error Message Processor Action

The error message processor is called at the end of
phase B processing (that is, at the end of an assembly
or assemblies) if any error has been detected during
phase A or B processing. This routine causes error
output to be printed as follows:
1. The error message processor places the following
identification in the subheading of each page:
COMPILATION yyyy
where yyyy is the program name for which the related
error messages are being printed.
2. The error message processor begins the diagnostic
messages from phase A with the message:
DIAGNOSTIC MESSAGES

3. The error message processor heads the diagnostic
from phase B with the message:
PHASE B DIAGNOSTIC MESSAGES

4. For each error occurring during the operations of
either phase A or phase B, the routine causes printing
of one of the following lines as the first line of a
message:

i SOURCE ERROR jLEVEL k-xxxx

or
i LOGIC ERROR jLEVEL k-xxxx

where i is a sequential number that the p1ac routine
assigns to this message for this source program, j is the

68

actual error message number, k is a number from one
to five representing the severity level of the error and
xxxx is the error level explanation.

The significance of the value k and the explanation
XXXX iS:
EXPLANATION (XXxX)

Warning Only

Loading Suppressed

Assembly Deleted

Compilation terminated, error scan continues
Compilation abandoned

LevEL (k)

(S TNV L

5. The error message processor then causes the
second line of the message to be printed. Insert infor-
mation comes from the control and diagnostic table.
For example, the second line of the message may be:

THE VARIABLE xx IS NOT DIMENSIONED

where xx is the BcD message insert.

The error message processor uses the control and
diagnostic table to find the proper error message and
its corresponding Bcb message inserts, if any. This table
is unique in three respects:

1. It always begins in core storage location OCPHAF.

2. Its length for the diagnostic messages of each
compilation is always less than or equal to the length
specified in storage location zcoin.

3. It remains in core storage for the duration of the
compilation of a program set.

The 7090/7094 coBoL Compiler (1BcBc) is the com-
ponent of the 1BjoB Processor that translates a cosoL
source program into the MaP language. The cosoL
language was developed for business applications by

nn Nata

mmi Qyvetom
a committee of the Conference on Data Systems

Language (copasyL), as a cooperative effort of com-
puter users in industry, the Department of Defense,
and other Federal Government agencies and computer
manufacturers.

The 7090/7094 cosoL Compiler (1BcBC) operates
under the control of the Processor Monitor, which is
under the control of the System Monitor (1Bsys).

Input to the cosor. Compiler is a cosoL source pro-
gram which has been put onto the system input unit
(sysiN1). Output from the cosor. Compiler consists of
the following:

1. An augmented replica of the source program on
the system output unit (sysou1)

2. A list of messages describing errors detected dur-
ing compilation (alse on the system output unit)

3. A tape of generated symbolic instructions

At the conclusion of a compilation, control is re-
turned to the Processor Monitor, which calls upon the
Assembler to assemble the generated symbolic instruc-
tions in a form acceptable to the Loader.

The cosor Compiler consists of 11 program seg-
ments, which are shown in Figure 37. The first of these
remains in core storage throughout the compilation
process. The other 10 segments are loaded into core
storage successively, with each new segment replacing
all or most of the preceding segment. Loading of the 11
segments occurs once for each compilation of a source
program.

These 11 segments are discussed in the order in
which they are brought into core storage. The dis-
cussion is quite general, and highly important sub-
routines are mentioned briefly.

Segment |

Segment 1 of the coBoL Compiler is loaded first and
remains in core storage throughout the compilation
process. The program portions of this segment are
described in the following text.

COBOL Supervisor

This portion of the coBor Compiler has three primary
functions:

COBOL Compiler Information

00000 | Nucleus (IBNUC)

1BSYS

Input/Qutput Executor (IOEX)

Input/Output Buffer System (IOBS)

Monitor (I1BJOB)
COBOL Compiler (IBCBC)

Permanent Segment (Segment 1)

Compiler, Current Phase (Note 2)
(Segment 11, Environment 1, Data I,
Data Il, Procedure |, Procedure I,
Data |11, Environment Il, Procedure lil,
or Cleanup)

Compiler Input/Output Buffers

Customer Accounting Subroutines

77777

Notes:
1. Boundaries indicated by arrows fluctuate dynamically
during compilation, according to need.
2. The various segments listed are placed in this portion
of core storage consecui‘ively, no segment being re~
placed until it has completely finished its assignment,

Bor. Com-

Figure 37. Core Storage Map for the 7090/7094 co;
piler

1. It prepares all lines of communication with the
1BJoB Processor and initializes all cosor. Compiler in-
put/output operations.

2. It controls the processing flow for all major phases
of the cosoL. Compiler.

3. It returns program control to the BjoB Processor
and indicates whether or not a call is to be made to the
Assembler,

General Purpose Subroutines

COLAG (Collection Agency): This subroutine re-
ceives generated coding from various portions of the
copoL Compiler and converts it to symbolic form for
the Assembler.

CITRUS (Coalesced Indirect Table Reference Un-
ification Scheme): Most of the tables used within the
cosoL Compiler are under control of the general table-
handling crrrus subroutine.

ERPR (Error Print): As source program errors are
detected by various portions of the cosor Compiler,
requests for generation of the related error messages
are directed to this subroutine.

COBOL Compiler Information 69

GETBUF and PUTBUF (Internal File Handler):
Certain files, notably those for intermediate forms of
error messages and of procedure text, are handled so
that automatic overflow onto tape occurs when the
capacity of an assigned core storage area is exceeded.

DICTI (Dictionary Lookup Subroutine 1): This sub-
routine is used during the first scan pass (for each
source program division) to determine whether a name
has occurred before. It is also used to enter newly de-
fined names in the External Dictionary. (Correspond-
ing to each External Dictionary entry there is an
Internal Dictionary entry containing information about
the item.)

DICT?2 (Dictionary Lookup Subroutine 2): This sub-
routine is used during the second scan pass (for each
source program division) to determine whether a
previously undefined name can now be defined. The
pict2 subroutine is closely related to the picri subrou-
tine, and the two share many instructions.

ULSC (Unit Level Scan): This subroutine is used
extensively during the first scan pass (for each source
program division) to isolate and classify the word units
of the source program text.

GLSC (Group Level Scan): This subroutine calls
upon the uLsc subroutine and classifies groups of units.

GRIN (Group Interpreter): This interpretive sub-
routine compares encoded main program questions
against classified answers from the GLsc subroutine and
chooses main program instructions to be executed
based on the test results. The ursc, cLsc, and GRIN
subroutines are used only for first pass scanning.

PUTCP and PUTCPM (Constant Pool Handler):
This subroutine saves generated numeric constants
(avoiding redundant generation) for actual generation
by the Cleanup segment of the cosoL Compiler.

PUTSPM (Symbolic Constant Pool Handler): This
subroutine performs the same kind of function as
the purcem subroutine, except that the constants are
symbolic (represented by an encoded word-logic form
called T2 text).

GETBL (Get a Base Locator), GETGN (Get a Gen-
erated Name), and GETTS (Get a Temporary Storage
Word): These three subroutines perform the function
of assisting the various portions of the coBorL Compiler
in the generation of instructions by supplying unique
words of the desired type and by keeping count of the
total number supplied.

File and Table Control Blocks

Each file using 1ocs and each table using the crtrus
subroutine require a control block. The control blocks
for all of the files and the crtrus tables used by the
cosoL Compiler are defined in Segment 1.

70

Transfer Table

A table of simple transfers to the various general pur-
pose subroutines appears in Segment 1. Its purpose is
to permit rearrangement of the subroutines without
having to reassemble each segment of the copor. Com-
piler to correct the subroutine references.

Communication Words

A region of communication words is maintained in Seg-
ment 1 to maintain communication between two seg-
ments of the cosoL Compiler not simultaneously in
core storage.

Segment Il

The second segment of the coBoL Compiler generates
initialization instructions on the Assembler tape. It
then proceeds through the Identification Division of
the source program, recognizing the various entries of
this division. The contents of each entry are moved
unaltered to the output area. During a scan of the Iden-
tification Division, Segment 11 looks for the A-margin
appearance of any other division header. When a valid

PR RN a srmTaeT A

division header is detected, or when a scBEND card or
an end-of-file is found, Segment 11 returns control to the
cosoL Supervisor. If the source program has no Iden-
tification Division, control passes immediately from

Segment 11 to the coBoL Supervisor.

Environment |

The Environment 1 segment is called by the cosoL
Supervisor to perform the scan of the source program’s
Environment Division.

The primary functions of the Environment 1 scan are:

1. During the scan of the SPECIAL-NAMESs paragraph,
dictionary entries are made to relate the cosor hard-
ware names to the mnemonic-names and switch-status-
names in the source program.

2. During the scan of the FILE-CONTROL paragraph,
a four-word entry is made into the dictionary for each
file named in a seLEcT clause. The type of equipment
(card or tape) to which the file is assigned is noted by
setting particular bits in the dictionary entry. Other
information concerning each file is obtained during the
scan of the Data Division File Description paragraph.

3. For each file named in a sELecT clause text is
created. This text is used by Environment 11 to create
FILE and LABEL cards which are sent to the Assembler.
The information pertaining to file-names, the unit or
units to which the files are assigned, and the rRErUN
and APPLY options specified are considered to be text
and are placed into an internal file for subsequent
processing by Environment 1r.

4. Upon encountering the source program DATA
pIvisioN card, control is returned to the cosor Super-
visor.

Data |

The Data 1 segment of the coBoL Compiler is loaded
as soon as the key words DATA DivisiON are encountered
in the source program. The principal functions of Data
1are:

1. To scan the Data Division of the source program.

2. To build the Data Dictionary.

3. To prepare text (in core storage) for Data 11 that
reflects the postponed problems of occurs, REDEFINES,
and vaLue. The constants associated with VALUE are
also preserved in text.

4. To prepare text for Environment 11. This text con-
sists of the File Description information concerning
RECORDING MODE, BLOCK CONTAINS, RECORD CONTAINS,
LABEL RECORD clauses, and the list of all data record
names in each file.

Upon encountering the Procedure Division, Data 1
returns control to the cosoL Supervisor.

Data ll

Using text from Data 1 and the partially formed internal
Dictionary as core-located input, the Data 11 segment
does the following:

1. Assigns object-time base locaters and builds a
table to record the assignment. A base locator is a
location which normally points to the beginning of a
logical record within an input or output buffer. A base
locator is also a location assigned to serve as a pointer
to the beginning of data after a variable length array.

2. Generates an out-of-line subroutine which calcu-
lates the length and byte of each data item. If the length
of a data item is not known at compile time, because
a suborganization contains an OCCURS . . . DEPENDING ON
..., clause Data 1 generates a length calculation sub-
routine which also performs the function of updating
the dependent base locator. Data 1 builds tables to re-
cord which of the subroutines needs to be executed
when the value of a given quantity is altered. A quan-
tity item is a data item whose name appears after
DEPENDING ON in an OCCUES clause.

3. Generates the core storage reservation for all
fixed-location data items. This task is complex in that
allowance is made for loading of the proper initial
values of data items.

4. Builds a table giving the object-time displace-
ment of each data item.

If a data item’s location is dependent upon the con-
tents of a base locator, as is the case with input or out-

put logical records, the displacement of the item is
defined to be its distance, in words, from the first data
word whose location is determined by the same base
locator. For other data items, displacement is the dis-
tance from the first data word in the area for working
Storage items.

When there are no more dictionary entries to be
processed, the Data 11 segment returns control to the
COBOL Supervisor.

Procedure |

Procedure 1 is called upon by the coBoL Supervisor to
perform the first scan of the Procedure Division text.
The major functions of the Procedure 1 segment are:

1. Each procedure-name at point of definition in the
Procedure Division is entered into the dictionary, and
a text word is created which refers to that dictionary
entry.

2. Text words are created in an encoded form for
each of the cooL words found in the source program.

3. All references to source language names are
looked up in the dictionary. If the name being proc-
essed is a data-name, a text word is created which re-
fers to the dictionary entry of that data-name. If the
reference cannot be found, an error message is given.
This case arises when the data-name is insufficiently
or incorrectly qualified, or cannot be found. If the
name being processed is a procedure-name, the text
created for the procedure-name is in Bcp form. Before
this phase is completed, all source-language proce-
dure-names are defined and entered into the diction-
ary. During the Procedure u phase, Bcp procedure-
name references are looked up and encoded text is
generated for them.

4. Structural analyses are made of all source lan-
guage statements to ensure that all source language
verb structures conform to the prescribed cosoL rules
of composition.

5. When the scBenD card is encountered, Procedure
1 returns control to the cosor Supervisor.

The output of the Procedure 1 phase is a prelimi-
nary form of word-logic text called T1 text.

Procedure II

Procedure 11 is calied upon by the cosoL Supervisor to
perform the second pass evaluation of the Procedure
Division text. The input to Procedure 11 is the partially
developed T1 text generated by Procedure 1. The ma-
jor functions of Procedure 11 are:

1. To supply final dictionary references for the
name definitions deferred by Procedure 1. If the ref-
erence cannot be made, an appropriate error message

COBOL Compiler Information 71

is printed. This happens when a name is either insuffi-
ciently or incorrectly qualified, or is not defined at all.

2. To arrange, augment, or convert certain verb
structures, MOVE CORRESPONDING is converted to sev-
eral individual MovE sentences. The PERFORM structure
is converted to MoOVE and COMPUTE statements having
embedded instructions which are to be sent to the
coLAG subroutine during Procedure mi. The At END
clause of the reap verb is changed to an 1F structure.
stoP verbs are changed to pispLAY verbs, followed by
instructions which perform the object-time stop.

3. To convert arithmetic and logical phrases to a
form of Polish notation which is easily processed by
the Procedure 111 code generators.

The output of Procedure 1 is the completed form of
T1 text with all dictionary references in the correct
form. The text string is a series of T1 text words rep-
resenting procedure-names at point of definition and
verb clauses.

Environment Il
The Environment 11 segment is called by the cosoL
Supervisor to perform the following functions:

1. For each file named in a seLEcr entry, the file
characteristics are summarized. This summation con-
sists of the following:

a. A comparison of each block size specification
to the calculated lengths of the records in the
associated file.

b. A determination of whether or not all records
in the file are the same fixed length. The in-
formation is used by the rReap and wrITE in-
struction generators in Procedure 111,

c. A check to determine that at least one oPEN and
at least one cLosE have been issued for each file.

d. A check to determine that a file has not been
specified as being both input and output.

2. Certain initialization instructions are sent to the
instruction collection agency (corac). These instruc-
tions pertain to the opening of the checkpoint file and
the determination at object-time of the type of unit
(card or tape) assigned to a particular file.

3. An 1BMAP FILE card is generated onto the As-
sembler tape for each file named in a seLECT clause.
For each labeled file, a LABEL card, which contains
the information from the vALUE oF clauses in the as-
sociated File Dictionary description, is generated.

Upon completion of the processing of all files in the
source program, Environment 1 returns control to the
COBOL Supervisor.

Data Il

The Data nr segment is entered by the cosoL Super-
visor to perform the following functions:

72

1. The Data 111 phase generates object-time subrou-
tines which set pointer words, known as positional in-
dicators, so that they address given array elements.

Each subscripted data item in the source program
is located at object time through a positional indicator
(pr). A different position indicator is used for each
unique subscripted reference in the Procedure Divi-
sion of the source program. For example, the coding

MOVE A(LJ],K) TOX.
MOVE B(LJ,K) TOX.
MOVE A(LT,M) TOX.
MOVE A (L]) TO X.
MOVE A (LJ,K) TOX.

causes four position indicators to be generated. The
last subscript reference does not create a new position
indicator because it is identical to the first reference.

For each position indicator generated in the object
program, there is also a subroutine generated to set the
contents of that position indicator. It is the function of
Data 11 to extract from the Internal Dictionary the in-
formation concerning the base of the array and the dis-
tance between the elements within the array. Data 11
also generates the object-time subroutines that set the
position indicators. Calls upon these subroutines are
generated by the Procedure mi Supervisor when they
are needed.

2. The Data 111 phase forms a table of all data items
that contain a quantity item (including with each of
the data items the subroutines called upon when the
quantity changes). This table is used by the quantity
item analyzer in Procedure 111.

3. The Data u1 phase places the base locator num-
ber in the Internal Dictionary in the place of the level-
number for those data items which are located by a
base locator.

4. A list is compiled of all variable-length records
and also of all fixed-length records that contain a data-
item described by an occuRs . . . DEPENDING ON clause.
This list is used by the rEaD instruction generator in
Procedure 111 to call upon the appropriate length cal-
culation subroutines to adjust the lengths and base
locations of data items affected by a READ statement.

Upon completion of these functions, Data 1 returns
control to the coBoL Supervisor.

Procedure Il

At the time the procedure text becomes input to Pro-
cedure 111, sentences have been reduced to statement
segments. Each such statement consists of a verb, or
its equivalent, and its related operands. The supervi-
sory program for Procedure 1 gives these statements,
one at a time, to specific instruction generator pro-
grams, the program chosen depending upon the verb
under consideration. These instruction-generating pro-

grams produce the appropriate object-time instructions
in an encoded form called T2 Text.

Subscript Calculations

Prior to routing each statement, the supervisory pro-
gram examines the statement operands to find all oc-
currences of T1 Text words that indicate subscripted
data operands. For the first occurrence of each word
within a statement, the supervisory program generates
a call to the appropriate position indicator (array
pointer) calculation subroutine. These subroutines
were generated during Data 1, and the supervisory
program is able to determine which one to use by con-

sulting the Position Indicator Table.

Treatment of Incoming Procedure-Names

at Point of Definition

The supervisory program gives incoming procedure-
names directly to the instruction collection agency
(corac) rather than allowing them to reach the in-
struction generators.

If the procedure-name is a paragraph name or a sec-
tion name, i.e., not a generated name, and if the scope
of a PERFORM verb terminates with the preceding
paragraph, the supervisory program generates an in-
struction immediately preceding the procedure-name.
This generated instruction has the following form:

TRA *+1

It is modified to provide the PERFORM return linkage.

Computation of Variable Lengths

A data item that appears as a data-name after the
DEPENDING ON portion of an occugrs clause is known as a
quantity item. If any of the instructions generated for
a statement alter the object-time contents of any quan-
tity item, each generator potentially involved (»MovE
and READ, at present) adds these data items to a list
which it builds throughout its functioning. When such
a generator’s functions are concluded, but before it re-
turns control to the cosoL Supervisor, it gives its list

to the quantity item analyzer. This, in turn, issues the
proper calls to the base locator and length calculation
subroutines generated in Data 11.

Instruction Generators
The source language statements OPEN, CLOSE, READ,
WRITE, MOVE, DISPLAY, ALTER, GO TO . . . DEPENDING ON
and 1F and 1F NOT are converted to machine language
by means of a set of subroutines known as instruction
generators. Certain other verbs are also handled by the
same generators, having been changed to one of the
above verbs before Procedure u1 is entered.

After the procedure text has been completely proc-
essed, program control is returned to the cosoL Su-
pervisor.

Cleanup

The Cleanup phase is called by the cosorL Supervisor
as the last major segment of the compilation process.

The primary functions of the Cleanup phase are:

1. The symbolic constants that were placed into the
Symbolic Constant Pool are sent to the instruction col-
lection agency (coLAG) in regular instruction format.

2. All error message references that were sent to the
eRPR subroutine are arranged in ascending order, ac-
cording to the associated source language card num-
bers. Each error message reference is expanded to a
full error message form that is sent to the Input/Out-
put Editor to be placed on the system output unit
(sysou1).

3. Bss instructions are sent to the instruction collec-
tion agency (COLAG) to reserve storage for base lo-
cators, position indicators, and temporary storage and
result storage locations.

4. The constants placed into the Numeric Constant
Pool are sent to the instruction collection agency
(corac) and placed on the Assembler tape in the form
of octal constants.

Upon completion of these cleanup functions, control
returns to the coBoL Supervisor.

COBOL Compiler Information 73

Assembler Information

The 7090/7094 Macro Assembly Program, 1BMaP, op-
erates under the 7090/7094 1BjoB Processor Monitor.
Input for the Assembler comes either from the cosoL
Compiler or from programmer-coded Map language
instructions. 1BMAP provides loader input that is indis-
tinguishable from that supplied by the rorTRAN 1V
Compiler. Thus, to the Loader, a source language pro-
gram written in the COBOL, FORTRAN 1v, or MAP lan-
guage appears in the same format. As shown in Figure
38, assembler output is in the form of relocatable
binary text.

Assembler Design

Assembler activity is divided between two main phases.
Phase 1 consists of initialization and a pass (pass 1)
over the source program to form program dictionaries.
Phase 2 consists of interlude procedures and the second
pass (pass 2) by the assembly program.

COBOL
Program

COBOL
Compiler
(IBCBC)

\
MAP / IBMAP
m

Language >\ Assembler
Program

Relocatable
Binary
Text

Loader
(1BLDR)

Figure 38. Assembler Input and Qutput

74

The interlude, which is the time between pass 1 and
pass 2, is used to determine the values assigned to the
various symbols. Pass 2 is made over an internal form of
binary information, rather than over the Bcp informa-
tion of the original source program.

The core storage layout diagram in Figure 39 shows
the relative locations of routines, tables, and diction-
aries as they occur during phases 1 and 2.

Phase 1

The main functions of phase 1 are to initialize the
Macro Assembly Program and to create tables neces-
sary for definition by interlude procedures. A general
flow chart for phase 1 is given in Figure 40.

Initialization

The initialization routine, which receives control di-
rectly from the 1BjoB Processor Monitor, performs the
following four functions:

IBSY'S System Monitor

IBJOB Processor Monitor
Input/Output Control System
Input/Output Executor

Primary Supervisor Communication Words

File Blocks Constants

Input/Output Buffers

Common Subroutines

Phase 1 Supervisor Phase 2 Supervisor

Interlude Routine

Pass 1 Processor
Debugging Dictionary Routines
Error Message Routines

Macro Processor Pass 2 Processor

Macro Skeleton Table Pseudo-Operation Dictionary

Hash Table
Ini- Main
tiali- Diction=-
zation ary Name Table

Internal Dictionary

Figure 39. Core Storage Layout

Call IBMAP via IBJOB

Initialization

System Unit Assignment
Scan $IBMAP or $iBCBC Card
and Set Program Switches
Place Operations into Main
Dictionary
T

Y

\ Source { Pass 1

File Diction=-
»\ ary and

\ Text [
Obtain Source Deck
Read Source Deck

TN

Labei info/
File

1. Construct Main Dictionary

2. Construct Pseudo-Operation
Dictionary

>\ Message

3. Convert Literals

4. Process Macro Definitions

5. Process Macro Expansions

Constant
Pool

6. Produce Internal Text

7. Assign Immediate Symbols

File

Internal
Text

8. Process DUP Expansions

File

internal
Diction=

\

'

Go to Phase 2 Supervisor

Figure 40. Phase 1 General Flow Chart

1. Examines the system unit assignment table in the
1BsYs System Monitor to locate the physical units to
be used by the 1BjoB Processor in performing input/
output functions for the Assembler.

2. Scans the siBMAP or siBcee control card and sets
program switches (governing conditions pertaining to
the entire assembly) according to the information in
the variable field of that card.

3. Places the operation codes of the instructions into
the main dictionary.

4. Places the system symbols requested on the siByAP
card into the main dictionary.

Upon completion of these functions, control is passed
to the primary supervisor, which, in turn, passes con-
trol to the phase 1 supervisor. The initialization routine
is loaded with the pass 1 processor but is subsequently
overlaid by the main dictionary.

Pass 1

Input to the pass 1 processor consists of the source text
card images. During this pass, the entire source pro-

ary

gram deck is read. As each card is read, the following
processing occurs:
1. The main dictionary is constructed. Items entered
into this dictionary are:
a. Symbols in the name field
b. Qualified symbols
c. Location-counter symbols
d. New operations that may be defined by
operation-defining pseudo-instructions.
The main dictionary is the main information table
of the assembler and consists of the following parts:
a. The name table, containing the external Bcp
representation of each program symbol to
which the internal text refers. There is one
entry for each symbol, and the table is formed
nonsequentially by a scattering principle. This
procedure minimizes the time for pass 1 text
production, which requires the immediate re-
placement of each Bcp symbol by an internal
identifier.
b. The internal dictionary, containing one entry
in binary form for each program symbol. The

Assembler Information 75

dictionary is formed linearly (that is, entries
are in the same order as in the source program).

c¢. The reference (or hash) table, providing the
necessary relationship between the scattered
information of the name table and the linear in-
formation of the internal dictionary. This table
is half the length of the name table.

During pass 1, two types of entries are made into the
main dictionary. The first is called a real entry. This is
an entry for which information is placed in both the
name table and the internal dictionary. Reference table
correspondence is also generated at this time.

The second entry type is called a nominal entry. This
is one for which only the symbol is entered into the
name table. There is no internal dictionary entry; thus
there is no reference table entry. Nominal dictionary
entries are made when encountering variable field sym-
bols for which no entries have yet been made in the
dictionary. A subsequent real entry for a given symbol
replaces the nominal entry.

2. The pseudo-operation dictionary is constructed
but is not placed into its final location since that area is
occupied during pass 1 by the macro-skeleton table,

which is a table of macro- e‘cpansions expressed in a

mnraccad fa Ten thic dintinmary annaick
DULJIL}A\/OO\/\A L\IILAI J.L\Jll‘o lll (SN \Al\,kl\lll(ll\’ LULED1OL bD‘

sentially of information in the variable fields of any
pseudo-operations that may affect a location counter.

3. Literals are converted to binary form and stored
in a literal pool, which is a table of all unique literals
appearing in the source program.

4. Macro-definitions are coded and placed in the
macro-skeleton table.

5. Card images required by the expansion of a
macro-instruction are produced from the macro-
skeleton table.

6. Card images required by pup pseudo-instructions
are produced.

7. The truth value of 1¥F or 1FT pseudo-instructions
is evaluated to determine whether or not to scan the
following card.

8. Internal text corresponding to each source pro-
gram card is produced. Original card images are
retained only for listing purposes. If listing is not re-
quired (by the siBMAP card option, NovList), the card
images are deleted.

9. Immediate symbols are assigned S-values at the
point at which they are used. An immediate symbol
is a symbol used in a sET, 1FT, IFF, or pUP pseudo-
operation, each of which must be evaluated during
phase 1. The S-value of an immediate symbol is deter-
mined as follows: if the symbol is defined by one or
more SET pseudo-operations, its S-value is the value of
the variable field of the last such ser encountered. If the
symbol is not defined by a ser, its S-value is either 1
(if it has previously appeared in any name field in the

76

program) or O (if it has not appeared in a name field).

Output from pass 1 (and, therefore, phase 1) con-
sists of the internal text file (which is on tape), the
internal dictionary (which is kept in core storage) and
the following internal files:

File dictionary and label information

Pseudo-operation dictionary

Control dictionary

Error message

Constant pool

When phase 1 is completed, the interlude and pass 2
routines of phase 2 are brought into core storage and

assembler control passes to the phase 2 supervisor.

Phase 2

The major work of the assembler occurs during phase 2.
The flow of processing for this phase is shown in
Figure 41.

Interlude

Input to the interlude routine consists of the rFiLE dic-
tionary and label information, the control dictionary,
and the pseudo-operation dictionary. During the inter-
lude, processing occurs in the following order:

1. The FiLE pseudo-instruction file is examined. From
this, information is used in construction of the file dic-
tionary. Any necessary sFILE and sLABEL card images
are written at this time, and the file dictionary is
printed.

2. The pseudo-operation dictionary is brought into
core storage. It overlays the area that was occupied by
the macro-skeleton table during phase 1. The defini-
tions of all location symbols are then determined. This
consists of assigning either absolute or relative locations
to all pseudo-instructions.

3. The control dictionary is examined and defined.
This dictionary is complete except for the inclusion of
virtual symbols. The control dictionary enables the
Loader, 1BLDR, to make cross-references among pro-
grams. Each control dictionary entry consists of a
binary coded decimal name for external identification,
the entry length (that is, the number of words), and
its position in the source deck relative to the beginning
of the program.

There are four types of control dictionary entries.
The first type of entry, called a control-section entry,
is a reference to a combination of instructions or data
that is to occupy a contiguous block of core storage.
This type entry is produced by the conTrL and
COMMON pseudo-operations.

The second entry type is called an external reference
entry. It is produced either by a caLL operation or from
a virtual symbol. In the latter instance, the symbol is its
own external name.

Interlude

Process File Dictionary Information and
Label Information to Form File Diction-

Error

ary

ationDic-
Honary
File

Bring in Pseudo-Operation Dictionary
and Assign Symbol Values

Process Conirol Dictionary File to Start
Control Dictionary Processing

Control
Dictionary

File

L.

Pass 2

Assemble Machine Instructions
Complete Control Dictionary
Prepare Cross-Reference Usage Table

Internal
Text
File

Messages
SFILE
Cards
SLABEL
Cards
File
Diction-
ary
Assembly
Listing

& Binary
Text

Process Control Dictionary

Control
Diction-
ary

Debugging
Diction=

Error
Message
Outlines

Process Error Message File

Form Cross—Reference List

ary

Error
Messages

Cross

Return to IBJOB Processor Monitor

Figure 41. Phase 2 General Flow Chart

Entry-point entries constitute the third type of con-
trol dictionary entry. They are produced by ENTRY
pseudo-operations and permit a point within a program
segment to be referred to from outside the segment.

The fourth type of entry is the EvEN entry. Its func-
tion is to force the current location counter to an even
value to ensure an even address for the next instruction.
Even entries are produced by EvEN pseudo-operations.

If there is any output from the interlude routine, it
is in the form of error messages, sFiLE cards, and SLABEL
cards.

Pass 2

Pass 2 performs the final assembly pass over the internal
text. Phase 2 actually begins at this point.

Reference

Input to pass 2 consists of the internal text file and the
error message file (if one exists). During pass 2, the
following functions are performed:

1. The machine instruction corresponding to each
text item is assembled.

2. The assembly listing is prepared for the input/
output editor,

3. The binary deck image is prepared for the input/
output editor.

4. A determination is made as to which symbols are
virtual, and the control dictionary is completed (see
“Interlude”).

5. The cross-reference usage table is prepared for the
input/output editor.

Upon completion of this pass, the control dictionary
is processed to produce binary cards and list informa-

Assembler Information 77

tion, if required by the options in the siBMAP control
card.

In pass 2, any debugging information encountered
during processing the internal text file is modified
slightly. After processing the control dictionary, the
debugging dictionary is formed, if specified by an
option on the SIBMAP or $IBCBC card.

Next, the error message file is examined. Outlines of
any messages issued during assembly are interpreted,

78

and the appropriate text is sent to the input/output
editor for listing. Lastly, if requested by the rer option
on the s;BMAP card, the cross-reference usage of sym-
bols in the object program is prepared for listing.

Phase 2 output consists of the assembly listing and
the binary deck if specified on the simMaP card.

Upon completion of phase 2, program control is
returned to the 1BjoB Processor Monitor.

The Load-Time Debugging Processor consists of rou-
tines to compile the debugging request package sub-
mitted by the programmer, execution time routines to
recognize and interpret debugging situations, and
postprocessor editor and translator routines to list de-
bugging data in
these routines are supplemented by actions of the
Assembler and the rorrrax Compiler in providing in-
formation from the source decks for the Loader, and by
actions of the Loader in loading the debugging instruc-
tions for execution with the program.

R) '
fho rorm
T UL 200 alualuls ©

v . 1 faal} e r
requested. The actions of

Debug request deck

Load-Time Debugging Processor Information

Load-Time Debugging Operations

Figure 42 shows the flow of load-time debugging op-
erations. The source program is read in — normaily
from the system input unit. It must contain a debug re-
quest deck preceding the actual program instructions.
Segments of the program may be in the FORTRAN or
Map language, in the form of relocatable binary text,
or in any combination of these. The coBoL programmer
can use load-time debugging by specifying debugging
locations from an Assembly listing of the cosoL deck.

Debug Debug comments

Debugging dictionaries

into debug File 1
{SYSCK2)

Reference tables

FORTRAN deck into foad

(SYSUT2)

Sample source

file and dictionaries
into load file

(SYSUT2)

3
ﬁqb Debugging dictionaries

and control information

(SYSUT2) into debug File 1 (SYSCK2)

“Program Interpreter Subroutines

program on
SYSIN ‘<
MAP Debugging dic-
MAP deck Assembler tionaries into
load file
Previously
assembled Debugging dictionaries
deck already assembled

Figure 42. Load-Time Debugging Program Flow

Executes loaded with object program

Debug dumps
into debug File 2 (SYSCK2)

Debug
Post-proc
essor Edito

Debug File 1
T from SYSCK2

File 1 transformed
into tables in
core storage

_ Debug File 2
from SYSCK2

l Debug dumps and comments on SYSOU

Load-Time Debugging Processor Information 79

This type of debugging should not be confused, how-
ever, with compile-time debugging for cosoL decks.

Load-time debugging is accomplished in the follow-
ing steps:

1. The debugging compiler routines store the com-
ments that are to be listed with the dumps and use the
debugging request packet to prepare reference tables.

2. The Assembler and ForTRAN 1Iv Compiler prepare
debugging dictionaries from the actual program.

3. The Loader sets up the debugging mechanism for
execution with the actual program.

4. The execution time routines perform the re-
quested debugging actions during execution of the
object program.

5. The debugging postprocessor editor and trans-
lator routines translate the dumps, establish their for-
mat, and list them.

As shown in Figure 42, a deck assembled before this
job already contains a debugging dictionary. For this
reason, no work by the Assembler or by the ForTRAN
v Compiler is needed, and the deck passes imme-
diately to the Loader.

Debugging Compiler Routines

The siBpBL card that immediately follows the siBjos
card in any load-time debugging job causes the 1BjoB
Monitor to call the debugging compiler into storage.
The compiler reads in the entire debugging request
deck and produces two different sets of data:

1. A series of reference tables are written out as the
first part of the load file. These tables are headed by a
Bep card with the code srpicT starting in column 1. The
information in the tables provides the execution time
routines with the points in the program where debug-
ging has been requested, symbols used in debugging
statements, and instructions for dumping that were
coded from the debugging requests themselves.

Since one of the execution time routines, the inter-
preter, is constructed on a modular basis, only those
segments needed by the debugging requests are called
into storage. For this reason, the reference tables also
include a dictionary of interpreter control sections.

2. The comments that the programmer wants listed
in connection with the debugging dumps are written
into the first file on sysck2.

Upon reading a *pEND card, the debugging compiler
returns control to the 1BjoB Monitor.

The next step is to prepare a dictionary of the sym-
bols defined in the source program that can be com-
pared with the symbols that the debugging compiler
has already written on the load file from the request
deck. This dictionary is prepared by the Assembler or
the ForTRAN 1v Compiler, depending on the program
deck involved.

80

Debugging Actions by the Assembler

Modal and dimensional information has been supplied
by the MAP programmer in his source program. The
Assembler sets aside this data until its normal opera-
tions have been concluded. It then creates a debugging
dictionary for each deck it has read. If a full debugging
dictionary has been specified on the appropriate con-
trol card, the dictionary refers to all symbols contained
in the assembled program. If the short dictionary has
been requested, only those symbols specified by the
KEEP pseudo-operations in a MAP source deck are in-
cluded.

The debugging dictionaries are written out on the
load file as the last part of the relocatable binary deck
produced by the Assembler. They specify for future
debugging action the name of each symbol, its mode
and dimensions, and its relative or absolute location.

Debugging Actions by the FORTRAN Compiler

The rorTRAN 1Iv Compiler performs the same debug-
ging actions on a FORTRAN deck as the Assembler per-
forms on a MaP deck. The input is a program in
problem-oriented language, and the output, as far as
debugging is concerned, is a debugging dictionary in
binary form.

Debugging Actions by the Loader

The Loader receives the series of reference tables and
dictionaries in the load file as its debugging input. It
sets up the debugging mechanism as follows:

1. It loads a debugging program block into core
storage directly after the job program. This block con-
sists of debugging reference tables and the necessary
execution time routines.

2. It enters the prefix of each program instruction,
before which debugging action has been requested,
into an sTR insertion table, referred to by location. The
Loader replaces each such prefix in the program with
the prefix for an str instruction. The execution time
debugging routines include an str supervisor to moni-
tor each occurrence of an s1r in the program, and rou-
tines to interpret the debugging requests associated
with the sTR.

3. It writes the debugging dictionaries created by
the Assembler and the ForTraN 1v Compiler onto the
first file on syscke, along with other reference material
needed by the postprocessor routines.

Execution Time Routines

The sTR supervisor monitors the action of all str in-
structions in the job program. Each debugging str
transfers control to the interpreter routines, which in
turn perform the debugging actions requested in the
instructions coded by the debugging compiler. The in-

formation requested in each dump is written onto the
second file on sysck2. The str supervisor then performs
the instruction which was replaced by the str and re-
turns control to the program for further execution.

Postprocessing: The Editor and Transiator Routines

When the job program has been executed, the 1BjoB
Monitor transfers control to the debugging postproc-
essor editor. The editor reads the first file from syscke
into core storage. This file now contains the dump com-
ments saved by the debugging compiler, and the refer-
ence tables and dictionaries produced by the Loader.

The editor rearranges this data into a form more readily
usable by the postprocessor translator, reads in the
translator (overlaying most of itself), and transfers
control to it.

The translator reads in the dumped information
previously written into the second file on sysck2 by the
interpreter routines. The format and limits of each
dump are established according to the request for it,
and any associated comments are added. Each listing
is then written on sysou for printing. At the end of its
work the translator returns control to the editor, which
in turn relinquishes control to the 18joB Monitor.

Load-Time Debugging Processor Information 81

Loader Information

The Loader is a component program of the 18joB Proc-
essor system. It accepts all the assembled decks for a
job application produced by the Assembler and/or the
FORTRAN 1v Compiler, transforms them into one exe-
cutable object program, and then transfers control to
this program. Figure 43 shows the relationship of the
Loader to adjoining components in the system.

Input to the Loader consists of a load file and those
subroutines that the Loader selects from the iBjoB
Library for inclusion in the object program. The load
file is a repository of data for the Loader from the
Assembler, the ForRTRAN 1v Compiler, or the debugging
compiler. It is normally kept on symbolic input/output
unit sysut2. But if the entire program consists of binary
decks from previous assemblies or compilations, the
Loader can be instructed to use input file sysiNi as the
load file through the Nosource option punched on the
siBjoB card. The load file contains program decks as-
sembled by the Assembler and the FoRTRAN Iv Com-

piler on the current machine run, or decks inserted by
the programmer from previous assemblies. If the pro-
grammer has made special requests in regard to files
or control sections, the load file will also contain the
appropriate control cards. And if he has requested
load-time debugging, there will be a deck of reference
tables from the compiler section of the Load-Time
Debugging Processor.

While creating a single executable program from its
input, the Loader deals with several problems.

Absolute Address Assignment
The Loader determines the absolute address that each
instruction or data word in a program must occupy at
execution time. Where instructions refer to addresses,
the Loader assigns an absolute value to each reference.
First, the Loader solves another problem. When
parts of the same program are coded separately and in
different source languages, they are assembled as

Job Input Load File
IBJOB N 1BJOB
Control > Monitor consists
Cards of
Load~Time -
Debugging >» Debug.glng
Requests Compiler
FO’}I/RAN FORTRAN Debugging
™ Compiler Reference
Language P Tables 1BJOB
Library
COBOL COBOL Relocatable
i Bina
C | ry
tanovoge il Assembled Subroutines
MAP Decks
Language IBMAP | 3| and ¢
Assembler Control
Loader Cards
Control ‘ > LOADER
Cards
Previously
Assembled > |
Decks
L Single
Object Executable
Program »| Object
Data Program

Figure 43. The Loader in Relation to Adjoining Components in the IBJOB Processor System

82

separate decks. Even though each deck received by the
Loader has been assembled into the same binary for-
mat, the address locations are relative only to other
locations in the same deck. Some address references
may have no value at all, since they refer to symbols
within another deck. The Loader precedes absolute
address assignment by resolving the relationships

among the decks themselves.

Program Loading

Even when ail addresses and address references have
been made absolute, the program must be loaded into
its proper storage position for execution. At this stage
in Loader operations, the parts of the program may be
scattered over several areas of storage. The Loader uses
a technique called “scatter-loading” to bring the object
program into its proper position.

Library Subroutines

The Loader can add standard subroutines from the
Processor Library (1BL1B) to the object program. Some
of the subroutines, such as .Lxcon, which controls post-
execution operations, are added automatically to every
program. The Loader selects others, such as the .Lovry
subroutine for loading overlay links, when the object
program requires them. However, most Library sub-
routines are loaded because the input decks or other
Library subroutines require them.

Input/Output Environment

The Loader provides the input/output environment
necessary for execution of a program. It assigns input/
output units to files, allocates buffer storage to files,
chooses the appropriate input/output control routines
for the program’s needs, and generates the instructions
necessary for initializing these routines.

Overlay

When the object program and its work area require-
ments are too large for core storage, the programmer
can request the Loader to set up an overlay pattern by
using $ORIGIN and $INCLUDE control cards. Overlay mode
alters Loader operations considerably. Absolute ad-
dresses within different links, for example, may be the
same, and a different series of debugging routines must
be called in for load-time debugging. The Loader also
performs an extensive checking operation to determine
the validity of calls that would cause links to be loaded.

Load-Time Debugging

When the programmer has requested load-time de-
bugging, the load file contains information from the
debugging compiler based on his requests. The as-

sembled decks generated by the Assembler and
FORTRAN 1v Compiler also contain dictionaries that will
help the Loader define the symbols used in these re-
quests. Using this material, the Loader constructs a
mechanism that dumps the information during program
execution, as requested by the programmer.

Communications from the Loader

The Loader reports program or machine malfunctions
through error messages. (See part 3 of this manual
for a list of Loader messages and their explanation.)
It reports input/output configurations with machine
operator messages. On request it also lists a load map
of core storage allocation at execution time, a cross-
reference table of control sections and file names, and

a buffer pool assignment list.

Configuration of the Loader

The Loader is divided into several parts. The first part
is the load suprevisor, which is called into storage by
the Processor Monitor (see Figure 44). It remains there
throughout the Loader operations to call in the other
parts of the Loader. These parts are an initialization
section and the main program sections 1 through 5.
(Another part, section 6, does not operate during load-
time and is described in “The Librarian section.”)

Location 00000

Load Supervisor, Loader Communication Area,
Utility Routines

Section 1 (in part)

Initialization Section

Reserved for Section 5

Installation Accounting Routine

Location 77777

Figure 44. Storage Allocation for Load Supervisor and Initial-
ization Section

Loader Information 83

Throughout its operations the Loader maintains two
utility areas within the load supervisor section. The
first is a communication area having the addresses of
the tables, dictionaries, and lists with which the Loader
works. The second area contains subroutines that are
used in common by all Loader sections.

Loader Operations

Loader working storage requirements are such that
part of a program having more than 6,000 instructions
may have to be siphoned off into external input/output
devices for temporary storage. The process may be
called overflow or spill, depending on the conditions
requiring it. The Loader performs this operation auto-
matically by keeping a running estimate of its storage
needs. A detailed description of overflow and spill,
not essential to an overall understanding of Loader
operations, is given later in this section. (See “External
Storage For Text.”)

Since the Loader scans the program instructions part
of the load file twice, it is called a two-pass loader.
The first pass yields information used by the initializa-
tion section and sections 1 through 3; second pass in-

cod hss cmomio A 1
Dy sections 4 ana o.

e e

formation is used
The following is a description of how these sections
operate.

Initialization

The load supervisor is called into storage by the Proc-
essor Monitor. It in turn calls the initialization section
into upper core storage and part of section 1 into lower
core storage. This part of section 1 consists of routines
that are not used by section 2; it is to be overlaid when
section 2 is brought into storage. The remaining section
1 routines are used by both section 1 and section 2.
They are read into upper core storage over the initiali-
zation section after it has completed its work.

The initialization section sets up an input/output
environment for Loader use. It assigns input/output
units, defines buffer pools, attaches files to the pools,
and opens the files. One of the input files thus opened
contains the input to the Loader. If no compilation or
assembling of source language cards has been per-
formed during this machine run, the input is read from
sysint. If there has been compilation or assembling, the
input is normally in a load file on sysut2. If there has
been compilation or assembling for only part of the
program and the programmer has used a siBREL card,
the Loader reads its input first from sysut2 and then
from svsiNt,

The first part of the load file is a deck of reference
tables from the debugging compiler, if debugging has
been requested. This deck is headed by a srpicT control
card. It provides information on the points in the pro-

84

gram where debugging has been requested and on the
symbols referred to in the debugging statements. It
also contains instructions for dumping that were com-
piled from the debugging statements themselves.

The second part of the load file is a collection of
program decks in binary format mixed with control
cards generated by the Assembler, the FORTRAN IV
Compiler, or both. These decks either have been as-
sembled on the current machine run or added by the
programmer from a previous run. Each deck contains
a file dictionary (if input/output files have been re-
quested), a set of relocatable binary instructions called
“text,” which are the binary translation of the source
program instructions, a control dictionary section, a
debugging dictionary (if debugging has been re-
quested), and overlay control cards (if overlay has
been requested).

The load file also contains Loader control cards trans-
mitted directly from the source deck by the Processor
Monitor. These cards may appear in front of, between,
or following the binary decks.

In the section “Loader Input” there is a more detailed
description of a load file.

The initialization section now reads the first card
image in the load file. If this card is not a siBjoB card,
loading terminates.

The initialization section next transfers control to the
installation accounting routine (if any) to record that
the Loader is now in control.

After receiving control again, the initialization sec-
tion scans the siBjoB card and encodes its parameters
in the Loader communication area.

If a sro1CT card appears directly after the siBjoB card,
the initialization section reads the debugging reference
tables into core storage. The debugging tables are read
in at this time, because section 1 uses them while read-
ing the rest of the load file into storage.

The initialization section then returns control to the
load supervisor. If the next card on the load file is a
sEDIT card, the load supervisor calls section 6 into core
storage to edit the Subroutine Library (see “The Li-
brarian”). Otherwise, the load supervisor calls in those
parts of section 1 that are not already in core storage,
overlaying the initialization section.

Section 1

Section 1 defines and attaches an 10cs internal file buffer
area for storing relocatable binary text. This file has
all the properties of any other 10cs file. All or part of its
contents may also be transferred to any appropriate
device, such as disk or tape.

Section 1 now begins to read the rest of the data
from the load or input files into four storage areas.
Load-time debugging information is stored in a buffer
attached to sysck2. The remaining areas are in core

storage and contain the internal text file for text, the
control dictionaries, and the control information stor-
age block, where additional control information is
stored.

This control information is stored in the form of
chains of entries. In each entry is a word containing
the addresses of the preceding and succeeding entries.
Each chain is located by the Loader through a com-
munications word that contains the addresses of the
first and last entries.

phalnlnu hprmﬂ'c section 1 to store data in the con-
trol mformatlon storage block without regard to the
length of the chains and in such a way that the infor-
mation can be found easily.

Figure 45 shows section 1 and the working areas in
storage.

While transferring the load file into storage, section
1 processes the data as follows:

The options on the s1BLDR card, the first card in each
binary deck, are examined. If riBE appears, the deck

Location 00000

1BSYS/IOCS/IOEX/IBJOB Monitor

Load Supervisor, Loader Communication Area, Utility
Routines

Text Output Buffers (to write overflow on SYSUT4)

Section 1 (in part)

Control Dictionaries

Internal File for Relocatable Binary Text

information in Chains

FDICT SOMIT
Contro! Information Storage $FILE SORIGIN
Block: SGROUP Program Name
$LABEL Table
SNAME $POOL
$USE

Input Buffer Pool

Section 1 (in part)

Reserved for Section 5

Installation Accounting Routine

Location 77777

Figure 45. Storage Allocation During Section 1 Operations

name punched in columns 8-13 is placed in a virtual
section name list which is stored temporarily in the
area reserved for section 5. This list is for section 2
use in determining the subroutines to be included in
the program from the Subroutine Library. Otherwise,
the deck name is stored in the program name table
chain in the control information storage block. This
chain is to contain the name of every deck, including
those in subroutines, that will appear in the program
to be executed. If NoTEXT is punched, the Loader by-
passes all relocatable hinary text cards.

If debugging has been requested, a search is made
in the debugging reference tables for each deck name
as it is encountered. If a match is found, corresponding
chains within the debug tables are realigned accord-
ingly. If there are no decks encountered for any names
cited in the debugging reference tables, error messages
are printed out.

SFDICT, $TEXT, $CDICT, and sppicT cards delimit sections
of the binary deck. spkexp cards prepare the Loader
for either a new deck or an end of file.

Each file dictionary encountered generates an entry
in the external file dictionary chain in the control in-
formation storage block. This chain is used by section 2
to generate file blocks.

Each relocatable binary text card image is transferred
directly into the internal file area in order of its oc-
currence.

Each two-word control dictionary entry is stored in
the control dictionary area, and a third word is added
for chaining control sections with the same name.
These chains are called “like name” section chains.
“Like name” section chains link together control sec-
tions with the same name in all of the control diction-
aries for a program. They facilitate absolute address
assignment and the selection of subroutines to be in-
cluded in the program. Control dictionary entries are
ordered by their occurrence in the binary card input
and are thus in ascending order within program decks.
Control dictionaries from succeeding decks are stored
in adjacent blocks.

If the ALTIO Option has been specified on the siBjoB
card, the names of the normal FORTRAN input/output
subroutines are changed to those of the alternate input/
output routines.

The debugging dictionary in each deck is written
out on the debug file. At the same time section 1 uses
the cntries to expand the debug reference tables.

The first soricIn card sets the Loader to overlay
mode. An entry is made for each card in the soriGIN
card chain in the control information storage block,
and special entries are made in the program name table
chain and appropriate control dictionaries.

A siNcLUDE card generates similar entries in the pro-
gram name table chain and control dictionaries.

Loader Information 85

The contents of sNAME cards are stored in a sNAME
card chain in the control information storage block,
with added data from any serc cards that follow. Each
field on a card represents a separate entry in the chain,
and entry lengths vary between three and eight words.

The contents of the suse and soMit cards are entered
in a suse and soMrr card chain in the control informa-
tion storage block, with added data from related setc
cards. The entries are similar in format to those of the
sNAME card chain, but with a maximum length of three
words.

One entry for each spooL or scroup card and its as-
sociated sETC card is made in a spooL and scrouP card
chain in the control information storage block. The
standard values for parameters that have been omitted
on the card are also placed in the entry. The informa-
tion stored in the spooL and scroup card chain is used
by section 3 to allocate storage to buffer areas.

One ten-word entry for each sLABEL card is made in a
sLABEL card chain. Standard values for omitted options
are entered automatically.

One seven-word entry for each sriLE card is made
in a sFILE card chain, with standard values for omitted
options entered automatically.

The size of Blank comMoN is entered from a ssize
card in the location ccsizk.

The standard entry point to the object program at
execution time is entered from a sENTRY card into loca-
tion ENTCC+1,

Section 1 has now accepted all the data in the job
application except subroutines from the Subroutine
Library. It now uses the sNxaMmE, susk, and somrt card
chains to modify information in the control dictionaries.

The new control section names replace the old in the
sNAME card chain. The same adjustments are made in
any like name section chains associated with these
names in the control dictionaries. All section entries
are then removed from the sxame card chain, leaving
only file entries for section 2 use.

A scan of the suse and somit card chain causes bits
to be placed in the appropriate control dictionary
entries.

Section 1 now returns control to the load supervisor.

The load supervisor calls section 2 into storage (see
Figure 46).

Section 2

Section 2 prepares the way for the Loader to assign
input/output units and file buffers, generate 10cs call-
ing sequences, and give absolute locations to program
parts. It determines the names of the subroutines that
must be included as part of the program, and it builds
up a body of cross-reference data for Loader sections
that follow.

86

Location 00000

1BSYS/10CS/IOEX/I1BJOB Monitor

Load Supervisor, Loader Communication
Area, Utility Routines

Section 2

Control Dictionaries

(normally used to contain subroutine name and
dependence tables)

Internal File for Relocatable Binary Text

Control Information Storage Block

Input Buffer Pool

Section 1

(may temporarily contain subroutine name and
dependence tables)

Reserved for Section 5

Installation Accounting Routine

Location 77777

Figure 46. Storage Allocation During Section 2 Operations

Section 2 first reads control information from the
Subroutine Library into core storage. The Library is
in three parts. The first part contains two lists of control
sections: the subroutine name table and the subroutine
dependence table. The second part contains the same
control information as a load file: control dictionaries,
file dictionaries, and Loader control cards referring to
the subroutine text. The third part contains the re-
locatable binary text of all the subroutines in the
Subroutine Library.

The subroutine name table contains the names of all
real control sections appearing in the Library each with
its file record or block number. The subroutine depend-
ence table contains, for each entry in the name table,
a table showing the other control sections that must be
loaded with that control section. Section 2 reads these
tables into core storage next to the control dictionaries,
However, if the control information storage block and
the control dictionaries section are so large that there

is not enough space between them, the tables are read
in over the section 1 routines in upper core storage.

Section 2 now constructs a virtual section name list
to tabulate all possible control section names that must
be inserted in the program from the Library. First the
names of the subroutines, such as .Lxcon, that will be
used automatically are added. Then the names of all
control sections that are not defined in the program
itself (i.e., virtual sections) are added. These virtual
section names are added to the list through the
Equality Reduction routine. This routine:

1. Examines each control dictionary entry for its type
and determines whether it has been marked for deletion.

2. Deletes all entries for real control sections with
the same name except either the first that occurs in the
dictionaries or the one designated through suse and
soMIT cards.

3. Examines all like name section chains for virtual
control section names, i.e., names that have not been
chained to real control sections that have been retained.
These virtual control section names are added to the
virtual section name list.

The Loader next attempts to match up all names in
the subroutine name table and the virtual section name
table. When a match is found, the name of the sub-
routine is entered intc a required subroutine number
list, This list is stored temporarily in the area that will
be used later for section 5. If there are any names left
in the virtual section name list after the comparison, a
diagnostic is written on sysout and a flag is set to sup-
press execution. Otherwise, as soon as the list is com-
pleted, it is sorted into numerical order based on the
record or block numbers.

The second part of the Library file is now processed
to obtain the control information for routines entered
in the required subroutine package number list. The
routines used are the same section 1 routines in upper
core storage used to process control information from
the load file. If this part of section 1 has been overlaid
by the subroutine name and dependence tables, it is
now read in again over the subroutine name and de-
pendence tables for section 2 use, since the tables are
no longer needed for processing.

When all subroutine control information has been
processed, section 2 uses the Equality Reduction rou-
tine to chain subroutine and load file data in the control
dictionaries.

Where overlay is involved, the names on sINCLUDE
cards are now assigned to the proper links. In the
program name table, the sINCLUDE entries replace the
other entries with the same name. In the control dic-
tionaries, entries for control sections that are to appear
in another link are flagged for section 4.

caLL statements and references between links are
analyzed for validity. Downward caLL statements are

marked in the control dictionaries as requiring transfer
vectors. Unless NoFLow has been specified on the sisjoB
card, a cALL statement that would cause the calling link
to be overlaid results in an error message. Virtual sec-
tions that do not contain caLL statements and deleted
real control sections are also checked for violation of
overlay rules. Link numbers for subroutines that will
be loaded into links on the overlay file are stored in the
required subroutine package number list.

The control dictionaries are now almost complete.
All that remains is to account for Blank common, if re-
quired. The Blank coMMoN name // is entered in the
program name table chain; a Blank common control
dictionary is added to the control dictionaries area; and
a like name section chain is set up within it. The length
of Blank comMmoN is set to the largest storage area re-
quested by any deck in the program, and the control
sections for all other Blank coMMoON requests are de-
leted.

Section 2 next transforms those chains of information
in the control information storage block that are needed
by the remaining Loader sections into a more compact
table form. These tables are stored in core storage di-
rectly above the control dictionaries.

The program name table chain becomes a separate
table stored immediately after the required subroutine
package number list. The original chain was composed
of five-word entries. The first word is a chain to the
other entries in the chain. The second contains the
name of the Deck or subroutine. The third word is a
chain to the appropriate external file dictionary chain
entry. The fourth is a chain to the appropriate control
dictionary entry. The fifth contains information for the
overlay mechanism. In the process, the first word is
dropped from each entry.

File dictionary entries in the external file dictionary
chain are renamed, using what remains of the sNxaME
card chain.

A new table, called working file block 1, is made up
from the sriLe card chain entries. Each unique file
name generates a 12-word file block within the new
table.

Working file block 1 is searched to find file names
equivalent to the file name entries in the external file
dictionary chain (i.e., comparing the sFILE card entries
with the references in the program file dictionaries). If
a match cannot be made, an error message results, and
the first word in each external file dictionary chain en-
try is set to MzE 0, signaling that references to the file
are to be ignored. If a match is made, the file check
portion of the external file dictionary chain entry being
considered is transferred to a position in the appro-
priate 12-word file block. The first word of the external
file dictionary chain entry is changed to pzE k, where k
is the index position of the file block.

Loader Information 87

A file synonym list is made up from the external file
dictionary chain and the file blocks for each deck that
contains references to files. Each reference now has its
corresponding entry in this list. The entry contains the
constant to be added to the location of the first working
file block to determine the location of the file block re-
ferred to.

The second word in each program name table entry
is now changed to chain the entry to the appropriate
file synonym list entry. Section 4 uses file synonym lists
with the program name table to assign absolute loca-
tions to file references in the program.

A spooL and scroup list with buffer count specifica-
tions is built up from a comparison of file names in the
working file block to those in the spooL and scroup card
chain. The spooL and scroup list entries are chained to
the appropriate working file block entries.

A working file block 2 is generated from each work-
ing file block 1. This new block, which is later placed
in the object program, is similar in format to working
file block 1.

Entries from the siaper card chain, if any, are
stripped from the control information storage block
and stored in the appropriate file blocks within working
file block 2.

Having created the cross-reference tables necessary
to set up an input/output environment for the program,
section 2 now completes its work by establishing the
standard entry point to the program at execution time
as follows:

1. Location ENTCC is tested to determine whether an
entry point has been named by a seNTRY card.

2. If there is an entry point name, an equivalent
name is sought in the control dictionaries. If none is
found, execution is suppressed and an error message is
written. If the name is found, its location in the pro-
gram name table is put into location ENTCC and the
name of the deck where the entry appears is put into
location ENTCC+1.

3. If no entry point has been named, the Loader
makes a search through the control dictionaries for the
standard entry point name “....”. If this is found, it
is inserted in ENTCC, with its deck name in ENTCC+1.
But if there is no entry point “......”, the location of the
first program name table entry is used, with its deck
name.

Having prepared the way for section 3, section 2 now
returns control to the load supervisor.

Section 3

The Loader has the data it needs to create an input/
output environment for the program and to begin as-
signing absolute address values to program sections.
Section 3 is brought in to perform these tasks. Since

88

all the essential data from the control information
storage block has been stored in other reference tables,
the load supervisor reads section 3 into this storage
area. It also calls in section 4, since both sections use
the same routine for storing the absolute binary text.
Section 4 overlays the areas formerly occupied by sec-
tion 2. (See Figure 47 for the storage configuration.)
Since section 5 is included in the same system record
with section 4, it is read into storage at the same time.

Section 3 proceeds as follows:

Using data from working file block 1, routine 1ovasc
assigns input/output units to files and makes up a re-
serve unit table listing its assignments. It then replaces
the unit encodings in both working file blocks with the
addresses of the appropriate unit control blocks in
IBSYS.

Unless NoList has been punched on the appropriate
sFILE card, routine oPLIST uses data from working file
block 1 to print out file mounting messages to the ma-
chine operator.

At this point the Loader can start setting aside those
parts of the program that are in their final form for

Location 00000

IBSYS/IOCS/IOEX /IBJOB Monitor

Load Supervisor, Loader Communication
Area, Utility Routines

Section 4

Control Dictionaries

Tables for Section 3 and Section 4 Use

Internal File for Relocatable Binary Text

N

Section 3

Internal File for Absolute Binary Text

Section 5

Installation Accounting Routine

Location 77777

Figure 47. Storage Allocation During Section 3 Operations

program execution. The Loader defines and attaches an
internal file to contain these program parts until the
entire program can be loaded.

The most important parts of the program that will
occupy this file are the program instructions when all
absolute address values have been assigned. For this
reason, the file is called the “absolute text” file. As
indicated in Figure 47, section 3 uses the storage area
formerly occupied by section 1 and the input buffer
file for the new internal file. This file is a standard
1ocs buffer pool set up in scatter-load format for tem-
porary storage of absolute text before the program
is loaded into position for execution. As explained in
the section “External Storage For Text,” this file may
at the same time exist as an external file attached to
SYSUTL.

Routine FpBLK places working file block 2 and the
reserve units table in the absolute text file.

Routine rLIOB uses working file block number 1 and
the spooL and sGROUP list to estimate the storage needed
for program initialization. This area must include the
following if required by the object program: routines
to define buffer pools and to attach files to pools, in-
structions to transfer control to an installation account-
ing routine at the start of execution and to transfer
control to the object program, a file list, and an inter-
system reserve unit list. RLIOB uses this estimate to de-
termine the origin of the program.

Routine cpass assigns an absolute address to each
control dictionary entry. The preface entry of the block
for each deck is marked to indicate the occurrence of
deletions or insertions in that deck (i.e., whether there
is a discontinuity in the location counter for that deck).
The program name table is used to find the location of
each control dictionary block. The link reference table
is used in overlay job applications to assign the same
absolute locations to links with the same logical origins.

If the pLocIc or LocIc option has been punched on
the siBjoB card, the cpLoG routine prints out the logic
cross-reference table from the control dictionaries.

Since the amount of core storage that the object pro-
gram and its subroutines will need at load time is now
known, routine sTass can assign the remaining storage
as buffers for various files. Using the spooL and scroup
list, working file block 1, and a series of its own tables,
sTass makes up the exact pool and group arrangement
for each file, and the final input/output initialization
block. This block includes the actual perFiNe and
ATTACH instructions for object program buffer pools and
the final file list. stass also sets the absolute address of
any nonstandard labeling routines and places them
into the file list. stass checks the data in each file
dictionary entry against actual file assignments.

The Loader next generates 10cs calling sequences
and stores them in the absolute text file. It also gener-

ates part of the call on the object program and all the
linkage mechanisms between the 1Bj0B Monitor job
control section, the input/output instructions, and the
object program.

If the Locic option has been selected, cpLoc prints
out the buffer pool assignment list.

Communication words, defining the absolute location
of object program file information that may be neces-
sary for the object program or its postexecution control
routine, are moved into the final absolute text file.

If the MAP option has been punched on the siBjos
card, routine MAPROG prints a load map of storage
allocation and overlay link numbers for the object pro-
gram.

Section 4

At this point in Loader operations the various source
decks, subroutines, and control sections within the pro-
gram that is to be loaded have absolute locations; the
individual instructions do not have such locations.
The Loader must now make a second pass over the
relocatable binary text file and control is passed to
section 4 to perform this task.

Section 4 completes all Loader functions except the
actual loading of the program into position for execu-
tion. It performs the following tasks:

1. Assigns absolute addresses to all text words, in-
cluding the text words of subroutines that will be used
by the program.

2. Sets up an overlay mechanism, if needed.

3. Prints messages regarding text errors for each
deck.

4. Creates — and assigns absolute addresses to — the
instructions that transfer control to the object program.

If debugging has been requested, section 4 changes
into absolute form the remaining relative addresses
and address references in the debugging tables that
will be used during program execution. These tables
are now:

1. A request dictionary containing the symbols used
in the debugging request statements, with their abso-
lute locations.

2. An sTR insertion table for each deck in which de-
bugging is to be performed, containing one entry for
each point in the deck where dumps are to be made.

3. A table of constants to be used by the debugging
interpreter routines.

4. The original debugging statements coded into a
form more easily used by the interpreter routines.

5. A control dictionary through which the Loader
can load the proper debugging interpreter routines that
are needed for this job application.

Ordinarily, the combined subroutines and coded text
is now stored in the absolute text file and builds
downward toward the internal text file, as shown in

Loader Information 89

Figure 48. In the case of an overlay job application,
however, only the main program (link 0) goes into the
absolute text file. For this reason, the Loader must first
set up the overlay pattern. Upon determining that an
overlay job is involved, section 4 creates three reference
tables to be used during execution of the object pro-
gram.

The link director table records the storage status of
each link and points to the other reference tables. It

consists of one-word entries, one entry for each overlay
link,

The link record chain lists the input/output units on
which overlay links are written. It consists of two-word
entries: one entry for each soriGIN card and one entry
for each control section containing text that was re-
located in another link by means of a sincLUpE card.

The transfer vector table consists of two-word en-
tries, one entry for each caLL to a unique entry point
that could cause the loading of overlay links.

Location 00000

IBSYS/IOCS/IOEX /IBJOB Monitor

Load Supervisor, Loader Communication Area,
Utility Routines

Section 4

Control Dictionaries

Tables for Section 3 and Section 4 Use

Internal File for Relocatable Binary Text

Section 3 Overlaid by Absolute Text

Internal File for Absolute Binary Text

Reserved for Section 5

Installation Accounting Routine

Location 77777

Figure 48. Text Storage Allocation During Section 4 Operations

90

A fourth table, the link reference table, is retained

by the Loader to control the writing of text into the
link buffers.

Section 4 next stores in the absolute text file the link
director table, the link record chain, and the transfer
vector table. These tables are all in an “overlay com-

munication area” that is to be loaded with the main
link.

Section 4 now turns to the final assignment of abso-
lute address values to the binary text of the program
instructions. The Loader first creates control break
tables, using the control dictionaries. There is one con-
trol break table for each deck, reflecting all insertions
and deletions that have occurred in previous process-
ing. If the deck has no insertions or deletions, a control
break table is not formed.

The Loader next processes the text, word by word.
When a dictionary reference is found, the control dic-
tionary is used to assign it an absolute value. File
references are evaluated in terms of the absolute ad-
dresses of the file blocks, using the file synonym list.
When subroutine text is to be inserted into the pro-
gram, the Loader consults the required subroutine
package number list, opens the subroutine file, and
processes the subroutine text in exactly the same man-
ner. In overlay applications, the process is the same,
except that special bits in the control dictionary entries
cause the Loader to assign addresses in relation to link
origin, and the text is transferred into the link file
buffers, instead of into the internal text files.

If overlay is involved, each word that is not in the
main program is stored on the proper storage unit
specified for its link.

All Loader messages pertaining to text within a deck
are printed as soon as the deck has been processed.
The caLL to the object program is created and stored
in the absolute text file. Next the Loader stores the de-
bugging requests dictionary and str insertion table in
the main link in absolute scatter-load form. The debug-
ging control section dictionary and the str insertion
table are coded to be written on the debug file.

If debugging has been requested, the absolute loca-
tion of each text word as it is processed is searched for
in the str insertion table. If the location is found, the
prefix of the text word following is placed in the ap-
propriate entry in the str insertion table, and an str
prefix replaces the prefix of the text word.

Section 4 now saves certain words from the 1BjoB
communication area that are needed by the executing
program. One of these words, for example, is a transfer
location for returning control to the 1Bsys Monitor. Sec-
tion 4 stores the word in the postexecution routine
.LXCON.

Section 5
All parts of the program for execution have now been
created. The Loader must still store them in the proper
locations. Control is transferred to section 5 for this
final task.

As shown in Figure 49, section 5 works with two
storage blocks: the absolute text file containing the
scattered program parts, and an area between this file
and 10Ex into which the program is to be loaded in the
proper order for execution. This program loading area
contains data that, with a few exceptions, are of no use
to the executing program: the 1BjoB Monitor, the load
supervisor area, section 4, and the reference tables and
control dictionaries used during section 3 and 4 opera-
tions.

Section 5 first determines whether loading should
be performed. If NoGo has been punched on the siBjos
card or has been set due to a high level error during
Loader operations, an error message is printed and
control returns to the 18joB Monitor.

If loading has not been suppressed, section 5 now
prepares the program loading area to receive the pro-
gram parts. It clears each storage location in the pro-
gram loading area by setting it to:

STR 0,,0
Location 00000

[BSYS/1OCS/IOEX

First Progrom Loading Area
(Set to STR's before loading from Internal File)

Internal File for Absolute Binary Text
(Set to STR's after contents scatter-loaded
into first program loading area)

Section 5

Installation Accounting Routine

Location 77777

Figure 49. Storage Allocation During Section 5 Operations

The contents of the absolute text file are now scatter-
loaded into the program loading area. Control words
interspersed in the text direct segments of words into
their proper program sequential positions. When the
internal absolute text file has been read, it too is set to
STR’S.

The routine uN1sUB removes the names of the input/
output units from the availability chains in the Bsys
nucleus.

If an operator stop for tape mounting is necessary at
and pauses.

The remainder of core storage up through the last
few instructions of section 5 are now set to sTR’s, and
section 5 transfers control to the pre-execution package
section of the object program.

Control of Program Execution

Among the program parts loaded by section 5 into
position for execution, several work together as a pack-
age to handle whatever may happen during execution.
The package consists of:

1. The object program file blocks

2. The reserve units table

3. The object program file list

4. A group of pre-execution initialization instruc-
tions

5. The post-execution routine .LXCON

The first three items in the package are omitted if
there are no sFILE cards in the object program or in any
of the Subroutine Library subroutines being used in
the program.

Figure 50 shows how the package controls execution
of the program. After Loader operations have been
completed, section 5 transfers control to the pre-
execution initialization instructions section.

The pre-execution instructions transfer control to the
installation accounting routine, if any, to record that
program execution has begun. Buffer pools to be used
by the program are defined, and files are attached to the
pools. The last instruction is a caLL to the object pro-
gram to begin execution.

One of three events can occur as a result of program
execution. (1) The program can execute successfully.
(2) 10cs may be unable to continue, resulting in a sys-
tem stop. (3) The program can contain an STR instruc-
tion requesting a system dump. In all three cases, the
program transfers control to .Lxcon. After a successful
execution the object program transfers control to
.LxcoN through the entry point .LXrTN. The entry point
.LxsTp is used for system stops; .LXSTR is used for
system dumps.

.Lxcon closes all open files used by the object pro-
gram. If any one of the file blocks contains the options
PRINT, PUNCH, Or HOLD, the input/output unit involved

Loader Information 91

Return from Loader
Sect 5

Pre~-Execution Control

Y

Sign On Execution.
Define Buffer Pools.
Attach Files to Pools.

. A

Call Object Program

End Pre-Execution Control

System Stop STR Set Dump|
Execution
End Execution
A
Call .LXRTN
Exit Object
Program .LXCON
Close All Files.
LLXSTP Piace Nonsystem Unit LiX3TR

Ctl Bcks in Availability <
Chains. Dump if STR,

End Post-Execution Control

l?gn Off Execution J

A

[IBSY'S Monitor J

Figure 50. How the Pre-Execution Package Controls Program
Execution

is rewound and unloaded, and a message for the opera-
tor is printed on-line. Nonsystem units are returned to
the unit availability chain, and the intersystem reserve
characters, if any, are placed in the appropriate unit
control block.

If a system dump is requested by a transfer to .LXSTR,
.LXCON prints an on-line message indicating that a
dump is being taken, closes all required files, and trans-
fers to the system dump routine, If the transfer from
the object program is through .LxsTP, .LXCON prints an
on-line system stop message and closes the files. In
either case, program execution is terminated by a
transfer to the installation accounting routine, if any,
followed by a transfer to 1Bsys for the next processor
application.

Note: When load-time debugging has been re-
quested, .LXSTR is set to transfer to the debugging inter-

92

preter routine. If the sTR was inserted in the program
for debugging purposes, the interpreter performs the
action requested for that program location and even-
tually returns control to the object program. If the sTr
has no connection with debugging and the routine for
taking debug dumps is not in core storage, the inter-
preter transfers to .Lxcon for the normal action on an
sTR. If, however, the coding for debug dumps is in core
storage, the interpreter takes a full core storage dump
and transfers to .LxcoN through .LXRTN. .LxCON closes
the required files, transfers to the installation account-
ing routine, and then to 1Bsys.

External Storage for Text

External storage is used for two purposes during load-
ing: to “overflow” and “spill” excess relocatable binary
text during section 1 and 2 operations, and to “over-
flow” absolute text during section 3, 4, and 5 opera-
tions. Figure 51 shows how the external storage is used.

IBJOB
Monitor
uT4
o TN
uT2 Text
. Ovrflo
Load Section 1
File Input Reduction
uTt3
LBX [
SR Section 2
Control Cross-Reference and
Text Subroutine Analysis
uT3
y
Section 3 ABS
Absolute Location Text
Assignment Ovrflo
UT3 U7
& Section 4
@ Text Relocation
LBX
uTi
ABS Section 5
Text Absolute
Ovrflo Program Load
y
1BJOB
Monitor

Figure 51. Overflow Pattern During Loader Operations

Overflow and Spill of Relocatable Text

The relocatable text portion of each binary deck is read
from the load file or input file and moved into an in-
ternal file in core storage between the control diction-
aries section and the control information storage block
(see Figure 45). As the Loader continues to read in
the binary decks, the control dictionaries section builds
upward toward the internal text file and the control in-
formation storage block builds downward toward it.

Since neither section 1 nor section 2 process text in
any way, the text can be transferred to any convenient
place when it is in danger of being overlaid by data
in the other two areas, or of exceeding its allotted in-
ternal file space.

This transfer can occur when the amount of text ex-
ceeds the capacity of the internal file, in which case the
excess thereafter overflows onto sysut4, or one or both
of the other storage sections could threaten to overlay
the internal file, in which case the entire internal file
spills onto sYsuTs.

Absolute Text Overflow

External storage is also used during the absolute ad-
dress assignment process. If the amount of absolute
binary text produced by section 3 exceeds the absolute
internal text file, the excess overflows onto sysut1. Dur-
ing section 4 operations relocatable text is read back
into storage from sysuts and sysurs. If the absolute
text produced by section 4 exceeds the absolute internal
file, sysurt is used for the excess. sysuT1 is also used for
words that, when scatter-loaded by section 5, would
overlay a part of the internal file. Such words are held
on sysuTi1 along with the excess text produced by sec-
tions 3 and 4 until section 5 time. When section 5
scatter-loads the absolute text of the program into
position for execution, it loads the text from the internal
file first, and then the text in the external file on sysuTi.

Loader Input

Input to the Loader consists of the load file and sub-
routines taken from the mBjoB Library. The “Subroutine
Library Information” section describes the Subroutine
Library format.

The load file is made up of output from the Assem-
bler, the ForTrAN 1v Compiler, the load-time debugging
compiler, or any combination of these three. It is writ-
ten on symbolic input/output unit sysurz for Loader
use by the Processor Monitor.

Figure 52 shows the possible contents of a load file
and their sources. The elements in the figure from the
stBLDR card through the spkeND card make up a binary
deck. There may be several such decks in the load file,
depending on the number of source decks in the pro-
gram.

Card
Element Format Source
Load~time debugging BCD and Debugging compiler
reference tables Column
Binary
$IBLDR card BCD Generated by Assembler or

FORTRAN 1V Compiler

$FILE, SPOOL, $SGROUP, [BCD
SLABEL cards

Generated by Processor Monitor
or fransmitted directly from
source deck

$FDICT card BCD
File dictionary text Column
Binary
STEXT card BCD
Relocatable binary textof |Column
source program Binary Generated by Assembler or
instructions FORTRAN [V Compiler
SCDICT card BCD
Control dictionary text Column
Binary
$DDICT card BCD
Debugging dictionary Column
text Binary
SDKEND BCD

SENTRY, $SIZE, SUSE, BCD
SOMIT, SNAME, SORIGIN,
SINCLUDE cards

Transmitted directly from
source deck by Processor
Monitor. May appear any-
where between binary decks.

Figure 52. Elements of Loader Input

In addition to the binary decks written on the load
file during the current assembly process, the program-
mer may also add decks punched from syspp1 during
previous assemblies. These previously assembled decks
will be written on the load file in the same order as that
in which the programmer has placed them in the orig-
inal source program. If all the decks in the source
program are previously assembled binary decks the pro-
grammer may have the NOSOURCE option punched on
the siBjoB card for the job. The entire program in this
case is read by the Loader directly from symbolic unit
sysixi. If the programmer adds a packet of load-time
debugging requests to a program composed entirely
of previously assembled decks, the NosouRcE option
is ignored, and the load file is built up on sysure.

Each section in a binary deck is prefaced by a Bcp
card. In each source card the code indicating the sec-
tion of the deck that follows (sFDICT, STEXT, SCDICT, Or
sppict) begins in column 1. The six-character name of
the deck starts in column 8. The sIBLDR and SDKEND
cards that bound the deck as a whole are in the same
format.

Loader Information 93

Each section in a binary deck is sequenced inde-
pendently, starting with sequence number 0. The cards
within any section must be in proper sequence and
the sections themselves, if present, must be in the order
shown in Figure 52.

Load File Binary Cards
The first two words on all load file binary cards are in
the following form:

WORDS BITS MEANING
1 S§,1 If these bits are 11 and bit 3 is 0, this is a
standard IBJOB Processor deck.

2 If this bit is 0, the Loader must verify the check
sum in word 2. If the bit is 1, no verification is
required.

3 This bit is usually a 0. If it is 1, an error mes-

sage is printed indicating that the card is not

part of an IBJOB deck.

4 If this bit is 0, this is a load file deck. If it is 1,
this deck is Prest or Cprest.

5-7 These bits define the section of the deck as
follows:

001 means this card is in the file dictionary.

010 means this card is in the relocatable text of
the program instructions.

011 means this card is in the control dictionary.

100 means this card is in the debugging dic-
tionary.

101 means this card contains relocatable binary
text produced by the Load-Time Debug-
ging Compiler.

8-12 01010. This is the standard 7-9 punch, signify-
ing a column binary card.

13-17 These bits contain the number of words in the
card, starting with word 3.
21-35 These bits contain the card sequence number.

2 5,1-35 This word contains the logical check sum of
word 1 and all the data words on the card.
The contents of words 3-24 vary according to
whether the words are part of the file dictionary, re-
locatable binary text, control dictionary, or debugging
dictionary.

File Dictionary Binary Text

Words 3-22 of a binary text card in the file dictionary
contain up to four 5-word entries, one entry for each
file referred to in the deck. Words 23 and 24 are not
used.

The file dictionary, if present, is used to validate the
contents of the Loader-generated file block and the
assignment of each file to a buffer pool; to transmit the
name of a nonstandard label section to 1ocs; and to
pass the 18-character file name through to the Loader,
so that correspondence can be determined between the
file index numbers used in text and the file names used
by the programmer. File type, mode, allowable input/
output units, and blocking requirements are normally
unchanged by the generated object program; hence,
they are recorded in the file dictionary as a check
against modification by sFILE cards.

94

File Dictionary Card Format: The file check entries
in each card are as follows:

Words 3-7 file check entry i
Words 8-12 file check entry i+1
Words 13-17 file check entry i+2

Words 18-22
Words 23-24

The format of each five-word entry is:

file check entry i+3
not used

WORDS BITS MEANING
1 S If=1, mixed mode file
1 If=1, last FpicT entry
2 If=1, file is NoroOL
3-5 not used
6 If=1, binary mode; if=0, Bcp mode

7-8 If=00, input

If=01, output

If=10, input or output

If=11, checkpoint
9-14 not used
15-17 If=001, card equipment only
If=010, 729 Magnetic Tape, disk or Hypertape
If=011, any input/output device
If=100, Hypertape only
If=000, n=block size (see bits 21-35)
If=001, n is the minimum allowable block size.
If =010, block size is a multiple of n

21-35 n
2 If=0, standard labels (if any)
If5£0, external reference name of nonstandard
label routine

3-5 18-character file name

18-20

Relocatable Binary Text
Relocatable binary text cards contain the binary trans-
lation of the original source program instructions.
Words 3, 4, and 5 are control words that describe the
contents of words 6-24, which are the actual instruc-
tions.

The sign bit of each control word is ignored, and the
remaining 35 bits are divided into seven 5-bit control
groups. For example, in word 3:

Bits 1-5 describe word 6
6-10 word 7

31-35 word 12

In the same way, the control groups in word 4 de-
scribe the contents of text words 13 through 19. The
first five control groups in word 5 describe the remain-
ing text words 20 through 24.

The Loader uses the control groups when it assigns
absolute values to addresses and address references.
For this reason, the control groups are also called re-
location bits.

The first bit in each control group describes the type
of text word. The number 1 means a standard data
word; the number 0 means a special entry word,

Standard Data Word: The five-bit control group for
a standard data word is of the form 1 ab cd. The 1 in-

dicates a standard data word. The letters ab and cd
describe the contents of the decrement and address
data fields, respectively, as follows:

CODE MEANING
00 This data field has a constant value.
01 This data field has a simple relocatable value.

10 This data field contains a file or control dictionary re-
ference. The field itself describes which type.

11 The Loader must evaluate a complex expression to de-
termine the value of this data field.
The prefix and tag of a standard data word are con-
stant.
For example, consider this instruction and its con-
trol group:

10001 TIX NAME,1,4

Reading the control group from left to right, this is a
standard data word with a decrement of constant value
and a relocatable address.

Constant form — The relocation code 00 indicates to
the Loader that the value expressed in the decrement
or address referred to is constant and need not be
altered.

Simple relocatable form — The relocation code 01
indicates to the Loader that the value expressed in the
decrement or address referred to is a relocatable ad-
dress, relative to the origin of the deck. As an example,
consider the following instructions, where A has a
relative address value of 100 and B of 163:

CONTROL GROUP

SYMBOLIC CODE IN BINARY BINARY TEXT IN OCTAL
CLA A 10001 0500 00 0 00100
ADD A+l 10001 0400 00 0 00101
TXH B4A 10101 300100 4 00163

Dictionary reference form — Dictionary references
are denoted by a relocation code of 10. Each data field
referred to by bits in this form contains a 15-bit code
identifying the dictionary reference. The four high-
order bits in the field denote the type of dictionary, and
the remaining bits give the reference number within
the dictionary. The high-order bit codes are:

0000 Control dictionary reference, followed by eleven bits

giving the relative location of an entry in the deck con-
trol dictionary.

File dictionary references followed by an eleven-bit file
index number,

000 1

As an example, consider the following instructions:

CONTROL GROUP

SYMBOLIC CODE IN BINARY BINARY TEXT IN OCTAL
cLa A4 10010 0500 00 4 00006
PZE AFILE 10010 0 000000 0 04013

In both cases, the code 10 in the c¢d bits of the con-
trol group indicates that the address portions of the
words refer to dictionary entries. In the address portion
of the first instruction the first two octal numbers, 00,
appear in binary form as 000 000. The four high-order

bits of these numbers, 000 0, indicate that A is a sym-
bol in the control dictionary for this deck, and the low-
order bits indicate that it is the sixth entry. In the ad-
dress portion of the second instruction the first two
octal numbers, 04, appear in binary form as 000 100.
The four high-order bits 000 1 refer the Loader to the
file dictionary for this deck. The low-order bits specify
that AFILE is the eleventh (13;) file referred to in the
deck.

Complex expression form — The relocation code 11
indicates to the Loader that it must evaluate a com-
plex expression to determine the value of the decre-
ment or address referred to. For example, the Loader
would have to evaluate the address portion of this
word as a complex expression:

CLA 6*TABLE+2*TABLE+3

The steps in the evaluation are expressed in a series
of words directly following the data word that contains
the complex data field. The string of words can be in
one of two forms — long-form complex or short-form
complex — depending on what the data field itself con-
tains.

If the decrement or address field contains zero, the
expression is long-form complex. A string of one or
more words, each with its own control group, follows
the data word. Each word represents a simple arith-
metic step in the computation. If both the decrement
and the address of the data word are complex, the
string of words referring to the decrement occurs first.

Each word in a complex expression string has the
following form:

pfx abc
Pfx defines the type of simple arithmetic operation to be
performed, as follows:

PFX ARITHMETIC OPERATION
PZE addition

PON subtraction
PTW multiplication
PTH division

The address portion a and the decrement c are the
first and second quantities, respectively, upon which
the arithmetic operation is to be performed.

The tag portion b refers to the location where the
result of the arithmetic operation can be stored tem-
porarily until needed later on in the computation. There
are seven such locations, called result words. The
Loader recognizes them by number, 0 through 6. A
tag of 7 indicates to the Loader that the current data
word completes the computation, and the result should
be stored in the data field being evaluated.

For example, an evaluation word in this form:

PTH a,l,c

means to the Loader that the result of a + c is stored
temporarily in storage word number 1.

Loader Information 95

When the a or ¢ portion of a word represents the
result from previous arithmetic operations, the Loader
finds the word where that result is stored as follows:

1. In the control group for the word, relocation
bits 11 indicate that the corresponding decrement or
address in the word represents a result.

2. The decrement or address itself contains the num-
ber of the word in which the result has been stored.

For example:

RELOCATION BITS DATA WORD
11111 000001 1 00002

indicates that both the ¢ and a portions of this arith-
metic operation are results of previous arithmetic op-
erations in the string. The result in the ¢ portion can be
found in the first result word, and the result in the a
portion is in the second result word.

As an example of the words generated for a long-
form complex expression, consider the instruction cited
previously:

CLA 6*TABLE+2*TABLE+3

where TABLE is a control section whose location is to be
assigned by the Loader.

Assume that the control section named TABLE is the
fifth entry in the control dictionary. The data words
instruction would appear as:

DATA WORD MEANING

0500 00 0 00000 The address portion of
this CLA instruction must
be evaluated according to
the following string of
data words.

2 00006 1 00005 The result of the opera-
tion TABLE*6 is stored
in result word 1.

2 00002 2 00005 The result of TABLE*2
is stored in result word 2.

000001 1 00002 The sum of the contents
of result words 1 and 2
is stored in result word 1.

000001 700003 The contents of result
word 1 added to 3 are
stored in the address por-
tion of the first data word
above. The computation
is now complete, and the
word is stored in the final
text file, the remaining
data words being disre-
garded.

If the decrement or address field in the data word
does not contain zero, the expression is short-form com-
plex. This form may be used to express complex fields
of the following form:

NAME +C

where NAME is the external name of the control section
and C is some constant. The 15-bit field is formed as:

Bit1 0 means C is added.
1 means C is subtracted.

RELOCATION BITS

10011

10010

10010

11111

11100

96

Bits 2ton This is the entry number of NAME in the con-
trol dictionary for this deck. As many bits are
used as are required to express the total length
of the control dictionary; e.g., if the dictionary
contains 16 entries, 5 bits would be used—bits 2

through 6.

A constant of (15—n+1) bits to be added to,
or subtracted from, the location assigned to the
name referred to. Note that the long-form com-
plex process may have to be used if the length
of the control dictionary plus the length of the
addend exceeds 14 bits.

Bitsn to 15

The minimum value of n is 6.
As an example of evaluating a short-form complex
expression, consider the instruction

CLA BLOCK+50,1

BLOCK is a control section 50 words long. Its control dic-
tionary name, BLOCK, is the eighth entry in a 26-entry
dictionary. The data word for the instruction is
0500 00 1 10062, and the bits in the address field 10062
are interpreted as:

12 67 15
0 01000 000110010
+ 8 50

Special Entry Word: Special entry data words refer
to program origins, and to Bss and vFD storage areas
and other instructions that affect location counters.
Control groups for all special entry words are of the
following form:

0 SSSS

The 0 in the first bit denotes a special entry word
The four bits SSSS that follow specify the type of special
entry as follows:

0000
Indicates to the Loader that there are no more data words
to process on this card.

0001
Indicates that the location counter is affected; the data
word is of the following form:

pfx a, ,relative location

where:

pfx = PZE if a is an absolute origin.

pfx = PON if a is the relative origin.

pfx = PTW if BSS is of length a.

pfx = PTH if the instruction is an EVEN pseudo-

operation.

The address portion a is the number of the entry in the
control dictionary for this deck that determines whether the
Loader should generate an AXT 0,,0 instruction to force
the next text word into an even location.

pfx = MZE if a is a dictionary origin in complex format.
The relative location of this instruction is as it
appears in the listing.

NotE: Origins are an integral part of text; each card does
not carry its relative load address.

nnton
A CALL expansion follows; the data word is:
PZE 0

This control code and the word in this form are required
for the overlay mechanism of the Loader.

0011
0100
0101) Unused codes
0110
0111

10VV
Relocation bits in this form indicate that the data word
results from a VFD instruction. VV represents bit configura-
tions indicating the kind of action the Loader must take to
evaluate the data contained in the word.

For each field in a VFD instruction, the Assembler gen-
erates a word. Up to 30 bits of the data from that field are
contained in bits 6-35 of the generated word. When there
are more than 30 bits of data in the VFD field or there is
more than one field listed, the data is contained in words
that follow. As many words are generated as are needed
to contain the data.

For example, consider these VFD instructions and bits
6-35 of the words generated by the Assembler:

INSTRUCTION DATA WORD, BITS 6-35
VFD H36/ABCDEF 2122232425
0000000026
VFD 12/3,06/47 0000000003
0000000047

The Loader must evaluate the data contained in the
generated words and load it as a table according to speci-
fications by the Assembler. The specifications for loading
are contained in bits S, 1-5 of the generated words. The
code used is:

S 1 56 35
[T
I T [bit count l D
=n
—
N Bits

if the current series of generated words con-

tinues beyond this word.

T=1 if the current series terminates with this word,

which is filled with zeros in the unused lefthand

positions.

if the rightmost n bits of this word are to be

loaded into the table.

The specifications for evaluating the data are contained
in the relocation bits VV associated with each generated
word. The code used is as follows:

VV = 01 if D contains the relative address of a data word.
The address is to be relocated just as in a stand-
ard data word and is substituted for a 15-bit
address. The rightmost n bits are then inserted
into the VFD string to be loaded.

VV = 10 if D contains a dictionary reference. It is to be

evaluated just as in a standard data word dic-

tionary reference and is substituted for a 15-bit
address. The rightmost n bits are then inserted
into the VFD string.

if D is the address of a data word that is repre-

sented by a complex expression. The Loader

must evaluate the string of data words that fol-
low in the same way that it evaluates complex
expressions in standard data words. The final
result is substituted for a 15-bit address, and
the rightmost n bits are then inserted into the

VFD string.

As examples of VFD data words and the control groups

associated with them, consider the following, where the

relative location of A is 103, the dictionary location B is 3,

and the size of the control dictionary is 25:

N <30

VvV =11

RELOCATION
VFD EXAMPLES BITS DATA WORD
VFD H30/ABCDE 010 00 76 2122232425
VFD H36/ABCDEF 0 10 00 36 2122232425
G 10 0C 46 0000000026

RELOCATION
VFD EXAMPLES BITS DATA WORD
VFD 15/A,06/47,15/B+2 0 10 01 17 0000000103
0 10 00 06 0000000047
0 10 11 57 0000003002
1100
1110 } unused codes

1111
Indicates to the Loader the end of text. The address por-
tion of the corresponding special entry word contains the
relative location of the first instruction to be executed if
this deck is named on a $ENTRY card.

Contirol Dictionary Binary Text

Words 3-24 of a control dictionary text card contain
up to eleven 2-word entries. A control dictionary de-
fines procedure and/or data areas for a deck that may
be deleted, replaced, or referred to by other program
segments that have been separately assembled or com-
piled. Each entry in the control dictionary supplies an
external reference name of a control section, its loca-
tion relative to the origin of the deck, and its length.
If the control section is virtual, its length is entered as 0.

The first entry is the preface entry. This is not a true
control section entry, but gives information about the
deck as a whole. The remaining entries refer to par-
ticular control sections. The length of the first control
section following the preface entry encompasses the
entire deck. All other real control sections can be con-
sidered as nested within this first section.

Preface Entry Format: The preface entry contains
the location of the first executable instruction, the deck
length, the machine for which the deck was assembled,
and the size of the control dictionary. The contents of
the two words are:

pfx x,,n
pze p,,mach

where:

x = the relative location of the first executable
instruction.

n = the length of the deck.

p = the power of 2 that includes the number of
entries in this control dictionary.

mach =0 if this deck was assembled for a 7090.

=4 if this deck was assembled for a 7094 (may not

run on a 7090).

pfx = PZE if this is a relocatable deck.

= MON if x is the absolute location at which this deck
is to be loaded.

Format for All Other Entries: Control dictionary en-
tries other than preface entries are of the following
format:

word 1 = BCI 1, exname

word 2 = pfx t,,n
where exname is the six-character alphameric external
name of the control section.

pfx = PZE
= PON

when this section is real (it exists in this deck).
when this section is an EVEN pseudo-operation;
the length always equals 0; exname is zeros.

Loader Information 97

= PTW when this section is a virtual section (only refer-

ences to the section appear); exname must appear
as a real control section in at least one other deck
in the program (including decks from the Sub-
routine Library).

t = the relative location of the beginning of a control section.
It is equal to zero if pfx is equal to PTW.

n = the length of a control section. It may be equal to zero.

All binary text cards for a control dictionary except
the last are full.

Control dictionary entries are stored in order of in-
creasing relative location. Nested control sections hav-
ing the same relative origin are stored in order of de-
creasing section length.

Debugging Dictionary Binary Text

Words 3-24 in the binary text card in a debugging dic-
tionary contain entries of from one to three words.
Entries may be split between cards. Therefore, every
card except the last must be full.

The debugging dictionary is processed by the
Loader. It is modified and written on sysck2 following
any information previously written by the debugging
compiler. All this information makes up the first file of
sysckz. The debugging postprocessor uses this informa-
tion together with the dumps (the second file of sysck2)
to produce the final debugging output.

Debugging Dictionary Text Card Format: Each en-
try in the debugging dictionary is from one to three
words long. Mode changes that occur at a location for
which there is no associated symbol cause a one-word
entry in the debugging dictionary as:

S 1 2 317 18-20 21-35
lo]AfM] 0] M] value l

The M bits in positions 2, 18, 19, and 20 make up a
four-bit mode designator. A is 0 if the value in bit
positions 21-35 is relative, 1 if it is absolute.

A symbol having no dimensions causes the following
entry:

S 1 2 3-17 18-20 21-35
1 IA’ MI 0 l M l value
SYMBOL

where A, M, and the value in bit positions 21-35 are as
above, and symBoL is the BCD representation of the
symbol.

A relative symbol having one dimension causes the
following entry to be generated:

S 1 2 317 18-20 21-35
1]o|M1stdim. | M [value
SYMBOL

where 1st dim. is the dimension.

98

A relative symbol having two or three dimensions,
or an absolute symbol having one, two, or three dimen-
sions, results in the following entry:

S 1 2 3-17 18-20 21-35
1 I] iM| st dim. l M l value
SYMBOL
0 |2nddim.| B | 3rd dim.

where B is 0 if the value in bit positions 21-35 is rela-
tive, 1 if absolute. The 2nd (and 3rd) dimensions will
be zero if not applicable.

Even Storage Feature

The specification of even storage for data or instruc-
tions is accomplished by the use of the Map language
EvEN pseudo-operation. This EVEN pseudo-operation is
ignored by 1BMAP when assembling for the 7090 or
7094 1.

The EVEN pseudo-operation causes the generation of
an entry in the control dictionary, specifying a control
section of zero length that has the special name of all
Z€T0S.

Since each EvEN control dictionary entry now repre-
sents a point where an even absolute location must be
assigned, the Loader may now expand that control
section to length 1 if it is necessary to force an even
location. In addition to the generation of a zero-length
control section, the EVEN pseudo-operation causes the
placement of an EVEN entry in the binary text. An EVEN
appearing within a control section must have the same
relative location as the start of the control section.

Upon encountering this text entry, the Loader gen-
erates an AXT 0,0 instruction if the current absolute
location is odd. Since no reference in text can ever
appear in the EVEN control section, generation of the
axt does not affect execution of the program. Since the
AXT instruction, if generated, always occupies odd
storage, its execution is free.

Errors may occur when the programmer forgets that
relative locations or the length of a block of data may
change due to the insertion of AxT instructions.

Format for an EVEN Control Dictionary Entry
The control dictionary entry for an EVEN pseudo-
operation appears as:

word 1 BCI 1,000000
2 PON 1,,0

The field r is the relative location which must be as-
signed an even absolute location.

Format for an EVEN Relocatable Binary Text Entry
In relocatable binary text an EVEN pseudo-operation
appears as:

RELOCATION BITS
0 0001

DATA WORD
PTH b

The field b conforms with the 15-bit code for control
dicticnary references (such as 10) and refers to the
correct EVEN control section.

EVEN Program Example

An example of how the Loader deals with Evex pseudo-
operations is:

REL LOC RELOCATION
CTR BITS OCTAL SYMBOLIC
100 0 00 01 3 00000 0 00004 EVEN
100 1 00 01 0 60000 0 00026 STZ A, 4
101 10001 2 00001 4 00100 TIX *-1,4,1
102 1 00 00 0 00000 0 00000 HTR ©
103 0 00 01 3 00000 0 00005 EVEN
103 0 00 01 2 00000 0 00002 BSS 2

If the program origin assigned by the Loader is even,
the second EVEN text entry at 103 causes the generation
of an Axt instruction that moves the Bss to relative
location 104. If the origin assigned is odd, the first EvEN
text entry generates an AXT instruction, moving the stz
instruction to relative location 101.

ORG = 10000 ORG = 20001

10100 0 60000 0 10026 20101 0 77400 0 00000
10101 2 00001 4 10100 20102 0 60000 0 20027
10102 0 00000 0 00000 20103 2 00001 4 20102
10103 § 77400 G 00000 20104 O 00000 G 00000
10104 5 00000 0 00000 20105 0 77400 0 00000
10105 5 00000 0 00000 20106 5 00000 0 00000

20107 5 00000 0 00000

Loader Information 99

Subroutine Library Information

The Subroutine Library consists of system subroutines,
FORTRAN Iv subroutines, and coBoL subroutines. The
system subroutines are used by the 1BjoB Processor to
maintain control and communication among the system
programs. The FORTRAN 1v section of the Subroutine
Library includes the FORTRAN mathematics library, the
FORTRAN input/output library and the rORTRAN utility
library. The coBoL subroutines include subroutines
needed for the movement, conversion, input, and out-
put of data.

The subroutines in the ForTrRAN mathematics library
and the subroutines in the ForTRAN utility library that
are available to the applications programmer are de-
scribed in the section “Subroutine Library (1sLis).”
The system subroutines, the FORTRAN input/output
subroutines, the FORTRAN utility routines used at exe-
cution time, and the coBoL subroutines are described
in this section.

The Subroutine Library is stored in two files on a
specified system library unit (it may be the same unit as
the Loader). The first file contains two lists and the
control part of each subroutine.

List 1: This is a list of all real control section names
appearing in the Subroutine Library. Each control sec-
tion name appearing in the list is unique. Associated
with each entry in this list is a position in the second
list (dependence list) and the name of the subroutine
in which this control section appears. Each entry also
contains the record number giving the position of the
subroutine in the control information and text files.

List 2: For each entry in the control section name
list, the dependence list contains a table showing the
control sections which must be loaded for execution
of this control section. Therefore, a given control sec-
tion is said to be dependent upon those control sections
whose names appear in the corresponding dependence
list portion. Multilevel dependency is allowed (that
is, the dependent sections of each item in the depend-
ence list are called with the original dependent sub-
routine).

Because equal names of control sections cause dele-
tion of all but one of the control sections in the object
program, it is possible for an object program to include
a control section which will be used by a library sub-
routine. This is done in the object program by specify-
ing a control section name that is the same as the name
which appears in the dependence list. Conversely, care
must be taken in specifying control section names,

100

both in object programs and in library subroutines, to
avoid inadvertently causing this replacement. As a
means of expressing dependency, this string of control
section names is written using the following conven-
tions:

1. One half-word (18 bits) is used for each entry.

2. The three high-order bits in each entry make up a
code indicating the position of the entry in the list,
as follows:

000 First entry in the list
100 Second entry in the list
010 All other entries

3. Each dependency list contains 15-bit index refer-
ences to the real section name list (List 1) for each
required name. Each 15-bit index reference appears
in either the decrement portion or the address portion
of a word, with an operation code (3 bits) preceding
it in the prefix or tag, respectively.

The first Library subroutine file aiso contains the con-
trol dictionaries for all the subroutines. It may also
contain Loader control cards and the file dictionaries.
A siBLDR card must precede each control dictionary.
Any of the following control cards may appear after
the s1BLDR card if a subroutine requires their use: sFILE,
SLABEL, SPOOL, Or $GROUP cards.

If a file dictionary is included, it must appear after
these control cards and must be immediately preceded
by a sFpicT card.

List 1, containing the subroutine name and its as-
sociated record numbers, is used to locate a particular
subroutine on tape, and is used to compute a track
address when the Library is on disk.

The second Subroutine Library file contains the
relative binary text for all library subroutines. Each
relative binary text deck is preceded by a stExT card
and followed by a spkeND card.

The use of the above format for the Subroutine
Library permits rapid acquistion of needed subroutines
without multipass searching of the library unit.

System Subroutines

The operating system uses the following Library sub-
routines to initialize communications regions used by
the operating system components to lransfer control
to the object program and other system components.
System subroutines also provide input/output support,
overlay features, debugging facilities, and error rou-
tines. Those subroutines marked with an asterisk are

loaded with each object program. The remainder of
the subroutines are loaded when needed, as determined
by control cards, specifications on control cards, and
the requirements of the object program.

DESCRIPTION

Defines the indexes of the system units and the
location of the System Monitor (IBSYS) com-
munication region.

Defines the location of the Input/Output Execu-
tor (I0EX) entry points.

Relocates Processor Monitor communication
words, used during object program execution, to
an area immediately adjacent to IOEX.

Closes files used by the object program, thereby
stopping all input/output activity. The post-
execution subroutine is required for all object
program executions. It is normally entered at
the end of object program execution, but it is
also entered if execution is terminated by a
system stop or an STR instruction. Control is
returned to the System Monitor.

Monitors STR instructions during debug execu-
tions, and executes debug requests. It is required
by all debug executions. This subroutine is
loaded at a location preceding all input decks
and subroutines not explicitly associated with
the Debugging Processor.

Searches a table of debug request points in a
program not using overlay for .IBDBI and is
required by all nonoverlay debug executions.

SUBROUTINE
*IBSYS

* IOEX

* JBCON

* LXCON

IBDBI

.DSTRN

.DSTRO Searches a table of debug request points in a
program using overlay for .IBDBI and is re-

quired by all overlay debug executions.

Contains the primary Input/Output Control
System (IOCS) communication region. General
entry and exit routines used by all IOCS pack-
ages are contained in this subroutine. The actual
communication region required for a given level
of IOCS is initialized by .IOCSF for standard
FORTRAN IOCS; .IOCSM for Minimum IOCS;
JOCSM and .IOCSB for Basic IOCS; and
.IOCSM, .IOCSB, and .IOCSL for Label IOCS.
Loading of this subroutine is suppressed if the
alternate FORTRAN input/output package is
requested.

Contains the text for the special IOCS used by
FORTRAN 1V object programs if the standard
FORTRAN input/output package is requested.
This subroutine also initializes the communica-
tion region required for standard FORTRAN
10CS.

Contains the text for all levels of relocatable
10CS.

Initializes the communication region required
for Minimum 10CS.

Initializes the communication region (in addi-
tion to that initialized by .IOCSM) required for
Basic TOCS.

Initializes the communication region (in addi-
tion to those initialized by .IOCSM and .IOCSB)
required for LABEL IOCS.

Loads overlay links. It is required for all object
programs using the overlay feature.

Initializes read and write selects, and provides
linkage to IOEX when the alternate FORTRAN
input/output package is requested for a FOR-
TRAN 1V object program,

JODEF

JOCSF

JOCS

JOCSM

JIOCSB

IOCSL

.LOVRY

.LXSL

DESCRIPTION
Determines the condition that caused the
floating-point trap, sets appropriate registers
accordingly, and writes a message on the system
output unit, giving the cause of the trap and the
octal location at which it occurred. Location
COUNT contains the maximum number plus
one, of times that messages will be written for
each execution. This number is set at five plus
one, but it can be changed by the programmer.
The number in Iocation COUNT, which is the
control section .COUNT, may be changed by
addressing this control section in a MAP lan-

£ +thha FAllaee

guagce subroutine of the following form:
ENTRY .COUNT

DEC n
END

where n is a decimal number. Messages are
then written n-1 times. The value set by this
procedure applies only for one program.

SUBROUTINE
*FPTRP

COUNT

.RAND Provides for processing of random records on

1301/2302 Disk Storage.

Note: The Debugging Processor subroutine .1BDBI
must follow subroutine .Lxcon in the Subroutine Li-
brary. The Input/Output Control System subroutines
must be in the following order in the Library:

.IODEF

.IOCSF

.10CS

.IOCSM

.IOCSB

.IOCSL

FORTRAN |V Input/Output Library

The ForTRAN 1v input/output library contains a group
of subroutines used to implement the source language
input/output statements. The input/output library
contains two input/output packages. The standard
package and the alternate package coordinate all
binary and Bcp input/output operations for a FORTRAN
1v program. Both packages are specified by parameters
on the siBjos card. The available input/output support
for a FORTRAN Iv program is summarized as:

PACKAGE USED INPUT/OUTPUT SUPPORT

Alternate IOEX Trap Supervisor
Standard FIOCS Modified version of the
minimum level of I0CS
Minimum level

or
Basic level

or
Labels level
(The level of IOCS to be
used is determined by the
Loader.)

Note: With the exception of arTro, if the program-
mer requires a higher level of 1ocs than what is speci-
fied, the Loader automatically loads the higher level
with the program,

REQUEST

ALTIO
FIOCS

blank Standard 10CS

Subroutine Library Information 101

Standard FORTRAN 1V Input/Output Package

The standard FORTRAN 1v input/output package is one
of two such packages in the Subroutine Library to
coordinate input/output operations for FORTRAN pro-
grams. The subroutines in this package handle inter-
face functions, conversions, and buffer-building. Data
is transmitted using one of the several levels of the
Input/Output Control System (10CS).

The interface subroutines in the standard package
control the input/output operations that are requested
by actual FORTRAN Iv source program statements. A
unique interface subroutine exists for each type of
input/output statement. Because the interface sub-
routines are unique, only those subroutines needed
for the specific operation requested must be in core
storage at execution time. These subroutines are:

SUBROUTINE DESCRIPTION ENTRY POINT DESCRIPTION

FRDD Controls reading .JFRDD. Entry point for
of BCD records. BCD read; called

for source program
statement READ
(unit, format) list.

FRDU Controls reading .FRDU. Entry point for

of BCD records. BCD read; calied
for source program
statement READ
(unit, NAMELIST
name).

FWRD Controls writing .FWRD. Entry point for
of BCD records. BCD write; called

for source program
statement WRITE
(unit, format) list.
FWRU Controls writing JFWRU. Entry point for
of BCD records. BCD write; called
for source program
statement WRITE
(unit, NAMELIST
) name).

FRDB Controls reading .JFRDB. Entry point for

of binary records. binary read; called
for source program
statement READ
(unit) list.

FWRB Controls writing .FWRB. Entry point for

of binary records. binary write; called
for source program
statement WRITE
(unit) list.

FRCD Controls on-line .FRCD. Entry point for
reading of cards card read; called
and conversion of for source program
alphameric card to statement READ
BCD. format, list.

FPRN Controls printing .FPRN. Entry point for
by the on-line source program
printer. statement PRINT

format, list.

FPUN Controls punching .FPUN. Entry point for

by the on-line
punch.

source program
statement PUNCH
format, list.

102

SUBROUTINE DESCRIPTION ENTRY POINT DESCRIPTION
FRWT Rewinds desig- JFRWT. Entry point for the
nated unit. source program
statement RE-
WIND unit.
FEFT Writes a file mark .FEFT. Entry point for the
on the designated source program
unit. statement END
FILE unit.
FBST Backspaces the FBST. Entry point for the

designated unit
one record.

source program
statement BACK-
SPACE unit.

The buffer-building subroutines (FcNv, FIOB, FIOH,
and F1os) control the conversion and movement of
data into and out of the buffers. These subroutines are
identical for both ForRTRAN 1v input/output packages
and are described in the following list of miscellaneous
subroutines. The remainder of the subroutines de-
scribed are needed to implement the input/output
statements.
SUBROUTINE DESCRIPTION

DESCRIPTION ENTRY POINT

FCNV Performs all nec- .FCNV. Entry point for
essary conversions input and output
for input and out- list.
put list items.*

FIOB Processes list items .FIOB. Entry point for
for binary trans- binary transmision
mission. routines.

FBLT. Entry point for
single-precision
binary input/
output list.

FBDT. Entry point for
double-precision
binary input/
output list.

FRLR. Entry point for
end of list for
binary input.

FWLR. Entry point for end
of list for binary
output.

FIOH Scans FORMAT .FIOH. Entry point for
statements and BCD transmission
links to the object routines.
program to begin
conversion of data.

JFRTN. Entry point for end
of list for BCD
input.

.FFIL. Entry point for end
of list for BCD
output.

FIOS Initializes all FIOS. Entry point for all
input/output li- input/output inter-
brary I0CS calling face routines.
sequences for bi-
nary and BCD
transmission.

JFSEL. Entry point for
BCD or binary
read.

FRTD. Entry point for
BCD write.

*Conversions performed on source program input data and
object program input data give the same result.

SUBROUTINE

FIOU

FOUT

FSLBO

FSLBI

FSLDI

DESCRIPTION

Controls process-
ing of lists of var-
iables and arrays
associated with a
NAMELIST name
for BCD input.

Writes blocked
records on the sys-
tem output unit.

Controls processing
of lists containing
nonsubscripted
binary array names
for output.

Controls processing
of lists containing
nonsubscripted
binary array names
for input.

Controls processing
of lists containing
nonsubscripted
BCD array names
for input.

ENTRY POINT
JFRTB.

.FILR.

JFILL.

.FIOU.

FOUT.

.FBLO.

FBDO.

.FBLI

.FBDIL

FSLI.

.FSDI.

DESCRIPTION
Entry point for
binary write.

Entry point to
initialize input/
output command
for reading.

Entry point to
initialize input/
output command
for writing.

Entry point to
close a file.

Eantry point to
open a file.

Entry point at
which the call to
entry point FOUT.
is loaded if subrou-
tine UNO6 is used
by object program.
Entry point for in-
put of BCD var-
iables and arrays
referred to by a
NAMELIST name;
called by FRDU.

Entry point for
subroutine FOUT.
If subroutine
FOUT is loaded
with an object pro-
gram, the calls to
entry point
.LXSEL in sub-
routines .LXCON,
FPTRP, and
FXEM are over-
laid by a call to
subroutine FOUT.

Entry point for
output of non-
subscripted binary
arrays consisting of
single-precision or
complex data.
Entry point for
output of nonsub-
scripted double-
precision binary
arrays.

FSLI

Entry point for in-
put of nonsub-
scripted binary
arrays consisting of
single-precision or
complex data.
Entry point for
input of nonsub-
scripted double-
precision binary
arrays.

Entry point for
input of nonsub-
scripted BCD
arrays consisting of
single-precision or
complex data.
Entry point for
input of nonsub-
scripted double-

FVIO

SUBROUTINE

FSLO

DESCRIPTION

of lists containing
nonsubscripted
BCD array names
for output.

Sets up indexing
for input to non-

subscripted arrays.

Sets up indexing
for output of non-

subscripted arrays.

Establishes identi-
fication between a
variable logical
unit and the cor-

Subroutine Library Information

ENTRY POINT

FSLDO Controls processing .FSLO.

JFSDC.

SLI.

SLI1.

.SDI.

SDI1.

SLO.

SLOL.

.SDO.

.SDO1.

FVIO.

DESCRIPTION
precision BCD
arrays.

Entry point for
output of nonsub-
scripted BCD
arrays consisting of
single-precision or
complex data.
Entry point for
output of nonsub-
scripted double-
precision BCD
arrays.

Entry point for
input of single-
precision arrays.
Set by subroutine
FSLDI or FSLBI
to contain appro-
priate entry point
to subroutine
FRWD or FRWB,
depending upon
whether a single-
precision array is
BCD or binary.
Entry point for
input of double-
precision arrays.
Set by subroutine
FSLDI or FSLBI
to contain appro-
priate entry point
to subroutine
¥RWD or FRWB,
depending upon
whether a double-
precision array is
BCD or binary.

Entry point for
output of single-
precision arrays.
Set by subroutine
FSLDO or FSLBO
to contain appro-
priate entry point
to subroutine
FRWD or FRWB,
depending upon
whether a single-
precision array is
BCD or binary.
Entry for output of
double-precision
array.

Set by subroutine
FSLDO or FSLBO
to contain appro-
priate entry point
to subroutine
FRWD or FRWB,
depending upon
whether a double-
precision array is
BCD or binary.
Entry point called
for any FORTRAN
input/output
source statement

103

SUBROUTINE DESCRIPTION

responding

FORTRAN file.

Controls processing .FWRO.
of lists of variables

and arrays asso-

ciated with BCD

output.

ENTRY POINT DESCRIPTION

that specifies a
variable unit.
Entry point for
output of BCD
variables and
arrays referred to
by a NAMELIST
name; called by
FWRU.

FWRO

Note: The 7094 user can choose between two FCNV
routines: the standard routine and the optional routine,
Appendix E describes how to specify the desired ver-
sion. The differences between the two versions are:

1. The optional routine is generally faster.

2. The handling of output data for the optional rou-
tine differs from the standard as follows:

a. If an output number that has been converted
by E-, D-, F-, or I- conversion requires more
space than is allowed by the field width w,
the number is disregarded and the field is filled
with asterisks. If the number requires fewer
than w spaces, the leftmost spaces are filled
with blanks.

b. For output with E-conversion, if the specifica-
tion nPEw.d requires n+ d decimal digits (where
n+d is greater than 8) n+d—8 zeros are ap-
pended as the low-order digits.

c. For output with D-conversion, if the format
specification nppw.d requires n+d decimal
digits (where n+d is greater than 16), n+d
— 16 zeros are appended as the low-order digits.

Alternate FORTRAN IV Input/Output Package

The alternate package consists of a group of Library
subroutines that coordinate binary and Bcp input/
output operations for FORTRAN 1v programs. These sub-
routines use the Input/Output Executor (10EX) to
supervise trapping operations. Because the 10cs rou-
tines are not used, the locations previously used by the
standard package for the required level of 10cs are
available to the object program. In addition, the loca-
tions used by 10cs for buffers are available because the
alternate package supplies the necessary buffers.

When the alternate package is requested, the entry
points in the calling sequences generated during com-
pilation are the entry points for the subroutines in the
standard package. The Loader automatically substi-
tutes the entry points for the necessary subroutines in
the alternate package when the program is loaded. The
standard package entry points and the corresponding
alternate package entry points are:

104

STANDARD PACKAGE ALTERNATE PACKAGE

.FRDD. .FRDD
JFRDU. .FRDU
FWRD. .FWRD
JFWRU. .FWRU
.FRDB. ..FRDB
FWRB. .FWRB
FRWT. JFRWT
FEFT. .FEFT
.FBST. ..FBST
FIOS. .FIOS
.UNO6. ..UNO6
.FVIO. .FVIO

Unit Definition and Input Files

The alternate package is compatible with the standard
package in respect to data language specifications and
unit definition by FiLE pseudo-operations. However, if
disk or Hypertape is specified in the FiLE pseudo-oper-
ations when the alternate package is requested, an
irrecoverable error results and the job is terminated.

The input data files supplied for an object program
using the alternate package may be in binary mode,
Bcp mode, or a combination of both modes. Output
from a FORTRAN 1v program using the alternate package
may be in binary mode, unblocked Bcp mode, or a com-
bination of both modes. However, the alternate pack-
age does not provide a look-ahead feature to facilitate
reading of files with mixed mode. Therefore, the stand-
ard package cannot process mixed mode files that were
written by the alternate package.

Overlay Compatibility

Since the alternate package is compatible with the
overlay feature, overlay may be used in a FORTRAN 1v
program to load the necessary subroutines from the
alternate package. These input/output support routines
may reside in the lower level links of an overlay job,
thereby increasing the storage space available for the
object program. When running a FORTRAN Iv overlay
job, the necessary subroutines are loaded by means of
a generated caLL pseudo-operation, which forces over-
lay of subroutines already in core storage. More infor-
mation concerning the use of the overlay feature can
be found in the section “The Loader (1BLDR).”

Subroutines

The subroutines in the alternate package handle inter-
face functions and data transmission. The alternate
package uses the buffer-building subroutines rcnv,
FioB, and FIoH in the standard package. The buffer-
building subroutines handle conversion and movement
of data into and out of the buffers. These subroutines
are described under “Standard ForTRAN 1v Input/
Output Package.”

The interface subroutines control the input/output
operations requested by actual FORTRAN 1v source pro-
gram statements. A unique interface subroutine exists

for each type of input/output statement. Because the
subroutines are individual, only those subroutines
needed for the requested operation must be in core
storage at execution time. The interface subroutines in
the alternate package are:

SUBROUTINE
DECKNAME DESCRIPTION ENTRY POINT DESCRIPTION
FRDD. Controls reading of .FRDD Entry point for

BCD records. BCD read; sub-
stituted at load
time for source
prograim statement
READ (unit, for-
mat) list.

Entry point for
BCD read; sub-
stituted at load
time for source
program statement
READ (unit,
NAMELIST name).
Controls writing of ..FWRD Entry point for
BCD records. BCD write; sub-
stituted at load
time for source
program statement
WRITE (unit,
format) list.
Entry point for
BCD write; sub-
stituted at load
time for source
program statement
WRITE (unit,
NAMELIST name).

Entry point for
binary read; sub-
stituted at load
time for source
program statement
READ (unit) list.
Entry point for
binary write; sub-
stituted at load
time for source
program statement
WRITE (unit) list.

Entry point sub-
stituted at load
time for source
program statement
END FILE unit.

.FRWT Entry point sub-
stituted at load
time for source

program statement
REWIND unit.

Entry point sub-
stituted at load
time for source
program statement
BACKSPACE unit.

FRDU. Controls reading of ..FRDU

BCD records.

FWRD.

FWRU. Controls writing of ..FWRU

BCD records.

FRDB. Controls reading .FRDB

of binary records.

FWRB. Controls writing .FWRB

of binary records.

FEFT. End-of-file routine .FEFT

using IOEX,

FRWT.

Rewinds tape using
TIOEX.

FBST. Backspaces tape .FBST

using JOEX.

The alternate package also contains subroutines to
perform input/output initialization, read/write selects,
definition of output unit, and identification of logical
units. The subroutines used by the alternate package
to perform these functions are:

SUBROUTINE
DECKNAME DESCRIPTION ENTRY POINT DESCRIPTION
FIOS. Initializes all .FIOS Entry point for all
input/output IOEX alternate interface
calling sequences. subroutines.
FBCD. Contains BCD .FBCD Entry point for a

BCD read request;
used with ..FIOS.

buffer and per-
forms all BCD
initialization.
.FBCW Entry point for a
BCD write request;
used with ..FIOS.

.FBCD Entry point for
location of BCD
buffer.

FBIN. Contains binary .FBID Entry point for
buffers and per- binary read re-
forms all binary quest; used with
initialization. .FIOS.

.FBIN Entry point for
binary write re-
quest; used with
..FIOS.

.FBIB Entry point for
location of primary
binary buffer.

UNITO06 Defines the tape .UN06 Entry point for the
output unit and subroutine to write
prevents loading on the system out-
of FOUT. put unit.

FVIO. Establishes identi- ..FVIO Entry point for any

fication between
variable logical
unit and the cor-
rect FORTRAN
file; also prevents
loading of FOUT.
Note: In addition to performing specific input/
output operations, two of the subroutines also inhibit
the loading of a special subroutine (rout) used by
the standard package. Subroutine rour is loaded by
the standard package whenever the system output unit
is to be used for output. When used, Fout forces the
use of the 10cs routines. For this reason, the loading of
FouUT is prevented whenever the alternate package is
used.

input/output
source statement
that specifies a
variable unit.

The alternate package uses the Library subroutine
1xsL for transmission and linkage to 10Ex. This sub-
routine is not contained in the alternate package, but
is loaded by both the standard and alternate packages.

Correspondence Between FORTRAN Symbolic Units
and System Files

The input/output devices used in data transmission are
always referred to symbolically in ¥ORTRAN 1v input/
output statements. Object program input/output op-
erations are handled by the standard package or the
alternate package buffering routines and one of the
levels of 10cs. The relationship between the symbolic
unit and the system file is shown in Figure 53. The
normal input/output configuration contains eight sym-
bolic units.

Subroutine Library Information 105

FORTRAN
Symbolic | System File Mode Function
Unit
Standard Alternate
Package Package
01 SYSUT1 Binary Binary Input or output
or BCD
02 SYSUT2 Binary Binary Input or output
or BCD
03 SYSUT3 Binary Binary Input or output
or BCD
04 SYSUT4 Binary Binary Input or output
or BCD
05 SYSIN1 BCD BCD Input
06 SYSOU1 BCD BCD Output
07 SYSPP1 Binary Binary Ovutput
08 System BCD BCD Input or output
Availability
Chain

Figure 53. Correspondence between FORTRAN Symbolic Units
and System Files

The standard package contains eight file subroutines
named UNO1, UNO2, UN0O3, UNO4, UNO5, UNO6, UNO7, and
uNos. These subroutines correspond to the eight
FORTRAN symbolic units and produce the sFILE cards
used by the Loader to set up file specifications for each
file. The file subroutines are in the form:

ENTRY .UNxx.
.UNxx. PZE UNITxx
UNITxx FILE specifications

where xx is the two-digit FORTRAN symbolic unit num-
ber, and the file specifications are as follows:

unit0l FILE , utl, READY, INOUT, BLK = 256, BIN, NOLIST
uNrT02 FILE |, UT2, READY, INOUT, BLK — 256, BIN, NOLIST
uNITO3 FILE |, uT3, READY, INOUT, BLK = 256, BIN, NOLIST

unir04 FILE , uT4, READY, INOUT, BLK = 256, BIN, NOLIST

uN1TO5 FILE , IN, READY, INPUT, BLK = 14, MULTIREEL, BCD, NOLIST

uNiT06 FILE , OU, READY, OUTPUT, BLX = 110, MULTIREEL, BCD,
NOLIST

unrt07 FILE , PP, READY, OUTPUT, BLK — 28, MULTIREEL, BIN,
NOLIST

uNiT08 FILE ,, MOUNT, INOUT, BLK = 22, BCD

Subroutine uN06 contains the additional entry point
.BUFSZ in the form

BUFSZ PZE BUFSIZ
BUFSIZ EQU 22
where BUFsIz contains the maximum Bcp logical record
size.

The use of a library subroutine of this form produces
the sFILE cards used by the Loader to establish cor-
respondence between FORTRAN logical unit xx and the
associated system file. The file specifications listed pre-
viously are the standard rorTraN file specifications for
all system files. Since the density is not specified, high
density is assumed. If another system unit is later as-
signed to a file, the file specifications for the system
unit function override the density and file-closing speci-
fications set by the generated sFiLE card.

Although all specifications for the input/output units
are standard for FORTRAN 1v, the file specifications for

106

any unit may be altered. The Library file subroutine
is reassembled, substituting the desired specifications
in the variable field of the FiLE pseudo-operation. (The
publication IBM 7090/7094 IBSYS Operating System:
Macro Assembly Program (MAP) Language, Form
C28-6392, describes the use of the rmwE pseudo-
operation.)

Reassembly of the library subroutine produces a
sFILE card with the new file specifications, enabling the
Loader to establish a corresponding file with these
specifications. Symbolic location .unxx. is entered into
the control dictionary as an external symbol by the
ENTRY pseudo-operation. File unitxx is entered into the
file dictionary for this Library subroutine. Because of
the FILE pseudo-operation, whenever UNITXX appears
in the variable field of any instruction, the relocatable
reference is to the file dictionary entry for file unITxx.
The generated sFiLE card establishes the correspond-
ence between file uNiTxx and the related system unit.
The file specifications are those in the variable field of
the FILE pseudo-operation. At execution time, the ad-
dress field of symbolic location .unxx. is set by the
Loader as the absolute address of the file control block
of the corresponding unit.

Subroutine Library Listing Output

The loading of file subroutine unos forces subroutine
FWRD to use subroutine Fout when the system output
unit is written on. Subroutine FWRD must precede sub-
routine uN06 in the Subroutine Library, enabling rwrp
to call subroutine rour.

Subroutine FouT generates two types of output. The
status of bit 2 in the word at location .Fpros determines
the type of output to be generated. When bit 2 contains
a 1, the output is in Bcp mode, blocked up to five
lines per block. When bit 2 contains a 0, the output is
in binary mode. The blocking factor, i.e., the number of
logical records per block, is a function of the buffer size
and maximum record size specified in subroutine unos.
The first word of each binary output block is a block
control word. This word contains (76xxxxxxxxxx)s,
where x...x is the number of records contained in
the block. The first word of each record within the
block is a record control word. This word contains
(5xxxxx200460)s, where xxxxx is the number of charac-
ters in the logical record.

If output is to be printed on the M 720 Printer or
listed off-line by a 1401 utility program that simulates
this type of output, the file specification for file unrros
must be

untt06 FILE ,0U, READY, OUTPUT, BLK = 110, MULTIREEL, BCD, NOLIST

When the 18M 720 Printer is used for output, the
following change must be made in the Fcnv subroutine

LIMIT EQU 20

Note: When using the optional 7094 conversion

routine, the change is

LIMIT EQU 21
The maximum size of Bcp logical records specified
in .BUFsz must be changed to 20.

If the contents of the system output unit are to be
printed using the 1BM 1401 Peripheral Input/Output
Program, the file subroutine unos must contain the fol-
lowing file specifications:

un1T06 FILE ,0U, READY, OUTPUT, BLK — 116, MULTIREEL, BIN, NOLIST

FORTRAN IV Utility Library

The utility library contains subroutines used by the
FORTRAN 1v Compiler to restore information destroyed
by the object program, perform error diagnostics, aid
the translation of FORTRAN 1v into FORTRAN 11, and re-
turn control to the operating system. These subroutines
are described as follows:

SUBROUTINE DESCRIPTION ENTRY POINT DESCRIPTION
.ERAS. Provides four E.1LE.2, Erasable words
erasable locations ~ E.3,E.4 used by object
used by object program.
program.

XCC. Provides four C.l Erasable words
constants for c2 used by
FORTRAN IV C.3 FORTRAN 1V
Compiler use. C4 Compiler.

FPARST Used to determine PART Entry point to de-
for FORTRAN 1V, termine address or
address of desired quantity to be
part of double- obtained.
precision or com-
plex pair, as speci- STORE Entry point for
fied in FORTRAN obtaining address
IT program. into which a quan-

tity is to be stored.
FXEM Controls object FXEM. Entry point for

execution error
diagnostics.
FXOUT Entry point at
which the call to
entry point
.LXSEL is overlaid
by a call to subrou-
tine FOUT if
FOUT is loaded
with an object
program.
FXARG Parameter for the
call to subroutine
FOUT.
Entry point for
ending program
execution.

program error pro-
cedure.

XIT Returns control to
subroutine
.LXCON.

EXIT

The utility library also contains some subroutines
available for use in a FORTRAN 1v program. These sub-
routines are described in the section “Subroutine Li-
brary (18L1B).”

The utility subroutine ¥xeMm is called when an object
program error is found by the Subroutine Library, and
an error message is written on the system output unit.
The error messages are described in the section “Sub-

routine Library Error Messages.” Normally, when
an error occurs, execution is terminated and contyol is
given to subroutine .LxcoN to return control to the op-
erating system. However, some subroutines have op-
tional exits that allow execution to continue.

These optional exits are controlled by bits in loca-
tions oprwp1, optwp2, and opTwn3. These bits corre-
spond to error codes listed with the error messages and
the optional exits. Error codes 1-35 are controlled by
bits 1-35 of opTwp1; codes 36-70 are controlled by bits

1-35 of optwne; and codes 71-77 are controlled by bits
1-7 of optwps. To use an optional exit, the bit asso-
ciated with the relevant error code must be set to 1. A
control section in subroutine Fxem sets to 1 each bit
relevant to an optional exit enabling use of all permis-

sible exits. The control section used is:
ENTRY .OPTW.

OPTW. OCT 3TTTTTTT7740
DEC 0
ocCT 376000000000
END

In the distributed version of the Subroutine Library,
the bits for error codes 1-30 and 71-77 are set to 1 for
the use of optional exits. If the optional exits are not
to be used, the appropriate bits may be set to zero by
changing locations opTwp1, orTwpe, or orTwp3. These
locations are the three octal words in the .opTw. con-
trol section. The exits set by changing these locations
apply only for one application. The use of optional exits
may be made standard by reassembling subroutine
FxeM with the bits set as desired.

In addition to the error conditions found by the
Subroutine Library, an object program calls subroutine
FXEM when an invalid value for a computed co TO
statement is found. This error condition has the error
code 55 and has no optional exit. If subroutine FXEM
is called by a programmer-designed routine and a
nonstandard error code argument is used, the error
code is written on the system output unit, execution is
terminated, and control is given to subroutine .LxCoN.

An error-flow trace is given each time subroutine
rxeM is called. The trace lists the sequence of calls,
in reverse order, through any number of levels of sub-
programs out of the main program.

Three pieces of information are given for every caLL
statement in the sequence: the name of the routine in
which the caLL statement occurs; the absolute location
of the cALL in core storage; and the line or identifica-
tion number of the caLL statement as it appears in a
listing of the given routine.

A complete error-flow trace is not possible in a MaP
routine if a call is made to an entry point within the
same routine. This cannot occur in a routine written in
the rortrAN language or in a subroutine in the Sub-
routine Library.

Subroutine Library Information 107

COBOL Subroutines

The Subroutine Library contains a group of subrou-
tines used by cosoL object programs. The cosor. Com-
piler generates the instructions needed to call the
appropriate subroutine. The Loader completes the ob-
ject program by loading the necessary subroutines and
inserting the addresses assigned to the subroutines into
any instructions referring to the subroutines.

coBoL object programs most frequently use the
MovPAK subroutines, which move, convert, and edit
data. Another group of coBoL subroutines in the Sub-
routine Library coordinate input/output operations. A
third group of subroutines perform arithmetic opera-
tions, additional conversion, and comparison of alpha-
betic fields. A fourth set of subroutines provide acgess
to FORTRAN mathematical subroutines from a cosor
program.

MOVPAK Subroutines

The Movpak Subroutines move data from a source field
to a receiving field, performing necessary conversions
and editing operations. The subroutine used to perform
the necessary operation depends on the data in the
source field and the type of data desired in the receiv-
ing field.

These subroutines use four special locations to store
information. The MovPak subroutines are usually called
by one of four major entry points and then by another
call to one of the special subroutines to perform the
move.

MOVPAK Subroutine Special Locations

The moveax subroutines use four special locations to
retain information while the subroutines are executed.
Two of these locations indicate the position in storage
of the data involved in the move. The other two loca-
tions indicate certain conditions that may result when
the subroutines are executed.

Location .carer indicates the source field of the data
to be moved. .CAREF contains

PZE location,,byte

where location is the address of the first word of the
source field involved in the move. However, since a
source field may begin with part of a word, the first
byte position of the source field must also be indicated.
The value for byte may be 0, 1, 2, 3, 4, or 5, depending
on the byte that begins the source field. Since a byte is
defined as six consecutive bits, byte position 0 is bits S
through 5 of a word in storage, byte position 1 is bits
6 through 11, etc.

Location .cBrer indicates the receiving field of the
data to be moved. .CBREF contains

PZE location,,byte

108

where location is the address of the first word of the
receiving field and byte the first byte position involved
in the move. The byte position for the receiving field
is not required to coincide with the byte position for
the source field.

Location .cOFLO is set to nonzero whenever any one
of the numeric move or convert MOVPAK subroutines
detects the truncation of significant high-order digits.
.COFLO contains

PZE **

The location is tested by generated instructions to
determine if a size ERROR has occurred. If a sTZE ERROR
has occurred, a message is written indicating that sig-
nificant digits were truncated, and execution of the
program continues.

Location .cUFLO is set to nonzero whenever a float-
ing-point underflow results from a move operation.
.CUFLO contains

PZE %

At present, no generated instructions test the status
of this location.

Note: The floating-point trap routine also indicates
occurrences of floating underflow and overflow. (See

ccorintian of woemm S bt ag)

I N | : r R N o X
e QESCriplion U1 . rriny 1l 0YSLlil vuvivuuncs,

MOVPAK Major Entry Points

The Moveak subroutines are called by using one of
four major entry points. The entry point used depends
on the number of address reference words that must be
set up. These words, if used, follow the call to the entry
point and indicate the position of data in storage. The
information contained in the address reference words
is used to set locations .cAREF and .CBREF.

If both a source address reference word and a re-
ceiving address reference word must be set up, entry
point .cmpak is used. The call to this subroutine is
generated as:

TSX .CMPAKA4
source address reference word
receiving address reference word
(begin specific move call)

This entry uses the address reference words to set
the contents of locations .cARer and .cBrer. Control is
then transferred by a specific move call to the subrou-
tine that performs the move. The move call used de-
pends on the type of data used. These move calls are
described in the section “Moveax Subroutine Calls.”

If the source field is an arithmetic register or if no
source field is needed, entry point .cMpk1 is used. The
following coding is generated to call this entry point:

TSX .CMPK1,4
receiving address reference word
(begin specific move call)

If the information that results from a conversion or
edit operation is to remain in an arithmetic register,

entry point .cmpk2 is used. The following coding is
used:
TSX .CMPK2,4
source address reference word
(begin specific move call)

If no address reference words are needed, the follow-

ing call to entry point .cMPK3 is used:
TSX .CMPK3
{begin specific move call)

This entry is used when the source field is in an arith-
metic register and the result is to be left in an arithme-
tic register. Entry point .cMPk3 is also used when any
necessary address references have been previously
stored in locations .CAREF Or .CBREF.

Address Reference Words

A call to any MOVPAK entry point except .CMPX3 is
followed by one or more address reference words. The
address reference words are in one of three forms, de-
pending on the location of the data.
If the data is in working storage, the following cod-
ing is used:
PZE location,,byte

where location is the address of the first word of the
field involved in the move, and byte is the first byte
position of the field involved.

If the data is in an 10cs buffer, the following coding
is used for the address reference word:

MZE BL+nnn,,SP+nnn

where BL+nnn is the base locator reference and sp+nnn
is the displacement from the base. A base locator
locates the first word of data in an 10cs buffer. The
displacement of the data from the base is a constant.
The word-displacement from the base is in the address
of the constant, and the byte-displacement, if any, is
in the decrement.

If the data is subscripted items in either working stor-
age or an 10cs buffer, the following coding for the ad-
dress reference is used:

MON Pl+nnn

where pr+nnn indicates the position of the data within
the storage area. The positional indicator is calculated
at execution time.

MOVPAK Subroutine Calls

After the call has been made to one of the four entry
points of the aoveak subroutines, another call transfers
control to a specific subroutine within Moveax. Usually,
a Tsx instruction transfers control to the entry point
and a TxI instruction transfers control to the specific
subroutine; specific exceptions will be noted in the
following discussion. Although most Movpakx sub-
routines may be called by any one of the four major
entry points, subroutine .cExaM is only called by cmpke.

This subroutine processes text strings created by the
EXAMINE and 1F (crass) analyzers. The calling se-
quence for this subroutine is:
TSX .CMPK2,4
address reference word
TXI entpt,ln
where the address reference word corresponds to the
description in the section “Address Reference Words”
and entpt is one of the following entry points:
.CEXAM for true EXAMINE statements
.CXAMA for IF...ALPHABETIC statements
.CXAMN for IF...NUMERIC statements
and n is the length of the address reference word.
The following abbreviations are used in the discus-
sions of the calls to the subroutines:
AA Alphabetic field (The PICTURE clause contains only
A’s.)

AN Alphanumeric field (The group item or PICTURE clause
contains X’s.)

CH Characters (This category includes ALL, QUOTE and
HIGH-VALUE figurative constants.)

FP Floating point (floating-point binary)
ID Internal decimal (fixed-point binary, synchronized right)
IN Internal decimal not SYNCHRONIZED RIGHT

RP Report field (The PICTURE clause contains editing
characters.)

SD Scientific decimal (floating-point BCD)
SP SPACE (figurative constant)

XD External decimal (fixed-point BCD)
ZE ZERO (figurative constant)

The first two letters in the description of each type of
move represent the type of data in the source field; the
last two letters represent the type of data in the re-
ceiving field. For example, the move from internal
decimal to external decimal is designated by the letters
IDXD.

Literals are classified as alphanumeric, numeric, or
floating point, as appropriate.

Those combinations of moves shown on the following
pages that are legal are listed in the description of the
MOVE verb in the cOBOL manual.

AAAA, AAAN, ANAA, ANAN

Most moves of simple Bcp alphanumeric or alphabetic
fields are handled by generated in-line instructions if
the fields are short. Other cases are handled by calls
to one of several subroutines depending on the data.
If an alphabetic or alphanumeric field is to be moved
to another field that is also alphabetic or alphanumeric,
the following call is used:

TXI .CANAL,l,number
where number is the number of characters to be moved.

If the move involves the same type of data as de-
scribed above, but also requires additional blank char-
acters, the following sequence of calls is used:

Subroutine Library Information 109

TXI .CANA2,1 numberl

TXI .CANAS3,1,number2
where numberl is the number of characters to be
moved, and number?2 is the number of additional blank
spaces to be inserted.

If the move involves alphabetic or alphanumeric
information, and the initial byte position or word length
of the source and/or target field is not known at com-
pilation time, the following call is used:

TXI .CANA4,1,decrement

PZE controll,control2
where decrement defines the nature of controll and
control2 as follows:

DECREMENT VALUE EXPLANATION
1 Control2 contains the length of the receiv-
ing field in words.
2 Controll contains the length of the source
field in words.
4 Control2 contains the address of the loca-

tion containing the word length of the re-
ceiving field.

8 Controll contains the address of the location
containing the word length of the source
field.

These conditions may exist in combination, giving the
decrement a maximum value of 15.

CHAN
If characters are moved to an alphanumeric field, the
following calling sequence is used:

TXI .CHCAN,I1,number
OCT characters

where number is the number of characters to be in-
serted and characters is six characters of the type to be
inserted.

FPAN

A move of a floating point item to an alphanumeric
field is handled in the same manner as an alphanumeric
or alphabetic move. The calling sequence used depends
on the conditions described in the description of alpha-
betic moves (aaaa).

FPFP

A move involving floating point information is handled
by generated in-line instructions. The Movpak sub-
routines are not used. '

FPID

If a single-precision floating point item is to be con-
verted to internal decimal, the following calling se-
quence is used:

TSX .CF1ID4
receiving field control word

where the receiving field control word contains the
following information:

110

prefix PZE if the scaling factor to be used is positive;
MZE if the scaling factor to be used is negative.

address contains the scaling factor applied in the PIC-
TURE clause of the internal decimal item.

decrement contains the number of nines in the PICTURE

clause of the internal decimal item. If the number
of nines exceeds 10, the data is treated as double-
precision data.

If double-precision data is used, the following calling
sequence is used:
TSX .CF2ID4

receiving field control word

where the receiving field control word contains the
same information as described for single-precision data.

Subroutine .cr1p (or .cr2mp) converts the floating-
point number in the Ac to an internal decimal number
and leaves the result in the ac (or the ac-MqQ). The
calling sequence for these subroutines is a direct entry
to Movpak and is not preceded by a Tsx instruction to
one of the four Movpak entry points.

FPIN

A conversion from floating point to internal decimal
not synchronized right involves several intermediate
steps. The floating point item is converted to internal
decimal (FpPIp) and the resulting internal decimal item
is converted to an internal decimal item with the same
scaling factor as the desired result (1m). The follow-
ing calling sequence is then used to complete the con-
version to an internal decimal item not synchronized
right:
TXI .CIDIN,1,number

where number is the character length of the receiving
field, i.e., the least multiple of six bits needed to con-
tain the desired internal decimal field and its sign.

FPRP

If a floating point item is to be moved to a report field,
the data is first converted to internal decimal (¥pi)
and then moved to the report field. The calling se-
quence used is given in the description of a move from
internal decimal to a report field (1prp).

FPSD

If a single-precision floating point item is to be con-
verted to scientific decimal, the following calling
sequence is used:

TXI .CF1SD,1,0
receiving field control word

where the receiving field control word contains the
following information about the picTURE clause of the
scientific decimal item:

prefix PZE if no decimal point appears in the PICTURE
clause; MZE if a decimal point appears in the
PICTURE clause.

address contains the scaling factor applied to the mantissa

in the PICTURE clause.

tag 0 if the mantissa is negative and the exponent is
negative; 1 if the mantissa is negative and the ex-
ponent is positive; 2 if the mantissa is positive and
the exponent is negative; 3 if the mantissa is posi-
tive and the exponent is positive.

contains the total length of the receiving field in
characters.

decrement

If the data is double-precision, the following calling
sequence is used:
TXI .CF2SD,1,0
receiving field control word
where the receiving field control word contains the
same information as described for single-precision data.
Subroutine .cr1sp (or .cr2sp) converts the floating-
point number in the ac (or Ac-MQ) to scientific decimal
as specified in the picTURE clause.

FPXD

A conversion from floating point to external decimal
involves an intermediate conversion of floating point
to internal decimal (rpip). The conversion is then
completed as described for conversion from internal
decimal to external decimal (1pxp).

IDAN

A move of an internal decimal item to an alphanumeric
field is handled as described for a conversion from
internal decimal to external decimal (ixp).

IDFP

If a single-precision floating point item is to be con-
verted to floating point, the following calling sequence
is used:

TSX .CIDF1,4
source field control word

where the source field control word contains the follow-
ing information:

prefix PZE if the scaling factor is positive; MZE if the
scaling factor is negative.

address contains the scaling factor applied in the PICTURE
clause of the internal decimal item.

decrement contains the number of nines in the PICTURE

clause of the internal decimal item. If the number
of nines exceeds 10, the data is treated as double-
precision data.
If double-precision data is involved in the move, the
following calling sequence is used:
TSX .CIDF24
source field control word
where the source field control word contains the same
information as described for single-precision data.
Subroutine .cipF1 (or ciF2) converts the internal
decimal number in the Ac (or ac-MmQ) to floating point
and leaves the result in the ac. The calling sequence
to these subroutines is a direct entry to Moveak and is
not preceded by a Tsx instruction to one of the four
MOVPAK entry points,

IDID

A move involving internal decimal data is usually
handled by generated in-line scaling instructions. How-
ever, if scaling of an internal decimal item is used as
an intermediate stage of a multistage move, the scaling
function is performed by a Moveak subroutine, e.g.,
see IDSD.

IDIN

If an internal decimal item is to be converted to another
internal decimal item not synchronized right, the fol-
lowing calling sequence is used:

TXI .CIDIN,],number
where number is the character length of the receiving
field, i.e., the least multiple of six bits needed to con-
tain the desired internal decimal item and its sign.

IDRP

If an internal decimal item is to be moved to a report
field for editing, the following calling sequence is used:
TXI .CIDRP,l,number
where number is the number of digits to be edited.
This instruction is followed by one or more instructions
from the report field instruction set. The instructions
used depend on the characters that constitute the
PICTURE clause for the report field. The members of
the instruction set have the following general form:
TXI entpt,1,number
where entpt is one of several entry points, and number
is the number of consecutive occurrences of the char-
acter in the PICTURE clause. The entry point may be one
of the following, depending on the character used:

.CR999 if the character in the PICTURE is a 9
.CRZZZ if the character in the PICTURE is a Z
.CRAAA if the character in the PICTURE is an *
.CR0O00 if the character in the PICTURE is a 0
.CRBBB if the character in the PICTURE is a B

Another series of instructions inserts a character into
the report field. In the following instruction, the partic-
ular character inserted depends on the sign of the re-
port field:

TXI .CRSIN,l,characterl +64*character2
where characterl is inserted if the sign of the report
field is plus, and character2 is inserted if the sign of the
report field is minus.

Note: Symbols such as “characterl” refer to the
decimal representation of the desired Bcp character.
The BcD character is first converted to octal, and then
to decimal before insertion. (See Example 1 which
follows.)

In the following instruction, the particular character
inserted depends on the insertion of a significant digit
in the report field:

TXI .CRSIG,1,character3+64*character4

Subroutine Library Information 111

where character3 is inserted if a preceding significant
digit has been inserted, and character4 is inserted if a
preceding significant digit has not been inserted. If the
following instruction has been executed, and the
floating-sign character has not been inserted, the char-
acter inserted in the report field may be character4,
character5, or character6:

TXI .CRFLS,1 character5+64*character6

where character5 is the floating-sign character ulti-
mately inserted in the report field if the field is plus,
and character6 is inserted if the field is minus. If the
first digit value in the source field is zero, a blank or
the appropriate choice of character5 or character6 is
inserted as a result of this instruction. The first floating-
sign position is passed over and not counted by this
instruction.

The possible combination of character pairs is as
follows:

CHARACTER
NUMBER CHARACTER PAIRS
1 + space space space space space $
2 - - C R D B $
3 > bl 3
4 , space *
5 + space §
6 - - $

The following instruction is used when other floating-
sign positions follow the position just filled:
TX1 .CRFFF,1,number
where number is the total number of consecutive
floating-sign positions.
The following instruction is used when no other
floating-sign positions follow the position just filled:
TXI .CRFFQ,l,number
where number is the total number of consecutive
floating-sign positions.
If no other floating-sign positions follow, but a
comma precedes the next digit, the following instruc-
tion is used:

TXI .CRFFC,1l,number
where number is the total number of consecutive
floating-sign positions.

The report field string is terminated by the following
instruction:

TXI .CRQIT,1,value
where value contains a zero if zero suppression is not
desired, and contains the character length of the re-
ceiving field if zero suppression is desired.

The following examples show the series of instruc-
tions needed to handle picTure clauses for two report
fields.

Example 1: PICTURE 1s sss, sss, 99 is handled by the fol-
lowing instructions:

112

TXI .CRFLS,1,43+64*43
character5 and character6 are $
TXI .CRFFF,12
TXI .CRSIG,1,59+64%48
character3 is a , and character4 is
a space
TXI .CRFFQ,1,3
TXI .CRSIN,1,27+64*27
characterl and character2 are .
TXI .CR999,1,2
TXI .CRQIT,1,0
Example 2: PICTURE 1s 7zz,zzz.zz+ is handled by the
following:
TX1 .CRZZZ,1,3
TXI .CRSIG,1,59+64*%48
character3 is a , and character4 is
a space
TX1 .CRZ7Z,1,3
TXI .CRSIN,1,27+64*27
characterl and character2 are .
TXI .CR999,1,2
TXI .CRSIN,1,16+64*32
characterl is a + and character2
isa —
TXI .CRQIT,1,11

IDSD

If an internal decimal item in the accumulator or in the
combined accumulator and multiplier-quotient is to be
converted to a scientific decimal item, the following
calling sequence is used:

TXI .CIDSD,1,0

source field control word
receiving field control word

where the source field control word contains the fol-
lowing information:

prefix PZE if the scaling factor is positive; MZE if the
scaling factor is negative.

address contains the scaling factor applied in the PICTURE
clause of the internal decimal item.

decrement contains the number of nines in the PICTURE

clause of the internal decimal item. If the number
of nines exceeds 10, the data is treated as double-
precision data.

and the receiving field control word contains the fol-
lowing information about the PicTURE clause of the
scientific decimal item:

prefix PZE if no decimal point appears in the PICTURE
clause; MZE if a decimal point appears in the PIC-
TURE clause.

address contains the scaling factor applied to the mantissa

of the PICTURE clause.

tag 0 if the mantissa is negative and the exponent is
negative; 1 if the mantissa is negative and the ex-
ponent is positive; 2 if the mantissa is positive and
the exponent is negative; 3 if the mantissa is posi-
tive and the exponent is positive,

contains the total length of the receiving field in
characters.

decrement

IDXD

The internal decimal item in the accumulator or in the
combined accumulator and multiplier-quotient is con-
verted to external decimal by one of the following three

calls, depending on the sign provision of the receiving
field:
If the receiving field has no sign provision, the fol-
lowing calling sequence is used:
TXI .CIDX1,1,number

where number is the number of characters to be
converted.

If the receiving field always has a sign over the low-
order bit, the following calling sequence is used:

TXI .CIDX2,1,number

r of characters to be

If the receiving field has a sign over the low-order
bit when the sign is minus, the following calling se-
quence is used:

TXI .CIDX4,1,number

where number is the number of characters to be
converted.

INAN

An internal decimal item not synchronized right is
converted to a synchronized internal decimal number
(1) before the conversion to alphanumeric is com-
pleted (paN).

INFP

An internal decimal item not synchronized right is first
synchronized right (1Np) before the item is converted
to floating point (IDFP).

INID

If an internal decimal item not synchronized right is
to be converted to a synchronized internal decimal
item, the following calling sequence is used:
TXI .CINID,l,number

where number is the character length of the source
field, i.e., the least multiple of six bits needed to con-
tain the defined internal decimal field and its sign. The
results are left in the accumulator or in the combined
accumulator and multiplier-quotient. The resulting
internal decimal number is then scaled as desired
(D).

ININ

If a move involves internal decimal items not synchro-
nized right, the source field is first converted to a
normal synchronized internal decimal item (iNmp) for
decimal point alignment. The resulting item is con-
verted to the desired internal decimal item not synchro-
nized right (pIN).

INRP

To move an internal decimal item that is not synchro-
nized right to a report field, the source item is first

converted to a synchronized internal decimal item
(ixp). The resulting internal decimal item is then
moved to the report field (1prp) and edited as desired.

INSD

If an internal decimal item that is not synchronized
right is to be converted to a scientific decimal item, the
source item is first converted to a synchronized internal
decimal item (1xm). The resulting internal decimal
item is then converted to scientific decimal (1psp).

INXD

If an internal decimal item that is not synchronized
right is to be converted to an external decimal item,
the source item is first converted to a synchronized
internal decimal item (iNm). The resulting internal
decimal item is then converted to scientific decimal
(10xD).

RPAN

If an item in a report field is to be moved to an alpha-
numeric field, the data in the report field is treated as
alphanumeric data (ANAN).

SDAN

If a scientific decimal item is to be converted to an
alphanumeric item, the scientific decimal item is
treated as an external decimal item {xpax).

SPFP

If a single-precision scientific decimal item is to be
converted to a floating point item, the following calling
sequence is used:

TXI .CSDF1,1,0
source field control word

where the source field control word contains the follow-
ing information about the PicTURE clause of the scien-
tific decimal item:

prefix PZE if no decimal point appears in the PICTURE
clause; MZE if a decimal point appears in the
PICTURE clause.

address contains the scaling factor applied to the mantissa

in the PICTURE clause.

tag 0 if the mantissa is negative and the exponent is
negative; 1 if the mantissa is negative and the ex-
ponent is positive; 2 if the mantissa is positive and
the exponent is negative; 3 if the mantissa is posi-
tive and the exponent is positive.

contains the total length of the receiving field in
characters.

If the item is double-precision, the following calling
sequence is used:

TXI .CSDF2,1,0
source field control word

decrement

where the source field control word contains the same

information as described for a single-precision item.
Subroutine .cspF1 (or .cspF2) converts the free-form

contents of the scientific decimal field to single-

Subroutine Library Information 113

precision floating point in the accumulator (or to
double-precision floating point in the combined ac-
cumulator and multiplier-quotient).

SDID

If a scientific decimal item is to be converted to an
internal decimal item, the following calling sequence
is used:

TXI .CSDID,1,0

source field control word
receiving field control word

where the source field control word contains the fol-
lowing information:

prefix PZE if no decimal point appears in the PICTURE
clause; MZE if a decimal point apears in the
PICTURE clause.

contains the scaling factor applied to the mantissa

in the PICTURE clause.

tag 0 if the mantissa is negative and the exponent is
negative; 1 if the mantissa is negative and the ex-
ponent is positive; 2 if the mantissa is positive and
the exponent is negative; 3 if the mantissa is posi-
tive and the exponent is positive.

contains the total length of the receiving field in
characters.

address

decrement

and the receiving field control word contains the fol-
lowing information:

prefix PZE if the scaling factor to be used is positive;
MZE if the scaling factor to be used is negative.

address contains the scaling factor applied in the PICTURE
clause of the internal decimal item.

decrement contains the number of nines in the PICTURE

clause of the internal decimal item. If the number
of nines exceeds 10, the data is treated as double-
precision data.

Subroutine .cspp converts the numeric contents of
the scientific decimal field to internal decimal and
leaves the result in the accumulator or in the combined
accumulator and multiplier-quotient.

SDIN

If a scientific decimal item is to be converted to an
internal decimal item not synchronized right, the
source item is first converted to a normal internal deci-
mal item (spw). The resulting internal decimal item
is then converted to an internal decimal item that is
not synchronized right (miv).

SDRP

If a scientific decimal item is to be moved to a report
field and edited, the source item is first converted to
an internal decimal item (sp). The resulting internal
decimal item is then moved to the report field (1DRP)
and edited as desired.

SDSD

If a scientific decimal item is to be converted to another
scientific decimal item of a different form, the following
calling sequence is used:

114

TXI .CSDSD,1,0
source field control word
receiving field control word

where the source-field and receiving-field control words
both contain the following information:

prefix PZE if no decimal point appears in the PICTURE
clause; MZE if a decimal point appears in the
PICTURE clause.

address contains the scaling factor applied to the mantissa

in the PICTURE clause.

tag 0 if the mantissa is negative and the exponent is
negative; 1 if the mantissa is negative and the ex-
ponent is positive; 2 if the mantissa is positive and
the exponent is negative; 3 if the mantissa is posi-
tive and the exponent is positive.

contains the total length of the receiving field in
characters.

decrement

SDXD

If a scientific decimal item is to be converted to an
external decimal item, the source item is first converted
to internal decimal (spi). The resulting internal deci-
mal item is then converted to external (1pxp).

SPAA, SPAN, SPRP, SPSD, SPXD

If spaces or blanks are to be moved to an alphabetic,

alphanumeric, report, scientific decimal, or external

decimal field, the following calling sequence is used:
TXI .CSPAN,I,number

where number is the number of spaces to be inserted.

XDAN

If an external decimal item is to be moved to an alpha-
numeric field, the data is treated as alphanumeric data
and the move is carried out accordingly (anan).

XDFP

If an external decimal item is to be converted to floating
point, the source item is first converted to internal deci-
mal (xpip). The resulting internal decimal item is then
converted to floating point (1pFe).

XDID

If an external decimal item is to be converted to an
internal decimal item, the source item is first converted
to internal decimal without scaling and the result is
left in the accumulator or in the combined accumulator
and multiplier-quotient. The sign of the source field is
assumed to be over the low-order digit. The absence of
a sign is treated as a plus.

Leading spaces in the source field are treated as
zeros. The following calling sequence is used to call
the subroutine to perform the conversion:

TXI .CXDID,I,number

where number is the number of characters needed to
convert the data to internal decimal.

If scaling is needed, the internal decimal result is
converted to another internal decimal item with the
desired scaling (11D).

XDIN

If an external decimal item is to be converted to in-
ternal decimal not right synchronized, the source item
is first converted to internal decimal (xpmp) right
synchronized. The resulting internal decimal item is
then scaled if necessary (mip), and converted to an
internal decimal item not synchronized (mix).

XDRP

If an external decimal item is to be moved to a report
field and edited, the following calling sequence is used:
TXI .CXDRP,1,0
followed by one or more instructions from the external
decimal Tx1 instruction set. The particular instructions
used represent a means of constructing the proper
string of digits for the receiving field. The instructions
in the external decimal set are explained in the section
“XDXD.”

After the series of instructions from the external deci-

mal set, the following instruction is used:

TXI .CXDRQ,1,number
where number is the number of digits in the string pre-
pared for the receiving field by the external decimal
subroutine set.

Once the source item has been prepared for the
receiving field, another series of instructions from the
report field instruction set is used. These instructions
are explained in the section describing the move of an
internal decimal item to a report field (prP).

The entire series of instructions for the move from
external decimal to a report field is concluded by the
following instruction:

TXI .CRQIT,1,value
where value equals 0 if zero suppression is not wanted.

If zero suppression is desired, value is the number of
characters in the picTURE clause for the report field.

XDSD

If an external decimal item is to be converted to a scien-
tific decimal item, the source item is first converted to
internal decimal (xpip). The resulting internal decimal
item is then converted to scientific decimal (1psp).

XDXD

If only external decimal items are involved in a move
or conversion operation, the following calling sequence
is used:

TXI .CXDXD,l;sign
where sign is 0 if the receiving field has no sign pro-
vision; 1 if the receiving field has a sign over the low-

order digit when the sign of the field is minus; and 2 if
the receiving field always has a sign over the low-order
digit.

This instruction is followed by one or more instruc-
tions from the external decimal instruction set to con-
struct the proper string of digits for the receiving field.
The instructions used depend on the operation to be
performed in preparing the string. The instructions in
this set have the following form:

TXI entpt,1,number
where entpt is one of several entry points, and number
is the number of digits involved in the desired opera-
tion. The entry point may be one of the following, de-

pending on the operation to be performed:

.CXMOV if the digits are to be moved

.CXNZT if the digits are to be tested for nonzero

.CXBYP if the digits are to be bypassed

.CXINZ if the digits are to be inserted

.CXRND if a rounding operation is to be performed at the

current position (number for this entry point is
Zero)

If a nonzero condition is encountered while using
subroutine .cxnzrt, location .cOFLO is set to nonzero.
Three alternate entry points (.cxMmvs, .cxnNzs, and
.cxBYs) corresponding to entry points .CXMOV, .CXNZT,
and .cxByp are used if a sign appears over the last
digit involved in the operation.

The following instruction terminates the instruction
set for this move:

TXI .CXDXQ,l,number
where number is the number of digits in the string pre-
pared for the receiving field. The following examples
show coding necessary to handle two coBoL source
program statements.

Example 1: The statement COMPUTE B ROUNDED=A,
ON SIZE ERROR . . . (where A’s PICTURE IS $999v999 and B's
PICTURE Is s9v9) results in the following move-call cod-
ing:

TXI .CXDXD,l1,2
TXI .CXNZT,1,2
TXI .CXMOV,1.2
TXI .CXRND,1,0
TXI .CXBYS,1,2

TXI .CXDXG,1.2

Example 2: The statement MOVE A To B (where A’s
PICTURE Is 59v99 and B'S PICTURE IS v9999) results in the
following move call-coding:

TXI .CXDXD,L,0
TXI .CXBYP,1,1
TXI .CXMVS§,1,2

TXI .CXINZ1,2
TXI .CXDXQ,1.4

ZEAN

If zeros are to be moved to an alphanumeric field, the
following calling sequence is used:

TXI .CZEAN,l,number

Subroutine Library Information 115

where number is the number of zeros to insert in the

field.

ZEFP, ZEID

If zeros are to be stored in a floating point or internal
decimal item, Movpak subroutines are not used. The
value zero is stored by one or more generated in-line
instructions.

ZERP

If zeros are to be moved to a report field, the required
number of zero digits is provided by generated in-line
instructions. These zeros are placed in one or more
temporary storage words. The move is then treated as
a move from external decimal to a report field (xprp).

ZESD

If zeros are to be inserted in a scientific item, the ac-
cumulator is cleared to zero by the following generated
in-line instruction:

CLA location

where location contains all zeros.
The move is then treated as a move from floating
point to scientific decimal (Fpsp).

ZEXD

If zeros are to be inserted in an external decimal item,
the move is treated as a move of zeros to an alphameric

field (zean).

COBOL Input/Qutput Subroutines

A group of cosoL input/output subroutines are pro-
vided to service coBoL programs. Some of these sub-
routines use communication location .cions to keep a
history of input/output operations. Location .crons is
of the form:
PZE 0,0,**

where the decrement contains the source language
card number of the most recent input/output operation.
This location is set by every oPEN, CLOSE, READ, and
WRITE statement in the source program.

All cosoL input/output subroutines except .C1oHs are
described in the following text in alphabetical order
according to the symbolic name of the subroutine. In
the following descriptions, the notation ce+nnn is used
to refer to a location in the constant pool. The informa-
tion contained in this location is explained each time
the notation is used.

ACEPT

The .AcepT subroutine accepts data from an on-line
peripheral device. The calling sequence for this sub-
routine is:

TSX .ACEPT4
PZE WS +nnn,,device

116

where ws+nnn is the location of the first word of a 12-
word Bcp input area in working storage and device is
an actual bit configuration that may be either of the
following:

Bit 16 = 1 if the peripheral device is the system input unit.
Bit 17 = 1 if the peripheral device is the card reader.

.CBLER

Subroutine .cBLER is called if a base locator that has
not been set is referred to. An error message is written
on the system output unit, a core storage dump is taken,
and execution of the object program is terminated. The
calling sequence for this subroutine varies.

.CCDTY
Subroutine .ccpTy determines if card equipment is to
be used for an input/output operation. The calling
sequence for this subroutine is:

TSX .CCDTY,4

PZE file-name

(returnl)
(return2)

where file-name is the name of the file used in the re-
quired operation, returnl is used if card equipment is
to be used, and return2 is used if card equipment is
not to be used.

.CCLOS

Subroutine .ccrLos closes input/output files. The calling
sequence for this subroutine is:
TSX .CCLOS,4
rop file-name,,opt
where file-name is the name of the file to be closed, rop
is the rewind option and may be one of the following:
PZE Rewind and unload
PTW Rewind
MZE No rewind
MON No rewind, no end-of-file mark
and opt describes the type of file and indicates the
CLOSE REEL option as follows:
opt = 0 if the file-name does not refer to an optional file and
the CLOSE REEL option is not wanted.
= 1 if the file-name refers to an optional file.
= 2 if the CLOSE REEL option is desired.

= 3 if the file-name refers to an optional file and the
CLOSE REEL option is desired.

.CDISP

Subroutine .cpisp is used to display any number of data
items on either the printer or the system output unit.
The calling sequence for this subroutine is:
Stores over CALL
CAL SP+unn parameters where

SLW GNxxx+m+2 ‘ the starting byte
does not=0.

GNxxx CALL .CDISP4

TXI *+2+n,n

PZE device, linkage director
PZE locationi,byte1

PZE locationg,bytes

PZE locationm,,bytem

PiE locationn,,byten
TRA *+1+n

PZE lengthy,,formati

PZE lengthz,.formats

PiE lengthn,,formatn
where:

n is the number of items to be displayed; n can vary
frommto L.

device is one of the following:

0 if the items are to be displayed on the printer
1 if the items are to be displayed on the system
output unit

location; is the first-word address of the items or area
to be displayed.

byte; is the byte displacement for the first item of
the data to be displayed.

length; is either the length of the item in characters
or the address of the location containing the length,
depending on the format code.

format; is one of the following:

0 for alphabetic or alphameric items where length;
is the length.

1 for external decimal, scientific decimal, or report
items where length; is the length.

2 for internal decimal items where length; is a
maximum of 18 characters; if more than 18 char-
acters are specified, the item is truncated to 18
characters.

3 for floating point items where length; is the
length.

4 for Bcp items where length; is the address of a
location containing the length of the item in
characters.

5 for Bcp items where length; is the address of a
location containing the length of the item in
words.

The first-word address and byte displacement may
have to be determined and placed in the calling
sequence at execution time via the cra and sLw instruc-
tions.

.CDPLY

Subroutine .coprLy is used to display a 12-word Bcp
image. The calling sequence for this subroutine is:

TSX .CDPLY4
PZE image,,device
(Return)

where image is the address of the area to be displayed,
and device is an actual bit configuration that may be
one of the following:

if the area is to be displayed on the printer.

if the area is to be displayed on the system output
unit.

if the area is to be displayed on the card punch.
This option is not currently implemented.

.CEOBP

Subroutine .ceosp is associated with an 10cs .READ or
wriTE calling sequence. Control is transferred to sub-
routine .CcEoBP when the 10cs end-of-buffer error condi-
tion is encountered. This subroutine writes an error
message and causes execution of the object program
to be terminated.

.CERRP

Subroutine .CERRP is associated with an 10Cs .READ
calling sequence. Control is normally transferred to
subroutine .cErrp when the 10cs error condition is en-
countered during a .Reap calling sequence. This sub-
routine writes an error message and causes execution of
the object program to be terminated.

.CEXNG

Subroutine .CEXNG is an ervor routine, called only by
.CARO1, .CAR02, .CAR13, or CAR14 when the factors in an
exponentiation operation are out of range. This sub-
routine prints an off-line error message indicating the
location of the error within the program. The calling
sequence for this subroutine is:

TSX .CEXNG4
PZE CP+nnn

where cp+nnn specifies the location containing the
number of the source language card that specified the
original computation.

.CEXPR

Subroutine .cexer is called only by .caroi, .caroz,
.CAR13, or .CAR14 to determine if the factors in an ex-
ponentiation operation are out of range. If they are, the
errar rontine .cxnG is used; if they are not out of range,
the execution of the object program continues. The
calling sequence for this subroutine is:

TSX .CEXPR4
PZE CP+nnn

where cp+nnn specifies the location containing the
number of the source language card that specified the
original computation.

Subroutine Library Information 117

.CKEYS

Subroutine .ckeys places the setting of the entry keys
in the multiplier-quotient register. The calling sequence
for this subroutine is:

TSX .CKEYS4
(Return)

.COPEN

Subroutine .coPEN opens input/output files. The calling
sequence for this subroutine is:

TSX .COPEN4

rop filename, , opt
where filename is the name of the file to be opened,
rop is the rewind option and may be one of the follow-
ing:

PZE Rewind
MZE No rewind
MON No rewind, no label action

and opt equals 1 if the file name refers to an optional
file.

Additional COBOL Subroutines

COBOL subroutines are also provided to perform addi-
tional conversion operations, mathematical computa-
tions, and alphabetic comparisons. These subroutines
use two locations for temporary storage of data used
by the subroutines. Location .cars1 is used if the data
is single-precision, and locations .cars1 and .cars2 are
used if the data is double-precision.

These subroutines are listed in alphabetical order ac-
cording to the symbolic name of the subroutine. In the
following descriptions, the notation cp+nnn is used to
refer to a location in the constant pool. The information
contained in this location is explained each time the
notation is used.

.CARO1

Subroutine .caro1 raises the double-precision floating-
point number in the combined accumulator and multi-
plier-quotient to the single-precision power in .carsi.
The double-precision floating-point result is in the com-
bined accumulator and multiplier-quotient. The calling
sequence for this subroutine is:

TSX .CARO1
PZE CP+nnn

where cp+nnn is a location in the constant pool. This
location contains the source language card number at
which the original computation was specified. This con-
stant is used by error routine .cExNG only if the factors
in the exponentiation are out of range.

.CARO2

Subroutine .caroz raises the double-precision floating-
point number in the combined accumulator and multi-
plier-quotient to the double-precision power in .cams:

118

and .cars2. The double-precision floating-point result
is in the combined accumulator and multiplier-quotient.
The calling sequence for this subroutine is:

TSX .CAR024
PZE CP+nnn

where cp+nnn specifies the location containing the
number of the source language card that specified the
original computation. This information is used only in
case of error.

.CARO3

Subroutine .caro3 adjusts the sign of a double-precision
fixed-point number located in the combined accumula-
tor and multiplier-quotient. The result is left in the
combined accumulator and multiplier-quotient. The
calling sequence for this subroutine is:

TSX .CAR03,4

.CARO4
Subroutine .caro4 scales up the single-precision num-
ber in the accumulator by 1x10'° and then scales up
the result by a constant located in the constant pool.
The calling sequence for this subroutine is:

ISX CARO4S

PLE, CP-+nnn
where cp+nnn specifies the location containing the
second scaling factor.

.CAROS5

Subroutine .caros scales up the number in the multi-
plier-quotient by 1x10'° and then scales up the result
by a constant located in the constant pool. The calling
sequence for this subroutine is:

TSX .CAR0O54
PZE CP+nnn

where cp+nnn specifies the location containing the
second scaling factor.

.CARO6

Subroutine .caroé scales up the double-precision num-
ber in the combined accumulator and multiplier-
quotient by a constant located in the constant pool.
Upon entry to this subroutine, the high-order part of
the number is in the accumulator and the low-order
part of the numbers is in the multiplier-quotient. The
calling sequence for this subroutine is:

TSX .CAR06,4
PZE CP+nnn

where cp+nnn specifies the location containing the
scaling factor.

.CARO7

Subroutine .caro7 scales up the double-precision num-
ber in the combined accumulator and multiplier-
quotient by a constant in the constant pool. Upon entry

to this subroutine, the high-order part of the number is
in the multiplier-quotient and the low-order part of the
number is in the accumulator. The calling sequence
for this subroutine is:

TSX .CAR074

PZE CP+nmn
where cp+nnn specifies the location containing the
scaling factor.

.CARO8

Subroutine .caros scales down the double-precision
number in the combined accumulator and multiplier-
quotient by a constant. The result is in the combined
accumulator and multiplier-quotient. The calling se-
quence for this subroutine is:

TSX .CARO08,4

PZE CP+nnn
where cp+nnn specifies the location containing the
scaling factor.

.CARO?

Subroutine .caro9 scales down the double-precision
number in the combined accumulator and multiplier-
quotient by 1x10'° and then scales down the result by
a constant. The result is in the multiplier-quotient. The
calling sequence for this subroutine is:

TSX .CAR09,4

PZE CP+nnn
where cp+nnn specifies the location containing the
scaling factor.

.CARIO

Subroutine .cario divides the double-precision fixed-
point number in locations .camrsi and .camrsz by the
double-precision number in the combined accumulator
and multiplier-quotient. The result is in the combined
accumulator and multiplier-quotient. The calling se-
quence for this subroutine is:

TSX .CARI10,4

.CAR11

Subroutine .car11 multiplies the double-precision num-
ber in the combined accumulator and multiplier-
quotient by the double-precision number in locations
.carst and .cars2. This subroutine also scales down the
result by a constant and leaves the final result in the
combined accumulator and multiplier-quotient. The
calling sequence for this subroutine is:

TSX .CARI114

PZE CP+nnn
where cp+nnn specifies the location containing the scal-
ing factor used after the multiplication.

.CARI2

Subrontine .car12 multiplies the double-precision num-
ber in the combined accumulator and multiplier-
quotient by the double-precision number in locations
.carst and .cars2. The result is scaled down by 1x10%°,
and then by a constant. The final result is in the com-
bined accumulator and multiplier-quotient. The calling
sequence for this subroutine is:

TSX .CARI124
PZE CP+nnn
where cp+nnn specifies the location containing the

scaling factor.

.CARI13

Subroutine .cari3 is a floating-point exponential rou-
tine. The single-precision floating-point number in the
accumulator is raised to the single-precision floating-
point power in location .cagrs1. The base number in the
accumulator may be a positive real number or a nega-
tive integer. The exponent in location .cars1 may have
any value. The result is a single-precision floating-point
number in the accumulator. However, the result is
limited to an accuracy of seven significant digits. If an
accuracy of eight or more significant digits is desired,
the double-precision exponentiation subroutine .caR14
must be used. Subroutine .car14 is called when a pic-
ture of nine or more decimal digits is specified for
either the base number or the exponent. Subroutine
.cAR13 calls subroutine .cexpr to determine if the result
exceeds seven significant digits, and if it does, calls sub-
routine .CEXNG to indicate the error. The calling se-
quence for subroutine .car13 is:

TSX .CAR134
PZE CP+nnn

where cp+nnn specifies the location containing the
number of the source language card that specified the
exponential operation. This information is used in case
of an error.

.CAR14

Subroutine .cari4 is an exponential routine that uses
either single-precision numbers or double-precision
floating-point numbers as the base and exponent. The
number located in the accumulator or combined ac-
cumulator and multiplier-quotient is raised to the
power in location .cars1 (or location .cars1 and .CARs2).
This subroutine is called whenever either the base or
the exponent is a double-precision number. The result
is a double-precision number in the combined accumu-
lator and multiplier-quotient. Subroutine .cari4 calls
subroutine .CExPR, and in case of an error, calls sub-
routine .CExNG. The calling sequence for subroutine
.CAR14 is:

TSX .CARl44
PZE CP+nnn

Subroutine Library Information 119

where cp+nnn specifies the location containing the

number of the source language card which specified

the exponential operation. This information is used in
case of an error.

.CARI5

Subroutine .car15 converts the single-precision number
in the accumulator to a double-precision number in the
combined accumulator and multiplier-quotient. The
calling sequence for this subroutine is:

TSX .CAR15,4

.CBCDH
Subroutine .cBcpH converts a 12-word Bcp image to a
card image. The calling sequence for the subroutine is:

TSX .CBCDH4
PZE BL+nnn,, TS+ nnn

where Ts+nnn is the location of the first word of a 12-
word temporary storage area containing the Bcp image
and BL+nnn is the base locator for the storage area that
will contain the card image.

.CBDCV

Subroutine .cBpbcv converts the Bcp control word that
precedes each variable-length record to binary form.
This control word contains the length of the record in
words. Upon entering this subroutine, the control word
is in the multiplier-quotient. After conversion, the
record length is in binary form in the decrement of the
accumulator. The calling sequence for this subroutine
is:

TSX .CBDCV4

(Return)

.CBNCY

Subroutine .cBNcv converts the length of a variable-
length record from binary to Bco form. Upon entering
this subroutine, the record length in number of words
is in the multiplier-quotient in binary form. The length
is converted to Bcp form and placed in the first five
characters of a control word, which is added to the
beginning of the variable-length record. The sixth char-
acter of the control word is zero. After conversion, the
control word is in the logical accumulator. The calling
sequence for this subroutine is:

TSX .CBNCV,4
(Return)

.CCOMP

Subroutine .ccomp performs an alphabetic comparison
of two fields. The calling sequence for this subroutine
is:

TSX .CCOMPA4

op .CCTAB,,6
PZE locy,ti,locator

120

PZE length,,,6*byte1
PZE locs,te,Jocatore
PZE lengths,,6*bytes
(high return from comparison)
(equal return from comparison)
(low return from comparison)
where op is cvr or NoP, depending on the need to adjust
the collating sequence before the comparison.
loc; is the displacement from the base, if any. If there
is no base, loc; is the location of the field.
locator; is the location of the base locator. If there
is no base locator, locator; is zero.
t; is nonzero if the base locator is complex. If there is
no base locator, t; is zero.
length; is the length of the field in characters.
byte; is the nominal byte position.

.CCTAB

.CCTAB is a conversion table used in converting from
the 7090 scientific collating sequence to the COLLATE-
COMMERCIAL collating sequence used in copoL. This
table is used by subroutine .ccomp if it is necessary to
adjust the collating sequence before performing an
alphabetic comparison of two fields.

.CGOGO

Subroutine .ccoco provides access to FORTRAN mathe-
matical subroutines from a coBoL source program. It is
called by one of 32 access subroutines, depending on
which FORTRAN subroutine is desired. There is one
access subroutine for each FORTRAN subroutine as shown
in Figure 54. These 32 access subroutines are called by
a COBOL source language statement of the form:

CALL ‘COBOL-entry-point’ USINGRX Y,

where coBoL-entry-point is the entry point to one of the
32 access subroutines and R, X, and Y are the param-
eters of an equation of the form R = f(X, Y). (If the
equation is of the form R = f(X), the third parameter
is not needed.)

The access subroutines load the accumulator with an
indicator word before transferring control to subrou-
tine .ccoco. The actual entry to and return from the
FORTRAN subroutine is performed from subroutine
.c6oGo. Return from .ccoco is to the original program,
not the access subroutine. These access subroutines are
in the following form:

XXXXXX CLA *+2
TRA .CGOGO
opcode yyyyyy

where:

xxxxxx is the entry point to the access subroutine.

opcode is TRA if single-precision parameters are ex-
pected as output from the ForRTRAN subroutine, or Nop
if double-precision parameters are expected:

......

FORTRAN COBOL .CHBCD

ry Point Entry Point . .
E"‘;;: _C;P._ Subroutine .cHBCD converts a card image to a 12-word

XP2. 8((;2 Bcp image. The calling sequence for this subroutine is:

Xp3, .

.DXP1. CDXP1 TSX .CHBCD,4

.DXP2. .CDXP2 PZE .BL+nnn, TS+nnn

CXP1. CCXP1 . ..

EXP "CEXP where BL+nnn specifies the area containing the card

235 -gg:)’g image and Ts+nnn is the first address of a 12-word

ALOG CALOG temporary storage area that will contain the Bcp image.

DLOG .CDLOG

CLOG €CLOG

ALOG10 CAL10

DLOG10 £DLi0

ATAN CATAN

DATAN .CDATN

ATAN2 CATN2

DATAN2 .CDAT2

SIN CSIN

DSIN .CDSIN

CSIN CCSIN

cos £Cos

DCOS £DCOS

ccos .€ccos

TANH .CTANH

SQRT CSQRT

DSQRT CDSQR

CSQRT .CCSQR

DMOD .CDMOD

.CABS. .CCABS

.CFMP. .CCFMP

.CFDP. CCFDP

Figurc 54. Correspondence Between the Entry Point to the
FORTRAN Subroutine and the Entry Point to the
COBOL Access Subroutine

Subroutine Library Information 121

Librarian

The Librarian is a section of the Loader used to main-
tain the Subroutine Library. By using the Librarian,
subroutines can be replaced in, added to, and deleted
from the Library. Any subroutines added to the Library
must first be assembled by the Macro Assembly Pro-
gram.

Subroutine Library Maintenance

The Subroutine Library consists of the following two
files of information:

1. The control information file, consisting of the
subroutine section-name table; the subroutine depend-
ence table, and the Loader control cards, control dic-
tionaries, and file dictionaries, if they exist.

2. The relocatable binary text file, consisting of the
text portions of those library subroutines that have text.

The Library maintenance operation is essentiaily a
four-phase process. The name table and the depend-
ence table are skipped, and not used by the Librarian.
Librarian control cards and subroutine decks are ob-
tained from the input file. Appropriate positioning, re-
placements, insertions, or deletions are made in the
control information file and the new control information
file is formed and written on a work file.

The relocatable binary text portions of the subrou-
tine decks obtained from the input file are written on a
second work file. The operation and subroutine name
from each Librarian control card are preserved in the
Librarian action table to be used in processing the re-
locatable binary text file. At the completion of phase 1,
the complete control information file has been formed.

In phase 2, the relocatable binary text portions of the
subroutines obtained from the input file are merged
with the existing text file, and the new relocatable
binary text file is written behind the new control in-
formation file.

In phase 3, the combined control dictionaries of the
library subroutines are used to generate the new sub-
routine section name table and the subroutine section
dependence table. If the programmer so specifies on
the seprt card (see below), a listing is prepared show-
ing the subroutine name, the origin, if fixed, the length,
and the starting record number of cach subroutine, A
list showing all real control sections and their depend-
encies is also produced.

Phase 4 consists of writing the subroutine section
name table and subroutine section dependence table

122

on the system utility unit (sysur4), followed by the
control information and text files.

Subroutine Library maintenance is now complete,
and the Librarian returns control to the Loader. A
system edit is now necessary to replace the existing
library files by the two new Library files generated by
the Librarian on the system utility unit (sysur4).

NortE: Subroutine Library maintenance normally fol-
lows an update of the Library symbolic input tape (see
IBM 7090/7094 IBSYS Operating System: Symbolic
Update Program, Form C28-6386). It can also be
accomplished without symbolic update by using the
ALTER feature of 18joB (see “Altering an Input Deck”).

Librarian Control Cards
The following control cards are necessary for the use of

the Librarian:

$EDIT Card

The seprt card must follow the Processor control card
(stBjoB card). The seprt card causes the Librarian to be
called by the Load Supervisor.

The format of this control card is:

1 16
SEDIT [LOGIC]

If the Locic option is specified, the Librarian pro-
vides information showing the cross-referencing of sub-
routines in the Library.

$REPLACE Card

The srePLACE card causes a subroutine in the Subrou-
tine Library to be replaced.
The format of this control card is:

1 16

SREPLACE

The current Library is copied up to, but not including,
the subroutine name symbolized by srname. The
named subroutine is then skipped in the current Library
and the subroutine deck following the srEPLACE card
is inserted in its place in the output Library files. If the
subroutine deck is in MaP source language and must be
assembled, it must be headed by a simap card. If it
has already been assembled and is in relocatable binary
form, the deck must be headed by a stBLDR card.

The optional field orR¢ = nnnnn is used to assign an
absolute origin to the subroutine that is being inserted

srname [, ORG =nnnnn]

or to change its assembled absolute origin. The five-
digit field nnnnn is the absolute origin, in octal.

$ASSIGN Card

The sassion card causes a subroutine to be assigned an
absolute origin before it is placed in the Subroutine
Library.

The format of this control card is:

1 16
$ASSIGN

The Librarian copies the current Library up to, but
not including, the subroutine name symbolized by
srname. The named subroutine is then assigned the ab-
solute origin specified by the octal number nnnnn and
the subroutine is placed in the output library files.

srname, ORG =nnnnn

Both the subroutine named and the origin to be as-
signed are mandatory on this control card.

$INSERT Card

The sinserT card causes the Librarian to write a sub-
routine deck onto the Library file. The card must
precede the subroutine deck. The deck is written onto
the file, starting with the current position of the file.

If the subroutine deck is in MAP source language
and must be assembled, it must be headed by a siBmaP
card. If it has already been assembled and is in re-
locatable binary form, the deck must be headed by a
SIBLDR card.

The format of this control card is:

1 16
$INSERT

The field srname is optional on this control card and
will not be used by the Librarian. The optional field
ORG = nnnnn is used to assign an absolute origin to the
subroutine being inserted.

It should be noted that positioning is not performed
with the siNserT card; the insertion is made at the
current position of the output Library file.

[srname] [, ORG=nnnnn]

$AFTER Card

The saFTER card is used to position the library file.
The format of this control card is:

1 16

$SAFTER

The sarTER card causes the Librarian to copy the
Library from its current position through the subrou-
tine name symbolized by srname. The subroutine name
is mandatory on this control card.

The sarteR card is used in conjunction with the

SINSERT card to position the iile betore inserting.

srmame

$DELETE Card

The speELETE card causes subroutines to be removed
from the Subroutine Library.
The format of this control card is:
1 16
$DELETE

The speLETE card causes the Librarian to copy the
Library from its current position up to, but not includ-
ing, the subroutine symbolized by srname. The named
subroutine is then skipped on the current Library. The
subroutine name is mandatory on this control card.

srname

Restrictions Using Disk

If the Subroutine Library is to reside on disk storage,
the system utility unit (sysuts) must be attached to
the disk to obtain the proper block size. If sysut+ is
not attached to disk, sysuts may not be attached to disk.

>

Restrictions Using Drum

The block size of the Subroutine Library is determined
by the Loader assembly parameter pruM. If brRUM = 0,
the block size is 464 words; if prRuM = 1, the block
size is 524 words. As released, pRuM = 0. The entire
Loader must be reassembled to set prRuM =1. (See
“System Library Preparation and Maintenance” in the
publication IBM 7090/7094 IBSYS Operating System:
System Monitor (IBSYS), Form C28-6248.)

Librarian 123

PART 3:

The following section lists the messages generated by
the BJjoB Processor. The messages are arranged by
component as follows: Monitor, ForTRAN v Compiler,
cosoL. Compiler, Assembler, Load-Time Debugging
Processor, Loader, and Subroutine Library.

To find the explanation for a message, the pro-
grammer should consider the sequence of Processor

124

IBJOB PROCESSOR ERROR MESSAGES

operations as indicated by the printed assembly listing.
For example, a message printed on a listing after a
siBFTC card and before the next component control card
has been generated by the rortran v Compiler. A
message printed after a s1BLDR card has been generated
by the Loader.

The following section lists, in alphabetical order, the
messages generated by the 1Bjo Monitor. The symbol
“saxxxx” qndicates a location in the error message
where the Compiler inserts a variable word. Where
such a word is the first in the message, the message is
listed alphabetically by the next nonvariable word.

ABSMOD ASSEMBLIES CANNOT BE LOADED.
This message occurs when the ABSMOD option is en-
countered on a $IBMAP card, and loading is requested.
A systems error is indicated.

ACTION LABEL INCORRECT.
This message occurs if an argument to the Action routine,
sent by some part of the system to cause positioning or
reading of the system unit, does not match any action
table entries. A systems error is indicated.

ALTER FIELD ERROR, CARD AND INSERTIONS
IGNORED.
This message occurs when a comma or blank is encoun-
tered in column 16 of an *ALTER control card or when
a field is written as follows: (A*ALTER B,,) or
(A*ALTER B,).

ALTER FIELD ERROR, COMMA TREATED AS BLANK.
This message occurs when a comma is encountered in
columns 1-6 of an *ALTER control card or when a field
is written as follows: (A*ALTER B ,C,). In the latter
case, the last comma is treated as a blank.

ASSEMBLY DELETED.
This message occurs if an error in compilation has
occurred such that assembly cannot be attempted.

BINARY RECORD(S) ENCOUNTERED WHILE SEARCH-
ING FOR CARDS.
This message occurs when binary records are encoun-
tered by the IBJOB Monitor outside the limits of an
object deck.

**k4xk CARD WITH CORRECT DECK NAME NOT FOUND.
This message occurs when alternate input is requested
and the deck requested cannot be found.

DUMP TABLE HAS OVERFLOWED.
This message occurs if more than 29 table words have
been generated because of $DUMP cards. Table words
are generated as follows: one word for each $SDUMP
card and an additional word for each set of dump limits
on the card.

EOB OR EOT CONDITION. DECK CANNOT BE PROC-
ESSED.
This message occurs when an indication of end of buffer
or end of tape occurs while transferring Alter cards to
the system utility unit (SYSUT2).

EOF OR REDUNDANCY IN ALTER FILE.
This message occurs when an end of file or redundancy
is encountered by the Alter routine while trying to read

Alter cards from the system input unit or the system
utility unit (SYSUT2).

IBJOB Monitor Error Messages

EOT ON INTERMEDIATE UNIT OR EOB EXIT. ERROR

CONDITION.
This message occurs if the system input/output editor,
while trying to write on an input/output unit, receives
a signal from IOCS that an end-of-buffer condition exists.
If the unit is 1301 Disk Storage, the condition is caused
by exceeding the cylinder limits specified for the system
function.

ERROR IN ALTER DECK.
This message occurs when a deck has been altered and
an error detected (unused Alter cards, an end of file or
redundancy while reading Alter cards, or a scan error
in an Alter card).

ERROR READING OBJECT DECK.
This message occurs when a redundancy on the system
input unit occurs while transferring an object deck to
the load file.

#kx*xx HAS NO UNIT ASSIGNED. CANNOT PROCEED.
This message occurs if the system output unit or the sys-
tem input unit has no unit assigned when the IBJOB
Processor gains control.

sexkxr JAS NO UNIT ASSIGNED. RESTRICTED USAGE
OF IBJOB IS POSSIBLE.
This message occurs if the system peripheral punch or
one of the system utility units SYSUTI1, SYSUTZ,
SYSUTS3, or SYSUT4 has no unit assigned when the
IBJOB Processor gains control.

IBJOB SYSTEM SPLIT BETWEEN TWO CHANNELS IS
ILLEGAL PROCEED TO NEXT JOB.
This message occurs when the IBJOB Processor is split
into two units, and they are mounted on two different
channels.

IBJOB VERSION ***** HAS CONTROL.
This message occurs each time the IBJOB Processor
gains control from the System Monitor.

ILLEGAL BCD DATE IN BASIC MONITOR DATE CELL.
ENTER CURRENT DATE IN KEYS (MMDDYY) AND HIT
START.
This message occurs in IBJOB initialization if location
SYSDAT in the System Monitor does not contain a valid
date. The operator should enter the current date, in
BCD, into the keys and press START.

INCORRECT DECK SET-UP

The IBJOB Monitor has encountered a component con-
trol card or an unrecognized card with a $ in column 1
either (1) without having processed a $IBJOB card for
the current Processor application or (2) while still in
control after the completion of a Processor application.
This message will not occur when the IBJOB Monitor
encounters unrecognized control cards after a $IBJOB
card for the current Processor application has been
processed.

INCORRECT DECK SET-UP, EOF ENCOUNTERED BE-
FORE *ENDAL.
This message occurs when Alter cards on the system
input unit are being transferred to SYSUT2, and an end
of file is encountered before an *ENDAL card.

IBJOB Monitor Error Messages 125

MACHINE OR SYSTEM FAILURE HAS OCCURRED.

RETRY IS IMPOSSIBLE. THIS JOB WILL BE CONTINUED.
This message occurs when (1) machine or system failure
is detected and (2) the system input unit is a card reader
or an end-of-tape was encountered during the job.

MACHINE OR SYSTEM FAILURE HAS OCCURRED. TO

RETRY THIS P/A, PRESS START. TO CONTINUE THIS

P/A, PRESS START WITH KEY “S” DOWN. TO DELETE

THIS P/A, PRESS START WITH KEY “1” DOWN.
Self-explanatory.

NO PROCESSING THIS P/A.
This message occurs when a Processor application con-
sists of a $IBLDR card with the LIBE option, or con-
tains no decks at all.

ON-LINE PRINTER AND PUNCH MAY NOT BE AT-

TACHED AS SYSOU1 AND SYSPP1. CANNOT PROCEED.
This message occurs if either the system output unit or
the system peripheral punch has been assigned to on-line
equipment.

ONLY SYSINI, SYSOU1, SYSPP1 WILL BE REPOSITIONED
FOR RETRY.
This message occurs if machine or system failure is de-
tected by some portion of the IBJOB Processor.

PATCH TABLE HAS OVERFLOWED.
This message occurs if more than 50 table words have
been generated because of $PATCH cards. Table words
are generated as follows: one word is necessary for each
$PATCH card and an additional word is necessary for
each patch word on the card.

PERMANENT REDUNDANCY OR EOT WHILE READING
ALTERNATE UNIT.

Self-explanatory.

PERMANENT REDUNDANCY WHILE READING CON-
TROL CARDS. THIS P/A CANNOT BE CONTINUED.
Self-explanatory.

PREST CARD CKSUM ERROR, SEQUENCE

NUMBER *****
This message occurs if, while processing a Prest deck, a
check-sum error is detected. Processing will continue.
Execution is prevented.

PREST CARD FIELD ERROR. SEQUENCE

NUMBER *##***,
This message occurs if, while processing a Prest deck, an
error is detected in the field or string count. Processing
continues. Execution is prevented.

126

PREST CARD SEQ ERROR. SEQUENCE NUMBER *****,
This message occurs if, while processing a Prest deck, an
error is detected in the sequence of cards. Processing
continues. Execution is prevented.

REDUNDANCY WHILE READING ALTER CARDS. THIS
DECK CANNOT BE PROCESSED.
This message occurs when a read redundancy occurs
while moving Alter cards to the system utility unit
(SYSUT2).

REMAINDER OF JOB DELETED.
This message occurs if the option to delete the remainder
of the job is chosen after machine or system failure has
occurred.

RETURNING TO IBSYS.
This message occurs when the IBJOB Processor is re-
turning control to the System Monitor.

SCHF OPTION INVALID IF SYSINx IS DISK. PROCEED-
ING TO NEXT P/A.
This message occurs when the “search option” (SCHFn)
is requested on a $IEDIT card and the system unit func-
tion requested for the search is assigned to disk.

SYSxxx IN USE. PROCEEDING TO NEXT P/A.
This message occurs when SYSxxx has been requested
on either a $IEDIT or $OEDIT card, and it is cur-
rently in use due to a previous $OEDIT or $IEDIT
card.

SYSxxx NOT ASSIGNED. PROCEEDING TO NEXT P/A.
This message occurs when SYSxxx has been requested
on either a $IEDIT or $OEDIT card and no unit is
assigned to the function.

THIS DECK CONTROL CARD CANNOT BE PROCESSED.
IT MUST APPEAR IN TABLE SSTAB.
This message occurs when a recognized subsystem con-
trol card is encountered and the SYSTM routine is not
set up properly for the subsystem.

THIS JOB WILL BE CONTINUED.
This message occurs if the option to continue is chosen
after machine or system failure has occurred.

UNIT * * * * * * EOT OR EOB EXIT.
This message occurs if the system input/output editor,
while trying to write on an input/output unit, receives
a signal from IOCS that an end-of-buffer condition exists.
If the unit is 1301/2302 Disk Storage, the condition is
caused by exceeding the cylinder limits specified for
the system function.

UNRECOGNIZED OPTION ON ABOVE CARD.
This message occurs when an unrecognized option is

encountered on a $IEDIT or $OEDIT control card. The
standard option is used.

The following alphabetic list contains the error mes-
sages generated by the FORTRAN 1v Compiler and their
explanations where necessary. Words in a message that
must vary from situation to situation are denoted by
“xixx%” Where asterisks actually appear as a standard

2 ' =1 h PRl . D 11 . |
nart of 2 message, tne conqifion 15 specincally noteq
Pait Uil @ 1ualodagl, il LULLALIUIL A5 SpOULaulaLl)y aoisis,

Messages which begin with variable words are
alphabetized according to the first word following the
variable quantity. Messages which cannot be located
alphabetically by the first word should be sought ac-
cording to the second word of the message.

A DO ENDING IS MISSING OR HAS OCCURRED BEFORE
THE DO ITSELF.
Self-explanatory.

A DO ENDING ***** IS MISSING OR IS A NON EXEC-
UTABLE STATEMENT.
Violation of FORTRAN requirements for DO statement.
Provide ending for DO; provide an executable statement
for end of DO.

A DO ENDING IS A NON EXECUTABLE STATEMENT, OR
ANOTHER DC, OR A TRANSFER.
Violation of FORTRAN requirements for DO statement.
The DO statement must be terminated correctly.

A DOUBLE PRECISION OR COMPLEX VARIABLE ¥*¥**

IS BROUGHT INTO COMMON BY AN EQUIVALENCE

STATEMENT BUT DOES NOT LIE AN EVEN NUMBER

OF LOCATIONS FROM BEGINNING OF THAT BLOCK.
Equivalence statement must be changed so that when
the variable is brought in, it is an even number of posi-
tions from the head of the block. Each double-precision
and complex variable occupies two consecutive positions
of core storage.

A FORMAT ***** HAS BEEN ILLEGALLY REFERENCED
BY A GO TO OR AN ASSIGN.
FORTRAN does not allow a FORMAT statement to be
referenced by a GO TO statement or an ASSIGN state-
ment.

A FORMULA NUMBER IS GREATER THAN 2**15 OR IS
NOT AN INTEGER CONSTANT.
A formula number must be an integer constant and
must be less than or equal to 2 to the 15th power. (The
asterisks here indicate exponentiation).

A FORMULA NUMBER IS NULL.
External Formula Number is incorrect. Processor cannot
determine value.

AFTER OR NEAR OPERAND ***** FIND IMPROPER DE-
LIMITER *#***,
Self-explanatory.

A GO TO DESTINATION OR AN - ASSIGN - REFERENCE
*+k£+ 1S MISSING OR IS A NON EXECUTABLE STATE-
MENT.
Supply label as the object for the GO TO statement or
provide label at the correct executable statement.

FORTRAN IV Compiler Error Messages

A JOB BEGINS WITH AN END-OF-FILE OR A NON IBFTC
CARD.
Self-explanatory.

ALPHABETIC CHARACTER EXPECTED AFTER A
PERIOD. REFERENCE OPERAND *****,
Self-explanatory.
A NAMELIST NAME IS MiSSING.
Self-explanatory.
A NAME BEGINS WITH A NUMERIC CHARACTER.
Self-explanatory.

AN ELEMENT IN THE SUBSCRIPT COMBINATION IS
MISSING OR IS ZERO FOR ARRAY ****¥,
Self-explanatory.

AN END CARD IS NOT FOLLOWED BY AN END OF FILE
OR A CONTROL CARD - INPUT CARDS WILL BE
IGNORED UNTIL NEXT EOF OR $ CARD.

Self-explanatory.
AN ERROR HAS OCCURRED TRYING TO READ IN THE
INTERPHASE TABLES.
Internal compiler error. Programmer should attempt
rerun. If error persists consult system engineer.

AN ERROR HAS OCCURRED TRYING TO WRITE OUT
THE INTERPHASE TABLE.
Internal compiler error. Programmer should attempt
rerun. If error persists consult system engineer.

AN ILLEGAL CHARACTER FOLLOWS ROUTINE NAME

3 ok % e ok

Self-explanatory.

AN I/0 STATEMENT REFERENCED A MISSING FORMAT
OR AN ILLEGAL STATEMENT. THE REFERENCED EFN
IS *****.
The External Formula Number must reference a proper
statement. The External Formula Number must be as-
signed to the desired statement.

APPARENT LOGICAL ERROR IN PROCESSING.
General internal error covering a variety of possibilities.
Consult system engineer or attempt rerun.

ARGUMENT ***¥* APPEARS MORE THAN ONCE IN THE
SAME SUBROUTINE, FUNCTION, OR ENTRY STATE-
MENT.

Self-explanatory.
ARGUMENT VARIABLE ***** WAS PREVIOUSLY USED
AS AN ENTRY POINT NAME.

Self-explanatory.

ARITHMETIC STATEMENT FUNCTION DEFINITIONS
MUST APPEAR BEFORE ANY OTHER EXECUTABLE
STATEMENTS.
Place Arithmetic Statement Function definition before
any other executable statement.

ARRAYS WITH MORE THAN 3 DIMENSIONS WILL BE
ENTERED IN THE DEBUG DICTIONARY AS 1 DIMEN-
SIONAL ARRAYS.

Self-explanatory.

A SLASH IS MISSING AT THE BEGINNING OF THIS
NAMELIST STATEMENT.
Self-explanatory.

FORTRAN 1V Compiler Error Messages 127

ASTERISK IS ILLEGAL ARGUMENT IN FUNCTION SUB-
PROGRAM.
Self-explanatory.

A SUBSCRIPT, A DIMENSION, OR A PARAMETER IS
ZERO OR GREATER THAN 32767, OR IS NOT AN IN-
TEGER.
A subscript, a dimension, or a parameter must be an
integer greater than zero and less than 32767. FORTRAN

requirement.

A VARIABLE HAS TOO MANY ADDENDS.
Self-explanatory.

A VARIABLE NAME IS A NUMERIC.
Self-explanatory.

A ZERO COEFFICIENT IS NOT ALLOWED IN SUBSCRIPT
OF ARRAY #*##*
If this condition occurs, a 1 is assumed as the coefficient.
Execution is permitted.

BUILT-IN FUNCTION NAME ***** APPEARED IN AN EX-
TERNAL STATEMENT OR IS AN ARGUMENT TO THIS
SUBPROGRAM AND WILL BE TREATED AS AN EX-
TERNAL FUNCTION SUBPROGRAM.

Self-explanatory.

BUILT-IN OR ARITHMETIC STATEMENT FUNCTION
NAMES CANNOT BE PASSED AS ARGUMENTS REFER-
ENCE SYMBOL *#***

Self-explanatory.

BUILT-IN OR LIBRARY FUNCTION ***** HAS BEEN IN-
CORRECTLY TYPED. SYSTEM TYPING WILL TAKE
PRECEDENCE.

Self-explanatory.

COMMA MISSING AFTER THE INDEX NAME.
Self-explanatory.

COMMA MISSING BEFORE THE VARIABLE NAME ****¥
Self-explanatory.

COMMA MISSING BETWEEN EQUIVALENCE GROUPS.
Self-explanatory.

COMMON BLOCK ILLEGALLY EXTENDED BEYOND
ORIGIN BY EQUIVALENCE VARIABLE *****_
Self-explanatory.

COMMON BLOCK NAME OR NAMELIST NAME IS MISS-
ING.

Self-explanatory.

COMMON OR EQUIVALENCE STATEMENT SHOULD
APPEAR BEFORE THE FIRST DO.
Self-explanatory.

COMPILER EXPECTS A NUMERICAL ADDEND FOL-
LOWING THE + OR — SIGN IN THE SUBSCRIPT ELE-
MENT OF THE ARRAY *#****,

Self-explanatory.

COMPILER EXPECTS A NUMERICAL FIELD.
Self-explanatory.

COMPILER EXPECTS AN INTEGER VARIABLE NAME
AS ONE OF THE SUBSCRIPT ELEMENTS OF THE
ARRAY *****.

Self-explanatory.

COMPILER EXPECTS NI, N2, N3.
Programmer must provide 3 branches for Arithmetic
IF statement. Cousult section on IF statement.

COMPILER EXPECTS SUBROUTINE NAME AFTER THE
WORD CALL. NUMERICS OR PUNCTUATION FOUND
INSTEAD.

Self-explanatory.

128

DATA STATEMENT. DATA FOR ARGUMENT VARIABLE
xx+ DATA NOT COMPILED.
Self-explanatory.,

DATA STATEMENT. DATA FOR ASF ARGUMENT *#***
DATA NOT COMPILED.
Data for the Arithmetic Statement Function must be
provided.

DATA STATEMENT. DATA FOR BLANK-COMMON VARI-
ABLE ***** DATA NOT COMPILED.
Self-explanatory.

DATA STATEMENT. DATA FOR COMMON VARIABLE

*#x¥*x IN NON-BLOCK DATA PROGRAM. FORTRAN 1V

LANGUAGE VIOLATION BUT DATA COMPILED.
Self-explanatory.

DATA STATEMENT. DATA FOR ILLEGAL VARIABLE
**+:+ DATA NOT COMPILED.
Self-explanatory.

DATA STATEMENT. DATA FOR NON-COMMON VARI-
ABLE ****+ IN BLOCK-DATA PROGRAM. DATA NOT
COMPILED.

Self-explanatory.

DATA STATEMENT ***** DOES NOT END WITH /.
Self-explanatory.

DATA STATEMENT FOR GROUP ***** ILLLEGAL PUNC-
TUATION FOLLOWING NAME #***%* TREATED AS
COMMA.

Self-explanatory.

DATA STATEMENT ***** GROUP ***** EMPTY VARI-
ABLE LIST.

Self-explanatory.

DATA STATEMENT ***** GROUP ***** ERROR IN SUB-
SCRIPT FOR NAME *****
Self-explanatory.

DATA STATEMENT ***** GROUP ***** IMPROPER OR
MISSING PARAMETER FOR DO ON ***** PARAMETER
ASSUMED TO BE 1.

Self-explanatory.

DATA STATEMENT ***** GROUP ***** LITERAL LIST
ILLEGAL ALPHABETIC LITERAL ¥*#*¥
Self-explanatory.

DATA STATEMENT ***** GROUP ***** LITERAL LIST
ILLEGAL PERIOD PRECEDING LITERAL.
Self-explanatory.

DATA STATEMENT ***** GROUP ***** T ITERAL LIST
ILLEGAL PUNCTUATION TAKEN AS COMMA.
Self-explanatory.

DATA STATEMENT ***** GROUP ***** LITERAL LIST
ILLEGAL ZERO COUNT FOR-H - FIELD.
Self-explanatory.

DATA STATEMENT ***** GROUP ***** LITERAL LIST
INCORRECT LOGICAL CONSTANT TAKEN AS .FALSE.
Self-explanatory.

DATA STATEMENT ***** GROUP ***** LITERAL LIST
INCORRECT LOGICAL CONSTANT TAKEN AS .TRUE.
Self-explanatory.

DATA STATEMENT ***** GROUP ***** LITERAL LIST
MISSING PERIOD. INSERTED AT END OF LOGICAL
CONSTANT.

Self-explanatory.

DATA STATEMENT ***** GROUP ***** LITERAL LIST
MISSING PUNCTUATION. COMMA ASSUMED.
Self-explanatory.

DATA STATEMENT **##*+ GROUP ***** LITERAL LIST
REPEAT COEFFICIENT NOT INTEGRAL. TAKEN AS
ZERO.

Self-explanatory.

DATA STATEMENT ##*%*+ GROUP *#***¥ LITERAL LIST.
SUPERFLUOUS PUNCTUATION IGNORED.
Self-explanatory.

DATA STATEMENT #***** GROUP **¥** MISSING COMMA
ASSUMED FOLLOWING NAME *¥*¥*
Self-explanatory.

DATA STATEMENT #*#**+ GROUP ***** MISSING RIGHT
PARENTHESIS INSERTED AFTER SPECIFICATION OF
Do ON *#***‘

Seif-explanatory.

DATA STATEMENT #*#**** GROUP ***** SUPERFLUOUS
PUNCTUATION IGNORED FOLLOWING NAME *#*¥*
Self-explanatory.

DATA STATEMENT #*#*** GROUP ***** UNPAIRED LEFT
PARENTHESES IGNORED.
Self-explanatory.

DATA STATEMENT ***** GROUP ***** UNPAIRED
RIGHT PARENTHESES IGNORED FOLLOWING NAME

% o ok ok %k .
Self-explanatory.
DATA STATEMENT GROUP VARIABLE

NAME #***** APPEARS ONLY IN DATA STATEMENT.
Self-explanatory.

DATA STATEMENT **#** GROUP *****+ VARIABLE
NAME ***¥* IS AN ARGUMENT TO THIS PROGRAM.
Self-explanatory.

Xk kK % %k sk ok

DATA STATEMENT ***** GROUP ***** VARIABLE

NAME TO LONG TRUNCATED TO ****¥,
Self-explanatory.

DATA STATEMENT ***%x GROUP ***** VARIABLE

NAME ***** STARTS WITH NUMERIC CHARACTER AND
IS IGNORED.
Self-explanatory.

DATA STATEMENT. IMPLIED-DO NESTING LEVEL
EXCEEDS SEVEN. ALL LEVELS ABOVE SEVENTH
IGNORED.

Self-explanatory.

DATA STATEMENT. INITIAL OR FINAL DO-INDEX
VALUES OUT OF RANGE OF DIMENSIONS FOR
VARIABLE ****¥,

Self-explanatory.

DATA STATEMENT LITERAL LIST LONGER THAN
VARIABLE LIST.
Self-explanatory.

DATA STATEMENT. NO SUBSCRIPT CORRESPONDING
TO DO INDEX **#** FOR VARIABLE *****,
Self-explanatory.

DATA STATEMENT. NO DO INDEX CORRESPONDING
TO SUBSCRIPT ***** FOR VARIABLE *****,
Self-explanatory.

DATA STATEMENT. SHORT-LIST VARIABLE ***** IN DO,
Self-explanatory.

DATA STATEMENT. SUBSCRIPTS OUT OF RANGE OF
DIMENSIONS FOR VARIABLE *****,
Self-explanatory.

DATA STATEMENT. TYPE DISCREPANCY. COMPLEX
DATA FOR VARIABLE *****,
Self-explanatory.

DATA STATEMENT. TYPE DISCREPANCY DOUBLE PRE-
CISION DATA FOR VARIABLE ¥*¥¥¥*,
Self-explanatory.

DATA STATEMENT. TYPE DISCREPANCY INTEGER
DATA FOR VARIABLE *¥**¥,
Self-explanatory.

DATA STATEMENT. TYPE DISCREPANCY LOGICAL
DATA FOR VARIABLE **¥**¥,
Self-explanatory.

DATA STATEMENT. TYPE DISCREPANCY ‘REAL’ DATA
FOR VARIABLE *****,
Self-explanatory.

DATA STATEMENT. UNSU
IN DO.

Self-explanatory.

DATA STATEMENT VARIABLE LIST LONGER THAN
LITERAL LIST.
Self-explanatory.

DATA STATEMENT VARIABLE SUBSCRIPTS OUTSIDE
DO FOR VARIABLE ****¥
Self-explanatory.

DATA STATEMENT VARIABLE ***** WITH ONLY CON-
STANT SUBSCRIPTS IN DO.
Self-explanatory.

DELIMITER DOES NOT FOLLOW SUBSCRIPTED VARI-
ABLE *****'
Self-explanatory.

DIFFERENT RESULTS FOR THE SAME SCAN: LOGICAL
ERROR.
Internal compiler error. Programmer should attempt
rerun. If error persists consult system engineer.

DOLLAR SIGNS LEGAL ONLY FOR ERROR RETURNS
IN SUBROQUTINE CALLS.
Self-explanatory.

DO REFERENCE MISSING OR WRONG PUNCTUATION
WITHIN A DO.
Self-explanatory.

DO’S INCORRECTLY NESTED, NO FURTHER CHECK-
ING WILL BE DONE FOR THIS ERROR IN SUBSEQUENT
DO-NEST.

First DO entered must be last DO satisfied.

DOTAG/MAIN FILES SEQUENCE ERROR.
Internal compiler error. Programmer should attempt
rerun. If error persists, consult system engineer.

DOUBLE OPERATOR FOLLOWING SYMBOL ***** JLLE-
GAL PUNCTUATION ****%,
Self-explanatory.

DUPLICATE EFN.
Two statements cannot have the same External Formula
Number.

EFN IS ZERO OR GREATER THAN 32,767 OR 1S NOT AN
INTEGER.
The External Formula Number must be an integer
greater than zero or less than 32767.

EFN MISSING.
An External Formula Number must be provided.

EMPTY STATEMENT — PARAMETERS OR ARGUMENT
LIST MISSING.
The statement is not recognized in its present form.

FORTRAN IV Compiler Error Messages 129

ENTRY STATEMENT WITHIN A DO NEST. STATEMENT
IGNORED.
Self-explanatory.

EOB OR REFERENCE IOCS MESSAGE FOR DOTAG/
MAIN FILES.
I0CS error return. Internal error can be an end-of-
buffer condition or an IOCS error. Consult system engi-
neer or attempt rerun.

EQUIVALENCE GROUPS REQUIRE TWO VARIABLES.
Self-explanatory.

ERROR IN A COMPLEX LITERAL — SCAN WILL RESUME
AT THE CHARACTER FOLLOWING THE RIGHT PAREN-
THESIS, IF ANY, OR WILL STOP IF NO RIGHT PAREN-
THESIS IS FOUND.

Self-explanatory.

EXPONENT FIELD TOO LONG — ONLY THE FIRST TWO
SIGNIFICANT DIGITS HAVE BEEN KEPT.
Self-explanatory.

FOLLOWING SYMBOL ***** SYNTACTICAL USE OF
OPERATOR **#*** IS INCORRECT.
Self-explanatory.

FOLLOWING SYMBOL ***** THERE IS NON-LOGICAL
OPERAND IN A LOGICAL EXPRESSION.
Self-explanatory.

FORMAT STATEMENT ***** CHARACTER ***** [LLEGAL
IN CONTEXT.
Self-explanatory.

FORMAT STATEMENT ***** EXTENDS BEYOND RIGHT
PARENTHESIS WHICH MATCHES OPENING PAREN-
THESIS.

Self-explanatory.
FORMAT STATEMENT ****+ JLLEGAL CHARACTER

*****.
Self-explanatory.
FORMAT STATEMENT ***** NO NUMBER PRECEDING

SCALE FACTOR P.
Self-explanatory.

FORMAT STATEMENT ***** NO NUMBER PRECED-
ING X.
Self-explanatory.

FORMAT STATEMENT ***** NO OPENING PAREN-
THESIS.
Self-explanatory.

FORMAT STATEMENT ***** NOT PRECEDED BY NUM-
BER.
Self-explanatory.

FORMAT STATEMENT **#** NUMBER ASSOCIATED
WITH ***** EXCEEDS 132.
Self-explanatory.

FORMAT STATEMENT ***#* NUMBER FOLLOWING IN
D, E OR F FIELD IS GREATER THAN NUMBER PRE-
CEDING.

Self-explanatory.

FORMAT STATEMENT ***** PARENTHESES DO NOT
BALANCE.
Self-explanatory.

FORMAT STATEMENT ***** P SCALING FACTOR TOO
LARGE.
Self-explanatory.

FORMAT STATEMENT ***** TOO MANY NESTED LEFT
PARENTHESES.
Self-explanatory.

130

FORMAT STATEMENT ***** ZERO - H - SPECIFICATION
ILLEGAL. COUNT ASSUMED TO BE ONE.
Self-explanatory.

FUNCTION ***** IS USED IN A SUBROUTINE CONTEXT.
Self-explanatory.

FUNCTION NOT USED IN AN INPUT LIST OR AT THE
LEFT OF AN EQUAL SIGN.
Violation of FORTRAN requirements. Function must be
used in input list or at the left of an equal sign.

FUNCTION OR SUBROUTINE ***** CALLS ITSELF.
Self-explanatory.

FUNCTION NAME DOES NOT APPEAR ON LEFT OF
EQUALS SIGN.
Self-explanatory.

HIGH ORDER POSITION OF VARIABLE ***** [S NOT
AN EVEN NUMBER OF WORDS FROM BEGINNING OF
COMMON BLOCK *###*#
Compiler requirements. Adjust high order position of
variable to conform with message.

HOLLERITH LITERALS ARE PERMITTED ONLY AS
DIRECT ARGUMENTS IN CALL STATEMENTS.
Self-explanatory.,

IBFTC HAS BEEN GIVEN CONTROL WITH A NON-IBFTC
CARD.
Message can occur through a machine error or an internal
compiler error. Programmer should attempt rerun. If
error persists consult system engineer.

ILLEGAL CHARACTER AFTER FORMULA NUMBERS

TONNADTT
.IUJ.\V vianLy.

An external formula number must not be followed by
a non-numeric character.

ILLEGAL CHARACTER BEFORE FORMULA NUMBERS
TREATED AS A LEFT PARENTHESIS.
Self-explanatory.

ILLEGAL CHARACTER BEFORE VARIABLE NAME.
Self-explanatory.

ILLEGAL CHARACTER IN A NUMBERIC FIELD.
Self-explanatory.

ILLEGAL CHARACTER ****x OCTAL, TREATED AS A
BLANK.
Self-explanatory.

ILLEGAL CHARACTER OR PUNCTUATION ***¥*
Self-explanatory.

ILLEGAL CHARACTER OR PUNCTUATION.
Self-explanatory.

ILLEGAL DO PARAMETER.
Self-explanatory.

ILLEGAL FORMAT REFERENCE
Self-explanatory.

ILLEGAL OR MISSING PUNCTUATION.
Self-explanatory.

ILLEGAL PUNCTUATION DETECTED IN SOME SUB-
SCRIPT ELEMENT FOR THE ARRAY ***** QR NUM-
BER OF SUBSCRIPTS DOES NOT AGREE WITH DIMEN-
SIONALITY.

Self-explanatory.

ILLEGAL PUNCTUATION IN THIS STATEMENT.
Self-explanatory.

ILLEGAL TRANSFER FROM OUTER DO TO INNER DO.
Self-explanatory.

ILLEGAL TRANSFER INTO DO NEST FROM OUTSIDE
ITS RANGE.
Self-explanatory.

ILLEGAL TRUE CONDITION FOR THIS LOGICAL IF.
Programmer has given an illegal true condition for IF
statement. Violation of FORTRAN language require-
ments.

ILLEGAL USE OF A PERIOD NEAR SYMBOL, **¥*¥,
Self-explanatory.

ILLEGAL UNIT REFERENCE.
Self-explanatory.

A logical variable cannot be preceded by + or — sign
in a logical expression.

ILLEGAL USE OF EXPONENTIAL OPERATOR.
Self-explanatory.

ILLEGAL USE OF THE DELIMITER **#** EXISTS.
Self-explanatory.

INCOMPLETE STATEMENT —-FORMULA NUMBERS
MISSING.
Self-explanatory.

INCOMPLETE STATEMENT — VARIABLE MISSING.
Self-explanatory.

INCONSISTENT RECURRENCE IN
STATEMENT OF VARIABLE *****
Self-explanatory.

INCONSISTENT USAGE. ***** CANNOT BE USED AS A
SUBROUTINE NAME.
Self-explanatory.

EQUIVALENCE

INCONSISTENT USAGE OF ENTRY NAME #¥%*¥
Self-explanatory.

INCORRECT EFN IN COLUMNS 1 to 6.
Provide correct External Formula Number.

INCORRECT NUMBER OF ARGUMENTS FOR BUILT-IN
FUNCTION *¥**¥x
Self-explanatory.

INCORRECT PUNCTUATION PRECEDES OR FOLLOWS
NAME Aok ok ek .
Self-explanatory.

INPUT ERROR-THE FOLLOWING CARD WILL NOT
BE PROCESSED.
Check input deck to eliminate faulty cards.

INTEGER GREATER THAN 32767.
Violation of FORTRAN language requirements.

INTEGER GREATER THAN 2**35-1.
Error in fixed-point arithmetic. Violation of FORTRAN
language requirements. Asterisks indicate exponentiation.

INVALID ENTRY IN TABLE *****,
Internal compiler error. Programmer should attempt to
rerun program. If error persists, consult system engineer.

+k% IS A NON LOGICAL OPERAND IN A LOGICAL EX-
PRESSION.
Self-explanatory.

LEFT PARENTHESIS EXPECTED AFTER IF.
Self-explanatory.

LIBRARY FUNCTION NAME ***** HAS BEEN TYPED AS

EXTERNAL AND INCONSISTENTLY WITH SYSTEM

TYPING. USER TYPING WILL TAKE PRECEDENCE.
Self-explanatory.

LIBRARY FUNCTION NAME ***** HAS BEEN TYPED IN-
CONSISTENTLY WITH SYSTEM TYPING. SYSTEM
TYPING WILL TAKE PRECEDENCE.

Self-explanatory.

MISSING LEFT PARENTHESIS BEFORE FORMULA
NUMBERS.
Self-explanatory.

MISSING PARAMETER WITHIN A DO.

Qir] .
veir-expianatory.

MISSING PUNCTUATION OR ILLEGAL USE OF A
DELIMITER.
Self-explanatory.

NEAR SYMBOL ***** AN ARGUMENT TO AN ARITH-

METIC STATEMENT FUNCTION DEFINITION BEGINS

WITH A NUMERIC OR PUNCTUATION CHARACTER.
Self-explanatory.

NO CLOSING RIGHT PARENTHESIS OR ILLEGAL
CHARACTER ENDS SUBSCRIPT COMBINATION OF THE
ARRAY *#*** OR NUMBER OF SUBSCRIPTS DOES NOT
AGREE WITH DIMENSIONALITY.

Self-explanatory.

NO FORMULA NUMBER IN THIS GO TO STATEMENT.
Self-explanatory.

NGO MORE TABLE SPACE AVAILABLE.
Program cannot be accommodated. Segment programs
into subprograms.

NUMBER OF SUBSCRIPTS FOR EQUIVALENCED ARRAY
Hrxxx WRONG.
Self-explanatory.

NUMERICAL VARIABLE NAME IN THE STATEMENT.
Self-explanatory.

OCTAL NUMBER MORE THAN FIVE DIGITS.
Self-explanatory.

ODD SEPARATION BETWEEN EQUIVALENCED DOU-
BLE-PRECISION OR COMPLEX VARIABLES ***** AND

o % o wkk

Compiler requirement. Programmer must maintain an
even separation.

OPERATOR MISSING BEFORE OR AFTER OPERAND
% s ok sk

Self-explanatory.
*®x¥k OPTION NOT IN THE DICTIONARY OR WRONG

PUNCTUATION.
Self-explanatory.

OPTIONAL ERROR RETURN IS EITHER LARGER THAN
32,767 OR NOT AN INTEGER.
Violation of FORTRAN language. Programmer should
correct External Formula Number.

OVERFLOW IN THIS FLOATING POINT NUMBER.
Self-explanatory.

PARENTHESES ARE ILLEGAL.
Self-explanatory.

PARENTHESES DO NOT BALANCE.
Self-explanatory.

FORTRAN IV Compiler Error Messages 131

PUNCTUATION MISSING OR INCOMPLETE STATE-
MENT.
: Self-explanatory.

REDUNDANT COMMA.
Self-explanatory.

REDUNDANT COMMA IN FORMULA NUMBERS.
Self-explanatory.

REDUNDANT COMMA IN THIS STATEMENT.
Self-explanatory.

REDUNDANT COMMA OR ILLEGAL PUNCTUATION.
Self-explanatory.

REDUNDANT COMMA OUTSIDE THE FORMULA NUM-
BERS.
Self-explanatory.

REDUNDANT PARENTHESIS IN THIS STATEMENT.
Self-explanatory.

RIGHT AND LEFT PARENTHESES DO NOT BALANCE.
Self-explanatory.

RIGHT PARENTHESIS MISSING AFTER FORMULA
NUMBERS OR INCOMPLETE STATEMENT.
Self-explanatory.

RIGHT PARENTHESIS MISSING FOR THE ARRAY **#*,
Self-explanatory.

RIGHT PARENTHESES OR COMMA EXPECTED AFTER
A DOLLAR SIGN.
Self-explanatory.

***kkx SHOULD BE FOLLOWED BY LEFT PARENTHESIS
OR EQUALS SIGN.
Self-explanatory.

**¥x* SHOULD BE PRECEDED BY COMMA OR LEFT
PARENTHESIS OR FOLLOWED BY COMMA OR RIGHT
PARENTHESIS.

Self-explanatory.

STATEMENT ILLEGAL IN THIS CONTEXT. STATEMENT
IGNORED.
Self-explanatory.

SUBARG TABLE MISSING AT THE BEGINNING OF
PHASE B.
Internal compiler error. The subroutine argument table
is functioning incorrectly. Programmer should attempt a
rerun. If error persists, consult system engineer.

SUBPROGRAM NAME ***** USED PREVIOUSLY A&
VARIABLE OR COMMON BLOCK NAME.
Self-explanatory.

SUBROUTINE, FUNCTION, OR ENTRY NAME **¥*x
CANNOT BE SAME AS DECK NAME,
Self-explanatory.

SUBROUTINE NAME ***** USED PREVIOUSLY AS
VARIABLE OR COMMON BLOCK NAME.
Self-explanatory.

SUBSCRIPTS ARE NOT PERMITTED IN ARITHMETIC
STATEMENT FUNCTION DEFINITIONS.
Self-explanatory.

SUBSCRIPTS NOT PERMITTED IN A NAMELIST FOR
THE ARRAY *****,
Self-explanatory.

SYMBOL BEGINNING WITH ***** TRUNCATED TO SIX
CHARACTERS.
Self-explanatory.

132

SYMBOL FOLLOWING ***** UNIDENTIFIABLE.
Self-explanatory.

SYMBOL LEFT OF EQUALS 1LLEGAL OR NON-
EXISTENT.
Self-explanatory.

THE ADDEND ***** IS NOT NUMERICAL.
Self-explanatory.

THE ADJUSTABLE DIMENSION ***** HAS BEEN DIMEN-
SIONED.
Self-explanatory.

THE ADJUSTABLE DIMENSION ***** IS NOT AN ARGU-
MENT OF THIS PROGRAM.
Calling program must supply value for adjustable dimen-
sion.

THE ADJUSTABLE DIMENSION ***** MUST NOT BE
DIMENSIONED.,
Self-explanatory.

THE ADJUSTABLE DIMENSION ***** IS NOT AN IN-
TEGER VARIABLE.
Self-explanatory.

THE ARRAY ***** HAS ADJUSTABLE DIMENSION(S).
Self-explanatory.

THE ARRAY ***** HAS MORE THAN 7 DIMENSIONS.
Self-explanatory.

THE ARRAY ***** HAS NO DIMENSION.

Qe Yok
OTll-EXplalldiury.

THE ARRAY ***** HAS NOT BEEN DIMENSIONED.
Self-explanatory.

THE ARRAY ***** IN COMMON HAS AN ADJUSTABLE
DIMENSION.
Self-explanatory.

THE ARRAY NAME IN COMMON ***** HAS A VARIABLE
DIMENSION *****
Self-explanatory.

THE ARRAY ***** HAS AN ADJUSTABLE DIMENSION
+¥ IS NOT AN ARGUMENT OF THIS PROGRAM.
Illegal FORTRAN construction.

THE COMMON BLOCK ***** IS EMPTY.
Area assigned to COMMON has not been utilized.

THE COMMON BLOCK NAME ***** HAS BEEN USED
AS A NAMELIST OR ROUTINE NAME,
Self-explanatory.

THE COMPILER EXPECTS A FORMULA NUMBER.
Self-explanatory.

THE COMPILER EXPECTS A NUMERICAL FIELD IN-
STEAD OF THE VARIABLE *****,
Self-explanatory.

THE COMPILER EXPECTS A VARIABLE NAME AFTER
THE WORD —TO —.
Self-explanatory.

THE COMPILER EXPECTS END OF STATEMENT.
EXTRANEOUS CHARACTERS IGNORED.
Self-explanatory.

THE COMPILER EXPECTS THE WORD — TO — AFTER
THE FORMULA NUMBER.
Self-explanatory.

THE END OF DIMENSION PRODUCT TABLE HAS
ILLEGALLY BEEN REACHED. LOGICAL ERROR.

rerun. If error persists, consult a system engineer.

THE INDEX NAME ***** MUST BE A VARIABLE.
Self-explanatory.

THE INDEX NAME ***** MUST NOT BE AN ADJUSTA-
BLE DIMENSION.
Self-explanatory.

THE LEFT PARENTHESIS IS ILLEGAL AS A NAMELIST
STATEMENT.
Self-explanatory.

THE NAME *#**+ HAS ALREADY APPEARED IN A DE-

CLARATIVE STATEMENT.
Self-explanatory.

THE NAME ***** HAS ALREADY APPEARED IN AN EX-
TERNAL STATEMENT.
Self-explanatory.

THE NAME ***** HAS ALREADY BEEN USED AS A

VARIABLE IN AN EXECUTABLE OR DATA, OR NAME-

LIST STATEMENT.
Self-explanatory.

THE NAME ***** HAS BEEN USED AS NAMELIST OR

COMMON BLOCK NAME,
Self-explanatory.

THE NAME ***** IS A ROUTINE OR NAMELIST NAME.
Self-explanatory.

THE NAME ***** IS NOT A VARIABLE NAME.,
Self-explanatory.

THE NAME ***** I§ THE NAME OF THIS SUBROUTINE.
Self-explanatory.

THE NAMELIST NAME ***** HAS ALREADY BEEN USED.
Self-explanatory. .

THE NAMELIST ***** HAS NO LIST OF VARIABLES.
Self-explanatory.

THE PRODUCT OF CONSTANT DIMENSIONS IS

GREATER THAN 2**15.

Violation of FORTRAN language requirements. Aster-
isks indicate exponentiation.

THE PRODUCT OF CONSTANT DIMENSIONS IS ZERO.
Violation of FORTRAN requirements.

THE PROGRAM SHOULD END WITH A TRANSFER, A
RETURN HAS BEEN GENERATED.
Programmer should provide transfer instruction.

THE STATEMENT WITH EFN ****+ CANNOT BE
REACHED.
Statement number ***** cannot be reached because of
program construction.
THE SUBSCRIPTED VARIABLE ***** IS NOT AN ARRAY
NAME.
Self-explanatory.

THE SYMBOL ***** AND ITS SUBSCRIPT OR ARGUMENT
LIST SHOULD BE FOLLOWED BY AN EQUALS SIGN.
Self-explanatory.

THE SYMBOL #***** BEGINS WITH A NUMERICAL
CHARACTER.
Violation of FORTRAN language requirements.

THE SYMBOL ***** CANNOT PRECEDE ITS USE AS

ARITHMETIC STATEMENT FUNCTION NAME IN AN

ASF DEFINITION EXCEPT IN A TYPE STATEMENT.
An arithmetic statement function must precede any
executable statement. A symbol can precede an Arith-
metic statement function definition only in a TYPE
statement.

THE SYMBOL ***** HAS PREVIOUSLY APPEARED IN
A STATEMENT BEFORE APPEARING IN AN ARGU-
MENT LIST. INSTRUCTIONS COMPILED MAY BE IN-
CORRECT.

Self-explanatory.

THE SYMBOL ***** WAS USED PREVIOUSLY AS AN
ADJUSTABLE DIMENSION FUNCTION, SUBROUTINE,
OR NAMELIST NAME.

Self-explanatory.

THE TYPE OF THE NAME *#¥¥**]S INCONSISTENT
WITH A PREVIOUS DEFINITION.
Self-explanatory.

THE VARIABLE ***** BEGINS WITH A NUMERIC CHAR-

ACTER.
Self-explanatory.

THE VARIABLE ***** HAS ALREADY BEEN DIMEN-
SIONED.
Self-explanatory.

THE VARIABLE ***** HAS ALREADY BEEN USED IN
COMMON.
Self-explanatory.
THE VARIABLE ***** IS AN ADJUSTABLE DIMENSION.
Self-explanatory.

THE VARIABLE ***** IS NOT AN INTEGER OR IS AN
ARRAY.
The Programmer should provide a nonsubscripted in-
teger variable to conform with this message.

THE VARIABLE ***** MUST BE PRECEDED BY A
COMMA.
Self-explanatory.

THE VARIABLE NAME ***** HAS APPEARED AS AN
ARGUMENT.
Self-explanatory.

THE VARIABLE NAME ***#* HAS BEEN USED AS A
NAMELIST NAME.
Self-explanatory.

THE VARIABLE NAME ***** HAS BEEN USED AS A
ROUTINE NAME.
Self-explanatory.

THE VARIABLE NAME ***** IS AN ADJUSTABLE DI-
MENSION.
Self-explanatory.

THE VARIABLE NAME ***** IS USED IN A FUNCTION
CONTEXT.
Self-explanatory.

THERE IS AN ILLEGAL OR REDUNDANT PUNCTUA-
TION IN THIS STATEMENT.
Self-explanatory.

THERE IS A REDUNDANT PUNCTUATION IN THE
ARRAY *#k#x
Self-explanatory.

THERE IS A SUPERFLUOUS COMMA IN THIS STATE-
MENT.
Self-explanatory.

THERE IS A TRANSFER TO THE STATEMENT ITSELF.
Self-explanatory.

THIS NAME ***** HAS BEEN USED AS A ROUTINE
NAME.
Self-explanatory.

THIS STATEMENT CANNOT BE REACHED.
Programmer is notified of all statements which are
isolated through program logic.

FORTRAN IV Compiler Error Messages 133

THIS STATEMENT IS EMPTY.
Programmer should complete statement. Compiler ex-
pects a full statement.

THIS VARIABLE ***** HAS BEEN USED IN AN EXECU-
TABLE-DATA-NAMELIST STATEMENT OR AS ADJUST-
ABLE DIMENSION.

Self-explanatory.

TOO MANY CONTINUATION CARDS FOR THIS STATE-
MENT.
Self-explanatory.

TOO MANY RIGHT PARENTHESES.
Self-explanatory.

TWO IBFTC CARDS FOR THI
Self-explanatory.

TYPES COMBINED ILLEGALLY.
Self-explanatory.

TYPES COMBINED ILLEGALLY BY AN EQUAL SIGN.
Self-explanatory.

TYPES COMBINED ILLEGALLY FOR EXPONENTIATION.
Self-explanatory.

UNDERFLOW IN THIS FLOATING POINT NUMBER.
Violation of FORTRAN requirements.

UNDIMENSIONED VARIABLE *#*** I§ SUBSCRIPTED IN
AN EQUIVALENCE STATEMENT., *¥#*¥
An undimensioned variable cannot be subscripted in an
equivalence statement.

UNEXPECTED END CONDITION.
Internal compiler error. Programmer should attempt re-
run. If error persists consult system engineer.

UNEXPECTED END IN TABLE #*#¥%*
Internal compiler error. Programmer should attempt re-
run. If error persists, consult system engineer.

UNEXPECTED END MARK.
Self-explanatory.

UNEXPECTED END OF CONSTANT TABLE.
Internal compiler error. Programmer should attempt re-
-run. If error persists, consult system engineer.

UNEXPECTED END OF DO PUSHDOWN LIST TABLE.
Internal compiler error. Programmer should attempt re-
run. If error persists, consult system engineer.

UNEXPECTED END OF EFN TABLE.
Internal compiler error. Programmer should attempt re-
run. If error persists, consult system engineer.

UNEXPECTED ENTRY IN THE CONVERT ROUTINE.
Internal compiler error. Programmer should attempt re-
run. If error persists, consult system engineer.

UNEXPECTED EOF READING DOTAG/MAIN FILES.
Internal compiler error. Programmer should attempt re-
run. If error persists, consult system engineer.

UNRECOGNIZABLE STATEMENT IGNORED,
Compiler has not been able to locate statement in.its
dictionary. The statement is ignored in this case.

VARIABLES **¥** AND *#*%+ IN DIFFERENT COMMON
BLOCKS ARE ILLEGALLY EQUIVALENCED.
Self-explanatory.

VARIABLES *¥*** AND #***** [N SAME COMMON BLOCK
ARE INCONSISTENTLY EQUIVALENCED.
Self-explanatory.

VARIABLES #***** AND ***** TN SAME COMMON BLOCK
CONSISTENTLY BUT REDUNDANTLY EQUIVALENCED.
Self-explanatory.

WRONG DO INDEX.
Self-explanatory.

WRONG PUNCTUATION OR STATEMENT INCORRECTLY
WRITTEN.
Self-explanatory.

WRONG PUNCTUATION OR TOO MANY PARAMETERS
FOR THIS DO. END OF STATEMENT IGNORED.
Self-explanatory.

ZERO - H - SPECIFICATION ILLEGAL COUNT ASSUMED
TO BE ONE.
The numeric value preceding the H-conversion speci-
fication must not be zero.

FORTRAN IV Compiler Error Messages 133.1

COBOL Compiler Error Messages

The following alphabetic list contains the error mes-
sages generated by the cosoL Compiler. Messages
involving the linkage-mode language and compile-time
debugging language are included in this list, since they
are so closely connected to coBoL programming.

In addition to the error message, a card number cor-
responding to the number of a card in the deck will also
be generated. This number does not necessarily mean
that the error occurred on that particular card, but
simply means that the error occurred in that general
area. If the Compiler for some reason cannot determine
the number of a card, it lists the number as either
0000 or 9999.

Words in a message that must vary from situation to
situation are denoted by “*****” Where asterisks actu-
ally appear as a standard part of a message, the condi-
tion is specifically noted. In a case where the Compiler
inserts variable information at the beginning of a
message, the message is listed alphabetically by the
next nonvariable word. For this reason, if a coBoL error
message cannot be found alphabetically based on the
first word, the programmer should use the second, and
in exceptional cases, the third word.

All references are to the publication IBM 7090/7094
IBSYS Operating System: COBOL Language, Form
C28-6391.

Note: There is only one possible MAP assembly error
message that can result from a source deck error when
the source deck is in coBor. This is: “LOCATION FIELD
FORMAT ERROR.” If such a source deck error results in
any other MaAP message, the programmer should consult
a system engineer.

A SPACE SHOULD SEPARATE A SUBSCRIPTED NAME
FROM THE FOLLOWING LEFT PARENTHESIS. SPACE
IS ASSUMED.

Self-explanatory.

‘ACCEPT’ MAY ONLY BE FOLLOWED BY A DATA-NAME.
NOTHING DONE.
See the ACCEPT verb.

ALL CHARACTERS ACCEPTED FOR ***** MUST BE
NUMERIC.
See the ACCEPT verb.

ALPHABETIC CLASS SPECIFIED FOR ***** IGNORED
SINCE ITEM 1S EXTERNAL DECIMAL.
ALPHABETIC CLASS cannot be specified for external
decimal {NUMERIC DISPLAY) items.

ALPHABETIC OR ALPHANUMERIC CLASS SPECIFIED
FOR ***** [GNORED SINCE ITEM IS INTERNAL
DECIMAL.
Internal decimal (NUMERIC COMPUTATIONAL)
items cannot be alphabetic or alphanumeric.

134

ALTER AT #**#* DISALLOWED SINCE IT IS NOT SINGLE
GO TO SENTENCE.
See the ALTER verb.

ALTER REFERENCE INCORRECT ***** IS NOT A *¥¥**
NOTHING DONE.
There has been incorrect use of the ALTER verb. The
ALTER statement is ignored.

#xkxx AND ***** HAVE NO CORRESPONDING SUB-
FIELDS. NO ACTION STATEMENTS GENERATED FOR
THIS PAIR.

See the MOVE CORRESPONDING verb.

ARGUMENT NUMBER ***** MAY NOT APPEAR IN A DIS-
PLAY STATEMENT. SPACE ASSUMED INSTEAD.
See the DISPLAY verb.

ARITHMETIC PHRASES IN CONDITIONAL EXPRES-
SIONS MAY NOT CONSIST OF MORE THAN 500 OPER-
ATORS AND OPERANDS. EXPRESSION DELETED SINCE
LIMIT EXCEEDED.

Break expression into smaller parts.

**xxx ASSOCIATED WITH OCCURS... DEPENDING ON

..., IS AN IMPROPER DATA ITEM. CLAUSE IGNORED.
The data-name is required to be a positive integer
greater than zero. See OCCURS clause of the data-item
description.

x+xx ASGSOCIATED WITH REDEFINES OR OCCURS...
DEPENDING ON...,IS AN IMPROPER DATA ITEM.
CLAUSE IGNORED.
See the REDEFINES and OCCURS clauses of the data-
item description.

ATTEMPTED DIVISION BY ZERO BYPASSED. RESULT
TAKEN TO BE ZERO.
Division by zero is mathematically undefined.

BINARY COMPUTATIONAL USAGE OF ***** INCOMPAT-
IBLE WITH BCD RECORDING MODE FOR THIS FILE.
The record must agree with the mode specifications.

BINARY RECORDING MODE SPECIFICATION OF FILE
ek AGSIGNED TO CARD UNIT IS NOT PERMITTED.
Cards coming from the card reader must not be in binary.

BLOCK SIZE (***** COMPUTER WORDS) SPECIFIED
FOR FILE ***** IS NOT A MULTIPLE OF RECORD SIZE
(***** COMPUTER WORDS). BLOCK SIZE CHANGED TO
*¥**xx COMPUTER WORDS.
This message indicates that the block size and the record
size are inconsistent. See the BLOCK CONTAINS and
RECORD CONTAINS clauses.

BLOCKING OF DISTINCT RECORD TYPES OF DIFFER-
ING SIZES, WITHOUT COUNT CONTROL, IN FILE *****
IS NOT PERMITTED. FILE IS SET UNBLOCKED.

See BLOCK clause of file description entry.

**xxx CANNOT BE SUBSCRIPTED. SCAN RESUMED AT
NEXT VERB, PERIOD, OR INFORMATION IN THE
A MARCIN.

See subscripts.

**kxx CANNOT BE USED AS AN ARGUMENT FOR THE
CORRESPONDING OPTION.
See the CORRESPONDING option of the ADD, SUB-
TRACT, and MOVE verbs.

*#¥¥+ CANNOT HAVE MORE THAN 49 QUALIFIERS.
EXTRA ONES DELETED.

Self-explanatory.

CANNOT USE VARIABLE LENGTH ITEMS FOR COM-
PARISON. NOTHING DONE.
See IF conditional statements in the PROCEDURE
DIVISION.

CARD SEQUENCE ERROR IN COLUMNS 1-6. CONDITION
IGNORED.
The card sequence has been checked and this error mes-
sage results. There is no effect on compilation.

CARD UNIT NOT ALLOWED AS SECONDARY UNIT AS-

SIGNED TGO FILE ***** SECONDARY UNIT i
MENT IGNORED.
See the FILE-CONTROL paragraph in the INPUT-

OUTPUT section of the ENVIRONMENT DIVISION.

CAUTION, GROUP ITEM ***** TESTED.
A group item was an operand of an EXAMINE or IF
class-test-type statement. This is a warning message.

CAUTION, GROUP LEVEL MOVE FROM *#*¥¥¥ T(Q ##¥*x
See the MOVE CORRESPONDING verb.

CAUTION, MOVE FROM **¥*¥ T(Q #**%¢ CAUSES TRUN-
CATION.
This message indicates that either the size or number of
decimal places of the items did not match. There is a
possibility that information will be lost.

CAUTION, MOVE FROM **##% TQ *#*** CAUSES TRUN-

CATION EXCEPT IN CASES OF SYNCHRONIZATION.
This message indicates that there might be a loss of
significant data.

CHARACTER LOGIC MOVE INVOLVING AN ITEM
LONGER THAN 32767 CHARACTERS. NOTHING GEN-
ERATED.
This message indicates a compiler limitation has been
reached.

CHECKPOINTS DESIGNATED TO BE WRITTEN ON FILE
*##xx BUT FILE IS NOT LABELED OUTPUT. CHECK-
POINTS WILL BE WRITTEN ON STANDARD CHECK-
POINT UNIT INSTEAD.
This message indicates that checkpoints cannot be
written on an input file or an unlabeled output file.

CLOSE REEL FOR ***** IS ILLEGAL SINCE FILE IS AS-
SIGNED TO A CARD OR SYSTEM UNIT. REEL OPTION
IGNORED.

Self-explanatory.

COBOL COMPILER DOES NOT OBEY THE USE OF XR4,
XR5, OR XR6 ON SIBCBC CARD. XR3 IS ASSUMED.
Index register 3 and 7 are the only index register specifi-
cations accepted. See the CONFIGURATION SECTION
of the ENVIRONMENT DIVISION.

COBOL WORD ***** WAS NOT FOUND WHERE RE-

QUIRED IN THIS STATEMENT. STATEMENT DELETED.
This message indicates a language violation. See the rules
regarding the use of the particular verb used.

COBOL WORD ‘SECTION’ MISSING. BEGINNING OF
*¥*x* SECTION ASSUMED BY COMPILER.
See “Organization of Source Program” and the EN-
VIRONMENT DIVISION.

COBOL WORDS ‘ASSIGN TO’ OMITTED IN SELECT EN-
TRY ***** ASSUMED UNIT ASSIGNMENTS IS ‘1 TAPE-
UNIT.
See the FILE-CONTROL paragraph in the INPUT-
OUTPUT SECTION of the ENVIRONMENT DIVI-
SION.

A QQTONT
ADIIUN-

COBOL WORDS ‘TO PROCEED TO’ NOT FOUND WHERE
REQUIRED IN ALTER STATEMENT. STATEMENT DE-

TeTE

LETED.

See the ALTER verb.

‘COLLATE-COMMERCIAL’ SHOULD NOT APPEAR IN EN-
VIRONMENT DIVISION. COLLATING SEQUENCE AS-
SUMED COMMERCIAL UNLESS ‘BINSEQ’ APPEARS ON
SIBCBC CARD.

This message indicates obsolete wording.

COMMA ILLEGALLY TO RIGHT OF POINT IN PICTURE
OF REPORT ITEM ***** 4+ 4+4++4+ IS ASSUMED PIC-
TURE.

See the PICTURE clause of the data-item description.

COMPILER ***** COUNT CONTROL CONVENTION #*#**#*
FILE *****.
See the file description entry in the DATA DIVISION.

COMPILER ***** COUNT CONTROL CONVENTION #####*
FILE *#*** UNLESS ***** IS ASSIGNED TO A CARD
UNIT AT OBJECT-TIME.

See the file description entry in the DATA DIVISION.

COMPILER ALLOWS ONLY 20 CONSECUTIVE IMPLIED
BOOLEAN OPERATORS. CONDITIONAL EXPRESSION
DELETED SINCE MAXIMUM EXCEEDED.

Break the expression into smaller parts.

COMPILER ASSUMES FILE(S) ASSOCIATED WITH FD
ENTRY ***** HAS LABEL RECORD SINCE VALUE OF
LABEL GIVEN.
See the LABEL and VALUE clauses of the file descrip-
tion entry.

COMPILER BASE LOCATOR CAPACITY EXCEEDED. TRY
SUBDIVIDING INTO SMALLER PROGRAMS FOR SEP-
ARATE COMPILATION WITH COMBINATION AT OB-
JECT TIME.
This message indicates a compiler limitation has been
reached.

COMPILER FORCED TO ASSUME #****#* 1§ A GROUP ITEM
DUE TO ERROR IN SUBSEQUENT LEVEL NUMBER.
See level-numbers in the DATA DIVISION.

COMPILER IGNORES ILLEGAL CLAUSES IN DESCRIP-
TION OF LEVEL 88 CONDITION ***** (ONLY VALUE
IS ALLOWED).

See condition-name in the DATA DIVISION.

COMPILER TABLE CAPACITY EXCEEDED. TRY SUB-

DIVIDING INTO SMALLER PROGRAMS FOR SEPARATE

COMPILATION WITH COMBINATION AT OBJECT TIME.
This message indicates that a compiler limitation has
been exceeded. Suggested action is included in the
message.

COMPILER THWARTED IN SEARCHING DATA STRUC-
ABLY DUE TO TOO MANY SUBSCRIPTS GIVEN. OBJECT
PROGRAM USES FIRST ELEMENT OF THE ARRAY.

See subscripts.

CONDITIONAL EXPRESSION TEST CAPACITY EX-

CEEDED. REWRITE AS TWO OR MORE SEPARATE

EXPRESSIONS WITH A MAXIMUM OF 18 OPERATORS.

ILLECAL SENTENCE STRUCTURE. NOTHING DONE.
This message indicates that a compiler limitation has
been reached.

CONDITIONAL VARIABLE IMPROPERLY DE-
SCRIBED AS A REPORT, SCIENTIFIC DECIMAL, OR
FLOATING POINT ITEM. X IS ASSUMED PICTURE.

See conditional variables.

CONFLICTING ‘USE’ OPTIONS FOR FILE ***** OVER-
RIDDEN BY ‘USE’ STATEMENT(S) FOR ***** FILES.

* ¥k kK

COBOL Compiler Error Messages 135

This message indicates that conflicting USE procedures
have occurred. See the USE verb.

CONTINUATION CHARACTER MUST NOT BE USED
WITH AN OCCUPIED A MARGIN. CONTINUATION
CHARACTER IGNORED.
Continued items must not begin before B margin. See
“Reference Format.”

CONTROL CARD ENCOUNTERED PRECEDING $CBEND
CARD. END OF COBOL TEXT ASSUMED.
It is assumed that the $CBEND card is missing.

COPY OPTION NOT IMPLEMENTED. FD ENTRY
IGNORED.
Enter the information in detail.

CORRESPONDING FIELDS OF *¥*#* AND ***** QVER-
LAP.
See the MOVE CORRESPONDING verb.

CROSS-REFERENCE NAME TOO LONG. FIRST 6 CHAR-
ACTERS USED.
A cross-reference name is limited to 6 characters. See
the ENTER verb.

DATA DIVISION-HEADER NOT FOLLOWED BY SEC-
TION-NAME. SCAN RESUMED AT NEXT DATA DE-
SCRIPTION ENTRY, SECTION, OR DIVISION.
See the “Organization of Source Program” and DATA
DIVISION.

DATA ITEM *****¥ INVALID AS AN ARGUMENT IN
‘EXAMINE’ STATEMENT OR CLASS TEST. STATEMENT
DELETED.

See the EXAMINE verb.

DATA ITEM ***** IS UNDER INFLUENCE OF INCON-
SISTENT USAGE AND CLASS CLAUSES. DETERMINING
HIERARCHY IS PICTURE, USAGE, CLASS.

See the data-item description in the DATA DIVISION.

DATA ITEM ***** WITH REDEFINES CLAUSE NOT
PRECEDED BY AN ELEMENTARY ITEM. REDEFINES
IGNORED.
The redefining item must follow the redefined item with
no intervening entries. See the REDEFINES clause of
the data-item description.

DATA-NAME, NOT ****** EXPECTED AS ARGUMENT
IN THIS STATEMENT. STATEMENT DELETED.
See the rules regarding the use of the particular verb
referred to in this message.

DATA-NAME ***** REQUIRING CONVERSION, EDITING,
OR DEFINITION MAY NOT APPEAR IN AN ACCEPT
STATEMENT. NOTHING DONE.

See the ACCEPT verb.

DATA RECORDS CLAUSE COMMITTED IN FD ENTRY
*¥**xx CONDITION IGNORED.
See the DATA RECORDS clause of the file description
entry.

DECK NAME IN ‘CALL’ STATEMENT MUST BE EN-
CLOSED IN QUOTES. STATEMENT DELETED.
This message indicates a language rule violation. See
the ENTER verb,

DECK NAME IS MISSING ON $IBCBC CARD. CONDI-
TION TGNORED.
Self-explanatory.

‘DECLARATIVES’ MUST BE AT BEGINNING OF PROCE-
DURE DIVISION. STATEMENT DELETED.
This message indicates a language requirement. See “Or-
ganization of Source Program.”

136

**xx+ DEFINED IN MORE THAN ONE OUTPUT FILE.
INPUT/OUTPUT STATEMENT IGNORED.
The record name used must be unique.

*xxk% DESCRIPTION ENTRY ENCOUNTERED. BEGIN-

NING OF ***** SECTION ASSUMED BY COMPILER.
See “Organization of Source Program” and the DATA
DIVISION.

DISCREPANCY BETWEEN LEVELS OF ***** AND THE
REDEFINED ITEM. DISCREPANCY IGNORED AT THIS
POINT OF ANALYSIS.
The redefining item should match the redefined item. In
this case, the level numbers do not match. This is a
warning level message. See the REDEFINES clause of
the data-item description.

DIVISION NAME SHOULD BE FOLLOWED BY THE
WORD DIVISION AND A PERIOD. CONDITION IG-
NORED.

Self-explanatory.

DIVISIONS MUST BE IN ORDER AND NOT DUPLI-
CATED. COMPILER SKIPS TO NEXT DIVISION.
See “Organization of Source Program.”

$ IS A LEGAL CHARACTER ONLY IN THE PICTURE
CLAUSE. $ DELETED.
Self-explanatory.

DOUBLE ASTERISKS (INDICATING EXPONENTIATION)
SHOULD NOT BE SEPARATED BY SPACE(S). SPACE(S)
IGNORED.
See formulas in the COMPUTE statement in the PRO-
CEDURE DIVISION.

DOWNSCALE GENERATED WHICH LOSES ALL SIGNI-
FICANT DIGITS.
This message indicates that data has been lost due to
downscaling.

ELEMENTARY LEVEL CLAUSES IN DESCRIPTION OF

GROUP ITEM ***** IGNORED (LE., VALUE, SIGNED,

POINT, SYNCHRONIZED, EDITING, OR PICTURE.)
Certain clauses apply only to elementary items. See the
discussion of the particular clause.

END OF COBOL MESSAGES.
Self-explanatory.

ENVIRONMENT *#*** NOT FOLLOWED BY ***** SCAN
RESUMED AT NEXT PARAGRAPH, SECTION, OR DIVI-
SION.
See “Organization of Source Program” and the EN-
VIRONMENT DIVISION.

ENVIRONMENT PARAGRAPH-NAME ENCOUNTERED.
BEGINNING OF ***** SECTION ASSUMED BY COM-
PILER.

See the ENVIRONMENT DIVISION.

ERRONEOUS PARENTHESIZATION IGNORED. TRANS-
LATION CONTINUES ARBITRARILY.
The number of left parentheses should equal the number
of right parentheses.

ERROR IN OCCURS... DEPENDING ON CLAUSE IN DE-
SCRIPTION OF ***** COMPILER ASSUMES OCCURS EX-
ACTLY 100 TIMES, IGNORING QUANTITY ITEM.
See the OCCURS clause in the data-item description
entry.

ERRORS IN OCCURS...DEPENDING ON CLAUSE IN
DESCRIPTION OF ***** COMPILER IGNORES ‘INTEGER
-1 TO’ SPECIFICATION.

See the OCCURS clause in the COBOL manual.

ERROR MESSAGE NOT YET IN FILE.
This message should never appear. If it does, a systems
engineer should be called to initiate an error report.

ERROR NUMBER ** DUMMY ** ,
This message precedes a debugging printout.

EXCESSIVE BLOCK SIZE SPECIFIED FOR FILE **#**,
FILE IS SET UNBLOCKED.
See the BLOCK CONTAINS clause of the file description
entry.

EXTRANEOUS ‘ELSE’ FOUND. IF IN ‘AT END’ OR ‘ON
SIZE ERROR’ CLAUSE, ‘ELSE’ TREATED AS A PERIOD,
IN OTHER CASES IT IS TREATED AS A COMMA.
This message indicates a language violation. See the rules
regarding the particular verb for which ELSE is an
option. The statement must be rewritten to eliminate
the extraneous ELSE.

FD ENTRY #**** NOT TERMINATED BY A PERIOD.
CONDITION IGNORED.
Self-explanatory.

FIGURATIVE CONSTANT OR NON-NUMERIC LITERAL
MUST FOLLOW °‘ALL’. ALL ZERO ASSUMED IF COBOL
WORD NEXT.

See figurative constants.

FILE ***** ASSIGNED TO ***** BUT FILE IS NOT *****,
*xxk% JSAGE ASSUMED.
File usage is contradictory to system unit usage.

FILE ***#** ASSIGNED TO CARD UNIT HAS RECORD
CONTAINING MORE THAN 72 CHARACTERS. MAXIMUM
RECORD SIZE PROCESSED IS 72 CHARACTERS.
Card column limitation has been exceeded. There are
only 72 columns available. The first 72 characters will be
processed.

FILE ***** ASSIGNED TO SYSOU1l, BUT RECORDING
MODE GIVEN AS BINARY. RECORDING MODE
CHANGED TO BCD.
This message indicates a system requirement; SYSOU1
must be BCD.

FILE ***** AGSOCIATED WITH REDUNDANT ‘USE’
STATEMENT. FIRST ONE RETAINED.
This message indicates that a redundant USE statement
has been encountered. See the USE verb.

FILE ***** HAS NO ASSOCIATED FD ENTRY. ARBI-
TRARY SPECIFICATIONS ASSUMED.
See the file description entry.

FILE *xkkk JAS NO RECORDS. INPUT/OUTPUT STATE-
MENT IGNORED.
See the DATA RECORDS clause of the file description
entry.

FILE ***** IS ASSIGNED TO A CARD OR SYSTEM UNIT.
OPTIONS SPECIFIED IN CLOSE STATEMENT ARE
IGNORED.
This message indicates that certain system conventions
(as indicated) take priority over COBOL options.

FILE ***** IS ASSIGNED TO ***** AND FILE RECORD-
ING MODE IS BINARY. UNIT NOT PERMITTED TO BE
CARD AT OBJECT-TIME.
This message indicates that system units SYSINI,
SYSOU1, and SYSPPI1, should not be specified as card

units at execution time. This is a system restriction.

FILE ***** IS ASSIGNED TO ***** AND MAXIMUM REC-
ORD SIZE EXCEEDS 72 CHARACTERS. UNIT NOT PER-
MITTED TO BE CARD AT OBJECT-TIME.
This message indicates that system units SYSINI,
SYSOU1, and SYSPPI1, should not be specified as card

units at execution time. This is a system restriction.

*rxkk PILE ***** IS ASSIGNED TO ***** UNIT NOT PER-
MITTED TO BE CARD AT OBJECT-TIME.
This message indicates that system units SYSINI,

SYSOUL, and SYSPP1 should not be specified as card
units at execution time. This is a system restriction.

wxkie PILE **%%+ NOT PERMITTED AS ARGUMENT IN
‘USE’ OPTION #***** STATEMENT.
See the USE verb.

FILE #***** RETENTION-PERIOD SPECIFICATION IG-

NORED SINCE ALLOWED ONLY FOR OUTPUT FILE.
See the VALUE clause of the file description entry in
the COBOL manual.

FILE ***** SPECIFIED AS ***** INPUT ***** OUTPUT.
**xxk USAGE ASSUMED.
This message indicates that the rules governing the use

P - vy 1 LR 1 Q. . _ T wreal
of the USE verb have been violated. See the USE verb.

Or I v vero I

‘FILLER’ NOT PERMITTED AS FILE-NAME. FD ENTRY
IGNORED.
Self-explanatory.

FIRST REPETITION OF SUBSCRIPTING ERROR. SUB-
SEQUENTLY, MESSAGES REFERRING TO SUBSCRIPTS
APPEAR ONLY ONCE CORRESPONDING TO THE FIRST
APPEARANCE OF EACH UNIQUE SUBSCRIPT DATA-
NAME OR EXPRESSION.

No further messages will be generated for this error.

FLOATING POINT UNDERFLOW CONVERTING LIT-
ERAL. ZERO USED.
This message indicates the exponent became less than
the minimum exponent which is 27 (approximately
107%).

FLOATING POINT OVERFLOW IN CONVERTING LIT-
ERAL. MAXIMUM VALUE USED.
This message indicates the exponent became greater
than the maximum exponent which is 27" (approxi-
mately 10%*).

*+x+¢ FORCED TO LEVEL NUMBER OF O01.
Every data organization must have the highest order
at the 01 level. See level-numbers in the DATA DI-
VISION.

sk kokk ckkodekk FROM kkckokok dekkkk To deskokokk *****‘

Fok kR *****'

See the MOVE verb.

‘FROM’ MAY ONLY BE FOLLOWED BY IBJOB STAND-
ARD MNEMONIC NAME ‘SYSINI’. SYSIN1 ASSUMED.
See the rules for the ACCEPT verb.

GROUP ITEM ***** USED AS A SUBSCRIPT. OBJECT
PROGRAM USES SUBSCRIPT VALUE OF 1.
See subscripts.

#*k+x [JAS AN ILLEGAL LEVEL NUMBER. ASSUMED
LEVEL NUMBER IS 49.
Valid level-numbers are 01 through 49, 77, and 88.
If any other number is specified, 49 will be assumed.
See level-numbers.

*x+3% JAS AN ILLEGAL PICTURE. ***** IS ASSUMED
PICTURE.
See the PICTURE clause of the data-item description.

*xx¥% HAS NO FILE DESCRIPTION. INPUT/OUTPUT
STATEMENT IGNORED.
See the verb being used. Also check for proper wording
of the file description entry and the FILE-CONTROL

paragraph.
**x3% IJAS NOT APPEARED IN A SELECT ENTRY IN

ENVIRONMENT DIVISION. FD ENTRY IGNORED.
Self-explanatory.

**++* HAS NOT BEEN DEFINED IN A SELECT ENTRY
AND IS IGNORED.

COBOL Compiler Error Messages 137

See the FILE-CONTROL paragraph of the INPUT-
OUTPUT SECTION in the ENVIRONMENT DI-
VISION.

***** HAS VALUE CLAUSE TOGETHER ILLEGALLY
WITH OCCURS OR REDEFINES. VALUE ACCEPTED
IF OCCURS — APPLIED TO FIRST ELEMENT.
The OCCURS clause or the REDEFINES clause has
been used illegally with the VALUE clause. See the
three clauses in the data-item description entry.

HYPHENATED FORM OF ***** DESIGNATION
PREFERRED.
See the CONFIGURATION SECTION of the
ENVIRONMENT DIVISION.

I-O-CONTROL OPTIONS FOR #***** IGNORED SINCE
ALLOWED ONLY FOR BINARY FILES.
This message reflects a system I0CS requirement.

I-O-CONTROL PARAGRAPH NOT FOLLOWING FILE-

CONTROL PARAGRAPH IGNORED. '
See “Organization of Source Program” and the EN-
VIRONMENT DIVISION.

ILLEGAL ***** UNIT ASSIGNED TO FILE ***%% s*#xx
See the FILE-CONTROL paragraph in the INPUT-
OUTPUT SECTION of the ENVIRONMENT DIVI-
SION.

ILLEGAL ARGUMENT IN ‘ON’ STATEMENT. STATE-
MENT DELETED.
Refer to “Debugging Package” in the COBOL manual.

ILLEGAL ARITHMETIC PHRASE, ENDING WITH AN
OPERATOR OTHER THAN RIGHT PARENTHESIS.
PHRASE DELETED.
See formulas in the COMPUTE statement of the
PROCEDURE DIVISION.

ILLEGAL CHARACTER IN COLUMN 7. SPACE IS
ASSUMED.
A hyphen or a blank are the only characters allowed
in column 7. See “Reference Format.”

ILLEGAL CHARACTER IN LITERAL. CHARACTER
IGNORED.
This message indicates one of the basic rules has been
violated. See literals.

ILLEGAL CHARACTER ON CARD DELETED.
Self-explanatory.

ILLEGAL CLAUSE(S) DESCRIBING **#** IGNORED.

LENGTH 1, VALUE OF R. M. ASSIGNED BY COMPILER.

ONLY SYNCHRONIZATION, IF ANY, RETAINED.
Consult the specific format for the record mark (PIC-
TURE J).

ILLEGAL CLAUSE(S) IN DESCRIPTION OF FLOATING
POINT ITEM ***** IGNORED.
See the discussion on the specific format for floating-point
items in the USAGE clause of the data-item description
entry.

ILLEGAL CLAUSE(S) IN DESCRIPTION OF SCIENTIFIC
DECIMAL ITEM ***** IGNORED.
See the discussion on the specific format for scientific
decimal items in the PICTURE clause of the data-item
description entry.

ILLEGAL CONDITIONAL EXPRESSION IN AT END OR

ON SIZE ERROR CLAUSE.
This message has been generated because of a COBOL
language restriction, but this 7090/7094 compiler accepts
the statement. See the description of the AT END clause
of the READ verb or of the ON SIZE ERROR clause
relating to the ADD, SUBTRACT, MULTIPLY, or DI-
VIDE verbs.

138

ILLEGAL CONDITIONAL EXPRESSION IN TEXT. EX-
PRESSION IGNORED.
See conditional statements in the PROCEDURE DIVI-
SION.

ILLEGAL CONTROL SECTION NAME FOR DEBUG RE-
QUEST. NAME IGNORED.
Refer to “Debugging Package” in the COBOL manual.

ILLEGAL DESIGNATION OF SIGN CONVENTION IN PIC-
TURE OF REPORT ITEM ***** 4 444444 IS AS-
SUMED.
See the report form of the PICTURE clause of the data-
item description entry.

ILLEGAL FORM OF VALUE FOR #*¥#*#* #x%4x yA],UE
IGNORED.
Self-explanatory.

ILLEGAL INSERTION POINT SPECIFICATION FOR DE-
BUG REQUEST. REQUEST WILL NOT BE EXECUTED.
Refer to “Debugging Package” in the COBOL manual.

ILLEGAL MIXTURE OF DIGIT POSITION CHARACTERS
(9 Z *) AFTER POINT IN PICTURE OF REPORT ITEM
*EEEX. +4+++++ IS ASSUMED PICTURE.
See the report form of the PICTURE clause of the data-
item description entry.

ILLEGAL MIXTURE OF ORDER OF DIGIT POSITION
CHARACTERS IN PICTURE OF REPORT ITEM #*#%**
+++++++ IS ASSUMED PICTURE.
See the report form of the PICTURE clause of the data-
item description entry.

ILLEGAL PICTURE OF SCIENTIFIC DECIMAL ITEM
FaEEx . +99999999E +99 IS ASSUMED PICTURE.
See the scientific decimal form of the PICTURE clause
of the data-item description entry.

ILLEGAL PICTURE (OR NEITHER PICTURE NOR LEGAL
SIZE GIVEN) FOR ***** DECIMAL ITEM ***** 999999
IS ASSUMED PICTURE.
The size must be specified by either the SIZE or the
PICTURE clause.

ILLEGAL POINT OR SIGNED CLAUSE IN DESCRIPTION
OF NON-REPORT DISPLAY ITEM *##*%
See the data-item description entry in the DATA DIVI-
SION.

ILLEGAL REDEFINITION IGNORED FOR FILE RECORD
(01 LEVEL) NAMED *#¥%*_
The REDEFINES clause cannot be used with logical
records (01 level) associated with the same file. See the
REDEFINES clause of the data-item description entry.

ILLEGAL SENTENCE STRUCTURE. NOTHING DONE.
See “Punctuation.”

ILLEGAL SUBSCRIPT STRUCTURE. SCAN RESUMED AT
NEXT VERB, PERIOD, OR INFORMATION IN THE A
MARGIN.

See subscripts.

ILLEGAL USAGE OR CLASS CLAUSE (OR BLANK WHEN
ZERO) IN DESCRIPTION OF ALPHANUMERIC ITEM
¥¥* CLAUSE IGNORED IN FAVOR OF PICTURE.
This warning message indicates a violation of a language
rule. '

ILLEGAL USAGE OR CLASS CLAUSE(S) IGNORED IN
FAVOR OF PICTURE OF REPORT ITEM #*##%*
The PICTURE clause overrides contradictory USAGE
and CLASS clauses.

ILLEGAL USE OF COMMA IN PICTURE OF REPORT
ITEM ***** 4+ 44 4+ 44+ IS ASSUMED PICTURE.
Self-explanatory.

ILLEGAL USE OF $ IN PICTURE OF REPORT ITEM
*xkdk 4+ 4+ 4+ 4+ + IS ASSUMED PICTURE.
See replacement characters under the PICTURE clause
of the data-item description entry.

ILLEGAL USE OF UNALTERABLE ‘GO TO” STATEMENT.
‘GO TO STATEMENT DELETED.
See the GO TO and ALTER verbs.

ILLEGAL USE OF V OR POINT IN PICTURE OF REPORT
ITEM *#*** 4+ 4+ 4+ 4444+ IS ASSUMED PICTURE.
See the report form of the PICTURE clause of the data-
item description entry.

IMPROPER CHARACTER INTERRUPTS STRING OF +

NN o T\T ’DTF’T’TTDE‘ f\'l.'.‘ DE‘DﬁD’T‘ T’T‘E‘\l’ *****
OR - OR @ F SRS ¥ LS i O RN AL A0y,

+++++++ IS ASSUMED PICTURE.
See the floating +, —, or $ in the report form of the
PICTURE clause of the data-item description entry.

IMPROPER LABEL CLAUSE IGNORED. COMPILER AS-
SUMES LABEL RECORD(S) OMITTED UNLESS VALUE
CLAUSE PRESENT.

See the LABEL clause of the file description entry.

IMPROPER RECORDING CLAUSE IGNORED. BCD, HIGH
DENSITY ASSUMED.
See the RECORDING MODE clause of the file de-
scription entry.

*¥**%+ IN THE ENVIRONMENT DIVISION MUST NOT BE
REPEATED. SCAN RESUMED AT NEXT PARAGRAPH,
SECTION, OR DIVISION.
See “Organization of Source Program”
VIRONMENT DIVISION.

INCOMPLETE STATEMENT DELETED
This message indicates invalid sentence structure. Con-
sult the rules regarding the particular verb in the
COBOL manual.

INELIGIBLE DATA-NAME ***** IN RECEIVE OR PRO-
VIDE STATEMENT. SCAN RESUMED AT NEXT VERB,
PERIOD, OR INFORMATION IN THE A-MARGIN.

See the “ENTER” verb.

INELIGIBLE DATA-NAME CANNOT BE USED AS AN
ARGUMENT FOR THE CORRESPONDING OPTION.
See the CORRESPONDING clause under the MOVE
verb.

‘INPUT” OR ‘OUTPUT MUST FOLLOW VERB IN AN
‘OPEN’ STATEMENT. STATEMENT DELETED.
The OPEN statement requires that either INPUT or
OUTPUT be specified. See the OPEN verb.

INPUT/OUTPUT STATEMENT IGNORED.
See the PROCEDURE DIVISION discussion on the

associated verb. Often associated with errors concerning
SELECT or FD entries.

INTEGER MUST NOT EXCEED 32767. INTEGER 1
ASSUMED.
This message indicates that core storage capacity has
been exceeded.

and the EN-

INCONSISTENT FILE
AND SERIAL
PERMANENT CLOSE
UNABLE TO STASH
READ OUT SEQUENCE
UTILITY READ
‘UTILITY EOF

INTERNAL FILE ERROR

Possible causes:

1. “short” or faulty utility tapes
2. oversize program

3. machine error

INVALID LITERAL USED IN EXAMINE STATEMENT.
Self-explanatory.

*¥*xx¥ IS A NAME DEFINITION AND MUST NOT BE
QUALIFIED. DEFINITION FORCED.
This message refers to a data-name, condition-name,
or procedure-name that was not properly defined; see
the statement being used.

****x* IS A TYPE OF ELEMENTARY DATA ITEM THAT
MAY NOT BE USED AS A SUBSCRIPT. OBJECT PRO-
GRAM USES SUBSCRIPT VALUE OF 1.

See subscripts.

#¥x¥ IS A TYPE OF ELEMENTARY DATA ITEM THAT
MAY NOT BE USED IN ‘RETURN’. SATEMENT
DELETED.

See the ENTER verb.

**#2x* IS AN OUT-OF-RANGE REFERENCE.
Refer to “Debugging Package” in the COBOL manual.

#¥* IS AN UNRECOGNIZABLE ITEM ON CARD. COM-
PILER SKIPS TO NEXT DIVISION.
The remainder of division is skipped. Check for spelling
error.

#x#k IS GREATER THAN *#**** FIRST VALUE USED
IN DETERMINING MAXIMUM ***** SIZE.
See “FD.”

##xx* IS IMPROPERLY QUALIFIED. DEFINITION
FORCED.
See subscripts.

##kx+ IS IMPROPERLY QUALIFIED. NAME IS NOT UNI-
QUE. DEFINITION FORCED.
This message refers to a data-name, condition-name, or
procedure-name that was not properly defined; see quali-
fication of names.

IS NOT
IGNORED.

The READ verb requires a filename; the WRITE verb
requires a record name. See the rules regarding the par-
ticular verb.

¥xx IS NOT A FILE NAME. FD ENTRY IGNORED.
There is no legitimate SELECT entry in FILE-CON-
TROL paragraph. See the ENVIRONMENT DIVISION
and the FILE SECTION of the DATA DIVISION.

***%% IS NOT A FILE-NAME. I-O-CONTROL CLAUSE
IGNORED.
A spelling error may have occurred in the file-name and
no match can be found. The I-O-CONTROL paragraph
in the INPUT-OUTPUT SECTION of the ENVIRON-
MENT DIVISION is ignored.

*#*kxk IS NOT A LEGAL CONDITION-NAME. REMAINDER
OF SWITCH-NAME ENTRY IGNORED.
See the SPECIAL-NAMES paragraph in the CON-
FIGURATION SECTION of the ENVIRONMENT
DIVISION.

*#k%xk IS NOT A LEGAL FILE-NAME. SELECT ENTRY
IGNORED.
A language rule has been violated. See the FILE-CON-
TROL paragraph in the INPUT-OUTPUT SECTION
of the ENVIRONMENT DIVISION.

**kx%% IS NOT A LEGAL MNEMONIC-NAME. REMAINDER
OF SWITCH-NAME ENTRY IGNORED.
See the SPECIAL-NAMES paragraph in the CON-
FIGURATION SECTION of the ENVIRONMENT
DIVISION.

4%* IS NOT A LITERAL. CLAUSE IGNORED.
See the VALUE clause of the data-item description entry.

ok ok %k %k dok koK ok

INPUT/OUTPUT STATEMENT

COBOL Compiler Error Messages 139

***** IS NOT A NUMERIC LITERAL AND IS IGNORED.
See the VALUE clause of the file description entry.

**+x%x 1S NOT A PROCEDURE NAME. TRANSFER BYPASS-
ING THIS STATEMENT INSERTED.
Incorrect reference. See the structure of the PRO-
CEDURE DIVISION.

**+*¥x 1S NOT DEFINED. DEFINITION FORCED UNLESS
A QUALIFIER.
This message refers to a data-name, condition-name, or
procedure-name that was not properly defined; see
qualification.

*xx¥x IS STRUCTURALLY INCORRECT AT THIS POINT.
1-O-CONTROL CLAUSE IGNORED.
A section head has been omitted. See “Organization of
Source Program” and the ENVIRONMENT DIVISION.

**%%% IS STRUCTURALLY INCORRECT AT THIS POINT.
REMAINDER OF SWITCH-NAME ENTRY IGNORED.
See the SPECIAL-NAMES paragraph in the CON-
FIGURATION SECTION of the ENVIRONMENT
DIVISION.

**¥%x* IS STRUCTURALLY INCORRECT AT THIS POINT.
SCAN RESUMED AT BEGINNING OF NEXT RERUN
CLAUSE, PERIOD, OR PROPER INFORMATION IN THE
A MARGIN.
See I-O-CONTROL paragraph of the INPUT-OUTPUT
SECTION of the ENVIRONMENT DIVISION.

**¥*xx IS STRUCTURALLY INCORRECT AT THIS POINT.
SCAN RESUMED AT BEGINNING OF NEXT SELECT EN-
TRY, PERIOD, OR PROPER INFORMATION IN THE A
MARGIN.
See the FILE-CONTROL paragraph in the INPUT-
OUTPUT SECTION of the ENVIRONMENT DIVI-
SION.

*+%%% IS STRUCTURALLY INCORRECT AT THIS POINT.
SCAN RESUMED AT BEGINNING OF NEXT SWITCH-
NAME ENTRY, PERIOD, OR PROPER INFORMATION IN
THE A MARGIN.
See “Organization of the Source Program” and the EN-
VIRONMENT DIVISION.

**x%x IS STRUCTURALLY INCORRECT AT THIS POINT.
SCAN RESUMED AT NEXT VERB, PERIOD, OR INFOR-
MATION IN THE A MARGIN.
This message indicates that a language rule has been
violated. See the PROCEDURE DIVISION information
for the particular verb used.

*#**+ IS UNIDENTIFIABLE. CLAUSE IGNORED.
See the DATA DIVISION.

***+* IS UNIDENTIFIABLE. REMAINDER OF CLAUSE
IGNORED.
See the FILE SECTION of the DATA DIVISION. This
wording may also concern the PROCEDURE DIVISION;
see message below.

**xix IS UNIDENTIFIABLE. REMAINDER OF CLAUSE
IGNORED.
Check spelling. Also study the rules of the particular verb
used in this clause. This wording may also concern the
FéLE SECTION of the DATA DIVISION; see message
above.

¥¥*¥% IS UNRECOGNIZABLE IN PROBABLE MULTIPLE
RELEL OPTION. MULTIPLE REELS ASSUMED.
This message indicates a probable spelling error.

wkxx IS UNRECOGNIZABLE. SCAN RESUMED AT NEXT
DATA DESCRIPTION ENTRY, SECTION, OR DIVISION.
See the DATA DIVISION.

140

*#*x¥x IS UNRECOGNIZABLE. SCAN RESUMED AT NEXT
PARAGRAPH, SECTION, OR DIVISION.
See the PROCEDURE DIVISION.

ITEM *#****¥ HAS NO SPECIFIED LENGTH. CONDITION
IGNORED.
Length of a data-item must be specified. See the
PICTURE and SIZE clauses of the data-item descrip-
tion entry.

JUSTIFIED CLAUSE IN DESCRIPTION OF #*#**
IGNORED. THIS FEATURE NOT IMPLEMENTED.
The JUSTIFIED clause is not a feature of 7090/7094
COBOL.

LABEL CLAUSE OMITTED IN FD ENTRY ***** COM-
PILER ASSUMES LABEL RECORD(S) OMITTED.
See the LABEL clause of the file description entry.

LENGTH OF NON-NUMERIC LITERAL EXCEEDS
LENGTH SPECIFIED BY SIZE OR PICTURE CLAUSE
FOR ***** LOW ORDER TRUNCATION DONE.
The alphanumeric constant contained within the VALUE
clause should not be greater in size than the item.
When it is greater, the low order portion is truncated.

LENGTH OF ***** NOT BOTH CONSTANT AND LESS
THAN 73 CHARACTERS. NOTHING DONE.
See the ACCEPT verb.

LENGTH (***** CHARACTERS) OF REDEFINING DATA
FIELD HEADED BY DATA-NAME ***** IS GREATER
THAN LENGTH (***** CHARACTERS) OF DATA FIELD
BEING REDEFINED. DANGEROUS CONDITION
IGNORED.
See the REDEFINES clause of the data-item descrip-
tion entry.
LEVEL FD SHOULD APPEAR IN THE A MARGIN. A
MARGIN ASSUMED.
This message indicates a violation of a language rule.
See “Reference Format.”

LEVEL OF ***** CONFLICTS WITH THE PRECEDING
LEVEL NUMBER CONDITION IGNORED.
See level-numbers in the data-item description entry.

LEVEL 77 ITEM ***** MAY NOT HAVE OCCURS.
See independent items (level number 77) in the WORK-
ING-STORAGE and CONSTANT SECTION.

LEVEL 77 ITEM ***** APPEARS IN FILE SECTION. IN-
VALID DATA ORGANIZATION RESULTS.
Level 77 items are allowed only in the WORKING-
STORAGE and CONSTANT SECTION.

LEVEL 88 CONDITION ***** [, ACKS MANDATORY
VALUE CLAUSE.
Condition-names (level-number 88)
VALUE clause. See condition-names.

LEVEL 88 CONDITION ***** APPEARS ILLEGALLY IN
CONSTANT SECTION.
Condition-names (level-number 88) have no meaning
in the CONSTANT SECTION. See condition-names.

LEVEL 88 CONDITION ***** NOT PRECEDED BY VALID
ELEMENTARY ITEM.
See condition-names.

LIMIT (15 BITS) OF SIZE FIELD IN DICTIONARY
NECESSITATES TREATING OPERATION LENGTH OF
*¥x¥kk AS MODULO 32768.
This message indicates a compiler limitation has been
reached.

LITERAL FOLLOWING ALL IS LIMITED TO ONE CHAR-
ACTER. THE FIRST LITERAL CHARACTER IS USED.
See figurative constants.

must have a

*#x+x [JTERAL IS TOO LONG. FIRST ***** CHAR-
ACTERS WILL BE USED.
See the VALUE clause of the file description entry.

MACHINE OR COMPILER ERROR. COMPILATION IS
INCOMPLETE.
(1) This message may indicate a machine error. Notify
a customer engineer. (2) This message may indicate a
compiler error. Consult a system engineer concerning
the APAR procedure.

MAXIMUM NUMBER ***** OF DIFFERENT NAMES IN

A SOURCE PROGRAM EXCEEDED. COMPILATION
TERMINATED.

This message indicates that a compller hmltatlon has

—————— S individy ol

been exceeded. Rework program intc smaller individu

programs.

MAXIMUM RECORD SIZE (***** COMPUTER WORDS)

EXCEEDS SPECIFIED BLOCK SIZE (***** COMPUTER

WORDS) OF FILE ***** FILE IS SET UNBLOCKED.
This message indicates that the blocksize specified was
not large enough. See the BLOCK CONTAINS clause
of the file description entry.

MAXIMUM RECORD SIZE (***** COMPUTER WORDS)
SPECIFIED IN FD ENTRY ASSOCIATED WITH FILE
*xkxx 1§ NOT EQUAL TO SIZE OF MAXIMUM RECORD
(***** COMPUTER WORDS). FD RECORD CLAUSE
IGNORED.
This message indicates that there is an inconsistency
between the record size specified in the file description
entry and the record size given in the descriptions of
the record. See RECORD CONTAINS and SIZE clauses
in the FILE SECTION.

..... MESSAGE CAPACITY EXCEEDED.
This message indicates a compiler limitation, No more
error messages can be generated. At least one further
error has not been recorded.

MISUSE OF PERIOD, SIGN, OR E IN LITERAL. ILLEGAL
CHARACTER(S) IGNORED.
This message indicates one of the mentioned rules has
been violated. See literals in the COBOL manual.

MIXED CONTIGUOUS INSERTION-CHARACTERS IN
PICTURE OF REPORT ITEM *¥*** 444444+ IS AS-
SUMED PICTURE.
See insertion characters under the PICTURE clause of
the data-item description entry.

MNEMONIC ***#* NOT UNIQUE, CONDITION IGNORED.
See the SPECIAL-NAMES paragraph in the CON-
FIGURATION SECTION of the ENVIRONMENT
DIVISION.

MOVE FROM A FIGURATIVE CONSTANT TO A VARIA-
BLE LENGTH GROUP ITEM NOT ALLOWED.
See the MOVE verb.

MOVE FROM A FIGURATIVE CONSTANT TO AN ITEM

LONGER THAN 32767 CHARACTERS NOT ALLOWED.
This message indicates a compiler limitation has been
reached. Suggest dividing data-item into smaller parts.

MULTIPLE ***** CLAUSES IN ***** DATA DESCRIP-
TION. FIRST ONE RETAINED,
This message indicates an extraneous clause has ap-
peared. Only the first-clause is retained.

MULTIPLE ***** CLAUSES IN FD ENTRY ***** FIRST
ONE RETAINED.
See the file description entry.

MULTIPLE CONTIGUOUS INSERTION-CHARACTERS IN
PICTURE OF REPORT ITEM ***** CHANGED TO A SIN-
GLE CHARACTER.

This message indicates a compiler convention. See the
report form of the PICTURE clause in the data-item de-
scription entry.

MULTIPLE REEL OPTION FOR FILE ***** OMITTED
WHERE REQUIRED BUT IS ASSUMED.
MULTIPLE REEL must be specified if a file is on two
or more reels of magnetic tape. See the FILE-CONTROL
paragraph of the INPUT-OUTPUT SECTION in the
ENVIRONMENT DIVISION.

NEITHER PICTURE NOR SIZE CLAUSE GIVEN FOR
NON-REPORT DISPLAY ITEM ***** X IS ASSUMED PIC-
TURE.

Self-explanatory.

NEITHER PICTURE NOR SIZE CLAUSE GIVEN FOR RE-
PORT ITEM **##x s##sxx* [AGSUMED PICTURE.
See the data-item description entry.

NESTED REDEFINES ILLEGAL. REDEFINES CLAUSE
IGNORED FOR ##*¥¥¥
Redefining is not allowed at a subordinate level to an-
other REDEFINES. No more than one REDEFINES in
one organization is permitted.

NO DIGIT POSITIONS IN PICTURE OF REPORT ITEM
*rkkk 4 4+ +++ IS ASSUMED PICTURE.
See the report form of the PICTURE clause in the data-
item description entry.

NO ERRORS WERE DETECTED BY THE COMPILER
Self-explanatory.

NO PARAGRAPH NAME FOUND PRECEDING ‘EXIT
STATEMENT. CONDITION IGNORED.
EXIT must always be a one-word paragraph. See the
discussion of the EXIT verb.

NO RECORD DESCRIPTION ENTRIES FOLLOW FD EN-
TRY *****‘
See “Organization of Source Program” and the DATA
DIVISION.

NON-ALPHABETIC LITERAL GIVEN FOR ALPHABETIC
ITEM ***** CONDITION IGNORED.
The value given for an alphabetic item may not contain
non-alphabetic characters.

NON-NUMERIC LITERAL CONTINUATION MUST BEGIN
WITH A QUOTE, QUOTE ASSUMED PRECEDING FIRST
NON-SPACE CHARACTER.

See “Reference Format.”

NON-NUMERIC LITERAL LONGER THAN 120 CHARAC-
TERS OR NAME LONGER THAN 30 CHARACTERS TRUN-
CATED.
This message indicates a language restriction. See
literals.

NON-NUMERIC LITERAL VALUE OF NUMERIC ITEM
¥¢¥x JGNORED.
Numeric items may have only numeric values. See the
VALUE clause in the DATA DIVISION.

*++#+ NOT A LABEL-DATA-NAME. REMAINDER OF
VALUE CLAUSE IGNORED.
See the VALUE clause of the file description entry.

NOT IN ‘DECLARATIVES’ MODE. STATEMENT DE-
LETED.
The USE verb may be used only in the declarative sec-
tion. See the USE verb.

NOTE...FILE-NAME CHANGED FOR INTERNAL PUR-
POSES TO *****,
Internal limitations make change of file name mandatory.
No information is lost.

COBOL Compiler Error Messages 141

NUMBER OF DIGITS IN FIELD OF LITERAL EXCEEDS
LIMIT OF 18. 18 DIGITS USED.
A numeric literal may not contain more than 18 charac-
ters. See the rules for literals.

NUMBER OF FILES NAMED IN FILE-CONTROL EX-

CEEDS MAXIMUM OF 63. COMPILATION TERMINATED.
This message indicates that a compiler limitation has
been reached. This is a D-level message causing com-
pilation to stop. A dump will also result. It is suggested
that the job be broken into smaller jobs.

NUMBER OF OCCURRENCES OF #***** IS JLLEGAL.

COMPILER ASSUMES OCCURS EXACTLY 100 TIMES.
See the OCCURS clause of the data-item description
entry.

NUMBER OF OCCURRENCES OF ITEM ****% DEPENDS
ON A FOLLOWING ITEM IN THE SAME DATA GROUP.
‘DEPENDING ON’ CLAUSE IGNORED.
The description of the item that determines the number
of repetitions cannot follow the item with the OCCURS
DEPENDING ON clause. See the OCCURS clause of
the data-item description entry.

OBJECT-COMPUTER DESIGNATION OVERRIDDEN BY
**+¥+ OPTION ON $IBCBC CARD.
This message indicates that the number of index regis-
ters specified on the $IBCBC card does not agree with
the number of index registers designated by the object-
computer.

OCCURS CLAUSE IGNORED FOR CONDITIONAL VARI-
ABLE *****'

See conditional variabies.
OCCURS CLAUSE NOT PERMITTED FOR HIGHEST
LEVEL DATA ITEM ***#*#%

This message indicates a language limitation. An
OCCURS clause may not be used at 01 level.

whExx OF FILE ***** ASSIGNED TO ***** NOT PER-
MITTED.
This message indicates a system function error. Blocking
is not permitted on system units.

k%t OF GROUP ITEM ***** IGNORED DUE TO CON-
FLICT WITH A HIGHER ORDER GROUP.
Self-explanatory.

ONLY FILE-NAMES MAY BE USED AS ARGUMENTS IN
‘OPEN’ OR ‘CLOSE’ STATEMENTS. STATEMENT DE-
LETED.
See OPEN and CLOSE statements in the PROCEDURE
DIVISION of the COBOL manual.

OPERAND TABLE OVERFLOW TRANSLATING EXPRES-
SION. STATEMENT DELETED.
The statement is too large. Rearrange the statement in
smaller parts.

OPERATION IGNORED BECAUSE ***** HAS IMPROPER
DATA FORMAT.
See the rules regarding the particular verb.

OPERATION IGNORED BECAUSE ILLEGAL USE OF
FIGURATIVE CONSTANT.
See figurative constants.

**#xx ORDER TRUNCATION OCCURS IN GENERATION
OF INITIAL VALUE FOR ****#
See VALUE clause of the data-item description entry.

*#kki¥ PARAGRAPH APPEARS ILLEGALLY IN ***#* SEC-
TION. SCAN RESUMED AT NEXT PARAGRAPH, SECTION,
OR DIVISION.
See “Organization of Source Program” and ENVIRON-
MENT DIVISION.

142

PERFORM STATEMENT STRUCTURALLY INCORRECT.
STATEMENT DELETED.
See the PERFORM verb.

PERMANENT READ ERROR DURING PROCEDURE IN-
STRUCTION GENERATION PHASE. COMPILATION IS
SUSPECT.
This message indicates a bad utility tape. Do not trust
compilation. Suggest re-compilation.

PICTURE OF ALPHANUMERIC ITEM ***** CONTAINS
A MIXTURE OF A’S AND 9'S — TREATED AS ALL XS.
This message indicates a language rule violation.

PICTURE OF REPORT ITEM #***## HAS ILLEGAL USE
OF SCALING CHARACTER P. +++++++ IS ASSUMED
PICTURE.
See the PICTURE clause of the data-item description
entry.

PICTURE OF REPORT ITEM ***** HAS SCALING CHAR-
ACTER P EMBEDDED ILLEGALLY BETWEEN NUMERIC
CHARACTER POSITIONS. +++++++ IS ASSUMED
PICTURE.
See the PICTURE clause of the data-item description
entry.

PICTURE OF REPORT ITEM ***** IS ILLEGAL.
+++++++ IS ASSUMED PICTURE.
See the report form of the PICTURE clause in the data-
item description entry.

PREVIOUS DATA DESCRIPTION NOT TERMINATED BY
A PERIOD. PERIOD ASSUMED AND PROCESSING OF
*xxx% BEGUN.

Self-explanatory.

PRIMARY AND SECONDARY UNITS ASSIGNED TO FILE
*#4** CONFLICT. SECONDARY UNIT ASSIGNMENT
IGNORED.

Self-explanatory.

PROCEDURE STATEMENT TQ **#*** FILE ***¥* NQOT
GIVEN.
Every file named in a SELECT statement in the FILE-
CONTROL paragraph of the ENVIRONMENT DIVI-
SION must be opened and closed in the PROCEDURE
DIVISION. See the verbs OPEN and CLOSE.

QUANTITY ITEM *#*** SHOULD NOT BE USED WITH
‘REPLACING’ OPTION IN ‘EXAMINE’ STATEMENT. CON-
DITION IGNORED.

See the EXAMINE verb.

RECORD **#** APPEARS IN RECORD DESCRIPTION
ENTRY BUT WAS NOT LISTED IN THE FD DATA
RECORD(S) CLAUSE. CONDITION IGNORED AND REC-
ORD DESCRIPTION RETAINED.
See the DATA RECORDS clause of the file description
entry.

RECORD HEADED BY DATA ITEM ***** EXCEEDS 32767
WORDS. LENGTH MODULO 32768 USED.
This message indicates a compiler limitation has been
reached.

RECORD ***** LISTED IN THE FD DATA RECORD(S)
CLAUSE DOES NOT APPEAR IN A RECORD DESCRIP-
TION ENTRY. CONDITION IGNORED.
See the DATA RECORDS clause of the file description
entry.

REDEFINES DESCRIBING ***** NOT FOLLOWED BY A
PREVIOUSLY DEFINED DATA-NAME. CLAUSE
IGNORED.
See the REDEFINES clause of the data-item description
entry.

REDUNDANCY ON SYSTEM INPUT UNIT. CONDITION
IGNORED.
One card image may have been lost. Suggest recom-
pilation. ’

REDUNDANT FD ENTRY *#*** IGNORED.
Self-explanatory.

REDUNDANT FD ENTRY ***** IGNORED. ONLY ONE
FD ENTRY MAY DESCRIBE A SET OF RENAMED
SELECT ENTRIES.
See the description of RENAMING clause of the
SELECT entry.

REDUNDANT I-O-CONTROL SPECIFICATION.
SEQUENCE-CHECK, CHECK-SUM, or RERUN has
been specified more than one time for a given file in the
I-O-CONTROL, paragraph of the ENVIRONMENT
DIVISION. For example, the following two cards in the
same program will cause check-sum to be specified for
FILE-NAME-1 twice:

APPLY CHECK-SUM ON FILE-NAME-1.

APPLY CHECK-SUM ON ALL FILES.
The card whose number is given with the message con-
tains the SELECT entry for the file involved.

REDUNDANT SELECT ENTRY ***** IGNORED.
A file-name has been selected more than once in the
FILE-CONTROL paragraph of the ENVIRONMENT
DIVISION.

REDUNDANT SWITCH-NAME ENTRY FOR KEY #***#*
IGNORED.
See the SPECIAL-NAMES paragraph of the ENVIRON-
MENT DIVISION.

REDUNDANT ‘USE’ STATEMENT. Statement Deleted
This message indicates that a redundant USE statement
has been encountered. See the USE verb.

‘RENAMING’ MAY ONLY BE FOLLOWED BY A FILE-
NAME, REMAINDER OF SELECT ENTRY IGNORED.
ASSUMED UNIT ASSIGNMENT IS ‘1 TAPE-UNIT.
If the RENAMING option is used in the FILE-CON-
TROL paragraph of the ENVIRONMENT DIVISION,
it must be followed by a file-name.

SECTION-HEADER ***** SECTION NOT FOLLOWED BY

***+% DESCRIPTION ENTRY. SCAN RESUMED AT NEXT

¥¥*% DESCRIPTION ENTRY, SECTION, OR DIVISION.
See “Organization of Source Program.”

SECTIONS IN THE DATA DIVISION MUST *¥*** SCAN
RESUMED AT NEXT SECTION, OR DIVISION.
See “Organization of Source Program.”

SENTENCE LENGTH EXCEEDS COMPILER CAPACITY.

SUGGEST SUBDIVIDING SENTENCE INTO SMALLER

COMPONENTS. ‘
Self-explanatory.

SEQUENCE-CHECK MUST BE SPECIFIED WHEN
CHECK-SUM IS SPECIFIED, SEQUENCE-CHECK AS-
SUMED.

This message reflects a system (IOCS) requirement.

729-MODEL NO. ***** ASSIGNED TO FILE ***** NOT
ACCEPTABLE TO LOADER, CHANGED BY COMPILER
TO * % ***'
This message indicates a system restriction. Certain 729
Magnetic Tape Units cannot be used.

¥*¥#* SHOULD BE FOLLOWED BY A SPACE. SPACE IS
ASSUMED.

See “Punctuation.”

¥*¥x% SHOULD NOT BE FOLLOWED BY A SPACE. CON-
DITION IGNORED.

See “Punctuation.”

#h#xx SHOULD NOT BE IN THE A MARGIN. B MARGIN
ASSUMED.

SIZE OF ***** GIVEN AS 0. COMPILER ASSUMES SIZE
IS 6.

Zero is an illegal size.

SIZE, POINT, SIGNED, OR EDITING CLAUSES IGNORED
IN FAVOR OF PICTURE IN #**#*,
This message indicates that some information has been
duplicated. In this case, the PICTURE clause informa-
tion is contrary to similar information specified in an-
other clause. The PICTURE is correct.

SOURCE-COMPUTER IS IMPROPERLY SPECIFIED. IBM-
7090 ASSUMED.
The hyphen must be specified in “IBM-7090" in the
CONFIGURATION SECTION of the ENVIRONMENT
DIVISION.

*rkxx SPECIFICATION ***** REMAINDER OF VALUE
CLAUSE IGNORED.
See the VALUE clause of the file description entry.

#xx%% SPECIFICATION IN ***** CLAUSE NOT AN UN-
SIGNED INTEGER. CLAUSE IGNORED.
See the DATA DIVISION.

#axxx SPECIFICATION IN ***** CLAUSE NOT AN UN-
SIGNED INTEGER. REMAINDER OF CLAUSE RE-
TAINED.

See the DATA DIVISION.

STATEMENT CONTAINS TOO FEW RIGHT PAREN-
THESES. COMPENSATING PARENTHESES ADDED AT
END OF STATEMENT.
The number of right parentheses must equal the number
of left parentheses.

STATEMENT CONTAINS TOO MANY RIGHT PAREN-
THESES. EXTRA PARENTHESES IGNORED.
The number of right parentheses must equal the number
of left parentheses.

STATEMENT REQUIRES A DATA-NAME, LITERAL, OR
FIGURATIVE CONSTANT, NOT ****%* AS AN ARGUMENT,
STATEMENT DELETED.
See the rules regarding the use of the particular verb
referred to in this message.

STATEMENT REQUIRES A PROCEDURE NAME, NOT
x#xkt AS AN ARGUMENT. STATEMENT DELETED.
See the rules regarding the use of the particular verb
referred to in this message.
SUBORGANIZATION OF ITEM ***** WITH OCCURS
CLAUSE CONTAINS A VALUE CLAUSE. VALUE GIVEN
TO FIRST ELEMENT ONLY.
A VALUE clause cannot appear in a description sub-
ordinate to one containing an OCCURS clause. See the
VALUE and OCCURS clauses of the data-item descrip-
tion entry.

SUBSCRIPT COUNT EXCEEDS 3. SCAN RESUMED AT
NEXT VERB, PERIOD, OR INFORMATION IN THE A
MARGIN.
Only three levels of subscripting are allowed. See “Sub-
scripts.”

SUBSCRIPT INTEGER MUST NOT EXCEED 32767. IN-
TEGER 1 ASSUMED.
This message indicates that a compiler limitation has
been exceeded.

COBOL Compiler Error Messages 143

SUBSCRIPT MISSING AFTER LEFT PARENTHESIS. SCAN
RESUMED AT NEXT VERB, PERIOD, OR INFORMATION
IN THE A MARGIN.

Information has been omitted.

SYNCHRONIZED ITEM ***** HAS REDEFINES CLAUSE.
STORAGE ASSIGNMENT MIGHT NOT BEGIN WITH THE
FIRST CHARACTER POSITION OF THE REDEFINED
AREA. CONDITION IGNORED.
This message indicates the characteristics of the RE-
DEFINES clause take priority.

SYSIDR ACCOUNTING ROUTINE ERROR.
Contact your systems engineer whenever this message
occurs.

Tz WORD_************
ETT T Y
Consult your systems engineer concerning APAR proce-
dure whenever this message occurs. It is always accom-
panied by the MACHINE OR COMPILER ERROR
message.

TERMINATION OF LITERAL FORCED AT END OF CARD.
This message indicates that either a quote mark or a
continuation mark has been omitted. See literals.

TOO FEW OPERANDS IN ADD STATEMENT. STATE-
MENT DELETED.
A minimum of two operands is allowed in an ADD
statement.

TOO FEW SUBSCRIPTS GIVEN FOR ***** COMPILER
ASSUMES MISSING LEFTMOST SUBSCRIPTS TO BE 1.
See subscripting.

TRANSFER BYPASSED BECAUSE ***** IS NOT A STATE-
MENT OR SECTION NAME.
Self-explanatory.

21 PERMANENT READ REDUNDANCIES ON SYSTEM
INPUT UNIT. COMPILATION TERMINATED.
This message indicates 21 card read errors. Compilation
is terminated and a dump is taken.

UNIDENTIFIABLE WORD ***** I[N DATA DESCRIPTION.
WORD OR CLAUSE IGNORED.
This message indicates a program error. See the DATA
DIVISION.

‘UPON’ MAY ONLY BE FOLLOWED BY IBJOB STANDARD

MNEMONIC-NAME ‘SYSOUI’. SYSOU1l ASSUMED.
SYSOU1 is the only unit permitted for DISPLAY state-
ments.

UPSCALE MAY CAUSE HIGH ORDER TRUNCATION
FOR STORE INTQ *####*,
High-order truncation may occur because of decimal
point alignment in a receiving area that is too small. An
error will probably result from this operation.

‘USE’ NOT PRECEDED BY SECTION-NAME.
See the rules regarding the USE verb in the declarative
section of the PROCEDURE DIVISION.

**#x% USED AS A SUBSCRIPT HAS AN ALPHANUMERIC
PICTURE, BUT VALUES MUST BE RESTRICTED TO
INTEGERS.
The data-item referred to contains non-numeric charac-
ters, possibly blanks. This message is a warning only,
but the results obtained during execution are likely to
be wrong. See “Subscripts.”

**#¥3* USED AS A SUBSCRIPT HAS AN ALPHABETIC PIC-
TURE. INVALID SUBSCRIPT. OBJECT PROGRAM USES
SUBSCRIPT VALUE OF 1.

See “Subscripts.”

L(TSX) — ***** L(SKEL) —

144

¥*¥¥*¥% USED AS SUBSCRIPT 1S A SIGNED EXTERNAL

DECIMAL ITEM. NEGATIVE VALUES CAUSE ERRORS.
Subscripts must have positive integer values. See “Sub-
scripts.”

*xkik USED AS A SUBSCRIPT IS IN BCD. OBJECT-TIME
CONVERSION AND/OR UNPACKING IS REQUIRED FOR
SUBSCRIPTS NOT COMPUTATIONAL, SYNCHRONIZED
RIGHT.
In most cases computational, synchronized right items are
more efficient as subscripts.

#kkE¥ USED AS A SUBSCRIPT. IS INVALID DUE TO NON-
ZERO SCALING. OBJECT PROGRAM USES SUBSCRIPT
VALUE OF 1.

Subscripts must be positive integers. See “Subscripts.”

#xekt USED AS A SUBSCRIPT. IS NOT SYNCHRONIZED
RIGHT. OBJECT-TIME UNPACKING IS REQUIRED.
In most cases synchronized right items are more efficient
as subscripts.

*xrxx USED TO CONTROL A GO TO, HAS ILLEGAL FOR-
MAT. GO TO STATEMENT IGNORED.
See the GO TO DEPENDING ON statement in the
PROCEDURE DIVISION.

*##¥x USED TO CONTROL A GO TO, IS NOT AN IN-
TEGER. INTEGER PART USED.
See the GO TO DEPENDING ON statement in the
PROCEDURE DIVISION.

‘USING” MUST BE FOLLOWED BY THE NAME OF A

FIXED-LOCATION DATA-ITEM. STATEMENT DELETED.
See the description of the CALL form of the ENTER
verb.,

VALUE CLAUSE OF ITEM ***** IGNORED SINCE IT IS
EITHER REDEFINED, PRECEDED BY A VARIABLE
LENGTH ITEM, OR IS IN THE FILE SECTION.
This message indicates that certain clauses are contra-
dictory. See the VALUE clause of data-item description.

VALUE CLAUSE OMITTED IN FD ENTRY ***** [EGAL
BUT UNUSUAL.
See the VALUE clause of the file description entry.

WARNING. LISTING OF THIS NAME HAS BEEN TER-
MINATED. PROGRAM IS NOT AFFECTED.
The REF has been used. Because the number of items
cross-referenced exceeds compiler limitations, the REF
list may be incomplete.

**¥x* WITH REDEFINES CLAUSE NOT IMMEDIATELY
PRECEDED BY THE REDEFINED AREA. REDEFINES
IGNORED.
The redefining item must follow the redefined item with
no intervening entries. See the REDEFINES clause of
the data-item description entry.

‘WITHOUT MUST BE FOLLOWED BY COBOL WORDS
‘COUNT CONTROL’ IN RECORDING CLAUSE. NOTHING
DONE.
See the RECORDING MODE clause of the file descrip-
tion entry.

WORDING ‘EVERY BEGINNING OF REEL’ PREFERRED
IN RERUN CLAUSE AND IS ASSUMED.
This message indicates obsolete wording. See the I-O-
CONTROL paragraph of the ENVIRONMENT DIVI-
SION.

Nore: If a compilation is terminated and a dump
taken with no error message being printed, a systems
engineer should be notified.

If the Assembler encounters a card in error, it will be

flagged with a number. At the end of the assembly

listing, the number is printed with an error message

explaining the error, and a severity indication is given.
The severity indication is a numerical code:

LEVEL MEANING

1 Trivial error. Does not affect assembly or execution.

2 Definite error. Assembly supplies probable interpreta-
tion. Execution is not permitted.

3 Serious error. Assembly supplies guess interpretation.
Execution is not permitted.
4 Unrecoverable error. No interpretation attempted. As-

sembly continues. Execution is not permitted.

5 Useless to continue assembly. Return to Processor Moni-
tor after printing of all errors detected.

In a normal assembly, messages are printed just after
the assembly listing. All messages for a given card are
printed together, and the card groups are printed in
ascending sequence. Correlation with the listing is ac-
complished by printing the card number assigned by
the assembly, in the left margin of the listing, for each
card that requires a message. Messages printed when
the NoLisT option is in effect will have no listing for
visual correlation. However, since the card numbers are
assigned sequentially for every card processed {includ-
ing duplicate sequences and macro-generated cards)
correlation can be made, though perhaps with difficulty.

The following alphabetical list contains the messages
generated by the Assembler. The symbol “*¥*¥**” jp_
dicates a location in the error message where the
Compiler inserts a variable word. Where a variable
word is the first in the message, the message is listed
alphabetically on the next nonvariable word.

Note: One of the Assembler error messages,
“LOCATION FIELD FORMAT ERROR” has a special applica-
tion when the original source deck is coded in the
copor language. If any other MaP message occurs in
connection with a coBoL source deck error, the pro-
grammer should call a systems engineer.

7094 INSTRUCTION ONLY.
Level 1. Assembled as -NOP-.

ADDRESS NOT ALLOWED.
Level 1. Zero used for address.

ADDRESS NOT EXPECTED.
Level 1. Address used.

ADDRESS REQUIRED.
Level 1. Zero used for address.

BAD ADJECTIVE CODE USED FOR -OPD- OR -OPVFD-.
Level 4.

Assembler Error Messages

BIT COUNT TOO LARGE FOR -VFD- OR -OPVFD- SUB-
FIELD.
Level 4. 864 is the maximum allowed.

BOOLEAN CONSTANT TRUNCATED TO SIX DIGITS.
Level 2.

BOOLEAN FIELD MUST BE CONSTANT,
Level 2.

-CALL- OPERATION WITH BLANK VARIABLE FIELD
IGNORED.
Level 3.

CONTROL DICTIONARY ENTRY FQR *¥##¥x FEJIIMI-
NATED. IMPROPER REFERENCE.
Level 4. References to symbols which are absolute or
which are defined by EQUs, BOOLs, and SETs are
invalid.

CONTROL DICTIONARY NOT CORRECTLY PROCESSED.
ASSEMBLER OF MACHINE ERROR.
Level 4. Bad text encountered.

COUNT FIELD ON -BCI- CARD CANNOT EXCEED SIX
DIGITS.
Level 4. A count of 1 is used.

COUNT FIELD ON -BCI- CARD IMPROPERLY TERMI-
NATED. COUNT OF ONE USED.
Level 4.

COUNT FIELD ON -VFD- CANNOT EXCEED SIX DIGITS.
Level 4. First six digits used.

DEBUGGING FORMAT ERROR.
Level 1. Analysis of variable field is completed.

DEBUGGING TABLE OVERFLOW DEBUGGING
IGNORED.
Level 1. Table length is approximately 6,200 locations.

DECIMAL CONSTANT TOO LARGE,
Level 2. Truncated to 15 bits,

DECIMAL POINT CAN OCCUR ONLY IN PRINCIPAL
PART OF LITERAL OR CONSTANT.
Level 2.

DECREMENT MUST BE CONSTANT AND CANNOT EX-
CEED *¥***x BITS,
Level 2.

DECREMENT NOT ALLOWED.
Level 1. Zero used for decrement.

DECREMENT NOT EXPECTED.
Level 1. Low order 6 bits used.

DECREMENT REQUIRED.
Level 1. Zero used for decrement.

DUBIOUS USE OF * ASSUMED TO BE LOCATION
COUNTER.
Level 4.

DUBIOUS USE OF ****** ON -FILE- CARD.
Level 1. Indicates ‘HYPER’ option missing. The name
shown where ****** appears in the message will be
processed.

-DUP- CARD PUSH DOWN TABLE OVERFLOW,
Level 5. Limit of nested DUP’s is 32.

Assembler Error Messages 145

-END- CARD SHOULD FOLLOW.
Level 4. An -END- card is simulated.

END OF FILE WHILE PROCESSING -DUP- CARD.
Level 4. An -END- card is simulated.

END OF FILE WHILE PROCESSING SOURCE INPUT.
Level 4. An -END- card is simulated.

-END- SHOULD NOT OCCUR IN MACRO DEFINITION.
Level 5.

-END- SHOULD NOT OCCUR IN RANGE OF A -DUP-.
Level 4. An END card is processed.

-ETC- CARD SHOULD FOLLOW.
Levels 1 and 2.

EXTERNAL LABEL FOR FILE TOO LONG. FIRST 18
CHARACTERS USED.
Level 3.

EXTERNAL NAME *¥**** QUPPLIED FOR THIS CDICT
ENTRY.
Level 1.

-FILE- CARD MUST HAVE SYMBOL IN LOCATION
FIELD.
Level 4. Card ignored.

FLOATING POINT OVERFLOW IN CONVERTING LIT-
ERAL OR CONSTANT.
Level 2. Value set to highest possible (all binary 1’s).

FLOATING POINT UNDERFLOW IN CONVERTING LIT-
ERAL OR CONSTANT.
Level 2. Value set to zero.

FORMAT ERROR FOLLOWING = SIGN ON -FILE- CARD.
Level 3.

FORMAT ERROR IN FIRST SUBFIELD.
Levels 2 and 3. Card ignored.

I, D OR E OCCURRED MORE THAN ONCE FOR -SAVE-
OPN.
Level 1. Redundant field ignored.

ILLEGAL BCD CHARACTER TREATED AS IF BLANK.
Level 4.

ILLEGAL COUNT FIELD ON -BCI- CARD.
Level 4. Count of 1 used.

ILLEGAL INTERNAL CONDITION. ASSEMBLER OR MA-
CHINE ERROR.
Level 5.

ILLEGAL OPERAND IN THE VARIABLE FIELD.
Level 4.

ILLEGAL QUALIFICATION USAGE ON THIS CARD.
Levels 1 and 3.

ILLEGAL SCAN CONDITION. ASSEMBLER OR MACHINE
ERROR.
Level 5.

ILLEGAL SUBFIELD IGNORED FOR -SAVE- OPN.
Level 3.

ILLEGAL TERMINATOR FOR DECIMAL CONSTANT.
Level 4.

ILLECAL USE OF -ETC- CARD.
Level 1. Card ignored.

ILLEGAL VARIABLE FIELD CONDITION AT START OF
-ETC- CARD.
Level 4. Ignore this and remaining -ETC- cards.

146

IMPROPER PUNCTUATION FOLLOWING HOLLERITH
LITERAL.
Level 4. Punctuation ignored.

INCORRECT DUPLICATE SEQUENCE.
Level 5. The range of a -DUP- that occurs within the
range of another -DUP- must be fixed before the outer
-DUP- is encountered. See IBM 7090/7094 IBSYS Oper-
ating System: Macro Assembly Program (MAP) Langu-
age, Form (C28-6392, for further details.

INCORRECT FORM OF VARIABLE FIELD ON -CONTRL-
OR -FILE- CARD.
Level 3. Card ignored.

INCORRECT FORM OF VARIABLE FIELD ON -ORGCRS-
CARD.
Level 1. Card treated as if variable field were blank.

INDEX SPECIFIED MORE THAN ONCE FOR -SAVE- OPN.
Level 1. Redundancies ignored.

INDIRECT* ADDRESS NOT ALLOWED ON THIS IN-
STRUCTION.
Level 1.

INTERNAL DICTIONARY FULL. ASSEMBLE PROGRAM
IN SMALLER PARTS.
Level 5.

INTERNAL DICTIONARY OVERFLOW WHILE PROCESS-
ING CONTROL DICTIONARY.

Level 4. Assemble program in smaller parts.
INTERNAL TEXT SYNCHRONIZATION FAILURE. AS-
SEMBLER OR MACHINE ERROR.

Level 4.

INVALID INDEX SPECIFIED FOR -SAVE- OPN.

Level 1. Guess used for index value.

-IRP- IGNORED. VARIABLE FIELD ERROR.
Level 1.

LOCATION FIELD FORMAT ERROR.
Illegal characters ignored. If this message refers to the
initial SAVE card of an assembly following a COBOL
compilation, however, a numeric deck name has been
used on the $IBCBC card for the deck. If there is no
reference to the deck name in the program, this error
should not be harmful.

LOCATION FIELD REQUIRED ON THIS CARD.
Levels 2 and 4, Card ignored.

MACRO CALL HAS TOO MANY PARAMETERS.
Level 1. Excess parameters ignored.

MACRO DEFINITION CANNOT HAVE MORE THAN 63
PARAMETERS.
Level 4. Excess parameters ignored.

MACRO DEFINITION CARD WITHOUT NAME IGNORED.
Level 1.

MACRO DEFINITION NESTING ERROR.
Level 1. Missing ~ENDM- cards simulated.

MACRO DEFINITION TERMINATED BY -ENDM- CARD
WITH BLANK VARIABLE FIELD.
Level 1. Macro definition terminated.

MACRO DEFINITION TERMINATED BY -ENDM- CARD
VITII WRONG NAME.
Level 1. Macro definition terminated.

MACRO GENERATION SYNCHRONIZATION FAILURE,
ASSEMBLER OR MACHINE ERROR.
Level 4. Expansion of current macro terminated.

MACRO PARAMETER EXPANSION TABLE OVERFLOW.
Level 5. Results from substitution being too long and/or
too many parameters in macro call.

MACRO PARAMETER PUSH DOWN TABLE OVERFLOW.
Level 5. Results from substitution being too long and/or
too many parameters in macro call.

MACRO SKELETON TABLE OVERFLOW. NO MORE
DEFINITIONS ACCEPTED.
Level 4. Too many macro definitions. Try PURGE.

MISUSE OF E OR B IN LITERAL OR CONSTANT.
Level 2. Invalid characters ignored.

g
SE OF PARENT

Level 3.

MISUSE OF PARENTHESES ON -CALL- OPERATION.
Level 3.

MIXED BOOLEAN EXPRESSION. LEFT BOOL USED.
Level 1.

MORE THAN ONE -BEGIN- FOR THIS LOCATION COUN-
TER. ALL BUT FIRST IGNORED.
Level 4.

MORE THAN ONE DECIMAL POINT FOR LITERAL OR
CONSTANT. ALL BUT FIRST IGNORED.
Level 2.

MORE THAN ONE SIGN FOR EXPONENTIAL OR BINARY-
PLACE PART OF LITERAL OR CONSTANT.
Level 2.

MORE THAN ONE SIGN FOR PRINCIPAL PART OF
LITERAL OR CONSTANT.
Level 2.

¥dkxxx IS AN IMPROPERLY QUALIFIED NAME.
Level 1. Frequently caused by multiple definitions of
names.

Level 1.

**kk% IS AN UNDEFINED SYMBOL.
Level 1.

NAME SUPPLIED FOR -SAVE- OPN.
Level 1.

NAME TABLE FULL. ASSEMBLE PROGRAM IN SMALLER
PARTS.
Level 5. Approximately 3,500 programmer symbols may
be used.

NON-NUMERIC CHARACTER IN ‘ID’ FIELD OF -CALL-.
Level 1. ‘ID’ field ignored and line number used.

NO PREVIOUS LOCATION COUNTER BLANK COUNTER
USED.
Level 2.

NUMERIC FIELD CONTAINS NON-NUMERIC CHARAC-
TER. FIELD IGNORED.
Level 1.

OCTAL CONSTANT CANNOT EXCEED 12 DIGITS.

Level 2. Field truncated to 12 digits.

OCTAL CONSTANT CONTAINS NON-OCTAL CHAR-
ACTER.
Level 2.

ONE OR MORE OQUALIFICATION
CLOSED.
Level 4.

ONLY FIRST -LDIR- EFFECTIVE.

Level 1.

SECTIONS NOT

ONLY FIRST -LORG- EFFECTIVE.
Level 1.

OPERATION CODE NOT IN DICTIONARY.
Level 1. Card ignored.

OPERATION CODE NOT IN DICTIONARY. PURGED.
Level 1. Card ignored.

OPERATION CODE REDEFINED.
Level 1. New definition used.

OPERATION FIELD FORMAT ERROR.
Level 1.

PRINCIPAT., EXPONENTIAL, OR BINARY-PLACE PART
OF LITERAL OR CONSTANT TOO LONG. FIELD TRUN
CATED TO MAXIMUM DIGIT SIZE.

Level 2.

PERMANENT READ ERROR ON SECOND PASS TEXT
INPUT.
Level 4.

PRINCIPAL PSEUDO-OPERATION
FINED.
Levels 2 and 4. Usually due to circular definition.

PSEUDO-OPERATION DICTIONARY FULL. ASSEMBLE
PROGRAM IN SMALLER PARTS.
Level 5.

QUALIFICATION ILLEGAL ON THIS CARD.
Level 4. Card ignored.

QUALIFICATION SECTION NESTING CAPACITY EX-
CEEDED.
Level 4.

QUALIFICATION SECTION NESTING ERROR.
Level 4.

QUALIFICATION SECTION TERMINATED BY -ENDQ-
CARD WITH BLANK VARIABLE FIELD.

Level 1. Innermost qualification eliminated.
QUALIFICATION SECTION TERMINATED BY -ENDQ-

WITH WRONG NAME.
Level 4.

SERIALIZATION GROUP ON -LBL- CARD TOO LARGE.
FIRST EIGHT CHARACTERS USED.
Level 1.

SIGNIFICANT DIGITS LOST IN SHIFTING FIXED POINT
LITERAL OR CONSTANT.
Level 2.

SUBFIELD IGNORED BECAUSE OF FORMAT ERROR.
Level 2. Caused by two left parentheses with no inter-
vening right.

SUBFIELD ****** FORMAT ERROR ON -LABEL- CARD.
Level 2.

S-VALUE INDETERMINATE. ASSEMBLER OR MACHINE
ERROR.
Level 4.

SYMBOL TOO LONG. FIRST SIX CHARACTERS USED.
Levels 1 and 4.

TAG NOT ALLOWED.
Level 1. Zero used for tag.

TAG NOT EXPECTED.
Level 1. Tag used.

TAG REQUIRED.

Level 1. Zero used for tag.

CANNOT BE DE-

Assembler Error Messages 147

THIS CARD NOT EFFECTIVE IN AN ABSMOD AS-
SEMBLY.
Level 1.

THIS CARD NOT EFFECTIVE IN A RELMOD ASSEMBLY.
Level 1.

THIS CARD NOT EFFECTIVE UNLESS WITHIN A
MACRO DEFINITION.
Level 1.

THIS INSTRUCTION CANNOT HAVE AN ASSOCIATED
SYMBOL.
Level 1. Symbol ignored.

TOO MANY SUBFIELDS ON -DUP- CARD. FIRST TWO
USED.
Level 3.

TOO MANY SUBFIELDS ON THIS CARD.
Levels 1 and 2. Excess subfields ignored.

148

TOTAL BIT COUNT FOR -OPVFD- MUST NOT EX-
CEED 36.
Level 3. Card ignored.

VARIABLE FIELD FORMAT ERROR FOR -IFF- OR -IFT-
CARD.
Level 4. Card ignored.

VARIABLE FIELD TOO COMPLEX. SIMPLIFY AND RE-
ASSEMBLE.
Level 3.

VARIABLE FIELD TOO LONG.
Level 4. Variable field truncated to 127 operands.

VIRTUAL CANNOT APPEAR IN -END- OR -TCD- CARD.
Level 2. Control section value used.

VIRTUAL CANNOT APPEAR IN TAG.
Level 1. Zero used for tag.

ZERO SUPPLIED FOR REQUIRED OPERAND.
Level 1.

Load-Time Debugging Processor Error Messages

Following is an alphabetic list of Load-Time De-
bugging Processor error messages. The symbol “#*#++”
in a message indicates the location where the processor
will insert variable information.

**% BCI STRING NOT TERMINATED BY .
BY END OF CARD.
Self-explanatory.

]
=
2
£
=
S
=
52|
S|

**% CAUTION. THIS * REDEF CARD DEFINES SYMBOLS
FOR REQUESTS AFTER THIS CARD AND NOT BEFORE.
Self-explanatory.

CK2 READ ERROR. DUMP TRANSLATION STOPPED.
This is a message from the postprocessor routines and it
indicates that the routines cannot process further dump
information.

*k%x COLUMNS 1-5 SHOULD BE BLANK ON CONTINUA-
TION CARDS (IGNORED).
Self-explanatory.

CONDITIONAL NOT FOLLOWED BY UNCONDI-
TIONAL STATEMENT DELETED.
This message indicates that an IF or an ON statement
is not followed by an unconditional action, such as SET
or DUMP.

% *DEND CARD SIMULATED. *
Self-explanatory.

*** DUPLICATE LIST NUMBERS.
Self-explanatory.

**¥ DUPLICATE STATEMENT NUMBERS.
Self-explanatory.

END OF DUMP RECORD NOT ENCOUNTERED. DUMP
INFORMATION MAY BE INCOMPLETE.
This is a message from the postprocessor routines and
indicates an irregular job termination.

*** ERROR APPROXIMATELY AT V.
The following output appears after this message:
\%

3k b ale 3 3k o s s of ok sk o ok ok ok s o sl e 3 ke oKk ke ok ok

where the V is an arrow pointing to the approximate
part of the source statement, represented by the line of
X’s, in which an error occurred.

¥ *ETC CARD SHOULD HAVE COLUMNS 1-5 BLANK
(IGNORED).
Self-explanatory.

*** EXECUTION TERMINATED DUE TO NESTED

DEBUG REQUESTS.
Either a debugging request CALL has been made to
a subroutine which in turn executes another debugging
request, or a trap has occurred during the execution of
a debugging request and the routine to which control
is thereby passed executes another debugging request.
Pairs of requests in such a relationship are called
“nested.” The above message is connected with a
message occurring later in the output, “*** NESTED
DEBUG REQUESTS.”

#+* EXTRA RIGHT PARENTHESIS IN SET STATEMENT.
IGNORED.
Self-explanatory.

**% GO TO NOT FOLLOWED BY STATEMENT NUMBER.
DELETED.

*+# IBDBL, ENCOUNTERED $-CARD.
Self-explanatory.

*** JBDBL TERMINATED BY UNEXPECTED EOF.
Self-explanatory.

**+ JLLEGAL CALL ARGUMENT. STATEMENT DE-
LETED.
Self-explanatory.

*++ L LEGAL CARD. SKIPPING TO NEXT LEGAL *-CARD.
Self-explanatory.

*** TLLEGAL INSERTION POINT. DELETED.
Self-explanatory.

*** TLLEGAL LIST ELEMENT. ELEMENT DELETED.
Self-explanatory.

*+# I LEGAL MODE IN AREA DUMP SPECIFICATION.
OCTAL ASSUMED.
Self-explanatory.

*** JLLEGAL NAME FIELD. DEFINITION DELETED.
Self-explanatory.

*++ [LLEGAL ON STATEMENT. STATEMENT DELETED.
Self-explanatory.

*** JILEGAL OPTION ON $IBDBL CARD. OPTION
IGNORED.
Self-explanatory.

#*#* TLLEGAL *REDEF FIELD. DEFINITION DELETED.
Self-explanatory.

*** TLLEGAL STATEMENT. STATEMENT DELETED.
Self-explanatory.

*** INTEGER TOO BIG FOR STATEMENT NUMBER.
DELETED.

Self-explanatory.

INVALID INFORMATION ENCOUNTERED ON SYSCK2.
DUMP TRANSLATION STOPPED.
Self-explanatory.

+ L EFT HAND SIDE OF SET IS ILLEGAL. DELETED.
Self-explanatory.

**+ | EFT PARENTHESIS IS UNMATCHED.
Self-explanatory.

**#* TEFT PARENTHESIS MISSING IN CALL STATE-
MENT. IGNORED.
Self-explanatory.

*#+ | EFFT PARENTHESIS MISSING IN IF STATEMENT.
IGNORED.
Self-explanatory.

Load-Time Debugging Error Messages 149

LINE MAX EXCEEDED.
This is a message from the postprocessor routines. This
message indicates that no more information will be
dumped because the programmer-specified LINE MAX
has been exceeded.

*** LIST NUMBER - - - - IS UNDEFINED.
Self-explanatory.

*** LIST STATEMENT HAS NO NUMBER.
Self-explanatory.

*** LIST STATEMENT MAY NOT REFER TO ANOTHER
LIST. REFERENCE DELETED.
Self-explanatory.

*** NESTED DEBUG REQUESTS.

FIRST REQUEST AT ***** REL LOC ***** ABS LOC

xxxkx [N DECK ***++

SECOND REQUEST AT ***** REL LOC ***** ABS LOC

#rxkr [N DECK ***+*
The variable information after the word “AT” in each
half of the message refers to the symbolic location of
the request point in the format symbol + k. This
message is connected with a message that appears
earlier in the debugging output, “*** EXECUTION
TERMINATED DUE TO NESTED DEBUG RE-
QUESTS.”

150

*** RIGHT HAND SIDE OF SET IS ILLEGAL. DELETED.
Self-explanatory.

*** RIGHT PARENTHESIS MISSING IN CALL STATE-
MENT. IGNORED.
Self-explanatory.

*** RIGHT PARENTHESIS MISSING IN IF STATEMENT.
IGNORED.
Self-explanatory.

#* STATEMENT NUMBER **** IS UNDEFINED.
Self-explanatory.

*** SYMBOL HAS MORE THAN 6 CHARACTERS. TRUN-
CATED TO *¥¥%*¥
Self-explanatory.

*** SYSCK2 IS NOT ATTACHED. JOB WILL RUN WITH-
OUT DEBUGGING.
Self-explanatory.

*** TEXT BAD. DEBUG INSERTIONS DELETED.
All debug statements following the previous *DEBUG
card are erroneous; therefore, this *DEBUG card and
all debug statements following it are deleted.

TRAP MAX REACHED.
This is a message from the interpreter routines. This
message indicates that no further debugging will take
place.

The following alphabetical list contains the messages
generated by the Loader. A row of asterisks appears
wherever the Loader inserts a word of variable content.
When a message begins with variable information, the

e Ve . 0¥ ¥ 1 1 .. n__1 21 . .11
messace 1§ listed ainnapeticaliv Ny fne nexi nonvarianie
TIICSSA 0 15 115100 aipiaoTulaasy) il Lbar LV aiialic

word. Thus, if a message cannot be found in the list
alphabetically by the first word, the programmer should
look for the message listed alphabetically by the second
word.

A SUBROUTINE TO BE INSERTED HAS THE SAME
NAME AS AN EXISTING SUBROUTINE WHICH HAS NOT
BEEN DELETED.

Self-explanatory.

ABS.PROG.LD.FAILS.NO.EXEC.
A permanent redundancy occurred in the loading of final
text overflow tape.

CALL TO OBJECT PROGRAM UNDEFINED.
The absolute location of the first instruction in the object
program could not be identified.

g****+* CARD ENCOUNTERED, RETURNING TO MONI-
TOR FOR PROCESSING OF THIS CARD.
Either a $JOB, $IBSYS, $EXECUTE, or $STOP card

was encountered.

CONTROL DICTIONARY CONTAINS UNDEFINED VIR-
TUAL.
This message is printed only if LOGIC is specified and
the control dictionary contains an undefined virtual.

CONTROL SECTION “**#*** I§ AN UNDEFINED ENTRY
POINT.
A section specified on the SENTRY card does not exist.

CONTROL SECTION “#**#*¥ REQUIRED BY SUBROU-
TINE “##4+¥ 15 VIRTUAL IN THE SUBROUTINE
LIBRARY.

Self-explanatory.

CONTROL SECTION ‘“#*##s¥ CSPECIFIED ON A S$SUSE
CARD WAS DELETED, TEXT ERRORS MAY OCCUR.
A section specified on a $USE card was nested within a
section deleted by equality reduction.

CYLINDER COUNT SPECIFIED FOR FILE
Erxddddrrikrsrrix’ EXCEEDS DISK LIMITS. THE MAX-
IMUM WILL BE USED.
A maximum of 250 cylinders is permitted on a SFILE
card for a disk file.

CYLINDER COUNT SPECIFIED FOR FILE
GExEERIA¥ERE ¥ EXCEEDS DRUM LIMITS. THE MAX-
IMUM WILL BE USED.
A maximum of 10 cylinders is permitted on a $FILE
card for a drum file.

DECK “******¥ DOES NOT EXIST IN SOURCE INPUT.
SOMIT ENTRY IS IGNORED.
A $OMIT specification is in error.

DECK “*#****+ DOES NOT EXIST IN SOURCE INPUT, SEC-
TION RENAMED IS IGNORED.
A $NAME specification is in error.

Loader Error Messages

DECK “***#** DOES NOT EXIST IN SOURCE INPUT.
$USE ENTRY IS IGNORED.

A $USE specification is in error.
DECK FORMAT ERROR — PROCESSING DECK “***#+¥ A
CARD SEQUENCE BREAK IN ****¥* SEQUENCE NUM-
}}E}{ ******.

The input deck contains an error in sequence numbers.

DECK FORMAT ERROR — PROCESSING DECK “*¥*#¥%* A
CARD SEQUENCE BREAK IN **#*** SEQUENCE NUM-
BER ****** THE LAST CORRECT CARD IS ***#¥* SE_
QUENCE NUMBER ¥***¥¥x

Self-explanatory.

DECK FORMAT ERROR — PROCESSING DECK “¥##¥x¥
¥*#*¥x* BINARY CARD IS NOT IN PROPER PLACE. CAN-
NOT FOLLOW #***¥*¥¥* CARD.

A binary card improperly follows BCD card.

DECK FORMAT ERROR — PROCESSING DECK ¥
#*x*%* BINARY CARD IS NOT IN PROPER PLACE. THE
LAST CORRECT CARD IS ****** SEQUENCE NUMBER
3k %k %k ok ok

A binary card improperly follows a binary card.

DECK FORMAT ERROR — PROCESSING DECK “¥**¥¥¥
CARD IS NOT IN PROPER PLACE. THIS CARD IGNORED
CANNOT FOLLOW ****** CARD.

A BCD card improperly follows a BCD card.

DECK FORMAT ERROR — PROCESSING DECK **#*#*+
CARD IS NOT IN PROPER PLACE. THE LAST CORRECT
CARD IS *****. SEQUENCE NUMBER*****¥

A BCD card improperly follows a binary card.

DECK FORMAT ERROR — PROCESSING DECK ‘******’
CHECKSUM ERROR --DOES NOT COMPARE IN BITS
e s ok e e ok ok ok e sk ok ok

Self-explanatory.

DECK FORMAT ERROR — PROCESSING DECK ¥+
CHECKSUM ERROR — DOES NOT COMPARE IN BITS
*xkrkrirkirt THE LAST CORRECT CARD IS *¥***. SE-
QUENCE NUMBER *#¥¥#%,

Self-explanatory.

DECK FORMAT ERROR — PROCESSING DECK “***#*x¥
*hkkkdkikiss IS AN ILLEGAL 9L FORMAT.
Absolute decks and Prest decks cannot be processed by
the Loader.

DECK FORMAT ERROR — PROCESSING DECK “*#*#*¥

sxxsxsrxrrsx [§ AN JLLEGAL 9L FORMAT. THE LAST

CORRECT CARD IS ***#** SEQUENCE NUMBER **##%%
Absolute decks and Prest decks cannot be processed by
the Loader.

DECK FORMAT ERROR — PROCESSING DECK *#¥**¥
TEXT ENCOUNTERED IN READING CONTROL INFOR-
MATION.
Subroutine library format error-text should not appear in
control information file. Probable machine error during
library edit.
DECK ****** IS ASSEMBLED FOR IBM 7094 AND CAN-
NOT BE RUN ON IBM 7090.
Self-explanatory.
DECK NAME APPEARING ON THE ABOVE CARD DOES
NOT AGREE WITH NAME FROM S$IBLDR CARD.
All BCD cards ($IBLDR, $FDICT, $TEXT, $CDICT,
$DDICT, and $DKEND) must contain the same deck

pame in columns 8-13.

Loader Error Messages 151

DECKNAME CONTAINS ILLEGAL CHARACTER OR

BLANK. A DECKNAME OF ALL BLANKS WILL BE USED.
The deck name on $IBLDR card is missing or in error.
A parenthesis, slash, quotation mark, equal sign, or em-
bedded blanks are not permitted.

DECK NAME “****** ON $GROUP CARD IS IGNORED.
Self-explanatory.

DECK NAME “#****+ QN $POOL CARD IS IGNORED.
Self-explanatory.

DECK NAME ON $TEXT OR $DKEND CARD UNRECOG-
NIZABLE.
No $IBLDR card appeared with the above name.

DISREGARD MOUNTING INSTRUCTIONS.
This message is printed on-line when execution is sup-
pressed after file list has been printed on-line.

END OF FILE IN READING INPUT (GO) TAPE.
End of file on input tape instead of or immediately fol-
lowing the $IBJOB card.

END OF FILE NOT PERMITTED AT THIS POINT.
Input to the Loader is incomplete because of a probable
setup error. An end of file may not be embedded within
a deck, or before the first $IBLDR card or $INCLUDE
card within a link.

END OF TAPE CONDITION OCCURRED IN WRITING
‘SUBROUTINE LIBRARY’.
Retry subroutine edit.

ENTRY POINT SPECIFIED IS NOT IN MAIN LINK.
An initial transfer to other than the main link is not
permitted.

ERROR IN COMPLEX OPERATOR AT REL LOC xxxxx,
TEXT FOLLOWING MAY BE IN ERROR. (DECK
‘DECKNM’).

Invalid binary text, probable machine error.

ERROR IN COMPLEX RESULT STORAGE REF AT REL
LOC xxxxx, TEXT FOLLOWING MAY BE IN ERROR.
(DECK ‘DECKNM’).

Invalid binary text, probable machine error.

ERROR IN FILE NAME ENCOUNTERED ON A $LABEL
CARD. THE CARD WILL BE IGNORED.
Self-explanatory.

ERROR IN VARIABLE FIELD OF ABOVE CARD. THE
FIELD IS IGNORED.
Self-explanatory.

$ETC CARD NOT FOLLOWING $FILE CARD WHEN RE-
QUIRED. ERRORS MAY OCCUR.
Self-explanatory.

$FILE CARD ACTIVITY SPECIFIED EXCEEDS 99. THIS
MAXIMUM WILL BE USED.
Self-explanatory.

FILE ####%xkisssdkxsrs*_ 799 UNITS ONLY MAY BE
USED WHEN ALTIO OPTION IS SPECIFIED.
Self-explanatory.

FILE “**##*sdsxxxsiissr’ BASE OF ‘BLOCK SIZE A MUL-
TIPLE OF’ IS INCONSISTENTLY SPECIFIED.
File dictionaries from different decks do not agree on the
blocksize definition.

$FILE CARD BLOCK SIZE SPECIFIED EXCEEDS 9999.
THIS MAXIMUM WILL BE USED.
Self-explanatory.

152

FILE #*###tssaxssssxiss CHANNEL IS ILLEGITIMATE.
The channel specified cannot be used.

FILE CHECK-FILE “#*¥#fxsizsxxrizss DEVIATION
FROM BASE OF ‘BLOCK SIZE A MULTIPLE OF’.

The file dictionary blocksize does not agree with the
$FILE card for the same file.

FILE CHECK-FILE “#*¥¥dkssdrixsxsis’ DEVIATION
FROM ‘EXACT BLOCK SIZE.
The file dictionary blocksize does not agree with the
$FILE card for the same file.

FILE CHECK-FILE ‘“**¥*¥x¥sstssdissss DEVIATION
FROM FILE TYPE.
The file type (input, output, checkpoint) in the file dic-
tionary does not agree with the $FILE card for the same
file.

FILE CHECK-FILE “*¥##sfssssdstiisr DEVIATION
FROM ‘MINIMUM BLOCK SIZE’.
The file dictionary blocksize does not agree with the
$FILE card for the same file.

FILE CHECK-FILE “**¥®eriidssxixsis DEVIATION
FROM MIXED MODE.
The file dictionary does not agree with the $FILE card
for the same file.

FILE CHECK-FILE “#*¥s*kkiisrsxtrrss DEVIATION
FROM MODE.
The file dictionary does not agree with the $FILE card
for the same file.

FILE CHECK-FILE “¥ikixrrxsrsrssse DEVIATION
FROM UNIT ASSIGNMENT (CARD UNIT NOT AL-
LOWED).

Self-explanatory.

FILE CHECK-FILE “**#¥¥kkiksssirsrs’ DEVIATION
FROM UNIT ASSIGNMENT (TAPE UNIT NOT AL-
LOWED).

Self-explanatory.

FILE “**¥xdeetrdrrirrssd’ DISK MODULE REQUESTED
IS NOT AVAILABLE.
Self-explanatory.

FILE “¥®#tsxsrrrtitissr’ DRUM MODULE REQUESTED
IS NOT AVAILABLE.
Self-explanatory.

FILE “**#**fxxsrrrirtis’ ‘EXACT BLOCKSIZE’ IS INCON-
SISTENTLY SPECIFIED.
File dictionaries from different decks do not agree on
blocksize definition.

FILE “¥##¥adxixiisstsss® I LEGAL SECONDARY UNIT
(REQUEST IS IGNORED).
The secondary unit may not be card equipment, disk, or
internal file. The secondary unit must be compatible
with primary unit: ** may not be used to specify second-
ary unit when primary unit is an intersystem reserve unit.

FILE “F¥##**sxxxstiss***’ ILLEGAL SYSUNI CODE.
A machine or system error.

FILE “¥*#kfidiikiririre INTERSYSTEM INPUT FILE
HAS NOT BEEN RESERVED.
Self-explanatory.

FILE “*¥¥¥*sxiritskisss®’ 1/0 UNIT TYPE REQUIREMENT
IS INCONSISTENTLY SPECIFIED.
File dictionaries from different decks do not agree on an
input/output unit type.

FILE “kkkrxxickihriitir’ N(ODE OR FILE I/0 TYPE IS IN-
CONSISTENTLY SPECIFIED.
File dictionaries from different decks do not agree.

FILE “###xwisirsxirsxrs® NO UNIT IS ASSIGNED TO
*xkxit (REQUEST IS IGNORED).
Self-explanatory.

FILE “*x#ddsrsrsriiisss’ PRINTER ILLEGAL AS AN
INPUT
Self-explanatory.

FILE “¥*#*#¥xsssrisxiis’ PROCESSING ERROR.
Machine or system error during unit assignment.

FILE “###¥wisssiirsisss PUNCH ILLEGAL AS AN IN-
PUT.
Self-explanatory.

FILE “##*##dssrissiriiss RQRADER ILLEGAL AS AN OUT-
PUT.

Self-explanatory.
FILE RENAME FOR FILE “#*##siffsrriharssr [Q [G.

NORED. DECK “**#*** DOES NOT EXIST.
Self-explanatory.

FILE RENAME FOR FILE ##¥®kksrixkeiissrs g JG.
NORED. FILE DOES NOT EXIST IN ANY FILE DIC-
TIONARIES.

Self-explanatory.

FILE RENAME FOR FILE ¥®###¥krkikiksseet 10 JG.
NORED. FILE DOES NOT EXIST IN DECK “**##%%’,
Self-explanatory.

FILE “##*#srrirrrssriss’ RESERVE UNIT NAME IS IL-
LEGAL.
Intersystem reserve channels are designated by letters]
through Q. Unit numbers range from 0 through 9.

FILE “*¥#$xissrdshsxikss’ SPRCIFIED AS NOPOOL IS REF-
ERENCED BY A $POOL OR $GROUP CARD. NOPOOL IS
IGNORED.

Self-explanatory.

FILE “**#xfastrsirrsiss’ SPECIFIED ON $GROUP CARD
DOES NOT EXIST.

Self-explanatory.

FILE “ed#xidsrisrrisriir SPECIFIED ON $LABEL CARD
DOES NOT EXIST.
Self-explanatory.

FILE “##¥sfxrisxrsxsssr SPECIFIED ON $POOL CARD
DOES NOT EXIST.
Self-explanatory.

FILE €k ek ok o ok ok 3 ok ok ok ok ok ok ke ok kK UNIT Hokokkkok ILLEGAL AS AN
INPUT.
Self-explanatory.

FILE €3k o oK ok ok ok 3 sk ok ok ok ckok ok R k2 UNIT dokckd ko ILLEGAL AS AN
OUTPUT.
Self-explanatory.

FILE €oke ok ok ok ok ok o ok ok 3k ok ok ok o ok ok ok ok UNIT sk kokok ILLEGAL FOR
BCD MODE USE (STANDARD OPTION IS ASSUMED).
File mode is binary.

FILE € ok ok ok 3k ok ok ok 3Kk ok ok ok ok kO UNIT a5 ok ok ok ok ok ILLEGAL FOR
BINARY MODE USE (STANDARD OPTION IS ASSUMED).
File mode is BCD.

FILE €3k ok ok Sk ok ok ok ok sk sk e ok ok sk ok ke ok 0 U:\'IT ok 3k ok ok ok %k IS AN ILLEGAL
SECONDARY UNIT (REQUEST IS IGNORED), SECOND
UNIT ASSIGNED SAME AS FIRST.
The secondary unit may not be card equipment, disk, or
internal file. The secondary unit must be compatible with
primary unit. “** may not be used to specify secondary
unit when primary unit is an intersystem reserve unit.

FILE “*sksxksksirsisss [UN[T *+++5x NOT ALLOWED
FOR LABELLED FILE USE.

Self-explanatory.

FILE S#*#x#sxdsrxideizis UNIT REQUESTED IS NOT
AVAILABLE.
Self-explanatory.

FILE ®¥##sstsriissrissr’ UNIT2 CHANNEL IS ILLEGIT-
IMATE (REQUEST IS IGNORED).
The channel specified cannot be used.

FILE ‘“##¥##xizixsisrisis UNIT2 REQUESTED IS NOT
AVAILABLE (REQUEST IS IGNORED).
Self-explanatory.

FIRST CARD READ FROM ‘INPUT/‘GO TAPE’ IS NOT A
$IBJOB CARD.
Probable machine error.
FORMAT ERROR ENCOUNTERED ON A $LABEL CARD.
THE CARD WILL BE IGNORED.
Self-explanatory.

FORMAT ERROR ENCOUNTERED ON A $SIZE CARD.
THE CARD WILL BE IGNORED.
Self-explanatory.

FORMAT ERROR FOR FIELD ‘****** QF §NAME CARD.

THE REMAINDER OF THIS CARD AND ASSOCIATED

SETC CARDS WHICH FOLLOW WILL BE IGNORED.
Self-explanatory.

FORMAT ERROR FOR FIELD “****¥ OF $OMIT CARD.

THE REMAINDER OF THIS CARD AND ASSOCIATED

$ETC CARDS WHICH FOLLOW WILL BE IGNORED.
Self-explanatory.

FORMAT ERROR FOR FIELD “******¥ QF $USE CARD.

THE REMAINDER OF THIS CARD AND ASSOCIATED

$ETC CARDS WHICH FOLLOW WILL BE IGNORED.
Self-explanatory. -

$GROUP CARD BUFFER COUNT SPECIFIED EXCEEDS
999. THE FIELD WILL BE OMITTED.
Seif-explanatory.

$GROUP CARD OPEN FILE COUNT SPECIFIED EX-
CEEDS 99. THE FIELD WILL BE OMITTED.
Self-explanatory.

SIBLDR CARD ENCOUNTERED WHICH SPECIFIES
‘LIBE’ DURING PROCESSING OF ‘NOLIBE® OPTION
CARDS ONLY. THE CARD WILL BE IGNORED.

Mixture of ‘LIBE’ and ‘NOLIBE’ decks is not permitted.

SIBLDR CARD ENCOUNTERED WHICH SPECIFIES ‘NO-
LIBE’ DURING PROCESSING OF ‘LIBE’ OPTION CARDS
ONLY. THE CARD WILL BE IGNORED.

Mixture of ‘LIBE’ and ‘NOLIBE’ decks is not permitted.

$IBLDR CARD ENCOUNTERED WHILE PROCESSING
SUBROUTINE WHICH HAS THE SAME NAME AS
$IBLDR CARD FROM SOURCE INPUT WHERE ‘LIBE’
OPTION WAS NOT SPECIFIED.

Duplicate deck names are not permitted.

SIBLDR CARD WITH DUPLICATE NAME ENCOUN-
TERED WHILE PROCESSING SOURCE INPUT.
Duplicate deck names are not permitted.

ILLEGAL BCD VALUE ENCOUNTERED ON A S$ETC

CARD FOLLOWING A SFILE CARD. THE $FILE CARD

AND ASSOCIATED SETC CARDS WILL BE IGNORED.
Self-explanatory.

ILLEGAL BCD VALUE ENCOUNTERED ON A S$ETC
CARD FOLLOWING A S3GROUP CARD. THE $GROUP
CARD AND ASSOCIATED S$ETC CARDS WILL BE
IGNORED.

Self-explanatory.

Loader Error Messages 153

ILLEGAL BCD VALUE ENCOUNTERED ON A S$ETC

CARD FOLLOWING A $POOL CARD. THE $POOL CARD

AND ASSOCIATED $ETC CARDS WILL BE IGNORED.
Self-explanatory.

JLLEGAL BCD VALUE ENCOUNTERED ON A S$FILE
CARD. THIS CARD AND ASSOCIATED SETC CARDS
WILL BE IGNORED.

Self-explanatory.

ILLEGAL BCD VALUE ENCOUNTERED ON A $GROUP
CARD. THIS CARD AND ASSOCIATED $ETC CARDS
WILL BE IGNORED.

Self-explanatory.

ILLEGAL BCD VALUE ENCOUNTERED ON A $POOL
CARD. THIS CARD AND ASSOCIATED $ETC CARDS
WILL BE IGNORED.

Self-explanatory.

ILLEGAL CHARACTER ENCOUNTERED ON A $ETC

CARD FOLLOWING A $FILE CARD. THE $FILE CARD

AND ASSOCIATED $ETC CARDS WILL BE IGNORED.
Self-explanatory.

ILLEGAL CHARACTER ENCOUNTERED ON A $ETC
CARD FOLLOWING A $GROUP CARD. THE $GhOUP
CARD AND ASSOCIATED $ETC CARDS WILL BE
IGNORED.

Self-explanatory.

ILLEGAL CHARACTER ENCOUNTERED ON A $ETC

CARD FOLTLOWING A $POOI. CARD. THE $POOL CARD

AND ASSOCIATED SETC CARDS WILL BE IGNORED.
Self-explanatory.

ILLEGAL CHARACTER ENCOUNTERED ON A $FILE
CARD. THIS CARD AND ASSOCIATED SETC CARDS WILL
BE IGNORED

Self-explanatory.

ILLEGAL CHARACTER ENCOUNTERED ON A $GROUP
CARD. THIS CARD AND ASSOCIATED $ETC CARDS WILL
BE IGNORED.

Self-explanatory.

ILLEGAL CHARACTERS ENCOUNTERED ON A $POOL
CARD. THIS CARD AND ASSOCIATED $ETC CARDS WILL
BE IGNORED.

Self-explanatory.

ILLEGAL CHARACTER. REMAINDER OF CARD IG-
NORED.
$ORIGIN or $INCLUDE card contains an invalid char-
acter or a blank in column 16.

ILLEGAL FILE NAME ENCOUNTERED ON A $ETC CARD

FOLLOWING A $FILE CARD. THE S$FILE CARD AND

ASSOCIATED $ETC CARDS WILL BE IGNORED.
Self-explanatory.

ILLEGAL FILE NAME ENCOUNTERED ON A $ETC CARD

FOLLOWING A $GROUP CARD. THE $GROUP CARD AND

ASSOCIATED $ETC CARDS WILL BE IGNORED.
Self-explanatory.

ILLEGAL FILE NAME ENCOUNTERED ON A $ETC CARD

FOLLOWING A $POOL CARD. THE $POOL CARD AND

ASSOCIATED $ETC CARDS WILI. BE IGNORED,
Self-explanatory.

ILLEGAL FILE NAME ENCOUNTERED ON A $FILE
CARD. THIS CARD AND ASSOCIATED $ETC CARDS
WILL BE IGNORED.

Self-explanatory.

154

ILLEGAL FILE NAME ENCOUNTERED ON A $GROUP
CARD. THIS CARD AND ASSOCIATED $ETC CARDS WILL
BE IGNORED.

Self-explanatory.

ILLEGAL FILE NAME ENCOUNTERED ON A $POOL
CARD. THIS CARD AND ASSOCIATED $ETC CARDS
WILL BE IGNORED.

Self-explanatory.

ILLEGAL SECTION NAME ENCOUNTERED ON A
$ENTRY CARD. THE CARD WILL BE IGNORED.
The section name specified on the $ENTRY card may not
contain a parenthesis, equal sign, quotation mark, comma,
or slash.

IMPROPER FORMAT.
Leading, trailing, or multiple field separators occur in
the variable field of the $ORIGIN or $INCLUDE card.

IMPROPER SYMBOLIC ORIGIN.
The symbolic origin on a $ORIGIN card is all numeric
or greater than six characters.

INCOMPLETE DDICT ENTRY IN DECK “***#**’,
More debugging dictionary binary cards are expected
before $DKEND card.

INPUT/OUTPUT ERROR — BLOCK SEQUENCE FAILURE

AND PERMANENT REDUNDANCY OCCURRED IN READ-

ING GENERATED TIF. .
Probable machine error.

INPUT/QUTPUT ERROR — BLOCK SEQUE}
AND PERMANENT REDUNDANCY OCCURRED
ING INTERMEDIATE TEXT.

Probable machine error.

INPUT/OUTPUT ERROR — BLOCK SEQUENCE FAILURE
AND PERMANENT REDUNDANCY OCCURRED IN READ-
ING LIBRARY CTRL FILE.

Probable machine error.

v

INPUT/OUTPUT ERROR — BLOCK SEQUENCE FAILURE
AND PERMANENT REDUNDANCY OCCURRED IN READ-
ING LIBRARY SRNT/SRDT.

Probable machine error.

INPUT/OUTPUT ERROR — BLOCK SEQUENCE FAILURE
AND PERMANENT REDUNDANCY OCCURRED IN READ-
ING LIBRARY TEXT FILE.

Probable machine error.

INPUT/OUTPUT ERROR — END OF BUFFERS CONDI-
TION OCCURRED IN READING GENERATED CIF.
Probable machine error.

INPUT/OUTPUT ERROR — END OF BUFFERS CONDI-
TION OCCURRED IN READING GENERATED TIF.
Probable machine error.

INPUT/QOUTPUT ERROR — PERMANENT REDUNDANCY
OCCURRED IN READING GENERATED CIF.
Probable machine error.

INPUT/OUTPUT ERROR — PERMANENT REDUNDANCY
OCCURRED IN READING GENERATED TIF.
Probable machine error.

INPUT/OUTPUT ERROR — PERMANENT REDUNDANCY
OCCURRED IN READING INTERMEDIATE TEXT.
Probable machine error.

INPUT/OUTPUT ERROR — PERMANENT REDUNDANCY
OCCURRED IN READING LIBRARY CTRL FILE.
Probable machine error.

INPUT/OUTPUT ERROR — PERMANENT REDUNDANCY
OCCURRED IN READING LIBRARY SRNT/SRDT.
Probable machine error.

INPUT/OUTPUT ERROR — PERMANENT REDUNDANCY
OCCURRED IN READING LIBRARY TEXT FILE.
Probable machine error.

INPUT/OUTPUT — END OF FILE IN READING INTER-
MEDIATE TEXT.
Probable machine error.

INPUT/OUTPUT ERROR — UNEXPECTED END OF FILE
IN READING LIBRARY CTRL FILE.
Nonexistent subroutine or a routine which had been

assed was specibed on librarian control card
passed was specilied On & nhpranan conirol cara.

INPUT/OUTPUT ERROR — UNEXPECTED END OF FILE
IN READING LIBRARY TEXT FILE.
Probable machine error.

INSUFFICIENT STORAGE FOR CONTROL DICTION-
ARIES AND CONTROL INFORMATION DETECTED BY
kkkokkk
Program is too large for the Loader to handle. Decks
must be restructured to reduce cross referencing.

INSUFFICIENT STORAGE TO GENERATE SUBROUTINE
SECTION NAME TABLE AND SUBROUTINE DEPEND-
ENCE TABLE.
The library contains too many control sections. Some
control sections must be deleted.

INSUFFICIENT WORKING STORAGE.
Decks must be restructured to reduce cross referencing.

1/0 ERROR — EOB IN WRITING FINAL TEXT.
Probable machine error.

1/0 ERROR — TEXT — EOB.
Probable machine error.

I/0 ERROR — TEXT PERM. REDUNDANCY.
Probable machine error.

LIBRARIAN CONTROL CARD WITH BLANK VARIABLE
FIELD.
Only $INSERT card may have blank variable field.

LOADING. TERMINATED DUE TO HASH TABLE OVER-
FLOW. THERE IS AN EXCESSIVE NUMBER OF UNIQUE
CONTROL SECTION NAMES.
Only 1,000 unique control section names are allowed in
loading. (2,000 unique control section names are per-
mitted by the librarian.) The Loader must be re-
assembled.

LOADING TERMINATED DUE TO IMPROPERLY DE-
FINED OVERLAY STRUCTURE.
Overlay structure could not be defined because of in-
valid symbolic origins on one or more links.

LOADING TERMINATED DUE TO TOO MANY VIRTUAL
SECTIONS.

If not a system or machine error, IBLDR must be re-
assembled. Current limit is 350 virtual sections.

NO DECKNAME IN SPECIFICATION ON $USE CARD.
“exriie’ ENTRY IS IGNORED.
Self-explanatory.

NON STANDARD LABEL ROUTINE FOR FILE
HERITEILIRERLEREE WAS DELETED BY LOAD CONTROL
CARDS.

Self-explanatory.

NO SYMBOLIC ORIGIN SPECIFIED.

A symbolic origin is not first in the variable field of a
$ORIGIN card.

NOT ENOUGH UNITS AVAILABLE.
This general error message is generated if there were
not enough units to complete total unit assignment
requests.

‘NOTEST IGNORED BECAUSE ‘LIBE’ OPTION IS
SPECIFIED.
Self-explanatory.

NOT IB LOADER CONTROL CARD. CARD IGNORED.
Self-explanatory.

OBJECT PROGRAM EXCEEDS AVAILABLE STORAGE.
Self-explanatory.

NADTIANG OTHEHE
OPTIONS OTHE

ON MAIN LINK $ORIGIN CARD.
Self-explanatory.

ORIGIN IS INCORRECTLY SPECIFIED. ORIGIN IS
IGNORED..
Librarian control card ($INSERT, $REPLACE, $AS-
SIGN), used to assign an absolute origin to a Library
routine, is incorrect.

THAN ABSULU

2o}

ORIGIN MUST BE SPECIFIED ON $ASSIGN CARD.

Librarian control card error.

ORIGIN SPECIFIED FOR LINK *** IS TOO LOW. LOW-
EST ALLOWABLE FOR THIS SYSTEM CONFIGURATION
IS ***** (OCTAL) AND HAS BEEN ASSIGNED.
An absolute origin specified on a $ORIGIN card is too
low.

OVERLAY SUBROUTINE .LOVRY NOT DEFINED.
LOVRY is required to perform overlay link loading.

PARAMETER “****** NOT RECOGNIZED. IGNORED.
Unrecognizable parameter found on $ORIGIN card.

PERM REDUN IN READING INPUT (GO) TAPE.
Probable machine error.

$POOL CARD BLOCK SIZE SPECIFIED EXCEEDS 9999.
THE FIELD WILL BE OMITTED.
Self-explanatory.

$POOL CARD BUFFER COUNT SPECIFIED EXCEEDS
999. THE FIELD WILL BE OMITTED.
Self-explanatory.

POOLING ERROR GROUPING FILE ‘¥#*#skskwhsssini,
Files of one group are not in the same buffer pool.

assxs+’ PREVIOUSLY SPECIFIED, IGNORED.
Section or deck appears more than once on $INCLUDE
cards for the same link.

PROGRAM EXCEEDS ABSOLUTE LOCATION *¥¥***
Program may use but not load above specified value.

PROGRAM REQUIRES IOCS, IOCS MAY NOT BE
LOADED WHEN THE ALTIO OPTION HAS BEEN
SPECIFIED.

Self-explanatory.

RELATIVE LOCATION OF TEXT CONTAINING ILLEGAL
CONTROL GROUP. (DECK “¥¥*¥¥7}),
A list of relative locations follows this message.

RELATIVE LOCATION OF TEXT CONTAINING ILLEGAL
LOCATION COUNTER CONTROL. (DECK “******’),
Self-explanatory.

RELATIVE LOCATION OF TEXT CONTAINING UNDE-
FINABLE FIELD. (DECK “*****¥),
A list of relative locations follows this message.

Loader Error Messages 155

*xxxk REQUIRED AS A LOAD-TIME DEPENDENCY BY
ROUTINE ***** IS VIRTUAL IN IBLIB. LIBRARIAN
PROCESSING CONTINUES WITH THIS DEPENDENCY
IGNORED.
The input/output routine required from analysis of a
SLABEL or $FILE card does not exist in the Library.

SECONDARY S$ENTRY CARD ENCOUNTERED AND
IGNORED.
Self-explanatory.

SECTION **#*** 1§ AN UNDEFINED SYSTEM SYMBOL.
Faulty system subroutines or machine error.

SECTION “*##**** DOES NOT EXIST IN DECK %%k
$OMIT ENTRY IS IGNORED.
A $OMIT specification is in error.

SECTION “**#*¥¥ DOES NOT EXIST IN DECK “###%%
SECTION RENAME IS IGNORED.
A $NAME specification is in error.

SECTION “****#+¥* DOES NOT EXIST IN DECK “#k**%’
$USE ENTRY IS IGNORED.
A $USE specification is in error.

SECTION “*****¥ DOES NOT EXIST IN SOURCE INPUT.
$OMIT ENTRY IS IGNORED.
A SOMIT specification is in error.

SECTION “***+** DOES NOT EXIST IN SOURCE INPUT.
SECTION RENAME IS IGNORED.
A $NAME specification is in error.

SECTION “##**## [N DECK ‘****** HAS BEEN MARKED
FOR DELETION AND CANNOT BE SPECIFIED ON $USE
CARD.

A $USE specification is in error.

SECTION — 2 I/0 ERROR EOB IN SRDICT.
Probable machine error.

SECTION — 2 I/0 ERROR EOF IN SRDICT.
Probable machine error.

SECTION NAME OF ‘000000’ OR ‘// CANNOT BE SPECI-
FIED. $NAME ENTRY IS IGNORED.
Self-explanatory.

SECTION NAME OF ‘000000 OR ‘//° CANNOT BE SPECI-
FIED. $USE ENTRY IS IGNORED.
Self-explanatory.

SECTION NAME OF ‘000000 OR “//° CANNOT BE SPECI-
FIED. $OMIT ENTRY IS IGNORED.
Self-explanatory.

SECTION OR DECK “****** AS BEEN SPECIFIED TO
BE ASSIGNED TO MORE THAN ONE LINK.
Section or deck appears on more than one $INCLUDE
card in different links.

SEQUENCE FAILURE IN ORDERING OF SR LIBRARY.
Probable machine error.

STARTING CYLINDER SPECIFIED FOR FILE
rERER RSk xR ks’ EXCEEDS DISK LIMITS. ZERO WILL
BE USED.
Starting cylinder specified on a $FILE card for a disk
file cannot exceed 249.

STARTING CYLINDER SPECIFIED FOR FILE
FEFEEAE XL XA AR k43 EXCEEDS DRUM LIMITS. ZERO WILL
BE USED.
Starting cylinder specified on a $FILE cards for a drum
file cannot exceed 9.

STORAGE ALLOCATION ERROR — BUFFER COUNT

SPECIFIED ON A POOL CARD IS INSUFFICIENT.
Number of buffers must be larger to handle the required
number of open files.

156

STORAGE ALLOCATION ERROR—INSUFFICIENT INPUT/
OUTPUT BUFFER STORAGE.
Files must be pooled.

SUBROUTINE DICTIONARY FORMAT ERROR.
Machine or system error.
A). EOF in middle of subroutine name table
B). No subroutine name table
C). Subroutine dependence table not complete
D). Subroutine dependence table has invalid format
1) Invalid operation
2) Comma was encountered when bracket count
not greater than zero
3) Too many right brackets

SUBROUTINE NAME IS INCORRECTLY SPECIFIED.
Invalid format of deck name on librarian control card.

SYMBOL “*****+* NOT DEFINED IN DECK “***#*¥*
Debugging symbol was not found in debugging diction-
ary for this deck. Debugging activity needing this symbol
will be ineffective.

SYMBOL “**#***+ NOT DEFINED IN DECK ‘“****** DECK
NOT ENCOUNTERED.
A deck for which a debugging dictionary was required
was not in this program load. Debugging activity need-
ing this symbol will be ineffective.

SYSTEM ERROR OR CPU MAINFRAME FAILURE. ENTRY
IN SUBROUTINE SECTION NAME TABLE DOES NOT
APPEAR AS REAL RETAINED SECTION IN ANY CON-
TROL DICTIONARY.

Self-explanatory.

THE ABOVE CARD IS NOT A LIBARIAN CONTROL
CARD.
Self-explanatory.

THE ABOVE CARD IS NOT PERMITTED IN THE LI-
BRARY. IT IS IGNORED.
Subroutines may not contain $USE, $OMIT, or $SNAME
cards.

TOO MANY LEVELS SUBROUTINE DEPENDENCE.
More than 25 dependent subroutines detected due to
calling some subroutine.

TOO MANY REQUIRED SUBROUTINES.
The program uses so many subroutines from the Sub-
routine Library that the storage allotted for the list of
subroutine names is exhausted. This list, called the re-
quired subroutine package number list, is described in
“Section 2” under “Loader Information” and in “Sub-
routine Library Information.”

UNDEFINED CONTROL DICTIONARY ENTRIES REFER-
ENCED.
A list of control section names always follows this
message.

UNDEFINED FILE “¥#¥*dkbkrirksxrst’ QEIIE card is
missing.
Self-explanatory.

UNDEFINED SECTION OR DECK NAME #**#%%>
A section or deck name on a $INCLUDE card is unde-
fined.

UNDEFINED VIRTUAL CONTROL SECTION “*##*x*x
This message is not printed if LOGIC is requested.

UNEXPECTED END OF BUFFERS CONDITION ENCOUN-
TERED IN WRITING OF INTERMEDIATE TEXT FILE.
Probable machine error.

UNIT SYSxxx NOT ATTACHED AND READY.
Unit specified for overlay links has not been attached to
a physical drive.

UNRECOGNIZABLE PARAMETER ENOUNTERED ON A
$FILE CARD. “****** WILL BE IGNORED.
Self-explanatory.

UNRECOGNIZABLE PARAMETER ENCOUNTERED ON A
$GROUP CARD. “**##** WILL BE IGNORED.
Self-explanatory.

UNRECOGNIZABLE PARAMETER ENCOUNTERED ON A
SIBLDR CARD. ****** WILL BE IGNORED.
Self-explanatory.

UNRECOGNIZABLE PARAMETER ENCOUNTERED ON A
SLABEL CARD. THE FIELD IS STORED AS ZERO.
Self-explanatory.

UNRECOGNIZABLE PARAMETER ENCOUNTERED ON A
$POOL CARD. “****** WILL BE IGNORED.
Self-explanatory.

UNRECOGNIZABLE PARAMETER ON S$IBJOB CARD.
**xxk+ IS IGNORED.
Self-explanatory.

VALUE SPECIFIED ON $SIZE CARD EXCEEDS FIELD
SIZE. THE CARD WILL BE IGNORED.
Self-explanatory.

VIRTUAL SECTION NAME LIST IS FULL.
If not system or machine error, the Loader must be
reassembled. Limit is 350.

Loader Error Messages 157

Subroutine Library Error Messages

The following list includes system subroutine, FORTRAN
v subroutine, and coBoL subroutine error messages.
Following each message is an explanation or a sug-
gested action. The symbol “******” indjcates the loca-
tion in a message where the Subroutine Library inserts
variable information.

System Subroutine Messages

The subroutine in which the error was encountered
precedes each message.

.LXCON
**#+43% LINES OUTPUT
Self-explanatory.

STR AT Aok ok ok ok XRl = %¥kkk XR2 = FEEkk XR4 = *Fkkk
This message occurs only on the IBM 7090 Oper-
ating System and is followed by a dump.

SYSTEM STOP XR1 = ***#* XRQ = ***#+* XRY = ***+*
Self-explanatory. This message occurs only on the
IBM 7090 Operating System.

STR AT o ook % ok XRl —_ *kok ok ok XR2 — * Kk koK XR4 = EEE2 13

XR3 = **¥¥% XR5 = *+k¥* YRE = ***k* XRT = *kkks
This message occurs only on the IBM 7094 Oper-
ating System and is followed by a dump.

SYSTEM STOP XR1 = ***** XRQ = **¥¥* XR4 = ***+%
XR3 = *#+#* XR5 = *+kdk XRE = ***k¥k XRT = ***kx
Self-explanatory.

.LOVRY

UNABLE TO INTERPRET OVERLAY COMMUNI-

CATION REGION WHILE LOADING LINK. CAN-

NOT PROCEED.
This message is generated when the overlay tables,
.LDT, .LVEC, or .LRECT, are destroyed, or when
a tape read error occurred while overlay tables were
being destroyed.

.LXSL
.LXSEL FOR UNIT REQUESTED IS NOT IN
LIBRARY.
This message indicates that a reassembly is re-
quired for the equipment requested. .LXSL is a
modular assembly based on parameters for disk/
drum and Hypertape.

SYSOU, SYSIN, OR SYSPP CANNOT BE ASSIGNED
TO DISK/DRUM.
Since the operating system does not support periph-
eral functions on disk or drum, .LXSL does not
support them either. Reassignment of the function
is required.

FORTRAN IV Subroutine Messages

The following list gives the subroutine in which the
error was encountered, the error code, the error mes-
sage, and the optional exit message. Execution is
terminated after each error message is written unless
the optional exit is used. The optional exit message is

158

written below the error message to indicate the action
taken before execution is resumed. (See the discussion
of optional exits under “Forrran Utility Library.”) An
explanation follows each error message and each
optional exit message.

FXP1 1
EXPONENTIATION ERROR 0**0.
For I’ where I=9, J=0.

SET RESULT =0.
Set '=0.

FXP1 2
EXPONENTIATION ERROR 0**(-J).
For I’ where I=0, J<0.

SET RESULT =0.
Set I’=0.

FXP2 3
EXPONENTIATION ERROR 0**0.
For B’ where B=0, J=0.

SET RESULT =0.
Set B’=0.

4
EXPONENTIATION ERROR 0**(-]).
For B’ where B=0, J<0.

SET RESULT =0
Set B’=0.

FXP3 5
EXPONENTIATION ERROR (-B)**C.
For B® where B<0, C£0.

EVALUATE FOR +B.
Evaluate for | B |.

FXP3 6
EXPONENTIATION ERROR 0**0.
For B® where B=0, C=0.

SET RESULT =0.
Set B°=0.

FXP3 7
EXPONENTIATION ERROR 0**(-C).
For B¢ where B=0, C<0.

SET RESULT =0.
Set B¢=0.

FXPF 8
EXP(X), X GRT THAN 88.029692 NOT ALLOWED.
For e* where X>88.029692.

SET RESULT = +OMEGA.
SET e* = +12.

FLOG 9
ALOG(0) OR ALOG10(0) NOT ALLOWED.
For log.X or logiwX where X=0.
SET RESULT = —OMEGA.
Set log.X or logiX = —Q.
FLOG 10
ALOG (—X) OR ALOGI10 (—X) NOT ALLOWED.
For log.X or logX where X < 0.
EVALUATE FOR +X
Evaluate for | X |.

FATN 11
ATAN2 (0,0) NOT ALLOWED.
For arctan {Y,X) where Y = 0, X = 0.

SET RESULT = 0.
Set angle = 0.

FSCN 12
SIN(X) OR COS(X), i X 1 GRT THAN OREQ TO
2*#%95 NOT ALLOWED.
For sin(x) or cos(x) where | X = 2%

SET RESULT = 0.
Set sin(X) = 0 or cos(X) = 0.
FSQR 13

A/ WA AT
SORT { —X) NOT ALLOWED.

Fo\r X2 where X <0.

EVALUATE FOR +X.
Evaluate for | X |.

FDX1 14
EXPONENTIATION ERROR 0**0.
For D where D=0, J=0.
Also, for 7 where Z = 0 + 0i,] = 0.

SET RESULT =0.
Set DT = Qorset Z7 = 0 + Oi.

FDX1 15

EXPONENTIATION ERROR 0**(-J).
For D where D=0, J<0.
Also, for Z* where Z = 0 + 0i,] < 0.

SET RESULT =0.
Set D =0orsetZ’ = 0 + 0i.

FDX2 16
EXPONENTIATION ERROR (-B)**C.
For D;®2where D,<0, D25£0.

EVALUATE FOR +B.
Evaluate for | D1 |.

FDX2 17
EXPONENTIATION ERROR 0**0.
For D:°2 where D:=0, D.=0.

SET RESULT =0.
Set D:”2=0.

FDX2 18
EXPONENTIATION ERROR 0**(—-C).
For D:P: where D;=0, D-<0.

SET RESULT =0.
Set D,"2=0.

FDXP 19
DEXP(X), X GRT THAN 88.029692 NOT ALLOWED.
For e* where X>>88.029692.

SET RESULT = +OMEGA.
Sete* = +Q.

FDLG 20
DLOG(0) OR DLOG10{0) NOT ALLOWED.
For log.X or logiX where X=0.

SET RESULT = —OMEGA.
Set log.X or logiX = —<.
FDLG 21
DLOG { —X) OR DLOG!0 { -X) NOT ALLOWED.
For log.X or logiX where X < 0.
EVALUATE FOR +X.
Evaluate for | X |.

FDSQ 22
DSQRT(—X) NOT ALLOWED.
For X ¥ where X<0.

EVALUATE FOR +X.
Evaluate for | X |.

FDSC 23
DSIN(X) OR DCOS(X), | X | GRT THAN OR EQ TO
PI*2¥*50 NOT ALLOWED.
For sin(X) or cos(X) where | X | = 2%r.
SET RESULT = 0.
Set sin(X) = O or cos(X) = 0.
FDAT 24
DATAN2(0,0) NOT ALLOWED.
For arctan (Y,X) where Y=0, X=0.
SET RESULT =0.
Set angle = 0.

FCXP 26
CEXP(X+IY), X GRT THAN 88.029692 NOT
ALLOWED.
For e **'¥ where X>>88.025652.

SET RESULT = OMEGA*(COSY+ISINY)
Set XY = Q[cos(Y) + isin(Y)].
FCXP 27
CEXP(X+1Y),|Y l GRT THAN OR EQ TO 2**25 NOT
ALLOWED.
For e**'¥ where | Y |=2%.
SET RESULT = 0 + 0L
Set e**'T = 0 + Oi.
FCLG 28
CLOG(0+01I) NOT ALLOWED.
For log.(X+iY) where X=0, Y=0.
SET RESULT = —OMEGA + 0L
Set loge(X+iY) = —Q+0i.
FCSC 29
CSIN(X+IY) OR CCOS(X+1Y), | X | GRT THAN OR
EQ TO 2**25 NOT ALLOWED.
For sin(X + iY) or cos(X + iY) where | X | = 2%.
SET RESULT = 0 + OL
Set sin(X + iY) or cos(X + iY) = 0 + Oi.
FCSC 30
CSIN (X+IY) OR CCOS (X+IY), | Y| GRT THAN
88.029692 NOT ALLOWED.)
For sin(X + iY) or cos(X + iY) where | Y | >
88.029692.
REF IBLIB ERR MSG LIST FOR EVALUATION
METHOD.

Q
For Y > 88.029692, sin(X + iY) = §(Sin X +
Q
icos X) and cos (X +iY) = 3 (cos X—isin X).
Q
For Y < —88.029692, sin (X + iY) = 3 (sin X —

Q
icos X) and cos (X +iY) = E(cos X +isin X).

FIOH 31
FORMAT AT xxxxxx, FIRST WORD xxxxxx, HAS
ILLEGAL CONTROL CHARACTER OR SPECIFIED
TOO LONG A LINE.
Either invalid control character in FORMAT state-
ment or too long a line is specified.
TREAT AS END OF FORMAT.
FCNV 32
ILLEGAL CHAR IN DATA BELOW OR BAD
FORMAT.
Record containing invalid character written on-line
following message.
TREAT ILLEGAL CHARACTER AS ZERO.
FCNV 33
ILLEGAL CHAR IN DATA BELOW OR BAD
FORMAT.
Record containing invalid character written on-line
following message.
TREAT ILLEGAL CHARACTER AS ZERO.

Subroutine Library Error Messages 159

FIOS. 35
PERMANENT READ REDUNDANCY UNITxxx.

or
RECORD USED AS READ 100TH TIME.

FIOB 38
PHYSICAL RECORD SIZE EXCEEDS BUFFER SIZE.
This message pertains to binary input data.

PROCESS PORTION OF RECORD IN BUFFER.
FIOB 39
INTERNAL LABEL WORD COUNT DOES NOT

MATCH IOCS WORD COUNT.
or

PROCESS RECORD READ.

FIOB 40
LIST EXCEEDS LOGICAL RECORD LENGTH.

or
STORE ZEROS IN REMAINING LIST ITEMS.

FIOS

FIOS. 41

END OF FILE READING UNITxx.

or
READ NEXT FILE.

FIOS

FIOS. 42

PERMANENT READ REDUNDANCY UNITxx.
or
RECORD USED AS READ THE 100th TIME.
FIOS 43

FIOS 44
END-OF-BUFFER EXIT WRITING UNITxx.

or
NO OPTIONAL EXIT-EXECUTION TERMINATED.

FRCD 46
END-OF-FILE CARD READER.
or
NO OPTIONAL EXIT-EXECUTION TERMINATED.

FVIO 47
FVIO.
LOGICAL UNIT NOT DEFINED FOR VALUE xx.

or
NO OPTIONAL EXIT-EXECUTION TERMINATED.

FBST 48
PERMANENT READ REDUNDANCY UNITxx.

or
RECORD USED AS READ THE 100th TIME.

FBST 49
END-OF-BUFFER EXIT READING UNITxx.

or
NO OPTIONAL EXIT—-EXECUTION TERMINATED.

FDMP 50
TAPE REDUNDANCY ON SYSUT4 ATTEMPTING
TO WRITE MEMORY SAVE,

or
NO OPTIONAL EXIT—EXECUTION TERMINATED.

FSLITE 51
REFERENCE TO NONEXISTENT SENSE LIGHT.
(a) For I larger than 4 when setting the sense light.
(b) For I equal to 0 or larger than 4 when testing
the sense light.

160

DECLARED ‘OFF’ IF TESTING. IGNORED IF SET-
TING.
(a) No action is taken.
(b) SetJ equalto 2 (OFF).

FIOU 52

PUNCTUATION ERROR OR ZERO SUBSCRIPT.

NO OPTIONAL EXIT-EXECUTION TERMINATED.
Results from error conditions during read of BCD
data referencing NAMELIST due to punctuation
error in variable name, subscript, or literal, or to
absence of a literal.

FSSWTH 53
NONEXISTENT SENSE SWITCH TESTED.
For I equal to 0 or larger than 6.

SWITCH DECLARED ‘UP’.
Set] equal to 2 (OFF).

54

WRITE REQUEST ON UNIT DEFINED AS SYSIN1
ILLEGAL.
NO OPTIONAL EXIT-EXECUTION TERMINATED.

FIOS
FIOS.

FXEM 55
ILLEGAL VALUE FOR COMPUTED GO TO AT
IFN xxxxx. EXECUTION TERMINATED.

FIOS %

FIOS. 56

READ REQUEST ON UNIT DEFINED AS SYSOU1
ILLEGAL.

NO OPTIONAL EXIT-EXECUTION TERMINATED.

FCNV 57
ILLEGAL CHAR FOR L CONVERSION IN DATA
BELOW,
Record containing invalid character written on-line
following message.
Invalid character in logical input data.

TREAT ILLEGAL CHAR AS BLANK.

FIOU 58
NO DOUBLE PRECISION COMPLEX ALLOWED.
For (C;, C:) where C: and/or C. can be single-
precision real numbers only.

NO OPTIONAL EXIT-EXECUTION TERMINATED.

FIOU 59
NAMELIST NAME NOT FOUND OR PUNCTUA-
TION ERROR.
For input variable name which does not match a
NAMELIST name, possibly due to blank invalidly
placed in variable name or misspelling.

NO OPTIONAL EXIT-EXECUTION TERMINATED.

FIOU 60
EMBEDDED BLANKS
For input literals containing blanks.

NO OPTIONAL EXIT-EXECUTION TERMINATED.

FIOU 61
NUMERICAL FIELD MISSING OR PUNCTUATION
ERROR.

or
NO OPTIONAL EXIT-EXECUTION TERMINATED.
FIOU 62
UNEXPECTED END OF NAMELIST OR END OF
RECORD.

or
NO OPTIONAL EXIT-EXECUTION TERMINATED.

FIOU 63
NAMELIST NAME NOT FOLLOWED BY MATCH-
ING VARIABLE NAME.

or
NO OPTIONAL EXIT-EXECUTION TERMINATED.

FIOU 64
SUBSCRIPTS TOO LARGE OR TOO MANY SUB-
SCRIPTS OR INCONSISTENT DIMENSIONING.

or
NO OPTIONAL EXIT-EXECUTION TERMINATED.

FIOU 65
THE SIZE OF AN ARRAY HAS BEEN EXCEEDED.
or
READING OF ARRAY VALUES CONTINUES.
Literals are accepted and stored successively in
locations following array block.

FIOU 66
LITERAL NOT PRECEDED BY VARIABLE NAME.

or
NO OPTIONAL EXIT-EXECUTION TERMINATED.

FIOU 67
PUNCTUATION MISSING FOR COMPLEX LIT-
ERAL.

or
NO OPTIONAL EXIT-EXECUTION TERMINATED.

FIOU 68
ILLEGAL CHARACTER IN LOGICAL INPUT DATA.
'or
NO OPTIONAL EXIT-EXECUTION TERMINATED.

FIOU 69
DATA TYPE DOES NOT MATCH VARIABLE NAME.

or
NO OPTIONAL EXIT-EXECUTION TERMINATED.

FIOU 70

ILLEGAL CHARACTER OR ALL BLANKS IN LIT-
ERAL OR VARIABLE NAME BEGINS WITH
NUMERICAL CHARACTER.

or
NO OPTIONAL EXIT-EXECUTION TERMINATED.

FCNV 71
INPUT DATA NOT WITHIN PERMISSIBLE RANGE
OF FLOATING POINT NUMBERS.

or
READING OF INPUT DATA CONTINUES.

FASC 72
ARSIN(X) OR ARCOS (X), ! X | GRT THAN 1 NOT
ALLOWED.
For arcsin(X) or arccos(X), where | X | > 1.
SET RESULT = 0
Set arcsin(X) or arccos(X) = 0.

FTNC 73
TAN(X) OR COTAN(X), |X [GRT THAN OR EQ
TO 2**20 NOT ALLOWED.
For tan(X) or cot(X) where | X | = 2%
SET RESULT =0
Set tan(X) or cot(X) = 0.

FTNC 74
TAN(X) OR COTAN(X), X TOO CLOSE TO
SINGULARITY, NOT ALLOWED.
For tan(X) where X is near an odd multiple of -2£
or cot(X) where X is near a multiple of .

SET RESULT = +OMEGA
Set tan(X) or cot(X) = + Q.

FSCH 75
SINH(X) OR COSH(X), | X | GRT THAN 88.029692
NOT ALLOWED
For sinh(X) = % (e*—e™) or cosh(X) =
1, (e*+e7*) where | X | >88.029692.

SET RESULT = +OMEGA
Set sinh(X) or cosh(X) = + @,

FGAM 76
GAMMA(X), X LESS THAN OR EQ TO 2** —127 OR
GRT THAN OR EQ TO 34.843 NOT ALLOWED.
X
ForT'(X) = f u*?* e du where

X < 27% or X= 34.843.

SET RESULT = +OMEGA
SetT(X) = +
FGAM 77

ALGAMA(X), X NON POSITIVE OR GRT THAN OR
EQ TO 2.0593*10**36 NOT ALLOWED.

«°
For log. T(X) = f u*? e ™ du where

X < 0 or X = 2.0593(10™).

SET RESULT = +OMEGA
Set log. T'(X) = + .

Added to the preceding messages, which result from
the recognition of an Fxem error condition, the follow-
ing FPTRP and FXEM messages may also be written:

FPTRP
UNDRFLOW AT **¥** IN AC
or
UNDRFLOW AT ***** IN AC AND MQ
or
UNDRFLOW AT *#**** IN MQ
or
OVERFLOW AT **##* IN AC
or
OVERFLOW AT ****¥* IN AC AND MQ
or
OVERFLOW AT ***** IN MQ
or
ADDRESS AT ***** ODD
FXEM
(Note: The following table is always contained in
the FXEM message.)
ERROR TRACE CALLS IN REVERSE ORDER

CALLING IFN OR ABSOLUTE
ROUTINE LINE NO. LOCATION

ELE L L & ek ok ok e ok ok ok ok
K ok 5k % ok ok ok ok ok s koK kK

EEEE LS EEX L E LS * ok ok ok ok K

(After the above table, one of the following three
items is printed.)

ERROR CODE ***** NOT A STANDARD CODE.
or
A line of data containing an invalid character, if per-
tinent to the error.
or
A message from the routine that called the FXEM rou-
tine, if pertinent to the error.
(The following item may also appear.)

EXECUTION TERMINATED.

Subroutine Library Error Messages 161

FOUT
END-OF-BUFFER EXIT WRITING SYSOUIl. EXE-
CUTION TERMINATED.

FBST
BACKSPACE REQUEST IGNORED ON UNIT**,

FEFT

FEFT.
REQUEST TO WRITE EOF ON UNIT ASSIGNED
AS SYSINI, SYSOUl, OR SYSPP1 HAS BEEN
IGNORED.

T RETWINTY
LY LYY N

SYSOU1, SPSPP1 H

UN ASSI

& o
i
Z
13
Z,
o)
jor]
1
@)

i

EXECUTION TERMINATED BY DUMP-DISK
ERROR.

or
EXECUTION TERMINATED BY DUMP-UNUSUAL
END SYSUT4.

or
EXECUTION TERMINATED BY DUMP-EWA
FLAG ON-SYSUT4.

or
EXECUTION TERMINATED BY DUMP-LESS
THAN 12 TRACKS ATTACHED TO SYSUT4.

DMPR
PLEASE SUPPLY CORRECT CALLING SEQUENCE
FOR DUMP.
or
EXECUTION TERMINATED BY DUMP-SYSUT4
REDUNDANCY.
or
EXECUTION TERMINATED BY DUMP-UNUSUAL
END-SYSUT4. ~
or
EXECUTION TERMINATED BY DUMP-DISK
ERROR.
EXECUTION

TERMINATED BY DUMP-EWA
FLAG ON-SYSUT4.

or
EXECUTION TERMINATED BY DUMP-SYSOU1
REDUNDANCY.
or
EXECUTION TERMINATED BY DUMP-UNUSUAL
END-SYSOU1.

or
SYSOU1 IS NOW TAPE ON XHK/S

Subroutine Library Error Messages 161.1

COBOL Subroutine Messages

CBLER

PROCESSING TERMINATED—-DATA ITEM REFER-

ENCED BEFORE ITEM IS LOCATED.
An attempt has been made in the program to refer
to (1) a data-item in a file that is not in OPEN
status or (2) a data-item that follows a group de-
fined by an OCCURS . . . DEPENDING ON data-
name clause where data-name does not contain a
non-zero value at the time of reference.

CEOBP

PROCESSING TERMINATED DUE TO TAPE
CHECK SUM AND REDUNDANCY ERRORS.

or
PROCESSING TERMINATED DUE TO TAPE SE-
QUENCE AND REDUNDANCY ERRORS.

or
PROCESSING TERMINATED DUE TO UNRE-
COVERABLE TAPE REDUNDANCY ERRORS.

or
PROCESSING TERMINATED DUE TO TAPE
CHECK SUM ERROR.

or
PROCESSING TERMINATED DUE TO TAPE SE-
QUENCE ERROR.

or
PROCESSING TERMINATED DUE TO TAPE REC-
ORD LENGTH ERROR.

Each of the above error messages is followed by
several lines of output of the following form:

THIS ERROR IS ASSOCIATED WITH AN I/0 VERB
AT CARD NUMBER ****** THE FOLLOWING IN-
FORMATION IS ASSOCIATED WITH THE FILE IN

FILE NAME #%%fionsiontonkkknkhs
REEL SEQUENCE NUMBER. . ., *¥*#x*

162

FILE SERIAL NUMBER..... FREERAR

FILE BLOCK COUNT......... HEEAE
After each message is written, the job is terminated
and a full core dump is taken.

CEXPR

EXPONENTIAL OVERFLOW AT CARD NUMBER

#kkkkk
Results from accumulator oveflow caused by float-
ing-point number which exceeds maximum value
allowed. The largest possible floating-point num-
ber is assumed as the result of the operation.
Should an underflow occur, no message is written
but the result is set to zero.

ERROR IN EXPONENTIAL AT CARD NUMBER

3ok sk ok
In evaluating A**B, the above message is written
when the exponent is not valid. In particular, a
noninteger exponent may not be used with a nega-
tive base.

CBDCV

JOB TERMINATED—ENCOUNTERED INPUT REC-

ORD LENGTH NOT A MULTIPLE OF SIX.

JOB TERMINATED—~COUNT CONTROL CONTAINS

A NON-NUMERIC BCD CHARACTER.
These messages are issued by CBDCV which proc-
esses the count control word from variable length
records. When the message is written, the count
control word is faulty in the manner indicated.

ACEPT

ACCEPT FROM #****¥* ENCOUNTERED END OF

FILE. ZERC VALUE PROVIDED.
An EOF indication in the input during execution
of an ACCEPT statement causes this message to
be written. In the case of an ACCEPT from the
card reader, the message results when card reader
is empty. The area into which the data is to be
accepted is loaded with zeros.

APPENDIXES

Appendix A: Control Card Format Index

Refer to the given page reference for a description of each card.

PAGE
CARD FORMAT REFERENCE
13
$* any text 10
1 16
SAFTER srname /. 123
1 8 16
m *ALTER nl 15
1 8 16
m *ALTER nln2 15
1 16
$ASSIGN srname, ORG = nnnnn 123
1
$CBEND 20
1
SDATA 11
1 16
SDELETE srname 123
1
*DEND 26
1 6 8 16
$SDUMP n CXXXXX loc1/1oc2, loc3/loc4. . . . 59
1 16
SEDIT [LOGIC] 122

Appendix A: Control Card Format Index 163

CARD FORMAT

PAGE
REFERENCE

1 8
*ENDAL 15
1
$ENDREEL 11
1 16
exname :
SENTRY [{ deckname }] 10
1 16
$ETC variable field information 37
1 16
SEXECUTE subsystem name 8
1 16
$FILE filename’ [,unitl, unit2] E{ NOLIST}:' 31
DEFER P ror—
READY OUTPUT
. _JiNouT 5
MOUNT; CHEC(I)(:’OINT
DEFERIi
| \REaDYi | | L \CKFT
" {BLOCK)
: BLK = XXxX
ONEREEL
MULTIREEL NOSEARCH
LACT=xx] 97 o [{ SEARCH }] 52
REELS
/ \ -
B }% BCD (SLABEL
, {900 BIN HILABEL 33
<56 " YMXBCD ’ JLOLABEL
’ MXBIN FLABEL

164

CARD FORMAT

PAGE
REFERENCE

NOSEQ
bEQ \IOCKSU\/I | NOCKPTS
’ CKSU\/I] CKPTS]

SEQUENCE
PRINT —I 23

‘SCRATCH
,ﬁPUNCH .
(

[,AFTERLABEL]

| (moLp)]

]

— (CYLINDER
H or
CYL

I— (HNRNF P
CYLCOUNT) _ xx HRFP
[{ CYLCT } = xxx:I LWRITECK] | . (ypnrp
HNRFP
34
1 16
SGROUP ‘filenamey’, . . . ‘filename,’ 35
[,OPNCT =xx] [, BUFCT =xxx]
1 8 16
— (NOLIST
NOREF ECK
SIBCBC deckname L) TIST] E{ } [{ U] 19
{FULIST } | LABEF ™ f | ['\NODECK { |
1 1] ey e s,
| Mo4s2 R7 TIGHT READON
CO\/ISEQ 1_| DD l‘l
U U BINSEQ { | D j
1 16
$IBDBL [, TRAP MAX=n,] [,LINE MAX=n;] [, NOMES] 25
1 8 16
$IBDBC [name] location [,FATAL] 25

Appendix A: Control Card Format Index 165

CARD FORMAT

1

8 16

PAGE
REFERENCE

NOLIST M90
$IBFTC deckname »{ LIST O M94 17
FULIST M94/2
NOD
XR3 DD
SDD
1 16
$IBJOB] Egé?cclc [][{NOFILES}]
NOGO DLOGIC MAP FILES
[{IOEX
MINIMUM
SOURCE BASIC FLOW
"I NOSOURCE " \LABELS "} NOFLOW :l
FIOCS 8
| ALTIO
1 8 16
NOLIBE TEXT
$IBLDR deckname E{ LIBE }:l E{ NOTEXT }:l 31
1 8 16
LIST REF DECK
$IBMAP deckname [, count] l:{ NOLIST}:I [{ NOREF }:’ E{ NODECK}:I 22
NOSYM M90 — (RELMOD
MONSYM M94 »{ SYSMOD
]OBSYM M94/2 | { ABSMOD
o] ey [52
() OK MFTC | |spD
1
$IBREL 11
1
$IBSYS 10
1 T-72
$ID any text 10

166

PAGE

CARD FORMAT REFERENCE
1 16
SEDIT ST {?ESSSH }][NOALTERYT
SCHFn
1 16
$INCLUDE { o } . 42
1 16
$INSERT [srname] [, ORG=nnnnn] 123
1 16
$JOB any text 8
1 16
Ul e
$LABEL ‘file name’, ? home ; _!, [reel] ,[{ dzr' f _l ,[name] 34
address ys)
1 16
deckname (exname) = exname, . . .
SNAME lr %x;jll(r:::ee)(ig?emnzme)’=‘ﬁlename’, .. ? 36
(‘filename’ =‘filename’, . . .
1 16
eu | fpomeT s]
1 16
$OMIT {fl)::;:r?:me (exname), .. } 36
1 16
g [[(SR T [(AQIEY)]
1 8 16
$PATCH CXXXXX instr. 1, instr. 2, . .. 60

Appendix A: Control Card Format Index 167

PAGE

CARD FORMAT REFERENCE

1 16

$PAUSE instructions to operator 10

1 16

$POOL ‘filename,’, . . . ‘filename,’ E{EEI?CK} =xxxx:| [, BUFCT =xxx]
35

1

$POST 11

1 16

$REPLACE srname [, ORG=nnnnn] 122

1 16

$SIZE / /=n 36

1

$STOP 10

1 8 16

$TITLE [NODAT] any text 11

1 16

$USE deckname (exname), . .. 36

168

Appendix B: Control Card Check List

SOURCE LANGUAGE PROGRAMS RELOCATABLE
BINARY
COBOL FORTRAN MAP PROGRAMS COMMENTS

$JOB X x x x One required at the beginning of each job.

3iD o o o o Transfers control to installation accounting routine.

$EXECUTE X x X X Causes the loading of the Processor Monitor.

* 0 o o o Comments card.

$PAUSE o o o o Permits operator action.

$STOP o o o o Transfers control to the System Monitor for processing.

$IBSYS o o [o Next job segment will not be processed by the IBJOB Processor;
control is transferred to the System Monitor.

$IBJOB X X X X Initiates an IBJOB Processor application; one required for each
Processor application.

SENDREEL o o [} o Causes a reel switch involving SYSIN1 and SYSIN2.

$DATA 0 o o o Indicates the beginning of a data file.

$IBREL 0 o o 0 Indicates that the decks that follow do not need compiling or
assembling.

$TITLE [o o [Causes the information in columns 16-72 to be printed on the
next Processor or Assembler listing output.

S3IBFTC X Precedes each FORTRAN deck.

$IBCBC X Precedes each COBOL deck.

$CBEND X Follows each COBOL deck.

$IBMAP x Precedes each MAP deck.

$SIBLDR X Precedes each relocatable program to be loaded.

SENTRY o) 0 o Specifies the location to which the initial transfer to the object
program will be made.

SIEDIT 0 o 0 o Sets input specifications other than standard.

$SOEDIT o o o o Sets output specifications other than standard.

SFILE o o o o Provides file specification; supersedes some assembled specifi-
cations.

$SLABEL o o o o Provides label information for files.

$POOL o o o o Designates files to share common buffer areas.

$GROUP [0 [0 Designates how buffers are to be shared by a group of files.

$NAME 0 o 0 0 Used to change control section names of file names.

$USE o o I o Specifies that a particular control section is to be used.

$SOMIT o o o o Specifies that a particular control section is to be deleted.

$SIZE o o o o Specifies the size of Blank COMMON.

$ET o o o o Extends the variable field of a $FILE, $POOL, $GROUP,
$USE, $OMIT, $NAME, or $SETC card.

$ORIGIN o o o o Used to define the structure of an overlay deck.

$INCLUDE o s} [o Specifies the decks or control sections to be included in a link.

$AFTER o 0 o Causes the Librarian to copy the Library from its current posi-
tion through the named subroutine.

$ASSIGN o 0 o 0 Causes the Librarian to copy the current Library up to, but
not including, the named subroutine.

SDELETE 0 o o o Causes the Librarian to copy the Library from its current posi-
tion up to, but not including, the named subroutine.

$EDIT o o [0 Causes the Librarian to be called for an editing run.

$INSERT o o o o Causes the Librarian to place the subroutine deck that follows
the card into the Library at the current position of the Library
file.

SREPLACE o o o o Permits a subroutine in the Subroutine Library to be replaced.

$IBDBC Precedes each compile-time debugging request and defines the
point where the request is to be executed.

$IBDBL o o o o Precedes each load-time debugging request packet.

*DEND 0 0 o o Terminates the load-time debugging package.

$POST o o o Causes the load-time debugging postprocessor routines to be
called.

*ALTER o o o o Used to alter a source, symbolic, or Prest deck.

*ENDAL o 0 o 0 Required to end an alter deck.

$SDUMP Causes portions of system records to be dumped.

$PATCH Used to insert temporary patches in system records.

Notation: x—necessary; o—optional; blank—does not apply.

Appendix B: Control Card Check List 169

Appendix C: IBJOB Communication Region

The components of the 18joB Processor System transfer OCTAL SYMBOLIC
control and information to each other and to the 1mBsys LOCATION S;“;;“ED
system through specified words in the 1BjoB commu- 21264 H

REMARKS
Set by a subsystem under the

(System IBJOB Monitor. Contains the
nication region. These words are: subhead) location and length of a sub-
LOCATION RELATIVE TO OCTAL heading to be used in the
SYMBOL COMMUNICATION REGION BASE LOCATION lslstmg. - he distib
9 21267 PRSW et to nonzero on the distrib-
gig%gg ig}ggﬁ.*.l giggg (Print uted IBJOB system tape. It
IBJCOR IBJCOM +2 21236 switch) may be changed at an instal-
IBJDAT IBJCOM +3 21237 lation. If the location has a
JLDAT IBJCOM +4 21240 value of zero, most IBJOB
JTYPE IBJCOM+6 21242 Monitor messages will occur
JLIN IBJCOM +7 21243 on-line as well as off-line. If
JVER IBJCOM+8 21944 the location has a nonzero
JKAPU IBJCOM +9 21245 value, on-line printing. of
SYSDSB IBJCOM +10 21246 IBJOB messages is minimized.
-FDPOS IBJCOM +12 21250 21272 COMCEL Set and used by the IBJOB
SSTRA IBJCOM +15 21253 (Communication Monitor. Contains flag bits re-
ACTION IBJCOM +16 21254 word) lating to control card options,
JOBIN IBJCOM +17 21255 input/output editor uses, load-
JOBOU IBJCOM +18 21256 ing, execution, and other
{ggf’)l;rr ¥E{gg¥i}>2 %}%zz functional operations. N
""""" gl Sleny 21273 EOFPP Set to nonzero on the distrib-
JREEL IBJCOM +21 21261 (End of file on uted IBJOB system tape. It
SUBSP IBJCOM +22 21262 peripheral may be changed at an instal-
PUNCH IBJCOM +23 21263 punch) lation. If the location has
SYSSHD IBJCOM +24 21264 nonzero value, end-of-file mark
LILDMP IBJCOM +25 21265 is put on the peripheral punch
1BSLB IBJCOM +26 21266 tape at the end of each Proc-
PRSW IBJCOM +27 21267 essor application (that is, the
JLNSIZ IBJCOM +28 21270 job is contained between a
ISI;IJIID}ggS g{i}]}g}sg%4+29 gﬁ'{; $IBJOB card and the next end
of file, including the DATA
DEFINE I0CS 21347 file if any). If the value is
JOIN I0Cs+2 21351 zero, no end-of-file mark is put
é{ggg}l igggig giggg on the peripheral punch tape.
OPEN I0CS+8 21357 21301 DECK Contains the current deck
READ 10CS+10 21361 name from columns 8-13 of
WRITE I0CS+12 21363 the last deck control card (for
STASH 10CS +14 21365 example, $IBLDR, or $IBFTC)
encountered by IBJOB.

The contents of some of the more important 18joB 21315 JBNAM Contains job name from col-
communication region locations are described in the (Job name) umns 8-13 of last $IBJOB
following two lists. The first list contains locations control card.
available only up until execution of object programs. 21323 TYPOU Determines type of output to

.. . (Type of be generated. When the loca-
The octal address of the location is given in column 1. output) tion has a value of zero, out.

Column 2 gives the symbolic name of the location.
The third column provides information regarding the
use of the location.

put is in BCD mode, with
blocking of up to five lines
per block. When the location
has a nonzero value, output is

OCTAL SYMBOLIC in binary mode, with block-

LOCATION NAME
21263 PUNCH

REMARKS
Set to nonzero by IBMAP if
NODECK option is requested
by a compilation or an assein-

ing of up to five lines per
block. This output can be
printed off-line.

The second list of IBJOB communication words con-
tains locations available both before and after object
program loading. In this table, column 1 contains the
octal address of the location only up until execution.

bly. This location is tested by
the JOBPP punching routine
in the IBJOB Monitor. It is
set to zero if a punched deck
is wanted.

170

Column 2 gives the symbolic name of the location. In
two cases the symbolic name is different after loading.
These changes are given in parentheses.

OCTAL
LOCATION

21234

21235

21236

21237

21240
21241

SYMBOLIC
NAME

SYSLOC

SYSFAZ

IBJCOR (.JOR)

IBJDAT

(.JDATE)

JLDAT

REMARKS

Contains the complemented
location of last MAP language
CALL pseudo-operation that
has been executed.

Contains record name of last

.system read. At execution

time, this location contains
ORTPR

gL Ake

Contains upper and lower
limits of core storage currently
available to IBJOB.

Contains the date appearing
in the IBSYS date location
SYSDAT. Format is YY DDD,
where YY is year and DDD is
day of year.

Contains same date as
IBJDAT but in form MM/
DD/YY, where MM is month
and DD is day of month.

OCTAL
LOCATION

21244

21246

21250

SYMBOLIC
NAME

SYSDSB

.FDPOS

REMARKS
Contains zero if system is on
7090 and nonzero if it is on
7094.

Contains count of lines output
on SYSOU during current
Processor application.

Contains version number of
IBJOB system in the form:
BCI 1,VERxxx

Contains an enable instruction
from a location containing
zero and is used by a varia-
tion of the SAVE pseudo-
operation to disable traps.

Contains location of FOR-
TRAN dump record. Prefix is
device type (PZE for 729,
MZE for 1301, or PTW for
7340). Tag is SYSUNI index
for the unit. If record is on
tape decrement and address
are file and record positions.
If record is disk, address is
track address and there is no
decrement.

Appendix B: Control Card Check List 171

Appendix D: Sample Control Card Deck

$STOP
End of File Card ‘

(MAP Deck) '
$IBMAP DECK3

(MAP Deck) '
$IBMAP DECK2
|
)
$I1BJOB GO
$EXECUTE IBJOB
$JOB

End of File Card
$ENTRY DECK2

(COBOL Deck) ‘
$IBCBC DECK2
CBEND

(COBOL Deck)
$1BCBC DECKI1
$IBJOB GO

$SEXECUTE IBJOB

F=)

S
=

(Relocatable
Binary Deck)

$IBLDR DECK3

(FORTRAN Deck) ﬁ

Job 4

$

Job 3

$IBFTC DECK2

FORTRAN Deck
$IBFTC DECK]1
$IBJOB GO

$EXECUTE [BJOB

End of File Card

[l D)

(Data Deck)
‘
ﬂ(FORTRAN Deck) ,
$IBFTC DECKI
$IBJOB GO
$EXECUTE IBJOB
$JOB

Job 1

172

Appendix E: Procedure for Selecting the 7094 Optional Conversion Routine

A new release procedure provided with Version 5 of
the Subroutine Library permits the 7094 customer to
select the optional conversion routine (FoNv).

Both the standard conversion routine and the op-
tional conversion routine are on the released symbolic
tape. The standard conversion routine is automatically
provided when creating a system tape, unless other-
wise specified by the customer.

In order to specify the optional conversion routine,
the following three cards must be included in the
special deck for 7094 18LIB assembly used to create the
new 7094 system tape. The format of these cards is:

1 8 16 72

MS094 SET 94 3F300015
M9094 SET 94 3F4C0015
M9094 SET 94 3F4M0015

The inclusion of these three cards causes the optional
conversion routine Fenv, as well as modified versions
of the routines F1oH and FWRO, to be selected from the
symbolic tape.

Note: The 7090/7094 user will receive another deck
(called the 7090 Asterisk Deck) which will generate
asterisks if an insufficient field width is specified in a
program using the standard 7090 conversion routines.
Output through the standard 7090/7094 conversion
routines will thus be made consistent with output from
the 7094 optional conversion routine. Appendix H
contains instructions on how to use the 7090 Asterisk
Deck.

Appendix E: Procedure for Selecting the 7094 Optional Conversion Routine 173

Appendix F: Core Storage Load Map

* MEMORY MAP =

SYSTEM 00000 THRU 02717
FILE BLOCK ORIGIN 02720
FILES 1. INFILE
2. OUFILE
FILE LIST ORIGIN 02750
PRE-EXECUTION INITIALIZATION 02754
CALL ON OBJECT PRGGRAM 02777
OBJECT PROGRAM 03004 THRU 12573
LINK DECK ORIGIN CONTROL SECTIONS (/NAME/=NON O
0 DECKA 03004 H 03051 CONSTA 03140
G 03154
<LINK 03173 /.LDT / 03173 /.LRECT/ 03177
.LXCON ©3217 «LXSTR 03217 <LXSTP 03223
«LXCAL 03306 = +LXERR 03306
-CLSE 03701 «LFBL 03702
-I0DEF 03710 .DEFIN 03710 «ATTAC 03714
<WRITE 03724 «BSR 03734
<LFBLK 03775 «LTSX 04000
<GOA 04055 .GO 04061
<EX34 04122
.LOVRY 04127 «LOVRY (04127) .LDT (03173)
<LASL 34506 <LASEL 04506 <LXTST 04521
<LXDIS 04641 <LXFLG 04642
«FPTRP 04650 <FFPT. 04650 * «FPOUT 04777
XIT 0506¢C EXIT 05060 <EXIT. 05060
FXEM 05061 -FXEM. 05061 «FXOUT 05411
FDMP 05504 DUMP 05504 POUMP 05506
.10CS 06742 .L(0) 06742 «MONSW 06762
.CLOS. 07174 <ATTC. 07207
-0P4 07532 = .QP7 07563
-READ. 07644 <RER1. 07667
.FEEIT 10210 «GTIOX 10231
«SEL59 11431 = -BSR. 12042
«TCHEX 12523 .BASIO 12526
.10CSM 12527
1 DECK1L 12527 /RTNEA / 12527
2 DECK2 12527 /RTNEB / 12527 /RTNEC / 12547
DECK3 12555 /RTNED / 12555
3 DECK4 12565 /RTNEE / 12565
1/0 BUFFERS 12574 THRU 77765
UNUSED CORE 77766 THRU 77777

A load map of core storage prior to object program
execution is generated by the Loader in response to
the map option punched on a smBjoB card. In the
“System” section of the load map are contained those
parts of the 1BsYs Monitor, 10cs, and 10Ex needed for
job-to-job operation. “File Block Origin” refers to 12-
word working file blocks, one block for each file named
in the program. The “File List” contains two-word
entries, one entry for each file. The contents of the “Pre-
Execution Initialization” section of the load map are
described in the “Loader Information” section of this
manual under “Control of Program Execution.” The
caLL on the object program is also described there.
The object program itself consists of the instructions

174

* * ok %X

* ok o X

LENGTH, (LOC)=DELETED, *=NOT REFERENCED)
CONST8 03141 CONSTC 03142 CONSTD 03143
/.LVEC / 03205
«LXOUT 03271 = <LXRTN 03303 IBEXIT 03303 =
.DBCLS 03501 =» «LXARG 03650 = .L0 03673 =
-LUNB 03703 -OFQUT 03704
.CLOSE 03716 -OPEN 03720 +READ 03722
-READR 03744 «RELES 03746 * -LAREA 03757
-AREALl 04012 +LUNBL 04020 <ENTRY 04024
«DERR 04075 «NOPXI 04076 .COMXI 04100
«LRECT (03177) +LVEC (03205}
LLXOVL 04561 = «LXRCT 04567 * «LXIND 04636
«LTCH 04643
«FPARG 05C05 = /.COUNT/ 05007 = OVFLOW Q5053 =«
«FXARG 05417 = /.0OPTW./ 05473 =+
.TEOR 07031 «DEFI. 07111 «JOINX 07155 »
«SH1 07421 = - SH9 Q7463 = -0OPEN. 07504
.0P9.2 07577 = «RLSE. 07643 <RER2. 07643
SHWRIT. 07671 «MNT1A 10057 = +EOFEX 10140 #»
«RWT 10347 % «RE7 10766 « <ENCTR 11427
<EQOTOF 12165 <ETOF3 12173 = +SWITC 12222

as generated by the Assembler or the FortRAN 1v Com-
piler supplemented by subroutines loaded from the
Subroutine Library. In the load map shown, the sub-
routine names begin with .L.ink. The column entitled
“LINK” refers to overlay links.

The control sections in each deck are listed in rows
of five. The names of the control sections with lengths
greater than zero are bounded by slashes. The names
of control sections that are not referred to during
execution are followed by asterisks. A deleted control
section would appear as follows:

CONSTA (02763}
An expanded EvEN control section would appear

as follows:

EVEN 02763 CONSTA 02764

Appendix G: Machine Configuration Required for IBJOB Processor Operation

The following machine configuration is required for
the operation of the 1BjoB Processor:

An 18M 7090 or 7094 Data Processing System

An 1BM 716 Printer

An BM 711 Card Reader

Required for Installations Using Only IBM 729 (II,
IV, V, or VI) Magnetic Tape Units and/or IBM 7340
Hypertape Drives: Eight units are required ordinarily.
If an 1BM 1401 with its attached 1BM 1402 Card Read
Punch and 18M 1403 Printer is available for processing
system output, and a single tape unit is assigned by
the System Monitor to both sysou1 and syspp1 (list and
punch functions), only seven units are required. When
load-time debugging is used, an additional unit is
necessary, attached as syscke.

Required for Installations using IBM 1301/2302 Disk
Storage or IBM 7320 Drum Storage: Four tape units
are required ordinarily. iBM 729 Magnetic Tape Units
or 18M 7340 Hypertape Drives can be assigned in any
combination. If an 1M 1401 with its attached card
read punch and printer is available for processing
system output and a single tape unit is assigned by
the System Monitor to both sysoui and sysep1 (list
and punch functions), only three units are required.

Five other units are required ordinarily. M 729
Magnetic Tape Units, 18BM 7340 Hypertape Drives or
selected cylinders of 18m 1301/2302 Disk Storage or of
M 7320 Drum Storage can be assigned to the installa-
tion in any combination. When load-time debugging is
used, an additional unit is necessary, attached as syscke.

Appendix G: Machine Configuration Required for IBJOB Processor Operation 175

176

Appendix H: FORTRAN IV Mathematics Subroutines—
Algorithms, Accuracy, and Speeds

This appendix presents the algorithms, statistics on accuracy, and average speed
for most of the FORTRAN 1v mathematics subroutines.

Algorithms

Some of the formulas are widely known; those that are not widely known are de-
rived from more commonly known formulas. The steps leading from the common
formulas have been detailed so that derivation can be reconstructed by anyone
who has a basic understanding of mathematics and who has access to the common
texts on numerical analysis. Background information for algorithms involving
continued fractions may be found in the publication entitled Analytic Theory of
Continued Fractions, written by H. S. Wall and published in 1948 by the D. Van
Nostrand Co., Inc., of Princeton, N. J.

Accuracy

Because the size of a machine word is limited, small errors may be generated by
mathematical subroutines. In an elaborate computation, slight inaccuracies can
accumulate to become larger errors. Thus, in interpreting final results, the user
should take into account any errors introduced during the various intermediate
stages.

The accuracy of an answer by a subroutine is influenced by two factors: (1) the
accuracy of the argument and (2) the performance of the subroutine.

Accuracy of the Argument

Most arguments contain errors. An error in a given argument may have accumu-
lated over several steps prior to the use of the subroutine. Even data fresh from
input conversion contain slight errors since decimal data cannot usually be exactly
converted into the binary form required by the processing unit; the conversion
process is usually only approximate. Argument errors always influence the accuracy
of answers. The effect of an argument error on the accuracy of an answer depends
solely on the nature of the mathematical function involved and not on the par-
ticular coding by which that function is computed within a subroutine. In order
to assist users in assessing the accumulation of errors, a guide on the propagational
effect of argument errors is provided for each function. Wherever possible, this
is expressed as a simple formula.

Performance of the Subroutine

The performance statistics supplied in this appendix are based upon the assump-
tion that arguments are perfect (i.e., without errors, and therefore have no argu-
ment error propagation effect upon answers). Thus, the only errors in answers
are those introduced by the subroutines themselves.

For each subroutine, accuracy figures are given for one or more segments
throughout the valid argument range(s). The particular statistics given are those
most meaningful to the function and range under consideration. For example, the
maximum relative error and standard deviation of the relative error of a set of
answers are generally useful and revealing statistics, but useless for the range of a
function where its value becomes 0, since the slightest error of the argument value
can cause an unbounded fluctuation on the relative magnitude of the answer. Such

is the case with sin(x) for x near =, and in this range it is more appropriate to dis-
cuss absolute errors.

Symbols Used in Describing Accuracy

In the presentation of error statistics, the following symbols are employed:

g(x) = the answer given by the subroutine for the mathematical function under
discussion

f(x) = the correct extra-precision answer for the mathematical function under
discussion
] £7 N\ WY 1

€ = l A f(_)g‘”’ ' , the relative error of the answer

x

3 = the relative error of the argument

E = I f(x) — g(x) , the absolute error of the answer

A = the absolute error of the argument

M(E) = Max \ f(x) — g(x) l , the maximum absolute error produced

during testin,

M(e) = Max —f(x) —8()
f(x)
during testing

= 5 | e gt
(standard deviation) absolute error
f(x;) — g(x;) |2 the root-mean-square
J E f(x:)
(standard deviation) relative error

l , the maximum relative error produced

2, the root-mean-square

a(e)

When applied to complex numbers, the absolute value signs in the above for-
mulas should be regarded as denoting complex absolute value. Thus, the above
formula for E represents the vector error when applied to a complex function.

Algorithms, Accuracy, and Speeds

The algorithms and performance statistics for most of the FORTRAN 1v mathematics
subroutines are shown in the following section. The subroutines appear in the
same order as in Figures 25A, 25B, 25C, and 26. The subroutines not described are
FXP1, FXP2, FXP3, FDX1, FDX2, and FDMD,

Single-Precision Subroutines

The following information describes single-precision subroutines listed in Fig-
ure 25A.

Square Root — FSQR

Algorithm
1. Write

x = (2%-7)m, where p is an integer, ¢ = Oor 1,and %2 < m < 1.
Then
Vz = 20v/(2=0)m, where % < (2-9)m < L.

Appendix H: FOoRTRAN 1v Mathematics Subroutines

177

178

2. Take the first approximation y, to be
Yo =27 (%+ 1/é),ifq =0, and

Yo = P (%-{- %)’ﬂq =1.
The relative error of this approximation is less than 2—*.
3. Apply the Newton-Raphson iteration 3 times to y, as follows:

w1 =Y n+i).
Ynt+1 (!/ Un

Using the rule ¢,.1 ~ % ¢,2, the relative error of y; is down to 239,
Effect of Argument Error
e~ 1538,

Performance Statistics

Performance statistics for the single-precision square root subroutine are as
follows:

Root-Mean-Square Maximum Aver.uge Spe:d n
Argument Relative Error Relative Error Microseconds
Range v (E) M (E) 7090 7094
xX>107® 3.09 X 10 7.25 X 10™° 238 149

Accuracy is the same for arguments less than 107, but speed is slower because of floating-point underflow.

The sample arguments upon which these performance statistics are based were
exponentially distributed over the specified range.

Exponential — FXPF
Algorithm:
1. Write
x [logs ()] = n + r, where n is the integer part and r is the fraction part.
Then
e? = (2") (2), where =1 < r < 1,
2. Compute 2" by the means of a rational approximation formula where —1 <

r < 1. This formula was derived in the following way. Take the Gaussian con-
tinued fraction

T 1-142-3+42-5+2-T7T+2—...,
truncate at the ninth term and rewrite to obtain

__ 1680 + 840z + 180z* + 202° + z*

— 1680 — 840z + 18022 — 2023 + z*
Substituting r [log, (2)] for z and rewriting the above, we get

. 2r
=1+ B »Wwhere A, B, C, and D are constants.
et —r+ D= 51X

The maximum relative error of this formula is 1.6 X 10-2,

3. If x < —89.415987, 0 is given as the answer.
4. The computation is carried out in fixed-point to minimize truncation errors.

Effect of Argument Error

e ~ A, Since A = § - x, for the larger value of x, even the round-off error of the
argument causes a substantial relative error in the answer.

Performance Statistics
Performance statistics for the single-precision exponential subroutine are as
follows:

Root-Mean-Square Maximum Av'e;.age Speedd "
Argument Relative Error Relative Error . leroseconds
Range o (e M(e) 7090 7094
0<x<1 3.36 X 107° 7.32 X 10 288 188
—88.028<X<88.028 4.80 X 10°° 1.50 X 10°° 288 188

The sample arguments upon which the above statistics are based were uniformly
distributed over the specified range.

Logarithm — FLOG
Algorithm
L. If |1 — x| < 277, use the polynomial approximation
log (1 4+ z)=z—[2"1+3(27%)]2* + %, wherez = x — L.
The maximum relative error of this formula for | z | < 277 is 3 X 1072
2. If|1 —x | = 277, reduce the case as follows:

Write
1 1
X = (2P)m,where1/2§m<1andz=(m—ﬁ)/(m+ﬁ) .
Then
|z| < 0.1716.
Also
1+2 —
1—-z (\/2) -
And

logx = I:p— 1% +log2(i + Z):Ilogez
-z

3. By transforming the Taylor series into a continued fraction (see Wall's Ana-
lytic Theory of Continued Fractions, page 196), we obtain
Z2

5

5 .
-+ z24+w(z
- w(z)

]oge(i+z)=2z 1+ 522 +
-z

Replacing the remainder term w(z) with its approximate value of

—_— ___11__. fOI‘
(77(9) (190)
. [oan

2843 °’
1+z ~(33)(4)(5)(72) - (3)(3371)(z2) - (1019)(z4) "
‘°g“(1—z)= (3) (4)()(7) — (3)(6311) (%) (22). (*)

This reduces to the form

1+2z
logz(l_z) gzl:cl+czz2+ z2i-304:|'

The maximum relative error of the formula (*) is 0.62 X 10—° for | z | < 0.1716.
However, since the procedure in item 2 above may involve cancellation of signifi-
cant digits, this relative accuracy cannot be maintained for the final result if the
argument is near 1.

we obtain the approximation

Appendix H: FORTRAN v Mathematics Subroutines

179

180

Effect of Argument Error

E ~ 8. In particular, if 8 is the round-off error of the argument, say § ~ 7 - 102,
then E ~ 7 - 102, This means that if the argument is close to 1, the relative error
can be very large, since the function value is very small.

Performance Statistics

Performance statistics for the natural logarithm function of the single-precision
logarithm subroutine are as follows:

Root-Mean-Square Maximum Averf:ge Spezd in
Argument Absolute Error Absolute Error Microseconds
Range o (E) M (E) 7090 7094
e <x<%, 118 X 27% 1.20 X 2°% 361 208

The sample arguments upon which the above statistics are based were uniformly
distributed over the specified range.

Average Speed in

Root-Mean-Square

Maximum

Microseconds

Argument Relative Error Relative Error
Range o (E) M(E) 7090 7094
All positive numbers
outside ("%, %) 3.21 X 10° 7.24 X 107° 390 226

The sample arguments on which the above statistics are based were exponentially
distributed over the specified range.

Performance statistics for the common logarithm function of the single-precision
logarithm subroutine are as follows:

Root-Mean-Square Maximum Aver?ge Speed in
Argument Absolute Error Absolute Error Microseconds
Range o (E) M (E) 7090 7094
Hex <%, 1.95 X 27% 1.03 X 27 405 234

The sample arguments on which the above statistics are based were uniformly
distributed over the specified range.

Root-Mean-Square Maximum Aver.uge Speed in
Argument Relative Error Relative Error Microseconds
Range a (e M (e) 7090 7094
All positive numbers
outside ¥, %, 470 X 107 1.57 X 107° 434 252

The sample arguments upon which the above statistics are based were expo-
nentially distributed over the specified range.

Sine/Cosine — FSCN
Algorithm

1. sin(—x) = —sin(x), cos{ —x) = cos(x). Assume x = 0.
2. Write

x = %(q) + r, where q is an integer and 0 < r <%. Let go = g [mod 8].

3. If cos (x) is desired, raise qo by 2, reduce it modulo 8 and compute sine. If
sin{x) is desired and if x <Z 2 ¥, give x as the answer.

4. Now the case is reduced to the computation of sin (% go + r),

where 0 < g, <7. -

Using the formulas

r. 1 [|
sin | —(4 + +7r|=—sin| —qg +r |, where0 =< qg,=3
|74+ *r] L27%7] 9
sin %+r = cos —Z——r
sin %—+r = cos(r)
sin %+1]=sim %—-r 5

the case is reduced to the computation of sin(r) or cos(r) for 0 <r =

o~

5. The coefficients of approximation
sin(r) == r(so + s17% + sort + 837%)
were obtained by the Chebyshev interpolation over the range 0 = r = —Z—
The coefficients of approximation

cos(r) =1+ c;1? + cor* + ¢31° + car®

were obtained by the Chebyshev interpolation over the range —0.01 =r = —Z—

The relative error of the sine formula is less than 0.34 X 10—8, The relative error
of the cosine formula is less than 0.73 X 10—1°.

6. The computations are carried out in fixed-point to minimize truncation errors.

Effect of Argument Error
E ~ A. As the argument gets larger, A grows, and since the function value is peri-
odically diminishing, no consistent relative error control can be maintained outside

T ™

the principal range (-5 ?) This holds true for the cosine functions as well.

Performance Statistics
Performance statistics for the sine function of the single-precision sine/cosine sub-
routine are as follows:

Average Speed in

Root-Mean-Square Maximum Microseconds
Argument Absolute Error Absolute Error
Range o (E) M (E) 7090 7094
T

ixlg‘;‘ 1.12X27% 1.00X 277 381 240

™
7<le<10 1.51X27% 1.65X27% 418 260
10<Id<100 1.50X 27 1.69X27% 415 258

Average Speed in

Root-Mean-Square Maximum Microseconds
Argument Relative Error Relative Error
Range o (€) M (e) 7090 7094
™
<= 3.65%X107° 1.34X10°° 381 240

The sample arguments on which the above statistics are based were uniformly
distributed over the specified range.

Appendix H: FORTRAN Iv Mathematics Subroutines 181

The performance statistics for the cosine function of the

are as follows:

sine/cosine subroutine

Average Speed in
Root-Mean-Square Maximum Microseconds
Argument Absolute Error Absolute Error
Range o (E) M (E) 7090 7094
0 1.56X27% 172X 277 429 267
—20<x<0, _on o7
53X2 1.60X2 430 266
T<x<20 ! €0

The sample arguments on which the above statistics are based were uniformly
distributed over the specified range.

Tangent/Cotangent — FTNC

Algorithm
1. If x < 0, use
tan (x) = —tan (x),
cot (—x) = —cot (x).

Assume x = 0 now.
2. Write

T
4

4

x = %q + r, where g is an integerand 0 < r <

Let go= g [mod 4].
3. If go = Oor 2 (i.e.,octant 1 and 3), define ry = r.-

If go = 1or3 (i.e., octant 2and 4), define r, = % -
4. Define the case number s as follows:
If tan(x) is desired,
S = (do.
If cot(x) is desired,
s=1ifgyo =0,
s=0,ifgy =1,
s=23,ifqo =2,
§ = 2, if qo = 3.
5. Compute the factor F as follows:
2
F=14+ 13.946 r, 31‘(;3:%133 ifrg > 214,
ro> — 104.46 + :
Ty

F=1,ifry<2-14,

This approximation can be obtained by rewriting the continued fraction

tan (o) _ 1 792 ro2 792 792
pn 1 — 3 —'5 — 7 _— 78946
The maximum relative error of this formula is 10—°.
6. Now the answeris ~> fors = 0, —F— fors=1, — —F— fors = 2, and
F To To
-7 fors = 3.
F

182

Relative Error Control
Let x = (2")m. If the case number s above is 1 or 2 and if the reduced argument
1, is less than 2—26+» (with the exception of cotangent entry with small argu-
ments), an execution error is signaled. In such a case, when the argument is so
close to a singularity that the minimal indeterminary of the argument (due to
prerounding) can cause a relative error of up to ¥%. No screening is given for
arguments near a zero of the function.
Control can be strengthened or eliminated by the use of the subroutine FmTx.
If i x “ = 220 or if cotangent is asked with | x i < 2126 gn execution error is also
signaled.

Effect of Argument Error

E ~ A/cos2x, e ~ 2A/sin 2x for tan x. Thus, near the singularities x = (k + %)=,
where k is an integer, neither absolute error control nor relative error control can
be maintained. This is also true for cotan x, where x = k= and k is an integer.

Performance Statistics

Performance statistics for the tangent function of the single-precision tangent/
cotangent subroutine are as follows:

Average Speed in
Root-Mean-Square Maximum Microseconds
Argument Relative Error Relative Error
Range o {€) M (e) 7090 7094
k3
|x|<7 4.02X107° 1.23X10° 392 252
—4-<le< 2 5.48X10™ (6.45X107%)* 470 304
LS
_2‘<3xi<‘|0 6.40X107° (8.53X107%* 457 295
10<1x1<100 6.85%10° (9.97 X 107%)* 458 296
*Note: The figures cited as the maximum relative errors are those encountered among 2500 random samples
in the respective ranges. For all the perfect arguments in the full range (legitimate under the standard
error control), the maximum relative error is estimated to be 2X 107",

Performance statistics for the cotangent function of the tangent/cotangent sub-
routine are as follows:

Average Speed in
Root-Mean-Square Maximum Microseconds
Argument Relative Error Relative Error
Range o {€) Mg 7690 7094
T
|xl<—4' 4.75X107° 1.43X107° 408 264
T kLs
T<|xl<7 1.23X107° (5.39X107")* 459 298
3
T<|x|<1 0 6.37X107° (217 X 107%* 470 306

*Note: The figures cited as the maximum relative errors are those encountered among 2500 random samples
in the respective ranges. For all the perfect arguments in the full range (legitimate under the standard
error control), the maximum relative error is estimated to be 2X 107",

The sample arguments upon which the above statistics are based were distributed
uniformly over the specified range.

Appendix H: FORTRAN 1v Mathematics Subroutines 183

184

Arctangent — FATN
Algorithm

1. Use
arctan(—x) = —arctan(x),

1\ _ =
arctan TxT) = g —arctan (lx1)
Assume) =x = 1.

2. If [tan(15°)] =< x < 1, reduce further to the range | x | < [tan(15°)] by using

arctan(x) = 30° + arctan(x), wherex = /3 — ?I%
3. By transforming the Taylor series into a continued fraction, we obtain
1, (4) (5)
5 7)(7) (9
arctan(x) = x l—ix2+ (7) (7) (9) ,
8 £+x—2——4—3~+x‘2+w
7 7.11
where w abbreviates further terms.
Dropping w and rewriting the formula, we get
N 64 2 4 (41) (64)
arctan(x) = x [3) (5) (7 %2 + 5 (%)
(3%) (13) (79
N (5 ()]
(14641) (1100) ’

34063

— (3 (7) (1%) (79°)
(3) (5) (13) (79)

9 (11) (389)
T) (13) (79)

For | x| = [tan(15°)], the maximum relative error of this approximation is
6 X 10—,

4. Fixed-point computation is used to minimize truncation errors.
5. aTane provides the extended answer range —»< y <=, depending on the
combination of signs of the two arguments.

x2 +

Effect of Argument Error

E ~ a/(1 + x?). For small x, ¢ ~ 8; and as x becomes large, the effect of § on ¢
diminishes.

Performance Statistics

Performance statistics for the single-precision arctangent subroutine are as follows:

Average Speed in
Root-Mean-Square Maximum Microseconds
Argument Relative Error Relative Error
Range 7 (€) M () 7090 7094
The entire range 2.93X10™° 1.39X107® 419 269

The sample arguments upon which the above statistics are based were tangents

. T
? andT

was such that function values were uniformly distributed over the answer range).

of uniformly distributed numbers between — (i.e., the argument sample

Arcsine/Arccosine — FASC
Algorithm

1. If 0 =< x < %, compute arcsin(x) by use of the Chebyshev interpolation
polynomial of degree 5 over this range.

2. Il <x=<1,

. T ro o ==\
arcsin(x) = 5~ 2 Larcsm (Q B)_I
Since in this range we have 0 < 1—;—£< 1, this case is reduced to that of item 1
above.
3. Ifo=x=1,

arccos (x) = —% — arcsin(x).

This reduces the case of arccosine to that of arcsine.

4, If =1 < x < 0, use arcsin(x) = —arcsin(—x) and arccos(x) = =
—arccos(—x) to reduce to the earlier cases.

5. The routine FsQr is used in item 2 above.

Effect of Argument Error.

E ~ A/v1 —22 Thus, for small x, E ~ A. For ArsIN with small %, ¢ ~ 8. Toward
the limit of the range, a small argument error causes a substantial error in the
answer.

Performance Statistics
Performance statistics for the arcsine function of the single-precision arcsine/
arccosine subroutine are as follows:

Average Speed in

Root-Mean-Square

Maximum

Microseconds

Argument Relative Error Relative Error
Range o (€) M (¢ 7090 7094
<1 5.47X107° 3.15X10° 533 286

Performance statistics for the arccosine function of the single-precision arcsine/

arccosine subroutine are as follows:

Root-Mean-Square

Maximum

Average Speed in
Microseconds

Argument Relative Error Relative Error
Range o (e) M () 7090 7094
<1 5.54X107° 1.98X107® 545 291

The sample arguments upon which the above statistics are based were uniformly
distributed over the specified range.

Hyperbolic Sine/Cosine — FSCH

Algorithm
1. cosh(x) = e‘”_-l-z_e: .
2. If | x | > 0.3465736, use
3. If | x | =< 0.3465736, use
. % x5 7
smh(x)zx+-3—! + =l + —;_l

The maximum relative error of this approximation is 6 X 10—1°,

4, This routine uses the subroutine rFxpF.

Appendix H: ForRTRAN 1Iv Mathematics Subroutines

185

186

Effect of Argument Error
For the hyperbolic sine function,

A2
E ~ A - coshx + —— sinhx, ¢ ~ A - cothx +

2

For the hyperbolic cosine function,

E ~ A - sinhx +

In particular, for the hyperbolic cosirie function, ¢ ~ A over the entire range. On

A?
2

coshx, e ~ A - tanhx +

A2
2

Az

the other hand, for the hyperbolic sine function with small value of x, ¢ ~ 8.

Performance Statistics
Performance statistics for the hyperbolic sine function of the single-precision

hyperbolic sine/cosine subroutine are as follows:

Root-Mean-Square

Maximum

Average Speed in
Microseconds

Argument Relative Error Relative Error
Range o (€) M (¢) 7090 7094
1x1<50.3466 5.36X107° 1.42X107® 262 153
0.3466<IxI1<K10 4.79X10°° 2.61X10°® 446 299

Performance statistics for the hyperbolic cosine function of the single-precision

| FORUR, R, LR S SRR . | . £
Lyperoodlc siney/ cosuie suproutine are as roliows:

Root-Mean-Square

Maximum

Average Speed in
Microseconds

Argument Relative Error Relative Error
Range a (€) M (¢ 7090 7094
IxI<10 4.41X107° 1.35X10°° 426 285

The sample arguments upon which the above statistics are based were uniformly
distributed over the specified range.

Hyperbolic Tangent — FTNH

Algorithm

1. For | x| < 0.5493, use the modified continued fraction
x %2 x?
tanh(x)=—1— + 5+ =+ =

3 5

2. For 0.5493 < x < 10.4, use

tanh(x) = 1 —

2

e 4+ 1 °

The routine FxpF is used in this step.
3. For 104 < x, give

tanh(x) = 1.

4. Forx =< — 0.5493, use
tanh(—x) = — tanh(x).

Effect of an Argument Error

E ~ (1 — tanh?) A, ¢ ~ 2 A/sinh 2x. Thus, for small x, e~$, and as x gets larger,

the effect of § on ¢ diminishes.

+

x2

9.02743 °

The maximum relative error of this approximation is 4 X 10—,

Performance Statistics

Performance statistics for the single-precision hyperbolic tangent subroutine are

as follows:
Average Speed in
Root-Mean-Square Maximum Microseconds
Argument Relative Error Relative Error
Range 7 (€) M () 7090 7094
1x1<0.5493 570%107° 1.43X10°° 349 228
0.5493<Ix1<<10.4 2.63X107° 1.45X10°® 438 292

The sample arguments upon which the above statistics are based were uniformly
distributed over the specified range.

Error Function — FERF

Algorithm
1. Erf(—x) = —Erf(x).
Assume x = 0 now.
2. x> 417,
Erf(x) =

3. If 417 = x > 151, use the following Gaussian type continued fraction:

1-Eri(x) = —=[" o~ du
V7oue
fw e—* du = e_g:?[035 x 05 3
2 24+05— x*+25— x2+4+45 -
(n — %)n]
—x2+ 2n + Y% —

o~ _zzl: 0.5 x 0.5 3 7.5 10.803 . (%)
22+ 05— x24+ 25— x>+ 45— 22 + 65 — 2% + 4269

The two constants in the last term are obtained by requiring that the formula

give the exact values at x = V/2.3125 and x = V2.75.
The maximum absolute error of this approximation (*) is 1.1 X 10—2,

4. If 1.51 = x = 0, use the continued fraction obtained in the following way:
Transform the Taylor expansion of Erf into a continued fraction (Wall, page 196)
as follows:

\/—_ r fr \—I_ , x2 x4 xG xs
Err(x)J_ - al5 317 + 49
1.0281x2 —167.17 201.39
x? + 10.216 x? + 9.8103 x? + 11.570
31.228 64.244)
x? — 17730 12 + 5578 + w(x)

The constants in the last formula are approximate.
Finally, drop w(x) and instead modify the two constants of the last term so that
the formula is exact at x = 1 and x = /2. The maximum relative error of the
formula obtained this way is 2 X 10—°.

5. Fixed-point computation is employed to minimize truncation errors. This
routine uses the exponential subroutine FXPF.

Appendix H: ForTRAN 1Iv Mathematics Subroutines 187

188

Effect of Argument Error

E~A-e~®. As the magnitude of the argument increases away from 1, the effect
of an argument error on the final accuracy diminishes rapidly. For small x, e~8.

Performance Statistics

Performance statistics for the single-precision error function subroutine are as
follows:

Root-Mean-Square Maximum Avel:age Speed in
Argument Relative Error Relative Error Microseconds
Range 0] M) 7090 7094
IXI<4 3.20X10°° 1.27X10°° 681 438

The sample arguments upon which the above statistics are based were uniformly
distributed over the specified range.

Gamma/loggamma — FGAM

Algorithm
1. If 0<x=<<2-127 for ALGAMA use
log[r(x)]=—1log(x).
2. If 2—127<x< 4, reduce the case to 1=x=2, using
x[T(x)]=T(x+1).
Compute T'(x) for 1=x=2, using a continued fraction obtained in the following
manner:

For 1=x=2,

I‘(x)=f e~ 't7—1dt

Y L 15y ()

k=0

where: a;, =f llog (¢))*(e—*)t3dt.

ap="Y \/;:
a,;=0.80845993 X 10—2,
az = —0.1628 X 1010,
By transforming the formula (*) into a continued fraction, we obtain

41 Ao %3 G4 %5 *%k
z+ B + 2+ B z+8; + 2+, +z+,85+w(z) (**)

I'(z+15)=
where:
o= —1.2581927 B1=—11.746649
as= 33.814358 B2= —4.8326355
as= 59.285853 Bs= 81171874
a= —3.6512651 B,= 0.20317850
a;= 6.0985782 Bs= 1.4063097
Finally, drop w(z) in formula (**) and compensate for it by modifying the con-
stants B84, a5, 85 to obtain an approximation formula accurate to within absolute
error of 2.3X10-9,
3. If 2 **"<x<4 for ALGAMA, compute log [I'(x)] by first computing I'(x) as
in item 2 and then taking the logarithm of the result.
4. If 4 = x < 1.54926 X 2120, compute log [T'(x)] as follows:

log[T(x)] == z[log(x) — 1] — %log(x) + Ylog(2x) + F(x)

where:
F(x)=0,ifx= 22,
1 1 1 1
F(x) = —7or~ = 360 ' 1260F 176087
This formula is the result of economizing Stirling’s asymptotic series. For the
range considered, its absolute error is less than 2.1 X 102
5. If 4 < x < 34.843, compute T'(x) by first computing log[T'(x)] as in item 4
and then taking its exponential base e.
6. The routines FLOG and FXPF are used by this subroutine.

Lif x < 212,

Effect of Argument Error
For T {x),e ~ ¥{x) - &,and forlog I'{z), B ~ ¥ (x) - A, where ¥ is the digamma
function.

For%< x <3, —2< ¥ (x)<l,andE ~ AforlogT (x).

However, since x = 1 and x = 2 are zeros of log T'(x), even a small & can cause
a substantial ¢ in this interval.

For large values of x, ¥ (x) ~ log x. Hence, for T'(x), e ~ 8 - x - logx. This
shows that even the round-off error of the argument contributes greatly to the
relative error of the answer. On the other hand, for log T'(x) with large value of
X, € ~ 9.

Performance Statistics
Performance statistics for the gamma function of the single-precision gamma/
loggamma subroutine are as follows:

Root-Mean-Square Maximum Aver.uge Speed in
Argument Relative Error Relative Error Microseconds

Range 40] M (e 7090 7094
2771 455X107° 1.22X10°° 474 316
1<x<2 2.51X10° 6.16X10°° 435 289
2<x<4 476X107° 1.59%X10°® 519 335
4<x<10 6.03%X10°° 2.26 X107 1110 676
10<0x<34 3.18X 107 1.27X10° 1110 678

Performance statistics for the loggamma function of the single-precision gamma/
loggamma subroutine are as follows:

Root-Mean-Square Maximum Avel:uge Speed in
Argument Absolute Error Absolute Error Microseconds
Range 7 (E) M (E) 7090 7094
1
'2‘<x <3 1.02X27% 1.72X277 858 532
Root-Mean-Square Maximum Avel:age Speed in
Argument Relative Error Relative Error Microseconds
Range 0] M (e 7090 7094
1
o<x<7 5.09X107° 1.72X10°® 871 544
3I<x<4 5.87X107° 2.43%X10°° 945 579
4<x<10 7.81X107° 2.67X107° 808 480
10<x<100 6.53X107° 2.09X107° 811 485

The sample arguments upon which the above statistics are based were uniformly
distributed over the specified range.

Appendix H: FORTRAN Iv Mathematics Subroutines 189

190

Double-Precision Subroutines
The following information describes double-precision subroutines listed in Fig-
ure 25B.

Square Root — FDSQ
Algorithm
1. Write
x = (2%—9)m, where p is an integer,qg = Oor 1,and % <m < 1.
Then :
Vi =2 V(Z)m |.

2. Take the first approximation y, to be

1
v=2(5 +5)ia=0

Yo = 2"(% + %‘),ifq =1
The relative error of y, is less than 2—4.
3. Apply the Newton-Raphson iteration
1 x
Ynt1 = 7(Yn + Un
last time in double precision:
The maximum relative error of ys is 253,

) 4 times to yo, 3 times in single precision and the

Effect of Argument Error
e~ Y23

Performance Statistics

Performance statistics for the double-precision square root subroutine are as

follows:

Root-Mean-Square Maximum Ave‘rage Speded n
Argument Relative Error Relative Error Microseconds
Range o (e) M 7090 7094
7090 4.26 X107 1.59X107%¢ 448
1077 x<10%
= 7094 4.03X107% 1.56 X107 220
*For arguments that are less than 107, speed is substantially slower because of floating-point underflow.
For accuracy in this range, see the section “Alternate 7094 Floating-Point Trap Subroutine.”

The sample arguments on which the above statistics are based were exponentially
distributed over the specified range.

Exponential — FDXP

Algorithm
1. e* = 2v, where y = x(log,e).
Write
Y = Y1 + y», where y, is the integer part and ys is the fraction part.
Define
2L =Y, 2=y, ify=0.
Z=y1—1, 2=y, +1, ify <.
Then
o= 9" (2z2), where z, is an integer and 0 << 22 < 1.
2.2%for 0 <z, <1is computed by the use of the Chebyshev interpolation
polynomial of degree 11 for the interval. The maximum relative error of this
polynomial is 257,
3. If x = —89.415987, 0 is given as the answer.

Effect of Argument Error

¢ ~ A.Since A = § - x, for the larger value of x, even the round-off error of the
argument causes a substantial relative error in the answer.

Performance Statistics

Performance statistics for the double-precision exponential subroutine are as
follows:

Root-Mean-Square Maximum Ave.rage Sp:ed in
Argument Relative Error Relative Error Microseconds
Range a (e M(e) 7090 7094
7090 4.24X1077 1.68X 107 3016
0<x<X1
7094 3.74X1077 1.07X107 559
7090 4.82X107" 1.96X107° 3021
—70.0<x<88.028
7094 4.38X107 1.39X107° 564

The sample arguments on which the above statistics are based were uniformly
distributed over the specified range.

Logarithm — FDLG

Algorithm
1. Write
x = (2")m, where n is the exponentand Y2 = m < 1.
Define the base value F as
F = 15 where e =m < _}/2_?

F= l,Wherelzg.Sm<l.

m—F
Letz =——— T F Then
m=F(i+z) and | z | < 0.1716.
4

log (x) = n [log(2)] + log(F +log(

log (F) = —log(2), where Y2 =m <

bo |<

log (F) = 0, where \me <l

2. log(itZ) =2z(1 +i‘;_ +i;_+...)§z(co+clz2+...+c7z14),

where coefficients c,cs, . . , ¢7 are obtained by Chebyshev interpolation.
The maximum relative error of this approximation is 2—5%3.

Effect of Argument Error

E ~ 8. In particular, if § is the round-off error of the argument, say § ~ 5.6 X 10—17,
then E ~ 5.6 X 10—17, This means that if the argument is close to 1, the relative
error can be very large, since the function value is very small at that point.
Performance Statistics

Performance statistics for the natural logarithm function of the double-precision
logarithm subroutine are as follows:

Appendix H: FOrRTRAN 1v Mathematics Subroutines

191

192

Root-Mean-Square Maximum Ave'roge Spedecl in
Argument Absolute Error Absolute Error Microseconds
Range o (E) M (E) 7090 7094
1 7090 1.30X27® 1.64X2°% 2723
—<xk2
2 S 7094 1.76X27% 1.89X27% 463

The sample arguments on which the above statistics are based were uniformly
distributed over the specified range.

Root-Mean-Square Maximum Av?rage Sp:led fn
Argument Relative Error Relative Error Microseconds
Range 40] M 7090 7094
Full -
Fu I ran?e exclud 7090 9.65X 1077 2.95% 107 2736
ing the interval
1
(?, 2) 7094 6.09X 107 1.80X 107 474

The sample arguments on which the above statistics are based were exponentially

distributed over the specified range.

Performance statistics for the common logarithm function of the double-precision

logarithm subroutine are as follows:

Root-Mean-Square Maximum Average Speed in
Argument Absolute Error Absolute Error Microseconds
Range v (E) M (E) 7090 7094
1 70%90 1.84X2°% 1.12X2° 2886
_2—<x<2 7094 1.66 X 27 1.64X27% 489

The sample arguments upon which the above statistics are based were uniformly

distributed over the specified range.

Root-Mean-Square Maximum Ave.ruge Sp:ed "
Argument Relative Error Relative Error Microseconds
Range a (€ M (e 7090 7094
| positi i
All positive num- 1 0 118X 107 4.46X10° 2899
bers outside
1
(?‘, 2) 7094 9.12X107" 3.31X10™ 500

The sample arguments upon which the above statistics are based were €expo-
nentially distributed over the specified range.

Sine/Cosine — FDSC

Algorithm
L. If cos(x) is desired, reduce the case to a sine function by

cos(x) = sin (_’2’_— x).
2. If x < 0, use
sin(—x) = —sin(x).
Assume x = 0. If | x | < 272, give x as the answer.
3. Divide x by % and separate the integer part g, and the fraction part g, of
the quotient.
Let go = g; [modulo 8]. Then

sin(x) = sin (%qo + %qz) .

v
4, Further reduce the case to the computation of either sin (Z r)

or cos (%—r)withOSrSlbytheformulas
. |—7T , ™ R ™ m
sin L'Z‘(él + qo) +z g2 | = —sin\ 71 qo +Z qs § , where 0 = g, < 3.

(5 +io)-ol0-0]
sin| 3+ ¢ —cosL4(gq) |.

B

sin(—;-+—2q2)= cos ‘l‘iqz).
. 311' o . T
sin T+7q2 = sin ’Z(l—qz) .

5 For0<r=<1,

sin(%r) = Sor + S;1% + Sor® + ... + Ser'®.

cos(lr) =1+4Cu+ Cort + ...+ Cor,

4
Coefficients Sy, , S¢ are obtained by Chebyshev interpolation over the range
0 <r < 1, and the coefficients C,, , Cq are obtained by Chebyshev interpola-

tion over therange —0.01 =<r =1

The maximum relative error of the sine approximation is 2-%5. The maximum rela-
tive error of the cosine approximation is 254,

Effect of Argument Error
E ~ A. As the argument gets larger, A grows, and since the function value is peri-
odically diminishing, no consistent relative error control can be maintained outside

the principal range { — %) %) . This observation holds true for cosine as well.

Performance Statistics
Performance statistics for the sine function of the double-precision sine/cosine
subroutine are as follows:

Root-Mean-Square Maximum Ave.ruge Speed in
Argument Absolute Error Absolute Error Microseconds
Range a (E) M (E) 7090 7094
7090 1.85X27% 1.75%X27% 2141
Ixi<< =
2 7094 1.02X275 2 414
- 7090 1.63X27% 1.52X27* 2184
- <ix<10 ” .
2 = 7094 1.16 X2™* 1.32X27% 441
7090 1.50X27% 1.42X27% 2180
10<1x1<100
< 7094 1.08X27% 1.21X27 4491
Root-Mean-Square Maximum Ave-rage Speded in
Argument Relative Error Relative Error Microseconds
Range o (€) M (e 7090 7094
- 7090 9.14X 107V 472X10™ 2141
X< .
2 7094 9.08X 10 3.81X107" 414

The sample arguments on which the above statistics are based were uniformly
distributed over the specified range.

Appendix H: FOoRTRAN 1v Mathematics Subroutines 193

194

Performance statistics for the cosine function of the double-precision sine/cosine
subroutine are as follows:

Average Speed in
Root-Mean-Square Maximum Microseconds
Argument Absolute Error Absolute Error

Range o (E) M (E) 7090 7094

7090 1.26 X 27% 1.05X 275 2241

o<x<7
7094 1.52%X27% 1.14X27% 427
—50 —48

—20<x<0 and 7090 1.21X2 1.57 X2 2280

m<x<20 7094 1.63X27% 1.33X27% 453

The sample arguments on which the above statistics are based were uniformly
distributed over the specified range.
Arctangent — FDAT
Algorithm
1. Reduce the general case to 0 = x = 1 by using the following formulas:

arctan(—x) = —arctan(x).

1 _ T
arctan (|—xl—) =5 arctan(| x |).

2. Then reduce the case further to | x | < tan(15°) by using

_ apo <_\/'i‘?>u) . o o
arctan(x) = 30 +arctan(c+ V3 ,if tan(15°) < x < tan(45°).

3. For the basic range | x | =< tan(15°), a continued fraction approximation of
the following form is used:

arctan(x) - ayx2 %o o3 oy
x l+,81+x2+,82+x2 Bg+x2+B4+x2'(*)
This formula can be derived by transforming the Taylor series into the following
fraction:
1 e (3)(4) (5%)(2¢)
arctan(x) —1-_3 _ (5%)(7) __(D9e)(11)
x 3. 23 B 59 -,
5T BE T) T
(4)(7)(3)
(5)(11)(13%)
CIICI) I '
(13) (17) +ax2+w

As the approximation of the value w = w(x), pick —0.00398. When we rewrite
the above fraction with this value of w, we obtain the formula (*).
The maximum relative error of the formula (*) is less than 2-55.

4. paTanz provides the extended answer range — = < y < =, depending on the
combination of signs of the two arguments.

Effect of Argument Error:

E ~ A/(1 + x?). For small x, ¢ ~ 8; and as x becomes large, the effect of § on «
diminishes.

Performance Statistics

Performance statistics for the double-precision arctangent subroutine are as
follows:

Average Speed in
Root-Mean-Square Maximum Microseconds
Argument Relative Error Relative Error
Range o (€) M (E) 7090 7094
7090 6.47 X107 2.21X107* 2739
Full range
7094 6.61X107 3.92X107% 548

The sample arguments on which the above statistics are based were tangents of

random numbers uniformly distributed over — % , -g— (i.e., the argument

sample was such that the function values were uniformly distributed over the
answer range).

Complex Subroutines
The following information describes complex subroutines listed in Figure 25C.

Square Root — FCSQ
Algorithm
1. Write

Vxtiy=£&+ing
2. If x = + 0, use

§=\)de_1_
Y

"= 3

3. Ifx << —0,use
__Y
&= 2,

+ x4+
)= sm(y) [LR EL

Thus, if x < 0, the case y = —0 is differentiated from the case y = +0. That is,
- lim -
x— 0= (_;_T_O Vx — el
- li .
Vx+ 0= e—>lr-1i1-0 Va+ ei.

4. If in the foregoing computation
as the answer.
5. The routines ¥sQr and rcaB are used by this subroutine.

Limitation: If | x | + | x + iy | = 2%, floating-point overflow is caused.

W < 2129 then 0 + 0i is given

Effect of Argument Error

Ifx+iy=r-e*and Vx + iy = R - ¢#, then¢(R) ~ % §(r) and (H) ~ 8(h).
Performance Statistics

Performance statistics for the complex square root subroutine are as follows:

Average Speed in
Maximum

Root-Mean-Square

Microseconds

Argument Relative Error Relative Error
Range o (€) M (¢) 7090 7094
1070+ ixal <107 4.31X107 1.44X10°° 821 503

The distribution of sample arguments upon which the above statistics are based
is radially exponential and is uniform around the origin.

Appendix H: FORTRAN 1Iv Mathematics Subroutines 195

Exponential — FCXP

Algorithm
1. er+¥ = ¢* - cos (y) + ie” - sin (y).
2. The routines ¥xpr and Fscn are used by the subroutine.

Effect of Argument Error
If e+ = R (¢'), then H = y and (R) ~ A(x).

Performance Statistics

Performance statistics for the complex exponential subroutine are as follows:

Root-Mean-Square

Maximum

Average Speed in
Microseconds

Argument Relative Error Relative Error
Range o (€) M (¢) 7090 7094
1185, Ixl<<10 6.64X107° 1.97X107° 1345 835

The sample arguments on which the above statistics are based were uniformly
distributed over the specified range.

Natural Logarithm — FCLG

Algorithm
1. Write
log(x + iy) = ¢ + in.

Then in the sense of aTang,

¢ = log(|x + iy|) and
n» = arctan %

2. This routine differentiates the argument x —0i from the argument x +0,

That is,
log(x — 0i) = lim

—+0 log(x - ei).

log(x+0i) = 1™ “log(x + ci).

3. The routines FcaB, FLOG, and FATN are used by this subroutine.
Limitation: If | x + iy | = 217, floating-point overflow is caused.
Effect of Argument Error
Ifx +iy =1r-e"*andlog (x + iy) = ¢ + iy, then h = yand E(¢) ~ 8(r).
When the argument is near 1 + 0i, the answer is almost 0, and therefore a small
8 can cause a large ¢
Performance Statistics
Performance statistics for the complex logarithm subroutine are as follows:

Root-Mean-Square

Maximum

Average Speed in
Microseconds

borhood of 1+0i.

Argument Relative Error Relative Error
Range a (€ M (¢) 7090 7094
Full range, except
the immediate neigh- 3.45X10" 3.03x10° 1469 906

The distribution of sample arguments on which the above statistics are based is
radially exponential and is uniform around the origin.

196

Sine/Cosine —FCSC

Algorithm:
. sin(x + iy) = [sin(x)] [cosh(y)] + [i] [cos(x)] [sinh(y)]
cos(x + iy) = [cos(x)] [cosh(y)] — [i] [sin(x)] [sinh(y)]

2. The routines Fscx and rscH are used by the subroutine.

g
1

Effect of Argument Error

Combine the effects of the sine and cosine functions of the single-precision sine/
cosine subroutine with the hyperbolic sine and cosine functions of the single-
precision hyperbolic sine/cosine subroutine according to step 1, in the algorithm

ahnavae
QU YC.

Performance Statistics

Performance statistics for the sine function of the complex sine/cosine subroutine

are as follows:

Average Speed in
Root-Mean-Square Maximum Microseconds
Argument Relative Error Relative Error
Range a (€) M () 7090 7094
1al10, Ix1<1 7.53X107° (2.81X107%) 1868 1169

Note: The maximum relative error cited here is based upon a set of 2500 random samples in the range.
In the immediate neighborhood of the points nm+0i, n==%1, £2,..., the relative error can be quite
high, although the absolute errors are small there. For the same value of xz, the relative error increases
with Ixil. For the same value of xi, the relative error stays substantially constant as Ixal increases.

Performance Statistics

Performance statistics for the cosine function of the complex sine/cosine subrou-

tine are as follows:

Average Speed in

Root-Mean-Square Maximum Microseconds

Argument Relative Error Relative Error
Range o (€) M (¢ 7090 7094
110, 1< 1 7.44X107° (2.72%X1078) 1871 1169

Note: The maximum relative error cited here is based upon a set of 2500 random samples in the range.
In the immediate neighborhood of the points (n+V2)r+ 0i, n=0, =1, *£2..., the relative error can be
quite high, although the absolute errors are small there. For the same value of x., the relative error increases

with Ixil. For the same value of xi, the relative error stays substantially constant as Ixal increases.

The sample arguments on which the above statistics are based were uniformly

distributed over the specified range.
Absolute Value — FCAB

Algorithm

LIf|x) =y,

lx+yil=x| \J1+ (%)2+0i.

2. I [y | > |x],
\}1+(")2+0i
[yl ” .

3. The routine rsQr is used by this subroutine.
Norte: If the result is greater than Q, the floating-point overflow is caused.

|x + yi |

Appendix H: FOrRTRAN 1v Mathematics Subroutines

197

198

Performance Statistics
Performance statistics for the complex absolute value subroutine are as follows:

Average Speed in
Root-Mean-Square Maximum Microseconds
Argument Relative Error Relative Error
Range o (€) M (e) 7090 7094
1072y + il K107 5.80X107° 2.44X107° 421 250

The distribution of sample arguments on which the above statistics are based is
radially exponential and is uniform around the origin.

Arithmetic — FCAS

Algorithm
1. (a+bi)x (c+di)=(axc)+ (bxd)i
2. (a + bi) X (¢ + di) = (ac — bd) + (ad + bc)i
3. If|c|=|d|,

a/c + bd/c? + —ad/c® + b/c ;
1+ (d/c)? 1+ (d/c)? ’

If |d| > | c|, then reduce to the case above by transforming (a + bi) =+ (c + di)
= (b —ai) + (d— ci).

Note: When the magnitude of the result is close to ©, a floating-point overflow
is possible. When the magnitude of the result is close to the underflow threshold,

raoy of the ancwer diminichacg
raly OF e answer aiminisnes.

(a + bi) + (¢ + di)

tha s

ano
il alCu

Performance Statistics
Performance statistics for the multiply function of the complex arithmetic subrou-
tine are as follows:

Average Speed in
Root-Mean-Square Maximum Microseconds
Argument Relative Error Relative Error

Range 8 (e) M (¢) 7090 7094

For puairs of operands
hich f

which are away from 1.09% 10" 2.62X10° 324 174
the overflow or under-
flow thresholds

Performance statistics for the divide function of the complex arithmetic subrou-
tine are as follows:

Average Speed in

Root-Mean-Square Maximum Microseconds
Argument Relative Error Relative Error
Range 3 (¢) M (¢) 7090 7094

For pairs of operands
which are away from 13%10° 3.23X 108 513 209
the overflow or under-
flow thresholds

The distribution of sample operands upon which the above statistics are based is
radially exponential and is uniform around the origin.

Miscellaneous Subroutines

The following information describes miscellaneous subroutines listed in Figure 26.

Error Control Modification for the FINC Subroutine — FMTN
The FMmTN subroutine modifies error control of the single precision tangent/
cotangent subroutine (F1~c). Its calling sequence is:
CALL MTAN(k)

When the k = 0, 1, 2, 3, 4, or 5, the FrNc subroutine is modified to give a minimum
relative accuracy guarantee of 1/(2*+2—1) for correctly rounded arguments near
the singularities. When k is greater than 5, the Frnc subroutine is modified to sus-
pend the accuracy guarantee feature completely; any argument less than 2*° in
magnitude (and greater than 2126 for the cotangent function) will be accepted.

The Map programmer can accomplish the same effect as the FMTN subroutine
by coding the following instructions:

1. When the accuracy guarantee is to be modified:

CLA =1
ALS k
STO CRIT

Here k = 0, 1, 2, 3, 4, or 5. Values higher than 5 should not be used.
2. Where the guarantee is to be eliminated:

STZ CRIT

7090 Double-Precision Arithmetic Simulator — FDAS

The Fpas subroutine was designed to perform double-precision addition, multi-
plication, and division for the 7090 double-precision mathematical functions. Since
it saves space as a closed subroutine in comparison with macro-expansions of
double-precision instructions, it is also useful to the Map programmer. The Fpas
subroutine cannot be called by FORTRAN 1v or COBOL programs.

The calling sequence for the Fpas subroutine is:

TSX entry point,4
PZE AD1,T1
PZE AD2,T2

where the entry points are prap for addition, pFmp for multiplication, and pFDP
for division. The first operand must be contained in the ac-MQ. ap1 modified by the
tag T1 is the core storage address of the high-order portion of the second operand,;
ap2 modified by the tag T2 is the address of the low-order portion. The Fpas sub-

routine leaves the result of the computation in the ac-MgQ.

Note: The rpas algorithms are similar to the macro-expansions of double-
precision instructions. The subroutine always acts as an extension of the calling
program, i.e., it does not update system locations. If a floating-point trap occurs
during its operation, the name printed in an error message is that of the calling
program. Fpas uses only index register 4 and contains no entry point for subtraction.

Appendix H: ForTRAN 1v Mathematics Subroutines

199

200

Appendix I: Storage Requirements for FORTRAN IV

Mathematics Library Subroutines

The following chart shows the octal and decimal storage requirements for the
FORTRAN 1v mathematics subroutines. An asterisk beside the name of a subroutine
indicates that, in the 7090 Subroutine Library, double-precision operations for that

subroutine will be performed by the Fpas subroutine.

In each pair of figures, the figure to the left of the slash represents the number
of storage words used in a 7090. The figure to the right of the slash applies to

a 7094.

SUBROUTINE NAME

FASC
FATN
FCAB
FCAS
FCLG
FCSQ
FCSC
FCXP
FDAS (7090 library only)
FDAT*
FDLG*
FDSQ
FDSC*
FDXPp*
FERF
FGAM
FLOG
FMTN
FSCH
FSCN
FSQR
FTNC
FTNH
FXPF

STORAGE REQUIREMENTS

OCTAL

131/131
232/232
44/40
115/102
61/60
55/54
163/157
130/125
46/—
314/231
231/170
100/67
250/211
205/170
141/141
302/302
177/177
13/13
121/121
173/173
53/53
222/229
72/72
121/121

DECIMAL

89/89
154/154
36/32
77/66
49/48
45/44
115/111
88/85
38/—
204/153
153/120
64/55
168/137
133/120
97/97
194/194
127/127
11/11
81/81
123/123
43/43
146/146
58/58
81/81

Appendix J: Procedure for Using the 7090 Asterisk Deck

The 7090 Asterisk Deck generates asterisks if an in-
sufficient field width is specified in a program using
the standard 7090 conversion routines. Output through
the standard 7090/7094 conversion routines is thus
made consistent with output from the 7094 optional
conversion routine.

The deck is used as follows:

1. Mount the 7090/7094 Bsys Operating System sys-
tem tape as SYSLB1 on Al

2. Mount a tape on A3 containing the Subroutine
Library as the first file. This tape is made by copying
the Subroutine Library from Symbolic Tape 1, where
it is the fifth file.

3. Prepare a tape from the 7090 Asterisk Deck and
mount the tape as sysiNi on A2. Press LOAD TAPE.

4. The following message should occur:

$* MOUNT SCRATCH TAPE ON A3 WHEN IT
UNLOADS.

Remove the tape containing the Subroutine Library

ThH 7000 /700 A
from A3 and mount a scratch tape. The new 7090/7094

mBsys Operating System system tape will be produced
on A3 when the job is completed.
5. The following message should now occur:
$* MOUNT SCRATCH TAPE ON B3 WHEN IT
UNLOADS.
Remove B3. This is the new Subroutine Library sym-
bolic tape.
6. Mount a scratch tape on B3 and continue. At the
end of job the tape on A3 will contain the new 7090/
7094 1Bsys Operating System tape.

Appendix J: Procedure for Using the 7090 Asterisk Deck 201

Glossary

The definitions in this glossary apply to these terms as
they are used in this manual. The reader may also
refer to the IBM Reference Manual, Glossary for In-
formation Processing, Form C20-8089.
absolute
A term referring to specific core storage addresses.
Absolute text and absolute program refer to machine
language instructions that can be loaded directly
into specific areas of core storage for execution.

AC
See “register.”

accumulator
See “register.”

AC-MQ
See “register.”

alternate unit

Axn inmiik /avibnad 1imit thot
FEV SR ll.ltlu\./ UULPUL (PN N I.L.lal. 10 auuo\.xLuL

such unit as the result of programmer direction.

ea Ior uu 0er

application
Any single use of a subsystem or user’s program.

argument
An independent variable.

assembly
The process of translating into machine language a
program coded in a symbolic language that parallels
machine language coding.

Assembler
See “Macro Assembly Program.”

bit
A binary digit. In 7090/7094 core storage a bit is
represented by a magnetic core. If the computer
circuits have made the core positive, the bit is a
1; if the core is negative, the bit is 0. A bit can be
represented on external storage such as tape.

blank comMon
A storage area in upper core to provide temporary
storage for data that will be used by several pro-
gram segments. The blank coMMoN area is lost after
the job is completed.

block
A group of data records, words, or characters. The
size of a block may be limited by the amount of core
storage available for buffers or by some inherent
characteristic of a particular input/output device.

202

blocking
Records are blocked, or grouped together in a buffer,
in order to increase the average length of the phys-
ical records being written, thus reducing the process
time per record, and increasing the total number of
records that can be written on one unit.

buffer
An area of core storage that is used to temporarily
store information during a transfer of information
within core storage itself or to or from an input/
output device.

calling sequence
The instructions and data words that establish the
linkage to and from a subroutine.

cALL transfer vector
The data words in a calling sequence that contain
the information used to identify the position of rou-
tines whose location is out of the regular sequence
of instructions.

chaining
A technique for associating two or more table en-
tries with each other. A word in each chained entry
contains the address of the next entry in the chain.

checksum
A summation of digits or bits used primarily for
checking purposes and summed according to an
arbitrary set of rules.

closed subroutine

A subroutine that is a separate routine. To use a
closed subroutine, the programmer transfers con-
trol out of his main program into the subroutine.
The subroutine terminates by transferring back to
the main program. A closed subroutine is entered
into only once, and can then be used as often as
needed by coding in the main program a calling
sequence that gives the name of the subroutine and
the desired parameters.

COBOL
cosoL (Common Business Oriented Language) is a
programming language designed primarily for com-
mercial data processing. It allows the user to de-
scribe the processing to be performed in terms
similar to business English.

coBoL Compiler
A component of the 1BjoB Processor that translates
a COBOL program into MAP language as input to the
Macro Assembly Program.

communication word
A permanent storage location used to transfer infor-
mation from one set of coding to another.

compile
To transform a problem-oriented program into a
symbolic language that parallels machine language,
or into machine language itself.

component
A part of the mjoB Processor that is called to per-
form a specific task. For example, the cosoL Com-
piler is cailed to translate a cosoL deck into the
Map language.

constant addend
That part of a subscript which is a constant and is
connected to a variable using an additive operation.

control dictionary
The portion of a relocatable binary deck that con-
tains symbolic information necessary to relocate
and/or load the deck, including the names and
locations of control sections.

control section
A sequence of instructions or data whose name is
entered in the control dictionary for the program
deck that contains the control section. It can be re-
ferred to from outside this program deck and can
be deleted or replaced with a control section from
another program deck.

core storage
The form of high-speed main storage using mag-
netic cores that is found in a 7090/7094 Data
Processing System.

debug
To detect, locate, and remove the mistakes from a
program.

dictionary
A table of entries that define symbolic names.

double-precision :
A term used to describe computations in which the
arguments are numbers contained in two adjacent
machine words for greater accuracy.

embedded blank
A blank between two characters.

end-of-file
An end-of-file refers to a file mark (tape mark)
which signals the end of a file of information on
a tape unit.

entry point
A location in a program deck to which control can
be transferred from another program deck. Also
used to describe the location of the first instruction
to be executed in a program.

error-flow trace
A routine used to determine the logical order of
program execution that occurred before an error.
See the “rorTrRAN Utility Library” under “Subroutine
Library Information.”

even location
A core storage location the address of which is an
even number. Core storage locations are numbered
0 through 32,767.

EVEN storage feature
The provision for assigning an even locatior
structions, double-precision floating-point operands,
or other data to satisfy machine requirements or to
increase efficiency of operation.

g

=ie

[
="

o in-

execution
The computer operation performed in response to
program instructions.

external storage for text
Temporary storage areas on a peripheral unit used
to contain program instructions which cannot be
contained in main storage during loading.

file
A collection of related information.

file closing
The termination of input/output operations on a file.
It often involves the preparation of end-of-file trailer
labels and rewind operations.

file control block
Twelve words in storage containing the control in-
formation and characteristics of a file to be processed
by 10Cs.

file dictionary
A table of entries that define files.

file mark
A special indication on an external storage device
that informs the program that the end of data has
been read on the device. A file mark is written by
the input/output label system after the header label,
and after the checkpoint recording, if any, and be-
fore and after the trailer labels of output files.

file opening
The initialization of input/output operations on a
file. This often involves verification of header labels.

floating-point
A form of notation wherein numbers are represented
by a number multiplied by a power of ten. For ex-
ample, 99.1 would be represented as 9.91 X 10%. The
portion of the number to the left of the multiplica-
tion sign is the mantissa. The portion to the right is
the exponent shown as a power of 10. In a 7090/7094
36-bit machine word the exponent of a floating-point

Glossary 203

binary number is expressed in the upper eight bits
as a power of two and the mantissa is contained in
the remaining portion.

FORTRAN
A programming language that closely resembles the
ordinary language of mathematics and is designed
primarily for scientific and technical applications.

FORTRAN Compiler
A component of the 1BjoB Processor that translates
FORTRAN 1V programs into relocatable binary input
to the Loader.

header label
A record containing common, constant, or identify-
ing information for a group of records which follow.
It usually contains a file identification, a creation
date, and a retention period.

initialize
To set an instruction, counter, switch, or address
to a specific starting condition in preparation for
operation.

input editor
A part of the input/output editor under the 18j0B
Processor which regulates input to the Processor.

intersystem unit
An input/output unit that is to be reserved so that
information may be passed between jobs.

job
All card images from one sjoB card up to but not
including the next sjoB card. Within a job, one or
more applications are executed as a logical unit.

job control
A component of the 1BjoB Monitor that supervises
the overall operations of the Processor and commu-
nicates with the mBsys System Monitor.

library
An organized collection of operating programs, sub-
routines, and data.

links, overlay
Segments into which a program can be divided
when it exceeds core storage capacity. The main
link is resident in core storage while a job is being
executed. Dependent links are stored on external
storage units and can be brought into core storage
when needed. See “Overlay Feature of the Loader.”

load

To take information from auxiliary or external
storage and place it into core storage. Loading
under the 1BjOB Processor consists of combining
separately assembled program decks and required
subroutines, establishing an input/output mechanism
for the program, and placing the program in the
necessary core storage sequence for execution.

204

load map
A listing by the Loader of core storage allocation
just prior to execution of a program.

Loader
The component under the 18joB Processor that loads
programs.

location counter
A counter that is incremented by one for each word
the assembly program generates in the object
program.

machine language
The binary data that can be executed or used di-
rectly by the processing unit of the 7090/7094.

Macro Assembly Program
The component of the 1BjoB Processor that translates
MAP language source programs into either relo-
catable binary machine language as input to the
Loader, or absolute binary machine language. Often
called the Assembler.

MAP
A symbolic language that closely parallels machine
coding on a 7090/7094 machine.

monitor
A program or routine to control operation of sev-
eral other programs or routines.

MQ
See “register.”

nucleus (1Bsys)

The portion of the System Monitor that remains in
core storage at all times during use of the operating
systems to provide common data areas, pointers,
tables, and routines.

object program
The output from an assembler or compiler, usually
in machine language.

off-line
A term pertaining to operation of input/output de-
vices or auxiliary equipment not under direct control
of the central processing unit.

on-line
A term pertaining to operation of input/output de-
vices under direct control of a program being ex-
ecuted in the central processing unit.

open subroutine
A subroutine that is inserted into the normal se-
quence of a program. Each time an open subroutine
is used by a program, all of the instrnctions of that
subroutine must be repeated.

operating system
A collection of monitors, subsystems, data control
programs, and user’s programs that permit unin-

terrupted computer operation during the processing

of a variety of jobs.

origin
The address of the beginning of a program section.
overflow
1. During loading: an operation that transfers to
an external storage unit the reloctable binary text
that exceeds its allocated storage area.
. During computation: a condition in which a com-
puted result is too large for the register(s) used

to contain it.

o

overlay
The technique of using the same block of core
storage for two or more program’s segments, called
links, that are executed at different times. These
links are on external units and are called into core
storage by the program when needed.

parameter
A quantity to which arbitrary values may be
assigned.

patch
An instruction or group of instructions inserted in
a program to correct or change coding temporarily.
See “spatcH card.”

peripheral
A term pertaining to operation independent from
the main computer.

Polish notation
A notation used in reducing arithmetic expressions
into a form suitable for translation by a processor.

prepositioning feature
A routine provided by the Processor Monitor that
causes the next needed component to be positioned
on the system tape for immediate access.

process control
A component of the Processor Monitor that super-
vises the assembling and compiling of a source
program.

processor
A program that compiles, assembles, and loads a
program and usually supervises its execution.

program
1. A plan for the solution of a problem, including
data-gathering, processing, and reporting.
2. A group of related routines that solve a given
problem.

program deck
A section of coding headed by a component control
card and terminated by an “end” card appropriate
to the language in which the deck is coded.

program set
A set of contiguous programs in the same job.

pseudo-operation
Any operation available in the MaP language that
is not an actual machine operation, special instruc-
tion, 10Gs operation, prefix code, or macro-operation.
It directs the Macro Assembly Program in the
process of assembly, rather than the computer in
the process of program execution.

qualification
The process of uniquely identifying the symbols
defined in a given section of a program by append-
ing another symbol.

relocatable
A term referring to core storage addresses that must
be incremented to absolute addresses before use in
program execution. A relocatable binary deck is a
deck coded in machine language that is produced
by the ForTRAN Iv Compiler or. Assembler as Loader
input. The deck may consist of up to four sections:
control dictionary, file dictionary, text of program
instructions, and a dictionary of debugging symbols.
The location of each instruction in the text section
is numbered relative to the first instruction in the
deck. Each reference to an address is also relative.
Each relative address is incremented to an absolute
address during the loading process.
register

A device used to store data while it is being either
processed or transferred from one location to an-
other. The accumulator (also called the ac) con-
tains the results of single-precision addition and
subtraction. The multiplier-quotient (MQ) contains
the results of single-precision multiplication and
division. When used together the combined registers
(ac-MQ) contain the results of double-precision and
complex computations. Index registers are used to
contain quantities for address modification and for
purposes such as the determination of loop exits.

routine
A sequence of machine instructions that carry out
a specific function.
scatter-loading
A technique for loading sections of a record into
different core storage areas. Each record section is
headed by a separate input/output command.
single-precision
A term used to describe computations in which each
argument is contained in one word.

source program
A program written in a problem-oriented or sym-
bolic language, and which is not in a form that can
be directly executed by a computer.

Glossary 205

spill
An operation during loading that transfers to an
external storage unit all the text of a relocatable
binary program. This transfer occurs when the core
storage area for text is in danger of being overlaid
by storage areas for other data.

statement scanner
A compiler routine which accepts as input a state-
ment written in symbolic language and classifies
and performs preliminary processing on the state-
ment,

storage map
A listing by the FOrRTRAN 1v Compiler or Assembler
of the relative contents of core storage.

subroutine

A set of instructions, taken as a unit, that perform
a specific programming task. Subroutines are com-
monly used for such phases of a problem as common
mathematical procedures (e.g., finding a square
root), converting data from one form to another,
and error procedures. The subroutines can be used
many times over, by one or several programs.

subsystem
A major component of the 1Bsys Operating System,
such as the 1BjoB Processor or the Generalized Sort-
ing Program.

symbol
A character or combination of characters used to
represent the address of a storage location, an in-
put/output device, or any other program parameter.
An immediate symbol is assigned a specific value
during the first pass of the assembly program. A real
symbol is a symbol defined in the deck in which it

206

appears. A virtual symbol is a symbol that is not
defined in the deck in which it appears.
symbolic language

The defined set of characters and the rules for com-
bining them into meaningful communication that
permits the programmer to represent the machine
locations and instructions by recognizable names
and symbols, e.g., the MaP language.

trailer label
A record with identification and control data related
to previous records of a labeled file. It occurs at the
end of the file, or at the end of each reel of a multi-
reel labeled file.

trap
An interruption of program execution in response
to a specific condition, such as underflow or over-
flow. A trap is usually followed by a transfer to a
routine to investigate and take action on the con-
dition causing the trap.

underflow
A condition in which a computed result is too small
for the register(s) used to contain it.

unit control block
A nine-word area of core storage describing an
input/output device connected to the computer.
utility unit
A unit that is available for use by the system or by
the programmer for any purpose.

word
In 7090/7094 core storage a set of 36 bits that are
taken by the computer to express data in binary
form. A word can be represented on external storage
such as tape.

ADSOMIEE LEXt . o oo oo o et 89, 92, 93
ACTION Toutineoovii i 54, 55
Additional Index Register Mode 7
SAFTER card oo 123
Alter mUMDETS . . . o oo oo 14
Altering an input deck 14
Alternate FORTRAN 1V input/output package 104
Assembler
@ITOT TNESSAZES .+« -« v oo n e e e 145
load-time debugging actions e 25
OPETALIONS oot 74
Assembler Information 74
SASSIGN card i 123
Binary decks 28, 93-98
Blank COMMON 36, 87
Buffer assignmento 37
CALL statement, overlayccccoeeooonn 40
CALL transfer vector, overlay 44
COBOL Compiler (IBCBC)t 19
$CBEND card oo 20
SIBCBC card oo 19, 20
EITOT IMESSAZES . . .« o vvcvv et e e 134
OPEIationsot 5, 69
sample control card decks 20, 21
COBOL Compiler Information 69
COBOL subroutinescooiiiiiii s 108
MPUt/OUEPUE 116
MOVPAK . 108
COBOL-FORTRAN program adjustments 50
Column binary format 28
Compile-time debugging 5,25
Control cardso 15
MALTER card . ..o oo 14, 15
¥DEND card . . . oo oo 26
FENDAL cardo 15
check Hist 169
$IBSYS card 10
$ID card e 10
SAFTER cardot 123
$ASSIGN cardt 123
$Fcard ... 10
SCBEND card i 20
$SDATA card 11
$DELETE card oo o123
SDUMP cardt 59
SEDIT card it 122
$ENDREEL card ...t 11
SENTRY card i 10
SETCcard 31, 36
$SEXECUTE card oiiiiei i 8
$FILE card 31-34
SGROUP cardo 35, 36
$IBCBC card it 19, 20
S$IBDBCcard 25
$IBDBL card25,26
$IBFTC card i 17,18
SIBJOB Cardooooi 8-10
SIBLDR card i 31
$IBMAP card SR 29,23
SIBREL card e 11
$IEDIT card 12,13
$INCLUDE card oot 42,
$INSERT card 0 123
SJOB card 8

Index

SLABEL card 34
SNAME card 36
$OEDIT cardottt 13
SOMIT card ... it 36
SORIGIN card i 41
SPATCH card 60
SPAUSE card 10
SPOOL cardcoiei 35
SPOST cardo 11
$REPLACE card i, 122
$SIZE card 36
8STOP card 10
$STITLE card i e 11
SUSEcard 36
End-of-fillecard 10
for alternate input unit 15
format indexX 163
generalformat 5
sample deck for multijob processing 172
Control section
description 6, 29
name rules 30
Corestorage loadmap 174
Debugging Package 25
compile-time o 25
dictionary 17, 20, 24, 98
load-time 925
operations 5,79
sample control card deck 27
SDELETE card 00, 123
SDUMP card i 59
Dump subroutine 49.3
SEDIT card e 122
End-of-filecard 10
Equality reduction routine 87
EITOr MESSAZESo oot 124
Error flow trace, FORTRAN utility library 107
$ETCocard 38
EVEN pseudo-operation
Assemblerhandling 77
effect on control sections 30
storage feature in Loader 98
EVEN storage feature, 98
External storage for text 92
FDVCHK subroutinec.oiiiiiiiiiain .. 49.3
$FILE card
description 31-34
unit assignment specification 3
File description
buffer allocation 37
$FILE card 31-34
SLABEL card 34
Ble NAMES . . . oo 6, 30
SGROUP card i 35
SNAME card 36
SPOOL cardoiiii 35
unit assignment 38
File name description 6,30
Floating-point trap subroutines 46
FORTRAN IV Compiler (IBFTC) 17
debugging actions 80
€ITOT THESSAZES . . o o v eeei e et et 127
error message processor action 68
OPErationsiiiiiiee e 62

sample deck controlcards 18
FORTRAN 1V Compiler Information 62
FORTRAN 1V input/output library 101
FORTRAN IV mathematics subroutines 45

ACCUTACY . ..ttt 176

algorithms 176

calling sequences to subroutines 45

complex subroutines 49.2, 195

double-precision subroutines 49.1, 190

error-handling 46, 107, 158

floating-point trap subroutinés 46

miscellaneous subroutines 49.3, 198

single-precision subroutines 48, 177

speeds 176

storage requirements 200
FORTRAN 1V subroutine access from COBOL subroutines. 121
FORTRAN 1V utility subroutine library 49.3, 107
FSLITE subroutine 49.3
FSSWTH subroutine 49.3
8GROUPcard 35
Hashing 67
$IBCBCcard 19, 20, 57
S$IBDBL card 25, 26, 57
$IBFTC card 17,18, 57
$IBJOBcard 8-10, 56
IBJOB Processor

additional index registermode 7

communication region 170

CITOr MESSAZES oo 124

components 5

core storage allocation 6

diagram of flow of control 12

dictionaries 6

machine configuration required 175

maintenancecards 59

operation on source language programs 5

order of components on system storage units 55

system unit components 11
S$IBMAP card 22, 23, 57
$INCLUDE card 42
$INSERT card 123
Input deck alteration 14
Inputeditor 58
Input/output editor 11, 53, 56, 58

buffer allocation 37

operations 11, 58
IOEDIT routine 58
Jobcontrol 53-56
$LABEL card 34, 35
Librarian 83, 84, 122

control cards 122, 123
Like-name chains 85
Links, overlay 39
Load map of corestorage 89
Loader (IBLDR) 29, 82

component control card 31

control cards 31-37, 41, 42

control dictionary 97

control of program execution 91

control sectionrules 30

debugging actions 80

debugging dictionary binary text 98

deck name rules 29, 30

description 29

CITOT MESSAZES 151

EVEN storage feature 98

$FillE card 87

file name rules 30

Loader input 93

input/output buffer allocation 37

Library subroutines 83

208

load file binarycards 94

load-time debugging 25, 83
name conventions 29
object program files 29
operations 5, 82
overlay feature 39
overlaymode 83
program loading 83
relation to IBJOB monitor 82
relocatable binary text 94
Loader Information 82
Load-Time Debugging Processor 25
actions by the Assembler 80
actions by the FORTRAN IV Compiler 80
actions by the Loader.................. 80
compiler routines 80
editor and translator routines 81
CITOT MESSAZESc...uuueono. .. 149
execution time routines 80
load-time debugging 5,25,79
operations 79
program flow chart 79
Load-Time Debugging Processor Information 79
Look-ahead feature 104
Macro Assembly Program (IBMAP) 5,22, 74
operations 5,74
sample deck format 24
Macro-skeletontable 76
MOVPAK subroutines 108
majorentry points 108
subroutine calls 109
Multilevel dependency, Subroutine Library 100
$NAME card 36
Nesting control sections 30
Object program files 29
$OMIT card 36
Optional conversion routine 173
Outputeditor 58
Overflow during Loader operations ~...92,93
Overlay feature 39
communication area 90
compatibility of FORTRAN input/output subroutines .. 104
control cards 41, 42
program mechanism 83, 89
SPATCH card 60
PDUMP subroutine 48
$POOL card 35
Prepositioning feature 55
Prestdecks 13
format 13, 14
$OEDIT card 13
Process control 53, 56-58
control card search 56
error message level numbers 58
error procedure routine 58
optionsean 57
Processor Monitor 8,53
CITOT MESSAGeS 125
flow chart of Monitor control. 53
functions of 7 8
input/output editor 56
input/output units used by 56
jobeontrol 53, 54
operations 5,53
process control 53, 56
Processor Monitor Information 53
Program deck " 5
Programming in Sections " 50
Punch editor 7 59
$REPLACE card 122
Relocatable binary decks 28, 93-98
Relocation bits 7 94

Restrictions on $DUMP requests 60
Restrictions on SPATCH requests 61
Result Words .. .o o ottt 96
Scatter-loading 83,91
$SIZE card 36
Snapshot dump 48
Spill during Loader operations 92,93
Standard FORTRAN IV input/output package 102
Subroutine Library (IBLIB) 45, 100
COBOL input/output subroutines 116
COBOL subroutinescoiiiiaaaon.. .. 108
dump subroutine 49.3
FDVCHK subroutine 49.3
€ITOT INESSAZES . . . o o o evv ettt e e e 158
€ITOT PrOCEAUISSo ooutnee e 45
FORTRAN files i 494
FORTRAN IV input/output library 101
FORTRAN IV mathematical subroutines 45
FORTRAN IV utility library 49.3, 107
FOVERF subroutine 49.3

FSLITE subroutinecooiriiiiaaa ..
FSSWTH subroutinecoviunoin..

maintenance

MOVPAK subroutines
object program calls to subroutines

relation to other IBJOB components

restrictions using disk or drum storage
standard FORTRAN IV input/output package
system subroutines
Subroutine Library Information
System record format

Transfer vector, overlay CALL

Unit assignment, input/output

arTQIT

SUSE card

Virtual control sections

definition
in cross reference tables
inoverlay jobso

Index

209

CUT ALONG LINE

_____-__—.-———----——_-———-_-...-————-————_-_-__.._-—-...-————--—-——_———-_——-—_--_——.——--——-————

FOLD

FOLD

COMMENT SHEET

1EM 7090,/7094 IBSYS OPERATING SYSTEM, VERSION I3
IBJOB PROCESSOR

FORM C28-6389— |

FROM

NAME

OFFICE NO,

CHECK ONE OF THE COMMENTS AND EXPLAIN IN THE SPACE PROVIDED

D SUGGESTED ADDITION (PAGE)

[suGGESTED DELETION (PAGE)
[0 error (PAGE)
EXPLANATION

NO POSTAGE NECESSARY IF MAILED IN U.S.A,

FOLD ON TWO LINES, STAPLE; AND MAIL

FOLD

FOLD

STAPLE

C28-6389-1
FoLD FoLD
FIRST CLASS
PERMIT NO, 33504
NEW YORK, N, Y,
[
BUSINESS REPLY MAIL ————
NO POSTAGE STAMP NECESSARY IF MAILED IN U, S, A,

[]
- EE——
POSTAGE WILL BE PAID BY —
IBM CORPORATION —

1271 AVENUE OF THE AMERICAS
L]

NEW YORK, N. Y. 10020
’ L]
]
ATTN: F’UBLICATIONS, DEPARTMENT D39 I—
]
]
]
foo T T T T T T T T T T T TT T T e

JISIM

T
International Business Machines Corporation

Data Processing Division
112 East Post Road, White Plains, N.Y. 10601

STAPLE

CUT ALONG LINE

VSN Ut pauig

1-68£9-82D

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030.0
	030.1
	031
	032
	033.0
	033.1
	034
	035
	036
	037
	038
	039.0
	039.1
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049.0
	049.1
	049.2
	049.3
	049.4
	050
	051
	052
	053
	054
	055
	056
	057
	058.0
	058.1
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133.0
	133.1
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161.0
	161.1
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	replyA
	replyB

