Programming Systems Analysis Guide

IBM 7030 Master Control Program (MCP)

PREFACE

This manual was prepared by Programming Systems
to provide detailed information on the internal logic
of the IBM 7030 Master Control Program (MCP).

It is intended for systems programming personnel
who are responsible for diagnosing system operation
or for adapting the programming system to special
usage.

Certain knowledge is prerequisite for the full uti-
lization of this manual. It is assumed that the reader
has a basic knowledge of the IBM 7030 and its basic
language, STRAP II. Such background knowledge can
be obtained from the IBM 7030 Data Processing Sys-
tem Reference Manual, Form A22-6530-2, and from
the IBM Reference Manual, STRAP II 7030 Assembly
Program, Form C28-6129. It is also assumed that
the reader has a general knowledge of MCP as des-
cribed in the IBM 7030 Data Processing System
Master Control Program Reference Manual,

Form C22-6678.

CONTENTS

INTRODUCTION 7 Processor Communiecation Region 195
’ Time Service Op Routines . . ., . ., . . 198
GENERAL DESCRIPTION OF MCP ., . . . 8 The Commentator., . . . 199
Logical Structure of MCP 8
Program Organization 10 DEBUGGINGAIDS 204
Control of Symbolic I-O. 10 The Dump Routines 204
‘ Console Debugging 207
INTERRUPT CONTROL. 12 :
The Interrupt Tables. 12 SUPPORTING PROGRAMS. 911
Error Interrupts 12 Update Programs., ., . . 211
Maskable Interrupts 13 Peripheral Input-Output., 237
I-O Interrupts e e .. 18 '

The IF Interrupt - The Dispatcher 27
’ APPENDIX A - SYMBOLIC I-O CONTROL

SYSTEMS OPERATION PROGRAMS. . . . 46 TABLES.« 4 . . . 246

System Input Modes 46 Channel and Unit Status Tables 246
dJob Control. a7 The Unit Area Table., . 253
Initial Program Load 87 The File Area Table. 257
The Command Package 91 The Symbolic I-O Location Table 259

The Reel Pool Table. 260
SYSTEM INPUT-OUTPUT 109

The Input Program 109 APPENDIX B - FLOW CHART STANDARDS . 261

System Output 154

Disk Fetech 163 APPENDIX C - THE IBM 7030 MULTIPLIER
REGISTER 263

SERVICE ROUTINES. 166 . ’

Actuator I-ORoutines 166 APPENDIX D - CONVERTOR INDEX . . . 264

Symbolic I-O Control Routines, . 189

Interrupt Mode Control Routines. 189 INDEX o987

LIST OF FIGURES

Figure 1. Function of Return Routine
Figure 2. Inter-relationship of I-O Control
Tables
Figure 3. Distribution of Interrupts
Figure 4. The Maskable Interrupt Routine
Figure 5. The Return After Maskable Routine
Figure 6. The Receptor - Chart 1
Figure 7. The Receptor - Chart 2
Figure 8. The Receptor - Chart 3 (Service Op
Return)
Figure 9. The Receptor - Search and Unstack
Routines
Figure 10. The Receptor - Chart 4
Figure 11. Conceptor
Figure 12, The MCP Dispatcher
Figure 13. The Service Pseudo-Ops
Figure 14. Major Package Pseudo-Ops
Figure 15. Tentacle Table Structure
Figure 16. Entries to and. Exits from the IF
Analyzer
Figure 17. The IF Analyzer
Figure 18. The Identifier
Figure 19. Identifier Routine - Entries and
Exits :
Figure 20. Status of Index Register When
Identifier Enters Routine
Figure 21. The Return Routine - Chart 1
Figure 22. The Return Routine - Chart 2
Figure 23. Exits from the Return Routine
Figure 24. Dispatcher Error Control
Figure 25. The Prime Routine
Figure 26. Job Control 1
Figure 27. Job Control 4 - Chart 1
Figure 28. Job Control 4 - Chart 2
Figure 29. Job Control 4 - Chart 3
Figure 30. Job Control 4 - Chart 4
Figure 31. Job Control 4 - Chart 5
Figure 32. Job Control 4 - Chart 6
Figure 33. The Uncode Routine
Figure 34. The Decode Routine
Figure 35. The Assign Routine
Figure 36. The Move Routine
Figure 37. The Unassign Routine
Figure 38. The Resume Load Package
Figure 39. Table Organization
Figure 40. The MCP Loader - Chart 1
Figure 41. The MCP Loader - Chart 2
Figure 42. The MCP Loader - Chart 3
Figure 43. The IPL Bootstrap
Figure 44. The Initialization Program -
Chart 1
Figure 45. The Initialization Program -
Chart 2

11
12
16
19
21
23

24

25
26
28
29
29
29
31

32
33
34

35

45
39
40
42
43
45
50
56
58
59
60
61
62
64
68
70
74
76
79
82
83
84
86
89

90

92.

Figure 46.

Figure 47.
Figure 48.

Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.

Figure 67.
Figure 68.

Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.

Figure 76.

The Initialization Program -
Chart 3

The Command Mainstream

Mode Control Commands

The Clock Command

Job Control, I-O Commands

The IOCHANGE Command -

Chart 1

The IOCHANGE Command -

Chart 2

The IOCHANGE Command -

Chart 3

The Special Assignment Routine
Functional Programs

The Six Transition Routines
Control Table Format and
Symbols

Passage of Buffer Parameters
Functional Program Symbols

The Input Program - Queue
Manipulation

The Input Program - I-O
Actuation

The Input Program - The Card
Reader Program

The Input Program - The Scanning
Program

The Input Program - The Write
Tape Program

The Input Program - Tape EE
Fixup

The Input Program - Card Request
Processors

The Input Program - EOJ Scan
The Input Program - Tape Switch
Initiation

The Input Program - Tape Switch
Routines

The Input Program - Transition to
Online

The Input Program - Transition to
Bypass

The Input Program - Transition to
Offline

The Input Program - Transition
Subroutines

The Input UK Fixup - Entry and
EPGK

The Input UK Fixup - UK on $WEF
and $W

The Input UK Fixup - ERG
Procedure - Chart 1

93

95

97

99
100
103
104
105
108
110
111
113
114
114
116
118
120
122
123
125

127
129

131
133
135
137
139
141
144
145

147

Figure 77. The Input UK Fixup - ERG Figure 108. The I-O Indicator Check Routine -

Procedure - Chart 2 148 Chart 2 190
Figure 78, The Input UK Fixup - UK on Card Figure 109. The I-O Indicator Check Routine -
$RD - Chart 1 149 Chart 3 191
Figure 79. The Input UK Fixup - UK on Card ‘Figure 110. The I-O Indicator Check Routine -
$RD - Chart 2 151 . Chart 4 192
Figure 80. The Input UK Fixup - UK on $RD Figure 111. The CHEX and IODEF Routines 193
Chart 1 152 Figure 112, The Free Routine 194
Figure 81. The Input UK Fixup - UK on $RD Figure 113, The RIO and Wait Routines 196
‘ Chart 2 153 Figure 114. The Commentator - Chart 1 200
Figure 82. The Input UK Fixup - UK Without Figure 115. The Commentator - Chart 2 202
EOP 155 Figure 116. The $EDUMP Program 205
Figure 83. The Input UK Fixup - Program Figure 117. The $DUMP Program 206
Recovery 156 Figure 118. The $HOLD Routine 208
Figure 84. The Output Tape Switch Routine 158 Figure 119. The Console Debugging Package 209
Figure 85. The System Print and Punch Figure 120. The Symbolic Update Program 212
Programs 159 Figure 121, Update 30 - Chart 1 219
Figure 86. Print and Punch Control Symbols 160 Figure 122, Update 30 - Chart 2 220
Figure 87. EE, EOP Fixups for Print and Figure 123. Update 30 - Chart 3 221
Punch 160 Figure 124. TUpdate 30 - Chart 4 224
Figure 88. The Output EOJ and Output Figure 125, TUpdate 30 - Chart 5 225
Command Programs 161 Figure 126. Update 30 - Chart 6 226
Figure 89. The Disk Fetch Package 165 Figure 127. Table of Contents (TOFC) 229
Figure 90. The Read Routine 167 Figure 128. The Generator Librarian -
Figure 91. The Write Routine 169 Chart 1 230
Figure 92. The Copy Control Word Routine 170 Figure 129, The Generator Librarian -
Figure 93. The Write Tape Mark Routine 171 Chart 2 232
Figure 94. The Locate Routine 173 Figure 130. The Generator Librarian -
Figure 95. The Release Feed Card Erase Chart 3 233
Gap Routine 174 Figure 131. The Generator Librarian -
Figure 96. The Space Routines 175 Chart 4 234
Figure 97, The Unload and Rewind Routines 177 Figure 132. The Generator Librarian -
Figure 98. The Unit Lights and GongRoutines 178 Chart 5 235
Figure 99. The Control Word Check Routine 179 Figure 133. The Tape Labeling Program 238
Figure 100. Branch Table - Address Status Figure 134. System Peripheral Input I 240
Bit Tests 180 Figure 135. System Peripheral Input II 243
Figure 101. The Verify Routine 181 Figure 136. System Peripheral Output 245
Figure 102. The Write Label Routine 182 Figure 137. Channel Status Table Entry for
Figure 103. The Space Label Routine 184 Single Unit Channel 246
Figure 104. The Check Density, Check Mode Figure 138. Channel Status and Unit Status
Routines 185 Table Entries for Multi-Unit
Figure 105. The I-O Reject Routine 186 Channels 246
Figure 106. The SEOP Test Routine 187 Figure 139. Unit Area Table 254
Figure 107. The I-O Indicator Check Routine Figure 140. File Area Table 258

Chart 1 188

The IBM Programming System for the IBM 7030
Data Processing System consists of the Master Con-
trol Program (MCP), the assembly program (STRAP
II), FORTRAN, and the System Macro Language,
SMAC I. MCP is the system control program; the
other three programs are language processors. The
programs constituting the system are described in
detail in their respective Programming Systems
Analysis Guides. This manual, then, is one of a set
of four Analysis Guides which describe the IBM 7030
Programming System completely.

How MCP is used with respect to computer opera-
tions and problem programs is described in the IBM
7030 Data Processing System Master Control Pro-
gram Reference Manual, Form C22-6678: Detailed
information about the functions performed by MCP is
described in the Analysis Guide, together with mis-
cellaneous programming information. This, together
with the program listing, enables the systems pro-
grammer to determine how MCP accomplishes any
given task, and to adapt MCP to such special usage
as the installation may require. The Analysis Guide,
designed to complement the program listing, is a
tool for the systems programmer to help him make
most effective use of the MCP program listing.

INTRODUCTION

For purposes of exposition, MCP has been divided
into the following five basic functional areas:

1. Interrupt control
System operation
System I-O
Service routines
Debugging aids

Each area is described in a section of the Analysis
Guide. Additional sections provide a general descrip-
tion of MCP, and descriptions of the supporting pro-
grams.

Flow charts have been included in context for ease
of reference. They are drawn at a functional level,
and conform to the standards specified in Appendix
A. Program symbols are used freely in both the text
and the flow charts in order to relate the Analysis
Guide and the listing as closely as possible.

The subprograms of MCP are closely interrelated.
In order to avoid diversionary discussions through-
out the Analysis Guide, each section has been written
presuming knowledge of the other sections whenever
necessary. The reader with the responsibilities
outlined in the preface should read the entire Analy-
sis Guide once to become familiar with content,
terminology, and level of discussion, before attempt-
ing to put it to use.

(SIS U)

Introduction 7

GENERAL DESCRIPTION OF MCP

The Master Control Program (MCP) for the IBM
7030 is composed of many small programs whose
overall purpose is to expedite the flow of work
through the 7030 system. They total approximately
11,000 words, most of which remain in core storage
at all times. They rely on a set of supporting pro-
grams to perform peripheral I-O operations and
system update.

THE LOGICAL STRUCTURE OF MCP

MCP is composed of three kinds of programs:

1. Interrupt control programs

2. Service routines

3. Major packages

These three categories constitute distinct logical
levels within MCP. They operate within the frame-
work of a few basic priority and control concepts.

Interrupt Control Programs

One of the design features of the 7030 is its interrupt
system. MCP takes all interrupts, although some
may be subsequently routed to a problem program
(PP). Included in the category of interrupt control
programs are those programs which receive control
directly or almost directly from an interrupt table.
These programs operate with the interrupt system
disabled, and, except for interrupts due to non-recov-
erable errors, they route control to some other pro-
gram. Since MCP uses the IF interrupt as a basic
means of communication, the interrupt control pro-
grams concerned with the IF interrupt are referred
to collectively as the dispatcher. Similarly, the
interrupt programs concerned with handling I-O
interrupts are referred to as the receptor.

Service Routines

MCP permits the problem program (PP) to use sym-
bolic I-O, and performs I-O operations on the proper
unit when requested by the PP. The programs which
actually accomplish these services (i.e., read, write,
rewind, etc.) are called service routines. The group
of service routines concerned exclusively with sym-
bolic I-O operations is called the actuator. Additional
service routines perform such functions as suppression
and release of I-O interrupts, setting of the interval
timer, etc. . The service routines may be explicitly
defined as those routines which accomplish pseudo-ops
for pseudo-op codes less than 64.0. They operate

disabled, and are effectively an extension of the
requesting program. They receive control from the
dispatcher and return to the point of request.

Major Packages

The remaining programs in MCP are major pack-
ages. In terms of pseudo-ops, a major package is a
program which services a pseudo-op whose code is
64.0 or greater. A major package has characteris-
tics similar to those of a problem program. It may
operate enabled, may suppress I-O interrupts, may
perform I-O (but must use symbolic I-O and the serv-
ice routines), may use other major packages, and
has priority over a problem program and its inter-
rupts. A major package may be primed; that is,
have its pseudo-op and parameters entered into a
queue for execution at a later time.

Program Control and Priority

MCP receives control only when an interrupt occurs.
Pseudo-op requests enter MCP via the IF interrupts.
Since the service routines are considered a logical
extension of the requesting program (MCP or PP), it
is necessary to introduce the concept of level of pro-
gram operation. The program level, or instruction
counter owner, is MCP when an MCP major package
is in control or about to receive control. At all other
times the level is PP. The system level (SL) bit is
used by MCP for control logic. Note that the service
routines operate at either level, depending on the
level of the program requesting the service pseudo-
op. Thus, an MCP service routine may be in con-
trol, but may be operating at PP level. However,

all portions of MCP in which this is possible (i.e.,
non-major packages) operate with the interrupt sys-
tem disabled.

Interrupts other than IF may occur only while the
PP or an MCP major package is operating. Consid-
ering only I-O interrupts, four situations are possible:

1. An MCP I-O unit interrupts an MCP major
package.
2. A PP I-O unit interrupts an MCP major pack-
age.)
3. An MCP I-O unit interrupts the PP.
4. A PP I-O unit interrupts the PP.
These situations may arise in any order and at any
rate. In addition, one interrupt may immediately
follow another interrupt, in which case response to

the second interrupt must be deferred until the re-
sponse to the first is complete. An I-O interrupt
stacking mechanism is required, and is provided by
MCP.

Because of the functions performed by MCP, the
MCP program level must have priority over the PP
level. The PP must not be allowed to interrupt MCP.
Thus, a stacking mechanism is required for PP
interrupts occurring at MCP level.

The MCP receptor places a program (MCP or PP)
in the auto-stack mode (in which successive inter-
rupts are automatically stacked) when it passes an
1-O interrupt to that program. When the receptor
receives an I-O interrupt and the program owning
the interrupt is auto-stacked, or is, by request,
suppressing 1-O interrupts ($SIO), the interrupt is
stacked in a queue. Two such queues are main-

these must be unstacked whenever the level is to
change to PP. The return service routine ($RET)
sends control to the proper place. Every fixup
routine, PP or MCP, and every major package,
terminates with $RET. The return routine must al-
so attend to the unpriming of primed major packages.
Consider the sequence of events shown in Figure 1.

This sequence of events could be further compli-
cated by adding simultanecus interrupts of different
levels, and primed major packages.

In summary, MCP has priority over PP; all MCP
tasks must be completed before control is given to
PP. All major transfers of control are the result of
interrupts: major package to major package, PP to
major package, major package to PP, mainstream
to fixup, and fixup to mainstream.

i ; . Interrupt Program Program Interrupt
tained: one for PP and one for MCP. Considering Owner Level Mode Disposition
the SIO mode and the/auto-stack mode as identical,
the disposition of I-O interrupts may be tabulated as MCP MCP Auto-stack Stack for MCP
shown. MCP MCP Non-auto-stack Give to MCP auto-
When a fixup routine (a program responding to an stacked
s es . PP MCP Either Stack for PP
I-O interrupt) has finished, control must ultimately) A
. . . MCP PP Either Give to MCP, change
return to the point of interrupt; however, interven- level
ing interrupts must first be unstacked. Since PP PP PP Auto-stack Stack for PP
interrupts are stacked when the IC is at MCP level, PP PP Non-auto-stack Give to PP auto-stacked
I Event 1
RET
PP $
$RET
faterrupt $SPR Second PP $RET
Request
PP Mainstream Interrupt
Qutput —
Tape Interrupt $RET
Stages PP Fixup A
of (Interrupt is
Control Major Package Unstacked)
L MCP Fixup
(Stacked)

Figure 1. Function of Return Routine

General Description of MCP 9

PROGRAM ORGANIZATION

In general, the order of the MCP programs are inter-
rupt control, service routines, then major packages.
All of MCP resides permanently on the Permanent
Read Only Storage Area of the disk (PROSA). Most
of it also resides permanently in upper core storage,
the rest being called in from the disk as needed.
Some of the part called in from the disk operates in
the overlay area at the upper end of the permanent
core storage portion, while part of phase 4 of job
control operates in PP memory, since it is required
only between jobs.

Memory Allocation

MCP occupies five type areas on PROSA. One is the
main portion of MCP, the others are major packages
called into core when required. They are:

Type Area Content

11D11MCP Main portion of MCP
22SCOMD Command package
22LOADER Loader and resume load
22$DUMP Debug and dump packages
22$EO0J JC4, assign move

An overlay area is provided for major packages
which are infrequently used, for example, once per
job. Once a program is in the overlay area, it need
not be called in again unless it has been overlayed by
another program. The overlay area is controlled by
the major package fetcher, a subroutine of JC4, and
is also used as the buffer for the disk fetch (§FETCH)
program.

The core region from the overlay area to the top
of memory is available for patches and special
installation packages.

The MCP Communication Region

The MCP communication region consists of 14 words
from SMCP to SMCP + (16)g reserved for control bits
and words to be used by any part of MCP. The sym-
bols associated with this region are listed in the early
pages of the listing. They are further defined in
subsequent sections of the Analysis Guide as they

are used.

CONTROL OF SYMBOLIC I-O

To utilize its symbolic I-O feature, MCP requires
the following;:
1. Precise knowledge of the I-O equipment con-
figuration of the machine.

10

2. A mechanism for translating IOD reference
numbers (logical I-O units) into the specific
channels and units used to perform I-O requests.

3. A mechanism for translating a channel and unit
into an IOD reference number to determine the
I- O table of exits for which an interrupt is
intended.

4. A mechanism which can differentiate between
interrupts resulting from I-O operations per-
formed by the owner of a unit and set-up opera-
tions performed by MCP for the owner of the
unit.

5. A bookkeeping system to keep track of activi-
ties both at the physical unit level and at the
logical unit level.

These functions are performed by the I-O control
tables. MCP uses six distinct types of I-O control
tables:

1. A Channel Status Table (CST) exists for each
channel; it contains the operational status for the
channel. For single unit channels, the CST also
contains the operational status of the unit, and locates
the unit area table. For other channels, the CST
locates each unit status table.

2. The Unit Status Table (UST) provides the opera-
tional status for units on a multi-unit channel. It
locates the unit area table. Each such unit has a
UST.

3. The Unit Area Table (UAT) serves as an inter-
face between tables oriented toward physical units
and tables oriented toward logical units. It contains
current information on unit usage, and locates both
the file area table and the channel status table. One
UAT exists for each physical unit defined by IOD's.

4. A File Area Table (FAT) exists for each logical
I-O unit: that is, each unit requested by an 10D card.
The FAT contains information in terms of operations
on the logical unit. It contains the information from
the 10D card, and locates the proper entry in the
symbolic I-O location table.

5. The Symbolic I-O Location Table contains one
entry for each 10D reference number. The entry
locates the UAT and FAT.

6. The Reel Pool Table is used to record the

sequence of reels used by a physical unit. It contains
the labeling information from the REEL cards.

The channel and unit status tables are originally
set up by the initialization program at initial pro-
gram load. They may be changed by the IOCHANGE
command, and are initialized by job control. They
are updated by the actuator and receptor.

The unit and file area tables, along with the sym-
bolic I-O location table and reel pool table, are set
up by phase 4 of job control, immediately prior to

running a job. The area tables are updated by the
actuator and receptor.

The tables may need to be referenced starting
either with a channel number (as in the receptor) or
with an IOD reference number (as in the actuator).

number serves to locate all related tables.

The

channel number locates the CST entry, and the I0D
reference number locates the proper entry in the

symbolic I~O location table.

These tables are

defined in detail in Appendix B.
The basic characteristics of the tables are as

The tables are chained (Figure 2) so that either follows:
Table Size Frequency Total Storage Location
Channel status 1 word 1 per channel 32 plus 1 words MCP core
for each BX channel
Unit status 1word 1 per unit of Varies with I-O MCP core
multi-unit channels configuration
Unit area 9 words 1 per unit used Varies User's core -
protected
File area 7 words 1 per IOD Varies User's core -
protected
I-O location 1 word 1 per 10D Varies User's core -
protected
Reel pool 1word 1 per PP reel Varies PP core
10D RN 1
. Unit Area Table Address File Area Table
Address
2
— ZZ’M 1-O Location Table
N i e e
n
F 10D RN <—"]
File Area Table
/
/
/ /\\
Chan No.
[ChanNo. | N\—
) - Unit Area (Single Unit
AddFA Activ 7 | Table Address Channel)

i Unit Status \ [Unit in| Channel
Unit Table Address \ /- Use Status
Area e e —~_—_J Table
Table

yFirst Reel Address 1
Reel Pool Table /
Next Reel Address
A Unit Area
Table Address
Unit
Status
M\/M Table
Figure 2. Inter-Relationship of I-O Control Tables

General Description of MCP

11

INTERRUPT CONTROL

MCP design is centered around the IBM 7030 inter-
rupt system. All interrupts arc taken by MCP. All
major transfers of control and all I-O functions
depend upon the interrupt system and the MCP inter-
rupt control programs for their success.

MCP divides the IBM 7030 interrupt ($IND) indica-
tors into four categories:

1. The error indicators: 0-3, 5-8, 15-17, 19

2. The maskable indicators: 4, 18, 20, 22-47

3. The I-O indicators: 9-13

4. The IF indicator: 21

The IF indicator is placed in a category by itself
because, in addition to indicating a potential error,
it is uscd for major transfers of control.

Figure 3 shows the distribution of interrupts
among the MCP programs. All interrupts are
received by the MCP interrupt table and from there,
control flows to the specified MCP programs.

MCP Interrupt Table

Error Maskable] 1-0 IF

y A A

Parallel T
SFandard rallel Interrupt Table Dispatcher
Fixups Maskable l 1-0
¥ A
Maskable
Interrupt Receptor
Routine

Figure 3. Distribution of Interrupts Among MCP Programs

THE INTERRUPT TABLES

MCP provides the following two interrupt tables:

1. The interrupt table (SIT)

2. The parallel interrupt table (SIPT)

All IBM 7030 interrupts are received by the inter-
rupt table (SIT). It consists of 48 full word instruc-
tions of the form SIC,---; BD, ---; one for each indi-
cator 0 through 47. Indicator 14 is not used, the
interrupt table containing two NOP instructions in
the word corresponding to that indicator. The inter-
rupt table branches to one of the following three
basic areas of MCP (Figure 3):

1. The standard fixups

2. The parallel interrupt table

3. The dispatcher

12

I-O interrupts are all handled by a common routine,
as are the maskable interrupts, and control is passed
to these routines through the parallel interrupt table.
This permits retaining the identity of the individual
interrupt while branching to a common routine.

The parallel interrupt table consists of 48 full
words. All 48 words are not used, because all inter-
rupts do not require use of this table. In positions
corresponding to the maskable indicators, the par-
allel interrupt table contains the full word instruction
SIC, ---; B,---. In positions corresponding to the
I-O indicators, it contains BZB1, SPSIOI+ (indicator
number), KSTORE, providing for entry to the recep-
tor with a bit set corresponding to the interrupt.

The action taken by the interrupt tables for the
various interrupts may be tabulated as shown on the
following page.

ERROR INTERRUPTS

MCP divides error interrupts into two groups which
are both handled by standard fixup routines:

1. Machine errors (indicators 0-3, 5), prohibiting
continuation of system operation.

2. Program errors (indicators 6-8, 15-17, 19),
prohibiting continuation of the problem program.
Program errors also prohibit continuation of system
operation if they occur in MCP.

Machine Errors

Indicators MK, IK, IJ, EK, and CPU are set only by
machine errors. The interrupt table branches to five
routines all of which are two-word routines of the
following form:
YFX** SIC, YMFL
B, YMFL
(1QSX) DD (BU), kY
(** denotes the indicator mnemonic)

Thus, control passes to a common fixup routine,
YMFL, with the location of the IQS indicator mnemonic
in the address of YMFL, This routine hangs up in a
BD, $ after using the commentator to type the state-
ment:

*INTERRUPT. THE NEXT INSTRUCTION IS A
BE TO THE INTERRUPTED ADDRESS.

Program Errors

Incorrect program action may set indicators EKJ,
UNRJ, CBJ, OP, AD, USA, and DS. The interrupt
table will branch to one of seven routines all of which

Interrupt Interrupt Interrupt Table (SIT) Parallel Interrupt Table (SIPT)
Category Indicators SIC IN BD TO SIC IN B TO
ERROR MK, IK, 1J YMFIC YFM**
EK, CPU. {standard
0-3, 5, fixup; **
machine denotes
error) indicator
mnemonic)
EKJ, UNRJ, YSFIC YFM**
CBJ,OP, AD, (standard
(6-8, 15-17, 19, fixup; **
program denotes
error) indicator
mnemonic)

MASKABLE TS(4, the only STIC SIPT+4.0 SINTO JWLODE
asynchronous (special TS
maskable interrupt
interrupt) routine)
All other STIC SIPT+ WINTOR WLODE
maskable. (indicator (maskable
(18,20,22-47) number) interrupt

routine)

I-O EPGCK, UK, EE STIC SIPT+ Not saved. KSTORE
EOP, CS. (indicator Bit SPSIOIL (receptor)
(9-13) number) + (indicator

number) set.
IF IF (21) STIC SIFAE

(IF analyzer)

are two-word routines of the following form:
YFX** SIC, YPREL
B, YPREFX
(AX)DD(BU, 32), **X
(IQSX)DD(BU, 32), **X

As in the case of machine errors, control passes
to a common fixup routine, YPREFX, with a reference
to the A8 and IQS mnemonic in YPREL.

If PP generated the interrupt, the common fixup
routine, after saving low registers in the backup
buffer (SLRBU), resets the seven error indicators
and the EXE and IF indicators. This prevents an
unanticipated loss of subsequent control. The coded
indicator mnemonics are placed in PP and MCP error
messages, and the IC saved in YSFIC is converted to
A8 and also placed in the PP error message. The
level bit (SL) is then tested to determine the source
of the error.

If the error was caused by PP, ABEOJ is primed,
the level bit is set to MCP, and the MCP mask and
boundaries are selected. Control is given to the
short message routine to write the error message
and the ABEOJ is unprimed causing the rejection of
the PP. (See the dispatcher return routine, and the
short message routine.)

If the error was caused by MCP, system operation
cannot be continued. Hardware I-O instructions are

used to write the IQS error message on the typewriter,
and a BD, $ is executed.

MASKABLE INTERRUPTS

The maskable indicators are used at the option of the
problem program. They are:

Interrupt Control 13

Indicator Type
4 Time Signal (TS)
18 Execute Exception (EXE)
20 Data Fetch (DF)
22-34 Result Exceptions
35-38 Flagging
39-40 Transits
41-47 Program

Time signal and execute exception are permanently
masked on, but to give the problem program more
control, they are treated as pseudo-maskable (see
the description of the maskable interrupt routine,
and the EXE interrupt). The IF indicator, the mask
of which must always be 1, is not included in this
group.

Interrupts caused by these indicators are routed
via the parallel interrupt table to the maskable inter-
rupt routine, or, in the case of TS, to a special entry
in the maskable interrupt routine. Control then passes
to a program table of exits (PTOE) in either PP or
MCP. In the case of MCP, the standard fixup routine
is entered from the PTOE, and control returned to
the point of interrupt via the return after maskable
interrupt routine.

The Program Table of Exits (PTOE)

When any maskable interrupts are masked on, fixup
routines must be available to handle the resulting
interrupts. The problem program has the option of
providing special fixup routines or of using the MCP
standard fiXup routine, or a combination of both.

If the problem program is to use special fixup
routines, it must provide MCP with a program table
of exits (PTOE) to these routines. The refill field
(RF) of index register 15 ($15) is reserved for this
purpose. If the problem program is to use any spe-
cial fixup routines for maskable interrupts, it must
load the RF of $15 with the first word (18 bit) address
of a PTOE. The RF of $15 will be zero when MCP
initially gives control to PP. It will also be zero when
MCP gives control to any PP I-O table of exits. It
is the responsibility of the PP that $15 RF be correct
whenever PP has control. PP may provide as many
special PTOE's as are necessary, changing $15 RF
when desired.

The PTOE reserves storage for the IC, the indica-
tor register and the mask register ($IND and $MASK).

14

It consists of 4+k full words as follows:

Word Content

1 Saved IC

2 Saved $IND

3 Saved $MASK

4 Pattern word, containing k
ones

4+1 First instruction for the first
special interrupt routine.

4+i First instruction for the ith
special interrupt routine.

4+k First instruction for the last

special interrupt routine.

The pattern word indicates whether the PP furnishes
a special interrupt routine or desires to use the stand-
ard fixup routine. There is a one-to-one correspond-
ence between positions in the indicator register and in
the pattern word. When a pattern word bit is set to
one, it means that a special interrupt routine is to be
used for the corresponding interrupt. The first
instruction for the routine must be in the PTOE at
word 4+i, where the interrupt indicator register posi-
tion corresponds to the ith one in the pattern word.

Only bits 4. 18, 20, and 22 through 47 may be set to
one in the pattern word. All others are treated as

zero. The PP must set the appropriate mask bits in
the mask register ($MASK). The IF mask bit, 21,
must always be left as one.

When MCP enters the problem program PTOE, the
IC, $IND, and $MASK are stored in the word specified.
The remaining low registers are unchanged. $IND is
cleared to zero, and $MASK is cleared to zero except
for the IF bit and those permanently on.

Maskable interrupts $TS and $EXE are considered
as masked off unless a PP PTOE is specified, and the
corresponding pattern bits are on.

The MCP PTOE and the Standard Fixup

Since PP may elect to take maskable interrupts with-
out providing special interrupt routines, MCP is pre-
pared to take any maskable interrupt. MCP provides
its own PTOE, which is entered when PP does not pro-
vide a PTOE, or when the appropriate pattern bit in
the PP PTOE is off.

The MCP PTOE is located at SFPTE. It has the
same structure as the PP PTOE, and contains ones in
the pattern word corresponding to each of the maskable

interrupts. The last 27 full word entry points are all
of the form
LVI, $1, **
B, YMSF
(** denotes the location of the A8 indicator
mnemonic)

NOTE: The first two, TS and EXE, are treated as
masked off, and the PTOE branches to the return after
maskable routine (WRAM).

Thus, control passes to a standard fixup routine with
the location of the A8 indicator mnemonic in $1. The
maskable interrupt standard fixup routine, YMSF,
saves the low registers in SLRBU, and puts the indica-
tor mnemonic and the IC in a message skeleton. The
program changes the level to MCP and branches to the
system short message routine to print the following
message on the output tape:

INTERRUPT **, INSTRUCTION COUNTER
CONTENTS XXXXXX.X
Since the level bit (SL) is set to MCP, the return
routine will return to PP rather than to the short
message routine. (See the description of the short
message routine and the return routine.)

If PP has entered the standard fixup routine 50
times, the dispatcher error control routine (SDISP)
is entered with error code 13 in $14. This will result
in ABEOJ for the PP.

The Maskable Interrupt Routine

From the parallel interrupt table, the maskable inter-
rupt routine is entered disabled at WLODE for all
maskable interrupts except TS. It is entered at
JWLODE when a TS interrupt occurs. The routine
selects either the PP or the MCP PTOE, performs
the necessary set-up, and enters the table.

TS Maskable Interrupt

The TS interrupt is the only maskable interrupt
occurring asynchronously with the program in con-
trol, therefore, the system modes must be deter-
mined before the interrupt is released to a PTOE.

If TS interrupts MCP, the TS is stacked until control
is returned to PP. If TS interrupts a PP I-O fixup
(PP auto-stacked), the TS will be stacked until con-
trol is returned to PP mainstream, unless PP has
provided a PTOE effective in auto-stack mode.
(Recall that MCP sets $15 to zero before entering a
PP I-0O table of exits.) If TS occurs while a PP
PTOE has control (SSPFIX = 1), it will be stacked,
requiring that PP leave the PTOE with a $RAM pseu-
do-op (return after maskable) to unstack TS interrupt.

The low registers are saved in STLR upon entry
into the maskable interrupt routine (Figure 4). If
the interrupt was TS (entry at JWLODE), the system
mode control bits are tested and the TS either stacked
or given to a PTOE. It will be given to a PTOE only
if it occurs in PP main stream, or in PP auto stack
with a PP PTOE provided. Otherwise, it is stacked
as follows:

TS Occurs Stacked by Unstacked
in Setting by

PP special STSBIT $RAM

fixup (PP PTOE

in use)

PP auto-stacked SLRPP+8.4 $RET

(no PP PTOE

provided in A/S)

MCP SIL.RBU+8.4 $RET

The first case (PP special fixup) is provided
because of the asynchronous nature of the TS interrupt,
to keep an uncontrollable maskable interrupt from
occurring during a maskable interrupt fixup. To pre-
vent this, MCP stacks the TS and releases it to the
PTOE when the PP executes $RAM. The second case
(PP auto-stacked) provides for holding the TS inter-
rupt until return to PP mainstream, unless PP has
specifically provided for taking the interrupt by
loading $15 RF in the I-O fixup routine. The third
case is simply an exercise of MCP priority over PP.
As with any other PP interrupt, the TS interrupt is
stacked until MCP returns control to PP.

In the first case, the stacking mechanism is simply
a bit (STSBIT) reserved for that specific purpose. In
the last two cases, the stacking mechanism involves
the basic return logic in MCP. The buffers SLRPP
and SLRBU are used to save PP low registers when
transfer of control among programs is involved.
SLRPP contains PP mainstream registers while PP
is in an I-O fixup, or when MCP has control after
having interrupted the PP I-O fixup. In any case
where the program level is changed from PP to MCP,
the PP registers at the point where the level changed
are saved in SLRBU. Thus, SLRBU may contain regi-
sters from either PP mainstream or a PP I-O fixup.
When the level is returned to PP, it always returns
via SLRBU. Return via SLRPP occurs when a PP I-O
fixup returns to PP mainstream.

When the return routine is returning to PP via either
SLRBU or SLRPP, it examines bit 8.4 of the buffer to
determine if a TS has been stacked. If so, it restores
low registers and exits to the TS entry in the parallel

Interrupt Control 15

ENTRY CNLY FOR TS

(22T) EEAEENRTAIRRERNEN
- » * »
* - STCRE LCW *
ZEJWLCDE ¥ sssavenee REGIS1ERS *ae
* - IN SILR *

= * * -
EuEuE EREARARAAIRRRRANDN
EREEE EAEAREANB TR BN
* * * »
* * » STCRE LCw *
* WLCDE *, saseenX¥® REGISYERS *oa
* * * IN STLR *

» * * *
YT EERAAA NN AR RN RN

Figure 4 - The Maskable Interrupt Routine

16

AnERR AXERRREEAAREAERARR

a *

CCES PP % NC ? SET TS (B.48) *
WN THE 1IC sesueX? IN SLREU *aeue

2 »

ERRRR
«YES

Xeoo e

12322

* [
* 1S THE PP %
* IN A _SPECIAL
* FIXUP %
* -

YES

FeoesvaneX

raeaw
«NC

Xe s oo

EREN

- -
NG *® IS FP IN %

sees® AUTC-STACK -
. * NODE *
. FAEER
. -YES
. .
. -
. .
. .
x
- ARERS

- - *

.YES * DOES PF ¥ NG

«Xee¥ FAVE PTOE IN ¥eeeeoane
. * 1/C FIXUP *

. » [

. EEERE

armun

.
-
.
X

* CCES PP %
HAVE PTCE

* ($15 RF) *
B *

YES

LERTETRRRY)

o X¥

ETTY Y
«NC

X
FENANAARAARAAEANE
» "
*SELECT MCP FTCE®
« o X®SET EXIT BRANCH#*
TC CISABLETC &

- .
AR ARRRE IR

.
.

aEaEw

= -
* IS PTCE «

NC
ese® PATTERN FIT #
* ONE -
anmaw
«YES
-
X

ERAREARRERAGRDEN N
* .

% DEVELOP EXIT =
% ADCRESS, SET #
- IN BRANCH e
* »
PETIYTTTI YRR 20

LYY

EXe s o0

. 0
SIS THE MCP %
PTCE SELECTEC
* .

LY+

Reasesens

nnER
«YES

eXewsssosssssencses

CLEAR $INC,
AND SE
EAREANRSRARRERS

Xs o0

ERRRE

» L]
* ENTER
+ PTCE
. M

* »
TEAAAAARBERAERA AN

TR AAFAARERE AN
2 -
% STACK YS FOR =

IRAN *eeesesnsncneX

3 (STSEIT) *

’ *
TEEARERFARRER SRR

RN AARRARAN
» »

SET TS (E.9) i
N SLRPP

1 L LR LT R PR RS §
-

s L]
AREAARARRREERNNES

ABAER
* »*
* IS FTCE *
. WITHIN PP
» BOUNDS *
. »

NC

FesnsessvanseX

uuun
«YES

.
.

x
ARAAAA AR RAAUN
*

*

.

*« SET EXIT =
s EBRANCF TO %
s ENAELEC -
N .
FRRRRRAAARRERR A RN

ARERFARRFARRNR RN
¥ -

* SET FF IN -
* SPECIAL FIXLF *
* (SSPFIX) *
) *
FEAREEA R AERRANS

“nuun
» -

» »
(1211

saans
* *
»
* KSUPP
-

* .
(XTI

ERNER
. =
*
* KSUPP
M

L} -
RuEn

LTI Y]
* -
* SCISF
* TYPE
* 17

» -
anmse

- "
sessX® KSUPP #
* -

-
b
*

.
»
-

-
»
-

interrupt table, faking the TS interrupt. Thus, the
TS eventually gets unstacked while PP has control.

Other Maskable Interrupts

Maskable interrupts other than TS, together with TS
interrupts being taken, are processed by the routine
which starts at WLODE (Figure 4). If $15 RF is zero
(no PP PTOE provided), the routine selects the MCP
PTOE and sets the exit branch to disabled. If $15 RF
is not zero, it is checked for being in PP boundaries,
and the exit branch set to enabled. If the PTOE is

outside PP bounds, control is given to dispatcher error

control (SDISP) with error code 17 in $14.

The program checks the pattern word of the PTOE
selected. If the required bit is off, it loops back to
select the MCP PTOE and change the exit to disabled.
(The MCP PTOE pattern word has a one for every
maskable interrupt.) It then computes the exit address
and stores it in the preset BD or BE. If the required
bit is on in the PP PTOE selected, a bit is set
(SSPFIX) to indicate to MCP that PP is in a special
fixup. The IC, $IND, and $MASK are stored in the
PTOE, $EXE is reset (see the following description
of the EXE interrupt), the used registers are restored,
and the PTOE is entered.

The EXE Interrupt and Combinations

The EXE interrupt, although permanently masked on,
is treated as pseudo-maskable by MCP. Since 18
other interruptis have priority over EXE, the simul-
taneous occurrence of $EXE and the higher priority
indicators must be considered. Not all of these
simultaneous occurrences are significant, in view of
the following analysis:

1. $EXE is off if an interrupt is caused by DS or
a lower priority indicator.

2. $EXE will not be set while MCP has control.

3. Interrupts caused by indicators MK, IK, IJ,
EK, and CPUS (0-3, 5) always result in a BD,$, and
the status of $EXE is of no concern.

4. Interrupts caused by indicators EKJ, UNRJ,
CBJ, OP, AD, and USA (6-8, 15-17) result in ABEOJ
or BD,$, so the only concern is that $EXE be off if
ABEOJ is to be taken.

5. The remaining interrupts with higher priority
than EXE are TS 4) and the I-O (9-13).

6. Since EXE is treated as pseudo-maskable, it
is considered as masked off unless there is a PP
PTOE with the EXE pattern bit on.

7. I $EXE is on when a higher priority interrupt
occurs, it cannot be allowed to remain on and cause
the interrupt on any subsequent BE; the BE must be
to the point of original interrupt (where $EXE was

set). If this will not be the case, $EXE must be
turned off, and a mechanism established to fake the
interrupt at a proper time.

The combinations of interrupts of concern are as
follows: EXE interrupt by itself, TS with $EXE set,
I-O with $EXE set, and TS with both I-O and $EXE
set. These may occur only in PP; however, they
must be considered separately for the three levels
of PP: mainstream, auto-stacked, and special fixup.

EXE Interrupt Alone

If the EXE interrupt occurs by itself (no higher
priority indicators) in PP mainstream, it is either
taken by the PP PTOE (if one exists with the EXE
pattern bit on) or is ignored and return is to the point
of interrupt in PP.

If the EXE occurs in a PP special fixup, it is
treated as though it were mainstream. The PP has
control of PTOE specification and should be prepared
for this eventuality.

If the EXE occurs in PP auto-stacked, it is again
treated as though it were mainstream. If PP may
cause EXE in an I-O fixup, then the fixup routine
must provide a PTOE if the EXE is to be taken.

TS Interrupt, $EXE Set

If a TS interrupt occurs with $EXE set, the handling
of the EXE is influenced by the disposition of the TS.
If the TS is stacked (for instance with PP in auto-
stack with no PTOE) or in special fixup, $EXE may
remain on and be allowed to occur on return to the
point of TS interrupt. If the TS is taken, the $IND is
saved with the EXE bit set in the PTOE (MCP or PP),
$EXE itself turned off, and the EXE interrupt faked
when $RAM is executed after the TS fixup (MCP or
PP).

I-O Interrupt, $EXE Set

When an I-O interrupt occurs, the receptor will either
enter the appropriate I-O table of exits or return to
the point of interrupt with the I-O interrupt stacked,
depending on the modes (SIO or A/S) of the programs
and the owner of the interrupt. I the receptor is to
return to the point of the interrupt, then $EXE may
remain on to occur when the return is attempted. If
a table of exits is to be entered, the PP low registers
are saved in SLRPP (including $IND with $EXE on),
and $EXE must be turned off to enter the I-O fixup
enabled. The EXE will be detected by the return
routine ($RET) when attempting to restore low regi-
sters from SLRPP, and an EXE interrupt faked at

Interrupt Control 17

that point, which reduces to the case of an EXE inter-
rupt by itself.

TS Interrupt, an I-O Indicator On, $EXE On

If a TS interrupt occurs and an I-O indicator and $EXE
come on simultaneously, the TS interrupt is processed
in the normal manner. If a PTOE is to be entered,
$EXE is turned off (on in the PTOE), and the situation
is reduced to a simultaneous TS and EXE with a sub-
sequent I-O. If the TS is to be stacked, the I-O occurs
on attempt to return to the point of interrupt, and the
situation is that of simultaneous I-O and EXE.

Return After Maskable Interrupt

The return after maskable interrupt routine is entered
from the MCP PTOE or when the pseudo-op $RAM is
executed. Its function is to return to the point at which
a maskable interrupt occurred, after first releasing

a stacked TS or EXE interrupt. It operates entirely
disabled.

When $RAM is executed, the routine is entered from
the identifier at WRAMPP (Figure 5). The current
PP PTOE specified by $15 RF is compared with the PP
boundaries, and if it is not within PP boundaries,
dispatcher error control is entered (SDISP) with error
code 17 in $14. The PP special fixup bit is reset
(SSPFIX), and STSBIT tested for a stacked TS inter-
rupt. If a TS occurred while the special fixup was in
progress (STSBIT one), the saved IC is stored in STIC,
the used registers are restored, and the TS interrupt
faked by a branch to the parallel interrupt table at
SIPT+4.0.

If STSBIT is off, bit 18 of the saved indicator regi-
ster is tested to determine if an EXE had been stacked
due to the simultaneous occurrence of TS. If so, con-
ditions are restored and control returned enabled to
the point at which the maskable interrupt occurred.

When the routine is entered at WRAM by the MCP
PTOE as a result of a TS or EXE interrupt which was
logically masked off, the MCP PTOE address is
selected, and control is given to the main line of the
routine at the point of the EXE test.

I-O INTERRUPTS

The I-O interrupts correspond to the five indicators:
$EPGK, $UK, $EE, $EOP, and $CS. When any of
these interrupts occur, the MCP receptor is entered.
The receptor must identify the owner of the interrupt
and either pass it to the proper program or stack it,
according to program mode.

18

Channel signal (CS) interrupts from the console are

given by the receptor to the conceptor because the owner

of a CS from the console cannot be identified until a
read is performed. The eonceptor is used to perform
this identification.

The Receptor

The receptor is entered disabled from the parallel
interrupt table with a bit set in SPSIOI corresponding
to the interrupt. The functions of the receptor are:

1. To identify the interrupt and its owner and
decide whether to stack the interrupt or pass it to the
proper program.

2. To stack all channel signal interrupts occurring
simultaneously with other interrupts. CS interrupts
will be treated at a later time as separate interrupts.

3. To pass console signals to the conceptor.

4. To update tape file and disk arc records in the
control tables.

An I-O interrupt may be owned by PP, an MCP
major package, or by a set-up operation being per-
formed by a disabled MCP routine (e.g., change
density). If it is a set-up operation, control will be
given to the appropriate routine at the address speci-
fied in SRETAD in the unit area table, UAT. (See
Control of Symbolic I-0.)

Interrupts caused by non-set-up operations will be
stacked if the owner is in a stack I-O mode, or if the
owner is PP and the system is at MCP level. Stacked
interrupts are eventually unstacked by the dispatcher
return routine, which enters the receptor by way of
the unstack subroutine.

The receptor is entered at KSTORE from the par-
allel interrupt table, and also at three other points
in the following circumstances:

Entry Point Circumstances

KUNSTC The return routine is
R unstacking an interrupt.
$RIO has been given, and
stacked interrupts must be
unstacked.
KQIN Entered by the conceptor to
fake a CS.
KGATE Entered by the actuator and
conceptor to fake an inter-
rupt under certain circum-
stances.

ENTRY FOR SRAN

EITTTY suaan
- - =

THE FP 2

* -

*WRAMPP #.c00s00

* - lEguNDAFlES *
=

[»
=anaw

18
ceeX¥PTCE WITHIN PP ¥,

YES

ARABASTSRESBERRNR
*

#TAKE PP QUT OF
X% SPECIAL FIXUP
*(RESET SSPFIX)
=

ABTAN AERNERERRARIRZEER
Y .
. .
. -
. .
. .
x x
ARAAE SRUEE AEERAERARABARRAAAR AREAN
® * L L] * £
* SDISP * * IS A TS * YES . RESTCRE . » .
ATYPE 17% - STACKED %ereeasaeX® INTERRUPT %eeceeasceseeX® SIPT #
. . * (STSBIT) * CONCITICNS # * 14.0
- * * * - k]
RERER AREEE REERARARATRBRSRAR AEARS
«NO
.
.
ENTRY FROM MCP PTOE .
.
x
ERERE AREAREAREREEEERBER EERNE FRERARAERATIRERAERE EREN
- * - - - £] * - *
- : * SELECT TRE * * IS AN EXE ® YES » RESTCRE * « *
% WRAM *.eeevscessesX® MCP PTOE ReecoseeaXH STACKED EereeeseeX? INTERRUPT %eeeeeeeccceceX* SIPT #
- . * * * IN PTOE = % CONDITICNS ® * ¥18.0 *
* * * * . * * *
EERRR ARAAEXA A TR ARR RS HERRE IXFARFAABERARRR AR AEERE
«NC
.
.
.
X
FHEERERERARTRARRR ERERS
- - * *
* RESTORE) FRETURN +
% INTERRUPT %eeecesssveesX3TO LCC #
* CCNCITIONS *CF INT *
» * = *
FEREARREEEERRDAES ARARR

Figure 5 - The Return After Maskable Routine

The exits from the receptor are as follows:
Exit To Circumstances

The address
specified in
SRETAD in the
UAT.

The set-up I-O bit (SSETUP)
is on in the unit status table
(UST), indicating that it was
a set-up operation.

The intérrupt is a channel
signal from the console.

PCONE1
(the conceptor)

The I-O table
of exits speci-
fied in the FAT

The interrupt owner is MCP,
or PP at PP level, and is not
stacking I-O.

KSUPP
(service-op
return)

The interrupt is stacked,
because the owner cannot
take it now.

Either OP, AD, USA, or DS
indicators occurred simul-
taneously with the I-O inter-
rupt, and are being allowed
to interrupt.

An EOP interrupt occurred
for an operation which had
been requested in the SEOP
mode.

Type 5 error, a PP TOE is
out of PP bounds.

Type 78 error, there is no
more room in the interrupt
queue.

Type 76 error, a locate or
CCW attempted by the recep-
tor has been repeatedly
rejected.

SDISP
(dispatcher
error
control)

The Receptor Main Flow

The receptor (KSTORE, Figure 6) saves the low regi-
sters in STLR, clears the I-O indicators, and com-
putes the address of the channel status table. If the
interrupt is CS alone, and occurs in a multi-unit
channel, control is given to KSIGNL to find the unit.
If the interrupt was not CS, but CS is on, subroutine
KCSIN is used to stack the CS and set KSUPP to
unstack it. In either case, address of the UST is
obtained.

If the channel is a single unit channel, the unit
status table (actually the CST) address is set up
(KSINGL). I the unit was not assigned, it is assumed
that the interrupt was a stray CS from the card reader,
printer, or punch, and an exit is made via the service
op return routine (KSUPP).

20

NOTE: The disk and the console are considered as
multi-unit channels, since they may have more than
one logical unit.

Whether a single or a multi-unit channel, the unit
and file area table addresses are set up at KDOOL.
The index registers at this point locate the control
tables as follows:

$10VF Address of CST
$11VF Address of UST
$12VF Address of UAT
$13VF Address of FAT

If the set-up bit is on (SSETUP) in the UST, control
is given to the address specified in SRETAD in the
UAT. Otherwise, $1 is set for an ultimate branch to
KNORM at KLEVEL, and control passes to KGATE
after performing the following bookkeeping:

1. If the operation is read or write, CCW into
SCCW in the FAT.

2. 1If tape, update the file count (SFILEK) in the
UAT according to the interrupt and the I-O operation.

3. If disk, update the current arc address (SCUARC)
in the FAT, and the located arc address (SARCAD)
in the CST.

The receptor is entered at KGATE from the actua-
tor and the conceptor with the index registers set as
though KSTORE had been entered. The actuator enters
the receptor either with the index registers set as
though an EPGK had occurred (when, for example, a
read request is received for a file protected tape) or
with EOP faked when a $REL is requested. The con-
ceptor enters the receptor when a console read is
given after a console channel signal had been passed
to the user. Since the read had already been done by
the conceptor, it is necessary to fake an EOP to the
using program.

At KGATE (Figure 7) the I-O indicators are saved
in the FAT, and the status indicators are cleared in
the UST. The release and SEOP bits are examined
in the UST. If the release bit is on, the code at W23K
is used to return to KGATE with an EOP faked for
the release. If the SEOP bit is on, a check is made
for indicators other than EOP (at KFREE) and if none
are on, the service op return routine is entered
(KSUPP). If others are on, or if the SEOP bit was
not on, control passes to KQIN.

At KQIN, the interrupt is stacked in the interrupt
queue (SQUE), which consists of 128 nineteen-bit
fields containing the 18 bit address of the FAT and a
bit identifying the owner of the unit. PP and MCP
interrupts are intermixed in the same queue. How-
ever, a separate count of stacked interrupts is main-
tained for the two levels and is stored in the value field
of the second half word (SQK) of the program status
table (SPROGS) for the level. The unit suppressed

22113 “auam
* 1] -)

- . - -
#KSTCRE # #SFAKET #
* - - -
- - - -
unnn EITIR)
. .
. .
. .
. .
. .
. .
x
EEARAREAERRRAE RS aasa exsaw [TT1 T
= SAVE SLR * = * - * -
* IN STLR. * # IS IT A ® YES L 1S * YES * *
#* INITIALIZE *e eeX# NMULTI UNIT (4] Hesesossee XEKSIGNL *
% EQUIP CODE # CHANMEL ALONE * i
® CST ACDRESS * - » b *
FEEEARRBERRERB AN #EAAE annes [TET S
«rO oNO
. -
. .
. -
. .
. .
KSINGL X x
FRERAAAAABRAERARS LTt ARFRRBAERNARERERR
* * - ») (<] R
#CCVMPUTE SINGLE # = 15 + YES L o i S
® UNIT SIATUS #* * cs HeasossassXd STACK CS AND #
% TABLE ENTRY # * ON = # OPEN PROGRAM #
I ACCRESS - s L] SGATE AT KSUPCS #
REAAREEAAIFRRRAES zaaas TARERSAERAEERRREE
.
.
.
.
.
x KDOCL x
[T wnsaz AFRRARRBAEBAREENN TERFERTEASRARR AN ssass
» - * * - 4 CCGMPUTE MULTI # » -
* * * IS * YES % COMPUTE UNIT # 2 UNIT STATUS # =
* KSUPP X UNTY oX% AND FILE AREA #Xo . TABLE. ax -
* * * ASSIGRED # # ACCRESSES » ENTRY ACORESS ¥ +
» * * * » - x = - L]
EEER LT ARERARSRRERRRARES AERNEEARRRRRRERRE snsne
-
.
.
.
.
.
KRELAY X
xR EERREEEAE AR REE [T AABARAREARERRRRD S
= 1C % #CBTAIN ACTLATOR® - * i e
* UNIT *® *RETURN ACORESS #* YES % IS THIS ¥ AC 4 SET $£1 ERANCK #
#RETURN #Xecescssnseeea®STORE INCICATOR#Xeeososse® A SETUP #®ecessaseX? ADDRESS TO *
*ADDRESS# # IN FILE AREA * % OPERATION * 4KNORM FCR KQIN #
- * * TAELE * * L] -
EEER EREBRARRIIRERAAER PR FEREERERRAREER RN
.
.
x
[T
- 1S *
2 ECUIPVENT
* TAFE *
* L3
IT2123
«YES
.
.
.
.
KSPACE X
TN anaax ERAER [T T sxaen
= . * * * . - - *
* * YES * IS THiS & YES * * Is * *® *
% KCCPY #Xeseovvsamnoe® A WRITE *Xeeoa IS EE ON EXee EPGK CR UK = = KCOPY =
* * * OPERATION = L4 * N * * L
* * * = 1) * - -
RS ETE TR reuun IT2T 1Y asnss
ELY «NC «YES .
. .
. .
. .
. . .
. - . .
x x KSTACK X X
ETRTE) EERNE ETTrEs rERRARERRARNL
* * * » - [*
NO * IS TkHIS * * IS THIS % NQ #® IS THIS # YES * COPY CONTROL #
sesesssssscscsscach A RE#D = * A CONTROL LETYYTRRPS L A READ ¥eeesesssX®uCRD INTO SCCw #
- #* OFERATICN #* #* OPERATICN # x ® CPERATION #* X # IN FILE AREA &
. * * * - - - » . * TABL
. anneE REBER - ARERE - ERURBTARRARNE
- «YES «YES - «NC - .
. . -
. -
- - - - . . -
. - -
.
x KFORWE X KWEF X - X . .
ranEn ERRAEAERAIRREBREE LT . EREE - -
- - = * = * . = * .
#* IS THIS 4 NOC # UPCATE FILE * IS THIS & - ® IS THIS .
® A BACKSPACE ¥eseseessX®COUNT SFILEK+1e%Xs & ! * - A WRITE .
* OPERATICN % * - * OPERATICON ¥ . #* OPERATION *
* * * * - . * -
EEEER EARRSAARRIRRERERE 22T . ERER
«YES . - o -
. .
. .
. . .
. . .
- . -
x x
P e I T anaIn rxEER axna
- - - * * -
% UPDATE FILE #* * DOES * NC » * NO ® is]
#COUNT SFILEK-le®eeessceeX® SFILEK EQUAL %ucecsvecescsscscoascsscsccsacascsavscsneX® KGATE #Xoesosenscese® EQUIPMENT #
- * * ZERC] - - 4 CISK x
* - * * = * -
EREREEEEAXERABARL HuEE AKKRE aEauE
<YES x «YES
. . .
. - .
. - .
. - -
. . .
x x

EEARLEBSAAERRENED

* KILECL *

L R N

- FAKE EPGK Hoee

bl SET KMORM - .
=

= »
FESARARAR HERRAEN s

asEaR
] -

= =
®CARCAD =
% =

cssscses

Figure 6 - The Receptor - Chart 1

bit (SUNSUP) is set, and control given to either
KNORM or KHEX, according to $1.

At KNORM, (Figure 7), a decision is made whether
or not to unstack the interrupt. If PP is interrupting
MCP, the interrupt remains suppressed and exit is
made via the service op return routine (KSUPP). If
MCP is interrupting PP, the unstack routine (KUNSTC)
is entered after moving low registers to the back-up
buffer. If the present program level is the same as
that of the interrupt owner, and the program is not in
$WAIT status or in auto-stack or SIO mode, the inter-
rupt will be unstacked. If the program is in $WAIT
status, and is auto-stacked, the service op return
routine is entered. The $WAIT routine will unstack
this interrupt if it is the one awaited. In all cases
where the interrupt is to be unstacked, low registers
are saved in the appropriate buffer. (See description

of the return routine.) k

The unstack routine returns to KINTTY, where the
proper mask and boundaries are set up, and the pro-
gram put in the auto-stack mode. If a PP TOE is to
be entered, it is checked against the PP bounds. The
unit suppressed bit is reset, and the table of exits is
set up. If either OP, AD, USA, or DS are on,
KSUPP is entered to allow the error interrupt.
Otherwise, the maskable indicators are cleared, $15
is cleared, $EXE is reset, and the TOE is entered
enabled according to the highest priority I-O indica-
tor that was on.

The Channel Signal Search

Control is given to KSIGNL (Figure 8) when a channel
signal is received from a multi-unit channel. (The
console and disk are considered logically as multi-
unit channels.) If the CS is from the console, con-
trol is given to the conceptor at PCONE1. If from
tape, control passes to KHEX. The function of the
code at KHEX is to determine what change, if any,
has been made in the ready status of the tape units
on that channel. If the equipment is neither tape nor
console, control is returned to the main flow at KKK.

The channel signal will be considered valid only for
tape units in a mount or rewind status (SMOUNT,
SREW in the UST). For all such units on the channel,
the unit will be selected, the control word copied,
and the ready bit tested. If the unit is now ready, the
UST is updated, and, if the CS followed 2 $REW or a
$UNLOAD, a CS for the unit is stacked at KQIN and
control returned to KHEX.

After testing all the units on the channel, control
is returned to KNORM or KSUPP according to whether
or not a change in ready status was found. First,
however, the unit originally in select on the channel
(SUNIT in the CST) is relocated.

22

Search and Unstack

The search subroutine (KSERCH, Figure 9) is used
by $WAIT, the return routine, and the receptor to
search the interrupt queue for a particular FAT
address (the one being waited). It uses the linkage

LVI, 1, $+1.0

B, KSERCH

(not found return)

(found return)
with the desired FAT address in $13VF. If it finds
the address in the queue, it repacks the queue
(KPACK) and reduces the proper queue count.

The unstack routine (KUNSTC, Figure 9) is entered
by the receptor, the return routine, and the $RIO
routine to release interrupts. It will try to obtain the
first MCP FAT address from the queue, otherwise
the first PP FAT address. Then it enters the search
routine in the vicinity of KPACK with $1 set to
KINTTY-. 32, to force return to KINTTY after repack-
ing the queue. If the queue is empty, the unstack
routine returns to KSUPP.

Channel Signal and Console Unstack Control

If the CS indicator is on when a higher priority I-O
interrupt occurs for a multi-unit channel, the channel
signal is deferred. The higher priority interrupt is
associated with the unit in select, but the channel
signal may have originated at any unit on the channel.

The receptor uses the subroutine KCSIN to stack
the CS until a later time. The stacking consists of
setting a bit corresponding to the channel number in
the word KCSREG. The NOP at KSUPCS in the serv-
ice op return routine is changed to a branch, and the
CS will be unstacked on the next entry to the service
op return routine. When this occurs, control passes
to KMTCSQ (Figure 10). The channel number for the
first 1 in KCSREG is computed, and if the channel is
not operating, the receptor is entered at SFAKEI with
registers set up as though the CS had just occurred by
itself. If, after resetting.the bit in KCSREG, the word
is all zeros, the instruction at KSUPCS is changed to
a NOP.

If the channel is operating, the KCSREG is examined
for additional 1's. If 1 is found for a non-operating
channel, control goes to SFAKEI as described. Other-
wise, the service op return routine is used, and
unstacking of the CS is deferred until the channel is
not busy.

The service op return routine is also used to unstack
console interrupts in certain circumstances. If the
$COMM pseudo-op had been given while the console
was being used for non-commentator I-O, the com~
mentator suppresses the console user's interrupts
and changes KSUPP to a branch to KCOMMR to release

RERER
= »
- *
* KFREE +
* -

= *
ERARE

Xeosene

[T YT
*

* 1s L]
* EPGKsUK OR EE *
* ON *

*

EEEER
«YES

FERRRRAABEARRE AR
#1770 INDICATORS #
e IN FILE *
* AREA SCCw *
* COMPUTE QUEUE *
* PARAMETERS *
ERXXBAREERRRARBAR

R

* »
* *
* KNORM *
* *

Xewsose

W EEE
* *
* Ispp 4
* INTERRUPTING »
* McP

* *
* IS MCP &
INTERRUPTING
- PP -

ARRER
YES

CMINTP X
AEREFARREREXRRER AR
#CLEAR INDICATCR®
* CP,USA,AD.DS *
* MCVE STLR *
% T0 SLRBU *
* SET MCP LEVEL *
AREFREEAS AR BEER AR
.

Xeo e

RREER
* »
* *
*KUNSTC *
» *

* *
ERERE

ERARE
- *

* »
ESKINTTY *ceas
* =

- -
RN

li(ll EEE2 22T 2R L2222) ANARE llll‘l"‘l.'l.l.‘
L » w23K
* JCLEAR GPERATICNX =15 HELEASE * YES I -
i KGATE ¥eusnssenencox® Teeeceeeux® INCICATOR #ecoeeseeX® FAKE ECE *
: INDICATORS » oN . SET KNORN &
l Q . - » N $1 -
EERAN ."ll'l'll'lll..l RERAE 'Illl.l.lllll.'l.
-
.
.
.
.
b
EFRATFEERZAARRERRRE SRIEN
*] - -
NO * TURN CFF * * *
cevassasX® £CP IN - * KGATE #
. sccy » - .
* * -
ERAERRERATIRREREER ERRER
. .
. .
. .
. .
. .
. .
X X
EERDE HARAR L2212
- L] * - l I
- = * IS IT A % YES
* KSUFP # ¥SECP CPERATICA -............xa KFREE =
* * * * -
- - * - . -
xaasx xnus sunnn
oNC
.
.
.
x
AEREE ERERE AEANR
* * - * *
100 = YES ® spIsSP # *
.. * KGIN #
*
. * - -
AREFR XA ERNRE
-NO
.
.
-
X
wEN REEER ABERS
SET SURSUP * = * *

s *
*¥STACK INTERRUPT#H * UPDATE QUELE * % BRANCF ON * * -
* LEVEL AND FAT %*,cc00e0eeX® ACCRESS AND % ,,40000eX?PRESET CONTENTS*ecascccacseeX® KHEX #
% ADDRESS IN * # CUEUE CCUNT ¥ * CF s1 - - .
- * - - = - L]
AXARERABRARRERBES (2221 asnsan

GUEL bt
AARRBEAAERAREREEEN

KSUPRS X
llﬂi!lllii‘{li.il EEREE EEAAN
G l » -
YES istcRE SICBY IN : » =
essesess X¥SINTAC IN FILE -............x* KSUPP n % KNCRM *
: AREA T2BLE : - *
Q I - *
.lllilil.l‘l.llii REZER HEBER
x
.
.
-
< YES *COMN
RERER ARRRE ARER AR RARERARE RERER
* IS IT # . » .
NO ixs PRO(RAM LA] * EITHER * NG + MOVE STLR TC %
sessreceX¥ lh SwIT LI oX# AUTOSTACK CR =, X4 SLRPP OR =LRNCP&............xiKuNsrc l
* STATLS * # SI0O MODE # 3 ACCORDING TO *
o * = - WAER e W
sauan ERER rrrerSiaiiessnen seane
«YES
. .
. .
. .
. .
. .
CWAIT X «NC
xxew . EnEn anszs anann
* * - - * - - -
#IS PRCCRAM % NC #1S THIS THE® NO # 1S THE * YES = »
% AUTOSTACKED *eeeseeeeXE AWAITED #eoesvsesX¥? PROGRAM IN *eceesssecacssX® KSUPP #
* L * INTERRUFT # * SI1C NCCE * * *
* * - - - ® *
ARAXN RREER EEENN ARREE
«YES «YES
- -
- - -
. -
. -
X X
ARAER l.!l.illlllilil!. .I.Iil'illl!‘ll'. ARERR
* * KSERCH - * =
* * ' MQVE STLR TQ l-l—:—a—u—*-n—q-g
* KSUEP # #SLRFP OR SLRNCP!........xI UNSTACK
* - ¥ ACCORDING TC % WAITED
L * b OWNER H INTERRUPT % * *
LR L] lillillil‘l‘lll.. ZARFARRRERRRS AN SEERE
EREBEAREAIAGEAREN EERES AERRE AEEAE
* . GIF PP, = * * u -
* SET MASK - * TOE # YES * ARE $CP, * NO # ENTER &
eecseseeX¥® BOUNDARIESe %FoscceseeX¥ uerXN ®eeeeosseXd SADy SUSA FeceecssseassX®I/O TOE®
% SET CONTROL # # BOUNDS _ # #OR $CS SET % SENABLEC#®
TABLES. * * b * * * *
AERRFARTAIRRRBERS SENER ERERE RERRN
«NO «YES
. .
. .
. .
- .
- .
x x
ABAER ARRAR
- - * »
* SDISP * * *
% (TYPE # # KSUPF #
- s) L] * »
- - - -
EREER AREER

Figure T - The Receptor - Chart 2

23

CS ALONE

ERAAR RRERE
» »
* * * 1s LIRNN
#KSIGML ¥eausweanseeesX® EQUIPMENT
* * TAPE
-
ARAIE rERER
-YES
.
x
AEAAE RFERRATFEREERRARARSR
* o - *
L » * SETUP TC »
+ KHEX * *# INTERROGATE #
* * * READY STATUS #
* * % OF UNITS -
LA ERS EERARRARRANRARARE
. .
. -
. .
X KHUNT X
AR LR RS ERERS
*) * ARE % * »
* * NC % THERE ANY % YES * IS REW * YES
#* KPUNT %*Xeeesss o UNITS TO FecerenanXW INDICATOR Heoea
* * *INTERRCGATE® aN «
s » - » . * .
AERER axEAW nEERE -
. x «NO .
. . . .
N . . .
. . . .
X - X -
liilii‘llllll ARTRARTIRARNS EREEE
* » * .
» LocATE T0 THE : - TURN CFF * # IS THE % YES o
* REGUIREC % TFE TAPE *MCUNT INDICATCR®vasevs
UNIT H * INCICZTCR * ON »
» * * « -
HEREREAAATRRDR AREAFRAAXAERN LA 2]
. x +KRC
. . .
. . .
. . .
. . .
KNET x «YES
AERAERRRARRER REBIN LEZ 2L]
- * * - - L]
% CCPY CCNTROL * * 1S EE * NC L3 »
* WORD ON THE * . CN FEOM #eeeenvassseaX® KHEX ¥
LCCATED UNIT * * LCCATE » - *
» * * » . »
ARRAREARAREER xxan anuue
. x
. .
. .
. .
- «YES
- LR ERE] l.ﬂilll!l!ill!!!l
. - - *
. S THE * * RESET
. THE INITIAL
. lMCLNT INDICAYCR'
.) *
- AR X E R] Illl(lli'll‘l.'ll
. B
.
X
*AARR EERER AERERABRIFARBA AN
* KCLEAR .
% ARE ANY % YES * W e B e W e Hm B m B

IS CMLY ® NC
€S CN

* INDICATORS FeoevenaeX¥® LEETE RS £ CLEAR *
L oN - THE 1/C -
- - » INTERRUPTS -
[2E1 1) Anaa . EERRRFERANEE RN
«NC «YES -
- . -
- . -
. x .
aXeooesosusssesoeresansecnncnncncnsscsene -
KKSET x . X
EEman EETETY . ETTLY]
* [y

- »
* WAS THE * YES

» - 1]
eseseeX® KSUFP ¥ IS EE ON .
* * »

#* CS& A STRAY LCET Y
Ll
- - *
ansnn ARAL e wanun
oNC oNC
. .
. .
. .
. .
X b3
ERREEAREAANRRE AR 2211 sEaEn
* SETLP LST IN l * * -
- Sll AhD SEY ' » NG * IS THE *

‘ KPUNT ‘X-..c---.n-..' RETRY COUNT -

'INTERQUPT IND!C. - EXFAUSTED -
-

KMAL
EETT T

*
* 1s -
EQUIPMENT
* . CONSCLE

» »
txERR
«NC

:
M
:

KSTAB
RAERETREURRRNS
»

»
* LOCATE TC THE *
X* REGUIRED *
g GNIT *
. .
EEERAXTENRRRR

s o eae

KSTAG
EEERARRARENCS

E] *
¥ COPY CCNTROL *
* WCRC CN THE =
¥ LCCATED UNIT #

.

)
ERRTANERAN NN

*
* IS THE

s UNIT READY +
- -

e o

AEAEE
!IS IhE -*

‘ YES
'l.---.-..'”CUkT INCICATCR*

sanun
ohC

ARARAA AR R RN AN
4SET FILE CCUAT #
*ECUAL TC ZERC. *
2TURN OGN ULNR BIT#
'lN SCCwe SET C<'

1IN 37,
IIlIlIICIlI.IIIIQ

.
.
x
-

* 1S THE hd
®NMCUNT INCICATCR®
- aN *

ceees

KFAKE x
uaqn-uuilnqwu-au-

'SET REw INDIC. l
4 TO ZERQ. SET
‘C($7) ECLAL TC '

anana
- -

YE * *
%neeesvssesea s XEPCONEL *
* x

- »
saEny

ranw
L] .
1
-
»

- *
ETIYs)

KNCUNT
HEARERERARERAERES

ISET MCUNT INCICK

1C 0. UPCATE +

cemex® REEL ADDRESS. *
4SET_VERIFY ANC %

TEM BIT#

II.'IIQII.

cescsss

#Xeosorenesensessen

FOR KNCR¥ # " . AT. .
ﬂl.'.lilill.'.lli EEERE] EARAN llll!.illi.‘.llll
- «YES -
. . . .
. . . .
. . . .
. . . .
. . . .
x x x KRELES
ERAER REEBEN EERRE] lIlII.IIII...Il'l
- - »* - » * *
- * * <DISP # . s * * SET .
® KNCRN * * (TYPE * : REL e T SETUP .
* * = 76) - SET * D TC ZERC .
L] * * L] *
ERREE AR EAEER] RN ARRITARERRN
onC
.
.
ceecsaacase cesesscssan
x
REERE REREREE Illlliill RERRS ARFEBRRREARRARN NN REARS
. . : * SETUP INCICATCR* . *
* YES s * nC ¥AKD ACDRESSESS #
% KHEX -x............-seop ING1aTor -x........-sson OPERATION FeweneessXAFOR UNSTACKING -............x- KOIN #
» % CS INTERRUPTS 4 .
* - FLOAL KFEX IN 314 * *
RN "ll'lll!ll'l'lll LEELZ] FREERRARRRERRR RN RERER

Figure 8 - The Receptor - Chart 3 (Service Op Return)

24

RERRE ERRER RERRE HERER
* * - - - - a -
- * . = #DCES TCTAL * YES SRETURN #
AKUNSTC * #KSERCH %sceccscecveeX® QUEUE COUNT FececseecosacX® (NOT #
* . - . +EQUAL ZERO * =FCUND) #
* L] £l - - - -+ -
HEERR EARER HRENE AREEE
. «NO
. .
. .
. .
. eXeosoo
. .
Lox KCLUE X a
SAARRRTERARRASFARER RBAE ERARN AANRE
* * * * *

» *
*1S STACKED # NO

* SET KSERCH # = * * HAS -
* FOUND RETURN # * KSUFP # % ADDRESS ECUAL %eecoceeeX® CUEUE BEEN &
70 KINTTY * - * # TC._FAT # * EXFAUSTEC »
* * * - #ACDRESS® #* &
REAEAFRRABARHEARE [ITETY ey sREE
x «YES #YES
. . .
. . .
. . .
. . . .
. . . .
x +YES KFACK x x
Ennun EREIR SEBEERRRSNSRNRERS ARBRERARANNENRERRE axRu
* * - »* - - #FACK THE CUEUE.* - *
% CQES MCP # VYES # DCES PP % NC * PLACE FAT * * REDUCE CUEUE # *RETURN &
* QUEUE COUNT #ecevsessX® GUEUE COUNT FeeeseeeeX®ADDRESS IN $13 %FeeveacsoXd CCUNT AND * % (NQT =
#EQUAL ZERO * 2EQUAL ZERQ * * FROM QUEVE » X 4 ADJUST NEXT % *FCUND) #
L * * * * bl . SAVAILABLE ADDR.#® L *
R 2 ARERFRAEREARARANR . FARRRAIANASRRR TS sanna
«NC . .
. . .
. . .
. . .
- - .
. - .
x - X
. - AnER
* * * - » -
* ADD PP * FIND MCP - b PLACE MCP A . * 1s IT * YES
* COUNT TG X% INTERRUFT IN #eevescceX?FAT ACORESS IN *eevese 2 AUTCSTACKED #®ecceee
» MCP COUNT * CUEUE » * #$13 FROM GUELE * * * .
* * * ADJUST COUNT * * * ® -
RIS R AR AR FEAREERAAIERRRWEE EEBRNEASEERRRN RN AR -
oNC -
. .
. .
. .
. .
. .
x .
LR LIS IR EL Y PR T - [TITE)
+ - M » L]
3 CLEAR WAIT * x #RETURN =
' FIELD IN #eseecee +X*{FQUND)*
2PROGRAM STATUS # * »
2 * -
FARARARRARAE AR AAS AREEN

Figure 9 - The Recepior - Search and Unstack Routines

25

ARERE

- *
* -
#CARCAC *.
M M

- *
22173

cesen

e
- *

»
* KSUFP =
* »

* »
ERLER]
.
.
.
.
x KCCVMMR
LEEER] AFAFEATRRRRARRRRR
* 1s = * GET UNIT AREA *

%SWITCH SET * YES * RESET BY.
‘FQR lNTEFRLPTS ..t-otcool‘ CCMNENTATCR.
* ESET SWITCrH AT

oun. ° X =
EEEARRE HEREERRRTRAARARER
«NO
.
.
.
KSLPCS X
EEERE]
*
IS ¢s _ ®
* QUECE EMPTY
-
»
2EAIR
«hO
.
KMTCSG X
LR ESE SRR LR] ERARREFARRRAARERS
. * * .
* CCMPLYE » . »
* ABLE FXeeeeaeeer FOR NE!T s 8
* ACORESSES ¥ * IN KCS -
M » » »
EEARAARBFIRARERES EERARFBERAARRERAS
. x
.
.
<YES
EREEN

- -
ARE ANY %

L] % YES *
* MORE CS
* - * IN QUEUE *
- L]
T
.
.
x
LR u-!nann:.---u:a-g
*
#* ARE ANY # YES ' CLEAR PRESENT #
- MCRE CS
IN QUEUE # ® FAKE CS INTO
- » - STLR+8.
sEase I!!I'lllll!l!l'l!
«NO

.

x
ARAARAAI RN
' -
* RESEY SWITCH =
- AT KSLPCS ®oessscencsscnsane
e TC NCP -

* =
ARFREARGIIEAR RS

sersesaarex

ARAABBABTANARE RN LTI
» -

* SET SHSECH TO * -
e X® GET FINAL *
CCNTROL WCRD
= B

-

QUNT
ARRSERRATIBATRNE suany

=YES

Xs oo

u-u-a:--u.n.--oql

TE
.SAﬁCADlSlﬂ) AND'-.--.----..-X' KGATE

’ SCUARC(s$13)

l!l'l!llll!l!!lll

Figure 10 - The Receptor - Chart 4

26

= .DOES NC
X® COUNT EQUAL #
- ZERO »
» -

= * ECP FCR
NeaeweoseXICONCERPTCR,
* * BY CCCWM

SERVICE OP RETLRN

srecnee

.
.
.
.

.
.
.

13
»«XX*REGISTERS FRONK
¥ s

AREREERTEAREFRN RN
¥ CONPUTE TABLE *

4 KCCNCP SWITCH ¥

L]
TRAEARARARARART AR “xann

K CONCP «YES
ERREE ARARARTESRE XA RA RS
1S TrIS# * *
* NO » CCMPUTE *
SET ¥eveecvsaX¥ TABL *
. ¥ % ADDRESSES. *
- -

EREEE ERARERERER SN T AR

Xe oo

ANAEAAREARANR A NE RREE
2 * Ll

¥ RESTCRE LCWER * - Ed
* KNORM #
* * *

¥ - * *
IEARERAERAANRNIEN [E2 2 2]

.
x
-
* *
*RETURN *
ENAELEDS

'STIC ‘

-iluu
*

#eeesees e XH¥CS FROM KCSﬂEG-‘---.-------.x"FAKEl '
c

o l
ARRER

KCISKE
I.ll!ll.ll'l!ll!l
TUP TO
'FORCE LCCATE CN'

««X¥NEXT CISK I/C. ¥
.

PUT _SCw IN *

d CCw *
TRERREIRRARIRRARY

» »*
nnax

them. Furthermore, if the commentator suppressed
a conceptor EOP, it changed the instruction at
KCONCP to a NOP, and stored the copied control word
at KCOMCW. If the suppressed interrupt was not the
conceptor's, then the commentator stored the UAT
address in KCOMMR.

When the service op return routine is entered with
KSUPP (Figure 10) set to a branch, the switch is reset
and the UAT address (if any) is picked up. If the inter-
rupt is the conceptor's (KCONCP a NOP), the registers
are set up as though the interrupt had been received
by the receptor and recognized as a conceptor set-up
operation. Control is given to PCONE2. If the inter-
rupt is not the conceptor's, then registers are set up
as though the interrupt had been received by the recep-
tor, and the receptor is entered at KNORM. The
return function of the service op return routine is
discussed with the dispatcher programs.

The Conceptor

The conceptor is a special program to receive con-
sole channel signals. It performs a set-up console
read, and, upon completion, identifies the owner of
the CS and sets up a fake CS for that owner. When
the subsequent $READ is issued, the actuator enters
the conceptor, which performs a data transmission
and enters the receptor with an EOP faked for the
read.

The three entry points are: PCONE1, when a CS
is received; PCONE2, when the read is complete,
PCSRD, when the $READ is given.

The Channel Signal Entry

When a console channel signal is received (or unstacked)
by the receptor, the conceptor is entered at PCONE1
(Figure 11). The conceptor sets up the addresses of
the MCP console tables, turns on the reserved light,
and gives a set-up console read, with PCONE2 in
SRETAD in the UAT. It exits to KSUPP.

The Set-Up Interrupt Entry

When the interrupt occurs from the set up read, the
conceptor is entered at PCONE2 (Figure 11). The pro-
gram resets the set up, read, and channel operating
bits, and tests the interrupt indicators. An error
message is printed if EPGK or UK is on, and control
returned via KSUPP. PCONEL1 is entered if CS is on,
and if EE is on, a message is printed acknowledging
the erase.

If EOP is the only indicator on, the message is
examined to determine the owner. The owner may

be PP, the debugging package, or the command pack-
age as follows:

1. The owner is PP if either:

The keyboard was not enabled (CS key) and
the message consists of the switches and keys
(the end code is in the third word).

The first two non-control characters of the
message are PP.

2. The owner is the debugging package if the end
code is the first character of the fourth word (the
ENTER, END sequence).

3. Otherwise, the owner is the command package.

The flow separates according to the owner, and
converges again at PMAIN for the two MCP owners,
and at PEX1 for all owners. If a typewritten message
had been read, it is edited for backspace codes by
the subroutine GEDIT, and, according to owner, the
proper tables and registers are set up. MCP messages
are stored in the buffer PMCPBF, and PP messages
are stored in PPPBF. At PEX1, the console signal
bit, SCNSSG, is set in the UST, and control given to
KQIN with registers set as though a CS had just
occurred and with $1 set to KNORM.

The Actuator Entry

The reeipient of the faked channel signal is expected
to issue a $READ for the console. When the actuator
read routine receives a console read request with
SCNSSG set in the UST, it enters the conceptor at
PCSRD, since the hardware read has already been
done.

At PCSRD (Figure 11), the SCNSSG bit is reset and
the subroutine GTRANF used to transfer the message
from the buffer to the user according to the control
word. Registers are then set up as though a hard-
ware read had terminated with EOP, and the receptor
is entered at KGATE.

THE IF INTERRUPT -- THE DISPATCHER

The IF interrupt initiates major transfers of control
within MCP, between MCP and PP, and between the
PP I-O fixups and PP mainstream. Control programs
concerned with the IF interrupt are referred to
collectively as the dispatcher. The dispatcher con-
sists of the IF analyzer, the identifier, the service
op return program, the return routine, and error
control. All dispatcher programs operate disabled.
Figure 12 provides a general picture of flow in and
through the dispatcher.

All pseudo-op requests generate an IF interrupt,
resulting in control passing to the IF analyzer.

Interrupt Control 27

€S ENTRY
snany
- »

* *
*PCONEL #
- *

Xa o oo

AEAFRFERAREERRREEN
- *
* GET_ADORESSES ¥
. FOR _MCP .
¥ consOte ontr x
* *
RARRRAXRARARRRARAR
.

AFAFRRAF ARSI RAAAR
- *

WRESL1
L B e R
* PERFORM *

% SEOP RESERVE #
o LIGHT ON *
EEREEEREABERERRAN

Xeosae

FEABRBESSARBRR AR
UPDATE TABLES :

=

-

* CDNSDLE READ- *

* PLUT PCONE2 *

* INTO SRETAD *

FEEAERERSRRERRRRS
.

.

.

-

x
lll'l!llil!lll!“
* WRESL 1
c-c-n-o-q-i-a---i
- READ -
* THE -
» SOLE *
BAXRRELRRRD AR ANS

.

-

x

*

- *

* .
* KSLPP *
* -

» »
[2213)

AR ARBRSERTFRARR

»
FEAR AR AR ARG AN

He o

ARRERR
2 IS *
*= IT A PP =
» MESSAGE
-

- »
RARE
«YES

.

Ke e s

[T}
»

* -
#PPPREY ¥seoceavecacneX¥
» *

* L3
xnan

Figure 11 - The Conceptor

28

EREREREEITERENREN
*

*eeesseeeX® MCVE MESSAGE
»

SETUF ENTRY
sanan
L] *

- -
*PCONE2 *
» *

-
2T

Xe e

* RESET SETUP
% REAC, CHANNEL
#*OPERATING BITS
-

-k

EEAEREREAIRBEREEN
.

.
.
.
b
aneaw EeNSRETREREEREREEE
& 1s - » »
* EPGK * YES * SET uP .
* R LK ¥ecesseseX® | ERROR oo
. cN * . MESSAGE -
* - * L]
sREEN RRERETFRRABIRBERRARR

*
* IS EE ON
]

Xeeaos

.
® ENC CCDE
' IN WCRD
» 3 -
- *
ELERE]
«hO

anEan
1

x
IRl
. IS »
* END CCDE

-
«s«*THE FIRST WORD ¥
- CF & *
-

LEEEE]
PNCRET
RAREEAAREARERA RN
- UPDATE ®

* FAT ACCFESSs »
TC MCP EUFFER #

- -
AERRARAAN SRR AR

srean
* IS -

* CCONSCLE_ ®
ASSIGNED TO

- PP *

EIXEES

«hO

.

.

.

.
GERROF X
EAARERARAIRARENES

* ®
* »
- FESS2GE *
* *
- »

ARERERATAARRERN

YES '
'onooo---.-o.X'PCONEl '

YES
'-..--.--o-coX’PPPHET l

YES

FossosneaX¥
-

YES

#osensasnsoX¥
-

X% ERASE

CONSOLE REAC ENTRY

L2232

» -
- »
* PCSRD »
. H

- *
nanw

Xeoss a0

l!llllll!!'l!'lli

'SELECE BUFFER. '

COUNTs ®oseeeeseX? MQVE MESSAGE
» .

* RESET SCNSSA

ERRRAATATRARARRRDN

lllll

l“l!

ERRAAAREREERRG TN
* -
* SET UP »
- MESSAGE bt

« »
RERERARBRARERANRE

nnu.n
1

u n
wxaEs

PDEREY
ARARRERRABRARBNEN
* Ll

* SET up

X FAT FOR

L]
=
bl BEBUGGER *
- L]
-

AAERBRERRRA AR
-

Xoeaen

PMAIN
HERRRFRRRRERERRNN
® SEV SINTAD -
MOVE FIRST
THREE WORDS
TO MCP BUFFER '

didllllllllllilld

ARRAEETRREERE
-

®UPDATE TABLES,
SET _SINTAD,
-
a

ARRAARABRESAERRS S

numE
® »

Reevowe

Crssessrs bt torne

seeseemeXt UST. PUT

TFoseeveeaXt
a

SRARFEARARERRSASE
b GTRANE -
A B e e N W e N

ACCORDING TO
% CONTROL WORD ¥
IETTITR T T AT TS

11221
- -

» *
ETTY Y]

s eena

FRARFARRXARARERN XS
- COMM -

R e I B 2

» TYFE »
» MESSAGE *
. »
TRAREAFAFRERERANES

.

.

.

.

X
AHFRERARBERERNF RN
- WRESL1 *
EET I e e
. PERFCRM »

4 SEOP RESERVE *
: LIGHT CFF e
TERRARASRRARAN AR

* -
* KSUPP #
* *

* L]
12221

FEX1
FRABREERAR AR

* SET _SCNSSG »
* RESEY SSEL_IN *
. KNCRM IN 31

.

ARATATRARAARRNAES

IR

au&l-:lii-nca!uni
L

u MOVE _MESSAGE *
TO0 P »
BUFFER *
-

*

PEEREARRAFARRANR

*eensnsanse

ll!!ll!l.

"ETUP FAKE

'.o--o.o.l' FUT KNOH#
bl sl

ECF l
-
-

[
Il!llll!llliillil

.
.
.
-
.
X
»

-

*

- *
* KGATE *
- *

- -
LTt

nane
» .

-
eeX® KQIN
»

- »
wnmnn

*
-
*

IF

l Interrupt
S I | '
Error A .

l Control i | l Service

I | I Identifier I Op 1
I I I Return

|

| .

S 1 |
| IF Service |
I —_—t Analyzer Routines |
| L’:I’“?P 1-0 —I

P ajor — Table of Exits |
I ackages Ve (MCP or PP)
I / Unstack \ I
I Control / 1
l N --4’ I
| Unprime l

Control Return Receptor l
T |

1-O Interrupt

Figure 12. General Flow In and Through MCP Dispatcher
(MCP Dispatcher Programs within Solid Lines)

Pseudo-ops are requested by an acceptable linkage
of the form

B, $MCP

, ($OP)

, parameter

, parameter
where $MCP is defined as 32.0 in protected storage,
($OP) is the pseudo-op code, and the parameters
depend upon the pseudo-op for their meaning and
number. The B, $MCP results in.an IF interrupt
which is taken by the IF analyzer. The action taken
by the IF analyzer depends upon the pseudo-op
requested and may involve setting up a tentacle table.

The Pseudo-Ops

Pseudo-ops are considered in two categories: the
service pseudo-ops (Figure 13), and the major pack-
ages (Figure 14).

The service pseudo-ops are considered an exten-
sion of the requesting program; they operate disabled,

and always return to the point of request via the serv-
ice-op return routine (except $RET and $RAM; see
description of return routine). The level bit (SL) is
not changed when the service-ops are used.

The major packages are MCP programs which
may use other MCP programs. They are enabled at
some time, and may be primed by MCP programs.
When a major package is used, it operates at MCP
level (level bit SL =1). The major packages use
tentacle tables for linkage and return control. When
an major package uses another major packages, the
latter must perform any necessary saving and
restoring of registers.

Pseudo-Op Code | Pseudo-Op Code Pseudo-Op Code

$RD 1,00 | $BSP 6.00 $KLNS 10.01
$RDS 1.01 | $BSPS 6.01 $FREE 10,32
W 1.32 | $SPFL 6.32 $GONG 11.00
$WS 1.33 | $SPFLS 6.33 $GONGS 11,01
$CCW 2,00 | $BSFL 7.00 $WAIT 11,32
$REL 2,32 | $BSFLS 7.01 $CHEX 12.00
$RELS 2.33 | $WEF 7.32 $FREE 12,32
$LOC 3.00 | $WEFS 7.33 $IODEF 13,00
$LOCS 3.01 | $REW 8.00 $SIO 32.00
$FC 3.32 | $REWS 8.01 $RIO 32.32
$FCS 3.33 | $UNLD 8.32 $RET 33.00
$TIF 4.00 | $UNLDS 8.33 $RAM 33,32
$TIFS 4.01 | $RLF 9.00 $STRG 34.00
$ERG 5.00 | $RLFS 9,01 $FECRG 34,32
$ERGS 5.01 | $RLN 9.32 $TIME 35.00
$SP 5.32 | $RLNS 9.33 $COMM 35.32
$SPS 5.33 | $KLN 10.00 $SIT 36.00

* Available only to MCP.

Figure 13. The Service Pseudo-Ops

Available to MCP Available to MCP Only
and PP
Pseudo-Op Code Pseudo-Op Name Code
$DUMP 64.00 | SJC1 Job Control 1 76.32
$EDUMP 64.32 | SOUTPT Output Command 77.00
$EQJ 65.00 | SSPEQJ Output EQJ 77.32
$HOLD 65.32 | SDDT Debugger 78.00
$RESLD 66.00 | SJjC4 IPL Entry to JC4 78.32
$FETCH 66.32 | SSCR4 First Card Request 79.00
$SPU 67.00 | SKOM Input Commands 79.32
$SPR 67.32 | SCOMD System Commands 80.00
$ABEQ] 68.00 | SLOG4 Logger 4 80.32
$SCR 68.32 | SLOG2 Logger 2 81.00
SLOG1 Logger 1 81.32

Figure 14. Major Package Pseudo-Ops

Interrupt Control 29

The Tentacle Table

Each major package program has an associated ten-
tacle table located in its program area. The tentacle
table provides operating control information for the
major package program, and is used for linkage,
return, and priming control.

The tentacle table (Figure 15) is composed of two
and one-half words plus N half-word linkage param-
eters.

To determine the number of half word parameters
(N) in the pseudo-op linkage, $OP is counted as the
first half word, then a half word is reserved in the
table for each parameter in the linkage. An additional
two and one-half full words are in the tentacle table.
Therefore, the size of each table is two and one-half
words plus N half words, arranged as follows:

Each linkage parameter will be processed as
controlled by its parameter descriptor. For each
parameter in the linkage following the half word for
$OP, there will be a corresponding half word slot in
the tentacle table.

The IF Analyzer

When an IF interrupt occurs, the IF analyzer receives
control in the disabled mode from the interrupt table.
The IF analyzer itself may also be entered by a dis-
abled MCP program requesting a major package, or
by the return routine entering a primed major pack-
age. The IF analyzer channels all requests for the
service-ops to the identifier routine. Figure 16
summarizes the entries to and exits from the IF
analyzer.

The IF analyzer (Figure 17) saves low registers in
the STLR buffer. The multiplier register (JMR; see
Appendix B) is saved, and the linkage examined for a
valid IF interrupt. If the instruction causing the inter-
rupt was not a B, $MCP, control is given to dispatcher
error control (SDISP) with error code 1 in $14. If
the op code is less than 1.0, or has ones in any of
bits 19 through 22, control is given to dispatcher
error control with error code 2 in $14. If the op code
is in the range of the service ops (less than 64.0),
control is given to the identifier routine (KFRONT).

If PP is requesting a major package pseudo-op,
the MCP mask and boundaries replace those of PP
and the registers saved (STLR) are moved to the
backup buffer, SLRBU. The op code is tested to
determine whether PP may legally request it (must
be less than SJCI1). If PP is trying to use an MCP
pseudo-op, control is given to dispatcher error con-
trol with error code 2 in $14.

The foregoing steps are skipped if the disabled
entry was used (SIC,STIC; B,SIFAD). In this case

30

low registers are saved in STLR and a full word is
subtracted from the address saved upon entry. Then,
for either method of entry, the entry in the IF ana-
lyzer operation table corresponding to the pseudo-op
is located, and, in turn, gives the address of the
tentacle table. If the busy bit in this table is 1, the
return address is set as the location of the B, $MCP
(or the SIC,STIC, if a disabled entry), low registers
are restored, and control is returned to the linkage
via the service op return routine.

If an MCP fixup routine tries to use a major pack-
age, an error code 80 is put in $14 and exit is made
to error control (SDISP). A fixup routine may prime
a major routine, but may not attempt to give it con~
trol directly, since the interrupt may have occurred
while a major package was Operating.

The required information is put in the tentacle
table according to the parameter descriptors. The
level bit (SL) is set to denote MCP ownership of the
IC. The entry address is selected (MTC1), the entry
modes are preset (MTC2A), and the routine is entered.

The IF analyzer operation table starts at MIFTTT
and is used by the IF analyzer to determine the loca-
tion of the tentacle table pertaining to the pseudo-op
requested. The table is constructed so that each half
word contains the address of the pertinent tentacle
table. It is arranged in order of pseudo-op codes.

Identifier Routine

When a service-operation is requested, the identifier
routine is entered disabled from the IF analyzer.
The functions of the identifier routine are to:
1. Identify the specific unit assigned to the sym-
bolic file referenced in the calling sequence,
2. Check the calling sequence for a legal request,
3. Transfer control to the proper service routine
for the performance of the operation requested.

The identifier is entered at KFRONT (Figure 18).

If the pseudo-op is in the range 32.0 through 36.0
(Figure 19), it does not use an IOD reference number,
and the appropriate routine is entered. If the pseudo-
op exceeds 36.0, dispatcher error control is entered
with error code 2 in $14.

For pseudo-ops less than 32.0, the IOD reference
number (RN) is loaded in $1. For $RD, $RDS, $W,
$WS, and $CCW, the control word address is loaded
into $0. After turning off $USA and $AD, in the
event they came on during one of the LVE instructions,
the level bit (SL) is tested. If PP is requesting the
pseudo-op, the IOD RN must be less than the maxi-
mum PP IOD RN and must be a non-zero integer, or
control is given to dispatcher error control (SDISP)
with error code 4 in $14.

.0 .3].4|.5 .6 .7|.8]|.9|.10}.11|.12|.13|.14} .1§.16 .37|.38 .45 .63
Parameter Descriptors
z
E’ FWA of Pseudo-Op
Routine
)
8%
58
- O
s E 3
I g 9
5 & 2
“ @ ~ o ~t a °
29 - «| & 5 5 5 “
£ 2 HERE 2 % 5 5 5 '
3 5 1913 <1 g g ~ g =+
Zz A3 ol Blg|® =] g = 3
AHEHEREIB R R AN AR
Slalaldlzlal 2] & a I g‘ 'Y %”
2
4 2
v (=
s o
o
Sle| 8| | 8] g| 2|8 2| &
gl 2| st gl gl 2| 8|88 =
5] ¢l) ef 5] e s8] 2] 8
298 -7 I -7 A I~ -V - - [
.32
FWA of Last Tentacle Table Used Return Address
FWA of Pseudo-Op Linkage Pseudo-Op Parameter
Parameter 2 Parameter 3
Parameter 4 Parameter 5
7
lad ~ -
v T 1
Parameter 14 Parameter 15
Word 0
bit 0. 4 ~ the user bit defines the identity of the instruction counter eters not including the $OP parameter.

owner at the time the IF analyzer was entered. If 1, owner is MCP;
if 0, owner is problem program.
bits 0. 5 through 0.7 - entry mode bits determine whether the pro-

gram is to be entered disabled, enabled-S10'd, or enabled non-SIO'd:

.5 .6 .7
0o 0 o0 Non-SIO, enabled entry mode
o o0 1 SIO enabled entry mode
0o 1 X, Disabled entry mode
1 X X Same as user is entry mode (for PP user, this
(X=1o0r0) implies non-SIO, enabled).

bit 0.9 - busy bit - A 1 in bit position 0.9 indicates that the pseudo-
op program is in use. The IF analyzer will continuously return to the
beginning of the user's linkage via the service op return routine. The
user must be in the non-SIO enabled mode, because the busy signal
can only be turned off by an I-O routine receiving control upon I-O
interruption.

bit 0.11, 0.13,...,0.37 - parameter descriptor (form effective) -

If a 1 is in bit position 0. 11, the effective address of the first param-
eter will be formed and saved in the proper tentacle table position.
With a O in bit position 0. 11, the first parameter will be saved.

Bit positions 0. 11 through 0. 38 are reserved for parameter descriptors,
with two bit positions for each parameter.

Except for the $OP param-
eter, there are two parameter descriptors (form effective or restore}
for each parameter in the pseudo-op linkage, allowing for 14 param-

Figure 15. Tentacle Table Structure

bit 0.12, 0.14,...,0. 38 - parameter desariptor (restore) - If a 1 is
in ‘bit position 0. 12, the first parameter will be returned to the user's
linkage when control is transferred back to that package. With a 0
in bit position 0.42, the parameter will not be restored. ’

bits 0. 45 through 0. 63 - FWA of pseudo-op routine - Word zero, bit
positions 0. 45 through 0. 63, contains the location for the first word
address of the pseudo-op routine pertinent to the tentacle table. The
IF analyzer utlimately transfers to this address in the specified entry
mode.

Word 1, bits 0 through 23, Value field - FWA of last tentacle Table
used - contains the first word address of the last tentacle table and
locates the tentacle table pertinent to the user's routine. If the
problem program is the user, this half word will be a zero.

bits 32 through 55, Value field - return address - contains the normal
return as computed b;' the IF analyzer unless otherwise modified by
the pseudo-operation routine.

The return service pseudo-op ($RET)
will transfer control to this address when requested by the pseudo-
program owning the tentacle table.

Word 2, bits O through 23, Value Field - FWA of pseudo-op linkage -
contains the address of the first half word in the user's pseudo-operation
linkage (B, $MCP).

bits 32 through 55, Value Field - pseudo-op parameter - the identifi-
cation of the pseudo-op as indicated in the second half of the linkage
is saved in this slot.

Interrupt Control 31

ENTRIES

Entry
Synbol

SIFAE

SIFAD

MTC1

MTC2A

EXITS

Exit to

SDISP

KFRONT

Address from
tentacle table

KSUPP

Conditions

Entered disabled from
interrupt table due to IF
interrupt. Location of
interrupt in STIC.

Entered disabled by user
(MCP).

Entered disabled from
return. Tentacle table
parameters set up by
return for primed routine.

Entered disabled by retum
routine returning from major
package to major package.
Branch address presumed pre-
set in MTC3A.

Conditions

Error; code in $14;

$OP is a service op
$1.0=0P=64.0)

Legal non-actuator
pseudo-op.

Tentacle table busy bit
is set. Return is to the
B, $MCP (or SIC, STIC).

Figure 16. Entries To and Exits From the IF Analyzer

32

Registers
Preserved

All in STLR. If PP
owns IC, also in
SLRBU on other than
service ops.

All in STLR.

None.

None,

Registers
Restored

None,

None.

None.

None.

Remarks

Enabled entry, with linkage:
B, $MCP;, $OP
, PARAMETER
, PARAMETER

Disabled entry. User must be
MCP.
Linkage:

SIC, STIC: BD, SIFAD

, $OP; , PARAMETER

Sets up entry address for routine.
Used for same purpose by return to
enter primed routine.

Establishes SIO or non-SIO mode,
enabled or disabled branch, and
branches to routine.

Remarks

Errors possible:
Type 1 (MNOMCP) illegal IF

interrupt

Type 2 (MOPCI) illegal op
code

Type 80 (MIFAS) MCP in
Auto stack.

Exit to identifier routine.

Tentacle linkage set up.

Exit to service-op return routine
to wait in enabled loop.

AR AEERREFAARIRRRERRR ERRER
- » * M .
* WAS THE
1F
* B.SHCP &
= *

- * * SAVE LOW *
* SIFAE ¥*.es seaX® REGISIERS HesesveweXW
- * - IN STLR *

- * * »
ARRER EARARAAEAIRARAREE EREy

- =
IS OP CODE #
* OF CORRECT
* FORM
*

ERERE
«YES

-

xe s e

E] »
%® IS IT AN *

* ACTUATCR
QPERATION *

I *

ARERE
«NO

AnunE

% DOES MCP #

EERE

* »
aC # SCISF *
%eceesscssasaX® (TYFE *
* 1) *

- *

ERRER

ARAES

* *
ne % SDISF *
FececsssaaseeX® (TYPE *
* 2) -

. -

ARRES

EREEE

L] *

YES * *
¥esoecccscess e s XNKFRCAT *
= »

- =
FTEEE)

FEARRARAARAR SR ARN
1SET BCUNCARIES *
* xcP .

LY FCR
% OWN THE INSTe %eeeeseesXd OPERATICNe *
CCUNTER AMCVE (STLR) TC &
- * (SLREL) *
anan FEERRARERRRRERRRR
<YES .
. .
. .
- .
. .
. x
. EAEAE
- IS FP %
- YES * PERNITTED ¥
eXeoose sesesceed TC LSE TEIS *
- * FESEUCC-OP =
. * *
. AEARE
.
.
.
.
X
xaxw EERRAAARAARARREEN AEEERREARAARRERIR
* * SAVE LOW * * *
* * * REGISTEFS IN # * SET uP »
* SIFAD ¥#ecesosesncecX® STLRe ADJUST %eeeseee s X¥TENTACLE TABLE *
* * * INK2GE * - ACCRESS. -
* - * REFEREMCE, * * *
rEARR EEEARNRAIERNERRRESE FERRERREVREREREER
.
.
x
axnnn AznEs
* *
- 1S % ves * *
* PSEUDQ CP ¥enee seX¥* KSUFP *
A BUSY * - *
» =
ARWRE axanw
«NC
.
X
SREnE (2T T2
»* - » *
* IS MCP IN % YES % SDISP #
% AUTO-STACK %ecveeeseeseeX® (TYPE #
* MOCE * x 8Cc) *
* = *
ExEEw rnman
«NO
.
X
AEARRFARARARREREDN FEITTY
» = * -
* SET UP - *
*TENTACLE TAELE eeeX® NTC1 %
* PARAMETERS - *
% SET MCP LEVEL * * *
ARFAEERRIARTARNRE Asanw
AR ARAXRZERTASRRRRAE AAERE TERBANREAAREER AR
- * - * * - x *
» * # SET EATRY # - *) SET ENTRY *
% MTCl ¥ceveacesceseX® ACORESS HeeesesosnoneX® MTC2A %aesaassaneseX¥ MODES =
* * » ® »* - 3 2
= * » * * - a »
EEEEE ARARNARNA IR AERER Eanan TEREEARRATARRRRERS

Figure 17 - The IF Analyzer

EREE

* x
NQ % SOISP =
.o ssescX® (TYPE #

* 2) .

ssanm
*

L]
ENTER *
-...-...-...X:RCUT[NE:

* *
ARRRS

33

ERERE EREAE Esuas sRERE
. »* £ IS * * IS - - -
- » * CP CCDE ® NC ® CP _COCE # * SCIsp
FKFRONT ¥eseessvesaseX® LESS THAN #oo GREATER THAN
- * = 3z.C . * 36. .
- L 2 - -
REAER RHEALH RAREE
<YES «NG
. .
. .
. .
. .
X x
RAAYR ERERR
» * - *
YES * QES * # ENTER #
cecccet MCP CHN . *RCUT INE*
. * TEE 1C % . .
. - -
- nERAN HEREE
. Y
. .
. .
. .
x
llll!.l.'l.ll'll’ EERRR RERERE ERERR HERRE
* SELECT BASE * 1S ICD # » » 1S THE % . =
* ADDRESS FOR * X YES #*RN_NON ZERG® * * * CPERATION * YES
* MCP CR PP %X INTEGER » * KNOGO *aes eseceX® SCCWe ICHEXs *
* STATUS TABLE * * LESS THAN % * * * OR SIODEF #
* * * FPNEX # * E] » - - z
HEERERERETAERR RS REETE HEERE EXRRE AEARR
. NV «NO
. . .
. . .
. . .
. . .
. . .
X X x
- EXEEE] AERRE ARERE
- » * - %#1S THE ¥ - -
* Is * NO * spISp * *= OPERATION * YES * *
. 100 NO. FeeaseesescseX® (TYFE # * SREL, OR FeaeeecencessX¥ KKNI ¥
®= DEFINED ¥ o a - * ~ $FREE * *
* * - ® L] *
AR AREAR ARRE. ARERR
<YES «NC
x x
AR ARERERARREAER EFREAR axRES ERRAARRABREARANESR
. » *IS UGN * IS A = - TCCMN .
GET_CHANNEL * % A TAPE IN ® * SECCNC_ % YES et P et S S EE B

UNIT STATUS

*
* g
* REFERENCE *
M
»

=
ERERARRAARENERARS

sssX® MCUNT OF REW

KNI

ennn
[-
SDISP # NC
® (TYPE ®Xoesosncsocnes®
* 3) Y
]

»
annen

ERARE
s .
® SDISP ¥
s (TYPE = *
* &) -
* *

EREE
X

C
sRARE

»

IS THE NC
* CPERATION
SFREE
-

#Nevsenans®
L)

rnEAN
=YES
.
.
.
-
X
nEEn
* *
* »
® KSUPP # -
- *

* .
ETTT Y}

Figure 18 - The Identifier

34

-

»

-

-

* MOUNT NESSAGE ¥ecveeseeX?® REPEAT .
STATLS * * NECESSARY # » NOUNT »
= = SAGE -
RN ERERS ERAER ARARABEERBAARAEER
NG « NO -
. . .
. . .
. - .
. eascsscncenaassassncconcake
. -
x x
HERIN REER EAZ 2 2] L2 2]
« 15 = « 15 S . * .
CP CCDE #* NC + OP CODE * YES * SDISP # L3 -
LESS THAN #ececeecoX® GREATER THAN ®eceaesecssesX® (TYPE ¥ = KSUPP #
11.32 * 13.00 = 2y = " ®
- - 3 -
EEERE] EENR REEES ARERE
- YES «NO
. .
. .
. .
. .
. -
x X
EEE LR "RERS RRRR
* ARE * * -
CHANNEL # s .
AND UMIT CPERATION
AVAILABLE * SFREE ¢
.
EXERE] RRERR AEARE
«YES .
. .
. .
. .
. .
x X
LIERE] EERER JHARRAARAERERBAES L2 X1]
- - » * £] * » -
1s * YES . * * SET RETURN * * ENTER
CHANNEL FevseseveveceX® KNOGO * * ADDRESS IN ¥ecoswsesoesssXTRCUTINES
OFERATING # - * ’ sTIC * . .
* - - - L] - L] -
ERREN RN CRBFRRARCEFRFRRNRR RN
Y
.
.
.
.
x
ARRAN fenEn
- * -
1s - * -
UNIY * * KKNI #
ASSIGNED ® . *
- - - -
RATIE L2221
«YES .
. .
. .
. .
. .
X KKNI x
- L2222) AR FATRENERNE RN 1NAEN
- 3 & 1S AN ¥ . * a -
IS THE % NC * INTERRUPT * NO . SET - - »
OPERATION %acesccesX® STACKE FeesannesX? ACTUATED FersvssecccesX® KOPOK &
scCw . * FCR UNIT # . ACDRESS . * »
- - - » . - * -
#ERBE ERRRR AARAREAFLABRIR TR A2 11
«YES «YES
. . .
. . .
. . .
. .
. .
X x
ARAEE AR ISR 22222] nuRn
* * » KSERCH » IS THE # . -
. # CPERATION * NO % SCISP #
* KOPCK *
. ® INTERRUPT * + IS INTPT * s 12) =
t] - * Cs » []
ARNAN SEREABRBENERE ERAEN EEEXE]

ENTRIES

Entry
Symbol

KFRONT

EXITS
Exit to

SDISP

KSUPP

ENTER
Routine

Routine

Figure 19.

Conditions

Entered disabled from the IF analyzer with pseudo-op64.0
$2VF points to calling sequence at pseudo-op.
$3VF contains pseudo-op. Low registers are in STLR.

Conditions

$OP is illegal IOD reference number invalid. Channel or
unit not available. Referenced unit has an interrupt stacked.

10D refers to a tape unit in mount or REW status. Channel
is operating. Pseudo-op in SFREE for an unassigned unit.

32.0=$0P=36.0
The index registers are unchanged (same as at KFRONT),

Pseudo-OP

$SIO
$RIO
$RET
$RAM
$STRG
$FECRG
$TIME
$COMM
$SIT

1.0 =$0P=13.0
Actnated address and SEOP control set.

Pseudo-Op

$RD or $RDS
$W or $WS
$CCW
$REL
$1LOC
$FC
$TIF
(Invalid)
$ERG
$SP
$BSP
$SPFL
$BSFL
$WEF
$REW
$UNLD
$RLF
$RIN
$KIN
$FREE
$GONG
$WAIT
$CHEX
$FREE
$IODEF

Identifier Routine Entries and Exits

Remarks

Control sent here by the IF analyzer on any actnator

pseudo-op.

Remarks

Type 2 error.
Type 4 error.
Type 3 error.
Type 12 error.

Return address (STIC) set to FWA of linkage. Enabled

loop until unit is ready.
Return address (STIC) set to the instruction beyound
linkage. Treated as NOP.

Routines are:

32.0
32.32
33.0
33.32
34.0
34,32
35.0
35.32
36.0

Retum address set in STIC.

Routines are:

LO®®NNGO GG AW
w
N

-
= e
o W O
n

11.32
12.0
12.32
13.0

Entry Symbol

KSIO
KRIO
CRETN
WRAMPP
KSTRG
KFECRG
ZTIME
JCOMM
ISITX

Entry Symbol

ZSTART
EWR1
BCCWR
WREL
KSLOC
WFC
BTIFR
SDISP (type 2)
EELG

R1
R1+1.0
R1+2.0
R2-.32
EWT1
ZREWST
ZUNLDB
BRLFR
BRINR
BKINR
ZFREE
WGONG
KWAIT
CCHEX
ZFREE
JZIOR

Interrupt Control

35

The base address of the user's I-O table is added
to $1 to locate the entry for the IOD RN. (If MCP is
requesting SFREE, it is referring to a PP unit and
the PP base address is added.) The unit area address
for the IOD RN is loaded into $12 from the I-O table.
A zero address denotes the absence of an IOD card
for the I0OD RN, in which case error control is entered
with error code 4 in $14. The file area table is
loaded into $13 from the I-O table. Index register 2
is adjusted to point to the first instruction of the
linkage (B, $MCP), $14 is loaded with the channel
number, and $10 with the reference address for the
channel status word in the channel status table. The
equipment code is loaded into $4, and $11 is loaded
with the correct unit status word reference, depending
on whether or not the channel is a multiple unit channel.
The index registers except $2, are now ready for
entry into any of the routines (Figure 20).

If the unit is a tape in mount or rewind status, con-
trol is returned (KNOGO) to the linkage via the serv-
ice op return routine to establish an enabled loop,
unless the pseudo-op is one which will not require a
hardware I-O instruction. If the pseudo-op is $CCW,
$CHEX, or $IODEF, the appropriate routine may be
entered, and control is given to KOPOK to accomplish
the entry. If the pseudo-op is $REL or $FREE, the
actuated address and the SEOP bit must be stored
before entering the routine, and control is given to
KKNI.

For a single unit channel, or a tape unit not in
mount or rewind status (KNI), the pseudo-op code is
examined for $WAIT, $CHEX, or $IODEF, which
may be entered immediately via KOPOK. A pseudo-
op code greater than 13.0 is detected at this point,
and control given to dispatcher error control with
error code 2 in $14.

If the channel and unit selected are not physically
available, as indicated the appropriate bit in the
corresponding status word, dispatcher error control
is entered with error code 3 in $14. If the channel

Index Register Value Field Contains

$0 Control word address.

$1 IOD RN entry in I-O table.

$2 Return address if service op routine entered.
$3 The pseudo-op code.

$4 Equipment code.

$10 Channel status word reference.

$11 Unit status word reference.

$12 Unit area table address.

$13 File area table address.

Figure 20. Status of Index Registers When Identifier Enters
Routine (Pseudo-Op Less than 32.0)

is operating, the pseudo-op is treated in the same
manner as with a tape unit in mount or rewind status
(KNOGO).

If the unit has not been assigned, and the pseudo-op
is not SFREE, dispatcher error control is entered
with error code 4 in $14. Control is returned to the
point after the linkage if MCP has requested SFREE
for a unit already unassigned.

For pseudo-ops other than $CCW, the unit sup-
pressed bit is examined in the status table. If the
requested unit has an interrupt stacked, and the
pseudo-op is $REL, $FREE, or SFREE, the inter-
rupt is unstacked and discarded and the pseudo-op
entered. A stacked CS interrupt is always discarded.
Otherwise, error control is entered with type 12 error
selected.

The actuated address is stored in the file area
(KKNI), the actuated file address is stored in the
unit area, and the SEOP bit originally specified is
stored in the SEOP bit for the unit. Index register 2
is adjusted for the return address (KOPOK) and
stored in STIC and the routine is entered.

The Service-Op Return Routine

The disabled routines in MCP need to return to the
point of the most recent interrupt, or, in the case of
an IF interrupt, to the beginning or end of the calling
sequence. In all instances, the low register buffer
(STLR) contains the information necessary to return.
The service-op return routine, KSUPP, is used for
this purpose. It includes an unstacking mechanism
for console EOP and for tape unit channel signals.

When the routine is entered, STIC must contain the
address to which return is desired. If no unstacking
is required, that is, the first two instructions are
NOP's, the address in STIC is placed in a BE instruc-
tion, the multiplier register ($MR; see Appendix B)
and the low registers restored from STLR, and the
BE executed.

When a disabled routine decides to return via
KSUPP, STIC is not always correct for the desired
return, and must be adjusted before control goes to
KSUPP. Occasionally, this is done in the routine.
Other times, the disabled routine branches to a short
routine to make the proper adjustment and branch to
KSUPP. The most commonly used of these short
routines are as follows:

Symbol Quantity Placed in STIC
KCBUSY $2VF - 2.0
KELOOP $2VF - 1. 32
KSUPP2 $2VF + .32
KCHOPN $2VF

KSUPP2 + .32 $2VF

When it is necessary to stack a non-commentator
EOP from the console, the first instruction of
KSUPP, that is, NOP, KCOMMR, is changed to a
branch by the commentator. The next entry to
KSUPP results in the release of the EOP to the
receptor. (See description of commentator.)

The second instruction of KSUPP, that is, NOP,
KMTCSQ, is changed to a branch by the receptor
when a CS arrives with a higher priority I-O inter-
rupt. It is unstacked on a subsequent entry to KSUPP.
(See description of receptor, channel signal, and
console unstack control.)

‘The Return Routine

The identifier gives control to the return routine in
the disabled mode when the pseudo-op $RET is
requested. The problem program (PP) must use
$RET to end its fixup routines in order to release
stacked interrupts, and to permit MCP to restore
the lower registers and instruction counter (IC).
Only in this way can the PP be taken out of the auto-
stack mode. MCP must use $SRET to end MCP fixup
routines, and to end any major pseudo-op routine.
The ultimate function of the return routine is to
return control to the main stream of the problem
program. A $RET request in PP main stream results
in immediate return to the point of request via the
service op return routine. If the $RET is given else-
where (PP fixup, MCP fixup, MCP routine), the
routine must insure that there are no stacked inter-
rupts that can be unstacked, and no interrupted or
primed MCP routines which should be given control.

MCP Features and the Return Routine

In order to follow the logic of the return routine,
certain basic features of MCP must be understood.
These features are described on the following pages.
1. The utilization of buffers to store low registers.
2. The priming of major pseudo-op routines.
3. The use of the program status table.

Low Register Buffers: There are four buffers used
to store low registers: STLR, SLRBU, SLRPP, and
SLRMCP. Each is thirty words long, and the last
word of each is used to hold the IC associated with
the low registers (STIC,, SICBU, SICPP, SICMCP).

The low register buffer, STLR, always contains
the registers from the most recent interrupt. When
the return routine receives control, STLR contains
the registers at the B, $MCP which requested the
return.

The back up buffer, SLRBU, is used to hold PP
low registers as they were when the level changed

from PP to MCP. It is filled from STLR by any
MCP program which changes the level bit (SL) from
zero to one. (Note that this excludes the service
pseudo-ops, which operate at the level of the
requestor, and which return via the service op return
routine.)

The PP low register buffer (SLRPP) is used to
hold PP main stream registers when a PP I-O Table
of Exits is to be entered. It is filled from STLR when
a PP I-O interrupt occurs in non-SIO'd PP main
stream. (Note that a PP I-O interrupt occurring at
any other time is always stacked, and unstacked when
SIO'd PP main stream requests $RIO.) It may be
filled by the return routine from SLRBU when MCP
has requested $RET and PP interrupts must be
unstacked.

The MCP low register buffer (SLRMCP) is used to
hold MCP main stream low registers when MCP inter-
rupts MCP. It is filled from STLR by the receptor
when the interrupt occurs, or by the return routine
when an MCP program requests $RET and an MCP
interrupt is unstacked.

Word 9 of each buffer holds $MASK when the buffer
is in use. With respect to buffers SLRMCP and
SLRBU, bit 0 of word 9 is used to denote that the
buffer is in use. The corresponding position of
$MASK is permanently 1, so the bit is set whenever
the buffer is filled. The return routine resets bit
9.0 of the buffer whenever it restores registers from
SLRMCP or SLRBU.

Primed Routines: A pseudo-op is said to be primed

when delayed entry has been designated for it. (See
description of prime routine.) The need to prime a
major pseudo-op arises in two situations:

1. An MCP auto-stacked routine must use the
pseudo-op, but major pseudo-ops may not be used in
the auto-stack mode.

2. An MCP major package requires that another
major package (or itself) be entered at some time
subsequent to its $RET.

In these cases, the prime routine is used to enter
the request in a revolving queue which the return
routine must empty before returning to PP. When a
major pseudo-op routine is given control by the return
routine because it was primed, its tentacle table has
the following unique characteristics which remain when
the pseudo-op routine requests $RET, and are used
by the return routine to determine subsequent control.

1. The user is MCP. '

2. The FWA of the last tentacle table used is zero.

3. The return address is zero.

The Program Status Table: The program status table
is a two word table used to record the various modes

Interrupt Control 37

of PP and MCP. The first word denotes PP status,

the second MCP status. Both words have the same

structure:
Symbol

Bits Quantity

0.0 .0-.17 Address of the file area table
corresponding to the I0OD
reference number for which
$WAIT was requested, if the
wait is still in effect. If the
wait is not in effect, it is 0.
SAS .25 Auto-stacked bit. 1 denotes
the program is auto-stacked,
0 that it is not.

SQK .32-.49 Interrupt queue count. 0 if
no interrupts are stacked for
program.

SS10 .61 SIO bit. If 1, the program is

in SIO mode.
The Logic of the Return Routine

IC at MCP Level (SI=1): The return routine (Figures
21,22) is entered at CRETN from the identifier. If
the IC is at MCP level (SL is one) $RET was requested
by one of the following:

1. An MCP auto-stacked routine (I-O fixup).

2. A major package which was primed.

3. A major package being used by PP.

4. A major package being used by another major
package.

Considering each in turn (Figure 21), if MCP is
auto-stacked, the auto-stack bit is reset in the pro-
gram status table (SPROGS). MCP may either be in
SIO mode or not in SIO mode. If in SIO mode, then
MCP interrupted MCP (MCP is non-SIO at PP level)
and return is made restoring low registers from
SLRMCP. If not in SIO mode, there may or may not
be MCP interrupts stacked. Any stacked MCP inter-
rupts must be taken, taking a waited interrupt first
if it has occurred. I MCP is not in SIO mode and has
no interrupts stacked, then SLRMCP is examined.

If it is in use, MCP interrupted MCP and return is
made restoring low registers from SLRMCP. Other-

wise, control is given to MUPI1 to attempt return to

PP. (MUPI logic is described later in this section.)
If $RET is requested by a major package (not auto-

stacked), MCP is put in non-SIO mode. X the

requesting routine was primed, (MCP user, FWA of

last tentacle table zero), control is given to MUP1

to attempt return to PP (case 2).

38

If $RET is requested by a major package being
used by PP, the tentacle table parameters are
restored as specified, the return address is moved
from the tentacle table to SICBU, and control is
given to MUP1 to attempt return to PP (case 3).

If $RET is requested by a major package being
used by another major package, the tentacle table
parameters are restored and the return address
placed in the low register buffer (STIC). Conditions
are set up for return to the routine via the IF analyzer
(MTC2A), and if no MCP interrupts are stacked, the
IF analyzer is entered. If MCP interrupts are
stacked, the unstack routine (KUNSTC) is entered
(case 4). NOTE: MCP interrupts are unstacked even
if a SIO'd major package is returning to a SIO'd major
package.

MUPI Program: Control is given to MUP1 under the
following circumstances:

1. MCP interrupted PP and is returning from auto-
stack with no MCP interrupts stacked.

2. A primed routine issued the $RET. (Primed
routines originally get control from MUP1).

3. The routine which issued the $RET was being
used by PP.

At MUPI1, control is given to the unstack routine
(KUNSTC) if any MCP interrupts are stacked. If
the prime queue is not empty, the next major package
in the queue must be unprimed before returning to
PP. Its busy bit is tested. If the routine is busy,
implying that it released control while waiting for
I-O activity to be completed and was subsequently
primed, control is returned to the $RET request via
the service op return routine. This establishes an
enabled loop which will continually renew the request
to unprime the routine while allowing the I-O inter-
rupt to occur. If the routine is not busy, the param-
eters are moved from the prime queue to the tentacle
table, the prime queue controls are adjusted, and the
tentacle table is set up to indicate that the routine was
primed. "The IF analyzer is then entered at MTC1
to complete entry to the routine.

If no routines are primed, the address of the current
tentacle table (MCR) is cleared (MPP1), and $9 is
adjusted to refer to the PP program status table

(SPROGS). The subroutine JMPP1 is entered to
determine if either $OP, $AD, $USA, or $DS had come

on simultaneously with an I-O interrupt when PP was
interrupted. If so, dispatcher error control (SDISP)
is entered at PP level with the type 14 error code set
in $14. Otherwise, the subroutine returns, and PP
is checked for auto-stack or SIO modes. If in either,
or if it has no interrupts stacked, control may be
given to PP restoring registers from the backup

ERERR axauw RERER
» * » » I

* * # [CCES PP ® YES ol
% CRETN *ccseoscscnceX® CWN THE *.---.o-o--ooX.CRETPP l
* - * Ic *®

] * I
RRRER ETTT] lc-nn
«hO
-
.
X
AEARBARBARRRERATSE axxan REAREREERERERAENEN AEEAR
* * . * * * * -
®* RELEASE MCP # YES ® IS MCP * NC # RELEASE NCP # - £ MCP -

1s
sweeX? THE RCUTINE
* USER *

% STACKEC #
* -

#FROM AUTO-STACK*Xeesseees® [N AUTC-STACK #. oX* FROM SIO .
» MODE * * MODE * = MODE * .
* * * * * * * -
AEAAFARTRARERERRARN AR IR ARARRAREAERARRRRN ARERN -
. «NC .
. .
. .
. .
.
. .
x X
PR, AEERRARESIRREERES AL anans
* * * - - -

IS MCP # YES % RESTORE LOW * SRETURN : NO & WAS THE *
* IN SI0 Reeesne o XIREGISTERS FROM ¥oosesseceeoeXt 10 p TP | RCUTINE .
+ " MoCE - MCP nep ¥ * PRIMEC =
* * * *

AREER l.lii'lll.lllﬂli. EERER #RREE

+NO «YES
. . . -
. . . .
. . . .
- . . .
. . . -
X CMENCW oIES x x
RN AEEER ERBRR ARBREATERARRKEER S REERT
* - - * * * -] -
* DOES MCP * 4 WAS NCP_ * - STCRE * * *
*HAVE INTERRUPTS X# INTERRUPTED - *TENTACLE TABLE # = Py %
* STACKED * = - * * 'PARAMETERS * * .
* * * * - Ll L] * - *
ERRRE AAATR ARARR A REAFEAEZERAAERALE AREER
<YES .
. .
. .
. .
.
x x
ERERN lilll AXFAFXABERANERERS RRRAER AEFARASRRERBIARAER
= % MCVE RETURN % - * 1 Move RETLAN %
MCP & NG * ADDRESS FROM # NC % IS MCP_ ¥® YES SS FROM_ #
=WAITING FOR AN ‘..--.‘......XlKUNSIC - ITENTACLE TABLE ¥Xeeeoseoef THE ROUTINE I--......xlTENTACLE TABLE #
* INTERRUPT * x * TC BACK UP * USER * TC LGw REGISTER®
. e . * BUFFER * - H BUFFE *
AR - ARRAE iill’llllliill.ll RERER FRERERRERRRER R R
<YES - . .
. .
. .
. . . .
. . . .
x . x x
EEXRESEREERRREE RE® - EEREE IEZ I IR RS2 222223 HEERS
» KSERCH - - - * . * *
AR E—E-E—E—A—E-ENO » * 5 MCVE (STLR) # YES & DOES MCF
* IS WAITED *eceove * MUPL * * TC (SLRNCP) #Xe TS arAVE INTEREURTSH
INTERRUPT # * * 2 =
.
L]

» TACKED * » * *
R iS22 2222223 E2 3223 FAERBAAABREERARE ARERR
«YES - - NG
. . .
. - . .
. . . .
. - . .
. - - .
x X X X
EEEER REERR * ARBER
* * - x * - -
* * * DOES MCP * YES = - - »
EKINTTY * #HAVE INTERRUPTS¥eccocasacsess XEKUNSTC * * MTC2A *
- 3 % STACKEC +# » * = *
* - t] - - * -
EREEE ANBND AR EEAEE
«NC
.
-
.
MPF1 x
REAEREREAARRERREN EnREE waEna ITET)
* - * * - »
* ACJUST - % ARE ANY S NEXT ® YES - *
svesee oot FCR FP *Xa ROUTINES eeeeeX3PRIMEC RCUTINE %o X% KSUPP #
* * * PRIMED *® BUSY * * *
* * - = * * -
- FARERABRBAIERERARS ERERE AAERE EEAEN
. oNC
. .
. .
. .
. .
- .
x X
ARERAERBAAERRAR AR ANAAR AXUEEREERATRRRTRSE AREES
* JMPP1 » * un.suet ERIME G x - 1]
Ee e e W W B B I—‘INO # 1S THE PP # YES &
*HAS OP, AD, s*ssesceseX® IN A/S CR SIO Fecscecasccasssscce !SET up TEHALLEA............:(! MTCYL &
ion usa CCCURRED* * MOCE » . i TABLE LINKAGE x *
* - I -
lllllliillllillii RERD - Ol.lll'ii"".‘il EEEEE
«YES +hO -
. . -
. . .
. .
. . .
. - -
x x CRETBU X
AERRR REARE lilll.!lli.l'l‘l‘i ARERBRSEREERE R NS BB
* = i 3z JTSEXE * - E]

1 i
NC SEY PP
'H;\VE INTERRUPTS‘...-..-.X‘ AS IC OWNER
ST

oA RN H BB B~ AYES

- a
'-o-oo.cnx. HAS TS CR EXE %#eee oX®* SIPT =*
* =

CCCURRED '
- -
LLIEE] llllllllllill‘lll Clliillllilllilll ARERE
»YES oNC
. -
. .
- .
. .
X x
AARRRRERAARIERAE ARENE AREEREERRZARRBEDRN ARANR
* * - - - * - »
% MCVE {(SLRBU) ¥ * *® %, RESTORE LOW & *RETURN =
* TO (SLFPP) ®eencesescces XEKUNSTC CREGISTERS FROM i.........-..xi T0 PP l
L * * . c eu
= * * - I l
ARRREEFARBARKREREN AR Ililllllllliiliil ARRES

Figure 21 - The Return Routine - Chart 1

39

ananw
-

- -

*CRETPP =
* -

L] -
FTTI]

x
AEERE rxRAE
» ! I

®* IS PP IN ® NO
AUTO-STACK l-.-.--------xi KSUFP Q
- MODE .
L] * I n
runue EIZET)
«YES

xe oo

'Iillilll‘lllllll

' RELEASE PP
‘FRON AL;O—STACK’

Ill!lillllllll'll

anann
I l

IS WAITED '.-o-----wu-ox'KIN‘T' '

cPsIo
FETRTS il.lllllll!lillll
KSERCH -
- ® YES FP * YES l—l—l—!'lol-l‘l-ivig
»
* INTEFFUPT # INTERRUPY
] * * STACKED H
nnan RERRTABRTANGERER
«hO «NO
. . .
. . .
. . -
- eXsesessessescvennssvvecasne
x CPSARCW X
ReERR RARERARAAINANS AN lll!l.lilli!ll!l!
* * JISEXE * -
OES PP % NC He B R R RN H-WNC l RESTORE LCwW ¥
'HAVE INTERRUP'S'-..---.-X' FAS TS CR EXE ’-.--.--.X’REG!STERS FROWV
® STACKED « CCCLRFED
= * ¢ -
reanE AXRRAREAERN
«YES «YES
. .
. .
. .
. .
x X
tEANE wnnan
1] -
* IS PP -
*WAITING FOR AN * SIPT *
INTERRLPT 2 -
x » .
T . [TTER)
«YES -
. .
. .
x .
BANESABEREREIRRBAN . LTI
- KSERCH bt - ' '
W ke MW R ¥ 4 %= ENO x

- IS WAITEC 'c------.-a.-X‘KLNSIC *
b INTERRUPT -

- STACKED - Q
AAARAABARA R AR NSE “naaw
«YES

£l *
EXINTTY =
L] =

Figure 22 - The Return Routine - Chart 2

40

; u
anEan

RARE
» -
®*RETURN *

¥eoeseeoveceeX® TC PP *
- - *

L] -
asnns

buffer (SLRBU). If PP interrupts are stacked, the
contents of SLRBU are moved to SLRPP, and an
interrupt is unstacked.

If return is to be from the backup buffer, it must
be examined (CRETBU) to determine that TS and
EXE are not set. (See the maskable interrupts.) If
either is on, the corresponding interrupt is faked by
entry to the parallel interrupt table (SIPT) at the
appropriate point. If both are off, control is returned
to PP with registers restored from the backup buffer.

IC at PP Level (SI=0): If $RET is requested by PP
(SL=0), the return routine (CRETPP, Figure 22)
examines the PP auto-stack bit in the program status
table (SPROGS). If PP requested SRET in main
stream, STIC is adjusted to the half word after the
$RET pseudo-op and the service op return routine
(KSUPP) is used to return immediately. When $RET
is requested by PP I-O fixup, PP is taken out of
stack mode. Then, if PP is in SIO mode and waiting
for an interrupt, the search subroutine (KSERCH) is
entered to determine if the waited interrupt has been
stacked. If it has, it is unstacked and control given
to the receptor at KINTTY. If PP is not in SIO mode
and has interrupts stacked, one-is unstacked: either
the one waited (if PP is waiting and the waited inter-
rupt has occurred) or the next one to be unstacked.

If PP is in SIO mode and not waiting, or not in SIO
mode and has no interrupt stacked, the routine
(CPSNOW) uses the JTSEXE subroutine to determine
if the TS indicator had been set in SLRPP since the
I-O interrupt, or if the EXE indicator had been set
with the I-O interrupt. In either case, the interrupt
is faked by entering the parallel interrupt table (SIPT)
at the appropriate point. (See maskable interrupts.)
If neither is on in SLRPP, low registers are restored
from SLRPP and control returned to the location
specified in SICPP.

Figure 23 tabulates the exits from the return
routine.

Error Control

The dispatcher error control is entered when errors
generated by program execution are detected by MCP.
The routine determines the program responsible for
the error. If PP generated the error, ABEOJ is
primed, and a message written on the output tape.

If MCP generated the error, a message is written

on the typewriter and a BD, $ executed.

The error control routine is entered disabled at
SDISP (Figure 24) with the A8 error code in $14VF.
If the error occurred at MCP level, or if the error
is an MCP error (denoted by the magnitude of the
error code), the console is released and the error

code is converted from A8 to IQS. It is placed in an
1IQS message which is typed (TYPE XX ERROR), and
a BD, $ executed.

If SDISP is entered at PP level with a PP error
code in $14VF, the MCP mask and boundaries are
selected, SLRBU is filled from STLR, and MCP level
is set. ABEOJ is primed, the error code placed in
the message skeleton, and control given to the short
message routine (ZSPLPR).

The error control routine may be entered at
SDSPDS if PP accomplishes a branch to 40. 0(g) or
40.40(gy. In this case, low registers are saved in
STLR, error code 16 put in $14VF, and control given
to SDISP.

When the error routine branches to the short
message routine, the flow of control is predetermined
all the way to the ABEOJ package. The short message
routine enters the system print program, a major
package. The tentacle table for the system print pro-
gram will have the user bit set to MCP, and the FWA
of the last tentacle table used will be zero, since
none was used since PP last had control. When $RET
is requested by the system print routine, the return
routine will decide that system print had been primed,
and examine the prime queue for other primed
routines. ABEOJ was primed when the level was
changed, and thus will be unprimed immediately, and
control never returned to the short message routine.

Error Codes - Problem Program Errors:
Error
Type $14VF Meaning
1 10001.0 Illegal IF Interrupt
2 10002.0 Pseudo-Op code invalid
3 10003.0 Channel not available
3 10003.0 Unit not available
4 10004.0 IOD invalid, or Unit not
assigned
5 10005.0 I-O TOE address on I0OD
card invalid
6 10006.0 Request for too many seratch
tapes
7 10007.0 Control word invalid
8 10010.0 Control word address invalid
9 10011.0 Communication with protected
area
10 412.0 Dump format invalid
11 401.0 $Chex linkage specifies an
illegal address
12 402.0 Unit suppressed
13 403.0 50 maskable interrupts
14 404.0 OP, AD, USA or DS inter-

rupts

Interrupt Control 41

Exit to Conditions

KUNSTC An MCP or PP interrupt
must be unstacked.

KINTTY A waited interrupt must
be taken.
MTC1 There are no MCP interrupts

to be unstacked, but a primed
routine must be entered.

MTC2A Returning to the MCP routine
which was using the routine
that gave $RET.

KSUPP Return to location is STIC.

SDISP AnOP, AD, DS, or USA
interrupt occurred simultan-
eously with the interrupt
which caused the change to

MCP level.
Retumn to $RET given by an MCP fixup.
MCP at MCP has no interrupts to be
location of unstacked.
interrupt
Retum to No interrupts to be unstacked,
PP at no MCP routine to be unprimed, -
location of no unfinished MCP routines, no
interrupt error interrupts.
SIPT TS occurred while in PP fixup
(Parallel or at MCP level or EXE
interrupt occurred simultaneously with
table) the I-O interrupt.

Figure 23, Exits From The Return Routine

42

Registers
Restored

(1) If return to a major

package from a major
package is being post-
poned to take an MCP
interrupt, (STLR) are
moved to (SLRMCP).

(2) If return to PP from
MCP is being postponed

to take a PP interrupt,
(SLRBU) are moved to
SLRFPP).

None.

Tentacle table linkage
set up.

Return address set in

MTC3A.

All by KSUPP from
STLR.

Error code in $14.

All from SLRMCP.

All from SLRBU or
SLRPP,

All from SLRBU.

Remarks

An I-O table of exits will get
control in the auto-stack mode.

MCP or PP is waiting, and the
waited interrupt has been found
stacked.

The routine is entered via the IF
analyzer which sets up entry ad-
dress and modes.

When an MCP routine uses another
MCP routine the latter must per-
form any necessary saving and
restoring of registers.

Return to linkage at B, $MCP is
made if the next primed routine
is busy. Retumn after the linkage
is made if $RET is given in PP
main stream. See the service op
return routine.

No return will be made. Control
given to error control.

Normal return when MCP is
interrupted.

Ultimate retum,

Registers restored from SLRBU
if MCP gave SRET, and from
SLRPP if PP gave $RET,

These are weated as maskable
interrupts. They require special
handling since they are permanent-
ly masked on, Entry to the para-
lel interrupt table releases the
interrupt.

Xeo oo

ERRER
*
-

x

AEREAARAAIRARRRRE
* *

* SAVE IMNDEX

1]
- WHCS cP

* ERRCR CCDE BesseanveaX® RECGISIERS
* IN $14 * *

EREER
PP

x
HEREEREEERALEERARE
* RESET IND. %
* SET MCP MASK, ¥
* BOURDS. MCVE *
* (STLR) TO *
* (SLREU). =
ERARAREERARERE AR

.

.

x
EARAAHEARRRBER RN
* SPRIME *
I SR S ey B
* PRIME *
- ABEQJ *

AAEEARERRTERRE R
* *

® SET LP ERRQR #*
» MESSAGE *
* *
* *
AR AT REREARRE SN

Xe oo

RN
* Y
#ZSPLPR =
- *

* *
EREEE

-
-
14 ANC 1S *
*
*

- %
ARAEERERAIRARKNER

Xe e

RAEARRAIEARKR
. *
® RELE2SE -
* THE CCRSCLE *
* SECF *

Es *
EAEAAERI B ARRE
.

Xeasoe

EREARAARKARREFARE
- SAEICS *
D L e]
#* CCNVERT ERROR #*
* CCDE TC I1Cs #
=

*
AXRERRAANINEREANR

AREIE
* k]
% CCNSCLE *
* RELEZSE
* CCMPLETE

EEEER]
«YES

X
EREEAxENIEAARR
. ®
* WRITE ERROR #
* WESSAGE Ok *
® CCNSCLE *
* *

EXEARRAIRRERR

RESTCRE *
€14 ANC $15 %
»
*

EEARAEBRAIERBERN
* DISABLEC *
* LCCP 1C % :

*
AERTAEARERNENAR

Figure 24 - Dispatcher Error Control

IR R

% LOW REGISTERS #

*IN STLR, 000040%

L4 IN STIC. *

IEAEARBBARARREA AN
-

PIRREX)

FARREARERRIERLAAN
M *
¥SET ERRCR CODE. #
*FOR CISABLEC *
. E,NCF ®

M

*

>
AXARBRARABRR AR NE

43

Error
Type $14VF Meaning
15 405.0 Bad label
16 406.0 Successful B, $MCP
17 407.0 Bad PTOE address
18 410.0 Illegal $COMM first word

address

Error Codes - MCP Errors:

Error
Type $14VF Meaning
75 3405.0 MCP setup I-O error
76 3406.0 I-O operation rejected
77 3407.0 File not stacked in interrupt
queue
78 3410.0 Interrupt queue too small
79 3411.0 Prime queue too small
80 4012.0 MCP error while auto-stacked
81 4001.0 MCP EPGK
82 4002.0 Special assignment error

The Prime Routine

The prime routine is used to enter the parameters in

a revolving queue, and to update the prime queue

count. The return routine empties this queue, honoring
the prime request.

The prime routine (Figure 25) is entered with the
calling sequence:
SIC, SPRIMR
BD, SPRIME
,» $OP
(Parameter specification as
for entry via the IF analyzer.)

After saving index registers 0 through 4, the routine
adds the pseudo-op code to the base address of the IF
analyzer operation table to fetch the address of the
tentacle table. The routine uses the tentacle table to
determine the number of parameters to be stored in
the queue, the return address, and the form effective
control. The tentacle table is not changed.

The current queue count (MPRMQK) is examined.
If zero, the prime and unprime control words (MR4,
MRS5) are initialized to insure synchronism.

The parameter count specified by the tentacle table

is added to the queue count and to the linkage address,
and the resulting return address is stored. If the

updated queue count exceeds 30 half words, dispatcher
error control is entered at MCP level with error code
79 in $14.

The new queue count is stored (MPRMQK), and
the current prime queue control word (MR4) is used
to control storage of the parameters in the queue.
When the parameters have all been entered in the
queue, the updated control word is stored, index
registers 0 through 4 are restored, and control is
returned (still disabled) to the linkage return address.

SPRIMR
(E3 21 AEENS BT ARNAERN AEBAEARRERARABERR

L * * * *
* = % SAVE IMNDEX # # GET PARAMETER #
ESPRIME %.. X% REGISTERS %®eeessseeX® COUNT FROM #
* * * 0 THRCLGH & = #TENTACLE TAELE #
* * “ * -
ERRER REXAABAEERARRRBRER FEREREE *

-
-
-
X MFPR7
EETE2] ARBRRRBRAARERRARE
- » . -
® IS PRIME # YES * SET INITIAL =
* QUEUE HasaseesaeXt PRINM ND *
- EMPTY * SUNPRINE CONTROL*
* - . »
remEn AAEARFARRAERRRN NS
oNC .
. .
- .

- .
eXsesesvoesncsconcsersncccces

X
SEARRARBARABRRANN
* -
SET RETURN *

ABDRESS :
-

'Er

ERBEREREERER AR
-

.
X
axnax annan
* * - *
* IS PRIME * YES % sCise *
. CUEUE HecesossesaceX® (TYFE #
* FuLL . * 75) =
* * » -
REERNR AEAEE
oNC
.
X
AEARAREERREREAENRS FHRRERARERAAERREN LEE L]
» - L] * * *
* UPDATE CCUNT, * ¥ SAVE PRIME # * »
#PUT PARAMETERS %esecesesXd CONTRGL. *ee +X#RETURN #
* IN QUEUE * . RESTCRE . * .
* * % RECISTERS # * *
FEREEAERERERRRARN PHRERAERARARRRERNRE AERRE

Figure 25 - The Prime Routine

SYSTEM OPERATION PROGRAMS

In order to accomplish its function as system super-
visor and automatic operator, a substantial portion

of MCP is devoted to programs concerned with sys-
tem operation. These programs will be considered

in three general areas:

1. Initial program load -~ programs concerned
with getting the system started.

2. Job control - programs concerned with
guiding jobs through the system, making absolute
assignments for symbolic I-O, providing tape
mounting instructions for the operator, etc. .

3. System commands - programs concerned with
requests to change some facet of system operation.

The initializing program, by its very nature, is a
one-shot program which must give consideration to
all aspects of system operation. Two other programs
are major packages or subroutines of major pack-
ages. They communicate in the manner previously
discussed, using the tentacle tables, the priming
mechanism, and the return routine. (See the Dis-
patcher.)

SYSTEM INPUT MODES

The first step in the study of system operation pro-
grams is to discuss the characteristics of the system
input modes and the usage of the system input pro-
gram. From the point of view of program logic, sys-
tem input may be classified as either being in over-
lapped mode or not overlapped (bypass) mode. (Refer
to the portion of the MCP Reference Manual concerned
with system modes.) Although there is a distinction
between on-line and offline overlapped modes, its
influence on program logic is not as great.

Overlapped Modes

In the overlapped modes, the input program has two
input sources operating at the same time. One source
is the read tape, which provides jobs to phase 4 of

job control (JC4) to run, and the other is either the
scan tape or the card reader, which provides cards

to Phase 1 of job control (JC1). JCI1 makes prelim-
inary decisions concerning which jobs canbe executed,
and sets up I-O assignment tables to allow tape
mounting instructions to be given before the job comes
up for execution.

The system command package must be sensitive to
both the source of a command and the mode of the sys-
tem. Commands encountered by JC1 may require
immediate action, or may have to be deferred until
phase 4. For example, a COMD, OUTPUT will be
performed immediately if the source is JC4 or the
console, but deferred if the source is JC1.

Bypass Mode
In the bypass mode, JC1 has no function. I-O assign-
ments are made as the jobs are encountered by

phase 4 of job control.

Use of the Input Program

The system input program provides one system
pseudo-op, $SCR, which is available to any program.
This pseudo-op provides cards from the phase 4
source (the read tape, or the card reader in the by-
pass mode), provided a job boundary is not encoun-
tered. The first card of a job is defined as the first
JOB or COMD card not preceded by a B card (ex-
cluding T cards).

The input program provides a special pseudo-op,
SSCR4, for the benefit of JC4. The SSCR4 pseudo-op
is a request for the next card. However, it differs
from $SCR in calling sequence and the meaning of the
end return. The calling sequence for SSCR4 is:

B, $MCP
, SSCR4
H FW. A(I)
(end return)
(normal return)

The SSCR4 pseudo-op is a request for one card;
thus, no card count is provided, and a partial trans-
mission is not possible. The end return is given by
the input program when no cards are immediately
available from the phase 4 source. This differs from
the end return for $SCR, which is given when no more
cards are available for that job. JC4 uses SSCR4
when it is looking Tor a job card, and only at the
beginning of a job.

The input program provides one other pseudo-op
with an eight valued parameter. This pseudo-op,
SKOM, is most easily discussed by considering the
eight sub-types as separate pseudo-ops, as follows:

Pseudo- Calling

Op Sequence Function

SCR1 B, $MCP To be used by JC1 to
(3.0) , SKOM request the address of
, SCR1 the next card in the phase
A VF, 0.0 1 buffer. That address
(End return) will be placed in A. End
(Normal return) return will be used if no
cards are available.
SCAN B, $MCP To be used by JC1 to
(3. 32) , SKOM request the input pro-
, SCAN gram to respond to the
(Normal return) next SCR1 request with
the first card from the
next job. (SCAN to the
next job boundary in the
phase 1 buffer.)
SEJSCN B, $MCP To be used by JC4 to
(1.32) , SKOM request the input pro-
, SEJSCN gram to respond to the
(Normal return) next SSCR4 request with
the first card of the next
job. (SCAN to the next
job boundary in the phase
4 buffer.)
SONL B, $MCP To be used by the system
0.0) , SKOM command program to
SOFFL » (Parameter) inform the input program
(- 32) (Normal return) of a mode change com-
SBYP mand.
2.0)
SEOF B, $MCP To be used by the, system
(1.0) , SKOM command program to
SREW , (Parameter) inform the input program
(2.32) (Normal return) of an input command.

Being major packages, any of the operations previ-
ously mentioned may be primed instead of‘entered
directly.

JOB CONTROL
Job control consists of four major packages and their

subroutines (decode, unassign, assign, move, etc.)
servicing eight pseudo-ops:

Major
Package Pseudo-Op
JC1 SJci1
JC4 $EOJ
$ABEOJ
SJC4
Resume Load $RESLD

The accounting program SLOG1
(logger) SLOG2
SLOG4
Job control will be discussed considering only the
overlapped mode of operation. It will be shown later
that operation in the bypass mode actually is a special
case of overlapped operation. Remember that the basic
purpose of overlapped operation is to accomplish tape
mounting for one job while a preceding job is running.
The following discussion presents the basic concepts
of preassignment of tape units as done by job control
in overlapped operation. The actual implementation
may differ in detail due to various environmental
constraints.
Overlapped operation is controlled by phase 1 of
job control (JC1), phase 4 of job control (JC4) and
the subroutines, decode, unassign, assign, and move.
These routines are all tied together by a set of tables
called the I-O assignment tables. A detailed descrip-
tion of these tables appears elsewhere in this section.
For the moment, they will be defined as having one
entry for each job which has passed through phase 1
(JC1 scanning) but not though phase 4 (JC4 EOQJ). An
entry will be defined as something to identify the job
and its I-O requirements. Then, the functions of the
six routines may be defined as follows in terms of
operations on or for the jobs in the tables.

Job Control 1: Attempts to keep the I-O assignment
tables full by taking input (jobs) from the scan source.

Job Control 4: Attempts to empty the I-O assignment
tables by taking jobs from the read source and running
them.

Decode: On request from JC1, decodes IOD cards into
an entry in the tables.

Unassign: On request from JC4 at EOJ, makes the

I-O devices used by the PP being terminated available
to assignment.

System Operation Programs 47

Assign: On request from JC4 at the beginning of the
next job in the PP reference table, insures that all
its I-O requests have been assigned; in addition, it
proceeds down the table assigning leftover tape units
until either the tape units are all assigned or the tape
requirements of all jobs in the table have been met.

Move: On request from JC4, constructs the I-O con-
trol tables needed to run the next job in the tables.

Thus, overlapped operation could be pictured as
JC4 pursuing JC1 around the I-O assignment tables,
one trying to keep them full, one trying to empty
them, with both making demands on the input pro-
gram for jobs from different sources.

Bypass operation can then be considered as over-
lapped operation with a set of tables whose capacity
is one job.

Job Control, Phase 1 (JC1)

The job control phase 1 major package performs two
tasks in MCP. First, it enters symbolic information
into the three I-O assignment tables: PP reference,
I-0O request, and first reel, for pre-assignment of
I-O. Second, it makes preliminary decisions about
the executability of jobs. A subsidiary function is to
dispatch COMD cards to the system command pro-
gram. JCI1 may be considered an interface between
the input program and the decode routine, and between
the input program and system command package. It
operates only in the overlapped mode, and scans jobs
on the phase 1 system input tape.

JC1 is entered when first used, at YC11ST, and at
YC1A on subsequent occasions. It operates enabled,
and is always entered via the unpriming mechanism
in the return routine, having been primed by JC4 or
the input program. JCI1 uses three other major
packages and two subroutines, as tabulated:

Job Control 1 (Figure 26) normally gets control
from the input program, via the unprimed mechanism,
when a new job is sensed in the input Phase 1 buffer.
JC1 then examines the B cards in that job until either
the buffer is empty or the job is fully entered in the
I-O assignment tables. Normally, then, JCI consists
of a loop through the calling sequences to the input
program and the uncode and decode routines. The
remaining code exists essentially to handle special
returns from these three routines.

Special Returns for JC1

One such return is end return from the input pro-
gram, meaning that the input buffer is temporarily

exhausted. JC1 gives up control via $RET, with the
assurance that it will be given control when the supply
of cards is replenished.

Another return is error return from uncode,
meaning one of four things has been detected: (case
1) a COMD card, (case 2) a T card, (case 3) the first
non-B card, and (case 4) a real error in the B-card
in question. Case 1, the appearance of a COMD card,
is handled by going to the system command routine.
Error return from this routine, in turn, means that
the COMD card said REJECT. JC1 effects the reject
by setting the TRJECT (see I-O Assignment) bit to
one in the PP reference table for the last job. Case
2, a T card, is ignored by JC1. Case 3, the first
non-B card, signals that the current job is now com-
plete in the I-O assignment tables. A final entry is
made to decode, the input program is instructed to
scan to the next job, and control is given up via $RET.
Finally, Case 4, a real error in a B-card, causes
JC1 to enter decode with a reject disposition set, and
from that point it proceeds as in Case 3.

A third exception occurs when the decode routine
comes back with error return. If one of the I-O
assignment tables is full, SJ1FUL is set to one, and
control is given up via $RET (see JC4). Other decode
rejects reduce to Cases 3 and 4, as discussed. When-
ever JC1 rejects a job, it gives JC4 a reason for it
by placing the address of a-4-word diagnosing error
message in the second word of the PP reference table
for that job. This message will then be printed by
JC4 in lieu of running the job.

Miscellaneous JC1 Functions

JC1 has other miscellaneous functions:

1. JOB cards, in addition to furnishing an ID for
the PP reference table, cause JC1 to enter the
accounting program, via SLOG1 (see description of
accounting procedures).

2. Any TYPE, COMPILE card will terminate
analysis of the current job, since the following cards
are only symbolic input.

3. To accommodate the Fortran IV compiler, 10D
cards are ignored by JC1 if the type field begins with
$. Such IOD's are treated as T cards.

4. Before each new job is scanned by JC1, a bit
(REJJOB. 61) is checked. If this bit is on, an uncor-
rectible data error has been associated with the
previous job (see Input Program). JC1 will reject
the previous job just as if a COMD, REJECT has been
encountered.

5. The first time JC1 is entered (at YC11ST) it
saves the IPL reject count, which is a count of the
number of jobs to be skipped by JC1 and JC4 before
execution is begun. This count is tested and decre-

Name Symbol Linkage

SKOM B, $MCP
, SKOM
, 3.32

Input
Program

B, $MCP
, SKOM
, 3.0
YCICA , 0
End Return
Normal Return

Input
Program

SKOM

YUNCOD LVI, $14, YIUCXW
B, YUNCOD
XW, 0

VF, 1.0

, 0($10)

, YC1DB
Error Return

Normal Return

Uncode

@DISP

SCOMD B, $MCP

, SCOMD

, 1.0

, YC1DB

, 0
End Return
Normal Return

Commands

SLOG1 B, $MCP
, SLOG1

NOP, ($10)

Logger

LDECOD LVI, $15, $+1.
B, LDECOD
VF, YC1DB-1.
CF, 0

VF, 0

Error Return
Normal Return

Decode

mented at the beginning of each job, and jobs are
skipped until the count reaches zero. They are never
entered into the I-O assignment tables, and they will
be ignored by JC4.

Job Control, Phase 4 (JC4)

Phase 4 of job control (JC4) has several functions.
One of its functions is to be the instrument for the
removal of a job from the computer, involving such
things as unloading of tapes used by the PP, dumping
in response to SEDUMP requests, closing of the job's

Funection

Instruct Input Program to scan to
next job.

Request the location of next card in
the Input Program Phase 1 buffer.
(Location is placed in YCICA.)

Verify card, convert, and break out
into YC1DB.

To route COMD cards to the command
major package.

To give a logger card during Phase 1.

To enter JOB names and I-O requests
into the I-O assignment tables and
make a preliminary check on the IOD
cards.

system output file, and several other items. Other
functions of JC4 all involve the initiation of execution
of problem programs in response to the B-cards
which precede every MCP job. JC4 initializes PP
memory and MCP so that the new job is ready to be
loaded and executed. It sets up the boundary control;
in response to IOD cards, it builds the I-O tables for
the PP; it instructs the operator to mount and dis-
mount tape reels according to the IOD cards of the
current job or jobs to be run; from the TYPE card

it determines the compiling chain (if any) to be used,
and keeps track of its links; it recognizes and dis-

System Operation Programs 49

“anaw
»

-

« *
[IFT 1)

nNIR

ARBRNEFARANARABANS
= DIC * - -

- - # REJECT CR * YES #SET REJECT EBIT #
* YCLIA #,.0s0e0v0ceseX® UK CCCLR ON #,000ce0seX®AND THE REASON *
* » * PREVICUS # Ed FOR 1T 4
* JCE % % INTO TABLES *
L) ERBAAERBABRBIRARN

«NO -

. -

. -

xanE
-

EEEARTEATHBEARRRR
* SKOM~SCR1

.
AR R—N— WS- E-N—REND

axnun ennw
- L]

» - - - = -
* YCIAL ¥oeevess sesvsce X €ET *o eeX® SRET * #YCISCN =
- - » ONE CARD » - » - -
» * - * - » -]
“naEn ARRBARAANS IR IR ANY ARAEE wennn
x x
- - .
. . .
. - .
. - .
. . .
. x «YES
. EEERRETARREAARAEN RuEN ansex
. * UNCODE E} = * = E
- R R RN RN R-%-SERR * IS IT A % NO % 1S 1T THE #
- eessssccssssceccs® CONVERSION #oasvsneeX? T CARC ¥eeessneeX® FIRST BINARY &
- - AND - - A CARD "
- * ANALYSIS - - -
. FEEBREABIRRERIRNE anxan szusse
. «YES «NO
. . .
. . .
. . .
. . .
. - .
. x x -
. sanan FRRERRARREARRRAN N xxan -
. - - DECODE bl - - .
. * IS IT A % YES P e e L o B - - .
. ¥*REEL OR ZN IOC ¥ececccooX¥ ENTER 1/C *eo ssssscveX® YC1ALl # .
- - CAR - # REQUEST INTO * - * .
. - Al * - » -
. ranen RERABERRERERTEAND sRunan -
. MO <ERR .
. . . -
. . - -
. . - .
. . - .
. . . -
*YES x - x
annnn anasw - snann “numa
= [y - » - - - »
IS IT A NO ® IS IT A = . YES ®= IS 1T AN * IS IT A *
LIM CARD #Xeosoonao® JQB C2RD * eXssoooesesesereeass? IPL REJECT #Xeosooessoaek COND CARC L4
] - - . .
= - - - -
senes zanan . anan [TYTTY
«NO *YES . «NGC «YES
- . - . -
. . - . .
. . . -
. . .
. - .
- x x .
. TEARERRINIRRIR RN TAREREREAAARERANE -
- » sLcel - e DECCUDE * .
. L R e L oL VR N e e R W e B .
. » €0 10 * REJECT » .
. ® LOGGER WITH # » Joce » .
. * Ji AR * - * * -
. AREEBEASA YRR NERN - IEABEARSRNERNRINS .
. - .
- - .
. . - .
. . - .
. . . .
. . - .
. X - X
- nsan - FEABARNERTRINE RN ANEEBAGTASARANNNE
. - * » " SCCm *
. - s 171 * YES . b SET THE L ERR¥-f-f—-t—-R_N_d--"
. ® IPL REJECT BesesvcsccsncnsnaXe 2REJECT BIT FOR *Xescecsso® ENTER THE -
. . . . THIS JCB - RSYSTENM COMNNMANC
. - . * ot RCUTINE »
- LITEEY . TRESRRARERARARAAS EEraREREESEARANES
. RY:) o «NCRM
. - .
. . .
. . .
. . .
. . -
x x x x
resne wauaw anawn exsse
L) - . » =
1S TYPE = NO - * . (3] -
COMPILE #eoesesscscsaX¥ YCLINL # . SCOML SET THE &
- * * - *STRANB BIT #
[a - . . » - - -
zanas anden - nanan ranes
«YES . «YES
. . .
. . .
. - .
. . .
. - -
x X X
snnnw ARAARBARAARARRENS SRR EIERNREARINNES TAREERARRARE G AN anans
- = . CECCCE - * SKCM—SCAN - . ACD TC * E »
- L] L R e e ot LR S R e ot = B P L JCB COUNT. - » -
BYC1SCN ®evcevecasacceX® FINAL BeeesoneaX? SCAN TO #ecesesceaX? SET UNCODE #eesesssssaceX® SRET #
* - * DISPCSITION. ® - THE NEXT b4 ¥ DISPOSITION * -

-
anzan

#JCB IS ALRIGHT =

- JoB
ARFINSRRGINRIRELY EANRNNGEBNARENND

RABEIRRRCRURRRRER

nasaw
* INITIALIZE * - -

. = s IPL REJECT . -
AYC11ST ®ecenconecaseX® CCUNTe CHANGE FevsesasaceecX® YCIAL ¥
* - « ENIRY TC = . .
- - YC1s - * *
ARSAN AEHBRRBANTISAARRES ERREN

Figure 26 - Job Control 1

[+1:]

. TC J Ll -
ARBRAAEANARARRB RN anaew

patches COMD cards to the system command routine;
and finally, it scans and takes appropriate action on
the I-O assignment tables built by JC1. Thus, JC4
is partly an end-of-job, mostly a beginning-of-job,
and only for compilers a control-of-job program.

JC4 has one entry point, YC4NO, and three pseudo-
ops associated with it:

1. $EOJ -- the current job (or compiler) has
finished normally.

2. $ABEOJ -- the current job has finished abnor-
mally. ‘

3. SJC4 -- the current job does not exist; JC4 has
been trying unsuccessfully to get a JOB card from the
input program.

Both $EOJ and $ABEOJ may be given either by the
PP or from an MCP major package via SPRIME.
However, SJC4, occurs only when JC4 primes itself.
JC4 runs enabled, in the non-SIO mode, and saves
and restores no index registers. It runs mostly in
PP memory.

The only exit from JC4 is a $RET with, however,
one or more of five pseudo-ops primed previously:

$RESLD, SJC4, SCOMD, $EOJ, and SJC1. Of these,
$RESLD is primed normally at the end of JC4 when

a new job or compiler is ready to be loaded. At this
point the SLRBU buffer will contain the proper
boundary control, the remainder of the buffer con-
taining all zeros with the exception of the MK and IF
mask bits. The next pseudo-op, SJC4, is primed
when JC4 is unable to read a job card. If a COMD
card were read instead, SCOMD would be primed as
well. $EOJ is primed whenever JC4 detects an error
in the job prohibiting its execution. Finally, SJC1

is primed (along with $RESLD) whenever JC4 sees
that the I-O assignment tables have been filled
(SJ1FUL = 1), and some space has been made avail-
able again.

Major Package Pseudo-Ops Used by JC4

The major package pseudo-ops used by JC4 are
shown on the following page.

System Operation Programs 51

Major Package

Input Program

Input Program

Input Program

Output Program

Output Program

Dump

Disk Fetch

Logger

Logger

Pseudo-Op

SKOM

SSCR4

$SCR

SSPEOJ

$SPR

$DUMP

$FETCH

SLOG2

SLOG4

Linkage

B, $MCP
, SKOM
, 1.32

B, $MCP
, SSCR4
, YBCBU
End Return

B, $MCP
, $SCR
, YBCBU
, 1
, 0
End Return

B, $MCP
, SSPEOJ

B, $MCP
, $SPU
, YBCBU
, 1.

B, $MCP
, $DUMP
, YEDLL

B, $MCP
,» $SFETCH

(AX)DD(BU, 48, 6), . .

, 0
, YBCBU
, 15.
, 0
B, WRESTR
NOP

B, $MCP
, SLOG2

B, $MCP
, SLOG4

NOP, YBCBU
NOP, YJCDBU

>

X

Function

To "scan' to the 1st card of the
next job.

To ask for the 1st card of a job.

To ask for other B-cards in a job.

To empty the buffers and write a
tape mark on the system output tape.

To write a job card on the output
tape.

To dump according to $EDUMP
formats in case of $ABEOJ.

To get LIM and IOD cards for com~
pilers and compiled PP's.

To signal end-of-job to a logger.

To give a logger CC and A8 JOB
cards at beginning of job.

JC4 Service Ops and Subroutines

JC4 also uses the following service ops and sub-

routines:

Name

Commentator

$TIME

Short Message

Prime Routine

Return
Major Package
Fetcher

A6 to IQS
Conversion

Breakdown
Routine

Symbol

$COMM

$TIME

ZSPLPR

SPRIME

$RET

YMPFCH

SA6IQS

SBRKS8

YPCCT

Linkage

B, $MCP
, $COMM
, YC4CM
CF, 4.0

B, $MCP
$TIME
VF, YC4CM2

SIC, ZSPLP9

BD, ZSPLPR
, WSPLL
» 9.0

SIC, SPRIMR
BD, SPRIME
» (3OP)

B, $MCP
, SRET

LX, 1, YXWEJM
B, YMPFCH

LVI, 15, $+1.
BD, SA6IQS
VF, YJCDB1+1.
CF, 8

VF, YC4CM1

LVI, 15, $+1.
BD, SBRKS

VF, YUCBF1+.6
CF, 71.

VF, YUCBF2
CF, 0

(error return)

Function

To print on-line a beginning of job
message.

To put the time of day into the afore-
mentioned message.

To print the job card on the output
system tape.

To prime one or more other pack-
ages, such as SCOMD.

To return.

To get itself into memory from disk.

To get the JOB name into IQS.

To get the compiler names in a chain
broken out, and ready to put into
KSILO.

System Operation Programs 53

JC4 Routines

The preceding routines are outside Job Control.
The following routines are all basically a part of JC4.

Name

Decode

Assign

Move

Uncode

Card Code
to A6 Con-
version

Unassign

JC4 Print

Read From

Symbol
LDECOD

YDECVF

TASIGN

TMOVE

YUNCOD

SCA6

TJUNAS

YPR

YRDFSO

Source Routine

54

Linkage

LVI,
Bs
VF,
CF,
VF,
Bs

LVI,
B,
XW,

LVI,
B,

XW, C, D, E, F
(error return)

LVI,
B,
XW’
VF,

2

(error return)

LVI,
BD,
LVE,
CF,
VF,

LVI,
B,

$15, $+1.
LDECOD
0

7

0

YICER2

$15, A
TASIGN

$15, B
TMOVE

$14, A
YUNCOD
B, C, D
DISP
F(J)

$15, $+1.
SCA6

, SJCTWS
80
YUCBF1

15, A
TJUNAS

1, A
YPRRET
YPR

$15
YRDFSO
YBCBU

Function

To enter I-O requests when in the
bypass mode or for compiler I0D
cards.

To assign I-O requests, in both
bypass and overlapped modes.

To construct I-O tables for the next
job to be run. Secondly, to clear out
a slot in the PPREF table.

To verify, convert, and break out
card designated by disp, and put
information in A and F{J).

To convert compiler names to BCD.

To clear the I-O tables and get
ready to assign new job or compiler.

To print error diagnostics on or off
line on a selective basis for each
installation.

To get an 10D card from $SCR, disk,
or core.

JC4 Operations

JC4 will be described in 6 general areas: end-of-job,
beginning-of-job, bypass I-O assignment, overlapped
I-O assignment, compiler control, and error control.

End-of-Job

The code from the entry point of JC4, YC4NO
(Figure 27), through YC4B2 is essentially concerned
with terminating the previous job. First, to prevent
the operator from entering spurious EOJ commands
through the console while JC4 has control, the initial
entry bit to the loader is checked to make sure the
entry is valid. Next, the PP's I-O location table is
checked to make sure that JC4 will not conflict with
PP I-O when it calls itself in from disk. If $ABEOJ
was the pseudo-op, the dump program is entered and
YEOJS and SPINCL are set accordingly. YEOJS, if
set to one, will prevent further compiling and SPINCL
affects the conditional saving of tapes in SFREE (see
Unassign). After calling itself in from disk, JC4
checks the op code for SJC4 to skip the end-of-job
procedure if it has already been effected, i.e., JC4
is looping waiting for a new job card.

The next step is to reset SSYRFT, the temporary
arc assignment pointer, to SDKMCP, the permanent
reset arc (see description of move routine later in
this section). Now the compiler routine YC4INT is
entered if a compiler was running, otherwise, the
input program is instructed to "scan' to the next
JOB or COMD card. The PP's I-O is then
"unassigned", and the output program instructed to
empty its buffers (SSPEOJ), provided there is some-
thing in them (YSSPBT = zero). In addition, several
items are reset, among them the commentator buffer
(PONOUT) and the maskable interrupt counter
(YMISCO). At this point termination of the current
job is complete, and JC4 is ready to begin a new job.

Beginning-of-Job

At YC4B2 (Figure 27), the LFINB bit is checked to
see if decode is currently processing B cards for
JCl. If so JC4 effects a waiting loop by priming
itself and issuing $RET. If this were not done,
decode might possibly construct a fictitious PPREF
slot in phase 1, or too large an IOREQ table in phase
4. The SSCR4 pseudo-op is then used to ask for a
job card. If the input program gives end return, JC4
again waits via a prime SJC4-$RET sequence, but
first it checks SJ1FUL to make sure phase 1 is not
stopped for lack of table space. If the input program
gives normal return, the card is sent to uncode for

verification. If it is a JOB card, one more hurdle
must be passed: the WREJJB routine which checks
for phase 1 rejects (see JC4 error control). Then
the job card is converted to A8, given to the logger,
converted to IQS, and printed and punched on the out-
put tape. A message is printed, using the commenta-
tor, with the job name and the time of day. With this
message, the job is fully annotated, and JC4 turns to
the succeeding B-cards. Two separate logic flows
exist, one (for the bypass mode) beginning at YTCSR,
the other (for the overlapped modes) at WJ4PA. The
flow converges again at WJC4G.

Bypass I-O Assignment

In bypass I-O assignment (Figure 27), the TYPE card
is read and uncoded using the Uncode routine. If it
contained COMPILE or COMPILGO, the compiler
set-up routine is entered at YCOJB1. If not, the
LIM card is read at YC4B5. The read source routine
is used because the flow is rejoined at this point for
compiler LIM and IOD cards. The limits are saved
in all the necessary places: YEDLL, the $EDUMP
buffer; SLRBU, the eventual boundary control regi-
ster; and SMARK, to establish the upper extent of the
PP's I-O tables. Before the upper limit is used to
establish the PP I-O location table base address
(SBAPP), JC4 makes sure it is greater than YMAX,
to prevent any possible memory conflict. The next
step by JC4 is to string out all the IOD cards in mem-
ory in the format required by the decode and move
subroutines. This is done in a loop beginning at
YIODSO (Figure 28) which is broken normally when
the first binary card is encountered. The code from
YC4C9 to WJCAG effects successively the decoding

of the IOD and REEL cards, the actual I-O assign-
ment, and the construction of tables by Move. This
whole sequence is skipped for jobs with no IOD cards.
At the end SCORG is checked so that special action
may be taken for compiler at YC4INT.

Overlapped I-O Assignment

This logic starts at WJ4PA (Figure 29) by checking
the TYPE card, as in the bypass mode. It proceeds
to YCOJB if compiler setup is necessary. At WJ4PF
the read source is set to $SCR, because WJ4PFF is
the entry point for go phases of overlapped COMPILGO
jobs. Now the logic differs from that of the bypass
mode. Since the IOD cards were decoded by JCI1,

the PP is ready to be assigned. If all goes well, the
LIM card will be read (at WJ4PG) and uncoded. If
assignment comes back with a reject, a diagnosing
message will be printed. After uncoding the LIM

System Operation Programs 55

suRan

» »
- *
* YCANO *
- »

- -
AunEy

.

x
ARBRREARARRBER AT
*DELAY UNTIL PP
#* 1/C COMPLETE, *
*IF ABEQJ» DUMP #
#AND TURN SPINCL*
el 81T ON *
EERSARTANRENRERRN

.

Xeavoe

IIIC'!!’IIQ!'II!I
* YMPFCH

’—'-I—l-‘—l—l—l—l
* FETCH MAJOR #
- PACKAGE *

» »
EERRAATRANRRAARANN

» WAS
* COMMAND
* BY MCP

ERRRARRARRERRRAEE
-

- SAVE DISK

* TRACK FQOR PP
* ASSIGNMENT

*

BERBSARBAERNNERARE

ke kEw

MEssesessasesstsces

x
AEREARBAARE RS RRN

e SKCM -
N T B 2 B P
- SCAN TO

* Jee hod
» BOUNCARY -

Ul
ARRERERERRERRBASN
.

oo e

AREAAABTBRRARRENR
bt TJUNAS b
EL it Do e et b
UNASSIGN FP ®
* 170 »

- »
ARRRERERBERAEANNE

Xes oo

llII!II.l!Il!‘ll‘
*+ TURN OFF
1 eusy Blr. :
* MA|

= LOGGER 2
*
-

ENTRY
i!l(lll!llll'lll

I e R N N R N R A

TaaseveneX®
l

LITY 1]
- -

- »
sescacX® YCAE2 %
- -

- »
snaas
.

x
ARNASAFABIAFRBRREN
*

» «XBENTRY»

ARSIV AARSWERANNG
#*CONVERT TO BCD &
MAKE LOGGER 4
CONVERT #

ERREASRRBRAI RN

Xees 0 e

[

RRRER

» *
. =
X* WJ4PA ®
* -

- »
annan

Ill!!ll'

¥ REJECT JoB b
[

-
ERRANAARNEERRERRY

.
.
.
-
-
.
-
.
-
.
-
* 0
CELAY UNTIL & . % BYPASS * NO
#* DECCDE #ND PP » . - MODE
» CCMPLETED * - * .
* = - L] »
ABRABBARBIARRERER . nxass
. - «YES
. . -
. . -
. . -
. - -
o - -
X - YTCSR X
AEEERASSTINAREERS -
- SSCFa - . * $SCR - . TMCV
P e T ey e T =) - !—!—’—.—l-l-l-i-‘
- READ A - . * REAC A % MOVE RCUTINE
* CARC el . * CARI G
* » - - -
sane - .
- - . x
. . . .
- . . -
. . - -
. - -
. . .
X . X

AERABERENIATERARS

YUNCCD *
N

ARARREREEREARNEN Y
* YUNCOD

* UNCODE THE *
* JCB CARD :
-

NARRAARASIRATRNER

* I 1T *

] -
AR ATIAARRREY

snans

- -

= -

o XEYCAINT *
- -

- »
sy

WA AN

» Is *
THIS THE
#FIRST FASE b4

*

AR
«YES

YES

*ooeeX

NC

.
.
.
.
.
.
.
.
-
.
.
.
-
.

-
-
£ UNCODE THE #
* TYPE CARD
» -
- -

EERRABSASRERNEY

ERARAABERABAGNERE R
* YUNCOD -
BB F—E— BN
® UNCODE THE
* LINIT CARD

» *
ERNEIEERSEER NN

ARAEARRARAAARERNR
SPEO -

I i -

'----o-o-x' EMPTY BUFFERS #

ON QUTPUT TAPE *
L]

|§Q:i.-nll-lllulu
.
-
-

edssevevscacsacsssscsssanana

x
RERER
» L]
- -
+ YCaE2 %
» *

* '3
TR

Figure 27 - Job Control 4 - Chart 1

56

e ssserrenass

LETTE TS L
L

ES
“ERERR

* I »
*JCB PCINTER®

. INDICATOR *Xe
ON

L] -
RRETURN #
- *

- *
(T2

ETTTR
- *

[ITT2)
» *

Yy

x
NERBREBE RN
-

L s

4 SETUF PP *

LINITS *
-

» -

IRARTERFARBRERRRR

xeo e

LT Y]
- -
L Is IT b4

* GC JcB bl
- *

nnan
*YES

NO

Heossasee X

» u
*WREJJB *
= a

JCBS TC
BE REJECTEC

FARERBEERAIFIRSAS

» .
ARNEE
.
.
.
.
.
.
x
AARANARR SRR RRANY
-
SAVE COUNT
CF *
*
-

T ET

ARAAACUERBRER R AR
-

- DECREMEAT
- COUNT EY
- ONE
-

LEET L]

ARAEARRARRANIERS
.

Xesoee

- .
#WRESTR *
- »

» "
Annmn

- -
4 wyCv ¥
- .

- -
anany

seasex

saasEEsEEsaTENNNE
» -
- SET MOVE *
% INITIAL ENTRY #
- B1Y ON *

*
SEARBRARRBRARAINS

.
.
.
.
.
-

-
. IS 17 .
QVERLAF -
MODE *
sane
oNC

seresssaaranenae
L]

* INITIALIZE
. SYSTEM

N CARC
*
L3

FETEE

EERAARERANBRBRAE

card, the overlapped mode logic borrows some by-
pass code, at YL1, to process the limits. The by-
pass code returns to WJCV-1.0 at which point JC4
goes intoc a loop from WJCV to WMOVIO+1.¢ (Figure
30), to "move' the IOD and REEL cards. In addition
to constructing I-O tables for the PP, Move checks
the job name against the name in the PP reference
table, and steps the TPPRUN pointer to the next table
slot (see I-O assignment). It is therefore necessary
for JC4 to enter Move even if there are no I0D cards.
This is done at WTEST, the normal exit from the
loop, if the initial entry to Move is still on. When
the IOD cards are exhausted, the overlapped mode
logic rejoins the bypass logic at WJC4G.

Compiler Control

During their execution, compilers are treated by
MCP exactly as any other problem program. How-
ever, JC4 treats them in a special way for three
reasons: (1) their binary decks, LIM and IOD cards
are in PROSA on the disk, (2) they may be chained
together, (3) their output may be executable programs
(COMPILGO). Because of reason 1 above, JC1 does
not scan the LIM and IOD cards in the overlapped
mode, meaning that IOD cards must be decoded and
assigned from scratch by JC4. Therefore, all
compiler IOD's are assigned by JC4 in the bypass
mode. When a COMPILE or COMPILGO TYPE card
is uncoded by JC4, the compiler setup routine is
entered at YCOJB (overlapped mode) or at YCOJB1
(bypass mode). At YCOJB (Figure 30), JC4 must
first determine whether the job was pre-rejected by
JC1 (TRJECT =1). A COMPILGO job will be run in
the compile phase in this case only if the pre-reject
was due to decode, and both list and punch options
called for, since the compiled deck may then be
easily corrected. Otherwise, the pre-reject will be
diagnosed at WJ4PFF (I-O assignment will return
with reject disposition set). If the job is a COMPILE
job and was not pre-rejected by JC1, the TPPRUN
pointer is stepped by entering Move at YCPREJ.

This must be done to keep the pointer in phase with
the jobs being executed, since a slot for this job was
created by JC1. The compiler setup begins in ear-
nest at YCOJB1. After fetching the processor chain
type-area for the compiler chain named on the TYPE
card, JC4 converts the individual compiler names to
BCD and "breaks out" the names in order to set up
the communication region. When KSILO is initialized,
JC4 sets up $13 to cause the read source routine
(YRDFSO) to transmit LIM and IOD cards from lower
memory. The bypass logic for I-O assignment is
then entered at YC4B5.

The code beginning at YC4INT (Figure 31) performs
the loading of the next compiler in the compiling
chain. It is entered whenever a compiler gives $EOJ
or $ABEOGJ, and when the I-0 has been assigned
initially for the chain by JC4. It will terminate
compilation immediately if an abnormal EOJ is given
(YEOJS = 1), proceeding, if the job is an overlapped
COMPILGO, to Move at WJC4Q to advance TPPRUN
over the GO phase. Otherwise, KSILO, YDFCS and
$13 (read source) are set appropriately, and exit is
made to WJC4G. The flow continues to YLASTC when
the last link in a chain has run, at which point it
might be necessary to run the GO phase of a
COMPILGO job. This is accomplished (after setting
the necessary parameters) by branching to the appro-
priate logic (overlapped or bypass) by way of Unassign,
going directly to YL1 for BSS jobs.

Error Control

Much of the JC4 code exists to handle error returns
from the various subroutines of JC4. These error
returns may be categorized as follows:

1. Bypass and compiler errors

2. Overlapped errors

a. Before I-O assignment
b. During and after I-O assignment

3. Special (WREJJB)

In Case 1, a message diagnosing the error is
printed via YPR, followed by an exit to YRESTR
(SYN, WRESTR), which sets the YEOJS and SPINCL
appropriately and exits by priming $EOJ and giving
a $RET (Figure 32). Case 2a is handled similarly,
except that here the TPPRUN pointer must be stepped
past the current job. This is accomplished by exiting
to WJC4Q, which goes to Move and then to YRESTR.
Error returns from Assign and Move make up Case
2b. Here the TPPRUN index will already have been
stepped (although Move normally steps TPPRUN,
Assign does it when the job is pre-rejected or
rejected in Assign). JC4 diagnoses Assign rejects
by picking up the address of a message from the
TPREFT slot, the address of which in turn is found
in TNEXT (see JC1).

Finally, the WREJJB routine€ is entered each time
the first non-COMD card of a job is read. First,
the IPL reject count (SREJJB) is checked. If it is
non-zero, it is decremented, and the job skipped
over by exiting to YRESTR. TPPRUN is not stepped,
because no entry was made by JC1. If it is zero, the
current job in the PP reference table is checked for
YTRB =1. If it is, it means that although the job
was entered in the tables by JC1, the input program
was unable to bring it to phase four (repeated tape

System Operation Programs 57

uwEn
» L

* *
*YICOCSC =
* -

*
FARER

.

.

X
AR AR ARER AT
* YRCFSC *
IR e S
* REAC A *
. CARD =

* =
FERRAEAAREAERARESE

.
X
EAAERFERERIRERAER
* YUNCCO *

D B R e
tNCOCE 1CD bl
* OR REEL CARD *

*
AFRAAARAABEARRARE

.
.
.
X
F

L33

* »
* WAS CARD * NO
FeveosaseaX® ERRCR

* AN 10D
% OR REEL ¥
E] *

EREEN
~YES

» ico
- REFERENCE
®* NUMBER -
4 ZERO %
Tty
«NC

*

Xeo o

ERAEAFARBAFRRARARS
- -
» SET THE *
* CARD LOCATOR *
H *
- -
HAREERARAERRRD AR

.
x
RaE
* L]

» *
*YIQCSC *
" »

- »
FTYY T

FERERERL BN AN AN
= *
* TURN OFF EQJ *
#* SWITCH AND
® SPINCL BIT

- »
AARBARBEBRERRRARE

.

.

.

x
ERERRCA AR RS AN
PRINME -
R Bt Y R e Y
* PRIME *
- ECY »

* %
REEEEREASS AR AN

* *
ITET)

BereeseaoX®
*

%*#Xesensssensann
*

annew
x *

ARAAXEEERSERERARN
* RESET CARD
* LOCATOR AND

»
* * -
YC4C9 *osvwecosseveX® ALPHAFL SLCT ¥
* * * FCR MCVE i
(]
»

» »
xRAT N

Geessessesarean e X

‘(.I'*ﬂl;l{l!llli
* YICCER *
EEE L TR S B T N 2

M

* SUERCULTINE -
* »

AERARBARALERREARN

»
AFEAAARAARARRERE

.
X
ARRAEREFARABRBAER
- LCECCE *

L B e S tataitid
DECCDE REEL %
AND IOD CARDS *
» =
HAAREARERT SN A MR NN

Mo es s

EARBAAAAARABNSNRN A
* TASIGN *
D R e e e]
- ASSIGN PP *
- 1/0 *

- *
FEBFAERAREAARAREE

.
x
AERARAARTAFRERERS RS
* - * DI *®
SEYLP FRINT % * ASSIGN x
MESS4GE FXeoooanaak REJECT *
ACDRESS » * JcB .
* - *
RAEERBARRIIFRERRRLS ARERS
N «NC
-
X x
EEEEE] REERE
* - - -
* .
#YBRLCG * ® YMOVE *
M *
- *
EEERE RERER
. .
. .
. -
. -
. .
. .
x X

REABRATAAARRRERER
- FR -
Hm o e W . W B B R
* FRINT -
M RCUTINE »
*

»
AEEARBRRRIRARANEN

.
X
"
* *
*WRESTR *
R *

-
#YRESTR #
* -

nnaw

Figure 28 - Job Control 4 - Chart 2

58

ERBEERAGRARBRGA Y
- *

- SET BIT -
#* FOR INITIAL ¥
* ENTRY TO MOVE ®
» -
AARBAEREREANANNNN

Xes o

AABAABBRERARSAERE
* TNOVE

PR M.
- MCVE bl
bl ROUTINE -

- »
RERBAGRRRRANA GRS
-

Xe s 000

EEEER
-
- 1s
« J0oB_TO BE
* REJECTED #
- -

samaa
e YES

T

* *
®YMOVEJ #
- »

- -
LTy

E#RENT

* *
* -
£YNORJP ¥.
- *

* -
12227

EZTTE)
" *

* »
*¥RJCAGC] *Xevosvesoe
» -

* =
T2

sresesrraae

e esaoe

ranNw
* 1g *
* THIS *
L A
* CCMFILE %
*® JCB *
[Tt
«NC
.

x
anans
» *

YES

- »
* WJCAG ¥eesssvcsssceX
] -

* -
ETTTY)

HARREREEABADANRAR

IETE Y]

* 1]

L 1s
* COUNT -
- 2ERC *
* »

EELR X]
- *
. .
e sX®YCAINT ¥
* M

» *
snann

AARARERARBARE AR
#SET LCWER REGS,¥
* LIMITS+CCRYRCL ¥
bl BITS ANC e
* ERRCR OUNP :

ARAAAAARERAARRIRS
-

N

.

:

X
srrassnanennanEanE
bl SFRIME -
IRt
» FRINE *
- RESLC *

-
ERERREER

.
.
X
TRRRRARRRREEERANE anmun
-)
YEs % 1s -
. FRIME *Xevevoveok JCct *
. Jc1 - * FULL *
) El -
TENG AN AN A RO NRAN saena

Ananw

* -

= *

XEYNCEJP #
» -

* L]
amsne

EEELL)
- *
* »
#YRDFSO *
* -

- -
ABEnE
.

e oo

ERARR

» 1 =
* INPUT FROM %
* THE CISK «

M =
HEERE

«YES

Xo oo

ARERE

» 18 -
* THIS A
* GO JoB
* =
ARRER
.YES

Xeoweo

ARAFARRE RSB RR AR
#* SET $13 VALUE #
*FCR NEXT CARC, *
* DECREMENT *
% CCUNT BY 1 *
*

*
ERAFABERNBRERBRRE

Xes o

EEEEE

eXsoessasa

x
ARRRABREREBERSARR
* *
* SETUP FCR #
* FETCH ROUTINE #
* *

= =
REREAFEEARRAEE AR

Xeeoa o

EAAREXARERRBRREAEN
* SFETCH *
o T B B Y
% FETCH 10DS e
L] FROM DISK =

* -
ERAREERRANES R AAR

.
x
ERE
* *
- *
2RETURN #
* *

*
NEEE

EREE
- »

* *

#*YMOJRP *Xoee
* *

Y N
Enane

axuan L T G Y]
- - d $SCR -
- - ST 21 S S
* WIAFA #,, READ A
* * X CARD -
* * . = -
LZTEL] . SREEEEEARRSRNAARY
-
°

1s

IT A

T CARC *
L] -

AERNN
«YES

.
eXesseesscescscscevsenccsane

ARANBNBBRARBRERRE nEnux
» $SCR * - =
NO ERL It T DD o * -
ssessoseX¥ REAC A ¥eeseesccesc e XERETURN #
* CARL * - -
* * -
ARERREBEAARRRRAER nExEn
x
.
-
«YES
EXRARAARAARR R ENA LT
#NCVE CARLC CATz * *
* IS THE *
COUNT
AND INCFEMENT # * ZERC
* VALLE €Y 15 & *
EEAXRARKAIRARANES rane
FEAEAEARAARRNREAN N
- *
* ACD 2 TG *
eeeX® $13 ANC SET *
CCUNT 10 34 *
* »
FREREAAABARR SRR
.
.
esecessscccacsnses
EETE)
L] =
» *
®YMCVEJ *
* -
* =
[TERE]
.
X
LT EEEAEEERAAAERRARN
* ARE * #* CHANGE BCO -
* ANY 10C = =
¥ ERRCR FLAGS * -
* N * ®* SETUP MESSAGE *
» »
axAAN ERAARERERERERERN
«YES -
.
. -
- .
. .
x X
ERRAN ERERABREBAARAIAD N
* * YPR *
* * Hm o e e N e B B A
EYMNCV.2 #Xosseoncscoca® PRINT *
= - * MESSAGE -
= * -
ELETRS ARARAARARAEEAAREN

*
* IS FP % YES

YMCVIL X x
EEAER EERARARARRT R AR
*

* IccC * YES el SETUP
* REFERENCE TaesoseneX® MESSAGE
* NUMBER * * ADDRESS
* ZERC » * -
EER IR ABAARRRERS T RGNS NS

x

ok

an

NC * IS IT AN ® YES
eeesencec¥® ILLEGAL DISK %esese
* REGUEST #*
» =

R EEEYN

sEnan

Figure 29 - Job Control 4 - Chart 3

.

.

.

.
FEEEARAARRRERR SRR
. *

SET »
BUFFER *
TC 2ERO el

»
-

ABRERRAXBEAEHE RN

IREEEARRERRERE AR

L .
b SET READ -

. SCURCE 10O :x.-.-.-..l

4 SYSTEM SOURCE
.
SRERAAASRABEERARS

»
anuxe

Erasw
* IS *

* THERE A ¥

CONF IGURATION %

CHANGE *

*
ARARR
«NC
-

NO

NC

YES

ssssscaeX

BAAVRRAREABBSRANES
bt YunCoc *
R e B W W B B B

%eessseseeX® UNCCDE THE -
- TYP

€ CARC *

*
ARESERAESTERIRRANN

.
X

SRR ALENEERRANE

SET BITS b

%CF JCB TYPE TC *

CONFUNICATICON +#

ION -

- REGIO

L]
ASRERARFENER

AREREREHBANBLRTEE
* -
= -
* *
- A €0 JCE -
- a
ERAEERERERRERARDE

Me oo o0

SRERE
- 1s -
1T A
* GC JoB *
* -
sanss

oYES

Xe o n e

Hnama

= -
- Ll
* ycoJe =
= .

El «
xRS

ARFARERERERARRAEN
- -

* SET BIT b
® FCR ASSICGN *
» =
- =
ARABIRIABRASRAASY

-

.

-

.

sXeseesecccsccscssscccnscae

X
FRABAXARARANRANER

M TASIGN *
L R e o B T ey
* ASSIGN *
‘ RCUTINE *

a *
ARARRAEEABBERN AR
-

.
.
-
AxmEn

-
* WAS JCB %

RAAEAAANSERERTRAR
YRCESQ *

NO LRt Ty e e e B B2 Y
A REJECTED FaseesceoX¥ REAC A i
#* BY ASSIGN = X - CARD *
- * . * -
EEERE EARRASARNARSRRRAAR
YES
.
.
.
.
X
annnx

»
* *
*wJcacl =
* *

- »
Exans

Annnn
= »

* *
2sescsssecase XHYERLCG ¥
* *

= *
PEYYYY

x
AEXRER AN RS TRAAER
bl YUNCOD bl
B e e e
* UNCCCE TrE *
* LINIT CAFRD »

-

L
ARASRA AR SRR IRE

59

HEEE
» -
-
* ycoJe =
* *

- *
EaER

Meowua

e
- *
* s ®* NO
- REJECT
* BIY ZERO %
- =

RERER
«YES

Xesoe

aRRRE
» L]

* *
axsus
.

oo

xanR

21 ET) [I1T12]
. -
* IS 11 A * YES * -
seeX¥ CCMPILE ¥esenvsocsanese X¥NI4PFF
- * JCE » * *
. » »
. LT TR 212
- «NO X
. . .
.
. . .
. . -
. . -
. x «YES
. ERERRERARARRARRAR wrann
. - * - »
- * SETUP PP * # ARE THE &
- CPTICN BITS
* BITS ZERO -
* * - *
EXERRRRANINRABAESY AEBEE
«NC
-
.
-
X
rEnun
-
NO % ANY A
#YCOJB2 #*Xsowesenesesvassucsssossvcsssonssoccsaneh COMPILER
* # ERRORS .
[Tt
«YES
.
.
s
AERBEARIAIRRBANEE sEnEw
= TMCVE * L] »

» L]
* IS TKIS A % NO
* CONPILE-GC
- Jcs

reenn
«YES
-

.
#Xeeseessscascscacscccacancen

x
ERRES
- -

- *
*YCOJB1- *
- *

® MQCIFY AND
GET COMPILER
- NAM

-
»
=
*
»
»

»
AERFRERNBR SN,

Xenaos

RERFAFERRRE RN AR
* FEYCH *
[EEd EX S B e 2% BN B)

hd - FETCH 4
ol COMP ILER -
-

*
ERAEERAANR SRR RN
.

e oo

FERAARSNBIARSAA NG
- A6 [y
L1 I R Ry
% CONVERT CCMP, %
NAMES TO BCDO ¥
» -

e

HeSNBERN RS

Xeoans

ARERERRBARONER AN
» BRK8 -
LT I By SR e B
* PREAK OUT *
- CARD -
- -
ARREANBARRE AR RRE

Moo s

AEBERARRAARERRE AR
- SAVE Tws *
® AMOUNT, SET #
* READ_SQURCE #
* eIT ON »
» -
AAREARRARIRRANAS
.

Xe s s

AR ARSREARB A
* SETUP TC *
% PROCESS NEXT @#

AL R RIS 3
*

MOVE-REJECT #
DUNMMY JCB :

AEABRARARARRARRRR

AAFAARARAARRRERRR
#* STCRE INTO *
#REJECT MESSAGE.*
®#CCONVERT

IERE

AERARURARRAIRERAANE
»

- MESSAGE *
-

*
BEEARANEARAEARERES

[T 2]
- L]

* »

® CARC SET $13 FosceevesssceX® YCHES #
- FLAG ON » L] L]
- -

FRBEABAR SRR ND N

- -
azgaw

Figure 30 - Job Control 4 - Chart 4

6C

NG

100 REF¥*Xasassweo®
#NUNBER STORE IN#®
*QUTPUT MESSAGE #
SRERARIRNAIRARRANS

X%

»

- *
*WJAPFF *
* *

1] *
raxns

ssuan

- ARE b
FIRST 3
* BITS ZERG *
- *
ERERE
SYES

-

Xes o0

"EEEE

»

. ARE »
THE_REJECT
* BITS ZERC
* H

anunw
oNO

Xseon

LA 2 2]
* L]

» DiD PP ¥
REGUEST
EXCEED DISK®
- -
anmne

«NQ

X
LE L]
.

* DpID PP @
EXCEED REEL
#PCCL TABLE *
- -
sanuw

-NO

Xe oo

RERRS
Is
- 10D «
REFERENCE
* NUMBER -
®INVALIOD®
RENN

«NC

Xesoson

EEanEAREROTARES

BEW.S

FEERRABARATIREN

YES
LEY TP

YES

LETY T

YES

[
*
-

.
X
.
x

.
.
.
.
-

AXERW
L] »

- *
* wJyCcv *
- -

rRRAE

.

.

-

x
ARERAERERREREHR AN
a YRDFSC *
LR BT EE B = B T
a REAC A

I =
TERERRAARERER NN

AEAERAAANAARARR NN
. YUNCCE *
[o ST e e 2 B B
¥ UNCCDE ICD *
* CR REEL CARD *®

Il =
TERERA AR S RERFANR

Xeea0e

FAsNEAARRSERESRIAY
’ NCVE »

MOVE
RCUTINE *

. *
TRARAARRRRARE RS

asane
L] -

- -
asanw

IRAFRAARAAERNERAS
. YeR .
PRI RSP
.oXa PRINT »
. MESSAGE »
. *
JEREARARATRTRRNAER

.

.

.

.

.

.

x

ARAER

%Xesenvesee® FOR T CARC
* - 10 1

AARFEBARRERRE AR
- *

* SET_FLAC

LR YR

SARERSABRERARAARS

s st

.
.
.
.
.
-
.

Xsreseeessose

cxans

1] -
* IS NCVE_ ¥

#* INITIAL ENTRY #...
T ON *

* BY

.
-
-
.
x

FARBAANRARRNRARAN
« -

* SET IT *
» oN -
“ L
» »
AEERARRAERERAN TR AN
.

Xeeaes

HENERTRERARNRAAANT
e TMOVE -

- L e e A Y
- NOVE »
- RCUTINE -
* -
AEARBARIAAANARANN

R R N R N A A R I A I W)

EERERE AR E

* - *
* » %+ IS TFE_ = YES
EYCAINT #sceacocvceassX® EQJ SWITCH
* = * ON

= *
2T Axaaw

«*C

x
EEEAERATABERERRES
* *
. SET THE *
* READ SCURCE =
®* EIT TC ZERO *
M *
EEARX AR ARRRTERS

.

.
x
ST 23

*
* HAS THE ® YES
LAST COMPILER %#4cvecaceX
* ALM *

» *

LIERT
«MO

X

FEARRARRERANEREEAER RN
* =
* SET - YES * IS THIS *
= FLAG *Xo THE LAST *
* oN - * CCMPILER =
* * * *
REE S22 2222 22 2 HEETE

. MO

secessncenssvenconssvonssnesXe
.

X
RANEAREBAERNARTRS
#* UPDATE COMPL #
POINTEF AND *
- SET TYPE *
* INTC FETCH *

1
»

*
EERERBABARREEREE

-
X
wxm
L] *
* =
* WJICAG *
* 3

-
TR

%eeasseseX
*

REREFTRRERBERAANE
* =
- SETY_SCORG =
* BIT 10

»
ERAEARIERDREEEAAE

YLASTC
ARARARAALRERARARR
*

*
% SET_SCORG *
* EIT 10 -
M M

-
EEEREEEREREEANEER
.

Xe o s

EEERE
IS THE *

* REJECT FLAG *
- ON =

S IT A * *
CCMPILE-GC %eseees00000eXFYRESTR %#Xasessoscoces
* JOB - * *

FRERRERRERRARRARS
* SET PP TYFE
* AREA, COMPUTE =
* AVAILABLE TwS #
#SET REAC SCURCE#®

PP -

*
ARERNABEAARBEIRES
.

YES

¥ooeveseeXd
L]

veex

DO NN

.
-
-
-
-
.

-
-
-
-

ERAEE
-
1s 1T =
eYPASS
MOCE
*
ERARR
oNC

L]

X
[T

* IS IT A *
% COMPILE-GO
- JCE *
*
EENER
«YES

-

oo oo

axans
- *
* *
* %JCac *
- *

- 3
Exuan

nuEan
* *

L] -
EEEER

-
-
x
AXREN FERRERETRERERE RN
N E 2 . TJUNAS *
* I1s 1T * YES Y Y Yo W B e W
* BSS LCADER ReovvesesX¥ UNASSIGN
= - Ed RCUTINE
= =
LT) TRRREREAAAERRRERAE
«NO
.
-
.
X
ERERE EEARRAARTLRRERAES ExEw FRBEAREARERERREAR
* L] * * L] ») TJUNAS *
= * - SET MCVE - - Is 1T ® YES EE B S P T o S B
% WJIC4C %euweosovncesX® INITIAL ENTRY # * BYPASS %eeoeoveeXd UNASSIGN »
* * » EIT CN * * MCOE - . ROUTINE *
* x = = - =
EERER REXREFARIIRBRBARR EERER TRABARERE G REXRN
. «NC .
. - -
- . .
. . .
. . .
- . .
x x x
Euue EITTEY
* TMCVE b - TJUNAS * » *
™ - »
- FCVE * * UNASSIGN el * YC4ES #
* RCUT INE * - RCUTINE e * *
* = » a = =
ERAREAERR IR NERERS FEERERERERNEERAESL Eenan
- -
. -
. -
. .
. -
X X
LTI AnuEE
L] . » =

* =
*YRESTR #
* *

- *
ETYIE)

Figure 31 - Job Control 4 - Chart 5

* -
*WILPFF #
* -

YES

NO

tevessas e s ex

aEnun
* L3

-
¥eseesssscaes s XIYRESTR #
* *

* *
amamw

ERER

* -
* =
*wJCacl *
s %

= -
RREE

AERREIARRAARAERES
r »

* SETUF -

- OUTPUT *

- MESSAGE *

* *

AXRARRAEARSEEEAEN
.

xeoeen

AAASEREAREREARKARD
Y

W Em R o N W N B B

= PRINTY bl

* MESSAGE *»

»
ARARSAEERARATEANE

“EEES
* -

-

¥eovscsessscseX® YL] #
= *

61

prre
L -
- -
#YIDCER *
* -

1] -
2211

Xs o0

FEARFEBFERARRRBAS
el PUT ERRCR *
EMESSAGE ADDRESS#*
* INTC $10s PUT #*
#*RETURN ADCRESS *
»* INTC $9 *
EASERRRESARARNAER

Xes e

EFAEATREEESRERRARS
#* PICK UP 100
- REFERENCE *
* NUNMBER AND -
* STQRE INTO -
* ERROR MESSAGE ¥
FANERARNERARERRED

Xeooos

ERES
- »

» *
#YBCERR *
s *

- =
REREE
.
.
-
.
.
.
x
ERREN ARAREAREREN
* * L]
* IS IT A ® YES * SET FLAC
* T CARD %eeseaeseX® FOR T CARD
* ON
- » L]
RERR ARERRRINNEN
«NC

nnnw
«YES
.
.

.

x
ransn

-
ARE 100S # YES
#* APPROACHING ®osessveeX®
B LIMIT = -

T T]
«NO
.
.

eXeeosesosencsscosccncncanse

X
YIS
- 1S THE *
®NUMBER CF I0CS ¥,
- ZERO *
- .

ranER
«NC

x
nEnE
- -

-
* YCac9
»

- -
L2 1]

IS THIS #
% AN I0C CARD #.ceee
- -

YES

EIIY2]
1] -

- -
#WSYSC2 %enveccoarsnoX¥
- » *

L] *
(X132]

= =
css s XEYBRLCG *
- -

L] *
ITTT S

snssane
-

* RESET THE
B LINIT

-
AR

snnan
. .

< . -
vesvevvas s X*WJCACL #
* »

* -
LTI R

Figure 32 - Job Control 4 - Chart 6

62

- » *
#eossacsssnns s X¥RETURN #
* - *

annAnE
a

REFATRARERERIREER anen wesEn
bt WREJJB b * - - -
O e e e e] * WAS CARD * »
REJECT JOBS FaeeenceaX? A cewp Fecsesceseea s XENJICAQS ¥
ROUTINE . # CARD * - *
= * - - -
ERRERARNRAARERARE ANEn anaun
<YES .
. .
. .
- .
. .
. .
®wSYSCTL X% X
IERRRAREERRRRR AN EEARRBAARERSRTENN
L SFRINME » * SCOMm »*
L R et L e R]
2 PRIME THE * » FRINT »
: CCMMARD * e ERRCR *
UT INE * * MESSAGE]
CERRRERFARERRRAES AERETRRSERRANAACLS
. .
- .
. .
. .
. -
. .
x X
ERAEERRANERARENRS Py ARREERARSENRT AR
* SPRIM - L] » - =
W AW R B RN NG ® Is * % SET FLAG FCR #
o PRIME THE #Xeveooves? JC1 * bt SKIFPING *
= CCMMAND . X * FULL » # CUTPUT EOJ CN #
* RCUT INE E . * * .
AREAARUSAAREARNRR . Enuax FeARRAASRRTARAAEN
- . «YES .
. . . .
- - . .
. - . .
. . .
- . .
X X .
LT .
.
* .
% SRET # .
* -
.
[TTIT) .
.
.
.
.
.
x
LXTIT) wnaun aennn
- * » - » .
= » ES * 1S 1T #
*WRESTR ®Xsueeecvccccad BYFASS *
» * L ¥ODE [
» » * » *
rennn annan sauns
oNC
.
.
.
x
anses
= »

3 -
* WJCAC =
- -

L] -
anuen

failure, tape breakage, etc.). The TPPRUN index
must therefore be stepped over the current slot.

Symbols

JC4 uses the following symbols in MCP:
In the communication region for IPL:

Used Modified

SCHANS X

SBAPP X

SMAXRN X X

SDKMCP X

SSYRFT X X

SMARK X

SROOF X

SJCTWS X

SCOMRG:

SPINCL - Job incomplete if zero (SFREE).

SYSMOD - Bypass if 1, overlapped if zero.

SCORG - Compile if 1, go if zero.

SJ1FUL - JC1 stopped if 1.

SJBUSY - Setto 1 by JC4 when job card is read,
to zero when $EOJ, $ABEOJ is
received. Inhibits COMD, EOJ and
COMD, ABEOJ when on.

SCNFCG - If 1, sends I-O assignment through
configuration change code.

SSPFIX,

STSBIT - Reset to zero by JC4 (see maskable

interrupts).
In the parameter pool:

YMISCO - Maskable interrupt counter, reset to
50 by JC4.

SLRBU - Set up initially by JC4, transmitted to
PP's lower registers by $RET
routine.

SREADS - Read source word used to indicate

source for cards to $RESLD. See
$RESLD.
The following symbols are used by JC4 to communi-
cate with other programs:
REJJOB+. 60 - Reset to zero by JC4, tested by resume
load. See $RESLD.

PONOUT - Words 0-2 are used by the commentator
as the 1st three words of every write.
They are reset to zero by JC4.
PHOLDB - The debugger's hold bit is reset by JC4.
YEDLL - The $EDUMP buffer is set up initially
by JC4 from the PP's LIM card.
YDFCS -~ JC4 saves the type-area to be used by

resume load here.

YLISAV - Contains loader limits for the PP and
initial entry bit (. 25) set to one for
resume load.

YLLSAV.57, indicates a T-card has
been read.

The communication region referred to
by $FECRG and $STRG and used by

* JC4 in compiler control. See the
service routines, $FECRG, $STRG.

Defined by decode, inhibits JC4 from
starting a job when set to zero.

YTBIT

KSILO

LFINB

YUCBFI1,
YUCBF2 - Uncode buffers, referred to directly by
JC4.

Bit defined in the I-O assignment
TPREFT table. Set to one by JC1
if the input program lost the corre-
sponding job. Tested by JC4 in
WREJJIB.

Contains TPREFT address of next job
to be run. (See move)

In case of assign reject, contains
address of TPREFT slot of the
rejected job.

The symbols below are used internally by JC4:

YTRB

TPPRUN

TNEXT

YEOJS - Set if JC4 receives SABEOJ. Tested in
compiler control section (YC4INT).

YSSPBT - Set to one by JC4 if job rejected for no
job card. Prevents SSPEOJ on next
entry and subsequent double tape mark.

WJOR2 - Buffer used by JC4 for JOB and COMD
cards in broken out A6 code.

YC4SMB - Buffer used to format most JC4 error
messages.

WSPLL - Buffer for A8 JOB card.

YBCBU - Buffer used to read cards into.

Finally, YJCEM through YJ1FUL are the JC4 error
messages. Their order should remain inviolate
because of the code at YCOJB.

Job Control Subroutines

This section describes job control subroutines,
including those that actually perform a job control
function such as Decode, Assign, Move, etc., as
well as those used for such basic tasks as code con-
version, even though the latter are not functionally a
part of job control.

The Uncode Routine
At many points in job control 1 and 4 it is necessary

to verify a B card, convert it to BCD, and get infor-
mation from it. The uncode subroutine was written

System Operation Programs 63

wans
- -

- -
*YUNCOC #
» *

[} *
LTI
.
.
.
o
x .
ERRAAERRRE RN AR anaen SERRSRRRRERISANSY TErEEERREARENCNE SAsERESRREREES SN
* * * Is * SCAs * RK * * »
* SAVE INDEX % THERE A * YES o W e e e e oMo RN A—E—¥-SERR . CHANGE .
* REGISTERS. *o eeeX¥® B IN CCLUMN 1 =, «X* CONVERT CARD sesseseeX? EREAK QUT ®eavesseaX® DISPOSITICN %
* PICK U A . * e TO A& * x FIELOS - * TC JoB el
* DISPOSITICN., # * - - * * * *
AREERERRNARARENGE anaan EEAREENSRRERAIRNE AEEAREARRE RN SEAsERAESREERAREY
«hO . -
. . .
. . -
. . .
. . -
. . -
x x .
bt ansnsw -
* * * .
NCO * IS TYPE # .
esccessccscsncescencssX¥ YUER H#XNsaeseessccsscsccscnccncecsvisnscaccnnan? CF CARD #Xesssesssessscsces
- * * % ALRIGHT #
. . - s L3
. FTTIY) anxne
. «YES
.
-
-
.
C
nan asnus LZTTE)
* -
» JoB * * IS IT A * NO ® IS IT A =
* DISPOSIETION #X LIk «e¥* REEL OR 100 #x, *
» - L CARC * - CARD * -
* » » * »
Pre ey anasn sunan
YES <YES «YES
. - -
N - - .
- - - .
. . . .
. - . -
x x x X
nennn . ARENERRNNEIARIES ssuny
E * - = . * -]
. »- » ‘CONVERT * % SET UP TCE. * x SET UP - -
YNCRR # 3 » # REFERENCE # & COMMCN REGION # # YNORR
» » % TG BIPARY # 4 NUMBER AND &] BITS » * "
* L] % NULL FIELDS. * M bt
[T FEITTIT T Y BREFESSCERERERRIRR axunw
. - . x
. -
. -
. .
- -
. -
X x x
LYY assas LYYy
* * » - * - - »
IS LCWER * NC . I * IS IT * YES ® IS THERE
- LIMIT Sae #* YNORR # [TYFE ¥eceeennaX® A _THIRC »
4 ZERC « . * (13) 4 FIELC %
- . * * L *
naan - nans annss Annen
«YES - «NC <YES
. - . .
. . . -
. . . -
. - . -
. . - .
x . x x
ERARREARBARERERNN . srenn wannw LTYTe)
- » -] = -
® ADC 41.(8) h - NG % Is IV * NG IS IT * NO ¥ 15 IT *
- T0 BCTH * eXesne¥ TYPE %#XueseesassdTYPE COMPILE CR¥ esee® FCRTRAN A
d LINITS - - * UPDATE - # COMPILEGO * - - -
» » . » . . » .
AEEESANRAINANNRER ansun FTYTY] Anwen
- - <YES «YES eYES
. - . . .
. . - . .
. - . -
. . . -
. . . - .
x - X X x
unnn wnusn weun TsEsasasSERRER AR ArsssEERERRRRNERY
- 1] * - . * . . -
YES % ARE THE # * IS ITA *® SEY UP x *
ssscsel LIMITS * VALID - ¥ CONMCN REGION #Xeeveacace® CHANGE TC ESS ®
* ALRICGHT * SITUATION * % LIST, PUNCH ¥ . hd
» 3 » * . * » - OPTIONS * - -
LI TYS annes . snsus e e NrnEEEBERBARNENER
«hO . «YES .
. . . .
. . . .
. - . .
- . - .
. . - .
X . x X
ruses FRAARRRRRARER SRR . e . (3] ansay
. * * - - » I ¥ * - *
* el el RESTCRE * - * SET uP * M RESTCRE - * -
* YUER ToovvscevsssaX¥ INDEX *Xeowe % LIMITS FOR bl . INCEX %Xeesesascsses® YNORR *
* * * REGISTERS b - LOADER el . REGISTERS * * b
Ll - » * * - . * L] *
E2TI Y FTTITET IR TY IEEEERARANRANRNEN LT TYTS
. . .
. . -
. - -
. . .
. .
. .
x X x
snure = anuas
« [3 = *
* ERRCR # . - * 1s * YES
#RETUEN # *NJCAG2 * * FuA L PR
. * » » - 2ERC] .
* * 3 - '] .
ETTEY) sasse nun -
oNC .
. .
. .
- .
. .
. .
x .
LI T IR e R YY) . wsaxa
" . [*
. TRANSNMIT * X #NCRMAL
. BREAKDOWN ¥eoosussenes s X RETURN #
M TABLE * - A
. 3 -]
AEERSBEEREARER AN seasy

Figure 33 - The Uncode Routine

64

to perform this function. The uncode routine is used

with the following linkage:

LVI, $14, A

B, YUNCOD
A XW, B, C, D

VF, Disp

, FWA(D

» RA(J)

(Error Return)
(Normal Return)

where:
Disp denotes the type of card expected:
0.0 - TYPE
1.0 - JOB
2.0, - LIM
4.0 - IOD or REEL

FWA(]) is the location of the card.

RA(J) is the location where the converted card is
to be put. If RA(J) =0, no transmission is
desired.

Error return signifies that the card designated by
Disp was unidentifiable or contained in uncor-
rectible error.

Normal return signifies that the card designated
by Disp has been recognized, converted, and
processed.

For a normal return, the XW at A will contain

information according to Disp:

Disp B c D
TYPE —-—— Bits 1.18-1.22 ——
in communication
region
JOB -— Number of fields ---
LIM Lower Upper limit -
limit
IOD/REEL Absolute Number of -0
exit fields reference
number

Uncode (Figure 33) uses two subroutines, SCA6 and
SBRKS, respectively to convert the card to BCD, and
break out the fields into consecutive full word loca-
tions. (A field is defined as a collection of charac-
ters, none of which is a comma, bounded on the left
by a comma or column 9 of a card, and on the right
by a comma or column 63 of a card.) The first field
is compared against its mask in the table at YTYPMK.
If the comparison is successful, further information
must be extracted from the card. If not, error
return is given, and no information is transmitted,
unless a JOB card was expected.

The remainder of Uncode consists of three routines
to extract information from TYPE, LIM, and IOD or
REEL cards. The TYPE card routine has an exit to
JC4 if an UPDATE was encountered in the bypass
mode. A TYPE, UPDATE card causes uncode to set
loader limits to their maximum, the read source ($13)
to $SCR, and SCORG to 1 (compile). When the
$RESLD package gets control, it will be set up to load
C and P cards directly into MCP. Otherwise uncode
sets up communication region (KSILO) bits 1.18-1.22
in the calling sequence. JC4 gets the actual compiler
name from YUCBF2, the breakout buffer. The LIM
card routine converts the limits from BCD to binary,
and verifies that they do not violate MCP memory.
Note that the checking allows for the possibility that
MCP might occupy lower rather than upper memory.
The 10D card routine sets up the IOD information in
the format required by the decode and move sub-
routines.

Data and storage used by Uncode are: YIDX12 and
YUCX12 are used by the IOD and LIM card routines,
respectively, to convert numbers from BCD to binary.
YUTOE is the symbolic location of the reference
number on a BCD IOD card. Cards are converted to
BCD into YUCBF1 and broken out into YUCBF2.
YGOMK through YFORTR is the uncode symbol table.
Uncode also uses ABSSID, a data entry in the loader,
and YNLST and YNOPUN in the JC4 compile and go
subroutines.

Decode, Assign, Move

These three subroutines perform key functions in
moving jobs through MCP. Decode sets up I-O
assignment tables in phase 1 (or phase 4 bypass).
Assign associates physical I-O units with symbolic
I-O requests, assigning tape units as far ahead as
possible. Move sets up the I-O controls to run the
immediate job.

I-O Assignment Tables: The I-O assignment tables

are the PP reference table, the I-O request table,
and the first reel number table. Decode, Assign,
and Move are concerned with setting up or responding
to these tables.

THE PROBLEM PROGRAM REFERENCE TABLE
(TPREFT): This table has one two-word entry for
each PP which has arrived at phase 1 but has not
been run. The length of the table is controlled by
the parameter TPPC, the number of jobs allowed in
the table plus one. Presently this parameter is set
at 21, to handle 20 problem programs. (e.g., one
in phase 4, and ten on each of two input tapes.)

System Operation Programs 65

The table control words are as follows:
TPPREF -- a constant index word for the
TPREFT table, used for refill.
TPPRUN -- an index word pointing to the next PP
to be run.
The format of the first of the two 64-bit words for
each PP is as follows:
TCRREF -- 18 bits, an address of the first word
(0.0) used within the I-O request table for
the PP.
TUNCT -- 8 bits, is the number of words used
(.28) within the I-O request table for the
PP.
TIJBPRO -- 1 bit, is zero if the PP has not been

(- 36) run or processed. It is one if the PP
has been run.
TRJECT ~- 1 bit, is zero if the PP has not been
(.37) rejected, a one if the PP has been

rejected in phase 1.
TASGNP -- 1 bit, is zero if any one or more of
(. 38)
for the PP, is one if all requests
have been pre-assigned for the PP.
TLPPEN -- 1 bit, is zero if this word is not the
(. 39) last plus one entry within the
TPREFT table, is one if this is the
last plus one entry made by decode
within the TPREFT.
TLREFN -~ 12 bits, contains the largest refer-
(. 40) ence number found on any one of the
I0OD's submitted for this PP.
TIODCT -- 12 bits, the total number of IOD's
(. 52) submitted to decode for this PP..
The second of the two words, TPNAME, is the
name of the PP taken from the first 8 characters of
the JOB card in A6 format.

THE I-O REQUEST TABLE (TIOREQ): This table
contains one word for each unique I-O unit requested
by the PP. The length of the table is controlled by
the parameter TIOC, which is the maximum number
of problem programs multiplied by an estimated
average number of units used by each problem pro-
gram. Presently the parameter is 80. The format
of each word is as follows:
TASGNI -- 1 bit, is zero if this request word
(0.0) has not been pre-assigned, and will
be set to one when pre-assignment
has been made.
TUNOBT -- 1 bit, is zero for normal pre-assign-
(.1) ment case. It will be set to one if
this request was once pre-assigned
and the unit to which it was pre-
assigned was taken from the machine
configuration.

66

the I-O requests are not pre-assigned

TPRINT -- 1 bit, set to one when (if tape request)
(-2) the tape mounting message has been
sent to the operator via the commen-
tator.
TYPE -- 4 bits, indicating the equipment types
(- 3) being requested.

0001 - Disk request

0010 - Console request
0011 - Card reader request
0100 - Card punch request
0101 - Printer request
1000 - Tape request

TABSUN -- 3 bits, indicating the absolute unit
7 number to which the request has been
assigned. (Multi-unit channels only.)
TRLSYM -- 7 bits, is a number relative to a posi-

(.11) tion within the symbolic channel table.
Hence, this number is relative to the
symbolic channel field of the IOD card
which is used for channel separation.

TLAST -- 1 bit, indicates the last plus one

(-18) word of this I-O request table, used
only to note when to refill the value
field of the TIOREQ tables control
index.

TIODSQ -- 9 bits, denotes the sequence in

(.19) which the IOD for this request was

received.
TFREEL -- 18 bits, is the cross-reference
(.28) address of the reel label within the
TFSTRE table. (Tape IOD's only)
TABSCH -- 18 bits, is the absolute channel
(. 46) address (to locate the Channel Status
Table) to which this request has been
assigned.

THE FIRST REEL NUMBER TABLE (TFSTRE): This
table contains one word for each reel label requested
by a REEL card. The reel label is 8 characters long
and is in A6 format, using only 48 of the 64 bits.

The size of the table is determined by the parameter

TFRC, presently 50.

The table entry, TREELN, is the name of the tape
reel to be mounted on a tape unit. The first three
characters specify whether the tape is labelled or
unlabelled and whether the tape is protected or not
protected. The remaining five characters are the
label.

The preceding three tables are duplicated to handle
problem programs in the bypass mode. They are
only for one job, however, and the table sizes are
chosen accordingly. The formats of the tables are
the same as for the overlapped mode.

Table Usage: The usage of these tables is summa-
rized as follows:

PROBLEM PROGRAM REFERENCE TABLE
(TPREFT):

Decode Assign Move
TCRREF S US Us
TUNCT S US US
TJBPRO RE CS CS
TRJECT RE CS CS
TASGNP RE CS Us
TLPPEN S US UsS
TLREFN S NU Us
TIODCT S NU US
TPNAME S Us UsS

S = Set (most cases set to not zero).

RE = Reset (most cases set to zero).

CS = Conditional set.

US = Used but not modified (conditional).

NU = Not used, not modified.
NR = Not used and reset.

UR = Used and then reset (conditional).

I-O REQUEST TABLE (TIOREQ):

Decode Assign Move
TASGNI RE CS NR
TUNOBI RE CS NR
TPRINT RE CS NR
TTYPE S UsS UR
TABSUN RE CS UR
TRLSYM Cs U UR
TLAST Us Us UR
TIODSQ S NU UR
TFREEL CS Us UR
TABSCH RE CS UR

THE FIRST REEL TABLE (FSTRE):
Decode Assign Move

TREELN CS UsS UR

The Decode Routine: The decode routine is used by
job control to enter information from IOD and REEL
cards into the I-O assignment tables. It is entered
by JC1 in the overlapped modes, and by JC4 in the
bypass mode, with the following linkage:

LVI, 15, X
B, LDECOD
X VF, ALPHA

CF, B

VF, C

error return

normal return
where ALPHA locates the information (see following),
B identifies the system mode (zero is overlapped,
non-zero is bypass), and C is used to contain the
error code in the event the error return is used.

The table at ALPHA contains the information for

the IOD or REEL card as follows:

Location Content
ALPHA-1.0 Job name in A6 code.
ALPHA (.28-.46) Number of broken out fields
following.
(.52-.63) IOD reference number.

ALPHA+1.0 10D or REEL.

+2.0 Type or first label.

+3.0 TOE or second label etc. .

When all the requests for a job have been proc-
essed, decode must be notified in order to separate
1-0O requests from successive jobs. This final entry
is accomplished by setting the word at ALPHA+1.0
to zero. Also, after several entries have been made
in the tables, it may be necessary to reject the job
and clear these entries. This is accomplished by
setting bit . 26 of X in the linkage and using the final
entry procedure. This bit must be zero for a normal
entry.

The decode routine will use the error return for
one of two reasons:

1. The IOD or REEL card is invalid. The corre-
sponding error codes are:

5.0 A REEL card following a non-tape 10D.

6.0 Invalid type field on IOD

7.0 - Two IOD's requesting infinity disk on
the same channel.

8.0 The first card submitted was not an
I0D card.

2. One of the I-O assignment tables is full. The
error codes used are:

1.0 The PP reference table is full.
2.0 The I-O request table is full
3.0 The first reel table is full.

The I-O request and first reel tables will be cleared
for the job in question prior to the error return when
the error is due to the first reason. When error
return is given to JC1 for the second reason, JCI1
sets SJ1FUL and issues $RET.

The decode routine (Figure 34) checks the system
mode to set up the program for the correct table

System Operation Programs 67

ascesce

MO x
wERIN - ERRASRRERAFRBEN RERAN ARV ERBRTRRANR
- » - » »
- - b IS IV * YES % SET UP FOR - * 1s I7 * YES ® DO INITIAL »
#LDECOD #eeecosccceecsX® BY-PASS MODE HecescoeoX® BYPASS FeeenseseX® INITIAL ENTRY #cuceeseeX® HOUSEKEEPING *
- - - - # TABLE ENTRY - . - -
- * * - - = -
HERRR AR N ENBFFRTIRVRSRBERN THERR FE ARSI NS BRA NS
«NO .
. .
. .
. .
. N
. .
x X
HRAER RERER EREER fNNNN lll'.
. #1S LISTH * IS IT ® IS IT # ad
- - NG # 10D CARD # REEL. * AN 10D - NG ® » YES # REFERENCE -
#LERAOR ¥Xeseeccsccese® TYPE ECUAL L] TPRpey) OR #Nesveoosse® FINAL ENTRY #*Xececesacol ELE SLOT -
* (5) # = 10 T#PE * REEL . . * N Avuue:.e .
» - - - « CARD & » -
HRBRE "“HESR L2222 HERER
«YES «10D «YES
. .
. e
. -
cssecee .o .
. .
. x
EREE - SRAEREARXRRAERALN
R - - - % TERMINATE THE #
#LABEL PREV.¥ YES BNCRNAL . * PP REFERENCE *
* NTERED FOR Foneeeececes «X*RETURN ¥ - 4 TABLE ENTRY #
* THIS 10D + * » - 4 FOR THIS PP #
- - - L] »
AERER n“EadE - 1RSSR BRAARRERARRES SEARE
«NC - -
. -
. . .
. . .
. . .
. . .
x - x
RBER sERI - ABARE ANIERRFRRERASRARS
1s - L . * SORT 1/0 REQ. %
L nsec. pooL * NO % EARCR # - s 1S IT___* NO #TABLE ACCORCING®
- LoT #ecececsnass o XSRETURN # - 4 REJECT ENTRY GEST
* AVAILABLE - ® (3] = . » =
» = - . P CHANN
EEI12] ENRN - ANNRE ARARANEARNAARR R AN
«YES - «YES
-
.
.
.
. .
x xX X
EERBERE Ei 2Ll “RERE 2REAN “nERn
®ENTER IKTO THE * » . = 1S = »]
* REEL POOL THE * ® ERRCR ¥ NO %170 REQUEST#* YES * IS IT _ % ANCRMAL #
* FIRST T - ETURN #Xeevsvvocccasth - sese? INITIAL ENTRY = SRETURN #
SLABEL FROM THE # s (2) = + AVATLABLE # . * » * "
REEL {r] - * - - - - -
SEREERNERIRARRB AN E2 R L) ARG - HRUEN RRAN
- «YES . «NO
. - . .
. - - .
. . . .
. - . .
. - . .
X x - x
AAARAABARRERER GRS sREen - THESANRTBRRBRENER III.I
* STORE THE b #1S THE = . 4 CLEAR OUT THE »
* REEL POOL _ * YES # 100 - -l/o REQUEST AND®
‘!ODRESS IN THE = eesccscsncsessssat TYPE - . HE EL POOL CX.....-..--.-'LERROF '
* /0 REQUEST * . APE . . -naLs FOR THIS ®
L1 * - . SPROBLEM PROGRAM® ' '
II'II.IIIIII'.GII - Lii1z] ARRBARTRANEURIRAE E2 211
- - -NO -
. .
. . .
. .
. -
. . .
x X - .
w“neNE AR - . sesne
- - - * - - - -
#NORNAL = #CHANNEL AND® YES - - * *
#RETURN # - eseecsceX® ERROR =
- - - #RETURN #
- - - - -
- annan
.
.
M
.
.
x
RN #anwn ANRE
*IS ICO # 1S THE ® . L . - .
* WITH THE & NC ® 100 CARD # NO b * ENCRMAL #
®SAME UNIT NAME #..X 4 TYPE FIELD ®eeseccscvsee XF¥LERRQOR # SRETURN #
% ALRE2DY ® . - VALID - .« (&) = . L]
SENTEFEDCS L - - -
S#RAAN BERSR ZRRER “REas
«YES «YES x
. .
. .
. .
. .
x x
EEZEL] #asee LR X -
HAS swAS 10D® IS THE # Ic THISS
- TNIS IOD NC # WITH THIS * YES L4 1C0 . YES ATHE SECCNC #
- TEE S2Mi ®aeXe * TYPE AND CHAN %.0cccaseX® TYPE ¥eusaosnseX® REOUEST FOR -
* CHANM . #PREVIOUSLY * - INFIN
® NAME ® . #ENTERED#® * ISK
REELE - anmss s -
«YES . «NO «YES
. . - .
. . . -
. . . .
. . . .
. p . .
X . x x
ansan - HEARNSERREEREGNERE fREes
*] . *ENTER THIS 1/0 * * .
BNORMAL * . #REQUEST IN THE = * *
BRETUFN # eseesX® 1/0 R EST Macecscnses #LERROR #
- - TA - 7 “

Figure 34 - The Decode Routine

88

.
ITTITIIT TR R TR Y 2 uznw

entry. A mode change is allowed only between jobs.
If the entry is an initial entry, the routine clears and
sets up certain internal tables. Then, if overlap, a
check is made to see whether or not a slot is available
within the PP reference table (PPREF). If not, a
type 1 condition is set up in the linkage, indicies are
restored, and the error return is made. If a slot is
available, the program proceeds to check if the entry
is a final entry (IOD/REEL zero in ALPHA+1). If so,
the PP to be entered is a PP without IOD cards, or
possibly a PP that was rejected by job control.

If the entry is not a final entry, the flow follows
one of two paths depending on whether the card is I0D
or REEL. If it is IOD (LIODRN), the I-O request
table is checked for room, and LIODTP entered if the
type is tape. A tape IOD has both channel and unit
fields for separation, while the remaining I-O types
have only a channel field for separation. The I-O
request table (TIOREQ) is then set up with proper
entries. For each non-tape IOD card with a unique
type or channel field, there will be an entry made
in the TIOREQ table. For a tape IOD an entry will
be made in the TIOREQ table for each IOD card with
a null channel and unit field, and each IOD card with
unique channel and unit fields. In the case where
channel fields are alike and unit fields differ a
TIOREQ table entry is made requesting the same
channel as the previous IOD card with that channel.
Making a table entry consists of setting up the
following fields in the TIOREQ word:

TYPE identifying the equipment type.
TRLSYM for channel separation (tape only).
TIODSQ the sequence number in which the

IOD was received.

If the IOD card has a TYPE field requesting a disk,
a check is made to see if it is an illegal request for
infinity disk. If so, the error return is made. Other-
wise, a normal return is made.

If the card is a REEL card, it will be processed
only if it is the first REEL card following a tape 10D.
If the last IOD was not a tape 10D, the error return
procedure is followed. If the card is not the first
reel card for the IOD, it is ignored, and the normal
return made. (On a single unit, mounting instructions
for tape reels other than the first are of no value
until PP has finished with the first. Since this will
not happen until phase 4, pre-assignment is complete
when the first reel is called for.)

If the REEL card is acceptable, the reel label is
entered in the first reel table, and its address in the
I-O request table. A normal return is made. If a
final entry is made and the reject bit is off, the PP
reference table entry is made for this PP. These
entries are defined in the preceding section on I-O
assignment tables.

When an invalid card is detected or a reject request
is received, the program (LERROR) clears any entries
it had made in the I-O request and first reel tables for
this job, and sets the reject bit in the PP reference
table.

The Assign Routine: “The assign routine pre-assigns
the problem program requests which were submitted
through IOD cards. This enables the operator to set
up in advance the tape units to be used by the problem
program. The set up of tapes as far in advance as
possible optimizes set-up time. The basic rule used
for assignment is to utilize all tape units when they
become unassigned. At assign time, all requests are
checked for adherance to the machine I-O configura-
tion. If there are any discrepancies, the problem pro-
gram will be rejected. The assign routine is entered
from JC4 with the linkage:

LVI, $15, Y

B, TASIGN

Y XW,A, B, C
(Return)

where
A is the status of the machine:
0 - no configuration change has taken place.
#0 - configuration change has taken place.
B is the exit disposition: ‘

0 =~ next PP has been assigned successfully
and is ready for Move.
#0 - next PP has been rejected and cannot be

‘ given to Move.
C is the Assign entry mode:
0 - overlapped mode.
#0 - unoverlapped mode.
Assign uses SASIQS to convert and $COMM to output
messages to the operator.

Upon entry to Assign, (TASIGN, Figure 35) the
first check made is whether or not a machine configu-
ration change took place since the last time the assign
routine was entered. Conditions for stating a con-
figuration change must be set by job control for the
initial entry to Assign in order that the necessary
tables for I-O validity checking be set up. The con-
figuration change section performs the following
functions:

1. All requests reserving units that have become
unavailable due to a machine configuration change,
must be relieved of these units. At the same time
these relieved requests must be marked so that they
have priority in re-assignment (pseudo-unoverlapped).

2. The equipment count is generated for the validity
check table. This table contains the equipment code
and count and a zero field for the requested count
for a PP.

System Operation Programs 69

!l!ll CHANERATELRARRGRE naese IEEBNERGERNRRENER
' l SAVE INDEX ol * lS ' GENE“ATE hd
i REGISTERS bl YES ERNAL *
-nsmu -............xo 1 THROUEH 12 PeececesoX® couﬂcunnlou !........x' CONF GURATION &
» IN Tasave % ABLES NEEDEC #
’ - 'FOR ASSIGNMENT *
snanw lllllll.!.l!l'll' unnn
«NC .
. .
. .
. .
. .
- -
X X
THERE ERRRCR R AR ABE RN,]
* * #SETUP TGO REJEC - - ¥ RELIEVE ALL
* PP, CLEJ/R 1/0 #* INITIALIZE b % PRE-ASSIGNED *»
REQUEST AND # ACCORDING TO #Xesewssss® [/0 REQUESTS
REEL fOOL . # ENTRY MNODE - & FR THE NO *
» . ABLE o - . TAVAILABLE UNITS®
asune SRBABENRRIENRR N 3
. .
. .
. .
- .
. .
. -
X .
l.l.l saae -
- - .
YES ® 1S 17 -
lRETURN CX---.-.Q-.-.-‘ SPECIAL - .
REJECT * -
. .
waanw ansan .
«rO .
. -
. .
. .
- .
. .
x x TSCRIB
SEssRRRRNISRERERE unne 1ssrseasssEaNRENe nnen
* SET PRCPER & . - . SCCEN - * .
#* BIT ON IN PP @ % ANYMORE *» L ettt L » -
#REFERENCE TABLE¥eas oX# PPS TO BE LR Y oX® TYPE ALL * % TAREJ
* ADVANCE TO # # ASSIGNED # SUNPRINTED TAPE # - »
* EXT EP - » EMOUNT MESSAGES # . *
ARRREBREAT S saden AARNTERBARANRUARES RXIT1]
x «YES . x
. . . -
N - . -
. . . .
- - . .
. . . .
- X .
. Ity P Lid ARAETRGTRIOGCT VAN
. - - ®IS THE * = »
- d - #NEXT JOB TO® NO 4 SET UP FCR -
. ® TA2 IRUN CCIFLEYEL‘Y ®esescsceX® SPECIAL -
- . - IGNED. * REJECT bl
- - - - . -
M sasne sunasn ANSTFECTRSHARSONY
- . +YES
. .
. .
. -
Xe -
- . .
Q «YES X X
[T T aEaw snanu ARARRARTRERIEO R
- - -
s 1T - NO = ANYMORE *® . RESTORE - - *
- BYPASS %Xo ee® 1/0 REQUESTS & 4 THE INDICES * ecesnes s X*RETURN #
MQDI SFOR THIS PPe . » * *
. -] - . -
unar sunen AEEERRARRERRBE RN anens
«YES «YES
. -
. .
. .
. -
. -
x T82 X
auun faune nasse suane IIIIlQIIIII'IllI.
* - llS YH -
= - NO * IS TFE @ YES * IS T NO TTc. * ves LSeT THE :
% TAREJ *® reee® CEANMEL #Xeoassesss? A smG\.E mur -........xlCNAmEL Au: Auv-........x- BSOLY
* - . # AVAILABLE = - ANNE! - 'CHANNEL NUI!EN ‘
- . - - » l
[EXTR] - senaw sneas Eune uncu-uoanoqnq-nou
- *¥ES x oNC .
. . . .
. . . .
. . - »
. . .
. . . .
. x . X
sennn - suzan RREESRERTRABREGRE I bad
- . - - % DOES % .
. IS TrE NC ol ADVANCE 1 b STHE REQUESTH .
- ®UNIT AVAILABLE #.. ® TO GET NEXT & EXCEED NUMBER *# .
- - . - CHANNEL - - #0F UNITS ON# -
. - - - SCHANNEL® -
aEn . azasRRIERREARRNR s L -
*VES . x . *NO .
.
- . - . . .
-
. . - . . .
.
x . Ter «YE . X .
it . anues - ruuan .
IS UNITH - ARE . - .
- LREADY # x ANYMORE @ x ® IS THE A .
PRE-ASSIGNED ®ocesesseX® CHANNELS ®Nevscncnat CHANNEL - .
b * x # AVAILABLE # x # AVAILABLE * .
. - - - - - .
suass . ETT L] - sssnn .
«hO - «NO - «YES
. . . .
. . - .
. - -
. . - .
. . . .
x X . x .
snsaw anew - asnan -
- L] - .
4 IS THIS # N . » 3 NG * ARE -
* THE PRCPE! ®eeeons * TAZ s of ANYMORE UNITS ®Xeeocccccascessoss
* UNIT TYPE ® * .
* O
annse
«YES
.
.
.
.
.
x
[TYTE uu-'i!iuucaunuvuu
= c
- S1€
+ TA2 lx............- cnmusuunn’
- TO REQ
. c
T YRS RAANENENBABARB NS

Figure 35 - The Assign Routine

70

'l.-...-.-‘ REEL

- »
naue

lll'll.lll‘ll‘.ll
.

! OPTIMIZE THE

{SCRAT CH T0

SCR. H)
Ill!llll.l!llll.i

YES

-
MOUNT ING :!-.-....-' PRE-ASSIGNED

® AVAILABLE *
» -

[Tyl sanne
®ARE ANY® -
UNITS NOY # NO b
'-----.--.-..l: TA2 :

L] -
LIZT 1} asne

3. The multi-unit count table is generated. This
gives the total number of tapes on a channel. The
format of the table is half-word: .0-.17 the channel
number and .18-.21 the unit count. Along with this,
the largest count per channel is stored for PP request
checking.

Upon returning from the configuration change sec-
tion (or if there was no change), a mode check and
set up is made. If the mode is overlapped, the index
pointing to the PP reference table is set to the next
slot in the table. This contains the information about
requests which have not been completely assigned.

If the mode is unoverlapped, this index will be set to
the unoverlapped table.

The Assign routine refers to the PP reference table
to get the information about the PP: rejected, com~
pletely assigned or alreidy processed. If the PP is
accepted, the table contains the cross reference
address to the I-O request table and, if any I-O was
requested by the PP, the count of the number of
individual units requested. This count is used to set
up the minor index (TIXA) which is used for scanning
the I-O request table. With the exception of the print
bit, the information was computed and stored in the
I-O request table by the decode routine. Information
pertaining to the assignment of a unit, such as the
absolute channel address, the absoclute unit number
and the assigned bit, are computed and stored by the
assign routine. The unoverlapped bit that appears in
the I-O request table is a special indicator denoting
the fact that this request was once assigned and was
dis-assigned due to a machine configuration change.
When the unoverlapped indicator is on, this request
has top assignment priority and if there is no unit
available to satisfy this request, the assign routine
will reject the PP. If there is a unit available
assigned to a request of a PP that is to run at a later
time, then the assign routine will relieve that PP of
the unit and give it to the top priority request. The
PP that lost the unit to the priority request will be
assigned a unit as soon as one becomes available.

The first reel table is used to provide the first label
or reel name for the mount message. This message
is printed as soon as there is a unit available for the
IOD request. If there was no REEL card after the
tape IOD, the request is then considered to be for a
scratch tape. In this case, the first reel entry in
the I-O request table will be zero.

All three of the I-O assignment tables are used in
a circular fashion.

The I-O assignment procedure is as follows:

1. Tape requests will be assigned in advance. The
remaining types of requests will be assigned just
before the PP is run.

2. Each PP will be checked to see if the requested
I0Ds are valid. If not, the PP will be rejected.

Working on one PP at a time, each individual I-O
request is compared with each unit in the I-O con-
figuration status tables to see whether or not the unit
satisfies the request. If the request is satisfied as
far as the type and channel grouping is concerned,
further checks are made to see if the unit is available,
unassigned, and not reserved. In the case of tape,

a check is made to determine whether or not optimum
reel mounting (the program tries to place a scratch
tape on a unit that has a scratch tape already mounted)
is to take place. If the unit is assigned or not avail-
able, it will be ignored. If the unit is reserved, a
test is made to see if the requesting PP is being
entered in the bypass mode. If it is not, the unit

will be ignored as this unit is reserved for a PP in
queue ahead of this PP. If the mode is bypass and
the I-O request is otherwise satisfied, then this
request will override the previous assignment for
that unit.

The pre-assignment will be carried out, proc-
essing one program at a time, either until there are
no more units available for reservation or there are
no more requests to process. After processing a
program, a check is made to see whether or not the
program is completely pre-assigned. If it is, the
assigned bit is set to one in the PP reference table,
signifying that all units have been pre-assigned so
that continual scanning of the PP's I-O request table
is not necessary upon entry to the assign routine.

At the same time as the above check, there is another
check to find out whether or not the mode is unover-

lapped. If it is, then a quick exit is made from assign
disregarding the remaining PP's that are in the queue.

Before any exit is made, all tape mountings neces-
sary will be printed for the operator via the commen-
tator. The disposition field of the linkage will also
be adjusted according to the status of the next PP to
be run. If the status is reject, the pointer (TPPRUN)
will be advanced to the next PP. This pointer is used
by the move routine and should always be synchronized
with the incoming problem programs via the input
program.

All the information necessary for assignment is
stored away in the I-O assignment tables. This infor-
mation is later transformed and merged with the I0D
card to form the Actuator tables. This transformation
is carried on by the move routine.

The Move Routine: The move routine obtains and

merges IOD or REEL cards with information generated
by the assign routine to form the four actuator tables:
symbolic I-Olocation table, file area tables, unit

area tables, and the reel pool table. Certain system
parameters will also be set up by the move routine:

the maximum reference number used by the problem
program, the next available full word following the

System Operation Programs 71

reel pool table, and the arc address of the next avail-
able arc that is unused by the problem program. The
move routine is entered with the linkage:

LVI, $15, Z
B, TMOVE

V7 XW, A, B, C, D
(return)

where:
A is the first word address of the IOD o
REEL card breakout: :
+ for normal entry
- for initial entry
B is the retuyn disposition:
Bits 28-30 indicate IOD errors:
0 -none
1 -in disposition field
2 -in density field
4 ~-in mode field
Bits 4-47 indicate other errors, if any:
0 - none
1 - illegal disk request
2 - out of phase
4 - exceeding reel pool table
8 - zero I-O reference number
C is job control reject indicator:
0 - means accept next PP
1 - means reject next PP

72

D is mode and owner indicator:
Bit 25 is mode indicator:
0 - means overlapped
1 - means unoverlapped
Bit 26 is ownership bit:
0 - PP owns IOD
1 - MCP owns IOD
The move routine (TMOVE, Figure 36) is used by
JC4. The initial entry for each new problem program
is noted to the move routine by a negative index found
in the linkage. This initial entry allows the move
routine to initialize itself for the next problem pro-
gram, by resetting certain move parameters, com-
puting the size and resetting the memory area used
by the actuator tables, and checking the validity of
the problem program about to be run. After the
initial entry procedure has been performed, control
is sent to the beginning of the move routine (TM1) as
in the normal entry.
At TM1, the routine checks for the type of card.
If 10D, the card will be decoded into a format more
usable by the remaining routine. A check will then
be made to see whether or not the request for this
unit via another IOD card has been submitted prior
to this IOD card. If it has not, a new Unit Area Table
will be constructed and the channel unit status table
slot for the unit assigned to this request will be modi-
fied. The information about the absolute assignment
will be taken from the I-O request table. If the unit

has been requested by another IOD card prior to this
IOD card, the construction of the unit area table and
the modification of the channel unit status table will
be bypassed. All 10D cards will cause the move
routine to construct a file area table. If the IOD
submitted is for tape, a slot will automatically be
reserved within the reel pool table whether or not a
REEL card follows.

When a REEL card is submitted to the move routine
control is then passed to the section that constructs
the reel pool table (TM6). This section looks back at
the last IOD card submitted and finds the unit area
table constructed for that IOD card. It then takes the
address of the reserved slot within the reel pool table
and looks to see if this slot is available for a reel
name entry. If it is, the reel pool table will continue
to be constructed until the reel names are exhausted
from the REEL card. If it is not, the move routine
scans the reel pool table until it can find a vacant
slot for the reel name.

If a disk IOD card is submitted and the type is
DISK, the next available arc will be assigned to it.

If type is TRACK, the next available arc address

will be rounded forward to the next track address,
then this IOD request will be assigned to that address.
Hence, for optimum disk assignment or allocation,

a PP should submit all disk requesting IOD's in a
grouped fashion, all IOD's within the type field of

DISK together, then all IOD's with the type field of
TRACK.

After performing the above functions for each
IOD/REEL card submitted, control is returned to
job'control via the TN2 return.

In the case of a reject entry to Move from job con-
trol there will be no checks made for proper phasing.
The next PP appearing in queue to be run will be
rejected by clearing out the I-O request table entries
and reel pool table entries. Then all the non-scratch
tapes assigned for this PP that were previously
mounted by the operator must be removed from the
respective tape drives. The tape unloading procedure
is carried out by using the $FREE service routine.
The reject routine tests the entry mode. If the mode
is bypass, the rejection must be made in the not-
overlapped PP reference (TPURFT), I-O request
(TUIORQ) and reel pool (TUFRE) tables. If the entry
mode is overlapped, then the rejection is made in the
overlapped tables for this particular PP. In the over-
lapped mode the TPPRUN and TSAV index words are
stepped to point to the next PP to be run. After the
rejection is complete the exit from move is from
normal exit TN2 with no error flag.

The TN2 return sets up SMARK (SYN, TMARK) with
the last memory cell used by move in setting up the
actuator tables. The preset error flag index is then
stored in the return linkage to job control, the index

System Operation Programs 73

Messoee

sassauesnmENn

L]
. RESET THE

- feEan

» -

. -
% ERROR FLAG, ¢ .

- .

.

.

* SAVE INDICES
. IN TSTOXY
saneuessIRRsasRY

. .
. .
.
.
: .
x
annae ansss YRS ARNONESENESNIO 'l..'.ll'llllllll
- L] . . .
a A 5 YES . . ® CLEAR THE 1/0 % -nesvonz INDICESI
. seX® TMRES & o» <XSAND FIRST REEL $.u. oxe
. . . TABLES . nsfunu Euaon .
. . - REJECTED PP, * FLAG IF ANY w
LIl 1) s NeNQIVENSERRIRINSE LTI LX)

™w2a

sstsenvonsnnenus

INITIALIZE

T TD‘E . YES INTERMAL - .

®eaeeseesROTABLES: SET UP %.ccncee okt
THE ;g:KlNG -

. ac
®evencans

PACCUCE AN
APPROPRIATE
ERRCA FLAG

sesssnqe

® SCAT THE t/0 =
' COvPUTE THE 'ﬂEQUES'?D TlgLE'

CACYU‘YO" TABLE ‘K-o--o.on' ACCORD
- RECIEVING -
.

PROCUCE Ak
APPROPRIATE
ERROR FLAG

secesccns

Ll
aenanueveceananEn
CLEAR THE
® NEMCRY 70 BE

By

.
.
-
THE ACTLATOR :
.

esrsacesvecnsesse

. TABLE o

™y x
esnee evene cssne
. ® DOES * . .
AN ¢ REEL SET LP . ® THE FAEEL @ NG .

* 13 17

100 OR A REEL ®ececvsseX® THE REEL POOL ®ocecveseX® PCOL TADLE Teoeescansscal® TR2

. cTARD . TABLE . * EXCEEOD . .
L]

. secwn
.
.
.
.
.
x
eevsensssssannene sesevsnsesvenesne asene
® BREAKOLT
SCERTATN FIELDS » ® PRODUCE AN . . .
® OF THE 1O - sesvassusccsascesX® APPROPRIATE %casccavessaak® THREY
¢ CARD INTO . N * EARIR FLAG . . .
® BINARY FORVAY &
saerestseranoRses . esssensnsscusevsy sevss
. .
.
.
.
x .
seese svwese
-na THES
ARE YNEHE * NO L] ® YES It ARFA ® YES
. Auv ERAORS IN ®ceccesseX® '........x-VAELE H(lN L
® THE (00 & . HisS
- c‘ao . ' lon .
T aswssn
oYES «NO
. . .
. -
. .
- .
. .
X .
: anssene tsosn teuNERERERENERaAnS
. . T UF Th .
® PRCDUCE AN - GFNFRATE . . Ei‘uﬁ:L ASn .
® APPROPRIATE cemsracesscsnsns ® THE UNIT AREA ®.scaceseX® UNET STATUS @
ERAQGR FLAG . tamp . PIADLLS FCR THE @
» . . TASSIGRED ANTTS.®
sresenesusasavans sumsvesrcrsuvneen senessscanananaas

Fligure 36 - The Move Routine

4

secscee

.
essmsencnasX¥® TN2 .
. .

sesecce

Verasesas s e x

« PROCUCE ah .
. APPAGPRIATE -
% ERACR FLAG .
. .
« .

® COES
® TrE ICC o
CARDC REGUESY ¢
* 10C IIU(V €
eC

n
.
-
.

NO 13
veante Yoo CARD DISI °
vem

seeee

--nu--n-cunn
c<(v uUP THE 'ch-
o-l'I‘PLE ENTRAY FCRY
WIS 30C '

a

registers restored, and control returned to job control.

THE ACTUATOR TABLES ALLOCATION
ALGORITHM:

Let B equal the B limit (higher) from the LIM card.

Let S equal the first word of the Symbolic I-O Loca-
tion Table.

Let R equal the largest Reference Number per prob-
lem program.

Let F equal the first location of the File Area Table.

Let I equal the total number of IOD cards for prob-
lem program.

Let U equal the first location of the Unit Area Table.

Let R' equal the total number of unique units
requested by problem program.

Let P equal the first address of the Reel Pool
Table.

Let N equal the number of individual REEL requests,
plus one for every IOD card with the type of
TAPE that was submitted without a REEL card.

Let TMARK equal the next slot available after the
Reel Pool Table.

then: S = MAX (B, 30000g)
S+R=F
F+(I*7)=0U

U+ @R *9)=P
P + N = Contents of TMARK

The Unassign Routine: The unassign routine (Figure
37) makes the I-O units used by the previous problem
program available again for assignment, unloads and
rewinds the tapes used and tells the operator what to
do with the unloaded reels. This routine is used only
by JC4, and is entered by the following calling
sequence:

LVI, 15, (return address)

B, TJUNAS

It saves and restores the used index registers.
Two subroutines are entered: SFREE (an actuator
op) and the reel history routine (JHISTE). SFREE
effects the unassignment of tape units, and JHISTE
prints via the output program a record of the tape
reels used by the problem program.

After saving index registers, unassign initializes
the reel history routine and tests TMAXRF, or
SMAXRN, to see if the previous job had any 10D
cards. Starting at TINEXT, the program loops
through successive entries in the PP symbolic I-O
location table. Unassignment proceeds on a unit
basis. As a unit is checked out, the SUUNAS bit
is set to one in the unit area table, preventing re-
peated unassignment of a unit with several IOD
cards attached to it. For tape units, the reel history
routine is entered. The mount bits are then set to
zero (to guarantee entry to the actuator) and the

SFREE routine used to unassign the unit. For non-
tape units, unassign first waits for the unit to be-
come not busy, after which the unit is released. Any
repeated EKJ's result in a type 76 error exit to
SDISP. For both kinds of units, the appropriate
channel and unit status table bits are reset at the
end of the loop (at TJTAP and TINTPS), in the dis—
abled modes. After all units are unassigned, any
stacked PP interrupts are discarded from SQUE,
and the SAS and SSIO bits in the program status
table are cleared.

Aside from the index saving area, unassign uses
only one word of working storage, TJCW, to copy
control word into. It always returns to the address
in. $15.

JC4 Print Program

This program prints out JC4 and $RESLD error
diagnostics on the system output tape, and allows
each installation to modify the routine easily so

that these messages may be put out via the commen-
tator. The unmodified routine (YPR) uses no index
registers, and employs the short message routine
(ZSPLPR) to effect the printout. All messages must
be 8 words long and in A8 code.

The modified routine uses $2 and does not restore
it, uses SASIQS to convert the message, and $COMM
to print the message online.

The routine may be modified by putting in a NOP
at location YPR with any of three effective addresses:

1. NOP, 0.0 produces messages on-line only
in the BYPASS mode.

2. NOP, 1.0 produces messages on-line in
both the BYPASS and ONLINE
modes.

3. NOP, 2.0 produces messages on-line for

all modes (BYPASS, ONLINE,
OFFLINE).
Major Package Fetcher

This routine calls in segments of MCP from the disk
as required, and keeps track of the current segment
in core. It is entered at YMPFCH, and on the basis
of the content of $1 and the current value of YMPSAV,
decides whether or not a feich is necessary. If not,
it reiurns immediately at YFHBR. If necessary, the
fetch is made via $FETCH, and the fetch parameter
XNFOST, CBUFF, and CFOT are reset to indicate
an empty fetch buffer. Return is then made to the
fetched segment at FHBR.

The Reel History Routine

The reel history routine (HISTE) prints a list of all
the reels used by a unit, the IOD name which last

System Operation Programs 75

ananw RESARAARSIREIRERR anane annas
- - L ® ARE @ - -
- * % SAVE INCICES. * - THERE » e
ETIJUNAS . ¥, u00ee seX® INITIALIZE ®oue oX# ANY 10DS e+ o X¥RETURN #
» - - - . - -
- - - - - *
[T T2 ERBEBBRARASRCRNLS anunn anuns
Y
wusan annun
* - - »
» * ® THE UNIT # YES - -
#TINEXT FesacscsscaseX® CHECKED QUT WesevesocsaseXETISTPA #
- » - » - -
» - * - »
ETTTRY asans annNe
EEFATTARAIRRGRAES
* JHISTE -
B S e T] L]
* PRINT o -
* REEL » -
- FISTCRY H
AARARAATRIRAARARY
.
ecsesces
.
X
EENASEERERERRBANN
- -
hd SET_MOUNT - YES *® -
e eITS TO #Xeoosoncel *
* ZERO * »
» -
ARRAARRERNRRANIRN
.
.
x
FRRRARAFTIRRRRARSE LE I
= SFREE » 1s
* UNIT . * NO
CHANNEL -] Beoeesce
AVAILABLE ¢ - -
»* UNIY bl * .
EITY T AT PRP YR TT T 1 [TTTY)
. oNC
. .
. -
.
.
. .
. .
. - .
- - *YES * -
sXeevessessenccrccssnvasnnnn seeet ALY ETERTRY §
. L] L]
.
.
.
.
.
.
.
X
remen AEAEANEERIRNRNENE. TERsEsSRANERNRNNE
» = = - s -
* b » RESET bl » * WAIT FCR EOP, * NC
RTITEST #*, oX® STATLS 2Xeson #Nosssnase? THEN RELEASE #Xaesssoss?
- - - BITS - . UNIT »

* * » -
ETTER) ETTTIY TR YRR R L 2

.
.
x
.

L. -

» »
*TJSTFA
- *

- THEFE * YES

LETT Y

aaRw
«hO

X
HERRERRRBIRBBE BN
#THROW AWAY ANY #
#PROBLEM FRCGRAM® el
* ACKE XoeesevsaX¥
#* INTERRLPTS * -

- =
EEAREARRBINRB BN

Figure 37 - The Unassign Routine

76

anuse
- L]

- -
snnus

ARABARERBRBARENSS
- -

RESTORE
INDICES

- *
ERERRBAEERRIARARS

- »
FESRERARRERBRBERS

susna
L] *

-
BeevveesnceeeX
=

UNIT
% SELECTELC #
* L]
cnEsn
«YES

sEnn
- »

* .
*TITEST *
. [

» »
wnana

activated the unit, and it also prints the job name.
It is used by the unassign routine at EOJ time, and
is entered once for each physical tape unit assigned
to the PP. The routine uses the short message
routine to perform the output via $SPR.

Conversion Routines

Four subroutines are used to convert data from one
format to another. They operate disabled and are

as follows:
SIQSAS IQS to BCD
SIQSA6
SAGIQS BCD to IQS
SASIQS
SCA6 Card image to BCD
SBRKS Field break down

The IQS to BCD Conversion Routine: This routine
is entered at SIQSA6 or SIQSA8 according to the BCD
byte size required, with the following linkage:
LVI, 15, $+1.0
BD, SIQSAx
VF, A
CF, N
VF, B
Return
where
A -

is the FWA of the IQS string,

N - is the number of characters to be con-
verted,
B - is the FWA where the BCD is to be stored.

The routine selects a 6 or 8 bit store instruction and
performs the conversion by table lookup. The routine
saves, uses, and restores index registers 13, 14,
and 15.

The BCD to IQS Conversion Routine: This routine is
entered at SA6IQS or SABIQS according to the byte
size to be converted, with the following linkage:

Lvl, 15, $+1.0

BD, SAXIQS

VF, A

CF, N

VF, B

Return
where

A - is the address of the BCD string,

N - is the number of characters,

B - is the location where the IQS string is to

be stored.

The routine adjusts for the input byte size and per-
forms the conversion by table lookup. It saves, uses,
and restores index registers 13, 14, and 15.

The Card Image to BCD Routine: This routine is
entered at SCA6 or SCA8 according to the BCD byte
size desired, with thefollowing linkage:

LVI, 15, $+1.0

BD, SCAx

VF, FWA(D)

CF, N

VF, A
where

FWA(I) - is the location of the first column in

the card image to be converted,

N ~ is the number of columns to be con-
verted,
A - is the address at which the BCD string

is to be stored.
The routine performs the conversion by table lookup,
inserting a right parenthesis if an illegal punch com-
bination is detected. Index registers 1 through 6 are
used and not restored.

The Breakdown Routine: The function of the break-

down routine is to place each field of a string of BCD
characters into a separate word. A field is defined
as bounded on the left by a comma or the beginning
of the string and on the right by a comma or the end
of the string. The routine is written so that it can be
assembled to take six bit characters or eight bit
characters, according to the parameters QKSIZ
(character size) and QSKIP (number of bits to skip at
the end of a field word). These parameters are
presently set at 6 and .16 respectively. A field is
limited to eight characters.

The routine is entered at SBRKS8 with the linkage:
LVI, 15, $+1.0
BD, SBRKS
VF, A
CF, N
VF, B
VF, M
Error return
Normal return

where
A - is the starting location of the string,
N - is the number of characters to bg broken
into fields,
B - is the starting location where the fields
are to be stored,
M - is the number of fields found by the

routine.
The error return is used if a field is found containing
more than eight non-blank characters. Blanks are

System Operation Programs 77

omitted in setting up a field, as are commas. The
routine saves, uses, and restores index registers 1,
2, and 3.

The Short Message Routine
The short message routine provides MCP with a

common 17 word buffer for output via $SPR. It
operates disabled, and is entered with the linkage:

SIC, ZSPLP9
BD, ZSPLPR
» FWA(QD
, N.
Return
where
FWA(I) - is the starting location of the message

intended for $SPR, and
N - is the number of words.

The short message routine moves the message to
its buffer and uses $SPR via the disabled entry to the
IF analyzer. The routine saves, uses, and restores
index registers 0 and 1. Note that control is not
returned when the short message routine is used by
a program which is not a major package. $SPR will
appear to the return routine to have been primed,
and primed routines do not return to the requestor.
(See dispatcher error control.)

Resume Load

The resume load major package controls the loading
of binary decks prior to execution of programs under
MCP. Its main function is to supply cards to the MCP
loader, which it uses as a subroutine, and respond to
exceptional returns from it. It also serves as the last
phase of the Fortran BSS Loader. It is primed by

phase 4 of job control, and may also be used by the PP.

The Resume Load Package

Resume load has one entry point, YRESLD (Figure
38). Two pseudo-ops are associated with this entry
point, $RESLD and 74.32. The latter pseudo-op
forces resume load to use $SCR as a source of cards.
Otherwise, a program uses the SCORG bit, KSILO
(see JC4) and SREADS to determine the source of
cards and the manner of loading. Other preset regi-
sters hold limits for the loader (YLLSAV), and the
disk type-area, if any (HDFCS). Resume load runs
enabled, in the RIO mode, and saves no index regi-
sters.

Exit is always made via $RET. If the current deck
was successfully loaded, its return or branch address
is placed both into SICBU and location 1. 32 of the

78

tentacle table (see $RET). If an error was encoun-—
tered during loading, $EOJ or $ABEOJ is primed so
that the program is not executed.

Resume load uses the following routines:

1. The JC4 print program - YPR - to print out
diagnosing messages for loading errors.

2. The major package fetcher - YMPFCH - to call
itself into memory (if necessary).

3. The MCP Loader - ALOADR - to load cards

4. The Input program - $SCR - to get cards from
the system input source.

5. The Disk fetch - $FETCH - to get card images
from the disk.

6. The Prime and return - SPRIME, $RET - as
noted above.

Resume load immediately enters YMPFCH to get
itself into memory from disk.

Its first task is to determine whether it is to act
as a postprocessor to the BSS loader as is the case
if KSILO+2.0 says BSSbbbbb in BCD, and if the
current job is in the GO phase (SCORG=0) of a
COMPILGO (KSILO+1.19=1). If it is a BSS post-
processor, resume load obtains the loader limits
from KSILO and sets them up to extend from the
lower limit to the base address of blank common, to
inhibit loading into blank common. It then exits to
ARNRMS5 in the loader, in such a way as to persuade
the loader that it should load the next (i.e., the first)
Fortran subprogram.

If resume load is not a BSS postprocessor, it sets
up loader limits from YLISAV, the fetch type-area
from YDFCS, and $13 with the read source. At this
point the op code is checked for 74.32, or uncondi-
tional $SCR. If this is the initial entry for the
current deck (YLLSAV. 25=1) PP memory is cleared
from location 41. (g) to SBAPP, or the base address
of the PP I-O location table. The 1st card is already
in YBCBU, if this is a GO phase, otherwise, it must
be read from the source indicated by $13.

At this point we have completed all of the initiali-
zation in resume load. The routine basically consists
of a loop between YRLCR and YLBRA. 32: get a card,
lodd a card, etc. . If the loader gives branch return,
the loop is broken, and return is made to the PP
provided no input. program UK has occurred
(REJJOB. 60=0)..

The remaining code exists to handle exceptional
returns; $SCR end return, $FETCH end or error
return, and loader error return. All are errors and
cause a diagnostic message to be printed via YPR,
with the exception of end return from $FETCH for a
BSS job, which is handled specially. After printing
the message, resume load primes $ABEOJ or $EOJ,
depending on the initial entry bit. YEOJS and SPINCL
(see JC4) are set to indicate the job has been com-
pleted.

“nuEs EFEEERABEABARRNER asanw
= -

- YWMPFCH
- - N e W e e e W W B #15 THIS GG % YES
#YRESLD #eceecvesveceX® EET LCADER SeasescacX¥® PHASE 0O RececesseX
* - * FRCM TISK - * COMPILEGO #
* * » - - -
HEERE ERRREARNRAVATR RN REEAN
«NO

-
X
-

X
ARERERBARRRRERRNN
- -
#SET UP LIMITS, #
® READ SOQURCE &
* -

Xooeae

- IS * YES
* CPERATICN LETTTTRRYY 3
* SSCRESLB. -
-

ERERE
«NC
.

-
-
X

esescsse
x
ERANE
-
* 1S THIS_ % YES
- }NIT!AL ENTRY %seevsceeX
E

LT L]
<NO

Moo oo

AnEnE
* »

= *
* YRLCR #
* -

- -
ERBER
-
.
.
-
.
X
ERARR AERARAERRARARARER REEEE
* * - - *
* » * INCREFENT * YES # IS THE * NC
*ARNORM # - DISK *¥Xeososcasth SOURCE ¥Xesosvonee
* » * POINIER bd * DISK *
* * * * *
EERER ARAFRAAZAIZARENRT ARREE
x . «NO
. . -
. . -
. . -
. . .
. . -
«YES x X
EERER ERRARARAAS AREE R
= » - SFETCH - * $SCR
* IS TRIS A * END
* BSS JoB *Xsevevaced CET CNE * - GET ONE
* * * CARC * * CARD
- * * * *
EEERR £l
oNO «NOAM +NORM
. . .
. . -
. . .
. secsccccsssnsscssecvssssscXeXooosososne
.
X X
ARERE ERARE ERARERRERFERRERR R
* * * - ALOADER =
* * * * NCRNE—F— N —f— R %A~ BERR
* YLERR * # YRLCR #Xeoeseeecscese® LOAD ONE FeeossnseX
* * * * CARD * X
- - * L] * - -
EEREE ERXTE FEARFERRBAREIRRERN -
«BRANCH -
. .
- .
- .
. .
. -
X .
EREER -
* WAS % .
- THERE YES .
INPUT PROGRAM -
* UK *
*
ERERE
oNC
.
.
-
.
x

AERARABEREER SRR
#

RESTORE READ
* SOURCE IF
b SRESLO

*

FETEREARAARSBAANRS
-

-k

e oo 0

ETTYEY AR ARNSREEEAEANE
» * * -

PUT BRANCH -
«% ADDRESS INTO #
* a

SICBY
= - *TENTACLE TABLE
EIITE] R e L e 2

* -
% SRET #Xee
* »

Figure 38 - The Resume Load Package

AnsuR AN AARASRURAEXER
- * - a
IS THIS A & YES = SET_up -
. BSS JOB BecaseessXd LINITS TC #
»] * LOAD BSS DECK #
- - - *
EAER AEEAREAARSRNIERAER

NG .

. .

N

.

.

.

H

* *
#ARNRMS #
* *

-
T
AERRREARAA IR RERES
2 *
b SET READ *
#SQURCE TC $SCR ®=
. *
H E}
EEEEAERNARBRRERRE
-
.
.
.
[EITTITTTTE TS PR
3 a
2 CLEAR -
. PP *
M MEMCRY *
a *
PEAZRARERANREANNS
.
.
.
.
.
.
.
.
.
.
.
.
.
X
ERAE
SIS THIS THE® Y
GO PRASE fecae
.
.
nean .
-
.
.
.
.
sezza .
Y » .
» * .
eseX® YLERR & .
* * .
* » -
xann
ARERERARRERBENANE anuxn
+ * -]
. SET uP - - »
% DIAGNOSTIC #Xeoeescossscss® YLERR #
» MESSAGE el - *
x » * -
TERERAERAARRAS DA [T

Xe s aee

FAEERARERAERRRANS

= MESSAGE *
AERAARARERAERR AT

.
.
x .
ERAER ARAAEFRERTERRARER
- = SFRINE *
- IS IT * NO e A R B W B R A= B
] INITIAL LA PRINE *
% ENTRY # * $ABEOJ *
* * * *
RERER FRAAREABREEROGETER
<YES .
:
.
.
x
AEFFAAARATAERABRR
* SPRINE -
EEE DX B B B B3 D Bt
2 FRINVE Teaee
» SECJ =

a B
FEXTIETTRP RIS T E Y

9

Tables and Flags Used by Resume Load: Below is a
list of the various tables and flags used by resume
load and their definitions. The first four items are
all preset by phase 4 of job control, prior to priming
$RESLD.

SREADS - the read source control is an XW whose
flag bit is zero if the source is $SCR. If the flag is
one, the source is disk and the value field contains
the relative FWA in the disk type-area. Further, the
count field, for compiled PP, contains the number of
cards left on the current arc of disk. This XW is
loaded into $13 by resume load. When the afore-
mentioned count reaches zero, the value field is
stepped 2 words and the count is reset to 34, the
number of cards on one arc of disk.

YLISAV - contains loader limits, i.e., those
limits outside which the loader must not load. In
addition, it contains the initial entry bit (. 25), the
T-card indicator (YTBIT, see JC4), and bit . 57.
This word is transmitted directly into the loader
calling sequence by resume load.

YDFCS - contains the A6 type-area name to be
loaded from, if disk is the source for cards.

SCORG - a bit in SCOMRG, which equals 1 when
the current deck is a compiler and 0 when it is a go

phase.
REJJOB - Bit 60 of this word is set by the input

program when an uncorrectable unit check occurs
during the reading of a job.

YBCBU - This 15-word buffer is used by both JC4
and resume load to read cards into.

KSILO - The processor communication region.
The Fortran BSS loader and resume load define words
8.0-10.0 of this region jointly (see description of
Processor Communication Region).

lower limit of PP 8.0 (BU, 18)
upper limit of PP 8.32 (BU, 18)
base address of blank

common 9.0 (BU, 18)
address of relocation

tables 9.32 (BU, 18)
branch address 10.0 (BU, 19)

ARCDCT - loader card counter for BSS jobs. It
is set to 1 by resume load upon end return from
$FETCH.

The MCP Loader

The MCP loader, ALOADR, is a binary, correction,
dump, and patch card loader. It is used as a sub-
routine of the Resume Load pseudo-op, $RESLD.

$RESLD fetches the cards to be loaded and enters
ALOADR, one card at a time, by the following link-
age:

80

LVI, $15, $+1.0

B, ALOADR

, FWA

, L

, U

(Error return)

VF, D

(Branch return)

VF, A

(Normal return)

where

FWA is the first word (18-bit) address of the card
to be loaded.

L is the lower limit of the PP. If XF=1, this is a
new job and the loader must initialize.

U is the upper limit (protected) of the PP. If
XF=1, the sequence counter is reset to contain
the information in column 3 of the first binary
card encountered.

Error return is a half-word location to which the
loader returns when it cannot correctly load the
card.

Half-word error code, D contains the sequence
number, in bits 0-11, of the binary card in error
or zero for an octal card. Bits 13-17 contain

the following error codes:
1 -~ Checksum error

2 — Sequence or ID error
3 —- Illegal card type
4 —- Illegal non-BSS function
5 —— Out of bounds
6 -- C or P card incorrectly punched, e.g.,
hex character is not a 0-9 or A-F.
7 —- Blank location in first octal card.
8 -- First binary card not an origin card.
Branch return is a half-word location to which the
loader returns when it encounters a branch card,
or when the card count equals zero and there are
no more relocation tables in a BSS job.

Half-word branch address is given unless the

branch address field of the branch card is zero.
In that case, A is the origin of the first origin
card, or in a BSS job the branch address is
taken from the communication region.

The loader does not save or restore index regis-
ters. A blank checksum means that the checksum
is not to be used. The sequence number on reloca-
table cards is not checked.

BSS Jobs: For BSS jobs the MCP loader uses the
communication region, KSILO, which has been set up
by BSS. KSILO+2. contains the A6 name "BSSbbbbb"
which is used by the loader to decide if the current
job is a BSS job. KSILO+0. 32 contains the address of
the relocation tables which are used by the loader to

load BSS jobs. KSILO+10.0 contains the branch
address which will be inserted in the resume load
loader calling sequence when loading is finished.

The format of the relocation tables is shown in
Figure 39.

The loader (ALOADR, Figure 40) checks bit number
25 of the lower limit. If this bit is 1, ALOADR turns
it off, initializes its counters, and sets up its internal
boundary limits for the new job. A check is made on
bit 25 of the upper limit to see if a T card has been
saved for this job. If one has, ATCRDI is turned on
and the sequence number of the first binary card is
used as the base sequence number. Column 1 is
tested to determine the card type, and control is
transferred to the appropriate routine. These
routines return to ANORMR to make a normal return,
or to AERR3 to set up an appropriate error message
and make an error return. A branch return is made
when the validity of the branch is verified.

Loader Card Classes: The loader handles 15 classes
of cards, identified by the punches in column 1:

Absolute origin (7, 8, 9)
Absolute flow (7, 9)
Absolute branch 6, 7, 9)
Relocatable data 6, 7, 8, 9
Relocatable instruction B, 7, 9
Fortran branch 5, 6, 7, 8, 9)
Fortran program ®, 6, 7, 9)
Common definition 5, 7, 8, 9)
Correction 12, 3)
Patch i, 7
Dump (12, 4

T ©, 3)
Super T ©, 2, 3
Loader adjustment (O) a1, 6)

B az, 2

B, T, and Super T Cards: These cards are not

loaded. For T and super T cards, indicator ATCRDI
or ASTRCRD is turned on. These indicators are
later tested by the sequence test routine ASEQ.

Loader Adjustment Card: Loader adjustment cards

(O in column 1) are handled by ALDADJ. This
routine picks up the 8 Hollerith characters in
columns 2-9, converts them to octal, and checks to
see if they set an origin which is within the program's
bounds. If the origin is within bounds, the loader's
origin counter ALDCTR is set to the value on the O
card. The branch address is also set to this value

if a previous quantity has not been saved. These
cards are ignored for BSS jobs.

Absolute Branch Card: The branch address on the
card is checked to see if it is within bounds. If so,

it is inserted into the calling sequence. If it is not,
an error return is made to the calling sequence. If
there is no branch address, a check is made to see if
an initial origin has been saved, which will then
become the branch address. If no origin has been
saved, an error return is made. This routine gives
control to the branch return in the loader calling
sequence.

Common Definition Card, Fortran Branch Card, and
Fortran Program Card: These card types use the

routine AFPCRD (Figure 41). A check is made on
AFPCI to determine whether or not a Fortran pro-
gram card had previously been handled. If so, the
card is counted in the routine ARNRM1. If the card
count for this BSS job is not zero, normal return is
made to the loader's calling sequence. If the card
count equals zero, a test is made on the count field
of the second word of the current relocation table to
determine how many transfer vectors are to be trans-
mitted to problem program storage. If SRNXAD is
zero, the branch address is picked up from KSILO
and stored in the branch address slot of the calling
sequence and branch return is made. If SRNXAD is
not zero, $RESLD is set up to fetch the next sub-
program and normal return is made.

If no Fortran program card has been received, a
test is made to see if this is a BSS job. If not, error
return is made. If this is a BSS job, AFPCI is set
to one and the address of the first relocation table is
picked up from KSILO. This table gives the origin
to the loader and enables it to compute the width of
the set of relocation bits for each half word. This
width is 1, 4, or 4+i where iis the field size neces-
sary to express the highest-numbered labeled com-
mon block. For non-BSS jobs, the width of the set is
either 1 or 4. If the current subprogram is not a
library routine, the card count is stored in ARCDCT.
Control is passed to the card count routine and
eventually normal return is given.

Absolute Origin, Absolute Flow, and Relocatable

Binary Data Cards: These card types eventually are

treated as one, and use AORGL1 to load the informa-
tion from the card.

The absolute flow card routine (AFLOW, Figure
41) checks to see if an origin has been saved. If not,
error return is given. The next location table loaded
into is picked up from ALDCTR and put in $1 for
AORGI1. $6 is set up for the boundary test made in
AORG] and set-up is done so that a partial word will
be loaded. Control is then passed to the absolute
origin card routine at the boundary test instructions.

The relocatable binary data routine, ARBDCD,
picks up a 19-bit loading base from column 10 and
tests to see if it is program data or common data.

System Operation Programs 81

|
SRDKAD =1
&
0 35 63
2|27
SRDKAD SRCDCT gl =°
0 17 28 63
SRORG SRTVL SRNXAD
0 17 28 46 63
SRCCT SRCOMB
0 18 32 63
Other Named COMMON Other Named COMMON
1 32
| i
S "Transfer Vector"
' :
I
! |
LEGEND:
SRDKAD SYN(BU, 36, 6), 0.0 If SRLIB bit = 1, meaning a library subprogram
is to be loaded, then this is a 36-bit field
containing a type-area name for a library
subprogram.
If SRLIB bit = 0, meaning TWS is to be loaded,
then this is an 18-bit relative FWA in TWS,
SRCDCT SYN(BU, 18), 0.28 Count of cards in subprogram when SRLIB = 0.
SRORG SYN(BU, 18), 1.0 Origin of subprogram,
SRTVL SYN(BU, 18), 1.28 Length of transfer vector.
SRNXAD SYN(BU, 18), 1,46 Address of next relocation table. This equals
zero when there are no more tables.
SRCCT SYN(BU, 19) 2.0 Number of named COMMONS,
SRCOMB SYN(BU, 32), 2.32, etc. Base of named COMMON,

Figure 39, Table Organization

82

ERREE
* -
L *
RALOADR #.svveccvccccX®
* *

* »
RN

EERER
= *

* ERROR # c
*RETURN #¥Xsevososcnsse®
- *

EYERT)
1S TrIS
A NEW

* JCE
wsnas
«hO

x
YT

* ®
* IS TE1S A ®
KNOWN TYPE
* CARC =

YES

#esssesveX®

assus AFRABRERRERERBEER
= . »

HAS A ® YES * TURN ON =
"1 CARD BEEN ¥reveeeeoxs T_CARC *
*ENCCUNTERED# + INDICATOR #
- * - *
AREER AEZRERNARARARRRBRR

«NO .

. .

- .

.
©X34230339000383050050238300
.

x
AREARAERRAEAARE RS
* Es

*
#Xovssssset
*

INITIALIZE
THE LOADER

=
-
-
a
|

- ® *
ERNEE AXELR FESFERATRARBRERAN
+YES
.
.
.
-
x
REEAERRRRIRBAREES ARBEE
* * - *
* GC _TC PROPER ¥ = .
#* SUBRCUTINE TC %eees «XERETURN %
* "HANCLE CARD * M =
* P E] -
ERERFRAFER RN RENR EEREE
Ts SUPER T
ERAER illll“!lilllllli I‘II'
* =
SATCARD * TURN ON SNORKAL *
lASUPERT‘..........-.Xi APPROPF IATE l............xoneruan :
INDICATOR %
l l I .
BEEREE I’II"I“".‘*‘*' HABAN
BRANCH
ARERR AEFARBERENERERRE R
- * -

* =
#*ABCARD *
- *

= *
ERRER

*

*CHECK CPECKSUN b

..X“ AND SEQUENCE F.aee
NUNGER »

*
ERARARARBARRARABASS

REREE
- *
- = * ERROR # NC
*ARNRM1 * #RETURN *Xeceoesaccscet
* * * -
- * = *
EEERL) ERERE
LCADER ADJUSTMENT
RARER EABAE ERBEN
* * * *

YES

® IS TFIs =
A BSS
* JCE =
L3 »

* -
*X#ARNRM1 *
» -

= - * *
ERERR AREAR HRREE
«NC
.
.
.
.
.
X
ERRER ll‘lll'!i!l‘ll'll lllli
* -
* * PICK UP lmnnL *
*ARNAM1 # ll_ocnxcn FIELD l.-..........leETURN :
* * # AND STQFE IN #
= * #CRIGIN CCUNTER # ‘ *
ERBRE EEAEERNRASIRARRARSE RERER
X
AERRERARRREREERADS EAEEL] I‘(ll!.llll!l}‘li
* *
* = * COES !COHPUTE LENGTQ‘ H
* COUNT CARDS *. seseX® CARB CCUNT oX®* OF TRANSFER %aae
* * #EQUAL ZERQ * * vecvcn mn :
» * * * ® TRANSMIT IT
EIE S22 22223222820 ERATR ‘Cll&i.l&il!ll‘!i
«NO
.
.
X
AEARR
» *
*NCRNAL *

*RETURN *
» -

Figure 40 - The MCP Loader - Chart 1

*
* ERROF #*
#RETURN #
- «

= L]
AnEnn

ee s e X

oNC
ARREE

ETIT Y

* -
¥ IS BRANCE %

X% ACCRESS IN #
4+ BCUNDS #
* -
aanas
«YES
. .
. .
. .
x X
AERER AAAFREANRER AR
HAS e
*AN INTTIAL * STORE BRANCK +#
ORIGIN = * “ADDRESS IN %
BEEN * * CALLING *
* SAVEC = * SEGUENCE *
EEREES ARAEARAGERRRR R AR
-YES .
. .
. .

essscsesscscssssccnccacsneXe
.

X
ARBEE
= -
*BRANCE &
*RETURN *
« -

- -
AERRE
x

ARAXBARBRBBRAREEE
» -

- PICK UF *
#ERANCH ADORESS *
% FROM KSILC *

«
EARFEBBBARKAARDAE

€<
Anuxe

seane
= * s
S CF

ADCDRES -
X‘kEXT RELCCATICN®
*TABLE ZERC *

* =

- -
X*ARNRNS #..0
* *

- -
sxaas

ARSRR
oNC
.
.
-
.
.
b3
lli!ll!lllllllli ARFRSRAARERARREIN
SET P ol PICK UF i
$RESLD % RELCCATICN el
TO READ IN 'x...-...-’ YABLE AODRESS #
NEW £ NEXT -
SUBFRCGRAM ' i SLB RCGRAN *
ARREEENERARARR RN AXAERRARLANSANBANS
-
-
-
x
aRANE
- *
*NCRNAL #

*RETURN *
1 *

-
AEREE

FORTRAN PROGRAM

EEEEE RERAN E2122) AEREN EREE
* AS - * - - -
= * RTFAN ® IS THIS * - * ' -
*AFPCRD #. A BSS X% ERROR * BARNRML *
» * *BEEN NCTED # . JoB . ®RETURN & . *
* * »- . * L - - *
rREER “EELR EHRARE EREER “Rne
«YES <YES x
. . .
- . .
. . .
. . .
RELOCATE BINARY . - .
x X oYES
HEEER - FEAFARAAARAAARRES AARER LB TR RERAAEN ERAESE
* - * » # TURN ON BSS # - » - -
» = ® * * INDICATOR # 2COMPUTE NUMBER + % 1S THIS *
*ARBNCD * SARNRNM1 # » PICK UP #eeeesaseX? OF RELCCATIGN ¥ececceeeX® A LIERARY &
* * = » * RELCCATION % . EITS * *SUBFRCGRAN *
* » .] * TABLE ADCRESS # « * »
ARERR HRETH (2222222222222 22) ATRERERERARARRREER RERAN
. +NC
. .
. .
. -
. .
. . .
x . x
RERERRREDETRERARSE HERAR RRRN FRARABARAERRERERR ERAXARAERETAARERD
ICHECK CHECKSUM - * *] ’ * * *
COMPUTE # WILL CARD % YES % HAVE ALL * NO 4 RELCCATE » * SETUP »
lABSOLUTE onxsxn-........xn BE LG#DED #eueeesesX¥ HALF WORDS eeeX® ANC_LOAD * * CARD .
X FOR CARD * WITHIN +BEEN LOADED* HALF WORD * * COUNT -
#BOUNCS * r - El * * *
illill!{‘l.‘l"l' EEALE xRERE TEABABAFAERERBREN RARTAEICSERAENANES
Y «YES .
. . .
. . .
. - .
. . .
. . .
x X x
RRE ARFRFARFRRBRRRARS AURER EEEN
L] = % RELOCATE AND =] . » L]
* - % LGAD PARTIAL * » * * *
* ERRCR # - HALF WORD Beesssasceses XFARNCAN * SARNRM] #
*RETURN * - NY . - * - -
L] * - - » » *
ARRI N RERRAEIFARRRRRRRE ERARR AEREY
RELOCATE DATA
REERR il!ﬂ'illll!llil‘! REERR ARERE ARERN
- - CCMFLTE - - * - - =
» = ABSOLLTE H « 15 1T = - s 1T . .
#ARECCD %*o.o LCAD ING ., .o X PROGRAN ATess .eX®* ERRGR %
. - 2 BASE FCR CARD * ® DATA - . JeE » #RETURN *
- - - » - * » - - -
EREER ARAARTARN IR ANAER 2uANE RN EREL 2]
-YES «YES
. .
. .
. .
cessesscccsesscscesssanneXe
ABSOLUTE ORIGIN .
FLOW CARD x
ERERE EzEN ERNER II.‘.'IIC!'IIIIIE
- = L] - - -
- » - » L . 5 InITiALIZE W . *
* ALDB * ® ALCE ® * AFLOW # 3 FOR ABSCLUTE JeoeesescesenX? ALDE
* —4.0 @ * - *] . ACER - - -
- - L4 - * - . * * *
"REERE "RARN HRRER ZRERRAERAAREARARS RSN
. -
.
. .
. . .
x x x
AFFARFAFAERBRR TR FARRTRRFAINSEREES ARFERRNBERRAFFARE R
= . * = CCMPUT! »
. PICK UP . SPICK UP NUMBER % * ABSOLUTE =
+ ABSOLUTE * X3 GE +ALF WCRDS 2 . LOAGING .
» CRIGIN - BE LCADED * BASE FOR CARD *
” - - -
ARERABARABERRA AN ll.'.{“l.!l..l.i
. .
. .
. .
. .
X
ARBRAABERAVARRRETS EREEAE FESBFSANABABAEAIEE
* » * - * SETUP NUNBER *
* SETUP 7O . YES # WILL CARD * % OF HALF womDs »
1 LOAD PARTIAL Xececceas® BE LCADED | #X.cseesssd TO B
T HALF woRD % * WITFIN * 2AND !leIALlZE M
. *ECUNS * FOR AORG .
lllllﬂ'..ll"'lll EEERE) '..llilli'll.llll
x
AERRAARRERARRB AR #tuuE.
* - - -
#CHECK CHECKSUW # » .
* ANC SEGUENCE + * ERRCR »
. NUMBER * *RETUFN #
M . *
EERERBFEAFAERT TN AR
.
.
.
.
.
X
AERNSARRBRRARERARR RERBBABRAAEES * RRNER l""ll..l.l"ll' SRATR
»* » - - - * l I *
®* LOAD HALF % LOAD PAFTIAL # * WAS THIS # KO UPDATE .
WORD CONTENTS #esecsseeX® HALF BORD #ecscesesX® A BINARY -........x- LCACER i..-.--......X'NCNNAL *
» F CARD » » IF AMY - * DATA CARG # CCUNTERS *RETURN 4
- * - - - - I I
SHERAFERARRAFRBIRS ERAANAARAARABAERDN “nAN AEEZZESERREZ2 2222) Il..!
-YES
.
-
.
B, FCOC, FEC :
EXERL] REERRBRRERARRNEE S “enEn
* L] - - - -
UPDATE . * *
LOADER *oae ««XRARNRM1 &
®* COUNTERS « » .
- - * *
EZ 2R R] AEERORRAE ARRAN

Figure 41 - The MCP Loader - Chart 2

If it is data to be loaded into named common and this
is a non-BSS job, error return is made. If it is
named commoun data, the common origin is picked up
from the relocation table for this subprogram.
Otherwise, the current location is picked up from
ALDCTR. The relative origin is added to it and the
total is stored in $1 as an absolute origin for AORGL.
The origin saved indicator, ALL. 3, is set to one,
ATCRDI is set so that no sequence check is made,
and ARBCDI is set so that the appropriate return will
be made from the absolute origin card routine. Con-
trol is passed to the absolute origin routine at the
origin checking point, ALDS.

The absolute origin card routine sets up the origin
punched in columns 6 and 7 in $1 and tests for an out
of bounds origin, in which case error return is made.
The number of full words and the size of a partial
word to load are set up. A test is made to see if the
card will be loaded within bounds. If not, error
return is made. I a partial word is to be loaded, the
number of bits involved is set up in the field length
and address fields of instruction. ALDI1 and the suc-
ceeding instruction and the partial word indicator,
AHFWDI, are set to 1. The sequence number and
checksum are tested. The appropriate skipping or
zeroing is done and the contents of the card are
loaded one 64-bit word at a time. The partial word,
if any, is loaded next, and any skipping or zeroing is
taken care of. If this was a relocatable binary data
card, control is passed to ARNORM which adjusts
the appropriate counters and counts this card. Other-
wise the current instruction counter is stored in
ALDCTR, AHIWD is rounded up to a 19-bit address,
if necessary, and normal return is made.

Relocatable Instruction Cards: These cards are proc-
essed by the routine ARBNCD (Figure 41). The
checksum is computed and checked. The absolute
origin is computed by adding the relative origin in
columns 6 and 7 to the program origin. The upper
address to be occupied by this card is computed by
adding the number of bits to be loaded to the absolute
origin of this card; the result is then checked to see
if it is within bounds. The number of half words to
be loaded is stored in the count field of $4; the number
of bits left is stored in the field length of ARBCD7
and ARBCD6 and in the address field of ARBCDS6.
The location of the relocation bits is computed. A
half word instruction is picked up and its associated
relocation bits are tested to determine what type of
relocation, if any, is to be done. The relocation bits
are defined as follows:

0 - No relocation (one bit used).

1000 - Relocate leftmost 18 bits as lower address.

1010 - Relocate rightmost 18 bits as lower address.

1001C - Relocate leftmost 18 bits as common C.

1011C - Relocate rightmost 18 bits as common C.
where C is a binary integer, encoded in i bits, indi-
cating the number of the common. For blank common
references, C=0. If a reference to a named common
is made and this is a non-BSS job, error return is
given.

The card is loaded one half word at a time and any
remaining bits are relocated and loaded. The loader's
counters, AHIWD and ALDCTR, are updated. If this
is a BSS job, the card counting routine is entered.
Otherwise, normal return is made.

Octal Cards (C, P, and D): These cards are all
processed by the routine AOCTLA (Figure 42). The
decimal point column is put in the accumulator. If
the entire contents of the card were to be ignored
(i-e., AOIGNI=1), the location counter is stepped up
by a half word and no loading is done. If this isa P
or D card, the decimal point check is skipped. If

the decimal point column does not contain 12, 3, 8 or
1, 3, 8 punches, a check is made to see if this is the
beginning of a continuation card with a blank location
field. If so, the contents of ALDTC are used as the
origin for this card and the loading process continues
with the first half word on the card. If not, then the
contents of the card have been loaded and the loader's
counters, AHIWD and ALDTC, are updated and normal
return is given.

After checking the decimal field, the 7 Hollerith
characters of the location field are converted to octal
and checked to see if it is within bounds. If not, error
return is made. The rest of the card is scanned as
follows: (1) the location to be loaded into is checked
to be sure it is within bounds, (2) the decimal point
column is checked, (3) an octal-hex half word is con-
verted, (4) the half word is loaded into core storage.
This continues until a maximum of 4 half words per
card have been loaded.

The P card routine, APCARD, also picks up the
full or half word instruction at the location of the
patch and moves it to the location specified by AHIWD
before it loads the corrections. It inserts a branch
to the patch area (and a NOP if the instruction being
replaced is a full word instruction). After the con-
tents of the patch are loaded, ANORMR returns con-
trol to APCRDND where a branch to the PP is stored
in the patch area and AHIWD and ALDTC are updated.

For D cards, ADCARD performs the function of
APCARD and uses APCARD to replace the instruc-
tions with a branch or branch, NOP and uses AOCTAL
to load the dump parameters. In addition, it inserts
the dump calling sequence in the patch area.

System Operation Programs 85

PsD CARD

LIRS
- *
*APCARD #
#ADCARD *
» -
. = =
asane anwan (2272
MO
.
.
.
.
.
x

EREAEARARIBAERAES
* INITIALIZE -

bt IND2
AERAREARRERR RN

.
.
.
x
REARRBAERRRANERRES E2 2223 AANNN
» - * - is * - -
* INITIALIZE #CCMPLTE CRIGIN *# + ORIGIN * # ERROR #
* FOR C CARDS eeeX® OF THE CARD #eee BLANK ««X*RETURN *
. » * - ®BEEN SAVED # - »
» * - - k] L " - - -
AARRSRBEIRRTABEES AFAFRABEAIRRRRERSE RN EEX L2 (a2l
«NO «YES
. .
- .
. .
. .
. .
x x
lllliil‘l'!l.!"' EREER IREARTARAREERBRARS sssas
* INSERT ERANCH # #IS THIS® . * » .
SINSTRUCTION AND# YES #A PATCH OR # 4 CONTINUE * #NCAMAL *
* REPLACE #Xeeeeeess® A DUNP CARD # a ACING Reeseaasvess s XERETURKR %
*INSTRUCTION IN % » . * CORRECTIONS # - *
* PATCH FREA # . . » . .
RERABARNTAARARRRNS LX) IRERBEERAAESRSRER anane
. -NG
. .
. .
. .
x x
AN SRERAERARA TS AT RES 2RARE AEARRAARASEAREAER
1£ = . . RIS THISH - -
TEIS A * NG SLCAC HALF WORC # =A PATCKF OR % YES % INSERT BRANCK %
£ DUNP CARD ¥.. oX* INSTRUCTIONS * X% A DUMP CARD # Xt TO PROGRAK #
. B . * * % IN PATCH AREA +#
- - - - - E L
LI ER RSB AARERBABANSES L EEE] AAARERARR LEXE L]
<YES «NO .
. . .
. . .
. . .
- eXsesvoessescesscsansasssnne
. -
x x
AXRARAAERIRRERREY ERHRER
- -
* INSERT DUMP % ENORVAL
2 ALL ING - ERETLRN #*
* SECUENCE IN * * »
4 PATCH REA # * .
ARERRARITAREREREN (XX L)
-
.
.
.
X
ARRE
- »
#NCRNAL #

*RETURN *
» »

» L]
suar e

Figure 42 - The MCP Loader - Chart 3

86

Accounting Program Procedures (Logger)

The accounting program to be used must be supplied
by the installation, and will occupy storage in excess
of that allocated directly to MCP. Since MCP will
have reference to the accounting program, and vice
versa, appropriate addresses must be available upon
compilation of both systems, or correction cards may
be used when an MCP update is done.

In this section, the calling sequences for the account-
ing program entries will be given, as well as an
explanation of the kinds of information that are avail-
able at the specific times used. The accounting pro-
gram must have an initial state, since the system will
start in the IPL phase. The job control sequence of
events is critical, and will affect how the accounting
program receives control.

B, D MCP

, S LOG 1
, Hollerith card FWA(I)
return

The entry through an 8 LOG 1 will provide a Hollerith
card image address. The card will be either a JOB
card or a COMD, EOF card. One of the initial set-
tings of the accounting program may be to make use
of the S LOG 1 JOB card entry to determine the time
spent in the unoverlapped scanning of the original sys-
tem input tape when the system is starting up in the
overlapped mode. This procedure may be terminated
when the first job is started by entry in S LOG 4 ‘
(described later), which will communicate to S LOG 1
the fact that overlapping is now in effect. The COMD,
EOF card will be transmitted by the command pack-
age upon receipt of an EOF command card. This
transmission will take place only if the EOF card is
the last card in the card reader when in the online
mode of operation, or the EOF card is the last file
on a scan tape if in the off-line mode. This EOF will
signify that the system is no longer overlapping the
scanning and running of jobs, since it will come
through job control 1 and S LOG 1.

B, D MCP

, S LOG 2
return

The S LOG 2 entry indicates that a job is completed.
No addresses are provided since the accounting pro-
gram should have a record, from the last S LOG 4
entry, of the job name of the job just completed.
There exists, for convenience of accounting purposes,
a special program to assign a card punch or printer
unit to the accounting program for use between jobs.
The IOD tables will be set up at IPL time by having
inserted an appropriate I0D card in the IPL tape for
the desired unit. The calling sequence to the special
assignment routine is:

SIC, Z COM 90
B, Z ASN 01

VF, IOD NUMBER

return
The S LOG 2 function might be to calculate the time
for the job, and then punch this information into a
card along with the job name and other data, such as
number of units used, etc. . It cannot be assumed
that any of PP storage or associated IOD tables will
contain valid information at this time.

B, D MCP

, SLOG 4
, Hollerith card FWA(J)
, A8 FWA(J)

return
The S LOG 4 entry to the accounting program is used
by the job control 4 at the beginning of a job or by
commands to indicate an EOF condition arising when
an EOF card appears as the last file on a system read
tape or in the card reader as the last card in the
BYPASS mode. The Hollerith and A8 FWA's make
the contents of the card available if the accounting
program wants to note the job name or determine
whether the system is now idle.

It is the responsibility of S LOG 4 to disassign the
punch or printer at this time. When the system is
initially started, the initializing program will have
assigned the unit to the accounter. Since S LOG 2 is
not entered before the first job is started, the dis-
assignment must be done by S LOG 4 when job control
4 gives it control just before the first or new job is
started. The S LOG 4 entry is made before assign-
ments are made to the PP so that the unit will be free
when assignments are made. The calling sequence
for the special disassignment package is:

SIC, Z COM 90 '

B, Z DSN 01

VF, IOD NUMBER

return .
The accounting program may also wish to make use
of the $TIME pseudo-operation afforded by the sys-
tem.

INITIAL PROGRAM LOAD (IPL)

Initial Program Load (IPL) is used to read MCP into
storage at the beginning of a work period-or after an
emergency shut-down. IPL is in two parts: the IPL
bootstrap and the initialization program. It performs
the following functions: ,

1. Fulfills the requirements of a power-on initial
program loading (IPL). ,

2. Constructs I-O status tables according to the
configuration at IPL time.

3. Assigns absolute I-O units to symbolic: MCP
requests.

System Operation Programs 87

Mounts MCP tapes.

Loads MCP into core.
Writes PROSA on the disk.
Starts job control.

.

-3 O O

The Master IPL Tape

The master IPL tape is prepared by the master update
program (UPDATE-30). The tape consists of two
files: (1) a record containing the IPL bootstrap mem-
ory usage, (2) a series of 513-word records in one-
to-one correspondence with arcs of PROSA (perman-
ent read only storage area) on the disk. The order of
the first four type areas in this file is always the
same:

Type Area Content

11A11DIC PROSA dictionary
11B11IND PROSA index

11C11IPL IPL initialization program
11D11MCP MCP

The first word on the tape is a control word to
read in the rest of the IPL bootstrap record. The
tape unit on which this tape is mounted must be o1 a
unit dialed to zero.

The IPL Bootstrap

The IPL bootstrap (XIPLBS, Figure 43) performs the
machine initialization necessary at IPL time, locates
the channel with the master tape, and prepares it for
subsequent reading. The bootstrap consists of the
code from XIPLBS to XBSEND. The bootstrap reads
as many records from the master tape as core stor-
age permits, and then (X9A4) moves the initialization
program (the third type area) to its operating storage.
Control is given to the initialization program at X10
to move MCP (the fourth type area) to its operating
storage. The disk is located to arc zero, and the
input buffer written on the disk. A loop is set up
between the read portion of the bootstrap (X9A) and
the initialization program (X11) to read tape and write
PROSA until the tape is exhausted. The IPL tape is

then unloaded, and initialization begins in earnest(X13).

The Initialization Program

The initialization process is controlled by certain
control cards, which define the I-O configuration,
MCP's I-O requirements, and furnish necessary
parameters.

Control Cards

Symbolic cards are used to simplify any changes
which have to be made. These cards describe stand-

88

ard conditions which can be modified through the use
of console switches at initializing time. The control
cards are included with the initializing program, and
if they are to be changed, they must be updated on
the master tape. Three types of control cards are
used:

1. I-O Configuration Definitions (IOCD)

2. MCP IOD's (I0D)

3. MCP Parameters (MCPP)

I-O Configuration Definitions: The IOCD cards

define the distribution of I-O units at initializing time.
Each card describes a channel. Channels which are
not so defined are assumed to have no attached units.
The IOCD cards, which do not have to be in order of
channel number, have the following fixed fields:

Cols. 10-13 -- Card Type: contains the char-
acters, 10CD.

Cols. 14-15 -~ Channel Number: contains the
decimal number of the channel.

Cols. 16-17 -- Equipment: must contain one of
the following codes:

CN Console
DK Disk
PR Printer
PU Punch
TP Tape
RD Reader
MCP I0D's: The 10D cards define the I-O require-

ments of MCP and perform the same function for
MCP as they do for the problem program. The
initializing program will assign these symbolic
requests to absolute units.

MCP Parameters: This card is used to provide MCP

with initial parameters. It consists of fixed fields as
follows:

Cols. 10-13 -- Card Type: contains the characters
MCPP.

Cols. 14-17 -~ Mode: defines the mode in which
MCP will ordinarily start operating. It must be one
of the following:

OFFLINE - Off-line overlapped
ONLINE - On-line overlapped
BYPASS - Bypass (Unoverlapped)

The I-O Status Table Set Up

At X13 (Figure 44), the initialization program proc-
esses the IOCD cards to form the Unit and Channel
Status Tables (UST and CST). The I0CD cards need
not be arranged in channel-number order, but there
must be one card for each channel physically in the
system whether that channel is available or not.

snann
- -

* CLEJR - % STORE SIZE CF #
* * % REGISTERS, ol #* 7030 STORAGE. * 2 SPACE FILE
EXIPLBS ¥eeeececccceeX® I[NDICATORS #eeesssecX® FIND IPL ¥esevacseXd (SEQP) AND
* » % AND STOFAGE. # - CHANNEL . 4+ SPACE CVER
- * - - » NUMBER « ® TAPE MARK
HENRE (1] ARUEAAARIRRRS
-
.
.
.
.
READ IPL TAPE 3
REER AEESNARIBARES LI BRBABBRERERES [TYIR)
- * #® READ (SEOP) = T® - - - -]
THE IPL TAPE #ERR * - . SERR * -
* XSA X% AND WAIl FOR - sascesse XEXERROR # YRELEASE (SEOP) %ecvcevoovsoceXEXERROR &
* COMPLETICN & * . * THE UNIT . . .
L] - - = » L] - -
Exann EARRBIIIRARES EERE FARRRBARSARAS annus
.
.
.
. .
. .
. .
- x
. EREE
.
.
.
.
.
.
.
.
.
.
.
-
.
.
.
.
.
.
-
-
.
.
.
.
WRITE DISK ;
[TTIT] XA raanw ANERANAREHSEE
L] * - - * -
* * * wAS IT * NC » 1S EE * YES - RELEASE -
* X11 * * THE FIRST ®eeseseseX® STATUS BIT % e0000000000000000000s00s0sc0ancnasX® {SEOP) e
* - * REAC » * * - THE UNIT *
* * L
EREEE “nuan EREER AERERRSAIAIRS
. «YES «NO -
. . - .
. . . .
- . -
- . 200000 ss0e000000000000s00s0ss0sssassssccccscaccnsnaXe
. . .
x X9Aa X X1 X
ERAERARRARRERE DR Erey EREEEE SRS ERsan
- * * NCVE = * # % LOCATE DISK # H *
#COMPUTE NUMBER # ®INITIALIZATION % MOVE MCP 10 * + TO ARC ZERO. # * E
#OF PROSA WORDS * #PRCGRAM 10 ITS «X% OPERATING oXd WAIT FOR * cesecssceX® X11 4
% TO BE WRITTEN # ® OPERATING #* b STORAGE ® DISK LOCATE # * 2
- * * STORZGE = - # TO FINISHe * . *
ERREEREERERSRRENE AEAREESERRERD anunn
- »ERR
. .
. .
. .
. .
% .
EnuAR FARERRRHSFANRRBEE AR s
* * - - - -
* 1S » YES - UALCAD » * - - -
#* WORD COUNT *eccessesX® 1PL FecessscascseX® X13 ¥ *#XERROR #
* ZERO = * TAPE bl A * * *
= » R . - * - *
[ERNTRAREFIARRGEEN T2) axunw
«NQ X -
. . .
. .
. .
. .
. oYES x
. ranan snanw CRREREEREREERRAER
. * » L] L3 + E
. * WAS ® AC * = # SEARCH FCR *
o - TAPE NARK ®evesscsceseeX¥® XGA # 4 ERROR MESSAGE #
. % REAC = * * . ADCRESS. *
. » * = + *
. wEAAE ETTE2Y AREREAEAARTRRR RS
- X .
. . .
. . .
- . .
. . .
. . .
x . x
AEREFEERERRNE ANSEEEIARD AR
#* WRITE PRCSA # - « * # » * ARERFSARARTARANS
ON DISKa * * UPDATE * NVE - YES & IS ERROR % NO - EALT L
* WAIT FOR KeosoasassXE ART = SERROR LOCATION #Xeeoseoes*MESSAGE ADDRESS#ecossceaX® (BD,S$) -
* WRITE TO * * COUNT - % TO IGS FORMAT # ® LISTED * * -
* FINISH. * - * - - - AxEREREASRSAENY
RARERRAERERER AEBERRBAR SRR RRE RARGE BN AR AR amnan
«ERR .
. °
. N
. N
. .
. -
X x
AxRaE ERABEEARREESS EITY T AERAREARARERE SRR
» - * " - -
= * el TRY TQ b 1< * NO - HOw el
#XERROR # ol LCCAT %eosesvcoeXt CCNSCLE #®aessssseX? ERRCR ADCRESS #
* » * CONSOLE .' % CN CE CONSCLE #*

- *
EEEER

Figure 43 - The IPL Bootstrap

SAARSHIRBREER

L)
-

% LOCATED *
- »

-
RREEN -
=YES

xe o e

SREARARAAERER
L]

*

SCUND GONGe &

WRITE ERROR HecsescaaX?

MESSAGE AT * -
CCNSCLE *

AERASEAERRNSR

[
AABERACAE R AR R BE
.

PIRERRE

AASABRERARAAEAS
FALT

(ED,$) »
-
SAIRBFARAARANTR

89

snans sEaew snans anuny
* * - - » -

+ IS [
* ECUIPNENT * KO - .
* X1€ oX® SK_OR . oX* X184
4 CONSOLE # * .
- - - -
RGN HREER

x x
FESEAEARBEARARR RN SRERANATHRARABEREE
* »* » -

* SET uP . . NSE! "
% TQ PROCESS # *# UST ADCRESS *
® 16CD CARDS # = N € »
» - - -
ARARRBVSRBERTRANE ERTERSRF SRR RRERY

. -

. .

. .

. .

. .

RRARER FERRAFATAARRARRER
+ * #SET_UNIT COUNT ®
* . #7C TWO AND SET =
* X131 * MULTI BIT ON ®
* . " ASSIG] *
« * . CHANNEL *

ABARN FRRARTFANTANATER R

. .

. .

. .

. .

. .

- -

x x

BREER HERIR HRUARE TREFARARARRRERN
» * . . - * SET CURRENT *
® IS THIS * NO . * . 1s « No s UNIT TO .
- AN 10CD FecssessasacsX? X1 e sX® CHANNEL %eceesseoX? UNAVAILABLE #
* CARD . . - . * AVAILABLE * . IN UST .
» - - - = -
REBEE SRR - HERR IR RRFRB AR AR

<YES . «YES .

. . . .

. . . .

. - .

. . P S

. . .

X . X
REBRBERRBATERRRER - ARNFERFRAZRIRRRRER
- CONVERT . . . SET .
» CHANNEL . . * CURRENT UNIT *
#NUMBER. SELECT * - % STATUS T .
s EGUIPMENT * *# PROCESSED # * NOT ASSIGNED %
* -

RAGRRAARDARTRZTNER L2217 A EERERERARBRNAREN

. +YES

. .

. .

. -

. .

- .

x .

ARERS EIZEL] -

» - - - -

. s = NO * . .

* EQUIPMENT ®eeccecscseseX® XIE ¥ .
- TAPE - » - -

- * - -

HREEN EELER] -

«YES -

. .

- .

. .

. .

i .

SR ANBEERRATR R ANAAN ARABARLRVASBREERN
L] L] - L] - -
. SET uP » » - . ENTER »
STATUS TABLES %ees eaX¥ X171 # «eX#® ADDRESS OF
®= ~ FCR UNITS # » * % NEXT CARD #
- - » * -
RERERRRAEARANRRES EEEXE] ARABSTERSARFAANTES

.

.

.

.

x

faEnn ARARRERETARABEARN
* * = SET CUFRENT *
. 1s * NO » UN »
» CHANNEL . eeseX® UNAVAILABLE %
* AVAILABLE * * IN UST :

* -
#Rane AFEARAEASARESRERS

<YES .

. .

. .

. .

. .

- X

- FATAXAARAIERRERRS SRARR

. * SET _CUFRENT # * *

. ® UNIT STATUS # *

cesesessescncaneaX® 70 N FeresesesesaoX® X171 %

® ASSIGMNED * . .
» - " -
ARAARRSTTIRAAEREN HEREN

Figure 44 - The Initialization Program - Chart 1

90

The tables are first formed in lower storage and
then relocated (X19, Figure 45) to the area just below
MCP (toward lower registers). This relocation allows
the table size to vary from IPL to IPL. The tables
which are set up by the assignment phase of the
initializing program are just below the I~O tables.

The lower boundary of the MCP table area is com-
puted and saved as a system parameter (S MCP) in
the communication region.

After processing the IOCD cards, the program types
the date of the tape update (XDATE), and reads the
console to determine if the operator desires any
options. If binary key 29 is on, the program (XIO)
performs the requested status change and reads the
console again, repeating until a status change is no
longer requested.

MCP I-O Assignment

The assignment of absolute units from IOD cards
will be done for MCP at IPL time through a modified
decode-assign-move routine (X20B, Figure 45).

The assignments are made according to the I-O
configuration as defined by the I-O tables, the type
of IPL (normal or abnormal), and the operating mode
(on or off line overlapped or unoverlapped). A sum-
mary of the action taken by this decode-assign-move
sequence is as follows:

1. Normal IPL and Unoverlapped Mode: The card
reader is assigned to MCP. A unit area table and
file area table are set up for the card reader under
MCP ownership. The output tape units are assigned
to MCP and the necessary tables are constructed.
Mounting messages are sent out to operator for
scratch tapes to be placed on the assigned units.
unit and file area tables are formed for the input
tapes, but they are not put under MCP ownership until
a system command changes the operating status to
overlapped. No mounting requests are made until the
mode changes.

2. Normal IPL and On-Line Overlapped Mode:

The input tape units are assigned to MCP and the
necessary tables are set up. Mounting messages are
printed out for tapes to be mounted on two units.
These tapes will initially contain no jobs, but will be
filled with problem programs read in from the card
reader. Card reader and output tapes are assigned
as they were in case 1.

3. Normal IPL and Off-Line Overlapped Mode:

The input tape units are assigned as in cases 1 and 2.
However, the mounting messages will be worded
differently since the scan tape which contains the first
job to be run must be mounted on the symbolic unit
which will be first referenced by the input program.
The other scan tape will be placed on the second input

The

unit. Output tapes are assigned in the same manner
as the two prior cases. The input card reader unit
area and file area tables are formed but not put under
MCP ownership until a system command changes the
operating status to unoverlapped, on-line overlapped,
or makes the unit the system input source.

4. Abnormal IPL and Off- Line Overlapped Mode:
The abnormal IPL selection is made at the console and
must be used when restarting with an input spool read
tape which has been partly exhausted of its jobs, such
as after a system failure or after an end-of-day shut-
down. While in the on-line or off-line overlapped
mode, the IPL must be made in the off-line overlapped
mode because the old read tape must be rescanned.
The assignments and the mountings will be the same
as case 3 except the second input tape will be an
unused scan tape which will be used later as a write
tape. A system command must be entered before
tape switch time to return to the on-line overlapped
mode, if such mode is desired. The output tapes
and the card reader are handled as they were in case
3.

When I-O assignment is complete, the program
(X261) stores the base address of the I~O location
table and the address of the next available arc on
the disk in the MCP communication region, and
moves the UAT and FAT to their proper locations.

Transfer to MCP

The program (XREJ1, Figure 46) stores the number
of jobs to be rejected if this is an abnormal IPL, and
tests for a mode change request from the operator.
If none, the mode is taken from the MCP parameter
card. The necessary bookkeeping is performed, and
(X37) the command package and JC4 are primed.

The MCP boundary register and interrupt address
are stored, and the IPL messages printed if the
suppress key is not on.

Final bookkeeping is done (X378), the disk located
to arc zero and all tape units selected, and $RET
issued. The system starts when the return routine
empties the prime queue.

IPL Error Control

Any error detected by the IPL initialization or boot-
strap programs results in a BD, $, with an accom-
panying error message typed if possible. The error
control routine, ZERROR, will type an error message
if it can identify the error and can access the console.

THE COMMAND PACKAGE

At any given time during the normal processing of
jobs, the operator may want to alter the automatic

System Operation Programs 91

EZITYTY
» *

fxuEn

L] »
* IS IT AN #
* . ICO CARD
-
rEERE
«YES

xeeoow

AEREANAARABEAREEN
% SAVE CST AND *
* USTe CCMPUTE *
* UST SIZE. *
* MOVE UST AND =
% CST BELOW MCF &
ERBRAAETARABAARAR

Xe oo

EEEAREAAERERRE AN

*#FOR CONSOLE IN *

#MCP COMM.REGICN®

L R e e T
.

Xs e e

EERER
= *
* *
* XDATE =
- *

* -
axwus

SRRERE
» *
- -
* X261 =
» *

» *
EREE

Moo ven

ARERERERARRANB AR
®*COMPUTE BASE _CF#
' CO“VUNICATIOB '

II.‘I'I!IIII!IIII

Xeoeon

reanw
* s *
®*PRCSA SIZE *

NO

- -
XDATE ¥,0csccece
* »

* *
ey

REAAE
L] -
- -
+XEXERRCR #
» *

L] L]
ETETTY

EEBAR
* *
» -
* x1c1 *
* -

* L]
REER

Xeesoa

ANBAEUEFIRABER
- »

* REQUEST NEXT #
* [/C STATUS

*
* REFCFT *
- *
ERRRARRAERRER
.
.
x
ARRARSARAABRERARE
x71 *
W R W W e W e R
* TEST FOR el
- NORMAL =

* COMPLETION -
EESASERTIINNENNRE

I
X

X10A
AERARAEARBERE
- -

* CGET ¢S *
ees XASTATUS BIT FROM¥®

ceseses et

NO

#CONSCLE CHANNEL»
* *

[XTITTTEE TR Y Y

.
-
-
x

uaan

FAS A *
* OCCUFFED -

wewan

Ill)!

* THE SAME AS '--.-...-----K'XER“CR '

*DISK PROSA %
* SI2E

PIRERE)

ARERARB SRR RN RN
% SAVE ACDRESS

* CF NEXT TRACK
#*AFTER PROSA IN
* COWMUNICATION
* REGION
AEERAERARRARAANY

LEEEE Y

Xeeooo

HEERAEEABRAAAR SN
®#COMPUTE SIZE CF#
®*MCP 10 LOCAYICN‘
- TABLE AND -

- RELOCATE ‘
* UAT AND FAT #
ERRRARARNRAT AR AN

- -
12211

l -
HEmaw

Figure 45 - The Initialization Program - Chart 2

92

AERRBERRBERARIAEN
= »

% GEY DATE THE &

X% TAPE UPDATE #
* WAS PREFORMED #

- .

*

AERARARRBEARARENY

e oo

EFRBARAATRAEY
- *
= TYPE ouT »
* TAPE DATE »
#TC THE OPERATCR®
- *

FREREREEERAEAR

Xeosa o0

EEERRUEARERARRREE
* L

X71
el S R S T ot 2]

- TEST FOR =
* NORMAL -
- OPERATION -
EERARRENXERNARRERS
.
.
.
.
.
10 X
liucan.-tluuu

-

* READ CONSOLE e

* T

ﬂREFORT OPTICh -
*

-aa;--nlltcla

ansnx
* L]

- -
* X20B *Xeesceesvescsal
* -

- L]
axnma

xIcz
"Qll.llll!.l
i

- HEID CONSOLI

N s €
ee e FCHFANNEL SIGNAL %eceeecessX¥TC GET IDENYIYY'
-

OF DOWN UNIT

o
llI!I'I‘!!II'

Xeeoen

AEAREAREARTERRARS
N -

CCMPLETICA -
AERFREAEAFANRENDS

Xeo0000

“EEEN
®#IS THIS#*
* ANCTFER
* 1/C STATUS
* REPORT

-

xw
-YES

* ADJUST_UST -
#AND CST TO SHOw®
: UNIT FATILLURE :

EREREEEAARNB AR

Xeoa o

.
-
* -
* x101
« .

- -
EEEE

Rene

ERERR

1 4 -
- *
* x208 *
- *

-)
T2

e o oon

FABANBARE AT SN RN
% PLACE PRINTER #
‘CHANNEL NUMBER l

HE
i CONMLhICATION i
. 1
-:«.cca-cc-o::-an

.
.

x
llil&lillliilllll

. YUNCCE
Ll St at S Sy = B B u

«NC
ERRAN

lls THE NEXY!
A _MCF

% CONVERT NEXT #.ccecseceX¥® CARC
*

* CARC TO

* ECE. -
FARREAAEAAATEREAS

IREANERENAGERRTEN
» X711 *

IS SEE A T SR Y

seeX¥ TEST FOR *
»

NCRNAL *
¥ CCMFLETICN el
FEENREAARAREAE RN

.

Xeseas

xuxe

% D
CPERATCR
MAKE I/0 -
* STATUS .
®*REPCRT *
wenan
«YES

x
FEABERANGAATR RN AN
L] *
¥ ADJUST UST =
AND CST TG SHCw#
T UNIT FAILURE *
N *

EERERS

LYY
- -

- -
annuw

® PARAMETER =
#* CARD. *
et
«YES

Xeo e

EAARFAAARSSURNT A

* PREPRCCESS -

* I/0 REGUEST, *
ERAREWERSRAERERRE
.

.

.

-

x
EEET 2]

L] -
4 IS THE * NC
ANEXT CARC A NCP#%*...

PARAMETER *

CARDs *
sxzan

«YES

.

.

.

.

X
FEASRAERERNNARNAI,
» TASIGN ot
LoDt ST BT B B 2]
o ASSIEN »
a n

RECUESV-
neus l.llll.!

.
.
-
.

x
srEsREARREATRANNY
- MOV *
L R T D iey-Sor B)

cevvan

* FCRM_FAT *Xoae

% AND LAT FRCV =

¥ASSIGNED UNITS &

AAARRARERRATAAEN
.

Xeoo oo

XTI}
#IS THE *

* NEXT CARD * NO
A NMCP -
¥ PARAMETER ¢
ARC @

Il
+YES

xe o0

14N
-
- -
= x261 =
- -

L] 3
Anune

besesaseseane

x
EERAAAXERBRRERDER

-
-
-
»
*

XMCDE1 X
=

REGION
FEEEFERRRERRER AL

AARER
- *
* -
* XREJ1 *
- -

- -
EREEE

= -
® IS MCP + NO
RECUESTED ¥

* x

EunER
«YES

-
L]
*
COMMUNICATION #
*
-

.
.

.
eXevesossnse

ERERE

* *
* IS MCP * YES

axAAR
»

llﬁliilllllllllil

'SAVE RECLESTEC

-
* MCDE CHANGE l-..-....xiMODE CF SYSTEM *
* REQUESTED #* OPERATION el
* -
EEREE lllldliilll!lllli
«NO .
.
-
. .
. .
esecssscccsnscsesccccsssscXe
.
-
.
.
.
Xx36 A
illilillillil'lli aEAE

-
' OFFLINE FCDE % CFFLINE
#Xesseeses*MODE OF SYSTEM

n

TH
COFHUNICATION *

REGION
lian:alaa;nlii!ni

Xe oo e

EEEFRERA AR AR RN

*
*
=
-

ELIMINATE *
ASSIGNMENT OF #*
SYSTEM READER *

FROM I/Q *

TABLES

= *
EREEREAREEERNR TS

Xeevos

SRR
* -

» *
EEREE

% *
EWHAT IS THE®
% OPERATION #*
* -
2223

+EYPASS

.

Ko e v

X32AA
EERAEEBELSERARARE
* ELIMINATE

®* ASSIGNMENT OF
* SYSTEM 1APES

* FRC¥ 1/C

* TABLES
EERXRAERFASEANRRN

=
=
*
x
-
*

Xeounn

EFREREERAAIAARAERER

*

-

* MESSACGES
*

*

*

CF _MEStAGES
EEAEEEEXIRALNRAR

Figure 46 - The Initialization Program - Chart 3

FEABSRTRSRABRAERN

* SFRINE hd
et o e

eeasX® PRIME SYSTEM %

% CCFMAND FOR &
% DESIRED MQDE ®
ARRRARSRRAREEEARE

Xewovoe

AEESARRARAREEREIN

- SFRIME -

a—i-u—i-q-l—l-n-g

-

' Joe CCNTROL L n
*

illlllll!l!!lll)'
-

x
ARRAREERRERBARRRR
% SET UP SIA
. AND MCP =
* BGUNCARY
* PRCTECTICN
»
=

-
ERARAERARBERREER

-
-
-
-
-
-
-
-
.
-
-
-
b3

X35
AEEAAERESERERRERR

TLEL)

O
MESSAGE
SPECIFYING
READER
HANNEL
FESRERARENERRRARN

Heso s

AREED
- *
Is IT =
* EYPASS
* MODE *
= .

EREERRARBER AR ERN
i FCRM MESSACE #
SPECIFYING *

'IHICH OF INPUT ®seevsccscneeX®
E % *

® MCUNTEE FIRST =*
REKERABERARENART R

YES

LLLLETRYYS L

#1S IPL *

* MESSAGE

SUPFRESSION

* RECUESTEE *
*

*1S ﬁEESAGE -

*

EEREREREREAER

AXARE
oNC
.
.
.

eXeeoocosnscsncscscncse

X
[Ty

eEEa

<YES

e oo

TYFE
THE

MESSAGE

Rese0vssccccssanane

EEET TS
] =

X37

* -
REAR

PRXNIED

ARAEARARERBES
* *

-
=
*

til'l
*

*
'---...-.----X‘ x37e =
=

Q *
RBEE

-
FASREEFREERRERRER

* -
ADVANCE 10 *
oX® THE NEXT *
b MESSAGE *
L] *
EEARREBRERREREAAN
x
.
-
.
-
:NC
LT

- *
* HAVE ALL &

:------..X' THE MESSACES %

#BEEN TYFED
- *

ERARERRERRERRN AR
* SET IPL MCDE &
% CODE IN THE #
CCNMUNICATICAN *
#REGICNe SET IF *
#* MASK BIT CN. =
AAARREERERRAERARE

Xees oo

AARRRRSS RN AR AN
b -

® CLEAR SMAXEN. ®

® KOVE DUMKY -

% COMMUNICATICAN #

% REGICN TC NMCF #

ARRCERARERAANMANE
.

e oeoe

ARRRAREERARAR
- *

* LCCATE hd
* CIsSK TC *
® ARC ZERC ®

. B
ERRANGARRTERD

.
.
o

BERASRBRAAREY
% LOCATE ALL #
TAPE UNITS

»
-
=)
»
P
or
oo
H
n
o

X

* THFRCUGH *
RARERRGERNE RN
-

PIEEEY)

EAREE
- -
» &
* SRET #
* -

»* .
YT Y

93

flow of work through MCP. The System Command
Program interprets and acts upon these requests.

For some of these commands, the desired response
may depend upon the operating mode of the system,
e.g., overlapped or bypass. In order to avoid a con-
flict between intent and actual execution, the input
source for some commands is restricted. The proper
source is determined by the system mode and the
nature of the command.

Command Mainstream

Before control can be passed to one of the individual
command routines, certain general checking proced-
ures must be performed. The command mainstream
(JCOMD, Figure 47), decodes all commands into a
standard format and breaks them into individual
fields. It develops a matrix mask from the source
and the operating mode of the system to test the
legality of the command request. The mask is also
used for internal control procedures within the
routines. A normal exit routine is provided by the
mainstream for all specific routines, and two error
exits: ZEREXI, for use when the command is illegal;
and ZEREX2, for use when a legal command is given
in an illegal situation.

Sources

There are four possible entrance sources to the Sys-
tem Command Program. All use the calling linkage
described under SCOMD pseudo-op. The most fre-
quently used sources will be the operator's console,
known as the operator source, and the input program
card reader source. In this case, the linkage will be
an indirect transmitting linkage between the operator
and the command package.

Console: The operator may wish to enter a command
via the console typewriter, providing this is a legiti-
mate source for the command in the mode in which
the system is operating.

When the CS is generated at the console, the inter-
rupt is received and interpreted by the conceptor.
The conceptor will issue a hardware read to the
console; this releases the keyboard. The console
reserved light will also be turned on. The conceptor
then gives up control until the operator has finished
entering his message and an EOP interrupt is gener-
ated by the END key. The console read portion of the
conceptor gains control and examines the message
for a DB or PP as the first two characters. If
neither is there, control is passed to the signal return
exit in the command console table of exits, the first
location of which is JCFIX.

94

The signal return interrupt routine resets the
SCNSSG indicators in the unit status tables, obtains
a count of the number of characters in the message,
primes system commands, and issues $RET. The
eventual unstacking of the prime queue actuates the
command. Since the console is reserved, the message
may be left in the conceptor buffer PMCPBF with
impunity.

Job Control: Commands entered via the input source

will be discarded by job control unless they occur
between jobs: i.e., after a job boundary and before
the succeeding job card.

When job control detects a command card in phase
1 (JC1 source), it enters the command package directly
with the command pseudo-op, SCOMD. Control is
returned to JC1 when $RET is given by the com-
mand package.

When phase 4 of job control detects a command
(JC4 source), it primes the command package (SCOMD),
primes itself, and issues $RET. Thus, control will
ultimately return to the beginning of JC4 after the
command is activated.

SCOMD Pseudo-Op

The communication link between the separate sources
and the command package depends mainly on the
calling linkage; in the case of the operator, it depends
on the interrupt mechanism and routines. The con-
version routine and the prime mechanism are the
primary system routines used.

The passage of control to the Command Program
uses the following linkage:

B, $MCP (or SIC,SPRIMR; BD, SPRIME)

, SCOMD

y S.-
» LoD

, N.@)

(Error return)

(Normal return)
in which:

S is the source of the command:

1.0 - Job Control 1

2.0 - Job Control 4

3.0 - Console

4.0 - Initializing Program

L. () is the bit address of the first IQS character
(console) or of the broken-out field (Job Control)
or of the BCD character string (Initializing Pro-
gram).

N. (J) is the number of characters or fields.

(Error return) may be used only when the reject
command is given by JCI.

JCFIX

REERR LS RE] Qi.llllilllil.lll RN
- * i - GET IT - *
- * * *STATUS ADDEESS. * -
% JCCMD #* * JCNCS i............xlnnn OFF SCNSSG# % UNCFX #
» * * GET MESSAGE ¥ » * B
- -] u:mmcrER CCDE # * =
EREE II!’I EEEEFREARARERRERNR AXEER
. . -
. .
. . .
. .
. .
x X
ABEEERRAXAERRRARS AAAEE FAERBAASASERRRARNE
® SAVE INDICES. ¥ * * AL
® GET FESSAGE #* % IS TrE * YES B il e et mia bl d
% ADDRESS AND # * PRIME SCOMD & 2 OPERATOR THE f¥ececceseX® TURN QFF *
* LENGTHe GET * - SOURCE 1S - * SCURCE * - RESERVE -
SOURCE CODE * - CCNSO . 1 * LIGHT *
AERABEAFBIRTRENARE GABEERRARAEATRRERY HRAEN FAAEABARRREREARRE
. . oNC .
. . .
. - . .
- . . .
. - . .
. - . .
x . X
A ERAAR ERAER - AEIERBERBBRARARER
» - l . - - . - *
Fl s + NG 3 = . » RESTORE *
* SOURCE CCDE n............xl JHARD - # SRET * . oX%® THE INCEX -
CCRRECT % - * % REGISTERS »
* l - - - -
AERER lilli AREEE ARARERSARARFTRART
«YES .
. .
. .
. -
. - .
: .
X
EEERE ERREERNRI T ARERNES ERAREASEIRERARARR l.il‘lllllliill‘i RERRR
= » * 2BCC * * zeCc9 » SBRKE # - -
- 1s * YES P e B S 2 B] B R e el '—'—I_l-l—l-l-!—l = -
* IFL THE ¥oveeseasX¥ SET LP ®eeseseesX¥ SET UP FOR ¥eeeeeseeXE BREAKOUT * # SRET #
* SOURCE # BCC MESSAGE % X ® BREAKOUT x RCUTINE * * .
* - * * . * ‘RCUT INE *) » = -
#RERR ERFARNERAT RRERAER AFFEARERERAEIRARN FEEAR AR NSRS AEREE
«NO .
. .
. .
. .
. .
. .
x -
EREEE I‘Illlﬁllillllllil -
* * - -
» 1S THE * YES i—‘—l l—l—l—‘_'—l *
% CONSCLE THE #.seescseX® CONVERT IGS *oceceec - -
SQURCE b % MESSAGE FRCM # - *
* - SPMCBUF TC JCBUF# - *
R EEREEAERAARSERERR -
«NC -
. - .
. . .
. . .
. - .
x X X
AEERRBAERERRERERE AERES ARNRE
. 2BKECC » .
e L e ittt bl #®# IS IT A % NC
* MOVE BROKEN FoceesssenvescssscvcecacccccnsscnncX¥ VALID *-..-'...o-~.X*ZEREXl 'l
FIELDS TO JCE * ® COMMAND # *
#CONTROL BUFFER # * - . *
REERARAREBAARRARE AEERE EER L]
<YES
- .
X
ERRER ARATH RERER
* * * *ENTER*®
= * - » 2CCMMAND #
*ZEREX1 * #Z2EREX2 * #RCUTINE#*
» » * * & VIA %
- * * * #JTABL#*
ERXER RRAAE EEERR
. .
. .
X
I&liiiiliil!ii.ll RERE
- *
H SET STATEMENT : * - *
* FOR I1LLEGAL * * CCMNANLC BUT * #* JHARD *
* CCMNMAND b * ILLECAL *® * *
* * e SITUATION * L .
FEBAATERRA DR R EAER AEERRRAR XTI ERRE RN RERER
. . -
. . .
. x .
ecscssnsseissssvarsbosscssssssscoseanscessaassscceneXa
X
AnrAE AERAR
* *
YES ® IS SCURCE * * *
esevccsncse SYSTEM “ ®ZEXITX *
. * INPUT @ * =
. * » L] *
. ARETE AEREE
- oNC -
. N .
. . .
. . .
. . .
. . .
x X x
illﬁ,l&lll{illlll SFARE AERREERRAERRRRARR AREER
ZSRFFD hd * * * SCCMN " * L
._. PR e e] * 1S # YES u-u-:-s l-l-l-i-.
#GET FIELL COUNT® # THE CONSCLE %eecsewseX¥ #Fevavene
*AND THE MUMBER # *THE SOURCE # ’ AMPL[FYING :
* CF CFARACTERS % * . * MESSAGE . *
EXEAERBARIBERRRRE xEane Illlllllllllillli ARRER
- +NO X
. .
- .
. .
. . .
. . -
- ZFARCC X .
. AEXAEARFAREARRRARSR -
. .

CC TO 1QS
AREERERAXS AR RENE N

Figure 47 - The Command Mainstream

95

The format of the command message is essentially
the same for all sources. Commands coming via
cards must have a B punch in column 1 but the state-
ment field, columns 10-72, contains the command
statement as it is entered via the console:

COMD, command and parameters

Upon receipt of control, JCOMD (Figure 47) saves
the index registers and then proceeds to construct
the matrix mask from information in the calling
sequence and the system mode bits, SYSMOD. Be-
cause the command message may be any one of three
different formats depending on the source, a multi-
way branch must be made to specific calling sequence
sets for conversion, breakout and/or moving routines.
These sets of calling sequences will transform the
message, if necessary, into BCD format, break it
out, and eventually store it in an area JFLDB. The
message in JFLDB is in eight-character broken-out
fields. If the number of fields is less than two, the
command request is in error, and the common error
exit routine is entered with an explanatory message.

If there are two or more fields and the command
is entered through a source other than the Job Con-
trol source, the first field will be tested for COMD
at ZCMCRD. If rejected, exit will be made via the
common error exit routine. After determining that
a command message is acceptable, a table lookup is
made to compare the second broken-out field, the
command request op code, with a table of legal op
codes for the commands. If the command request is
not found in the legal list, the common error exit is
entered, with an appropriate message. For all error
messages, a hard copy is made on the console if the
input source was not console. If an equal comparison
was found, a branch is made to the requested indi-
vidual command routine for further processing.

The common error exit routine, JHARD, will make
a hard copy of the command message on the console
typewriter, if the console was not the source. The
routine uses the SA6IQS conversion routine to convert
the original command message to IQS code. This,
together with an amplifying error message is then
sent to the console typewriter via the commentator.
The normal exit routine, ZEXIT, is then used, which
resets the console reserved light, if necessary,
restores the index registers, and gives $RET. The
general exit routine provides for handling normal
exit messages as well as error exit messages by use
of index registers.

The major system subroutines used by the com-
mand mainstream are the conversion routines from
one format to another, and the breakout routine. The
inputs can be in IQS, BCD broken out, or BCD. These
must be transformed to broken out BCD fields.

The reserved light off pseudo-op is the only pseudo-
op used, and the commentator is used for output. The

96

hard copy maker converts from BCD to IQS for the
commentator, using the SA6IQS routine.

Mode Control Commands

The operating mode of the system (bypass, online,
offline) may be altered by the operators at any time
via the system command package. The mode control
commands may be entered via any of the sources,
and the IPL source serves as the initiator for the
system input program.

The BYPASS Command

The BYPASS command (ZBYPASS, Figure 48) will be
actuated in several different ways, depending upon
the source. If the source is IPL, SYSMOD is set to
BYPASS(10), and the SPPBT1 indicators are set to
11. These indicators are tested by the overlapped
mode change commands to determine whether tape
IOD's have been previously assigned or not. The IPL
sequence then leads to ZBA1.

If the source was Job Control 1 and the present
mode is overlapped, the STRANB indicator is set so
that on $RET, Job Control 1 will stop requesting
cards from System Input. A branch is then made to
ZBA1.

If the operator's console is the source and the
present mode is offline overlapped a branch is made
to ZBAl. ZBAI1 is an MCP calling sequence linkage
to the input program, requesting a transition to the
bypass mode. Upon return, the index linkage is set
for the command acceptance message and exit is
made to ZEXITX.

If the source was Job Control 4 in the bypass mode
and STRANB is 1, STRANB is set to 0 and a branch
made to JNOPX (Figure 48). This is done because
the input program will give the BYPASS command
card to JC4 as the first card of the first bypass job.
Since this command has already been actuated, it
must be ignored. If STRANB were =0, an error exit
ZEREX2 branch would be made. If the source was
JC4 in an overlapped mode, the BYPASS command
was on an offline tape, and return to overlapped has
been accomplished after entering bypass from phase
1. JNOPX is entered. Any other source or mode is
in error.

The ONLINE Command

The ONLINE command (ZONLIN, Figure 48), like
BYPASS, is source~-dependent for its actions. If the
source is Job Control 4 in the bypass mode, a branch
is made to ZONO1Y where STRANB is turned off.
This is necessary because STRANB might have been

REEEE ITETE]
* * *

-
* = * is »
RZOFFLN *eeececancosaX? Jca 1IN
* * % BYPASS
* » * MCDE *
R AR R
«YES
.
.
.
.
ZOFF Q2 X
ARERREEARRAEBS TR LIRS
* ZASNOL * * *
R M B K W Hm B K= B c % *

3 N FAVE
* ASSIGN TAPE *Xeesesese® TAPES EEEN
* UNITS FCR_ * * ASSIGMNED %
* SYSTEM INPUT % * »

SXEER

=I5 =
NC *IPL OR JC1 *
%easscsseX® IN CNLINE CR

#OVERLAPPED *

* MODE +#
EEARE
<YES
.
.
.
.
.
YES
Eeccecosace

ARREE
AC * Is
¥eessaaaaX? JC4 IN
*#QVERL AFPED
* M *

AuERN

*

AERER

- -

YES - -
RecescscassasX® JNCPX *
- -

1Y *
AREeE

ARRRASAEARBARN RS
Pl *

* SET SPPRT1
es® AND SPPBT2
- TC ASSICN

-
ATARSBERSRRURNSAER

ARBERRNERREENRNA NS aRRAR e

- . x X

. - . .

. . . .

. - . .

. . . .

. - . -

X X 2CFF72 «NC -
FEARARERSRRANEEAES BAEREREHERREARNE R AnANE ERABRASRARARAREIE
* * » SKOM . * * 2CSNOo1 *
* SET * F R R—ReR-R-R-AEND * RAVE * YES A e o o e S e A= B
= SWITCH RecesecsecsscrcsssassccssscssssoasesX¥ REGUEST INPUT ¥ceecesaeX? TAPES BEEN ¥eeceeesecoX¥ DISASSIGN #
- SPPET3 - * 10 GO = % ASSIGNED = # TAPES JUST #
* * OFFL INE . * * * ASSIGNED *
EEREAEBERRESIEARR HAXRERARARARR IS AR LTTTES ARRTARBAAAARBAANR

«NORWV
.
-
X
AXERE LT 2] xaxa
* » =
* = * IS IT % YES *« IS IT * YES
ZBYPASS * BYPASS MODE ®eesseeseX? IfL %essesescssasceccnne
* * * * x * MCCE * .
* * - . * - .
LT E) wERER - AR .

- «NO - «NC .

. N - . .

. . . - .

. . - . .

. . . - .

.

x z8A1Y X . X ZCFF10 X

2T AERBA SRR 2212 . TREEARENARAR R RN FARARBAARRRENT AR

» * - b - * . . ZDSAO1 = * -

Is * YES * SE1 el # SET RETURN ® . AR R R R e R % - SET_MKOCE *

- JC1 IN ¥eosessseX® STRANB * #* TC JC1 SRET %.sesee . DISASSIGN %esecsvea X BITS TC -
*OVERLAPPED # ® BIT * # FQOR ONLINE - . THE CARD » * OFFLINE bl

MODE # * - * MODE * * READE * * b
EEREE EREEEREARN FEEEAAARRRARE RN EREAAEANRERAEANEN

«NO . .

. . .

. .

. -

. -

. -

X ZEAL X X

Anann ARFERRAANIERRRAEN RAEE LT Y] [TY T

%IS THE * SKOW * * = *
#CCNSCLE IN #* YES L e oy SN L PN * » £ = - 1
* CFFLINE FesseeneaX¥ REQUEST Feececsosees o XHZEXITX * *#ZONLIN * #ZEXITX *
#OVERLAPPED # = BYPASS * * - * * * -

% MOCE * NCDE = *] * . *

ERAER SEAAAARRRAREETRRE aznEn [22T 2 [T e

«NO X -

. . .

- . .

. - .

. . .

. . .

x ZBA1X - X ZCAO1Y

ERERR FESABURERINRERREE ssaaw xaEn EEARRERASARRARANE

- * * * » * * - -

- IS IT ® YES ® SET BYFASS * - bl = I * YES % RESET MCCE *

* IPL #eassssesX® FRCVM [PL NODE #* * JNOPX ¥ A JC4 IN %aassssceX® CHANGE EIT *
* MODE - * INTQO SYSMOD = b * * BYPASS * * STRANB -

* * * * * * MCDE * -
EnnEn FABERUTAIIRRAARAN sxane ey AAAARBEBESRSARAEE

«NO x oNC .

. - . .

. - . .

. - . .

. - . .

. . . .

x - X ZCANOLIX X

T T Eaa AR RABREF AR ERERNRE LT FAERRBEERANARAAEN

* * * IS * » ' * - -

* 1s * YES %MOCE CFHANGE® YES * SET STRANB * * IS IT * YES * SET MODE o
'S JCa IN #eeesacesX® BIT STRANB %eesaeseeX? BIT TO * E} ieL %eceseseoX® TO ONLINE #
* BYPASS % * * * ZERQ * * w¥OCE * % CVERLAPPEC #

4 MODE # * = - - - -
ARERE AnEAR EARERRBRERBRNANER ARRES FAERRAEEAREAREARE

«NC LY oNC -

. . - .

. . . .

. . .

. . -

- . . .

x X x x

azanw EXETTY EuEE SEEns
» * * = - - *
L] 1s = » * NO 1s - L] YES * ¢AVE L]
» JCa IN + CX#ZEREI2 #X. = JCa IN 2y - TAPES BEEN #
*OVERLAPPED # * * #OVERLAPPED * = FLINE = . # ASSIGNEC
* MODE » - * * NODE # * MODE # . * *
AR ERAR RRAER e - anuna

«YES «YES +YES - oNC

. - . . .

.

.

. . - - .

- . . - .

X x 2CNOO1 X . ZCNOL X

EEREE anana AREIRARSERERRR AR - ERANSETARRSARNRAN
* - hd SKCH - . - ZASNOL *
- * » - AR B e e e A= R x A R B W e e B Hm B
* JNCPX # * JNOPX # . REQUEST %#Xeososaeee® ASSIGN TAPE #
* * ® * . ONL INE * - UNITS FOR *
* » CCE 3 SYSTEM INFUT #

anunw RS AAARERAEREE NG RRRN

Figure 48 - Mode Control Commands

2 “ -
ARSI AERASARARTRE

x
RAAEN
* *
L] »
SZEXITX *
- -

* *
T

97

set by a BYPASS command, appearing at the end of a
scan tape, in the offline mode. STRANB would not be
reset since the BYPASS command card in offline mode
is not passed on to JC4 as the first card of the bypass
job. Control then passes to ZONO1X.

If the source is IPL, a branch is made to ZONO1X,
where SYSMOD is set to online mode (00), followed
by a test of SPPBT2 to determine if tape IOD's have
been assigned. If so, a branch is made to ZOFFO2,
a subroutine consisting of two calling linkages to the
special assignment routine. Both branches go to
ZONO0O01.

If the source is JC1 or operator's source and the
mode is offline, a direct branch is made to ZON0O1
which is an MCP calling linkage requesting the input
program to make a transition to the online mode.
This is followed by setting up of the acceptance
message and a branch to ZEXITX.

If the source was JC4 overlapped, the NOP exit
JNOPX is taken. Otherwise the command is in error
and a branch is made to ZEREX2.

The OFFLINE Command

The OFFLINE command (ZOFFLN, Figure 48) is also
source-dependent for its actions. If the source is
JC4 in the bypass mode, a branch is made to ZOFF09
to turn off STRANB. This is the same situation as
ZONO1Y in the ONLINE command. SPPBTI is then
tested for previously assigned system tapes, and if
not assigned, control is given to ZOFF02. An indi-
cator, SPPBTS3, is also set for test later to show that
the tapes were assigned by this command. In either
case, control eventually goes to ZOFF1X. If the
source was IPL or JC1, online control is given
directly to ZOFF1X. ZOFF1X is an MCP calling
sequence to the input program requesting initiation of
a transition to the offline mode of operation. There
are two returns from the input program: one for nor-
mal and an end return if the command card is not the
last card in the card reader.

If the normal return is reached, a test of mode is
made; if online, the return address to JC1 is altered
to go to a $RET sequence to JC1. In either case mode
is then tested for IPL. If not IPL, the card reader is
disassigned via the special disassignment routine
ZDSN01. Both branches now lead to ZOFF10 which
sets SYSMOD to OFFLINE(01), sets the present-
command-assigned-tape indicators off (SPPBT3) and
exits via ZEXITX.

If the end return is given by the input program, a
branch to ZOFF72 is made. If tapes were assigned
earlier by this command, they are disassigned and
the assigned tape indicators SPPBT1 and SPPBT2 are
reset to 1. Either branch leads to the error exit
ZEREX2.

98

Job Control Commands

Four commands are available to operations personnel
to control the flow of work through the system. They
provide the following capabilities:

1. Change the time clock ($TC) calibration con-
stant (CLOCK).

2. Cause the rejection of a job already on or par-
tially on the scan tape (REJECT).

3. Cause the termination of the job in progress,
with or without an error dump (ABEOJ or EOJ).

The CLOCK Command

The CLOCK command may be entered via the console
typewriter, or via the card reader in online or bypass
modes. If the command is accepted, the difference
between the time in the command and $TC will be
stored in STIMEK for use on all subsequent $TIME
operations.

The program (ZTCC, Figure 49) logs the calibra-
tion with the time as computed with the original con-
stant.

The REJECT Command

The operator may pre-reject a job by use of the
REJECT command. This should be used only in the
overlapped mode via system input, but it will act like
the EOJ command if entered via the operator's source
in the bypass mode.

The matrix mask is tested for validity of the
request (ZREJCT, Figure 50). If the source is opera-
tor and the mode is bypass, a branch is made to the
$EOJ routine for the processing of end-of-job. If
the request is from Job Control 4 overlapped, a nor-
mal return is made via JNOPX; if from the input pro-
gram card reader in the unoverlapped mode, an error
message is sent to the operator via ZEREX2. If the
command is entered through Job Control 1, the return
address parameter in the tentacle table is set to error
return and exit is made via ZEXITX. This will return
control to Job Control, which will note the error
return and the code, and reject the previous job.

The EOJ Command

The End of Job command is used to terminate the
presently operating problem program without pro-
ducing a dump.

The matrix mask is tested for the valid conditions
for EOJ (ZEOJ, Figure 50). These consists of a
request from the console or from Job Control 1 in
the online mode. If either of these conditions are
met, $EOJ is primed, a message is printed through

EERARE
- »
- *
* ZTCC =
* *

=
ERRER

Xe oo

AENNR "
1s *

*
®SOURCE JC1 *

a is * No
* CPERATCR FeaseeeesX*IN ONLINE MOCE
* THE * % OR JC& IN *
#SOLRCE # EEYPASS *
rnasx HY
+YES +YES
. .
. .
. .
21CCO1 X .
EEFEEARRARERRERRE -
- STIME *
EES S B EE B Bt ek Bt -
= GET THE %#Xosseeecssencescsse
= TINE ®

* -
AEREEERERRAEREREARL

PIRERR

AXARRARSEERABRANS

= CONVERT *
* AND CALCULATE *
- NEW TIM *
* CALISRATION =
* CONSTANT M
ARAEAFARBE R RRANE

.

.

.

X
ERERERXEREFA AR RS
* SCCMM =
A RN R E—k-A—R
* TYPE *
* TIME AT *

* CALIBRATION =
EEEEEIREEREREERARS

PO

EERRE

*

* *
*RETURN *
* -

* »
ARERE

Figure 49 - The Clock Command

(2223 TR LY
- -

»* *
1S SCURCE +#

NC NG * »
¥eensseseX® JC4 IN ONLINE ®evevscecoseoeXEZEREX2 *
= DI [* *
L] »
nRARE EEARE
«YES
-
-
x
EEREE
* *

» *
* JNCPX *
= *

* F
FTYTTY

2T
»

- - *
2ZREJCT *cecsoacscccsaX¥
- -

zusam

JC4 IN
*OVERLAFPED *

* # MCDE #
neses wrsaw
«YES
.
.
.
x
HRARE LR RRE]
» * * -
- »
* JECJ * JNCFX #
- -
- -
ARERE ELARE]
.
.
.
.
.
.
X
REEE TN
* - *
- 1s * NC 1s .
* Jca IN FeevseeneX® JC1 IN
#OVERLAPPED # # CNLIME *
% MCDE % % MODE #
e LT
#YES «hO
. .
. .
. .
x x
ARBEN RN
L3

bt IS THE *
OPERATOF THE

YES

N % OPERATOR #
%eosseses o XHTHE SQURCE AND

'.---.oo.X’JCES OR BEFORE
I

srerevsereseex

anuw
* 1S *

*BYPASS MODES®
-
sanne

«YES

Mo oo

"RERE
- L3
» *
* JEOJX ¥
- »

- *
anuas

Hess s

L bl
® IS 1T
BETWEEN #
FIRSY JCE *
- *

RS
«YES

He e e

anzsy
=

- -
¥ZEREX2 #Xaesne
» -

AC

NG

TesoseeeeX?

'.--.oc--"

Exann
is *
JC1 IN
®OVERLAPFED ¢
#* MOCE *

TRRREATRRTARERAEN
z -

* SET ERRQR
INETURN ADDRESS

I T e T

FTARARAARARERRENEN
x SERIME *
LR EE B g B Bt B B2)
PRINE $EQJ
¥COMD. CN OUTPUT®
¥ SET YEQJS ¥
IRAVRAAAEREARERRER

NO
’---..ooc-oc-X'ZEﬂElZ '

PITE)
- -

(T2}
- L]

* .
X*#ZEXITX #
- £

rann
- n

‘c-----oc-.n.X'lEllTX ‘

c -
xnEw

SAAFAARTHERAEARNN
* SPRIME -

YES EET NO
WeeasssesX¥ICES CR EEFCRE ..-...--.Xl FFI“E IAEECJ *
-

ANC
l ON OUTP T -
AAARARARBRABERAS

* SCURCE _ * .
» - -
HERERE -
X .
- .
. .
. .
. .
+NO IAECIX L YES
HERER fanaw ERRRN
- » - n »
- - * * - 1S THE - -
ZABEND * #ZEREX2 * * OPERATOR THE
. » * - * SOURCE # x * FIRST JoB «
- » - = -
HERER 2REIW zESEE - anEam
. x .
. . .
. . .
. p .
. - .
. . .
X «NQ .
ARERR HEEER - 1AV TRAERRRRRERR
- *
. 1s . . 1s * .
] Jca IN JCLIN .
#OVERLAPPED * + ONLINE +
® MQCE # * MGDE W
EERBE analis
<YES
.
.
.
x <YES
RN HAENE nEARE AEEER
» * - * - ®#IS THE #
. * * * = s LY * SCURCE *
JNGPX ® % JOUTP ¥eveesesoneeeX® JC1IN TeesssessXt JCA OR THE
- . » » #CVERLAPPEC + % CPERATCR
* - N » % MODE * - -
"ERNE "HERAN BRERE ANEAR
-YES
.
.
-
x
ERESE BAERE AERAN
* - - - - *
L] * * L] L *
* JECF s SRET ®ZEREX2 *
- - * * L2 »
- * - - . »
HERER sRERE ARANR
- x
. .
. .
x oNC
ERARE EREAE i2 222 EAERE
. - #IS THE * *
- 1s = Ne * SOURCE _ * NC Is * aC - 1 *
. JCiIN BeceesneeX® JCA OR THE TasemsseoX® Je1 IN FevosanseXt JCaT IN .
® CONLINE % + OPERATOR * * COFFLINE ¥ #OVERLAFPED *
MCCE # * * * MODE # * MOCE #
ERERE ARAAN HEERE ARERD
+YES «Y¥ES -YES «YES
. . . .
. . . .
. . . .
. - . .
. . - .
x x x X
HERBER R BRI RRRREES FERREARAAINAFRREN HERXRAARRARERRDESN ATRFERBALRERRRR AR
. SLCG1 . * 3 * * - LCGa *
BB e e W e F e A B PR B B B B 2 2 2 LRl B B B 2 B T] RS B B B P 2 B B
. NOTIFY . # DISASSIGN = » QTIFY » 4+ DISASSIGN
& ACCOUNTING # #PUNCH + FRINTER* * ACCOUNTING #PUNCH + PRINTER®
* PROGRAM * *#TELL ACCCUNT PR* - FROGRAM s STELL ACCCUNT FR#
FEBRFRAAARREFREREN AASERAASTIRRRRAAR REERRETAEERBEARR S FARRRRAXARARERAES

.

eXsoseescccscessancsvnsnsasss

X
!'lll‘ll!llllllll
KCM

| L B Q—l—l—i—l—!_
* NOTIFY INPUT

- OF EOF

- REQUEST :
RERERRRENRRRER N

AxEIe
» -

-
i............x-15x11x '

l ‘
easn

Figure 50 - Job Control, 1-O Commands

100

aXesesosssnssvevontnnoncves

.
-

b3
EIYI Y]
G |

' JNOPX 'Xno.--oco-coa'
-

- a
EEES

YES

sscssccsascaee

x
senan
. »

- Is »
JcaIN
*OVERLAFPED #
* MODE #

Ty

NO

NO

.
.
.
-
.
.
-
.
.
.
-

.
.
-
.
-

'--c-u-o----c!l JRENMD :

u -
anaen

Xeeos e

[T Y]

NC ¥ 1s .
o JC1 IN -
ACVERLAPPEC #
* NCCE
Ll
~YES

xeoeae

AANNEERASAR RGN AR
* < *

. INFUT OF b
#REWINC REQUEST *
FEEASEAREA AR ARRE

.
-
X

* Ll
ZEXITX #
- a

- -
wuann

‘..--.--.o..-X'ZEFEXZ :

L3
[ETT1Y

output program, and the operator is informed of the

operation. Bit YEOJS is set to permit JC4 to termi-
nate a processor chain. A normal exit is then made
through the mainstream exit routine via ZEXITX.

If the matrix mask shows that Job Control 4 is the
source and the online mode is in control, the com-
mand has already been executed, and a normal return
is made via JNOPX. For any other masks, an error
exit is made via ZEREX2. If EOJ is given between
jobs or before the first job, an error exit to ZEREX2
is made.

The ABEOJ Command

The ABEOJ command is implemented in the same
manner as EOJ, except that ABEOJ is primed and
no control bit is required (ZABEND, Figure 50).

I-O Control Commands

Four commands influence I-O operations. Two of
these, OUTPUT and REWIND, are concerned with
terminating operations of the system input and output
tapes. The EOF command is used fo indicate an
intentional EOF at the card reader in the online mode.
The fourth, IOCHANGE, is concerned with changes

in the availability of physical I-O devices.

The OUTPUT Command

The OUTPUT command is designed to permit the
operator to force a change of the output tape before
the beginning of the next job, thus starting the next
job on a new output tape.

The command is accepted (JOUTP, Figure 50) if
the matrix mask shows Job Control 4 in any mode, or
if the source is the console. The pseudo-op,
SOUTPT, is given to the output program, and upon
return the operator is informed via the commentator
of the action. A normal exit is then made.

If the matrix shows that Job Control 1 is the source
of the command, a normal exit via JFINX is given
since the command will be executed in phase 4. Any
other matrix is an error and an error exit will be
made via ZEREX2,

The EOF Command

The EOF command is used to permit the input pro-
gram to rewind the write tape at tape switch time if
necessary. It is a substitute for.a non-existing job
and means that there are no more cards available at
the present time through the card reader, and that an
end of file may be written. It also is used by the
logger entries as an accounting device for idle time.

If the source is JC1 in online mode, a branch is
made to ZEOF19 (JEOF, Figure 50), which is an
MCP calling linkage to SLOG1. Following this, a
branch is made to JDOIT which is an MCP calling
linkage to the input program to indicate an EOF condi-
tion. If there are more cards following the EOF card,
an end return will be made, which causes the EOF
command to take an error exit ZEREX2, Otherwise,
the normal exit (ZEXITX) is made. If the source is
JC4 in bypass mode, an entry to SLOG4 is made at
ZEOF10; upon return, control is given to JDOIT.

If JC1 in offline mode is the source, ZEOF19 is
entered and then exit made via JNOPX. If JC4 over-
lapped is the source, ZEOF10 is entered and then exit
made via JNOPX. Any other source causes error
exit via ZEREX2.

The REWIND Command

The REWIND command is a request to terminate and
rewind the present online write tape.

The console is not considered a legal source for
this command. The input program card reader is
the only source, and the parameter REWIND is the
only one following COMD, as in: COMD, REWIND.

The only acceptable matrix for the REWIND com-
mand is the Job Control 1 source and the online mode
(JREWD, Figure 49). The pseudo-op, SKOM, is
given to the input program and a comment to the
operator precedes a normal exit from the routine.

If the matrix is Job Control 4 online, a normal exit
is made since the command has been executed
already. All other matrices are considered in error.

The JIOCHANGE Command

The IOCHANGE command is the method by which the
operator may make a unit or an entire channel avail-
able or not available to the system. If an MCP unit
or channel is made not available, an attempt will be
made to assign a similar piece of equipment to MCP.
A unit or channel is available if it is physically
capable of being operated by the system. A unit is
assigned if it is presently logically connected to
either MCP, or the PP which is presently operating.

The format for both console and card is:

COMD, IOCHANGE, Channel, Unit, Code, Type
where:

Channel is the decimal number of the channel.

Unit is the decimal number, 0-7, of the unit. It
is applicable only when a unit is being acted upon
as distinct from a command relating to an entire
channel. In the latter case, the symbol ALL
should be used.

Code permits one of three available options to be
requested:

System Operation Programs 101

ADD -- this makes a unit or channel available.
DELETE -- this makes a unit or channel unavail-
able and is normally given in
response to a service request from
a program which has had repeated
failures on a unit or channel.
DELETM -- this makes a unit or channel unavail-
" able for maintenance purposes. It
is restricted to units or channels
which are not assigned to MCP or
to an operating PP. An error
return will be given if DELETM is
requested for an assigned unit.
Type is used only if the Code is ADD. It must be
one of the following:
READER
PRINTER
PUNCH
If the operation is ADD and the channel is a single-
unit channel, a different type of equipment may be
attached. If the subfield is null, the Channel Status
Table will reflect the same type of equipment. For
both channel and unit numbers, if a request is given
for a pieceiof equipment which has no corresponding
Channel or Unit Status Table entry, an error return
will be given.
Note: If a deletion of an MCP unit is requested, it
may cause the ending of the currently operating PP.

Validity Testing: The matrix mask for source and
operating mode is tested for valid IOCHANGE situa-
tions (ZIOCH, Figure 51). If the request is from
Job Control 4 in the overlapped mode, it has already
been processed, and a normal exit is made via
JNOPX. If the source is operator or Job Control 1
online, or unoverlapped Job Control 4, the command
will be implemented. If these conditions do not exist,
an error return is given via ZEREX2.

After validity checking of the command request,
the channel number is obtained from the command
message. If a disk channel, a branch is made to a
special disk routine ZDSKCH. If it is not a disk
channel, the channel number is tested for a valid
basic exchange channel number. An error exit is
made if the channel number is not possible for the
present configuration. This is determined by refer-
ence to SXCHAN.

Unit or Entire Channel Change: Upon completion of
validity testing of the channel number, it must be
determined if the request is for a unit change or an
entire channel change. If the request is for a unit
change, the unit number is tested against the number
of unit status table entries for the.channel. If the
unit number is high, an error exit is made. If the

102

request is for an entire channel change, a switch PG1
(ZINDCH) is set, and in either case, unit or channel,
control is returned to the next test at ZACTON.

If the channel is a multi-unit channel, the system
configuration change bit SCHFCG is set on. At this
point, a test is made of the entire channel change
switch ZINDCH. The action for a unit or entire
channel is very similar, but the two must be per-
formed separately because of minor differences.
They will be discussed jointly, with minor differences
noted.

The operation code is tested, and if it is ADD, a
branch is made to the unit or channel add routines
ZADDCH or ZADDUN (Figure 51). If not ADD, the
op code must be DELETE or DELETM. The available
bit for the unit or channel is tested, and if not pre-
sently available an error exit is made. If it is avail-
able, the channel or unit is made not available. At
this point, if the request is to delete an entire multi-
unit channel, a branch is made to ZMULCH (Figure
52). If the unit is not assigned (ZQUES, Figure 52),
a test is made for DELETE or DELETM at ZMAIND,
If either, a normal exit is made; if neither, error
exit ZEREXI1 is made.

If the unit is assigned, a test is made for DELETE.
If not DELETE, an error has occurred, since an
attempt was made to delete an assigned unit for main-
tenance. In this case, at ZMNERX (Figure 52), the
unit or channel is made available again, the configu-
ration change bit is reset, and an error exit is made,
with an explanatory message. If DELETE, the unit
is set unassigned. If the unit was owned by the prob-
lem program, a branch is made to ZABEOJ, $ABEOJ
is primed, a message is written through the output
program, a comment is made to the operator about
the change, and a normal exit is made. If the unit
was owned by MCP, a scan of the status tables by
ZCHSCN (Figure 53) must be made to find a replace-
ment unit. After return from the scan, a normal
exit is made via ZDONE to ZEXITX.

Multiple Unit Channel Deletion: In the case of a

multiple-unit channel, when an entire channel is to be
deleted, the special case of both MCP and PP owned
units on the same channel must be solved. If PP
units are on the channel, the PP must be removed by
$ABEOJ eventually. If MCP units are on the channel,
replacements must be found, each one individually by
the scan routine. The procedure for deleting an entire
multi-unit channel at ZMULCH (Figure 52) begins by
the count of units on the channel being established and
used as a control by index. A test is made to deter-
mine if the indexed unit is assigned. If not assigned,
a branch is made to ZQUS11 which tests if the code
has been examined for DELETE or DELETM. If not,

RAR asuaw wEnan FERAR
- ® IS 1] « IS » -

* * #MODE EYPASS® NC * Jca IN * N * bl
* ZIOCH %ceveese «X®* OVERLAPPED - es e X®ZEREX2 *
* - % MODE * » »
L] » - »
nEwn anzse suas
«YES
.
.
.
.
2TS871C1 X
ERRARNRARIRAARNER
* -
* CLEAR M
» FROGF AN +
el SWITCFES *
= *
FEITITITIRE 2T T
.
.
suann annun sssas
* - - -
- L - -
. «seX#ZEREX] * #ZMAIND @
. - = - .
. - * - - - -
RERR . CERRBARRAASRRRREN T Ll RN annnn

X - «NO x

. . - . .

. . - . .

. . - - .

. . - . .

. . - .

. . ZDSKCH X NC «NC
FRRERARERAARERRER . REEAREAREAABERRERS sasns T LT 2
% SET CHANNEL * o * - - * *
% AND UN . . - ACC CR YES # IS A » & IS THE * YES 4 IS THE ®
*AVAILABLE BITS # eecsse?® DELETE FOR #Xeeeeeess® OISK ON THE # . UNIT HecsecceeXH NIT -
% AND CLEAR * # DISK CHFINNEL * * CHANNEL * # AVAILABLE # # ASSIGNED +
STATUS TABLES # * * = = - * »
EERREEERRRRENE AR SERARARENDREARBRN L s anusn ssuzw

x «NO x #YES

. . . .

. . -

- . -

. . -

. .

«YES o -

LT nEE -

» * = - .

* IS THE * #* IS THE - -
- CODE CODE * -
* ADI - ACC -
- - * .

FETT) LTt Y] -

«NO «YES .

. - .

. - .

. . -

. . .

. - .

X ZACOUN X -

RERE EEaen L] sRERE .

= * = - * - 1] -

1S THE % NO * * YES IS IT b NC IS THE * .
- CHANNEL %eeesscssvceesXH2ZEREX]L # seee® A SINGLE UNIT #Xeasessesl? UNIT * .
% AVAILABLE + * * . % CHANNEL # #* AVAILABLE = .
* » * * - - - - .
EuE ARARR - RN [TETe) -

«YES x . «NC «YES .

. . .

. - -

. - .

. - .

- . -

. x X -

. - ARERERERREAREE RN naan .

. * » L * .

. * - UNIT - - il -

. * ®AVAILABLE BIT. # *ZEREX1 * .

. * % CLEAR STATUS ¥ * * .

- - * .

. “nanE -

. .

. . .

. . .

. . .

. . .

. - .

- X x

. AERERSAAATERBRRRN ERENR sasas

. * * - » * -

- - SET _THE * * bl * * NC % IS JHE a

. * ERR(R ®oeeeecccscas e XRZEXITX & #ZMNERS ¥Xeeeseeossesese® CODE CELETE #

. - COCE - - = - * - -

- - * - *] -

. ERAERARRFARERRDES ERERE ETTT 2] EnEe

- «YES

. .

- .

. .

. .

. .

x X

EEEXR Enaan anans REEN
- * - 1 = - -

* Is * YES - * - - YES % OCCES PF
* CHANNEL EeceesnssecaeXHZMULCH # #ZABEOJ #Xoveoesossoesd OWN THE =
#MULTI-UNIT * »* » * » * UNIT *

» L = = =)
zxane 211 (T2 11d nEan

oNO X «NO

. . .

. . .

. . .

. . .

- . .

X s YES x

LT EERE Anann AEARRAEREBAXENB S

- = * * * * - 2