

Systems

GA22-7070-1
File No. 4300-01

IBM 4300 Processors
Principles of Operation
for ECPS: VSE Mode

--- ------ - ---- ---- - ---- - - ----------_.-

Second Edition (September 1980)
This major revision obsoletes GA22-7070-0. The document has been revised
extensively for clarification and to conform with the wording for common
functions in the most recent edition of IBM System/3 70 Principles of
Operation, GA22-7000-6. Some material has been rearranged within a
chapter, and other material has been moved from one chapter to another.

Changes are identified by a vertical bar in the left margin, except where
existing material has been merely rearranged.

Changes are periodically made to the information herein; before using this
publication in connection with the operation of IBM equipment, refer to the
latest IBM System/3 70 and 4300 Processors Bibliography,
GC20-0001, for the editions that are applicable and current.

It is possible that this material may contain reference to, or information
about, IBM proc}ucts (machines and programs), programming, or services
that are not announced in your country. Such references or information
must not be construed to mean that IBM intends to announce such IBM
products, programming, or services in your country.

Publications are not stocked at the address given below; requests for IBM
publications should be made to your IBM representative or to the IBM
branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If
the form has been removed, comments may be addressed to IBM
Corporation, Product Publications, Department B98, PO Box 390,
Poughkeepsie, NY, U.S.A. 12602. IBM may use or distribute any of the
information you supply in any way it believes appropriate without incurring
any obligation whatever. You may, of course, continue to use the
information you supply.

© Copyright International Business Machines Corporation 1979, 1980

Preface

This publication provides, for reference purposes, a
detailed definition of the architecture of IBM 4300
Processors when operating in the Extended Control
Program Support: Virtual Storage Extended
(ECPS:VSE) mode.

The publication describes each function of the
architecture to the level of detail that must be
understood in order to prepare an
assembler-language program that relies on that
function. It does not, however, describe the
notation and conventions that must be employed in
preparing such a program.

The information in this publication is provided
principally for use by assembler-language
programmers, although anyone concerned with the
functional details of the IBM 4300 Processors will
find it useful.

This publication is written as a reference
document and should not be considered an
introduction or a textbook.

All facilities discussed in this publication are not
necessarily available on every processor. Further­
more, in some instances the definitions have been
structured to allow for some degree of extensibility,
and therefore certain capabilities may be described
or implied that are not offered on any model. An
example of such capabilities is the provision for the
number of channel-mask bits in the control register.
The allowance for this type of extensibility should
not be construed as implying any intention by IBM
to provide such capabilities. For information about
the characteristics and availability of features on a
specific processor, use the functional characteristics
manual for that processor. The availability of
features on processors is summarized in the IBM

4300 Processors Summary and Input/Output &
Data Communications Equipment Configurator,
GA33-1523.

This publication applies only to the ECPS: VSE
mode of operation. The IBM System/3 70
Principles of Operation, GA22-7000, should be
consulted regarding the functions of the
architecture which applies when the processor
operates in the System/370 mode.

Size Notation
The letters K and M denote the multipliers 210 and
220, respectively. Although the letters are
borrowed from the decimal system and stand for
kilo (103) and mega (106), they do not have the
decimal meaning but instead represent the power of
2 closest to the corresponding power of 10. Their
meaning in this publication is as follows:

Symbol Value

K (k i 10) 1,024 = 210

M (mega) 1,048,576 = 220

The following are some examples of the use of K
andM:

2,048 is expressed as 2K.
4,096 is expressed as 4K.
65,536 is expressed as 64K (not 65K).
224 is expressed as 16M.

When the words "thousand" and "million" are
used, no special power-of-2 meaning is assigned to
them.

iii

This page left blank intentionally.

iv

Contents

Chapter 1. Introduction 1-1
The IBM 4300 Processors 1-1
Compatibility 1-2

Compatibility Among 4300 Processors 1-2
Compatibility Between 4300 Processors and
System/370 1-2

Control-Program Compatibility
Problem-State Compatibility

Chapter 2. Organization 2-1
Main Storage 2-1
Central Processing Unit 2-2

Program-Status Word 2-2
General Registers 2-2
Floating-Point Registers 2-3
Control Registers 2-3

Input and Output 2-3
Channels 2-4

1-2
1-2

Input/Output Devices and Control Units 2-4

Operator Facilities 2-4

Chapter 3. Storage 3-1
Storage Addressing 3-1

Information Formats 3-2
Integral Boundaries 3-2

One-Level-Addressing Facility 3-3
Storage Size 3-3
Pages 3-4
Page Frames 3-4
Page Description 3-4

Storage Key 3-4
Page Bits 3-4
Page States 3-5
Frame Index 3-5

Page and Frame Control 3-6
Capacity Counts 3-6
Storage-Control Instructions 3-6

Key-Controlled Protection 3-7
Reference Recording 3-8
Change Recording 3-8
Assigned Storage Locations 3-9

Storage While CPU is in Operating State 3-9
Storage While CPU is in Load State 3-10

Chapter 4. Control 4-1
Stopped, Operating, Load, and Check-Stop States

Stopped State 4-2
Operating State 4-2
Load State 4-2
Check-Stop State 4-2

Program-Status Word 4-2
EC and BC Modes 4-3
Program-Status-Word Format in EC Mode 4-4

4-1

Program-Status-Word Format in BC Mode
Control Registers 4-7
Program-Event Recording 4-8

Control-Register Allocation 4-9
Operation 4-9

Identification of Cause 4-10
Priority of Indication

Storage-Area Designation
PER Events 4-11

Successful Branching
Instruction Fetching
Storage Alteration

4-10
4-11

4-11
4-11

4-11
General-Register Alteration 4-12

4-6

Indication of Events Concurrently with Other Interrup-
tion Conditions 4-12

External-Signal Facility 4-16
Timing 4-16

Time-of-Day Clock 4-16
Format 4-16
States 4-16
Setting and Inspecting the Clock

Clock Comparator 4-18
CPU Timer 4-19
Interval Timer 4-20

Externally Initiated Functions 4-21
Resets 4-21

Program Reset 4-23
Initial Program Reset 4-23
Clear Reset 4-23
Power-On Reset 4-24

Initial Program Loading 4-24
Machine Save 4-25

Chapter 5. Program Execution
Instructions 5-1

Operands 5-1
Instruction Format

Register Operands
Immediate Operands
Storage Operands

5-2
5-3

5-3
5-3

5-1

4-17

I Address Generation 5-3
Sequential Instruction-Address Generation
Operand-Address Generation 5-4

I Branch-Address Generation 5-4
Instruction Execution and Sequencing 5-5

Interruptions 5-5
Types of Instruction Ending 5-5
Interruptible Instructions 5-6

Point of Interruption 5-6

5-3

Execution of Interruptible Instructions 5-6
Exceptions to Nullification and Suppression 5-7

Storage Change and Restoration for Page-Access
Exceptions 5-7

v

Trial Execution for TRANSLATE and EDIT
Update for Suppression 5-7

Sequence of Storage References 5-8
Instruction Fetching 5-8
Page-Description Accesses 5-9
Storage-Operand Referen·ces 5-10

Storage-Operand Fetch References 5-10
Storage-Operand Store References
Storage-Operand Update References

5-10
5-10

Storage-Operand Consistency 5-11
Single-Access References 5-11
Multiple-Access Operands 5-11

Relation between Operand Accesses
Other Storage References 5-12

5-11

Serialization 5-12
CPU Serialization 5-12
Channel Serialization 5-13

Chapter 6. Interruptions 6-1
Interruption Action 6-1

Source Identification
Enabling and Disabling
Instruction-Length Code

Zero ILC 6-5

6-4
6-4
6-5

ILC on Instruction-Fetching Exceptions
Exceptions Associated with the PSW 6-6

Early Exception Recognition 6-6
Late Exception Recognition 6-7

External Interruption 6-7
Clock Comparator 6-8
CPU Timer 6-8
External Signal 6-8
Interrupt Key 6-8
Interval Timer 6-8

Input/Output Interruption 6-9
Machine-Check Interruption 6-9
Program Interruption 6-10

Program-Interruption Conditions
Addressing Exception 6-10
Data Exception 6-11
Decimal-Divide Exception
Decimal-Overflow Exception
Execute Exception 6-11
Exponent-Overflow Exception
Exponent-Underflow Exception
Fixed-Point-Divide Exception
Fixed-Point-Overflow Exception
Floating-Point-Divide Exception
Monitor Event 6-12
Operation Exception 6-12

6-10

6-11
6-11

6-11
6-12

6-12
6-12
6-12

Page-Access Exception
Page-State Exception
Page-Transition Exception

6-13
6-13

6-13
PER Event 6-13
Privileged-Operation Exception 6-14
Protection Exception 6-14
Significance Exception 6-14

vi

6-5

5-7 Special-Operation Exception 6-14
Specification Exception 6-14

Recognition of Access Exceptions 6-15
Multiple Program-Interruption Conditions

Restart Interruption 6-18
Supervisor-Call Interruption
Priority of Interruptions

6-18
6-19

Chapter 7. General Instructions 7-1
Data Format 7-2
Binary-Integer Representation 7-2
Signed and Unsigned Binary Arithmetic
Signed and Logical Comparison 7-3
Instructions 7-4

ADD 7-7
ADD HALFWORD
ADD LOGICAL
AND 7-7

7-7
7-7

BRANCH AND LINK 7-8
BRANCH ON CONDITION 7-9
BRANCH ON COUNT 7-9
BRANCH ON INDEX HIGH 7-10
BRANCH ON INDEX LOW OR EQUAL
COMPARE 7-11
COMPARE AND SWAP 7-11

7-3

COMPARE DOUBLE AND SWAP
COMPARE HALFWORD 7-13

7-11

COMPARE LOGICAL 7-13

6-16

7-10

COMPARE LOGICAL CHARACTERS UNDER
MASK 7-13

COMPARE LOGICAL LONG 7-14
CONVERT TO BINARY 7-15
CONVERT TO DECIMAL 7-16
DIVIDE 7-16
EXCLUSIVE OR 7-16
EXECUTE 7-17
INSERT CHARACTER 7-18
INSERT CHARACTERS UNDER MASK
LOAD 7-19
LOAD ADDRESS 7-19
LOAD AND TEST 7-19
LOAD COMPLEMENT 7-19
LOAD HALFWORD
LOAD MULTIPLE
LOAD NEGATIVE
LOAD POSITIVE
MONITOR CALL
MOVE 7-21
MOVE INVERSE

7-20
7-20
7-20

7-20
7-21

7-22
MOVE LONG 7-22
MOVE NUMERICS
MOVE WITH OFFSET
MOVE ZONES 7-26
MULTIPLY 7 -26

7-24
7-25

MULTIPLY HALFWORD 7-26
OR 7-27

7-18

PACK 7-28
SET PROGRAM MASK 7-28
SHIFT LEFT DOUBLE 7-28
SHIFT LEFT DOUBLE LOGICAL 7-29
SHIFT LEFT SINGLE 7-29
SHIFT LEFT SINGLE LOGICAL 7-30
SHIFT RIGHT DOUBLE 7-30
SHIFT RIGHT DOUBLE LOGICAL 7-30
SHIFT RIGHT SINGLE 7-31
SHIFT RIGHT SINGLE LOGICAL 7-31
STORE 7-31
STORE CHARACTER 7-32
STORE CHARACTERS UNDER MASK
STORE CLOCK 7-32
STORE HALFWORD 7-33
STORE MULTIPLE 7-33
SUBTRACT 7-33
SUBTRACT HALFWORD 7-34
SUBTRACT LOGICAL 7-34
SUPERVISOR CALL 7-34
TEST AND SET 7-35
TEST UNDER MASK 7-35
TRANSLATE 7-36
TRANSLATE AND TEST 7-36
UNPACK 7-37

Chapter 8. Decimal Instructions 8-1
Decimal-Number Formats 8-1

Zoned Format 8-1
Packed Format 8-1
Decimal Codes 8-1

Decimal Operations 8-2
Decimal-Arithmetic Instructions 8-2
Editing Instructions 8-3
Execution of Decimal Instructions 8-3
Other Instructions for Decimal Operands

Instructions 8-3
ADD DECIMAL 8-4
COMPARE DECIMAL 8-5
DIVIDE DECIMAL 8-5
EDIT 8-6
EDIT AND MARK 8-9
MULTIPLY DECIMAL 8-9
SHIFT AND ROUND DECIMAL
SUBTRACT DECIMAL 8-11
ZERO AND ADD 8-11

Chapter 9. Floating-Point Instructions
Floating-Point Number Representation
Normalization 9-2
Floating-Point-Data Format
Instructions 9-4

ADD NORMALIZED
ADD UNNORMALIZED
COMPARE 9-8
DIVIDE
HALVE

9-8
9-9

LOAD 9-10

9-2

9-6
9-7

8-10

9-1
9-1

7-32

8-3

LOAD AND TEST 9-10
LOAD COMPLEMENT 9-10
LOAD NEGATIVE , 9-11
LOAD POSITIVE 9-11
LOAD ROUNDED 9-11
MULTIPLY
STORE

9-12
9-13

SUBTRACT NORMALIZED
SUBTRACT UNNORMALIZED

9-14
9-14

Chapter 10. Control Instructions 10-1
CLEAR PAGE 10-3
CONNECT PAGE 1~3

DECONflGUREPAGE 1~3

DIAGNOSE 10-4
DISCONNECT PAGE 10-5
INSERT PAGE BITS 10-5
INSERT PSW KEY 10-5
INSERT STORAGE KEY 10-5
LOAD CONTROL 10-6
LOAD FRAME INDEX 10-6
LOAD PSW 10-7
MAKE ADDRESSABLE 10-7
MAKE UNADDRESSABLE 10-7
RESET REFERENCE BIT 10-8
RETRIEVE STATUS AND PAGE 10-8
SET CLOCK 10-8
SET CLOCK COMPARATOR 10-9
SET CPU TIMER 10-9
SET PAGE BITS 10-9
SET PSW KEY FROM ADDRESS 10-10
SET STORAGE KEY 10-10
SET SYSTEM MASK 10-11
STORE CAPACITY COUNTS 10-11
STORE CLOCK COMPARATOR 10-11
STORE CONTROL
STORE CPU ID

10-12
10-12

STORE CPU TIMER 10-13
STORE THEN AND SYSTEM MASK
STORE THEN OR SYSTEM MASK

10-13
10-13

Chapter 11. Machine-Check Handling
Machine-Check Detection 11-1
Correction of Machine Malfunctions

Error Checking and Correction
CPU Retry 11-2

Handling of Machine Checks 11-2
Validation 11-3
Invalid CBC in Storage 11-3
Invalid CBC in Page Descriptions
Invalid CBC in Registers 11-4

Check-Stop State 11-4
Machine-Check Interruption 11-5

Exigent Conditions 11-5
Repressible Conditions 11-5
Interruption Action
Point of Interruption

11-6
11-7

11-1

11-2
11-2

11-3

vii

Machine-Cheek-Interruption Code 11-7
Subclass 11-8

System Damage 11-8
Instruction-Processing Damage 11-8
System Recovery 11-9
Interval-Timer Damage 11-9
Timing-Facility Damage 11-9
External Damage 11-9
Degradation
Warning

Auxiliary Bits
Delayed

11-9
11-10

11-10
11-10

Storage Error Uncorrected 11-10
Storage-Key Error Uncorrected 11-10

Machine-Check Interruption-Code Validity
Bits 11-10

PSW-EMWP Validity 11-10
PSW Mask and Key Validity 11-10
PSW Program-Mask and Condition-Code
Validity 11-10

PSW-Instruction-Address Validity
Failing-Storage-Address Validity
Floating-Point-Register Validity

11-11
11-11

11-11
General-Register Validity 11-11
Control-Register Validity 11-11
Storage Logical Validity 11-11
CPU-Timer Validity 11-11
Clock-Comparator Validity 11-11

Machine-Check Extended Interruption
Information 11-11

Register-Save Areas
Failing-Storage Address

Machine-Check Masking

11-11
11-12

11-12
Recovery-Report Mask 11-12
Degradation-Report Mask 11-12
External-Damage-Report Mask 11-12
Warning Mask 11-12

Chapter 12~ Input/Output Operations
Attachment of Input/Output Devices

Input/Output Devices 12-2
Control Units 12-2
Channels 12-3

12-3
12-4
12-5

12-1
12-2

Modes of Operation
Types of Channels

I/O-System Operation
Compatibility of Operation 12-6

12-7
12-7

Control of Input/Output Devices
Input/Output Device Addressing
States of the Input/Output System
Resetting of the Input/Output System

12-8
12-10

I/O-System Reset 12-10
1/ 0 Selective Reset 12-10
Effect of Reset on a Working Device 12-10
Reset Upon Malfunction 12-10

Condition Code 12-11
Instruction Formats 12-13

viii

Instructions
CLEAR I/O

12-14
12-14

HALT DEVICE 12-16
HALT I/O 12-19
START I/O 12-21
START I/O FAST RELEASE 12-21
STORE CHANNEL ID 12-23
TEST CHANNEL 12-24
TEST I/O 12-25
Input/ Output-Instruction-Exception Handling

Execution of Input/Output Operations 12-27
Blocking of Data 12-28
Channel-Address Word 12-28
Channel-Command Word 12-28
Command Code 12-29
Designation of Storage Area 12-30
Chaining 12-31

Data Chaining 12-32
Command Chaining 12-33

Skipping 12-34
Program-Controlled Interruption 12-34
Commands 12-35

Write 12-36
Read 12-36
Read Backward 12-36
Control 12-37
Sense 12-37
Transfer in Channel 12-39

Command Retry 12-39
Conclusion of Input/Output Operations 12-40

Types of Conclusion 12-40
Conclusion at Operation Initiation 12-40
Immediate Operations 12-41
Conclusion of Data Transfer 12-41
Termination by HALT I/O or HALT
DEVICE 12-42

Termination by CLEAR I/O 12-44
Termination Due to Equipment
Malfunction 12-44

Input/Output Interruptions 12-44
Interruption Conditions 12-44
Channel-Available Interruption 12-45

Priority of Interruptions 12-46
Interruption Action

Channel-Status Word
Unit Status 12-48

Attention 12-48

12-46
12-47

Status Modifier
Control-Unit End

12-48
12-48

Busy 12-49
Channel End
Device End
Unit Check

12-50
12-51
12-51

Unit Exception 12-52
Channel Status 12-52

Program-Controlled Interruption
Incorrect Length 12-53
Program Check 12-53

12-52

12-27

Protection Check 12-54
Channel-Data Check 12-54
Channel-Control Check 12-54
Interface-Control Check 12-54
Chaining Check 12-55

Contents of Channel-Status Word 12-55
Information Provided by Channel-Status
Word 12-55

Subchannel Key 12-56
CCW Address 12-56

Count 12-57
Status 12-57

Channel Logout 12-60
I/O-Communication Area 12-60

Chapter 13. Operator Facilities 13-1
Manual Operation 13-1
Basic Operator Facilities 13-1

Address-Compare Controls 13-1
Alter-and-Display Controls 13-2
Check Control 13-2
Check-Stop Indicator 13-2
IML Controls 13-2
Interrupt Key 13-3
Interval-Timer Control 13-3
Load Indicator 13-3
Load-Clear Key 13-3
Load-Normal Key 13-3
Load-Unit-Address Controls 13-3
Machine-Save Key 13-3
Manual Indicator 13-3
Mode Indicator
Power Controls
Rate Control
Restart Key
Save Indicator
Start Key

13-4
·13-4

13-4
13-4

13-4
13-4

Stop Key 13-4
Storage-Size Control
System-Reset-Clear Key
System-Reset-Normal Key

13-4

Test Indicator 13-5
TOD-Clock Control
Wait Indicator 13-5

13-5

13-5
13-5

Appendix A. Number Representation and Instruction-Use
Examples A-I

Number Representation A-2
Binary Integers A-2

Signed Binary Integers
Unsigned Binary Integers

A-2
A-3

Decimal Integers A-3
Floating-Point Numbers
Conversion Example

Instruction-Use Examples
Machine Format

A-4
A-5

A-5
A-5

Assembler-Language Format A-5

General Instructions A-6
ADD HALFWORD (AH) A-6
AND (N, NR, NI, NC) A-6

And (NI) A-6
BRANCH AND LINK (BAL, BALR) A-7
BRANCH ON CONDITION (BC, BCR) A-7
BRANCH ON COUNT (BCT, BCTR) A-7
BRANCH ON INDEX HIGH (BXH) A-8
BRANCH ON INDEX LOW OR EQUAL
(BXLE) A-9

COMPARE HALFWORD (CH) A-9
COMPARE LOGICAL (CL, CLC, CLI, CLR) A-9

Compare Logical (CLC) A-9
Compare Logical (CLI) A-9
Compare Logical (CLR) A-I0

COMPARE LOGICAL CHARACTERS UNDER MASK
(CLM) A-I0

COMPARE LOGICAL LONG (CLCL) A-I0
CONVERT TO BINARY (CVB) A-12
CONVERT TO DECIMAL (CVD) A-12
DIVIDE (D, DR) A-12
EXCLUSIVE OR (X, XC, XI, XR) ~-13

Exclusive Or (XC) A-13
Exclusive.Or (XI) A-14

EXECUTE (EX) A-14
INSERT CHARACTERS UNDER MASK
OCM) A-15

LOAD (L, LR) A-15
LOAD ADDRESS (LA)
LOAD HALFWORD (LH)

A-16
A-16

MOVE (MVC, MVI) A-16
Move (MVC) A-16
Move (MVI) A-17

MOVE LONG (MVCL) A-17
MOVE NUMERICS (MVN)
MOVE WITH OFFSET (MVO)

A-18
A-18

MOVE ZONES (MVZ) A-19
MULTIPLY (M, MR) A-19
MULTIPLY HALFWORD (MH) A-20
OR (0, OR, 01, OC) A-20

Or (01) A-20
PACK (PACK) A-20
SHIFT LEFT DOUBLE (SLDA) A-21
SHIFT LEFT SINGLE (SLA) A-21
STORE CHARACTERS UNDER MASK
(STCM) A-21

STORE MULTIPLE (STM)
TEST UNDER MASK (TM)
TRANSLA TE (TR) A-22
TRANSLATE AND TEST (TRT)
UNPACK (UNPK) A-25

Decimal Instructions A-25
ADD DECIMAL (AP) A-25
COMPARE DECIMAL (CP)

A-22
A-22

A-26
DIVIDE DECIMAL (DP) A-26
EDIT (ED) A-26
EDIT AND MARK (EDMK) A-27

A-23

ix

MULTIPLY DECIMAL (MP) A-28 Multiprogramming and Multiprocessing
SHIFT AND ROUND DECIMAL (SRP) . A-28 Examples A-32

Decimal Left Shift A-28 Example of a Program Failure Using OR
Decimal Right Shift A-29 Immediate A-32
Decimal Right Shift and Round A-29 COMPARE AND SWAP (CS, CDS) A-33
Multiplying by a Variable Power of 10 A-29 Setting a Single Bit A-33

ZERO AND ADD (ZAP) A-30 Updating Counters A-34
Floating-Point Instructions A-30

ADD NORMALIZED (AD, ADR, AE, AER, Appendix B. Lists of Instructions B-1
AXR) A-30 Explanation of Symbols in "Characteristics" and flOp

ADD UNNORMALIZED (AU, AUR, AW, Code" Columns B-1
AWR) A-30
COMPARE (CD, CDR, CE, CER) A-31
Floating-Point-Number Conversion A-31

Appendix C. Condition-Code Settings C-1

Fixed Point to Floating Point A-31 Index X-I
Floating Point to Fixed Point A-32

x

Chapter 1. Introduction

Contents

The IBM 4300 Processors 1-1

Compatibility 1-2

Compatibility Among 4300 Processors 1-2

Compatibility Between 4300 Processors and
System/370 1-2

Control-Program Compatibility 1-2

Problem-State Compatibility 1-2

The IBM 4300 Processors
The IBM 4300 Processors are small and moderately
sized processors that have evolved from
System/370. They may be used in one of two
architectural modes of operation. When operating
in the Extended Control Program Support: Virtual
Storage Extended (ECPS:VSE) mode, a processor
provides new facilities that are designed specifically
to enhance the DOS/VSE control program. To run
control programs such as VM/370 and OS/VS1,
which do not use these facilities, a processor is
placed in the System/370 mode. This publication
describes the architecture of the 4300 Processors
when operating in the ECPS: VSE mode.

The architecture of a machine defines its
attributes as seen by the programmer, that is, the
conceptual structure and functional behavior of the
machine, as distinct from the organization of the
data flow, the logical design, the physical design,
and the performance of any particular
implementation. Several dissimilar machine
implementations may conform to a single
architecture. When programs running on different
machine implementations produce the results that
are defined by a single architecture, the
implementations are considered to be compatible.

The ECPS:VSE mode includes a new
storage-control facility, called one-level addressing,
for creating a single virtual storage of up to
16,777,216 bytes, which both the CPU and the
channels address directly using one uniform set of
virtual addresses. Mapping the virtual storage onto
the real storage is performed internal to the
machine.

The one-level-addressing facility provides new
instructions and interruptions which the control
program uses to determine which parts of virtual
storage currently are mapped onto real storage and
thereby are made addressable. These instructions
and interruptions, and the associated internal
address-mapping functions, take the place of
dynamic address translation (DAT) and channel
indirect data addressing in System/370.

The ECPS: VSE mode also includes a new
status-saving function, called machine save, which
preserves the entire CPU state and the first 2,048
(2K) bytes of storage. The operator uses machine
save in preparation for a complete storage dump.
Machine save replaces the store-status function of
System/370, which necessarily alters some of the
storage to be dumped.

If mUltiple virtual storages are not required, the
ECPS: VSE mode affords the following advantages
w.hen compared to System/370:
• Simpler storage-mapping function, with more of

the function performed automatically by the
machine

• Improved control-program performance, because
the control program need not translate the
virtual addresses of channel programs
Programming of the machine has been simplified,

relative to System/370, by omitting the following
functions:
• Multiprocessing and associated instructions
• Machine-check logout and full channel logout

These model-dependent logouts are replaced by
internal facilities for diagnosing machine
malfunctions. This removes model-dependent
error-handling procedures from the control program
and improves serviceability.

Chapter 1. Introduction 1-1

Compatibility

Compatibility Among 4300 Processors
Although models of the 4300 Processors differ in
implementation and physical capabilities, logically
they are upward and downward compatible.
Compatibility provides for simplicity in education,
availability of system backup, and ease in system
growth. Specifically, any program will give
identical results on any model, provided that it:
1. Is not time-dependent.
2. Does not depend on system facilities (such as

storage capacity, I/O equipment, or optional
features) being present when the facilities are
not included in the configuration.

3. Does not depend on system facilities being
absent when the facilities are included in the
configuration. For example, the program
should not depend on interruptions caused by
the use of operation codes or command codes
that in some models are not assigned or not
installed. Also, it must not use or depend on
fields associated with uninstalled facilities. For
example, data should not be placed in an area
used by another model for logout. Similarly,
the program must not use or depend on
unassigned fields in machine formats (control
registers, instruction formats, etc.) that are not
explicitly made available for program use.

4. Does not depend on results or functions that
are defined in this publication to be
unpredictable or model-dependent, or on
special-purpose functions (such as emulators)
that are not described in this publication. This
includes the requirement that the program
should not depend on the assignment of I/O
addresses.

5. Does not depend on results or functions that
are defined in the functional-characteristics
publication for a particular model to be
deviations from this publication.

Compatibility Between 4300 Processors
and System/370

Control-Program Compatibility
If the preceding compatibility restrictions are
observed, a program written for the 4300
Processors or System/370 will run on the other
system. However, because of the compatibility
restrictions, control programs cannot be transferred
between these systems if they take advantage of
facilities that are available on one system but not
the other. In particular, the 4300 Processors do
not offer the System/370 dynamic-address-

1-2 IBM 4300 Processors Principles of Operation

translation facility in the ECPS:VSE mode and,
hence, cannot execute programs which rely on this
particular facility.

To provide full control-program compatibility
between System/370 and the 4300 Processors, the
4300 Processors offer an alternate microprogram
that causes the machine to assume the
characteristics of a System/370 model. When the
machine is in this mode, the operation of the
machine is as described in the IBM System/3 70
Principles of Operation, GA22-7000.

Problem-State Compatibility
A high degree of compatibility exists at the
problem-state level between 4300 Processors
operating in the ECPS:VSE mode and System/370.
Because the majority of a user's applications are
written for the problem state, this problem-state
compatibility is useful in many installations.

A program written to run in the problem state on
4300 Processors or System/370 will run on the
other system, provided that it:
1. Observes the limitations described in the

section "Compatibility Among 4300
Processors. "

2. Is not dependent on results defined in this
publication or in the IBM System/3 70
Principles of Operation, as appropriate, to be
unpredictable or model-dependent (an
extension of the fourth rule in the section
"Compatibility Among 4300 Processors ").

3. Is not dependent on control-program facilities
which are unavailable on the system.

To allow the problem programmer to guard
against the effects of facilities that are available on
System/370 but not on 4300 Processors, this
publication in several places describes the results of
such effects. For example, when a program is
written which shares storage in a multiprogramming
environment on a single-CPU configuration,
precautions should be taken to allow such a
program to run correctly on a multiple-CPU
(multiprocessing) configuration.

Specifically, COMPARE AND SWAP,
COMPARE DOUBLE AND SWAP, and TEST
AND SET are the only instructions which should
be used to create interlocks between concurrent
programs. These are the only instructions that do
not, between fetching and storing of the storage
operand, permit another CPU to access the operand
location. The instructions AND (NI or NC),
EXCLUSIVE OR (XI or XC), and OR (01 or OC)
should not be used for such interlocks.

The program may also have to take into account
that serialization of CPU operations, which is
performed by all interruptions and by the execution
of certain instructions, affects the sequence of
events as observed by other CPUs in a
multiprocessing configuration as well as by
channels. (See the section "Serialization H in
Chapter 5, Hprogram Execution. H)

Programming Note
This publication assigns meanings to various
operation codes, to bit positions in instructions,
channel-command words, registers, and table
entries, and to fixed locations in the low 512 bytes
of storage (addresses 0-511). Other operation
codes, bit positions, and low-storage locations are
specifically noted as being available for
programming use. The remaining ones are

unassigned and reserved for future assignment to
new facilities and other extensions of the
architecture.

To ensure that existing programs run if and
when such new facilities are installed, programs
should not depend on an indication of an exception
as a result of invalid values that are currently
defined as being checked. If a value must be
placed in unassigned positions that are not checked,
the program should enter zeros. When the machine
provides a code or field, the program should take
into account that new codes and bits may be
assigned in the future. The program should not use
unassigned low-storage locations for keeping
information since these locations may be assigned
in the future in such a way that the machine causes
this location to be changed.

Chapter 1. Introduction 1-3

Chapter 2. Organization

Contents

Main Storage 2-1

Central Processing Unit 2-2

Program-Status Word 2-2

General Registers 2-2

Floating-Point Registers 2-3

Control Registers 2-3

Input and Output 2-3

Channels 2-4

Input/Output Devices and Control Units 2-4
Operator Facilities 2-4

Logically, IBM 4300 Processors consist of main
storage, a central processing unit (CPU), operator
facilities, and channels. The channels allow
input I output (II 0) devices to be attached, usually
through control units. (See the figure "Logical
Structure. ")

Specific processors may differ in their internal
characteristics, the number and types of channels,
the size of main storage, and the representation of
the operator facilities. The differences in internal
characteristics are apparent to the observer only as
differences in machine performance.

Main I CPU
Storage I

I I

Channel Channel

/
I I 1 1

I

o 0 1/0 Devices o 0

Logical Structure

Main Storage
The 4300 Processors provide fast-access main
storage and storage-control functions for high­
speed processing of data by the CPU and channels.
The storage-control functions permit main storage
to be controlled at two levels: real storage and
virtual storage.

Real storage is the storage where data and
instructions actually reside at the time they are
accessed by the CPU and channels, but neither
CPU programs nor channel programs can address
real storage directly. The size of real storage
depends on the model.

Virtual storage allows both CPU programs and
channel programs to address an apparent main
storage of up to 16,777,216 (16M) bytes. Virtual
storage may be larger than the underlying real
storage. If the virtual storage is larger than the real
storage, a supervisory control program using the
storage-control fU11-ctions of the machine is required
for controlling which parts of virtual storage are
currently mapped onto real storage. This control is
dynamic and transparent to the other programs
except for the time delay.

Chapter 2. Organization 2-1

Central Processing Unit
The central processing unit (CPU) is the
controlling center of the machine. It contains the
sequencing and· processing facilities for instruction
execution, interruption action, timing functions,
initial program loading, and other machine-related
functions.

The physical makeup of the CPU in the various
models of the machine may be different, but the
logical function remains the same. The result of
executing a valid instruction is the same for each
model.

The CPU, in executing instructions, can process
binary integers and floating-point numbers of fixed
length, decimal integers of variable length, and
logical information of either fixed or variable
length. Processing may be in parallel or in series;
the width of the processing elements, the
multiplicity of the shifting paths, and the degree of
simultaneity in performing the different types of
arithmetic differ from one CPU to another without
affecting the logical results.

Instructions which the CPU executes fall into
five classes: general, decimal, floating-point,
control, and input/output instructions. The general
instructions are used in performing fixed-point
arithmetic operations and logical, branching, and
other nonarithmetic operations. The decimal
instructions operate on data in the decimal format,
and the floating-point instructions on data in the
floating-point format. The control instructions and
the input/output instructions are privileged
instructions that can be executed only when the
CPU is in the supervisor state.

To perform its functions, the. CPU may use a
certain amount of internal storage. An example of
such functions is the mapping of virtual storage to
real storage. Although this internal storage may
use the same physical storage medium as main
storage, it is not considered part of main storage
and is not addressable by programs.

The CPU provides registers which are available
to programs but do not have addressable
representations in main storage. They include the
current program-status word (PSW), the general
registers, the floating-point registers, the control
registers, and the registers for the time-of-day
(TOD) clock, the clock comparator, and the CPU
timer. The instruction operation code determines
which type of register is to be used in an operation.
See the figure "General, Floating-Point, and
Control Registers" later in this chapter for the
format of those registers.

2-2 IBM 4300 Processors Principles of Operation

Program-Status Word
The program-status word (PSW) includes the
instruction address, condition code, and other
information used to control instruction sequencing
and to determine the state of the CPU. The active
or controlling PSW is called the current PSW. It
governs the program currently being executed.

The CPU has an interruption capability, which
permits the CPU to switch rapidly to another
program in response to exceptional conditions and
external stimuli. When an interruption occurs, the
CPU places the current PSW in an assigned storage
location, called the old-PSW location, for the
particular class of interruption. The CPU fetches a
new PSW from a second assigned storage location.
This new PSW determines the next program to be
executed. When it has finished processing the
interruption, the interrupting program reloads the
old PSW, making it again the current PSW, so that
the interrupted program can continue.

There are six classes of interruption: external,
I/O, machine check, program, restart, and
supervisor call. Each class has a distinct pair of
old-PSW and new-PSW locations permanently
assigned in storage.

General Registers
Instructions may designate information in one or
more of 16 general registers. The general registers
may be used as base-address registers and index
registers in address arithmetic and as accumulators
in general arithmetic and logical operations. Each
register contains 32 bits. The general registers are
identified by the numbers 0-15 and are designated
by a four-bit R field in an instruction. Some
instructions provide for addressing multiple general
registers by having several R fields. For some
instructions, the use of a specific general register is
implied rather than explicitly designated by an R
field of the instruction.

For some operations, two adjacent general
registers are coupled, providing a 64-bit format. In
these operations, the program must designate an
even-numbered register, which contains the
leftmost (high-order) 32 bits. The next
higher-numbered register contains the rightmost
(low-order) 32 bits.

In addition to their use as accumulators in
general arithmetic and logical operations, 15 of the
16 general registers are also used as base-address
and index registers in address generation. In these
cases, the registers are designated by a four-bit B
field or X field in an instruction. A value of zero
in the B or X field specifies that no base or index is

to be applied, and, thus, general register 0 cannot
be designated as containing a base address or
index.

Floating-Point Registers
Four floating-point registers are available for
floating-point operations. They are identified by
the numbers 0, 2, 4, and 6. Each floating-point
register is 64 bits long and can contain either a
short (32-bit) or a long (64-bit) floating-point
operand. A short operand occupies the leftmost bit
positions of a floating-point register. The rightmost
portion of the register is ignored and remains
unchanged in arithmetic operations that call for
short operands. Two pairs of adjacent
floating-point registers can be used for extended
operands: registers 0 and 2, and registers 4 and 6.
Each of these pairs provides for a 128-bit format.

Control Registers
The CPU has provisions for 16 control registers,
each having 32 bit positions. The bit positions in
the registers are assigned to particular facilities in
the system, such as program-event recording, and
are used either to specify that an operation can
take place or to furnish special information
required by the facility.

The control registers are identified by the
numbers 0-15 and ate designated by four-bit R
fields in the instructions LOAD CONTROL and
STORE CONTROL. Multiple control registers can
be addressed by these instructions.

Inpu t and Ou tpu t
Inputloutput (1/0) operations involve the transfer
of information between main storage and an 1/0
device. 110 devices and their control units attach
to channels, which control this data transfer.

R Field Reg Number Control Registers

~32Bits~

General Registers

~ 32 Bits -+-\
floating-point Registers

'""1------64 Bits -----l~ .. 1

0000 a

0001

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 10

1011 11

1100 12

1101 13

1110 14

1111 15

Note: The braces indicate that the two registers may be coupled as a double-register pair, designated by specifying the lower­
numbered register in the R field. For example, the general-register pair 0 and 1 is designated in the R field by the number O.

General, Floating-Point, and Control Registers

Chapter 2. Organization 2-3

Channels
A channel relieves the CPU of the burden of
communicating directly with I/O devices and
permits data processing to proceed concurrently
with I/O operations. A channel connects with the
CPU, with main storage, and with control units.

A channel may be an independent unit, complete
with the necessary logical and internal-storage
capabilities, or it may time-share CPU facilities and
be physically integrated with the CPU. In either
case, the functions performed by a channel are
identical. The maximum data-transfer rate may
differ, however, depending on the implementation.

There are three types of channels: byte­
multiplexer, block-multiplexer, and selector
channels.

Input / Output Devices and Control Units
Input/ output devices include such equipment as
card· readers and punches, magnetic-tape units,
direct-access storage, displays, keyboards, printers,
teleprocessing devices, communications controllers,
and sensor-based equipment. Many I/O devices

2-4 IBM 4300 Processors Principles of Operation

function with an external medium, such as punched
cards or magnetic tape. Some I/O devices handle
only electrical signals, such as those found in
sensor-based networks. In either case, I/O-device
operation is regulated by a control unit. In all
cases, the control-unit function provides the logical
and buffering capabilities necessary to operate the
associated I/O device. From the programming
point of view, most control-unit functions merge
with I/O-device functions. The control-unit
function may be housed with the I/O device or in
the CPU, or a separate control unit may be used.

Operator Facilities
The operator facilities provide the functions
necessary for operator control of the machine.
Associated with the operator facilities may be an
operator-console device, which may also be used as
an I/O device for communicating with the program.

The main functions provided by the operator
facilities are system reset, clearing, initial program
loading, start, stop, alter, and display.

Chapter 3. Storage

Contents

Storage Addressing 3-1

Information Formats 3-2

Integral Boundaries 3-2

One-Level-Addressing Facility

Storage Size 3-3

Pages 3-4

Page Frames 3-4

Page Description 3-4

Storage Key 3-4

Page Bits

Page States

Frame Index

3-4

3-5

3-5

3-3

This chapter discusses the representation of
information in storage, how information is
addressed, and the one-level-addressing facility for
controlling virtual and real storage. The chapter
also contains a list of permanently assigned storage
locations.

The term "main storage" is used generically to
describe both virtual and real storage, in order to
distinguish this fast-access storage from auxiliary
storage, such as direct-access storage devices.
Physically, main storage may be composed of a
high-capacity fast storage medium and a smaller
but faster buffer storage, sometimes called a cache.
The effects, except on performance, of the physical
construction and the use of distinct storage media
are not observable by the program. Because, in
this publication, most references to main storage
apply to virtual storage, the abbreviated term
11 storage" is generally used in p~ace of "virtual
storage" when the meaning is clear.

All addresses of storage locations are virtual
addresses, because they always refer to virtual
storage. Hence, when applied to main storage,
address means virtual address in this pUblication.

Storage Addressing
Storage is viewed as a long horizontal string of bits.
For most operations, accesses to storage proceed in
a left-to-right sequence. The string of bits is

Page and Frame Control 3-6

Capacity Counts 3-6

Storage-Control Instructions 3-6

Key-Controlled Protection 3-7

Reference Recording 3-8

Change Recording 3-8

Assigned Storage Locations 3-9

Storage While CPU is in Operating State

Storage While CPU is in Load State

3-9

3-10

subdivided into units of eight bits. An eight-bit
unit is called a byte, which is the basic building
block of all information formats.

Each byte location in storage is identified by a
unique nonnegative integer, which is the address of
that byte location or, simply, the· byte address.
Adjacent byte locations have consecutive addresses,
starting with 0 on the left and proceeding in a
left-to-right sequence. Addresses are 24-bit
unsigned binary integers, which provide 16,777,216
(224 or 16M) byte addresses.

The CPU performs address generation when it
forms an operand or instruction address. It also
performs address generation when it increments an
address to access successive bytes of a field.
Similarly, the channel generates an address when it
increments an address to fetch a channel-command
word (CCW) from a CCW list or to transfer data.

When, during address generation, an address is
obtained that exceeds 224 - 1, the carry out of the
high-order bit position of the address is ignored.
This handling of an address of excessive size is
called wraparound.

The effect of wraparound is to make the
sequence of addresses appear circular; that is,
address 0 appears to follow the maximum byte
address, 16,777,215. In 16M-byte storage,
information may be located partially in the last and
partially in the first locations of storage and is

Chapter 3. Storage 3-1

processed without any special indication of crossing
the maximum-address boundary.

Information Formats
Information is transmitted between storage and the
CPU or a channel one byte, 0" a group of bytes, at
a time. Unless otherwise specified, a group of
bytes in storage is addressed by the leftmost byte of
the group. The number of bytes in the group is
either implied or explicitly specified by the
operation to be performed. When used in a CPU
operation, a group of bytes is called a field.

Within each group of bytes, bits are numbered in
a left-to-right sequence. The leftmost bits are
sometimes referred to as the "high-order" bits and
the rightmost bits as the "low-order" bits. Bit
numbers are not storage addresses, however. Only
bytes can be addressed. To operate on individual
bits of a byte in storage, it is necessary to access
the entire byte.

The bits in a byte are numbered 0 through 7,
from left to right.

The bits in an address are numbered 8 through
31. Within any other fixed-length format of
multiple bytes, the bits making up the format are
consecutively numbered starting from O.

For purposes of error detection, and in some
models for correction, one or more check bits may
be transmitted with each byte or with a group of
bytes. Such check bits are generated automatically
by the machine and cannot be directly controlled
by the program. References in this publication to
the length of data fields and registers exclude
mention of the associated check bits. All storage
capacities are expressed in nUl!lber of !Jytes.

When the length of an operand field is implied
by the operation code of an instruction, the field is
said to have a fixed length, which can be one, two,

3-2 IBM 4300 Processors Principles of Operation

four, or eight bytes.
When the length of an operand field is not

implied but is stated explicitly, the field is said to
have variable length. Variable-length operands can
vary in length by increments of one byte.

When information is placed in storage, the
contents of only those byte locations are replaced
that are included in the designated field, even
though the width of the physical path to storage
may be greater than the length of the field being
stored.

Integral Boundaries
Certain units of information must be located in
storage on an integral boundary. A boundary is
called integral for a unit of information when its
storage address is a multiple of the length of the
unit in bytes. Special names are given to fields of
two, four, and eight bytes when they are located on
an integral boundary. A halfword is a group of two
consecutive bytes on a two-byte boundary and is
the basic building block of instructions. A word is
a group of four consecutive bytes on a four-byte
boundary. A doubleword is a group of eight
consecutive bytes on an eight-byte boundary. (See
the figure "Integral Boundaries with Storage
Addresses. ")

When storage addresses designate halfwords,
words, and double words on integral boundaries, the
binary representation of the address contains one,
two, or three rightmost zero bits, respectively.

Instructions must appear on two-byte integral
boundaries, and channel-command words and the
storage operands of certain instructions must
appear on other integral boundaries. The storage
operands of most instructions do not have
boundary-alignment requirements.

----__ a Storage Addresses

Bytes o 2 3 4 5 6 7

Halfwords o 2 4 6

Words o 4

Doublewords o

Integral Boundaries with Storage Addresses

Programming Note
For fixed-field-length operations with field lengths
that are a power of 2, significant performance
degradation is possible when storage operands are
not positioned at addresses that are integral
multiples of the operand length. To improve
performance, frequently used storage operands
should be aligned on integral boundaries.

One-Level-Addressing Facility
The one-level-addressing facility may be used by
the control program to create virtual storage that is
larger than the actual capacity of the underlying
real storage. Other programs and channels address
this virtual storage directly as if all data and
instructions actually resided in virtual storage.

Main storage is volatile; that is, the contents are
not preserved when power is off.

Storage Size
The storage size is the number of addressable byte
locations provided in virtual storage. A model may
allow one or more storage sizes. If more than one
storage size is provided, the current storage size is
determined by the manual'storage-size control
during an initial microprogram loading (IML)
operation. The storage size cannot be changed by
programming.

The storage size is always a multiple of 2,048
(2K) bytes, up to a maximum of 16,777,216 (16M)
bytes.

8

8

8

8

When the storage size exceeds the size of real
storage, the parts of virtual storage which are
currently not directly accessible may be kept on
auxiliary storage, such as direct-access storage
devices (DASD). The transfer of the contents of
virtual storage to and from auxiliary storage may be
controlled by a supervisory control program using
110 instructions in such a way that the remaining
CPU programs and channel programs can address
any part of virtual storage as if it were all directly
accessible.

Storage addresses range from zero to one less
than the storage size. If the CPU attempts to refer
to a storage location that is not provided or to the
corresponding page description (see below), that
attempt is indicated by an addressing exception or,
in the case of the LOAD FRAME INDEX
instruction, by the condition code. If an 1/0
operation attempts to access a storage location that
is not provided, the operation is terminated by an
I/O-interruption condition indicating program
check.

Normally, the indication that a location is not
provided is given only when the information
associated with that location is actually required,
and not when the operation can be completed
without that information.

When the storage size is set to the maximum
value of 16M bytes, all storage locations are
provided; addressing exceptions or program checks
for CCW or data locations cannot occur.

Chapter 3. Storage 3-3

Pages
Virtual storage is divided into pages, each page
consisting of 2,048 (2 11) consecutive bytes on a
2,048-byte address boundary. Virtual storage has
up to 8,192 (2 13) pages of storage. The size of
virtual storage and, hence, the number of pages
provided depend on the model and on the setting of
the manual storage-size control, if one is provided.

Storage-control instructions, except for INSERT
STORAGE KEY and SET STORAGE KEY, refer
to a page by the address of any byte in that page.
The low-order 11 bits of an operand address
referring to a whole page are ignored. The
INSERT STORAGE KEY and SET STORAGE
KEY instructions also use a page address, but the
low-order four bits of their operand address must
be zeros.

Page Frames
Real storage is divided into page frames, each
capable of containing the data for one page of
virtual storage. The size of real storage and, hence,
the number of page frames present in the machine
depend on the model. Real storage is not explicitly
addressable by CPU programs and channel
programs.

A page in virtual storage, to be accessible to
CPU programs and channel programs, must be
associated with a page frame in real storage. An
instruction is provided which assigns to a page a
free page frame selected by the machine. This
instruction is said to connect the page to its
assigned frame. Thereafter, the page frame is
referred to by the address of the corresponding
page. When any previous contents of the page
have been retrieved from external storage and the
page is ready for accessing by a CPU program,
another instruction is used to make the page
addressable.

As the supply of free page frames diminishes, the
control program may make a page not addressable
and, if any bytes in the page have been changed,
write the contents of the· page on auxiliary storage.
An instruction may then be issued to disconnect the
page, thus freeing its frame.

A page frame cannot be assigned to more than
one page at a time.

Page Description
Associated with each virtual-storage page which is
provided are a seven-bit storage key, three
programmable page bits, a page state, and the
frame index of the page frame currently assigned to
the page, if any. This information, called the page
description, is maintained in internal storage.

3-4 IBM 4300 Processors Principles of Operation

Storage Key
A storage key is associated with each page that is
provided.

o 4 6

The bit positions in the storage key are allocated
as follows:

Access-Control Bits (ACC): The four
access-control bits, bits 0-3, are matched with the
four-bit access key whenever information is stored,
or whenever information is fetched from a location
that is protected against fetching.

Fetch-Protection Bit (F): The fetch-protection bit,
bit 4, controls whether protection applies to
fetch-type references: a zero indicates that only
store-type references are monitored and that
fetching with any access key is permitted; a one
indicates that protection applies both to fetching
and storing. No distinction is made between the
fetching of instructions and of operands.

Reference Bit (R): The reference bit, bit 5,
normally is set to one each time a location in the
corresponding page is referred to either for storing
or for fetching of information.

Change Bit (C): The change bit, bit 6, is set to
one each time information is stored at a location in
the corresponding page.

The entire storage key is set by SET STORAGE
KEY and inspected by INSERT STORAGE KEY.
The reference and change bits are also set by SET
PAGE BITS and inspected by INSERT PAGE
BITS. Additionally, the instruction RESET
REFERENCE BIT provides a means of inspecting
the reference and change bits and of setting the
reference bit to zero.

Page Bits
The three programmable page bits associated with
each page may be set by the instruction SET PAGE
BITS and inspected by INSERT PAGE BITS. The
page bits are disregarded by the machine during
other operations.

Programming Note
The page bits may be used by the program to assist
in managing pages. For example, one of the bits
may indicate whether a version of the
corresponding page exists on auxiliary storage.

Page States
A page may be in one of three states:
• Disconnected
• Connected
• Addressable

If disconnected, the page does not have a page
frame assigned to it. Any attempt by the CPU to
access a disconnected page causes a page-access
exception or, when a CLEAR PAGE instruction is
being executed, a page-state exception. Any
attempt by a channel to access a disconnected
page, in order to fetch a CCW or to access a data
area designated during the execution of a CCW,
creates an I/O-interruption condition indicating
protection check. However, if a CCW is
prefetched, a protection check is not indicated until
the C CW is due to be executed.

If connected, the page has a page frame assigned
to it. A connected page may be accessed, if the
protection mechanism permits:
1. By I/O channels
2. By the CPU as the operand of the CLEAR

PAGE instruction
Except when executing CLEAR PAGE, an

attempt by the CPU to access a connected page
causes a page-access exception.

If addressable, the page has a page frame
assigned to it, and the CPU and I/O channels may
access the page if the protection mechanism
permits.

Although the addressable state implies that the
page is also connected, the term "connected state"
refers specifically to the state of a page that is
neither addressable nor disconnected.

The page state is checked for all storage accesses
to locations that are explicitly or implicitly- accessed
by the CPU or by a channel.

The page state is changed by instructions, which
may make the transition from the disconnected to
the connected state and from the connected to the
addressable state, or vice versa. The instructions
are CONNECT PAGE, DECONFIGURE PAGE,
DISCONNECT PAGE, MAKE ADDRESSABLE,
and MAKE UNADDRESSABLE. Most of these
instructions may also be applied to pages which are
already in the desired state. An attempt to change
directly from disconnected to addressable, or vice
versa, causes a page-transition exception. A
page-transition exception is also caused by
DECONFIGURE PAGE when applied to a
disconnected page.

The first page, page 0, containing byte locations
o to 2047, is always addressable. It cannot be
placed in the connected or disconnected state.

The clear-reset function causes a number of
consecutive pages, starting with page 0, to be
assigned to page frames, cleared, and placed in the
addressable state. (See the section "Clear Reset"
in Chapter 4, "Control. ")

Programming Notes
1. The three page states permit programs to

distinguish pages in the disconnected state,
which cannot be accessed at all, from pages in
the connected state, which are undergoing I/O
operations to or from auxiliary page storage,
and from pages in the addressable state, which
are ready for normal sto'rage access.

2. The storage-control instructions other than
CLEAR PAGE operate on page descriptions,
not pages. Instructions which operate on page
descriptions do not make storage accesses and
do not cause page-access or protection
exceptions.

3. All channel accesses to storage appear as if
they referred to pages and not to the associated
page frames. If a page that is being accessed
by a channel becomes disconnected and
another channel access is attempted, protection
check is indicated, and the I/O operation
terminates. If the page becomes disconnected
and then becomes reconnected before
protection check is indicated, protection check
may be indicated subsequently, or accesses may
continue using the newly assigned page frame.

Frame Index
A unique 16-bit unsigned binary integer is assigned
to each page frame existing in the machine. This
integer is the frame index of the page frame. The
value of the frame index ranges from zero up to,
but not including, the existing ... frame-capacity count
(EFCe) (see the section "CapaCity Counts" in this
chapter).

When a CONNECT PAGE instruction connects
a page to a frame, the frame index of the
connected frame is returned by the instruction.
The frame index remains associated with that page
until the page is disconnected. When the same
page is connected again, the new frame index is, in
general, different and unpredictable unless there
was only one free frame remaining.

The frame index for an already connected or
addressable page may be displayed by LOAD
FRAME INDEX.

When DECONFIGURE PAGE makes a page
frame unavailable, the frame index of that frame
will not recur until a clear-reset operation is
performed.

Chapter 3. Storage 3-5

The frame index currently associated with a page
is part of its page description. A disconnected page
has no frame index, and LOAD FRAME INDEX
returns no frame-index value for a disconnected
page.

Programming Notes
1. The frame index assists the control program in

maintaining compact tables of connected or
addressable pages. The frame index is not, and
should not be interpreted as, the address of a
frame in real storage. The algorithm for
assigning a frame index to a page frame is
implementation -dependent. Programming
should not depend on a particular algorithm.

2. The set of frame indexes is dense if the EFCC
equals the AFCC, that is, if there are no
unavailable page frames. It becomes nondense
to the extent that frames are made unavailable
by DECONFIGURE PAGE or by maintenance
intervention.

3. DECONFIGURE PAGE removes a page frame
from contention for connection when a
machine check has indicated damage to a page.
This can be done only while the frame is
connected to a page, because a frame cannot be
addressed directly.

Page and Frame Control

Capacity Counts
Four internally maintained counts are defined to
assist the program in managing pages and page
frames. Each count is a 16-bit unsigned binary
integer. The counts are set or updated by the
machine. They are displayed by the STORE
CAPACITY COUNTS instruction, which stores
each count as a 32-bit integer with 16 high-order
zero bits.

The page-capacity count (PCC) is the number of
virtual-storage pages provided by the machine. The
pages have page addresses from 0 to PCC minus
one. The value of the PCC is equal to the storage
size divided by 2,048; it is set during clear reset
according to the current setting of the manual
storage-size control, if one is provided.

The existing-frame-capacity count (EFCC) is the
number of page frames existing in a particular
implementation of the machine. The EFCC
reflects the total capacity of real storage. The
value of the EFCC is set during clear reset.

The available-frame-capacity count (AFCC) is
the number of page frames connected or available
for connection to pages. The value of AFCC may

3-6 IBM 4300 Processors Principles of Operation

be equal to or less than the EFCC. During CPU
operation, the AFCC may be decreased by the
instruction DECONFIGURE PAGE. The
clear-reset function initializes the AFCC to the
value of the EFCC less the number of frames that
are kept unavailable for connection by maintenance
intervention.

The free-frame-capacity count (FFCC) is the
number of available page frames that are currently
not connected to pages. The value of the FFCC
may range from zero to the AFCC minus one.
During CPU operation, the value of the FFCC may
be changed by the instructions CONNECT PAGE
and DISCONNECT PAGE. The clear-reset
operation initializes the FFCC to zero or to the
value of AFCC minus PCC, depending on whether
the AFCC is less than the PCC or not.

Since page 0 must always be addressable, the
frame connected to page 0 is considered available
but not free. Hence, the minimum value of the
AFCC is one, and the maximum value of the
FFCC is the AFCC minus one.

Storage-Control Instructions
CONNECT PAGE is used to change a page from
the disconnected to the connected state. MAKE
ADDRESSABLE changes a page from connected to
addressable. MAKE UNADDRESSABLE changes
the page state from addressable to connected.
DISCONNECT PAGE changes the page state from
connected to disconnected. DECONFIGURE
P AGE disconnects a connected page and makes the
corresponding page frame and its frame index
unavailable. LOAD FRAME INDEX tests the
page state of a page and displays its frame index, if
any. These six instructions do not change or check
the storage key of the specified pages.

CLEAR PAGE sets the contents of a page to
zero and validates the page.

SET STORAGE KEY replaces the storage key of
a page. INSERT STORAGE KEY retrieves the
storage key of a page except, in the BC mode, for
the reference and change bits. RESET
REFERENCE BIT tests the reference and change
bits and resets the reference bit to zero.

SET PAGE BITS tests the reference and change
bits of a page and then explicitly sets them along
with the three programmable page bits of that page.
INSER T PAGE BITS retrieves the values of the
three page bits, the reference bit, and the change
bit of a page.

All storage-control instructions are privileged.

Key-Controlled Protection
Key-controlled protection is provided to protect the
contents of storage from destruction or misuse
caused by erroneous or unauthorized storing or
fetching by the program. It affords protection
against improper storing or against both improper
storing and fetching, but not against improper
fetching alone.

When key-controlled protection applies to a
storage access, a store is permitted only when the
storage key matches the access key associated with
the request for storage access; a fetch is permitted
when the keys match or when the fetch-protection
bit of the storage key is zero.

The keys are said to match when the four
access-control bits of the storage key are equal to
the access key, or when the access key is zero.

The protection action is summarized in the figure
"Summary of Protection Action."

When the access to storage is initiated by the
CPU, and key-controlled protection applies, the
PSW key is the access key which is used as the
compare value. The PSW key occupies bit positions
8-11 of the current PSW.

When the reference is made by a channel, and
key-controlled protection applies, the sub channel
key associated with the I/O operation is the access
key which is used as the compare value. The
subchannel key is specified for an I/O operation in
bit positions 0-3 of the channel-address word
(CAW); the subchannel key is later placed in bit
positions 0-3 of the channel-status word (CSW)
that is stored as a result of the I/O operation.

When a CPU access is prohibited because of
protection, the operation is suppressed or
terminated, and a program interruption for a
protection exception takes place. When a channel
access is prohibited, protection check is indicated in
the CSW stored as a result of the operation.

Conditions Is Access to
Storage Permitted?

Fetch-Protection
Bit of

Storage Key Key Relation Fetch Store

o
o
1
1

Match
Mismatch
Match
Mismatch

Yes
Yes
Yes
No

Yes
No
Yes
No

Explanation:

Match

Yes

No

The four access-control bits of the storage
key are equal to the access key, or the access
key is zero.

Access is permitted.

Access is not permitted. On fetching, the
information is not made available to the
program; on storing, the contents of the
storage location are not changed.

Summary of Protection Action

Chapter 3. Storage 3-7

When a store access is prohibited because of
key-controlled protection, the contents of the
protected location remain unchanged. When a
fetch access is prohibited, the protected information
is not loaded into a register, moved to another
storage location, or provided to an I/O device. For
a prohibited instruction fetch, the instruction is
suppressed and an arbitrary instruction-length code
is indicated.

Key-controlled protection is always active,
regardless of whether the CPU is in the problem or
supervisor state, and regardless of the type of CPU
instruction or channel-command word being
executed.

All accesses to storage locations that are
explicitly designated by the program and that are
used by the CPU to store or fetch information are
subject to key-controlled protection.

All storage accesses by a channel to fetch a
CCW or to access a data area designated during
the execution of a CCW are subject to
key-controlled protection. However, if a CCW or
output data is prefetched, a protection check is not
indicated until the CCW is due to be executed or
the data is due to be written.

Key-controlled protection is not applied to
accesses that are implicitly made by the CPU or
channel for such sequences as:
• Interruptions,
• Updating the interval timer,
• Fetching the CAW during the execution of an

1/ ° instruction,
• Storing the CSW by an I/O instruction or

interruption,
• Storing channel identification during the

execution of STORE CHANNEL ID,
• Limited channel logout, or
• Initial program loading.

Similarly, protection does not apply to accesses
initiated via the operator facilities for altering or
displaying information. However, when the
program explicitly designates these locations, they
are subject to protection.

Reference Recording
Reference recording provides information for use in
selecting pages for replacement. Reference
recording uses the reference bit, bit 5 of the storage
key. The reference bit is set to one each time a
location in the corresponding page is referred to
either for fetching or storing information.

Reference recording is always active and takes
place for all storage accesses, including those made
by any CPU, I/O, or operator facility. It takes

3-8 IBM 4300 Processors Principles of Operation

place for implicit accesses made by thy machine,
such as those which are part of interruptions and
I/O-instruction execution.

Reference recording does not occur for operand
accesses of the following instructions since they
directly refer t<) a page description without
accessing a storage location:

CONNECT PAGE
DECONFIGURE PAGE (reference bit is set to zero)
DISCONNECT PAGE (reference bit is set to zero)
INSERT PAGE BITS
INSERT STORAGE KEY
LOAD FRAME INDEX
MAKE ADDRESSABLE
MAKE UNADDRESSABLE
RESET REFERENCE BIT (reference bit is set to zero)
SET PAGE BITS (reference bit is set to a specified value)
SET STORAGE KEY (reference bit is set to a specified
value)

The record provided by the reference bit is
substantially accurate. The reference bit may be
set to one by fetching data or instructions that are
neither designated nor used by the program, and,
under certain conditions, a reference may be made
without the reference bit being set to one. Under
certain unusual circumstances, a reference bit may
be set to zero by other than explicit program
action.

Change Recording
Change recording provides information as to which
pages have to be saved in auxiliary storage when
they are replaced in main storage. Change
recording uses the change bit, bit 6 of the storage
key.

The change bit is set to one each time a store
access causes the contents in the corresponding
page to be changed. A store access that does not
change the contents of storage mayor may not set
the change bit to one.

The change bit is not set to one for an attempt
to store if the access is prohibited. In particular:
1. For the CPU, a store access is prohibited

whenever an access exception exists for that
access, or whenever an exception exists which
is of higher priority than the priority of an
access exception for that access.

2. For I/O, a store access is prohibited whenever
a key-controlled-protection condition exists for
that access.

Change recording is always active and takes
place for all store accesses to storage, including
those made by any CPU, I/O, or operator facility.
It takes place for implicit references made by the
machine, such as those which are part of
interruptions.

Change recording does not take place for the
operands of the following instructions since they
directly modify a page description without
modifying a storage location:

CONNECT PAGE
DECONFIGURE PAGE (change bit is set to zero)
DISCONNECT PAGE (change bit is set to zero)
MAKE ADDRESSABLE
MAKE UNADDRESSABLE
RESET REFERENCE BIT
SET PAGE BITS (change bit is set to a specified value)
SET STORAGE KEY (change bit is set to a specified
value)

Change bits are not necessarily restored on CPU
retry (see the section "CPU Retry" in Chapter 11,
"Machine-Check Handling"). See the section
"Exceptions to Nullification and Suppression" in
Chapter 5, "Program Execution," for a description
of the handling of the change bit in certain unusual
situations.

Assigned Storage Locations
Assigned locations in storage have different uses
when the CPU is in the operating state or in the
load state. This section is summarized in the figure
"Assigned Storage Locations."

Programming Note
In the BC mode, there is no implicit storing in
locations 128 and above if all of the following
conditions are met:
1. The manual check control is set to stop.
2. The MONITOR CALL and STORE

CHANNEL 10 instructions are not issued.
3. The page-capacity count is equal to· or less than

the available-frame-capacity count and all
pages are addressable.

Storage While CPU is in Operating State
This section shows the format and extent of the
assigned storage locations while the CPU is in the
operating state. Unless specifically noted, the
usage applies to both the EC and BC modes.

0-7

8-15

24-31

Restart New PSW: The new PSW is
fetched from locations 0-7 during a
restart interruption.
Restart Old PSW: The current PSW is
stored as the old PSW at locations 8-15
during a restart interruption.
External Old PSW: The current PSW
is stored as the old PSW at locations
24-31 during an external interruption.

32-39

40-47

48-55

56-63

64-71

72-75

80-83

88-95

96-103

104-111

112-119

120-127

132-135

136-139

Supervisor-Call Old PSW: The current
PSW is stored as the old PSW at
locations 32-39 during a supervisor-call
interruption.
Program Old PSW: The current PSW
is stored as the old PSW at locations
40-47 during a program interruption.
Machine-Check Old PSW: The current
PSW is stored as the old PSW at
locations 48-55 during a machine-check
interruption.
Input/ Output Old PSW: The current
PSW is stored as the old PSW at
locations 56-63 during an I/O
interruption.
CSW: The channel-status word (CSW)
is stored at locations 64-71 during an
1/ ° interruption. Part or all of it may
be stored during the execution of
START I/O, START I/O FAST
RELEASE,TESTI/O,CLEARI/O,
HALT I/O, or HALT DEVICE, in
which case condition code 1 is set.
CAW: The channel-address word
(CAW) is fetched from locations 72-75
during the execution of START 1/ °
and START I/O FAST RELEASE.
Interval Timer: Locations 80-83
contain the interval timer. The interval
timer is updated whenever the CPU is
in the operating state and the manual
interval-timer control is set to enable.
External New P S W: The new PSW is
fetched from locations 88-95 during an
external interruption.
Supervisor-Call New PSW: The new
PSW is fetched from locations 96-103
during a supervisor-call interruption.
Program New PSW: The new PSW is
fetched from locations 104-111 during
a program interruption.
Machine-Check New PSW: The new
PSW is fetched from locations 112-119
during a machine-check interruption.
Input / Output New P S W: The new
PSW is fetched from locations 120-127
during an 1/ ° interruption.
External-Interruption Code: During an

. external interruption in the EC mode,
the interruption code is stored at
locations 134-135, and zeros are stored
at locations 132-133.
Supervisor-Call-Interruption
Identification: During a supervisor-call

Chapter 3. Storage 3-9

interruption in the EC mode, the
instruction-length code is stored in bit
positions 5 and 6 of location 137, and
the interruption code is stored at
locations 13~-139. Zeros are stored at
location 136 and in the remaining bit
positions of 137.

140-143 Program-Interruption Identification:
During a program interruption in the
EC mode, the instruction-length code is
stored in bit positions 5 and 6 of
location 141, and the interruption code
is stored at locations 142-143. Zeros
are stored at location 140 and in the
remaining bit positions of 141.

144-147 Access-Exception Address: During a
program interruption due to a
page-access exception, the address for
which the exception is being indicated is
stored at locations 145 -147, and zeros
are stored at location 144.

148-149 Monitor-Class Number: During a
program interruption due to a monitor
event, the monitor-class number is
stored at location 149, and zeros are
stored at 148.

150-151 PER Code: During a program
interruption due to a program event, the
program-event-recording (PER) code is
stored in bit positions 0-3 of location
150, and zeros are stored in bit
positions 4-7 and at location 151. This
field can be stored only when the
instruction causing the PER condition
was executed under the control of a
PSW specifying the EC mode.

152-155 PER Address: During a program
interruption due to a program event, the
program-event-recording (PER) address
is stored at locations 153-155, and
zeros are stored at location 152. This
field can be stored only when the
instruction causing the PER condition
was executed under the control of a
PSW specifying the EC mode.

156-159 Monitor Code: During a program
interruption due to a monitor event, the
monitor code is stored at locations
157-159, and zeros are stored at
location 156.

168-171 ChannelID: The four-byte channel­
identification information is stored at
locations 168-171 during the execution
of STORE CHANNEL ID.

3-10 IBM 4300 Processors Principles of Operation

176-179 Limited Channel Logout: The
limited-channel-logout information is
stored at locations 176-179. This field
may be stored only when the CSW or a
portion of the CSW is stored.

185-187 I/O Address: During an I/O
interruption in the EC mode, the
two-byte 110 address is stored at
locations 186-187, and zeros are stored
at location 185.

216-223 CPU-Timer Save Area: During a
machine-check interruption, the
contents of the CPU timer are stored at
locations 216-223.

224-231 Clock-Comparator Save Area: During a
machine-check interruption, the
contents of the clock comparator are
stored at location 224-231.

232-239 Machine-Check-Interruption Code:
During a machine-check interruption
the machine-cheek-interruption code is
stored at locations 232-239.

248-251 Failing-Storage Address: During a
machine-check interruption, a
failing-storage address, if any, is stored
at locations 249-251, and zeros are
stored at location 248.

352-383 Floating-Point-Register Save Area:
During a machine-check interruption,
the contents of the floating-point
registers are stored at locations
352-383.

384-447 General-Register Save Area: During a
machine-check interruption, the
contents of the general registers are
stored at locations 384-447.

448-511 Control-Register Save Area: During a
machine-check interruption, the
contents of the control registers are
stored at locations 448-511.

Storage While CPU is in Load State
0-7 IPL PSW: The first eight bytes read

during the IPL initial read operation are
stored at locations 0-7. The contents of
these locations are used as the new
PSW at the completion of the IPL
operation. These locations may also be
used for temporary storage at the
initiation of the IPL operation.

8-15 IPL CCWl: Bytes 8-15 read during
the IPL initial read operation are stored
at locations 8-15. The contents of
these locations are ordinarily used as

16-23

the next CCW in an IPL CCW chain
after completion of the IPL initial-read
operation.
IPL CCW2: Bytes 16-23 read during
the TPL initial read operation are stored
at locations 16-23. The contents of
these locations may be used as another
CCW in the IPL CCW chain to follow
IPL CCWl.

Chapter 3. Storage 3-11

Hex Dec

0 0 Restart New PSW or IPL PSW

4 4

8 8 Restart Old PSW or IPL CCWl

C 12

10 16 IPL CCW2

14 20

18 24 External Old PSW

1C 28

20 32 Supervisor-Call Old PSW

24 36

28 40 Program Old PSW

2C 44

30 48 Machine-Check Old PSW

34 52

38 56 Input/Output Old PSW

3C 60

40 64 Channel-Status Word

44 68

48 72 Channel-Address Word

4C 76

50 80 Interval Timer

54 84

58 88 External New PSW

5C 92

60 96 Supervisor-Call New PSW

64 100

68 104 Program New PSW

6C 108

70 112 Machine-Check New PSW

74 116

78 120 Input/Output New PSW

7C 124

Assigned Storage Locations (Part 1 of 3)

(

3-12 IBM 4300 Processors Principles of Operation

Hex Dec

80 128

84 132 o 0 0 0 0 0 0 0 0 0 000 o 0 0 External-Interruption Code

88 136 o 0 0 000 0 0 o 0 0 0 0 ILC 0 Superv-Call-Interruption Code

8C 140 o 0 0 000 0 0 o 0 0 0 0 ILC 0 Program-Interruption Code

90 144 o 0 0 0 0 0 0 0 Access-Exception Address

94 148 o 0 o 0 o 0 0 0 Monitor Class # PER Cdeio 000 0 0 0 0 0 000

98 152 0 0 o 0 0 0 0 0 PER Address

9C 156 o 0 0 0 000 0 Monitor Code

AO 160

A4 164

A8 168 Channel ID

AC 172

BO 176 Limited Channel Logout

B4 180

B8 184 o 0 0 0 0 0 0 0 I/O Address

BC 188

CO 192

C4 196

C8 200

CC 204

DO 208

D4 212

D8 216 CPU-Timer Save Area

DC 220

EO 224 Clock-Comparator Save Area

E4 228

E8 232 Machine-Check Interruption Code

EC 236

FO 240

F4 244

F8 248 o 0 0 0 0 0 0 0 Failing-Storage Address

Assigned Storage Locations (Part 2 of 3)

Chapter 3. Storage 3-13

Hex Dec

FC 252

100 256

104 260

108 264

I I

154 340

158 344

15C 348

160 352 Floating-Point-Register Save Area

164 356

168 360

16C 364

170 368

174 372

178 376

17C 380

180 384 General-Register Save Area

184 388

188 392

18C 396

I I

lB4 436

lB8 440

lBC 444

lCO 448 Control-Register Save Area

lC4 452

lC8 456

lCC 460

I I

lF4 500

lF8 504

lFC 508

Assigned Storage Locations (Part 3 of 3)

3~14 IBM 4300 Processors Principles of Operation

Chapter 4. Control

Contents

Stopped, Operating, Load, and Check-Stop States
Stopped State 4-2
Operating State 4-2
Load State 4-2
Check-Stop State

Program-Status Word
EC and BC Modes

4-2
4-2
4-3

Program-Status-Word Format in EC Mode
Program-Status-Word Format in BC Mode

Control Registers 4-7
Program-Event Recording 4-8

Control-Register Allocation 4-9
Operation 4-9

Identification of Cause
Priority of Indication

Storage-Area Designation
PER Events 4-11

Successful Branching
Instruction Fetching
Storage Alteration

4-10
4-10

4-11

4-11
4-11

4-11

General-Register Alteration 4-12

4-4

4-6

4-1

This chapter describes in detail the facilities for
controlling, measuring, and recording the operation
of one or more CPUs.

Stopped, Operating, Load, and Check-Stop
States
The stopped, operating, load, and check-stop states
are four mutually exclusive states of the CPU.
When the CPU is in the stopped state, instructions
and interruptions, other than the restart
interruption, are not executed. In the operating
state, the CPU executes instructions and takes
interruptions, subject to the control of the
program-status word (PSW) and control registers,
and in the manner specified by the setting of the
operator-facility rate control. The CPU is in the

Indication of Events Concurrently with Other
Interruption Conditions 4-12

External-Signal Facility 4-16
Timing 4-16

Time-of-Day Clock 4-16
Format 4-16
States 4-16
Setting and Inspecting the Clock 4-17

Clock Comparator 4-18
CPU Timer 4-19
Interval Timer 4-20

Externally Initiated Functions 4-21
Resets 4-21

Program Reset 4-23
Initial Program Reset 4-23
Clear Reset 4-23
Power-On Reset 4-24

Initial Program Loading
Machine Save 4-25

4-24

load state during the initial-program-Ioading
operation. The CPU enters the check-stop state
only as the result of machine malfunctions.

A change between these four CPU states cannot
be effected by the program. The states are not
controlled or identified by bits in the PSW. The
stopped, load, and check-stop states are indicated
to the operator by means of the manual indicator,
load indicator, and check-stop indicator
respectively. These three indicators are off when
the CPU is in the operating state.

The CPU timer is updated when the CPU is in
the operating state or the load state. The
time-of-day clock is updated whenever power is on.
The interval timer is updated only when the CPU is
in the operating state.

Chapter 4. Control 4-1

I Stopped State
The state of the CPU is changed from operating to

I stopped by the stop function. The stop function is
performed when:
• The stop key is activated while the CPU is in the

operating state.
• The CPU has finished the execution of a unit of

operation initiated by performing the start
function with the rate control set to instruction
step.
When the stop function is performed, the

transition from the operating to the stopped state
occurs at the end of the current unit of operation.
When the wait-state bit of the PSW is one, the
transition takes place immediately, provided no
interruptions are pending for which the CPU is
enabled. In the case of interruptible jnstructions,
the amount of data processed in a unit of operation
depends on the particular instruction and may
depend on the model.

Before entering the stopped state, all pending
allowed interruptions are taken while the CPU is
still in the operating state. They cause the old
PSW to be stored and the new PSW to be fetched
before the stopped state is entered. When the CPU
is in the stopped state, interruption conditions
remain pending.

The CPU is also placed in the stopped state:
• When a reset is completed, except when the reset

operation is performed as part of initial program
loading, and

• When an address comparison indicates equality
and stopping on the match is specified
The execution of resets is described in the

section "Resets" in this chapter, and address
comparison is described in the section
"Address-Compare Controls" in Chapter 13,
"Operator Facilities."

Operating State
The state of the CPU is changed from stopped to
operating when the start function is performed or
when a restart interruption occurs. However, the
effect of performing the start function is
unpredictable when the stopped state was entered
by means of a reset.

The start function is performed on the CPU in
the stopped state when the start key is activated.

When the wait-state bit is one and the rate
control is set to instruction step, the start function
causes no instruction to be executed, but all
pending allowed interruptions are taken before the
CPU returns to the stopped state.

4-2 IBM 4300 Processors Principles of Operation

I Load State
The CPU enters the load state when the
load-normal or load-clear key is activated (see the
section "Initial Program Loading" in this chapter).
When the initial-program-Ioading operation is
completed successfully, the CPU state changes from
load to operating, provided the rate control is set to
process; if the rate control is set to instruction step,
the CPU state changes from load to stopped.

I Check-Stop State
The check-stop state, which the CPU enters on
certain types of machine malfunction, is described
in Chapter 11, "Machine-Check Handling."

Programming Notes
1. Except for the relationship between execution

time and real time, the execution of a program
is not affected by stopping the CPU.

2. When, because of a machine malfu.nction, the
CPU is unable to end the execution of an
instruction, the stop function is ineffective, and
a reset function has to be invoked instead. A
similar situation occurs when an unending
string of interruptions results from a PSW with
a PSW -format error of the type that is
recognized early, or from a persistent
interruption condition, such as one due to the
CPU timer.

3. Input/output operations continue to completion
after the CPU enters the stopped state. The
interruption conditions due to completion of
I/O operations remain pending when the CPU
is in the stopped state.

Program-Status Word
The current program-status word (PSW) contains

I information required for the execution of the
J currently active program. The PSW is 64 bits in

length and includes the instruction address,
condition code, and other control fields. In
general, the PSW is used to control instruction
sequencing and to hold and indicate much of the
status of the CPU in relation to the program
currently being executed. Additional control and
status information is contained in control registers
and permanently assigned storage locations.

Control is switched during an interruption of the
CPU by storing the current PSW, so as to preserve
the status of the CPU, and then loading a new
PSW.

The status of the CPU can be changed by
loading a new PSW or part of a PSW.

The instruction LOAD PSW introduces a new
PSW. The instruction address is updated by
sequential instruction execution and replaced by
successful branches. Other instructions are
provided which operate on a portion of the PSW.
The figure II Operations on System Mask, PSW Key,
and Program Mask II summarizes these instructions.

A new or modified PSW becomes active (that is,
the information introduced into the current PSW
assumes control over the CPU) when the
interruption or the execution of an instruction that
changes the PSW is completed. The interruption
for program-event recording associated with an
instruction that changes the PSW occurs under
control of the PER mask that is effective at the
beginning of the operation.

Bits 0-7 of the PSW are collectively referred to
as the system mask.

EC and BC Modes
Two control modes are provided for the formatting
and use of control and status information: the
extended-control (EC) mode and the basic-control

(BC) mode. Certain functions available in the BC
mode are not available, or are available in a
restricted form, in the BC mode. The mode
currently in effect is specified by PSW· bit 12. Bit
12 is one for the EC mode and zero for the BC
mode.

Program-event recording can be specified only in
the BC mode, because the PSW bit to turn this
function on is not available in the Be mode.

In the Be mode, 110 interruptions can be
controlled individually for up to 32 channels using
the correspondingly numbered 32 mask bits in
control register 2; there is also a summary-mask bit
for 110 interruptions, bit 6 of the PSW. The Be
mode operates in this manner only for channels 6
and up: these channels are individually controlled
by the corresponding bits of control register 2, as
well as the summary-mask bit, bit 6 of the PSW;
channels 0-5 are controlled separately by bits 0-5
of the PSW and are not subject to the summary
mask or to mask bits in control register 2.

When interruptions occur while in the BC mode,
the interruption code and instruction-length code
are stored at various permanently assigned storage
locations according to the class of interruptions. In
the Be mode, the interruption code and

Condition
System Mask PSW Key Code and

(PSW bits (PSW bits
0-7) 8-11)

Program
Mask''(

Instruction Saved Set Saved Set Saved Set

BRANCH AND LINK No No No No Yes No
INSERT PSW KEY No No Yes No No No
SET PROGRAM MASK No No No No No Yes
SET PSW KEY FROM ADDRESS No No No Yes No No
SET SYSTEM MASK No Yes No No No No
STORE THEN AND SYSTEM MASK Yes ANDs No No No No
STORE THEN OR SYSTEM MASK Yes DRs No No No No

Exp 1 a_'2-at ion:

PSW bits 18-23 in EC mode; PSW bits 34-40 in BC mode.

ANDs

DRs

The logical AND of the immediate field in the instruc­
tion and the current system mask replaces the current
system mask.

The logical OR of the immediate field in the instruc­
tion and the current system mask replaces the current
system mask.

I~----_--~
Operations on System Mask, PSW Key, and Program Mask

Chapter 4. Control 4-3

instruction-length code for all except
machine-check interruptions are placed in the PSW.

The program-mask and condition-code fields in
the PSW are allocated to different bit positions in
the two control modes. The instruction INSERT
STORAGE KEY provides the reference and change
bits when in the EC mode but produces zeros in
the corresponding bit positions when in the BC
mode.

Programming Notes
1. The BC mode provides a PSW format that is

compatible with the PSW of System/360.
2. The choice between EC and BC modes affects

only those aspects of operation that are
specifically defined to be different for the two
modes. It does not affect the operation of any
functions that are not associated with the
control bits in the PSW provided only in the
EC mode, and it does not affect the validity of
any instructions. The instructions SET
SYSTEM MASK, STORE THEN AND
SYSTEM MASK, and STORE THEN OR
SYSTEM MASK perform the specified function
on the leftmost byte of the PSW regardless of
the mode specified by the current PSW. On
the other hand, the instruction SET
PROGRAM MASK introduces a new program
mask regardless of the PSW bit positions
occupied by the mask.

Program-Status-Word Format in Ee Mode

The following is a summary of the functions of the
PSW fields in the EC mode. (See the figure IfpSW
Format in EC Mode. If)

PER Mask (R): Bit 1 controls whether the CPU is
enabled for interruptions associated with
program-event recording (PER). When the bit is

I E
o ole e

Prog
o R o 0 o 0 a x Key E M W P Mask

0 6 8 12 16 18 20

zero, no PER event can cause an interruption.
When the bit is one, interruptions are permitted
subject to the PER -event-mask bits in control
register 9.

I/O Mask (10): Bit 6 controls whether the CPU is
enabled for I/O interruptions. When the bit is
zero, an I/O interruption cannot occur. When the
bit is one, I/O interruptions are subject to the
channel-mask bits in control register 2; when a
channel-mask bit is zero, the associated channel
cannot cause an I/O interruption; when the
channel-mask bit is one, an interruption condition
at the channel can cause an interruption.

External Mask (EX): Bit 7 controls whether the
CPU is enabled for interruption by conditions
included in the external class. When the bit is
zero, an external interruption cannot occur. When
the bit is one, an external interruption is subject to
the corresponding external subclass-mask bits in
control register 0; when the subclass-mask bit is
zero, conditions associated with the subclass cannot
cause an interruption; when the subclass-mask bit
is one, an interruption in that subclass can occur.

PSW Key: Bits 8-11 form the access key for
storage references by the CPU. This PSW key is
matched with a storage key whenever information
is stored, or whenever information is fetched from
a location that is protected against fetching.

EC Mode (E): Bit 12, which controls the format
of the PSW and the mode of operation of the CPU,
is one when the CPU is in the extended-control
(EC) mode.

o 0 0 0 0 0 0 0

24 31

10 o 0 0 0 0 0 01 Instruction Address

32 40 63

PSW Format in EC Mode

4-4 IBM 4300 Processors Principles of Operation

Machine-Check Mask (M): Bit 13 controls
whether the CPU is enabled for interruption by
machine-check conditions. When the bit is zero, a
machine-check interruption cannot occur. When
the bit is one, machine-check interruptions due to
system damage and instruction-processing damage
are permitted, but interruptions due to other
machine-cheek-subclass conditions are subject to
the subclass-mask bits in control register 14.

Wait State (W): When bit 14 is one, the CPU is
waiting; that is, no instructions are processed by
the CPU, but interruptions may take place. When
bit 14 is zero, instruction fetching and execution
occur in the normal manner. The wait indicator is
on when the bit is one.

Problem State (P): When bit 15 is one, the CPU
is in the problem state. When bit 15 is zero, the
CPU is in the supervisor state. In the supervisor
state, all instructions are valid. In the problem
state, only those instructions are valid that cannot
be used to affect the system integrity. The
instructions that are not valid in the problem state
are called privileged instructions. When a CPU in
the problem state attempts to execute a privileged
instruction, a privileged-operation exception is
recognized, and a program interruption takes place.

Condition Code (CC): Bits 18 and 19 are the two
bits of the condition code. The condition code is
set to a value of 0, 1,2, or 3, depending on the
result obtained in executing certain instructions.
Most arithmetic and logical operations, as well as
some other operations, set the condition code. The

instruction BRANCH ON CONDITION can
specify any selection of the condition-code values
as a criterion for branching. A table in Appendix
C summarizes the condition-code values that may
be set for all instructions which set the condition
code of the PSW.

Program Mask: Bits 20-23 are the four
program-mask bits. Each bit is associated with a
program exception, as follows:

Program-
Mask Bit Program Exception

20 Fixed-point overflow
21 Decimal overflow
22 Exponent underflow
23 Significance

When the mask bit is one, the exception results
in an interruption. When the mask bit is zero, no
interruption occurs. The setting of the exponent­
underflow-mask bit or the significance-mask bit
also determines the manner in which the operation
is completed when the corresponding exception
occurs.

Instruction Address: Bits 40-63 form the
instruction address. This address designates the
location of the leftmost byte of the next
instruction.

Bit positions 0, 2-5, 16, 17, and 24-39 are
unassigned and must contain zeros. A specification
exception is recognized when these bit positions do
not contain zeros.

Chapter 4. Control 4-5

Program-Status-Word Format in Be Mode

The following is a summary of the functions of the
PSW fields in the BC mode. (See the figure "PSW
Format in BC Mode.")

Channel Masks 0-5: Bits 0-5 control whether the
CPU is enabled for I/O interruptions from
channels 0-5, respectively. When a bit is zero, the
associated channel cannot cause an I/O
interruption. When the bit is one, an interruption
condition at the channel can cause an I/O
interruption.

I/O Mask (10): Bit 6 controls whether the CPU is
enabled for I/O interruptions from channels 6 and
higher. When the bit is zero, these channels
cannot cause I/O interruptions~ When the bit is
one~ I/O interruptions are subject to the
channel-mask bits of the corresponding channels in
control register 2: when a channel-mask bit is zero,
the associated channel cannot cause an I/O
interruption; when the channel-mask bit is one, an
interruption condition at the channel can cause an
interruption.

External Mask (EX): Bit 7 controls whether the
CPU is enabled for interruption by conditions
included in the external class. When the bit is
zero, an external interruption cannot occur. The
meaning is the same as in the EC mode.

PSW Key: Bits 8-11 form the access key for
storage references by the CPU. The meaning is the
same as in the EC mode.

Chan Masks I E

EC Mode (E): Bit 12, which controls the format
of the PSW and the mode of operation of the CPU,
is zero when the CPU is in the basic-control (BC)
mode.

Machine-Check Mask (M): Bit 13 controls
whether the CPU is enabled for interruption by
machine-check conditions. The meaning is the
same as in the BC mode.

Wait State (W): When bit 14 is one, the CPU is
waiting. The meaning is the same as in the BC
mode.

Problem State (P): When bit 15 is one, the CPU
is in the problem state. When bit 15 is zero, the
CPU is in the supervisor state. The meaning is the
same as in the BC mode.

Interruption Code: Bits 16-31 in the old PSW,
which is stored during a program, supervisor-call,
external, or I/O interruption, identify the cause of
the interruption. This field is not used or checked
in the current PSW. Whena new PSW is
introduced, the contents of this field are ignored.

Instruction-Length Code (ILC): The code in bit
positions 32 and 33 of the old PSW indicates the
length of the last-interpreted instruction when a
program or supervisor-call interruption occurs. See
the section "Instruction-Length Code" in Chapter
6, "Interruptions." When a new PSW is introduced,
the contents of this field are ignored.

Condition Code (CC): Bits 34 and 35 are the two
bits of the condition code. The meaning is the
same as in the BC mode.

0-5 0 X Key E M W P Interruption Code

0 6 8 12 16 31

IILC Icc
Prog
Mask Instruction Address

32 34 36 40 63

PSW Format in BC Mode

4-6 IBM 4300 Processors Principles of Operation

Program Mask: Bits 36-39 are the four
program-mask bits. Each bit is associated with a
program exception, as follows: '

Program-
Mask Bit Program Exception

36 Fixed-point overflow
37 Decimal overflow
38 Exponent underflow
39 Significance

When the mask bit is one, the exception results
in an interruption. When the mask bit is zero, no
interruption occurs. The setting of the exponent­
underflow-mask bit or the significance-mask bit
also determines the manner in which the operation
is completed when the corresponding exception
occurs.

Instruction Address: Bits 40-63 form the
instruction address. This address designates the
location of the leftmost byte of the next
instruction.

Control Registers
The control registers provide a means for
maintaining and manipulating control information

I that resides outside the PSW.There may be up to
sixteen 32-bit control registers.

One or more specific bit positions in control
registers are assigned to each facility requiring such
register space.

I The LOAD CONTROL instruction loads control
information from storage into control registers,

whereas the STORE CONTROL instruction
transfers information from control registers to
storage.

The instruction LOAD CONTROL causes all
register positions, within those registers designated
by the instruction, to be loaded. Information
loaded into the control registers becomes active
(that is, assumes control over the system) at the
completion of the instruction causing the
information to be loaded.

When STORE CONTROL is executed, it returns
the current value in each register position. Values
corresponding to unassigned register positions are
unpredictable.

Only the general structure of control registers is
described here; a definition of the register positions
appears with the description of the facility with
which the register position is associated. The figure
"Assignment of Control-Register Fields" shows the
control-register positions which are assigned and
the initial value of the field upon execution of
reset.

Programming Note
To ensure that existing programs run if and when
new facilities using additional control-register
positions are installed, the program should load
zeros in unassigned control-register positions.
Although STORE CONTROL may provide zeros in
the bit positions corresponding to unassigned
register positions, the program should not depend
on such zeros. It is permissible, however, for the
program to load into the control registers, by
LOAD CONTROL, any information previously
stored by means of STORE CONTROL.

Chapter 4. Control 4-7

Ctrl Initial
Reg Bits Name of Field Associated with Value

0 0 Block-multiplexing control Block-multiplexing channels 0
0 1 SSM-suppression control SET SYSTEM MASK 0
0 20 Clock-comparator mask Clock comparator 0
0 21 CPU-timer mask CPU timer 0
0 24 Interval-timer mask Interval timer 1
0 25 Interrupt-key mask Interrupt key 1
0 26 External-signal mask External signal 1

2 0-31 Channel masks Channels 1

8 16-31 Monitor masks MONITOR CALL 0

9 0 Successful-branching-event mask Program-event recording 0
9 1 Instruction-fetching-event mask Program-event recording 0
9 2 Storage-alteration-event mask Program-event recording 0
9 3 GR-ylteration-event mask Program-event recording 0
9 16-31 PER general-register masks Program-event recording 0

10 8-31 PER starting address Program-event recording 0

11 8-31 PER ending address Program-event recording 0

14 0 Unused2 Machine-check handling 1
14 4 Recovery-report mask Machine-check handling 0
14 5 Degradation-report mask Machine-check handling 0
14 6 External-damage-report mask Machine-check handl ing 1
14 7 Warning mask Machine-check handling 0

Explanation:

The fields not listed are unassigned.
1 PER means program-event recording.
2 This bit is not used but is i nit i ali zed to one for consistency with the

System/370 definition.

I Assignment of Control-Register Fields

Program-Event Recording
The purpose of the program-event-recording (PER)
facility is to assist in debugging programs. It
permits the program to be alerted to the following
types of PER events:
• Execution of a successful branch instruction.
• Fetching of an instruction from the designated

storage area.
• Alteration of the contents of the designated

storage area.

4-8 IBM 4300 Processors Principles of Operation

• Alteration of the contents of designated general
registers.

I The program can selectively specify one or more
of the above types of events to be monitored. The
information concerning a PER event is provided to
the program by means of a program interruption,
with the cause of the interruption being identified

I in the interruption code. Program-event recording
is only available in the EC mode.

Control-Register Allocation
The information for controlling program-event
recording resides in control registers 9, 10, and 11
and consists of the following fields:

Control Register 9:

EM IGen.-Reg. Masks

o 4 16 31

Control Register 10:

Starting Address

0 8 31

Control Register 11 :

Ending Address

0 8 31

PER-Event Masks (EM): Bits 0-3 of control
register 9 specify which types of events are

I monitored. The bits are assigned as follows:

Bit 0: Successful-branching event
Bit 1: Instruction-fetching event
Bit 2: Storage-alteration event
Bit 3: General-register-alteration event

Bits 0-3, when ones, specify that the
corresponding types of events are monitored.
When a bit is zero, the corresponding type of event
is not monitored.

PER General-Register Masks: Bits 16-31 of
control register 9 specify which general registers
are monitored for replacement of their contents.
The 16 bits, in the order of ascending bit numbers,
correspond one for one with the 16 registers, in the
order of ascending register numbers. When a bit is
one, the associated register is monitored for
replacement; if zero, the register is not monitored.

PER Starting Address: Bits 8-31 of control

I
register 10 are the address of the beginning of the
monitored storage area.

PER Ending Address: Bits 8-31 of control

I
register 11 are the address of the end of the
monitored storage area.

Programming Note
Models may operate at reduced performance while
the CPU is enabled for PER events. To ensure
that CPU performance is not degraded because of
the operation of the program-event-recording
facility, programs that do not use it should disable
the facility by setting the PER mask in the
EC-mode PSW to zero. No degradation due to
program-event recording occurs in the BC mode or
when the PER mask in the EC-mode PSW is zero.
Disabling of program-event recording in the EC
mode by means of the masks in control register 9
does not necessarily prevent performance
degradation due to the facility.

Operation
Program-event recording (PER) is under control of
bit 1 of the EC-mode PSW, the PER mask. When
the mask is zero, no PER event can cause an
interruption. When the mask is one, a monitored
event, as specified by the contents of control
registers 9, 10, and 11, causes a program
interruption. In BC mode, program-event recording
is disabled.

An interruption due to a PER event is taken
after the execution of the instruction responsible
for the event. The occurrence of the event does
not affect the execution of the instruction, which
may be either completed, terminated, suppressed, or
nullified.

When the CPU is disabled for a particular PER
event at the time it occurs, either by the mask in
the PSW or by the masks in control register 9, the
event is not recognized.

A change to the PER mask in the PSW or to the
PER control fields in control registers 9, 10, and 11
affects program-event recording starting with the
execution of the immediately following instruction.
If the CPU is enabled for some PER event but an
instruction causes the CPU to be disabled for that
particular event, the event causes a PER condition
to be recognized if it occurs during the execution of
the instruction.

When LOAD PSW or SUPERVISOR CALL
causes a PER condition and at the same time
changes CPU operation from the EC mode to the
BC mode, the PER interruption is taken with the
old PSW specifying the BC mode and with the
interruption code stored in the old PSW. The
additional information identifying the PER
condition is stored in its regular format at locations
150-155.

Chapter 4. Control 4-9

Program-event recording applies to emulation
instructions in the following way. Emulation
instructions indicate all events that have occurred
and may additionally indicate events that did not
~ccur and were not called for in the instruction,
provided monitoring was enabled for the type of
event by the PER mask in the PSW and the
PER-event masks, bits 0-3 in control register 9. In
such cases, the contents of the remaining positions
in control registers 9, 10, and 11 may be ignored.
Thus, for example, an emulation instruction may
cause general-register alteration to be indicated
even though no general registers are altered and
even though bits 16-31 of control register 9 are all
zeros.

Identification of Cause
A program interruption for PER sets bit 8 of the
interruption code to one and places identifying
information in storage locations 150-155. The
format of the information stored at locations
150-155 is as follows:

Locations 150-151:

PC 10000000000001

o 4 15

Locations 152-155:

1000000001 PER Address

o 8 31

The event causing a PER interruption is
identified by a one in bit positions 0-3 of location
150, the PER code (PC), with the rest of the bits
in the code set to zeros. The bit position in the
PER code for a particular event is the same as the
bit position for that event in the PER event-mask
field in control register 9.

The PER address at locations 153-155 is the
address of the instruction causing the event. When
the instruction is executed by means of EXECUTE,
the address of the location containing the
EXECUTE instruction is placed in the PER-address
field. In either case, the address of the instruction
to be executed next is placed in the PSW. Zeros
are stored in bit positions 4-7 of location 150 and
at locations 15'1 and 152.

4-10 IBM 4300 Processors Principles of Operation

Priority of Indication
When a PER interruption occurs and more than
one designated PER event has been recognized, all
recognized PER events are concurrently indicated
in the PER code. Additionally, if another program
interruption condition concurrently exists, the
interruption code for a program interruption
indicates both the PER condition and the other
condition.

Except as listed below, a PER event does not
cause premature interruption of the interruptible
instruction, and the PER condition is held pending
until the completion of the instruction.
• When the execution of an interruptible

instruction is due to be interrupted by an I/O,
external, or repressible machine-check condition,
an interruption for a pending PER condition
occurs first, and the I/O, external, or
machine-check interruption is subsequently
subject to the control of mask bits in the new
PSW.

• Similarly, when the CPU is placed in the stopped
state during the execution of an interruptible
instruction, an interruption for a pending PER
condition occurs before the stopped state is
entered.

• When any program exception is encountered, the
pending PER condition is indicated concurrently.

• Depending on the model, in certain situations, a
PER condition n:tay cause the execution of an
interruptible instruction to be interrupted
without an associated asynchronous condition or
program exception.
In the case of an instruction-fetching event for

SUPER VISOR CALL, the PER interruption occurs
immediately after the supervisor-call interruption.

Programming Notes
1 . In the following cases an instruction can both

cause a program interruption for a PER event
and change the value of masks controlling an
interruption for PER events. The original mask
values determine whether a program
interruption takes place for the PER event.
a. The instructions LOAD PSW, SET

SYSTEM MASK, STORE THEN AND
SYSTEM MASK, and SUPERVISOR
CALL can cause an instruction-fetching
event and disable the CPU for PER
interruptions. Additionally, STORE THEN
AND SYSTEM MASK can cause a
storage-alteration event to be indicated.] n

all these cases, the program old PSW
associated with the program interruption for
the PER event may indicate that the CPU
was disabled for that type of PER event.

b. An instruction-fetching event may be
recognized during execution of a LOAD
CONTROL instruction which also changed
the value of the PER-event masks in
control register 9 or the addresses in
control registers 10 and 11 controlling
indication of instruction-fetching events.

2. No instructions can both change the values of
general-register-alteration masks and cause a
general-register-alteration event to be
recognized.

3. When a PER interruption occurs during the
execution of an interruptible instruction, the
ILC indicates the length of that instruction or
EXECUTE, as appropriate. When a PER
interruption occurs as a result of LOAD PSW
or SUPERVISOR CALL, the ILC indicates the
length of these instructions or EXECUTE, as
appropriate, unless a concurrent specification
exception on LOAD PSW calls for an ILC of O.

4. When a PER interruption is caused by
branching, the PER address identifies the
branch instruction (or EXECUTE, as
appropriate), whereas the old PSW points to
the next instruction to be executed. When the
interruption occurs during the execution of an
interruptible instruction, the PER address and
the instruction address in the old PSW are the
same.

Storage-Area Designation
Two of the PER events-instruction fetching and
storage alteration-involve the designation of an
area in storage. The storage area monitored for the
references starts at the location designated by the
starting address in control register 10 and extends
up to and including the location designated by the
ending address in control register 11. The area
extends to the right of the starting address.

The set of addresses monitored for
instruction-fetching and storage-alteration events
wraps around at address 16,777,215; that is,
address 0 is considered to follow address
16,777,215. When the starting address is less than
the ending address, the area is contiguous. When
the starting address is greater than the ending
address, the set of locations monitored includes the
area from the starting address to address
16,777,215 and the area from address 0 to, and
including, the ending address. When the starting

address is equal to the ending address, only the
location designated by that address is monitored.

The monitoring of storage alteration and
instruction fetching is performed by comparing all
24 bits of the monitored address with the starting
and ending addresses.

PER Events

Successful Branching
Execution of a successful branch operation causes a
program-event interruption if bit 0 of the
PER-eve nt-mask field is one and the PER mask in
the PSW is one.

A successful branch occurs whenever one of the
following instructions causes control to be passed to
the instruction designated by the branch address:

BRANCH ON CONDITION
BRANCH AND LINK
BRANCH ON COUNT
BRANCH ON INDEX HIGH
BRANCH ON INDEX LOW OR EQUAL

The branch event is also indicated by an
emulation instruction when the emulation
instruction itself causes a branch. That is, the
branch event is indicated when the location of the
next instruction executed by the CPU after leaving
emulation mode does not immediately follow the
location of the emulation instruction.

The event is indicated by setting bit 0 of the
PER code to one.

Instruction Fetching
Fetching the first byte of an instruction from the
storage area designated by the contents of control
registers 10 and 11 causes a program-event
interruption if bit 1 of the PER-event-mask field is
one and the PER mask in the PSW is one.

A PER event for instruction fetching is
recognized whenever the CPU executes an
instruction whose initial byte is located within the
monitored area. When the instruction is executed
by means of EXECUTE, a PER event is recognized
when the first byte of the EXECUTE instruction or
the target instruction or both is located in the
monitored area.

The event is indicated by setting bit 1 of the
PER code to one.

Storage Alteration
Storing of data by the CPU in the storage area
designated by the contents of control registers 10
and 11 causes a program-event interruption if bit 2

Chapter 4. Control 4-11

of the PER -event-mask field is one and the PER
mask in the PSW is one.

The contents of storage are considered to have
been altered whenever the CPU executes an
instruction that causes all or part of an operand to
be stored within the monitored area of storage.
Alteration is considered to take place whenever
storing is considered to take place for purposes of
indicating protection exceptions. (See the section
"Recognition of Access Exceptions" in Chapter 6,
"Interruptions. ") Storing constitutes alteration for
program-event-recording purposes even if the value
stored is the same as the original value.

Implied locations that are referred to by the
CPU in the process of interval-timer updating,
interruptions, and execution of I/O instructions,
including the interval-timer, PSW, and CSW
locations, are not monitored. These locations,
however, are monitored when information is stored
there explicitly by an instruction. Similarly,
monitoring does not apply to storing of data by a
channel.

The instructions COMPARE AND SWAP and
COMPARE DOUBLE AND SWAP are considered
to alter the second-operand location only when
storing actually occurs.

The instruction STORE CHARACTERS
UNDER MASK is not considered to alter the
storage location when the mask is zero.

The event is indicated by setting bit 2 of the
PER code to one.

General-Register Alteration
Alteration of the contents of a general register
causes a program-event interruption if bit 3 of the
PER-event-mask field is one, the alteration mask
corresponding to that general register is one, and
the PER mask in the PSW is one.

The contents of a general register are considered
to have been altered whenever a new value is
placed in the register. Recognition of the event is
not contingent on the new value being different
from the previous one. The execution of an
RR-format arithmetic or movement instruction is
considered to fetch the contents of the register,
perform the indicated operation, if any, and then
replace the value in the register. The register can
be designated implicitly, such as in TRANSLATE
AND TEST and EDIT AND MARK, or explicitly
by an RR, RX, or RS instruction, including
BRANCH AND LINK, BRANCH ON COUNT,
BRANCH ON INDEX HIGH, and BRANCH ON
INDEX LOW OR EQUAL.

The instructions EDIT AND MARK and
TRANSLATE AND TEST are considered to have

4-12 IBM 4300 Processors Principles of Operation

altered the contents of general register 1 only when
these instructions have caused information to be
placed in the register.

The instructions MOVE LONG and COMPARE
LOGICAL LONG are always considered to alter
the contents of the four registers specifying the two
operands, including the cases where the padding
byte is used, when both operands have zero length,
or when condition code 3 is set for MOVE LONG.

The instruction INSERT CHARACTERS
UNDER MASK is not considered to alter the
general register when the mask is zero.

The instructions COMPARE AND SWAP and
COMPARE DOUBLE AND SWAP are considered
to alter the general register, or general-register pair,
designated by R 1, only when the contents are
actually replaced, that is, when the first and second
operands are not equal.

The event is indicated by setting bit 3 of the
PER code to one.

Programming Note
The following are some examples of
general-register alteration:
1. Register-to-register load instructions are

considered to alter the register contents even
when both operand addresses designate the
same register.

2. Addition or subtraction of zero and
multiplication or division by one are considered
to constitute alteration.

3. Logical and fixed-point shift operations are
considered to alter the register contents even
for shift amounts of zero.

4. The branching instructions BRANCH ON
INDEX HIGH and BRANCH ON INDEX
LOW OR EQUAL are considered to alter the
first operand even when zero is added to its
value.

Indication of Events Concurrently with
Other Interruption Conditions
The following rules govern the indication of PER
events caused by an instruction that has also caused
a program exception or the monitor event to be
indicated, or that causes a supervisor-call
interruption.
1. The indication of an instruction-fetching event

does not depend on whether the execution of
the instruction was completed, terminated,
suppressed, or nullified. The event, however, is
not indicated when an access exception
prohibits access to the first byte of the
instruction. When the first halfword of the
instruction is accessible but an access exception

applies to the second or third halfword of the
instruction, it is unpredictable whether the
instruction-fetching event is indicated.

2. When the operation is completed, the event is
indicated regardless of whether any program
exception or the monitoring event is
recognized.

3. Successful branching, storage alteration, and
general-register alteration are not indicated for
an operation or, in case the instruction is
interruptible, for a unit of operation that is
suppressed or nullified.

4. When the execution of the instruction is
terminated, general-register or storage
alteration is indicated whenever the event has
occurred, and a model may indicate the event if
the event would have occurred had the
execution of the instruction been completed,
even if altering the contents of the result field
is contingent on operand values.

5. When LOAD PSW or SUPERVISOR CALL
causes a PER condition and at the same time
introduces a new PSW with the type of
PSW-format error that is recognized
immediately after the PSW becomes active, the
interruption code identifies both the PER
condition and the specification exception.
When these instructions introduce a
PSW-format error of the type that is recognized
as part of the execution of the following
instruction, the PSW is stored as the old PSW
without the specification exception being
recognized.

The indication of PER events concurrently with
other program interruption conditions is
summarized in the figure "Indication of PER
Events. "

Chapter 4. Control 4-13

PER Event

Type Storage GR
of Instr A 1 tet- Alter-

Exception Ending Branch Fetch ation ation

Operation S - Xl - -
Privileged operation S - Xl - -
Execute S - Xl - -
p'rotect ion

Instruction S - _1 - -
Operand S or T - X X+ X+

Addressing
_1 Instruction S - - -

Operand S or T - X X+ X+
Specification

Odd instruction address S - - - -
Invalid PSW format C - X - -
Other S - X - -

Data
Invalid sign S - X - -
Other T - X X+ X+

Fixed-po int overflow C - X - X
Fixed-point divide

Division S - X - -
Conversion C - X - X

Decimal overflow C - X X -
Decimal divide S - X - -
Exponent overflow C - X - -
Exponent underf10w C - X - -
Significance C - X - -
Float ing-po i nt divide S - X - -
Special operation S - X - -
Page access

Instruction N - _1 - -
Operand N - X X2 X2

Page state S - X - -
Page transition S - X - -

, Mon i tor event C - X - -

Indication of PER Events (Part 1 of 2)

4~14 IBM 4300 Processors Principles of Operation

Explanation:

C The operation or, in the case of the interruptible
instructions, the unit of operation is completed.

N The operation or, in the case of the interruptible
instructions, the unit of operation is nullified. The
instruction address in the old PSW has not been updated.

S The operation or, in the case of the interruptible
instructions, the unit of operation is suppressed.

T The execution of the instruction is terminated.

X The event is indicated with the exception if the event
has occurred; that is, the contents of the monitored
storage location or general register were altered, or an
attempt was made to execute an instruction whose first
byte is located in the monitored area.

+ A model is permitted, but not required, to indicate the
event if the event would have occurred had the operation
been completed but did not take place because the execu­
tion of the instruction was terminated.

2

The event is not indicated.

When an access exception applies to the second or third
halfword of the instruction but the first halfword is
accessible, it is unpredictable whether the instruction­
fetcning event is indicated.

This condition may occur in the case of the interrupt­
ible instructions when the event is recognized in the
unit of operation that is completed and when the excep­
tion causes the next unit of operation to be suppressed
or null ified.

Indication of PER Events (Part 2 of 2)

Programming Notes

1. The execution of the interruptible instructions
MOVE LONG (MVCL) and COMPARE
LOGICAL LONG (CLCL) can cause events
for general-register alteration and instruction
fetching. Additionally, MVCL can cause the
storage-alteration event.

a. The instruction-fetching event is indicat(
whe'never the instruction is fetched for
execution, regardless of whether it is the
initial execution or a resumption.

Since the execution of MVCL and CLCL
can be interrupted, a program event may be
indicated more than once. It may be necessary,
therefore, for a program to remove the
redundant event indications from the PER data.
The following rules govern the indication of the
applicable events during execution of these two
instructions:

b. The general-register-alteration event is
indicated on the initial execution and on
each resumption and does not depend on
whether or not the register actually is
changed.

c. The storage-alteration event is indicated
only when data has been stored in the
monitored area by the portion of the
operation starting with the last initiation
and ending with the last byte transferred

Chapter 4. Control 4-15

before the interruption. No special
indication is provided on premature
interruptions as to whether the event will
occur again upon the resumption of the
operation. When the storage area
designates a single byte location, a
storage-alteration event can be recognized
only once in the execution of MOVE
LONG.

2. The following is an outline of the general
action a program must take to delete the
redundant entries in the PER data for MOVE
LONG and COMPARE LOGICAL LONG so
that only one entry for each complete execution
of the instruction is obtained:
a. Check to see if the PER address is equal to

the instruction address in the old PSW and
if the last instruction executed was MVCL
or CLCL.

b. If both conditions are met, delete
instruction-fetching and register-alteration
events.

c. If both conditions are met and the event is
storage alteration, delete the event if some
part of the remaining destination operand is
within the monitored area.

External-Signal Facility
The external-signal facility consists of six signal-in
lines and an external-signal mask, which is bit 26
of control register O. Each of the six signal-in
lines, when pulsed, sets up the condition for one of
six distinct interruptions (see the section "External
Signal" in Chapter 6, "Interruptions").

For a detailed description, see the System/3 60
and System/3 70 Direct Control and External
Interruption Features-Original Equipment
Manufacturers' Information, GA22-6845.

Timing
The timing facilities include four facilities for
measuring time: the time-of-day clock, the clock
comparator, the CPU timer, and the interval timer.

Time-of-Day Clock
The time-of-day (TOD) clock provides a high­
resolution measure of real time suitable for the
indication of date and time of day. The cycle of
the clock is approximately 143 years.

Format
The time-of-day clock is a binary counter with the
format shown in the following illustration. The bit
positions of the clock are numbered 0 to 63,

4-16 IBM 4300 Processors Principles of Operation

corresponding to the bit positions of a 64-bit
I unsigned binary integer.

microsecond

I I
o 51 63

In the basic form, the time-of-day clock is I incremented by adding a one in bit position 51
every microsecond. In models having a higher or
lower resolution, a different bit position is
incremented at such a frequency that the rate of
advancing the clock is the same as if a one were
added in bit position 51 every microsecond. The
resolution of the time-of-day clock is such that the
incrementing rate is comparable to the I instruction-execution rate of the model.

When incrementing of the clock causes a carry
to be propagated out of bit position 0, the carry is
ignored, and counting continues from zero on. The
program is not alerted, and no interruption
condition is generated as a result of the overflow.

The operation of the clock is not affected by any
normal activity or event in the system. Incre­
menting of the clock does not depend on whether
the wait-state bit of the PSW is one or whether the
CPU is in the stopped, operating, or load state. Its
operation is not affected by program, initial­
program, or clear resets or by initial program
loading. Operation of the clock is also not affected
by the setting of the rate control or by an initial­
microprogram-loading operation. The clock is not
incremented when the power is off.

States
The following states are distinguished for the time­
of-day clock: set, not set, error, and not
operational. The state determines the condition
code set by execution of STORE CLOCK. The
clock is incremented, and is said to be running,
w-hen it is in either the set state or the not-set state.

Not-Set State: When the power is turned on, the
clock is set to zero, and the clock enters the not-set
state. The clock is incremented when in the not-set
state. Incrementing begins at zero.

When the clock is in the not-set state, execution
of STORE CLOCK causes condition code 1 to be
set and the current value of the running clock to be
stored.

Set State: Execution of SET CLOCK when the
manual TaD-clock control is set to the enable-set
position causes the clock to enter the set state from
the not-set, set, or error state if no exceptions are
encountered.

Incrementing of the clock begins with the first
stepping pulse after the clock enters the set state.

When the clock is in the set state, execution of
STORE CLOCK causes condition code 0 to be set
and the current value of the running clock to be
stored.

Error State: The clock enters the error state when
a malfunction is detected that is likely to have
affected the validity of the clock value. A
timing-facility-damage machine-check-interruption
condition is generated whenever it enters the error
state.

When STORE CLOCK is executed and the clock
is in the error state, condition code 2 is set, and the
value stored is zero.

Not-Operational State: The clock is in the
not-operational state when it is disabled for

. maintenance. It depends on the model if the clock
can be placed in this state. Whenever the clock
enters the not-operational state, a timing-facility­
damage machine check is generated.

When the clock is in the not-operational state,
execution of STORE CLOCK causes condition
code 3 to be set, and zero is stored.

Setting and Inspecting the Clock
The clock can be set to a specific value by
execution of SET CLOCK if the manual TOD­
clock control is set to the enable-set position.
Setting the clock replaces the values in all bit
positions from bit position 0 through the rightmost
position that is incremented when the clock is
running.

The time-of-day clock can be inspected by
executing STORE CLOCK, which causes a 64-bit
value to be stored. Two executions of STORE
CLOCK always store different values if the clock is
running.

The values stored for a running clock always
correctly imply the order of execution of STORE
CLOCK. Zeros are stored in positions to the right
of the bit position that is incremented.

Programming Notes
1. Bit position 31 of the clock is incremented

every 1.048576 seconds; for some applications,
reference to the high-order 32 bits of the clock
may provide sufficient resolution.

2. Communication between systems is facilitated
by establishing a standard time origin, or
standard epoch, which is the calendar date and
time to which a clock value of zero
corresponds. January 1, 1900, 0 AM
Greenwich Mean Time (GMT) is recommended
as the standard epoch for the clock.

3. A program using the clock value as a time-of­
day and calendar indication must be consistent
with the programming support under which the
program is to run. If the programming support
uses the standard epoch, bit 0 of the clock
remains one through the years 1972-2041.
Ordinarily, testing the high-order bit for a one
is sufficient to determine if the clock value is in
the standard epoch.

In converting to or from the current date or
time, the programming support assumes each
day to be 86,400 seconds. It does not take into
account "leap seconds" inserted or deleted
because of time-correction standards.

4. Because of the limited accuracy of manually
setting the clock value, the low-order bit
positions of the clock, expressing fractions of a
second, are normally not valid as indications of
the time of day. However, they permit
elapsed-time measurements of high resolution ..

5. The following chart shows the time interval
between instants at which various bit positions
of the time-of-day clock are stepped. This time
value may also be considered as the weighted
time value that the bit, when one, represents.

TOD- Stepping Interval
Clock
Bit DayslHoUrslMinutesl Seconds

51 0.000 001
47 0.000 016
43 0.000 256

39 0.004 096
35 0.065 536
31 1.048 576

27 16.777 216
23 4 28.435 456
19 1 11 34.967 296

15 19 5 19.476 736
11 12 17 25 11.627 776
7 203 14 43 6.044 416
3 3257 19 29 36.710 656

Chapter 4. Control 4-17

6. The following chart shows the clock setting at
the start of various years. The clock settings,
expressed in he'xadecimal notation, correspond
to 0 AM Greenwich Mean Time on January 1
of ,each year.

Year Clock Setting (Hex)

1900 0000 0000 0000 0000
1976 8853 BAFO B400 0000
1980 8F80 9FD3 2200 0000
1984 96AD 84B5 9000 0000
1988 9DDA 6997 FEOO 0000
1992 A507 4E7A 6COO 0000
1996 AC34 335C DAOO 0000
2000 B361 183F 4800 0000

7. The stepping value of time-of-day-clock bit
position 63, if implemented, is 2- 12 micro­
seconds, or approximately 244 picoseconds.
This value is called a clock unit.

The following chart shows various time
intervals in clock units expressed in
hexadecimal notation.

Interval Clock Units (Hex)

1 microsecond 1000
1 mi 11 i second 3E 8000
1 second F424 0000
1 minute 39 3870 0000
1 hour D69 3A40 0000
1 day 1 41DD 7600 0000
365 days lCA E8Cl 3EOO 0000
366 days lCC 2A9E B400 0000
1,461 days l 72C E4E2 6EOO 0000

1 Number of nays in four years,
including a leap year.

Clock Comparator
The clock comparator provides a means of causing
an interruption when thetime-of-day-clock value
exceeds a value specified by the program.

The clock comparator has the same format as the
time-of-day clock. In the basic form, the clock
comparator consists of bits 0-47, which are
compared with the corresponding bits of the
time-of-day clock. In some models, higher
resolution is obtained by providing more than 48
bits. The bits in positions provided in the clock
comparator are compared with the corresponding
bits of the clock. When the resolution of the clock
is less than that of the clock comparator, the

4-18 IBM 4300 Processors Principles of Operation

contents of the clock comparator are compared
with the clock value as this value would be stored
by executing STORE CLOCK.

The clock comparator 'causes an external
interruption with the interruption code 1004 (hex).
A request for a clock-comparator interruption exists
whenever either of the following conditions exists:
1. The time-of-day clock is running and the value

of the clock comparator is less than the value in
the compared portion of the clock, both values
being considered unsigned binary integers.
Comparison follows the rules of unsigned
binary arithmetic.

2. The time-of-day clock is in the error state or
the not-operational state.

A request for a clock-comparator interruption
does not remain pending when the value of the
clock comparator is made equal to or greater than
that of the time-of-day clock or when the value of
the time-of-day clock is made less than the
clock-comparator value. The latter may occur as a
result of the time-of-day clock either being set or
wrapping to zero.

The clock comparator can be inspected by
executing the instruction STORE CLOCK
COMP ARA TOR and can be set to a specific value
by executing the SET CLOCK COMPARATOR
instruction.

The contents of the clock comparator are
initialized to zero by initial program reset.

Programming Notes
1. An interruption request for the clock

comparator persists as long as the
clock-comparator value is less than that of the
time-of-day clock or as long as the time-of-day
clock is in the error or not-operational state.
Therefore, one of the following actions must be
taken after an external interruption for the
clock comparator has occurred and before the
CPU is again enabled for external
interruptions: the value of the clock comparator
has to be replaced, the time-of-day clock has to
be set, or the clock-comparator submask has to
be set to zero. Otherwise, loops of external
interruptions are formed.

2. The instruction STORE CLOCK may store a
value which is greater than that in the clock
comparator, even though the CPU is enabled
for the clock-comparator interruption. This is
because the time-of-day clock may be

incremented one or more times between when
instruction execution is begun and when the
clock value is accessed. In this situation, the
interruption occurs when the execution of
STORE CLOCK is completed.

CPU Timer
The CPU timer provides a means for measuring
elapsed CPU time and for causing an interruption
when a pre specified amount of time has elapsed.

The CPU timer is a binary counter with a format
which is the same as that of the time-of -day clock,
except that bit 0 is considered a sign. In the basic
form, the CPU timer is decremented by subtracting
a one in bit position 51 every microsecond. In
models having a higher or lower resolution, a
different bit position is decremented at such a
frequency that the rate of decrementing the CPU
timer is the same as if a one were subtracted in bit
position 51 every microsecond. The resolution of
the CPU timer is such that the stepping rate is
comparable to the instruction-execution rate of the
model.

The CPU timer requests an external interruption
with the interruption code 1005 (hex) whenever
the CPU-timer value is negative (bit 0 of the CPU
timer is one). The request does not remain pending
when the CPU-timer value is changed to a
nonnegative value.

When both the CPU timer and the time-of-day
clock are running, the stepping rates are
synchronized such that both are stepped at the

I same rate. Normally, decrementing the CPU timer
is not affected by concurrent I/O activity.
However, in some models the CPU timer may stop
during extreme I/O activity and other similar
interference situations. In these cases, the time
recorded by the CPU timer provides a more
accurate measure of the CPU time used by the
program than that which would have been recorded
had the CPU timer continued to step.

I
The CPU timer is decremented when the CPU is

in the operating state or the load state. When the
manual rate control is set to instruction step, the
CPU timer is decremented only during the time in
which the CPU is actually performing a unit of
operation. However, depending on the model, the
CPU timer mayor may not be decremented when
the time-of-day clock is in the error or
not-operational state.

Depending on the model, the CPU timer mayor
may not be decremented when the CPU is in the
check-stop state.

The CPU timer can be inspected by executing
the instruction STORE CPU TIMER and can be set
to a specific value by executing the SET CPU
TIMER instruction.

The CPU timer is set to zero by initial program
reset.

Programming Notes
1. The CPU timer in association with a program

may be used both to measure CPU-execution
time and to signal the end of a time interval on
the CPU.

2. The time measured for the execution of a
sequence of instructions may depend on the
effects of such things as I/O interference, page
faults, and instruction retry. Hence, repeated
measurements of the same sequence on the
same installation may differ.

3. The fact that a CPU-timer interruption does
not remain pending when the CPU timer is set
to a positive value eliminates the problem of an
undesired interruption. This would occur if,
between the time when the old value is stored
and a new value is set, the CPU is disabled for
CPU-timer interruptions and the CPU timer
value goes from positive to negative.

4. The fact that CPU -timer interruptions are
requested whenever the CPU timer is negative
rather than just when the CPU timer goes from
positive to negative eliminates the requirement
for testing a value to ensure that it is positive
before setting the CPU timer to that value.

As an example, a program being timed by
the CPU timer is interrupted for a cause other
than the CPU timer, external interruptions are
disallowed by the new PSW, and the
CPU-timer value is then saved by STORE CPU
TIMER. This value could be negative if the
CPU timer went from positive to negative since
the interruption. Subsequently, when the
program being timed is to continue, the CPU
timer may be set to the saved value by SET
CPU TIMER. A CPU-timer interruption will
occur immediately after external interruptions
are again enabled if the saved value was
negative.

The persistence of the CPU-timer­
interruption request means, however, that after
an external interruption for the CPU timer has
occurred, either the value of the CPU timer has
to be replaced or the CPU-timer submask has
to be set to zero before the CPU is again

Chapter 4. Control 4-19

enabled for external interruptions. Otherwise,
loops of external interruptions are formed.

5. The instruction STORE CPU TIMER may store
a negative value even though the CPU is
enabled for the· interruption. This is because
the CPU-timer value may be decremented one
or more times between the instants when
instruction execution is begun and when the
CPU timer is accessed. In this situation, the
interruption occurs when the execution of
STORE CPU TIMER is completed.

Interval Timer
The interval timer is a binary counter that occupies
a word at storage location 80 and has the following
format:

o 24 31

The interval timer is treated as a 32-bit signed
binary integer. In the basic form, the contents of
the interval timer are reduced by one in bit position
23 every 1/300 of a second. Higher resolution of
timing may be obtained in some models by counting
with higher frequency in one of the positions 24
through 31. In each case, the frequency is adjusted
to cause decrementing in bit position 23 at the rate
of 300 times per second. The cycle of the interval
timer is approximately 15.5 hours.
of 300 times per second. The cycle of the interval
timer is approximately 15.5 hours.

The interval timer causes an external
interruption, with bit 8 of the interruption code set
to one and bits 0-7 set to zeros. Bits 9-15 of the
interruption code are zeros unless set to ones for
another condition that is concurrently indicated.

A request for an interval-timer interruption is
generated whenever the interval-timer value is
decremented from a positive or zero number to a
negative number. The request is preserved and
remains pending in the CPU until it is cleared by
an interval-timer interruption or a program reset.
The overflow occurring as the interval-timer value
is decremented from a large negative number to a
large positive number is ignored.

The interval timer is not necessarily
synchronized with the time-of-day clock.

The interval-timer contents are updated at the
appropriate frequency whenever other machine
activity permits. The updating occurs only between
instruction executions, except that the interval

4-20 IB M 4300 Processors Principles of Operation

I timer may be updated between units of operation of
an interruptible instruction, such as MOVE LONG.
An updated interval-timer value is normally
available at the end of each instruction execution.
When the execution of an instruction or other
machine activity causes updating to be delayed by
more than one period, the contents of the interval
timer may be reduced by more than one unit in a
single updating cycle. Interval-timer updating may
be omitted when 110 data transmission approaches
the limit of storage capability, or when a channel
sharing CPU equipment and operating in burst
mode causes CPU activity to be locked out. The
program is not alerted when omission of updating
causes the real-time count to be lost.

When the contents of the interval timer are
fetched by a channel or are used as the source of
an instruction, the result is unpredictable.
Similarly, storing by the channel at location 80
causes the contents of the interval timer to be
unpredictable.

The interval timer is not decremented when the
manual interval-timer control is set to disable. The
interval timer is also not decremented when the
CPU is not in the operating state or when the
manual rate control is set to instruction step.

Depending on the model, the interval timer may
or may not be decremented when the time-of-day
clock is in the error, stopped, or not-operational
state.

Programming Notes
1. The value of the interval timer is accessible by

fetching the word at location 80 as an operand,
provided the location is not protected against
fetching. It may be changed at any time by
storing a word at location 80. When location
80 is protected, any attempt by the program to
change the value of the interval timer causes a
program interruption for protection exception.

2. The value of the interval timer may be changed
without losing the real-time count by storing
the new value at locations 84-87 and then
shifting bytes 80-87 to locations 76-83 by
means of the instruction MOVE (MVC). Thus,
in a single operation, the new interval-timer
value is placed at location 80, and the old value
is made available at location 76.

If any means other than the instruction
MOVE (MVC) are used to interrogate and
then replace the value of the interval timer,

including MOVE LONG or two separate
instructions, the program may lose a time
increment when an updating cycle occurs
between fetching and storing.

3. When the value of the interval timer is to be
recorded on an 110 device, the program should
first store the interval-timer value in a
temporary storage location to which the 1/0
operation subsequently refers. When the
channel fetches the interval-timer value directly
from location 80, the value obtained is
unpredictable.

Externally Initiated Functions

Resets
Four reset functions are provided:
• Program reset
• Initial program reset
• Clear reset
• Power-on reset

Program reset provides a means of clearing
equipment-check indications and any resultant
unpredictability in the CPU and 110 state with the
least amount of information destroyed. In
particular, it is used to clear check conditions when

the machine state is to be preserved for analysis or
resumption of operation.

Initial program reset provides the functions of
program reset together with initialization of the
current PSW, CPU timer, clock comparator, and
control registers.

Clear reset causes initial program reset to be
performed and, additionally, clears or initializes all
storage locations and registers, with the exception
of the time-of-day clock. Such clearing is useful in
debugging programs and in ensuring user privacy.
Clearing does not affect external storage, such as
direct-access storage devices used by the control
program to hold the contents of unaddressable
pages.

Power-on reset combines the functions of clear
reset with initializing the time-of-day clock and
selecting storage size.

Program reset and clear reset are initiated
manually using the operator facilities (see Chapter
13, "Operator Facilities"). Initial program reset is
part of the initial-program-Ioading function.
Power-on reset is performed as part of turning
power on. The reset actions are tabulated in the
figure 11 Summary of Reset Actions."

Chapter 4. Control 4-21

Reset Function

In i t i al Power-
Program Program Clear on

Area Affected Reset Reset Reset Reset

CPU S S S S
Channels R R R R
PSW U C C C
CPU timer U C C C
Clock comparator U C C C
Time-of-day clock U 1 Ul Ul T
Control registers U I I I
General registers U U C C
Floating-point registers U U C C
Capacity counts U U I I
Page descriptions U U C C
Storage U U P P
Machine-save information U2 U2 Y Y

Explanation:

C The condition or contents are cleared. If the area affected
is a field, the contents are cleared to zero with valid
checking-block code.

I The state or contents are initialized. If the area affected
is a field, the contents are set to their initial values
with valid checking-block code.

P The first n storage pages are cleared and made address­
able, where n is the lesser of the available-frame­
capacity and page-capacity counts. Any remaining pages are
left disconnected.

R I/O-system reset is performed in the channels, and pending
I/O-interruption conditions are cleared. As part of this
reset, system reset is signaled to the I/O control units
and devices configured to the channels.

S The CPU is reset; current operations, if any, are termina­
ted; interruption conditions in the CPU are cleared; and the
CPU is placed in the stopped state.

T The time-of-day clock is initialized to zero and validated,
and it enters the not-set state.

U The contents remain unchanged. However, the resulting
value is unpredictable if an operation is in progress that
changes the contents of the field at the time of reset.

Y The machine-save information is made invalid.

1 Access to the time-of-day clock by means of STORE CLOCK at
the time a reset function is performed does not affect the
value of the time-of-day clock.

2 If a machine-save function is in progress at the time of
the reset, the machine-save function is halted, and any
partially altered machine-save information is made invalid.

Summary of Reset Actions

4-22 IBM 4300 Processors Principles of Operation

Program Reset
Program reset causes the following actions:
1. The execution of the current instruction or

other processing sequence, such as an
interruption, is terminated, and all program­
interruption and supervisor-caB-interruption
conditions are cleared.

2. Any pending external-interruption conditions
are cleared.

3. Any pending machine-check-interruption
conditions, error indications, and check-stop
state are cleared.

4. Any buffers containing prefetchect instructions,
operands, or results due to be stored are
cleared.

5. The CPU is placed in the stopped state after
actions 1-4 have been completed.

6. I/O-system reset is performed in each channel.
7. Any ongoing machine-save function is halted,

and any partially altered machine-save
information is made invalid.

Register and storage contents remain unchanged
by program reset. However, if a register or storage
location is being accessed at the time the
program-reset operation is performed, the
subsequent contents of the register or location are
unpredictable.

I As part of the 1/ a-system reset performed (see
~he section "I/O-System Reset" in Chapter 12,
"Input/Output Operations"), pending
I/O-interruption conditions are cleared, and system
reset is signaled to all control units and devices
configured to the channel. The effect of system
reset on I/O control units and devices and the
resultant control-unit and device state are described
in the appropriate publication on the control unit or
device. A system reset, in general, resets only
those functions in a shared control unit or device

I that are associated with the particular channel
signaling the reset.

Program reset is performed when the
system-reset-normal key is activated. It is also part
of the initial-program-reset function.

Initial Program Reset
Initial program reset combines the program-reset
functions with the following actions:
1. The contents of the current PSW, CPU timer,

and clock comparator are set to zero.
2. All assigned control-register positions are set to

their initial values.
Thes.e clearing and initializing functions include

validation.
Setting the current PSW to zero causes the PSW

to assume the BC-mode format. The

instruction-length code and interruption code in the
PSW are unpredictable, because these values are
not retained when a new PSW is introduced.

I nitial program reset is part of the clear-reset
function. It is also part of the
initial-pro gram-loading function when the
load-normal or load-clear key is activated.

Clear Reset
Clear reset combines the initial-program-reset
function with an initializing function which causes
the following actions:
1. The general and floating-point registers are set

to zero.
2. The storage key of every storage page is set to

zero.
3. The page bits of every storage page are set to

zeros.
4. All page frames that had been made

temporarily unavailable by DECONFIGURE
PAGE instructions are made available. (This
excludes frames made permanently unavailable
by maintenance intervention.)

5. The page-capacity, existing-frame-capacity,
available-frame-capacity, and free-frame­
capacity counts are initialized.

6. Let n be the lesser of AFCC, the current
available-frame-capacity count, and PCC, the
page-capacity count. Then each of n page
frames is assigned to one of the first n storage
pages, namely those with page addresses 0 to n
minus one. These pages are cleared to zero
bytes and have their page states set to
addressable. Any remaining pages have their
page states set to disconnected.

7. Any previously saved machine-save information
is invalidated.

Validation is included in setting registers and
capacity counts and in clearing storage and page
descriptions.

Clear reset is performed when the system-reset­
clear key is activated. Clear reset is also part of
the power-on-reset function, and part of the
initial-program-Ioading function when performed
upon activating the load-clear key.

Programming Notes
1. For the program-reset operation not to affect

the contents of fields that are to be left
unchanged, the CPU must not be executing
instructions and must be disabled for aB
interruptions at the time of the reset. Except
for the operation of the time-of-day clock,
interval timer, and CPU timer and for the
possibility of taking a machine-check

Chapter 4. Control 4-23

interruption, all CPU activity can be quiesced
by placing the CPU in the wait state and by
disabling it for I/O and external interruptions.
To avoid the possibility of causing a reset at the
time the timing facilities are being updated or a
machine-check interruption occurs, the CPU
must be in the stopped state.

2. Program reset, initial program reset, and clear
reset do not affect the value and state of the
time-of-day clock.

3. The conditions under which the CPU enters the
check-stop state are model-dependent and
include malfunctions that preclude the
completion of the current operation. Hence, if
program reset or initial program reset is
executed while the CPU is in the check-stop
state, the contents of the PSW, registers, and
storage locations, including the page
descriptions and the storage location accessed
at the time of the error, may still be in error
after the check-stop state is cleared by these
resets. In such a case, a clear reset is required
to clear the error.

4. Clear reset causes all bit positions of the
interval timer to be cleared to zeros.

5. Program reset and initial program reset leave
machine-save information unchanged if no
machine save is being performed at the time of
the reset.

Power-On Reset
Power-on reset causes the following actions:
1. The clear-reset function is performed.
2. The value of the time-of-day clock is set to

zero, and the clock enters the not-set state.
Power-on reset is part of the power-on sequence

of the machine. The power-on sequence is not
complete until the clear-reset function has been
performed successfully and the time-of-day clock
has entered the not-set state. The power-on
sequences for control units and I/O devices are
described in the appropriate System Library (SL)
publications.

Initial Program Loading
Initial program loading (IPL) is provided to initiate
processing when the contents of storage or of the
PSW are not suitable for processing.

Initial program loading is initiated manually by
designating an input device with the
load-unit-address controls and subsequently
activating the load-normal or load-clear key. The
load-normal key causes an initial-program-reset
operation to be performed, and the load-clear key
causes a clear-reset operation to be performed.

4-24 IBM 4300 Processors Principles of Operation

The CPU enters the load state. Subsequently, a
read operation is initiated from the selected input
device. The CPU does not necessarily enter the
stopped state during the execution of the reset
operation. The load indicator is on while the CPU
is in the load state.

The read operation is performed as if a START
I/O instruction were executed that specified the
channel, subchannel, and I/O device designated by
the load-unit-address controls. The operation uses
an implied channel-address word (CAW)
containing a subchannel key of zero, and a
channel-command-word (CCW) address of 0, but
the CAW location in storage, location 72, is not
accessed. The load-unit-address controls provide
the 12 rightmost bits of the I/O address; zeros are
implied for the leftmost bits.

Although the location of the first CCW to be
executed is specified by the CCW address as 0, the
first CCW actually executed is an implied CCW,
containing, in effect, a read command with the
modifier bits set to zeros, a data address of 0, a
byte count of 24, the chain-command flag set to
one, the SLI flag set to one, the chain-data flag set
to zero, the skip flag set to zero, and the PCI flag
set to zero. The CCW fetched, as a result of
command chaining, from storage location 8 or 16,
as well as any subsequent CCW in the IPL
sequence, is interpreted the same as a CCW in any
I/O operation, except that any PCI flags that are
specified in CCWs used for the IPL sequence are
ignored.

When the I/O device provides channel-end
status for the last operation of the IPL chain and
no exceptional conditions are detected in the
operation, a new PSW is obtained from storage
locations 0-7. When this PSW specifies the EC
mode, the I/O address that was used for the IPL
operation is stored at locations 186-187, and zeros
are stored at location 185; when the BC mode is
specified, the I/O address is stored at locations
2-3. The CPU leaves the load state and enters the
operating state, with CPU operation proceeding
under the control of the new PSW, provided the
rate control is set to process; if the rate control is
set to instruction step, the CPU enters the stopped
state after the new PSW has been obtained.

When channel-end status for the IPL operation
is presented, either separate from or along with
device-end status, no I/O-interruption condition is
generated. Similarly, any PCI flags specified by the
program in the CCWs used for the IPL sequence
are ignored. If the device-end status for the IPL
operation is provided separately after channel-end

status, it causes an 110 interruption condition to be
generated.

If the IPL 110 operation or the PSW loading is
not completed satisfactorily, the CPU remains in
the load state, and the load indicator remains on.
This occurs when the device designated by the
load-unit-address controls is not operational, when
the device or channel signals any condition other
than channel end, device end, or status modifier
during or at the completion of the IPL 1/0
operation, or when the PSW loaded from location 0
has a PSW -format error that is recognized during
the loading procedure. The address of the 1/0
device used in the IPL operation is not stored. The
contents of storage locations 0-7 are unpredictable.
The contents of other storage locations remain
unchanged, except possibly for those locations due
to be changed by the read operations.

When fewer than eight bytes are read into
locations 0-7, the PSW fetched from location 0 at
the conclusion of the IPL operation is
unpredictable.

Programming Notes
1. The information read and placed at locations

8-15 and 16-23 may be used as CCWs for
reading additional information during the IPL
sequence: the CCW at location 8 may specify
reading additional CCWs elsewhere in storage,
and the CCW at location 16 may specify the
transfer-in-channel command, causing transfer
to these CCWs.

The status-modifier bit has its normal effect
during the IPL operation, causing the channel
to fetch and chain to the CCW whose address
is 16 higher than that of the current CCW.
This applies also to the initial chaining that
occurs after completion of the read operation
specified by the implicit CCW.

The PSW that is loaded at the completion of
the IPL procedure may be provided by the first
eight bytes of the IPL 110 operation or may be
placed at locations 0-7 by a subsequent CCW.

2. When the PSW in location 0 has bit 14 set to
one, the CPU is placed in the wait state after
the IPL procedure is completed; at that point,

the load and manual indicators are off, and the
wait indicator is on.

3. Activating the load-normal key permits an IPL
program to be loaded with a minimum
disturbance of storage contents. This function
may be useful in debugging. When the power
is turned on or the load-clear key is activated,
the IPL program starts with a cleared machine
in a known state, ex'cept that information on
external storage remains unchanged.

Machine Save
The machine-save. operation saves the current CPU
status and the status and contents of storage page 0
for subsequent retrieval by programming. The
operation is initiated manually by the machine-save
key (see Chapter 13, "Operator Facilities"). The
saved information may be retrieved by issuing a
RETRIEVE STATUS AND PAGE instruction.

Machine save causes the following actions:
1. The current contents of all CPU registers and

the status of page 0 are saved in internal
storage. The format of the saved information is
not defined. The figure "Machine Status,
Retrieval Format" describes the machine-status
information in the 256-byte format in which it
is moved to addressable storage by a
subsequent RETRIEVE STATUS AND PAGE
instruction.

2. The current contents of page 0, that is, the
2,048 bytes at addresses 0-2047, are saved in
internal storage.

The register contents and the status and contents
of page 0 remain unchanged.

When a machine-save operation has been
successfully completed, the save indicator is turned
on.

A machine save replaces the information saved
by the previous machine save.

When a clear-reset operation is performed, any
previously saved information becomes invalid.
Subsequent execution of the RETRIEVE STATUS
AND PAGE instruction returns condition code 3
until another machine-save operation is successfully
performed.

A reset operation occurring while a machine save
is in progress halts the machine-save operation. If
an incomplete machine save partially alters

Chapter 4. Control 4-25

Byte
Offset Bits Contents

CPU timer1
Clock comparator 1

,Program-status word
Time-of-day clock1

0-7
8-15

16-23
24-31
32-63
64-127

Floating-point registers 0, 2, 4, 6
General registers 0-15

128-191
192-199
200-203
204-207
208-211
212-215

216 0
1-3
4
5
6
7

217 0-3

218-219
220-255

4
5-7

Explanation:

Control registers 0-15
CPU I D 1 .
Page-capacitycount 2
Existing-frame-capacity count 2
Available-frame-capacity count 2
Free-frame-capacity count 2
Zero
Page bits of page 0
Zero
Reference bit of page 0
Change bit of page 0
Zero
Access-control bits of page 0
Fetch-protection bit of page 0
Zeros
Frame index2 of page 0
Zeros

1 The formats of these fields are the same as
those produced by STORE CPU TIMER, STORE CLOCK
COMPARATOR, STORE CLOCK, and STORE CPU 10,
respectively.

2 The capacity counts and the frame index are
right~al igned with leftmost bits of zeros.

Machine Status, Retrieval Format

previously saved information, the saved information
is indicated to be invalid, and subsequent execution
of RETRIEVE STATUS AND PAGE returns
condition code 3 until the next successful
machine-save operation. Invalid machine saves
cannot be retrieved.

The CPU must be in the stopped state before a
machine-save operation can be initiated. If an
error is encountered during the operation, the saved
information becomes invalid, the CPU enters the
check-stop state, and the save indicator is not
turned on.

Programming Notes
1. Machine save may be used as part of a

machine-dump procedure when the normal
supervisor program is not functioning properly,
such as after a hard wait (wait state with
interruptions disabled). By preserving the
complete machine status and page 0, machine
save permits loading a dump program, which

4-26 IBM 4300 Processors Principles of Operation

can preserve additional pages if necessary. The
dump program can then merge the saved
information with the undisturbed pages to
create a complete image of the machine at the
time of the machine save. The machine should
not be cleared before loading the dump
program.

2. When the supervisor program is still
functioning, it is less disruptive to use the
superVIsor to invoke a dump program without a
machine save. An intermediate option is the
restart function.

3. The format of the byte at offset 216
corresponds to the byte inserted by the
instruction INSERT PAGE BITS.

4. Unassigned bits in the retrieval format of the
machine status are stored as zeros. The
program should not depend on such zeros,
however, to ensure that existing programs run if
new facilities using these bits are defined.

Chapter 5. Program Execution

Contents

Instructions

Operands

5-1

5-1

Instruction Format 5-2

Register Operands 5-3

Immediate Operands 5-3

Storage Operands 5-3

Address Generation 5-3

Sequential Instruction-Address Generation

Operand-Address Generation 5-4

Branch-Address Generation 5-4

Instruction Execution and Sequencing 5-5

Interruptions 5-5

Types of Instruction Ending 5-5

Interruptible Instructions 5-6

Point of Interruption 5-6

Execution of Interruptible Instructions

5-3

5-6

Exceptions to Nullification and Suppression 5-7

Storage Change and Restoration for Page-Access

Exceptions 5-7

Normally, operation of the CPU is controlled by
instructions in storage that are executed
sequentially, one at a time, left to right in an
ascending sequence of storage addresses. A change
in the sequential operation may be caused by
branching, LOAD PSW, interruptions, or manual
intervention.

Instructions
Each instruction consists of two major parts:
• An operation code (op code), which specifies the

operation to be performed, and
• The designation of the operands that participate

Operands
Operands can be grouped in three classes: operands
located in registers, immediate operands, and
operands in storage. Operands may be either
explicitly or implicitly designated.

Trial Execution for TRANSLATE and EDIT

Update for Suppression 5-7

Sequence of Storage References 5-8

Instruction Fetching 5-8

Page-Description Accesses 5-9

Storage-Operand References 5-10

Storage-Operand Fetch References

Storage-Operand Store References

Storage-Operand Update References

Storage-Operand Consistency 5-11

Single-Access References 5-11

Multiple-Access Operands 5-11

Relation between Operand Accesses

Other Storage References 5-12

Serialization 5-12

CPU Serialization 5-12

Channel Serialization 5-13

5-10

5-10

5-10

5-11

5-7

Register operands can be located in general,
floating-point, or control registers, with the type of
register identified by the op code. The register
containing the operand is specified by identifying
the register in a four-bit field, called the R field, in
the instruction. For some instructions, an operand
is located in an implicitly designated register, the
register being implied by the op code.

Immediate operands are contained within the
instruction, and the eight-bit field containing the
immediate operand is called the I field.

Operands in storage may either have an implied
length, be specified by a bit mask, or, in other
cases, be specified by a four-bit or eight-bit length
specification, called the L field, in the instruction.
The addresses of operands in storage are specified
by means of a format that uses the contents of a
general register as part of the address. This makes
it possible to:
1. Specify a complete address by using an

abbreviated notation

Chapter 5. Program Execution 5-1

2. Perform address manipulation using instructions
which employ general registers for operands

3. Modify addresses by program means without
alteration of the instruction stream

4. Operate independently of the location of data
areas by directly using addresses received from
other programs

The address used to refer to storage either is
contained in a register designated by the R field in
the instruction or is calculated from a base address,
index, and displacement, designated by the B, X,
and D fields, respectively, in the instruction.

For purposes of describing the execution of
instructions, operands are designated as first and
second operands and, in some cases, third
operands.

In general, two operands participate in an
instruction execution, and the result replaces the
first operand. An exception is instructions with
"store" in the instruction name, other than STORE
THEN AND SYSTEM MASK and STORE THEN
OR SYSTEM MASK, where the result replaces the
second operand. Except when otherwise stated, the
contents of all registers and storage locations
participating in the addressing or execution part of
an operation remain unchanged.

Instruction Format
An instruction is one, two, or three halfwords in
length and must be located in storage on a
halfword boundary. Each instruction is in one of
six basic formats: RR, RX, RS, SI, S, and SS, with
two variations of SS. (See the figure "Basic
Instruction Formats. I')

Some instructions contain fields that vary slightly
from the basic format, and in some instructions the
operation performed does not follow the general
rules stated in this section. All of these exceptions
are explicitly identified in the individual instruction
descriptions.

The format names indicate, in general terms, the
classes of operands which participate in the
operation:
• RR denotes a register-and-register operation.
• RX denotes a register-and-indexed-storage

operation.
• RS denotes a register-and-storage operation.
• SI denotes a storage-and-immediate operation.
• S denotes an operation using an implied operand

and storage.
• SS denotes a storage-and-storage operation.

5-2 IBM 4300 Processors Principles of Operation

RR Format

Op Code I R 1 R2

o 8 12 15

RX Format

o 8 12 16 20 31

RS Format

o 8 12 16 20 31

SI Format

Op Codel

o 8 16 20 31

S Format

Op Code

o 16 20 31

SS Format
~------r--------~--~~/

Op Code/ L B1 D1
~-------~------~--~-/

B2 D~J
o 8 16 20 32 36 47

I I I /-""'--1 ~I --D~J ~O_p_C_o_d_e-,-_L_1---L_L 2----''--B_1 -L-_~ 1 B 2 /

o 8 12 16 20 32 36 47

Basic Instruction Formats

The first byte or, in the S format, the first two
bytes of an instruction contain the op code. For
some instructions in the S format, all or a portion
of the second byte is ignored.

The first two bits of the first or only byte of the
op code specify the length and format of the
instruction, as follows:

Bit
Positions Instruction Instruction

(0-1) Length Format

00 One ha lfword RR
01 Two halfwords RX
10 Two ha lfwords RS/S/SI
11 Three halfwords SS

In the format illustration for each individual
instruction description, the op-code field shows the
op code as hexadecimal digits within single quotes.
The hexadecimal representation uses 0-9 for the
codes 0000-1001 and A-F for the codes
1010-1111.

The remaining fields in the format illustration
for each instruction are designated by code names,
consisting of a letter and possibly a subscript
number. The subscript number denotes the
operand to which the field applies.

Register Operands
In the RR, RX, and RS formats, the contents of the
register designated by the Rl field are called the
first operand. The register containing the first
operand is sometimes referred to as the
"first-operand location." In the RR format, the R2
field designates the register containing the second
operand, and the same register may be designated
for the first and second operand. In the RS format,
the use of the R3 field depends on the instruction.

The R field designates a general register in the
general instructions and a floating-point register in
the floating-point instructions. In the instructions
LOAD CONTROL and STORE CONTROL the R
field designates a control register.

Unless otherwise indicated in the individual
instruction description, the register operand is one
register in length (32 bits for a general register or a
control register and 64 bits for a floating-point
register), and the second operand is the same
length as the first.

Immediate Operands
In the SI format, the contents of the eight-bit
immediate-data field, the 12 field of the instruction,
are used directly as the second operand. The B 1

and D 1 fields designate the first operand, which is
one byte in length.

Storage Operands
I n the SI and SS formats, the contents of the
general register designated by the Bl field are
added to the contents of the D 1 field to form the
first-operand address. In the S, RS, and SS
formats, the contents of the general register
designated by the B2 field are added to the
contents of the D2 field to form the
second-operand address. In the RX format, the
contents of the general registers designated by the
X2 and B2 fields are added to the contents of the
D2 field to form the second-operand address.

In the SS format, with two length fields given,
L 1 specifies the number of additional operand bytes
to the right of the byte designated by the
first-operand address. Therefore, the length in
bytes of the first operand is 1-16, corresponding to
a length code in Ll of 0-15. Similarly, L2 specifies
the number of additional operand bytes to the right
of the location designated by the second-operand
address. Results replace the first operand, and are
never stored outside the field specified by the
address and length. If the first operand is longer
than the second, the second operand is extended on
the left with zeros up to the length of the first
operand. This extension does not modify the
second operand in storage.

In the SS format with a single, eight-bit length
field, L specifies the number of additional operand
bytes to the right of the byte deSignated by the
first-operand address. Therefore, the length in
bytes of the first operand is 1-256, corresponding
to a length code in L of 0-255. Storage results
replace the first operand and are never stored
outside the field specified by the. address and
length. In this format, the second operand has the
same length as the first operand, except for the
following instructions: EDIT, EDIT AND MARK,
TRANSLATE, and TRANSLATE AND TEST.
RETRIEVE STATUS AND PAGE does not use the
L field, the operand lengths being fixed.

Address Generation
Execution of instructions by the CPU involves
generation of the addresses of instructions and
operands.

Sequential Instruction-Address Generation
When an instruction is fetched from the location
designated by the current PSW, the instruction
address is increased by the number of bytes in the
instruction, and the instruction is executed. The
same steps are then repeated using the new value

Chapter 5. Program Execution 5-3

of the instruction address to fetch the next
instruction in the sequence.

Instruction addresses wrap around, with the
halfword at location 224 - 2 being followed by the
halfword at location o. Thus, any carry out of
PSW bit position 40, as a result of updating the
instruction address, is lost.

Operand-Address Generation
An operand address that refers to storage either is
contained in a register designated by an R field in
the instruction or is calculated from the sum of
three binary numbers: base address, index, and
displacement.

The base address (B) is a 24-bit number
contained in a general register specified by the
program in a four-bit field, called the B field, in the
instruction. Base addresses can be used as a means
of independently addressing each program and data
area. In array-type calculations, it can specify the
location of an array, and, in record-type processing,
it can identify the record. The base address
provides for addressing the entire storage. The
base address may also be used for indexing.

The index (X) is a 24-bit number contained in a
general register designated by the program in a
four-bit field, called the X field, in the instruction.
It is included only in the address specified by the
RX instruction format. The RX format instructions
permit double indexing; that is, the index can be
used to provide the address of an element within an
array.

The displacement (D) is a 12-bit number
contained in a field, called the D field, in the
instruction. The displacement provides for relative
addressing of up to 4,095 bytes beyond the location
designated by the base address. In array-type
calculations, the displacement can be used to
specify one of many items associated with an
element. In the processing of records, the
displacement can be used to identify items within a
record.

In forming the address, the base address and
index are treated as 24-bit unsigned binary
integers. The displacement is similarly treated as a
12-bit unsigned binary integer, and 12 zeros are
appended on the left.. The three are added as
24-bit binary numbers, ignoring overflow. The sum
is always 24 bits long. The bits of the generated
address are numbered 8-31, corresponding to the
numbering of the base-address and index bits in the
general register.

A zero in any of the B l' B2, or X2 fields
indicates the absence of the corresponding address

5-4 IBM 4300 Processors Principles of Operation

component. For the absent component, a zero is
used in forming the address, regardless of the
contents of general register O. A displacement of
zero has no special significance.

When an instruction description specifies that
the contents of a general register designated by an
R field are used to address an operand in storage,
bit positions 8-31 of the register provide the
operand address.

An instruction can designate the same general
register both for address computation and as the
location of an operand. Address computation is
completed prior to the execution of the operation.

Unless otherwise indicated in an individual
instruction definition, the generated operand
address designates the leftmost byte of an operand
in storage.

Programming Note
Negative values may be used in index and
base-address registers. Bits 0-7 of these values are
always ignored.

Branch-Address Generation
For branch instructions, the address of the next
instruction to be executed when the branch is taken
is called the branch address. Depending on the
branch instruction, the instruction format may be
RR, RS, or RX.

In the RS and RX formats, the branch address is
designated by a base address, a displacement, and,
for RX, an index. In the RS and RX formats, the
branch address generation follows the normal rules
for operand-address generation.

In the RR format, the contents of bit positions
8-31 of the general register designated by the R2
field are used as the branch address. General
register 0 cannot be designated as containing a
branch address. A value of zero in the R2 field
causes the instruction to be executed without
branching.

For several branch instructions, branching
depends on satisfying a specified condition. When
the condition is not satisfied, the branch is not
taken, normal sequential instruction execution
continues, and the branch address is not used.
When a branch is taken, bits 8-31 of the generated
branch address replace bits 40-63 of the current
PSW. The branch address is not used to address
storage as part of the branch operation.

A specification exception due to an odd branch
address and access exceptions due to fetching of
the instruction at the branch location are not
recognized as part of the branch operation but

instead are recognized as exceptions associated
with the execution of the instruction at the branch
location.

A branch instruction, such as BRANCH AND
LINK, can designate the same general register for
branch-address computation and as the location of
an operand. Branch-address computation is
completed before the remainder of the operation is
executed.

Instruction Execution and Sequencing
The program-status word (PSW), described in
Chapter 4, "Control," contains information
required for proper program execution. The PSW
is used to control instruction sequencing and to
hold and indicate the status of the machine in
relation to the program currently being executed.
The active or controlling PSW is called the current
PSW.

Branch instructions perform the functions of
decision-making, loop control, and subroutine
linkage. A branch instruction affects instruction
sequencing by introducing a new instruction
address into the current PSW.

Facilities for decision making are provided by
the BRANCH ON CONDITION instruction. This
instruction inspects a condition code that reflects
the result of a majority of the arithmetic, logical,
and I/O operations. The condition code, which
consists of two bits, provides for four possible
condition-code settings: 0, 1, 2, and 3.

The specific meaning of any setting depends on
the operation that sets the condition code. For
.example, the condition code reflects such
conditions as zero, nonzero, first operand high,
equal, overflow, and channel busy. Once set, the
condition code remains unchanged until mod~fied
by an instruction that causes a different condition
code to be set. See Appendix C, "Condition-Code
Settings," for a summary of the instructions which
set the condition code.

Loop control can be performed by the use of
BRANCH ON CONDITION to test the outcome of
address arithmetic and counting operations. For
some particularly frequent combinations of
arithmetic and tests, the instructions BRANCH ON
COUNT, BRANCH ON INDEX HIGH, and
BRANCH ON INDEX LOW are provided. These
branches, being specialized, provide increased
performance for these tasks.

Subroutine linkage is provided by the BRANCH
AND LINK instructions, which permit not only the
introduction of a new instruction address but also
the preservation of the return address and
associated information. Subroutine linkage
between a program and the supervisor program is
provided by means of the SUPERVISOR CALL
instruction.

Interruptions ,
Interruptions permit the CPU to change state as a
result of conditions external to the system, in
input/ output (I/O) devices, or in the CPU itself.
Details are to be found in Chapter 6,
"Interruptions. "

Six classes of interruption conditions are
possible: external, I/O, machine check, program,
restart,. and supervisor call. Each class has two
related PSWs, called old and new, in permanently
assigned storage locations. In all classes, an
interruption involves storing information identifying
the cause of the interruption, storing the current
PSW at the old-PSW position, and fetching the
PSW at the new-PSW position, which becomes the
current PSW.

The old PSW contains CPU-status information
necessary for resumption of the interrupted
program. At the conclusion of the program
invoked by the interruption, the instruction LOAD
PSW may be used to restore the current PSW to the
value of the old PSW.

Types of Instruction Ending
Instruction execution ends in one of five ways:
completion, nullification, suppression, termination,
and partial completion.

Completion of instruction execution provides
results as called for in the definition of the
instruction. When an interruption occurs after the
completion of the execution of an instruction, the
instruction address in the old PSW designates the
next instruction to be executed.

Suppression of instruction execution causes the
instruction to be executed as if it specified "no
operation." The contents of any result fields,
including the condition code, are· not changed. The
instruction address in the old PSW on an
interruption after suppression designates the next
sequential instruction.

Nullification of instruction execution has the
same effect as suppression, except that when an
interruption occurs after the execution of an
instruction has been nullified, the instruction

Chapter 5. Program Execution 5-5

address in the old PSW designates the instruction
whose execution was nullified instead of the next
sequential instruction.

Termination of instruction execution causes the
contents of any fields due to be changed by the
instruction to be unpredictable. The operation may
have replaced all, part, or none of the contents of
the designated result fields and may have changed
the condition code if such change was called for by
the instruction. Unless the interruption is caused
by a machine-check condition, the validity of the
instruction address in the PSW,.the interruption
code, and the ILC are not affected, and the state
or the operation of the machine has not been
affected in any other way. The instruction address
in the old PSW on an interruption after termination
designates the next sequential instruction.

I Partial completion of instruction execution
occurs only for interruptible instructions; it is
described in the next section.

Interruptible Instructions

Point of Interruption
For most instructions, the entire execution of an
instruction is one operation. An interruption is
permitted between operations; that is, an
interruption can occur after the performance of one
operation and before the start of a subsequent
operation.

For the following instructions, referred to as
interruptible instructions, an interruption is
permitted after partial completion of the
instruction:

COMPARE LOGICAL LONG
MOVE LONG

The execution of an interruptible instruction is
considered to consist of a number of units of
operation, and an interruption is permitted between
units of operation. The amount of data processed
in a unit of operation depends on the particular
instruction and may depend on the model and on
the particular condition that causes the execution of
the instruction to be interrupted.

Whenever points of interruption that include
those occurring within the execution of an
interruptible instruction are discussed, the term
"unit of operation" is used. For a noninterruptible
instruction, the entire execution consists, in effect,
of one unit of operation.

Execution of Interruptible Instructions
The execution of an interruptible instruction is
completed when all units of operation associated

5-6 IBM 4300 Processors Principles of Operation

with that instruction are completed. When an
interruption occurs after completion, nullification,
or suppression of a unit of operation, all prior units
of operation have been completed.

On completion of a unit of operation other than
the last one (and on nullification of any unit of
operation), the instruction address in the old PSW
designates the interrupted instruction, and the
operand parameters are adjusted such that the
execution of the interrupted instruction is resumed
from the point of interruption when the old PSW
stored on the interruption is made the current PSW.
It depends on the instruction how the operand
parameters are adjusted.

When a unit of operation is suppressed, the
instruction address in the old PSW designates the
next sequential instruction. The operand
parameters, however, are adjusted so as to indicate
the extent to which instruction execution has been
completed. If the instruction is reexecuted after
the conditions causing the suppression have been
removed, the execution is resumed from the point
of interruption. As in the case of completion and
nullification, it depends on the instruction how the
operand parameters are adjusted.

When an exception which causes termination
occurs as part of a unit of operation of an
interruptible instruction, the entire operation is
terminated, and the contents, in general, of any
fields due to be changed by the instruction are
unpredictable. On such an interruption, the
instruction address in the old PSW designates the
next sequential instruction.

Programming Notes
1. Any interruption, other than supervisor call and

some program interruptions, can occur after a
partial execution of an interruptible instruction.
In particular, interruptions for external, I/O,
machine-check, restart, and program
interruptions for access exceptions and PER
events can occur between units of operation.

2. The amount of data processed in a unit of
operation of an interruptible instruction
depends on the model and may depend on the
type of condition which causes the execution of
the instruction to be interrupted or stopped.
Thus, when an interruption occurs at the end of
the current unit of operation, the length of the
unit of operation may be different for different
types of interruptions. Also, when the stop
function is requested during the execution of an
interruptible instruction, the CPU enters the

stopped state at the completion of the execution
of the current unit of operation. Similarly, in
the instruction-step mode, only a single unit of
operation is performed, but the unit of
operation for the various cases of stopping may
be different.

Exceptions to Nullification and Suppression
In certain unusual situations, the result fields of an
instruction having a store-type operand are
changed in spite of the occurrence of an exception
which would normally result in nullification or
suppression. These situations are exceptions to the
general rule that the operation 'is treated as a
no-operation when an exception requiring
nullification or suppression is recognized. Each of
these situations may result in the turning on of the
change bit associated with the store-type operand,
even though the final result in storage may appear
unchanged. Depending on the particular situation,
additional effects may be observable, the extent of
which is described for each of the situations.

All of these situations are limited to the extent
that a store access does not occur and the change
bit is not set when the store access is prohibited.
For the CPU, a store access is prohibited whenever
an access exception exists for that access, or
whenever an exception exists which is of higher
priority than the priority of an access exception for
that access.

When, in these situations, an interruption for an
exception requiring suppression occurs, the
instruction address in the old PSW designates the
next sequential instruction. When an interruption
for an exception requiring nullification occurs, the
instruction address in the old PSW designates the
instruction causing the exception even though
partial results may have been stored.

Storage Change and Restoration for Page-Access
Exceptions
For page-access exceptions, on some systems, a
channel may observe the effects on storage
described in the following case.

When, for an instruction having a store-type
operand, a page-access exception is recognized for
any operand of the instruction, that portion, if any,
of the store-type operand which would not cause an
exception may change to an intermediate value and
then back to the original value.

The accesses associated with storage change and
restoration for page-access exceptions are only
observable by a channel. Except for

multiple-access operands, the intermediate value, if
any, is always equal to what would have been the
final value if the page-access exception had not
occurred.

Programming Notes
1. Storage change and restoration for page-access

exceptions occur in two main situations:
a. The exception is recognized for a portion of

a store-type operand which crosses a page
boundary, and the other portion has no
access exception.

b. The exception is recognized for one
operand of an instruction having two
storage operands (for example, an
SS-format instruction or MOVE LONG),
and the other operand, which is a
store-type operand, has no access
exception.

2. To avoid letting the channel observe
intermediate operand values due to storage
change and restoration for page-access
exceptions (especially when a CCW chain is
modified), either one storage page should be
operated on at a time or preliminary testing
should be performed to ensure that all required
pages are addressable.

Trial Execution for TRANSLATE and EDIT
For the instructions TRANSLATE (TR), EDIT
(ED), and EDIT AND MARK (EDMK), the
portions of the operands that are actually used in
the operation may be established in a trial
execution for operand accessibility that is
performed before the execution of the instruction is
started. This trial execution consists in an
execution of the instruction in which results are not
stored. If the first operand of TR or either operand
of ED or EDMK is changed by an I/O operation
after the initial trial· execution but before
completion of execution, the contents of any fields
due to be changed by the instruction are
unpredictable. Furthermore, it is unpredictable
whether or not an interruption occurs for an access
exception that was not initially applicable.

Update for Suppression
When, for an instruction with a store-type operand,
an exception is recognized whose priority is equal
to or lower than an access exception for some
portion of the store-type operand, an update which
does not change the contents of the location may
occur for that portion of the store-type operand.

Chapter 5. Program Execution 5-7

When the exception is a speCification exception
for a store-type operand which requires alignment
on integral boundaries, the update which may occur
is limited to the single byte at the location specified
by the operand address.

Programming Note
Examples of when an update may occur to the
destination-operand location in storage are:
• Decimal-divide exception for DIVIDE

DECIMAL
• Specification exception for an odd register

number for COMPARE DOUBLE AND SWAP
• Data exception for an invalid decimal sign for

ADD DECIMAL

Sequence of Storage References
Conceptually, the CPU processes instructions one
at a time, with the execution of one instruction
preceding the execution of the following
instruction. The execution of the instruction
specified by a successful branch follows the
execution of the branch. Similarly, an interruption
takes place between instructions or, for
interruptible instructions, between units of
operation of such instructions.

The sequence of events implied by the processing
just described is sometimes called the conceptual
sequence.

Each operation appears to the program to be
performed sequentially, with the current instruction
being fetched after the preceding operation is
completed and before the execution of the current
operation is begun. This appearance is maintained,
even though the storage-implementation
characteristics and overlap of instruction execution
with storage accessing may cause actual processing
to be different. The results generated are those
that would have been obtained had the operations
been performed in the conceptual sequence. Thus,
it is possible for an instruction to modify the next
succeeding instruction in storage.

In simple models in which operations are not
overlapped, the conceptual and actual sequences
are essentially the same. However, in more
complex machines, overlapped operation, buffering
of operands and results, and execution times which
are comparable to the propagation delays between
units can cause the actual sequence to differ
considerably from the conceptual sequence. In
these machines, special circuitry is employed to
detect dependencies between operations and ensure
that the results obtained are those that would have

5-8 IBM 4300 Processors Principles of Operation

been obtained if the operations had been performed
in the conceptual sequence. However, channels
may, unless otherwise constrained, observe a
sequence that differs from the conceptual sequence.

rt can normally be assumed that the execution of
each instruction occurs as an indivisible event.
However, in actual operation, the execution of an
instruction consists of a series of discrete steps.
Depending on the instruction, operands may be
fetched and stored in a piecemeal fashion, and
some delay may occur between fetching operands
and storing results. As a consequence, a channel
may be able to observe intermediate or partially
completed results.

When the program on the CPU interacts with a
program on a channel, the programs may have to
take into consideration that a single operation may
consist of a series of storage references, that a
storage reference may in turn consist of a series of
accesses, and that the conceptual and actual
sequences of these accesses may differ. Storage
references associated with instruction execution are
of the following types: instruction fetches and
storage-operand references. For the purposes of
the following discussion, page-description accesses
are also considered to be storage references.

Programming Note
The sequence of execution may differ from the
simple conceptual definition in the following ways.
• As viewed by a program in a channel, the

execution of an instruction may appear to be
performed as a sequence of piecemeal steps.
This is described for each type of storage
reference in one of the following sections.

• As viewed by a program in a channel, the
storage-operand accesses associated with one
instruction are not necessarily performed in the
conceptual sequence. (See the section "Relation
Between Operand Accesses" in this chapter.)

• As viewed by a program in a channel, in certain
unusual situations, the contents of storage may
appear to change and then be restored to the
original value. (See the section "Storage Change
and Restoration for Page Access Exceptions"
earlier in this chapter.)

Instruction Fetching
Instruction fetching consists in fetching the one,
two, or three halfwords specified by the instruction
address in the current PSW. The immediate field
of an instruction is accessed as part of an
instruction fetch. If, however, an instruction

specifies a storage operand at the location occupied
by the instruction itself, the location is accessed
both as an instruction and as a storage operand.
The fetch of the target instruction of EXECUTE is
considered to be an instruction fetch.

The bytes of an instruction may be fetched
piecemeal and are not necessarily accessed in a
left-to-right direction. The instruction may be
fetched multiple times for a single execution; for
example, it may be fetched for testing the
address ability of operands or for inspection of PER
events, and it may be refetched for actual
execution.

Instructions are not necessarily fetched in the
sequence in which they are conceptually executed
and are not necessarily fetched for each time they
are executed. In particular, the fetching of an
instruction may precede the storage-operand
references for an instruction that is conceptually
earlier. The instruction fetch occurs prior to all
storage-operand references for all instructions that
are conceptually later.

There is no limit established as to the number of
instructions which may be prefetched, and multiple
copies of the contents of a single storage location
may be fetched. As a result, the instruction
executed is not necessarily the most recently
fetched copy. Storing caused by channels does not
necessarily change the copy of pre fetched
instructions. However, if a store that is
conceptually earlier occurs on the CPU and
modifies the location from which the instruction is
subsequently fetched, the updated information is
obtained.

All copies of prefetched instructions are
discarded when:
• A serializing function is performed
• The CPU enters the operating state

Programming Note
When a channel modifies an instruction, it is
possible for the CPU to recognize the changes to
some but not all modified bit positions of the
instruction.

Page-Description Accesses
References to the page description are handled as
follows:
1. Whenever a reference to storage is made and

key-controlled protection applies to the
reference, the four access-control bits and the
fetch-protection bit associated with the storage
location are inspected concurrently with the
reference to the storage location.

2. When storing is performed, the change bit is set
in the associated storage key concurrently with
the store operation.

3. The instruction SET STORAGE KEY causes all
seven bits to be set concurrently in the storage
key. The access to the storage key for SET
STORAGE KEY follows the sequence rules for
storage-operand store references and is a
single-access reference.

4. The instruction INSERT STORAGE KEY
provides a consistent image of the field, which
consists of all seven bits of the storage key.
The access to the storage key for INSERT
STORAGE KEY follows the sequence rules for
storage-operand fetch references and is a
single-access reference.

5. The instruction RESET REFERENCE BIT
modifies only the reference bit. All other bits
of the storage key remain unchanged. The
reference bit and change bit are examined
concurrently to set the condition code. The
access to the storage key for RESET
REFERENCE·BIT follows the sequence rules
for storage-operand update references. The
reference bit is the only bit which is updated.

6. The instruction SET PAGE BITS provides a
consistent image of the change bit. The
instruction modifies both the reference and
change bits, and the three programmable page
bits. The page bits are only accessible by the
CPU. The access to the change bit follows the
sequence rules for storage-operand update
references, with the following exception: if
the change bit is being set to zero, no storing in
the associated storage page by a channel is
permitted between the fetching of the change
bit and the setting of the change bit to zero.

7. The instruction INSERT PAGE BITS inspects
but does not modify the reference, change, and
page bits. The page bits are only accessible by
the CPU. The access to the reference, change,
and page bits follows the sequence rules for
storage-operand fetch references and is a
single-access reference.

8. Whenever a reference to storage is made and
page-state checking applies to the reference,
the page state and frame index associated with
the storage location must appear to be
inspected concurrently with the reference to the
storage location.

9. The instruction CONNECT PAGE causes the
page state and frame index to be set
concurrently in the page description, with the

Chapter 5. Program Execution 5-9

access to the page state and frame index
following the sequence rules for
storage-operand store references.

10. During the execution of the instructions
DECONFIGURE PAGE and DISCONNECT
P AGE, the accesses to set the reference bit and
the change bit to zeros occur concurrently with
or after the access to set the page state to
disconnected.

11. The instructions MAKE ADDRESSABLE and
MAKE UNADDRESSABLE modify only the
page state.

12. The instruction LOAD FRAME INDEX
inspects but does not modify the page state and
frame index. The page state and frame index
may only be modified explicitly by other
instructions.

The record of references provided by the
reference bit is not necessarily accurate, and the
handling of the reference bit is not subject to the
concurrency rules. However, in the majority of
situations, reference recording approximately
coincides with the storage reference.

In certain situations, the change bit may be set
when no storing has actually taken place.

Storage-Operand. References
A storage-operand reference is the fetching or
storing of the explicit operand or operands in the
storage locations specified by the instruction.

During the execution of an instruction, all or
some of the storage operands for that instruction
may be fetched, intermediate results may be
maintained for subsequent modification, and final
results may be temporarily held prior to placing
them in storage. Stores caused by channels do not
necessarily affect these intermediate results.
Storage-operand references are of three
types: fetches, stores, and updates.

Storage-Operand Fetch References
When the bytes of a storage operand participate in
the instruction execution only as a source, the
operand is called a fetch-type operand, and the
reference to the location is called a storage-operand
fetch reference. A fetch-type operand is identified
in individual instruction definitions by indicating
that the access exception is for fetch.

All bits within a single byte of a fetch reference
are accessed concurrently. When an operand
consists of more than one byte, the bytes may be
fetched from storage piecemeal, one byte at a time.
Unless otherwise specified, the bytes are not
necessarily fetched in any particular sequence.

5-10 IBM 4300 Processors Principles of Operation

Storage-Operand Store References
When the bytes of a storage operand participate in
the instruction execution only as a destination, to
the extent of being replaced by the result, the
operand is called a store-type operand, and the
reference to the location is called a storage-operand
store reference. A store-type operand is identified
in individual instruction definitions by indicating
that the access exception is for store.

All bits within a single byte of a store reference
are accessed concurrently. When an operand

I consists of more than one byte, the bytes may be
placed in storage piecemeal, one byte at a time.
Unless otherwise specified, the bytes are not
necessarily stored in any particular sequence.

The CPU may delay storing results into storage.
There is no defined limit on the length of time that
results may remain pending before they are stored.

This delay does not affect the sequence in which
results are placed in storage. The results of one
instruction are placed in storage after the results of
all preceding instructions have been placed in
storage and before any results of the succeeding
instructions are stored as observed by channels.
The results of anyone instruction are stored in the
sequence specified for that instruction.

The CPU does not fetch operands from a storage
location until all information destined for that
location by the CPU has been stored. Prefetched
instructions may appear to be updated before the
information appears in storage.

The stores are necessarily completed only as a
result of a serializing operation and before the CPU
enters the stopped state.

Storage-Operand Update References
In some instructions, the storage-operand location
participates both as a source and as a destination.
In these cases, the reference to the location consists
first of a fetch and subsequently of a store. Such
an operand is called an update-type operand, and
the combination of the two accesses is referred to
as an update reference. Instructions such as
MOVE ZONES, TRANSLATE, OR (OC, 01), and
ADD DECIMAL cause an update to the
first-operand location. No special interlock is
provided between the fetch and store, and accesses
by channels are permitted. An update-type
operand is identified in the individual instruction
definition by indicating that the access exception is
for both fetch and store. The fetch and store
accesses associated with an update reference do not
necessarily occur one immediately after the other,

and it is possible for a channel to make one or
more interleaved accesses to the same location.
The interleaved accesses can be either fetches or
stores.

Storage-Operand Consistency

Single-Access References
A fetch reference is said to be a single-access
reference if the value is fetched in a single access
to each byte of the data field. In the case of
overlapping operands, the location may be accessed
once for each operand. A store-type reference is
said to be a single-access reference if a single store
access occurs to each byte location within the data
field. An update reference is said to be
single-access if both the fetch and store accesses
are each single-access.

Except for the accesses associated with
multiple-access operands and the stores associated
with storage change and restoration for page-access
exceptions, storage-operand references are
single-access references.

Multiple-Access Operands
For some instructions, multiple accesses may be
made to all or some of the bytes of a storage
operand. The following cases are those
storage-operand references which may be
mUltiple-access ones.
1. The storage references associated with the

decimal operands of the following instructions
are not necessarily single-access
references: the decimal instructions and the
instructions CONVERT TO BINARY,
CONVERT TO DECIMAL, MOVE WITH
OFFSET, PACK, and UNPACK.

2. The operands of MOVE INVERSE.
3. The stores into that portion of the first operand

of MOVE LONG which is filled with padding
bytes.

When a storage-operand store reference to a
location is not a single..;,access reference, the
contents placed at a byte location are not
necessarily the same for each store access; thus,
intermediate results in a single-byte location may
be observed by channels.

Programming Notes
1. When multiple fetch accesses are made to a

single byte that is being changed by a channel,

the result is not necessarily limited to that
which could be obtained by fetching the bits
individually. For example, the execution of
MUL TIPL Y DECIMAL may consist of
repetitive additions and subtractions each of
which causes the second operand to be fetched
from storage.

2. When CPU instructions are used to modify
storage locations being accessed by a channel
simultaneously, multiple store accesses to a
single byte by the CPU may result in
intermediate values being observed by a
channel. To avoid these intermediate values
(especially when modifying a CCW chain),
only instructions making single-access
references should be used.

Relation between Operand Accesses
Storage-operand fetches associated with one
instruction execution must appear to precede all
storage-operand references for conceptually
subsequent instructions. A storage-operand store
specified by one instruction must appear to precede
all storage-operand stores specified by conceptually
subsequent instructions, but it does not necessarily
precede storage-operand fetches specified by
conceptually subsequent instructions. However, a
storage-operand store must precede a conceptually
subsequent storage-operand fetch from the same
main-storage location.

When an instruction has two storage operands
both of which cause fetch references, it is
unpredictable which operand is fetched first, or
how much of one operand is fetched before the
other operand is fetched. When the two operands
overlap, the common locations may be fetched
independently for each operand.

When an instruction has two storage operands,
the first of which causes a store and the second a
fetch reference, it is unpredictable how much of the
second operand is fetched before the results are
stored. In the case of destructively overlapping
operands, the portion of the second operand which
is common to the first is not necessarily fetched
from storage.

When an instruction has two storage operands,
the first of which causes an update reference and
the second a fetch reference, it is unpredictable
which operand is fetched first, or how much of one
operand is fetched before the other operand is
fetched. Similarly, it is unpredictable how much of
the result is processed before it is returned to .
storage. In the case of destructively overlapping

Chapter 5. Program Execution 5-11

operands, the portion of the second operand which
is common to the first is not necessarily fetched
from storage.

Programming Note
The independent fetching of a single location for
each of two operands may affect the program
execution in the following situation.

When the same storage location is designated by
two operand addresses of an instruction, and a
channel causes the contents of the location to
change during execution of the instruction, the old
and new values of the location may be used
simultaneously. For example, comparison of a field
to itself may yield a result other than equal, or
EXCLUSIVE-ORing of a field to itself may yield a
result other than zero.

Other Storage References
Store accesses for interruption codes not stored
within the old PSW are not necessarily
single-access stores. The external and SVC
interruption-code stores occur between the
conceptually previous and conceptually subsequent
operations. The program interruption-code store
accesses may precede the storage-operand
references associated with the instruction which
results in the program interruption.

The CSW and I/O-communications-area stores
occur within the conceptual limits of the
interruption or I/O instruction with which they are
associated.

Updating of the interval timer occurs after
storage-operand references for the conceptually
previous instruction and before storage-operand
references for the conceptually subsequent
instruction. Interval-timer updates can also occur
within an interruptible instruction between units of
operation.

Serialization
The sequence of functions performed by a CPU is
normally independent of the functions performed
by channels. Similarly, the sequence of functions
performed by a channel is normally independent of
the functions performed by other channels and by
the CPU. However, at certain points in its
execution, serialization of the CPU occurs.
Serialization also occurs at certain points for
channels.

5-12 IBM 4300 Processors Principles of Operation

CPU Serialization
All interruptions and the execution of certain
instructions cause serialization of CPU operation.
A serialization operation consists in completing all
conceptually previous storage accesses by the CPU,
as observed by channels, before the conceptually
subsequent storage accesses occur. Serialization
affects the sequence of all CPU accesses to storage
and to the page descriptions.

Serialization is performed by all interruptions
and by the execution of the following instructions:
1. The general instructions BRANCH ON

CONDITION (BCR) with the M1 and R2 field
containing all ones and all zeros, respectively,
and COMPARE AND SWAP, COMPARE
DOUBLE AND SWAP, STORE CLOCK,
SUPERVISOR CALL, and TEST AND SET.

2. LOAD PSW and SET STORAGE KEY.
3. All I/O instructions.

The sequence of events associated with a
serializing operation is as follows:
• All conceptually previous storage accesses by the

CPU are completed, as observed by channels.
This includes all conceptually previous stores and
changes to page descriptions.

• The normal function associated with the
serializing operation is performed. In the case of
instruction execution, operands are fetched, and
the storing of results is completed. The
exceptions are LOAD PSW, in which the
operand may be fetched before previous stores
have been completed, and interruptions, in which
the interruption code and associated fields may
be stored prior to the serialization. The fetching
of the serializing instruction occurs before the
execution of the instruction and may precede the
execution of previous instructions, but may not
precede the completion of the previous
serializing operation. In the case of an
interruption, the old PSW, the interruption code,
and other information, if any, are stored, and the
new PSW is fetched, but not necessarily in that
sequence.

• Finally, instruction fetch and operand accesses
for conceptually subsequent operations may
begin.
A serializing function affects the sequence of

storage accesses that are under the control of the
CPU. It does not affect the sequence of storage
accesses under the control of a channel.

Programming Notes
1. When a serializing operation takes place,

channels observe instruction and operand
fetching and result storing to take place in the
sequence established by the serializing
operation.

Storing by a channel into a location from
which a serializing instruction is fetched does
not necessarily affect the execution of the
serializing instruction unless a serializing
operation has been performed after the storing
and before the execution of the serializing
instruction.

2. For programs that are intended to run also on
multiprocessing configurations of System/370,
it should be noted that the serializing
operations affect the sequence of CPU accesses
to storage and to the storage key, as observed
by other CPUs as well as by channels.
Therefore, serializing instructions should be
inserted wherever it is necessary to control the
interaction of programs that may run
concurrently on different CPUs.

Channel Serialization
Serialization of a channel occurs as foll~ws:
1. For a single channel program, all storage

accesses and page-description accesses by the
channel follow the execution of START I/O or
START I/O FAST RELEASE, as observed by
the CPU and other channels. This includes all
accesses for the CAW, CCWs, and data.

2. For the last CCW of a chain, all storage
accesses and page-description accesses are
completed, as observed by the CPU and other
channels, before the interruption condition
indicating channel end is presented to the CPU.

3. If a CCW in the chain contains a PCl bit which
is one, all storage accesses and page-description
accesses due to CCWs preceding it in the chain
are completed, as observed by the CPU and
other channels, before the PCl condition is
presented to the CPU.

The serialization of a channel does not affect the
sequence of storage accesses or page-description
accesses caused by a program in the CPU or
another channel. It also does not affect the
sequence of storage accesses or page-description
accesses caused by other channel programs on the
same channel.

Chapter 5. Program Execution 5-13

Chapter 6. Interruptions

Contents

Interruption Action 6-1

Source Identification

Enabling and Disabling

Instruction-Length Code

Zero ILC 6-5

6-4

6-4

6-5

ILC on Instruction-Fetching Exceptions 6-5

Exceptions Associated with the PSW 6-6

Early Exception Recognition

Late Exception Recognition

External Interruption 6-7

Clock Comparator

CPU Timer 6-8

External Signal

Interrupt Key

6-8

6-8
Interval Timer 6-8

Input/Output Interruption

6-8

6-9

Machine-Check Interruption 6-9

Program Interruption 6-10

6-6

6-7

Program-Interruption Conditions 6-10

Addressing Exception 6-10

Data Exception 6-11

Decimal-Divide Exception 6-11

Decimal-Overflow Exception 6-11

The interruption facility permits the CPU to change
its state as a result of conditions external to the
system, within the system, or within the CPU itself.
To permit fast response to conditions of high
priority and immediate recognition of the type of
condition, interruption conditions are grouped into
six classes: external, input/output, machine check,
program, restart, and supervisor call.

Interruption Action
An interruption consists in storing the current PSW
as an old PSW, storing information identifying the
cause of the interruption, and fetching a new PSW.
Processing resumes as specified by the new PSW.

The old PSW stored on an interruption normally
contains the address of the instruction that would
have been executed next had the interruption not
occurred, thus permitting resumption of the
interrupted program. For program and

Execute Exception 6-11

Exponent-Overflow Exception

Exponent-Underflow Exception

Fixed-Point-Divide Exception

Fixed-Point-Overflow Exception

Floating-Point-Divide Exception

Monitor Event 6-12

6-12

6-13

6-13

6-11

6-12

6-12

6-12

6-12

Operation Exception

Page-Access Exception

Page-State Exception

Page-Transition Exception 6-13

PER Event 6-13

Privileged-Operation Exception

Protection Exception 6-14

Significance Exception 6-14

6-14

Special-Operation Exception 6-14

Specification Exception 6-14

Recognition of Access Exceptions 6-15

Multiple Program-Interruption Conditions

Restart Interruption 6-18

Supervisor-Call Interruption

Priority of Interruptions

6-18

6-19

6-16

supervisor-call interruptions, the information stored
also contains a code that identifies the length of
the last-executed instruction, thus permitting the
program to respond to the cause of the
interruption. In the case of some program
conditions for which the normal response is
reexecution of the instruction causing the
interruption, the instruction address directly
identifies the instruction last executed.

Except for restart, an interruption can take place
only when the CPU is in the operating state. The
restart interruption can occur with the CPU in
either the stopped or operating state.

The details of source identification, location
determination, and instruction execution are
explained in later sections and are summarized in
the figure "Interruption Action. "

Chapter 6. Interruptions 6-1

psw- Mask Bits
Mask in Ctrl Execution of
Bits Registers Instruction

Source Interruption ILC Identified
Identification Code EC BC Reg, Bit Set by Old PSW

MACHINE CHECK Locations 232-239 1
(old PSW 48,

new PSW 112)

Exigent condition 13 13 x terminated
Repressible cond 13 13 14, 4-7 x unaffected2

SUPERVISOR CALL Locations 138-139
(old PSW 32, in EC mode and
new PSW 96) 34-35 in BC mode

Instruction bits 00000000 ssssssss 1 ,2 completed

PROGRAM Locations 142-143
(old PSW 40, in EC mode and

new PSW 104) 42-43 in BC mode

Operation 00000000 pOOOOO01 1 ,2,3 suppressed
Pr i v i 1 eged oper 00000000 pOOOO010 1 ,2 suppressed
Execute 00000000 pOOOOO 11 2 suppressed
Protection 00000000 pOOO0100 1 ,2,3 suppressed or terminated
Addressing 00000000 pOOO0101 1 ,2,3 suppressed or terminated
Specification 00000000 pOOOO 110 0,1,2,3 suppressed or completed
Data 00000000 pOOOO 111 2,3 suppressed or terminated
Fixed-pt overflow 00000000 pOO01000 20 36 1 ,2 completed
Fixed-point divide 00000000 pOO0100l 1 ,2 suppressed or completed
Decimal overflow 00000000 pOO010l0 21 37 2,3 completed
Decimal divide 00000000 pOO01011 2,3 suppressed
Exponent overflow 00000000 pOO01100 1 ,2 completed
Exponent underflow 00000000 pOOOll0l 22 38 1 ,2 completed
Significance 00000000 pOO01110 23 39 1 ,2 completed
Floating-pt divide 00000000 pOO01111 1,2 suppressed
Special operation 00000000 p0010011 0, 1 2 suppressed
Page access 00000000 pOOll000 1 ,2,3 null ified
Page state 00000000 p0011010 2 suppressed
Page transition 00000000 pOOll011 2 suppressed
Monitor event 00000000 p1000000 8, 16+ 2 completed
PER event 00000000 1nOnnnnn3 1 '1, 9, 0-3 0,1,2,3 completed4

Interruption Action (Part 1 of 2)

6-2 IB M 4300 Processors Principles of Operation

Source
Identification

EXTERNAL
(old PSW 24,
new PSW 88)

Interval timer
Interrupt key
External signal
External signal
External signal
External signal
External signal

2
3
4
5
6

External signal 7
Clock comparator
CPU t i.mer

INPUT/OUTPUT
(old PSW 56,
new PSW 120)

Channel 0
Channel 1
Channel 2
Channel 3
Channel 4
Channel 5
Channel 6 & up

RESTART
(old PSW 8,
new PSW 0)

Restart key

Explanation:

Interruption
Code

Locations 134-135
in EC mode and
26-27 in BC mode

00000000 leeeeeee
00000000 eleeeeee
00000000 eeleeeee
00000000 eeeleeee
00000000 eeeeleee
00000000 eeeeelee
00000000 eeeeeele
00000000 eeeeeeel
00010000 00000100
00010000 00000101

Locations 186-187
in EC mode and
58-59 in BC mode

00000000 dddddddd
00000001 dddddddd
00000010 dddddddd
00000011 dddddddd
00000100 dddddddd
00000101 dddddddd
cccccccc dddddddd

Locations 2-3 in
BC mode

00000000 000000006

PSW- Mask Bits
Mask in Ctr 1
Bits Registers

EC BC Reg, Bit

7 7 0, 24
7 7 0, 25
7 7 0, 26
7 7 0, 26
7 7 0, 26
7 7 0, 26
7 7 0, 26
7 7 0, 26
7 7 0, 20
7 7 0, 21

6 0 2, 05
6 1 2, 15
6 2 2, 25
6 3 2, 35
6 4 .2, 45
6 5 2, 55
6 6 2, 6+

ILC
Set

x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x

Execution of
Instruction
Identified
by Old PSW

unaffected
unaffected
unaffected
unaffected
unaffected
unaffected
unaffected
unaffected
unaffected
unaffected

unaffected
unaffected
unaffected
unaffected
unaffected
unaffected
unaffected

x unaffected

1 A model-independent machine-check interruption code of 64 bits is stored at loca­
tions 232-239.

2 The effect of the machine-check condition is identified by the validity bits in
the machine-check interruption code. The instruction is unaffected only if all
the associated validity bits are ones.

3 When the interruption code indicates a PER event, an ILC of 0 may be stored
only when bits 8-15 of the interruption code are 10000110 (PER, specification).

4 The unit of operation is completed, unless a program exception concurrently
indicated causes the unit of operation to be nullified, suppressed, or
terminated.

5 For channels 0-5, channel masks in control register 2 have no effect in the
BC mode.

6 Bits 16-31 in the old PSW in the BC mode are set to zeros. No interruption code
is provided in the EC mode.

+ Plus the following bits in the control register.
* In the Be mode, program-event recording is disabled.
c Channel-address bits.
d Device-address bits.
e If one, the bit indicates another concurrent external-interruption condition.
n A possible nonzero code, indicating another concurrent program-interruption

condition.
p If one, the bit indicates a concurrent PER-event interruption condition.
s Bits of the I field of SUPERVISOR CALL.
x Unpredictable in the BC mode; not stored in the EC mode.

Interruption Action (Part 2 of 2)

Chapter 6. Interruptions 6-3

Source Identification
The six classes of interruptions (external, I/O,
machine check, program, restart, and supervisor
call) are distinguished by the storage locations at
which the old PSW is stored and from which the
new PSW is fetched. For most classes, the causes
are further identified by an interruption code and,
for some classes, by additional information placed
in permanently assigned storage locations during
the interruption. (See also the section "Assigned
Storage Locations" in Chapter 3, "Storage. ") For

I external, I/O, program, and supervisor-call
interruptions, the interruption code consists of 16
bits.

For external interruptions in the EC mode, the
interruption code is stored at locations 134-135. In
the BC mode, the interruption code is placed in the
old PSW.

For I/O interruptions in the EC mode, the
interruption code, which contains the I/O address,
is stored at locations 186-187. In the BC mode,
the interruption code is placed in the old PSW.
Additional information is provided by the contents
of the channel-status word (CSW) stored at
location 64. Further information may be provided
by the limited channel logout stored at location
176.

For machine-check interruptions, the
interruption code consists of 64 bits and is stored
at locations 232-239. Additional information for
identifying the cause of the interruption and for
recovering the state of the machine may be
provided by the contents of the machine-check save
areas. (See Chapter 11, "Machine-Check
Handling. ")

For program interruptions in the EC mode, the
interruption code is stored at locations 142-143,
and the instruction-length code is stored in bit
positions 5 and 6 of location 141. In the BC mode,
the interruption code and instruction-length code
are placed in the old PSW. Further information
may be provided in the form of the
access-exception address, monitor-class number,
monitor code, PER code, and PER address, which
are stored at locations 144-159.

For restart interruptions in the EC mode, no
interruption code is stored. In the BC mode, an
interruption code of zero is placed in the old PSW.

For supervisor-call interruptions in the EC mode,
the interruption code is stored at locations
138 -13 9, and the instruction-length code is stored
in bit positions 5 and 6 of location 137. In the BC
mode, the interruption code and instruction-length
code are placed in the old PSW.

6-4 IBM 4300 Processors Principles of Operation

Enabling and Disabling
By means of mask bits in the current PSW and in
control registers, the CPU may be enabled or
disabled for all external, I/O, and machine-check
interruptions and for some program interruptions.
When a mask bit is one, the CPU is enabled for the
corresponding class of interruptions, and these
interruptions can take place.

When a mask bit is zero, the CPU is disabled for
the corresponding interruptions. The conditions
that cause I/O or external interruptions remain
pending. Machine-cheek-interruption conditions,
depending on the type, are ignored, remain

I
pending, or cause the CPU to enter the check-stop
state. The disallowed program-interruption
conditions are ignored, except that some causes are
indicated also by the setting of the condition code.

Program interruptions for which mask bits are
not provided, as well as the supervisor-call and
restart interruptions, are always taken.

The mask bits may allow or disallow all
interruptions within the class, or they may
selectively allow or disallow interruptions for
particular causes. This control may be provided by
mask bits in the PSW that are assigned to particular
causes, such as the bits assigned to the four
maskable program-interruption conditions.
Alternatively, there may be a hierarchy of masks,
where a mask bit in the PSW controls all
interruptions within a type, and mask bits in a
control register provide more detailed control over
the sources.

When the mask bit is one, the CPU is enabled
for the corresponding interruptions. When the
mask bit is zero, these interruptions are disallowed.
Interruptions that are controlled by a hierarchy of
masks are allowed only when all controlling mask
bits are ones.

Programming Notes
1. Mask bits in the PSW provide a means of

disallowing all maskable interruptions; thus,
subsequent interruptions can be disallowed by
the new PSW introduced by an interruption.
Furthermore, the mask bits can be used to
establish a hierarchy of interruption priorities,
where a condition in one class can interrupt the
program handling a condition in another class
but not vice versa. To prevent an
interruption-handling routine from being
interrupted before the necessary housekeeping
steps are performed, the new PSW must disable
the CPU for further interruptions within the
same class or within a class of lower priority.

2. Since the mask bits in control registers are not
changed as part of the interruption procedure,
these masks cannot be used to prevent an
interruption immediately after a previous
interruption in the same class. The mask bits in
control registers provide a means for selectively
enabling the CPU for some sources and
disabling it for others within the same class.

Instruction-Length Code
The instruction-length code (ILC) occupies two bit
positions and provides the length of the last
instruction executed. It permits identifying the
instruction causing the interruption when the
instruction address in the old PSW designates the
next sequential instruction. The ILC is provided
also by the BRANCH AND LINK instructions.

When the old PSW specifies the EC mode, the
ILC for program and supervisor-call interruptions is
stored in bit positions 5 and 6 of the bytes at
locations 137 and 141, respectively. For external,
110, machine-check, and restart interruptions, the
ILC is not stored since it cannot be related to the
length of the last-executed instruction.

When the old PSW specifies the BC mode, the
lLC is stored in bit positions 32 and 33 of that
PSW. The ILC is meaningful, however, only after
a supervisor-call or program interruption. For
machine-check, external, 1/0, and restart
interruptions, the ILC does not indicate the length
of the last-executed instruction and is
unpredictable. Similarly, the ILC is unpredictable
in the PSW stored during execution of the
machine-save function and when the PSW is
displayed.

For supervisor-call and program interruptions, a
nonzero ILC identifies in halfwords the length of
the instruction that was last executed. Whenever
an instruction is executed by means of EXECUTE,
instruction-length code 2 is set to indicate the
length of EXECUTE and not that of the target
instruction.

The value of a nonzero instruction-length code is
related to the leftmost two bits of the instruction.
The value is not contingent on whether the
operation code is assigned or on whether the
instruction is installed. The following table
summarizes the meaning of the instruction-length
code:

ILC Instr
Bits Instruction

Decimal Binary 0-1 Length

0 00 Not available
1 01 00 One halfword
2 10 01 Two halfwords
2 10 10 Two ha lfwor ds
3 11 11 Three ha lfwords

Zero ILC
Instruction-length code 0, after a program
interruption, indicates that the location of the
instruction causing the interruption is not made
available. to the program.

An ILC of ° occurs when a specification
exception is recognized that is due to a
PSW-format error, other than one due to an odd
instruction address, and the invalid PSW has been
introduced by LOAD PSW or an interruption. (See
the section "Exceptions Associated with the PSW"
later in this chapter.) In the case of LOAD PSW
the address of the instruction has been replaced by
the instruction address of the new PSW. When the
invalid PSW is introduced by an interruption, the
PSW -format error cannot be attributed to an
instruction.

In the case of LOAD PSW and the
supervisor-call interruption, a PER event may be
indicated concurrently with a specification
exception having an ILC of 0.

ILC on Instruction-Fetching Exceptions
When a program interruption occurs because of an
exception that prohibits access to the instruction,
the instruction-length code cannot be set on the
basis of the first two bits of the instruction. As far
as the significance of the ILC for this case is
concerned, the following two situations are
distinguished:
1 . When an odd instruction address causes a

specification exception to be recognized or
when an addressing or protection exception is
encountered on fetching an instruction, the ILC
is set to 1, 2, or 3, indicating the multiple of 2
by which the instruction address has been
incremented. It is unpredictable whether the
instruction address is incremented by 2, 4, or 6.
By reducing the instruction address in the old

Chapter 6. Interruptions 6-5

PSW by the number of halfword locations
indicated in the ILC, the address originally
appearing in the PSW may be obtained.

2. When a page-access exception is recognized
while fetching an instruction, including the
target instruction of EXECUTE, the ILC is
arbitrarily set to 1, 2, or 3. In this case, the
operation is nullified, and the instruction
address is not incremented.

The ILC is not necessarily related to the first
two bits of the instruction when the first halfword
of an instruction can be fetched but an access
exception is recognized on fetching the second or
third halfword. The ILC may be arbitrarily set to
1, 2, or 3 in these cases. The instruction address is
or is not updated, as described in situations 1 and 2
above.

When any exceptions other than page access are
encountered on fetching the target instruction of
EXECUTE, the ILC is 2.

Programming Notes
1. A nonzero instruction-length code for a

program interruption indicates the number of
halfword locations by which the instruction
address in the old PSW must be reduced to
obtain the address of the last instruction
executed, unless one of the following situations
exists:
a. The interruption is caused by a page-access

exception.
b. An interruption for a PER event occurs

before the execution of an interruptible
instruction is ended.

c. The interruption is caused by a PER event
due to LOAD PSW or a branch or linkage
instruction, including SUPERVISOR
CALL.

d. The interruption is caused by an access
exception encountered in fetching an
instruction, and the instruction address has
been introduced into the PSW by a means
other than sequential operation (by a
branch instruction, LOAD PSW, or an
interruption) .

e. The interruption is caused by a specification
exception because of an odd instruction
address.

For situations a and b above, the instruction
address in the PSW is not incremented, and the
instruction designated by the instruction
address is the same as the last one executed.
These two are the only cases in which the

6-6 IBM 4300 Processors Principles of Operation

instruction address in the old PSW identifies
the instruction causing the exception.

For situations c, d, and e, the instruction
address has been replaced as part of the
operation, and the address of the last
instruction executed cannot be calculated using
the one appearing in the old PSW.

2. When a PER event is indicated, bit 8 in the
interruption code is one, the PER address in the
word at location 152 identifies the location of
the instruction causing the interruption, and the
instruction-length code (ILC) is redundant.
Similarly, the ILC is redundant when the
operation is nullified, since in this case the
instruction address in the PSW is not
incremented. If the ILC value is required in
this case, it can be derived from the operation
code of the instruction identified by the old
PSW.

Exceptions Associated with the PS W
Exceptions associated with erroneous information
in the current PSW may be recognized when the
information is introduced into the PSW or may be
recognized as part of the execution of the next
instruction. Errors in the PSW which are
specification-exception conditions are called
PSW -format errors.

Early Exception Recognition
A program interruption for a specification
exception occurs immediately after the PSW
becomes active if a one is introduced into an
unassigned bit position of an EC-mode PSW (that
is, bit positions 0,2-5, 16, 17, or 24-39).

The interruption takes place regardless of
whether the wait state is specified. If the invalid
PSW causes the CPU to become enabled for a
pending 1/0, external, or machine-check
interruption, the program interruption is taken
instead, and the pending interruption is subject to
the mask bits of the new PSW introduced by the
program interruption.

When the execution of LOAD PSW or an
interruption introduces a PSW with one of the
above error conditions, the instruction-length code
is set to 0, and the newly introduced PSW, except
for the interruption code and the instruction-length
code in the BC mode, is stored unmodified as the
old PSW. When one of the above error conditions
is introduced by execution of SET SYSTEM MASK
or STORE THEN OR SYSTEM MASK, the
instruction-length code is set to 2, and the

instruction address is updated by two halfword
locations. The PSW containing the invalid value
introduced into the system-mask field is stored as
the old PSW.

When a PSW with one of the above error
conditions is introduced during initial program
loading, the loading sequence is not completed, and
the load indicator remains on.

Late Exception Recognition
For the following conditions, the exception is
recognized as part of the execution of the next
instruction:
• A specification exception is recognized due to an

odd instruction address in the PSW (PSW bit 63
is one).

• An access exception (addressing, page-access, or
protection) is associated with the location
designated by the instruction address or with the
location of the second or third halfword of the
instruction starting at the designated address.
The instruction-length code and instruction

address stored in the program old PSW under these
conditions are discussed in the section, "ILC on
Instruction-Fetching Exceptions" in this chapter.

If the invalid PSW causes the CPU to be enabled
for a pending 1/0, external, or machine-check
interruption, the corresponding interruption occurs,
and the PSW invalidity is not recognized.
Similarly, the specification or access, exception is
not recognized in a PSW specifying the wait state.

Programming Notes
1. The execution of LOAD PSW, SET SYSTEM

MASK, STORE THEN AND SYSTEM MASK,
and STORE THEN OR SYSTEM MASK is
suppressed on' an addressing or protection
exception, and hence the program old PSW
provides information concerning the program
causing the exception.

2. When the first halfword of an instruction can
be fetched but an access exception is
recognized on fetching the second or third
halfword, the ILC is not necessarily related to
the operation code.

3. If the new PSW introduced by an interruption
contains a PSW-format error, a string of
interruptions occurs. (See the section "Priority
of Interruptions" in this chapter.)

External Interruption
The external interruption provides a means by
which the CPU responds to various signals

originating either from within or from without the
system.

An external interruption causes the old PSW to
be stored at location 24 and a new PSW to be
fetched from location 88.

The source of the interruption is identified in the
interruption code. When the old PSW specifies the
EC mode, the interruption code is stored at
locations 134-135, and zeros are stored at locations
132-133. When the old PSW specifies the BC
mode, the interruption code is placed in bit
positions 16-31 of the old PSW, and the
instruction-length code is unpredictable.

External-interruption conditions are of two
types: those for which an interruption request
condition is held pending, and those for which the
condition directly requests the interruption. Clock
comparator and CPU timer are conditions which
directly request external interruptions. If a
condition which directly requests an external
interruption is removed before the request is
honored, the request does not remain pending, and
no interruption occurs. Conversely, the request is
not cleared by the interruption, and if the condition
persists, more than one interruption may. result
from a single occurrence of the condition.

When several interruption requests for a single
source are generated before the interruption is
taken, and the interruption condition is of the type
which is held pending, only one request for that
source is preserved and remains pending.

An external interruption for a particular source
can occur only when the CPU is enabled for
interruption by that source. The external
interruption occurs at the completion of a unit of
operation. Whether the CPU is enabled for
external interruption is controlled by the external
mask, PSW bit 7, and external subclass mask bits in
control register O. Each source for an external
interruption has a subclass mask' bit assigned to it,
and the source can cause an interruption only when
the external-mask bit is one and the corresponding
subclass-mask bit is one. The use of the subclass­
mask bits does not depend on whether the CPU is
in the EC or BC mode.

When the CPU becomes enabled for a pending
external-interruption condition, the interruption
occurs at the completion of the instruction
execution or interruption that causes the enabling.

More than one source may present a request for
an external interruption at the same time. When
the CPU becomes enabled for more than one
concurrently pending request, the interruption

Chapter 6. Interruptions 6-7

occurs for the pending condition or COIHlilions
having the highest priority.

The priorities for external-interruption requests
in descending order are as follows:
Interval timer, interrupt key, external signals 2-7
Clock comparator
CPU timer

The interval timer, interrupt key, and external
signals 2-7 are of equal priority; if more than one
of these conditions is pending and allowed, the
conditions are indicated concurrently. J\.ll other
requests are honored one at a time.

Clock Comparator
An interruption request for the clock comparator
exists whenever either of the following conditions is
met:
1. The time-of-day clock is in the set or not-set

state, and the value of the clock comparator is
less than the value in the compared portion of
the time-of-day clock, both compare values
being considered unsigned binary integers.

2. The time-of-day clock is in the error or
not-operational state.

If the condition responsible for the request is
removed before the request is honored, the request
does not remain pending, and no interruption
occurs. Conversely, the request is not cleared by
the interruption, and, if the condition persists, more
than one interruption may result from a single
occurrence of the condition.

The clock-comparator condition is indicated by
an external-interruption code of 1004 (hex).

The subclass-mask bit is in bit position 20 of
control register O. This bit is initialized to zero.

CPU Timer
An interruption request for the CPU timer exists
whenever the CPU-timer value is negative (bit 0 of
the CPU timer is one). If the value is made
positive before the request is honored, the request
does not remain pending, and no interruption
occurs. Conversely, the request is not cleared by
the interruption, and, if the condition persists, more
than one interruption may occur from a single
occurrence of the condition.

The CPU-timer condition is indicated by an
external-interruption code of 1005 (hex).

The subclass-mask bit is in bit position 21 of
control register O. This bit is initialized to zero.

External Signal
An interruption request for an external signal is
generated when a signal is received on one or more

6-8 IBM 4300 Processors Principles of Operation

of the signal-in lines. Up to six signal-in lines may
be connected, providing for external signal 2
through external signal 7. The request is preserved
and remains pending in the CPU until it is cleared.
The pending request is cleared when it causes an
interruption and by program reset.

Facilities are provided for holding a separate
external-signal request pending for each of the six
lines.

External signals 2-7 are indicated by setting to
one interruption -code bits 10-15, respectively. Bits
0-7 are set to zeros, and any other bits in the
rightmost byte are set to zeros unless set to ones
for other conditions that are concurrently indicated.

All external signals are subject to control by the
subclass-mask bit in bit position 26 of control
register O. This bit is initialized to one.

External signaling is independent of I/O
operations and interruptions.

Programming Note
The pattern presented in bit positions 10-15 of the
interruption code depends on the pattern received
before the interruption is taken. Because of circuit
skew, all simultaneously generated external signals
do not necessarily arrive at the same time, and
some may not be included in the external
interruption resulting from the earliest signals.
These late signals may cause another interruption
to be taken.

Interrupt Key
An interruption request for the interrupt key is
generated when the operator activates that key.
The request is preserved and remains pending in
the CPU until it is cleared. The pending request is
cleared when it causes an interruption and by
program reset.

When the interrupt key is activated while the
CPU is in the load state, it depends on the model
whether an interruption request is generated or the
condition is lost.

The interrupt-key condition is indicated by
setting bit 9 in the interruption code to one and by
setting bits 0-7 to zeros. Bits 8 and. 10-15 are
zeros unless set to ones for other conditions that
are concurrently indicated.

The subclass-mask bit is in bit position 25 of
control register O. This bit is initialized to one.

Interval Timer
An interruption request for the interval timer is
generated when the value of the interval timer is

decremented from a positive number or zero to a
negative number. The request is preserved and
remains pending in the CPU until it is cleared. The
pending request is cleared when it causes an
interruption and by program reset.

The interval-timer condition is indicated by
setting bit 8 in the interruption code to one and by
setting bits 0-7 to zeros. Bits 9-15 are zeros unless
set to ones for other conditions that are
concurrently indicated.

The subclass-mask bit is in bit position 24 of
control register O. This bit is initialized to one.

Input/Output Interruption
The input/output (I/O) interruption provides a
means by which the CPU responds to conditions in
I/O devices and channels.

A request for an I/O interruption may occur at
any time, and more than one request may occur at
the same time. The requests are preserved and
remain pending in channels or devices until
accepted by the CPU. The I/O interruption occurs
at the completion of a unit of operation. Priority is
established among requests so that only one
interruption request is processed at a time. For
more details, see the section "Input/Output
Interruptions" in Chapter 12, "Input/Output
Operations. "

When the CPU becomes enabled for I/O
interruptions and a channel has established priority
for a pending I/O-interruption condition, the
interruption occurs at the completion of the
instruction execution or interruption that causes the
enabling.

An I/O interruption causes the old PSW to be
stored at location 56, a channel status word to be
stored at location 64, and a new PSW to be fetched
from location 120. Upon detection of equipment
errors, additional information may be stored in the
form of a limited channel logout at location 176.

When the old PSW specifies the EC mode, the
I/O address identifying the channel and device
causing the interruption is stored at locations
186-187, and zeros are stored at location 185.
When the old PSW specifies the BC mode, the
interruption code in PSW bit positions 16-31
contains the I/O address, and the
instruction-length code in the PSW is
unpredictable.

An I/O interruption can occur only while the
CPU is enabled for interruption by the channel
presenting the request. Mask bits in the PSW and
channel masks in control register 2 determine

whether the CPU is enabled for interruption by a
channel; the method of control depends on whether
the current PSW specifies the EC or BC mode.

The channel-mask bits in control register 2 start
at bit position 0 and extend for as many contiguous
bit positions as the number of channels provided.
The assignment is such that a bit is assigned to the
channel whose address is equal to the position of
the bit in control register 2. Channel-mask bits for
installed channels are initialized to one. The state
of the channel-mask bits for unavailable channels is
unpredictable.

When the current PSW specifies the EC mode,
each channel is controlled by the I/O-mask bit,
PSW bit 6, and by the corresponding channel-mask
bit in control register 2; the channel can cause an
interruption only when the I/O-mask bit is one and
the corresponding channel-mask bit is one.

When the current PSW specifies the BC mode,
interruptions from channels 6 and up are controlled
by the I/O-mask bit, PSW bit 6, in conjunction
with the corresponding channel-mask bit: the
channel can cause an interruption only when the
II O-mask bit is one and the corresponding
channel-mask bit is one. Interruptions from
channels 0-5 are controlled by channel-mask bits
0-5 in the PSW: an interruption can occur only
when the mask bit corresponding to the channel is
one. In the BC mode, bits 0-5 in control register 2
do not participate in controlling I/O interruptions;
they are, however, preserved in the control register
if the corresponding channels are installed.

Machine-Check Interruption
The machine-check interruption is a means for
reporting to the program the occurrence of
equipment malfunctions. Information is provided
to assist the program in determining the location of
the fault and extent of the damage.

A machine-check interruption causes the old
PSW to be stored at location 48 and a new PSW to
be fetched from location 112. When the old PSW
specifies the BC mode, the contents of the
interruption-code and ILC fields in the old PSW
are unpredictable.

The cause and severity of the malfunction are
identified by a 64-bit machine-check-interruption
code stored at locations 232-239. Further
information identifying the cause of the
interruption and the location of the fault may be
stored at locations 216-511.

The interruption action and the storing of the
associated information are under the control of

Chapter 6. Interruptions 6-9

PSW bit 13 and bits in control register 14. See
Chapter 11, "Machine-Check Handling," for more
detailed information.

Program Interruption
Program interruptions are used to report exceptions
and events which occur during execution of the
program. Exceptions include the improper
specification or use of instructions and data.
Events are detected during monitoring (monitor
events) and program-event recording (PER events).

A program interruption causes the old PSW to be
stored at location 40 and a new PSW to be fetched
from location 104.

The cause of the interruption is identified by the
interruption code. When the old PSW specifies the

EC mode, the interruption code is placed at
locations 142-143, the instruction-length code is
placed in bit positions 5 and 6 of the byte at
location 141 with the rest of the bits set to zeros,
and zeros are stored at location 140. When the old
PSW specifies the BC mode, the interruption code
and the ILC are placed in the old PSW. For some
causes, additional information identifying the
reason for the interruption is stored at locations
144-159 in both the EC and BC modes.

Except for the PER-event condition, the
condition causing the interruption is indicated by a
coded value placed in the rightmost seven bit
positions of the interruption code. Only one
condition at a time can be indicated. Bits 0-7 of
the interruption code are set to zeros.

The PER -event condition is indicated by setting
bit 8 of the interruption code to one, with bits 0-7
set to zeros. When this is the only condition, bits
9-15 are also set to zeros. When a PER -event
condition is indicated concurrently with another
program interruption condition, bit 8 is one, and
the coded value for the other condition appears in
bit positions 9-15.

A program interruption can occur only when the
corresponding mask bit, if any, is one. The
program mask in the PSW permits masking four of
the exceptions, bit 1 in control register 0 controls
whether SET SYSTEM MASK causes a
special-operation exception, bits 16-31 in control
register 8 control interruptions due to monitor
events, and, in the EC mode, masks are provided
for controlling interruptions due to PER events.
When the mask bit is zero, the condition is ignored;
the condition does not remain pending.

6-10 IBM 4300 Processors Principles of Operation

Programming Notes
1. When the new PSW for a program interruption

has a PSW -format error or causes an exception
to be recognized in the process of instruction
fetching, a string of program interruptions takes
place. See the section "Priority of
Interruptions" in this chapter for a description
of how such strings are terminated.

2. Some of the conditions indicated as program
exceptions may be recognized also by anIiO
operation, in which. case the exception is
indicated in the channel-status word.

Program-Interruption Conditions
The following is a detailed description of each
program-interruption condition.

Addressing Exception
An addressing exception is recognized when the
CPU causes a reference to a virtual-storage
location that is not provided. A storage location is
not provided when the page address, bits 8-20 of
the storage address, equals or exceeds the
page-capacity count. An address designating a
storage location that is not provided is referred to
as invalid.

The execution of the instruction is suppressed
when the location of the instruction, including the
location of the target instruction of EXECUTE, is
not provided. Except for some specific instructions
whose execution is suppressed, the operation is
terminated when an operand location is not
provided. For termination, changes may occur only
to result fields, which include the condition code,
registers, and any storage locations that are
provided and that are designated to be changed by
the instruction. Therefore, if an instruction is due
to change only the contents of a field in storage,
and every byte of the field is in a location that is
not provided, the operation is suppressed.

The instructions whose execution is always
suppressed are LOAD PSW, SET CLOCK
COMPARATOR, SET CPU TIMER, SET
SYSTEM MASK, STORE CLOCK
COMPARATOR, STORE CPU ID, STORE CPU
TIMER, STORE THEN AND SYSTEM MASK,
and STORE THEN OR SYSTEM MASK.

When part of an operand location is provided
and part is not, storing may be performed in the
part that is provided.

When the address of any halfword of an
instruction is invalid, the instruction-length code

(ILC) is 1,2, or 3, indicating the multiple of 2 by
which the instruction address has been
incremented. It is unpredictable whether the ILC
is 1,2, or 3.

In all cases of addressing exceptions not
associated with instruction fetching, the ILC is 1,
2, or 3, designating the length of the instruction
that caused the reference. When an addressing
exception is associated with fetching the target of
EXECUTE, the ILC is 2.

Data Exception
A data exception is recognized when:
1. The sign or digit codes of operands in the

decimal instructions (described in Chapter 8,
"Decimal Instructions") or in CONVERT TO
BIN AR Yare invalid.

2. The operand fields in ADD DECIMAL,
COMPARE DECIMAL, DIVIDE DECIMAL,
MUL TIPL Y DECIMAL, and SUBTRACT
DECIMAL overlap in a way other than with
coincident rightmost bytes; or operand fields in
ZERO AND ADD overlap, and the rightmost
byte of the second operand is to the right of
the rightmost byte of the first operand.

3. The multiplicand in MULTIPLY DECIMAL
has an insufficient number of high-order zeros.

For all instructions other than EDIT and EDIT
AND MARK, the action taken for a data exception
depends on whether a sign code is invalid. The
operation is suppressed when a sign code is invalid,
regardless of whether any other condition causing
the exception exists; when no sign code is invalid,
the operation is terminated. When the operation is
terminated, the contents of the sign position in the
rightmost byte of the result field either remain
unchanged or are set to the preferred sign code; the
contents of the remainder of the result field are
unpredictable.

In the case of EDIT and EDIT AND MARK, an
invalid sign code is not recognized; the operation is
terminated on a data exception for an invalid digit
code.

The instruction-length code is 2 or 3.

Programming Notes
1. The definition for data exception permits

termination when digit codes are invalid but no
sign code is invalid. On some models, valid
digit codes may be placed in the result location
even if the original contents were invalid. Thus
it is possible, after getting a data exception, for
all fields to appear valid.

2. When, on a program interruption for data
exception, the program finds that a sign code is
invalid, the operation has been suppressed if
the following two conditions are met:
a. The invalid sign of the source field is not

located in the numeric portion of the result
field.

b. The sign code appears in a position
specified by the instruction to be checked
for valid sign. (This condition excludes the
first operand of ZERO AND ADD and
both operands of EDIT and EDIT AND
MARK.)

An invalid sign code for the rightmost byte
of the result field is not generated when the
operation is terminated. However, an invalid
second-operand sign code is not necessarily
preserved when it appears in the numeric
portion of the result field.

Decimal-Divide Exception
A decimal-divide exception is recognized when in
decimal division the divisor is zero or the quotient
exceeds the specified data-field size.

The decimal-divide exception is indicated only if
the sign codes of both the divisor and dividend are
valid and only if the digit or digits used in
establishing the exception are valid.

The operation is suppressed.
The instruction-length code is 2 or 3.

Decimal-Overflow Exception
A decimal-overflow exception is recognized when
one or more significant high-order digits are lost
because the destination field in a decimal operation
is too short to contain the result.

The interruption may be disallowed by PSW bit
21 in the EC mode and by PSW bit 37 in the BC
mode.

The operation is completed. The result is
obtained by ignoring the overflow information, and
condition code 3 is set.

The instruction-length code is 2 or 3.

Execute Exception
The execute exception is recognized when the
target instruction of EXECUTE is another
EXECUTE.

The operation is suppressed.
The instruction-length code is 2.

Exponent-Overflow Exception
An exponent-overflow exception is recognized
when the result characteristic in floating-puint

Chapter 6. Interruptions 6-11

addition, subtraction, multiplication, or division
exceeds 127 and the result fraction is not zero.

The operation is completed. The fraction is
normalized, and the sign and fraction of the result
remain correct. The result characteristic is made
128 smaller than the correct characteristic.

The instruction-length code is 1 or 2.

Exponent-Underflow Exception
An exponent-underflow exception is recognized
when the result characteristic in floating-point
addition, subtraction, multiplication, halving, or
division is less than zero and the result fraction is
not zero.

The operation is completed. The exponent­
underflow mask also affects the result of the
operation. When the mask bit is zero, the sign,
characteristic, and fraction are set to zero, making
the result a true zero. When the mask bit is one,
the fraction is normalized, the characteristic is
made 128 larger than the correct characteristic, and
the sign and fraction remain correct.

The instruction-length code is 1 or 2.

Fixed-Point-Divide Exception
A fixed-point-divide exception is recognized when
in fixed-point division the divisor is zero or the
quotient exceeds the register size, or when the
result of CONVERT TO BINARY exceeds 31 bits.

In the case of division, the operation is
suppressed. The execution of CONVERT TO
BIN AR Y is completed by ignoring the high -order
bits that cannot be placed in the register.

The instruction-length code is 1 or 2.

Fixed-Point-Overflow Exception
A fixed-point-overflow exception is recognized
when an overflow occurs during signed binary
arithmetic or left-shift operations.

The interruption may be disallowed by PSW bit
20 in the EC mode and by PSW bit 36 in the BC
mode.

The operation is completed. The result is
obtained by ignoring the overflow information, and
condition code 3 is set.

The instruction-length code is 1 or 2.

Floating-Point-Divide Exception
A floating-point-divide exception is recognized
when a floating-point division by a number with a
zero fraction is attempted.

The operation is suppressed.
The instruction-length code is 1 or 2.

6-12 IB M 4300 Processors Principles of Operation

Monitor Event
A monitor event is recognized when MONITOR
CALL is executed and the monitor-mask bit in
control register 8 corresponding to the class
specified by instruction bits 12-15 is one.

The monitor event can occur in both the BC and
BC modes.

Control Register 8:

1///////////////1 Monitor Masks

o 16 31

The monitor-mask bits, bits 16-31 of control
register 8, correspond to monitor classes 0-15,
respectively. Any number of monitor-mask bits may
be on at a time; together they specify the classes of
monitor events that are monitored at that time.
The mask bits are initialized to zero.

When a MONITOR CALL instruction is
interpreted for execution and the corresponding
monitor-mask bit is one, a program interruption for
monitoring occurs. The cause of the interruption is
identified by setting bit 9 of the interruption code
to one, and by the information stored at locations
148-149 and 156-159. The format of the
information stored at these locations is the same in
the EC and BC modes and is as follows:

Locations 148-149:

o 8

Monitor
Class No.

Locations 156-159:

15

1000000001 Monitor Code

o 8 31

The contents of bit positions 8-15 of MONITOR
CALL are stored at location 149 and constitute the
monitor-class number. The address specified by
the Bland D 1 fields of the instruction forms the
monitor code, which is stored at locations 157-159.
Zeros are stored at locations 148 and 156.

The operation is completed, and the
instruction-length code is 2.

Operation Exception
An operation exception is recognized when the
CPU encounters an instruction with an invalid

operation code. The operation code may not be
assigned, or the instruction with that operation
code may not be available on the CPU.

For the purpose of checking the operation code
of an instruction, the operation code is defined as
follows:
1. When the first eight bits of an instruction have

the value B2 (hex), the first 16 bits form the
operation code.

2. In all other cases, the first eight bits alone form
the operation code.

The operation is suppressed.
The instruction-length code is 1, 2, or 3.

Programming Notes
1. Some models may offer instructions not

described in this publication, such as those
provided for emulation or as part of special or
custom features. Consequently, operation
codes not described in this publication do not
necessarily cause an operation exception to be
recognized. Furthermore, these instructions
may cause modes of operation to be set up or
may otherwise alter the machine so as to affect
the execution of subsequent instructions. To
avoid causing such an operation, an instruction
with an operation code not described in this
publication should be issued only when the
specific function associated with the operation
code is desired.

2. The operation code 00, with a two-byte
instruction format, currently is not assigned. It
is improbable that this operation code will ever
be assigned.

3. In the case of I/O instructions with the values
9C, 9D, and 9E in bit positions 0-7, the value
of bit 15 is used to distinguish between two
instructions. Bits 8-14, however, are not
checked for zeros, and these operation codes
never cause an operation exception to be
recognized.

To ensure that presently written programs
run if and when the I/O operation codes (9C,
9D, 9E, and 9F) are extended further to
provide for new functions, only zeros should be
placed in the unused bit positions in the second
op-code byte. In accordance with these
recommendations, the operation codes for the
I/O instructions are shown as 9COO, 9COl,
9DOO, etc.

Page-Access Exception
A page-access exception is recognized when storage
is addressed either explicitly or implicitly by the

CPU and the addressed storage location is in a
page that is in the connected or disconnected state.

The exception is recognized as part of the
execution of the instruction when an attempt is
made to access either the instruction or operand
location. However, page-access exceptions are not
recognized for the page operands of the
instructions CLEAR PAGE, CONNECT PAGE,
DECONFIGURE PAGE, DISCONNECT PAGE,
MAKE ADDRESSABLE, and MAKE
UNADDRESSABLE.

The unit of operation is nullified, except for the
possible effects on storage described in the section
"Nontransparent Nullification" in this chapter.

The address of the storage location causing the
exception is stored at locations 145 -147, and zeros
are stored at location 144. The low-order 11 bits of
the address stored are unpredictable.

When the exception occurs during a reference to
an operand location, the instruction-length code
OLC) is 1, 2, or 3 and indicates the length of the
instruction causing the exception. When the
exception occurs during fetching of an instruction,
the ILC is 1,2, or 3, the value being unpredictable.

Page-State Exception
A page-state exception is recognized when the
target page of the CLEAR PAGE instruction is in
the disconnected state.

The operation is suppressed.
The instruction-length code is 2.

Page-Transition Exception
A page-transition exception can only be recognized
for instructions that cause a page-state transition.
These instructions are CONNECT PAGE,
DECONFIGURE PAGE, DISCONNECT PAGE,
MAKE ADDRESSABLE, and MAKE
UNADDRESSABLE.

The exception is recognized as part of the
execution of the instruction when attempting to
perform an invalid page-state transition. For the
definition of an invalid page-state transition, see
the section "Page States" in Chapter 3, "Storage."

The operation is suppressed.
The instruction-length code is 2.

PER Event
A PER event is recognized when program-event
recording is specified by the contents of control
registers 9-11 and one or more of these events
occur.

Chapter 6; Interruptions 6-13

The interruption may be disallowed by PSW bit
1 in the ECmode. Program-event recording is
disallowed in the BC mode.

The unit of operation is completed, unless
another condition has caused the unit of operation
to be nullified, suppressed, or terminated.

As part of the interruption, information
identifying the event is stored at locations 150-155.
See the section "Program-Event Recording," in
Chapter 4, "Control," for a detailed description of
the interruption condition.

The instruction-length code is 0, 1, 2, or 3.
Code 0 is set only if a specification exception is
indicated concurrently.

Privileged-Operation Exception
A privileged-operation exception is recognized
when the CPU encounters a privileged instruction
in the problem state.

The operation is suppressed.
The instruction-length code is 1 or 2.

Protection Exception
A protection exception is recognized when the
CPU attempts to access a storage location that is
protected against the type of reference by the
storage key.

The execution of an instruction is suppressed
when the location of the instruction, including the
location of the target instruction of EXECUTE, is
protected against fetching. Except for some
specific instructions whose execution is suppressed,
the operation is terminated when a protection
exception is encountered during a reference to an
operand location. Changes may occur only to
result fields. In this context, the term "result field"
includes condition code, registers, and storage
locations, if any, which are designated to be
changed by the instruction. However, no change is
made to a storage location when a reference to that
location causes a protection exception. Therefore,
if an instruction is due to change only the contents
of a field in storage, and every byte of that field
would cause a protection exception, the operation is
suppressed.

The instructions whose execution is always
suppressed are: LOAD PSW, SET CLOCK
COMPARATOR, SET CPU TIMER, SET
SYSTEM MASK, STORE CLOCK
COMPARATOR, STORE CPUID, STORE CPU
TIMER, STORE THEN AND SYSTEM MASK,
and STORE THEN OR SYSTEM MASK.

6-14 IBM 4300 Processors Principles of Operation

On fetching, the protected information is not
loaded into an addressable register nor moved to
another storage location. When a part of an
operand is protected against storing and part is not,
storing may be performed in the unprotected part.
However, the contents of a protected location
remain unchanged.

For a· protected .operand . location, the
instruction-length code (ILC) is 1, 2, or 3,
designating the length of the instruction that
caused the reference.

When the location of· any part of an instruction
is protected against fetching, the ILC is 1, 2, or 3,
indicating the multiple of 2 by which the
instruction address has been incremented. It is
unpredictable whether the ILC is 1, 2, or 3.

Significance Exception
A significance exception is recognized when the
result fraction in floating-point addition or
subtraction is zero.

The interruption may be disallowed by PSW bit
23 in the EC mode and by PSW bit 39 in the BC
mode.

The operation is completed. The significance
mask also affects the result of the operation. When
the mask bit is zero, the operation is completed by
replacing the result with a true zero. When the
mask bit is one, the operation is completed without
further change to the characteristic and sign. of the
result.

The instruction-length code is 1 or 2.

Special-Operation Exception
A special-operation exception is recognized when
the instruction SET SYSTEM MASK is
encountered in the supervisor state and the SSM­
suppression-control bit, bit 1 of control register 0,
is one.

The execution of SET SYSTEM MASK is
suppressed.

The instruction-length code is 2.

Specification Exception
A specification exception is recognized for the
following causes:
1. An odd instruction address is introduced into

the PSW.
2. An operand address does not designate an

integral boundary in an instruction requiring
such integral-boundary designation.

3. The storage address in INSERT STORAGE
KEY or SET STORAGE KEY does not have
zeros in the four low-order bit positions.

4. An odd-numbered general register is designated
by an R field of an instruction that requires an
even-numbered register designation.

5. A floating-point register other than 0, 2, 4, or 6
is specified for a short or long operand, or a
floating-point register other than 0 or 4 is
specified for an extended operand.

6. The multiplier or divisor in decimal arithmetic
exceeds 15 digits and sign.

7. The length of the first-operand field is less than
or equal to the length of the second-operand
field in decimal multiplication or division.

8. Bit positions 8-11 of MONITOR CALL do not
contain zeros.

9. A one is introduced into an unassigned bit
position of an EC-mode PSW (bit positions 0,
2-5, 16, 17, and 24-39).

10. Page 0 is designated to become connected or
disconnected.

The execution of the instruction identified by the
old PSW is suppressed. However, for cause 9, the
operation that introduces the new PSW is
completed, but an interruption occurs immediately
thereafter.

When the instruction address is odd (cause 1),
the instruction-length code (ILC) is 1, 2, or 3,
indicating the multiple of 2 by which the
instruction address has been incremented. It is
unpredictable whether the ILC is 1, 2, or'3.

For causes 2-8 and 10, the ILC is 1,2, or 3,
designating the length of the instruction causing the
exception.

When the exception is recognized because of
cause 9, and the invalid bit value has been
introduced by LOAD PSW or an interruption, the
ILC is o. When the exception due to cause 9 is
introduced by SET SYSTEM MASK or STORE
THEN OR SYSTEM MASK, the ILC is 2.

See the section "Exceptions Associated with the
PSW" in this chapter for a discussion of when the
exceptions associated with the PSW are recognized.

Recognition of Access Exceptions
The addressing, page-access, and protection
exceptions are collectively referred to as access
exceptions.

Any access exception is recognized as part of the
execution of the instruction with which the
exception is associated. An access exception is not
recognized when the CPU has made an attempt to
fetch from an inaccessible location or has detected

some other access-exception condition, but a
branch instruction or an interruption changes the
instruction sequence such that the instruction is not
executed.

Every instruction can cause an access exception
to be recognized because of instruction fetch.
Additionally, access exceptions associated with
instruction execution may occur because of an
access to an operand in storage.

An access exception due to fetching an
instruction is indicated when the first instruction
halfword cannot be fetched without encountering
the exception. When the first halfword of the
instruction has no access exceptions, access
exceptions may be indicated for additional
halfwords according to the instruction length
specified by the first two bits of the instruction;
however, when the operation can be performed
without accessing the second or third halfwords of
the instruction, it is unpredictable whether the
access exception is indicated for the unused part.
Since the indication of access exceptions for
instruction fetch is common to all instructions, it is
not covered in the individual instruction
definitions.

Except where otherwise indicated in the
individual instruction description, the following
rules apply for exceptions associated with an access
to an operand location. For a fetch-type operand,
access exceptions are necessarily indicated only for
that portion of the operand which is required for
completing the operation. It is unpredictable
whether access exceptions are indicated for those
portions of a fetch-type operand which are not
required for completing the operation. For a
store-type operand, access exceptions are
recognized for the entire operand even if the
operation could be completed without the use of
the inaccessible part of the operand. In situations
where the value of a store-type operand is defined
to be unpredictable, it is unpredictable whether an
access exception is indicated.

Whenever an access to an operand location can
cause an access exception to be recognized, the
word "access" is included in the list of program
exceptions in the description of the instruction.
This entry also indicates which operand can cause
the exception to be recognized and whether the
exception is recognized on a fetch or store access
to that operand location. Access exceptions are
recognized only for the portion of the operand as
defined by each particular instruction.

Chapter 6. Interruptions 6-15

MUltiple Program-Interruption Conditions
Except for PER events, only one program­
interruption condition is indicated with a program
interruption. The existence of one condition,
however, does not preclude the existence of other
conditions. When more than one program­
interruption condition exists, only the condition
having the highest priority is identified in the
interruption code.

With two conditions of the same priority, it is
unpredictable which is indicated. In particular, the
priority of access exceptions associated with the
two parts of an operand that crosses a page
boundary is unpredictable and is not necessarily
related to the sequence specified for the access of
bytes within the operand.

The type of ending which occurs (nullification,
suppression, or termination) is that which is defined
for the type of exception that is indicated in the
interruption code. However, if a condition is
indicated which permits termination, and another
condition also exists which would cause either
nullification or suppression, then the unit of
operation is suppressed.

6-16 IB M 4300 Processors Principles of Operation

The figure "Priority of Program-Interruption
Conditions" lists the priorities of all
program-interruption conditions other than PER
events. All exceptions associated with references
to storage for a particular instruction halfword or a
particular operand byte are grouped as a single
entry called "access." The priorities of access
exceptions for a single access are, in descending
order of priorities:
1. Addressing exception
2. Page-access exception
3. Protection exception

The relative priorities of any two conditions can
be found by comparing the priority numbers within
a table from left to right until a mismatch is found.
If the first inequality is between numeric
characters, either the two conditions are mutually
exclusive or, if both can occur, the condition with
the smaller number is indicated. If the first
inequality is between alphabetic characters, then
the two conditions are not exclusive, and it is
unpredictable which is indicated when both occur.

1.

2.

3.
4.
5.

Specification exception due to a one in an unassigned
bit position of an EC-mode PSW.1
Specification exception due to an odd instruction
address in the PSW.

6.
7.A
7.B

Access exceptions for first halfword of EXECUTE.2
Access exceptions for second halfword of EXECUTE.2
Specification exception due to target instruction of
EXECUTE not being specified on halfword boundary.2
Access exceptions for first instruction halfword.
Access exception for second instruction halfword. 3
Access exception for third instruction halfword. 3
Operation exception. 7. C. 1

7.C.2
7.C.3
7.C.4
8.A

Privileged-operation exception.
Execute exception.
Special-operation exception.
Specification exception due to conditions other than
those included in 1, 2 and 5 above.

8.B

8.C
8.0
8.E
9.
10.

Access exceptions for any particular access to an
operand in stor~ge.4
Data exception.
Decimal-divide exception. 6
Page-state exception.
Page-transition exception.
Fixed-point divide, floating-point divide, and
conditions, other than PER events, which result in
completion. These conditions are mutually exclusive,
or their priority is specified in the corresponding
definitions.

Explanation:

Numbers indicate priority, with priority decreasing in
ascending order of numbers; letters indicate no priority.

A one may be introduced in an unassigned bit position of
an EC-mode PSW by a new PSW loaded as a result of an in­
terruption or by the instructions LOAD PSW, SET SYSTEM
MASK, and STORE THEN OR SYSTEM MASK. The priority shown
in the chart is that for a PSW error introduced by an in­
terruption and may also be considered as the priority for
a PSW error introduced by the previous instruction. The
error is introduced only if the instruction encounters no
other exceptions. The resulting interruption has a higher
priority than any interruption caused by the instruction
which would have been executed next; it has a lower
priority, however, than any interruption caused by the
instruction which introduced the erroneous PSW.

Priority of Program-Interruption Conditions (Part 1 of 2)

Chapter 6. Interruptions 6-17

Explanation (Continued):

2 Priorities 3, 4, and 5 apply only to an EXECUTE instruc~
tion. Priorities 6-10 apply to instruction$ other than
EXECUTE, including the target instruction of EXECUTE.

3 Separate accesses may occur for each halfword of an in­
struction. The second instruction halfword is accessed
if bits 0-1 of the instruction are not both zeros. The
third instruction halfword is accessed only if bits 0-1
of the instruction are both ones. Access exceptions for
one of these halfwords are not necessari ly recognized if
the instruction can be completed without use of the con~
tents of the halfword or if an exception of priority
8, 9, or 10 can be determined without the use of the
halfword.

4 As in instruction fetching, separate accesses may occur
for each portion of an operand. Each of the accesses is
of equal priority. Addressing exceptions for INSERT
STORAGE KEY, RESET REFERENCE BIT, and SET STORAGE KEY are
also included in 8.B. For MOVE LONG and COMPARE LOGICAL
LONG, an access exception for a particular operand can be
indicated only if the R field for that operand designates
an even-numbered register.

5 The exception can be indicated only if the sign, digit, or
digits responsible for the exception were fetched without
encountering an access exception.

6 The exception can be indicated only if the digits used
in establishing the exception, and also the signs, were
fetched without encountering an access exception, and
only if the digits used in establishing the exception
are val id.

Priority of Program-Interruption Conditions (Part 2 of 2)

Restart Interruption
The restart interruption provides a means for the
operator to invoke the execution of a specified
program. The CPU cannot be disabled for this
interruption.

A restart interruption causes the old PSW to be
stored at location 8 and a new PSW, specifying the
start of the program to be executed, to be fetched
from location O. The instruction-length code and
interruption code are not stored in the EC mode.
In the BC mode, the instruction-length code in the
PSW is unpredictable, and zeros are stored in the
interruption-code field.

If the CPU is in the operating state, the
exchange of the PSW s occurs at the completion of
the current unit of operation and after all pending
interruption conditions for which the CPU is
enabled have been taken. If the CPU is in the
stopped state, the CPU enters the operating state
and exchanges the PSWs without first taking any
pending interruptions.

6-18 IB M 4300 Processors Principles of Operation

The restart interruption is initiated by activating
the restart key.

When the rate control is set to instruction step, it
is unpredictable whether restart causes a unit of
operation or additional interruptions to be
performed after the PSWs have been exchanged.

Programming Note
In order to perform restart when the CPU is in the
check-stop state, the CPU has to be reset. This
can be accomplished by means of the system-reset­
normal key, which does not clear the contents of
program-addressable registers, including the control
registers, but causes the channels to be reset.

Supervisor-Call Interruption
The supervisor-call interruption occurs when the
instruction SUPERVISOR CALL is executed. The
CPU cannot be disabled for the interruption, and
the interruption occurs immediately upon the
execution of the instruction.

The supervisor-call interruption causes the old
PSW to be stored at location 32 and a new PSW to
be fetched from location 96.

The contents of bit positions 8-15 of
SUPERVISOR CALL are placed in the rightmost
byte of the interruption code. The leftmost byte of
the interruption code is set to zero. The
instruction-length code is 1, unless the instruction
was executed by means of EXECUTE, in which
case the code is 2.

When the old PSW specifies the EC mode, the
interruption code is placed in locations 138-139,
the instruction-length code is placed in bit positions
5 and 6 of the byte at location 137, with the other
bits set to zeros, and zeros are stored at location
136. When the old PSW specifies the BC mode,
the interruption code and instruction-length code
appear in the old PSW.

Priority of Interruptions
During the execution of an instruction, several
interruption-causing events may occur
simultaneously. The instruction may give rise to a
program interruption, a request for an external
interruption may be received, equipment
malfunctioning may be detected, an
I/O-interruption request may be made, and the
restart key may be activated. Instead of the
program interruption, a supervisor-call interruption
might occur; or both can occur if program-event­
recording is active. Simultaneous interruption
requests are honored in a predetermined order.

An exigent machine-check condition has the
highest priority. When it occurs, the current
operation is terminated. Program and
supervisor-call interruptions that would have
occurred as a result of the current operation may be
eliminated. Any pending repressible
machine-check conditions may be indicated with
the exigent machine-check interruption. Every
reasonable attempt is made to limit the side effects
of an exigent machine-check condition, and
requests for I/O and external interruptions
normally remain unaffected.

In the absence of an exigent machine-check
condition, interruption requests existing
concurrently at the end of a unit of operation are
honored, in descending order of priority, as follows:

Supervisor call
Program
Repressible machine check
External
Input/ output
Restart

The processing of multiple simultaneous
interruption requests consists in storing the old
PSW and fetching the new PSW belonging to the
interruption first taken. This new PSW is
subsequently stored without the execution of any
instructions, and the new PSW associated with the
next interruption is fetched. Storing and fetching
of PSWs continues until no more interruptions are
to be serviced. The priority is reevaluated after
each new PSW is loaded. Each evaluation is
performed taking into consideration any additional
interruptions which may have become pending.
Additionally, external and I/O interruptions, as
well as machine-check interruptions due to
repressible conditions, are taken only if the current
PSW at the instant of evaluation indicates that the
CPU is interruptible for the cause.

Instruction execution is resumed using the
last-fetched PSW. The order of executing
interruption subroutines is, therefore, the reverse of
the order in which the PSWs are fetched.

If the new PSW for a program interruption has
an odd instruction address or causes an access
exception to be recognized, another program
interruption occurs. Since this second interruption
introduces the same unacceptable PSW, a string of
interruptions is established. These program
exceptions are recognized as part of the execution
of the following instruction, and the string may be
broken by an external, I/O, machine-check, or
restart interruption or by the stop function.

If the new PSW for a program interruption
contains a one in an unassigned bit position of an
EC-mode PSW, another program interruption
occurs. This condition is of higher priority than
restart, I/O, external, or repressible machine-check
conditions, or the stop function, and program reset
has to be used to break the string of interruptions.

A string of interruptions for other interruption
classes can also exist if the new PSW is enabled for
the interruption just taken. These include
machine-check interruptions, external interruptions,
and I/O interruptions due to PCI conditions
generated because of CCWs which form a loop.
Furthermore, a string of interruptions involving
more than one interruption class can exist. For
example, assume that the CPU timer is negative
and the CPU-timer subclass mask is one. If the
external new PSW has a one in an unassigned bit
position in the EC mode, and the program new
PSW is enabled for external interruptions, then a
string of interruptions occurs, alternating between
external and program. Even more complex strings

Chapter 6. Interruptions 6-19

of interruptions are possible. As long as more
interruptions must be serviced, the string of
interruptions cannot be broken by employing the
stop function; program reset is required.

Interruptions for all requests for which the CPU
is enabled are taken before the CPU is placed in
the stopped state. When the CPU is in the stopped
state, restart has the highest priority.

Programming Note
The order in which concurrent interruption requests
are honored can be changed to some extent by
masking.

6-20 IBM 4300 Processors Principles of Operation

Chapter 7. General Instructions

Contents

Data Format 7-2
Binary-Integer Representation 7-2

Signed and Unsigned Binary Arithmetic

Signed and Logical Comparison 7-3

Instructions 7-4

ADD 7-7

ADD HALFWORD

ADD LOGICAL

AND 7-7

BRANCH AND LINK

7-7

7-7

7-8

BRANCH ON CONDITION 7-9

BRANCH ON COUNT 7-9

BRANCH ON INDEX HIGH 7-10

7-3

BRANCH ON INDEX LOW OR EQUAL

COMPARE 7-11

COMPARE AND SWAP 7-11

COMPARE DOUBLE AND SWAP

COMPARE HALFWORD

COMP ARE LOGICAL

7-13

7-13

7-11

7-10

COMP ARE LOGICAL CHARACTERS UNDER

MASK 7-13

COMPARE LOGICAL LONG 7-14

CONVERT TO BINARY 7-15

CONVERT TO DECIMAL 7-16

DIVIDE 7-16

EXCLUSIVE OR 7-16

EXECUTE 7-17

INSERT CHARACTER 7-18

INSERT CHARACTERS UNDER MASK

LOAD 7-19

LOAD ADDRESS 7-19

LOAD AND TEST 7-19

LOAD COMPLEMENT 7-19

LOAD HALFWORD

LOAD MULTIPLE

LOAD NEGATIVE

7-20

7-20

7-20

7-18

LOAD POSITIVE

MONITOR CALL

MOVE 7-21

MOVE INVERSE

MOVE LONG

7-20
7-21

7-22

7-22

MOVE NUMERICS

MOVE WITH OFFSET

7-24

7-25

MOVE ZONES 7-26

MULTIPLY 7 -26

MULTIPLY HALFWORD

OR 7-27

PACK 7-28

SET PROGRAM MASK

SHIFT LEFT DOUBLE

7-26

7-28

7-28

SHIFT LEFT DOUBLE LOGICAL

SHIFT LEFT SINGLE 7-29

SHIFT LEFT SINGLE LOGICAL

SHIFT RIGHT DOUBLE 7-30

SHIFT RIGHT DOUBLE LOGICAL

SHIFT RIGHT SINGLE 7-31

SHIFT RIGHT SINGLE LOGICAL

STORE 7-31

STORE CHARACTER 7-32

7-29

7-30

7-30

7-31

STORE CHARACTERS UNDER MASK 7-32

STORE CLOCK 7-32

STORE HALFWORD 7-33

STORE MULTIPLE 7-33

SUBTRACT 7-33

SUBTRACT HALFWORD

SUBTRACT LOGICAL

7-34

7-34

SUPERVISOR CALL 7-34

TEST AND SET 7-35

TEST UNDER MASK 7-35

TRANSLATE 7-36

TRANSLATE AND TEST 7-36

UNPACK 7-37

Chapter 7. General Instructions 7-1

This chapter includes all the unprivileged
instructions described in this publication, other than
the decimal and floating-point instructions.

Data Format
The general instructions treat data as being of four
types: signed binary integers, unsigned binary
integers, unstructured logical data, and decimal
data. Data is treated as decimal by the conversion,
packing, and unpacking instructions. Decimal data
is described in Chapter 8, "Decimal Instructions."

Data resides in general registers or in storage or
is introduced from the instruction stream.

In a storage-to-storage operation the operand
fields may be defined in such a way that they
overlap. The effect of this overlap depends upon
the operation. When the operands remain
unchanged, as in COMPARE or TRANSLATE
AND TEST, overlapping does not affect the
execution of the operation. For instructions such
as MOVE and TRANSLATE, one operand is
replaced by new data, and the execution of the
operation may be affected by the amount of
overlap and the manner in which data is fetched or
stored. For purposes of evaluating the effect of
overlapped operands, data is considered to be
handled one eight-bit byte at a time. All
overlapping fields are considered valid.

Binary-Integer Representation
Binary integers are treated as signed or unsigned.

In an unsigned binary integer, all bits are used to
express the absolute value of the number. When
two unsigned binary integers of different lengths
are added, the shorter number is considered to be
extended on the left with zeros.

For signed binary integers, the leftmost bit
represents the sign, which is followed by the
numeric field. Positive numbers are represented in
true binary notation with the sign bit set to zero.
Negative numbers are represented in two's­
complement binary notation with a one in the
sign-bit position.

Specifically, a negative number is represented by
the two's complement of the positive number of the
same absolute value. The two's complement of a
number is obtained by inverting each bit of the
number, including the sign, and adding a one in the
low-order bit position.

This type of number representation can be
considered the low-order portion of an infinitely
long representation of the number. When the
number is positive, all bits to the left of the most
significant bit of the number are zeros. When the
number is negative, all these bits are ones.

7-2 IBM 4300 Processors Principles of Operation

Therefore, when a signed operand must be
extended with high-order bits, the extension is
achieved by setting these bits equal to the sign bit
of the operand.

The notation for signed binary integers does not
include a negative zero. It has a number range in
which the set of negative numbers is one larger
than the set of positive numbers. The maximum
positive number consists of a sign bit of zero
followed by all ones,whereas the maximum
negative number (the negative number with the
greatest absolute value) consists of a sign bit of one
followed by all zeros. The number zero consists of
all-zero bits.

A signed binary integer of either sign, except for
zero and for the maximum negative number, is
changed to the number with opposite sign by
forming its two's complement. This operation of
complementing a number is equivalent to
subtracting the number from zero. The
complement of zero is zero.

The complement of the maximum negative
number cannot be represented in the same number
of bits. When an operation, such as a subtraction
of the maximum negative number from zero,
attempts to produce the complement of the
maximum negative number, the result is the
maximum negative number, and a fixed-point­
overflow exception is recognized. An overflow
does not result, however, when the maximum
negative number is complemented as an
intermediate result but the final result is within the
representable range. An example of this case is a
subtraction of the maximum negative number from
minus one. The product of two maximum negative
numbers is representable as a double-length
positive number.

In discussions of signed binary integers in this
publication, a signed binary integer includes the
sign bit. Thus, the expression "32-bit signed binary
integer" denotes an integer with 31 numeric bits
and a sign bit, and the expression" 64-bit signed
binary integer" denotes an integer with 63 numeric
bits and a sign bit.

In some operations, the result is achieved by the
use of the one's complement of the number. The
one's complement of a number is obtained by
inverting each bit of the number.

In an arithmetic operation, a carry out of the
numeric field of a signed binary integer changes the
sign. However, in algebraic left-shifting the sign
bit does not change even if significant high-order
bits are shifted out.

Programming Notes
1. An alternate way of forming the two's

complement of a signed binary integer is to
invert all bits to the left of the rightmost one
bit, leaving the rightmost one bit and all zero
bits to the right of it unchanged.

2. The numeric bits of a signed binary integer may
be considered to represent a positive value,
with the sign representing a value of either zero
or the maximum negative number.

Signed and Unsigned Binary Arithmetic
Addition of signed binary integers is performed by
adding all bits of each operand, including the sign
bits. When one of the operands is shorter, the
shorter operand is extended on the left to the
length of the longer operand by propagating the
sign-bit value. If the carry out of the sign-bit
position and the carry out of the high-order
numeric bit position disagree, an overflow occurs.
The sign bit is not changed after the overflow.

Subtraction is performed by adding the one's
complement of the second operand and a low-order
one to the first operand.

Signed addition and subtraction produce an
overflow when the result is outside the range of
representation for signed binary integers.
Specifically, for ADD and SUBTRACT, which
operate on 32-bit signed binary integers, there is an
overflow when the proper result would be greater
than or equal to +231 or less than _231. The
actual result placed in the general register after an
overflow differs from the proper result by 232. An
overflow causes a program interruption for
fixed-point overflow if it is allowed.

Addition of unsigned binary integers is
performed by adding all bits of each operand.
When one of the operands is shorter, the shorter
operand is extended on the left with zeros.
Unsigned binary arithmetic is used in address
arithmetic for adding the X, B, and D fields. It is
also used to obtain the addresses of the function
bytes in the instructions TRANSLATE and
TRANSLATE AND TEST. Furthermore, unsigned
binary arithmetic is used on 32-bit unsigned binary
integers by the instructions ADD LOGICAL and
SUBTRACT LOGICAL. Given the same two
operands, ADD and ADD LOGICAL produce the
same 32-bit result. The instructions differ only in
the interpretation of this result. ADD interprets
the result as a signed binary integer and inspects it
for sign, magnitude, and overflow to set the

condition code accordingly. ADD LOGICAL
interprets the result as an unsigned binary integer
and sets the condition code according to whether
the result is zero and whether there was a carry out
of the high-order bit position. Such a carry is not
necessarily considered an overflow, and no program
interruption can occur for ADD LOGICAL.

SUBTRACT LOGICAL differs from ADD
LOGICAL in that the one's complement of the
second operand and a low-order one are added to
the first operand.

Programming Notes
1. Logical addition and subtraction may be used

to program multiple-precision arithmetic. Thus,
for multiple-precision binary-integer addition,
ADD LOGICAL is used to add the
corresponding lower-order parts of the
operands. If the condition code indicates a
carry, a one is added to the first operand of the
next higher pair of integers before adding the
second operand. If the integers are signed, the
ADD instruction is used on the highest-order
parts after propagating any carry. The
condition code then indicates any overflow or
the proper sign and magnitude of the entire
result; an overflow is also indicated by a fixed­
point-overflow interruption if it is allowed. If
the integers are unsigned, ADD LOGICAL is
used throughout.

2. Another use for ADD LOGICAL is to
increment values representing binary counters,
which are allowed to wrap around from all ones
to all zeros without necessarily indicating
overflow.

Signed and Logical Comparison
Comparison operations determine whether two
operands are equal or not and, for most operations,
which of two unequal operands is the greater
(high). Signed-binary comparison operations are
provided which treat the operands as signed binary
integers, and logical comparison operations are
provided which treat the operands as unsigned
binary integers or as unstructured data.

The instructions COMPARE and COMPARE
HALFWORD are signed-binary comparison
operations. These instructions are equivalent to
SUBTRACT and SUBTRACT HALFWORD
without replacing either operand, the resulting
difference being used only to set the condition
code. The operations permit comparison of
numbers of opposite sign which differ by 232 or

Chapter 7. General Instructions 7-3

more. Thus, unlike SUBTRACT, COMPARE can
cause no overflow.

Logical comparison of two operands is
performed byte by byte, in a left-to-right sequence.
The operands are equal when all their bytes are
equal. When the operands are unequal, the
comparison result is determined by a left-to-right
comparison of corresponding bit positions in the
first unequal pair of bytes: the zero bit in the first
unequal pair of bits indicates the low operand, and
the one bit the high operand. Since the remaining
bit and byte positions do not change the
comparison, it is not necessary to continue
comparing unequal operands beyond the first
unequal bit pair.

Instructions
The general instructions and their mnemonics,
formats, and operation codes are listed in the figure
"Summary of General Instructions." The figure
also indicates when the condition code is set and
the exceptional conditions in operand designations,
data, or results that cause a program interruption.

7-4 IBM 4300 Processors Principles of Operation

A detailed definition of instruction formats,
operand designation and length, and address
generation is contained in the section
"Instructions" in Chapter 5, "Program Execution."
Exceptions to the general rules stated in that
section are explici~ly identified in the individual
instruction descriptions.

Several instruction descriptions in this chapter
contain references to other CPUs, even though the
ECPS:VSE mode makes no provision for
multiprocessing, so as to permit the writing of
problem-state programs that are compatible with
multiprocessing configurations of System/370 (see
the section "Problem-State Compatibility" in
Chapter 1, "Introduction").

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic
operand designations for the assembler language
are shown with each instruction. For LOAD AND
TEST. for example, LTR is the mnemonic and R l'
R 2 the operand designation.

Mne- Op
Name monic Characteristics Code

ADD AR RR C IF R 1A
ADD A RX C A IF R 5A
ADD HALFWORD AH RX C A IF R 4A
ADD LOGICAL ALR RR C R 1E
ADD LOGICAL AL RX C A R 5E

AND NR RR C R 14
AND N RX C A R 54
AND (character) NC SS C A ST D4
AND (immediate) NI SI C A ST 94
BRANCH AND LINK BALR RR B R 05

BRANCH AND LINK BAL RX B R 45
BRANCH ON CONDITION BCR RR $1 B 07
BRANCH ON CONDITION BC RX B 47
BRANCH ON COUNT BCTR RR B R 06
BRANCH ON COUNT BCT RX B R 46

BRANCH ON INDEX HIGH BXH RS B R 86
BRANCH ON INDEX LOW OR EQUAL BXLE RS B R 87
COMPARE CR RR C 19
COMPARE C RX C A 59
COMPARE AND SWAP CS RS C A SP $ R ST BA

COMPARE DOUBLE AND SWAP CDS RS C A SP $ R ST BB
COMPARE HALFWORD CH RX C A 49
COMPARE LOGICAL CLR RR C 15
COMPARE LOGICAL CL RX C A 55
COMPARE LOGICAL (character) CLC SS C A D5

COMPARE LOGICAL (immediate) CLI SI C A 95
COMPARE LOGICAL CHARACTERS UNDER MASK CLM RS C A BD
COMPARE LOGICAL LONG CLCL RR C A SP \I R OF
CONVERT TO BINARY CVB RX A D IK R 4F
CONVERT TO DECIMAL CVD RX A ST 4E

DIVIDE DR RR SP IK R 1D
DIVIDE D RX A SP IK R 5D
EXCLUSIVE OR XR RR C R 17
EXCLUSIVE OR X RX C A R 57
EXCLUSIVE OR (character) XC SS C A ST D7

EXCLUSIVE OR (immediate) XI SI C A ST 97
EXECUTE EX RX A SP EX 44
INSERT CHARACTER IC RX A R 43
INSERT CHARACTERS UNDER MASK ICM RS C A R BF
LOAD LR RR R 18

LOAD L RX A R 58
LOAD ADDRESS LA RX R 41
LOAD AND TEST LTR RR C R 12
LOAD COMPLEMENT LCR RR C IF R 13
LOAD HALFWORD LH RX A R 48

LOAD MULTIPLE LM RS A R 98
LOAD NEGATIVE LNR RR C R 11
LOAD POSITIVE LPR RR C IF R 10
MONITOR CALL MC SI SP MO AF
MOVE (character) MVC SS A ST D2

Summary of General Instructions (Part 1 of 2)

Chapter 7. General Instructions 7-5

Mne- Op
Name monic Characteristics Code

MOVE (immediate) MVI SI A ST 92
MOVE INVERSE MVCIN SS A ST E8
MOVE LONG MVCL RR C A SP " R ST OE
MOVE NUMERICS MVN SS A ST 01
MOVE WITH OFFSET MVO SS A ST F1

MOVE ZONES MVZ SS . A ST 03
MULTIPLY MR RR SP R 1C
MULTIPLY M RX A SP R 5C
MULTIPLY HALFWORD MH RX A R 4C
OR OR RR C R 16

OR 0 RX C A R 56
OR (character) DC SS C A ST 06
OR (immediate) 01 SI C A ST 96
PACK PACK SS A ST F2
SET PROGRAM MASK SPM RR L 04

SHIFT LEFT DOUBLE SLDA RS C SP IF R 8F
SHIFT LEFT DOUBLE LOGICAL SLDL RS SP R 80
SHIFT LEFT SINGLE SLA RS C IF R 8B
SHIFT LEFT SINGLE LOGICAL SLL RS R 89
SHIFT RIGHT DOUBLE SRDA RS C SP R 8E

SHIFT RIGHT DOUBLE LOGICAL SRDL RS SP R 8C
SHIFT RIGHT SINGLE SRA RS C R 8A
SHIFT RIGHT SINGLE LOGICAL SRL RS R 88
STORE ST RX A ST 50
STORE CHARACTER STC RX A ST 42

STORE CHARACTERS UNDER MASK STCM RS A ST BE
STORE CLOCK STCK S C A $ ST B205
STORE HALFWORD STH RX A ST 40
STORE MULTIPLE STM RS A ST 90
SUBTRACT SR RR C IF R 1B

SUBTRACT S RX C A IF R 5B
SUBTRACT HALFWORD SH RX C A IF R 4B
SUBTRACT LOGICAL SLR RR . C R 1F
SUBTRACT LOGICAL SL RX C A R 5F
SUPERVISOR CALL SVC RR $ OA

TEST AND SET TS S C A $ ST 93
TEST UNDER MASK TM SI C A 91
TRANSLATE TR SS A ST DC
TRANSLATE AND TEST TRT SS C A R DO
UNPACK UNPK SS A ST F3

Explanation:

A Access exceptions RR RR instruction format
B PER branch event RS RS instruction format
C Condition code is set RX RX instruction format
0 Data exception S S instruction format
EX Execute exception SI SI instruction format
IF Fixed-point-overflow exception SP Specification exception

" Interruptible instruction SS SS instruction format
IK Fixed-point-divide exception ST PER storage-alteration event
L New condition code loaded ~ 1

Causes serial ization
MO Monitor event Causes serialization when the M1
R PER general-register-alteration event and R2 fields contain all ones

and all zeros, respectively

Summary of General Instructions (Part 2 of 2)

7-6 IBM 4300 Processors Principles of Operation

ADD

AR

'lA'

o 8 12 15

A [RX]

, 5A ' I R 1 I X2 I B2

o 8 12 16 20 31

The second operand is added to the first operand,
and the sum is placed in the first-operand location.
The operands and the sum are treated as 32-bit
signed binary integers.

An overflow causes a program interruption when
the fixedpointoverflow mask bit is one.

Resulting Condition Code:
o Sum is zero
1 Sum is less than zero
2 Sum is greater than zero
3 Overflow

Program Exceptions:
Access (fetch, operand 2 of A only)
Fixed-Point Overflow

ADD HALFWORD

AH [RX]

'4A'

o 8 12 16 20 31

The second operand is added to the first operand,
and the sum is placed in the first-operand location.
The second operand is two bytes in length and is
treated as a 16-bit signed binary integer. The first
operand and the sum are treated as 32-bit signed
binary integers.

An overflow causes a program interruption when
the fixed-point-overflow mask bit is one.

Resulting Condition Code:
o Sum is zero
1 Sum is less than zero
2 Sum is greater than zero

3 Overflow

Program Exceptions:
Access (fetch, operand 2)
Fixed-Point Overflow

Programming Note
An example of the use of ADD HALFWORD is
given in Appendix A.

ADD LOGICAL

ALR

o 8 12 15

o 8 12 16 20 31

The second operand is added to the first operand,
and the sum is placed in the first-operand location.
The operands and the sum are treated as 32-bit
unsigned binary integers.

Resulting Condition Code:
o Sum is zero, with no carry
1 Sum is not zero, with nQ carry
2 Sum is zero, with carry
3 Sum is not zero, with carry

Program Exceptions:
Access (fetch, operand 2 of AL only)

AND

NR

, 14'

o 8 12 15

N [RX]

o 8 12 16 20 31

Chapter 7. General Instructions 7-7

NI [S I]

194 1

o 8 16 20 31

NC °1(L,B1),02(B2) [SS]

I B 1 I / /
104 1 L °1 B2 ~~ /

0 8 16 20 32 36

The AND of the first and second operands is
placed in the first-operand location.

47

The connective AND is applied to the operands
bit by bit. A bit position in the result is set to one
if the corresponding bit positions in both operands
contain ones; otherwise, the result bit is set to zero.

For NC, each operand is processed left to right.
When the operands overlap, the result is obtained
as if the operands were processed one byte at a
time and each result byte were stored immediately
after the necessary operand byte is fetched.

For NI, the first operand is one byte in length,
and only one byte is stored.

Resulting Condition Code:
o Result is zero
1 Result is not zero
2
3

Program Exceptions:
Access (fetch, operand 2, Nand NC; fetch and

store, operand 1, NI and NC)

Programming Notes
1. An example of the use of the AND instruction

is given in Appendix A.
2. The instruction AND may be used to set a bit

to zero.
3. Accesses to the first operand of NI andNC

consist in fetching a first-operand byte from
storage and subsequently storing the updated
value. These fetch and store accesses to a
particular byte do not necessarily occur one
immediately after the other. Thus, the
instruction AND cannot be safely used to
update a location in storage if the possibility
exists that another CPU or a channel may also
be updating the location. An example of this
effect is shown for the instruction OR (01) in
the section "Multiprogramming and
Multiprocessing Examples" in Appendix A.

7-8 IBM 4300 Processors Principles of Operation

BRANCH AND LINK

[RR]

o 8 12 15

BAL R1,02(X2,B2) [RX]

145 1 I R1 I X2 I B2 °2

o 8 12 16 20 31

Information from the current PSW, including the
updated instruction address, is loaded as link
information in the general register designated by
R l' Subsequently, the instruction address is
replaced by the branch address.

In the RX format, the second-operand address is
used as the branch address. In the RR format, bits
8-31 of the general register designated by R2 are
used as the branch address; however, when the R2
field contains zeros, the operation is performed
without branching. The branch address is
computed before the link information is loaded.

The link information consists of the
instruction-length code (ILC), the condition code
(CC), the program mask bits, and the updated
instruction address, arranged in the following
format:

I I
Prog

ILC CC Mask Instruction Address

o 2 4 8 31

The instruction-length code is 1 or 2.

Condition Code: The code remains unchanged.

Program Exceptions: None.

Programming Notes
1. An example of the use of BRANCH AND

LINK is given in Appendix A.
2. When the R2 field in the RR format contains

all zeros, the link information is loaded without
branching.

I 3. When BRANCH AND LINK is the target
instruction of EXECUTE, the
instruction-length code is 2.

4. The format and the contents of the link
information do not depend on whether the (

PSW specifies the EC or BC mode. In both
modes, the link information is in the format of
the rightmost 32 bit positions of the BC-mode
PSW.

BRANCH ON CONDITION

BCR

o 8 12 15

BC M1~02(X2~B2) [RX]

'47' I M1 I X2 I B2 02

o 8 12 16 20 31

The instruction address in the current PSW is
replaced by the branch address if the condition
code has one of the values specified by M 1;

otherwise, normal instruction sequencing proceeds
with the updated instruction address.

In the RX format, the second-operand address is
used as the branch address. In the RR format, bits
8-31 of the general register specified by Rz are
used as the branch address; however, when the Rz
field contains zeros, the operation is performed
without branching.

The M 1 field is used as a four-bit mask. The
four condition codes (0, 1,2, and 3) correspond,
left to right, with the four bits of the mask, as
follows:

Mask
Condition Instruction Position

Code Bit Value

0 8 8
1 9 4
2 10 2
3 11 1

The current condition code is used to select the
corresponding mask bit. If the mask bit selected by
the condition code is one, the branch is successful.
If the mask bit selected is zero, normal instruction
sequencing proceeds with the next sequential
instruction.

When the Ml and Rz fields of BCR are all ones
and all zeros, respectively, a serialization function
is performed. CPU operation is delayed until all
previous accesses by this CPU to storage have been
completed, as observed by channels and other
CPUs. No subsequent instructions or their
operands are accessed by this CPU until the
execution of this instruction is completed.

Condition Code: The code remains unchanged.

Program Exceptions: None.

Programming Notes
1. An example of the use of BRANCH ON

CONDITION is given in Appendix A.
2. When a branch is to depend on more than one

condition, the pertinent condition codes are
specified in the mask as the sum of their mask
position values. A mask of 12, for example,
specifies that a branch is to be made when the
condition code is 0 or 1.

3. When all four mask bits are zero or when the
Rz field in the RR format contains zero, the
branch instruction is equivalent to a
no-operation. When all four mask bits are
ones, that is, the mask value is 15, the branch is
unconditional unless the Rz field in the RR
format is zero.

4. Execution of BCR 15,0 (that is, an instruction
with a value of 07FO hex) may result in
significant performance degradation. To ensure
optimum performance, the program should
avoid use of BCR 15,0 except in cases when
the serialization function is actually required.

5. Note that the relation between the RR and RX
formats in branch-address specification is not
the same as in operand-address specification.
For branch instructions in the RX format, the
branch address is the address specified by Xz,
Bz, and Dz; in the RR format, the branch
address is contained in the register specified by
Rz. For operands, the address specified by Xz,
Bz, and Dz is the operand address, but the
register specified by Rz contains the operand
itself.

BRANCH ON COUNT

BCTR [RR]

'06' I R1 I R2

o 8 12 15

Chapter 7. General Instructions 7-9

BeT [RX]

146 1

o 8 12 16 20 31

A one is subtracted from the first operand, and the
result is placed in the first-operand location. The
first operand and result are treated as 32-bit binary
integers, with overflow ignored. When the result is
zero, normal instruction sequencing proceeds with
the updated instruction address. When the result is
not zero, the instruction address in the current
PSW is replaced by the branch address.

In the RX format, the second-operand address is
used as the branch address. In the RR format, the
contents of bit positions 8-31 of the general
register specified by Rz are used as the branch
address; however, when the Rz field contains zeros,
the operation is performed without branching.

The branch address is computed before the
counting operation.

Condition Code: The code remains unchanged.

Program Exceptions: None.

Programming Notes
1. An example of the use of BRANCH ON

COUNT is given in Appendix A.
2. The first operand and result can be considered

as either signed or unsigned binary integers
since the result of a binary subtraction is the
same in both cases.

3. An initial count of one results in zero, and no
br~nching takes place; an initial count of zero
results in -1 and causes branching to be
executed; an initial count of -1 results in -2
and causes branching to be executed; and so
on. In a loop, branching takes place each time
the instruction is executed until the result is
again zero. Note that, because of the number
range, an initial count of _2 31 results in a
positive value of 231 - 1.

4. Counting is performed without branching when
the Rz field in the RR format contains zero.

BRANCH ON INDEX HIGH

o 8 12 16 20 31

7-10 IBM 4300 Processors Principles of Operation

BRANCH ON INDEX LOW OR EQUAL

BXLE R1,R3,D2(B2) [RS]

o 8 12 16 20 31

An increment is added to the first operand, and the
sum is compared with a compare value. The result
of the comparison determines whether branching
occurs. Subsequently, the sum is placed in the
first-operand location. The second-operand
address is used as a branch address. The R3 field
designates registers containing the increment and
the compare value.

For BXH-j , when the sum is high, the instruction
address in the current PSW is replaced by the
branch address. When the sum is low or equal,
normal instruction sequencing proceeds with the
updated instruction address.

For BXLE, when the sum is low or equal, the
instruction address in the current PSW is replaced
by the branch address. When the sum is high,
normal instruction sequencing proceeds with the
updated instruction address.

When the R3 field is even, it designates a pair of
registers; the contents of the even and odd registers
of the pair are used as the increment and the
compare value, respectively. When the R3 field is
odd, it designates a single register ~Jhe contents of
which are used as both the increment and the
compare value.

For purposes of the addition and comparison, all
operands and results are treated as 32-bit signed
binary integers. Overflow caused by the addition is
ignored.

The original contents of the _ compare-value
register are used as the compare value even when
that register is also specified to be the first-operand
location. The branch address is computed before
the addition and comp-arison. /

The sum is placed in the first-operand location,
regardless of whether the branch is taken.

Condition Code: The code remains unchanged.

Program Exceptions: None.

Programming Notes
1. An example of the use of BRANCH ON

INDEX HIGH is given in Appendix A.

2. The word "index" in the names of these
instructions indicates that one of the major
purposes is the incrementing and testing of an
index value. The increment, being a signed
binary integer, may be used to increase or
decrease the value in register R 1 by an arbitrary
amount.

COMPARE

CR

o 8 12 15

C [RX]

159 I I R 1 I X2 I B2 D2

o 8 12 16 20 31

The first operand is compared with the second
operand, and the result is indicated in the condition
code. The operands are treated as 32-bit signed
binary integers.

Resulting Condition Code:
o Operands are equal
1 First operand is low
2 First operand is high
3

Program Exceptions:
Access (fetch, operand 2 of Conly)

COMPARE AND SWAP

CS [RS]

D2

o 8 12 16 20 31

COMPARE DOUBLE AND SWAP

o 8 12 16 20 31

The first and second operands are compared. If
they are equal, the third operand is stored at the
second-operand location. If they are unequal, the
second operand is loaded into the first-operand
location. The result of the comparison is indicated
in the condition code.

For CS, the first and third operands are 32 bits
in length, with each operand occupying a general
register. The second operand is a word in storage.

For CDS, the first and third operands are 64 bits
in length, with each operand occupying an
even-odd pair of general registers. The second
operand is a double word in storage.

When the result of the comparison is unequal,
the second-operand location remains unchanged.
However, on some models, the value may be
fetched and subsequently stored back into the
second-operand location. No access by another
CPU to the second-operand location is permitted
between the moment· that the second operand is
fetched for comparison and it is stored.

When an equal comparison occurs, no access by
another CPU to the second-operand location is
permitted between· the moment that the second
operand is fetched for comparison and the moment
that the third operand is stored at the
second-operand location.

Serialization is performed before the operand is
fetched, and again after the operation is completed.
CPU operation is delayed until all previous accesses
by this CPU to storage have been completed, as
observed by channels and other CPUs, and then
the second operand is fetched. No subsequent
instructions or their operands are accessed by this
CPU until the execution of this instruction is
completed, including placing the result value, if
any, in storage, as observed by channels and other
CPUs.

The second operand of CS must be designated
on a word boundary. The Rl and R3 fields for
CDS must each designate an even register, and the
second operand for CDS must be designated on a
doubleword boundary. Otherwise, a specification
exception is recognized.

Resulting Condition Code:
o First and second operands equal, second

operand replaced by third operand
1 First and second operands unequal, first

operand replaced by second operand
2
3

Chapter 7. General Instructions 7 -11

Program Exceptions:
Access (fetch and store, operand 2)
Specification

Programming Notes
1. Several examples of the use of the COMPARE

AND SWAP and COMPARE DOUBLE AND
SWAP instructions are given in Appendix A.

2. The instruction CS can be used by programs
sharing common storage areas in either a
multiprogramming or multiprocessing.
environment. Two examples are:
a. By performing the following procedure, a

program can modify the contents of a
storage location even though the possibility
exists that the program may be interrupted
by another program that will update the
location or even though the possibility
exists that another CPU may simultaneously
update the location. First, the entire word
containing the byte or bytes to be updated
is loaded into a general register. Next, the
updated value is computed and placed in
another general register. Then the
instruction CS is executed with the R 1 field
designating the register that contains the
original value and the R3 field designating
the register that contains the updated value.
If condition code 0 is set, the update has
been successful. If condition code 1 is set,
the storage location no longer contains the
original value, the update has not been
successful, and the general register
designated by the R 1 field of the CS
instruction contains the new current value
of the storage location. When condition
code 1 is set, the program can repeat the
procedure using the new current value.

b. The instruction CS can be. used for
controlled sharing of a common storage
area in a manner similar to that described
in the programming note under TEST AND
SET, but it provides the added capability of
leaving a message when the common area is
in use. To· accomplish this, a word in
storage can be used as a control word, with
a zero value in the word indicating that the
common area is not in use, a negative value
indicating that the area is in use, and a
nonzero positive value indicating that the
common area is in use and that the value is
the address of the most recent message
added to the list. Thus, any number of

7-12 IBM 4300 Processors Principles of Operation

programs. desiring to seize the area can use
CS to update the control word to indicate
that the area is in use or to add messages to
the list. The single program which has
seized the area can also safely use CS to
remove messages from the list.

3. The instruction CDS can be used in a manner
similar to that described for CS. In addition, it
has another use. Consider a chained list, with
a control word used to address the first message
in the list, as described in programming note 2b
above. If multiple programs are permitted to
add and delete messages by using CS, there is a
possibility the list will be incorrectly updated.
This would occur if, after one program has
fetched the address of the most recent message
in order to remove the message, another
program removes the first two messages and
then adds the first message back into the chain.
The first program, on continuing, cannot easily
detect that the list is changed. By increasing
the size of the control word to a double word
containing both the first message address and a
word with a change number that is incremented
for each modification of the list, and by using
CDS to update both fields together, the
possibility of the list being incorrectly updated
is reduced to a negligible level. That is, an
incorrect update can occur only if the first
program is delayed while changes exactly equal
in number to a multiple of 232 take place and
only if the last change places the original
message address in the control word.

4. The instructions CS and CDS do not interlock
against storage accesses by channels.
Therefore, the instructions should not be used
to update a location which is in an 110 input
area, since the input data may be ·lost.

5. For the case of a condition-code setting of 1,
the instructions CS and CDS mayor may not,
depending on the model, cause any of the
following to occur for the second-operand
location: a PER storage-alteration event may
be recognized; a protection exception for
storing may be recognized; and, provided no
access exception exists, the change bit may be
turned on.

COMPARE HALFWORD

CH [RX]

o 8 12 16 20 31

The first operand is compared with the second
operand, and the result is indicated in the condition
code. The second operand is two bytes in length
and is treated as a 16-bit signed binary integer.
The first operand is treated as a 32-bit signed
binary integer.

Resulting Condition Code:
o Operands are equal
1 First operand is low
2 First operand is high
3

Program Exceptions:
Access (fetch, operand 2)

Programming Note
An example of the use of COMPARE
HALF WORD is given in Appendix A.

COMPARE LOGICAL

ClR

115 I

o 8 12 15

Cl [RX]

1 55 1 " R 1 , X2 I B2

o 8 12 16 20

ell [5 I]

1 95 1

o 8 16 20

31

31

ClC [55]

~1_D5_1~ __ l ---,-1_B_1 ~1_~_1 -....III....-B_2--...1_~~
o 8 16 20 32 36 47

The first operand is compared with the second
operand, and the result is indicated in the condition
code.

t
The comparison proceeds left to right, byte by

byte, and ends as soon as an inequality is found or
the end of the fields is reached. For CL and CLC,
access exceptions mayor may not be recognized for
the portion of a storage operand to the right of the
first unequal byte.

Resulting Condition Code:
o Operands are equal
1 First operand is low
2 First operand is high
3

Program Exceptions:
Access (fetch, operand 2, CL and CLC; fetch,

operand 1, CLI and CLC)

Programming Notes
1. Examples of the use of the COMPARE

LOGICAL instructions are given in Appendix
A.

2. The COMPARE LOGICAL instructions treat
all bits of each operand alike as part of a field
of unstructured logical data. For CLC, the
comparison may extend to field lengths of 256
bytes.

COMPARE LOGICAL CHARACTERS
UNDER MASK

elM

o 8 12 16 20 31

The first operand is compared with the second
operand under control of a mask, and. the result is
indicated in the condition code.

The contents of theM3 field are used as a mask.
These four bits, left to right, correspond one for
one with the four bytes, left to right, of the general
register designated by the ·R1 field. The byte
positions corresponding to ones in the mask are

Chapter 7. General Instructions 7-13

considered as a contiguous field and are compared
with the second operand. The second operand is a
contiguous field in storage, starting at the
second-operand address and equal in length to the
num ber of ones in the mask. The bytes in the
general register corresponding to zeros in the mask
do not participate in the operation.

I The comparison proceeds left to right, byte by
byte, and ends as soon as an inequality is found or
the end of the fields is reached.

When the mask is not zero, exceptions associated
with storage-operand access are recognized for no
more than the number of bytes specified by the
mask. Access exceptions mayor may not be
recognized for the portion of a storage operand to
the right of the first unequal byte. When the mask
is zero, access exceptions are recognized for one
byte.

Resulting Condition Code:
o Selected bytes are equal, or mask is zero
1 Selected field of first operand is low
2 Selected field of first operand is high
3

Program Exceptions:
Access (fetch, operand 2)

Programming Note
An example of the use of COMPARE LOGICAL
CHARACTERS UNDER MASK is given in
Appendix A.

COMPARE LOGICAL LONG

[RR]

o 8 12 15

The first operand is compared with the second
operand, and the result is indicated in the condition
code. The shorter operand is considered to be
extended on the right with padding bytes.

The Rl and R2 fields each specify an even-odd
pair of'general registers and must designate an
even-numbered register; otherwise, a specification
exception is recognized.

The location of the leftmost byte of the first
operand and second operand is designated by bits
8-31 of the general registers specified by the Rl
and R2 fields, respectively. The number of bytes in

7-14 IBM 4300 Processors Principles of Operation

the first-operand and second-:operand locations is,
specified by bits 8-31 of general registers Rl + 1
and R2 + 1, respectively. Bit positions 0-7. of
register R2+ 1 contain the padding byte. The
contents of bit positions 0-7 of registers R 1, R2,

and R 1 + 1 are ignored.
Graphically, the contents of the registers just

described are as follows:

R1 I11111111I First-Operand Address

o 8 31

R1+1 11/1111/11 First-Operand Length

o 8 31

R2 I11111111I Second-Operand Addressl

o 8 31

I Second-Operand Length I
8 31

The comparison proceeds left to right, byte by
byte, and ends as soon as an inequality is found or
the end of the longer operand is reached. If the
operands are not of the same length, the shorter
operand is considered to be extended on the right
with the appropriate number of padding bytes.

If both operands are of zero length, the operands
are considered to be equal.

The execution of the instruction is interruptible.
When an interruption occurs, other than one that
causes termination, the contents of registers R 1 + 1
and R2 + 1 are decremented by the number of bytes
compared, and the contents of registers R 1 and R2
are incremented by the same number, so that the
instruction, when reexecuted, resumes at the point
of interruption. The high-order bits which are not
part of the address in registers R 1 and R2 are set to
zeros; the contents of the high-order byte of
registers Rl + 1 and R2+ 1 remain unchanged; and
the condition code is unpredictable. If the
operation is interrupted after the shorter operand
has been exhausted, the length field pertaining to
the shorter operand is zero, and its address is
updated accordingly.

If the operation ends because of an inequality,
the address fields in registers R 1 and R2 at
completion identify the first unequal byte in each
operand. The lengths in bit positions 8-31 of

registers R 1 + 1 and R2 + 1 are decremented by the
number of bytes that were equal, unless the
inequality occurred with the padding byte, in which
case the length field for the shorter operand is set
to zero. The addresses in registers Rl and R2 are
incremented by the amounts by which the
corresponding length fields were reduced.

If the two operands, including the padding byte,
if necessary, are equal, both length fields are made
zero at completion, and the addresses are
incremented by the corresponding operand-length
values. The bits which are not part of the address
in registers R 1 and R2 are set to zeros, including
the case when one or both of the initial length
values are zero. The contents of bit positions 0-7
of registers R 1 + 1 and R2 + 1 remain unchanged.

Access exceptions for the portion of a storage
operand to the right of the first unequal byte may
or may not be recognized. For operands longer
than 2,048 bytes, access exceptions are not
recognized more than 2,048 bytes beyond the byte
being processed. Access exceptions are not
indicated for locations more than 2,048 bytes
beyond the first unequal byte.

When the length of an operand is zero, no access
exceptions are recognized for that operand. Access
exceptions are not recognized for an operand if the
R field associated with that operand is odd.

Resulting Condition Code:
o Operands are equal, or both have zero length
1 First operand is low
2 First operand is high
3

Program Exceptions:
Access (fetch, operands 1 and 2)
Specification

Programming Notes
1. An example of the use of COMPARE

LOGICAL LONG is given in Appendix A.
2. When the R 1 and R2 fields are the same, the

operation proceeds in the same way as when
two distinct pairs of registers having the same
contents are specified, and, in the absence of
dynamic modification of the operand area by
another CPU or a channel, condition code 0 is
set. However, it is unpredictable whether
access exceptions are recognized for the
operand since the operation can be completed
without storage being accessed.

3. Other programming notes concerning
interruptible instructions are included in the
section "Interruptible Instructions" in Chapter
5, "Program Execution."

4. Special precautions should be taken when
COMPARE LOGICAL LONG is made the
target of EXECUTE. See the programming
note concerning interruptible instructions under
EXECUTE.

CONVERT TO BINARY

eVB R1,02(X2,B2) [RX]

'4F' I R1 I X2 I B2 °2

0 8 12 16 20 31

The radix of the second operand is changed from
decimal to binary, and the result is placed in the
first-operand location.

The second operand occupies eight bytes in
storage and is treated as packed decimal data, as
described in Chapter 8, "Decimal Instructions." It
is checked for valid sign and digit codes, and a data
exception is recognized when an invalid code is
detected.

The result of the conversion is a 32-bit signed
binary integer, which is placed in the general
register specified by R 1. The maximum positive
number that can be converted and still be
contained in a 32-bit register is 2,147,483,647; the
maximum negative number (the negative number
with the greatest absolute value) that can be
converted is -2,147,483,648. For any decimal
number outside this range, the operation is
completed by placing the 32 low-order bits of the
binary result in the register, and a fixed-point­
divide exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)
Data
Fixed-Point Divide

Programming Notes
1. An example of the use of CONVERT TO

BINARY is given in Appendix A;
2. When the second operand is negative, the result

is in two's-complement notation.

Chapter 7. General Instructions 7-15

CONVERT TO DECIMAL

cvo R 1 ,02 eX 2 , B 2) [RX]

'4E' I R1 I X2 I B2 02

0 8 12 16 20 31

The radix of the first operand is changed from
binary to decimal, and the result is stored at the
second-operand location. The first operand is
treated as a 32-bit signed binary integer.

The result occupies eight bytes in storage and is
in the format for packed decimal data, as described
in Chapter 8, "Decimal Instructions." The
low-order four bits of the result represent the sign.
A positive sign is encoded as 1100; a negative sign
is encoded as 1101.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)

Programming Notes
1. An example of the use of CONVERT TO

DECIMAL is given in Appendix A.
2. The number to be converted is a 32-bit signed

binary integer obtained from a general register.
Since 15 decimal digits are available for the
result, and the decimal equivalent of 31 bits
requires at most 10 decimal digits, an overflow
cannot occur.

DIVIDE

DR

o 8 12 15

, 50 ' I R 1 I X2 I B2

o 8 12 16 20 31

The doubleword first operand (the dividend) is
divided by the second operand (the divisor), and
the remainder and the quotient are placed in the
first-operand location.

7-16 IBM 4300 Processors Principles of Operation

The R 1 field of the instruction specifies an
even-odd .pair of general registers and must
designate an even-numbered register. When Rl is
odd, a specification exception is recognized.

The dividend is treated as a 64-bit signed binary
integer. The divisor, the remainder, and the
quotient are treated as 32-bit signed binary
integers. The remainder and quotient replace the
dividend in the pair of registers specified by the R 1

field. The remainder is placed in the
even-numbered register, and the quotient is placed
in the odd-numbered register.

The sign of the quotient is determined by the
rules of algebra. The remainder has the same sign
as the dividend, except that a zero quotient or a
zero remainder is always positive. When the
magnitUdes of the dividend and divisor are such
that the quotient cannot be expressed by a 32-bit
signed binary integer, a fixed-point-divide
exception is recognized, and the operation is
suppressed.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2 of D only)
Fixed-Point Divide
Specification

EXCLUSIVE OR

XR

o 8 12 15

x [RX]

o 8 12 16 20

XI [S I]

'97'

o 8 16 20

31

31

xc [SS]
r------.------~--~-/--~--~-/

'----_I D_7 _I -l..-__ L _LI _B 1---L1_~ 1 B 2 ~~
o 8 16 20 32 36 47

The EXCLUSIVE OR of the first and second
operands is placed in the first-operand location.

The connective EXCLUSIVE OR is applied to
the operands bit by bit. A bit position in the result
is set to one if the corresponding bit positions in
the two operands are unlike; otherwise, the result
bit is set to zero.

For XC, each operand is processed left to right.
When the operands overlap, the result is obtained
as if the operands were processed one byte at a
time and each result byte were stored immediately
after the necessary operand byte is fetched.

For XI, the first operand is one byte in length,
and only one byte is stored.

Resulting Condition Code:
o Result is zero
1 Result is not zero
2
3

Program Exceptions:
Access (fetch, operand 2, X and XC; fetch and

store, operand 1, XI and XC)

Programming Notes
1. An example of the use of EXCLUSIVE OR is

given in Appendix A.
2. The instruction EXCLUSIVE OR may be used

to invert a bit, an operation particularly useful
in testing and setting programmed binary bit
switches.

3. A field EXCLUSIVE-ORed with itself becomes
all zeros.

4. For XR, the sequence A EXCLUSIVE-OR B B
EXCLUSIVE-OR A, A EXCLUSIVE-OR B '
results in the exchange of the contents of A
and B without the use of an additional general
register.

5. Accesses to the first operand of XI and XC
consist in fetching a first-operand byte from
storage and subsequently storing the updated
value. These fetch and store accesses to a
particular byte do not necessarily occur one
immediately after the other. Thus, the
instruction EXCLUSIVE OR cannot be safely

used to update a location in storage if the
possibility exists that another CPU or a channel
may also be updating the location. An example
of this effect is shown for the instruction OR
(01) in the section "Multiprogramming and
Multiprocessing Examples" in Appendix A.

EXECUTE

144
1 I R 1 I X2 I B2 D2

o 8 12 16 20 31

The single instruction at the second-operand
address is modified by the contents of the general
register specified by R 1, and the resulting target
instruction is executed.

When the R 1 field is not zero, bits 8-15 of the
instruction designated by the second-operand
address are ORed with bits 24-31 of the register
specified by R l' The ~Ring does not change either
the contents of the register specified by R1 or the
instruction in storage, and it is effective only for
the interpretation of the instruction to be executed.
When the R1 field is zero, no ORing takes place.

The target instruction may be two, four, or six
bytes in length. The execution and exception
handling of the target instruction are exactly as if
the target instruction were obtained in normal
sequential operation, except for the instruction
address and the instruction -length code.

The instruction address of the current PSW is
increased by the length of EXECUTE. This
updated address and the instruction-length code of
EXECUTE are used, for example, as part of the
link information when the target instruction is
BRANCH AND LINK. When the target
instruction is a successful branching instruction, the
instruction address of the current PSW is replaced
by the branch address specified by the target
instruction.

When the target instruction is in turn an
EXECUTE, an execute exception is recognized.

The effective address of EXECUTE must be
even; otherwise, a specification exception is
recognized. When the target instruction is two or
three halfwords in length but can be executed
without fetching its second or third halfword, it is
unpredictable whether access exceptions are
recognized for the unused halfwords. Access
exceptions are not recognized for the
second-operand address when the address is odd.

Chapter 7. General Instructions 7 -17

Condition Code: The code may be set by the
target instruction.

Program Exceptions:
Access (fetch, target instruction)
Execute
Specification

Programming Notes
1. An example of the use of EXECUTE is given

in Appendix A.
2. The ORing of eight bits from the general

register with the designated instruction permits
indirect length, index, mask, immediate-data,
and register specification.

3. The fetching of the target instruction is
considered to be an instruction fetch for
purposes of program-event recording and for
purposes of reporting access exceptions.

4. An access or specification exception may be
caused by EXECUTE or by the target
instruction.

S. When an interruptible instruction is made the
target of EXECUTE, the program normally
should not designate any register updated by
the interruptible instruction as the R 1, X2, or
B2 register for EXECUTE, since on resumption
of execution after an interruption, or if the
instruction is refetched without an interruption,
the updated values of these registers will be
used in the execution of EXECUTE. Similarly,
the program should normally not let the
destination field of an interruptible instruction
include the location of the EXECUTE, since
the new contents of the location may be
interpreted when resuming execution.

INSERT CHARACTER

IC R1,D2(X2,B2) [RX]

'43' I R1 I X2 I B2 D2

0 8 12 16 20 31

The byte at the second -operand location is inserted
into bit positions 24-31 of the general register
designated by the R 1 field. The remaining bits in
the register remain unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)

7-18 IBM 4300 Processors Principles of Operation

INSERT CHARACTERS UNDER MASK

ICM R1,M3,D2(B2) [RS]

'BF' I R1 I M3 I B2 D2

0 8 12 16 20 31

Bytes from contiguous locations beginning at the
second-operand address are inserted into the
first-operand location under control of a mask.

The contents of the M 3 field are used as a mask.
These four bits, left to right, correspond one for
one with the four bytes, left to right, of the general
register designated by the R 1 field. The byte
positions corresponding to ones in the mask are
filled, left to right, with bytes from successive
storage locations beginning at the second-operand
address. When the mask is not zero, the length of
the second operand is equal to the number of ones
in the mask. The bytes in the general register
corresponding to zeros in the mask remain
unchanged.

The resulting condition code is based on the
mask and on the value of the bits insetted. When
the mask is zero or when all inserted bits are zeros,
the condition code is set to O. When the inserted
bits are not all zeros, the code is set according to
the leftmost bit of the storage operand: if this bit is
one, the code is set to 1; if this bit is zero, the code
is set to 2.

When the mask is not zero, exceptions associated
with storage-operand access are recognized only for
the number of bytes specified by the mask. When
the mask is zero, access exceptions are recognized
for one byte.

Resulting Condition Code:
o All inserted bits are zeros, or mask is zero
1 Leftmost bit of the inserted field is one
2 Leftmost bit of the inserted field is zero, and

not all inserted bits are zeros
3

Program Exceptions:
Access (fetch, operand 2)

Programming Notes
1. Examples of the use of INSERT

CHARACTERS UNDER MASK are given in
Appendix A.

2. The condition code for INSERT
CHARACTERS UNDER MASK (ICM) is

defined such that, when the mask is 1111, the
instruction causes the same condition code. to
be set as for LOAD AND TEST. Thus, the
instruction may be used as a storage-to-register
load-and-test operation.

3. An rCM instruction with a mask of 1111 or
0001 performs a function similar to that of a
LOAD (L) or INSERT CHARACTER (IC),
respectively, with the exception of the
condition -code setting. However, the
performance of ICM may be slower.

LOAD

LR

o 8 12 15

158 I I R 1 I X2 I B2

o 8 12 16 20 31

The second operand is placed unchanged in the
first-operand location.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2 of L only)

Programming Note
An example of the use of LOAD is given in
Appendix A.

LOAD ADDRESS

o 8 12 16 20 31

The address specified by the X2, B2, and D2 fields
is placed in bit positions 8-31 of the general
register specified by the R1 field. Bits 0-7 of the
register are set to zeros. The address computation
follows the rules for address arithmetic.

No storage references for operands take place,
and the address is not inspected for access
exceptions.

Condition Code: The code remains unchanged.

Program Exceptions: None.

Programming Notes
1. An example of the use of the LOAD

ADDRESS instruction is given in Appendix A.
2. The same general register may be specified by

the R 1, X2, and B2 fields, except that general
register 0 can be specified only by the R1 field.
In this manner, it is possible to increment the
low-order 24 bits of a general register, other
than register 0, by the contents of the D2 field
of the instruction. The register to be
incremented should be specified by R1 and by
either X2 (with B2 set to zero) or B2 (with X2
set to zero).

LOAD AND TEST

LTR

I 12 I

o 8 12 15

The second operand is placed unchanged in the
first-operand location, and the sign and magnitude
of the second operand, treated as a 32-bit signed
binary integer, are indicated in the condition code.

Resulting Condition Code:
o Result is zero
1 Result is less· than zero
2 Result is greater than zero
3

Program Exceptions: None.

Programming Note
When the R 1 and R2 fields designate the same
register, the operation is equivalent to a test
without data movement.

LOAD COMPLEMENT

LCR [RR]

I 13 I I R 1 1 R2 'I
o 8 12 15

The two's complement of the second operand is
placed in the first-operand location. The second
operand and result are treated as 32-bit signed
binary integers.

Chapter 7. General Instructions 7-19

An overflow causes a program interruption when
the fixed-point-overflow mask bit is one.

Resulting Condition Code:
o Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Overflow

Program Exceptions:
Fixed-Point Overflow

Programming Note
The operation complements all numbers. Zero and
the maximum negative number remain unchanged.
An overflow condition occurs when the maximum
n'egative number is complemented:

LOAD HALFWORD

LH [RX]

o 8 12 1620 31

The second operand is extended to a 32-bit signed
binary integer and placed in the first-operand
location. The second operand is two bytes in
length and is considered to be a 16-bit signed
binary integer. The second operand is extended by
propagating the sign-bit value through the 16
high-order bit positions.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)

Programming Note
An example of the use of LOAD HALFWORD is
given in Appendix A.

LOAD MULTIPLE

[RS]

o 8 12 16 20 31

The set of general registers starting with the
register specified by R 1, and ending with the
register specified by R3 is loaded from storage

7-20 IBM 4300 Processors Principles 01 vperation

beginning at the location designated by the
second-operand address and continuing through as
many locations as needed.

The general registers are loaded in the ascending
order of their register numbers, starting with the
register specified by RI and continuing up to and
including the register specified by R 3, with register
o following register 15.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)

Programming Note
All combinations of register numbers specified by
Rl and R3 are valid. When the register numbers
are equal, only four bytes are transmitted. When
the number specified by R3 is less than the number
specified by R l' the register numbers wrap around
from 15 toO.

LOAD NEGATIVE

LNR

o 8 12 15

The two's complement of the absolute value of the
second operand is· placed in the first-operand
location. The second operand and result are
treated as 32-bit signed binary integers.

Resulting Condition Code:
o Result is zero
1 Result is less than zero
2
3

Program Exceptions: None.

Programming Note
The operation complements positive numbers;
negative numbers remain unchanged. The number
zero remains unchanged.

LOAD POSITIVE

LPR

1 10 I

o 8 12 15

The absolute value of the second operand is placed
in the first-operand location. The second operand
and the result are treated as 32-bit signed binary
integers.

An overflow causes a program interruption when
the fixed-point-overflow mask bit is one.

Resulting Condition Code:
o Result is zero
1
2 Result is greater than zero
3 Overflow

Program Exceptions:
Fixed-Point Overflow

Programming Note
The operation complements negative numbers;
positive numbers and zero remain unchanged. An
overflow condition occurs when the maximum
negative number is complemented; the number
remains unchanged.

MONITOR CALL

MC [5 I]

'AF'

o 8 16 20 31

A program interruption is caused if the appropriate
monitor-mask bit in control register 8 is one.

The monitor-mask bits are in bit positions 16-31
of control register 8, which correspond to monitor
classes 0-15, respectively.

Bit positions 12-15 in the 12 field contain a
binary number specifying one of 16 monitoring
classes. When the monitor-mask bit corresponding
to the class specified by the 12 field is one, a
monitor-event program interruption occurs. The
contents of the 12 field are stored at location 149,
with zeros stored at location 148. Bit 9 of the
program-interruption code is set to one.

The first-operand address is not used to address
data; instead, the address specified by the Bland
Dl fields forms the monitor code, whicb is placed
in the word at location 156. Address computation
follows the rules of address arithmetic; bits 0-7 are
set to zeros.

When the monitor-mask bit corresponding to the
class specified by bits 12-15 of the instruction is
zero, no interruption occurs, and the instruction is
executed as a no-operation.

Bit positions 8-11 of the instruction must
contain zeros; otherwise, a specification exception
is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:
Monitor Event
Specification

Programming Notes
1. The MONITOR CALL instruction provides the

capability for passing control to a monitoring
program when selected points are reached in
the monitored program. This is accomplished
by implanting MONITOR CALL instructions at
the desired points in the monitored program.
This function may be useful in performing
various measurement functions; specifically,
tracing information can be generated indicating
which programs were executed, counting
information can be generated indicating how
often particular programs were used, and timing
information can be generated indicating how
long a particular program required for
execution.

2. The monitor masks provide a means of
disallowing all interruptions due to MONITOR
CALL or allowing monitoring for all or selected
classes.

3. The monitor code provides a means of
associating descriptive information, in addition
to the class number, with each MONITOR
CALL instruction. Without the use of a base
register, up to 4,096 distinct monitor codes can
be associated with a monitoring interruption.
With the base register designated by a nonzero
value in the B 1 field, each monitoring
interruption can be identified by a 24-bit code.

MOVE

MVI [5 I]

o 8 16 20 31

MVC [55]

L----'_D2_' ~ __ L ---I..1_B_1 --L.1_~_1 ---&1_B_2 --,-I_~~
o 8 16 20 32 36 47

Chapter 7. General Instructions 7-21

The second operand is placed in the first-operand
location.

For MVC, each operand is processed left to
right. When the operands overlap, the result is
obtained as if the operands were processed one
byte at a time and each result byte were stored
immediately after the necessary operand byte is
fetched.

For MVI, the first operand is one byte inlength,
and only one byte is stored.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2 of MVC; store, operand

1, MVI and MVC)

Programming Notes
1. Examples of the use of the MOVE instructions

are given in Appendix A.
2. It is possible to propagate one byte through an

entire field by having the first operand start
one byte to the right of the second operand.

MOVE INVERSE

MVCIN [55]

L--'_E8_' ----L-__ l ---,-1_B_1 --,-1_~_1 ---I1_B_2 --,-1_~iJ
o 8 16 20 32 36 47

The second operand is placed in the first-operand
location with the left-to-right sequence of the bytes
inverted.

The first-operand address designates the leftmost
byte of the first operand. The second-operand
address designates the rightmost byte of the second
operand. Both operands have the same length.

The result is obtained as if the second operand
were processed from right to left and the first
operand· from left to right. The second operand
may wrap around from location 0 to location
16,777,215. The first operand may wrap around
from location 16,777,215 to location O.

When the operands overlap by more than one
byte, the contents of the overlapped portion of the
result field are unpredictable.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2; store, operand 1)

7-22 IBM 4300 Processors Principles of Operation

Programming Notes
1. The contents of each byte moved remain

unchanged.
2. MOVE INVERSE is the only SS-format

instruction for which the second-operand
address designates the rightmost, instead of the
leftmost, byte of the second operand.

MOVE LONG

MVCl [RR]

'OE'

o 8 12 15

The second operand is placed in the first-operand
location, provided overlapping of operand locations
does not affect the final contents of the
first-operand location. The remaining rightmost
byte positions, if any, of the first-operand location
are filled with padding bytes.

The Rl and R2 fields each specify an even-odd
pair of general registers and must designate an
even-numbered register; otherwise, a specification
exception is recognized.

The location of the leftmost byte of the first
operand and second operand is designated by bits
8-31 of the general registers specified by the R 1

and R2 fields, respectively. The number of bytes in
the first-operand and second-operand locations is
specified by bits 8-31 of general registers R 1 + 1
and R2+ 1, respectively. Bit positions 0-7 of
register R2 + 1 contain the padding byte. The
contents of bit positions 0-7 of registers R l' R2,

and R 1 + 1 are ignored.
Graphically, the contents of the registers just

described are as follows:

R1 I11111111I First-Operand Address

o 8 31

R1+1 I11111111I First-Operand length

o 8 31

1111111111 Second-Operand Addressl

o 8 31

RZ+1 Pad Second-Operand Length

o 8 31

The movement starts at the left end of both
fields and proceeds to the right. The operation is
ended when the number of bytes specified by bit
positions 8-31 of register Rl + 1 have been moved
into the first-operand location. If the second
operand is shorter than the first operand, the
remaining rightmost bytes of the first-operand
location are filled with the padding byte.

As part of the execution of the instruction, the
values of the two length fields are compared for the
setting of the condition code, and a check is made
for destructive overlap of the operands. Operands
are said to overlap destructively when the
first-operand location is used as a source after data
has been moved into it. When the operands
overlap destructively, no movement takes place,
and condition code 3 is set.

Operands do not overlap destructively, and
movement is performed, if the leftmost byte of the
first operand does not coincide with any of the
second-operand bytes participating in the operation
other than the leftmost byte of the second operand.
When an operand wraps around from location
16,777,215 to location 0, operand bytes in
locations up to and including 16,777,215 are
considered to be to the left of bytes in locations
from 0 up.

When the length specified by bit positions 8-31
of register R 1 + 1 is zero, no movement takes place,
and condition code 0 or 1 is set to indicate the
relative values of the lengths.

The execution of the instruction is interruptible.
When an interruption occurs other than one that
causes termination, the contents of registers Rl + 1
and R2 + 1 are decremented by the number of bytes
moved, and the contents of register Rl and R2 are
incremented by the same number, so that the
instruction, when reexecuted, resumes at the point
of interruption. The high-order bits which are not
part of the address in registers Rl and R2 are set to
zeros; the contents of the high-order byte of
registers Rl + 1 and R 2+ 1 remain unchanged; and
the condition code is unpredictable. If the
operation is interrupted during padding, the length
field in register R2 + 1 is 0, the address in register
R2 is incremented by the original contents of
register R2 + 1 , and registers R 1 and R 1 + 1 reflect
the extent of the padding operation.

When the first-operand location includes the

location of the instruction, the instruction may be
refetched from storage and reinterpreted even in
the absence of an interruption during execution.
The exact point in the execution at which such a
refetch occurs is unpredictable.

As viewed by channels and other CPUs, that
portion of the first operand which is filled with the
padding byte is not necessarily stored into in a
left-to-right direction and may appear to be stored
more than once.

At the completion of the operation, the length in
register Rl + 1 is decremented by the number of
bytes stored at the first-operand location, and the
address in register R 1 is incremented by the same
amount. The length in register R2 + 1 is
decremented by the number of bytes moved out of
the second-operand location, and the address in
register R2 is incremented by the same amount.
The bits which are not part of the address in
registers R 1 and R2 are set to zeros, including the
case when one or both of the original length values
are zeros or when condition code 3 is set. The
contents of bit positions 0-7 of registers R 1 + 1 and
R2+ 1 remain unchanged.

When condition code 3 is set, no exceptions
associated with operand access are recognized.
When the length of an operand is zero, no access
exceptions for that operand are recognized.
Similarly, when the second operand is longer than
the first operand, access exceptions are not
recognized for the part of the second-operand field
that is in excess of the first-operand field. For
operands longer than 2,048 bytes, access exceptions
are not recognized for locations more than 2,048
bytes beyond the current location being processed.
Access exceptions are not recognized for an
operand if the R field associated with that operand
is odd. Also, when the R 1 field is odd, PER
storage alteration is not recognized, and no change
bits are set.

Resulting Condition Code:
o First-operand and second-operand lengths are

equal
1 First-operand length is low
2 First-operand length is high
3 No movement performed because of

destructive overlap

Program Exceptions:
Access (fetch, operand 2; store, operand 1)
Specification

Chapter 7. General Instructions 7-23

Programming Notes
1. The instruction MOVE LONG may be used for

clearing storage by setting the padding byte to
zero and the second-operand length to zero.
However, the stores associated with this
clearing may be multiple-access stores and
should not be used to clear an area if the
possibility exists that a channel or another CPU
will attempt to access and use the area as soon
as it appears to be zero.

2. The program should avoid specification of a
length for either operand which would result in
an addressing exception. Addressing (and also
protection) exceptions may result in termination
of the entire operation, not just the current unit
of operation. The termination may be such
that the contents of all result fields are
unpredictable; in the case of MVCL, this
includes the condition code and the two
even-odd general-register pairs, as well as the
first-operand location in main storage. The
following are situations that have actually
occurred on one or more models.
a. When a protection exception occurs on a

2,048-byte block of a first operand which is
several blocks in length, stores to the
protected block are suppressed. However,
the move continues into the subsequent
blocks of the first operand, which are not
protected. Similarly, in the case of
reconfigurable storage, an addressing
exception on a block does not necessarily
suppress processing of subsequent blocks
which are addressable.

b. The model may update the general registers
only when an IIO interruption occurs or
when a program interruption occurs which
is required to nullify or suppress. Thus, if
after a move into several blocks of the first
operand, an addressing or protection
exception occurs, the registers remain
unchanged.

3. When the first-operand length is zero, the
operation consists in setting the condition code
and setting the high-order bytes of registers R 1

and R2 to zero.
4. When the contents of the Rl and R2 fields are

the same, the operation proceeds the same way
as when two distinct pairs of registers having
the same contents are specified. Condition
code 0 is set.

S. The following is a detailed description of those
cases in which movement takes place, that is,

7-24 IBM 4300 Processors Principles of Operation

where destructive overlap does not exist.
Depending on whether the second operand
wraps around from location 16,777,215 to
location 0, movement takes place in the
following cases:
a. When the second operand does not wrap

around, movement is performed if the
leftmost byte of the first operand coincides
with or is to the left of the leftmost byte of
the second operand, or if the leftmost byte
of the first operand is to the right of the
rightmost second-operand byte participating
in the operation.

b. When the second operand wraps around,
movement is performed if the leftmost byte
of the first operand coincides with or is to
the left of the leftmost byte of the second
operand, and if the leftmost byte of the
first operand is to the right of the rightmost
second-operand byte participating in the
operation.

The rightmost second-operand byte is
determined by using the smaller of the
first-operand and second-operand lengths.

When the second-operand length is one or
zero, destructive overlap cannot exist.

6. Special precautions must be taken if MOVE
LONG is made the target of EXECUTE. See
the programming note concerning interruptible
instructions under EXECUTE.

7. Since the execution of MOVE LONG is
interruptible, the instruction cannot be used for
situations where the program must rely on
uninterrupted execution of the instruction or on
the interval timer not being updated during the
execution of the instruction. Similarly, the
program should normally not let the first
operand of MOVE LONG include the location
of the instruction since the new contents of the
location may be interpreted for a resumption
after an interruption, or the instruction may be
refetched without an interruption.

8. Further programming notes concerning
interruptible instructions are included in the
section "Interruptible Instructions" in Chapter
5, "Program Execution. II

MOVE NUMERICS

MVN °1(L,Bl),02(B2) [SS]
/ /

1011 L I B 1 I °1 I B2 I ~iJ /
0 8 16 20 32 36 47

The rightmost four bits of each byte in the second
operand are placed in the rightmost bit positions of
the corresponding bytes in the first operand. The
leftmost four bits of each byte in the first operand
remain unchanged.

Each operand is processed left to right. When
the operands overlap, the result is obtained as if the
operands were processed one byte at a time and
each re~ult byte were stored immediately after the
necessary operand byte is fetched.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2; fetch and store,

operand 1)

Programming Notes
1. An example of the use of MOVE NUMERICS

is given in Appendix A.
2. MVN moves the numeric portion of a

decimal-data field that is in the zoned format.
The zoned-decimal format is described in
Chapter 8, "Decimal Instructions." The
operands are not checked for valid sign and
digit codes.

3. Accesses to the first operand of MVN consist in
fetching the rightmost four bits of each byte in
the first operand and subsequently storing the
updated value of the byte. These fetch and
store accesses to a particular byte do not
necessarily occur one immediately after the
other. Thus, this instruction cannot be safely
used to update a location in storage if the
possibility exists that another CPU or a channel
may also be updating the location. An example
of this effect is shown for the instruction OR
(On in the section "Multiprogramming and
Multiprocessing Examples" in Appendix A.

MOVE WITH OFFSET

MVO D1(L1,B1),D2(L2,B2) [55]
/ /

• F 1 • I L1 I L2 I B1 I D 1 B2 ~~ /
0 8 12 16 20 32 36

The second operand is placed to the left of and
adjacent to the rightmost four bits of the first
operand.

47

The rightmost four bits of the first operand are
attached as the rightmost bits to the second

operand, the second operand bits are offset by four
bit positions, and the result is placed in the
first-operand location.

The result is obtained as if the operands were
processed right to left. When necessary, the second
operand is considered to be extended on the left
with zeros. If the first operand is too short to
contain all of the second operand, the remaining
leftmost portion of the second operand is ignored.
Access exceptions for the unused portion of the
second operand mayor may not be indicated.

When the operands overlap, the result is
obtained as if the operands were processed one
byte at a time and each result byte were stored
immediately after the necessary operand bytes are
fetched. The left digit of each second-operand
byte remains available for the next result byte and
is not refetched.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2; fetch and store,

operand 1)

Programming Notes
1. An example of the use of MOVE WITH

OFFSET is given in Appendix A.
2. Access to the rightmost byte of the first

operand ofMVO consists in fetching the
rightmost four bits and subsequently storing the
updated value of this byte. These fetch and
store accesses to the rightmost byte of the first
operand do not necessarily occur one
immediately after the other. Thus, this
instruction cannot be safely used to update a
location in storage if the possibility exists that
another CPU or a channel may also be
updating the location. An example of this
effect is shown for the instruction OR (01) in
the section "Multiprogramming and
Multiprocessing Examples" in Appendix A.

3. MVO may be used to shift packed decimal data
by an odd number of digit positions. The
packed-decimal format is described in Chapter
8, "Decimal Instructions." The operands are
not checked for valid sign and digit codes. In
many cases however, the instruction SHIFT
AND ROUND DECIMAL may be more
convenient to use.

Chapter 7. General Instructions 7 -25

MOVE ZONES

MVZ °1(L,81),02(82) [SS]
/

I 82 I tJ 103 1 L I 81 I °1
/

0 8 16 20 32 36 47

The leftmost four bits of each byte in the second
operand are placed in the leftmost four bit positions
of the corresponding bytes in the first operand.
The rightmost four bits of each byte in the first
operand remain unchanged.

Each operand is processed left to right. When
the operands overlap, the result is obtained as if the
operands were processed one byte at a time and
each result byte were stored immediately after the
necessary operand byte is fetched.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2; fetch and store,

operand 1)

Programming Notes
1. An example of the use of MOVE ZONES is

given in Appendix A.
2. MVZ moves the zoned portion of a decimal

field in the zoned format. The zoned format is
described in Chapter 8, "Decimal Instructions."
The operands are not checked for valid sign
and digit codes.

3. Accesses to the first operand of MVZ consist in
fetching the leftmost four bits of each byte in
the first operand and subsequently storing the
updated value of the byte. These fetch and
store accesses to a particular byte do not
necessarily occur one immediately after the
other. Thus, this instruction cannot be safely
used to update a location in storage if the
possibility exists that another CPU or a channel
may also be updating the location. An example
of this effect is shown for the instruction OR
(Ol) in the section "Multiprogramming and
Multiprocessing Examples" in Appendix A.

MULTIPLY

MR R1,R2 [RR]

~CI I R1 I R2 I
o 8 12 15

7-26 IBM 4300 Processors Principles of Operation

M

o 8 12 16 20 31

The second word of the first operand
(multiplicand) is multiplied by the second operand
(multiplier), and the doubleword product is placed
at the first-operand location.

The R 1 field of the instruction specifies an
even-odd pair of general registers and must
designate an even-numbered register. When R 1 is
odd, a specification exception is recognized.

Both the multiplicand and multiplier are treated
as 32-bit signed binary integers. The multiplicand
is taken from the odd-numbered register of the pair
specified by the R 1 field. The contents of the
even-numbered register are ignored. The product is
a 64-bit signed binary integer, which replaces the
contents of the even-odd pair of general registers
specified by the R 1 field. An overflow cannot
occur.

The sign of the product is determined by the
rules of algebra from the multiplier and
multiplicand sign, except that a zero result is
always positive.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2 of M only)
Specification

Programming Notes
1 . An example of the use of MUL TIPL Y is given

in Appendix A.
2. The significant part of the product usually

occupies 62 bits or fewer. Only when two
maximum negative numbers are multiplied are
63 significant product bits formed.

MULTIPLY HALFWORD

o 8 12 16 20 31

The first operand (multiplicand) is multiplied by
the second operand (multiplier), and the product is
placed at the first-operand location. The second
operand is two bytes in length and is considered to
be a 16-bit signed binary integer.

The multiplicand is treated as a 32-bit signed
binary integer and is replaced by the low-order 32
bits of the signed-binary-integer product. The bits
to the left of the 32 low-order bits are not tested
for significance; no overflow indication is given.

The sign of the product is determined by the
rules of algebra from the multiplier and
multiplicand sign, except that a zero result is
always positive.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)

Programming Notes
1. An example of the use of MULTIPLY

HALFWORD is given in Appendix A.
2. The significant part of the product usually

occupies 46 bits or fewer. Only when two
maximum negative numbers are multiplied are
47 significant product bits formed. Since the
low-order 32 bits of the product are stored
unchanged, ignoring all bits to the left, the sign
bit of the result may differ· from the true sign of
the product in the case of overflow. For a
negative product, the 32 bits placed in register
R 1 are the low-order part of the product in
two's-complement notation.

OR

OR R1,R2 [RR]

116 1
I R1 I R2 I

o 8 12 15

o R1,02(X2,B2) [RX]

156
1 I R 1 I X2 I B2 02

o 8 12 16 20 31

01

196 1
12

o 8 16 20 31

DC [SS]
r-----~------~------/--~-----~-/

~_,_06_' __ ~ __ L __ ~I_B_1~1_~1 B2 ~~
o 8 16 20 32 36 47

The 0 R of the first and second operands is placed
in the first-operand location.

The connective ORis applied to the operands bit
by bit. A bit position in the result is set to one if
the corresponding bit position in one or both
operands contains a one; otherwise, the result bit is
set to zero.

For ~C, each operand is processed left to right.
When the operands overlap, the result is obtained
as if the operands were processed one byte at a
time and each result byte were stored immediately
after the necessary operand byte is fetched.

For 01, the first operand is only one byte in
length, and only one byte is stored.

Resulting Condition Code:
o Result is zero

Result is not zero
2
3

Program Exceptions:
Access (fetch, operand 2, 0 anti DC; fetch and

store, operand 1, 01 and DC)

Programming Notes
1. Examples of the use of the OR instructions are

given in Appendix A.
2. The instruction OR may be used to set a bit to

one.
3. Accesses to the first operand of 01 and DC

consist in fetching a first-operand byte from
storage and subsequently storing the updated
value. These fetch and store accesses to a
particular byte do not necessarily occur one
immediately after the other. Thus, the
instruction OR cannot be safely used to update
a location in storage if the possibility exists that
another CPU or a channel may also be
updating the location. An example of this
effect is shown in the section
"Multiprogramming and Multiprocessing
Examples" in Appendix A.

Chapter 7. General Instructions 7 -27

PACK

PACK [SS]

'F2' Ll I L2 I Bl I ~-1 -r--B-2 -~U
o 8 12 16 20 32 36 47

The format of the second operand is changed from
zoned to packed, and the result is placed in the
first-operand location. The zoned and packed
formats are described in Chapter 8, "Decimal
Instructions. "

The second operand is treated as having the
zoned format. The numerics are treated as digits.
All zones are ignored, except the zone in the
rightmost byte, which is treated as a sign.

The sign arid digits are moved unchanged to the
first operand and are not checked for valid codes.
The sign is placed in the rightmost four bit
positions of the rightmost byte of the result field,
and the digits are placed adjacent to the sign and
to each other in the remainder of the result field.

The result is obtained as if the operands were
processed right to left. When necessary, the second
operand is considered to be extended on the left
with zeros. If the first operand is too short to
contain all digits of the second operand, the
remaining leftmost portion of the second operand is
ignored. Access exceptions for the unused portion
of the second operand mayor may not be
indicated.

When the operands overlap, the result is
obtained as if each result byte were stored
immediately after the necessary operand bytes are
fetched. Two second-operand bytes are needed for
each result byte, except for the rightmost byte of
the result field, which requires only the rightmost
second-operand byte.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2; store, operand 1)

Programming Notes
1. An example of the use of PACK is given in

Appendix A.
2. The PACK instruction may be used to

interchange the two hexadecimal digits in one
byte by specifying a zero in the L 1 and L2
fields and the same address for both operands.

3. To remove the zones of all bytes of a field,
including the rightmost byte, both operands

7-28 IBM 4300 Processors Principles of Operation

must be extended on . the right with a dummy
byte, which subsequently is ignored in the
result field.

SET PROGRAM MASK

SPM [RR]

o 8 12 15

The contents of the general register specified by
the R 1 field are used to set the condition code and
the program mask of the current PSW. Bits 12-15
of the instruction are ignored.

Bits 2 and 3 of the register specified by the R 1

field replace the condition code, and bits 4-7
replace the program mask. Bits 0, 1, and 8-31 of
the register specified by the R 1 field are ignored.

Resulting Condition Code:
OBit 2 is zero, and bit 3 is zero
1 Bit 2 is. zero, and bit 3 is one
2 Bit 2 is one,and bit 3 is zero
3 Bit 2 is one, and bit 3 is one

Program Exceptions: None.

Programming Notes
1. Bits 2-7 of the general register may have been

loaded from the PSW by BRANCH AND
LINK.

2. The instruction permits setting of the condition
code and the mask bits in either the problem or
supervisor state.

3. The program should take into consideration
that the setting of the program mask can have a
significant effect on subsequent execution of
the program. Not only do the four mask bits
control whether the corresponding interruptions
occur, but the exponent-underflow and
significance masks also determine the result
which is obtained.

SHIFT LEFT DOUBLE

SLOA R1,02(B2) [RS]

'8F' I R1 jlllll B2 °2

0 8 12 16 20 31

The double-length numeric part of the first operand
is shifted left the number of bits specified by the

second-operand address. Bits 12-15 of the
instruction are ignored.

The R 1 field of the instruction specifies an
even-odd pair of general registers and must
designate an even-numbered register. When Rl is
odd, a specification exception is recognized.

The second-operand address is not used to
address data; its low-order six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

The first operand is treated as a 64-bit signed
binary integer. The sign position of the even
register remains unchanged. The leftmost position
of the odd register contains a numeric bit, which
participates in the shift in the same manner as the
other numeric bits. Zeros are supplied to the
vacated register positions on the right.

If one or more bits unlike the sign bit are shifted
out of bit position 1 of the even register, an
overflow occurs. The overflow causes a program
interruption when the fixed-point-overflow mask
bit is one.

Resulting Condition Code:
o Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Overflow

Program Exceptions:
Fixed-Point Overflow
Specification

Programming Notes
1. An example of the use of SHIFT LEFT

DOUBLE is given in Appendix A.
2. The eight shift instructions provide the

following three pairs of alternatives: left or
right, single or double, and signed or logical.
The signed shifts differ from the logical shifts
in that, in the signed shifts, overflow is
recognized, the condition code is set, and the
leftmost bit participates as a sign.

3. A zero shift amount in the two signed
double-shift operations provides a
double-length sign and magnitude test.

4. The. base register participating in the generation
of the second-operand address permits indirect
specification of the shift amount. A zero in the
B2 field indicates the absence of indirect shift
specification.

SHIFT LEFT DOUBLE LOGICAL

o 8 12 16 20 31

The double-length first operand is shifted left the
number of bits specified by the second-operand
address. Bits 12-15 of the instruction are ignored.

The R 1 field of the instruction specifies an
even-odd pair of general registers and must
designate an even-numbered register. When Rl is
odd, a specification exception is recognized.

The second -operand address is not used to
address data; its low-order six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

All 64 bits of the first operand participate in the
shift. Bits shifted out of bit position 0 of the
even-numbered register are not inspected and are
lost. Zeros are supplied to the vacated register
positions on the right.

Condition Code: The code remains unchanged.

Program Exceptions:
Specification

SHIFT LEFT SINGLE

o 8 12 16 20 31

The numeric part of the first operand is shifted left
the number of bits specified by the second-operand
address. Bits 12-15 of the instruction are ignored.

The second -operand address is not used to
address data; its low-order six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

The first operand is treated as a 32-bit signed
binary integer. The sign of the first operand
remains unchanged. All 31 numeric bits of the
operand participate in the left shift. Zeros are
supplied to the vacated register positions on the
right.

Chapter 7. General Instructions 7-29

If one or more bits unlike the sign bit are shifted
out of bit position 1, an overflow occurs. The
overflow causes a program interruption when the
fixed-point-overflow mask bit is one.

Resulting Condition Code:
o Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Overflow

Program Exceptions:
Fixed-Point Overflow

Programming Notes
1. An example of the use of SHIFT LEFT

SINGLE is given in Appendix A.
2. For numbers with an absolute value of less than

230, a left shift of one bit position is equivale1)t
to multiplying the number by two.

3. Shift amounts from 31 to 63 cause the entire
numeric part to be shifted out of the register,
leaving a result of the maximum negative
number or zero, depending on whether or not
the initial contents were negative.

SHIFT LEFT SINGLE LOGICAL

o 8 12 16 20 31

The first operand is shifted left the number of bits
specified by the second-operand address. Bits
12-15 of the instruction are ignored.

The second-operand address is not used to
address data; its low-order six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

All 32 bits of the first operand participate in the
shift. Bits shifted out of bit position 0 are not
inspected and are lost. Zeros are supplied to the
vacated register positions on the right.

Condition Code: The code remains unchanged.

Program Exceptions: None.

7-30 IBM 4300 Processors Principles of Operation

SHIFT RIGHT DOUBLE

SROA R1,02(82) [RS]

18EI
IR1 II/III 82 °2

0 8 12 16 20 31

The double-length numeric part of the first operand
is shifted right the number of places specified by
the second-operand address. Bits 12-15 of the
instruction are ignored.

The R 1 field of the instruction specifies an
even-odd pair of general registers and must
designate an even-numbered register. When Rl is
odd, a specification exception is recognized.

The second-operand address is not used to
address data; its low-order six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

The first operand is treated as a 64-bit signed
binary integer. The sign position of the even
register remains unchanged. The leftmost position
of the odd register contains a numeric bit, which
participates in the shift in the same manner as the
other numeric bits. Bits shifted out of bit position
31 of the odd-numbered register are not inspected
and are lost. Bits equal to the sign are supplied to
the vacated register positions on the left.

Resulting Condition Code:
o Result is zero
1 Result is less than zero
2 Result is greater than zero
3

Program Exceptions:
Specification

SHIFT RIGHT DOUBLE LOGICAL

o 8 12 16 20 31

The double-length first operand is shifted right the
number of bits specified by the second-operand
address. Bits 12-15 of the instruction are ignored.

The R 1 field of the instruction specifies an
even-odd pair of general registers and must

designate an even-numbered register. When Rl is
odd, a specification exception is recognized.

The second-operand address is not used to
address data; its low-order six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

All 64 bits of the first operand participate in the
shift. Bits shifted out of bit position 31 of the
odd-numbered register are not inspected and are
lost. Zeros are supplied to the vacated register
positions on the left.

Condition Code: The code remains unchanged.

Program Exceptions:
S pecifica tion

SHIFT RIGHT SINGLE

SRA R1,02(B2) [RS]

o 8 12 16 20 31

The numeric part of the first operand is shifted
right the number of bits specified by the
second -operand address. Bits 12-15 of the
instruction are ignored.

The second-operand address is not used to
address data; its low-order six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

The first operand is treated as a 32-bit signed
binary integer. The sign of the first operand
remains unchanged. All 31 numeric bits of the
operand participate in the right shift. Bits shifted
out of bit position 31 are not inspected and are
lost. Bits equal to the sign are supplied to the
vacated register positions on the left.

Resulting Condition Code:
o Result is zero
1 Result is less than zero
2 Result is greater than zero
3

Program Exceptions: None.

Programming Notes
1. A right shift of one bit position is equivalent to

division by 2 with rounding downward. When
an even number is shifted right one position,

the result is equivalent to dividing the number
by 2. When an odd number is shifted right one
position, the result is equivalent to dividing the
next lower number by 2. For example, +5
shifted right by one bit position yields + 2,
whereas -5 yields -3.

2. Shift amounts from 31 to 63 cause the entire
numeric part to be shifted out of the register,
leaving a result of -1 or zero, depending on
whether or not the initial contents were
negative.

SHIFT RIGHT SINGLE LOGICAL

SRL

'88' °2
o 8 12 16 20 31

The first operand is shifted right the number of bits
specified by the second-operand address. Bits
12-15 of the instruction are ignored.

The second-operand address is not used to
address data; its low-order six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

All 32 bits of the first operand participate in the
shift. Bits shifted out of bit position 31 are not
inspected and are lost. Zeros are supplied to the
vacated register positions on the left.

Condition Code: The code remains unchanged.

Program Exceptions: None.

STORE

, 50' I R 1 I X2 I B2 02

o 8 12 16 20 31

The first operand is stored at the second-operand
location.

The 32 bits in the general register are placed
unchanged at the second-operand location.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)

Chapter 7. General Instructions 7-31

STORE CHARACTER

STC R1,02(X2,B2) [RX]

1421 I R 1 I X2 I B2 °2

0 8 12 16 20 31

Bits 24-31 of the general register designated by the
R 1 field are placed unchanged at the .
second-operand location. The second operand IS

one byte in length.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)

STORE CHARACTERS UNDER MASK

I BE I I R 1 I M3 I B2 I 02

o 8 12 16 20 31

Bytes selected from the first operand under control
of a mask are placed in contiguous byte locations
beginning at the second-operand address.

The contents of the M3 field are used as a mask.
These four bits, left to right, correspond one for
one with the four bytes, left to right, of the general
register designated by the R 1 field. The bytes
corresponding to ones in the mask are placed in the
same order in successive and contiguous storage
locations beginning at the second-operand address.
When the mask is not zero, the length of the
second operand is equal to the number of ones in
the mask. The contents of the general register
remain unchanged.

When the mask is not zero, exceptions associated
with storage-operand accesses are recognized only
for the number of bytes specified by the mask.

When the mask is zero, the single byte
designated by the second-operand address remains
unchanged; however, on some models, the value
may be fetched and subsequently stored back at the
same storage location. No access by another CPU
is permitted to the location designated by the
second-operand address between the moment that
the value is fetched and the value is stored.

Condition Code: The code remains unchanged.

7-32 IBM 4300 Processors Principles of Operation

Program Exceptions:
Access (store, operand 2)

Programming Notes
1. An example of the use of STORE

CHARACTERS UNDER MASK is given in
Appendix A.

2. STCM with a mask of a 111 may be used to
store a three-byte address, for example, in
modifying the address in a CCW.

3. STCM with a mask of 1111, 0011, or 0001
performs the same function as STORE (ST),
STORE HALFWORD (STH), or STORE
CHARACTER (STC), respectively. However,
on most models, the performance of STCM will
be slower.

4. Using STCM with a zero mask should be
avoided since this instruction, depending on the
model, may perform a fetch and store of the
single byte specified by the second-operand
address. This access is not interlocked against
accesses by channels. In addition, it may cause
any of the following to occur for the byte
specified by the second -operand address: a
PER storage-alteration event may be
recognized; access exceptions may be
recognized; and, provided no access exceptions
exist, the change bit may be turned on.

STORE CLOCK

STCK [S]

I B2 0S 1

°2

o 16 20 31

The current value of the time-of-day clock is stored
at the eight-byte field designated by the
second-operand address, provided the clock is in
the set or not-set state.

Zeros are stored for the rightmost bit positions
that are not provided by the clock.

Zeros are stored at the operand location when
the clock is in the error state or in the
not-operational state.

The quality of the clock value stored by the
instruction is indicated by the resultant
condition-code setting.

A serialization function is performed before the
value of the clock is fetched and again after the
value is placed in storage. CPU operation is
delayed until all previous accesses by this CPU to

(
I
~

storage have been completed, as observed by
channels and other CPUs, and then the value of
the clock is fetched. No subsequent instructions or
their operands are fetched by this CPU until the
clock value has been placed in storage, as observed
by channels and CPUs.

Resulting Condition Code: ° Clock in set state
1 Clock in not-set state
2 Clock in error state
3 Clock in not-operational state

Program Exceptions:
Access (store, operand 2)

Programming Notes
1. Bit position 31 of the clock is incremented

every 1.048576 seconds; hence, for timing
applications involving human responses, the
high-order clock word may provide sufficient
resolution.

2. Condition code ° normally indicates that the
clock has been set by the control program.
Accordingly, the value may be used in
elapsed-time measurements and as a valid
time-of-day and calendar indication. Condition
code 1 indicates that the clock value is the
elapsed time since the power for the clock was
turned on. In this case the value may be used
in elapsed-time measurements but is not a valid
time-of-day indication. Condition codes 2 and
3 mean that the value provided by STORE
CLOCK cannot be used for time measurement
or indication.

3. If a problem program written for the
ECPS: VSE mode is to be run also on a model
of System/370, then the program should take
into account the fact that, on a model of
System/370, the value stored when the
condition code is 2 or 3 is not necessarily zero.

STORE HALFWORD

STH R1,02(X2,B2) [RX]

'40' I R1 I X2 I B2 °2

0 8 12 16 20 31

Bits 16-31 of the general register designated by the
Rl field are placed unchanged at the
second-operand location. The second operand is
two bytes in length.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)

STORE MULTIPLE

STM [RS]

'90'

o 8 12 16 20 31

The contents of the set of general registers starting
with the register specified by R 1 and ending with
the register specified by R3 are placed in the
storage area beginning at the location designated
by the second-operand address and continuing
through as many locations as needed.

The general registers are stored in the ascending
order of register numbers, starting with the register
specified by R 1 and continuing up to and including
the register specified by R 3, with register °
following register 15. .

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)

Programming Note
An example of the use of STORE MULTIPLE is
given in Appendix A.

SUBTRACT

SR [RR]

'lB' I R1 I R2 I
o 8 12 15

S R1,02(X2,B2) [RX]

'SB' I R1 I X2 I B2 °2

0 8 12 16 20 31

The second operand is subtracted from the first
operand, and the difference is placed in the
first-operand location. The operands and the
difference are treated as 32-bit signed binary
integers.

Chapter 7. General Instructions 7-33

An overflow causes a program interruption when
the fixed-point-overflow mask bit is one.

Resulting Condition Code:
o Difference is zero
1 Difference is less than zero
2 Difference is greater than zero
3 Overflow

Program Exceptions:
Access (fetch, operand 2 of S only)
Fixed-Point Overflow

Programming Notes
1. When, in the RR format, the R 1 and R2 fields

designate the same register, subtracting is
equivalent to clearing the register.

2. Subtracting a maximum negative number from
another maximum negative number gives a zero
result and no overflow.

SUBTRACT HALFWORD

SH [RX]

148 I I R 1 I X2 I 82

o 8 12 16 20 31

The second operand is subtracted from the first
operand, and the difference is placed in the
first-operand location. The second operand is two
bytes in length and is treated as a 16-bit signed
binary integer. The first operand and the
difference are treated as 32-bit signed binary
integers.

An overflow causes a program interruption when
the fixed-point-overflow mask bit is one.

Resulting Condition Code:
o Difference is zero
1 Difference is less than zero
2 Difference is greater than zero
3 Overflow

Program Exceptions:
Access (fetch, operand 2)
Fixed-Point Overflow

SUBTRACT LOGICAL

SLR R1,R2 [RR]

I 1 F I I R1 I R2 I
o 8 12 15

7-34 IBM 4300 Processors Principles of Operation

o 8 12 16 I 20 31

The second operand is subtracted from the first
operand, and the difference is placed in the
first-operand location. The operands and the
difference are treated as 32-bit unsigned binary
integers.

Resulting Condition Code:
o
1 Difference is not zero, with no carry
2 Difference is zero, with carry
3 Difference is not zero, with carry

Program Exceptions:
Access (fetch, operand 2 of SL only)

Programming Notes
1. Logical subtraction is performed by adding the

one's complement of the second operand and a
low-order one to the first operand. The use of
the one's complement and the low-order one
instead of the two's complement of the second
operand results in a carry when subtracting
zero.

2. SUBTRACT LOGICAL differs from
SUBTRACT only in the meaning of the
condition code and in the absence of the
interruption for overflow.

3. A zero difference is always accompanied by a
carry out of the high-order bit position.

4. The condition-code setting for SUBTRACT
LOGICAL can also be interpreted as indicating
the presence and absence of a borrow, as
follows:

1 Difference is not zero, with borrow
2 Difference is zero, with no borrow
3 Difference is not zero, with no borrow

SUPERVISOR CALL

SVC [RR]

'OA'

o 8 15

The instruction causes a supervisor-call
interruption, with the I field of the instruction
providing the interruption code.

Bits 8-15 of the instruction, with eight
high-order zeros appended, are placed. in the
supervisor-call interruption code that is stored in
the course of the interruption. See
"SupervisQr-Call Interruption" in Chapter 6,
"Interruptions. "

A serialization function is performed. CPU
operation is delayed until all previous storage
accesses by this CPU to storage have been
completed, as observed by channels and and other
CPUs. No subsequent instructions or their
operands are accessed by this CPU until the
execution of this instruction is completed.

Condition Code: The code remains unchanged and
is saved as part of the old PSW. A new condition
code is loaded as part of the supervisor-call
interruption.

Program Exceptions: None.

TEST AND SET

o 8 16 20 31

The leftmost bit (bit position 0) of the byte located
at the second-operand address is used to set the
condition code, and then the byte is set to all ones.
Bits 8-15 of the instruction are ignored.

The byte in storage is set to all ones as it is
fetched for the testing of bit position O. No access
by another CPU to this location is permitted
between the moment of fetching and the moment
of storing all ones.

A serialization function is performed before the
byte is fetched and again after the storing of all
ones. CPU operation is delayed until all previous
accesses by this CPU to storage have been
completed, as observed by channels and other

CPUs, and then the byte is fetched. No subsequent
instructions or their operands are accessed by this
CPU until the all-ones value has been placed in
storage, as observed by channels and other CPUs.

Resulting Condition Code:
o Leftmost bit of byte specified was zero
1 Leftmost bit of byte specified was one
2
3

Program Exceptions:
Access (fetch and store, operand 2)

Programming Notes
1. TEST AND SET may be used for controlled

sharing of a common storage area by more than
one program. To accomplish thiS, bit position 0
of a byte must be designated as the control bit.
The desired interlock can be achieved by
establishing a program convention in which a
zero in the bit position indicates that the
common area is available but a one means that
the area is being used. Each using program
then must examine this byte by means of TEST
AND SET before making access to the common
area. If the test sets condition code 0, the area
is available for use; if it sets condition code 1,
the area cannot be used. Because TEST AND
SET permits no other CPU access to the test
byte between the moment of fetching (for
testing) and the moment of storing all ones
(setting), the possibility is eliminated of a
second program testing the byte before the first
program is able to set it.

2. It should be noted that TEST AND SET does
not interlock against storage accesses by
channels.

TEST UNDER MASK

TM [S I]

1911

o 8 16 20 31

A mask is used to select bits of the first operand,
and the result is indicated in the condition code.

The byte of immediate data, 12, is used as an
eight-bit mask. The bits of the mask are made to
correspond one for one with the bits of the byte in
storage designated by the first-operand address.

A mask bit of one indicates that the storage bit
is to be tested. When the mask bit is zero, the
storage bit is ignored. When all storage bits thus
selected are zero, condition code 0 is set.
Condition code 0 is also set when the mask is all
zeros. When the selected bits are all ones,
condition code 3 is set; otherwise, the code is set to
l.

Access exceptions associated with the storage
operand are recognized for one byte even when the
mask is all zeros.

Chapter 7. General Instructions 7-35

Resulting Condition Code:
o Selected bits all zeros; or the mask is all zeros
1 Selected bits mixed zeros and ones
2
3 Selected bits all ones

Program Exceptions:
Access (fetch, operand 1)

Programming Note
An example of the use of TEST UNDER MASK is
given in Appendix A.

TRANSLATE

TR °1(lsBl)s02(B2) [SS]

I B 1 I
/

~U lOCi l °1 B2
/

0 8 16 20 32 36 47

The bytes of the first operand are used as eight-bit
arguments to reference a list designated by the
second-operand address. Each function byte
selected from the list replaces the corresponding
argument in the first operand.

The L field designates the length of only the
first operand.

The bytes of the first operand are selected orie
by one for translation, proceeding left to right.
Each argument byte is added to the initial
second-operand address. The addition is performed
following the rules for address arithmetic, with the
argument byte treated as an eight-bit unsigned
binary integer and extended with high-order zeros.
The sum is used as the address of the function byte,
which then replaces the original argument byte.

The operation proceeds until the first-operand
field is exhausted. The list is not altered unless an
overlap occurs.

When the operands overlap, the result is
obtained as if each result byte Were stored
immediately after the corresponding function byte
is fetched.

Access exceptions are recognized only for those
bytes in the second operand which are actually
required.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2; fetch and store,

operand 1)

7-36 IBM 4300 Processors Principles of Operation

Programming Notes
1. An example of the use of TRANSLATE is

given in Appendix A.
2. The instruction TRANSLATE may be used to

convert data from one code to another code.
3. The instruction may also be used to rearrange

data. This may be accomplished by placing a
pattern in the destination area, by designating
the pattern as the first operand of
TRANSLA TE, and by designating the data that
is to be rearranged as the second operand.
Each byte of the pattern contains an eight..,bit
number specifying the byte destined for this
position. Thus, when the instruction is
executed, the pattern selects the bytes of the
second operand in the desired order.

4. The fetch and subsequent store accesses to a
particular byte in the first-operand field do not
necessarily occur one immediately after the
other. Thus, this instruction cannot be safely
used to update a location in storage if the
possibility exists that another CPU or a channel
may also be updating the location. An example
of this effect is shown for the instruction OR
(01) in the section "Multiprogramming and
Multiprocessing Examples '.' in Appendix A.

5. Because each eight-bit argument· byte is added
to the initial second-operand address to obtain
the address of a function byte, the list may
contain 256 bytes. In cases where it is known
that not all eight-bit argument values will
occur, it is possible to reduce the size of the
list.

I 6. Significant performance degradation is possible
when the second-operand address of
TRANSLA TE designates a location that is less
than 256 bytes to the left of a2,048-byte
boundary. This is because the machine may
perform a trial execution of the' instruction to
determine if the secondoperand actually
crosses the boundary.

TRANSLATE AND TEST

The bytes of the first operand .are· used as eight..;bit
arguments to select function bytes from a list
designated by the second-operand address. The,

first nonzero function byte is inserted in general
register 2, and the related argument address in
general register 1.

The L field designates the length of only the
first operand.

The bytes of the first operand are selected one
by one for translation, proceeding from left to
right. The first operand remains unchanged in
storage. Fetching of the function byte from the list
is performed as in TRANSLATE. The function
byte retrieved from the list is inspected for a value
of zero.

When the function byte is zero, the operation
proceeds with the next byte of the first operand.
When the first-operand field is exhausted before a
nonzero function byte is encountered, the operation
is completed by setting condition code O. The
contents of general registers 1 and 2 remain
unchanged.

When the function byte is nonzero, the
operation is completed by inserting the function
byte in general register 2 and the related argument
address in general register 1. This address points
to the argument byte last translated. The function
byte replaces bits 24-31 of general register 2. The
address replaces bits 8-31 of general register 1.
Bits 0-7 of general register 1 and bits 0-23 of
general register 2 remain unchanged.

When the function byte is nonzero, either
condition code 1 or 2 is set, depending on whether
the argument byte is the rightmost byte of the first
operand. Condition code 1 is set if one or more
argument bytes remain to be translated. Condition
code 2 is set if no more argument bytes remain.

Access exceptions are recognized only for those
bytes in the second operand which are actually
required. Access exceptions are not recognized for
those bytes in the first operand which are to the
right of the first byte for which a nonzero function
byte is obtained.

Resulting Condition Code:
o All function bytes zero
1 Nonzero function byte; first-operand field

not exhausted
2 Nonzero function byte; first-operand field

exhausted
3

Program Exceptions:
Access (fetch, operands 1 and 2)

Programming Notes
1. An example of the use of TRANSLATE AND

TEST is given in Appendix A.
2. The instruction TRANSLATE AND TEST may

be used to scan the first operand for characters
with special meaning. The second operand, or
list, is set up with all-zero function bytes for
those characters to be skipped over and with
nonzero function bytes for the characters to be
detected.

UNPACK

UNPK D1(L1,B1),D2(L2,B2) [55]

'F3 1 I Ll I L2 I 81 I ~_1 --L....-B_2.....J....-~~
o 8 12 16 20 32 36 47

The format of the second operand is changed from
packed to zoned, and the result is placed in the
first-operand location. The packed and zoned
formats are described in Chapter 8, IIDecimal
Instructions. II

The second operand is treated as having the
packed format. Its digits and sign are placed
unchanged in the first-operand location, using the
zoned format. Zones with coding of 1111 are
supplied for all bytes except the low-order byte,
which receives the sign of the second operand. The
sign and digits are not checked for valid codes.

The result is obtained as if the operands were
processed right to left. When necessary, the second
operand is considered to be extended on the left
with zeros. If the first-operand field is too short to
contain all digits of the second operand, the
remaining leftmost portion of the second operand is
ignored. Access exceptions for the unused portion

· of the second operand mayor may not be
indicated.

When the operands overlap, the result is
obtained as if the operands were processed one
byte at a time and each result byte were stored
immediately after the necessary operand byte is
fetched. The entire rightmost second-operand byte
is used in forming the first result byte. For the
remainder of the field, information for two result
bytes is obtained from a single second-operand
byte, and the leftmost four bits of the byte remain
available and are not refetched. Thus, two result
bytes are stored immediately after fetching a single
operand byte.

Chapter 7. General Instructions 7-37

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2; store, operand 1)

Programming Notes
1. An example of the use of UNPACK is given in

Appendix A.
2. A field that is to be unpacked can be destroyed

by improper overlapping. To save storage
space for unpacking by overlapping the
operands, the rightmost position of the first
operand must be to the right of the rightmost
position of the second operand by the number
of bytes in the second operand minus 2. If
only one or two bytes are to be unpacked, the
low-order positions of the two operands may
coincide.

7-38 IBM 4300 Processors Principles of Operation

Chapter 8. Decimal Instructions

Contents

Decimal-Number Formats 8-1

Zoned Format 8-1

Packed Format 8-1

Decimal Codes 8-1

Decimal Operations 8-2

Decimal-Arithmetic Instructions 8-2

Editing Instructions 8-3

Execution of Decimal Instructions 8-3

Other Instructions for Decimal Operands 8-3

The decimal instructions of this chapter perform
arithmetic and editing operatio:t;ls on decimal data.
Additional operations on decimal data are provided
by several of the instructions in Chapter 7,
11 General Instructions." Decimal operands always
reside in storage, and all instructions operating on
decimal data use the SS instruction format.

Decimal-Number Formats
Decimal numbers may be in either the zoned or
packed format. Both decimal-number formats have
from one to 16 bytes, each byte consisting of a pair
of four-bit codes. The four-bit codes include
decimal-digit codes, sign codes, and a zone code.
Decimal operands occupy storage fields that start
on a byte boundary.

Zoned Format

In the zoned format, the rightmost four bits of a
I byte are called the numeric bits (N) and normally

comprise a code representing a decimal digit. The

I leftmost four bits of a byte are called the zone bits
(Z), except for the rightmost byte of a decimal
operand, where these bits may be treated either as
a zone or as a sign (S).

Instructions 8-3
ADD DECIMAL 8-4

COMPARE DECIMAL 8-5

DIVIDE DECIMAL 8-5

EDIT 8-6

EDIT AND MARK 8-9

MULTIPLY DECIMAL 8-9

SHIFT AND ROUND DECIMAL 8-10

SUBTRACT DECIMAL 8-11

ZERO AND ADD 8-11

Decimal digits in the zoned format may be part
of a larger character set, which includes also
alphabetic and special characters. The zoned
format is, therefore, suitable for input, editing, and
output of numeric data in human-readable form.
There are no decimal .. arithmetic instructions which
operate directly on decimal numbers in the zoned
format; such numbers must first be converted to
the packed format.

Packed Format

~~--~--~--~/~--~--~--~~
o o o o o o o s

~~--~--~--~/~--~--~--~~

In the packed format,each byte contains two
decimal digits (D), except for the rightmost byte,

I which contains a sign to the right of a decimal
digit. Decimal arithmetic is performed with
operands in the packed format and generates
results in the packed format.

F or all decimal instructions in this chapter other
than EDIT and EDIT AND MARK, both operands
are in the packed format.

Decimal Codes
The decimal digits 0-9 have the binary encoding
0000-1001.

The preferred sign codes are 1100 for plus and
1101 for minus. These are the sign codes

Chapter 8. Decimal Instructions 8-1

generated for the results of the decimal-arithmetic
instructions and the CONVERT TO DECIMAL
instruction.

Alternate sign codes are also recognized as valid
when appearing in the sign position: 1010, 1110,
and 1111 are alternate codes for plus, and 1011 is
an alternate code for minus. Alternate sign codes
are accepted for any decimal operand but are never
generated or propagated in the signed result of a
decimal-arithmetic instruction or CONVERT TO
DECIMAL, even when an operand remains
otherwise unchanged, such as when adding zero to
a number. An alternate sign code is, however, left
unchanged by the instructions MOVE NUMERICS,
MOVE WITH OFFSET, MOVE ZONES, PACK,
and UNPACK.

When an invalid code is detected, a data
exception is recognized. For the decimal-arithmetic
instructions, the action taken for a data exception
depends on whether a sign code is invalid. When a
sign code is invalid, the operation is suppressed
regardless of whether any other condition causing
an exception exists. When no sign code is invalid,
the operation is terminated.

For the editing instructions EDIT and EDIT
AND MARK, an invalid sign code is not
recognized. The operation is terminated for a data
exception due to an invalid digit code. No validity
checking is performed by the instructions MOVE
NUMERICS, MOVE WITH OFFSET, MOVE
ZONES, PACK, and UNPACK.

The zone code 1111 appears in the left four bit
positions of each byte representing a decimal digit
in zoned-format results. Zoned-format results are
produced by the instructions EDIT, EDIT AND
MARK, and UNPACK, except that the left four bit
positions of the rightmost byte produced by
UNPACK contain whatever code exists in the sign
position of the packed operand. The right four bit
positions of each byte in the zoned format contain
a decimal-digit code.

The meaning of the decimal codes is summarized
in the figure "Summary of Digit and Sign Codes."

Programming Notes
1. Since 1111 is both the zone code and an

alternate code for plus, unsigned (positive)
decimal numbers may be represented in the
zoned format with 1111 codes in all byte
positions. The result of the PACK instruction
converting such a number to the packed format
maybe used directly as an operand for decimal
instructions.

8-2 IBM 4300 Processors Principles of Operation

2. The use of the alternate minus code 1011 is not
recommended.

Code

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Digit

o
1
2
3
4
5
6
7
8
9

I nval id
I nval id
I nval i d
I nval id
I nval id
I nval i d

Recognized As

Sign

I nval id
Invalid
I nval id
Inval id
Inval id
I nval id
Inval id
Inval id
Inval id
Inval id
Plus
Minus

Plus (preferred)
Minus (preferred)

Plus
Plus (zone)

Summary of Digit and Sign Codes

Decimal Operations
The decimal instructions in this chapter consist of
two classes, the decimal-arithmetic instructions and
the editing instructions.

Decimal-Arithmetic Instructions
The decimal-arithmetic instructions, which comprise
all of the instructions in this chapter except the two
editing instructions, perform addition, subtraction,
multiplication, division, comparison, and shifting.

Operands of the decimaf ... arithmetic instructions
are in the packed format and are treated as signed
decimal integers. A decimal integer is represented
in true form as an absolute value with a separate
plus or minus sign. It contains an odd number of
decimal digits, from one to 31, and the sign; this
corresponds to an operand length of one to 16
bytes.

A decimal zero normally has a plus sign, but
multiplication, division, and overflow may produce
a zero value with a minus sign. Such a negative
zero is a valid operand and is treated as equal to a
positive zero by the COMPARE DECIMAL
instruction.

The lengths of the two operands specified in the
instruction need not· be the same. If necessary, the
shorter operand is considered to be extended with
zeros to the left of the high-order digit. Results,
however, cannot exceed the first-operand length as
specified in the instruction.

When a carry or some high-order nonzero digits
of the result are lost because the first-operand field
is too short, the result is obtained by ignoring the
overflow information, condition code 3 is set, and,
if the decimal-overflow mask bit is one, a program
interruption for decimal overflow occurs. The
operand lengths alone are not an indication of
overflow; significant digits must have been lost
during the operation.

The operands of decimal-arithmetic instructions
should not overlap at all or should have coincident
rightmost bytes. In ZERO AND ADD, the
operands may also overlap in such a manner that
the rightmost byte of the first operand (which
becomes the result) is to the right of the rightmost
byte of the second operand. For these cases of
proper overlap, the result is obtained as if operands
were processed right to left. Because the codes for
digits and signs are verified during the performance
of the arithmetic, improperly overlapping operands
are recognized as data exceptions.

Programming Note
The same decimal field in storage may be specified
for both operands of the instructions ADD
DECIMAL, COMPARE DECIMAL, DIVIDE
DECIMAL, MUL TIPL Y DECIMAL, and
SUBTRACT DECIMAL. Thus, a decimal number
may be added to itself, compared to itself, etc.
SUBTRACT DECIMAL may be used to set a
decimal field in storage to zero.

Editing Instructions
The editing instructions are EDIT and EDIT AND
MARK.~ For these instructions, only one operand
(the pattern) has an explicitly specified length.
The other operand (the source) is considered to
have as many digits as necessary for the completion
of the operation.

Overlapping operands for the editing instructions
yield unpredictable results.

Execution of Decimal Instructions
During the execution of a decimal instruction, all
bytes of the operands are not necessarily accessed
concurrently, and the fetch and store accesses to a

single location do not necessarily occur one
immediately after the other. Furthermore, for
decimal instructions, intermediate values may be
placed in the result field that may differ from the
original operand and final result values. Thus, in a
multiprocessing system, an instruction such as ADD
DECIMAL cannot be safely used to update a
shared storage location when the possibility exists
that another CPU may also be updating that
location.

Other Instructions for Decimal Operands
In addition to the decimal instructions in this
chapter, the instructions MOVE NUMERICS and
MOVE ZONES are provided for operating on data
in the zoned format. Two instructions are provided
for converting data between the zoned and packed
formats: the PACK instruction transforms zoned
data into packed data, and UNPACK performs the
reverse transformation. The MOVE WITH
OFFSET instruction operates on packed data. Two
instructions are provided for conversion between
the packed-decimal and binary formats. The
CONVERT TO BINARY instruction converts
packed decimal to binary, and CONVERT TO
DECIMAL converts binary to packed decimal.
These seven instructions are not considered to be
decimal instructions and are described in Chapter
7, II General Instructions. II The editing instructions
in this chapter may also be used to change data
from the packed to the zoned format.

Instructions
The decimal instructions and their mnemonics,
formats, and operation codes are listed in the figure
'!Summary of Decimal Instructions.'! The figure
also indicates when the condition code is set and
the exceptional conditions in operand designations,
data, or results that cause a program interruption.

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic
operand designation for the assembler language are
shown with each instruction. For ADD
DECIMAL, for example, AP is the mnemonic and
D 1(L 1,B 1)' D lL 2,B 2) the operand designation.

Chapter 8. ' Decimal Instructions 8-3

Mne-
Name monic

ADD DEC I t~AL AP SS
COMPARE DECIMAL CP SS
DIVIDE DECIMAL DP SS
EDIT ED SS
EDIT AND MARK EDMK SS

MULTIPLY DECIMAL MP SS
SHIFT AND ROUND DECIMAL SRP SS
SUBTRACT DECIMAL SP SS
ZERO AND ADD ZAP SS

Explanation:

A Access exceptions
C Condition code is set
0 Data exception
OF Decimal-overflow exception
OK Decimal-divide exception
R PER general-register-alteration event
SP Specification exception
SS SS instruction format
ST PER storage-alteration event

r Summary of Decimal Instructions

ADD DECIMAL

AP D1(L1,B1),D2(L2,B2) [SS]

ILl I L2 I B 1 I
/

I B2 I ~iJ 'FA' °1
/

0 8 12 16 20 32 36 47

The second operand is added to the first operand,
and the resulting sum is placed in the first-operand
location. The operands and result are in the
packed format.

Addition is algebraic, taking into account the
signs and all digits of both operands. All sign and
digit codes are checked for validity.

If the first operand is too short to contain all
significant digits of the sum, decimal overflow
occurs. The operation is completed. The result is
obtained by ignoring the overflow information, and
condition code 3 is set. If the decimal-overflow
mask is one, a program interruption for decimal
overflow takes place.

8-4 IBM 4300 Processors Principles of Operation

Op
Characteristics Code

C A 0 OF ST. FA
C A 0 F9

A SP 0 OK ST FD
C A 0 ST DE
C A 0 R ST OF

A SP 0 ST FC
C A 0 OF ST FO
C A 0 OF ST FB
C A 0 OF ST F8

The sign of the sum is determined by the rules of
algebra. When the operation is completed without
an overflow, a zero sum has a positive sign. When
high-order digits are lost because of an overflow, a
zero result may be either positive or negative, as
determined by what the sign of the correct sum
would have been.

Resulting Condition Code:
o Sum is zero
1 Sum is less than zero
2 Sum is greater than zero
3 Overflow

Program Exceptions:
Access (fetch, operand 2; fetch and store,

operand 1)
Data
Decimal Overflow

I
Programming Note
An example of the use of ADD DECIMAL is given
in Appendix A.

COMPARE DECIMAL

CP 0,(L"B,),02(L2,B2) [SS]
/

I B2 I
/

'F9' I L, I L2 I B, I 0, ~U /
0 8 '2 '6 20 32 36 47

The first operand is compared with the second
operand, and the result is indicated in the condition
code. The operands are in the packed format.

Comparison is algebraic and follows the
procedure for decimal subtraction, except that both
operands remain unchanged. When the difference
is zero, the operands are equal. When a nonzero
difference is positive or negative, the first operand
is high or low, respectively.

Overflow cannot occur because the difference is
discarded.

All sign and digit codes are checked for validity.

Resulting Condition Code:
o Operands are equal
1 First operand is low
2 First operand is high
3

Program Exceptions:
Access (fetch, operands 1 and 2)
Data

Programming Notes
1. An example of the use of COMPARE

DECIMAL is given in Appendix A.
2. The comparison operation does not distinguish

between valid sign codes. A valid plus or
minus sign is equivalent to any other valid plus
or minus sign, respectively.

DIVIDE DECIMAL

Op 0,(L"B,},02(L2,B2} [SS]
/ /

'FO' I L, I L2 I B, I 0, I B2 I ~U /
0 8 '2 '6 20 32 36 47

The first operand (the dividend) is divided by the
second operand (the divisor). The resulting
quotient and remainder are placed in the
first-operand location. The operands and result are
in the packed format.

The quotient is placed leftmost in the
first-operand location. The number of bytes in the

quotient is equal to the difference between the
dividend and divisor lengths (L 1 - L2). The
remainder is placed rightmost in the first-operand
location and has a length equal to the divisor
length. Together, the quotient and remainder
occupy the entire first operand; therefore, the
address of the quotient is the address of the first
operand.

The divisor length cannot exceed 15 digits and
sign (L2 not greater than seven) and must be less
than the dividend length (L2 less than L 1);

otherwise, a specification exception is recognized.
The operation is suppressed, and a program
interruption occurs.

The dividend, divisor, quotient, and remainder
are all signed decimal integers, right-aligned in
their fields. All sign and digit codes of the
dividend and divisor are checked for validity.

The sign of the quotient is determined by the
rules of algebra from the dividend and divisor
signs. The sign of the remainder has the same
value as the dividend sign. These rules hold even
when the quotient or remainder is zero.

Overflow cannot occur. If the divisor is zero or
the quotient is too large to be represented by the
number of digits allowed, a decimal-divide
exception is recognized. The operation is
suppressed, and a program interruption occurs. The
operands remain unchanged in storage. The
decimal-divide exception is indicated only if the
sign codes of both the dividend and divisor are
valid, and only if the digit or digits used in
establishing the exception are valid.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2; fetch and store,

operand 1)
Data
Decimal Divide
Specification

Programming Notes
1. An example of the use of DIVIDE DECIMAL

is given in Appendix A.
2. The dividend cannot exceed 31 digits and sign.

Since the remainder cannot be shorter than one
digit and sign, the quotient cannot exceed 29
digits and sign.

3. The condition for a decimal-divide exception
can be determined by a trial subtraction. The
leftmost digit of the divisor is aligned one digit
to the right of the leftmost dividend digit.

Chapter 8. Decimal Instructions 8-5

When the divisor, so aligned, is less than or
equal to the dividend, a divide exception is
indicated.
A decimal-divide exception always occurs when
the leftmost dividend digit is not zero.

EDIT

ED [55]
~------~------~--~~/--~--~--/

L--'_D E_' --,-__ L ----I.1_B_1 -l..1_~ 1 I B 2 I ~~
o 8 16 20 32 36 47

The second operand (the source), which normally
contains one or more decimal numbers in the
packed format, is changed to the zoned format and
modified under the control of the first operand (the
pattern). The edited result replaces the first
operand.

The length field specifies the length of the first
operand, which may contain bytes of any value.

The length of the source is determined by the
operation according to the contents of the pattern.
The source has the packed format. The leftmost
four bits of each source byte must specify a decimal
digit code (0000-1001); a sign code (1010-1111)
is recognized as a data exception. The rightmost
four bits may specify either a sign or a decimal
digit. Access and data exceptions are recognized
only for those bytes in the second operand which
are actually required.

The result is obtained as if both operands were
processed left to right one byte at a time.
Overlapping pattern and source fields give
unpredictable results.

During the editing process, each byte of the
pattern is affected in one of three ways:
1. It is left unchanged.
2. It is replaced by a source digit expanded to the

zoned format.
3. It is replaced by the first byte in the pattern,

called the fill byte.
Which of the three actions takes place is

determined by one or more of the following: the
type of the pattern byte, the state of the
significance indicator, and whether the source digit
examined is zero.

Pattern Bytes: There are four types of pattern
bytes: digit selector, significance starter, field

8-6 IBM 4300 Processors Principles of Operation

separator, and message byte. Their coding is as
follows:

Name Code

Digit selector 0010 0000
Significance starter 0010 0001
Field separator OQ10 0010
Message byte Any other

The detection of either a digit selector or a
significance starter in the pattern causes an
examination to be made of the significance
indicator and of a source digit. As a result, either
the expanded source digit or the fill byte, as
appropriate, is selected to replace the pattern byte.
Additionally, encountering a digit selector or a
significance starter may cause the significance
indicator to be changed.

The field separator identifies individual fields in
a multiple-field editing operation. It is always
replaced in the resuit by the fill byte, and the
significance indicator is always off after the field
separator is encountered. '

Message bytes in the pattern are either replaced
by the fill byte or remain unchanged in the result,
depending on the state of the significance indicator.
They may thus pe used for padding, punctuation, or
text in the significant portion of a field or for the
insertion of sign-dependent symbols.

Fill Byte: The first byte of the pattern is used as
the fill byte. The fill byte can have any code and
may concurrently specify a control function. If this
byte is a digit selector or significance starter, the
indicated editing action is taken after the code has
been assigned to the fill byte.

Source Digits: . Each time a digit selector or
significance starter is encountered in the pattern, a
new source digit is examined for placement in the
pattern field. Either the source digit is disregarded,
or it is expanded to the zoned format, by
appending the zone code 1111 on the left, and
stored in place of the pattern byte.

The source digits are selected one byte at a time,
and a source byte is fetched for inspection only
once during an editing operation. Each source digit
is examined only once for a zero value. The
leftmost four bits of each byte are examined first,

I and the rightmost four bits, when they represent a

decimal-digit code, remain available for the next
pattern byte that calls for a digit examination.
When the leftmost four bits contain an invalid digit
code, the operation is terminated.

At the time the left digit of a source byte is
examined, the rightmost four bits are checked for
the existence of a sign code. When a sign code is
encountered in the rightmost four bit positions,
these bits are not treated as a decimal-digit code,
and a new source byte is fetched from storage
when the next pattern byte calls for a source-digit
examination.

When the pattern contains no digit selector or
significance starter, no source bytes are fetched and
examined.

Significance Indicator: The significance indicator
is turned on or off to indicate the significance or
nonsignificance, respectively, of subsequent source
digits or message bytes. Significant source digits
replace their corresponding digit selectors or
significance starters in the result. Significant
message bytes remain unchanged in the result.

The significance indicator, by its on or off state,
indicates also the negative or positive value,
respectively, of a completed source field and is used
as one factor in the setting of the condition code.

The indicator is set to off at the start of the
editing operation, after a field separator is
encountered, or after a source byte is examined
that has a plus code in the rightmost four bit
positions.

The indicator is set to on when a significance
starter is encountered whose source digit is a valid
decimal digit, or when a digit selector is
encountered whose source digit is a nonzero
decimal digit, provided that in both instances the
source byte does not have a plus code in the
rightmost four bit positions.

In all other situations, the indicator is not
changed. A minus sign code has no effect on the
significance indicator.

Result Bytes: The result of an editing operation
replaces and is equal in length to the pattern. It is
composed of pattern bytes, fill bytes, and zoned
source digits.

If the pattern byte is a message byte and the
significance indicator is on, the message byte
remains unchanged in the result. If the pattern
byte is a field separator or if the significance
indicator is off when a message byte is encountered
in the pattern, the fill byte replaces the pattern
byte in the result.

If the digit selector or significance starter is
encountered in the pattern with the significance
indicator off and the source digit zero, the source
digit is considered nonsignificant, and the fill byte
replaces the pattern byte. If the digit selector or
significance starter is encountered with either the
significance indicator on or with a nonzero decimal
source digit, the source digit is considered
significant, is changed to the zoned format, and
replaces the pattern byte in the result.

Condition Code: The sign and magnitude of the
last field edited are used to set the condition code.
The term "last field" refers to those source bytes in
the second operand selected by digit selectors or
significance starters after the last field separator.
When the pattern contains no field separator, there
is only one field, which is considered to be the last
field. The last field is considered to be of zero
length if no digit selectors or significance starters
appear in the pattern, if none appear after the last
field separator, or if the last byte in the pattern is a
field separator.

Condition code 0 is set when the last field is
zero or of zero length.

Condition code 1 is set when the last field edited
is nonzero and the significance indicator is on,
indicating a result less than zero.

Condition code 2 is set when the last field edited
is nonzero and the significance indicator is off,
indicating a result greater than zero.

The figure "Summary of EDIT Functions"
summarizes the functions of the editing operation.
The leftmost four columns list all the significant
combinations of the four conditions that can be
encountered in the execution of an editing
operation. The rightmost two columns list the
action taken for each case-the type of byte placed
in the result field and the new setting of the
significance indicator.

Resulting Condition Code:
o Last field. is zero or of zero length
1 Last fie.ld is less than zero
2 Last field is greater than zero
3

Program Exceptions:
Access (fetch, operand 2; fetch and store,

operand 1)
Data

Chapter 8. Decimal Instructions 8-7

Programming Notes
1. Examples of the use of EDIT are given in

Appendix A.
2. Editing includes sign and punctuation control,

and the suppression and protection of leading
zeros by replacing them with blanks or
asterisks. It also facilitates programmed
blanking of all-zero fields. Several fields may
be edited in one operation, and numeric
information may be combined with text.

3. As a rule, the source is shorter than the pattern,
because each 4-bit source digit is generally
replaced by an 8-bit byte in the result.

4. The total number of digit selectors and
significance starters in the pattern must equal
the number of source digits to be edited.

I 5. If the fill byte is a blank, if no significance
starter appears in the pattern, and if the source
is all zeros, the editing operation blanks the
result field.

Conditions

Previous State
of Significance Source

Pattern Byte Indicator Digit

Digit selector Off 0
1-9
1-9

On 0-9
0-9

Significance starter Off 0
0
1-9
1-9

On 0-9
0-9

Field separator * **

Message byte Off **
On **

Explanation:

6. The resulting condition code indicates whether
or not the last field is all zeros and, if nonzero,
reflects the state of the significance indicator.
The significance indicator reflects the sign of
the source field only if the last source byte
examined contains a sign code in the low-order
digit position. For multiple-field editing
operations, the condition code reflects the sign
and value only of the field following the last
field separator.

7. Significant performance degradation is possible
when the second-operand address of EDIT
designates a location that is less than the length
of the first operand to the left of a 2,048-byte
boundary. This is because the machine may
perform a trial execution of the instruction to
determine if the second operand actually
crosses the boundary. It should be noted that
the second operand of EDIT, while normally
shorter than the first operand, can in the
extreme case have the same length as the first.

Results

State of
Significance

Right Four Indicator at
Source Bits End of Digit
Are Plus Code Result Byte Examination

* Fill byte Off
No Source digit On
Yes Source digit Off
No Source digit On
Yes Source digit Off

No Fill byte On
Yes Fill byte Off
No Source digit On
Yes Source digit Off
No Source digit On
Yes Source digit Off

** Fill byte Off

** Fi 11 byte Off
** Message byte On

* No effect on result byte or on new state of significance indicator
** Not applicable because source is not examined

Summary of EDIT Functions

8-8 IBM 4300 Processors Principles of Operation

EDIT AND MARK

EOMK 0,(L,B,),02(B2) [55]
/

I B2 I
/

'OF' L I B, I 0, ~iJ /
0 8 '6 20 32 36 47

The second operand (the source), which normally
contains one or more decimal numbers in the
packed format, is changed to the zoned format and
modified under the control of the first operand (the
pattern). The address of each first significant
result byte is inserted in general register 1. The
edited result replaces the pattern.

The instruction EDIT AND MARK is identical
to EDIT, except for the additional function of
inserting the address of the result byte in bit
positions 8-31 of general register 1 whenever the
result byte is a zoned source digit and the
significance indicator was off before the
examination. Bits 0-7 of the register are not
changed.

Resulting Condition Code:
o Last field is zero or of zero length
1 Last field is less than zero
2 Last field is greater than zero
3

Program Exceptions:
Access (fetch, operand 2; fetch and store,

operand 1)
Data

Programming Notes

1
1. Examples of the use of EDIT AND MARK are

given in Appendix A.
2. The instruction EDIT AND MARK facilitates

I

the programming of floating currency-symbol
insertion. The address inserted in general
register 1 is one greater than the address where
a floating currency-sign would be inserted. The
instruction BRANCH ON COUNT (BCTR),
with zero in the R2 field, may be used to
reduce the inserted address by one.

3. No address is inserted in general register 1
when the significance indicator is turned on as
a result of encountering a significance starter
with the corresponding source digit zero. To

ensure that general register 1 contains a valid
address when this occurs, the address of the
pattern byte that immediately follows the
significance starter should be placed in the
register beforehand.

4. When multiple fields are edited with one EDIT
AND MARK instruction, the address inserted
in general register 1 applies only to the last
field edited.

S. See also the programming note under EDIT
regarding performance degradation due to a
possible trial execution.

MULTIPLY DECIMAL

MP D,(L"B,),02(L2,B2) [55]

I L, I L2 I B, I / I B2 I ~iJ 'Fe. ' 0,
/

0 8 '2 '6 20 32 36 47

The product of the first operand (the multiplicand)
and the second operand (the multiplier) is placed in
the first-operand location. The operands and result
are in the packed format.

The multiplier length cannot exceed 15 digits
and sign (L2 not greater than seven) and must be
less than the multiplicand length (L2 less than L 1);

otherwise a specification exception is recognized.
The operation is suppressed, and a program
interruption occurs.

The multiplicand must have at least as many
bytes of high-order zeros as the number of bytes in
the multiplier; otherwise, a data exception is
recognized, the operation is terminated, and a
program interruption occurs. This restriction
ensures that no product overflow occurs.

The multiplicand, multiplier, and product are all
signed decimal integers, right-aligned in their fields.
All sign and digit codes of the multiplicand and
multiplier are checked for validity.

The sign of the product is determined by the
rules of algebra from the multiplier and
multiplicand signs, even if one or both operands are
zeros.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2; fetch and store,

operand 1)

Chapter 8. Decimal Instructions 8-9

Data
Specification

Programming Notes
1. An example of the use of MUL TIPL Y

DECIMAL is given in Appendix A.
2. The product cannot exceed 31 digits and sign.

The leftmost digit of the product is always zero.

SHIFT AND ROUND DECIMAL

The first operand is shifted in the direction and for
the number of decimal-digit positions specified by
the second-operand address, and, when shifting to
the right is specified, the absolute value of the first
operand is rounded by the rounding digit, 13, The
first operand and the result are in the packed
format.

The first operand is considered to be in the
packed-decimal format. Only its digit portion is
shifted; the sign position does not participate in the
shifting. Zeros are supplied for the vacated digit
positions. The result replaces the first operand.
Nothing is stored outside of the specified
first-operand location.

The second-operand address, specified by the B2
and D2 fields, is not used to address data; bits
26-31 are the shift value, and the high-order bits of
the address are ignored.

The shift value is a six-bit signed binary integer,
indicating the direction and the number of
decimal-digit positions to be shifted. Positive shift
values specify shifting to the left. Negative shift
values, which are represented in two's complement
notation, specify shifting to the right. The
following are examples of the interpretation of shift
values.

Sh i·ft Va 1 ue
011111
000001
000000
111111
100000

Amount and Direction
31 digits to the left
One digit to the left
No shift
One digit to the right
32 digits to the right

For a right shift, the 13 field, bits 12-15 of the
instruction, are used as a decimal rounding digit.
The first operand, which is treated as positive by
ignoring the sign, is rounded by decimally adding

8-10 IBM 4300 Processors Principles of Operation

the rounding digit to the leftmost of the digits to be
shifted out and by propagating the carry, if any, to
the left. The result of this addition is then shifted

. right. Except for validity checking and the
participation in rounding, the digits shifted out of
the low-order decimal-digit position are ignored
and are lost.

If one or more significant digits are shifted out
of the high-order digit positions during a left shift
decimal overflow occurs. The operation is '
completed. The result is obtained by ignoring the
overflow information, and condition code 3 is set.
If the decimal-overflow mask is one, a program
interruption for decimal overflow takes place.
Overflow cannot occur for a right shift, with or
without rounding, or when no shifting is specified.

In the absence of overflow, the sign of· a zero
result is made positive. Otherwise, the sign of the
result is the same as the original sign, but the code
is the preferred sign code.

A data exception is recognized when the first
operand does not have valid sign and digit codes or
when the rounding digit is not a valid digit code.
The validity of the first-operand codes is checked
even when no shift is specified, and the validity of
the rounding digit is checked even when no
addition for rounding takes place.

Resulting Condition Code:
o Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Overflow

Program Exceptions:
Access (fetch and store, operand 1)
Data
Decimal Overflow

Programming Notes
1. Examples of the use of SHIFT AND ROUND

are given in Appendix A.
2. SHIFT AND ROUND can be used for shifting

up to 31 digit positions left and up to 32 digit
positions right. This is sufficient to clear all
digits of any decimal number even with
rounding.

3. For right shifts, the rounding digit 5 provides
conventional rounding of the result. The
rounding digit 0 specifies truncation without
rounding.

4. When the B2 field is zero, the six-bit shift value
is obtained directly from bits 42-47 of the
instruction.

SUBTRACT DECIMAL

5P D1(L1,B1),D2(L2,B2) [55]

I Ll I L2 I B1 I
/

I B2 I ~U IFBI ° 1 /
0 8 12 16 20 32 36 47

The second operand is subtracted from the first
operand, and the resulting difference is placed in
the first-operand location. The operands and result
are in the packed format.

SUBTRACT DECIMAL is executed the same as
ADD DECIMAL, except that the second operand is
considered to have a sign opposite to the sign in
storage. The second operand in storage remains
unchanged.

Resulting Condition Code:
o Difference is zero
1 Difference is less than zero
2 Difference is greater than zero
3 Overflow

Program Exceptions:
Access (fetch, operand 2; fetch and store,

operand 1)
Data

Decimal Overflow

ZERO AND ADD

ZAP D1(L1,B1),D2(L2,B2) [55]

L--I _F 8_
1

---L1_L_1 -L-I_L 2--,--1 _B 1--,1_~ 1 I B 2 I
o 8 12 16 20 32 36

~u
47

The second operand is placed in the first-operand
location. The operation is equivalent to an
addition to zero. The operand and result are in the
packed format.

Only the second operand is checked for valid
sign and digit codes. Extra high-order zeros are
supplied for the shorter operand if needed.

If the first operand is too short to contain all
significant digits of the second operand, decimal
overflow occurs. The operation is completed. The
result is obtained by ignoring the overflow
information, and condition code 3 is set. If the
decimal-overflow mask is one, a program
interruption for decimal overflow takes place.

A zero result is positive. However, when
significant high-order digits are lost because of
overflow, a zero result has the sign of the second
operand.

The two operands may overlap, provided the
rightmost byte of the first operand is coincident
with or to the right of the rightmost byte of the
second operand. In this case the result is obtained
as if the operands were processed right to left.

Resulting Condition Code:
o Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Overflow

Program Exceptions:
Access (fetch, operand 2; store, operand 1)
Data
Decimal Overflow

Programming Note
An example of the use of ZERO AND ADD is
given in Appendix A.

Chapter 8. Decimal Instructions 8-11

(

Chapter·· 9.. Floating-Point· Instructions

Contents

FIOliting-Poiht Number Representation
Normalization 9:'2
F1oating~Point-Data Format 9-2
Instructions 9-4

ADD NORMALIZED
ADD UNNORMALIZED
COMPARE 9:'8

DIVIDE
HALVE
LOAD

9-8

9-9
9:'10

9-6

9-1

Floating-point instructions are used toperforni
calculations on operands with a wide range of
magnitude. and to yield results scaled to preserve
precision;

The floating-point instructions provide for
loading, rounding, adding, subtracting, comparing,.
multiplying, dividing, and storing; as well· as
controlling the sign of short, long; and extended
operands. Short operands generally permit faster
processing and require less storag.e· than long or
extended operands. On the other hand; long and
extended operands. permit greater precision in
computation. Four fl()ating.;.point registers are
provided. Instructions may perform either
register-to-register. or storage-and-register
operations.

Most of the instructions generate normalized
results, which preserve the highest precision in the
operation. For addition ·and subtraction,.
instructions· are also· provided that generate
unnormalized results~ Either nortualizedor
unnormalizecl numbers may be used as operands for
any floating-point ()peration;

Floating-Point Number Representation
A floating-point number consists of a signed
hexadecimal fraction and an unsigned seven-bit
binary integer called the characteristic. The
characteristic represents a signed exponent and is
obtained by adding 64 to the exponent value
(excess-64 notation). The range of the

LOAD AND TEST 9-10
LOAD COMPLEMENT 9-10
LOAD NEGATIVE 9-11
LOAD POSITIVE 9-11
LOAD ROUNDED 9-11

MULTIPLY 9-12
STORE 9-13

SUBTRACT NORMALIZED
SUBTRACT UNNORMALIZED

9-14
9-14

characteristic is 0 to 127, which corresponds to an
exponent range of -64 to +63. The value of a
floating-point number is the product of its fraction
and the number 16 raised to the power of the
exponent which is represented by its characteristic.

The fraction of a floating-point number is
treated as a hexadecimal number because it is
considered to be multiplied by a. number which is a
power of 16. The name, fraction, indicates that the
radix point is assumed to be immediately to the left
of the leftmost fraction digit. The fraction is
represented by its absolute value. and . a separate
sign bit. The entire number is positive or negative,
depending on whether the sign bit of the fraction is
zero or one, respectively.

When a floating-point operation would cause the
result exponent to exceed 63, the characteristic
wraps around from 127 to 0, and an
exponent-ove:fflow condition exists. Theresult
characteristic is then too small by 128. When an
operation would cause the exponent to be less than
-64, the characteristic wraps around from 0 to 127,
and an exponent-underflow condition exists. The
result characteristic is then too large by 128, except
that a zero characteristic is produced when a true
zero is forced.

A true zero is a floating-point number with a
zero characteristic, zero fraction,and plus sign. A
true zero may arise as the normal result of an
arithmetic operation because of the particular

Chapter 9 . Floating-Point Instructions 9-1

I magnitude of the operands. The result is forced to
be a true zero when:
1. An exponent underflow occurs and the

exponent-underflow mask bit in the PSW is
zero,

2. The result fraction of an addition or subtraction
operation is zero and the significance mask bit
in the PSW is zero, or

3. The operand of HALVE, one or both operands
of MULTIPLY, or the dividend in DIVIDE has
a zero fraction.

When a program interruption for exponent
underflow occurs, a true zero is not forced; instead,
the fraction and sign remain correct, and the
characteristic is too large by 128. When a program
interruption for significance occurs, the fraction
remains zero, the sign is positive, and the
characteristic remains correct.

The sign of a sum, difference, product, or
quotient with a zero fraction is positive. The sign
of a zero fraction resulting from other operations is
established from the operand sign, the same as for
nonzero fractions.

Normalization
A quantity can be represented with the greatest
precision by a floating-point number of a given
fraction length when that number is normalized. A
normalized floating-point number has a nonzero
leftmost hexadecimal fraction digit. If one or more
leftmost fraction digits are zeros, the number is said
to be unnormalized.

Unnormalized numbers are normalized by
shifting the fraction left, one digit at a time, until
the leftmost hexadecimal digit is nonzero and
reducing the characteristic by the number of
hexadecimal digits shifted. A number with a zero
fraction cannot be normalized; its characteristic
either remains unchanged, or it is made zero when
the result is forced to be a true zero.

Floating-point operations may be performed with
or without normalization. Most operations are
performed only with normalization. Addition and
subtraction with short or long operands may be
specified as either normalized or unnormalized.

With unnormalized operations, leftmost zeros in
the result fraction are not eliminated. The result
mayor may not be normalized, depending upon the
original operands.

In both normalized and unnormalized operations,
the initial operands need not be in normalized
form. The operands for multiplication and division
are normalized before the arithmetic process. For

9-2 IBM 4300 Processors Principles of Operation

other normalized operations, normalization takes
place when the intermediate arithmetic result is
changed to the final result.

When the intermediate result of addition,
subtraction, or rounding causes the fraction to
overflow, the fraction is shifted right by one
hexadecimal-digit position and the value one is
placed in the vacated leftmost digit position. The
fraction is then truncated to the final result length,
while the characteristic is increased by one. This
adjustment is made for both normalized and
unnormalized operations.

Programming Note
Up to three leftmost bits of the fraction of a
normalized number may be zeros, since the
nonzero test applies to the entire leftmost
hexadecimal digit.

Floating-Point-Data Format
Floating-point numbers have a 32-bit (short)
format, a 64-bit (long) format, or a 128-bit
(extended) format. Numbers in the short and long
formats may be designated as operands both in
storage and in the floating-point registers, whereas
operands having the extended format can be
designated only in the floating-point registers.

The floating-point registers contain 64 bits each
and are numbered 0, 2, 4, and 6. A short or long
floating-point number requires a single
floating-point register. An extended floating-point
number requires a pair of these registers: either
registers 0 and 2 or register 4 and 6; the two
register pairs are designated as 0 or 4, respectively.
When the R 1 or R2 field of a floating-point
instruction designates any register number other
than 0, 2, 4, or 6 for the short or long format, or
any register number other than 0 or 4 for the
extended format, the operation is suppressed, and a
program interruption for specification exception
occurs.

Short F1oating-Point Number

=ls=l=c=h=a=r=a=c=t=e=r=i=st==iC==1 ==6=-=D=i=9=i=t=~=r=ac==t=io=n===
o 8 31

Long F1oating-Point Nmber
~r-------------~~------/----------~
S Characteristic 14-Digit Fraction
~~------~----~--------/----------~
o 8 63

(

Extended Floating-Point Number
High-Order Part

rlr-------------------r-------------/------------
High-Order

S Characteristic
Leftmost 14 Digits

of 28-Digit Fraction
~------------~---------/----------~
o 8 63

Low-Order Part

Low-Order Rightmost 14 Digits I
r.-------------~--------/----------~

S Characteristic of 28-Digit Fraction
~------------~---------/----------~
64 72 127

In all formats, the first bit (bit 0) is the sign bit
(S). The next seven bits are the characteristic. In
the short and long formats, the remaining bits
constitute the fraction, which consists of six or 14
hexadecimal digits, respectively.

A short floating-point number occupies only the
leftmost 32 bit positions of a floating-point register.
The rightmost 32 bit positions of the register are
ignored when used as an operand in the short
format and remain unchanged when a short result
is placed in the register.

An extended floating-point number has a
28-digit fraction and consists of two long
floating-point numbers which are called the
high-order and low-order parts. The high-order
part may be any long floating-point number. The
fraction of the high-order part contains the leftmost
14 hexadecimal digits of the 28-digit fraction. The
characteristic and sign of the high -order part are
the characteristic and sign of the extended
floating-point number. If the high-order part is
normalized, the extended number is considered
normalized. The fraction of the low-order part
contains the rightmost 14 digits of the 28-digit
fraction. The sign and characteristic of the
low-order part of an extended'operand are ignored.

When a result in the extended format is placed
in a register pair, the sign of the low-order part is
made the same as that of the high-order part, and,
unless the result is a true zero, the low-order
characteristic is made 14 less than the high-order
characteristic. When the subtraction of 14 would
cause the low-order characteristic to become less
than zero, the characteristic is made 128 greater
than its correct value. Exponent underflow is
indicated only when the high-order characteristic
underflows.

When an extended result is made a true zero,
both the high-order and low-order parts are made a
true zero.

The range covered by the magnitude (M) of a
normalized floating-point number depends on the
format.

In the short format:

16 65 ~ M ~ (1 - 16 6) x 1663

In the long format:

16 65 ~ M ~ (1 - 16 14) x 1663

In the extended format:

16 65 ~ M ~ (1-16 28) x 1663

In all formats, approximately:

5.4 x 10 79 ~ M ~ 7.2 x 1075

Although the final result of a floating-point
operation has six hexadecimal fraction digits in the
short format, 14 fraction digits in the long format,
and 28 fraction digits in the extended format
intermediate results have one additional '
hexadecimal digit on the right. This digit is called
the guard digit. The guard digit may increase the
precision of the final result because it participates

. in addition, subtraction, and comparison operations
and in the left shift that occurs during
normalization.

The entire set of floating-point operations is
available for both short and long operands. These
instructions generate a result that has the same
format as the operands, except that for
MUL TIPL Y, a long product is produced from a
short multiplier and multiplicand. Extended
floating-point instructions are provided only for
normalized addition, subtraction, and

I ?Iultipli~ation. Two additional multiplication
InstructIOns generate an extended product from a
long multiplier and multiplicand. The rounding
instructions provide for rounding from extended to
long format and from long to short format.

Programming Notes
1. A long floating-point number can be converted

to the extended format by appending any long
floating-point number having a zero fraction,
ihcluding a true zero. Conversion from the
extended to the long format can be
accomplished by truncation or by means of
LOAD ROUNDED.

Chapter 9. Floating-Point Instructions 9-3

2. In the absence of an exponent overflow or
exponent underflow, the long floating-point
number constituting the low-order part of an
extended result correctly expresses the value of
the low-order part of the extended result when
the characteristic of the high-order part is 14 or
higher. This applies also when the result is a
true zero. When the high-order characteristic
is less than 14 but the number is not a true
zero, the low-order part, when addressed as a
long floating-point number, does not have the
correct characteristic value.

3. The entire fraction of an extended result
participates in normalization. The low-order
part alone mayor may not appear to be a
normalized long floating-point number,
depending on whether the 15th digit of the
normalized 28-digit fraction is nonzero or zero.

Instructions
The floating-point instructions and their
mnemonics, formats, and operation codes are listed
in the figure "Summary of Floating-Point
Instructions." The figure also indicates when the
condition code is set and the exceptional conditions
in operand designations, data, or results that cause
a program interruption.

9-4 IBM 4300 Processors Principles of Operation

Mnemonics for the floating-point instructions
have an R as the last letter when the instruction is
in the RR format. For instructions where all
operands are the same length, certain letters are
used to represent operand-format length and
normalization, as follows:

E short normalized
U short unnormalized
D long normalized
W long unnormalized
X extended normalized

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic
operand designation for the assembler language are
shown with each instruction. For a
register-to-register operation using LOAD (short),
for example, LER is the mnemonic and R j,R 2 the
operand designation.

Mne- Op
Name monic Characteristics Code

ADD NORMALIZED (extended) AXR RR C SP EU EO LS 36
ADD NORMALI ZED (long) ADR RR C SP EU EO LS 2A
ADD NORMALIZED (long) AD RX C A SP EU EO LS 6A
ADD NORMALIZED (short) AER RR C SP EU EO LS 3A
ADD NORMALIZED (short) AE RX C A SP EU EO LS 7A

ADD UNNORMALIZED (long) AWR RR C SP EO LS 2E
ADD UNNORMALIZED (long) AW RX C A SP EO LS 6E
ADD UNNORMALIZED (short) AUR RR C SP EO LS 3E
ADD UNNORMALIZED (short) AU RX C A SP EO LS 7E
COMPARE (long) CDR RR C SP 29

COMPARE (long) CD RX C A SP 69
COMPARE (short) CER RR C SP 39
COMPARE (short) CE RX C A SP 79
DIVIDE (long) DDR RR SP EU EO FK 2D
DIVIDE (long) DD RX A SP EU EO FK 6D

DIVIDE (short) DER RR SP EU EO FK 3D
DIVIDE (short) DE RX A SP EU EO FK 70
HALVE (long) HDR RR SP EU 24
HALVE (short) HER RR SP EU 34
LOAD (long) LOR RR SP 28

LOAD (long) LD RX A SP 68
LOAD (short) LER RR SP 38
LOAD (short) LE RX A SP 78
LOAD AND TEST (long) LTDR RR C SP 22
LOAD AND TEST (short) LTER RR C SP 32

LOAD COMPLEMENT (long) LCDR RR C SP 23
LOAD COMPLEMENT (short) LCER RR C SP 33
LOAD NEGATIVE (long) LNDR RR C SP 21
LOAD NEGATIVE (short) LNER RR C SP 31
LOAD POSITIVE (long) LPDR RR C SP 20

LOAD POSITIVE (short) LPER RR C SP 30
LOAD ROUNDED (extended to long) LRDR RR SP EO 25
LOAD ROUNDED (long to short) LRER RR SP EO 35
MULTIPLY (extended) MXR RR SP EU EO 26
MULTIPLY (long) MDR RR SP EU EO 2C

MULTIPLY (long) MD RX A SP EU EO 6C
MULTIPLY (long to extended) MXDR RR SP EU EO 27
MULTIPLY (long to extended) MXD RX A SP EU EO 67
MULTIPLY (short to long) MER RR SP EU EO 3C
MULTIPLY (short to long) ME RX A SP EU EO 7C

STORE (long) STD RX A SP ST 60
STORE (short) STE RX A SP ST 70
SUBTRACT NORMALIZED (extended) SXR RR C SP EU EO LS 37
SUBTRACT NORMALIZED (long) SDR RR C SP EU EO LS 2B
SUBTRACT NORMALIZED (long) SD RX C A SP EU EO LS 6B

SUBTRACT NORMALIZED (short) SER RR C SP EU EO LS 3B
SUBTRACT NORMALIZED (short) SE RX C A SP EU EO LS 7B
SUBTRACT UNNORMALIZED (long) SWR RR C SP EO LS 2F
SUBTRACT UNNORMALIZED (lon'g) SW RX C A SP EO LS 6F
SUBTRACT UNNORMALIZED (short) SUR RR C SP EO LS 3F
SUBTRACT UNNORMALIZED (short) SU RX C A SP EO LS 7F

Explanation:

A Access exceptions
C Condition code is set
EO Exponent-overflow exception
EU Exponent-underflow ,exception
FK Floating-paint-divide exception
LS Significance exception
RR RR instruction format
RX RX instruction format
SP Specification exception
ST PER storage-alteration event

Summary of Floating-Point Instructions

Chapter 9. Floating-Point Instructions 9-5

ADD NORMALIZED

(RR, Short Operands]

'3A 1

o 8 12 15

AE R 1 ,02(X2, B2) (RX, Short. Operands]

'7A'
1 R1 1

X2·1 B2 I 02

0 8 12 16 20 31

(RR, Long Operands}

'2A 1

o 8 12 15

AD R 1 ,02 (X 2, B 2) [RX, Long Operands]

16A' I R1 IX2 IB2 I 02

0 8 12 16 20 31

AXR R1,R2 [RR, Extended Op~rands]

'36 ' R1 ,. R21

0 8 12 15

The second operand is added to the first operand,
and the normalized sum. is placed· ill the
first-operand location.

Addition of two floating-point numbers consists
in characteristic· comparison, fraction alignment,
and· fraction addition~ The characteristics of·the
two. operands are compared, and the fraction
accompanying the smaller characteristic is aligned
with the. other fraction bya right shift, with its
characteristic increased by one for each
hexadecimal digit of shift until the two
characteristics· agree~

When a fraction is· shifted. right during
alignment,the leftmost· hexadecimal· digit shifted
out is retained as a guard digit. The ftaction that is
not shifted . is considered to be extended with a zero
in the guard-digit position. When no alignment

9-6 IBM 4300 Processors Principles of Operation

shift occurs, both operands are considered to be
extended with zeros in the guard;..digit position.
The fractions are then added algebraically to form
an intermediate sum.

The intermediate-sum fraction consists of seven
(short format), 15 (long format), or 29 (extended
format) hexadecimal digits, including the guard
digit, and a possible carry. If a carry is present, the
sum is shifted right one digit position so that the
carry becomes the leftmost digit of the fraction,
and the characteristic is increased by one.

If the addition produces no carry, the
intermediate-sum fraction is shifted left as
necessary to eliminate any leading hexadecimal
zero digits resulting from the addition, provided the
fraction is not zero. Vacated rightmost digit
positions are filled with zeros, and the
characteristic is reduced by the number of
hexadecimal digits of shift. The fraction thus
normalized is then truncated on the right to six
(short format), 14 (long format), or 28 (extended
format) hexadecimal digits. In the extended
format, a characteristic is generated for the
low-order part, which is 14 less than the high-order
characteristic.

The sign of the sum is determined by the rules. of
algebra, unless all digits of the intermediate-sum
fraction are zero, in which case the sign is made
plus.

An exponent-overflow exception is recognized
when a carry from the leftmost position of the
intermediate-sum fraction would cause the
characteristic of the normalized sum to exceed 127.
The operation is completed by making the result
characteristic 128 less than the correct value, and a
program interruption for exponent overflow takes
place. The result sign and fraction remain correct,
and, for AXR, the characteristic of the low-order
part remains correct.

An exponent-underflow exception is recognized
when the characteristic of the normalized sum
would he . less than zero and the fraction is not
zero. If the exponent-underflow mask bit is one
the operation is completed by making the result '
characteristic 128 greater than the correct value.
The result sign and fraction remain correct, and a
program interruption for exponent underflow takes
place. When exponent underflow occurs and the
exponent-underflow mask bit is· zero, a program
interruption does not take place; instead,the
operation is completed by making the result a true
zero. For AXR, no exponent underflow is
recognized when the characteristic of the low-order

(

part would be less than zero but the characteristic
of the high-order part is zero or greater.

The result fraction is zero when the
intermediate-sum fraction, including the guard
digit, is zero. With a zero result fraction, the
action depends on the setting of the significance
mask bit. If the significance mask bit is one, no
normalization occurs, the intermediate and final
result characteristics are the same, and a program
interruption for significance takes place. If the
significance mask bit is zero, the program
interruption does not occur; instead, the result is
made a true zero.

The Rl field for AER, AE, ADR, and AD, and
the R2 field for AER and ADR must designate
register 0, 2, 4, or 6. The Rl and R2 fields for
AXR must designate register 0 or 4. Otherwise, a
specification exception is recognized.

Resulting Condition Code:
o Result fraction is zero
1 Result is less than zero
2 Result is greater than zero
3

Program Exceptions:
Access (fetch, operand 2 of AE and AD only)
Exponent Overflow
Exponent Underflow
Significance
Specification

Programming Notes
1. Interchanging the two operands in a

floating-point addition does not affect the value
of the sum.

2. The ADD NORMALIZED instructions
normalize the sum but not the operands. Thus,
if one or both operands are unnormalized,
precision may be lost during fraction alignment.

ADD UNNORMALIZED

[RR, Short Operands]

o 8 12 15

AU [RX, Short Operands]

o 8 12 16 20 31

[RR, Long Operands]

o 8 12 15

AW R1,D2(X2,B2) [RX, Long Operands]

I 6E I I R 1 I X2 I B2 D2

o 8 12 16 20 31

The second operand is added to the first operand,
and the unnormalized sum is placed in the
first-operand location.

The execution of ADD UNNORMALIZED is
identical to that of ADD NORMALIZED, except
that:
1. When no carry is· present after the addition, the

intermediate-sum fraction is truncated to the
proper result-fraction length without a left shift
to eliminate leading hexadecimal zeros and
without the corresponding reduction of the
characteristic.

2. Exponent underflow cannot occur.
3. The guard digit does not participate in the

recognition of a zero result fraction. A zero
result fraction is recognized when the fraction,
that is, the intermediate-sum fraction, excluding
the guard digit, is zero.

The R 1 and R2 fields must designate register 0,
2, 4, or 6; otherwise, a specification exception is
recognized.

Resulting Condition Code:
o Result fraction is zero
1 Result is less than zero
2 Result is greater than zero
3

Program Exceptions:
Access (fetch, operand 2 of AU and AW only)
Exponent Overflow
Significance
Specification

Programming Note
Except when the result is made a true zero, the
characteristic of the result of ADD
UNNORMALIZED is equal to the greater of the
two operand characteristics, increased by one if the
fraction addition produced a carry.

Chapter 9. Floating-Point Instructions 9-7

COMPARE

[RR, Short Operands]

o 8 12 15

CE [RX, Short Operands]

179 I I R 1 I X2 I B2

o 8 12 16 20 31

CDR [RR, Long Operands]

o 8 12 15

CD [RX, Long Operands]

169 I I R 1 I X2 I B2

o 8 12 16 20 31

The first operand is compared with the second
operand, and the condition code is set to indicate
the result.

The comparison is algebraic and follows the
procedure for normalized floating-point
subtraction, except that the difference is discarded
after setting the condition code and both operands
remain unchanged. When the difference, including
the guard digit, is zero, the operands are equal.
When a nonzero difference is positive or negative,
the first operand is high or low, respectively.

An exponent-overflow, exponent-underflow, or
significance exception cannot occur.

The Rl and R2 fields must designate register 0,
2, 4, or 6; otherwise, a specification exception is
recognized.

Resulting Condition Code: ° Operands are equal
1 First operand is low
2 First operand is high
3

Program Exceptions:
Access (fetch, operand 2 of CE and CD only)
Specification

9-8 IBM 4300 Processors Principles of Operation

Programming Notes
1. An exponent inequality alone is not sufficient

to determine the inequality of two operands
with the same sign, because the fractions may
have different numbers of leading hexadecimal
zeros.

2. Numbers with zero fractions compare equal
even when they differ in sign or characteristic.

DIVIDE

[RR, Short Operands]

o 8 12 15

DE R1,D2(X2,B2) [RX, Short Operands]

I 7D I I R 1 I X2 I B2 I D2

o 8 12 16 20 31

[RR, Long Operands]

o 8 12 15

DD R1,D2(X2,B2) [RX, Long Operands]

I 6D I I R 1 I X2 I B2 I D2

o 8 12 16 20 31

The first operand (the dividend) is divided by the
second operand (the divisor), and the normalized
quotient is placed in the first-operand location. No
remainder is preserved.

Floating-point division consists in characteristic
subtraction and fraction division. The operands are
first normalized to eliminate leading hexadecimal
zeros. The difference between the dividend and
divisor characteristics of the normalized operands,
plus 64, is used as the characteristic of an
intermediate quotient.

All dividend and divisor fraction digits
participate in forming the fraction of the
intermediate quotient. The intermediate-quotient
fraction can have no leading hexadecimal zeros, but
a right-shift of one digit position may be necessary

/

~

with an increase of the characteristic by one. The
fraction is then truncated to the proper result­
fraction length.

An exponent-overflow exception is recognized
when the characteristic of the final quotient would
exceed 127 and the fraction is not zero. The
operation is completed by making the characteristic
128 less than the correct value. The result is
normalized, and the sign and fraction remain
correct. A program interruption for exponent
overflow occurs.

An exponent-underflow exception exists when
the characteristic of the final quotient would be less
than zero and the fraction is not zero. If the
exponent-underflow mask bit is one, the operation
is completed by making the characteristic 128
greater than the correct value, and a program
interruption for exponent underflow occurs. The
result is normalized, and the sign and fraction
remain correct. If the exponent-underflow mask
bit is zero, a program interruption does not take
place; instead, the operation is completed by
making the quotient a true zero.

Exponent underflow does not occur when an
operand characteristic becomes less than zero
during normalization of the operands or when the
intermediate-quotient characteristic is less than
zero, as long as the final quotient can be
represented with the correct characteristic.

When the divisor fraction is zero, the operation
is suppressed, and a program interruption for
floating-point divide occurs. This includes the
division of zero by zero.

When the dividend fraction is zero, but the
divisor fraction is nonzero, the quotient is made a
true zero. No exponent overflow or exponent
underflow occurs.

The sign of the quotient is determined by the
rules of algebra, except that the sign is always plus
when the quotient is made a true zero.

The Rl field for DER, DE, DDR, and DD, and
the R2 field for DER and DDR, must designate
register 0, 2, 4, or 6. Otherwise, a specification
exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2 of DD and DE only)
Exponent Overflow
Exponent Underflow
Floating-Point Divide
Specification

HALVE

[RR, Short Operands]

o 8 12 15

[RR, Long Operands]

o 8 12 15

The second operand is divided by 2, and the
normalized quotient is placed in the first-operand
location.

The fraction of the second operand is shifted
right one bit position, placing the contents of the
rightmost bit position into the leftmost bit position
of the guard digit and introducing a zero into the
leftmost bit position of the fraction. The
intermediate result, including the guard digit, is
then normalized, and the final result is truncated to
the proper length.

An exponent-underflow exception exists when
the characteristic of the final result would be less
than zero and the fraction is not zero. If the
exponent-underflow mask bit is one, the operation
is completed by making the characteristic 128
greater than the correct value, and a progratp.
interruption for exponent underflow occurs. The
result is normalized, and the sign and fraction
remain correct. If the exponent-underflow mask
bit is zero, a program interruption does not take
place; instead, the operation is completed by
making the result a true zero.

When the fraction of the second operand is zero,
the result is made a true zero, and no exponent
underflow occurs.

The sign of the result is the same as that of the
second operand, except that the sign is always plus
when the quotient is made a true zero.

The R 1 and R2 fields must designate register 0,
2, 4, or 6; otherwise, a specification exception is
recognized.

Condition Code: The code remains unchanged.

Program Exceptions:
Exponent Underflow
Specification

Chapter 9. Floating-Point Instructions 9-9

Programming Notes
1. With short and long operands, the halve

operation is identical to a divide operation with
the number 2 as divisor. Similarly, the result of
HDR is identical to that of MD or MDR with
one-half as a multiplier. No multiply operation
corresponds to HER, since no multiply
operation produces short results.
The result of HALVE is zero only when the
second-operand fraction is zero, or when
exponent underflow occurs with the
exponent-underflow mask set to zero. A
fraction with zeros in every bit position, except
for a one in the rightmost bit position, does not
become zero after the right shift. This is
because the one bit is preserved in the
guard-digit position and becomes the leftmost
bit after normalization of the result.

LOAD

[RR, Short Operands]

o 8 12 15

LE [RX, Short Operands]

o 8 12 16 20 31

LOR R1,R2 [RR, Long Operands]

128 1 R1 R2

o 8 12 15

LO [RX, Long Operands]

o 8 12 16 20 31

The second operand is placed unchanged in the
first-operand location.

The R 1 and R2 fields must designate register 0,
2, 4, or 6; otherwise, a specification exception is
recognized.

Condition Code: The code remains unchanged.

9-10 IB M 4300 Processors Principles of Operation

Program Exceptions:
Access (fetch, operand 2 of LE and LD only)
Specification

LOAD AND TEST

[RR, Short Operands]

o 8 12 15

[RR, Long Operands]

o 8 12 15

The second operand is placed unchanged in the
first-operand location, and its sign and magnitude
are tested to determine the setting of the condition
code.

The R 1 and R2 fields must designate register 0,
2, 4, or 6; otherwise, a specification exception is
recognized.

Resulting Condition Code: ° Result fraction is zero
1 Result is less than zero
2 Result is greater than zero
3

Program Exceptions:
Specification

Programming Note
When the same register is specified as the
first-operand and second,...operand location, the
operation is equivalent to a test without data
movement.

LOAD COMPLEMENT

LeER R1,R2 [RR, Short Operands]

o 8 12 15

[RR, Long Operands]

o 8 12 15

The second operand is placed in the first-operand
I location with the sign bit inverted.

The sign bit is inverted, even if the fraction is
zero. The characteristic and fraction are not
changed.

The R1 and R2 fields must designate register 0,
2, 4, or 6; otherwise, a specification exception is
recognized.

Resulting Condition Code:
o Result fraction is zero
1 Result is less than zero
2 Result is greater than zero
3

Program Exceptions:
Specification

LOAD NEGATIVE

LNER Rl,R2 [RR, Short Operands]

'31' I R1 I R2

o 8 12 15

[RR, Long Operands]

o 8 12 15

The second operand is placed in the first-operand
location with the sign made minus.

The sign bit is made one, even if the fraction is
zero. The characteristic and fraction are not
changed.

The R1 and R2 fields must designate register 0,
2, 4, or 6; otherwise, a specification exception is
recognized.

Resulting Condition Code:
o Result fraction is zero
1 Result is less than zero
2
3

Program Exceptions:
Specification

LOAD POSITIVE

[RR, Short Operands]

o 8 12 15

[RR, Long Operands]

o 8 12 15

The second operand is placed in the first-operand
location with the sign made plus.

The sign bit is made zero. The characteristic
and fraction are not changed.

The R1 and R2 fields must designate register 0,
2, 4, or 6; otherwise, a specification exception is
recognized.

Resulting Condition Code:
o Result fraction is zero
1
2 Result is greater than zero
3

Program Exceptions:
Specification

LOAD ROUNDED

LRER R1,R2
[RR, Long Operand 2, Short Operand 1]

o 8 12 15

LRDR R1,R2
[RR, Extended Operand 2, Long Operand 1]

o 8 12 15

The second operand is rounded to the next shorter
format, and the result is placed in the first-operand
location.

Rounding consists in adding a one in bit position
32 or 72 of the long or extended second operand,
respectively, and propagating any carry to the left.
The sign of the fraction is ignored, and addition is-

Chapter 9 . Floating-Point Instructions 9-11

performed as if the fractions were positive.

I If rounding causes a carry out of the leftmost
hexadecimal digit position of the fraction, the
fraction is shifted right one digit position so that
the carry becomes the leftmost digit of the fraction,
and the characteristic is increased by one.

The sign of the result is the same as the sign of

I the second operand. There is no normalization to
eliminate leading zeros.

An exponent-overflow exception exists when
shifting the fraction right would cause the
characteristic to exceed 127. The operation is
completed by loading a number whose
characteristic is 128 less than the correct value, and
a program interruption for exponent overflow
occurs. The result is normalized, and the sign and
fraction remain correct.

Exponent-underflow and significance exceptions
cannot occur.

The Rl field must designate register 0, 2, 4, or 6;
the Rz field of LRER must designate register 0, 2,
4, or 6; and the Rz field of LRDR must designate
register ° or 4. Otherwise, a specification
exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:
Exponent Overflow
Specification

MULTIPLY

MER R1,R2
[RR, Short Multiplier and Multiplicand,
Long Product]

, 3C' I R 1 I R2 I
o 8 12 15

ME R1,D2(X2,B2)
[RX, Short Multiplier and Multiplicand,
Long Product]

o 8 12 16 20 31

MDR [RR, Long Operands]

o 8 12 15

9-1Z IBM 4300 Processors Principles of Operation

MD [RX, Long Operands]

o 8 12 16 20 31

MXDR R1,R2
[RR, Long Multiplier and Multiplicand,
Extended Product]

'27' R1 I R2 I
o 8 12 15

MXD R1,D2(X2,B2)
[RX, Long Multiplier and Multiplicand,
Extended Product]

'67'

o 8 12 16 20 31

[RR, Extended Operands]

'26'

o 8 12 15

The normalized product of the second operand (the
multiplier) and the first operand (the multiplicand)
is placed in the first-operand location.

Multiplication of two floating-point numbers
consists in exponent addition and fraction
multiplication. The operands are first normalized
to eliminate leading hexadecimal zeros. The sum of
the characteristics of the normalized operands, less
64, is used as the characteristic of the intermediate
product.

The fraction of the intermediate product is the
exact product of the normalized operand fractions.
When the intermediate-product fraction has one
leading hexadecimal zero digit, the fraction is
shifted left one digit position, bringing the contents
of the guard-digit position into the rightmost
position of the result fraction, and the
intermediate-product characteristic is reduced by
one. The fraction is then truncated to the proper
result-fraction length.

For MER and ME, the multiplier and
multiplicand fractions have six hexadecimal digits;

the product fraction has the full 14 digits of the
long format, with the two rightmost fraction digits
always zeros. For MDR and MD, the multiplier
and multiplicand fractions have 14 digits, and the
final product fraction is truncated to 14 digits. For
MXDR and MXD, the multiplier and multiplicand
fractions have 14 digits, with the multiplicand
occupying the high-order part of the first operand;
the final product fraction contains 28 digits and is
an exact product of the operand fractions. For
MXR, the multiplier and multiplicand fractions
have 28 digits, and the final product fraction is
truncated to 28 digits.

An exponent-overflow exception is recognized
when the characteristic of the final product would
exceed 127 and the fraction is not zero. The
operation is completed by making the characteristic
128 less than the correct value. If, for extended
results, the low-order characteristic would also
exceed 127, it, too, is decreased by 128. The result
is normalized, and the sign and fraction remain
correct. A program interruption for exponent
overflow occurs.

Exponent overflow is not recognized when the
intermediate-product characteristic is initially 128
but is brought back within range by normalization.

An exponent-underflow exception exists when
the characteristic of the final product would be less
than zero and the fraction is not zero. If the
exponent-underflow mask bit is one, the operation
is completed by making the characteristic 128
greater than the correct value, and a program
interruption for exponent underflow occurs. The
result is normalized, and the sign and fraction
remain correct. If the exponent-underflow mask
bit is zero, program interruption does not take
place; instead, the operation is completed by
making the product a true zero. For extended
results, exponent underflow is not recognized when
the low-order characteristic would be less than zero
but the high-order characteristic is equal to or
greater than zero.

Exponent underflow does not occur when the
characteristic of an operand becomes less than zero
during normalization of the operands, as long as
the final product can be represented with the
correct characteristic.

When either or both operand fractions are zero,
the result is made a true zero, and no exponent
overflow or exponent underflow occurs.

The sign of the product is determined by the
rules of algebra, except that the sign is always zero
when the result is made a true zero.

The Rl field for MER, ME, MDR, and MD, and
the R2 field for MER, MDR, and MXDR must
designate register 0, 2, 4, or 6. The Rl field for
MXDR, MXD, and MXR, and the R2 field for
MXR must designate register ° or 4. Otherwise, a
specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2 of ME, MD, and MXD

only)
Exponent Overflow
Exponent Underflow
Specification

Programming Note
Interchanging the two operands in a floating-point
multiplication does not affect the value of the
product.

STORE

STE [RX, Short Operands]

o 8 12 16 20 31

STO [RX, Long Operands]

o 8 12 16 20 31

The first operand is placed unchanged in the
second-operand location.

The Rl field must designate register 0, 2, 4, or 6;
otherwise, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)
Specification

Chapter 9. Floating-Point Instructions 9-13

SUBTRACT NORMALIZED

[RR, Short Operands]

o 8 12 15

SE R1,02(X2,B2) [RX, Short Operands]

I 7B I I R 1 I X2 I B2 02

o 8 12 16 20 31

[RR, Long Operands]

o 8 12 15

SO R1,02(X2,B2) [RX, Long Operands]

I 6B I I R 1 I X2 I B2 02

o 8 12 16 20 31

SXR R1,R2 [RR, Extended Operands]

137 I I R 1 I R2

o 8 12 15

The second operand is subtracted from the first
operand, and the normalized difference is placed in
the first-operand location.

The execution of SUBTRACT NORMALIZED is
identical to that of ADD NORMALIZED, except
that the second operand participates in the
operation with its sign bit inverted.

The Rl field of SER, SE, SDR, and SD, and the
R2 field of SER and SDR must designate register 0,
2,4, or 6. The Rl and R2 fields of SXR must
designate register 0 or 4. Otherwise, a
specification exception is recognized.

Resulting Condition Code:
o Result fraction is zero
1 Result is less than zero
2 Result is greater than zero
3

9-14 IBM 4300 Processors Principles of Operation

Program Exceptions:
Access (fetch, operand 20f SE and SD only)
Exponent Overflow
Exponent Underflow
Significance
Specification

SUBTRACT lJ.NNORMALIZED

SUR R1,R2 [RR, Short Operands]

o 8 12 15

SU R1,02(X2,B2) [RX, Short Operands]

I 7F I I R 1 I X2 I B2 02

o 8 12 16 20 31

[RR, Long Operands]

o 8 12 15

SW R1,02(X2,B2) [RX, Long Operands]

I 6F I I R 1 I X2 I B2 02

o 8 12 16 20 31

The second operand is subtracted from the first
operand, and the unnormalized difference is placed
in the first-operand location.

The execution of SUBTRACT UNNORMAL­
IZED is identical to that of ADD
UNNORMALIZED, except that the second
operand participates in the operation with its sign
bit inverted.

The Rl and R2 fields must designate register 0,
2, 4, or 6; otherwise, a specification exception is
recognized.

Resulting Condition Code:
o Result fraction is zero
1 Result is less than zero
2 Result is greater than zero
3

Program Exceptions:
Access (fetch, operand 2 of SU and SW only)
Exponent Overflow
Significance
Specification

Chapter 9 . Floating-Point Instructions 9-15

Chapter 10. Control Instructions

Contents

CLEAR PAGE 10-3

CONNECT PAGE 10~

DECONFIGURE PAGE 10-3

DIAGNOSE 10-4

DISCONNECT PAGE 10-5
INSERT PAGE BITS 10-5

INSERT PSW KEY 10-5

INSERT STORAGE KEY 10-5

LOAD CONTROL 10-6

LOAD FRAME INDEX
LOAD PSW 10-7

MAKE ADDRESSABLE

MAKE UNADDRESSABLE

RESET REFERENCE BIT

10-6

10-7

10-7

10-8
RETRIEVE STATUS AND PAGE 10-8

The control instructions include all privileged
instructions, except the input/ output instructions,
which are described in Chapter 12, "Input/Output
Operations. "

Privileged instructions may be executed only
when the CPU is in the supervisor state. An
attempt to execute a privileged instruction in the
problem state generates a privileged-operation
exception.

The control instructions and their mnemonics,
formats, and operation codes are listed in the figure

SET CLOCK 10-8
SET CLOCK COMPARATOR 10-9

SET CPU TIMER 10-9

SET PAGE BITS 10-9

SET PSW KEY FROM ADDRESS 10-10

SET STORAGE KEY 10-10

SET SYSTEM MASK 10-11
STORE CAPACITY COUNTS 10-11

STORE CLOCK COMPARATOR

STORE CONTROL 10-12

STORE CPU ID 10-12

STORE CPU TIMER 10-13

STORE THEN AND SYSTEM MASK

STORE THEN OR SYSTEM MASK

10-11

10-13

10-13

"Control Instructions." The figure also indicates
when the condition code is set and the exceptional
conditions in operand designations, data, or results
that cause a program interruption.

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic
operand designation for the assembler language are
shown with each instruction. For LOAD PSw, for
example, LPSW is the mnemonic and D2(B;JJ the
operand designation.

Chapter 10. Control Instructions 10-1

Mne- Op
Name monic Characteristics Code

CLEAR PAGE CLRP S P A1 PS ST B215
CONNECT PAGE CTP RS C P A1 SP PT R BO
DECONFIGURE PAGE DEP S P Al SP PT B21B
DIAGNOSE P OM 83
DISCONNECT PAGE DCTP S C P Al SP PT B21C

INSERT PAGE BITS IPB RS P A1 R B4
INSERT PSW KEY IPK S P R B20B
INSERT STORAGE KEY ISK RR P Al SP R 09
LOAD CONTROL LCTL RS P A SP B7
LOAD FRAME INDEX LFI RS C P R B8

LOAD PSW LPSW S L P A SP $ 82
MAKE ADDRESSABLE MAD S C P Al PT B21D
MAKE UNADDRESSABLE MUN S C P Al SP PT B21E
RESET REFERENCE BIT RRB S C P Al B213
RETRIEVE STATUS AND PAGE RSP SS C P A ST 08

SET CLOCK SCK S C P A SP B204
SET CLOCK COMPARATOR SCKC S P A SP B206
SET CPU TIMER SPT S P A SP B208
SET PAGE BITS SPB RS C P Al B5
SET PSW KEY FROM ADDRESS SPKA S P B20A

SET STORAGE KEY SSK RR P Al SP 08
SET SYSTEM MASK SSM S P A SP SO 80
STORE CAPACITY COUNTS STCAP S P A ST B21F
STORE CLOCK COMPARATOR STCKC S P A SP ST B207
STORE CONTROL STCTL RS P A SP ST B6

STORE CPU 10 STIDP S P A SP ST B202
STORE CPU TIMER STPT S P A SP ST B209
STORE THEN AND SYSTEM MASK STNSM SI P A ST AC
STORE THEN OR SYSTEM MASK STOSM SI P A SP ST AD

Explanation:

$ Causes serialization
A Access exceptions
A1 Access exceptions; not all access exceptions may occur; see instruction

description for details.
C Condition code is set
OM DIAGNOSE may generate various program exceptions and may change the condition code
L New condition code loaded
P Privileged-operation exception
PS Page-state exception
PT Page-transition exception
R PER general-register-alteration event
RR RR instruction format
RS RS instruction format
S S instruction format
SI SI instruction format
SO Special-operation exception
SP Specification exception
SS SS instruction format
ST PER storage-alteration event

Summary of Control Instructions

10-2 IBM 4300 Processors Principles of Operation

CLEAR PAGE

[5]

'B215'

o 16 20 31

The storage page designated by the second-operand
address is cleared, which is equivalent to storing
2,048 zero bytes at that location. The page is
validated. .

Bits 8-20 of the second-operand address
designate the page. Bits 0-7 and 21-31 of the
address are ignored.

The page may be addressable or connected; if
the page is disconnected, a page-state exception is
raised, and the operation is suppressed.

Condition Code: The code remains unchanged.

Program Exceptions:
Addressing (operand 2)
Page State
Privileged Operation
Protection (store, operand 2)

Programming Note
Page 0 may be cleared, but it can only be in the
addressable state.

CONNECT PAGE

o 8 12 16 20 31

If disconnected, the storage page designated by the
second-operand address enters the connected state.
If already connected, the page remains in the
connected state. The frame index of the page
frame that is connected to the page is returned in
the general register designated by the R 1 field.

Bits 8-20 of the second-operand address
designate the page. Bits 0-7 and 21-31 of the
address are ignored. Bits 12-15 of the instruction
are ignored.

If bits 8-20 of the second-operand address are
zeros, that is, page 0 is specified, a specification
exception is recognized, and the operation is
suppressed.

If the page is in the addressable state, a
page-transition exception is recognized, and the
operation is suppressed.

If the operation is not successful, because the
page is disconnected but no page frame is free for
connection (free-frame-capacity count is zero), the
R 1 register remains unchanged, and condition code
2 is set.

If the operation is successful, the condition code
indicates whether the page was connected (1) or
disconnected (0) at the start of the operation. The
frame index, which is an unsigned binary integer, is
loaded right-aligned in the Rl register, and the
remaining high-order bits of the register are set to
zeros. The frame index is unique and may have
any value from zero to EPCC - 1, where EPCC is
the existing-frame-capacity count.

If the page was disconnected before and the
operation is successful, the value of the free­
frame-capacity count is decreased by one.

The contents of a newly connected page frame
are unpredictable.

Resulting Condition Code:
o Successful, page was disconnected, index

returned
1
2
3

Page was already connected, index returned
Not successful, index not returned

Program Exceptions:
Addressing (operand 2)
Page Transition
Privileged Operation
Specification

Programming Notes
1. The storage key and the reference, change, and

page bits of a page are not changed when the
page is connected.

2. The frame index of the page frame connected
to the specified page remains unchanged until
that page is disconnected. The value of the
frame index to be assigned by CONNECT
P AGE to a previously disconnected page is
unpredictable.

DECONFIGURE PAGE

'B21B'

o 16 20 31

Chapter 10. Control Instructions 10-3

If connected, the storage page designated by· the
second-operand address enters the disconnected
state. The page frame that was connected to the
page becomes unavailable; that is, it will no longer
be available for connection to any page. The
reference and change bits of the page are set to
zeros.

Bits 8-20 of the second-operand address
designate the page. Bits 0-7 and 21-31 of the
address are ignored.

If bits 8-20 of the second-operand address are
zeros, that is, page 0 is specified, a specification
exception is recognized, and the operation is
suppressed.

The page must be in the connected state at the
start of the operation; otherwise, a page-transition
exception is recognized, and the operation is
suppressed.

The value of the available-frame-capacity count
is decreased by one. The values of the free-frame
and existing-frame-capacity counts remain
unchanged.

Condition Code: The code'remainsunchanged.

Program Exceptions:
Addressing (operand 2)
Page Transition
Privileged Operation
Specification

Programming Notes
1. DECONFIGURE PAGE allows a program to

put a page frame out of operation. This may be
desirable when the page frame is indicated as
defective by a machine check which is caused
by a storage access to the page connected to
that frame or by an access to the associated
storage key. The frame may become available
again during a subsequent manual clear-reset
operation.

2. The instruction cannot be used on the frame
comiected to page 0 because page 0 cannot be
in the disconnected state.

DIAGNOSE

183 1

o 8 31

10-4 IBM 4300 Processors Principles of Operation

The CPU performs built-in diagnostic functions, or
other model-dependent functions. The purpose of
the diagnostic functions is to verify proper
functioning of CPU equipment and to locate faulty
components. Other model-dependent functions
may include disabling of failing buffers,
reconfiguration of storage and chann-els,and
modification of control storage.

Bits 8-31 may be used as in the SI or RS
formats, or in some other way, to specify the
particular diagnostic function. The use depends on
the model.

The execution of the instruction may affect the
state of the CPU and the contents of a register or
storage location, as well as the progress of an 1/0
operation. Some diagnostic functions may cause
the test indicator to be turned on.

Condition Code: The code is unpredictable.

Program Exceptions:
Privileged Operation
Depending on the model, other exceptions may be

recognized.

Programming Notes
1. Since the instruction is not intended for

problem-program or supervisor-program use,
DIAGNOSE has no mnemonic.

2. DIAGNOSE, unlike other instructions, does not
follow the rule that programming errors are
distinguished from equipment errors. Improper
use of DIAGNOSE may result in false
machine-check indications or may cause actual
machine malfunctions to be ignored. It may
also alter other aspects of system operation,
including instruction execution and channel
operation, to an extent that the operation does
not comply with that specified in this
publication. As a result of the improper use of
DIAGNOSE, the system may be left in such a
condition that the power-on reset or initial­
microprogram-loading (IML) function must be
performed. Since the function performed by
DIAGNOSE may differ from model to model
and between versions of a model, the program
should avoid issuing DIAGNOSE unless the
program recognizes both the model number and
version code stored by STORE CPU ID.

DISCONNECT PAGE

I B21C l

o 16 20 31

If connected, the storage page designated by the
second-operand address enters the disconnected
state. If already disconnected, the page remains in
the disconnected state. The reference and change
bits of the page are set to zeros.

Bits 8-20 of the second-operand address
designate the page. Bits 0-7 and 21-31 of the
address are ignored.

If bits 8-20 of the second-operand address are
zeros, that is, page 0 is specified, a specification
exception is recognized, and the operation is
suppressed.

If the page is in the addressable state, a
page-transition exception is recognized, and the
operation is suppressed.

The condition code indicates whether the page
was connected (0) or disconnected (1) before. If
the page was connected before, the value of the
free-frame-capacity count is increased by one.

The contents of the disconnected page frame are
not necessarily cleared by the machine. The next
time this frame is connected to a page by some
CONNECT instruction, its contents will be
unpredictable.

Resulting Condition Code:
o Page was connected
1 Page was already disconnected
2
3

Program Exceptions:
Addressing (operand 2)
Page Transition
Privileged Operation
Specification

INSERT PAGE BITS

IPB

o 8 12 16 20 31

The current settings of the three programmable
page bits and the reference and change bits that are

associated with the storage page designated by the
second-operand address are inserted in the general
register designated by the Rl field.

Bits 8-20 of the second-operand address
designate the page. Bits 0-7 and 21-31 of the
address are ignored. Bits 12-15 of the instruction
are ignored.

The current values of the three page bits are
inserted in bit positions 25-27, and the reference
and change bits in bit positions 29-30 of the
register designated by the Rl field. The contents

of bit positions 24, 28, and 31 of that register are
set to zeros. The contents of bit positions 0-23
remain unchanged.

The references to the page bits and to the
reference and change bits are not subject to a
protection exception. These bits can be accessed
regardless of the state of the addressed page.

Condition Code: The code remains unchanged.

Program Exceptions:
Addressing (operand 2)
Privileged Operation

INSERT PSW KEY

I PK [S]

IB20B I 111111111111111111

o 16 31

The four-bit PSW-key, bits 8-11 of the current
PSW, is inserted in bit positions 24-27 of general
register 2, and bits 28-31 of that register are set to
zeros. Bits 0-23 of general register 2 remain
unchanged.

Bits 16-31 of the instruction are ignored.

Resulting Condition Code: The code remains
unchanged.

Program Exceptions:
Privileged Operation

INSERT STORAGE KEY

[RR]

109 1

o 8 12 15

The· storage key associated with the page that is
addressed by the contents of the general register

Chapter 10. Control Instructions 10-5

designated by the R2 field is inserted in the general
register designated by the Rl field.

Bits 8-20 of the register designated by the R2
field designate the page. Bits 0-7 and 21-27 of the
register are ignored. Bits 28-31 of the regi~ter
must be zeros; otherwise, a specification exception
is recognized, and the operation is suppressed.

The execution of the instruction depends on
whether the PSW specifies the BC or BC mode. In
the EC mode, the seven-bit storage key is inserted
in bit positions 24-30 of the register designated by

the Rl field, and bit3 f is set to zero. In the BC
mode, bits 0-4 of the storage key are placed in bit
positions 24-28 of that register, and bits 29-31 of
the register are set to zeros. In both modes, the
contents of bit positions 0-23 of the register remain
unchanged.

The reference to the storage key is not subject to
a protection exception. The storage key can be
accessed regardless of the state of the addressed
page.

Condition Code: The code remains unchanged.

Program Exceptions:
Addressing (operand 2)
Privileged Operation
Specification

LOAD CONTROL

o 8 12 16 20 31

The set of control registers starting with the control
register designated by the R 1 field and ending with
the control register designated by the R3 field is
loaded from the locations designated by the
second-operand address.

The storage area from which the contents of the
control registers are obtained starts at the location
designated by the second-operand address and
continues through as many storage words as the
number of control registers specified. The control
registers are loaded in ascending order of their
addresses, starting with the control register
designated by the R 1 field and continuing up to
and including the control register designated by the
R3 field, with control register 0 following control
register 15. The second operand remains
unchanged.

10-6 IBM 4300 Processors Principles of Operation

The second operand must be designated on a
word boundary; otherwise, a specification exception
is recognized, and the operation is suppressed.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)
Privileged Operation
Specification

Programming Note
To ensure that existing programs run if and when
new facilities using additional control-register
positions are defined, only zeros should be loaded
in unassigned control-register positions.

LOAD FRAME INDEX

o 8 12 16 20 31

The frame index of the page frame that is
connected to the storage page designated by the
second-operand addressjs returned in the general
register designated by the R 1 field.

Bits 8-20 of the second-operand address
designate the page. Bits 0-7 and 21-31 of the
address are ignored. Bits 12-15 of the instruction
are ignored.

The frame index is an unsigned binary integer.
It is right-aligned in the R 1 register, and the
remaining high-order bits of the register are set to
zeros. The frame index is unique and may have
any value from zero to EFCC - 1, where EFCC is
the existing-frame-capacity count.

The frame index is returned only when the page
is connected or addressable. When the page is
disconnected or not provided (condition codes 2 or
3), the R 1 register remains unchanged.

Condition code 0, 1, or 2 is set when the page is
addressable, connected, or disconnected,
respectively. Condition code 3 is set when the
address is invalid, that is, the value of bits 8-20 of
the second-operand address equals or exceeds the
page-capacity count.

Resulting Condition Code:
o Index returned, page is addressable
1 Index returned, page is connected
2 Index not returned, page is disconnected
3 Index not returned, address is invalid

Program Exceptions:
Privileged Operation

Programming Note
The instruction may be used to test the page
address and state of a page and return its frame
index, if any, without raising an access exception.

LOAD PSW

o 8 16 20 31

The current PSW is replaced by the contents of the
doubleword at the location designated by the
second-operand address.

If the new PSW specifies the BC mode,
information in bit positions 16-33 of the new PSW
is not retained as the PSW is loaded. When the
PSW is subsequently stored, these bit positions
contain the new interruption code and the
instruction-length code.

A serialization function is performed.
The operand must be designated on a

double word boundary; otherwise, a specification
exception is recognized, and the operation is
suppressed. The operation is suppressed on
addressing and protection exceptions.

The value which is to be loaded by the
instruction is not checked for validity before it is
loaded. However, immediately after loading, a
specification exception is recognized and a program
interruption occurs when the newly loaded PSW
specifies the EC mode and the contents of bit
positions 0, 2-5, 16,:, 17, and 24-29 are not all
zeros. In these cases, the operation is completed,
and the resulting instruction-length code is zero.

Bits 8-15 of the instruction are ignored.

Condition Code: The code is set as specified in the
new PSW loaded.

Program Exceptions:
Access (fetch, operand 2)
Privileged Operation
Specification

MAKE ADDRESSABLE

'B210'

o 16 20 31

If connected, the storage page designated by the
second-operand address enters the addressable
state. If already addressable, the page remains in
the addressable state.

Bits 8-20 of the second-operand address
designate the page. Bits 0-7 and 21-31 of the
address are ignored.

If the page is in the disconnected state, a
page-transition exception is recognized, and the
operation is suppressed.

The condition code indicates whether the page
was addressable (1) or connected (0) before.

Resulting Condition Code:
o Page was connected
1 Page was already addressable
2
3

Program Exceptions:
Addressing (operand 2)
Page Transition
Privileged Operation

MAKE UNADDRESSABLE

'B21E'

o 16 20 31

If addressable, the storage page designated by the
second-operand address enters the connected state.
If already connected, the page remains in the
connected state.

Bits 8-20 of the second-operand address
deSignate the page. Bits 0-7 and 21-31 of the
address are ignored.

If bits 8-20 of the second-operand address are
zeros, that is, page 0 is specified, a specification
exception is recognized, and the operation is
suppressed.

If the page is in the disconnected state, a
page-transition exception is recognized, and the
operation is suppressed.

Chapter 10. Control Instructions 10-7

The condition code indicates whether the page
was addressable (0) or connected (1) before.

Resulting Condition Code:
o Page was addressable
1 Page was already connected
2
3

Program Exceptions:
Addressing (operand 2)
Page Transition
Privileged Operation
Specification

RESET REFERENCE BIT

18213 1

o 16 20 31

The reference bit in the storage key associated with
the storage page that is designated by the
second-operand address is set to zero.

Bits 8-20 of the second-operand address
designate the page. Bits 0-7 and 21-31 of the
address are ignored.

The reference to the storage key is not· subject to
a protection exception. The storage key can be
accessed regardless of the state of the addressed
page.

The values of the remaining bits of the storage
key, including the change bit, are not affected.

The condition code is set to reflect the state of
the reference and change bits before the reference
bit· is set to zero.

Resulting Condition Code:
o Reference bit zero, change bit zero
1 Reference bit zero, change bit one
2 Reference bit one, change bit zero
3 Reference bit one, change bit one

Program Exceptions:
Addressing (operand 2)
Privileged Operation

RETRIEVE STATUS AND PAGE

R5P 01(81),02(82) [55]
~------~------~----~/--~--~-----I

,----_10_8_
1
---11_1_1 1_1_1_1 1_/....L1_8_1........L._~ 1 82 ~~

o 8 16 20 32 36 47

10-8 IBM 4300 Processors Principles of Operation

The saved machine status is retrieved and stored at
the first-operand location. The contents of the
saved page are retrieved and stored at the
second-operand location.

The saved machine status, as retrieved, consists
of 256 bytes reflecting the state of the machine at
the last time that the manual machine-save
operation' was performed. (See the figure
"Machine Status, Retrieval Format" in Chapter 4,
"Control," for the contents.) The saved page
consists of the contents at that time of page o. The
storage key, page bits, and frame index for the
saved page are contained in the machine status.

If the two operands overlap, the results are
unpredictable.

If the saved information is valid, condition code
o is set. If the saved information is invalid, neither
storage operand is accessed, no access exceptions
are recognized, and condition code 3 is set.

The saved machine status and page remain
unchanged.

Resulting Condition Code:
o Save information is valid
1
2
3 Save information is invalid

Program Exceptions:
Access (store, operand 1 and 2)
Privileged Operation

Programming Notes
1. The saved information may be found invalid if

a partially performed machine save was
canceled by resetting the machine~ The saved
information is invalid if a clear reset has been
performed since the last machine save.
RETRIEVE STATUS AND PAGE will indicate
an invalid save until another machine save is
performed.

2. Two executions of RETRIEVE STATUS AND
P AGE will retrieve the same status and page
information, as long as the information has not
been made invalid by a reset and no machine
save has intervened.

SET CLOCK

[5]

1 8204 1

o 16 20 31

The current value of the time-of-day clock is
replaced by the contents of the doubleword
designated by the second-operand address, and the
clock enters the set state.

The doubleword operand replaces the contents
of the clock, as determined by the resolution of the
clock. Only those bits of the operand are set in the
clock that correspond to the bit positions which are
updated by the clock; the contents of the remaining
rightmost bit positions of the operand are ignored
and are not preserved in the clock.

The value of the clock is changed and the clock
is placed in the set state only if the manual
TOD-clock control is set to enable-set. If the
TOD-clock control is set to secure, the value and

the state of the clock are not changed. The two
results are distinguished by condition codes 0 and
1, respectively.

When the clock is not operational, the value and
state of the clock are not changed, regardless of the
setting of the TOD-clock control, and condition
code 3 is set.

The operand must be designated on a
double word boundary; otherwise, a specification
exception is recognized, and the operation is
suppressed.

Resulting Condition Code:
o Clock value set
1 Clock value secure
2
3 Clock in not-operational state

Program Exceptions:
Access (fetch, operand 2)
Privileged Operation
Specification

SET CLOCK COMPARATOR

'B206'

o 16 20 31

The current value of the clock comparator is
replaced by the contents of the double word
designated by the second-operand address.

Only those bits of the operand are set in the
clock comparator that correspond to the bit
positions to be compared with the time-of-day
clock; the contents of the remaining rightmost bit

positions of the operand are ignored and are not
preserved in the clock comparator.

The operand must be designated on a
doubleword boundary; otherwise, a specification
exception is recognized, and the operation is
suppressed. The operation is suppressed on
addressing and protection exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)
Privileged Operation
Specification

SET CPU TIMER

'B208'

o 16 20 31

The current value of the CPU timer is replaced by
the contents of the doubleword designated by the
second-operand address.

Only those bits of the operand are set in the
CPU timer that correspond to the bit positions to
be updated; the contents of the remaining
rightmost bit positions of the operand are ignored
and are not preserved in the CPU timer.

The operand must be designated on a
doubleword boundary; otherwise, a specification
exception is recognized, and the operation is
suppressed. The operation is suppressed on
addressing and protection exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)
Privileged Operation
Specification

SET PAGE BITS

~'~B5_'~1 _R1_1~//_/~/I_B_2~1 ___ D_2 __ ~1
o 8 12 16 20 31

The current settings of the three programmable
page bits and the reference and change bits that are

Chapter 10. Control Instructions 10-9

associated with the storage page designated by the
second-operand address are replaced by the
contents of the general register'designated by the
Rl field.

Bits 8-20 of the second-operand address
designate the page. Bits 0-7 and 21-31 of the
address are ignored. Bits 12-15 of the instruction
are ignored.

The condition code is set to reflect the state of
the reference and change bits before these bits are
modified.

The new values of the three page bits are
obtained from bit positions 25-27, and the
reference and change bits from bit positions 29-30
of the register designated by the R 1 field. The
contents of bit positions 0-24, 28, and 31 of the
register are ignored.

The references to the page bits and to the
reference and change bits are not subject to a
protection exception. These bits can be accessed
regardless of the state of the addressed page.

Resulting Condition Code:
o Reference bit zero, change bit zero
1 Reference bit zero, change bit one
2 Reference bit one, change bit zero
3 Reference bit one, change bit one

Program Exceptions:
Addressing (operand 2)
Privileged Operation

SET PSW KEY FROM ADDRESS

'B20A'

o 16 20 31

The four-bit PSW key, bits 8-11 of the current
PSW, is replaced by bits 24-27 of the
second-operand address.

The second-operand address is not used to
address data; instead, bits 24-27 of the address
form the new PSW key. Bits 8-23 and 28-31 of
the second-operand address are ignored.

Condition Code: The code remains unchanged.

Program Exceptions:
Privileged Operation

10-10 IBM 4300 Processors Principles of Operation

Programming Notes
1. The format of the SET PSW KEY FROM

ADDRESS instruction permits the program to
set the PSW key either from the general
register designated by the B2 field or from the
D2 field in the instruction itself.

2. When a problem program requests a control
program to access a location specified by the
problem program, the SET PSW KEY FROM
ADDRESS instruction can be used by the
control program to verify that the problem
program is authorized to make this access,
provided the storage location of the control
program is not protected against fetching. The
control program can perform the verification by
replacing thePSW key of the control program
with the problem-program PSW key before
making the access and subsequently restoring
the control-program PSW key to its original
value.

SET STORAGE KEY

SSK Rl,R2 [RR]

'08' R1 I R2 I
o 8 12 15

The storage key associated with the page that is
addressed by the contents of the general register
designated by the R2 field is replaced by the
contents of the general register designated by the
Rl field.

Bits 8-20 of the register designated by the R2
field designate the page. Bits 0-7 and 21-27 of the
register are ignored. Bits 28-31 of the register
must be zeros; otherwise, a specification exception
is recognized, and the operation is suppressed.

The new seven-bit storage-key value is obtained
from bit positions 24-30 of the register designated
by the Rl field. The contents of bit positions 0-23
and 31 of the register are ignored.

The reference to the storage key is not subject to
a protection exception. The storage key can be
accessed regardless of the state of the addressed
page.

Condition Code: The code remains unchanged.

Program Exceptions:
Addressing (operand 2)
Privileged Operation
Specification

SET SYSTEM MASK

o 8 16 20 31

Bits 0-7 of the current PSW are replaced by the
byte at the location designated by the
second-operand address.

When the SSM-suppression bit, bit 1 of control
register 0, is one and the CPU is in the supervisor
state, a special-operation exception is recognized,
and the operation is suppressed.

The operation is suppressed on protection and
addressing exceptions.

The value to be loaded into the PSW is not
checked for validity before loading. However,

immediately after loading, a specification exception
is recognized, and a program interruption occurs, if
the CPU is in EC mode and the contents of bit
positions ° and 2-5 of the PSW are not all zeros.
In this case, the instruction is completed, and the
instruction-length code is set to 2. The
specification exception in this case is considered to
be caused as part of the execution of the
instruction.

Bits 8-15 of the instruction are ignored.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)
Privileged Operation
Special Operation
Specification

Programming Note
The SSM instruction is frequently used in the BC
mode to disable or enable the CPU for IIO or
external interruptions. Hence, suppressing the
execution of the SSM instruction by means of the
SSM -suppression bit, bit 1 of control register 0,
may be useful when converting a program written
for aBC-mode PSW to operate with an EC-mode
PSW.

STORE CAPACITY COUNTS

IB21FI

o 16 20 31

The current values of the page-capacity (PCC),
existing-frame-capacity (EFCC),
available-frame-capacity (AFCC), and free-frame­
capacity (FFCC) counts are stored at the 16-byte
location designated by the second-operand address.
The counts are stored as 32-bit unsigned binary
integers in the order, from left to right, of PCC,
EFCC, AFCC, and FFCC.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)
Privileged Operation

Programming Notes
1. The instruction allows the program to display

the current values of the PCC, EFCC, AFCC,
and FFCC for initialization purposes at IPL
time and for the management of virtual storage
and machine storage.

2. The high-order 16 bits of each counter value,
as stored, are always zeros. The counter values
cannot exceed 65,535.

STORE CLOCK COMPARA.TOR

IB207 1

o 16 20 31

The current value of the clock comparator is stored
at the doubleword location designated by the
second-operand address.

Zeros are provided for the rightmost bit positions
of the clock comparator that are not compared with
the time-of-day clock.

The operand must be designated on a
doubleword boundary; otherwise, a specification
exception is recognized, and the operation is
suppressed. The operation is suppressed on
addressing and protection exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)
Privileged Operation
Specification

Chapter 10. Control Instructions 10-11

STORE CONTROL

o 8 12 16 20 31

The set of control registers starting with the control
register designated by the R 1 field and ending with
the control register designated by the R3 field is
stored at the locations designated by the
second-operand address.

The storage area where the contents of the
control registers are placed starts at the location
designated by the second-operand address and
continues through as many storage words as the
number of control registers specified. The contents
of the control registers are stored in ascending
order of their addresses, starting with the control
register designated by the R 1 field and continuing
up to and including the control register designated

by the R3 field, with control register 0 following
control register 15. The contents of the control
registers remain unchanged.

The information stored for unassigned
control-register positions is unpredictable.

The second operand must be designated on a
word boundary; otherwise, a specification exception
is recognized, and the operation is suppressed.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)
Privileged Operation
Specification

Programming Note
Although STORE CONTROL may provide zeros in
the bit positions corresponding to the unassigned
register positions, the program should not depend
on such zeros.

STORE CPU ID

5TIDP [5]

'8202'

o 16 20 31

10-12 IB M 4300 Processors Principles of Operation

Information identifying the CPU is stored at the
double word location designated by the
second-operand address.

The format of the information is as follows:

o

Version
Code

8

CPU Identification
Number I

31

Model
Number 0000000000000000

..

32 48 63

Bit positions 0-7 contain the version code, which
is information to supplement the model number.

Bit positions 8-31 contain the CPU identification
number, consisting of six digits: a high-order zero
digit and five digits selected from the physical serial
number stamped on the CPU, or six digits selected
from the serial number. The contents of the CPU
identification-number field, in conjunction with the
model number, permit unique identification of the
CPU.

Bit positions 32-47 contain the model number of
the CPU. Bit position 48-63 contain zeros.

The operand must be designated on a
double word boundary; otherwise, a specification
exception is recognized, and the operation is
suppressed. The operation is suppressed on
addressing and protection exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)
Privileged Operation
Specification

Programming Notes
1. The program should allow for the possibility

that the CPU identification number may
contain the digits A-F as well as the digits 0-9.

2. The CPU identification number, combined with
the model number, provides a unique CPU
identification that can be used in associating
results with an individual machine, particularly
in regard to functional differences, performance
differences, and error handling.

STORE CPU TIMER

IB209 1 B2

o 16 20 31

The current value of the CPU timer is stored at the
double word location designated by the
second-operand address.

Zeros are provided for the rightmost bit positions
that are not updated by the CPU timer.

The operand must be designated on a
doubleword boundary; otherwise, a specification
exception is recognized, and the operation is
suppressed. The operation is suppressed on
addressing and protection exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)
Privileged Operation
Specification

STORE THEN AND SYSTEM MASK

o 8 16 20 31

Bits 0-7 of the current PSW are stored at the
first-operand location. Then the contents of bit
positions 0-7 of the current PSW are replaced by
the logical AND of their original contents and the
second operand.

The operation is suppressed on addressing and
protection exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 1)
Privileged Operation

Programming Note
The STORE THEN AND SYSTEM MASK
instruction permits the program to set selected bits

in the system mask to zeros while retaimBgthe::
original contents for later restoration. For
example, it may be necessary that a program, which
has no record of the present status, disable
program-event recording for a few instructions.

STORE THEN OR SYSTEM MASK

o 8 16 20 31

Bits 0-7 of the current PSW are stored at the
first-operand location. Then the contents of bit
positions 0-7 of the current PSW are replaced by
the logical OR of their original contents and the
second operand.

The value to be loaded into the PSW is not
checked for validity before loading. However,
immediately after loading, a specification exception
is recognized, and a program interruption occurs, if
the CPU is in the EC mode and the contents of bit
positions 0 and 2-5 of the PSW are not all zeros.
In this case, the instruction is completed, and the
instruction-length code is set to 2. The
specification exception in this case is considered to
be caused as part of the execution of the
instruction.

The operation is suppressed on addressing and
protection exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 1)
Privileged Operation
Specification

Programming Note
The STORE THEN OR SYSTEM MASK
instruction permits the program to set selected bits
in the system mask to ones while retaining the
original contents for later restoration. For
example, the program may enable the CPU for 1/0
interruptions without having available the current
status of the external-mask bit.

Chapter 10. Control Instructions 10-13

\

Chapter 11. Machine .. Check Handling

Contents

Machine-Check Detection 11-1

Correction of Machine Malfunctions 11-2
Error Checking and Correction 11-2
CPU Retry 11-2

Handling of Machine Checks 11-2
Validation 11-3
Invalid CBC in Storage 11-3
Invalid CBC in Page Descriptions 11-3
Invalid eBC in Registers 11-4

Check-Stop State 11-4
Machine-Check Interruption 11-5

Exigent Conditions 11-5
Repressible Conditions 11-5
Interruption Action 11-6
Point of Interruption 11-7

Machine,..Check-Interruption Code

Subclass 11-8
System Damage 11-8
Instruction-Processing Damage
System Recovery 11-9
Interval-Timer Damage
Timing,..Facility Damage

External Damage 11-9
Degradation 11-9
Warning 11-10

11-9
lr .. 9

11-7

11-8

The machine-check-handling mechanism provides
extensive equipment-malfunction detection to
ensure the integrity of system operation and to
permit automatic recovery from some malfunctions.
Equipment· malfunctions' and certain external
disturbances. are. reported by means of a machine­
check interruption to assist in program-damage
assessment and recovery. The interruption supplles
the program with information about the extent of
the damage and the location and nature of the
cause. Equipment malfunctions, . errors, and other
situations which can cause machine-check
interruptions.are referred to as machine checks.

Auxiliary Bits 11-10
Delayed 11-10

Storage Error Uncorrected 11-10
Storage-Key Error Uncorrected 11-10

Machine-Check Interruption-Code Validity
Bits 11-10

PSW-EMWP Validity 11-10
PSW Mask and Key Validity 11-10
PSW Program-Mask and Condition-Code
Validity 11-10

PSW -Instruction-Address Validity
Failing-Storage-Address Validity
Floating-Point-Register Validity
General-Register Validity 11-11
Control-Register Validity
Storage Logical Validity

CPU-Timer Validity

11-11
11-11

11-11
Clock-Comparator Validity

Machine-Check Extended Interruption
Information 11-11

Register-Save Areas
Failing-Storage Address

Machine-Check Masking

Recovery-Report Mask

11-11

11-12

11-12
11-12

11-11
11-11

11-11

Degradation-Report Mask
External-Damage-Report Mask

11-12
11-12

Warning Mask 11-12

Machine-Check Detection
Machine-check-detection mechanisms may take
many forms, especially in control functions for
arithmetic and logical processing, addressing,
sequencing, and execution. For program­
addressable information, detection is normally
accomplished by encoding redundancy into the
information in such a manner that most failures in
the retention or transmission of the information
result in an invalid code. The encoding normally
takes the form of. one or more redundant bits,
called check bits,appended to a group of data bits.

Chapter 11. Machine.,.Check Handling 11-1

Such a group of data bits and the associated check
bits are called a checking block. The size of the
checking block depends on the model.

The inclusion of a single check bit in the
checking block allows the detection of any
single-bit failure within the checking block. In this
arrangement, the check bit is sometimes referred to
as a "parity bit." In other arrangements, a group
of check bits is included to permit detection of
multiple errors, to permit error correction, or both.

For checking purposes, the entire contents of a
checking block, including the redundancy, is called
a checking-block code (CBC). When a CBC
completely meets the checking requirements (that
is, no failure is detected), it is said to be valid.
When both detection and correction are provided
and a CBC is not valid but satisfies the checking
requirements for correction (the failure is
correctable), it is said to be near-valid. When a
CBC does not satisfy the checking requirements
(the failure is uncorrectable), it is said to be
invalid.

Correction of Machine Malfunctions
Two mechanisms may be used to provide recovery
from machine-detected malfunctions: error
checking and correction, and CPU retry.

Machine failures which are corrected successfully
mayor may not be reported as machine-check
interruptions. If reported, they are system-recovery
conditions, which permit the program to note the
cause of CPU delay and to keep a log of such

, incidents.

Error Checking and Correction
When sufficient redundancy is included in circuitry
or in a checking block, failures can be corrected.
For example, circuitry can be triplicated, with a
voting circuit to determine the correct value by
selecting two matching results out of three, thus
correcting a single failure. An arrangement for
correction of failures of one order and for detection
of failures of a higher order is called error checking
and correction (ECC). Commonly, ECC allows
correction of single-bit failures and detection of
double-bit failures.

Depending on the model and the portion of the
machine in which ECC is applied, correction may
be reported as a system-recovery machine-check
condition or no report may be given.

Uncorrected errors in storage and in the storage
key may be reported, along with a failing-storage
address, to indicate where· the error occurred.

11-2 IBM 4300 Processors Principles of Operation

Depending on· the situation, these errors may be
reported along with system recovery or with the
damage condition resulting from the error.

CPU Retry
Some models have the capability of correcting
intermittent errors by retrying CPU operations.
When a malfunction is detected, recovery is
attempted by returning the CPU state to that
existing at the checkpoint when information about
the CPU state was last saved and by proceeding
from that point.

Handling of Machine Checks
A machine check is caused by a machine malfunc­
tion and not by data or instructions. This is
ensured during the power-on sequence by
initializing the machine controls to a valid state and
by placing valid CBC in the CPU registers, in the
page descriptions, and in all available page frames.

Specification of an unavailable component, such
as a channel or I/O device, does not cause a
machine-check indication. Instead, such a
condition is indicated by the appropriate program
or I/O interruption or condition-code setting.

A machine check is indicated whenever the
result of an operation could be affected by
information with invalid CBC, or when any other
malfunction makes it impossible to establish reliably
that an operation can be, or has been, performed
correctly. When information with invalid CBC is
fetched but not used, the condition mayor may not
be indicated, and the invalid CBC is preserved.

When a machine malfunction is detected, the
action taken depends on the model, the nature of
the malfunction, and the situation in which the
malfunction occurs. Malfunctions affecting
operator-facility actions may result in machine
checks or may be indicated to the operator.

A malfunction detected as part of an I/O
operation may cause. a machine-check condition, an
I/O-error condition, or both. I/O-error conditions
are indicated by an I/O interruption or by the
appropriate condition-code setting during the
execution of an I/O instruction. When the
machine reports a failing-storage location detected
during an I/O operation, both I/O-error and
machine-check conditions may be presented. The
1/ a-error condition is the primary indication to the

I program. The machine-check condition is a

secondary indication, which is presented as system
recovery together with a failing-storage address.

Validation
Machine errors can be generally classified as solid
or intermittent, according to the persistence of the
malfunction. A persistent machine error is said to
be solid. In the case of a register or storage
location, a third type of error must be considered,
called externally generated. An externally
generated error is one where no failure exists in the
register or storage location but invalid CBC has
been introduced into the location from something
external to the location. For example, the value
could be affected by a power transient, or an
incorrect value may have been introduced when the
information was placed in the location.

Invalid CBC is preserved as invalid when
information with invalid CBC is fetched or when
an attempt is made to update only a portion of the

checking block. When an attempt is made to
replace the contents of the entire checking block
and the block contains invalid CBC, it depends on
the operation and the model whether the block
remains with invalid CBC or is replaced. An
operation which replaces the contents of a checking
block with valid CBC, while ignoring the current
contents, is called a validation operation.
Validation is used to introduce a valid CBC into a
register or location which is suffering from an
intermittent or externally generated error.

Validating a checking block does not ensure that
a valid CBC will be observed the next time the
checking block is accessed. If the failure is solid,
validation is effective only if the information
placed in the checking block is such that the failing
bits are set to the value to which they fail. If an
attempt is made to set the bits to the state opposite
to that in which they fail, then the validation will
not be effective. Thus, for a solid failure,
validation is only useful to eliminate the error,
condition, even though the underlying failure
remains, thereby reducing the exposure to
additional reports. The locations, however, cannot
be used, since invalid CBC will result from
attempts to store other values in the location. For
an intermittent failure, however, validation is useful
to restore a valid CBC such that a subsequent
partial store into the checking block (a store into a
checking block without replacing the entire
checking block) by either the CPU or a channel
will be permitted.

When a checking block consists of multiple bytes
in storage, or multiple bits in CPU registers, the
invalid CBC can be made valid only when all of
the bytes or bits are replaced simultaneously.

When an error occurs in a checking block, the
original information contained in the checking
block should be considered lost even after
validation. Automatic register validation leaves the
contents unpredictable. Programmed and manual
validation of checking blocks causes the contents to
be changed explicitly.

Invalid CBC in Storage
The size of the checking block in storage depends
on the model but is never more than 2,048 bytes.

An attempt to store into a checking block w:ith
invalid CBC, without replacing the entire checking
block, leaves the data in the checking block
(including the check bits) unchanged.

When the checking block consists of multiple
bytes and contains invalid CBC, special procedures
are necessary to place new information into the
checking block. Placing valid CBC in storage is
called storage validation.

Storage validation is provided as a program
function and is also provided with the manual
clear-reset function. Programmed storage
validation is done, one page at a time, by executing
the privileged instruction CLEAR PAGE. Manual
storage validation by clear reset validates all pages.

Invalid CBC in Page Descriptions
When invalid CBC is detected in a page
description, a machine-check interruption may
occur; depending on the circumstances, the
machine-check condition may be system damage,
instruction-processing damage, system recovery, or
external damage. The machine-check condition
mayor may not be accompanied by a storage-key­
error-uncorrected indication. Also, if invalid CBC
in a page description is detected during an 1/0
operation, a channel-control check is normally
indicated at the end of the 110 operation.

In addition to internal storage for page
descriptions, some models may have a separate
lookaside storage for the storage keys of connected
or addressable pages. Each entry of such a
lookaside is associated with a page frame, whereas
each page description is associated with a page. A
storage-key error uncorrected may be indicated
only when invalid CBC is detected in the look aside
storage during a reference to the storage key of a
page that is in the connected or addressable state.

Chapter 11. Machine-Check Handling 11-3

A storage-key error is not indicated when:
• Invalid CBC is detected in. the storage key of a

disconnected page
• Invalid CBC is detected in the page bits, the

page state, or the frame index of a page, whether
disconnected or not

• No look aside storage is provided for storage keys
All parts of the page descriptions are validated

manually by clear reset. On models which provide
lookaside storage with a' separate checking block
for the storage key of each connected or
addressable page, executing the instruction SET
STORAGE KEY sets new values for and validates
the storage key after a storage-key error has been
indicated. The instruction CONNECT PAGE may
validate the lookaside entry of a page frame which
previously had invalid CBC by using the values of
the storage key from the page-description entry.

I No storage-key-error-uncorrected indication is
given when a machine check occurs during the
execution of DECONFIGURE PAGE,
DISCONNECT PAGE, LOAD FRAME INDEX,
MAKE ADDRESSABLE, and MAKE
UNADDRESSABLE.

Any machine-check condition which would
otherwise be indicated as a storage-key error
uncorrected is ignored if the access key is zero
when a fetch operation takes place. Depending on
the model, a storage-key error uncorrected mayor
may not be ignored if the access key is zero when a
store operation takes place or when the instruction
CLEAR PAGE is executed.

The CPU enters the check-stop state when
invalid CBC is detected in the page description for
page 0, and also when a page description is left in
an inconsistent state after an error occurs while the
page description is being updated.

Programming Note
Recovery from a storage-key error uncorrected
which cannot be successfully removed by issuing
SET STORAGE KEY may be attempted by issuing
DECONFIGURE PAGE to delete the page frame
and CONNECT PAGE to use another page frame.
The previous contents of the page are lost.

Invalid CBC in Registers
When invalid CBC is detected in a CPU register, a
machine-check condition may be recognized. CPU
registers include the general, floating-point, and
control registers, the current PSW, the time-of-day
clock, the CPU timer, and the clock comparator.

11-4 IBM 4300 Processors Principles of Operation

When a machine-check interrUption occurs,
whether or not it is due to invalid CBC in a CPU
register, the following actions affecting the CPU
registers, other than the time-of-day-clock, are
taken as part of the interruption.
1. The contents of the registers are saved in

assigned storage locations. Any register which
is in error is identified by a corresponding
validity bit of zero in the machine-check­
interruption code. Malfunctions detected during
register savingdo not result in additional
machine-check-interruption conditions; instead,
the correctness of all the information stored is
indicated by the appropriate setting of the
validity bits.

2. Registers with invalid CBC are then validated,
their actual contents being unpredictable.

CPU registers other than the time-of-day clock
are also validated manually by the clear-reset
function; programmed register validation is not
provided.

The time-of-day clock is not stored and is not
validated during a machine-check interruption, and
it has no corresponding validity bit. The clock
enters the error state when a malfunction is
detected in the clock. It is validated by
programming when a SET CLOCK instruction
changes the state of the clock from the error state
to the set state. The clock is also validated
manually by a power-on reset.

Check-Stop State
In certain situations it is impossible or undesirable
to continue operation when a machine error occurs.
In these cases, the CPU may enter the check-stop
state, which is indicated by the check-stop
indicator.

In general, the CPU may enter the check-stop
state whenever an uncorrectable error or other
malfunction occurs and the machine is unable to
recognize a specific machine-check-interruption
condition.

The CPU always enters the check-stop state if
any of the following conditions exists:
• PSW bit 13 is zero and an exigent

machine-check condition is generated.
• During the execution of an interruption due to

one exigent machine-check condition, another
exigent machine-check condition is detected.

• During a machine-check interruption, the
machine-check-interruption code cannot be
stored successfully or the new PSW be fetched
successfully.

• A machine-check interruption cannot be taken
because of a storage error in page O.

• Invalid CBC is detected in the page description
for page O.

• An error occurs while a page description is being
updated, leaving the page description in an
inconsistent state.
There may be many other conditions for

particular models when an error may cause check
stop.

When the CPU is in the check-stop state,
instructions and interruptions are not executed, the
interval timer is not updated, and channel
operations may be stopped. The time-of-day clock
is normally not affected by the check-stop state.
The CPU timer mayor may not run in the
check-stop state, depending on the error and the
model. The start key and stop key are not effective
in this state.

The CPU may be removed from the check-stop
state by program reset.

Machine-Check Interruption
A request for a machine-check interruption, which
is made pending as the result of a machine check, is
called a machine-check-interruption condition.
There are two major types of machine-check­
interruption conditions: exigent conditions and
repressible conditions.

Exigent Conditions
Exigent machine-check-interruption conditions are
those in which damage has or would have occurred
such that the current instruction or interruption
sequence cannot safely continue. Exigent
conditions are identified in the machine-check­
interruption code by two bits: instruction­
processing damage and system damage. In addition
to indicating specific exigent conditions, the
system-damage bit is used to report any
malfunction or error which cannot be isolated to a
less severe report.

Repressible Conditions
Repressible machine-check-interruption conditions
are those in which the results of the
instruction-processing sequence have not been
affected. Repressible conditions can be delayed,
until the completion of the current instruction or
even longer, without affecting the integrity of CPU
operation. Repressible conditions are of three
classes: recovery, alert, and repressible damage.
Each class has one or more subclasses.

A malfunction in the CPU, storage, channel, or
operator facilities which has been successfully
corrected or circumvented internally without logical
damage is called a recovery condition. Depending
on the model and the type of malfunction, some or
all recovery conditions may be discarded and not
reported. Recovery conditions that are reported
are grouped in one subclass, system recovery.

A machine-check-interruption condition not
directly related to a machine malfunction is called
an alert condition. The alert conditions are
grouped in two subclasses: degradation and
warning.

A malfunction resulting in an incorrect state of a
portion of the system not directly affecting
sequential CPU operation is called a repressible­
damage condition. Repressible-damage conditions
are divided into three subclasses, according to the
function affected: timing-facility damage, interval­
timer damage, and external damage.

Programming Notes
1. Even though repressible conditions are usually

reported only at normal points of interruption,
they may also be reported with exigent
machine-check conditions. Thus, if an exigent
machine-check condition causes an instruction
to be abnormally terminated and a
machine-check interruption occurs to report the
exigent condition, any pending repressible
conditions may also be reported. The
meaningfulness of the validity bits depends on
what exigent condition is reported.

2. Classification of a damage condition as
repressible does not imply that the damage is
necessarily less severe than damage classified as
an exigent condition. The distinction is
whether action must be taken as soon as the
damage is detected (exigent) or whether the
CPU can continue processing (repressible).
For a repressible condition, the current
instruction can be completed before taking the
machine-check· interruption if the CPU is
enabled; if the CPU is disabled for machine
checks, the condition can safely be kept
pending until the CPU is again enabled for
machine checks.

For example, the CPU may be disabled for
machine-check interruptions because it is
handling an earlier instruction-processing­
damage interruption. If, during that time, an
I/O operation encounters a storage error, that
condition can be kept pending because it is not

Chapter 11. Machine-Check Handling 11-5

expected to interfere with the current
machine-check processing. If, however, the
CPU also makes a reference to the area of
storage containing the error before re-enabling
machine-check interruptions, another
instruction-processing-damage condition is
created, which is treated as an exigent
condition and causes the CPU to enter the
check-stop state.

Interruption Action
A machine-check interruption causes the following
actions to be taken. The PSW reflecting the point
of interruption is stored as the machine-check old
PSW at location 48. The contents of other
registers are stored in register-save areas at
locations 216-231 and 352-511. After the
contents of the registers are stored in register-save
areas, the registers are validated with the contents
being unpredictable. A failing-storage address, if
any, is stored at location 248. Then a
machine-check-interruption code (MCIC) of eight

bytes is placed at location 232. The new PSW is
fetched from location 112.

The fields accessed during the machine-check
interruption are summarized in the figure
"Machine-Check-Interruption Locations."

If the machine-check-interruption code cannot
be stored successfully or the new PSW cannot be
fetched successfully, the CPU enters the check-stop
state.

A repressible machine-check condition can
initiate a machine-check interruption only if both
PSW bit 13 is one and the associated subclass mask
bit in control register 14 is also one. When it
occurs, the interruption does not terminate the
execution of the current instruction; the
interruption is taken at a normal point of

interruption, and no program or supervisor-call
interruptions are eliminated. If the machine check
occurs during the execution of a machine function,
such as a CPU-timer update, the machine-check
interruption takes place after the machine function
has been completed.

When the CPU is disabled for a particular
repressible machine-check condition, the condition
remains pending. Only one repressible condition is
held pending for each subclass, regardless of the
number of conditions that may have been detected
for that subclass.

When a repressible machine-check interruption
occurs because the interruption condition is in a
subclass for which the CPU is enabled, pending
conditions in other subclasses may also be indicated
in the same interruption code, even though the
CPU is disabled for those subclasses. All indicated
conditions are then cleared.

I If a machine check which is to be reported as a
system-recovery condition is detected during the
execution of the interruption procedure due to a
previous machine-check condition, the
system-recovery condition may be combined with
the other conditions, discarded, or held pending.

An exigent machine-check condition can cause a
machine-check interruption only when PSW bit 13
is one. When it occurs, the interruption terminates
the execution of the current instruction and may
eliminate the program and supervisor-call
interruptions, if any, that would have occurred if
execution had continued. Proper execution of the
interruption steps, including the storing of the old
PSW and other information, depends on the nature
of the malfunction. When an exigent
machine-check condition occurs during the
execution of a machine function, such as a

(Fetched)
Starting Length

Information Stored Location in Bytes

Old PSW 48 8
New PSW (fetched) 112 8
Machine-cheek-interruption code 232 8
Failing-storage address 248 4
Register-save areas

CPU timer 216 8
Clock comparator 224 8
Floating-point registers 0, 2, 4, 6 352 32
General registers 0-15 384 64
Control registers 0-15 448 64

Machine-Cheek-Interruption Locations

11-6 IBM 4300 Processors Principles of Operation

CPU-timer update, the sequence is not necessarily
completed.

If, during the execution of an interruption due to
one exigent machine-check condition, another
exigent machine check is detected, the CPU enters
the check-stop state. If an exigent machine check
is detected during an interruption due to a
repressible machine-check condition, system
damage is reported.

When PSW bit 13 is zero, an exigent
machine-check condition causes the CPU to enter
the check-stop state.

Machine-check-interruption conditions are
handled in the same manner regardless of whether
the wait-state bit in the PSW is one or zero: a
machine-check condition causes an interruption if
the CPU is enabled for that condition.

Machine checks which occur while the rate
control is set to instruction step are handled in the
same manner as when the control is set to process;
that is, recovery mechanisms are active, and
machine-check interruptions occur when allowed.
Machine checks occurring during a manual
operation may be indicated to the operator, may
generate a system-recovery condition, may result in
system damage, or may cause a check stop,
depending on the model.

Every reasonable attempt is made to limit the
side effects of any machine check and the
associated interruption. Normally, interruptions, as
well as the progress of 110 operations, remain
unaffected. The malfunction, however, may affect
these activities, and, if the currently active PSW
has bit 13 set to one, the machine-check
interruption will indicate the total extent of the
damage caused, and not just the damage which
originated the condition.

Point of Interruption
The point in the processing which is indicated by
the interruption and used as a reference point by
the machine to determine and indicate the validity
of the status stored is referred to as the point of
interruption.

Only certain points in the processing may be
used as a point of interruption. For repressible
machine-check interruptions, the point of
interruption must be after one unit of operation is
completed and any associated program or
supervisor-call interruption is taken, and before the
next unit of operation is begun.

Exigent machine-check conditions;. are;-those, in
which damage has or would have occurred· to the
instruction stream. Thus, the damage can normally
be associated with a point part way though an
instruction and this point is called the point of
damage.

In addition to the point of interruption permitted
for repressible machine-check conditions, the point
of interruption for an exigent machine-check
condition may also be after the unit of operation is
completed but before any associated program or
supervisor-call interruption occurs. In this case, a
valid PSW instruction address is defined as that
which would have been stored in the old PSW for
the program or supervisor-call interruption. Since
the operation has been terminated, the values in the
result fields, other than the instruction address, are
unpredictable. Thus the validity bits associated
with fields which are due to be changed by the
instruction stream are meaningless when an exigent
machine-check condition is reported.

When the point of interruption and the point of
damage due to an exigent machine-check condition
are separated by a LOAD PSW or an interruption,
the damage has not been isolated to a particular
program, and system damage is indicated.

Programming Note
When an exigent machine-cheek-interruption
condition occurs, the point of interruption which is
chosen affects the amount of damage which must
be indicated. An attempt is made, when possible,
to choose a point of interruption which permits the
minimum indication of damage.

When all the status information stored as a result
of an exigent machine-check-interruption condition
does not reflect the same point, an attempt is made
when possible to choose the point of interruption so
that the instruction address which is stored in the
machine-check old PSW is valid.

Machine-Cheek-Interruption Code
On all machine-check interruptions, a
machine-cheek-interruption code (MCIC) is stored
at the doubleword starting at location 232 and has
the format shown in the figure "Machine-Check
Interruption-Code Format."

Bits in the MCIC which are not assigned, or not
implemented by a particular model, are stored as
zeros.

Chapter 11. Machine-Check Handling 11-7

I ~ P S T C E D S K W M P I F FG C S
D R D D D 0 G WOO 0 0 0 0 D E o E 0 PS M A A o 0 P R ROT

o 9 15 20 27 31

o 0 000 0 0 0 0 0 0 000 000 0 0 0 0 0 000 000 0 0

32 46 48 63

Bits Name
o System damage (SD)
1 Instruction-processing damage (PD)
2 System recovery (SR)
3 Interval-timer damage (TD)
4 Timing-facility damage (CD)
5 External damage (ED)
7 Degradation (DG)
8 Warning (W)
15 Delayed (D)
16 Storage error uncorrected (SE)
18 Storage-key error uncorrected (KE)
20 PSW-EMWP validity (WP)
21 PSW mask and key validity (MS)
22 PSW program-mask and condition-code validity (PM)
23 PSW-instruction-address validity (IA)
24 Failing-storage-address validity (FA)
27 Floating-point-register validity (FP)
28 General-register validity (GR)
29 Control-register validity (CR)
31 Storage logical validity (ST)
46 CPU-timer validity (CT)
47 Clock-comparator validity (CC)

Note: All other bits of the MCIC are unassigned and
stored as zeros.

Machine-Check Interruption-Code Format

Programming Note
The program should not depend on unassigned bits
in the machine-cheek-interruption code being zeros,
so as to ensure that existing programs run if and
when new facilities using these bits are defined.

Subclass
Bits 0-5, 7, and 8 are the subclass bits which
identify the type of machine-check condition
causing the interruption. At least one of the
subclass bits is stored as a one. When multiple
errors have occurred, several of the defined bits
may be set to ones.

11-8 IB M 4300 Processors Principles of Operation

System Damage
Bit 0 (SD), when one, indicates that damage has
occurred which cannot be isolated to one or more
of the less severe machine-check subclasses. When
system damage is indicated, the remaining bits in
the machine-cheek-interruption code are not
meaningful, and information stored in the register­
save areas a:gd failing-storage-address field is not
meaningful. System damage is an exigent
condition.

Instruction-Processing Damage
Bit 1 (PD), when one, indicates that damage has
occurred to the instruction processing of the CPU.

For damage to be indicated as instruction~
pr:ocessing damage, the point of damage and the.
point· of interruption must not be separated by an
interruption or by a LOAD PSW instruction and
the damaged entity must be due to be changed by
the current instruction.

Instruction-processing damage is an exigent
condition.

System Recovery
Bit 2 (SR), when one, indicates that malfunctions
were detected but did not result in damage or have
been successfully corrected. Some malfunctions
detected as part of an 110 operation may result in
a system-recovery condition in addition to an
I/O-error condition. The presence and extent of
the system-recovery capability depend on the
model.

System recovery is a repressible condition.

Programming Notes
1. System recovery may be used to report a

failing-storage address detected by a CPU
prefetch or by an I/O operation.

2. Unless the corresponding validity bits are ones,
the indication of system recovery does not
imply storage logical validity, or that the fields
stored as a result of the machine-check
interruption are valid.

Interval-Timer Damage
Bit 3 (TD), when one, indicates that damage has
occurred to the interval timer or to storage location
80. Interval-timer damage is a repressible
condition.

Timing-Facility Damage
Bit 4 (CD), when one, indicates that damage has
occurred to the time-of-day clock, the CPU timer,
the clock comparator, or to the CPU-timer or
clock-comparator external-interruption conditions.
The timing-facility-damage machine-check
condition is set whenever any of the following
occurs:
1. The time-of-day clock enters the error or

not-operational state.
2. The CPU timer is damaged, and the CPU is

enabled for CPU-timer external interruptions.
Depending on the model, the machine-check
condition may be generated only as the CPU
timer enters an error state. Or, the
machine-check condition may be continuously

generated whenever the CPU is enabled for
CPU-timer interruptions, until the CPU timer is
validated.

3. The clock comparator is damaged, and the CPU
is enabled for clock-comparator external
interruptions.

Timing-facility damage may also be set along
with instruction-processing damage when an
instruction which accesses the CPU timer or clock
comparator produces incorrect results.

Timing-facility damage is a repressible condition.

Programming Note
Timing-facility-damage conditions for the CPU
timer and the clock comparator are not recognized
when these facilities are not in use. The facilities
are considered not in use when the CPU is disabled
for the corresponding external interruptions (PSW
bit 7, or the subclass-mask bits~ bits 20 and 21 of
control register 0, are zeros), and when the
corresponding set and store instructions are not
being issued. Timing-facility-damage conditions
that are already pending remain pending, however,
when the CPU is disabled for the corresponding
external interruption.

Timing-facility-damage conditions due to damage
to the time-of-day clock are always recognized.

External Damage
Bit 5 (ED), when one, indicates that damage has
occurred to a channel or to storage during
operations not directly associated with processing
the current instruction. Channel malfunctions are
reported as external damage only when the channel
is unable to report the malfunctions by an
I/O-error condition. Depending on the model and
on the type and extent of the error, an
external-damage condition may be indicated as
system damage instead of external damage.

External damage is a repressible condition.

Degradation
Bit 7 (DG), when one, indicates that continuous
degradation of system performance, more serious
than that indicated by system recovery, has
occurred. Degradation may be reported when
system-recovery conditions exceed a machine­
preestablished threshold. The presence and extent
of the degradation-report capability depends on the
model.

Degradation is a repressible condition.

Chapter 11. Machine-Check Handling 11-9

Warning
Bit 8 (W), when one, indicates that damage is
imminent in some, part of the system (for example,
that power is about to fail, or that a loss of cooling
is occurring). Whether warning conditions are
recognized depends on the model.

If the condition responsible for the imminent
damage is removed before the interruption request
is honored (for example, if power is restored), the
request does not remain pending, and no
interruption occurs. Conversely, the request is not
cleared by the interruption, and, if the condition
persists, more than one interruption may result
from the same condition.

Warning is a repressible condition.

Auxiliary Bits
Bits 15, 16, and 18 of the machine-check­
interruption code may occur together with one or
more of the bits in the subclass field to indicate a
delayed condition, an uncorrected storage error,
and an uncorrected storage-key error, respectively.

Delayed
Bit 15 (D), when one, indicates that one or more
of the repressible machine-check conditions being
reported were delayed because, at the time a
particular error was detected, the CPU was disabled
for that type of interruption. The bit does not
apply to exigent conditions, which cannot be
delayed.

Storage Error Uncorrected
Bit 16 (SE), when one, indicates that a storage
page which is in the connected or addressable state
contained invalid CBC and that the information
could not be corrected. The contents of the page
have not been changed.

Storage-Key Error Uncorrected
Bit 18 (KE), when one, indicates invalid CBC for
the storage key in lookaside storage which is
associated with a storage page that is in the
connected or addressable state, and indicates that
the information could not be corrected. The
contents of the storage key have not been changed.

Programming Note
The storage-error and storage-key-error bits do not
in themselves indicate the occurrence of damage
because the error detected may not have affected a
result. The accompanying subclass bits of the

1 1-10 IB M 4300 Processors Principles of Operation

interruption code indicate the area affected by the
error.

Machine-Check Interruption-Code Validity
Bits
Bits 20-24, 27-29, 31, 46, and 47 of the machine­
check-interruption code are validity bits. Each bit
indicates the validity of a particular field in storage.
With the exception of the storage-logical-validity
bit (bit 31), each bit is associated with a field
stored during the machine-check interruption.

I When a validity bit is one, it indicates that the
saved value placed in the corresponding storage
field is valid with respect to the indicated point of
interruption and that no error was detected when
the data was stored.

When a validity bit is zero, one or more of the
following conditions may have occurred: the
original information was incorrect, the original
information had invalid CBC, additional
malfunctions were detected while storing the
information, or none or only part of the
information was stored. Even though the
information is unpredictable, the machine will
attempt, when possible, to place valid CBC in the
storage field and thus reduce the possibility of
additional machine checks being caused.

The validity bits for the floating-point registers,
general registers, control registers, CPU timer, and
clock comparator indicate the validity of the saved
value placed in the corresponding save area. The
information in these registers after the machine­
check interruption is not necessarily correct even
when the correct value has been placed in the save
area and the validity bit set to one.

PSW-EMWP Validity
Bit 20 (WP), when one, indicates that the EMWP
bits (bits 12-15) of the machine-check old PSW are
correct.

PSW Mask and Key Validity
Bit 21, when one, indicates that the system mask,
PSW key, and miscellaneous bits of the machine­
check old PSW are correct. Specifically, this bit
covers bits 0-11 of both EC-mode and BC-mode
PSWs, and also bits 16, 17, and 24-39 of the
EC-mode PSW.

PSW Program-Mask and Condition-Code Validity
Bit 22 (PM), when one, indicates that the program
mask and condition code of the machine-check old
PSW are correct.

PSW - Instruction-Address Validity
Bit 23 (IA), when one, indicates that the instruc­
tion address (bits 40-63) of the machine-check old
PSW is correct.

Programming Note
When a machine check occurs which stores a
BC-mode PSW, the contents of the interruption
code and ILC in the machine-check old PSW are
unpredictable, and no PSW -validity bit covers these
bits. The four PSW -validity bits cover all 64 bits
of the EC-mode PSW.

Failing-Storage-Address Validity
Bit 24 (FA), when one, indicates that a correct
failing-storage address has been placed at location
248 after a storage error uncorrected or
storage-key error uncorrected. When no such
errors are reported, that is, bits 16 and 18 of the
machine-cheek-interruption code are zeros, the
failing-storage address is meaningless, even though
it may be indicated as valid.

Floating-Point-Register Validity
Bit 27 (FP), when one, indicates that the contents
of the floating-point-register save area at locations
352-383 reflect the correct state of the floating­
point registers at the point of interruption.

General-Register Validity
Bit 28 (GR), when one, indicates that the contents
of the general-register save area at locations
384-447 reflect the correct state of the general
registers at the point of interruption.

Control-Register Validity
Bit 29 (CR), when one, indicates that the contents
of the control-register save area at locations
448-511 reflect the correct state of the control
registers at the point of interruption.

Storage Logical Validity
Bit 31 (ST), when one, indicates that the storage
locations, the contents of which are modified by
the instructions being executed, contain the correct
information relative to the point of interruption.
That is, all stores before the point of interruption
are completed, and all stores, if any, after the point
of interruption are suppressed. When a store
before the point of interruption is suppressed
because of an invalid CBC, the storage-Iogical­
validity bit may be indicated as one, provided that
the invalid CBC has been preserved as invalid.

Storage logical validity reflects only the
instruction-processing activity and does not reflect
errors in the state of storage as the result of
interval-timer update or I/O operations, or of the
storing of the old PSW and other interruption
information.

CPU - Timer Validity
Bit 46 (CT), when one, indicates that the CPU
timer is not in error and that the contents of the
CPU-timer save area at location 216 reflect the
correct state of the CPU timer at the time the
interruption occurred.

Clock-Comparator Validity
Bit 47 (CC), when one, indicates that the clock
comparator is not in error and that the contents of
the clock-comparator save area at location 224
reflect the correct state of the clock comparator.

Programming Note
The validity bits must be used in addition to the
subclass bits in order to determine the extent of the
damage caused by a machine-check condition. No
damage has occurred to the system when the
following are true:
• The four PSW validity bits, the three register

validity bits, the two timing-facility-validity bits,
and the storage-Iogical-validity bit must all be
ones.

• The damage-subclass bits 0, 1, 3, 4, and 5 must
be zeros.

Machine-Check Extended Interruption
Information
As part of the machine-check interruption, in some
cases, extended interruption information is placed
in fixed areas assigned in storage. The contents of
registers associated with the CPU are placed in
register-save areas. When storage error
uncorrected or storage-key error uncorrected is
indicated, the failing-storage address is saved.

Each of these fields has associated with it a
validity bit in the machine-cheek-interruption code.
If, for any reason, the machine cannot store the
proper information in the field, the associated
validity bit is set to zero.

Register-Save Areas
As part of the machine-check interruption, the
current contents of the CPU registers, except for
the time-of-day clock, are stored in five
register-save areas assigned in storage. Each of

Chapter 11. Machine-Check Handling 11-11

these areas has associated with it a validity bit in
the machine-cheek-interruption code. If, for any
reason, the machine cannot store the proper
information in the field, the associated validity bit
is set to zero.

The following are the five sets of registers and
the locations in storage where their contents are
saved during a machine-check interruption.

Locations
216-223
224-231
352-383

384-447
448-511

Registers
CPU timer
Clock comparator
Floating-point registers

0, 2, 4, 6
General registers 0-15
Control registers 0-15

The information stored for unassigned
control-register positions is unpredictable.

Failing"'Storage Address
When storage error uncorrected or storage-key
error uncorrected is indicated in the
machine-cheek-interruption code, the associated
address, called the failing-storage address, is stored
in bits 8-31 of the word at location 248. Bits 0-7
of that word are set to zeros.

The failing-storage address may be the address
of any location within the page that is in error or
that is associated with the storage key in error.
When an error is detected in more than one
location before the interruption, the failing-storage
address may point to any of the failing locations.

Machine-Check Masking
All machine-check interruptions are under control
of the machine-check mask, PSW bit 13. In
addition, some machine-check conditions are
controlled by subclass masks in control register 14.

The exigent machine-check conditions (system
damage and instruction-processing damage) are
controlled only by the machine-check mask, PSW
bit 13. When PSW bit 13 is one, an exigent
condition causes a machine-check interruption.
When PSW bit 13 is zero, the occurrence of an
exigent machine-check condition causes the CPU to
enter the check-stop state.

The repressible machine-check conditions are
controlled both by the machine-check mask, PSW
bit 13, and by four subclass-mask bits in control
register 14. If PSW bit 13 is one and one of the
subclass-mask bits is one, the associated condition

11-12 IBM 4300 Processors Principles of Operation

initiates a machine-check interruption. If a
subclass-mask bit is zero, the associated condition
does not initiate an interruption. However, when a
machine-check interruption is initiated because of a
condition for which the CPU is enabled, those
conditions for which the CPU is not enabled may
be presented along with the condition which
initiates the interruption. All conditions presented
are then cleared.

Control Register 14

I~~~~I
047

Bits 4-7 of control register 14 are the subclass
masks for repressible machine-check conditions. In
addition, bit 0 is initialized to one, but it is
otherwise ignored by the machine. All other bits of
control register 14 are unassigned.

Programming Note
The program should avoid, whenever possible,
operating with PSW bit 13, the machine-check
mask, set to zero, since any exigent machine-check
condition which is recognized during this situation
will cause the CPU to enter the check-stop state.
In particular, the program should avoid issuing I/O
instructions or allowing for I/O interruptions with
PSW bit 13 a zero.

Recovery-Report Mask
Bit 4 (RM) of control register 14 controls system­
recovery-interruption conditions. This bit is
initialized to zero.

Degradation-Report Mask
Bit 5 (DM) of control register 14 controls
degradation-interruption conditions. This bit is
initialized to zero.

External-Damage-Report Mask
Bit 6 (EM) of control register 14 controls
timing-facility-damage, interval-timer-damage, and
external-damage conditions. This bit is initialized
to one.

Warning Mask
Bit 7 (WM) of control register 14 controls warning
conditions. This bit is initialized to zero.

Chapter 12. Input/Output Operations

Contents

Attachment of Input/Output Devices 12-2

Input/Output Devices 12-2
Control Units 12-2
Channels 12-3

Modes of Operation 12-3
Types of Channels 12-4

I/O-System Oper;;1,tion 12-5

Compatibility of Operation 12-6
Control of Input/Output Devices

Input/Output Device Addressing
States of the Input/Output System

12-7
12-7

12-8

Resetting of the Input/Output System 12-10
1/ O-System Reset 12-10

I/O Selective Reset 12-10
Effect of Reset on a Working Device 12-10
Reset Upon Malfunction 12-10

Condition Code 12-11
Instruction Formats 12-13
Instructions 12-14
CLEAR I/O 12-14
HALT DEVICE 12-16

HALT I/O 12-19
START I/O 12-21
START I/O FAST RELEASE 12-21
STORE CHANNEL ID 12-23
TEST CHANNEL 12-24

TEST I/O 12-25
Input/ Output-Instruction -Exception Handling

Execution of Input/Output Operations 12-27
Blocking of Data 12-28

Channel-Address Word 12-28
Channel-Command Word 12-28
Command'Code 12-29
Designation of Storage Area
Chaining 12-31

Data Chaining 12-32

Command Chaining 12-33
Skipping 12-34
Program-Controlled Interruption
Commands 12-35

Write 12-36
Read 12-36
Read Backward 12-36
Control
Sense

12-37
12-37

12-30

12-34

12-27

Transfer in Channel 12-39
Command Retry 12-39

Conclusion of Input/Output Operations 12-40
Types of Conclusion 12-40

Conclusion at Operation Initiation 12-40
Immediate Operations 12-41
Conclusion of Data Transfer 12-41

Termination by HALT I/O or HALT
DEVICE 12-42

Termination by CLEAR I/O 12-44
Termination Due to Equipment
Malfunction 12-44

Input/Output Interruptions 12-44
Interruption Conditions 12-44
Channel-Available Interruption

Priority of Interruptions 12-46
Interruption Action

Channel-Status Word
12-46

12-47
U nit Status 12-48

Attention 12-48
Status Modifier
Control-Unit End

12-48
12-48

Busy 12-49

Channel End 12-50
Device End 12-51
Unit Check 12-51

Unit Exception 12-52
Channel Status 12-52

Program-Controlled Interruption
Incorrect Length 12-53
Program Check 12-53
Protection Check 12-54
Channel-Data Check 12-54
Channel-Control Check
Interface-Control Check
Chaining Check 12-55

12-54
12-54

12-45

12-52

Contents of Channel-Status Word 12-55
Information Provided by Channel-Status
Word 12-55

Subchannel Key 12-56

CCW Address 12-56
Count 12-57
Status 12-57

Channel Logout 12-60
1/ O-Communication Area 12-60

Chapter 12. Input/OutputOperations 12-1

The transfer of information to or from main
storage, other than to or from the central
processing unit, is referred to as an input or output
operation. An input/output (I/O) operation
involves the use of an I/O device. Input/output
devices perform I/O operations under control of
control units, which are attached to the central
processing unit (CPU) by means of channels.

This portion of the publication describes the
programmed control of I/O devices by the channels
and by the CPU. Formats are defined for the
various types of I/O control information. The
formats apply to all I/O operations and are
independent of the type of I/O device, its speed,
and its mode of operation.

The formats described inclu<;le provisions for
functions unique to some I/O device types, such as
an erase gap on a magnetic-tape unit. The way in
which a device makes use of the format is defined
in the System Library (SL) publication for the
particular device.

All main-storage references for I/O operations
are references to virtual storage. Unless indicated
otherwise, "storage" means virtual storage, and
"address" means virtual address. The terms "I/O
address," "channel address," and "device address"
are never abbreviated to "address" in this
publication.

Attachment of Input/Output Devices

Input / Output Devices
Input/ output devices provide external storage and a
means of communication between data-processing
systems or between a system and its environment.
Input/ output devices include such equipment as
card readers, card punches, magnetic-tape units,
direct-access-storage devices (disks and drums),
display units, typewriter-keyboard devices, printers,
teleprocessing devices, and sensor-based equipment.

Most types of I/O devices, such as printers, card
equipment, or tape devices, deal directly with
external media, and these devices are physically
distinguishable and identifiable. Other types
consist only of electronic equipment and do not
directly handle physical recording media. The
channel-to-channel adapter, for example, provides
a channel-to-channel data-transfer path, and the
data never reaches a physical recording medium
outside main storage. Similarly, a transmission­
control unit handles transmission of information
between the data-processing system and a remote
station, and its input and output are signals on a
transmission line. An I/O device may

12-2 IBM 4300 Processors Principles of Operation

be physically distinct equipment, or it may
time-share equipment with other I/O devices.

An input/output device ordinarily is attached to
one control unit and is accessible from one channel.
Switching equipment is available to make some
devices accessible to two or more channels by·
switching devices between control units and control
units between channels. The time required for
switching occurs during device-selection time and
may be ignored.

Control Units
A control unit provides the logical capabilities
necessary to operate and control an I/O device and
adapts the characteristics of each device to the
standard form of control provided by the channel.

The control unit accepts control signals from the
channel, controls the timing of data transfer, and
provides indications concerning the status of the
device.

The 1/ a device attached to the control unit may
be designed to perform only certain limited
operations, or it may perform many different
operations. A typical operation is moving the
recording medium and recording data. To
accomplish these functions, the device needs
detailed signal sequences peculiar to the type of
device. The control unit decodes the commands
received from the channel, interprets them for the
particular type of device, and provides the signal
sequence required for execution of the operation.

A control unit may be housed separately, or it
may be physically and logically integral with the
I/O device or the CPU. In most electromechanical
devices, a well-defined interface exists between the
device and the control unit because of the
difference in the type of equipment the control unit
and the device contain. These electromechanical
devices often are of a type where only one device
of a group attached to a control unit is required to
operate at a time (magnetic-tape units or
disk-access mechanisms, for example), and the
control unit is shared among a number of I/O
devices. On the other hand, in some electronic I/O
devices such as the channel-to-channel adapter, the
control unit does not have an identity of its own.

From the programmer's point of view, most
functions performed by the control unit can be
merged with those performed by the I/O device.
Therefore, this publication normally does not make
specific mention of the control unit function; the
execution of I/O operations is described as if the
I/O devices communicated directly with the
channel. Reference is made to the control unit
only when emphasizing a function performed by it

(

or when describing how sharing of the control unit
among a number of devices affects the execution of
110 operations.

Channels
A channel directs the flow of information between
110 devices and main storage. It relieves the CPU
of the task of communicating directly with the
devices and permits data processing to proceed
concurrently with 110 operations.

A channel provides a means for connecting
different types of 110 devices to the CPU and to
storage. The channel accepts control information
from the CPU in the format supplied by the
program and changes it into a sequence of signals
acceptable to a control unit and device. Similarly,
when an 1/0 device provides signals that should be
brought to the attention of the program, the
channel transforms the signals to information that
can be used in the CPU.

A channel contains facilities for the control of
1/0 operations. During execution of an 1/0
operation involving data transfer, the channel
assembles or disassembles data and synchronizes
the transfer of data bytes with storage cycles. To
accomplish this, the channel maintains and updates
an address and a count that describe the
destination or source of data in storage. When the
channel facilities are provided in the form of
separate autonomous equipment designed
specifically tq control 1/0 devices, 1/0 operations
are completely overlapped with the activity in the
CPU. The only storage cycles required during 1/0
operations in such channels are those needed to
transfer data and control information to or from
the final locations in storage. These cycles do not
interfere with the CPU program, except when both
the CPU and the channel concurrently attempt to
refer to the same storage area.

If separate equipment is not provided, facilities
of the CPU are used for controlling 1/0 devices.
When the CPU and channels, or the CPU,
channels, and control units, share common
facilities, 110 operations cause interference to the
CPU, varying in intensity from occasional delay of
a CPU cycle to a complete lockout of CPU activity.
The intensity depends on the extent of sharing and
on the 1/0 data rate. The sharing of the facilities,
however, is accomplished automatically, and the
program is not affected by CPU delays, except for
an increase in execution time.

Modes of Operation
An 1/0 operation occurs in one of two modes:
burst or byte-multiplex.

In burst mode, the 1/0 device monopolizes the
channel and stays logically connected to the
channel for the transfer of a burst of information.
No other device can communicate with the channel
during the time a burst is transferred. The burst
can consist of a few bytes, a whole block of data, a
sequence of blocks with associated control and
status information (the block lengths may be zero),
or status information which monopolizes the
channel. The facilities in a channel capable of
operating in burst mode may be shared by a
number of concurrently operating 110 devices.

Some channels can tolerate an absence of data
transfer during a burst-mode operation, such as
occurs when reading a long gap on magnetic tape,
for not more than approximately 112 minute.
Equipment malfunction may be indicated when an
absence of data transfer exceeds this time.

In byte-multiplex mode, the 110 device stays
logically connected to the channel only for a short
interval of time. The facilities in a channel capable
of operating in byte-multiplex mode may be shared
by a number of concurrently operating 1/0 devices.
In this mode, all 110 operations are split into short
intervals of time during which only a segment of
information is transferred. During such an interval,
only one device is logically connected to the
channel. The intervals associated with the
concurrent operation of multiple 110 devices are
sequenced in response to demands from the
devices. The channel controls are occupied with
anyone operation only for the time required to
transfer a segment of information. The segment
can consist of a single byte of data, a few bytes of
data, a status report from the device, or a control
sequence used for initiation of a new operation.

Operation in burst and byte-multiplex modes is
differentiated because of the way the channels
respond to 110 instructions. A channel operating a
device in the burst mode appears busy to new 1/0
instructions, whereas a channel operating one or
more devices in the byte-multiplex mode is capable
of initiating an operation on another device. If a
channel that can operate in either mode is
communicating with an 110 device at the instant a
new 110 instruction is issued, action on the
instruction is delayed by the channel until the
current mode of operation is established.
Furthermore, the new 110 operation is initiated
only after the channel has serviced all outstanding
requests from devices previously placed in
operation.

The distinction between a short burst of data
occurring in the byte-multiplex mode and an
operation in the burst mode is in the length of the

Chapter 12. Input/Output Operations 12-3

bursts of data. A channel that can operate in
either mode determines its mode of operation by
timeout. Whenever the burst causes the device to
be connected to the channel for more than
approximately 100 microseconds, the channel is
considered to be operating in the burst mode.

Ordinarily, devices with a high data-transfer rate
operate with the channel in burst mode, and slower
devices run in byte-multiplex mode. Some control
units have a manual switch for setting the mode of
operation.

Types of Channels
A system can be equipped with three types of
channels: selector, byte multiplexer, and block
multiplexer.

The channel facilities required for sustaining a
single I/O operation are termed a subchannel. The
subchannel consists of internal storage used for
recording the addresses, count, and any status and
control information associated with the I/O
operation. The capability of a channel to permit
multiplexing depends upon whether it has more
than one subchannel.

A selector channel, which contains a minimum of
facilities, has one subchannel and always forces the
I/O device to transfer data in the burst mode. The
burst extends over the whole block of data, or,
when command chaining is specified, over the
whole sequence of blocks. A selector channel
cannot perform any multiplexing and therefore can
be involved in only one I/O operation or chain of
operations at a time. In the meantime, other I/O
devices attached to the channel can be executing
previously initiated operations that do not involve
communication with the channel, such as
backspacing tape. When the selector channel is not
executing an operation or a chain of operations and
is not processing an interruption, it monitors the
attached devices for status information.

A byte-multiplexer channel contains multiple
subchannels and can operate at anyone time in
either byte-multiplex or burst mode. The channel
operates most efficiently when running I/O devices
that are designed to operate in byte-multiplex
mode. The mode of operation is determined by the
I/O device, and, during data transfer, the mode can
change at any time. Unless data transfer is
occurring, the mode of operation has no meaning.
The data transfer associated with an operation can
occur partially in the byte-multiplex mode and
partially in the burst mode.

A block-multiplexer channel contains multiple
subchannels and can only operate in burst mode.
The channel operates most efficiently when running

12-4 IBM 4300 Processors Principles of Operation

devices that are designed to operate in burst mode.
When mUltiplexing is not inhibited, the channel
permits multiplexing between blocks, between
bursts, or when command retry is performed. On
most models, the burst is forced to extend over the
block of data, and multiplexing is permitted either
between blocks of data or when command chaining
is specified. Whether or not multiplexing occurs
depends on the design of the channel and I/O
device and on the state of the block-multiplexing­
control bit.

When the block-multiplexing-control bit, bit 0 of
control register 0, is zero, multiplexing is inhibited;
when it is one, multiplexing is allowed.

Whether a block-multiplexer channel executes an
I/O operation with multiplexing inhibited or
allowed is determined by the state of the block­
multiplexing-control bit at the time the operation is
initiated by START I/O or START I/O FAST
RELEASE and applies to that operation until the
involved subchannel becomes available.

For brevity, the term "multiplexer channel" is
used hereafter when describing a function or
facility that is common for both byte-multiplexer
and block-multiplexer channels. Multiplexer
channels vary in the number of sub channels they
contain. When multiplexing, they can sustain
concurrently one I/O operation per subchannel,
provided that the total load on the channel does
not exceed its capacity. Each subchannel appears
to the program as an independent selector channel,
except in those aspects of communication that
pertain to the physical channel (for example,
individual subchannels on a multiplexer channel are
not distinguished as such by the TEST CHANNEL
instruction or by the masks controlling I/O
interruptions from the channel). When a
multiplexer channel is not servicing an I/O device,
it monitors its devices for data and for status
information.

Subchannels on a multiplexer channel may be
either nonshared or shared.

A sub channel is referred to as nonshared if it is
associated with and can be used only by a single
I/O device. A nonshared subchannel is used with
devices that do not have any restrictions on the
concurrency of channel-program operations, such
as the IBM 3211 Printer Modell or one drive of
an IBM 3330 Disk Storage.

A subchannel is referred to as shared if data
transfer to or from a set of devices implies the use
of the same sub channel. Only one device
associated with a shared sub channel may be
involved in data transmission at a time. Shared
subchannels are used with devices, such as

magnetic-tape units or some disk-access
mechanisms, that share a control unit. For such
devices, the sharing of the subchannel does not
restrict the concurrency of I/O operations since the
control unit permits only one device to be involved
in a data-transfer operation at a time. I/O devices
may share a control unit without necessarily sharing
a subchannel. For example, each transmission line
attached to the IBM 2702 Transmission Control is
assigned a nonshared subchannel, although all of
the transmission lines share the common control
unit.

Programming Notes
A block-multiplexer channel can be made to
operate as a selector channel by the appropriate
setting of the block-multiplexing-control bit.
However, since a block-multiplexer channel
inherently can interleave the execution of multiple
I/O operations and since the state of the block­
multiplexing-control bit can be changed at any
time, it is possible to have one or more operations
that permit multiplexing and an operation that
inhibits multiplexing being executed simultaneously
by a channel.

Therefore, to ensure complete compatibility with
selector channel operation, all operational
sub channels on the block-multiplexer channel must
be available or operating with multiplexing
inhibited when the use of that channel as a selector
channel is begun. All subsequent operations should
then be initiated with the block-multiplexing­
control bit inhibiting mUltiplexing.

I/O-System Operation
Inputloutput operations are initiated and controlled
by information with two types of formats:
instructions and channel-command words (CCWs).
Instructions are decoded by the CPU and are part
of the CPU program. CCWs are decoded and
executed by the channels and 110 devices and
initiate I/O operations, such as reading and
writing. One or more CCWs arranged for
sequential execution form a channel program. Both
instructions and CCWs are fetched from storage
and their formats are common for all types of I/O
devices, although the modifier bits in the command
code of a CCW may specify device-dependent
operations.

The CPU program initiates 110 operations with
the instruction START I/O or START I/O FAST
RELEASE. These instructions identify the channel
and device and cause the. channel to fetch the
channel-address word (CAW) from a fixed location
in storage. The CAW contains the subchannel key

and designates the location in storage from which
the channel subsequently fetches the first CCW.
The CCW specifies the command to be executed
and the storage area, if any, to be used.

When the CAW has been fetched, some channels
consider the execution of ST ART I/O FAST
RELEASE complete. The results of the execution
of the instruction to that point are indicated by
setting the condition code in the program-status
word (PSW) and, in certain situations, by storing
pertinent information in the channel-status word
(CSW).

If the channel is not operating in burst mode and
if the subchannel associated with the addressed I/O
device is available, the channel attempts to select
the device by sending the address of the device to
all control units attached to the channel. A control
unit that recognizes the address connects itself
logically to the channel and responds to its
selection by returning the address of the selected
device. The channel subsequently sends the
command-code part of the CCW to the control
unit, and the device responds with a status byte
indicating whether it can execute the command.

At this time, the execution of ST ART 110 and
of ST ART I/O FAST RELEASE, if not previously
considered complete, is completed. The results of
the attempt to initiate the execution of the
command are indicated by setting the condition
code in the PSW and, in certain situations, by
storing pertinent information in the CSW.

If the I/O operation is initiated at the device
and its execution involves transfer of data, the
sub channel is set up to respond to service requests
from the device and assumes further control of the
operation. In operations that do not require any
data to be transferred to or from the device, the
device may signal the end of the operation
immediately on receipt of the command code.

An I/O operation may involve transfer of data
to one storage area, designated by a single CCW,
or to a number of noncontiguous storage areas. In
the latter case, generally a list of CCWs is used for
execution of the I/O operation, each CCW
designating a contiguous storage area, and the
CCWs are said to be coupled by data chaining.
Data chaining is specified by a flag in the CCW
and causes the channel to fetch another CCW upon
the exhaustion or filling of the storage area
designated by the current CCW. The storage area
designated by a CCW fetched on data chaining
pertains to the 110 operation already in progress at
the I/O device, and the I/O device is not notified
when a new CCW is fetched.

Chapter 12. Input/Output Operations 12-5

Provision is made in the CCW format for the
programmer to specify that, when the CCW is
decoded, the channel request an I/O interruption
as soon· as possible, thereby notifying the CPU
program that chaining has progressed at least as far
as that CCW.

The conclusion of an I/O operation normally is
indicated by channel end and device end. Channel
end indicates that the I/O device has received or
provided all data associated with the operation and
no longer needs channel facilities. Device end
indicates that the I/O device has concluded
execution of the operation. Device end can occur
concurrently with channel end or later.

Operations that keep the control unit busy after
releasing channel facilities may, in some situations,
cause a third indication called control-unit end.
Control-unit end may occur only concurrently with
or after channel end and indicates that the control
unit has become available for initiation of another
operation.

Concurrent with channel end, both the channel
and the I/O device can provide indications of
unusual situations. Control-unit end and device
end can be accompanied by error indications from
the I/O device.

The indication of the conclusion of an I/O
operation can be brought to the attention of the
program by I/O interruptions or, when the CPU is
disabled for I/O interruptions from the channel, by
programmed interrogation of the I/O device. An
indication that will result in an interruption or that
can be observed through interrogation is called an
interruption condition. In either case, a CSW is
stored, which contains additional information
concerning the execution of the operation. When
channel end is indicated in the CSW, the CSW
identifies the last CCW used and provides its
residual byte count, thus indicating the extent of
storage used.

Facilities are provided for the program to initiate
the execution of a chain of I/O operations with a
single START I/O or START I/O FAST
RELEASE. When the chaining flags in the current
CCW specify command chaining and no unusual
conditions have been detected in the operation, the
receipt. of the device-end signal causes the channel
to fetch a new CCW and to initiate a new
command at the device. A chained command is
initiated in the same way as the first operation.
Channel end and device end are not presented to
the program when chaining causes another
operation to follow. However, unusual situations
can cause premature termination of command

12-6 IBM 4300 Processors Principles of Operation

chaining and generation of an interruption
condition.

Activities that cause I/O-interruption conditions
are asynchronous to activity in the CPU, and more
than one interruption condition can exist at the
same time. The channel and the CPU establish
priority among the conditions so that only one
condition is presented to the CPU at a time. The
conditions are preserved in the I/O devices or
subchannels until accepted by the CPU.

The execution of an I/O operation or chain of
operations thus involves up to four levels of
participation:
1. Except for the effects caused by the integration

of CPU and channel equipment, the CPU is
busy for the duration of execution of START
I/O or START 1/ 0 FAST RELEASE, which
lasts at most until the addressed I/O device
responds to the first command.

2. The subchannel is busy with the execution from
the time the CPU sets condition code 0 for the
START I/O or START I/O FAST RELEASE
instruction until the interruption condition
caused by the signal that terminates the last
operation of the command chain is accepted by
the CPU.

3. The control unit may remain busy after the
subchannel has been released and may generate
control-unit end when it becomes free.

4. The I/O device is busy from the initiation of
the first operation until the interruption
condition caused by the device end associated
with the operation is accepted or cleared by the
CPU.

An interruption condition caused by device end
makes the device appear busy, but normally does
not affect the state of any other part of the system.
An interruption condition caused by control-unit
end may block communications through the control
unit to any device attached to it, and an
interruption condition caused by channel end
normally blocks all communications through the
subchannel.

Compatibility of Operation
The organization of the I/O system provides for a
uniform method of controlling I/O operations. The
capability of a channel, however, depends on its
use and on the CPU model to which it is attached.
Channels are provided with different data-transfer
capabilities, and an I/O device designed to transfer
data only at a specific rate (a magnetic-tape unit or
a disk storage, for example) can operate only on a
channel that can accommodate at least this data
rate.

The data rate a channel can accommodate
depends also on the way the I/O operation is
programmed. The channel can sustain its highest
data rate when no data chaining is specified. Data
chaining reduces the maximum allowable rate, and
the extent of the reduction depends on the
frequency at which new CCWs are fetched and on
the address resolution of the first byte in each new
storage area. Furthermore, since a channel shares
storage with the CPU and other channels, activity
in the rest of the system affects the accessibility of
storage and, hence, the instantaneous load the
channel can sustain.

In view of the dependence of channel capacity
on programming and on activity in the rest of the
system, an evaluation of the ability of elements in a
specific I/O configuration to function concurrently
must be based on a consideration of both the data
rate and the way the I/O operations are
programmed. Two systems differing in
performance but employing identical complements
of I/O devices may be able to execute certain
programs in common, but it is possible that other
programs requiring, for example, data chaining,
may not run on one of the systems because of the
increased load caused by the data chaining.

Control of Input/Output Devices
The CPU controls I/O operations by means of
eight I/O instructions: CLEAR I/O, HALT
DEVICE, HALT I/O, START I/O, START I/O
FAST RELEASE, STORE CHANNEL ID, TEST
CHANNEL, and TEST I/O.

The instructions TEST CHANNEL and STORE
CHANNEL ID address a channel; they do not
address an I/O device. The other six I/O
instructions address a channel and a device on that
channel.

Input / Output Device Addressing
An I/O device and the associated access path are
designated by an I/O address. The 16-bit I/O
address consists of two parts: a channel address in
the leftmost eight bit positions and a device address
in the rightmost eight bit positions.

The channel address provides for identifying up
to 256 channels. Channels are numbered 0-255. /'
Channel 0 is a byte-multiplexer channel, and each
of channels 1-255 may be a byte-multiplexer,
block-multiplexer, or selector channel.

The number and type of channels and
subchannels available, as well as their address
assignment, depend on the system model and the
particular installation.

The device address identifies the particular I/O
device and control unit on the deSignated channel.
The address identifies, for example, a particular
magnetic-tape drive, disk-access mechanism, or
transmission line. Any number in the range 0-255
can be used as a device address, providing facilities
for addressing up to 256 devices per channel. An
exception is some multiplexer channels that provide
fewer than the maximum configuration of
sub channels and hence eliminate the corresponding
unassignable device addresses.

Devices that do not share a control unit with
other devices may be assigned any device address
in the range 0-255, provided the address is not
recognized by any other control unit. Logically,
such devices are not distinguishable from their
control unit, and both are identified by the same
address.

Devices sharing a control unit (for example,
magnetic-tape drives or disk-access mechanisms)
are assigned addresses within sets of contiguous
numbers. The size of such a set is equal to the
maximum number of devices that can share the
control unit, or 16, whichever is smaller.
Furthermore, such a set starts with an address in
which the number of low-order zeros is at least
equal to the number of bit positions required for
specifying the set size. The high-order bit positions
of an address within such a set identify the control
unit, and the low-order bit positions designate the
device on the control unit.

Control units designed to accommodate more
than 16 devices may be assigned nonsequential sets
of addresses, each set consisting of 16, or the
number required to bring the total number of
.assigned addresses equal to the maximum number
of devices attachable to the control unit, whichever
is smaller. The addressing facilities' are added in
increments of a set so that the number of device
addresses assigned to a control unit does not
exceed the number of devices attached by more
than 15.

The control unit does not respond to any address
outside its assigned set or sets. For example, if a
control unit is designed to control devices having
only the values 0000 to 1001 in the low-order bit
positions of the device address, it does not
recognize addresses containing 1010 to 1111 in
these bit positions. On the other hand, a control
unit responds to all addresses in the assigned set,
regardless of whether the device associated with the
address is installed. If no control unit responds to
an address, the 110 device appears not operational.
If a control unit responds to an address for which

Chapter 12. Input/Output Operations 12-7

no device is installed, the absent device appears in
the not-ready state.

Input/ output devices accessible through more
than one channel have a distinct address for each
path of communications. This address identifies
the channel and the control unit. For sets of
devices connected to two or more control units, the
portion of the address identifying the device on the
control unit is fixed, and does not depend on the
path of communications.

The assignment of channel and device addresses
is arbitrary, subject to the rules described and any
model-dependent restrictions. The assignment is
made at the time of installation, and the addresses
normally remain fixed thereafter.

States of the Input/Output System
The state of the I/O system identified by an I/O
address depends on the collective state of the
channel, subchannel, and I/O device. Each of
these components of the I/O system can have up to
four states, as far as the response to an I/O
instruction is concerned. These states are listed in
the figure "Input/Output System States." The
name of the state is followed by its abbreviation
and a brief definition.

A channel, subchannel, or I/O device that is
available, interruption-pending, or working is called
"operational." A channel, subchannel, or I/O

device that is interruption-pending, working, or
not-operational is called "not available."

In a multiplexer channel, the channel and
subchannel are easily distinguishable and, if the
channel is operational, any combination of channel
and sub channel states is possible. Since the
selector channel can have only one subchannel, the
channel and subchannel are functionally coupled,
and certain states of the channel are related to
those of the subchannel. In particular, the working
state can occur only concurrently in both the
channel and subchannel and, whenever an
interruption condition is pending in the subchannel,
the channel also is in the same state. The channel
and subchannel, however, are not synonymous, and
an interruption condition not associated with data
transfer, such as attention, does not affect the state
of the subchannel. Thus, the subchannel may be
available when the channel has an interruption
condition pending. Consistent distinction between
the subchannel and channel permits selector and
multiplexer channels to be covered uniformly by a
single description.

The device referred to in the figure
"Input/Output-System States" includes both the
device proper and its control unit. For some types
of devices, such as magnetic-tape units, the working
and the interruption-pending states can be caused
by activity in the addressed device or control unit.
A "not available 11 shared control unit imposes its

Name Abbreviation and Definition

Channel

Available
Interruption pending

Working
Not operational

Subchannel

Available
Interruption pending

Working
Not operational

liD Device

Avai lable
Interruption pending
Working
Not operational

Input/Output-System States

A None of the following states
I Interruption condition immedi-

ately available from channel
W Channel operating in burst mode
N Channel not operational

A
I

W
N

None of the following states
Information for CSW avai lable in

subchannel
Subchannel executing an operation
Subchannel not operational

A None of the following states
I Interruption condition in device
W Device executing an operation
N Device not operational

12-8 IBM 4300 Processors Principles of Operation

state on all devices attached to the control unit.
The states of the devices are not related to those of
the channel and subchannel.

When the response to an I/O instruction is
determined by the state of the channel or
subchannel, the components further removed are
not interrogated. Thus, 10 composite states may be
distinguished as conditions for the execution of I/O
instructions. Each composite state is identified by
three letters. The first letter specifies the state of
the channel, the second letter specifies the state of
the subchannel, and the third letter specifies the
state of the device. Each letter may be A, I, W, or
N, denoting the state of the component. The letter
X indicates that the state of the corresponding
component is not significant for the execution of
the instruction.

Available (AAA): The addressed channel
subchannel, control unit, and I/O device ~re
operational, are not engaged in the execution of
any previously initiated operations, and do not
contain any pending interruption conditions.

Because of internal activity, some block­
multiplexer channels may at times appear to be
working even though they are not engaged in the
execution of a previously initiated operation and do
not contain any interruption condition. This will
result in a WXX state instead of the AAA state.

Interruption Pending in Device (AAI) or Device
Working (AA W): The addressed channel and
subchannel are available. The addressed control
unit or I/O device is executing a previously
initiated operation or contains an interruption
condition. These situations are possible:
1. The device is executing an operation, such as

rewinding magnetic tape or seeking on a disk
file, after signaling channel end.

2. The control unit associated with the device is
executing an operation, such as backspacing file
on a magnetic-tape unit, after signaling channel
end.

3. The device or control unit is executing an
operation on another subchannel or channel.

4. The device or control unit contains the
device-end, control-unit-end, or attention
condition or a channel-end condition associated
with a terminated operation.

Device Not Operational (AAN): The addressed
channel and sub channel are available. The
addressed I/O device is not operational. A device

appears not operational when no control unit
recognizes the address. This occurs when the
control unit is not provided in the system, when
power is off in the control unit, or when the control
unit has been logically disconnected from the
system. The not-operational state is indicated also
when the control unit is provided and is designed to
attach the device, but the device has not been
installed and the address has not been assigned to
the control unit. (See also the section
"Input/Output Device Addressing" in this
chapter.)

If the addressed device is not installed or has
been logically removed from the control unit, but
the associated control unit is operational and the
address has been assigned to the control unit, the
device is said to be not ready. When an instruction
is addressed to a device in the not-ready state, the
control unit responds to the selection and indicates
unit check whenever the not-ready state precludes
a successful execution of the operation. (See the
section "Unit Check" in this chapter.)

Interruption Pending in Sub channel (AIX): The
addressed channel is available. An interruption
condition is pending in the addressed subchannel.
The subchannel is able to provide information for a
CSW. The interruption information indicates status
associated with the addressed device or another
device on the sub channel. The state of the
addressed device is not significant, except when
TEST I/O is addressed to the device associated
with the interruption condition, in which case the
CSW contains status information provided by the
device.

The state AIX does not occur on the selector
channel. On the selector channel, the existence of
an interruption condition in the subchannel
immediately causes the channel to assign to this
condition the highest priority for I/O interruptions
and, hence, leads to the state IIX.

Subchannel Working (A WX): The addressed
channel is available. The addressed subchannel is
executing a previously initiated operation or chain
of operations and has not yet received channel end
for the last operation. The state of the addressed
device is not significant, except when HALT I/O
or HALT DEVICE is issued. During the execution
of HALT I/O and HALT DEVICE; the state of
the device may be interrogated and will then be
indicated in either the CSW or the condition code.

The subchannel-working state does not occur on
the selector channel since all operations on the

Chapter 12. Input/Output Operations 12-9

selector channel are executed in the burst mode
and cause the channel to be in the working state
(WWX).

Subchannel Not Operational (ANX): The
addressed channel is available. The addressed
subchannel on the multiplexer channel is not
operational. A subchannel is not operational when
it is not provided in the system. This state cannot
occur on the selector channel.

Interruption Pending in Channel (IXX): The
addressed channel is not working and has
established which device will cause the next I/O
interruption from this channel. The state in which
the channel contains an interruption condition is
distinguished only by the instruction TEST
CHANNEL. This instruction does not cause the
subchannel and I/O device to be interrogated. The
other I/O instructions, with the exception of
STORE CHANNEL ID, consider the channel
available when it contains an interruption
condition. A channel with an interruption
condition may be considered to be working by the
instruction STORE CHANNEL ID. When the
channel assigns priority for interruptions among
devices, the interruption condition is preserved in
the I/O device or subchannel. (See the section
"Interruption Conditions" in this chapter.)

Channel Working (WXX): The addressed channel
is operating in the burst mode. In the multiplexer
channel, a burst of bytes is currently being handled.
In the selector channel, an operation or a chain of
operations is currently being executed, and the
channel end for the last operation has not yet been
signaled. The states of the addressed device and,
in the multiplexer channel, of the subchannel are
not significant. In addition, because of internal
activity, some block-multiplexer channels may at
times appear to be working even though they are
not operating in burst mode. Depending on the
model and the channel type, TEST I/O and HALT
DEVICE may consider the channel to be available
when the channel is working with a device other
than the addressed device.

Channel Not Operational (NXX): The addressed
channel is not operational. A channel is not
operational when it is not provided in the system,
when power is off in the channel, or when it is not
configured to the CPU. The states of the
addressed I/O device and subchannel are not
significant.

12-10 IBM 4300 Processors Principles of Operation

Resetting 01 the Input/Output System
Two types of resetting can occur in· the I/O system:
an I/O system reset and an I/O selective reset.
The response of each type of I/O device to the two
kinds of reset is specified in the SL publication for
the device.

I/O-System Reset
I/O-system reset is performed in the channel and
on the associated I/O interface when the CPU
performs a program reset, initial-program reset,
clear reset, or power-on reset, and when a
power-on sequence is performed by the channel.

I/O-system reset causes the channel to conclude
operations on all subchannels. Status information
and all interruption conditions in all subchannels
are reset, and all operational subchannels are
placed in the available state. The channel signals
system reset to all I/O devices attached to it.

I/O Selective Reset
The I/O selective reset is performed by some
channels when they detect certain equipment
malfunctions.

I/O selective reset causes the channel to signal
selective reset to the device that is connected to the
channel at the time the malfunction is detected.
No subchannels are reset.

Effect of Reset on a Working Device
With either type of reset, if the device is currently
communicating with a channel, the device
immediately disconnects from the channel. Data
transfer and any operation using the facilities of
the control unit are immediately concluded, and the
I/O device is not necessarily positioned at the
beginning of a block. Mechanical motion not
involving the use of the control unit, such as
rewinding magnetic tape or positioning a
disk-access mechanism, proceeds to the normal
stopping point, if possible. The device appears in
the working state until the termination of
mechanical motion or the inherent cycle of
operation, if any, whereupon it becomes available.
Status information in the device and control unit is
reset, but an interruption condition may be
generated upon completing any mechanical
operation.

Reset Upon Malfunction
When a malfunction occurs and the program is
alerted by an I/O interruption, or when a
malfunction occurs during the execution of an I/O
instruction and the program is alerted by the setting (

of a condition code, then an I/O selective reset
may have been performed. A CSW is stored
identifying the cause of the malfunction.

The device addressed by the I/O instruction is
not necessarily the device that is reset.

When a malfunction occurs and the program is
alerted by a machine-check interruption, then an
I/O selective reset may have been performed. This
mayor may not be accompanied by an I/O
interruption. When no I/O interruption occurs, a
CSW is not stored and a device is not identified.

Condition Code
The results of certain tests by the channel and
device, and the original state of the addressed part
of the I/O system are used during the execution of
an I/O instruction to set one of four condition
codes in the PSW. The condition code is set at the

time the execution of the instruction is concluded,
that is, the time the CPU is released to proceed
with the next instruction. The condition code
ordinarily indicates whether or not the function
specified by the instruction has been performed
and, if not, the reason for the rejection. In the
case of START I/O FAST RELEASE executed
independent of the device, a condition code 0 may
be set that is later superseded by a deferred
condition code stored in the CSW.

The figure "Condition-Code Settings for I/O
States and Instructions" lists the I/O-system states
and the corresponding condition codes for each
I/O instruction. The I/O-system states and
associated abbreviations were defined in the section
"States of the Input/Output System" earlier in this
chapter. The digits in the figure represent the
decimal value of the code.

Chapter 12. Input/Output Operations 12-11

Condition-Code Settings

I/O SID
I/O-System States State SIOF TID CLRIO HID HDV TCH STIDC

Available AAA 0,1 *@ 0 0 1* 1* 0 0
Interruption pending in device AAI 1*@ 1* 0 1* 1* 0 0
Device working AAW 1*@ 1* 0 1* 1* 0 0
Device not operational AAN 3@ 3 0 3 3 0 0
Interruption pending in subchannel AIX
For the addressed device 2 1* 1* 0 0 0 0
For another device 2 2 0 0 0 0 0

Subchannel working AWX
With the addressed device 2 2 1* 1*# 1*# 0 0
With another device 2 2 0 1*# 0 0 0

Subchannel not operational ANX 3 3 3 3 3 0 0
Interruption pending in channel IXX ---See Note 1 ##
Channel working WXX
With the addressed device 2 2 *** 2 + 2 ##
With another device 2 2- ** 2 ~ 2 ##
Internal activity 2 2- ** 2 ~ 2 ##

Channel not operat i ona I NXX 3 3 3 3 3 3 3

Explanation:

* Whenever condition code 1 is set, the CSW or its status portion is
stored at location 64 during execution of the instruction.

** When CLEAR I/O encounters the WXX state, either condition code 2 is
set, or the channel is treated as available and the condition code is
set according to the state of the subchannel. When the channel is
treated as available, the condition codes for the WXX states are the
same as for the AXX states.

*** Condition code 1 (with the CSW stored) or 2 may be set,
the channel.

depending on

~ The condition code depends on the state of the subchannel, the
channel type, and the system model. If the subchannel is not
operational, condition code 2 or 3 is set. If the subchannel is
available or working with the addressed device, condition code 2 is
set. Otherwise, condition code 0 or 2 is set.

When a "device not operational ll response is received in selecting the
addressed device, condition code 3 is set.

@ START I/O FAST RELEASE may cause the same condition code to be set as
for START I/O or may cause condition code 0 to be set.

+ If the channel ascertains that the device received the signal to ter­
minate, condition code 1 is set and the CSW stored. Otherwise,
condition code 2 is set.

When the channel is unable to store the channel ID because of the
working or interruption-pending state, condition code 2 is set. If
the working or interruption-pending state does not preclude storing
the channe I I D, cond i t i on code 0 is set.

- If the subchannel is interruption-pending for the addressed device,
condition code 1 may be set depending on the channel type.

Note: For the purpose of executing START I/O, START I/O FAST RELEASE,
TEST I/O, CLEAR I/O, HALT DEVICE, and HALT I/O, a channel containing an
interruption condition appears the same as an available channel, and the
condition-code setting depends on the states of the subchannel and de­
vice. The condition codes for the IXX states are the same as for the AXX
states, where the XS represent the states of the subchannel and the de­
vice. As an example, the condition code for the lAW state is the same as
for AAW.

Condition-Code Settings for I/O States and Instructions

12-12 IBM 4300 Processors Principles of Operation

(

The available state results in condition code 0
only when no errors are detected during the
execution of the 1/ ° instruction.

When a sub channel on a multiplexer channel
contains an interruption condition (state AIX), the
1/ ° device associated with the concluded operation
normally is in the interruption-pending state.
When the channel detects during the execution of
TEST I/O that the device is not operational,
condition code 3 is set. Similarly, condition code 3
is set when HALT I/O or HALT DEVICE is
addressed to a subchannel in the working state
(state AWX), but the device is not operational.

Error conditions, including all equipment or
programming errors detected by the channel or the
1/ ° device during execution of the I/O instruction,
generally cause the CSW to be stored. However,
when the nature of the error causes a
machine-check interruption, but no 1/ °
interruption, to occur, the CSW is not stored.
Three types of errors can occur:

Channel-Equipment Error: The channel can detect
the following equipment errors during execution of
START I/O, START I/O FAST RELEASE, TEST
I/O, CLEAR I/O, HALT I/O, and HALT
DEVICE:
1. The channel received an address from the

device during initial selection that either had a
parity error or was not the same as the one the
channel sent out. Some device other than the
one addressed may be malfunctioning.

2. The unit-status byte that the channel received
during initial selection had a parity error.

3. A signal from the I/O device occurred at an
invalid time or had invalid duration.

4. The channel detected an error in its control
equipment. (This is also true for STORE
CHANNEL ID and TEST CHANNEL.)

The channel may perform an I/O selective reset
or generate a halt signal, depending on the type of
error and the model. If a CSW is stored,
channel-control check or interface-control check is
indicated, depending on the type of error.

Channel-Programming Error: The channel can
detect the following programming errors during
execution of START 1/ ° or START 1/ ° FAST
RELEASE. All of the errors are indicated during
START I/O, and during START I/O FAST
RELEASE when it is executed as START I/O, by
the condition-code setting and by the status portion

of the CSW. When the SIOF function is
performed, the first two errors are indicated as for
START I/O, and the remaining errors are indicated
in a subsequent interruption.
1. Invalid CCW -address specification in CAW
2. Invalid CAW format
3. Storage location of first CCW not provided
4. First-CCW location in a disconnected page
5. First-CCW location protected against fetching
6. First CCW specifies transfer in channel
7. Invalid command code in first CCW
8. Invalid count in first CCW
9. Invalid format for first CCW

The CSW indicates program check, except for
items 4 and 5, for which protection check is
indicated.

Device Error: Programming or equipment errors
detected by the device during the execution of
START I/O, or START I/O FAST RELEASE are
indicated by unit check or unit exception in the
CSW.

The causes of unit check and unit exception for
each type of 1/ ° device are detailed in the SL
publication for the device.

Instruction Formats
All I/O instructions use the following S format:

Op Code

o 16 20 31

Except for STORE CHANNEL ID, bit positions
8-14 of these instructions are ignored. Bit position
15 is ignored by the instruction TEST CHANNEL
but is decoded as· part of the operation code for
CLEAR I/O, HALT DEVICE, HALT I/O,
START I/O, START I/O FAST RELEASE, and
TEST I/O.

The second -operand address specified by the B2
and D2 fields is not used to designate data but
instead is used to identify the channel and I/O
device. Address computation follows the rules of
address arithmetic. The address has the following
format:

1IIIIIIIIIchn AddrlDev Addrl

8 16 24 31

Bit positions 16-31 contain the 16-bit I/O
address. Bit positions 8-15 are ignored.

Chapter 12. Input/Output Operations 12-13

Instructions
All I/O instructions cause a serialization function
to be performed. See the section "Serialization" in
Chapter 5, "Program Execution." .

The names, mnemonics, format, and operatIOn
codes of the I/O instructions are listed in the figure
"Input/Output Instructions." The figure also
indicates that all I/O instructions cause a program
interruption when they are encountered in the
problem state, that all I/O instructions set the
condition code, and that all I/O instructions are in
the S instruction format.

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic
operand designation for the assembler language are
shown with each instruction. In the case of
START I/O, for example, SID is the mnemonic
and D lB ~ the operand designation.

Programming Note
The instructions CLEAR I/O, HALT DEVICE,
HALT I/O, START I/O, START I/O FAST
RELEASE, STORE CHANNEL ID, and TEST I/O
cause a CSW to be stored. To prevent the contents
of the CSW stored by the instruction from being
destroyed by an immediately following I/O
interruption, the CPU must be disabled for all I/O
interruptions before CLEAR I/O, HALT DEVICE,
HALT I/O, START I/O, START I/O FAST
RELEASE, STORE CHANNEL ID, and TEST I/O
is issued and must remain disabled until the
information in the CSW provided by the instruction

Mne-
Name monic

has been acted upon or stored elsewhere for later
use.

CLEAR I/O

CLRIO [S]

9D01

o 16 20 31

Either a TIO or CLRIO function is performed,
depending on the block-multiplexing control, bit 0
of control register O. The TIO function is
performed when the block-multiplexing-control bit
is zero.

The TIO function is described in the definition
of the instruction TEST I/O.

Bits 8-14 of the instruction are ignored. Bit
positions 16-31 of the second-operand address
identify the channel, subchannel, and I/O device to
which the instruction applies.

The CLRIO function causes the current
operation with the addressed device to be
discontinued and the state of the operation at the
time of the discontinuation to be indicated in the
stored CSW.

When the subchannel is available, interruption­
pending with another device, or working with
another device, no channel action is taken, and
condition code 0 is set. Channels not capable of
determining subchannel states while in the working
state may instead set condition code 2.

Op
Characteristics Code

CLEAR I/O CLRIO S C P $ 9D01*
9E01* HALT DEVICE HDV S C P $
9EOO* HALT I/O HIO S C P $
9COO* START I/O SIO S C P $
9C01* START I/O FAST RELEASE SIOF S C P $

STORE CHANNEL ID STIDC S C P $ B203
TCH S C P $ 9FOO;t TEST CHANNEL

9000* TEST I/O TIO S C P $

Explanation:

C Condition code is set.
P Privileged-operation exception.
S S instruction format.
* Bits 8-14 of the operation code are ignored.
;t Bits 8-15 of the operation code are ignored.
$ Causes serialization.

Summary of Input/Output Instructions

12-14 IBM 4300 Processors Principles of Operation

When the subchannel is either working with the
addressed device or interruption-pending with the
addressed device, the CLRIO function causes
condition code 1 to be set and causes the channel
to discontinue the operation with the addressed
device by storing the status of the operation in the
CSW and making the subchannel available. When
the channel is working with the addressed device,
the device is signaled to terminate the current
operation. Some channels may, instead, indicate
busy and cause no channel action.

When any of the following conditions occurs, the
CLRIO function causes the CSW at location 64 to
be stored. The contents of the entire CSW pertain
to the 110 device addressed by the instruction.
1. The channel is available or interruption­

pending, and the subchannel contains an
interruption condition for the addressed device
or is working with the addressed device. The
subchannel-key, command-address, and count
fields describe the state o(the operation at the
time of the execution of the instruction.

2. The channel is working with the addressed
device. The subchannel-key, command­
address, and count fields describe the state of
the operation at the time the instruction is
executed. (Some channels alternatively
indicate busy under this condition.)

3. The channel is working with a device other
than the one addressed, and the sub channel
contains an interruption;"pending condition for
the addressed device or is working with the
addressed device. The subchannel-key,
command-address, and count fields describe the
state of the operation at the time CLEAR 1/0
is executed. (Some channels alternatively
indicate busy under these conditions.)

\

4. The channel detected an equipment error
during the execution of the instruction. The
CSW identifies the error condition. The states
of the channel and the 110 operations in
progress are unpredictable. The limited
channel logout, if stored, indicates a sequence
code of 000.

When CLEAR 110 cannot be executed because
of a pending logout that affects the operational
capability of the channel, a full CSW is stored.
The fields in the CSW are all set to zeros, with the
exception of the logout-pending and channel­
control-check bits, which are set to ones. No
channel logout is associated with this status.

Program Exceptions:
Privileged Operation

Resulting Condition Code:
a No operation in progress for the addressed

device
1 CSW stored
2 Channel busy
3 Not operational

The condition code set when CLEAR 110 causes
the CLRIO function to be performed is shown 'for
all possible states of the 110 system in the figure
"Condition Codes Set by CLEAR 1/0." The
condition code set when CLEAR 110 causes the
TIO function to be performed is shown for all
possible state of the 110 system in the figure
"Condition Codes Set by TEST 1/0" in the
definition of the instruction TEST 1/0. See the
section "States of the Input/Output System" in this
chapter for a detailed definition of the A, I, W, and
N states.

Chapter 12. Input/Output Operations 12-15

A
Channel

5ubchannel

A
I

Available
Interruption pending
I~ = Interruption pending for a device other than the one

addressed

w
1# = Interruption pending for the addressed device
Working
W~ = Working with a device other than the one addressed
W# = Working with the addressed device
Not operational
C5W stored

+
++

In the W~AX~ W~I~X~ and W~W~X states~ a condition code 0 or
2 may be set~ depending on the channel.
In the W~I#X, W~W#X, and W#XX states, a condition code 1
(with the C5W stored) or 2 may be set, depending on the
channe 1 .

ttt In the W~NX state, a condition code 2 or 3 may be set~
depending on the channel.

Note: Underscored codes pertain to situations that can occur
only on the multiplexer channel.

Condition Codes Set by CLEAR I/O

Programming Notes
1. Since some channels cause a condition code 2

to be set when the instruction is received and
the channel is working, it may be useful to issue
a halt instruction and then CLEAR I/O to the
desired address. Using HALT DEVICE will
ensure that condition code 2 is received on the
CLEAR I/O only when the channel is working
with a device other than the one addressed.
Using HALT I/O will ensure that the current
working state, if any, is terminated without
regard for the address.

2. Because of the inability of CLEAR I/O to
terminate operations on some channels when in
the working state, the instruction is not a
suitable substitute for HALT I/O or HALT
DEVICE.

3. The combination of HALT DEVICE followed
by CLEAR I/O can be used to clear out all
activity on a channel by executing the two
instructions for all device addresses on the
channel.

HALT DEVICE

HOV [5]

9E01

o 16 20 31

12-16 IBM 4300 Processors Principles of Operation

The current I/O operation at the addressed I/O
device is terminated. The subsequent state of the
sub channel depends on the type of channel. Bits
8-14 of the instruction are ignored.

Bits 16-31 of the second-operand address
identify the channel, the subchannel, and the I/O
device to which the instruction applies.

When the channel is either available or
interruption-pending with the subchannel available
or working with the addressed device, HALT
DEVICE causes the addressed device to be selected
and to be signaled to terminate the current
operation, if any. If the subchannel is working
with the addressed device, HALT DEVICE also
causes the subchannel to signal termination of the
device operation the next time the device requests
or offers a byte of data. If chaining is indicated
for the I/O operation using the subchannel, it is
suppressed. If the subchannel is available, the
subchannel is not affected.

When the channel is either available or
interruption-pending with the subchannel either
working with a device other than the one addressed
or interruption-pending, no action is taken.

When the channel is working in burst mode with
the addressed device, ~ata transfer for the
operation is immediately terminated, and the device
immediately disconnects from the channel. If

chaining is indicated for the I/O operation using
the subchannel, it is suppressed.

When the channel is working in burst mode with
a device other than the one addressed, and the
subchannel is available, interruption-pending, or
working with a device other than the one
addressed, no action is taken. If the sub channel is
working with the addressed device, the sub channel
signals termination of the device operation the next
time the device requests or offers a byte of data, if
any. If chaining is indicated for the I/O operation
using the subchannel, it is suppressed.

When the channeCis working in burst mode with
a device other than the one addressed and the
subchannel is not operational, is interruption­
pending, or is working with a device other than the
one addressed, the resulting condition code may, in
some channels, be determined by the subchannel
state.

Termination of a burst operation by HALT
DEVICE on a selector channel causes the channel
and subchannel to be placed in the interruption­
pending state. Generation of the interruption
condition is not contingent on the receipt of status
information from the device. When HALT
DEVICE causes a burst operation on a byte­
multiplexer channel to be terminated, the
sub channel associated with the burst operation
remains in the working state until the device
provides ending status, whereupon the sub channel
enters the interruption-pending state. The
termination of a burst operation by HALT
DEVICE on a block-multiplexer channel may,
depending on the model and the type of
subchannel, take place as for a selector channel or
may allow the subchannel to remain in the working
state until the device provides ending status.

. When any of the three situations numbered
below occurs, HALT DEVICE causes the 16-bit
unit-status and channel-status portion of the CSW
to be replaced by a new set of status bits. The
contents of the other fields of the CSW are not
changed. The CSW stored by HALT DEVICE
pertains only to the execution of HALT DEVICE
and does not describe the I/O operation, at the
addressed subchannel, that is terminated. The
extent of data transfer and the status at the
termination of the operation at the subchannel are
provided in the CSW associated with the
interruption condition caused by the termination.
The three situations are:
1. The addressed device is selected and signaled to

terminate the current operation, if any. The

CSW then contains zeros in the status field
unless a machine malfunction is detected.

2. The control unit is busy and the device cannot
be given the signal to terminate the operation.
The CSW unit-status field contains ones in the
busy and status-modifier bit positions. The
channel-status field contains zeros unless a
machine malfunction is detected.

3. The channel detects a machine malfunction
during the execution of HALT DEVICE. The
status bits in the CSW then identify the type of
malfunction. The state of the channel and the
progress of the I/O operation are
unpredictable.

If HALT DEVICE cannot be executed because
of a pending logout which affects the operational
capability of the channel or subchannel, a full CSW
is stored. The fields in the CSW are all set to
zeros, with the exception of the logout-pending bit
and the channel-control-check bit, which are set to
ones. No channel logout occurs in this case.

When HALT D·EVICE causes data transfer to be
terminated, the control unit associated with the
operation remains not available until the
data-handling portion of the operation in the
control unit is concluded. Conclusion of this
portion of the operation is signaled by the
generation of channel end. This may occur at the
normal time for the operation, or earlier, or later,
depending on the operation and type of device. If
the control unit is shared, all devices attached to
the control unit appear in the working state on that
channel until the channel-end condition is accepted
by the CPU. The I/O device executing the
terminated operation remains in the working state
until the end of the inherent cycle of the operation,
at which time device end is generated. If blocks of
data at the device are defined, as in read-type
operations on magnetic tape, the recording medium
is advanced to the beginning of the next block.

When HALT DEVICE is issued at a time when
the subchannel is available and no burst operation
is in progress, the effect of the HALT DEVICE
signal depends partially on the type of device and
its state. In all cases, the HALT DEVICE signal
has no effect on devices that are not in the working
state or are executing a mechanical operation in
which data is not transferred, such as rewinding
tape or positioning a disk-access mechanism. If the
device is executing a type of operation that is
unpredictable in duration, or in which data is
transferred, the device interprets the signal as one
to terminate the operation. Pending attention or
device-end conditions at the device are not reset.

Chapter 12. Input/Output Operations 12-17

Program Exceptions:
Privileged Operation

Resulting Condition Code:
o Subchannel busy with another device or

interruption pending
1 CSW stored
2 Channel working
3 Not operational

The condition code set by HALT DEVICE for
all possible states of the I/O system is shown in the
figure" Condition Codes Set by HALT DEVICE."
See the section "States of the Input/ Output
System" in this chapter for a detailed definition of
the A, I, W, and N states.

Programming Note
The execution of HALT DEVICE always causes
data transfer between the addressed device and the
channel to be terminated. The condition code and
the CSW (when stored) indicate whether the
control unit was signaled to terminate its operation
during the execution of the instruction. If the
control unit was not signaled to terminate its

Channel

A
Subchannel

A
Control Unit
- Device 1*

A
I
W

Available
Interruption pending
Working

A

wit W# N

o 0 3

A

operation, the condition code and the CSW (when
stored) imply the situations under which the
execution of a HALT DEVICE for the same
address will cause the control unit to be signaled to
terminate.

Condition Code 0 indicates that HALT DEVICE
cannot signal the control unit until an interruption
condition on the same subchannel is cleared.

Condition Code 1 with Control-Unit-Busy Status
in the CSW indicates that HALT DEVICE cannot
signal the coritrol unit until the control-unit-end
status is received from that control unit.

Condition Code 1 with Zeros in the Status Field
of the CSW indicates that the addressed device
was selected and signaled to terminate the current
operation, if any.

Condition Code 2 indicates that the control unit
cannot be signaled until the channel is not working.
The end of the working state can be detected by
noting an interruption from the channel or by
noting the results of repeatedly executing HALT
DEVICE.

Condition Code 3 indicates that manual
intervention is required in order to allow HALT
DEVICE to signal the control unit to terminate.

w# N

o 0 •
N

3

Wit = Working with a device other than the one addressed
W# = Working with the addressed device

N
*
@

+
•

Not operational
CSW Stored
In the W#XX state, either condition code 1 (with CSW stored) or condition code 2
may be set, depending on the channel. However, condition code 1 (with CSW stored)
can be set only if the control unit has received the signal to terminate or if
control-unit-busy status is received by the channel.
In the WitlX and WitWitX states, either condition code 0 or 2 may be set.
In the WitNX state, either condition code 2 or 3 may be set, depending. on the model
and the channel type.

Note: Underscored condition codes pertain to situations that can occur only on the
multiplexer channel.

Condition Codes Set by HALT DEVICE

12-18 IBM 4300 Processors Principles of Operation

HAL,T 110

HID [5]

9EOO

o 16 20 31

Execution of. the current I/O operation at the
addressed I/O device, subchannel, or channel is
terminated. The subsequent state of the
subchannel depends on the type of channel. Bits
8-14 of the instruction are ignored.

Bits 16-31 of the second-operand address
identify the channel and, when the channel is not
working, identify the sub channel and the I/O
device to which the instruction applies.

When the channel is either available or
interruption-pending, with the subchannel either
available or working, HALT I/O causes the
addressed device to be selected and to be signaled
to terminate the current operation, if any. If the
subchannel is available, its state is not affected. If,
on the byte-multiplexer channel, the subchannel is
working, data transfer is immediately terminated,
but the subchannel remains in the working state
until the device provides the next status byte,
whereupon the subchannel is placed in the
interruption-pending state.

When HALT I/O is issued to a channel
operating in the burst mode, data transfer for the
burst operation is terminated, and the device
performing the burst operation is immediately
disconnected from the channel. The subchannel
and I/O-device address in the instruction, in this
case, is ignored.

The termination of a burst operation by HALT
I/O on the selector channel causes the channel and
sub channel to be placed in the interruption-pending
state. Generation of the interruption condition is
not contingent on the receipt of a status byte from
the device. When HALT I/O causes a burst
operation on the byte-multiplexer channel to be
terminated, the subchannel associated with the
burst operation remains in the working state until
the device signals channel end, whereupon the
subchannel enters the interruption-pending state.
The termination of a burst operation by HALT I/O
on a block-multiplexer channel may, depending on
the model and the type of subchannel, take place as
for a selector channel or may allow the sub channel
to remain in the working state until the device
provides ending status.

O;nJhe.hyte,~multiplexer, channel .operating in.::tIm
byte~multiplex mode, the device· is selected and-the
instruction executed only after the channel has
serviced all outstanding requests for data transfer
for previously initiated operations, including the
operation to be halted. If the control unit does not
accept the HALT I/O signal because it is in the
not-operational or control-unit-busy state, the
sub channel, if working, is set up to signal
termination of device operation the next time the
device requests or offers a byte of data. If
command chaining is indicated in the subchannel
and the device presents status next, chaining is
suppressed.

When the addressed subchannel is interruption­
pending, with the channel available or
interruption-pending, HALT I/O does not cause
any action.

When any of the following conditions occurs,
HAL T I/O causes the status portion, bits 32-47, of
the CSW to be replaced by a new set of status bIts.
The contents of the other fields of the CSW are not
changed. The CSW stored by HALT I/O pertains
only to the execution of HALT I/O and does not
describe the I/O operation, at the addressed
subchannel, that is terminated. The extent of data
transfer, and the status at the termination of the
operation at the subchannel, are provided in the
CSW associated with the interruption condition due
to the termination.
1. The addressed device was selected and signaled

to terminate the current operation. The CSW
contains zeros in the status field unless an
equipment error is detected.

2. The channel attempted to select the addressed
device, but the control unit could not accept
the HALT I/O signal because it is executing a
previously initiated operation or had an
interruption condition associated with a device
other than· the one addressed. The signal to
terminate the operation has not been
transmitted to the device, and the subchannel,
if in the working state, will signal termination
the next time the device identifies itself. The
CSW unit-status field contains ones in the busy
and status-modifier bit positions. The
channel-status field contains zeros unless an
equipment error is detected.

3. The channel detected an equipment
malfunction during the execution of HALT
I/O. The status bits in the CSW identify the

Chapter 12. Input/Output Operations 12-19

error condition. The state of the channel and
the progress of the I/O operation are
unpredictable.

When HALT I/O cannot be executed because of
a pending logout which affects the operational
capability of the channel or subchannel, a full CSW
is stored. The fields in the CSW are all set to
zeros, with the exception of the logout-pending bit
and the channel-control-check bit, which are set to
ones. No channel logout occurs in this case.

When HALT I/O causes data transfer to be
terminated, the control unit associated with the
operation remains unavailable until the data­
handling portion of the operation in the control
unit is terminated. Termination of the data­
transfer portion of the operation is signaled by the
generation of channel end, which may occur at the
normal time for the operation, earlier, or later,
depending on the operation and type of device. If
the control unit is shared, all devices attached to
the control unit appear in the working state until
the channel-end signal is accepted by the CPU.
The I/O device executing the terminated operation
remains in the working state until the end of the
inherent cycle of the operation, at which time
device end is generated. If blocks of data at the
device are defined, such as reading on magnetic
tape, the recording medium is advanced to the
beginning of the next block.

When HALT I/O is issued at a time when the
subchannel is available and no burst operation is in
progress, the effect of the HALT I/O signal
depends on the type of device and its state and is
specified in the SL publication for the device. The
HAL T I/O signal has no effect on devices that are
not in the working state or are executing a

Channel

Subchannel A

Control Unit A
- Device

1 ,~

Available
Interruption pending
Working
Not operational
CSW stored

A

N A

0 3
N A

3 1*

0
N

3

mechanical operation in which data is not
transferred, such as rewinding tape or positioning a
disk-access mechanism. If the device is executing a
type of operation that is variable in duration, the
device interprets the signal as one to terminate the
operation. Attention or device-end signals at the
device are not reset.

Program Exceptions:
Privileged Operation

Resulting Condition Code:
o Interruption pending in subchannel
1 CSW stored
2 Burst operation terminated
3 Not operational

The condition code set by HALT I/O for all
possible states of the I/O system is shown in the
figure "Condition Codes Set by HALT I/O." See
the section "States of the Input/Output System" in
this chapter for a detailed definition of the A I W
and N states. " ,

Programming Note
The instruction HALT I/O provides the program
with a means of terminating an I/O operation
before all data specified in the operation has been
transferred or before the operation at the device
has reached its normal ending point. It permits the
program to immediately free the selector channel
for an operation of higher priority. On the
byte-multiplexer channel, HALT I/O provides a
means of controlling real-time operations and
permits the program to terminate data transmission
on a communication line.

N

3

When a.device-not-operational response is received in
selecting the addressed device, a condition code 3 is set.

Note: Underscored condition codes pertain to situations that can
occur only on the multiplexer channel.

Condition Codes Set by HALT I/O

12-20 IBM 4300 Processors Principles of Operation

START I/O

SID °2(B2) [S]

9COO I B2 I °2

0 16 20 31

START I/O FAST RELEASE

SIOF 0(B2) [S]

9C01 I B2 I °2

0 16 20 31

A write, read, read backward, control, or sense
operation is initiated with the addressed I/O device

and subchannel. Bits 8-14 of the instruction are
ignored.

Either an SIO or SIOF function is performed,
depending on the instruction, the channel, and the
block-multiplexing control, bit 0 of control register
O. The instruction START I/O always causes the
SIO function to be performed, as does ST ART I/O
FAST RELEASE when the block-multiplexing­
control bit is zero. When the bit is one, START
110 FAST RELEASE may, depending on the
channel, cause either the SIO or the SIOF function
to be performed.

Bits 16-31 of the second-operand address
identify the channel, subchannel, and 110 device to
which the instruction applies. The CAW, at
location 72, contains the subchannel key and the
address of the first CCW. This CCW specifies the
operation to be performed, the storage area to be
used, and the action to be taken when the
operation is completed.

For the SIO function, the 1/0 operation is
initiated if the addressed 110 device and
subchannel are available, the channel is available or
interruption-pending, and errors or exceptional
situations have not been detected. The I/O
operation is not initiated when the addressed part
of the 110 system is in any other state or when the
channel or device detects any error or exceptional
situations during execution of the instruction.

For the SIOF function, the I/O operation is
initiated if the subchannel is available, the channel
is available or interruption-pending, and errors or
exceptional situations have not been detected. Tbe
I/O operation is not initiated when the subchannel
and channel are in any other state or when the

channel or device detects any error or exceptional
situation during execution of the instruction. . The
device state or device-detected errors are not
relevant during instruction execution but are
indicated in a CSW stored during a subsequent
interruption.

When the channel is available or interruption­
pending, and the subchannel is available before the
execution of the instruction, the following
situations cause a CSW to be stored. How the
CSW is stored depends on whether an SIO or SIOF
function is performed. The SIO function causes
the status portion of the CSW to be replaced by a
new set of status bits. The status bits pertain to
the device addressed by the instruction. The
contents of the other fields of the CSW are not
changed. When the SIOF function is performed,
the first situation causes the same action as for the
SIO function; also, the control-unit and device
state may be tested, and so situation 5 may cause
the same action as for the SIO function, or the
situation may be indicated in a subsequent 1/0
interruption during which the entire CSW will be
stored. The remaining situations for the SIOF
function will be indicated in a subsequent
interruption, during which the entire CSW will be
stored.
1. The channel detects a programming error in the

contents of the CAW or detects an equipment
error during execution of the instruction. The
CSW identifies the error. If selection of the
device occurred prior to detection of the error
or if the error condition was detected during
the selection of the device, the device status is
indicated in the CSW.

2. The channel detects a programming error
associated with the first CCW or, for the SIOF
function, the channel detects an equipment
error after completion of the instruction. The
CSW identifies the error. If selection of the
device occurred prior to detection of the error,
or if the error condition was detected during
the selection of the device, the device status is
indicated in the CSW.

3. An immediate operation was executed, and
either (1) no command chaining is specified
and no command retry occurs, or (2) chaining
is suppressed because of unusual situations
detected during the operation. In the CSW, the
channel-end bit is one, the busy bit is zero, and
other status may be indicated. The PCI bit is
one if PCI was specified in the first CCW. The
110 operation is initiated, but no information

Chapter 12. Input/Output Operations 12-21

has been transferred to or from the storage area
designated by the CCW. No interruption
conditions are generated at the subchannel, and
the subchannel is available for a new I/O
operation. If device end is not indicated, the
device remains busy, and a subsequent
device-end condition is generated.

4. The I/O device is interruption-pending, or the
control unit is interruption-pending for the
addressed device. The CSW unit-status field
contains one in the busy-bit position, identifies
the interruption condition, and may contain
other bits provided by the device or control
unit. The interruption condition is cleared.
The I/O operation is not initiated. The
channel-status field indicates any errors
detected by the channel, and the PCI bit is one
if PCI was specified in the first CCW.

5. The I/O device or the control unit is executing
a previously initiated operation, or the control
unit is interruption-pending for a device other
than the one addressed. The CSW unit-status
field contains one in the busy-bit position or, if
the control unit is busy, the busy and
status-modifier bits are ones. The I/O
operation is not initiated. The channel-status
field indicates any errors detected by the
channel, and the PCI bit is one if specified in
the first CCW.

6. The I/O device or control unit detected an
equipment or programming error during the
initiation, or the addressed device is not ready.
The CSW identifies the error. The channel-end
and busy bits are zeros, unless the device was
busy, in which case the busy bit, as well as any
bits causing interruption conditions, are ones.
The interruption conditions indicated in the
CSW have been cleared at the device. The I/O
operation is not initiated. No interruption
conditions are generated at the I/O device or
sub channel. The PCI bit in the CSW is one if
PCI was specified in the first CCW.

When the SIO or SIOF function cannot be
executed because of a pending logout which affects
the operational capability of the channel or
subchannel, a full CSW is stored. The fields in the
CSW are all set to zeros, with the exception of the

12-22 IBM 4300 Processors Principles of Operation

logout-pending bit and the channel""control-check
bit, which are set to ones. No channel logout
occurs in this case.

When the SIOF function causes condition code 0
to be set and subsequently a situation is
encountered which would have caused a condition
code 1 to be set had the function been SIO, a
deferred -condition -code-l I/O-interruption
condition is generated. When the SIOF function
causes condition code 0 to be set and,
subsequently, it is determined that the device is not
operational, a deferred-condition-code-3 1/0-
interruption condition is generated. In both of the
above cases, in the resulting I/O interruption, a full
CSW is stored, and the deferred condition code
appears in the CSW.

On the byte-multiplexer channel, both the SIO
and SIOF functions cause the addressed device to
be selected and the operation to be initiated only
after the channel has serviced all outstanding
requests for data transfer for previously initiated
operations.

Program Exceptions:
Privileged Operation

Resulting Condition Code:
o I/O operation initiated and channel

proceeding with its execution
1 CSW stored
2 Channel or subchannel busy
3 Not operational

The condition code set by START I/O and
START I/O FAST RELEASE for all possible
states of the I/O system is shown in the figure
"Condition Codes Set by START I/O and START
I/O FAST RELEASE." See the section "States of
the Input/Output System" in this chapter for a
detailed definition of the A, I, W, and N states.

Channel

Subchannel

Control Unit
- Device

A

A

A
I
W
N

Available
Interruption pending
Working

*
Not operational
CSW stored

A

N A

N A N

• When a nonimmediate I/O operation has been initiated,
and the channel is proceeding with its execution,
condition code 0 is set.

• When an immediate operation has been initiated, and no
command chaining or command retry is taking place, or
the device is not ready, or an error has been detected
by the control unit or device, for the SID function
condition code 1 is set, and the CSW is stored. Under
the same circumstances, for the SIOF function, condition
code 0 is set, and a deferred-condition-code-1
I/O-interruption condition is generated.

@ The SIOF function may cause condition code 0 to be set, in
which case the other condition code shown will be specified
as a deferred condition code.

Note: Underscored condition codes pertain to situations that can
OCCUr only on the mUltiplexer channel.

Condition Codes Set by START I/O and START I/O FAST
RELEASE

Programming Notes
1. The instruction START I/O FAST RELEASE

has the advantage over START I/O that the
CPU can be released after the CAW is fetched,
rather than after completion of the lengthy
device-selection procedure. Thus, the CPU is
freed for other activity earlier. A disadvantage,
however, is that if a deferred condition code is
presented, the resultant CPU execution time
may be greater than that required in executing
START I/O.

2. When the channel detects a programming error
during execution of the SIO function, when the
addressed device contains an interruption
condition, and when the channel and
sub channel are available, the instruction mayor
may not clear the interruption condition,
depending on the type of error and the model.
If the instruction has caused the device to be
interrogated, as indicated by the presence of
the busy bit in the CSW, the interruption
condition has been cleared, and the CSW
contains program or protection check, as well
as the status from the device.

3. Two major differences exist between the SIO
and SIOF functions:
a. Unchained immediate commands on certain

channels (that is, those which execute SIOF
independent of the device) result in a
condition code 0 for the SIOF function,
whereas condition code 1 is set for the SIO
function. See also Programming Note 2 in
the section "Command Retry" of this
chapter.

b. Condition code 0 is set by these certain
channels for the SIOF function, even
though the addressed device is not available
or the command is rejected by the device.
The device information will be supplied by
means of an interruption.

STORE CHANNEL ID

STIDC [S]

8203 82 D2

o 16 20 31

Chapter 12. Input/Output Operations 12-23

Information identifying the designated channel is
stored in the four-byte field at storage location
168.

Bits 16-23 of the second-operand address
identify the channel to which the instruction
applies. Bit positions 24-31 of the address are
ignored.

The format of the information stored at location
168 is:

ITypelChannel Model 100000000000000001

o 4 16 31

Bits 0-3 specify the channel type. When a
channel can operate as more than one type, the
code stored identifies the channel type at the time
the instruction is executed. The following codes
are assigned:

0000 Selector
0001 Byte multiplexer
0010 Block multiplexer

A block-multiplexer channel operates as a
selector channel if the most recently initiated yet
uncompleted I/O operation in the channel had
block multiplexing inhibited at the time the I/O
operation was initiated.

Bits 4-15 identify the channel model. When the
channel model is implied by the channel type and
the CPU model, zeros are stored in the field.

Bits 16-31 are set to zeros.
When the channel detects an equipment

malfunction during the execution of STORE
CHANNEL ID, the channel causes the status
portion, bits 32-47, of the CSW to be replaced by a
new set of status bits. With the exception of the
channel-control-check bit (bit 45), which is stored
as a one, all bits in the status field are stored as
zeros. The contents of the other fields of the CSW
are not changed.

When STORE CHANNEL ID cannot be
executed because of a pending logout which affects
the operational capability of the channel, a full
CSW is stored. The fields in the CSW are all set to
zero, with the exception of the logout-pending bit
and the channel-control-check bit, which are set to
ones. No channel logout occurs in this case.

Program Exceptions:
Privileged Operation

12-24 IBM 4300 Processors Principles of Operation

Resulting Condition Code:
o Channel ID correctly stored
1 CSW stored
2 Channel activity prohibited storing ID
3 Not operational

The condition code set by STORE CHANNEL
ID for all possible states of the I/O system is
shown in the figure "Condition Codes Set by
STORE CHANNEL ID." See "States of the
Input/ Output System" for a detailed definition of
the A, I, W, and N states.

Channel~I~I~I-i-1

A Available
I Interruption pending
W Working
N Not operational
• When the channel is unable to store

the channel ID because of its working
state or because it contains a
pending-interruption condition,
condition code 2 is set. If the
working rir interruption-pending state
does not preclude the storing of the
channe liD, cond it i on code 0 is set.

Condition Codes Set by STORE CHANNEL ID

TEST CHANNEL

TCH [5]

9FOO

o 16 20 31

The condition code in the PSW is set to indicate
the state of the addressed channel. The state of
the channel is not affected, and no action is
caused. Bits 8-14 of the instruction are ignored.

Bits 16-23 of the second-operand address
identify the channel to which the instruction
applies. Bit positions 24-31 of the address are
ignored.

The instruction TEST CHANNEL inspects only
the state of the addressed channel. It tests whether
the channel is operating in the burst mode, is
interruption-pending, or is not operational. When
the channel is operating in the burst mode and
contains an interruption condition, the condition
code is set as for operation in the burst mode.
When none of these situations exist, the available

state is indicated. No device is selected, and, on
the multiplexer channel, the subchannels are not
interrogated.

Program Exceptions:
Privileged Operation

Resulting Condition Code:
o Channel available
1 Interruption or logout condition in channel
2 Channel operating in burst mode
3 Channel not operational

The condition code set by TEST CHANNEL for
all possible states of the addressed channel is
shown in the figure "Condition Codes Set by TEST
CHANNEL." See the section "States of the
Input/ Output System" in this chapter for a detailed
definition of the A, I, W, and N states.

Channe 1 11---:--+-----+1-:--+1-: -II
A Available
I Interruption pending
W Working
N Not operational

Condition Codes Set by TEST CHANNEL

rEST I/O

TID [5]

9000

o 16 20 31

The state of the addressed channel, subchannel,
and device is indicated by setting the condition
code in the PSW and, in certain situatIOns, by
storing the CSW. Interruption conditions may be
cleared. Bits 8-14 of the instruction are ignored.

Bits 16-31 of the second-operand address
identify the channel, sub channel, and I/O device to
which the instruction applies.

The TIO function is performed by the instruction
TEST I/O and, under certain circumstances, by
CLEAR I/O.

When the channel is operating in burst mode and
the addressed subchannel contains an interruption
condition, the TIO function causes condition code
1 or 2 to be set, depending on the model and
channel type. If condition code 1 is set, the CSW

is stored at location 64 to identify the interruption
condition, and the interruption condition is cleared.

When the situation described in the following
paragraph occurs with the channel either available
or interruption-pending or, on some channels,
working, the TIO function causes theCSW to be
stored. The contents of the entire CSW pertain to
the I/O device addressed by the instruction.

The sub channel contains an interruption
condition due to a terminated operation at the
addressed device. The CSW identifies the
interruption condition, and the interruption
condition is cleared. The subchannel key,
CCW address, and count fields contain the
final values for the I/O operation, and the
status field may include bits provided by the
channel and the device. The interruption
condition in the subchannel is not cleared, and
the CSW is not stored if the channel is working.
and has not yet accepted the interruption
condition from the device.

When any of the following situations occurs with
the channel either available or interruption­
pending, the TIO function causes the CSW to be
stored. The contents of the entire CSW pertain to
the I/O device addressed by the instruction.
1. The subchannel is available, and the I/O device

contains an interruption condition or the
control unit contains control-unit end for the
addressed device. The CSW unit-status field
identifies the interruption condition and may
contain other bits provided by the device or
control unit. The interruption condition is
cleared. The busy bit in the CSW is zero. The
other fields of the CSW contain zeros unless an
equipment error is detected.

2. The subchannel is available, and the I/O device
or the control unit is executing a previously
initiated operation or the control unit has an
interruption condition associated with a device
other than the one addressed. The CSW
unit-status field contains one in the busy-bit
position or, if the control unit is busy, the busy
and status-modifier bits are ones. Other fields
of the CSW contain zeros unless an equipment
error is detected.

3. The subchannel is available, and the I/O device
or channel detected an equipment error during
execution of the instruction or the addressed
device is not ready and does not have any
interruption condition. The CSW identifies the
error. If the device is not ready, unit check is
indicated. No interruption conditions are
generated at the I/O device or the sub channel.

Chapter 12. Input/Output Operations 12-25

When TEST I/O cannot be executed because of
a pending logout which affects the operational
capability of the channel or subchannel, a full CSW
is stored. The fields in the CSW are all set to
zeros, with the exception of the logout-pending bit
and the channel-control-check bit, which are set to
ones. No channel logout is associated with this
status.

When the TIO function is used to clear an
interruption condition from the sub channel and the
channel has not yet accepted the condition from
the device, the function causes the device to be
selected and the interruption condition in the
device to be cleared. During certain I/O
operations, some types of devices cannot provide
their current status in response to TEST I/O.
Some magnetic-tape control units, for example, are
in such a state when they have provided channel
end and are executing the backspace-file operation.
When TEST I/O is issued to a control unit in such
a state, the unit-status field of the CSW has the
busy and status-modifier bits set to ones, with zeros
in the other CSW fields. The interruption
condition in the device and in the sub channel is not
cleared.

On some types of devices, the device never
provides its current status in response to TEST
I/O, and an interruption condition can be cleared
only by permitting an I/O interruption. When
TEST I/O is issued to such a device, the unit-status
field has the status-modifier bit set to one, with
zeros in the other CSW fields. The interruption
condition in the device and in the subchannel, if
any, is not cleared.

12-26 IBM 4300 Processors Principles of Operation

However, at the time the channel assigns the
highest priority for interruptions to a condition
associated with an operation at the subchannel, the
channel accepts the status from the device and
clears the corresponding condition at the device.
When the TIO function is addressed to a device for
which the channel has already accepted the
interruption condition, the device is not selected,
and the condition in the subchannel is cleared
regardless of the type of device and its present
state. The CSW contains unit status and other
information associated with the interruption
condition.

On the byte-multiplexer channel, the TIO
function causes the addressed device to be selected
only after the channel has serviced all outstanding
requests for data transfer for previously initiated
operations.

Program Exceptions:
Privileged Operation

Resulting Condition Code:
o Available
1 CSW stored
2 Channel or sub channel busy
3 Not operational

The condition code set by the TIO function for
all possible states of the I/O system is shown in the
figure" Condition Codes Set by TEST I/O." See
the section "States of the Input/Output System" in
this chapter for a detailed definition of the A, I, W,
and N states.

Channel A

Subchannel A

Control Unit A N
- Device

0 3

A
I

Avai lable
Interruption pending

w;t W#

2
l;t N A l;t

2 2
A N

0 3

l;t = Interruption pending for a device other than the one
addressed

W
1# = Interruption pending for the addressed device
Working
w;t = Working with a device other than the one addressed
W# = Working with the addressed device

N
*

Not operational
CSW stored

@ In the W;tI#X state, either condition code 1 may be set with the
CSW stored, or condition code 2 may be set, depending on the
channel and the activity in the channel.

Note: Underscored condition codes pertain to situations that can
OCCUr only on the multiplexer channel.

Condition Codes Set by TEST I/O

Programming Notes
1. Disabling the CPU for I/O interruptions

provides the program with a means of
controlling the priority of I/O interruptions
selectively by channels. The priority of devices
attached on a channel cannot be controlled by
the program. The instruction TEST I/O in
some cases permits the program to clear
interruption conditions selectively by I/O
device.

2. When a CSW is stored by the TIO function, the
interface-control-check and channel-control­
check indications may be due to an interruption
condition already existing in the channel or
may be due to an interruption condition created
by the TIO function. Similarly, the unit-check
bit set to one with the channel-end, control­
unit-end, or device-end bits set to zeros may be
due to a situation created by the preceding
operation, the I/O device being not ready, or
an equipment error detected during the
execution of TEST I/O. The instruction TEST
I/O cannot be used to clear an interruption
condition due to the PCI flag while the
subchannel is working.

3. The use of a TEST I/O loop on a multiplexer
channel to retrieve ending status for a channel
program should, in general, be avoided. TEST
I/O loops may be used to return ending status
to a sense command when that command was
initiated by a START I/O that received

condition code O. TEST I/O loops under other
conditions may result in hang conditions.

Input / Output-Instruction-Exception
Handling
Before the channel is signaled to execute an I/O
instruction, the instruction is tested for validity by
the CPU. Exceptional situations detected at this
time cause a program interruption.

The following exception may cause a program
interruption:

Privileged Operation: An I/O instruction is
encountered when the CPU is in the problem state.
The instruction is suppressed before the channel
has been signaled to execute it. The CSW, the
condition code in the PSW, and the state of the
addressed sub channel and I/O device are not
affected by the attempt to execute an I/O
instruction while in the problem state.

Execution of Input/Output Operations
The channel can execute six commands: write,
read, read backward, control, sense, and transfer in
channel. Each command except transfer in channel
initiates a corresponding I/O operation. The term
"I/O operation" refers to the activity initiated by a
command in the I/O device and· associated
subchannel. The subchannel is involved with the
execution of the operation from the initiation of the
command until the channel-end signal is received

Chapter 12. Input/Output Operations 12-27

or, in the case of command chaining, until the
device-end signal is received. The operation in the
device lasts until device end is signaled.

Blocking of Data
Data recorded by an I/O device may be divided
into blocks. The length of a block depends on the
device; for example, a block can be a card, a line of
printing, or the information recorded between two
consecutive gaps on magnetic tape.

The maximum amount of information that can
be transferred in one I/O operation is one block.
An I/O operation is terminated when the
associated storage area is exhausted or the end of
the block is reached, whichever occurs first. For
some operations, such as writing on a magnetic­
tape unit or at an inquiry station, blocks are not
defined, and the amount of information transferred
is controlled only by the program.

Channel-Address Word
The channel-address word (CAW) specifies the
subchannel key and the address of the first CCW
associated with START I/O or START 1/ 0 FAST
RELEASE. The channel refers to the CAW only
during the execution of START I/O or START
I/O FAST RELEASE. The CAW is fetched from
storage location 72. The pertinent information
thereafter is stored in the subchannel, and the
program is free to change the contents of the
CAW. Fetching of the CAW by the channel does
not affect the contents of the location.

The CAW has the following format:

IKeylooool CCW Address

o 4 8 31

The fields in the CAW are allocated for the
following purposes:

Sub channel Key: Bits 0-3 form the access key for
all fetching of CCWs and output data and for the
storing of input data associated with START I/O
and START I/O FAST RELEASE. This key is
matched with a storage key during these storage
references. For details,see the section
"Key-Controlled Protection" in Chapter 3,
"Storage. "

CCW Address: Bits 8-31 designate the location of
the first CCW in storage.

Bit positions 4-7 of the CAW must contain
zeros. The three low-order bits of the CCW

12-28 IBM 4300 Processors Principles of Operation

address must be zeros to specify the CCWon
integral boundaries for doublewords. If any of
these restrictions is violated, or if the CCW address
specifies a storage location which is not provided or
is protected against fetching or is in a disconnected
page, START I/O and, in some cases, START I/O
FAST RELEASE, cause the status portion of the
CSW to be stored, with the protection -check or
program-check bit set to one. In this event, the
I/O operation is not initiated.

Programming Note
Bit positions 4-7 of the CAW, which presently must
contain zeros, may in the future be assigned to the
control of new functions. It is, therefore,
recommended that these bit positions not be set to
ones for the purpose of obtaining an intentional
program-check indication.

Channel-Command Word
The channel-command word (CCW) specifies the
command to be executed and, for commands
initiating I/O operations, it designates the storage
area associated with the operation and the action to
be taken whenever transfer to or from the area is
completed. The CCWs can be located anywhere in
storage, and more than one can be associated with
a START I/O or START I/O FAST RELEASE.

The first CCW is fetched during the execution of
START I/O or START I/O FAST RELEASE
being executed as START I/O. When START I/O
FAST RELEASE is executed independent of the
device, the first CCW is fetched subsequent to the
execution of START 1/ 0 FAST RELEASE. Each
additional CCW in the sequence is obtained when
the operation has progressed to the point where the
additional CCW is needed. Fetching of the CCWs
by the channel does not affect the contents of the
location in storage.

The CCW has the following format:

lcmd COdel Data Address

o 8 31

Count

32 37 40 48 63

The fields in the CCW are allocated for the
following purposes:

Command Code: Bits 0-7 specify the operation to
be performed. /

\

Data Address: Bits 8-31 specify a location in
storage. It is the first location referred to in the
area designated by the CCW.

Chain-Data (CD) Flag: Bit 32, when one, specifies
chaining of data. It causes the storage area
designated by the next CCW to be used with the
current operation.

Chain-Command (CC) Flag: Bit 33, when one, and
when the CD flag is zero, specifies chaining of
commands. It causes the operation specified by the
command code in the next CCW to be initiated on
normal completion of the current operation.

Suppress-Length-Indication (SLI) Flag: Bit 34
controls whether incorrect-length is to be indicated
to the program. When this bit is one and the CD
flag is zero, the incorrect-length indication is
suppressed. When both the CC and SLI flags are
one, command chaining takes place regardless of
any incorrect-length situation.

Skip (SKIP) Flag: Bit 35, when one, specifies
suppression of the transfer of information to
storage during a read, read backward, or sense
operation.

Program-Controlled-Interruption (PCI) Flag: Bit
36, when one, causes the channel to generate an
interruption condition when the CCW takes control
of the channel. When bit 36 is zero, normal
operation takes place.

Count: Bits 48-63 specify the number of bytes in
the storage area designated by the CCW.

Bit positions 37-39 of every CCW other than
one specifying transfer in channel must contain
zeros. Otherwise, a program-check condition is
generated. When the first CCW designated by the
CAW does not contain zeros in bit positions 37-39,
the I/O operation is not initiated, and the status
portion of the CSW with the program-check
indication is stored during execution of START
I/O or ST ART I/O FAST RELEASE being
executed as START I/O; Detection of this
condition during data chaining causes the I/O
device to be Signaled to conclude the operation.
When the absence of these zeros is detected during
command chaining or subsequent to the execution
of START I/O FAST RELEASE, the new
operation is not initiated, and an interruption
condition is generated.

The contents of bit positions 40-47 of the CCW
are ignored.

Programming Note
Bit positions 37-39 of the CCW, which presently
must contain zeros, may in the future be assigned
to the control of new functions. It is
recommended, therefore, that these bit positions
not be set to ones for the purpose of obtaining an
intentional program-check indication.

Command Code
The command code, bit positions 0-7 of the CCW,
specifies to the channel and the I/O device the
operation to be performed. A detailed description
of each command appears under "Commands."

The two low-order bits or, when these bits are
00, the four low-order bits of the command code
identify the operation to the channel. The channel
distinguishes among the following four operations:

Output forward (write, control)
Input forward (read, sense)
Input backward (read backward)
Branching (transfer in channel)

The channel ignores the high-order bits of the
command code.

Commands that initiate I/O operations (write,
read, read backward, control, and sense) cause all
eight bits of the command code to be transferred to
the I/O device. In these command codes, the
leftmost bit positions contain modifier bits. The
modifier bits specify to the device how the
command is to be executed. They may, for
example, cause the device to compare data received
during a write operation with data previously
recorded, and they may specify such information as
recording density and parity. For the control
command, the modifier bits may contain the order
code specifying the control function to be
performed. The meaning of the modifier bits
depends on the type of I/O device and is specified
in the SL publication for the device.

The command-code assignment is listed in the
following table. The symbol X indicates that the
bit position is ignored; M identifies a modifier bit.

Code Command

XXXX 0000 I nval i d
MMMM MMOl Write
MMMM MM10 Read
MMMM 1100 Read Backward
MMMM MMll Control
MMMM 0100 Sense
XXXX 1000 Transfer in Channel

Whenever the channel detects an invalid
command code during the initiation of a command,

Chapter 12. Input/Output Operations 12-29

a program check is generated. When the first
CCW designated by the CAW contains an invalid
command code, the status portion of the CSW with
the program-check indication is stored during
execution of START I/O or START I/O FAST
RELEASE being executed as START I/O. When
the invalid code is detected during command
chaining or subsequent to the execution of START
I/O FAST RELEASE, the new operation is not
initiated, and an interruption condition is
generated. The command code is ignored during
data chaining, unless it specifies transfer in
channel.

Designation of Storage Area
The storage area associated with an I/O operation
is defined by one or more CCWs. A CCW defines
an area by specifying the address of the first byte
to be transferred and the number of consecutive
bytes contained in the area. The address of the
first byte appears in the data-address field of the
CCW. The number of bytes contained in the
storage area is specified in the count field.

In write, read, control, and sense operations,
storage locations are used in ascending order of
addresses. As information is transferred to or from
storage, the address from the address field is
incremented, and the count from the count field is
decremented. The read-backward operation places
data in storage in a descending order of addresses,
and both the count and the address are
decremented. When the count reaches zero, the
storage area defined by the CCW is exhausted.

\ Any storage location that is provided can be
used in the transfer of data to or from an I/O
device if the location is in a page that is in the
addressable or connected state and is not protected
against the type of reference. Similarly, a CCW
can be located in any part of storage if the location
is in a page that is in the addressable or connected
state and is not protected against a fetch-type
reference.

When the first CCW is designated by the CAW
as being at a storage location that is not provided,
the I/O operation is not initiated, and the status
portion of the CSW with the program-check
indication is stored during the execution of START
I/O or START I/O FAST RELEASE being
executed as START I/O. When, subsequently,
during the operation or chain of operations, the
channel refers to a storage location that is not
provided, an interruption condition indicating
program check is generated, and the device is
signaled to terminate the operation.

12-30 IBM 4300 Processors Principles of Operation

When the first CCW designated by the CAW is
in a disconnected page or in a location that is
protected against a fetch-type reference, theI/O
operation is not initiated, and the status portion of
the CSW with the protection-check indication is
stored during the execution of START 1/ a or
START I/O FAST RELEASE being executed as
START I/O. When, subsequently, during the I/O
operation or chain of operations, the channel refers
to a disconnected page or a protected location, an
interruption condition indicating protection check is
generated, and the device is signaled to terminate
the operation.

During an output operation, the channel may
fetch data from storage before the time the I/O
device requests the data. Any number of bytes
specified by the current CCW may thus be
prefetched. When data chaining during an output
operation, and for some block-multiplexer channels
when data chaining during an input operation, the
channel may pre fetch the next CCW at any time
during the execution of the current CCW.

Prefetching may cause the channel to refer to
storage locations that are protected or not provided
or in disconnected pages. Such errors detected
during prefetching of data or CCWs do not affect
the execution of the operation and do not cause
error indications until the I/O operation actually
attempts to use the data or until the CCW takes
control. If the operation is concluded by the I/O
device or by HALT I/O, HALT DEVICE, or
CLEAR I/O before the invalid information is
needed, no program check or protection check is
generated.

The count field in the CCW can specify any
number of bytes from one to 65,535. Except for a
CCW specifying transfer in channel, which has no
count field, the count field may not contain the
value zero. Whenever the count field in the CCW
initially contains a zero, a program check is
generated. When this occurs in the first CCW
designated by the CAW, the operation is not
initiated, and the status portion of the CSW with
the program-check indication is stored during
execution of START I/O or START I/O FAST
RELEASE being executed as START I/O. When a
count of zero is detected during data chaining, the
1/ a device is signaled to terminate the operation.
Detection of a count of zero during command
chaining or subsequent to the execution of START
1/ a FAST RELEASE suppresses initiation of the
new operation and generates an interruption
condition.

(

Chaining
When the channel has performed the transfer of
information specified by a CCW, it can continue
the activity initiated by START I/O or START
I/O FAST RELEASE by fetching a new C CW.
Such fetching of a new CCW is called chaining,
and the CCWs belonging to such a sequence are
said to be chained.

Chaining takes place between CCWs located in
successive double word locations in storage. It
proceeds in an ascending order of addresses; that
is, the address of the new CCW is obtained by
adding 8 to the address of the current CCW. Two
chains of CCWs located in noncontiguous storage
areas can be coupled for chaining purposes by a
transfer-in-channel command. All CCWs in a
chain apply to the I/O device specified in the
original START I/O or START I/O FAST
RELEASE.

Two types of chaining are provided: chaining of
data and chaining of commands. Chaining is
controlled by the chain-data (CD) and chain­
command (CC) flags in conjunction with the
suppress-length-indication (SLI) flag in the CCW.
These flags specify the action to be taken by the
channel upon the exhaustion of the current CCW
and upon receipt of ending status from the device,
as shown in the figure "Channel-Chaining Action."

The specification of chaining is effectively
propagated through a transfer-in-channel
command. When in the process of chaining a
transfer-in-channel command is fetched, the CCW
designated by the transfer in channel is used for
the type of chaining specified in the CCW
preceding the transfer in channel. The CD and CC
flags are ignored in the transfer-in-channel
command.

Chapter 12. Input/Output Operations 12-31

Action in Channel upon Exhaustion of Count
Flags in or
Current

Receipt of Channel End

CCW Regular Operation

CD CC SLI Immediate Operation I II III

0 0 0 End, NIL Stop, IL End, NIL End, IL
0 0 1 End, NIL Stop, NIL End, NIL End, NIL
0 1 0 Chain Command Stop, IL Chain command End, IL
0 1 1 Chain Command Chain command Chain command Chain command

1 0 0 End, NIL Chain Data * End, IL
1 0 1 End, NIL Chain Data * End, IL
1 1 0 End, NIL Chain Data * End, IL
1 1 1 End, NIL Chain Data * End, IL

Explanation:

II

III

End

Stop

IL

NIL

Count exhausted, end of block at device not reached.

Count exhausted and channel end from device.

Count not exhausted and channel end from device.

The operation is terminated. If the operation is
immediate and has been specified by the first CCW
associated with a START I/O, a condition code 1 is set,
and the status portion of the CSW is stored as part of
the execut i on of the START I/O. I n a 11 other cases, an
interruption condition is generated in the subchannel.

The device is signaled to terminate data transfer, but
the subchannel remains in the working state until
channel end is received; at this time an interruption
condition is generated in the subchannel.

Incorrect length is indicated with the interruption
condition.

Incorrect length is not indicated.

Chain command The channel performs command chaining upon receipt of
device end.

Chain data The channel immediately fetches a new CCW for the same
operation.

The srtuation where the residual count is zero but data
chaining is indicated at the time the device provides
channel end cannot validly occur. When data chaining
is indicated, the channel fetches the new CCW after
transferring the last byte of data designated by the
current CCW but before the device provides the next
request for data or status transfer. As a result, the
channel recognizes the channel end from the device only
after it has fetched the new CCW, which cannot contain
a count of zero unless a programming error has been
made.

Channel· Chaining Action

Data Chaining
During data chaining, the new CCW fetched by the
channel defines a new storage area for the original

12-32 IBM 4300 Processors Principles of Operation

I/O operation. Execution of the operation at the
I/O device is not affected. When all data

designated by the current CCW has been
transferred to storage or to the device, data
chaining causes the operation to continue, using the
storage area designated by the new CCW. The
contents of the command-code field of the new
CCW are ignored, unless they specify transfer in
channel.

Data chaining is considered to occur immediately
after the last byte of data designated by the current
CCW has been transferred to storage or to the
device. When the last byte of the transfer has been
placed in storage or accepted by the device, the
new CCW takes over the control of the operation
and replaces the pertinent information in the
subchannel. If the device signals channel end after
exhausting the count of the current CCW but
before transferring any data to or from the storage
area designated by the new CCW, the CSW
associated with the concluded operation pertains to
the new CCW.

If programming errors are detected in the new
CCW or during its fetching, the error indication is
generated, and the device is signaled to conclude
the operation when it attempts to transfer data
designated by the new CCW. If the device signals
channel end after the new CCW takes control but
before transferring any data designated by the new
CCW, program check or protection check is
indicated in the CSW associated with the
termination. The contents of the CSW pertain to
the new CCW unless a program check or protection
check is generated while fetching the new CCW or
while fetching or executing an intervening
transfer-in-channel command. A data address
which causes a program check or protection check
gives an error indication only after the I/O device
has attempted to transfer data to or from the
addressed storage location.

When data chaining during an output operation,
the channel may fetch the new CCW from storage
ahead of the time data chaining occurs. Similarly,
some block-multiplexer channels may prefetch the
new CCW when data chaining during input. Any
programming errors in a pre fetched CCW, however,
do not affect the execution of the operation until
all data designated by the current CCW has been
transferred to the I/O device on output or to
storage on input. If the device concludes the
operation before all data designated by the current
CCW has been transferred or if data chaining is
suppressed for any other reason, the errors
associated with the pre fetched CCW are not
indicated to the program.

Only one CCW describing a data area may be
prefetched. If the prefetched CCW specifies
transfer in channel, only one more CCW may be
fetched before the exhaustion of the current CCW.

Programming Note
Data chaining may be used to rearrange data as it
is transferred between storage and an I/O device.
Data chaining permits data to be transferred to or
from noncontiguous areas of storage, and, when
used in conjunction with the skipping function (see
the section 11 Skipping 11 later in this chapter), data
chaining enables the program to place in storage
selected portions of a block of data.

When, during an input operation for a channel
that does not prefetch CCWs on input, the program
specifies data chaining to a location into which data
has been placed under the control of the current
CCW, the channel, in fetching the next CCW,
fetches the new contents of the location. This is
true even if the location contains the last byte
transferred under the control of the current CCW.
When, on input, a channel program data-chains to
a CCW placed in storage by the CCW specifying
data chaining, the block is said to be self­
describing. A self-describing block contains one or
more C CW s that specify storage locations and
counts for subsequent data in the same block.

The use of self-describing blocks is equivalent to
the use of unchecked data. An I/O data-transfer
malfunction that affects validity of a block is
signaled only at the completion of data transfer.
The error normally does not prematurely terminate
or otherwise affect the execution of the operation.
Thus, there is no assurance that a CCW,read as
data is valid until the operation is completed. If
the CCW is in error, the use of the CCW in the
current operation may cause subsequent data to be
placed in wrong storage locations with resultant
destruction of the contents of those locations.

Self -describing blocks cannot be used with a
channel that pre fetches CCWs when data chaining
on input.

Command Chaining
During command chaining, the new CCW fetched
by the channel specifies a new 110 operation. The
channel fetches the new CCW and initiates the
new operation upon receipt of the device-end signal
for the current operation. When command
chaining takes place, the completion of the current
operation does not generate an interruption
condition, and the count indicating the amount of
data transferred during the current operation is not
made available to the program. FOYoperations

Chapter 12. Input/Output Operations 12-33

involving data transfer, the new command always
applies to the next block at the device.

Command chaining takes place and the new
operation is initiated only if no unusual situations
have been detected in the current operation. In
particular, the channel initiates a new I/O
operation by command chaining upon receipt of a
status byte signaling one of the following status
combinations: device end, device end and status
modifier, device end and channel end, device end
and channel end and status modifier. In the former
two cases, channel end must have been signaled
before device end, with all other status bits set to
zeros. If status such as attention, unit check, unit
exception, incorrect length, program check, or
protection check has occurred, the sequence of
operations is concluded, and the status associated
with the current operation causes an interruption
condition to be generated. The new CCW in this
case is not fetched. Incorrect length does not
suppress command chaining if the current CCW has
the SLI flag set to one.

An exception to sequential chaining of CCWs
occurs when the I/O device presents status
modifier with device end. When no unusual
conditions have been detected and command
chaining is specified or when command retry has
been previously signaled and an immediate retry
could not be performed, the combination of status
modifier and device end causes the channel to alter
the sequential execution of CCWs. If command
chaining was specified, the status causes the
channel to chain to the CCW whose storage
address is 16 higher than that of the CCW that
specified chaining. If command retry was
previously signaled and immediate retry could not
be performed, the. status causes the channel to
command-chain to the CCW whose storage address
is 8 higher than that of the CCW for which retry
was initially signaled.

When both command and data chaining are
used, the first CCW associated with the operation
specifies the operation to be executed, and the last
CCW indicates whether another operation follows.

Programming Note
Command chaining makes it possible for the
program to initiate transfer of multiple blocks by
means of a single START I/O or START I/O
FAST RELEASE. It also permits a subchannel to
be set up for the execution of auxiliary functions,
such as positioning the disk-access mechanism, and
for data-transfer operations without interference by
the program at the end of each operation.
Command chaining, in conjunction with the

12-34 IBM 4300 Processors Principles of Operation

status-modifier condition, permits the channel to
modify the normal sequence of operations in
response to signals provided by the I/O device.

Skipping
Skipping is the suppression of storage references
during an I/O operation. It is defined only for
read, read backward, and sense operations and is
controlled by the skip flag, which can be specified
individually for each CCW. When the skip flag is
one, skipping occurs; when zero, normal operation
takes place. The setting of the skip flag is ignored
in all other operations.

Skipping affects only the handling of information
by the channel. The operation at the I/O device
proceeds normally, and information is transferred
to the channel. The channel keeps updating the
count but does not place the information in storage.
Chaining is not precluded by skipping. In the case
of data chaining, normal operation is resumed if the
skip flag in the new CCW is zero.

When the skip flag is set to one, the data address
in the C CW is not checked.

Programming Note
Skipping, when combined with data chaining,
permits the program to place in storage selected
portions of a block from an I/O device.

Program-Controlled Interruption
The program-controlled-interruption (PCI) function
permits the program to cause an I/O interruption
during the execution of an I/O operation. The
function is controlled by the PCI flag in the CCW.
The flag can be on either in the first CCW
specified by START I/O or START I/O FAST
RELEASE or in a CCW fetched during chaining.
Neither the PCI flag nor the associated interruption
affects the execution of the current operation.

Whenever the PCI flag in the CCW is one, an
interruption condition is generated in the channel.
When the first CCW associated with an operation
contains the PCI flag, either initially or upon
command chaining, the interruption may occur as
early as immediately upon the initiation of the
operation. The PCI flag in a CCW fetched on data
chaining causes the interruption to occur after all
data designated by the preceding CCW has been
transferred. The time of the interruption, however,
depends on the model and the current activity in
the system and may be delayed even if I/O
interruptions are allowed. No predictable
relationship exists between the time the
interruption due to the PCI flag occurs and the

;ress of data transfer to or from the area
gnated by the CCW, but the fields within the
V pertain to the same instant of time.
f chaining occurs before the interruption due to
PCI flag has taken place, the PCI interruption
dition is carried over to the new CCW. This
·yover occurs both on data and command
ining and, in either case, the interruption
dition is propagated through the transfer-in­
nnel command. The interruption conditions due
:he PCI flags are not stacked; that is, if another
W is fetched with a PCI flag before the
~rruption due to the PCI flag of the previous
:W has occurred, only one interruption takes
ceo
A. CSW containing the PCI bit set to one may be
red by an interruption while the operation is still
)ceeding or by an interruption, TEST I/O, or
,EAR I/O upon the termination of the operation.
CSW cannot be stored by TEST I/O while the
)channel is in the working state.
When the CSW is stored by an interruption
fore the operation or chain of operations has
en concluded, the CCW address is 8 greater than
~ address of the current CCW, and the count is
predictable. All unit-status bits in the CSW are
roo If the channel has detected any unusual
uations, such as channel-data check, program
.eck, or protection check by the time the
terruption occurs, the corresponding channel­
atus bit is one, although the status in the sub­
Lannel is not reset and is indicated again upon the
rmination of the operation.
A unit-status bit set to one in the CSW indicates

lat the operation or chain of operations has been
>ncluded. The CSW in this case has its regular
)rmat with the PCI bit set to one.
However, when the interruption due to the PCI

ag is delayed until the operation at the subchannel
concluded, two interruptions from the subchannel

Lay still take place. The first interruption indicates
od clears the interruption condition due to the
CI flag, and the second provides the CSW
ssociated with the ending status. Whether one or
wo interruptions occur depends on the model and
,n whether the interruption condition due to the
'CI flag has been assigned the highest priority for
nterruption at the time of conclusion. TEST I/O
.r CLEAR I/O addressed to the device associated
vith an interruption condition in the subchannel
:lears the interruption condition due to the PCI
'lag, as well as the one associated with the
~onclusion.

The setting of the PCI flag is inspected in every
CCW except those specifying transfer in channel,
where it is ignored. The PCI flag is also ignored
during initial program loading.

Programming Notes
1. Since no unit-status bits are set to ones in the

CSW associated with the conclusion of an
operation of a selector channel by HALT I/O
or HALT DEVICE, unit-status bits and the
PCI bit set to ones are not necessary for the
operation to be concluded. When status in a
selector channel includes PCI at the time the
operation is concluded by HALT I/O or HALT
DEVICE, the CSW associated with the
concluded operation is indistinguishable from
the CSW provided by an interruption during
execution of the operation.

2. Program-controlled interruption provides a
means of alerting the program to the progress
of chaining during an I/O operation. It permits
programmed dynamic storage allocation.

Commands
The figure "Channel-Command Codes" lists the
command codes for the six commands and indicates
which flags are defined for each command. The
flags are ignored for all commands for which they
are not defined.

Name Code Flags

Write MMMM MMOl CD CC SLI
Read MMMM MM10 CD CC SLI SKIP
Read backward MMMM 1100 CD CC SLI SKIP
Control MMMM MM t 1 CD CC SLI
Sense MMMM 0100 CD CC SLI SKIP
Transfer in channel XXXX 1000

Explanation:

CD Chain data
CC Chain command
SLI Suppress length indication
SKIP Skip
PCI Program-controlled interruption
M Modifier bit
X Ignored

Channel-Command Codes

All flags have individual significance, except that
the CC and SLI flags are ignored when the CD flag
is set to one. The SLI flag is ignored on immediate
operations, in which case the incorrect-length
indication is suppressed, regardless of the setting of

Chapter 12. Input/Output Operations 12-35

PCI
PCI
PCI
PCI
PCI

the flag. The PCI flag is· ignored during initial
program loading.

Each command is described below, and the
format is illustrated.

Programming Note
A malfunction that affects the validity of data
transferred in an I/O operation is signaled at the
end of the operation by means of unit check or
channel-data check, depending on whether the
device (control unit) or the channel detected the
error. In order to make use of the checking
facilities provided in the system, data read in an
input operation should not be used until the end of
the operation has been reached and the validity of
the data has been checked. Similarly, on writing,
the copy of data in storage should not be destroyed
until the program has verified that no malfunction
affecting the transfer and recording of data was
detected.

Write

MMMMMM01 Data Address

o 8 31

C C S P
D C L I C 000 IIIIIIII Count

I I

32 35 40 48 63

A write operation is initiated at the I/O device,
and the subchannel is set up to transfer data from
storage to the I/O device. Data in storage is
fetched in an ascending order of addresses, starting
with the address specified in the CCW.

A CCW used in a write operation is inspected
for the CD, CC, SLI, andPCI flags. The setting of
the skip flag is ignored. Bit positions 0-5 of the
CCW contain modifier bits.

Programming Note
When writing on devices for which block length is
not defined, such as a magnetic-tape unit or an
inquiry station, the amount of data written is
controlled only by the count in the CCW. Every
operation terminated under count control causes
the incorrect.;.length indication, unless the
indication is suppressed by the SLI flag.

12-36 IBM 4300 Processors Principles of Operation

Read

MMMMMM10 Data Address

o 8 31

s
C C S K P
D C L I C 000 IIIIIIII Count

I p I

32 40 48 63

A read operation is initiated at the I/O device, and
the subchannel is set up to transfer data from the
device to storage. For devices such as magnetic­
tape units, disk storage, and card equipment, the
bytes of data within a block are provided in the
same sequence as written by means of a write
command. Data is placed in storage in an
ascending order of addresses, starting with the
address specified in the CCW.

A CCW used ina read operation is inspected for
every flag-CD, CC, SLI, SKIP, and PCl. Bit
positions 0-5 of the CCW contain modifier bits.

Read Backward

MMMM 1100 Data Address

o 8 31

s
C C S K P
D C L I C 000 IIIIIIII Count

I P I

32 40 48 63

A read-backward operation is initiated at the I/O
device, and the subchannel is set up to transfer
data from the device to storage. On magnetic-tape
units, read backward causes reading to be
performed with the tape moving backward. The
bytes of data within a block are sent to the channel
in a sequence opposite to that on writing. The
channel places the bytes in storage in a descending
order of address, starting with the address specified

(

in the CCW. The bits within a byte are in the
same order as sent to the device on writing.

A CCW used in a read-backward operation is
inspected for every flag-CD, CC, SLI, SKIP, and
PCl. Bit positions 0-3 of the CCW contain
modifier bits.

Control

MMMMMM 11 Data Address

o 8 31

C C S P
D C L I C 000 IIIIIIII Count

I I

32 35 40 48 63

A control operation is initiated at the I/O device,
and the sub channel is set up to transfer data from
storage to the device. The device interprets the
data as control information. The control
information, if any, is fetched from storage in an
ascending order of addresses, starting with the
address specified in the CCW. A control command
may be used to initiate at the I/O device an
operation not involving transfer of data, such as
backspacing or rewinding magnetic tape or
positioning a disk-access mechanism.

For many control functions, the entire operation
is specified by the modifier bits in the command
code, and the function is performed as an
immediate operation (see the section "Immediate
Operations 11 later in this chapter). If the command
code does not specify the entire control function,
the data-address field of the CCW designates the
location containing the required additional
information. This control information may include
a code further specifying the operation to be
performed or an external address, such as the disk
address for the seek function, and is transferred in
response to requests by the device.

A control command code containing zeros for
the six modifier bits is defined as a no-operation.
The no-operation order causes the addressed device
to respond with channel end and device end
without causing any action at the device. The
control command can be executed as an immediate
operation, or the device can delay the status until
after the initial selection sequence is completed.

Other operations that can be initiated by means of
the control command depend on the type of I/O
device. These operations and their codes are
specified in the SL publication for the device.

A CCW used in a control operation is inspected
for the CD, CC, SLI, and PCI flags. The setting of
the skip flag is ignored. Bit positions 0-5 of the
CCW contain modifier bits.

Programming ,Note
Since a CCW (other than transfer in channel) with
a count of zero is invalid, the program cannot use
the CCW count field to specify that no data be
transferred to the I/O device. Any operation
terminated before data has been transferred causes
the incorrect-length indication, provided the
operation is not immediate and has not been
rejected during the initiation sequence. The
incorrect-length indication is suppressed when the
SLI flag is on.

Sense

MMMM0100 Data Address

o 8 31

s
C C S K P
D C L I C 000 IIIIIIII Count

I P I

32 40 48 63

A sense operation is initiated at the I/ a device,
and the sub channel is set up to transfer data from
the device to storage. The data is placed in storage
in an ascending order of addresses, starting with
the address specified in the CCW.

Data transferred during a sense operation
provides information concerning both unusual
conditions detected in the last operation and the
status of the device. The status information
provided by the sense command is more detailed
than that supplied by the unit-status byte in the
CSW and may describe reasons for the unit-check
indication. It may also indicate, for example,if the
device is in the not-ready state, if the tape unit is
in the file-protected state, or if magnetic tape is
positioned beyond the end-of-tape mark.

Chapter 12. Input/Output Operations 12-37

For most devices, the first six bits of the sense
data describe situations detected during the last
operation. These bits are common to all devices
having this type of information and are designated
as follows:

Bit Designation

0 Command reject
1 Intervention required
2 Bus-out check
3 Equipment check
4 Data check
5 Overrun

The following is the meaning of the first six bits:

Command Reject: The device has detected a
programming error. A command has been received
which the device is not designed to execute, such as
read backward issued to a direct-access storage
device, or which the device cannot execute because
of its present state, such as write issued to a
file-protected tape unit. Command reject is
indicated when the program issues an invalid
sequence of commands, such as write to a
direct-access storage device without previous
designation of the block. Command reject may
also be indicated when invalid data is transferred
and the data is treated as an extension of the
command. For example, command reject is
indicated when an invalid seek argument is
transferred to a direct-access storage device.

Intervention Required: The last operation could
not be executed because of a situation requiring
some type of intervention at the device. This bit
indicates situations such as the hopper in a card
punch being empty or the printer being out of
paper. It is also turned on when the addressed
device is not ready, is in test mode, or is not
provided on the control unit.

Bus-Out Check: The device or the control unit
has received a data byte or a command code with
an invalid parity'from the channel. During writing,
bus-out check indicates that incorrect data has
been recorded at the device, but this does not cause
the operation to be terminated prematurely. Parity
errors on command codes and control information
cause the operation to be immediately terminated
and suppress checking for situations that would
cause command reject and intervention required.

12-38 IBM 4300 Processors Principles of Operation

Equipment Check: During the last operation, the
device or the control unit has detected equipment
malfunctioning, such as an invalid card -hole count
or a printer-buffer parity error.

Data Check: The device or the control unit has
detected a data error other than those included in ,
bus-out check. Data check identifies errors
associated with the recording medium and includes
errors such as reading an invalid card code or
detecting invalid parity on data recorded on
magnetic ta'pe. '

On an input operation, data check indicates that
incorrect data may have been placed in storage.
The control unit forces correct parity on data sent
to the channel. On writing, data check indicates
that incorrect data may have been recorded at the
device. Unless the operation is of a type where the
error precludes meaningful continuation, data
errors on reading and writing do not cause the'
operation to be terminated prematurely.

Overrun: The channel has failed to respond on
time to a request for service from the device.
Overrun can occur when data is transferred to or
from a non buffered control unit operating with a
synchronous medium, and the total activity initiated
by the program exceeds the capability of the
channel. When the channel fails to accept a byte
on an input operation, the following data
transferred to storage may be used to fill the gap.
On an output operation, overrun indicates that data
recorded at the device may be invalid. The overrun
bit is also set to one when the device receives the
new command too late during command chaining.

All information significant to the use of the
device normally is provided in the first two bytes.
Any bit positions following those used for
programming information contain diagnostic
information, which may extend to as many bytes as
needed. The amount and the meaning of the status
information are peculiar to the type of I/O device
and are specified in the SL publication for the
device.

The basic sense command has zero modifier bits.
This command initiates a sense operation on all
devices and cannot cause the command-reject,
intervention-required, data-check, or overrun bit to
be set to one. If the control unit detects an
equipment malfunction, or invalid parity of the
sense command code, the equipment-check or bus­
out-check bit is set to one, and unit check is
indicated in the unit-status byte.

Devices that can provide special diagnostic sense
information or can be instructed to perform other

special functions by use of the sense command may
define modifier bits for the control of these
functions. The special sense operations may be
initiated by a unique combination of modifier bits,
or a group of codes may specify the same function.
Any remaining sense command codes may be
considered invalid, thus causing the unit-check
indication, or may cause the same action as the
basic sense command, depending upon the type of
device.

The sense information that pertains to the last
I/O operation or other action at a device may be
reset any time after the completion of a sense
command addressed to that device. Any command
addressed to the control unit of a device, other
than the no-operation command and the command
which results from a TEST I/O instruction, may be
allowed to reset the sense information, provided
that the busy bit is not included in the initial status.
The sense information may also be changed as a
result of asynchronous actions, such as when
attention or not-ready-to-ready device-end status is
generated.

A CCW used in a sense operation is inspected
for every flag-CD, CC, SLI, SKIP, and PCl. Bit
positions 0-3 of the CCW contain modifier bits.

Transfer in Channel

CCW Address

o 4 8 31

II I I I I I I I I I I I I I I I I
32 63

The next CCW is fetched from the location in
storage designated by the data-address field of the
CCW specifying transfer in channel. The
transfer-in-channel command does not initiate any
I/O operation at the channel, and the I/O device is
not signaled. The purpose of the transfer-in­
channel command is to provide chaining between
CCWs not located in adjacent doubleword
locations in an ascending order of addresses. The
command can occur in both data and command
chaining.

The first CCW designated by the CAW must not
specify transfer in channel. When this restriction is
violated, no I/O operation is initiated, and a
program check is generated. The error causes the
status portion of the CSW, with the program-check

status bit set to one, to be stored during the
execution of START I/O or START I/O FAST
RELEASE being executed as ST ART I/O. When
START I/O FAST RELEASE is executed
independent of the device, the error causes an
interruption condition to be generated.

To address a CCW on integral boundaries for
doublewords, a CCW specifying transfer in channel
must contain zeros in bit positions 29-3l.
Furthermore, a CCW specifying a transfer in
channel must not be fetched from a location
designated by an immediately preceding transfer in
channel. When either of these errors is detected, a
program check is generated.

The contents of the second half of the CCW, bit
positions 32-63, are ignored. Similarly, the
contents of bit positions 0-3 of the CCW are
ignored.

Command Retry
Some channels have the capability to perform
command retry, a channel and control-unit
procedure that causes a command to be retried
without requiring an I/O interruption. This retry is
initiated by the control unit presenting either of
two status-bit combinations by means of a special
communication sequence with the channel. When
immediate retry can be performed, the control unit
signals a channel-end, unit-check, and status­
modifier status-bit combination, together with
device end. When immediate retry cannot be
performed, the presentation of device end is
delayed until the control unit is prepared. If device ,
end and no other status bits are signaled, command
retry is performed. If device end is accompanied ,
by status modifier, command retry is not
performed, and the channel command-chains to the
CCW following the one for which retry was
signaled. When any other status bit accompany
device end or device end and status modifier, an
interruption condition is generated. In this
situation, the CSW will contain ~he status
indications causing the interruption condition.

When the channel is not capable of performing
command retry, the retry is suppressed, and an
interruption condition is generated. The CSW will
contain the channel-end, unit-check, and status­
modifier status indications, along /with any other
appropriate status. //

During command retry, tl}e"channel action is
similar to that taken whe~ommand chaining.
Thus, when command yeiry is performed, a START
I/O initiating an immediate operation for which
command chaining is not indicated in the CCW

Chapter 12. Input/Output Operations 12-39

causes a condition code 0, rather than a condition
code 1, to be set. The subsequent termination of
the I/O operation causes an interruption condition
to be generated. During command retry, the CCW
may be refetched.

Programming Note
The following possible results of a command retry
must be anticipated by the program:
1. A CCW with the PCI flag set to one may, if

retried because of command retry, cause
multiple PCI interruptions to occur.

2. A channel program consisting of a single,
unchained CCW specifying an immediate
command may cause a condition code 0 rather
than a condition code 1 to be set. This setting
of the condition code occurs if the control unit
signals command retry at the time initial status
is signaled to the channel. An interruption
condition is generated upon completion of the
operation.

3. If a CCW used in an operation is changed
before that operation has been successfully
completed, the results are unpredictable.

4. A CSW stored after the initiation of a retry but
before the presentation of device end, as when
an interruption condition due to the PCI flag is
taken, contains the address of the command to
be retried plus 8.

5. If a HALT I/O, HALT DEVICE, or CLEAR
1/ a instruction is issued after the initiation of a
retry but before the presentation of device end,
the CSW contains the address of the command
to be retried plus 8.

6. On a multiplexer channel, chained CCWs which
might ordinarily have been executed in a burst
may, upon the occurrence of command retry,
cause multiplexing to occur, with the result that
the channel becomes unexpectedly available.

7. Command chaining may occur even though the
CCW does not indicate command chaining.
This can occur if immediate retry is not
requested and the control unit or device
presents a status of device end and status
modifier.

Conclusion of Input/Output Operations
When the operation or sequence of operations
initiated by START 1/ a or START I/O FAST
RELEASE is ended, the channel and the device
generate status. Status can be brought to the
attention of the program by means of an I/O
interruption, by TEST I/O or CLEAR I/O, or, in

12-40 IBM 4300 Processors Principles of Operation

certain cases, by START I/O or START I/O FAST
RELEASE. This status, as well as an address and
a count indicating the extent of the operation
sequence, are presented to the program in the form
of a channel-status word (CSW).

Types 0/ Conclusion
Normally an I/O operation at the subchannellasts
until the device signals channel end. Channel end
can be signaled during the sequence initiating the
operation, or later. When the channel detects
equipment malfunctioning or an I/O system reset is
performed, the channel disconnects the device
without receiving channel end. The program can
force a device to be disconnected prematurely by
issuing CLEAR I/O, HALT I/O, or HALT
DEVICE.

Conclusion at Operation Initiation
After the addressed channel and subchannel have
been verified to be in a state where START I/O or
START I/O FAST RELEASE can be executed,
certain tests are performed on the validity of the
information specified by the program and on the
availability of the addressed control unit and I/O
device. This testing occurs during the execution of
START I/O, either during or subsequent to the
execution of START I/O FAST RELEASE, and
during command chaining.

A data-transfer operation is initiated at the
subchannel and device only when no programming
or equipment errors are detected by the channel
and when the device responds with zero status
during the initiation sequence. When the channel
detects or the device signals any unusual situations
during the initiation of an operation, the command
is said to be rejected.

Rejection of the command during the execution
of START I/O or START I/O FAST RELEASE is
indicated by the setting of the condition code in the
PSW. Unless the device is not operational, the
reasons for the rejection are detailed by the portion
of the CSW stored by START I/O or START I/O
FAST RELEASE. The device is not started, no
interruption conditions are generated, and the
subchannel is available subsequent to the initiation
sequence. The device is immediately available for
the initiation of another operation, provided the
command was not rejected because the device was
busy or not operational.

When an unusual situation causes a command to
be rejected during initiation of an I/O operation by
command chaining, an interruption condition is

generated, and the subchannel is not available until
the condition is cleared. The reasons for the
rejection are indicated to the program by means of
the corresponding status bits in the CSW. The
not-operational state of the I/O device, which
during the execution of ST ART I/O and sometimes
during the execution of START I/O FAST
RELEASE causes condition code 3 to be set,
instead causes the interface-control-check bit to be
set to one. The new operation at the I/O device is
not started.

When START I/O FAST RELEASE is executed
by a channel independent of the addressed device,
tests for most program-specified information, for
control-unit and device availability, for control-unit
and device status, and for most errors are
performed subsequent to the execution of START
I/O FAST RELEASE. Some situations which
would have caused a condition code 1 or 3 to be
set had the instruction been START 1/ a instead
cause an interruption condition to be generated.
The CSW, when stored, indicates that the
interruption condition is a deferred condition code
1 or 3.

Immediate Operations
Some control commands cause the 1/ a device to
signal channel end immediately upon receipt of the
command code. An I/O operation causing channel
end to be signaled during the initiation sequence is
called an immediate operation.

When the first CCW designated by the CAW
during a START I/O or START I/O FAST
RELEASE executed as a START 1/ a initiates an
immediate operation with command chaining not
indicated and command retry not occurring, no
interruption condition is generated. In this case,
channel end is brought to the attention of the
program by causing START I/O or START I/O
FAST RELEASE to store the CSW status portion.
The subchannel is immediately made available to
the program. The 1/ a operation, however, is
initiated, and, if channel end is not accompanied by
device end, the device remains busy. Device end,
when subsequently provided by the device, causes
an interruption condition to be generated.

An immediate operation initiated by the first
CCW deSignated by the CAW during a START
1/ a FAST RELEASE executed independent of the
addressed device appears to the program as a
nonimmediate command. That is, any status
generated by the device for the immediate
command, or for a subsequent command if

command chaining occurs, causes an interruption
condition to be generated.

When command chaining is specified after an
immediate operation and no unusual situations have
been detected during the execution, or when
command retry occurs for an immediate operation,
neither ST ART I/O nor ST ART I/O FAST
RELEASE causes the immediate storing of CSW
status. The subsequent commands in the chain are
handled normally, and channel end for the last
operation generates an interruption condition even
if the device provides the signal immediately upon
receipt of the command code.

Whenever immediate completion of an 1/ a
operation is signaled, no data has been transferred
to or from the device.

Since a count of zero is not valid, any CCW
specifying an immediate operation must contain a
nonzero count. When an immediate operation is
executed, however, incorrect length is not indicated
to the program, and command chaining is
performed when so specified.

Programming Note
Control operations for which the entire operation is
specified in the command code may be executed as
immediate operations. Whether the control
function is executed as an immediate operation
depends on the operation and type of device and is
specified in the SL publication for the device.

Conclusion of Data Transfer
When the device accepts a command, the
subchannel is set up for data transfer. The
subchannel is in the working state during this
period. Unless the channel detects equipment
malfunctioning or the operation is concluded by
CLEAR I/O, or, on the selector channel, the
operation is concluded by CLEAR I/O, HALT
I/O, or HALT DEVICE, the working state lasts
until the channel receives the channel-end signal
from the device. When no command chaining is
specified or when chaining is suppressed because of
unusual situations, channel end causes the
operation at the subchannel to be terminated and
an interruption condition to be generated. The
status bits in the associated CSW indicate channel
end and any unusual situations. The device can
signal channel end at any time after initiation of
the operation, and the signal may occur before any
data has been transferred.

For operations not involving data transfer, the
device normally controls the timing of channel end.
The duration of data-transfer operations may be

Chapter 12. Input/Output Operations 12-41

variable and may be controlled by the device or the
channel.

Excluding equipment errors, CLEAR I/O,
HALT DEVICE, and HALT I/O, the channel
signals the device to conclude data transfer
whenever any of the following events occurs:
1. The storage areas specified for the operation

are exhausted or filled.
2. A program check is detected ..
3. A protection check is detected.
4. A chaining check is detected.

The first event occurs when the channel has
stepped the count to zero in the last CCW
associated with the operation. A count of zero
indicates that the channel has transferred all
information specified by the program. The other
three events are due to errors and cause premature
conclusion of data transfer. In every case, the
conclusion is signaled in response to a service
request from the device and causes data transfer to
cease. If the device has no blocks defined for the
operation (such as writing from magnetic tape), it
concludes the operation and generates channel end.

The device can control the duration of an
operation and the timing of channel end. On
certain operations for which blocks are defined
(such as reading from magnetic tape), the device
does not provide the channel-end signal until the
end of the block is reached, regardless of whether
or not the device has been previously signaled to
conclude data transfer.

If the initial data address in the CCW refers to a
storage location that is not provided or to a
disconnected or protected page, no data is
transferred during the operation, and the device is
signaled to conclude the operation in response to
the first service request. On writing, devices such
as magnetic-tape units request the first byte of data
before any mechanical motion is started and, if the
initial data address refers to a storage location that
is not provided or to a disconnected or protected
page, the operation is concluded before the
recording medium has been advanced. However,
since the operation has been initiated, the device
provides channel end, and an interruption condition
is generated. Whether a block at the device is
advanced when no data is transferred depends on
the type of device and is specified in the SL
publication for the device.

When command chaining takes place, the
subchannel is in the working state from the time
the first operation is initiated until the device
signals channel end for the last operation of the

12-42 IBM 4300 Processors Principles of Operation

chain. On the selector channel, the device
executing the operation stays connected to the
channel and the whole channel is in the working
state during the entire execution of the chain of
operations. On the multiplexer channel, an
operation in the burst mode causes the channel to
be in the working state only while transferring a
burst of data. If channel end and device end do
not occur concurrently, the device disconnects from
the channel after providing channel end, and the
channel can in the meantime communicate with
other devices.

Any unusual situations cause command chaining
to be suppressed and an interruption condition to
be generated. The unusual situations can be
detected by either the channel or the device, and
the device can provide the indications with channel
end, control-unit end, or device end. When the
channel is aware of the unusual situation by the
time the channel-end signal for the operation is
received, the chain is ended as if the operation
during which the situation occurred were the last
operation of the chain. The device-end· signal
subsequently is processed as an interruption
condition. When the device signals unit check or
unit exception with control-unit end or device end,
the sub channel terminates the working state upon
receipt of the signal from· the device. The
channel-end indication in this case is not made
available to the program.

Termination by HALT I/O or HALT DEVICE
The instructions HALT I/O and HALT DEVICE
cause the current operation at the addressed
channel or sub channel to be immediately
terminated. The method of termination differs
from that used upon exhaustion of count or upon
detection of programming errors to the extent that
termination by HALT I/O or HALT DEVICE is
not necessarily contingent on the receipt of a
service request from the device.

When HALT I/O is issued to a channel
operating in burst mode, the channel issues the halt
signal to the device currently operating with the
channel, regardless of the device address specified
with the HALT I/O instruction. If the channel is
involved in the data-transfer portion of an
operation, data transfer is immediately terminated,
and the device is disconnected from the channel.
If HALT I/O is addressed to a selector channel
executing a chain of operations and the device has
already provided channel end for the current
operation, the instruction causes the device to be

disconnected and command chaining to be
immediately suppressed.

When HALT DEVICE is issued to a channel
operating in burst mode, the halt signal is issued to
the device involved in the burst-mode operation
only if that device is the one to which the HALT
DEVICE is addressed. If the operation thus
terminated is in the data-transfer portion of the
operation, data transfer is immediately terminated,
and the device is disconnected from the channel.
If the terminated burst involves a selector channel
executing a chain of operations and the device has
already provided channel end for the current
operation, HALT DEVICE causes the device to be
disconnected and command chaining to be
immediately suppressed. If, on a selector channel,
the device involved in the burst is not the one to
which the HALT DEVICE is addressed, no action
is taken. If, on a multiplexer channel, the device
involved in the burst is not the one to which the
HAL T DEVICE is addressed, HALT DEVICE
causes any operation for the addressed device to be
terminated at the addressed subchannel by
suppressing any further data transfer or command
chaining for that device.

When HALT I/O or HALT DEVICE is issued to
a channel not operating in burst mode, the
addressed device is selected, and the halt signal is
issued as the device responds. On a multiplexer
channel, command chaining, if indicated in the
subchannel, is immediately suppressed.

The termination of an operation by HALT I/O
or HALT DEVICE on the selector channel results
in up to four distinct interruption conditions. The
first one is generated by the channel upon
execution of the instruction and is not contingent
on the receipt of status from the device. The
channel-status bits reflect the unusual situations, if
any, detected during the operation. If HALT I/O
or HALT DEVICE is issued before all data
specified for the operation has been transferred,
incorrect length is indicated, subject to the control
of the SLI flag in the current CCW. The execution
of HALT I/O or HALT DEVICE itself is not
reflected in CSW status, and all status bits in a
CSW due to this interruption condition can be
zero. The channel is available for the initiation of
a new I/O operation as soon as the interruption
condition is cleared.

The second interruption condition on the
selector channel occurs when the control unit
signals channel end. The selector channel handles

this condition as any other interruption condition
from the device after the device has been
disconnected from the channel, and provides zeros
in the subchannel-key, CCW-address, count, and
channel-status fields of the associated CSW.
Channel end is not made available to the program
when HALT I/O or HALT DEVICE is issued to a
channel executing a chain of operations and the
device has already provided channel end for the
current operation.

Finally, the third and fourth interruption
conditions occur when control-unit end, if any, and
device end are signaled. These signals are handled
as for any other I/O operation.

The termination of an operation by HALT I/O
or HALT DEVICE on a multiplexer channel causes
the normal interruption conditions to be generated.
If the instruction is issued when the subchannel is
in the data-transfer portion of an operation, the
subchannel remains in the working state until
channel end is signaled by the device, at which
time the subchannel is placed in the interruption­
pending state. If HALT I/O or HALT DEVICE is
issued after the device has signaled channel end
and the subchannel is executing a chain of
operations, channel-end is not made available to
the program, and the subchannel remains in the
working state until the next status byte from the
device is received. Receipt of a status byte
subsequently places the subchannel in the
interruption-pending state.

The CSW associated with the interruption
condition in the subchannel contains the status byte
provided by the device and the channel. If HALT
I/O or HALT DEVICE is issued before all data
areas associated with the current operation have
been exhausted or filled, incorrect length is
indicated, subject to the control of the SLI flag in
the current CCW. The interruption condition is
processed as for any other type of termination.

The termination of a burst operation by HALT
I/O or HALT DEVICE on a block-multiplexer
channel may, depending on the model and the type
of subchannel, take place as for a selector channel
or may allow the subchannel to remain in the
working state until the device provides ending
status.

Programming Note
The count field in the CSW associated with an
operation terminated by HALT I/O or HALT
DEVICE is unpredictable.

Chapter 12. Input/Output Operations 12-43

Termination by CLEAR I/O
The termination of an operation by CLEAR I/O
causes the subchannel to be set to the available
state and causes a CSW to be stored. The validity
of the CSW fields is defined in the instruction
CLEAR I/O earlier in this chapter.

When CLEAR I/O terminates an operation at a
subchannel in the interruption-pending state, up to
three subsequent interruption conditions related to
the operation can occur. Since CLEAR I/O causes
the sub channel to be made available, these
interruption conditions will result in only the
unit-status portion of the CSW being indicated.

The first interruption condition arises on a
selector channel when channel end is signaled to
the channel. This occurs only when the
interruption-pending states of the channel and
sub channel at the execution of CLEAR I/O were
due to the previous execution of HALT I/O or
HALT DEVICE.

The second and third interruption conditions
arise when control-unit end, if any, and device end
are signaled to the channel.

When CLEAR I/O terminates an operation at a
subchannel in the working state, up to four
subsequent interruption conditions related to the
operation can occur. For all of these conditions,
only the status portion of the CSW is indicated.

The first interruption condition arises on certain
channels when· the terminated operation was in the
midst of data transfer. Since the device is not
signaled to terminate the operation during the
execution of CLEAR I/O unless the channel is
working with the addressed device when the
instruction is received, the device may, subsequent
to the CLEAR I/O, attempt to continue the data
transfer. The channel responds by signaling the
device to terminate data transfer. Depending on
the channel, the need to signal the device to
terminate data transfer may be ignored or may be
considered an interface-control check which creates
an interruption condition. Only channel status is
indicated in the CSW.

The second interruption condition occurs when
channel-end status is received from the device.
The third and fourth conditions occur when
control-unit end, if any, and device end are
presented to the channel. In these three cases, only
unit status is indicated in the CSW.

Termination Due to Equipment Malfunction
When channel-equipment malfunctioning is
detected or invalid signals are received from a

12-44 IBM 4300 Processors Principles of Operation

device, the recovery procedure and the subsequent
states of the sub channels and devices on the
channel depend on the type of error and on the
model. Normally, the program is alerted to the
termination by an I/O interruption, and the
associated CSW indicates channel-control check or
interface-control check. However, when the nature
of the malfunction prevents an I/O interruption, a
machine-check interruption occurs, and a CSW is
not stored. A malfunction may cause the channel
to perform the I/O selective reset or to generate
the halt signal.

Input / Output Interruptions
Input/ output interruptions provide a means for the
CPU to change its state in response to conditions
that occur in I/O devices or channels. The
conditions are indicated in an associated CSW
which is stored at the time of interruption. These
conditions can be caused by the program or by an
external event at the device.

Interruption Conditions
A request for an I/O interruption is called an
I/O-interruption condition, or, in this chapter,
simply an interruption condition. An interruption
condition can be brought to the attention of the
program only once and is cleared when it causes an
interruption. Alternatively, an interruption
condition can be cleared by TEST I/O or CLEAR
I/O, and conditions generated by the I/O device
following the termination of the operation at the
subchannel can be cleared by START I/O or
START I/O FAST RELEASE. The latter include
interruption conditions caused by attention, device
end, and control-unit end, and channel end when
provided by a device after conclusion of the
operation.

The device attempts to initiate a request to the
channel for an I/O interruption whenever it detects
any of the following:

Channel end
Control-unit end
Device end
Attention

The channel combines the above status with
information in the subchannel and either causes an
I/O interruption or continues command chaining.
When command chaining takes place, channel end
and device end do not cause an interruption and
are not made available.

The channel may also, if command chaining
exists, create an interruption condition, which can
be due to the following:

Unit check
U nit exception
Busy indication from device
Program check

When an operation initiated by command
chaining is terminated because of an unusual
situation detected during the command initiation
sequence, the interruption condition may remain
pending within the channel, or the channel may
create an interruption condition at the device. This
interruption condition is created at the device only
in response to presentation of status by the device
and causes the device subsequently to present the
same status for interruption purposes. The
interruption condition at the device mayor may not
be associated with unit status. If the unusual
situation is detected by the device (unit check or
unit exception) the unit-status field of the

I associated CSW identifies the condition. If the
unusual situation is detected by the channel, as in
the case of program and protection check, the
identification of the error is preserved in the
subchannel and appears in the channel-status field
of the associated CSW.

An interruption condition caused by the device
may be accompanied by channel and other unit
status. Furthermore, more than one condition
associated with the same device can be cleared at
the same time. As an example, when channel end
is not cleared at the device by the time device end
is generated, both may be indicated in the CSW
and cleared at the device concurrently.

However, at the time the channel assigns highest
priority for interruptions to an interruption
condition associated with an operation at the
subchannel, the channel accepts the status from the
device and clears the condition at the device. The
interruption condition and the associated "-status
indication are subsequently preserved in the
subchannel. Any subsequent status generated by
the device is not included when the CSW is stored
even if the status is generated before the '
interruption condition is cleared.

When the channel is not working, a device that
is interruption-pending may attempt to initiate a
request to the channel for an I/O interruption by
presenting a nonzero status byte to the channel.
Depending on the channel, some models may
accept the status in the subchannel. Alternatively,
some models may signal the device to hold the
status until the channel is capable of causing an
interruption. In this case, the channel selects the
device to obtain the status when the interruption

occurs. The status stored by the channel is the
status presented by the device at interruption time
and, because of changed conditions at the device,
may not be the same status presented by the device
initially. Specifically, a status of zero, busy, or
busy and status modifier may be stored.
. When the channel detects any of the following,
It generates an interruption condition without
necessarily communicating with or having received
the status byte from the device:
• PCI flag in a CCW
• Execution of HALT I/O or HALT DEVICE on

a selector channel
• Channel-available interruption (CAl)
• A programming error associated with the CCW

or first IDA W following the SIOF function
The interruption conditions from the channel,

except for CAl, can be accompanied by other
channel-status indications, but none of the device
status bits is on when the channel initiates the
interruption.

Channel-Available Interruption
The channel-available-interruption (CAl) condition
is provided on block-multiplexer channels and
causes the entire CSW to be replaced by a new set
of bits. All fields of the CSW are set to zero. The
I/O address stored contains a zero device address
and a channel address identifying the interrupting
channel.

The channel generates the CAl condition only if
it previously had responded with a condition code 2
to an I/O instruction other than HALT I/O or
HALT DEVICE and if the working state thus
indicated no longer exists. When the working state
which caused condition code 2 was due to a
subchannel busy with a device other than the one
addressed, the conclusion of the working state is
not signaled by a CAL Since any other
interruption condition (except PCl) accomplishes
the same function as CAl, a CAl condition is reset
upon the occurrence of any interruption (except
PCI) on that channel. Some channels also reset a
CAl condition when another interruption condition
(except PCl) is cleared by a TEST 110 on the same
channel. The occurrence of another
channel-working state before the CAl causes the
CAl condition to be suspended until the working
state ends.

Programming Note
The CAl is designed to inform the program that a
channel which previously indicated busy is no
longer busy. The CAl condition pending in a

Chapter 12. Input/Output Operations 12-45

channel does not cause the rejection of a
subsequent START I/O or START I/O FAST
RELEASE but does cause a condition code 1 to be
returned to TEST CHANNEL. The CAl can
therefore be used as a tool for keeping I/O
requests in sequence by using it in conjunction with
TEST CHANNEL. A channel which responded
with condition code 2 because the channel was
busy does not subsequently respond with a
condition code ° to a TEST CHANNEL without
clearing an interruption condition in the interim.

Priority 0/ Interruptions
Generation of interruption conditions is
asynchronous to the activity in the CPU, and
interruption conditions associated with more than
one I/O device can exist at the same time. The
priority among interruption conditions is controlled
by two types of mechanisms-one establishes the
priority among interruption conditions within a
channel, and another establishes priority among
interruption conditions from different channels. A
channel requests an I/O interruption only after it
has established priority among interruption
conditions. The status associated with interruption
conditions is preserved in the devices or channels
until accepted by the CPU.

Assignment of priority among requests for
interruption associated with devices on anyone
channel is a function of the type of channel, the
type of interruption condition, and the position of
the device on the I/O interface. A device's
position on the interface is not related to its
address. Interruption conditions from different
devices do not necessarily occur in the sequence in
which they are generated. However, multiple
interruption conditions for a single device are
presented in the sequence in which they are
generated.

The priorities among requests for 1/ a
interruptions from different channels depend on
channel addresses. The priorities of channels 1-15
are in the order of their addresses, with channel 1
having the highest priority. The priority of
byte-multiplexer channel ° is undefined. Its
priority may be above, below, or between those
priorities of channels 1-15.

Interruption Action
An I/O interruption can occur only when the CPU
is enabled for I/O interruptions. The interruption
occurs at the completion of a unit of operation. If
a channel has established the priority among

12-46 IBM 4300 Processors Principles of Operation

interruption conditions, while the CPU is disabled
for I/O interruptions, the interruption occurs
immediately after the completion of the instruction
enabling the CPU and before the next instruction is
executed. This interruption is associated with the
highest priority condition for the channel. If
interruptions are allowed from more than one
channel concurrently, the interruption occurs from
the channel having the highest priority among those
requesting interruption.

If the priority among interruption conditions has
not yet been established in the channel by the time
the interruption is allowed, the interruption does
not necessarily occur immediately after the
completion of the instruction enabling the CPU.
This delay can occur regardless of how long the
interruption condition has existed in the device or
the subchannel.

The interruption causes the current program­
status word (PSW) to be stored as the old PSW at
location 56 and causes the CSW associated with
the interruption to be stored at location 64. In EC
mode, the channel and device causing the
interruption are identified by the I/O address
which is stored at locations 186-187. In BC mode,
the channel and device causing the interruption are
identified by the I/O address in bit positions 16-31
of the 1/ a old PSW.

If a limited-channel logout is present, it is stored
at locations 176-179.

Subsequently, a new PSW is loaded from
location 120, and processing resumes in the state
indicated by this PSW. The CSW associated with
the interruption identifies the interruption condition
responsible for the interruption and provides
further details about the progress of the operation
and the status of the device.

Programming Note
When a number of I/O devices on a shared control
unit are concurrently executing operations such as
rewinding tape or positioning a disk-access
mechanism, the initial device-end signals generated
on completion of the operations are provided in the
order of generation, unless command chaining is
specified for the operation last initiated. In the
latter case, the control unit provides the device-end
signal for the last initiated operation first, and the
other signals are delayed until the subchannel is
freed. Whenever interruptions due to the
device-end signals are delayed because the CPU is
disabled for 1/ a interruptions or the subchannel is
busy, the original order of the signals is destroyed.

Channel-Status Word
The channel-status word (CSW) provides to the
program the status of an I/O device or the
indication of the reasons for which an I/O
operation has been concluded. The CSW is
formed, or parts of it are replaced, in the process of
1/ ° interruptions and possibly during the execution
of START I/O, START I/O FAST RELEASE,
TESTI/O,CLEARI/O,HALTI/O,HALT
DEVICE, and STORE CHANNEL ID. The CSW
is stored at location 64 and is available to the
program at this location until the time the next I/O
interruption occurs or until another 1/ ° instruction
causes its contents to be replaced, whichever occurs
first.

The information placed in the CSW by an I/O
interruption pertains to the device which is
identified by the I/O address stored during the
interruption. The information placed in the CSW
by START I/O, START I/O FAST RELEASE,
TESTI/O,CLEARI/O,HALTI/O,orHALT
DEVICE pertains to the device addressed by the
instruction.

o

32

The CSW has the following format:

CCW Address

468

Unit Channel
Status Status

40

Count

48

31

63

The fields in the CSW are allocated as follows:

Subchannel Key: Bits 0-3 form the access key used
in the chain of operations at the subchannel.

Logout Pending (L): Bit 5, when one, indicates
that an I/O instruction cannot be executed until a
logout has been cleared. Bit 45, channel-control
check, will always be one when bit 5 is one.

Deferred Condition Code (CC): Bits 6 and 7
indicate whether situations have been encountered
subsequent to the setting of a condition code 0 for
ST AR T I/O FAST RELEASE that would have
caused a different condition-code setting for
START I/O. The possible setting of these bits,
and their meanings, are as follows:

Setting of

Bit 6 Bit 7 Meaning

0 0 Normal I/O interruption
0 1 Deferred condition code is 1
1 0 (Reserved)
1 1 Deferred condition code is 3

CCW Address: Bits 8-31 form an address that is 8
higher than the address of the last CCW used.

Status: Bits 32-47 identify the status of the device
and the channel that caused the storing of the
CSW. Bits 32-39, the unit status, indicate
situations detected by the device or control unit.
Bits 40-47, the channel status, are provided by the
channel and indicate situations associated with the
subchannel. The 16 bits are designated as follows:

Bit
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Designation
Attention
Status modifier
Control-unit end
Busy
Channel end
Device end
Unit check
Unit exception
Program-controlled interruption
Incorrect length
Program check
Protection check
Channel-data check
Channel-control check
Interface-control check
Chaining check

Count: Bits 48-63 form the residual count for the
last CCW used.

Chapter 12. Input/Output Operations 12-47

Unit Status
The following status indications are generated by
the I/O device or control unit. The timing and
causes of these status indications for each type of
device are specified in the SL publication for the
device.

When the I/O device is accessible from more
than one channel, status due to channel-initiated
operations is signaled to the channel that initiated
the associated I/O operation. The handling of
status not associated with I/O operations, such as
attention or device end due to transition from the
not-ready to the ready state, depends on the type
of device and situation and is specified in the SL
publication for the device.

Attention
Attention is signaled when the device detects an
asynchronous situation that is significant to the
program. Attention is interpreted by the program
and is not associated with the initiation, execution,
or conclusion of an I/O operation.

The device can signal attention to the channel
when no operation is in progress at the I/O device,
control unit, or subchannel. Attention can be
signaled with device end upon completion of an
operation, and it can be signaled to the channel
during the initiation of a new I/O operation.
Attention along with device end and unit exception
can also be signaled whenever a device changes
from the not-ready to the ready state. The
handling and presentation of attention to the
channel depends on the type of device.

When the device signals attention during the
initiation of an operation, the operation is not
initiated. Attention causes command chaining to
be suppressed.

Status Modifier
Status modifier is generated by the device when the
device cannot provide its current status in response
to TEST I/O, when the control unit is busy, when
the normal sequence of commands has to be
modified, or when command retry is to be initiated.

When status modifier is signaled in response to
TEST I/O and status modifier is the only status bit
that is set to one, this indicates that the device
cannot execute the instruction and has not provided
its current status. The interruption condition,
which may be pending at the device or subchannel,
has not been cleared, and the CSW stored by TEST
I/O contains zeros in the subchannel-key,
CCW -address, and count fields.

12-48 IBM 4300 Processors Principles of Operation

When the status-modifier bit in the CSW is set
to one together with the busy bit, it indicates that
the busy status pertains to the control unit
associated with the addressed I/O device. The
control unit appears busy when it is executing a
type of operation that precludes the acceptance and
execution of any command or the instructions
TEST I/O, HALT I/O, and HALT DEVICE or
when it contains an interruption condition for a
device other than the one addressed. The
interruption condition may be due to control-unit
end, due to channel end following the execution of
CLEAR I/O, or, on the selector channel, due to
channel end following the execution of HALT I/O
or HALT DEVICE. The busy state occurs for
operations such as backspace file, in which case the
control unit remains busy after providing channel
end, for operations concluded by CLEAR I/O, and
for operations concluded on the selector channel by
HAL T I/O or HALT DEVICE, and temporarily
occurs on the 2702 Transmission Control after
initiation of an operation on a device
accommodated by the control unit. A control unit
accessible from two or more channels appears busy
when it is communicating with another channel.

Presence of status modifier and device end
means that the normal sequence of commands must
be modified. The handling of this status
combination by the channel depends on the
operation. If command chaining is specified in the
current CCW and no unusual situations have been
detected, presence of status modifier and device
end causes the channel to fetch and chain to the
CCW whose storage address is 16 higher than that
of the current CCW. If the I/O device signals
status modifier at a time when no command
chaining is specified, or when any unusual
situations have been detected, no action· is taken in
the channel, and the status-modifier bit and any
other status bit presented by the device are set to
ones in the CSW.

Status modifier is set to one in combination with
unit check and channel end to initiate the
command-retry procedure.

Control-Unit End
Control-unit end indicates that the control unit has
become available for use for another operation.

Control-unit end is provided only by control
units shared by I/O devices or control units
accessible by two or more channels, and only when
one or both of the following have occurred:
1. The program had previously caused the control

unit to be interrogated while the control unit
was in the busy state. The control unit is

considered to have been interrogated in the
busy state when a command or the instructions
TEST I/O, HALT I/O, or HALT DEVICE had
been issued to a device on the control unit, and
the control unit had responded with busy and
status modifier in the unit-status byte. See the
section "Status Modifier" earlier in this
chapter.

2. The control unit detected an unusual situation
during the portion of the operation after
channel end had been signaled to the channel.
The indication of the unusual situation
accompanies control-unit end.

If the control unit remains busy with the
execution of an operation after signaling channel
end but has not detected any unusual situations and
has not been interrogated by the program, control­
unit end is not generated. Similarly, control-unit
end is not provided when the control unit has been
interrogated and could perform the indicated
function. The latter case is indicated by the
absence of busy and status modifier in the response
to the instruction causing the interrogation.

When the busy state of the control unit is
temporary, control-unit end is included with busy
and status modifier in response to the interrogation
even though the control unit has not yet been
freed. The busy condition is considered to be
temporary if its duration is commensurate with the
program time required to handle an 1/ °
interruption. The 2702 Transmission Control is an
example of a device in which the control unit may
be busy temporarily and which includes control-unit
end with busy and status modifier.

Control-unit end can be signaled with channel
end, with device end, or between the two. When
control-unit end is signaled by means of an I/O
interruption in the absence of any other status, the
interruption may be identified by any address
assigned to the control unit. A control-unit end
may cause the control unit to appear busy for the
initiation of new operations with any attached
device. Alternatively, a control-unit end may be
assigned by the control unit to a specific device
address, and only that device would appear busy
for the initiation of new operations.

Busy
Busy indicates that the I/O device or control unit
cannot execute the command or instruction because
(1) it is executing a previously initiated operation,
(2) it contains an interruption condition, (3) it is
shared by channels or 1/ ° devices and the shared
facility is not available, or (4) a self-initiated
function is being performed. The status associated
with the interruption condition for the addressed
device, if any, accompanies the busy status. If bus)
applies to the control unit, busy is accompanied by
status modifier.

The figure "Indications of Busy in CSW" lists
the situations for devices connected to only one
channel when the busy bit is set to one in the CSW
and when busy is accompanied by status modifier.
For devices shared by more than one channel,
operations related to one channel may cause the
control unit or device to appear busy to the other
channels.

Chapter 12. Input/Output Operations 12-49

CSW Status Stored by

SIO or HIO or I/O
Condition SIOF;t TIO CLRIO+ HDV IRPT#

Subchannel available
DE or attention in device B,cl NB,cl *- *- NB,cl
Device working, CU available B B *- *- B

CU end or channel end in CU:
for the addressed device B,cl NB,cl NB *- NB,cl
for another device B,SM B,SM NB *- NB,cl

CU working B,SM B,SM NB *- B,SM
Interruption condition in

subchannel for the addressed
device because of:
chaining terminated by busy *- B,cl NB,cl *- B,cl
other type of termination *- NB,cl NB,cl *- NB,cl

Subchannel working
CU available *- *- NB NB *-
CU working *- *- NB B,SM *-

Explanation:

B

cl

CU

DE

NB

SM

Busy bit in CSW is one.

Interruption condition cleared; status is placed in CSW.

Control unit.

Device end.

Busy bit is zero.

Status-modifier bit appears in CSW.

CSW not stored, or I/O interruption cannot occur.

When a channel executes START I/O FAST RELEASE as START I/O, the CSW
status stored for the two instructions is identical. When START I/O
FAST RELEASE is executed independently of the device, the same status
is stored by an I/O interruption with the CSW also indicating
deferred condition code 1.

Except when the I/O interruption is caused by a deferred condition
code 1 for START I/O FAST RELEASE.

+ The entries in this column apply only when the CLRIO function is
executed. When CLEAR I/O causes the TIO function to be executed, the
entries in the TIO column apply.

Indications of Busy in CSW

Channel End
Channel end is caused by the completion of the
portion of an 110 operation involving transfer of
data or control information between the 110 device
and the channel. The condition indicates that the
subchannel has become available for use for
another operation.

Each 110 operation causes channel end to be
signaled, and there is only one channel end for an
operation. Channel end is not signaled when
programming errors or equipment malfunctions are

12-50 IBM 4300 Processors Principles of Operation

detected during initiation of the operation. When
command chaining takes place, only the channel
end of the last operation of the chain is made
available to the program. Channel end is not made
available to the program when a chain of
commands is prematurely concluded because of an
unusual situation indicated with control-unit end or
device end or during the initiation of a chained
command.

The instant within an 110 operation when
channel end is signaled depends on the operation

and the type of device. For operations such as
writing on magnetic tape, channel end occurs when
the block has been written. On devices that verify
the writing, channel end mayor may not be
delayed until verification is performed, depending
on the device. When magnetic tape is being read,
channel end occurs when the gap on tape reaches
the read-write head. On devices equipped with
buffers, channel end occurs upon completion of
data transfer between the channel and the buffer.
During control operations, channel end is generated
when the control information has been transferred
to the devices, although for short operations
channel end may be delayed until completion of the
operation. Operations that do not cause any data
to be transferred can provide channel end during
the initiation sequence.

Channel end in the control unit may cause the
control unit to appear busy for the initiation of new
operations.

Channel end is presented in combination with
status modifier and unit check to initiate the
command-retry procedure.

Device End
Device end is caused by the completion of an I/O
operation at the device, by manually changing the
device from the not-ready to the ready state, or by
the termination of an activity which previously
caused a response of busy to the channel. Device
end normally indicates that the I/O device has
become available for use in another operation.

Each I/O operation causes device end, and there
is only one device end to an operation. Device end
is not generated when any programming or
equipment malfunction is detected during initiation
of the operation. When command chaining takes
place, only the device end of the last operation of
the chain is made available to the program unless
an unusual situation is detected during the
initiation of a chained command, in which case the
chain is concluded without device end.

Device end associated with an I/O operation is
generated either simultaneously with channel end
or later. For data-transfer operations on devices
such as magnetic-tape units, the device concludes
the operation at the time channel end is generated,
and both device end and channel end occur
together. On buffered devices, device end occurs
upon completion of the mechanical operation. For
control operations, device end is generated at the
completion of the operation at the device. The
operation may be completed at the time channel
end is generated or later.

When command chaining is specified, receipt of
the device-end signal, in the absence of any
unusual situations, causes the channel to initiate a
new I/O operation.

When the state of a device is changed from not
ready to ready, a device end is generated. Some
devices generate attention and unit exception along
with device end when they change from the
not-ready to ready state. A device is considered to
be not-ready when operator intervention is required
in order to make the device available. A not-ready
condition can occur, for example, because of any of
the following:
1. An unloaded condition for magnetic tape
2. Card equipment out of cards or with the

stacker full
3. A printer out of paper
4. Error conditions that need operator

intervention
5. The unit having changed from the enabled to

the disabled state

Unit Check
Unit check indicates that the I/O device or control
unit has detected an unusual situation that is
detailed by the information available to a sense
command. Unit check may indicate that a
programming or equipment error has been detected,
that the not-ready state of the device has affected
the execution of the command or instruction, or
that an exceptional situation other than the one
identified by unit exception has occurred. The
unit-check bit provides a summary indication of the
sense data.

An error causes the unit-check indication only
when it occurs during the execution of a command
or TEST I/O, or during some activity associated
with an I/O operation. Unless the error pertains to
the activity initiated by a command and is of
immediate significance to the program, the error
does not cause the program to be alerted after
device end has been cleared; a malfunction may,
however, cause the device to become not ready.

Unit check is indicated when the existence of the
not-ready state precludes a satisfactory execution
of the command, or when the command, by its
nature, tests the state of the device. When no
interruption condition is pending for the addressed
device at the control unit, the control unit signals
unit check when TEST I/O or the no-operation
control command is issued to a not-ready device.
In the case of no-operation, the command is
rejected, and channel end and device end do not
accompany unit check.

Chapter 12. Input/Output Operations 12-51

Unless the command is designed to cause unit
check, such as rewind and unload on magnetic tape,
unit check is not indicated if the command is
properly executed even though the device has
become not ready during or as a result of the
operation. Similarly, unit check is not indicated if
the command can be executed with the device not
ready. Selection of a device that is not ready does
not cause a unit check when the sense command is
issued or when an interruption condition is pending
for the addressed device at the control unit.

If the device detects during the initiation
sequence that the command cannot be executed,
unit check is signaled to the channel without
channel end, control-unit end, or device end. Such
unit status indicates that no action has been taken
at the device in response to the command. If the
situation precluding proper execution of the
operation occurs after execution has been started,
unit check is accompanied by channel end,
control-unit end, or device end, depending on when
the situation was detected. Any errors associated
with an operation, but detected after device end
has been cleared, are indicated by signaling unit
check with attention.

Errors, such as invalid command code or invalid
command-code parity, do not cause unit check
when the device is working or contains an
interruption condition at the time of selection.
Under these circumstances, the device responds by
providing busy status and indicating the
interruption condition, if any. The command-code
invalidity is not indicated.

Concluding an operation with the unit-check
indication causes command chaining to be
suppressed.

U nit check is presented in combination with
channel end and status modifier to initiate the
command-retry procedure.

Programming Notes
1. If a device becomes not ready upon completion

of a command, the ending interruption
condition can be cleared by TEST I/O without
generation of unit check due to the not-ready
state, but any subsequent TEST I/O issued to
the device causes a unit-check indication.

2. In order that sense indications set in
conjunction with unit check are preserved by
the device until requested by a sense command,
some devices inhibit certain functions until a
command other than test I/O or no-operation
is received. Furthermore, any command other

12-52 IBM 4300 Processors Principles of Operation

than sense, test I/O, or no-operation causes the
device to reset any sense information. To
avoid degradation of the device and its control
unit and to avoid inadvertent resetting of the
sense information, a sense command should be
issued immediately to any device signaling unit
check.

Unit Exception
Unit exception is caused when the I/O device
detects a situation that usually does not occur.
U nit exception includes situations such as
recognition of a tape mark and does not necessarily
indicate an error. It has only one meaning for any
particular command and type of device.

Unit exception can be generated only when the
device is executing an I/O operation, or when the
device is involved with some activity associated
with an I/O operation and the situation is of
immediate significance to the program. If the
device detects during the initiation sequence that
the operation cannot be executed, unit exception is
presented to the channel and appears without
channel end, control-unit end, or device end. Such
unit status indicates that no action has been taken
at the device in response to the command. If the
situation precluding normal execution of the
operation occurs after the execution has been
started, unit exception is accompanied by channel
end, control-unit end, or device end, depending on
when the situation was detected. Any unusual
situation associated with an operation, but detected
after device end has been cleared, is indicated by
signaling unit exception with attention.

A command does not cause unit exception when
the device responds with busy status to the
command during the initial selection.

Concluding an operation with the unit-exception
indication causes command chaining to be
suppressed.

Unit exception along with device end and
attention can also be generated whenever a device
changes from the not-ready state to the ready state.

Channel Status
The following status bits are generated by the
channel. Except for the status bits resulting from
equipment malfunction, they can occur only while
the subchannel is involved with the execution of an
I/O operation.

Program-Controlled Interruption
A program-controlled interruption occurs when the
channel fetches a CCW with the program-

controlled-interruption (PCl) flag set to one. The
I/O interruption due to the PCI flag takes place as
soon as possible after the CCW takes control of the
operation but may be delayed an unpredictable
amount of time because I/O interruptions are
disallowed or because of other activity in the
system.

The interruption condition due to the PCI flag
does not affect the progress of the I/O operation.

Incorrect Length
Incorrect length occurs when the number of bytes
contained in the storage areas assigned for the I/O
operation is not equal to the number of bytes
requested or offered by the I/O device. Incorrect
length is indicated for one of the following reasons:

Long Block on Input: During a read, read­
backward, or sense operation, the device attempted
to transfer one or more bytes to storage after the
assigned storage areas were filled. The extra bytes
have not been placed in storage. The count in the
CSW is zero.

Long Block on Output: During a write or control
operation, the device requested one or more bytes
from the channel after the assigned storage areas
were exhausted. The count in the CSW is zero.

Short Block on Input: The number of bytes
transferred during a read, read-backward, or sense
operation is insufficient to fill the storage areas
assigned to the operation. The count in the CSW is
not zero.

Short Block on Output: The device terminated a
write or control operation before all information
contained in the assigned storage areas was
transferred to the device. The count in the CSW is
not zero.

Incorrect length is not indicated when the
current CCW has the SLI flag set to one and the
CD flag set to zero. The indication does not occur
for immediate operations and for operations
rejected during the initiation sequence.

When incorrect length occurs, command chaining
is suppressed, unless the SLI flag in the CCW is
one or unless the operation is immediate. See the
figure nChannel-Chaining Actionn in this chapter
for the effect of the CD, CC, and SLI flags on the
indication of incorrect length.

Programming Note
The setting of incorrect length is unpredictable in
the CSW stored during CLEAR I/O.

Program Check
Program check occurs when programming errors are
detected by the channel. Program check can be
due to the following causes:

Invalid CCW-Address Specification: The CAW or
the transfer-in-channel command does not
designate the CCW on integral boundaries for
doublewords. The three rightmost bits of the CCW
address are not zeros.

CCW Location Not Provided: The channel has
attempted to fetch a CCW from a storage location
that is not provided. This may occur because the
program has specified in the CAW or in the
transfer-in-channel command a page address (bits
8-20) equal to or greater than the page-capacity
count (PCC), or because on chaining the channel
has attempted to fetch a CCW from a page with a
page address equal to PCC.

Invalid Command Code: The command code in the
first CCW designated by the CAW or in a CCW
fetched on command chaining has four low-order
zeros. The command code is not tested for validity
during data chaining.

Invalid Count: A CCW other than a CCW
specifying transfer in channel contains the value
zero in bit positions 48-63.

Data Location Not Provided: The channel has
attempted to transfer data to or from a storage
location that is not provided. This may occur
because the program has specified in the CCW a
page address (bits 8-20) equal to or greater than
the page-capacity count (PCC) or because the
channel attempts during data transfer to access a
page with a page address equal to PCC.

Invalid CAW Format: The CAW does not contain
zeros in bit positions 4-7.

Invalid CCW Format: A CCW other than a CCW
specifying transfer in channel does not contain
zeros in bit positions 37-39.

Invalid Sequence: The first CCW designated by
the CAW specifies transfer in channel, or the
channel has fetched two successive CCWs both of
which specify transfer in channel.

Detection of program check during the initiation
of an operation causes execution of the operation
to be suppressed. When program check is detected
after the device has been started, the device is

Chapter 12. Input/Output Operations 12-53

signaled to conclude the operation the next time it
requests or offers a byte of data. Program check
causes command chaining to be suppressed.

Protection Check
Protection check occurs when the channel attempts
a storage access that is prohibited by key-controlled
storage protection. Protection applies to the
fetching of CCWs and output data, and to the
storing of input data. Storage accesses associated
with each channel program are performed using the
sub channel key provided in the CAW associated
with that channel program. For details, see the
section "Key-Controlled Protection" in Chapter 3,
"Storage."

Protection check also occurs when it is detected
that the channel has attempted to access a CCW or
data from a page that is in the disconnected state.
For details, see the section "Page States" in
Chapter 3, "Storage."

When protection check occurs during the
fetching of a CCW that specifies the initiation of
an I/O operation, the operation is not initiated.
When protection check is detected after the device
has been started, the device is signaled to conclude
the operation the next time it requests or offers a
byte of data. Protection check causes command
chaining to be suppressed:

Channel-Data Check
Channel-data check indicates that a machine error
has been detected in the information transferred to
or from storage during an I/O operation, or that a
parity error has been detected on the data on
bus-in during an input operation. This information
includes the data read or written, as well as the
information transferred as data during a sense or
control operation. The error may have been
detected in the channel, in storage, or on the path
between the two. Channel-data check may be
indicated for data with an invalid checking-block
code in storage when the data is referred. to by the
channel but the data does not participate in the
operation.

Whenever a parity error on I/O input data is
indicated by means of channel-data check, the
channel forces correct parity on all data received
from the I/O device, and all data placed in storage
has valid checking-block code. When, on an input
operation, the channel attempts to store less than a
complete checking block, and when invalid
checking-block code is detected on the checking
block in storage, the contents of the location
remain unchanged with invalid checking-block

12-54 IBM 4300 Processors Principles of Operation

code. On an output operation, whenever a
channel-data check is indicated, all bytes that came
from a checking block with invalid checking-block
code have been transmitted with parity errors.

Channel-data check causes command chaining to
be suppressed but does not affect the execution of
the current operation. Data transfer proceeds to
normal completion, if possible, and an interruption
condition is generated when the device presents
channel end. A logout may be performed,
depending on the channel. Accordingly, the
detection of the error may affect the state of the
channel and the device.

Channel-Control Check
Channel-control check is caused by machine
malfunction affecting channel controls. It may be
caused by invalid checking-block code on CCW
and data addresses and invalid checking-block code
on the contents of the CCW. Channel-control
check may also include those channel-detected
errors associated with data transfer that are not
indicated as channel-data check, as well as those
I/O interface errors detected by the channel that
are not indicated as interface-control check. Errors
responsible for channel-control check may cause
the contents of the CSW to be invalid and
conflicting. The CSW as generated by the channel
has valid checking-block code.

Detection of channel-control check causes the
current operation, if any, to be immediately
concluded.

Channel-control check is set whenever CSW bit
5, logout pending, is set to one.

In some situations, machine malfunctions
affecting channel control may instead be reported
as an external-damage or system-damage
machine-check condition.

Interface-Control Check
Interface-control check indicates that an invalid
signal has been received by the channel when
communicating with a control unit or device. This
check is detected by the channel and usually
indicates malfunctioning of an I/O device. It can
be due to the following:
1. The address or status byte received from a

device has invalid parity.
2. A device responded with an address other than

the address specified by the channel during
initiation of an operation.

3. During command chaining the device appeared
not operational.

4. A signal from a device occurred at an invalid
time or had invalid duration.

5. A device signaled I/O error alert.
The interface-control-check condition may also

include those channel-detected errors associated
with bus-in during data transfer that are not
indicated as channel-data check.

Detection of interface-control check causes the
current operation, if any, to be immediately
concluded.

Chaining Check
Chaining check is caused by channel overrun
during data chaining on input operations. Chaining
check occurs when the I/O data rate is too high to
be handled by the channel and by storage under
current conditions. Chaining check cannot occur
on output operations.

Chaining check causes the I/O device to be
signaled to conclude the operation. It causes
command chaining to be suppressed.

Contents of Channel-Status Word
The contents of the CSW depend on the reason the
CSW was stored and on the programming method
by which the information is obtained. The status
portion always identifies the reason the CSW was
stored. The subchannel-key, CCW-address, and
count fields may contain information pertaining to
the last operation or may be set to zero, or the
original contents of these fields at location 64 may
be left unchanged.

Information Provided by Channel-Status Word
Interruption conditions resulting from the execution
or conclusion of an operation at the sub channel
cause the whole CSW to be replaced. Such a CSW
can be stored only by an I/O interruption or by
TEST I/O or CLEAR I/O. Except for situations
associated with command chaining and equipment
malfunctioning, the storing can be caused by PCI
or channel end and by the execution of HALT I/O
or HALT DEVICE on the selector channel. The
contents of the CSW are related to the current
values of the corresponding quantities, although the
count is unpredictable after program check,
protection check, and chaining check, and after an
interruption due to the PCI flag.

A CSW stored upon the execution of a chain of
operations pertains to the last operation which the
channel executed or attempted to initiate.
Informatiop concerning the preceding operations is
not preserved and is not made available to the
program.

When an unusual situation causes command
chaining to be suppressed, the premature conclusion

of the chain is not explicitly indicated in the CSW.
A CSW associated with a conclusion due to a
situation occurring at channel-end time contains
channel end and identifies the unusual situation.
When the device signals the unusual situation with
control-unit end or device end, the channel-end
indication is not made available to the program,
and the channel provides the current subchannel
key, CCW address, and count, as well as the
unusual indication, with control-unit end or device
end in the CSW. The CCW-address and count
fields pertain to the operation that was executed.

When the execution of a chain of commands is
concluded by an unusual situation detected during
initiation of a new operation, the CCW -address
and count fields pertain to the rejected command.
Except for situations resulting from equipment
malfunctioning, conclusion at initiation time can
occur because of attention, unit check, unit
exception, or program check, and causes both the
channel-end and device-end bits in the CSW to be
set to zeros.

A CSW associated with status signaled after the
operation at the sub channel has been concluded
contains zeros in the subchannel-key,
CCW -address, and count fields, provided the status
is not cleared during START I/O or ST ART I/O
FAST RELEASE and provided logout pending is
not indicated. This status includes attention,
control-unit end, and device end (and channel end
when it occurs after the conclusion of an operation
on the selector channel by HALT I/O or HALT
DEVICE).

When the above status indications, other than
logout pending, are cleared during START I/O or
START I/O FAST RELEASE, only the status
portion of the CSW is stored, and the original
contents of the subchannel-key, CCW-address,
deferred-condition-code, logout-pending, and count
fields in location 64 are preserved. Similarly, only
the status bits of the CSW are changed when the
command is rejected or the operation at the
subchannel is concluded during the execution of
START I/O or START I/O FAST RELEASE or
whenever HALT I/O or HALT DEVICE causes
CSW status to be stored.

Errors detected during execution of the I/O
operation do not affect the validity of the CSW
unless channel-control check or interface-control
check are indicated. Channel-control check
indicates that equipment errors have been detected
which can cause any part of the CSW, as well as
the 110 address, to be invalid. Interface-control
check indicates that the address identifying the

Chapter 12. Input/Output Operations 12-55

device or the status bits received from the device
may be invalid. The channel forces correct parity
on invalid CSW fields. The validity of these fields
can be ascertained by inspecting the limited
channel logout.

When any I/O instruction cannot be executed
because of a pending logout which affects the
operational capability of the channel or subchannel,
a full CSW is stored. The fields in the CSW are all
set to zeros, with the exception of the
logout-pending bit and the channel-control-check
bit, which are set to ones.

Subchannel Key
A CSW stored to reflect the progress of an
operation at the subchannel contains the
subchannel key used in that operation. The
contents of this field are not affected by
programming errors detected by the channel or by
the situations causing termination of the operation.

12-56 IBM 4300 Processors Principles of Operation

CCW Address
When the CSW is formed to reflect the progress of
the I/O operation at the subchannel, the CCW
address is normally 8· higher than the address of the
last C CW used in the operation.

The figure "Contents of the CCW-Address Field
in the CSW" lists the contents of the CCW-address
field for all situations that can cause the CSW to be
stored. They are listed in order of priority; that is,
if two situations occur, the CSW appears as
indicated for the situation higher on the list. When
a CSW has been stored and the situation exists that
a command-retry request has been recognized but
the CCW has not been re-executed, the "last-used
CCW + 8" is the CCW that is to be retried. When
a program check is caused by two CCWs in
sequence both of which specify transfer in channel,
the second CCW is the one considered invalid. In
the figure, the three cases of disconnected location
and the two cases of invalid key are all protection
checks.

Situations Contents of'Field

Channel-control check
Status stored by START I/O or

START I/O FAST RELEASE
Status stored by HALT I/O or

HALT DEVICE

Unpredictable
Unchanged

Unchanged

Program check because CCW
location in TIC not provided

Program check (all others)
Disconnected CCW location in

TIC

Address of TIC + 8

Address of invalid CCW + 8
Address of TIC + 8

Disconnected CCW location First invalid CCW address + 8
generated

Disconnected data location
Invalid key on CCW fetch
Invalid key on data access
Chaining check

Address of
Address of
Address of
Address of
Address of
Address of
Address of
Address of

invalid CCW + 8
protected CCW + 8
current CCW + 8
last-used CCW + 8
last-used CCW + 8
last-used CCW + 8
last-used CCW + 8
last-used CCW + 8

Termination under count control
Termination by I/O device
Termination by HALT I/O
Termination by CLEAR I/O
Suppression of command Address of last CCW used in

chaining due to unit check
or unit exception with de­
vice end or control-unit end

the completed operation + 8

Termination on command
chaining by busy, unit
check, or unit exception

Deferred condition code 1 or 3

Address of CCW specifying
the new operation + 8

for START I/O FAST RELEASE
PCI flag in CCW
Interface-control check
Channel end after HALT I/O

Address of CCW specifying
the new operation + 8

Address of last-used CCW + 8
Unpredictable

on selector channel
Channel end after CLEAR I/O
Control-unit end
Device end
Attention
Busy
Status modifier

Contents of the CCW-Address Field in the CSW

Count

Zero

Zero
Zero
Zero
Zero
Zero
Zero

The residual count, in conjunction with the original
count specified in the last CCW used, indicates the
number of bytes transferred to or from the area
designated by the CCW. When an input operation
is concluded, the difference between the original
count in the CCW and the residual count in the
CSW is equal to the number of bytes transferred to
storage; on an output operation, the difference is
equal to the number of bytes transferred to the 1/0
device.

The figure "Contents of the Count Field in the
CSW" lists the contents of the count field for all
situations that can cause the CSW to be stored.
They are listed in the order of priority; that is, if
two situations occur, the CSW appears as for the
situation higher on the list.

Status
The status bits identify the situations that have
been detected during the 110 operation, that have
caused a command to be rejected, or that have
been generated by external events.

When the channel detects several errors, all
corresponding status bits in the CSW may be set to
ones or only one may be set, depending on the
error and model. Errors associated with equipment
malfunctioning have precedence, and whenever
malfunctioning causes an operation to be
terminated, channel-control check,
interface-control check, or channel-data check is
indicated, depending on the error. When an
operation is concluded by program check,
protection check, or chaining check, the channel
identifies the situation responsible for the

Chapter 12. Input/Output Operations 12-57

Situations Contents of Field

Channel-control check
Status stored by START I/O or

START I/O FAST RELEASE
Status stored by HALT I/O or

HALT DEVICE
Program check
Protection check
Chaining check
Termination under count control
Termination by I/O device
Termination by HALT I/O or

HALT DEVICE

Unpredictable
Unchanged

Unchanged

Unpredictable
Unpredictable
Unpredictable
Correct
Correct
Unpredictable

Unpredictable Termination by CLEAR I/O
Suppression of command

chaining due to unit check
or unit exception with device
end or control-unit end

Correct. Residual count of last
CCW used in the completed
operation.

Termination on command chaining
by busy, unit check, or unit
exception

Correct. Original count of
CCW specifying the new
operation.

Deferred condition code 1 or 3 Correct. Original count of CCW
for START I/O FAST RELEASE

PCI flag in CCW
Interface-control check
Channel end after HALT I/O

specifying the new operation.

on selector channel
Channel end after CLEAR I/O
Control-unit end
Device end
Attention
Busy
Status modifier

Contents of the Count Field in the CSW

Unpredictable
Unpredictable
Zero

Zero
Zero
Zero
Zero
Zero
Zero

conclusion and mayor may not indicate incorrect
length. When a data error has been detected and
the operation is concluded prematurely because of a
program check, protection check, or chaining check,
both data check and the programming error are
identified.

If the CCW fetched on command chaining has
the PCI flag set to one but a programming error in
the contents of the CCW precludes the initiation of
the operation, it is unpredictable whether the PCI
bit is one in the CSW associated with the
interruption condition. Similarly, if a programming
error in the contents of the CCW causes the
command to be rejected during execution of
START I/O or START I/O FAST RELEASE, the
CSW stored by the instruction mayor may not
have the PCI bit set to one. Furthermore, when
the channel detects a programming error in the
CAW or in the first CCW, the PCI bit is

12-58 IBM 4300 Processors Principles of Operation

unpredictable in a CSW stored by START I/O or
STAR T I/O FAST RELEASE even when the PCI
flag is zero in the first C CW associated with the
instruction.

However, if the CCW fetched on command
chaining has the PCI flag set to one but an unusual
situation detected by the device precludes the
initiation of the operation, the PCI bit is one in the
CSW associated with the interruption condition.
Likewise, if device status causes the command to be
rejected during execution of START I/O or
START 1/ 0 FAST RELEASE, the CSW stored by
the instruction contains the PCI bit set to one.

Situations detected by the channel are not
related to those identified by the I/O device.

The figure 11 Contents of the CSW Status Fields 11

summarizes the handling of status bits. The figure
lists the states and activities that can cause status
indications to be created and the methods by which
these indications can be placed in the CSW.

Upon Termination
When of Operation at During By By

When 5ubch Cmd 510 By HID By I/O
I/O is is Ctrl I/O Chain- or By CLRIO or Inter-

5tatus Idle Working 5ubch Unit Dev ing 510F TID + HDV ruption

Attention C* C* C* 5 5 5 5
5tatus modifier C C C5 C5 5 C5 5
Control-unit end C* C5 C5 5 C5 5
Busy C C5 C5 5 C5 5
Channel end C* C*H C*;t C5;t 5 5 5
Device end C* C* C ;t C5;t 5 5 5
Unit check C C C C C* C5 C5 5 C5
Unit exception C C C C* C5 5 5 5
Program-controlled

C* C* interruption C C5 5 5 5
Incorrect length C C 5 5 5
Program check C C C* C5 5 5 5
Protection check C C C* C5 5 5 5
Channel-data check C C 5 5 5
Channel-control check C* C* C* C* C* C* C5 C5 C5 C5 C5
Interface-control check C* C* C* C* C* C* C5 C5 C5 C5 C5
Chaining check C C 5 5 5
Deferred cond code 1 C*# 5 5 5
Deferred cond code 3 C*# 5 5 5

Explanation:

C The channel or device can create or present status at the indicated time. A C5W
or its status portion is not necessarily stored at this time.

5tatus such as channel end or device end is created at the indicated time. Other
status bits may have been created previously but are made accessible to the program
only at the indicated time. Examples of such status bits are program check and
channel-data check, which are detected while data is transferred but are made
available to the program only with channel end, unless the PCI flag or an equipment
malfunction has caused an interruption condition to be generated earl ier.

5 The status indication is stored in the C5W at the indicated time.

*

An 5 appearing alone indicates that the status has been created previously. The
letter C appearing with the 5 indicates that the status did not necessarily
exist previously in the form that causes the program to be alerted, and may have
been created by the I/O instruction or I/O interruption. For example, an equipment
malfunction may be detected during an I/O interruption, causing channel-control or
interface-control check to be indicated; or a device such as the 2702 may signal
control-unit busy in response to interrogation by an I/O instruction, causing status
modifier, busy, and control-unit end to be indicated in the C5W.

The status generates an interruption condition.

Channel end and device end do not result in interruption conditions when command
chaining is specified and no unusual situations have been detected.

;t This indication is created at the indicated time only by an immediate operation.

Applies only to 510F.

H When an operation on the selector channel has been concluded by HALT DEVICE or HALT
I/O, or an operation has been concluded by CLEAR I/O, channel end indicates the
conclusion of the data-handling portion of the operation at the control unit.

+ The entries in this column apply only when the CLRIO function is executed. When
CLEAR I/O causes the TID function to be executed, the entries in the TID column
apply.

Contents of the CSW Status Fields

Chapter 12. Input/Output Operations 12-59

\

Channel Logou t
When a channel stores a CSW that indicates
channel-control check in the absence of logout
pending, or interface-control check, or, on some
channels, channel-data check, a limited channel
logout accompanies the storing of the CSW. Such
a logout is useful for error recovery.

The limited channel logout contains
model-independent information and is stored at
locations 176-179. When it is stored, bit 0 of the
logout is always stored as a zero.

I/O-Communication Area
Storage locations 160-191 comprise a permanently
assigned area of storage used for I/O, designated
the I/O-communication area (IOCA). (See the
figure "I/O-Communication Area. ")

Locations 160-167, 172-175, 180-184, and
188-191 are reserved for future I/O use.

ChannelID (Locations 168-171): Locations
168-171, when stored during the execution of a
STORE CHANNEL ID instruction, contain
information which describes the addressed channel.

Limited Channel Logout (Locations 176-179): The
limited-channel-logout field (locations 176-179)
contains model-independent information related to
equipment errors detected by the channel. This
information is used to provide detailed machine
status when errors have affected I/O operations.
The field may be stored only when the CSW or a
portion of the CSW is stored.

The bits of the field are defined as follows:
o

160

164

168

172

176

180

184

188

This bit is always stored as a zero when
a limited channel logout is stored. If
the program ensures that this bit is set
to one and any channel-control check,

Channel 10

Limited Channel Logout

10 0 0 0 0 0 0 0\

I/O-Communication Area

12-60 IBM 4300 Processors Principles of Operation

1-3

4-7

8-12

liD Address

interface-control check, or channel-data
check occurs, a test of this bit can
determine if the LCL was stored by the
channel. The LCL cannot be stored by
a chanrtel unless one of these three
channel-status bits is set to one.
Identity of the storage-control unit
(SCU) identifies the seu through
which storage references were directed
when an error was detected. This
identity is not necessarily the identity of
the storage unit involved with the
transfer. When only one physical path
exists between channel and storage, the
storage-control unit has the identity of
the CPU. If more than one path exists,
the storage-control unit has its own
identity.

When bit 3 is zero, bits 1 and 2 are
undefined. In this case, the seu
identity is implied to be the same as the
CPU identity. When bit 3 is one, the
binary value of bits 1 and 2 identifies a
physical SCU. Each SCU in the system
has a unique identity.
Detect field identifies the type of unit
that detected the error. At least one bit
is present in this field, and multiple bits
may be set when more than one unit
detects the error.

Bit 4-CPU
Bit 5-Channel
Bit 6-Main-storage control
Bit 7-Main storage

Source field indicates the most likely
source of the error. The determination
is made by the channel on the basis of
the type of error check, the location of

13-18
19-23

24-25

26-27
28

the checking station, the information
flow path, and the success or failure of
transmission through previous check
stations.

Normally, only one bit will be present
in this field. However, when interunit
communication cannot be resolved to a
single unit, such as when the interface
between units is at fault, multiple bits
(normally two) may be set to ones in
this field. When a reasonable
determination cannot be made, all bits
in this field are set to zeros.

If the detect and source fields
indicate different units, the interface
between them can also be considered
suspect.

Bit 8- CPU
Bit 9- Channel
Bit 10-Main-storage control
Bit II-Main storage
Bit 12-Control unit

Reserved. Stored zero.
Field-validity flags. These bits indicate
the validity of the information stored in
the designated fields. When the validity
bit is set to one, the field is stored and
usable. When the validity bit is set to
zero, the field is not usable.

The fields designated are:

Bit 19-5equence code
Bit 20-Unit status
Bit 21-CCW address and key in CSW
Bit 22-Channel address
Bit 23-Device address

Type of termination that has occurred
is indicated by these two bits.

This encoded field has meaning only
when a channel-control check or an
interface-control check is indicated in
the CSW. When neither of these two
checks is indicated, no termination has
been forced by the channel.

00 Interface disconnect
01 Stop, stack, or normal termination
10 Selective reset
11 Reserved

Reserved. Stored zero.
I I O-error alert. This bit, when set to
one, indicates that the limited channel
logout resulted from the signaling of
I/O-error alert by the indicated unit.

29-31

The I/O-error-alert signal indicates that
the control unit has detected a
malfunction which prevents it from
communicating properly with the
channel. The channel, in response,
performs a malfunction reset and causes
interface-control check to be set.
Sequence code identifies the 1/0
sequence in progress at the time of
error. It is meaningless if stored during
the execution of HALT 110 or HALT
DEVICE.

For all cases, the CCW address in the
CSW, if validly stored and nonzero, is
the address of the current CCW plus 8.

The sequence code assignments are:
000 A channel-detected error occurred

during the execution of a TEST
110 or CLEAR 110 instruction.

001 Command-out with a nonzero
command byte on bus-out has been
sent by the channel, but device
status has not yet been analyzed by
the channel. This code is set with
a command-out response to
address-in during initial selection.

010 The command has been accepted
by the device, but no data has been
transferred. This code is set by a
service-out or command-out
response to status-in during an
initial selection sequence, if the
status is either channel end alone,
or channel end and device end, or
channel end, device end, and status
modifier, or all zeros.

011 At least one byte of data has been
transferred between the channel
and the device. This code is set
with a service-out response to
service-in and, when appropriate,
may be used when the channel is in
an idle or polling state.

100 The command in the current CCW
has either not yet been sent to the
device or else was sent but not
accepted by the device. This code
is set when one of the following
situations occurs:
1. When the CCW address is

updated during command
chaining or a START 1/0.

2. When service-out or
command-out is raised in

Chapter 12. Input/Output Operations 12-61

response to status-in during an
initial selection sequence with
the status on bus-in including
attention, control-unit end, unit
check, unit exception, busy,
status modifier (without
channel end and device end),
or device end (without channel
end).

3. When a short, control-unit­
busy sequence is signaled.

4. When command retry is
signaled.

5. When the channel issues a
test-I/O command rather than
the command in the current
CCW.

101 The command has been accepted,
but data transfer is unpredictable.
This code applies from the time a
device comes on the interface until

12-62 IBM 4300 Processors Principles of Operation

the time it is determined that a new
sequence code applies. The code
may thus be used when a channel
goes into the polling or idle state
and it is impossible to determine
that code 010 or 011 applies. The
code may also be used at other
times when a channel cannot
distinguish between code 010 or
OIl.

110 Reserved.
111 Reserved.

Reserved (Location 185): Zero is stored at
location 185 whenever an I/O address is stored at
locations 186-187.

I/O Address (Locations 186-187): A two-byte
field is provided for storing the I/O address on
each I/O interruption in the Be mode.

(

\,

Chapter 13. OperatorFacilities

Contents

Manual Operation 13-1

Basic Operator Facilities 13-1

Address-Compare Controls 13-1

Alter-and-Display Controls 13-2

Check Control 13-2

Check-Stop Indicator 13-2

IML Controls 13-2

Interrupt Key 13-3

Interval-Timer Control

Load Indicator 13-3

Load-Clear Key 13-3

Load-Normal Key 13-3

Load-Unit-Address Controls

Machine-Save Key 13-3

Manual Operation

13-3

13-3

The operator facilities provide functions for the
manual operation and control of the machine. The
functions include operator-to-machine
communication, indication of machine status,
control over the setting of the time-of-day clock,
initial program loading, resets, and other manual
controls for operator intervention in normal
machine operation.

A model may provide additional operator
facilities which are not described in this chapter.
Examples are the means to indicate specific error
conditions in the equipment, to change equipment
configurations, and to facilitate maintenance.
Furthermore, controls covered in this chapter may
have additional settings which are not described
here. Such additional facilities and settings are
contained in the appropriate System Library (SL)
publication.

Most models provide, in association with the
operator facilities, a console device which may be
used as an IIO device for operator communication
with the program; this console device may also be
used to implement some or all of the facilities
described in this chapter. '

Manual Indicator 13-3

Mode Indicator 13-4

Power Controls 13-4

Rate Control 13-4

Restart Key 13-4

Save Indicator 13-4

Start Key 13-4

Stop Key 13-4

Storage-Size Control

System-Reset-Clear Key

13-4

13-5
System-Reset-Normal Key 13-5

Test Indicator 13-5

TOO-Clock Control 13-5

Wait Indicator 13-5

The operator facilities may be implemented on
different models -in various technologies and
configurations. On some models, more than one
set of physical representations of some keys,
controls, and indicators may be provided,such as
on multiple local or remote operating stations,
which may be effective concurrently.

A machine malfunction that prevents a manual
operation from being performed correctly, as
defined lor that operation, may cause the CPU to
enter the check-stop state or give some other
indication to the operator that the operation has
failed. Alternatively, a machine malfunction may
cause a machine-check-interruption condition to be
recognized.

Basic Operator Facilities

Address-Compare Controls
The address-compare controls provide a way to
stop the CPU when a preset address matches the
address used in a specified type of main-storage
reference.

One of the address-compare controls is user} to
set up the address to be compared with the storage
address.

Chapter 13. Operator Facilities 13-1

Another control provides at least two settings to
specify the action, if· any, to be taken when the
address match occurs. The two settings are normal
and stop. When this control is set to stop, the test
indicator is turned on.
1. The normal setting disables the address­

compare operation.
2. The stop setting causes the CPU to enter the

stopped state on an address match. Depending
on the model and the type of reference,
pending I/O, external, and machine-check
interruptions mayor may not be taken before
entering the stopped state.

A third control may specify the type of storage
reference for which the address comparison is to be

made. A model may provide one or more of the
following settings, as well as others:
1. The any setting causes the address comparison

to be performed on all storage references.
2. The data-store setting causes address

comparison to be performed when storage is
addressed to store data.

3. The I/O setting causes address comparison to
be performed when storage is addressed by a
channel to transfer data or to fetch a
channel-command word. Whether references
to the channel-address word or the
channel-status word cause a match to be
indicated depends on the model.

I 4. The instruction-address setting causes address
comparison to be performed when storage is
addressed to fetch an instruction. The
rightmost bit of the address setting mayor may
not be ignored. The match is indicated only
when the first byte of the instruction is fetched
from the selected location. It depends on the
model whether a match is indicated when
fetching the target instruction of EXECUTE.

Alter-and-Display Controls
The operator facilities provide controls and
procedures to permit the operator to alter and
display the contents of addressable locations in
storage, the storage keys, the page bits, the general,
floating-point, and control registers, and the PSW.
Information in storage can only be altered or
displayed if the storage pages containing the
information are in the connected or addressable
state.

Before alter-and-display operations may be
performed, the CPU must first be placed in the
stopped state. During alter-and-display operations,

13-2 IBM 4300 Processors Principles of Operation

the manual indicator may be turned off
temporarily, and the start and restart keys may be
inoperative.

Check Control
The check control has at least two settings, stop
and normal. If the control is set to stop, the CPU
enters the check-stop state when either:
1. A machine-check condition is detected and not

corrected
2. A channel check occurs which would cause

information to be stored in a channel-logout
area at locations 176-179

Whether information is actually stored in
assigned storage locations as a result of the
machine check or channel check, the indications
given for the cause of the stop, and the manner of
resuming CPU operation depend on the model.

If the check control is set to normal, the action
resulting from the detection of a machine check or
channel check is the same as described in Chapter
11, "Machine-Check Handling," or in Chapter 12,
"Input/ Output Operations," respectively.

The test indicator is on while the check control
is set to stop.

Programming Note
Except that recovery from a machine check or a
channel check with logout is not possible, the check
control permits a System/360 program, which uses
assigned storage locations above 128 as ordinary
storage, to be run in the BC mode.

Check-Stop Indifator
The check-stop indicator is on when the CPU is in
the check-stop state. Reset operations normally
cause the CPU to leave the check-stop state and
thus turn off the indicator. The manual indicator
may also be on in the check-stop state.

IML Controls
The IML controls perform initial microprogram
loading (IML). The IML operation selects the
ECPS:VSE architectural mode or the System/370
architectural mode of operation.

When the IML operation is completed, the state
of the affected CPU, channels, storage, and
operator facilities is the same as if a power-on reset
had been performed, except that the value and
state of the time-of-day clock are not reset.

The IML controls are effective while the power
is on.

Interrupt Key
When the interrupt key is activated, an
external-interruption condition indicating the
interrupt key is generated. (See the section
"Interrupt Key" in Chapter 6, "Interruptions. ")

The interrupt key is effective when the CPU is
in the operating or stopped state. It depends on
the model whether the interrupt key is effective
when the CPU is in the load state.

Interval-Ti~er l7ontrol
The interval-timer control disables or enables
operation of the interval timer. Disabling the
interval timer does not affect any other facility.

When the control is set to disable the interval
timer, updating of assigned storage locations 80-83
ceases. The contents of locations 80-83 remain at
the last value to which they were updated, unless
changed by a subsequent store operation. Any
already pending interval-timer-interruption
condition is kept pending without regard to the
state of the external mask, PSW bit 7, and the
interval-timer mask, bit 24 of control register O.

When the control is set to enable the interval
timer, updating of locations 80-83 is resumed using
the current contents. If an interval-timer­
interruption request existed and was kept pending
when the interval-timer control was last set to
disable, that condition remains pending until the
CPU is enabled for the interruption.

The setting to enable the interval timer is
considered the normal setting. The test indicator
mayor may not be turned on when the
interval-timer control is set to disable.

Programming Note
Disabling the interval timer allows execution of a
program which uses locations 80-83 as ordinary
storage. A program which does not use the interval
timer will function correctly with the interval timer
disabled, even when the interval timer fails.

Load Indicator
The load -indicator is on during initial program
loading, indicating that the CPU is in the load
state. The indicator goes on when the load-clear or
load-normal key is activated and the corresponding
operation is started. It goes off after the new PSW
is loaded successfully.

Load-l7lear Key
Activating the load-clear key causes a clear-reset
operation to be performed and initial program

loading to be started using the 110 device specified
by the load-unit-address controls. For details, see
the sections "Resets" and "Initial Program
Loading" in Chapter 4, "Control."

The load-clear key is effective when the CPU is
in the operating, stopped, load, or check-stop state.

Load-Nor~al Key
Activating the load-normal key causes an initial­
program-reset operation to be performed and initial
program loading to be started using the 110 device
specified by the load-unit-address controls. For
details, see the sections "Resets" and "Initial
Program Loading" in Chapter 4, "Control."

The load-normal key is effective when the CPU
is in the operating, stopped, load, or check-stop
state.

Load-Unit-Address l7ontrols
The load-unit-address controls select three
hexadecimal digits, which provide the 12 rightmost
110 address bits used for initial program loading.

Machine-Save Key
Activating the machine-save key initiates a
machine-save operation. (See the section
"Machine Save" in Chapter 4, "Control. ") The
save indicator is turned on when the operation is
completed successfully.

The machine-save key is effective only when the
CPU is in the stopped state.

Operation Note
The machine-save operation may be used in
conjunction with a standalone dump program for
the analysis of major program malfunctions. For
such an operation, the following sequence would be
called for:
1. Activation of the stop or system-reset-normal

key
2. Activation of the machine-save key
3. Activation of the load-normal key to enter a

standalone dump program
The system-reset-normal key must be activated

in step 1 when the stop key is not effective because
a continuous string of interruptions occurs or the
CPU is in the check-stop/state.

Manual Indicator
The manual indicator is on when the CPU is in the
stopped state. Some functions and several manual
controls are effective only when the CPU is in the
stopped state.

Chapter 13. Operator Facilities 13-3

Mode Indicator
The mode indicator shows the architectural mode
of operation selected by the last IML operation.

Power Controls
The power controls are used to turn the power on
and off.

The CPU, storage, channels, operator facilities,
and I/O devices may all have their power turned
on and off by common controls, or they may have
separate power controls. When a particular unit
has its power turned on, that unit is reset. The
sequence is performed so that no instructions or
I/O operations are performed until explicitly
specified. The controls may also permit power to
be turned on in stages, but the machine does not
become operational until power-on is complete.

When the power is completely turned on, an
IML operation is performed. A power-on reset is
then initiated (see the section "Resets" in Chapter

! 4, "Control"). It depends on the model whether
the architectural mode of operation can be selected
when the power is turned on, or whether the IML
controls have to be used to change mode after the
power is on.

Rate Control
The setting of the rate control determines the effect
of the start function and the manner in which
instructions are executed.

The rate control has at least two settings. The
normal setting is process. When the rate control is
set to process and the start function is performed,
the CPU starts operating at normal speed. When
the rate control is set to instruction step, one
instruction or, for interruptible instructions, one
unit of operation is executed each time the start
function is performed. For details, see the section
"Stopped, Operating, Load, and Check-Stop
States" in Chapter 4, "Control."

The test indicator is on while the rate control is
not set to process.

If the setting of the rate control is changed while
the CPU is in the operating or load state, the
results are unpredictable.

Restart Key
Activating the restart key initiates a restart
interruption. (See the section "Restart
Interruption" in Chapter 6, "Interruptions. ")

The restart key is effective when the CPU is in
the operating or stopped state. The key is not

13-4 IBM 4300 Processors Principles of Operation

effective when the CPU is in the check-stop state.
It depends on the model whether the restart key is
effective when the CPU is in the load state.

Save Indicator
The Save indicator is turned on when a
machine-save operation has been successfully
completed. It is turned off when the load-clear,
load-normal, restart, start, system-reset-clear, or
system-reset-normal key is activated. It may also
be turned off when other controls are activated.
The indicator is off after a power-on reset. If an
error is encountered during the machine-save
operation, the indicator remains off.

Start Key
Activating the start key causes the CPU to perform
the start function. (See the section "Stopped,
Operating, Load, and Check-Stop States" in
Chapter 4, "Control. ")

The start key is effective only when the CPU is
in the stopped state. The effect is unpredictable
when the stopped state has been entered by a reset.

Stop Key
Activating the stop key causes the CPU to perform
the stop function. (See the section "Stopped,
Operating, Load, and Check-Stop States" in
Chapter 4, "ControL")

The stop key is effective only when the CPU is
in the operating state.

Operation Note
Activating the stop key has no effect when:
• An unending string of certain program or

external interruptions occurs.
• The CPU is in the load or check-stop state.

Storage-Size Control
The storage-size control is provided when a model
permits more than one size of virtual storage. The
control determines the storage size and, hence, the
value of the page-capacity count. The number of
storage-size settings of the control depends on the
model. (See the section "Storage Size" in Chapter
3, "Storage. ")

A new setting of the storage-size control
becomes effective only as part of the IML
operation performed when turning the power on or
when activating the IML controls.

System-Reset-Clear Key
Activating the system-reset-clear key causes a
clear-reset operation to be performed. For details,
see the section "Resets" in Chapter 4, "Control."

The system-reset-clear key is effective when the
CPU is in the operating, stopped, load, or
check-stop state.

System-Reset-Normal Key
Activating the system-reset-normal key causes a
program-reset operation to be performed. For
details, see the section "Resets" in Chapter 4,
"Control. "

The system-reset-normal key is effective when
the CPU is in the operating, stopped, load, or
check-stop state.

Test Indicator
The test indicator is on when a manual control for
operation or maintenance is in an abnormal
position that can affect the normal operation of a
program.

Setting the address-compare controls or the
check control to stop or setting the rate control to
instruction step turns on the test indicator. Setting
the interval-timer control to disable mayor may
not turn on the test indicator.

The test indicator may be on when one or more
diagnostic functions under the control of
DIAGNOSE are activated, or when other abnormal
conditions occur.

Operation Note
If a manual control is left in a setting intended for
maintenance purposes, such an abnormal setting
may, among other things, result in false
machine-check indications or cause actual machine
malfunctions to be ignored. It may also alter other
aspects of machine operation, including instruction
execution, channel operation, and the functioning
of operator controls and indicators, to the extent
that operation of the machine does not comply with
that described in this publication.

TOD-Clock Control
When the TOD-clock control is not activated, that
is, the control is set to secure, the value of the
time-of-day (TOD) clock is protected against
unauthorized or inadvertent change by not
permitting the instruction SET CLOCK to change
the value.

When the TOD-clock control is activated, that
is, the control is set to enable set, alteration of the
clock value by means of SET CLOCK is permitted.
This setting is temporary, and the control
automatically returns to secure.

Wait Indicator
The wait indicator is on when the wait-state bit in
the current PSW is one.

Chapter 13. Operator Facilities 13-5

Appendix A. Number Representation and
Instruction-Use Examples

Contents

Number Representation A-2

Binary Integers A-2
Signed Binary Integers A-2
Unsigned Binary Integers A-3

Decimal Integers A-3
Floating-Point Numbers A-4
Conversion Example A-5

Instruction-Use Examples A-5
Machine Format A-5
Assembler-Language Format A-5

General Instructions A-6
ADD HALFWORD (AH) A-6
AND (N, NR, NI, NC) A-6

And (NI) A-6
BRANCH AND LINK (BAL, BALR)
BRANCH ON CONDITION (BC, BCR)

BRANCH ON COUNT (BeT, BCTR)
BRANCH ON INDEX HIGH (BXH)
BRANCH ON INDEX LOW OR EQUAL
(BXLE) A-9

COMPARE HALFWORD (CH) A-9

A-7
A-7

A-7
A-8

COMPARE LOGICAL (CL, CLC, CLI, CLR) A-9
Compare Logicat (CLC) A-9
Compare Logical' (eLI) A-9
Compare LogicaL(CLR) A-IO

COMPARE. LOGICAL CHARACTERS UNDER MASK
(CLM) A-IO

COMPARE LOGICAL LONG (CLCL) A-IO
CONVERT TO BINARY (CVB) A-12
CONVERT TO. DECIMAL. (CVD) A-12
DIVIDE (D, DR) A-12
EXCLUSIVE OR (X, XC, XI, XR) A-13

Exclusive Or (XC) A-13
Exclusive Or (XI) A-14

EXECUTE (EX) A-14

INSERT CHARACTERS UNDER MASK
OCM) A-15

LOAD (L, LR) A-15
LOAD ADDRESS (LA) A-16
LOAD HALFWORD (LH) A-16
MOVE (MVC, MVI) A-16

Move (MVC) A-16
Move (MVI) A-17

MOVE LONG (MVCL) A-17
MOVE NUMERICS (MVN) A-18

MOVE WITH OFFSET (MVO) A-18

MOVE ZONES (MVZ) A-19

MULTIPLY (M, MR) A-19

MULTIPLY HALFWORD (MH) A-20

OR (0, OR, 01, OC) A-20
Or (01) A-20

PACK (PACK) A-20
SHIFT LEFT DOUBLE (SLDA)
SHIFT LEFT SINGLE (SLA)

A-2I
A-2I

STORE CHARACTERS UNDER MASK
(STCM) A-2I

STORE MULTIPLE (STM) A-22
TEST UNDER MASK (TM) A-22
TRANSLATE (TR) A-22
TRANSLATE AND TEST (TRT) A-23

UNPACK (UNPK) A-25

Decimal Instructions A-25
ADD DECIMAL (AP) A-25
COMPARE DECIMAL (CP) A-26
DIVIDE DECIMAL (DP) A-26
EDIT (ED) A-26
EDIT AND MARK (EDMK) A-27
MULTIPLY DECIMAL (MP) A-28
SHIFT AND ROUND DECIMAL (SRP)

Decimal Left Shift A-28
Decimal Right Shift A-29
Decimal Right Shift and Round A-29
MUltiplying by a Variable Power of 10

ZERO AND ADD (ZAP) A-30
Floating-Point Instructions A-30

ADD NORMALIZED (AD, ADR, AE, AER,

AXR) A-30
ADD UNNORMALIZED (AU, AUR, AW,
AWR) A-30

COMPARE (CD, CDR, CE, CER) A-31
Floating-Point-Number Conversion A-3I

Fixed Point to Floating Point A-31
Floating Point to Fixed Point A-32

Multiprogramming and Multiprocessing

Examples A-32
Example of a Program Failure Using OR

Immediate A-32

A-28

A-29

COMPARE AND SWAP (CS, CDS) A-33

Setting a Single Bit A-33
Updating Counters A-34

Appendix A. Number Representation and Instruction-Use Examples A-I

Number Representation

Binary Integers

Signed Binary Integers
Signed binary integers are most commonly
represented as halfwords (16 bits) or words (32
bits). In both lengths, the leftmost bit (bit 0) is the
sign of the number. The remaining bits (bits 1-15
for halfwords and 1-31 for words) are used to
designate the magnitude of. the number. Binary
integers are also referred to as fixed-point numbers,
because the radix point is considered to be fixed at
the right, and any scaling is done by the
programmer.

Positive binary integers are in true binary
notation with a zero sign bit. Negative binary
integers are in two's-complement notation with a
one bit in the sign position. In all cases, the bits
between the sign bit and the leftmost significant bit
of the integer are the same as the sign bit (that is,
all zeros for positive numbers, all ones for negative
numbers).

Negative binary integers are formed in
two's-complement notation by inverting each bit of
the positive binary integer and adding one. As an
example using the halfword format, the binary
number with the decimal value + 26 is made
negative (-26) in the following manner:

+26 0 000 0000 0001 1010
Invert 1 111 1111 1110 0101
Add 1 1

-26 111 1111 1110 0110 (Two's comple-
ment form)

(S is the sign bit.)

This is equivalent to subtracting the number:

from
00000000 00011010

00000000 00000000

Negative binary integers are changed to positive
in the same manner.

The following addition examples illustrate
two's-complement arithmetic and overflow
conditions. Only eight bit positions are used.

1 . +57 = 0011 1001
+35 0010 0011

+92 0101 1100

A-2 IBM 4300 Processors Principles of Operation

2. +57
-35

0011 1001
1101 1101

+22 0001 0110 No overflow-carry
into leftmost posi­
tion and carry out.

3. +35
-57

0010 0011
1100 0111

-22 1110 1010 Sign change only-no
carry into leftmost
position and no
carry out.

4. -57
-35

1100 0111
1101 1101

-92

5. +57
+92

+149

6. -57
-92

-149

1010 0100 No overflow-carry
into leftmost posi­
tion and carry out.

0011 1001
0101 1100

*1001 0101 *Overflow-carry
into leftmost posi-
tion, no carry out.

1100 0111
1010 0100

*0110 1011 *Overflow-no carry
into leftmost posi-
tion but carry out.

The presence or absence of an overflow
condition may be recognized from the carries:
• There is no overflow:

a. If there is no carry into the leftmost bit
position and no carry out (examples 1 and
3).

b. If there is a carry into the leftmost position
and also a carry out (examples 2 and 4).

• There is an overflow:
a. If there is a carry into the leftmost position

but no carry out (example 5).
b. If there is no carry into the leftmost

position but there is a carry out (example
6).

The following are 16-bit signed binary integers.
The first is the maximum positive 16-bit binary
integer. The last is the maximum negative 16-bit
binary integer (the negative 16-bit binary integer
with the greatest absolute value).

32,767
1
o

-1
-32,768

o 111 1111 1111 1111
o 000 0000 0000 0001
o 000 0000 0000 0000
1 111 1111 1111 1111
1 000 0000 0000 0000

The following are several 32-bit signed binary
integers arranged in descending order. The first is
the maximum positive binary integer that can be
represented by 32 bits, and the last is the maximum
negative binary integer that can be represented by
32 bits.

23 1 - 1 = 2 147483647 = 0 1111111111111111111111111111111
2 16 65 536 = 0 000 0000 0000 0001 0000 0000 0000 0000
20 1 = 0 000 0000 0000 0000 0000 0000 0000 0001

_~o -~ : ~ ~~~ ~~~~ ~~n ~~~~ ~~~~ ~~~~ ~~~~ ~~~~
-2 1 -2 = 1 111 1111 1111 1111 1111 1111 1111 1110
_2 16 = -65536 = 11111111111111110000000000000000
-23311 + 1 = -2 147 483 647 = 1 000 0000 0000 0000 0000 0000 0000 0001
-2 = -2 147 483 648 = 1 000 0000 0000 0000 0000 0000 0000 0000

Unsigned Binary Integers
Certain instructions, such as ADD LOGICAL, treat
binary integers as unsigned rather than signed.
Unsigned binary integers have the same format as
signed binary integers, except that the leftmost bit
is interpreted as another numeric bit rather than a
sign bit. There is no complement notation because
all unsigned binary integers are considered positive.

The following examples illustrate the addition of
unsigned binary integers. Only eight bit positions
are used. The examples are numbered the same as
the· corresponding examples for signed binary
integers.

1. 57 0011 1001
35 = 0010 0011

92 0101 1100

2. 57 0011 1001
221 1101 1101

278 *0001 0110 *Carry out of
leftmost position

3. 35 0010 0011
199 1100 0111

234 11101010

4. 199 1100 0111
221 1101 1101

420 *1010 0100 *Carry out of
leftmost position

5. 57
92

149

6. 199
164

0011 1001
0101 1100

1001 0101

1100 0111
1010 0100

363 *0110 1011 *Carry out of
leftmost position

A carry out of the leftmost bit position mayor
may not imply an overflow, depending on the
application.

The following are several 32-bit unsigned binary
integers arranged in descending order.

4 294 967 296 = 1111 1111 1111 1111 1111 1111 1111 1111
2 147 483 648 = 1000 0000 0000 0000 0000 0000 0000 0000
2 147 483 647 = 0111 1111 1111 1111 1111 1111 1111 1111

65 536 = 0000 0000 0000 0001 0000 0000 0000 0000
1 = 0000 0000 0000 0000 0000 0000 0000 0001
o = 0000 0000 0000 0000 0000 0000 0000 0000

Decimal Integers
Decimal integers are represented as one or more
decimal digits and a sign digit. Each digit is a 4-bit
code. The decimal digits are in binary-coded .
decimal (BCD) form, with the values 0-9 encoded
as 0000-1001. The sign is usually represented as
1100 (C hex) for plus and 1101 (D hex) for minus.
These are the preferred sign codes, which are
generated by the machine for the results of decimal
operations. There are also several alternate sign
codes (1010, 1110, and 1111 for plus; 1011 for
minus). The alternate sign codes are accepted by
the machine as valid but are not generated for
results.

Decimal integers may have different lengths,
from one to 16 bytes. There are. two decimal
formats: packed and zoned. In the packed format,
each byte contains two decimal digits, except for
the rightmost byte which contains the sign in its
right digit. The number of decimal digits in the
packed format can vary from one to 31. Because
decimal integers must consist of whole bytes and
there must be a sign digit on the right, the number
of decimal digits is always odd. If an even number
of significant digits is desired, a leading zero must
be inserted on the left.

In the zoned format, each byte consists of a
decimal digit on the right and the zone code 1111
(F hex) on the left, except for the rightmost byte
where the sign code replaces the zone code. Thus,
decimal integers in the zoned format can have
anywhere from one to 16 digits. The zoned format

Appendix A. Number Representation and Instruction-Use Examples A-3

may be used directly for input and output in the
extended binary-cod ed-decimal interchange code
(EBCDIC), except that the sign must be separated
from the rightmost digit and handled as a separate
character. For positive (unsigned) numbers,
however, the sign code of the rightmost digit can
simply be replaced by the zone code, which is one
of the acceptable alternate codes for plus.

In either format, negative decimal integers are
represented in true notation with a separate sign.
As for binary integers, the radix point (decimal
point) of decimal integers is considered to be fixed
at the right, and any scaling is done by the
programmer.

The following are some examples of decimal
integers shown in hexadecimal notation:

Value Packed Format Zoned Format
+123 12 3C F1 F2 C3 or F 1 F2
-4321 04 32 10 F4 F3 F2 01
+000050 00 00 05 OC Fa Fa Fa Fa F5 CO

Fa Fa Fa Fa F5 Fa
-7 70 07

00000 00 00 OC Fa Fa Fa Fa co or
Fa Fa Fa Fa Fa

F3

or

Under some circumstances, a zero with a minus
sign (negative zero) is produced. For example, the
multiplicand:

00 12 3D (-123)

times the multiplier:

OC (+0)

generates the product:

00 OOOD (-0)

because the product sign follows the algebraic rule
of signs even when the value is zero. A negative
zero, however, is entirely equivalent to a positive
zero; they compare equal in a decimal comparison.

Floating-Point Numbers
A floating-point number is expressed as a fraction
multiplied by a separate power of 16. The term
floating point indicates that the radix-point
placement, or scaling, is auto-matically maintained
by the machine.

The part of a floating-point number which
represents the significant digits of the number is
called the. fraction. A second part specifies the
power (exponent) to which 16 is raised and
indicates the location of the radix point of the
number. The fraction and exponent may be

A~4 IBM 4300 ProcessorsPrincipies of Operation

represented by 32 bits (short format), 64 bits (long
format), or 128 bits (extended format).

Short Floating-Point Number
~r-----------~---------/--------~
IslCharacteristicl6-0igit Fri_c_t_i_o_n ____ ~
a 1 8 31

Long Floating-Point Number
~,-----------~---------/----------~
IslCharacteristicl14-0igit F/_a_ct __ io_n ______ ~
a 1 8 63

Extended Floating-Point Number
High-Order Part

~------------~---------/----------~
High-Order Leftmost 14 ~igits

S Characteristic of 28-Digit Fraction
~------------~---------/----------~
a 8 63

Low-Order Part
~~----------~---------/-----------.

Low-Order Rightmost 14 Digits
S Characteristic of 28-0igit Fraction
~~----------~---------/----------~
64 72 127

A floating-point number has two signs: one for
the fraction and one for the exponent. The
fraction sign, which is also the sign of the entire
number, is the leftmost bit of each format (0 for
plus, 1 for minus). The numeric part of the
fraction is in true notation regardless of the sign.
The numeric part is contained in bits 8-31 for the
short format, in bits 8-63 for the long format, and
in bits 8-63 followed by bits 72-127 for the
extended format.

The exponent sign is obtained by expressing the
exponent in excess-64 notation; that is, the
exponent is added as a signed number to 64. The
resulting number is called the characteristic. It is
located in bits 1-7 for all formats. The
characteristic can vary from 0 to 127, permitting
the exponent to vary from -64 through 0 to +63.
This provides a scale multiplier in the range of
16-64 to 16+63 . A nonzero fraction, if normalized,
must be less than one and greater than or equal to
1/16, so that the range covered by the magnitude
M of a floating-point number is:

16-65 $ M < 1663

In decimal terms:

16-65 is approximately equal to 5.4 x 10-79

1663 is approximately equal to 7.2 x 1075

More precisely,

In the short format:

16-65 ~ M ~ (1 - 16-6) x 1663

In the long format:

16-65 ~ M ~ (1 - 16- 14) x 1663

In the extended format:

16-65 ~ M ~ (1 - 16-28) x 1663

Within a given fraction length (6, 14, or 28
digits), a floating-point operation will provide the
greatest precision if the fraction is normalized. A
fraction is normalized when the leftmost digit (bit
positions 8, 9, 10, and 11) is nonzero. It is
unnormalized if the leftmost digit contains all
zeros.

If normalization of the operand is desired, the
floating-point instructions that provide automatic
normalization are used. This automatic
normalization is accomplished by left-shifting the
fraction (four bits per shift) until a nonzero digit
occupies the leftmost digit position. The
characteristic is reduced by one for each digit
shifted.

The following are sample normalized short
floating-point numbers. The last two numbers
represent the smallest and the largest positive
normalized numbers.

~ Powers of 16 S <-Char-> <----------Fract lon--------->
I 0 = +1/16xI6 1 = 0 100 0001 0001 0000 0000 0000 0000 0000
O· 5 .. +8/16xI60 = 0 100 0000 1000 0000 0000 0000 0000 0000
li64 .. +4/16xI6- 1 = 0 011 1111 0100 0000 0000 0000 0000 0000
o 0 .. +0 xl(-64 .. 0 000 0000 0000 0000 0000 0000 0000 0000

-IS 0 • -15/16xT6 1 = 1 100 0001 1111 0000 0000 0000 0000 0000
5 kx I 0-7~ ;II! + 1I16x 16 -64 = 0 000 0000 000 1 0000 0000 0000 0000 0000
7:2xI075 It (1-16-6)xI663 = 0 III 1111 1111 1111 1111 1111 1111 1111

II • 1 1 "] [The symbol ~ means approximate y equa .

Conversion Example
Convert the decimal number 59.25 to a short
floating-point number. (In another appendix are
tables for the conversion of hexadecimal and
decimal integers and fractions.)
1. The number is· decomposed into a decimal

integer and a decimal fraction.

59.25 - 59 plus 0.25

2. The decimal integer is converted to its
hexadecimal representation.

5910 - 3B16
3. The decimal fraction is converted to its

hexadecimal representation.

0.25 10 - 0.416

4. The integral and fractional parts are combined
and expressed as a fraction times a power of 16
(exponent).

3B.416 = 0.3B416 x 162

5. The characteristic is developed from the
exponent and converted to binary.

base + exponent = characteristic

64 + 2 = 66 = 1000010

6. The fraction is converted to binary and grouped
hexadecimally.

.3 B 416 =.0011 1011 0100

7. The characteristic and the fraction are stored in
the short format. The sign position contains
the sign of the fraction.

SChar Fraction ---
o 10000 000010 0011 1011 0100 0000 0000

Examples of instruction sequences that may be
used to convert between signed binary integers and
floating-point numbers are shown in the section
"Floating-Point-Number Conversion" later in this
appendix.

Instruction-Use Examples
The following examples illustrate the use of many
of the unprivileged instructions. Before studying
one of these examples, the reader should consult
the instruction description in this manual for the
particular instruction of interest to him.

The instruction-use examples are written
principally for assembler-language programmers, to
be used in conjunction with the appropriate
assembler-language manuals.

Most examples present one particular instruction,
both as it is written in an assembler-language
statement and as it appears when assembled in
storage (machine format).

Machine Format
All machine-format numerical operands are written
in hexadecimal notation unless otherwise specified.
Hexadecimal operands are shown converted into
binary, decimal, or both if such conversion helps to
clarify the example for the reader. Storage
addresses are also given in hexadecimal.

Assembler-Language Format
In assembler-language statements, registers and
lengths are presented in decimal. Displacements,
immediate operands, and masks may be shown in
decimal, hexadecimal, or binary notation; for
example, 12, X'C', or B'1100' represent the same
value. Whenever the value in a register or storage

'" . Appendix A. Number Representation and Instruction~Use Examples ~. A~5

location is referred to as "not significant," this
value is replaced during the execution of the
instruction.

When SS-format instructions are written in the
assembler language, lengths are given as the total
number of bytes in the field. This differs from the
machine definition, in which the length field
specifies the number of bytes to be added to the
field address to obtain the address of the last byte
of the field. Thus, the machine length is one less
than the assembler-language length. The assembler
program automatically subtracts one from the
length specified when the instruction is assembled.

In some of the examples, symbolic addresses are
used in order to simplify the examples. In
assembler-language statements, a symbolic address
is represented as a mnemonic term written in all
capitals, such as FLAGS which may denote the
address of a storage location containing data or
program-control information. When symbolic
addresses are used, the assembler supplies actual
base and displacement values according to the
programmer's specifications. Therefore, the actual
values for base and displacement are not shown in
the assembler-language format or in the
machine-language format. For assembler-language
formats, in the labels that designate instruction
fields, the letter "s" is used to indicate the
combination of base and displacement fields for an
operand address. (For example, S 1 represents the
combination of B 1 and D 1.) In the
machine-language format, the base and
displacement address components are shown as
asterisks (* * *) .

General Instructions
(See Chapter 7.)

ADD HALFWORD (AH)
The ADD HALFWORD instruction algebraically
adds the halfword contents of a storage location to
the contents of a register. The halfword storage
operand is expanded to 32 bits after it is fetched
and before it is used in the add operation. The
expansion consists in propagating the leftmost
(sign) bit 16 positions to the left. For example,
assume that the contents of storage locations
2000-2001 are to be added to register 5. Initially:
Register 5 contains 00 00 00 19 = 2510 .
Storage locations 2000-2001 contain FF FE == -210 .
Register 12 contains 0000 18 00.
Register 13 contains 000001 50.

A-6 13M 4300 Processors Principles of Operation

The format of the required instruction is:

Machine Format

Op Code R1

4A 5 o

Assembler Format

Op Code R1,02(X2,B2)

AH 5,X ' 6BO ' (13,12)

After the instruction is executed, register 5
contains 00 00 00 17 = 23 10 .

AND (N, NR, NI, NC)
When the Boolean operator AND is applied to two
bits, the result is one when both bits are one;
otherwise, the result is zero. When two bytes are
ANDed, each pair of bits is handled separately;
there is no connection from one bit position to
another. The following is an example of ANDing
two bytes:

First-operand byte:
Second-operand byte:

Result byte:

And (NI)

0011 01012
0101 11002

0001 01002

A frequent use of the AND instruction is to set a
particular bit to zero. For example, assume that
storage location 4891 contains 0100 0011 2 , To
set the rightmost bit of this byte to zero without
affecting the other bits, the following instruction
can be used (assume that register 8 contains 00 00
48 90):

Machine Format

Op Code

94 FE

Assembler Format

Op Code 01(B1),12

NI 1(S),X ' FE '

When this instruction is executed, the byte in
storage is ANDed with the immediate byte (the 12
field of the instructions):

Location 4891
Immediate byte

Result:

0100 00112
111111102

0100 00102

The resulting byte, with bit 7 set to zero, is
stored back in location 4891. Condition code 1 is
set.

BRANCH AND LINK (BAL, BALR)
The BRANCH AND LINK instructions are
commonly used to branch to a subroutine with the
option of later returning to the main instruction
sequence. For example, assume that you wish to
branch to a subroutine at storage address 1160.
Also assume:

The contents of register 2 are not significant.
Register 5 contains 00 00 11 50.
Address 00 00 C6 contains the BAL instruction so that 00
00 CA is the address of the next sequential inst;uction.

The format of the BAL instruction is:

Machine Format

Op Code

45 2 o

Assembler Format

Op Code Rl,D2(X2,B2)

BAL 2,X 1 l0 1 (0,5)

After the instruction is executed:

Register 2 (bits 8-31) contains 00 00 CA.
PSW bits 40-63 contain 00 11 60.

The programmer can return to the main
instruction sequence at any time with a BRANCH
ON CONDITION (BCR) instruction that specifies
register 2 and a mask of 15 10, provided that
register 2 has not meanwhile been disturbed.

The BALR instruction with the R2 field set to
zero may be used to load a register for use as a
base register. For example, in the assembler
language, the sequence of statements:
BALR 15,0
USING *,15

tells the assembler program that register 15 is to be
used as the base register in assembling this program
and that, when the program is executed, the
address of the next sequential instruction following
the BALR will be placed in the register. (The
USING statement is an "assembler instruction" and
is thus not a part of the object program.)

As another example, BALR 6,0 may be used to
preserve the current condition code in bits 2 and 3
of register 6 for future inspection.

Note that, in all three examples, a value of zero
in the X2 or R2 field indicates that the
corresponding function is not performed; it does
not refer to register O. Register 0 can be
designated by the Rl field, however.

BRANCH ON CONDITION (BC, BCR)
The BRANCH ON CONDITION instructions test
the condition code to see whether a branch should
or should not be taken. The branch is taken only if
the condition code is as specified by a mask.

Mask
Value

8
4
2
1

Condition
Code

o
1
2
3

For example, assume that an ADD (A or AR)
operation has been performed and that you wish to
branch to address 6050 if the sum is zero or less
(condition code 0 or 1). Also assume:
Register 10 contains 00 00 50 00.
Register 11 contains 00 00 10 00.

The RX form of the instruction performs the
required test (and branch if necessary) when
written as:

Machine Format

Op Code

47 C B A I 050 1

Assembler Format

Op Code Ml,D2(X2,B2)

BC 12,X I 50 1 (11,10)

A mask of 15 indicates a branch on any
condition (an unconditional branch). A mask of
zero indicates that no branch is to occur (a
no-operation) .

BRANCH ON COUNT (BCT, BCTR)
The BRANCH ON COUNT instructions are often
used to execute a program loop for a specified
number of times. For example, assume that the
following represents some lines of coding in an
assembler-language program:

Appendix A. Number Representation and Instruction-Use Examples A-7

LUPE AR 8, 1

BACK BCT 6,LUPE

where register 6 contains 00 00 00 03 and the
address of LUPE is 6826. Assume that, in order to
address this location, register lOis used as a base
register and contains 00 00 68 00.

The format of the BCT instruction is:

Machine Format

Op Code

46 6 °
Assembler Format

Op Code R1,D2CX2,B2)

BCT 6,X I26 ICO,10)

The effect of the coding is to execute three times
the loop defined by locations L UPE through
BACK.

BRANCH ON INDEX HIGH (BXH)
The BRANCH ON INDEX HIGH instruction is an
index-incrementing and loop-controlling instruction
that causes a branch whenever the sum of an index
value and an increment value is greater than some
compare value. For example, assume that:
Register 4 contains 00 00 00 SA = 13810 = the index.
Register 6 contains 0000 00 02 = 210 = the increment.
Register 7 contains 00 00 00 AA = 17010 = the compare
value.
Register 10 contains 00 00 71 30 = the branch address.

The format of the instruction is:

Machine Format

Op Code

86 4 6 A I 0001

Assembler Format

Op Code R1,R3,D2(B2)

BXH 4,6,0(10)

A-8 IBM 4300 Processors Principles of Operation

When the instruction is executed, first the
contents of register 6 are added to register 4,
second the sum is compared with the contents of
register 7, and third the decision whether to branch
is made. After execution:
Register 4 contains 00 00 00 se = 14010
Registers 6 and 7 are unchanged.

Since the new value in register 4 is not yet
greater than the value in register 7, the branch to
address 7130 is not taken. Repeated use of the
instruction will eventually cause the branch to be
taken when the value in register 4 reaches 172.

When the register used to contain the increment
is odd, that register also becomes the
compare-value register. The following
assembler-language subroutine illustrates how this
feature may be used to search a table.

Table

2 Bytes 2 Bytes

ARG1 FUNCT1
ARG2 FUNCT2
ARG3 FUNCT3
ARG4 FUNCT4
ARG5 FUNCT5
ARG6 FUNCT6

Assume that:
Register S contains the search argument.
Register 9 contains the width of the table in bytes (00 00 00
04).
Register 10 contains the length of the table in bytes (0000
00 IS).
Register 11 contains the starting address of the table.
Register 14 contains the return address to the main
program.

As the following subroutine is executed, the
argument in register 8 is successively compared
with the arguments in the table, starting with
argument 6 and working backward to argument 1.
If an equality is found, the corresponding function
replaces the argument in register 8. If an equality
is not found, FFFF 16 replaces the argument in
register 8.

SEARCH LNR 9,9
NOTEQUAL BXH 10,9,LOOP
NOT FOUND LA 8,XIFFFFI

BCR 15, 14
LOOP CH 8,0(2,3)

BC 7,NOTEQUAL
LH 8,2(10,11)
BCR 15, 14

The first instruction (LNR) causes the value in
register 9 to be made negative. After execution of (

this instruction, register 9 contains FFFFFFFC =
-410' Considering the case when no equality is
found, the BXH instruction will be executed seven
times. Each time BXH is executed, a value of -4 is
added to register 10, thus reducing the value in
register 10 by 4. The new value in register 10 is
compared with the -4 value in register 9. The
branch is taken each time until the value in register
10 is -4.

BRANCH ON INDEX LOW OR EQUAL
(BXLE)
This instruction is similar to BRANCH ON INDEX
HIGH except that the branch is successful when
the sum is low or equal compared to the compare
value.

COMPARE HALFWORD (CH)
The COMPARE HALFWORD instruction
compares a 16-bit signed binary integer in storage
with the contents of a register. For example,
assume that:
Register 4 contains FF FF 80 00 = -32,76810'
Register 13 contains 00 01 60 50.
Storage locations 16080~16081 contain 8000 = -32,76810'

When the instruction:

Machine Format

Op Code R1

49 4 o

Assembler Format

Op Code R1,02(X2,B2)

CH 4,X ' 30 ' (0,13)

is executed, the contents of locations 16080-16081
are fetched, expanded to 32 bits (the sign bit is
propagated to the left), and compared with the
contents of register 4. Because the two numbers
are equal, condition code 0 is set.

COMPARE LOGICAL (CL, CLC, CLI,
CLR)
The COMPARE LOGICAL instructions differ
from the signed-binary comparison instructions (C,
CH, CR) in that all quantities are handled as
unsigned binary integers or as unstructured data.

Compare Logical (CLC)
The COMPARE LOGICAL (CLC) instruction can
be used to perform the byte-by-byte comparison of
storage fields up to 256 bytes in length. For
example, assume that the following two fields of
da ta are in storage:

Field 1
1886 1891

1011061 cs l051E210610516BICl14BIC214BI

Field 2
1900 190B

101106l cs l051E210610516BICl14BIC314BI

Also assume:
Register 9 contains 00 00 18 80.
Register 7 contains 00 00 19 00.

Execution of the instruction:

Machine Format

Op Code L

05 OB

Assembler Format

Op Code 01(L,B1),02(B2)

CLC 6(12,9),0(7)

7 I 0001

sets condition code 1, indicating that the contents
of field 1 are lower in value than the contents of
field 2.

Because the collating sequence of the EBCDIC
code is determined simply by a logical comparison
of the bits in the code, the CLC instruction can be
used to collate EBCDIC-coded fields. For
example, in EBCDIC, the above two data fields
are:
Field 1 JOHNSON,A.B.
Field 2 JOHNSON,A.C.

Condition code 1 tells us that A.B.JOHNSON
precedes A.C.JOHNSON, thus placing the names in
the correct alphabetic sequence.

Compare Logical (CLI)
The COMPARE LOGICAL (CLI) instruction
compares a byte from the instruction stream with a
byte from storage. For example, assume that:

Appendix A. Number Representation and Instruction~Use Examples A~9

Register 10 contains 00 00 17 00.
Storage location 1703 contains 7E.

Execution of the instruction:

Machine Format

Op Code '2

95 AF A 1 003 1

Assembler Format

Op Code 01(B1),12

Cli 3(10),X ' AF '

sets condition code 1, indicating that the first
operand (the quantity in main storage) is lower
than the second (immediate) operand.

Compare Logical (CLR)
Assume that:
Register 4 contains 00 00 00 01 = 1.
Register 7 contains FF FF FF FF = 232_1.

Execution of the instruction:

Machine Format

Op Code

15 4 7

Assembler Format

Op Code Rl,R2

ClR 4,7

sets condition code 1. Condition code 1 indicates
that the first operand is lower than the second.

If, instead, the signed-binary comparison
instruction COMPARE (CR) had been executed,
the contents of register 4 would have been
interpreted as + 1 and the contents of register 7 as
-1. Thus, the first operand would have been
higher, so that condition code 2 would have been
set.

COMPARE LOGICAL CHARACTERS
UNDER MASK (CLM)
The COMPARE LOGICAL CHARACTERS
UNDER MASK (CLM) instruction provides a
means of comparing bytes selected from a general

A-IO IBM 4300 Processors Principles of Operation

register to a contiguous field of bytes in storage.
The M3 field of the CLM instruction is a four-bit
mask that selects zero to four bytes from a general
register, each mask bit corresponding, left to right,
to a register byte. In the comparison, the register
bytes corresponding to ones in the mask are treated
as a contiguous field. The operation proceeds left
to right. For example, assume that:
Three bytes starting at storage location 10200 contain FO
BC 7B
Register 12 contains 10000
Register 6 contains FO BC 5C 7B

Execution of the instruction:

Machine Format

Op Code

BO 6 o

Assembler Format

ClM 6,B ' ll0l l ,X ' 200 ' (12)

causes the following comparison:

Register 6: FO
Mask 1

Three bytes
starting at
location
10200

BC
1

5C
o

7B
1

Because the selected bytes are equal, condition
code 0 is set.

COMPARE LOGICAL LONG (CLCL)
The COMPARE LOGICAL LONG (CLCL)
instruction is used to compare two operands in
storage, byte by byte. Each operand can be of any
length. Two even-odd pairs of general registers
(four registers in all) are used to locate the
operands and to control the execution of the CLCL
instruction, as illustrated in the following diagram.
The first register of each pair must be an even
register, and it contains the storage address of the
byte currently being compared in each operand.
The odd register of each pair contains the length of
the operand it covers, and the leftmost byte of the
second-operand odd register contains a padding

byte which is used to extend the shorter operand, if
any, to the same length as the longer operand.

The following illustrates the assignment of
registers:

R1(even) 1lllllllllFirst-Operand Address

o 8 31

R1+ 1(odd) I11111111I First-Operand Length!

o 8 31

R2(even) !11111111!Second-Operand Addressl

o 8 31

R2+ 1(odd) Ipad Byte/Second-operand Length I

o 8 31

Since the CLCL instruction may be interrupted
during execution, the interrupting program must
preserve the contents of the four registers for use
when the instruction is resumed.

The following instructions set up two register
pairs to control a text-string comparison. For
example, assume:

Operand 1
Address: 20800 (hex)
Length: 100 (dec)

Operand 2
Address: 20AOO (hex)
Length: 132 (dec)

Padding Byte
Address: 20003 (hex)
Length: 1
Value: 40 (hex)

Register 12 contains 00 02 00 00

The setup instructions are:
LA 4,X'800'(12) Point register 4 to start of first

operand
LA 5, 100 Set register 5 to length of first

operand
LA 8,X'AOO'(12) Point register 8 to start of second

operand
LA 9,132 Set register 9 to length of second

operand
IeM 9,B' 1000' ,3(12) Insert padding byte in leftmost

byte position of register 9.

Register pair 4,5 defines the first operand. Bits
8-31 of register 4 contain the storage address of
the start of an EBCDIC text string, and bits 8-31
of register 5 contain the length of the string, in this
case 100 bytes.

Register pair 8,9 defines the second operand,
with bits 8-31 of register 8 containing the starting
location of the second operand and bits 8-31 of
register 9 containing the length of the second
operand, in this case 132 bytes. Bits 0-7 of register
9 contain an EBCDIC blank character (X'40') to
pad the shorter operand. In this example, the
padding byte is used in the first operand, after the
100th byte, to compare with the remaining bytes in
the second operand.

With the register pairs thus set up, the format of
the CLCL instruction is:

Machine Format

Op Code R1 R2

OF 4 8

Assembler Format

Op Code Rl,R2

CLCL 4,8

When this instruction is executed, the
comparison starts at the left end of each operand
and proceeds to the right. The operation ends as
soon as an inequality is detected or the end of the
longer operand is reached.

If this CLCL instruction is interrupted after 60
bytes have compared equal, the operand lengths in
registers 5 and 9 will have been decremented to
X'28' and X'48', respectively, and the operand
addresses in registers 4 and 8 will have been
incremented to X'2083C' and X'20A3C'. The
padding byte X'40' remains in register 9. When
the CLCL instruction is reissued with these register
contents, the comparison resumes at the point of
interruption.

Now, assume that the instruction is interrupted
after 110 bytes. That is, the first 100 bytes of the
second operand have compared equal to the first
operand, and the next 10 bytes of the second
operand have compared equal to the padding byte
(blank). The residual operand lengths in registers
5 and 9 are 0 and X' 16', respectively, and the
operand addresses in registers 4 and 8 are X'20864'

Appendix A. Number Representation and Instruction-Use Examples A-11

(the value when the first operand was exhausted,
and X'20A6E' (the current value for the second
operand).

When the comparison ends, the condition code is
set to 0, 1, or 2, depending on whether the first
operand is equal to, less than, or greater than the
second operand, respectively.

When the operands are unequal, the addresses in
registers 4 and 8 locate the bytes that caused the
mismatch.

CONVERT TO BINARY (CVB)
The CONVERT TO BINARY instruction converts
an eight-byte, packed-decimal number into a signed
binary integer and loads the result into a general
register. After the conversion operation is
completed, the number is in the proper form for use
as an operand in signed binary arithmetic. For
example, assume:
Storage locations 7608-760F contain a decimal number in
the packed format: 00 00 00 00 00 25 59 4C (+25,594).
The contents of register 7 are not significant.
Register 13 contains 000076 00.

The format of the conversion instruction is:

Machine Format

4F 7 0 ° I 008
1

Assembler Format

Op Code R1,D2(X2,B2)

CVB 7,8(0,13)

After the instruction is executed, register 7
contains 00 00 63 FA.

CONVERT TO DECIMAL (CVD)
The CONVERT TO DECIMAL instruction
performs functions exactly opposite to those of the
CONVERT TO BINARY instruction. CVD
converts a signed binary integer in a register to
packed decimal and stores the eight-byte result.
For example, assume:
Register 1 contains the signed binary integer: 00 00 OF OF.
Register 13 contains 00 00 76 00.

A-12 IBM 4300 Processors Principles of Operation

The format of the instruction is:

Machine Format

Op Code R1

4E o o I 008 1

Assembler Format

Op Code R1,02(X2,B2)

CVO 1,8(0,13)

After the instruction is executed, storage
locations 7608-760F contain 00 00 00 00 00 03 85
5C (+3855).

The plus sign generated is the preferred plus
sign, 11002,

DIVIDE (D, DR)
The DIVIDE instruction divides the dividend in an
even-odd register pair by the divisor in a register or
in storage. Since the dividend is assumed to be 64
bits long, it is important that the proper sign be
first affixed. For example, assume that:
Storage locations 3550-3553 contain 00 0008 DE - 227010
== the dividend.
Storage locations 3554-3557 contain 000000 32 - 5010 -
the divisor.
The initial contents of registers 6 and 7 are not significant.
Register 8 contains 00 00 35 50.

The following assembler language statements
load the registers properly and perform the divide
operation:

Statement Comments

L 6,0(0,8) Places 00 00 08 DE into

SRDA 6,32(0)
register 6.

Shifts 00 00 08 DE into
register 7. Register
is filled with zeros

6,4(0,8)
(sign bits).

0 Performs the division.

The machine format of the above DIVIDE
instruction is:

Machine Format

50 6 0

6

After all the foregoing instructions are executed:
Register 6 contains 00 00 00 14 = 2010 = the remainder.
Register 7 contains 00 00 00 20 = 45 10 = the quotient.

Note that if the dividend had not been first
placed in register 6 and shifted into register 7,
register 6 might not have been filled with the
proper sign bits (zeros in this example), and the
DIVIDE instruction might not have giventhe
expected results.

EXCLUSIVE OR (X, XC, XI, XR)
When the Boolean operator EXCLUSIVE OR is
applied to two bits, the result is one when either,
but not both, of the two bits is one; otherwise, the
result is zero. When two bytes are EXCLUSIVE
ORed, each pair of bits is handled separately; there
is no connection from one bit position to another.
The following is an example of the EXCLUSIVE
OR of two bytes:·

First-operand byte:
Second-operand byte:

0011 01012
0101 11002

Result byte: 0110 10012

Exclusive Or (XC)
The EXCLUSIVE OR (XC) instruction can be
used to exchange the contents of two areas in
storage without the use of an intermediate storage
area. For example, assume two three-byte fields in
storage:

359 35B

Field 1 1 00 117 190 I

360 362

Fie 1 d 2 1 00 1141 01 1

Execution of the instruction (assume that
register 7 contains 00 00 03 58):

Machine Format

Op Code L Bl 01

07 02 7 I 008 1

Assembler Format

Op Code 01(L,Bl),02(B2)

XC 1(3,7),8(7)

Field 1 is EXCLUSIVE ORed with field 2 as
follows:

Field 1 : 0000 0000 0001 0111 1001 00002
00 17 90

Field 2: 0000 0000 0001 0100 0000 00012
00 14 01

Result: 0000 0000 0000 0011 1001 00012
00 03 91

The result replaces the former contents of field
1.

Now, execution of the instruction:

Machine Format

Op Code L

07 02 7 1
008

1

Assembler Format

Op Code 01(L,Bl),02(B2)

XC 8(3,7),1(7)

produces the following result:

Field 1: 0000 0000 0000 0011 1001 00012
00 03 91

Field 2: 0000 0000 0001 0100 0000 00012
00 14 01

Result: 0000 0000 0001 0111 1001 00002
00 17 90

The result of this operation replaces the former
contents of field 2. Field 2 now contains the
original value of field 1.

Lastly, execution of the instruction:

Machine Format

Op Code L

07 02 7 1 001 1 7 1 008 1

Assembler Format

Op Code

XC

Appendix A. Number Representation and Instruction-Use Examples A-13

produces the following result:

Field 1: 0000 0000 0000 0011 1001 00012
00 03 91

Field 2: 0000 0000 0001 0111 1001 00002
00 17 90

Result: 0000 0000 0001 0100 0000 00012
00 14 01

The result of this operation replaces the former
contents of field 1. Field 1 now contains the
original value of field 2.

Exclusive Or (XI)
A frequent use of the EXCLUSIVE OR (XI)
instruction is to invert a bit (change a zero bit to a
one or a one bit to a zero). For example, assume
that storage location 8082 contains 0110 10012•

To invert the leftmost and rightmost bits without
affecting any of the other bits, the following
instruction can be used (assume that register 9
contains 00 00 80 80):

Machine Format

Op Code 12

97 81

Assembler Format

Op Code Dl(Bl),12

XI 2(9),X'81'

When the instruction is executed, the byte in
storage is EXCLUSIVE ORed with the immediate
byte (the 12 field of the instruction):

Location 8082:
Immediate byte:

Result:

0110 10012
1000 00012

1110 10002

The resulting byte is stored back in location
8082. Condition code 1 is set to indicate a
nonzero result.

Notes:
1. With the XC instruction, fields up to 256

bytes in length can be exchanged. .
2. With the XR instruction, the contents of two

registers can be exchanged ..
3. Because the X instruction operates storage to

register only, an exchange cannot be made
solely by the use of x.

A-14 IBM 4300 Processors Princi.ples of Operation

4. A field EXCLUSIVE ORed with itself is
cleared to zeros.

5. For additional examples of the use of
EXCLUSIVE OR, see the section "Floating­
Point-Number Conversion" later in this
appendix.

EXECUTE (EX)
The EXECUTE instruction causes one target
instruction in main storage to be executed out of
sequence without actually branching to the target
instruction. Unless the R 1 field of the EXECUTE
instruction is zero, bits 8-15 of the target
instruction are ORed with bits 24-31 of the Rl
register before the target instruction is executed.
Thus, EXECUTE may be used to supply the length
field for an SS instruction without modifying the SS
instruction in storage. For example, assume that a
MOVE (MVC) instruction is the target that is
located at address 3820, with a format as follows:

Machine Format

D2 00 C I 003 1 D I 0001

Assembler Format

Op Code Dl(L,B1),D2(B2)

MVC 3(1,12),0(13)

where register 12 contains 00 00 8913 and
register 13 contains 00 00 90 AO.

Further assume that at storage address· 5000, the
following EXECUTE instruction is located:

Machine Format

Op Code

44 o A I 0001

Assembler Format

Op Code Rl,D2(X2,B2)

EX 1,0(0,10)

where register 10 contains 00 00 38 20 and register
1 contains 00 OF FO 03.

When the instruction at 5000 is executed, the
rightmost byte of register 1 is ORed with the
second byte of the target instruction:

Register byte:
Instruction byte:

Result:

0000 00002
0000 00112

0000 00112

00
03

03

causing the instruction at 3820 to be executed as if
it originally were:

Machine Format

Op Code L

02 03 o 1 0001

Assembler Format

Op Code 01(1,B1),02(B2)

MVC 3(4,12),0(13)

However, after execution:
Register 1 is unchanged.
The instruction at 3820 is unchanged.
The contents of the four bytes starting at location 90AO
have been moved to the four bytes starting at location
8916.
The CPU next executes the instruction at address 5004
(PSW bits 40-63 contain 00 50 04).

INSERT CHARACTERS UNDER MASK
(ICM)
The INSERT CHARACTERS UNDER MASK
(ICM) instruction may be used to replace all or
selected bytes in a general register with bytes from
storage ·and to set the condition code to indicate
the value· of the inserted field.

For example,.if it is desired to insert a three-byte
address from FIELDA into register 5 and leave the
leftmost byte of the register unchanged, assume:

Machine Format

Op Code

BF 5 7 * * * *

Assembler Format

ICM 5, B 10111 I ,F I E L OA

FIELOA:
Register 5 (before):
Register 5 (after):
Condition code (after):

As another example:

Machine Format

FE DC BA
12 34 56 78
12 FE DC BA
1 (leftmost bit

of inserted
field is one)

BF 6 9 * * * *

Assembler Format

ICM 6, B I 1001 I ,F I ELOB

FIELOB:
Register 6 (before):
Register 6 (after):
Condition code (after):

12 34
00 00 00 00
12 00 00 34
2 (inserted field

is nonzero
with leftmost
zero bit)

When the mask field contains 1111, the ICM
instruction produces the same result as LOAD (L)
(provided that the indexing capability of the RX
format is not needed), except that ICM alt;o sets
the condition code. The condition-code setting is
useful when an all-zero field (condition code 0) or
a leftmost one bit (condition code 1) is used as a
flag.

LOAD (L, LR)
The LOAD instructions take four bytes from
storage or from a general register and place them
unchanged into a general register. For example,
assume that the four bytes starting with location
21003 are to be loaded into register 10. Initially:
Register 5 contains 00 02 00 00.
Register 6 contains 00 00 10 03.
The contents of register 10 are not significant.
Storage locations 21003-21006 contain 00 00 AB CD.

To load register 10, the RX form of the
instruction can be used:

Machine Format

Op Code

58 A 5 6 I 0001

Appendix A. Number Representation and Instruction-Use Examples A-1S

Assembler Format

Op Code R1,D2(X2,B2)

L 10,0(5,6)

After the instruction is executed, register 10
contains 00 00 AB CD.

LOAD ADDRESS (LA)
The LOAD ADDRESS instruction provides a
convenient way to place a nonnegative binary
integer up to 4095 10 in a register without first
defining a constant and then using it as an
operand. For example, the following instruction
places the number 2048 10 in register 1:

Machine Format

Op Code

41 ° ° I 800
1

Assembler Format

Op Code R1,D2(X2,B2)

LA 1,2048(0,0)

The LOAD ADDRESS instruction can also be
used to increment a register by an amount up to
4095 10 specified in the D2 field. Only the
rightmost 24 bits of the result are retained,
however. For example, assume that register 5
contains 00 12 34 56.

The instruction:

Machine Format

Op Code R1

41 5 o 5 I OOAI

Assembler Format

Op Code R1,D2(X2,B2)

LA 5,10(0,5)

adds 10 (decimal) to the contents of register 5 as
follows:

A-16 IBM 4300 Processors Principles of Operation

Register 5 (old): 00 12 34 56
D2 field: 00 00 00 OA

Register 5 (new): 00 12 34 60

The register may be specified as either B2 or X2.
Thus, the instruction LA 5,10(5,0) produces the
same result.

As the most general example, the instruction LA
6,10(5,4) adds the displacement, in this case 10, to
the contents of register 4 and to the contents of
register 5 and places the 24-bit sum of these three
values in register 6.

LOAD HALFWORD (LH)
The LOAD HALFWORD instruction places
unchanged a halfword from storage into the right
half of a register. The left half of the register is
loaded with zeros or ones according to the sign
(leftmost bit) of the halfword.

For example, assume that the two bytes in
storage locations 1803-1804 are to be loaded into
register 6. Also assume:
The contents of register 6 are not significant.
Register 14 contains 00 00 18 03.
Locations 1803-1804 contain 00 20.

The iristruction required to load the register is:

Machine Format

48 6 ° E 10001

Assembler Format

Op Code R1,D2(X2,B2)

LH 6,0(0,14)

After the instruction is executed, register 6
contains 00 00 00 20. If locations 1803-1804 had
contained a negative number, for example, A 7 B6,
a minus sign would have been propagated to the
left, giving FF FF A 7 B6 as the final result in
register 6.

MOVE (MVC, MVI)

Move (MVC)
The MOVE (MVC) instruction can be used to
move data from one storage location to another.

For example, assume that the following two fields
are in storage:

2048 2052

Field 1 IC11c21c31c41c51c61c71c81c91cAlcBI

3840 3848

Field 2 IF11F21F31F41F51F61F71F81F91

Also assume:
Register 1 contains 00 002048.
Register 2 contains 00 00 38 40.

With the following instruction, the first eight
bytes of field 2 replace the first eight bytes of field
1:

Machine Format

Op Code

02

L

07

Assembler Format

Op Code 01(L,B 1),02(B2)

MVC 0(8,1),0(2)

B2 02

2 I 0001

After the instruction is executed, field 1
becomes:

2048 2052

Field 1 IF11F21F31F41F51F61F71F81C91CAICBI

Field 2 is unchanged.
MVC can also be used to propagate a byte

through a field by starting the first-operand field
one byte location to the right of the
second-operand field. For example, suppose that
an area in storage starting with address 358
contains the following data:

358 360

With the following MVC instruction, the zeros in
location 358 can be propagated throughout the
entire field (assume that register 11 contains 00 00
03 58):

Machine Format

Op Code

02

L

07

Assembler Format

Op Code 01(L,B1),02(B2)

MVC 1(8,11),0(11)

B2 02

B I 0001

Because the MVC handles one byte at a time,
the above instruction essentially takes the byte at
address 358 and stores it at 359 (359 now contains
00), takes the byte at 359 and stores it at 35A, and
so on, until the entire field is filled with zeros.
Note that an MVI instruction could have been used
originally to place the byte of zeros in location 358.

Notes:
1. Although the field occupying locations

358-360 contains nine bytes, the length coded
in the assembler format is equal to the number
of moves (one less than the field length).

2. The order of operands is important even
though only one field is involved.

Move (MVI)
The MOVE (MVI) instruction places one byte of .
information from the instruction stream into
storage. For example, the instruction:

Machine Format

Op Code 12

92 5B I 0001

Assembler Format

Op Code 0l(B1),12

MVI O(1),C I $1

may be used, in conjunction with the instruction
EDIT AND MARK, to insert a dollar symbol at the
storage address contained in general register 1 (see
also the example for EDIT AND MARK).

MOVE LONG (MVCL)
The MOVE LONG (MVCL) instruction can be
used for moving data in storage as in the first
example of the MVC instruction, provided that the
two operands do not overlap. MVCL differs from
MVC in that the address and length of each

Appendix A. Number Representation and Instruction-Use ExampJes A-17

operand are specified in an even-odd pair of
general registers. Consequently, MVCL can be
used to move more than 256 bytes of data with one
instruction. As an ·example, assume:
Register 2 contains 00 OA 00 00.
Register 3 contains 00 00 08 00.
Register 8 contains 00 06 00 00.
Register 9 contains 00 00 08 00.

Execution of the instruction:

Machine Format

Op Code Rl

OE 8 1

Assembler Format

Op Code R1 ,R2

MVCL 8,2

2

moves 2,048 10 bytes from locations AOOOO-A07FF
to location 60000-607FF. Condition code 0 is set
to indicate that the operand lengths are equal.

If register 3 had contained FO 00 04 00, only the
1,024 10 bytes from locations AOOOO-A03FF would
have been moved to locations 60000-603FF. The
remaining locations 60400-607FF of the first
operand would have been filled with 1,024 copies
of the padding byte X'FO', as specified by the
leftmost byte of register 3. Condition code 2 is set
to indicate that the first operand is longer than the
second.

The technique for setting a field to zeros that is
illustrated in the second example of MVC cannot
be used with MVCL. If the registers were set up to
attempt such an operation with MVCL, no data
movement would take place and condition code 3
would indicate destructive overlap.

Instead, MVCL may be used to clear a storage
area to zeros as follows. Assume register 8 and 9
are set up as before. Register 3 contains only
zeros, specifying zero length for the second
operand and a zero padding byte. The contents of
register 2 are not significant. Executing the
instruction MVCL 8,2 causes locations
60000-607FF to be filled with zeros. Condition
code 2 is set.

MOVE NUMERICS (MVN)
Two related instructions, MOVE NUMERICS and
MOVE ZONES, may be used with decimal data in
the zoned format to operate separately on the

A-] 8 IBM 4300 Processors Principles of Operation

rightmost four bits (the numeric bits) and'the
leftmost four bits (the zone bits) of each byte.
Both are similar to MOVE (MVC), except that
MOVE NUMERICS moves only the numeric bits
and MOVE ZONES moves only the zone bits.

To illustrate the operation of the MOVE
NUMERICS instruction, assume that the following
two fields are in storage:

7090 7093

Field A IC61C71C81C91

7041 7046

Field B IFOIF11F21F31F41F51

Also assume:
Register 14 contains 00 00 70 90.
Register 15 contains 00 00 70 40.

After the instruction:

Machine Format

Op Code L

01 03

Assembler Format

Op Code 01(L,B1),02(B2)

MVN 1(4,15),0(14)

is executed, field B becomes:

7041 7046

IF61F71F81F91F41 FS I

E I 000\

The numeric bits of the bytes at locations
7090-7093 have been stored in the numeric bits of
the bytes at locations 7041-7044. The -contents of
locations 7090-7093 and 7045-7046 are
unchanged.

MOVE WITH OFFSET (MVO)
MOVE WITH OFFSET may be used to shift a
packed-decimal number an odd number of digit
positions or to concatenate a sign to an unsigned
packed-decimal number.

Assume that the three-byte unsigned
packed-decimal number in storage locations
4500-4502 is to be moved to locations 5600-5603

and given the sign of the packed-decimal number
ending at location 5603. Also assume:
Register 12 contains 00 00 56 00.
Register 15 contains 00 00 45 00.
Storage locations 5600-5603 contain 77 88 99 OC.
Storage locations 4500-4502 contain 12 34 56.

After the instruction:

Machine Format

Op Code B 1 ° 1

F1 3 2 C I 0001 F I 000\

Assembler Format

Op Code D1(Ll,Bl),02(L2,B2)

MVO 0(4,12),0(3,1S)

is executed, the storage locations 5600-5603
contain 01 23 45 6C. Note that the second
operand is extended on the left with one zero to fill
out the first-operand field.

MOVE ZONES (MVZ)
The MOVE ZONES instruction can, similarly to
MOVE (MVC) and MOVE NUMERICS, operate
on overlapping or nonoverlapping fields. When
operating on nonoverlapping fields, MOVE ZONES
works like the MOVE NUMERICS instruction (see
the example for MOVE NUMERICS), except that
MOVE ZONES moves only the zone bits of each
byte. To illustrate the use of MOVE ZONES with
overlapping fields, assume that the following data
field is in storage:

800 80S

Also assume that register 15 contains 00 00 08
00. The instruction:

Machine Format

Op Code L B 1 D 1

03 04 F I 0001

Assembler Format

Op Code 01(L,B1),D2(B2)

MVZ l(S,lS),O(lS)

propagates the zone bits from the byte at address
800 through the entire field, so that the field
becomes:

800 80S

IF1IF2IF3IF4\FS\F61

MULTIPLY (M, MR)
Assume that a number in register 5 is to be
multiplied by the contents of a word at address
3750. Initially:

The contents of register 4 are not significant.
Register 5 contains 00 00 00 9A = 15410 = the
multiplicand.
Register 11 contains 00 00 06 00.
Register 12 contains 00 00 30 00.
Storage locations 3750-3753 contain 00 00 0083 = 13110 =
the multiplier.·

The instruction required for performing the
multiplication is:

Machine Format

Op Code

SC 4 B

Assembler Format

Op Code R1,02(X2,B2)

M 4,X ' 1S0 ' (11,12)

After the instruction is executed, the product is
in the register pair 4 and 5:

Register 4 contains 00 00 00 00.
Register 5 contains 00 00 4E CE = 20,17410'
Storage locations 3750-3753 are unchanged.

The RR format of the instruction can be used to
square the number in a register. Assume that
register 7 contains 00 01 00 05. The instruction:

Machine Format

Op Code

1C 6 7

Assembler Format

Op Code R1,R2

MR 6,7

Appendix A. Number Representation and Instruction-Use Examples A-19

multiplies the number in register 7 by itself and
places the result in the pair of registers 6 and 7:
Register 6 contains 00 00 00 01.
Register 7 contains 00 OA 00 19.

MULTIPLY HALFWORD (MH)
The MUL T1PL Y HALFWORD instruction is used
to multiply the contents of a register by a halfword
in storage. For example, assume that:

Register 11 contains 0000 00 15 =2110 = the
multiplicand.

Register 14 contains 00 00 01 00.

Register 15 contains 00 00 20 00.

Storage locations 2102-2103 contain FF D9 == -39 == the

multiplier.

The instruction:

Machine Format

Op Code

4C B E

Assembler Format

Op Code Rl,02(X2,B2)

MH 11 ,2 (14, 15)

multiplies the two numbers. The product, FF FF
FC CD = -81910, replaces the original contents of
register 11.

Only the rightmost 32 bits of a product are
stored in a register; any significant bits on the left
are lost. No program interruption occurs on
overflow.

OR (0, OR, 01, OC)
When the Boolean operator OR is applied to two
bits, the result is one when either bit is one;
otherwise, the result is zero. When two bytes are
ORed, each pair of bits is handled separately; there
is no connection from one bit position to another.
The following is an example of ~Ring two bytes:

First-operand byte:
Second-operand byte:

Result byte:

Or (01)

0011 01012
0101 11002

0111 11012

A frequent use of the OR instruction is to set a
particular bit to one. For example, assume that
storage location 4891 contains 0100 00102. To set

A-20 IBM 4300 Processors Principles of Operation

the rightmost bit of this byte to one without
affecting the other bits, the following instruction
can be used (assume that register 8 contains 00 00
48 90):

Machine Format

Op Code 12 B 1 01

96 01 8 I 001 1

Assembler Format

Op Code 01(Bl),12

01 1(8),X·Ol·

When this instruction is executed, the byte in
storage is ORed with the immediate byte (the 12
field of the instruction):

Location 4891:
Immediate byte:

Result:

0100 00102
0000 00012

0100 00112

The resulting byte with bit 7 set to one is stored
back in location 4891. Condition code 1 is set.

PACK (PACK)
Assume that storage locations 1000-1003 contain
the following zoned-decimal number that is to be
converted to a packed-decimal number and left in
the same location:

1000 1003

Zoned number IF11F21F31C41

Also assume that register 12 contains 00 00 10
00. After the instruction:

Machine Format

Op ,Code

F2 3 3 C I 0001 C I 0001

Assembler Format

Op Code Dl(L1,B1),D2(L2,B2)

PACK 0(4,12),0(4,12)

is executed, the result in locations 1000-1003 is in
the packed-decimal format:

1000 1003

Packed number 10010112314cI

Notes:
1. This example illustrates the operation of

PACK when the first- and second-operand
fields overlap completely.

I 2. During the operation, the second operand was
extended on the left with zeros.

SHIFT LEFT DOUBLE (SLDA)
The SHIFT LEFT DOUBLE instruction is similar
to SHIFT LEFT SINGLE except that SLDA shifts
the 63 bits (not including the sign) of an even-odd
register pair. The R 1 field of this instruction must
be even. For example, if the contents of registers 2
and 3 are:

00 7F OA 72 FE DC BA 98 =
0000 0000 0111 1111 0000 1010 0111 0010
1111 1110 1101 1100 1011 1010 1001 10002

The instruction:

Machine Format

B2 02

8F 2 1////1 o I 01FI

Assembler Format

Op Code Rl,02(B2)

SLOA 2,31(0)

results in registers 2 and 3 both being left-shifted
31 bit positions, so that their new contents are:

7F 6E 50 4C 00 00 00 00 =
0111 1111 0110 1110 0101 1101 0100 1100
0000 0000 0000 0000 0000 0000 0000 00002

In this case, a significant bit is shifted out of bit
position 1 of register 2. Condition code 3 is set to
indicate this overflow and, if the fixed-point­
overflow mask bit in the PSW is one, a fixed-point
overflow interruption occurs.

SHIFT LEFT SINGLE (SLA)
Because SHIFT LEFT SINGLE leaves the sign bit

unchanged, this instruction performs an algebraic
shift. For example, if the contents of register 2
are:

00 7F OA 72 =
0000 0000 0111 1111 0000 1010 0111 00102

The instruction:

Machine Format

B2 02

o I 008 1

Assembler Format

Op Code Rl,02(B2)

SLA 2,8(0)

results in register 2 being shifted left eight bit
positions so that its new contents are:

7F OA 72 00 =
0111 1111 0000 1010 0111 0010 0000 00002

Condition code 2 is set to indicate that the result
is nonzero and positive.

If a left shift of nine places had been specified, a
significant bit would have been shifted out of bit
position 1. Condition code '3 would have been set
to indicate this overflow and, if the fixed-point­
overflow mask bit in the PSW is one, a fixed-point
overflow interruption would have occurred.

STORE CHARACTERS UNDER MASK
(STCM)
STORE CHARACTERS UNDER MASK (STCM)
may be used to place selected bytes from a register
into storage. For example, if it is desired to store a
three-byte address from general register 8 into
location FIELD3, assume:

Machine Format

Op Code Rl S2

BE 8 7 * 'i~ * *

Register Format

STCM 8,B ' Ol11 1 ,FIEL03

Appendix A. Number Representation and Instruction-Use Examples A-21

Register 8: 12 34 56 78
FIELD3 (before): not significant
F I ELD3 (after): 34 56 78

As another example:

Machine Format

BE 9 5 * * * *

Register Format

STCM 9,B ' 0101 1 ,FIELD2

Register 9: 01 23 45 67
FIELD2 (before): not significant
FIELD2 (after): 23 67

STORE MULTIPLE ,(STM)
Assume that the contents of general regis~ers 14,
15, 0, and 1 are to be stored in consecutive words
starting with location 4050 and that:
Register 14 contains 00 00 25 63.
Register 15 contains 00 01 27 36.
Register 0 contains 12 43 00 62.
Register 1 contains 73 26 12 57.
Register 6 contains 00 00 40 00.
The initial contents of locations 4050-405F are not
significant.

The STORE MULTIPLE instruction allows the
use of just one instruction to store the contents of
the four registers:

Machine Format

Op Code R1

90 E 6 1 050 1

Assembler Format

Op Code R1,R3,D2(B2)

STM 14,1,X ' 50 ' (6)

After the instruction is executed:
Locations 4050-4053 contain 00 00 25 63.
Locations 4054-4057 contain 00 01 27 36.
Locations 4058-405B contain 12 43 00 62.
Locations 405C-405F contain 73 26 12 57.

A-22 IBM 4300 Processors Principles of Operation

TEST UNDER MASK (TM)
The TEST UNDER MASK instruction examines
selected bits of a byte and sets the condition code
accordingly. For example, assume that:

Storage location 9999 contains FB.
Register 7 contains 00 00 99 90.

Execution of the instruction:

Machine Format

Op Code

91 C3

Assembler Format

TM 9 (7) , Bill 0000 11 1

produces the following result:

FB
Mask

Result

1111 10112
1100 00112

11xx xx 112

Condition code 3 is set: all selected bits are
ones.

If location 9999 had contained B9, the result
would have been:

B9
Mask

Result

1011 10012
1100 00112

10xx xx012

Condition code 1 is set: the selected bits are
both zeros and ones.

If location 9999 had contained 3C, the result
would have been:

3C 0011 11002
Mask 1100 00112

Result OOxx xx002

Condition code 0 is set: all selected bits are
zeros.

Note: Storage location 9999 remains unchanged.

TRANSLATE (TR)
The TRANS LA TE instruction can be used to
translate data from any character code to any other
desired code, provided that each coded character

consists of eight bits or fewer. In the following
example, EBCDIC is translated to ASCII. The first
step is to create a 256-byte table in storage
locations 1000-1 OFF. This table contains the
characters of the target code in the sequence of the
binary representation of the source code; that is,
the ASCII representation of a character is placed in
storage at the starting address of the table plus the
binary value of the EBCDIC representation of the
same character. For simplicity, the example shows
only the part of the table containing the decimal
digits:

Translate Table for Decimal Digits:
10FO 10F9

130131132133134135/36137/38/391

Assume that the four-byte field at storage
location 2100 contains the EBCDIC code for the
digits 1984:
Locations 2100-2103 contain F1 F9 F8 F4.
Register 12 contains 000021 00.
Register 15 contains 00 00 10 00.

As the instruction:

Machine Format

Op Code L

DC 03 C / 000/ F I 000/

Assembler Format

Op Code D1(L,B1),D2(B2)

TR 0(4,12),0(15)

is executed, the binary value of each source byte is
added to the starting address of the table, and the
resulting address is used to fetch a target byte:

Table starting address: 1000
First source byte: Fl

Address of target byte: 10Fl

After execution of the instruction:

Locations 2100-2103 contain 31 39 38 34.

Thus, the ASCII code for the digits 1984 has
replaced the EBCDIC code in the four-byte field at
storage location 2100.

TRANSLATE AND TEST (TRT)
The TRANSLATE AND 'TEST instruction can be
used to scan a data field for characters with a
special meaning. To indicate which characters have
a special meaning, a table similar to the one used
for the TRANSLATE instruction is set up, except
that zeros in the table indicate characters without
any special meaning and nonzero values indicate
characters with a special meaning.

The figure "Translate-and-Test Table" that
follows has been set up to distinguish alphameric
characters (A to Z and 0 to 9) from blanks, certain
special symbols, and all other characters which are
considered invalid. EBCDIC coding is assumed.
The 256-byte table is assumed stored at locations
2000-20FF.

Appendix A. Number Representation and Instruction-Use Examples A-23

o 234 5 6 7 8 9 ABC 0 E P

200

201

202

203

204

205

206

207

208

209

20A

20B

20C

200

20E

20F

40

40

40

40

04

14

24

40

40

40

40

40

40

40

40

00

40 40

40 40

40 40

40 40

40 40

40 40

28 40

40 40

40 40

40 40

40 40

40 40

00 00

00 00

40 00

00 00

40 40 40 40

40 40 40 40

40 40 40 40

40 40 40 40

40 40 40 40

40 40 40 40

40 40 40 40

40 40 40 40

40 40 40 40

40 40 40 40

40 40 40 40

40 40 40 40

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

40 40 40 40 40 40 40

40 40 40 40 4-0 40 40

40 40 40 40 40 40 40

40 40 40 40 40 40 40

40 40 40 40 08 40 OC

40 40 40 40 18 1C 20

40 40 40 40 2C 40 40

40 40 40 40 30 34 38

40 40 40 40 40 40 40

40 40 40 40 40 40 40

40 40 40 40 40 40 40

40 40 40 40 40 40 40

00 00 00 40 40 40 40

00 00 00 40 40 40 40

00 00 00 40 40 40 40

00 00 00 40 40 40 40

Note: If the character codes in the statement
being translated occupy a range smaller than

40 40

40 40

40 40

40 40

10 40

40 40

40 40

3C 40

40 40

40 40

40 40

40 40

40 40

40 40

40 40

40 40

00 through FF 16 , a table of fewer than 256 bytes
can be used.

Translate and Test Table

The table entries for the alphameric characters in
EBCDIC are 00; thus, the letter A (code Cl)
corresponds to byte location 20C 1, which contains
00.

The 15 special symbols have nonzero entries
from 04 16 to 3C 16 in increments of 4. Thus, the
blank (code 40) has the entry 04 16, the period
(code 4B) has the entry 08 16, and so on.

All other table positions have the entry 4016 to
indicate an invalid character.

The table entries are chosen so that they may be
used to select one of a list of 16 words containing
addresses of different routines to be entered for
each special symbol or invalid character
encountered during the scan.

Assume that this list of 16 branch addresses is
stored at locations 3004-3043.

A-24 IBM 4300 Processors Principles of Operation

Starting at storage location CA80, there is the
following sequence of 2110 EBCDIC characters:

Locations CA80-CA94: UNPKbPROUT(9),WORD(5)

Also assume:
Register 1 contains 00 00 2F FF.
Register 2 contains 00 00 30 00.
Register 15 contains 00 00 20 00.

As the instruction:

Machine Format

Op Code L

DO 14

Assembler Format

Op Code 01(L,B1),02(B2)

TRT 1(21,1),0(15)

F I 0001

is executed, the value of the first argument byte,
the letter U, is added to the starting address of the
table to produce the address of the table entry to
be examined:

Table starting address 2000
First argument byte (U) E4

Address of table entry 20E4

Because zeros were placed in storage location
20E4, no special action occurs. The operation
continues with the second and subsequent argument
bytes until it reaches the blank in location CA84.
When this symbol is reached, its value is added to
the starting address of the table, as usual:

Table starting address 2000
Argument byte (blank) 40

Address of table entry 2040

Because location 2040 contains a nonzero value,
the following actions occur:
1. The address of the argument byte, 00CA84, is

placed in the rightmost 24 bits of register 1.
2. The table entry, 04, is placed in the rightmost

eight bits of register 2, which now contains 00
00 3004.

3. Condition code 1 is set (scan not completed).
The TRANSLATE AND TEST instruction may

be followed by instructions to branch to the routine
at the address found at location 3004, which
corresponds to the blank character encountered in
the scan.· When this routine is completed, program
control may return to the TRANSLATE AND
TEST instruction to continue the scan, except that
the length must first be adjusted for the characters
already scanned.

For this purpose, the TRANSLATE AND TEST
may be executed by the use of an EXECUTE
instruction, which supplies the length specification
from a general register. In this way, a complete
statement scan can be performed with a single
TRANSLATE AND. TEST instruction repeated
over and over by means of EXECUTE, and without
modifying any instructions in storage. In the
example, after the first execution of TRANSLATE
AND TEST register 1 contains the address of the
last argument byte translated. It is then a simple
matter to subtract this address from the address of
the last argument byte (CA94) to produce a length
specification. This length minus one is placed in
the register that is referenced as the Rl field of the
EXECUTE instruction. (Note that the length code

in the machine format is one less than the total
number of bytes in the field.) The second-operand
address of the EXECUTE instruction points to the
TRANSLA TE AND TEST instruction, which is the
same as illustrated above, except for the length (L)
which is set to zero.

UNPACK (UNPK)
Assume that storage locations 2501-2502 contain a
signed, packed-decimal number that is to be
unpacked and placed in storage locations
1000-1004. Also assume:

Register 12 contains 00 00 10 00.
Register 13 contains 00 00 25 00.
Storage locations 2501-2502 contain 12 3~.
The initial contents of storage locations 1000-1004 are not
significant.

After the instruction:

Machine Format

Op Code

F3 4 C I 0001 ° I 001
1

Assembler Format

Op Code D1(L1,B1),D2(L2,B2)

UNPK 0(5,12),1(2,13)

is executed, the storage locations 1000-1004
contain FO FO Fl F2 D3.

Decimal Instructions
(See Chapter 8.)

ADD DECIMAL (AP)
Assume that the signed, packed-decimal number at
storage locations 500-503 is to be added to the
signed, packed-decimal number at locations
2000-2002. Also assume:
Register 12 contains 00 0020 00.
Register 13 contains 00 00 05 00.
Storage locations 2000-2002 contain 38 46 00 (a negative
number). .
Storage locations 500-503 contain 01 12 34 5C (a positive
number).

After the instruction:

Machine Format

Op Code

FA 2 3 C I 0001 ° I 0001

Appendix A. Number Representation and Instruction-Use Examples A-25

Assembler Format

Op Code 01(L1,B1),02(L2,B2)

AP 0(3,12),0(4,13)

is executed, the storage locations 2000-2002
contain 73 88 5C; condition code 2 is set to
indicate that the sum is positive. Note that:
1. Because the two numbers had different signs,

they were in effect subtracted.
2. Although the second operand is longer than the

first operand, no overflow interruption occurs
because the result can be entirely contained
within the first operand.

COMPARE DECIMAL (CP)
Assume that the signed, packed-decimal contents of
storage locations 700-703 are to be algebraically
compared with the signed, packed-decimal contents
of locations 500-502. Also assume:
Register 12 contains 00 00 06 00.
Register 13 contains 00 00 03 00.
Storage locations 700-703 contain 17 25 35 6D.
Storage locations 500-502 contain 72 14 2D.

After the instruction:

Machine Format

Op Code

F9 3 2 C I 100 1

Assembler Format

CP X'100'(4,12),X'200'(3,13)

is executed, condition code 1 is set, indicating that
the first operand (the contents of locations
700-703) is less than the second.

DIVIDE DECIMAL (DP)
Assume that the signed, packed-decimal number at
storage locations 2000-2004 (the dividend) is to be
divided by the signed, packed-decimal number at
locations 3000-3001 (the divisor). Also assume:

Register 12 contains 00 00 20 00.
Register 13 contains 00 00 30 00.
Storage locations 2000-2004 contain 01 23 45 67 8e.
Storage locations 3000-3001 contain 32 lD.

A-26 IBM 4300 Processors Principles of Operation

After the instruction:

Machine Format

Op Code

FO 4 C I 0001 o I 0001

Assembler Format

Op Code 01(Ll,B1),02(L2,B2)

OP 0(5,12),0(2,13)

is executed, the dividend is entirely replaced by the
signed quotient and remainder, as follows:

2000 2004

Locations 2000-2004 13814610010118CI

quotient I remainder

Notes:
1. Because the dividend and divisor have different

signs, the quotient receives a negative sign.
2. The remainder receives the sign of the dividend

and the length of the divisor.
3. If an attempt were made to divide the dividend

by the one-byte field at location 3001, the
quotient would be too long to fit within the
four bytes allotted to it. A decimal-divide
exception would exist, causing a program
interruption.

EDIT (ED)
Before decimal data in the packed format can be
used in a printed report, digits and signs must be
converted to printable characters. Moreover,
punctuation marks, such as commas and decimal
points, may have to be inserted in appropriate
places. The highly flexible EDIT instruction
perf orms these functions in a single instruction
execution.

This example shows step-by-step one way that
the EDIT instruction can be used. The field to be
edited (the source) is four bytes long; it is edited
against a pattern 13 bytes long. The· following
symbols are used:

Symbol Meaning

b (Hexadecimal 40) Blank character
((Hexadecimal 21) Significance starter
d (Hexadecimal 20) ~igit selector

Assume that the source and pattern fields are:

Source
1200 1203

10215714216CI

Pattern
1000

L+
100C

140\20\20\6B\2012112014BI20120\40\C3Io91
b d d d (d d d b C R

Execution of the instruction (assume that
register 12 contains 00 00 10 00):

Machine Format

Op Code L

DE OC c 1 0001

Assembler Format

ED 0(13,12),X '200 ' (12)

alters the pattern field as follows:

Significance
Indicator Location

Pattern Digit (Before/After) Rule tOOO-tOOC

b off/off leave(t) bdd,d(d.ddbCR
d 0 off /off fill bbd,d(d.ddbCR
d 2 off/on(2) dig i t bb2,d(d.ddbCR

d
on/on leave same

5 on/on di g i t bb2,5(d.ddbCR
(7 on/on digit bb2,57d.ddbCR
d 4 on/on digit bb2,574.ddbCR

d
on/on leave same

2 on/on digit bb2,574.2dbCR
d 6+ on/off(3) digit bb2,574.26bCR
b off/off fill same
C off/off fill bb2,574.26bbR
R off/off fill bb2,574.26bbb

Notes:

1. This character is the fill byte.

2. First nonzero decimal source digit turns on Significance
indicator.

3. Plus sign in the four rightmost bits of the byte turns
off significance indicator.

Thus, after the instruction is executed, the
pattern field contains the result as follows:

Pattern
1000 100C

1401401F216BIF51F71F414BIF21F6140\401401
b b 2 574 2 6 b b b

When printed, the new pattern field appears as:

2,574.26

The source field remains unchanged. Condition
code 2 is set because the number was greater than
zero.

If the number in the source field is changed to
00 00 02 6D, a negative number, and the original
pattern is used, the edited result this time is:

Pattern
1000 100C

140140140140140140lFol4BIF21F6140lC31091
b b b b b b 0 2 6 b C R

This pattern field prints as:

0.26 CR

The significance starter forces the significance
indicator to the on state and hence causes the
decimal point to be preserved. Because the
minus-sign code has no effect on the significance
indicator, the characters CR are printed to show a
negative (credit) amount.

Condition code 1 is set (number less than zero).

EDIT AND MARK (EDMK)
The EDIT AND MARK instruction may be used, in
addition to the functions of EDIT, to insert a
currency symbol, such as a dollar sign, at the
appropriate position in the edited result. Assume
the same source in storage locations 1200-1203,
the same pattern in locations 1000-1 OOC, and the
same contents of general register 12 as for the
EDIT instruction above. The previous contents of
general register 1 are immaterial; a LOAD
ADDRESS instruction is used to set up the first
digit position that is forced to print if no significant
digits occur to the left.

The instructions:
LA 1,6(0,12)

EDMK0(13, 12),X'200'(12)

BCTR1,0

MVI O(1),C'$'

Load address of forced
significant digit into OR!.
Leave address of first
significant digit in OR 1.
Subtract 1 from address in
OR!.
Store dollar sign and address
in ORl.

. Appendix A. Number Representation and Instruction-Use Examples A-27

produce the following results for the two examples
under EDIT:

Pattern
1000 100C

1401SBIF2.16BIFSIF71F414BIF21F61401401401

b $ 2 S 7 4

This pattern field prints as:

$2,574.26

2 6 b b b

Condition code 2 is set to indicate that the
number edited was greater than zero.

Pattern
1000 100C

b b b b b $ 0 2 6 b C R

This pattern field prints as:

$0.26 CR

Condition code 1 is set because the number is
less than zero.

MULTIPLY DECIMAL (MP)
Assume that the signed, packed-decimal number in
storage locations 1202-1204 (the multiplicand) is
to be multiplied by the signed, packed-decimal
number in locations 500-501 (the multiplier).

1202 1204

Multiplicand 138146\001

SOO SOl

Mu 1 tip 1 i er ~
Because the multiplier and multiplicand have a

total of eight significant digits, at least five bytes
must be reserved for the signed result. ZERO
AND ADD can be used to move the multiplicand
into a longer field. Assume:

Register 4 contains 00 00 12 00.
Register 6 contains 0000 05 00.

Then execution of the instruction:

ZAP X'100'(5,4),2(3,4)

sets up a new multiplicand in storage locations
1300-1304:

A-28 IBM 4300 Processors Principles of Operation

1300 1304

Multiplicand (new) 1001001381461001

Now, after the instruction:

Machine Format

Op Code

FC 4

Assembler Format

Op Code 01(Ll,Bl),02(L2,B2)

MP X'100'(S,4),0(2,6)

6 1 0001

is executed, storage locations 1300-1304 contain
the product:

01 23 45 66 OC.

SHIFT AND ROUND DECIMAL (SRP)
The SHIFT AND ROUND DECIMAL (SRP)
instruction can be used for shifting decimal
numbers in storage to the left or right. When a
number is shifted right, rounding can also be done.

Decimal Left Shift
In this example, the contents of storage location
FIELD 1 are shifted three places to the left,
effectively multiplying the contents of FIELD 1 by
1000. FIELD1 is six bytes long. The following
instruction performs the operation:

Machine Format

Op Code Ll

FO S o 1****1 0 1 003 1

Assembler Format

Op Code Sl(Ll),S2,13

SRP FIEL01(6),3,0

FIELOl (before): 00 01 23 4S 67 BC

FIELOl (after): 12 34 S6 78 00 OC

The second -operand address in this instruction
specifies the ~hift amount (three places). The
rounding factor, 13, is not used in left shift, but it

must be a valid decimal digit. After execution,
condition code 2 is set to show that the result is
greater than zero.

Decimal Right Shift
In this example, the contents of storage location
FIELD2 are shifted one place to the right,
effectively dividing the contents of FIELD2 by 10
and discarding the remainder. FIELD2 is five
bytes in length. The following instruction performs
this operation:

Machine Format

Op Code

FO 4 o 1****1

Assembler Format

Op Code Sl(L1),S2,13

SRP FIELD2(5),64-1,0

0111111

T 6-bit two s
complement
for -1

FIELD 2 (before): 01 23 45 67 8C

FIELD 2 (after): 00 12 34 56 7C

In the SRP instruction, shifts to the right are
specified in the second-operand address by negative
shift values, which are represented as a six-bit
value in two's complement form.

The six-bit two's complement of a number, n,
can be specified as 64 - n. In this example, a
right shift of one is represented as 64 - 1.

Condition code 2 is set.

Decimal Right Shift and Round
In this example, the contents of storage location
FIELD3 are shifted three places to the right and
rounded, effectively dividing by 1000 and rounding
to the nearest whole number. FIELD3 is four
bytes in length.

Machine Format

Op Code

FO 3
5 1****1 ~

Assembler Format

Op Code Sl(L1),S2,13

SRP FIELD3(4),64-3,5

00111101

T 6-bit two s
complement
for -3

FIELD 3 (before): 1239 60 OD

FIELD 3 (after): 00 01 24 OD

The shift amount (three places) is specified in
the D2 field. The 13 field specifies the rounding
factor of 5. The rounding factor is added to the
last digit shifted out (which is a 6), and the carry is
propagated to the left. The sign is ignored during
the addition.

Condition code 1 is set because the result is less
than zero.

Multiplying by a Variable Power of 10
Since the shift value designated by the SRP
instruction specifies both the direction and amount
of the shift, the operation is equivalent to
multiplying the decimal first operand by 10 raised
to the power specified by the shift value.

If the shift value is variable, it may be specified
by the B2 field instead of the displacement D2 of
the SRP instruction. The general register
designated by B2 should contain the shift value
(power of 10) as a signed binary integer.

A fixed scale factor modifying the variable
power of 10 may be specified by using both the B2
field (variable part in a general register) and the D2
field (fixed part in the displacement).

The SRP instruction uses only the rightmost six
bits of the effective address D2(B2) and interprets
them as a six-bit signed binary integer to control
the left or right shift as in the previous two
examples.

Appendix A. Number Representation and Instruction~Use Examples A~29

ZERO AND ADD (ZAP)
Assume that the signed, packed-decimal number at
storage locations 4500-4502 is to be moved to
locations 4000-4004 with four leading zeros in the
result field. Also assume:
Register 9 contains 00 00 40 00.
Storage locations 4000-4004 contain 12 34 56 78 90.
Storage locations 4500-4502 contain 38 46 00.

After the instruction: \

Machine Format

Op Code

F8 4 2 9 I 0001

Assembler Format

Op Code 01(Ll,B1),02(L2,B2)

ZAP 0(S,9),X'SOO'(3,9)

9 I 500 1

is executed, the storage locations 4000-4004
contain 00 00 38 46 OD; condition code 1 is set to
indicate a negative result.

Note that, because the first operand is not
checked for valid sign and digit codes, it may
contain any combination of hexadecimal digits
before the operation.

Floating-Point Instructions
(See Chapter 9.)

In this section, the abbreviations FPRO, FPR2,
FPR4, and FPR6 stand for floating-point registers
0, 2, 4, and 6 respectively.

ADD NORMALIZED (AD, ADR,AE,
AER, AXR)
The ADD NORMALIZED instructions perform the
addition of two floating-point numbers and place
the normalized result in a floating-point register.
Neither of the two numbers to be added must
necessarily be normalized before addition occurs.
For example, assume that:
FPR6 contains C3 08 21 0000000000 == -82.116 ==
-130.0610 approximately (unnor~alized).
Storage locations 2000-2007 contam 41 12 34 56 00 00 00
00 = + 1.2345616 = + 1.1410 (normalized).
Register 13 contains 00 00 20 00.

The instruction:

Machine Format

Op Code R1 X2 B2 02

7A 6 0 0 I 0001

A-30 IBM 4300 Processors Principles of Operation

Assembler Format

Op Code R1,02(X2,B2)

AE 6,0(0,13)

performs the short-precision addition of the two
operands, as follows.

The characteristics of the two numbers (43 and
41) are compared. Since the number in storage has
a characteristic that is smaller by 2, it is
right-shifted two hexadecimal digit positions. The
two numbers are then added:

FPR6: --43 08 21 00
Shifted no. from storage: +43 00 12 34 5

Intermediate sum:
1Guard digit

-43 08 OE CB B

Because the intermediate sum is unnormalized, it
is left-shifted to form the normalized floating-point
number -42 80 EC BB = -80.ECBB 16 = -128.92.
Combining the sign with the characteristic, the
result is C2 80 EC BB, which replaces the left half
of FPR6. The right half of FPR6 and the contents
of storage locations 2000-2007 are unchanged.
Condition code 1 is set to indicate a negative
result.

If the long-precision instruction AD is used, the
result in FPR6 is C2 80 EC BA AO 00 00 00.
Note that the long-precision instruction avoids a
loss of precision in this example.

ADD UNNORMALIZED (A U, A UR,A~
AWR)
The ADD UNNORMALIZED instructions operate
identically to the ADD NORMALIZED
instructions, except that the final result is not
normalized. For example, using the the same
operands as in the example for ADD
NORMALIZED, when the short-precision
instruction:

Machine Format

Op Code R1 X2 B2 02

7E 6 0 0 I 0001

Assembler Format

Op Code Rl,02(X2,B2)

AU 6,0(0,13)

is executed, the two numbers are added as follows:

FPR6: -43 08 21 00
Shifted no. from storage: +43 00 12 34 5

Sum: -43 08 OE CB B
1Guard digit

The guard digit participates in the addition but is
discarded. The unnormalized sum replaces the left
half of FPR6. Condition code 1 is set because the
result is negative.

The result in FPR6 (C3 08 OE CB 00 00 00 OO)
shows a loss of a significant digit when compared
to the result of short-precision normalized addition.

COMPARE (CD, CDR, CE, CER)
Assume that FPR4 contains 43 00 00 00 00 00 00
00 (=O), and FPR6 contains 34 12 34 56 78 9A
BC DE (a positive number). The contents of the
two registers are to be compared using a
long-precision COMPARE instruction.

Machine Format

Op Code Rl R2

29 4 6

Assembler Format

Op Code R1,RZ

CDR 4,6

The number with the smaller characteristic,
which is the one in register FPR6, is right-shifted
15 hexadecimal digit positions so that the two
characteristics agree. The shifted contents of FPR6
are 43 00 00 00 00 00 00 00, with a guard digit of
zero. Therefore, when the two numbers are
compared, condition code 0 is set, indicating an
equality.

As the above. example implies, when
floating-point numbers are compared, more than
two numbers may compare equal if one of the
numbers is unnormalized. For example, the
unnormalized floating-point number 41 00 12 34
56 78 9A BC compares equal to all numbers of the
form 3F 12 34 56 78 9A BC OX (X represents any
hexadecimal digit). When the COMPARE
instruction is executed, the two rightmost digits are
shifted right two places, the 0 becomes the guard
digit, and the X does not participate in the
comparison.

However, when two normalized floating-point
numbers are compared, the relationship between
numbers that compare equal is unique: each digit in
one number must be identical to the corresponding
digit in the other number.

Floating-Point-Number Conversion
The following examples illustrate one method of
converting between binary fixed-point numbers
(32-bit signed binary integers) and normalized
floating-point numbers. Conversion must provide
for the different representations used with negative
numbers: the two's-complement form for signed
binary integers, and the signed-absolute-value form
for the fractions of floating-point numbers.

Fixed Point to Floating Point
The method used here inverts the leftmost bit of
the signed binary integer which, after appending
additional zero bits on the left as necessary, is
equivalent to adding 231 to the number. This
changes it from a signed integer in the range
231 - 1 through _231 to an unsigned integer in the
range 232 - 1 through O. After conversion to the
long floating-point format, the value 231 is
subtracted again.

Assume that general register 9 (GR9) contains
the integer -59 in two's-complement form':

GR9 FF FF FF C5

Further, assume two eight-byte fields in storage:
TEMP, for use as temporary storage, and TW031,
which contains the floating-point constant 231 in
the following format:

TW031 4E 00000080000000

This is an unnormalized long floating-point
number with the characteristic 4E, which
corresponds to a radix point to the right of the
number.

The following instruction sequence performs the
conversion:

Result
X 9,TW031+4 GR9:

7F FF FF C5
ST 9,TEMP+4 TEMP:

7F FF FF C5
MVC TEMP(4),TW031 TEMP:

4E 00 00 00 7F FF FF C5
LO 2,TEMP FPR2:

4E 00 00 00 7F FF FF C5
SO 2,TW031 FPR2:

C2 3B 00 00 00 00 00 00

The EXCLUSIVE OR (X) instruction inverts
the leftmost bit in general register 9, using the right
half of the constant as the source for a leftmost one

Appendix A. Number Representation and Instruction-Use Examples A-31

bit. The next two instructions assemble the
modified number in an unnormalized long
floating-point format, using the left half of the
constant as the plus sign, the characteristic, and the
leading zeros of the fraction. LOAD (LD) places
the number unchanged in floating-point register 2.
The SUBTRACT NORMALIZED (SD) instruction
performs the final two steps by subtracting 231 in
floating-point form and normalizing the result.

Floating Point to Fixed Point
The procedure described here consists basically in
reversing the steps of the previous procedure. Two
additional considerations must be taken into
account. First: the floating-point number may not
be an exact integer. Truncating the excess
hexadecimal digits on the right requires shifting the
number one digit position farther to the right than
desired for the final result, so that the units digit
occupies the position of the guard digit Second: the
floating-point number may have to be tested as to
whether it is outside the range of numbers
representable as a signed binary integer.

Assume that floating-point register 6 contains
the number 59.25 10 = 3B.416 in normalized form:

FPR6 42 3B 400000000000

Further, assume three eight-byte fields in
storage: TEMP, for use as temporary storage, and
the constants 232 (TW032) and 231 (TW031R) in
the following formats:
TW032 4E 00 00 01 00 00 00 00
TW031R 4F 00 00 00 08 000000

The constant TW031R is shifted right one more
position than the constant TW031 of the previous
example, so as to force the units digit into the
guard-digit position.

The following instruction sequence performs the
integer truncation, range tests, and conversion to a
signed binary integer in general register 8 (GR8):

Result
SO 6,TW031R FPR6:

CS 7F FF FF C5 00 00 00
BC 11,OVERFLOW Branch to overflow

routine if result
non-negative

AW 6,TW032 FPR6:
4E 00 00 00 SO 00 00 3B

BC 4,OVERFLOW Branch to overflow
routine if result
negative

STO 6,TEMP TEMP:
4E 00 00 00 SO 00 00 3B

XI TEMP+4,X ' SO ' TEMP:
4E 00 00 00 00 00 00 3B

L S,TEMP+4 GRS:
00 00 00 03

A-32 IBM 4300 Processors Principles of Operation

The SUBTRACT NORMALIZED (SD)
instruction shifts the fraction of the number to the
right until it lines up with TW031R, which causes
the fraction digit 4 to fall to the right of the guard
digit and be lost; the result of subtracting 231 from
the remaining digits is renormalized. The result
should be negative; if not, the original number was
too large in the positive direction. The first
BRANCH ON CONDITION (BC) performs this
test.

The ADD UNNORMALIZED (A W) instruction
adds 232: 231 to correct for the previous subtraction
and another 231 to change to an all-positive range.
The second BC tests for a negative result, showing
that the number was too large in the negative
direction. The unnormalized result is placed in
temporary storage by the STORE (STD)
instruction. There the leftmost bit of the binary
integer is inverted by the EXCLUSIVE OR (XI)
instruction before being loaded into GR8.

Multiprogramming and Multiprocessing
Examples
Although the 4300 Processors make no provision
for multiple-CPU systems, the references to
multiprocessing may be helpful when writing
problem-state programs that are to run correctly on
multiprocessing configurations of System/370 as
well.

When two or more programs sharing common
storage locations are running concurrently in a
multiprogramming or multiprocessing environment,
one program may, for example, set a flag bit in the
common-storage area for testing by another
program. It should be noted that the instructions
AND (NI or NC), EXCLUSIVE OR (XI or XC),
and OR (01 or OC) could be used to set flag bits
in a multiprogramming environment; but the same
instructions may cause program logic errors in a
multiprocessing system where two or more CPUs
can fetch, modify, and store data in the same
storage locations simultaneously.

Example of a Program· Failure Using OR
Immediate
Assume that two independent programs try to set
different bits to one in a common byte in storage.
The following example shows how the use of the
instruction OR immediate (01) can fail to
accomplish this, if the programs are executed nearly
simultaneously on two different CPUs. One of the
possible error situations is depicted.

Execution of Execution of
instruction instruction
01 FLAGS,X'Ol' FLAGS 01 FLAGS,X'SO'
on CPU A on CPU B

X'OO' Fetch
FLAGS X'OO'

Fetch X'OO'
FLAGS X'OO'

X'OO' OR X'SO'
into X'OO'

OR X' a l' X'OO'
into X'OO'

X'SO' Store X'SO'
into FLAGS

Store X'Ol' X' a l'
into FLAGS

FLAGS should have value of X'S1' follow­
ing both updates.

The problem shown here is that the value stored
by the 01 instruction executed on CPU A overlays
the value that was stored by CPU B. The X'80'
flag bit was erroneously turned off, and the date is
now invalid.

The COMPARE AND SWAP instruction has
been provided to overcome this and similar
problems.

COMPARE AND SWAP (CS, CDS)
The COMPARE AND SWAP (CS) and
COMPARE DOUBLE AND SWAP (CDS)
instructions can be used in multiprogramming or
multiprocessing environments to serialize access to
counters, flags, control words, and other common
storage areas.

The following examples of the use of the
COMPARE AND SWAP and COMPARE
DOUBLE AND SW AP instructions illustrate the
applications for which the instructions are intended.
It is important to note that these are examples of
functions that can be performed by programs
running enabled for interruption
(multiprogramming) or by programs that are
running on a multiprocessing configuration. That
is, the routine allows a program to modify the­
contents of a storage location while running
enabled, even though the routine may be
interrupted by another program on the same CPU
that will update the location, and even though the
possibility exists that another CPU may
simultaneously update the same location.

The CS instruction first checks the value of a
storage location and then modifies it only if the
value is what the program expects; normally this
would be a previously fetched value. If the value

in storage is not what the program expects, then
the location is not modified; instead, the current
value of the location is loaded into a general
register, in preparation for the program to loop
back and try again. During the execution of CS,
no other CPU can access the specified location.

Setting a Single Bit
The following instruction sequence shows how the
CS instruction can be used to set a single bit in
storage to one. Assume that FLAGS is the first
byte of a word in storage called "WORD."

LA 6,X'SO'

SLL 6,24

L 7,WORD

RETRY LR S,7

OR S,6

Put bit to be ORed
into GR6

Shift left 24 places to
align the byte to be
ORed with the loca­
tion of FLAGS within
WORD

Get original flag bit
values

Put flags to be modi­
fied into GRS

Set bit to one in new
copy of flags

CS 7,8,WORD Store new flags unless
original flags were
changed

BC 4,RETRY If new flags are not
stored, try again

The format of the CS instruction is:

Machine Format

Op Code

I 1 BA 7
S 1****1

Assembler Format

Op Code R1,R3,S2

CS 7,S,WORD

The CS instruction compares the first operand
(general register 7 containing the original flag
values) to the second operand (WORD) while
storage access to the specified location is not
permitted to any CPU other than the one executing
the CS instruction.

If the comparison is successful, indicating that
FLAGS still has the same value that it originally
had, the modified copy in general register 8 is
stored into FLAGS. If FLAGS has changed since
it was loaded, the compare will not be successful,
and the current value of FLAGS is loaded into
general register 7.

Appendix A. Number Representation and Instruction~Use Examples A~33

The CS instruction sets condition code 0 to
indicate a successful compare and swap, and
condition code 1 to indicate an unsuccessful
compare and swap.

The program executing the sample instructions
tests the condition code following the CS
instruction and reexecutes the flag-modifying
instructions if the CS instruction indicated an
unsuccessful comparison. When the CS instruction
is successful, the program continues execution
outside the loop and FLAGS contail}s valid data.

The branch to RETRY will be taken only if
some other program modifies the update location.
This type of a loop differs from the typical
"bit-spin" loop. In a bit-spin loop, the program
continues to loop until the bit changes. In this
example, the program continues to loop only if the
value does change during each iteration. If a
number of CPUs simultaneously attempt to modify
a single location by using the sample instruction
sequence, one CPU will fall through on· the first
try, another will loop once, and so on until all
CPUs have succeeded.

Updating Counters
In this example, a 32-bit counter is updated by a
program using the CS instruction to ensure that the
counter will be correctly updated. The original
value of the counter is obtained by loading the
word containing the counter into general register 7.
This value is moved into general register 8 to
provide a modifiable copy, and general register 6
(containing an increment to the counter) is added
to the modifiable copy to provide the updated
counter value. The CS instruction is used to ensure
valid storing of the counter.

The program updating the counter checks the
result by examining the condition code. The
condition code 0 indicates a successful update, and
the program can proceed. If the counter had been
changed between the time that the program loaded
its original value and the time that it executed the
CS instruction, the CS instruction would have

A-34 IBM 4300 Processors Principles of Operation

loaded the new counter value into general register
7 and set the condition code to 1, indicating an
unsuccessful update. The program then must
update the new counter value in general register 7
and retry the CS instruction, retesting the condition
code, and retrying until a successful update is
completed.

The following instruction sequence performs the
above procedure:

LA 6, 1 Put increment (1) into
GR6

L 7,CNTR Put original counter
value into GR7

LOOP LR 8,7 Set up copy in GR8 to
modify

AR 8,6 Increment copy
CS 7,8,CNTR Update counter in

storage
BC 4,LOOP If original value had

changed, update new
value

The following shows two CPU s, A and B,
executing this instruction sequence simultaneously:
both CPUs attempt to add one to CNTR.

CPU A CPU B Comments
GR7 GR8 CNTR GR7 GR8 --16

16 16 CPU A loads GR7
and GR8 from CNTR

16 16 CPU B loads GR7
and GR8 from CNTR

17 CPU B adds one to
GR8

17 CPU A adds one to
GR8

17 CPU A executes CS;
successful match,
store

17 CPU B executes CS;
no match, GR7
changed to CNTR
value

18 CPU B loads GR8
from GR7, adds
one to GR8

18 CPU B executes CS;
successful match,
store

Appendix B. Lists of Instructions

The following three figures list instructions
arranged by name, mnemonic, and operation code.
Some models may offer instructions that do not
appear in the figures, such as those provided for
emulation or as part of special or custom features.

The operation code 00 with a two-byte
instruction format is allocated for use by the
program when an indication of an invalid operation
is required. It is improbable that this operation
code will ever be assigned to an instruction
implemented in the CPU.

Explanation of Symbols in "Characteristics" and
"Op Code" Columns

A Access exceptions.
A 1 Access exceptions; not all access

exceptions may occur; see instruction
description for details.

B PER branch event.
C Condition code is set.
D Data exception.
DF Decimal-overflow exception.
DK Decimal-divide exception.
DM DIAGNOSE may generate various

program exceptions and may change the
condition code.

EO Exponent-overflow exception.
EU Exponent-underflow exception.
EX Execute exception.

FK
IF
II
IK
L
LS
MO

Ip
PS
PT
R
RR
RS
RX
S
SI
SO
SP
SS
ST
$
$1

*

Floating-point-divide exception.
Fixed-point-overflow exception.
Interruptible instruction.
Fixed-point-divide exception.
New condition code loaded.
Significance exception.
Monitor event.
Privileged-operation exception.
Page-state exception.
Page-transition exception.
PER general-register-alteration event.
RR instruction format.
RS instruction format.
RX instruction format.
S instruction format.
SI instruction format.
Special-operation exception.
Specification exception.
SS instruction format.
PER storage-alteration event.
Causes serialization
Causes serialization when the M 1 and R2
fields contain all ones and all zeros,
respectively.
Bits 8-14 of the operation code are
ignored.
Bits 8-15 of the operation code are
ignored.

Appendix B. Lists of Instructions B-1

Mne- Op Page
Name monic Characteristics Code No.

ADD AR RR C IF R 1A 7-7
ADD A RX C A IF R 5A 7-7
ADD DECIMAL AP SS C A 0 OF ST FA 8-4
ADD HALFWORD AH RX C A IF R 4A 7-7
ADD LOGICAL ALR RR C R 1E 7-7

ADD LOGICAL AL RX C A R 5E 7-7
ADD NORMALIZED (extended) AXR RR C SP EU EO LS 36 9-6
ADD NORMALIZED (long) ADR RR C SP EU EO LS 2A 9-6
ADD NORMALIZED (long) AD RX C A SP EU EO .LS 6A 9-6
ADD NORMALIZED (short) AER RR C SP EU EO LS 3A 9-6

ADD NORMAL1ZED (short) AE RX C A SP EU EO LS 7A 9-6
ADD UNNORMALIZED (long) AWR RR C SP EO LS 2E 9-7
ADD UNNORMALIZED (long) AW RX C A SP EO LS 6E 9-7
ADD UNNORMALIZED (short) AUR RR C SP EO LS 3E 9-7
ADD UNNORMALIZED (short) AU RX C A SP EO LS 7E 9-7

AND NR RR C R 14 7-7
AND N RX C A R 54 7-7
AND (character) NC SS C A ST 04 7-'-7
AND (immediate) NI SI C A ST 94 7-7
BRANCH AND LINK BALR RR B R 05 7-8

BRANCH AND LINK BAL RX B R 45 7-8
BRANCH ON CONDITION BCR RR $1 B 07 7-9
BRANCH ON CONDITION BC RX B 47 7-9
BRANCH ON COUNT BCTR RR B R 06 7-9
BRANCH ON COUNT BCT RX B R 46 7-9

BRANCH ON INDEX HIGH BXH RS B R 86 7-10
BRANCH ON INDEX LOW OR EQUAL BXLE RS B R 87 7-10
CLEAR 1/0 CLRIO S C P $ 9001* 12-14
CLEAR PAGE CLRP S P At PS ST B215 10-3
COMPARE CR RR C 19 7-11

COMPARE C RX C A 59 7-11
COMPARE (long) CDR RR C SP 29 9-8
COMPARE (long) CD RX C A SP 69 9-8
COMPARE (shor t) CER RR C SP 39 9-8
COMPARE (short) CE RX C A SP 79 9-8

COMPARE AND SWAP CS RS C A SP $ R ST BA 7-11
COMPARE DECIMAL CP SS C A 0 F9 8-5
COMPARE DOUBLE AND SWAP CDS RS C A SP $ R ST BB 7-11
COMPARE HALFWORD CH RX C A 49 7-13
COMPARE LOGICAL CLR RR C 15 7-13

COMPARE LOGICAL CL RX C A 55 7-13
COMPARE LOGICAL (character) CLC SS C A 05 7-13
COMPARE LOGICAL (immediate) CLI SI C A 95 7-13
COMPARE LOGICAL CHARACTERS UNDER MASK CLM RS C A SO 7-13
COMPARE LOGICAL LONG CLCL RR C A SP " R OF 7-14

CONNECT PAGE CTP RS C P A1 SP PT R BO 10-3
CONVERT TO BINARY CVB RX A 0 IK R 4F 7-15
CONVERT TO DECIMAL CVD RX A ST 4E 7-16
DECONFIGURE PAGE DEP S P A1 SP PT B21B 10-3
DIAGNOSE P OM 83 10-3

DISCONNECT PAGE DCTP S C P A1 SP PT B21C 10-5
DIVIDE DR RR SP IK R 10 7-16
DIVIDE 0 RX A SP IK R 50 7-16
DIVIDE (long) DDR RR SP EU EO FK 20 9-8

DIVIDE (long) DO RX A SP EU EO FK 60 9-8
DIVIDE (short) DER RR SP EU EO FK 3D 9-8
DIVIDE (short) DE RX A SP EU EO FK 70 9-8
DIVIDE DECIMAL DP SS A SP 0 OK ST FO 8-5
EDIT ED SS C A 0 ST DE 8-6

EDIT AND MARK EDMK SS C A D R ST OF 8-9
EXCLUSIVE OR XR RR C R 17 7-16
EXCLUSIVE OR X RX C A R 57 7-16
EXCLUSIVE OR (character) XC SS C A ST 07 7-16
EXCLUSIVE OR (immediate) XI SI C A ST 97 7-16

Instructions Arranged by Name (Part 1 of 3)

B-2 IBM 4300 Processors Principles of Operation

Mne- Op Page
Name monic Characteristics Code No.

EXECUTE EX RX A 5P EX 44 7-17
HALT DEVICE HDV S C P $ 9E01* 12-16
HALT I/O HID S C P $ 9EOO* 12-19
HALVE (long) HDR RR SP EU 24 9-9
HALVE (short) HER RR SP EU 34 9-9

INSERT CHARACTER I C RX A R 43 7-18
INSERT CHARACTERS UNDER MASK ICM R5 C ~1 R BF 7-18
INSERT PAGE BITS IPB RS P R B4 10-5
INSERT PSW KEY IPK S P R B20B 10-5
INSERT STORAGE KEY ISK RR P A1 SP R 09 10-5

LOAD LR RR R 18 7-19
LOAD L RX A R 58 7-19
LOAD (long) LDR RR SP 28 9-10
LOAD (long) LD RX A SP 68 9-10
LOAD {short} LER RR SP 38 9-10

LOAD {short} LE RX A SP 78 9-10
LOAD ADDRESS LA' RX R 41 7-19
LOAD AND TEST LTR RR C R 12 7-19
LOAD AND TEST {long} LTDR RR C SP 22 9-10
LOAD AND TEST {short} LTER RR C 5P 32 9-10

LOAD COMPLEMENT LCR RR C IF R 13 7-19
LOAD COMPLEMENT (long) LCDR RR C SP 23 9-10
LOAD COMPLEMENT {short} LCER RR C SP 33 9-10
LOAD CONTROL LCn RS P A SP B7 10-6
LOAD FRAME INDEX LFI RS C P R B8 10-6

LOAD HALFWORD LH RX A R 48 7-20
LOAD MULTIPLE LM RS A R 98 7-20
LOAD NEGATIVE LNR RR C R 11 7-20
LOAD NEGATIVE (long) LNDR RR C SP 21 9-11
LOAD NEGATIVE { short} LNER RR C SP 31 9-11

LOAD POSITIVE LPR RR C IF R 10 7-20
LOAD POSITIVE { long} LPDR RR C SP 20 9-11
LOAD POSITIVE {short} LPER RR C SP 30 9-11
LOAD PSW LP5W S L P A 5P $ 82 10-7
LOAD ROUNDED {extended to long} LRDR RR 5P EO 25 9-11

LOAD ROUNDED (long to short) LRER RR
A1

5P EO 35 9-11
MAKE ADDRESSABLE MAD 5 C P PT B21D 10-7
MAKE UNADDRESSABLE MUN S C P A1 SP PT B21E 10-7
MONITOR CALL MC SI SP MO AF 7-21
MOVE {character} MVC SS A ST D2 7-21

MOVE {immediate} MVI SI A 5T 92 7-21
MOVE INVERSE MVCIN SS A ST E8 7-22
MOVE LONG MVCL RR C A 5P II R ST OE 7-22
MOVE NUMERICS MVN S5 A ST D1 7-24
MOVE WITH OFFSET MVO S5 A ST F1 7-25

MOVE ZONES MVZ SS A ST D3 7-26
MULTIPLY MR RR 5P R 1C 7-26
MULTIPLY M RX A SP R 5C 7-26
MULTIPLY {extended} MXR RR 5P EU EO 26 9-12
MULTIPLY {long to extended} MXDR RR SP EU EO 27 9-12

MULTIPLY {long to extended} MXD RX A SP EU EO 67 9-12
MULTIPLY {long} MDR RR 5P EU EO 2C 9-12
MULTIPLY {long} MD RX A SP EU EO 6C 9-12
MULTIPLY {short to long} MER RR SP EU EO 3C 9-12
MULTIPLY {short to long} ME RX A SP EU EO 7C 9-12

MULTIPLY DECIMAL MP SS A SP D ST FC 8-9
MULTIPLY HALFWORD MH RX A R 4C 7-26
OR OR RR C R 16 7-27
OR 0 RX C A R 56 7-27
OR (character) OC SS C A ST 06 7-27

OR {immediate} 01 51 C A ST 96 7-27
PACK PACK SS ~1 ST F2 7-28
RESET REFERENCE BIT RRB S C P B213 10-8
RETRIEVE STATUS AND PAGE RSP SS C P A ST D8 10-8
SET CLOCK SCK S C P A SP B204 10-8

Instructions Arranged by Name (Part 2 of 3)

Appendix B. Lists of Instructions B-3

Mne- Op Page
Name monic Characteristics Code No.

SET CLOCK COMPARATOR SCKC S P A SP B206 10-9
SET CPU TIMER SPT S P A SP B208 10-9
SET PAGE BITS SPB RS C P Al B5 10-9
SET PROGRAM MASK SPM RR L 04 7-28
SET PSW KEY FROM ADDRESS SPKA S P B20A 10-10

SET STORAGE KEY SSK RR P Al SP 08 10-10
SET SYSTEM MASK SSM S P A SP SO 80 10-11
SHIFT AND ROUND DECIMAL SRP SS C A D OF ST FO 8-10
SHIFT LEFT DOUBLE SLDA RS C SP IF R 8F 7-28
SHIFT LEFT DOUBLE LOGICAL SLDL RS SP R 80 7-29

SHIFT LEFT SINGLE SLA RS C IF R 8B 7-29
SHIFT LEFT SINGLE LOGICAL SLL RS R 89 7-30
SHIFT RIGHT DOUBLE SRDA RS C SP R 8E 7-30
SHIFT RIGHT DOUBLE LOGICAL SRDL RS SP R 8C 7-30
SHIFT RIGHT SINGLE SRA RS C R 8A 7-31

SHIFT RIGHT SINGLE LOGICAL SRL RS R 88 7-31
START I/O SIO S C P $ 9COO* 12-21
START I/O FAST RELEASE SIOF S C P $ 9C01* 12-21
STORE ST RX A ST 50 7-31
STORE (long) STD RX A SP ST 60 9-13

STORE (shor t) STE RX A SP ST 70 9-13
STORE CAPACITY COUNTS STCAP S P A ST B21F 10-11
STORE CHANNEL 10 STIDC S C P $ B203 12-23
STORE CHARACTER STC RX A ST 42 7-32
STORE CHARACTERS UNDER MASK STCM RS A ST BE 7-32

STORE CLOCK STCK S C A $ ST B205 7-32
STORE CLOCK COMPARATOR STCKC S P A SP ST B207 10-11
STORE CONTROL STCTL RS P A SP ST B6 10-12
STORE CPU 10 STIDP S P A SP ST B202 10-12
STORE CPU TIMER STPT S P A SP ST B209 10-13

STORE HALFWORD STH RX A ST 40 7-33
STORE MULTIPLE STM RS A ST 90 7-33
STORE THEN AND SYSTEM MASK STNSM SI P A ST AC 10-13
STORE THEN OR SYSTEM MASK STOSM SI P A SP ST AD 10-13
SUBTRACT SR RR C IF R 1B 7-33

SUBTRACT S RX C A IF R 5B 7-33
SUBTRACT DECIMAL SP SS C A 0 OF ST FB 8-11
SUBTRACT HALFWORD SH RX C A IF R 4B 7-34
SUBTRACT LOGICAL SLR RR C R 1F 7-34
SUBTRACT LOGICAL SL RX C A R 5F 7-34

SUBTRACT NORMALIZED (extended) SXR RR C SP EU EO LS 37 9-14
SUBTRACT NORMALIZED (long) SDR RR C SP EU EO LS 2B 9-14
SUBTRACT NORMALIZED (long) SO RX C A SP EU EO LS 6B 9-14
SUBTRACT NORMALIZED (short) SER RR C SP EU EO LS 3B 9-14
SUBTRACt NORMALIZED (short) SE RX C A SP EU EO LS 7B 9-14

SUBTRACT UNNORMALIZED (long) SWR RR C SP EO LS 2F 9-14
SUBTRACT UNNORMALIZED (long) SW RX C A SP EO LS 6F 9-14
SUBTRACT UNNORMALIZED (short) SUR RR C SP EO LS 3F 9-14
SUBTRACT UNNORMALIZED (short) SU RX C A SP EO LS 7F 9-14
SUPERVISOR CALL SVC RR $ OA 7-34

TEST AND SET TS S C A $ ST 93 7-35
TEST CHANNEL TCH S C P $ 9FOO;t 12-24
TEST I/O TIO S C P $ 9000* 12-25
TEST UNDER MASK TM S I C A 91 7-35
TRANSLATE TR SS A ST DC 7-36

TRANSLATE AND TEST TRT SS C A R DO 7-36
UNPACK UNPK SS A ST F3 7-37
ZERO AND ADD ZAP S5 C A 0 OF 5T F8 8-11

Instructions Arranged by Name (Part 3 of 3)

B-4 IBM 4300 Processors Principles of Operation

Mne- Op Page
monic Name Characteristics Code No.

DIAGNOSE P DM 83 10-3
A ADD RX C A IF R SA 7-7
AD ADD NORMALIZED { long} RX C A SP EU EO lS 6A 9-6
ADR ADD NORMALIZED { long} RR C SP EU EO lS 2A 9-6
AE ADD NORMALIZED {short} RX C A SP EU EO lS 7A 9-6

AER ADD NORMALIZED (5hort) RR C SP EU EO lS 3A 9-~
AH ADD HAlFWORD RX C A IF R 4A 7-7
Al ADD lOGICAL RX C A R 5E 7-7
AlR ADD lOGICAL RR C R 1E 7-7
AP ADD DECIMAL SS C A D DF ST FA 8-4

AR ADD RR C IF R 1A 7-7
AU ADD UNNORMAllZED {short} RX C A SP EO lS 7E 9-7
AUR ADD UNNORMAllZED {short} RR C SP EO lS 3E 9-7
AW ADD UNNORMAllZED { long} RX C A SP EO lS 6E 9-7
AWR ADD UNNORMAllZED { long} RR C SP EO lS 2E 9-7

AXR ADD NORMALIZED {extended} RR C SP EU EO lS 36 9-6
BAl BRANCH AND liNK RX B R 45 7-8
BAlR BRANCH AND liNK RR B R 05 7-8
BC BRANCH ON CONDITION RX B 47 7-9
BCR BRANCH ON CONDITION RR $1 B 07 7-9

BCT BRANCH ON COUNT RX B R 46 7-9
BCTR BRANCH ON COUNT RR B R 06 7-9
BXH BRANCH ON INDEX HIGH RS B R 86 7-10
BXlE BRANCH ON INDEX lOW OR EQUAL RS B R 87 7-10
C COMPARE RX C A 59 7-11

CD COMPARE { long} RX C A SP 69 9-8
CDR COMPARE {long} RR C SP 29 9-8
CDS COMPARE DOUBLE AND SWAP RS C A SP $ R ST BB 7-11
CE COMPARE {short} RX C A SP 79 9-8
CER COMPARE {short} RR C SP 39 9-8

CH COMPARE HAlFWORD RX C A 49 7-13
CL COMPARE lOGICAL RX C A 55 7-13
ClC COMPARE lOGICAL {character} SS C A D5 7-13
ClCl COMPARE lOGICAL lONG RR C A SP II R OF 7-14
Cli COMPARE lOGICAL {immediate} SI C A 95 7-13

ClM COMPARE lOGICAL CHARACTERS UNDER MASK RS C A BD 7-13
ClR COMPARE lOGICAL RR C 15 7-13
ClRIO CLEAR liD S C P $ 9D01* 12-14
ClRP CLEAR PAGE S P A1 PS ST B215 10-3
CP COMPARE DECIMAL SS C A D F9 8-5

CR COMPARE RR C 19 7-11
CS COMPARE AND SWAP RS C A SP $ R ST BA 7-11
CTP CONNECT PAGE RS C P A1 SP PT R BO 10-3
CVB CONVERT TO BINARY RX A D IK R 4F 7-15
CVD CONVERT TO DECIMAL RX A ST 4E 7-16

D DIVIDE RX A SP IK R 5D 7-16
DCTP DISCONNECT PAGE S C P A1 SP PT B21C 10-5
DD DIVIDE {long} RX A SP EU EO FK 6D 9-8
DDR DIVIDE {long} RR SP EU EO FK 2D 9-8
DE DIVIDE {short} RX A SP EU EO FK 7D 9-8

DEP DECONFIGURE PAGE S P A1 SP PT B21B 10-3
DER DIVIDE {short} RR SP EU EO FK 3D 9-8
DP DIVIDE DECIMAL SS A SP D DK ST FD 8-5
DR DIVIDE RR SP IK R 1D 7-16

ED EDIT SS C A D ST DE 8-6
EDMP ED IT AND MARK SS C A D R ST DF 8-9
EX EXECUTE RX A SP EX 44 7-17
HDR HALVE {long} RR SP EU 24 9-9
HDV HALT DEVICE S C P $ 9E01* 12-16

HER HALVE {short} RR SP EU 34 9-9
HIO HALT 1/0 S C P $ 9EOO* 12-19
IC INSERT CHARACTER RX A R 43 7-18
ICM INSERT CHARACTERS UNDER MASK RS C A R BF 7-18
IPB INSERT PAGE BITS RS P A1 R B4 10-5

Instructions Arranged by Mnemonic (Part 1 of 3)

Appendix B. Lists of Instructions B-5

Mne- Op Page
monic Name Characteristics Code No.

IPK INSERT PSW KEY S P R B20B 10-5
ISK INSERT STORAGE KEY RR P Al SP R 09 10-5
L LOAD RX A R 58 7-19
LA LOAD ADDRESS RX R 41 7-19
LCDR LOAD COMPLEMENT (long) RR C SP 23 9-10

LCER LOAD COMPLEMENT (short) RR C SP 33 9-10
LCR LOAD COMPLEMENT RR C IF R 13 7-19
LCn LOAD CONTROL RS P A SP B7 10-6
LD LOAD (long) RX A SP 68 9-10
LDR LOAD (long) RR SP 28 9-10

LE LOAD {short} RX A SP 78 9-10
LER LOAD (short) RR SP 38 9-10
LFI LOAD FRAME INDEX RS C P R B8 10-6
LH LOAD HALFWORD RX A R 48 7-20
LM LOAD MULTIPLE RS A R 98 7-20

LNDR LOAD NEGATIVE (long) RR C SP 21 9-11
LNER LOAD NEGATIVE (short) RR C SP 31 9-11
LNR LOAD NEGATIVE RR C R 11 7-20
LPDR LOAD POSITIVE (long) RR C SP 20 9-11
LPER LOAD POSITIVE (short) RR C SP 30 9-11

LPR LOAD POSITIVE RR C IF R 10 7-20
LPSW LOAD PSW S L P A SP $ 82 10-7
LR LOAD RR R 18 7-19
LRDR LOAD ROUNDED (extended to long) RR SP EO 25 9-11
LRER LOAD ROUNDED (long to short) RR SP EO 35 9-11

LTDR LOAD AND TEST (long) RR C SP 22 9-10
LTER LOAD AND TEST (short) RR C SP 32 9-10
LTR LOAD AND TEST RR C R 12 7-19
M MULTIPLY RX A SP R 5C 7-26
MAD MAKE ADDRESSABLE S C P Al PT B21D 10-7

MC MON /TOR CALL SI SP MO AF 7-21
MD MULTIPLY (long) RX A SP EU EO 6C 9-12
MDR MULTIPLY (long) RR SP EU EO 2C 9-12
ME MULTIPLY (short to long) RX A SP EU EO 7C 9-12
MER MULTIPLY (short to long) RR SP EU EO 3C 9-12

MH MULTIPLY HALFWORD RX A R 4C 7-26
MP MULTIPLY DECIMAL SS A SP D ST FC 8-9
MR MULTIPLY RR SP R 1 C 7-26
MUN MAKE UNADDRESSABLE S C P Al SP PT B21E 10-7
MVC MOVE (character) SS A ST D2 7-21

MVCIN MOVE INVERSE SS A ST E8 7-22
MVCL MOVE LONG RR C A SP II R ST OE 7-22
MVI MOVE (immediate) SI A ST 92 7-22
MVN MOVE NUMERICS SS A ST Dl 7-24
MVO MOVE WITH OFFSET SS A ST Fl 7-25

MVZ MOVE ZONES SS A ST D3 7-26
MXD MULTIPLY (long to extended) RX A SP EU EO 67 9-12
MXDR MULTIPLY (long to extended) RR SP EU EO 27 9-12
MXR MULTIPLY (extended) RR SP EU EO 26 9-12
N AND RX C A R 54 7-7

NC AND (character) SS C A ST D4 7-7
NI AND (i mmed i ate) S I C A ST 94 7-7
NR AND RR C R 14 7-7
0 OR RX C A R 56 7-27
OC OR (character) SS C A ST D6 7-27

01 OR (immediate) SI C A ST 96 7-27
OR OR RR C R 16 7-27
PACK PACK SS A ST F2 7-28
RRB RESET REFERENCE BIT S C P Al B213 10-8
RSP RETRIEVE STATUS AND PAGE SS C P A ST D8 10-8

S SUBTRACT RX C A IF R 5B 7-33
SCK SET CLOCK S C P A SP B204 10-8
SCKC SET CLOCK COMPARATOR S P A SP B206 10-9
SD SUBTRACT NORMALIZED (long) RX C A SP EU EO LS 6B 9-14
SDR SUBTRACT NORMALIZED (long) RR C SP EU EO LS 2B 9-14

Instructions Arranged by Mnemonic (Part 2 of 3)

B-6 IBM 4300 Processors Principles of Operation

Mne- Op Page
monic Name Characteristics Code No.

SE SUBTRACT NORMALIZED (short) RX C A SP EU EO LS 7B 9-14
SER SUBTRACT NORMALIZED (short) RR C SP EU EO LS 3B 9-14
SH SUBTRACT HALFWORD RX C A IF R 4B 7-34
SID START I/O S C P $ 9COO~~ 12-21
SloF START I/O FAST RELEASE S C P $ 9C01* 12-21

SL SUBTRACT LOGICAL RX C A R 5F 7-34
SLA SHIFT LEFT SINGLE RS C IF R 8B 7-29
SLDA SHIFT LEFT DOUBLE RS C SP IF R 8F 7-28
SLDL SHIFT LEFT DOUBLE LOGICAL RS SP R 8D 7-29
SLL SHIFT LEFT SINGLE LOGICAL RS R 89 7-30

SLR SUBTRACT LOGICAL RR C R 1F 7-34
SP SUBTRACT DECIMAL SS C ~1 D DF ST FB 8-11
SPB SET PAGE BITS RS C P B5 10-9
SPKA SET PSW KEY FROM ADDRESS S P B20A 10-10
SPM SET PROGRAM MASK RR L 04 7-28

SPT SET CPU TIMER S P A SP B208 10-9
SR SUBTRACT RR C IF R 1B 7-33
SRA SHIFT RIGHT SINGLE RS C R 8A 7-31
SRDA SHIFT RIGHT DOUBLE RS C SP R 8E 7-30
SRDL SHIFT RIGHT DOUBLE LOGICAL RS SP R 8C 7-30

SRL ISH 1FT RIGHT SINGLE LOGICAL I~~ I 10
R 88

I
7-31

I coo SHIFT AND ROUND DECIMAL C A 1"\1:' ST FO o 1 (\
J"r

A1
ur U-IU

SSK SET STORAGE KEY RR P SP 08 10-10
SSM SET SYSTEM MASK S P A SP SO 80 10-11
ST STORE RX A ST 50 7-31

STC STORE CHARACTER RX A ST 42 7-32
STCAP STORE CAPACITY COUNTS S P A ST B21F 10-11
STCK STORE CLOCK S C A $ ST B205 7-32
STCKC STORE CLOCK COMPARATOR S P A SP ST B207 10-11
STCM STORE CHARACTERS UNDER MASK RS A ST BE 7-32

STCTL STORE CONTROL RS P A SP ST B6 10-12
STD STORE (long) RX A SP ST 60 9-13
STE STORE (short) RX A SP ST 70 9-13
STH STORE HALFWORD RX A ST 40 7-33
STIDC STORE CHANNEL ID S C P $ B203 12-23

STIDP STORE CPU ID S P A SP ST B202 10-12
STM STORE MULTIPLE RS A ST 90 7-33
STNSM STORE THEN AND SYSTEM MASK SI P A ST AC 10-13
SToSM STORE THEN OR SYSTEM MASK SI P A SP ST AD 10-13
STPT STORE CPU TIMER S P A SP ST B209 10-13

SU SUBTRACT UNNoRMALIZED (short) RX C A SP EO LS 7F 9-14
SUR SUBTRACT UNNoRMALIZED (short) RR C SP EO LS 3F 9-14
SVC SUPERVISOR CALL RR $ OA 7-34
SW SUBTRACT UNNoRMALIZED (long) RX C A SP EO LS 6F 9-14
SWR SUBTRACT UNNoRMALIZED (long) RR C SP EO LS 2F 9-14

SXR SUBTRACT NORMALIZED (extended) RR C SP EU EO LS 37 9-14
TCH TEST CHANNEL S C P $ 9FOO;t 12-24
TID TEST I/O S C P $ 9DOO* 12-25
TM TEST UNDER MASK SI C A 91 7-35
TR TRANSLATE SS A ST DC 7-36

TRT TRANSLATE AND TEST SS C A R DD 7-36
TS TEST AND SET S C A $ ST 93 7-35
UNPK UNPACK SS A ST F3 7-37
X EXCLUSIVE OR RX C A R 57 7-16
XC EXCLUSIVE OR (character) SS C A ST D7 7-16

XI EXCLUSIVE OR (immed i ate) SI C A ST 97 7-16
XR EXCLUSIVE OR RR C R 17 7-16
ZAP ZERO AND ADD SS C A D DF ST F8 8-11

Instructions Arranged by Mnemonic (Part 3 of 3)

j\ppendix B. Lists of Instructions B-7

Op Mne- Page
Code Name monic Characteristics No.

04 SET PROGRAM MASK SPM RR L 7-28
05 BRANCH AND LINK BALR RR B R 7-8
06 BRANCH ON COUNT BCTR RR B R 7-9
07 BRANCH ON CONDITION BCR RR $1 B 7-9
08 SET STORAGE KEY SSK RR P Al SP 10-10

09 INSERT STORAGE KEY ISK RR P Al SP R 10-5
OA SUPERVISOR CALL SVC RR $ 7-34
OE MOVE LONG MVCL RR C A SP II R ST 7-22
OF COMPARE LOGICAL LONG CLCL RR C A SP II R 7-14
10 LOAD POSITIVE LPR RR C IF R 7-20

11 LOAD NEGATIVE LNR RR C R 7-20
12 LOAD AND TEST LTR RR C R 7-19
13 LOAD COMPLEMENT LCR RR C IF R 7-19
14 AND NR RR C R 7-7
15 COMPARE LOGICAL CLR RR C 7-13

16 OR OR RR C R 7-27
17 EXCLUSIVE OR XR RR C R 7-16
18 LOAD LR RR R 7-19
19 COMPARE CR RR C 7-11
lA ADD AR RR C IF R 7-7

lB SUBTRACT SR RR C IF R 7-33
lC MULTIPLY MR RR SP R 7-26
lD DIVIDE DR RR SP IK R 7-16
IE ADD LOGICAL ALR RR C R 7-7
1 F SUBTRACT LOGICAL SLR RR C R 7-34

20 LOAD POSITIVE (long) LPDR RR C SP 9-11
21 LOAD NEGATIVE (long) LNDR RR C SP 9-11
22 LOAD AND TEST (long) LTDR RR C SP 9-10
23 LOAD COMPLEMENT (long) LCDR RR C SP 9-10
24 HALVE (long) HDR RR SP EU 9-9

25 LOAD ROUNDED (extended to long) LRDR RR SP EO 9-11
26 MULTIPLY (extended) MXR RR SP EU EO 9-12
27 MULTIPLY (long to extended) MXDR RR SP EU EO 9-12
28 LOAD (long) LOR RR SP 9-10
29 COMPARE (long) CDR RR C SP 9-8

2A ADD NORMALIZED (long) ADR RR C SP EU EO LS 9-6
2B SUBTRACT NORMALIZED (long) SDR RR C SP EU EO LS 9-14
2C MULTIPLY (long) MDR RR SP EU EO 9-12
20 DIVIDE (long) DDR RR SP EU EO FK 9-8
2E ADD UNNORMALIZED (long) AWR RR C SP EO LS 9-7

2F SUBTRACT UNNORMALIZED (long) SWR RR C SP EO LS 9-14
30 LOAD POSITIVE (short) LPER RR C SP 9-11
31 LOAD NEGATIVE (short) LNER RR C SP 9-11
32 LOAD AND TEST (short) LTER RR C SP 9-10
33 LOAD COMPLEMENT (short) LCER RR C SP 9-10

34 HALVE (short) HER RR SP EU 9-9
35 LOAD ROUNDED (long to short) LRER RR SP EO 9-11
36 ADD NORMALIZED (extended) AXR RR C SP EU EO LS 9-6
37 SUBTRACT NORMALIZED (extended) SXR RR C SP EU EO LS 9-14
38 LOAD (short) LER RR SP 9-10

39 COMPARE (short) CER RR C SP 9-8
3A ADD NORMALIZED (short) AER RR C SP EU EO LS 9-6
3B SUBTRACT NORMALIZED (short) SER RR C SP EU EO LS 9-14
3C MULTIPLY (short to long) MER RR SP EU EO 9-12
3D DIVIDE (short) DER RR SP EU EO FK 9-8

3E ADD UNNORMALIZED (short) AUR RR C SP EO LS 9-7
3F SUBTRACT UNNORMALIZED (short) SUR RR C SP EO LS 9-14
40 STORE HALFWORD STH RX A ST 7-33
41 LOAD ADDRESS LA RX R 7-19
42 STORE CHARACTER STC RX A ST 7-32

43 INSERT CHARACTER I C RX A R 7-18
44 EXECUTE EX RX A SP EX 7-17
45 BRANCH AND LINK BAL RX B R 7-8
46 BRANCH ON COUNT BCT RX B R 7-9
47 BRANCH ON CONDITION BC RX B 7-9

Instructions Arranged by Operation Code (Part 1 of 3)

B-8 IBM 4300 Processors Principles of Operation

Op Mne- Page
Code Name monic Characteristics No.

48 LOAD HALFWORD LH RX A R 7-20
49 COMPARE HALFWORD CH RX C A 7-13
4A ADD HALFWORD AH RX C A IF R 7-7
4B SUBTRACT HALFWORD SH RX C A IF R 7-34
4C MULTIPLY HALFWORD MH RX A R 7-26

4E CONVERT TO DECIMAL CVD RX A ST 7-16
4F CONVERT TO BINARY CVB RX A D IK R 7-15
50 STORE ST RX A ST 7-31
54 AND N RX C A R 7-7
55 COMPARE LOGICAL CL RX C A 7-13

56 OR 0 RX C A R 7-27
57 EXCLUSIVE OR X RX C A R 7-16
58 LOAD L RX A R 7-19
59 COMPARE C RX C A 7-11
5A ADD A RX C A IF R 7-7

5B SUBTRACT S RX C A IF R 7-33
5C MULTIPLY M RX A SP R 7-26
5D DIVIDE D RX A SP IK R 7-16
5E ADD LOGICAL AL RX C A R 7-7
5F SUBTRACT LOGICAL SL RX C A R 7-34

60 STORE (long) STD RX A SP ST 9-13
67 MULTIPLY (long to extended) MXD RX A SP EU EO 9-12
68 LOAD (long) LD RX A SP 9-10
69 COMPARE (long) CD RX C A SP 9-8
6A ADD NORMALIZED (long) AD RX C A SP EU EO LS 9-6

6B SUBTRACT NORMALIZED (long) SD RX C A SP EU EO LS 9-14
6C MULTIPLY (long) MD RX A SP EU EO 9-12
6D DIVIDE (long) DD RX A SP EU EO FK 9-8
6E ADD UNNORMALIZED (long) AW RX C A SP EO LS 9-7
6F SUBTRACT UNNORMALIZED (long) SW RX C A SP EO LS 9-14

70 STORE (short) STE RX A SP ST 9-13
78 LOAD (short) LE RX A SP 9-10
79 COMPARE (short) CE RX C A SP 9-8
7A ADD NORMALIZED (short) AE RX C A SP EU EO LS 9-6
7B SUBTRACT NORMALIZED (short) SE RX C A SP EU EO LS 9-14

7C MULTIPLY (short to long) ME RX A SP EU EO 9-12
7D DIVIDE (short) DE RX A SP EU EO FK 9-8
7E ADD UNNORMALIZED (short) AU RX C A SP EO LS 9-7
7F SUBTRACT UNNORMALIZED (short) SU RX C A SP EO LS 9-14
80 SET SYSTEM MASK SSM S P A SP SO 10-11

82 LOAD PSW LPSW S L P A SP $ 10-7
83 DIAGNOSE P DM 10-3
86 BRANCH ON INDEX HIGH BXH RS B R 7-10
87 BRANCH ON INDEX LOW OR EQUAL BXLE RS B R 7-10
88 SHIFT RIGHT SINGLE LOGICAL SRL RS R 7-31

89 SHIFT LEFT SINGLE LOGICAL SLL RS R 7-30
8A SHIFT RIGHT SINGLE SRA RS C R 7-31
8B SHIFT LEFT SINGLE SLA RS C IF R 7-29
8C SHIFT RIGHT DOUBLE LOGICAL SRDL RS SP R 7-30
8D SHIFT LEFT DOUBLE LOGICAL SLDL RS SP R 7-29

8E SHIFT RIGHT DOUBLE SRDA RS C SP R 7-30
8F SHIFT LEFT DOUBLE SLDA RS C SP IF R 7-28
90 STORE MULTIPLE STM RS A ST 7-33
91 TEST UNDER MASK TM SI C A 7-35
92 MOVE (immediate) MVI SI A ST 7-21

93 TEST AND SET TS S C A $ ST 7-35
94 AND (immediate) NI S I C A ST 7-7
95 COMPARE LOGICAL (immediate) CLI SI C A 7-13
96 OR (immediate) 01 SI C A ST 7-27
97 EXCLUSIVE OR (immediate) XI SI C A ST 7-16

98 LOAD MULTIPLE LM RS A R 7-20
9COO'~ START I/O SID S C P $ 12-21
9C01* START I/O FAST RELEASE SIOF S C P $ 12-21
9DOO* TEST I/O TID S C P $ 12-25
9D01'~ CLEAR I/O CLRIO S C P $ 12-14

Instructions Arranged by Operation Code (Part 2 of 3)

Appendix B. Lists of Instructions B-9

Op Mne- Page
Code Name monic Characteristics No.

9EOO* HALT 1/0 HIO S C P $ 12-19
9E01* HALT DEVICE HDV S C P $ 12-16
9FOO;z! TEST CHANNEL TCH S C P $ 12-24
AC STORE THEN AND SYSTEM MASK STNSM SI P A ST 10-13
AD STORE THEN OR SYSTEM MASK STOSM SI P A SP ST 10-13

AF MONITOR CALL MC SI SP MO 7-21
BO CONNECT PAGE CTP RS C P Al SP PT R 10-3
B202 STORE CPU 10 STIDP S P A SP ST 10-12
B203 STORE CHANNEL 10 STIDC S C P $ 12-23
B204 SET CLOCK SCK S C P A SP 10-8

B205 STORE CLOCK STCK S C A $ ST 7-32
B206 SET CLOCK COMPARATOR SCKC S P A SP 10-9
B207 STORE CLOCK COMPARATOR STCKC S P A SP ST 10-11
B208 SET CPU TIMER SPT S P A SP 10-9
B209 STORE CPU TIMER STPT S P A SP ST 10-13

B20A SET PSW KEY FROM ADDRESS SPKA S P 10-10
B20B LNSERT PSW KEY IPK S P R 10-5
B213 RESET REFERENCE BIT RRB S C P Al 10-8
B215 CLEAR PAGE CLRP S P A1 PS ST 10-3
B21B DECONFIGURE PAGE DEP S P Al SP PT 10-3

B21C DISCONNECT PAGE DCTP S C P Al SP PT 10-5
B21D MAKE ADDRESSABLE MAD S C P Al PT 10-7
B21E MAKE UNADDRESSABLE MUN S C P Al SP PT 10-7
B21F STORE CAPACITY COUNTS STCAP S P A ST 10-11

84 INSERT PAGE BITS IPB RS P A1 R 10-5
B5 SET PAGE BITS SPB RS C P A1 10-9
B6 STORE CONTROL STCTL RS P A SP ST 10-12
B7 LOAD CONTROL LCTL RS P A SP 10-6
B8 LOAD FRAME INDEX LFI RS C P R 10-6

BA COMPARE AND SWAP CS RS C A SP $ R ST 7-11
BB COMPARE DOUBLE AND SWAP CDS RS C A SP $ R ST 7-11
BD COMPARE LOGICAL CHARACTERS UNDER MASK CLM RS C A 7-13
BE STORE CHARACTERS UNDER MASK STCM RS A ST 7-32
BF INSERT CHARACTERS UNDER MASK ICM RS C A R 7-18

01 MOVE NUMERICS MVN SS A ST 7-24
02 MOVE (character) MVC SS A ST 7-21
03 MOVE ZONES MVZ SS A ST 7-26
04 AND (character) NC SS C A ST 7-7
05 COMPARE LOGICAL (character) CLC SS C A 7-13

06 OR (character) OC SS C A ST 7-27
07 EXCLUSIVE OR (character) XC SS C A ST 7-16
08 RETRIEVE STATUS AND PAGE RSP SS C P A ST 10-8
DC TRANSLATE TR SS A ST 7-36
DO TRANSLATE AND TEST TRT SS C A R 7-36

DE EDIT ED SS C A 0 ST 8-6
OF EDIT AND MARK EDMK SS C A 0 R ST 8-9
E8 MOVE INVERSE MVCIN SS A ST 7-22
FO SHIFT AND ROUND DECIMAL SRP SS C A 0 OF ST 8-10
Fl MOVE WITH OFFSET MVO SS A ST 7-25

F2 PACK PACK SS A ST 7-28
F3 UNPACK UNPK SS A ST 7-37
F8 ZERO AND ADD ZAP SS C A 0 OF ST 8-11
F9 COMPARE DECIMAL CP SS C A 0 8-5
FA ADD DECIMAL AP SS C A 0 OF ST 8-4

FB SUBTRACT DECIMAL SP SS C A 0 OF ST 8-11
FC MULTIPLY DECIMAL MP SS A SP 0 ST 8-9
FD DIVIDE DECIMAL DP SS A SP 0 OK ST 8-5

Instructions Arranged by Operation Code (Part 3 of 3)

B-10 IBM 4300 Processors Principles of Operation

Appendix C. Condition-Code Settings

Instruction

ADD, ADD HALFWORD
ADD DECIMAL
ADD LOGICAL

ADD NORMALIZED
ADD UNNORMALIZED

AND
CLEAR I/O

COMPARE, COMPARE HALFWORD
COMPARE AND SWAP
COMPARE DECIMAL

zero
zero
zero,

o

no carry
zero
zero

zero
no operation

in progress
equal
equal
equal

COMPARE DOUBLE AND SWAP equal
COMPARE LOGICAL equal
COMPARE LOGICAL CHARACTERS UNDER equal

MASK
COMPARE LOGICAL LONG equal
CONNECT PAGE successful

DISCONNECT PAGE

EDIT, EDIT AND MARK
EXCLUSIVE OR
HALT DEVICE

HALT I/O

successful

zero
zero
interruption

pending/busy
interruption

pending

INSERT CHARACTERS UNDER MASK all zeros
LOAD AND TEST zero
LOAD COMPLEMENT (fixed point) zero
LOAD COMPLEMENT (floating point) zero
LOAD FRAME INDEX addressable

LOAD NEGATIVE
LOAD POSITIVE (fixed point)
LOAD POSITIVE (floating point)
MAKE ADDRESSABLE

MAKE UNADDRESSABLE

MOVE LONG
OR
RESET REFERENCE BIT

RETRIEVE STATUS AND PAGE
SET PAGE BITS

zero
zero
zero
successful

successful

length equal
zero
R bit zero,

C bit zero
val id
R bit zero,

C bit zero

Summary of Condition-Code Settings (Part 1 of 2)

Condition Code

< zero
< zero
not zero,

no carry
< zero
< zero

not zero
CSW stored

low
not equal
low

not equal
low
low

low
already

connected

already
disconnected

< zero
not zero
CSW stored

CSW stored

1st bit one
< zero
< zero
< zero
connected

< zero

already
addressable

a 1 ready
connected

length low
not zero
R bit zero,

C bit one

R bit zero,
C bit one

2

> zero
> zero
zero,

carry
> zero
> zero

3

overflow
overflow
not zero,

carry

channel busy not operational

higb

high

high
high

high -
unsuccessful -

> zero

channel
working

burst Ope
stopped

not operational

not operational

1st bit zero -
> zero
> zero overflow
> zero -
disconnected address invalid

> zero
> zero

length high

R bit one,
C bit zero

R bit one,
C bit zero

overflow

destr. overlap

R bit one,
C bit one

invalid
R bit one,

C bit one

Appendix C. Condition-Code Settings C-l

Instruction

SET CLOCK
SHIFT AND ROUND DECIMAL
SHIFT LEFT (DOUBLE or SINGLE)
SHIFT RIGHT (DOUBLE or SINGLE)
START I/O, START I/O FAST
. RELEASE

STORE CHANNEL 10
STORE CLOCK
SUBTRACT, SUBTRACT HALFWORD
SUBTRACT DECIMAL
SUBTRACT LOGICAL

SUBTRACT NORMALIZED
SUBTRACT UNNORMALIZED
TEST AND SET
TEST CHANNEL

TEST I/O

TEST UNDER MASK
TRANSLATE AND TEST
ZERO AND ADD

Explanation:

o

set
zero
zero
zero
successful

10 stored
set
zero
zero

zero
zero
left zero
available

available

a 11 zeros
zero
zero

> zero
< zero
high
low
length

Result is greater than zero
Result is less than zero
First operand compares high
First operand compares low
Length of first operand

Condition Code

secure
< zero
< zero
< zero
CSW stored

CSW stored
not set
< zero
< zero
not zero,

no carry

< zero
< zero
left one
interruption

pending
CSW stored

mixed
incomplete
< zero

2

> zero
> zero
> zero
busy

busy
error
> zero
> zero
zero,

carry

> zero
> zero
-
burst mode

busy

-
complete
> zero

3

not operational
overflow
overflow

not operational

not operational
not operational
overflow
overflow
not zero,

carry

-
-
-
not operational

not operational

all ones
-
overflow

Note: The condition code may also be changed by DIAGNOSE, EXECUTE, LOAD PSW, SET PROGRAM
----- MASK, and SUPERVISOR CALL, and by an interruption.

Summary of Condition-Code Settings (Part 2 of 2)

C-2 IBM 4300 Processors Principles of Operation

Index

a
access-control bits 3-4
access exceptions 6-15

address, assigned storage location for
priority of 6-16

access key 3-7
ADD (A,AR) binary instructions
ADD DECIMAL (AP) instruction

example A-25
ADD HALFWORD (AH) instruction

example A-6

7-5
8-4

3-10

7-5

ADD LOGICAL (AL,ALR) instructions 7-5
ADD NORMALIZED (AD,ADR,AE,AER,AXR)

instructions 9-6
example A-30

ADD UNNORMALIZED (AU,AUR,AW,AWR)
instructions 9-7

example A-30
address

arithmetic, unsigned binary 7-3
base 5-4
comparison 13-1

effect on CPU state 4-2
failing-storage (see failing-storage address)
format 3-2
generation 5-3

for storage addressing 3-1
I/O (channel/device) (see I/O address)
invalid 6-10
numbering of byte locations 3-1
page 3-4
PER 4-11
virtual 3-1
wraparound 3-1

address-compare controls 13-1
addressable state 3-5
addressing, one-level 3-3
addressing exception 6-10

as an access exception 6-15
relation to storage size 3-3

AFCC (available-frame-capacity count) 3-6
alert

as class of machine-check conditions
error (in limited channel logout)

allowed interruptions 6-4
alter-and-display controls
alteration

13-2

general-register (PER event)
storage (PER event) 4-11

4-12

11-5
12-60

AND (N,NC,NI,NR) instructions 7-5
examples A-6

architectural mode
indication of
selection of

arithmetic
binary 7-3

1-1
13-4

13-2

decimal (see decimal instructions)
floating-point (see floating-point instructions)
logical (see unsigned binary arithmetic)

assembler language A-5
instruction formats in (see individual instruction

descriptions)
assigneo storage locations
attachment of I/O devices
attention (I/O unit status)

3-9
12-2
12-48

auxiliary storage (see storage, auxiliary)
available-frame-capacity count (AFCC) 3-6
available state (I/O system) 12-9

b
B field of instruction 5-4
base address 5-4

register 2-2
basic control (see BC mode)
BC (basic-control) mode 4-3

program conversion to EC mode 10-11
PSW format in 4-6

binary
(see also fixed-point)
arithmetic 7 -3
negative zero 7-2
number representation 7-2

examples A-2
one's complement for 7-2, 7-3

overflow 7-3
example A-2

sign bit 7-2
binary-to-decimal conversion 7 -16
block-multiplexer channel 12-4
block-multiplexing control 12-4

effect on CLEAR I/O instruction 12-14
effect on START I/O FAST RELEASE instruction

of 12-21
block of I/O data 12-28

incorrect length for 12-53
self-describing 12-33

borrow 7-34
boundary alignment 3-2

for instructions 5-2
branch address 5-4
BRANCH AND LINK (BAL,BALR) instructions

example A-7
BRANCH ON CONDITION (BC,BCR)

instructions 7-9
example A-7

BRANCH ON COUNT (BCT,BCTR) instructions
example A-7

BRANCH ON INDEX HIGH (BXH) instruction
example A-8

B.RANCJ:I ON INDEX LOW OR EQUAL (BXLE)
lllstructlOn 7 -10

example A-9
branching 5-4
buffer storage (cache) 3-1
burst mode (channel operation) 12-3
bus-out check (bit in I/O-sense data)
busy

as 1/ 0 unit status
in I/O operations

byte 3-1

12-49
12-6

byte-multiplex mode (channel operation)
byte-multiplexer channel 12-4

C
cache 3-1

12-38

12-3

CAl (channel-available interruption) 12-45
capacity counts 3-6
carry 7-3

7-8

7-9

7-10

Index X-I

CAW (channel-address word) 12-28
assigned storage location for 3-9
in initial program loading 4-24

CBC (checking-block code) 11-2
in page description 11-3
in registers 11-4
in storage 11-3

CC (chain-command) flag in CCW 12-29
CCW (channel-command word) 12-28

address in CAW 12-28
address in CSW 12-47

contents of 12-57
validity flag for 12-61

command code 12-29
in initial program loading 4-24

assigned storage locations for 3-10
prefetching of 12-30
role in I/O operations 12-5

CD (chain-data) flag in CCW 12-29
central processing unit (see CPU)
chain-command (CC) flag in CCW 12~29

chain-data (CD) flag in CCW 12-29
chaining 12-31
chaining check (channel status) 12-55
change bit 3-4
change recording 3-8
channel 2-4, 12-3

address (see I/O address)
address word (CAW) 12-28
block-multiplexer 12-4
byte-multiplexer 12-4
command word (see CCW)
commands (see commands)
control check 12-54
data check 12-54
end (I/O unit status) 12-50
equipment error 12-13
identification (ID) 12-24

assigned storage location for 3-10
in I/O-communication area 12-60

logout 12-60
masks 6-9

difference between EC and BC modes 4-3
in BC-mode PSW 4-6

model and type 12-24
multiplexer 12-4
not operational (I/O-system state) 12-9
program 12-5
programming error 12-13
selector 12-4
serialization 5-13
status 12-52
status word (CSW)]2-47
timeout 12-4
working (I/O-system state) 12-10

channel-available interruption (CAl) 12-45
channel-to-channel adapter 12-2
characteristic (of floating-point number) 9-1
check bits 3-2, 11-1
check control 13-2
check stop 11-4

indicator 13-2
state 4-1, 11-4

due to malfunctioning manual operation 13-1
effect on CPU timer 4-19
entering of 11-4, 11-7
manual control for 13-2

checking block 11-2
code (see CBC)

X~2 IBM 4300 Processors Principles of Operation

checkpoint 11-2
CLEAR I/O (CLRIO) instruction 12-14
CLEAR PAGE (CLRP) instruction 10-3
clear reset 4-23
clearing of storage, by CLEAR PAGE instruction 10-3
clearing operation

by clear-reset function 4-23
by load-clear key 13-3
by system-reset-clear key 13-5

clock (see time-of-day clock)
clock comparator 4-18

external interruption 6-8
save area for 3-10
validity bit for 11-11

clock unit 4-18
code

checking-block 11-2
command 12-29
condition (see condition code)
decimal digit and sign 8-1
instruction-length (see instruction-length code)
interruption 6-4
monitor 6-12
operation 5-1
PER 4-10
version 10-12

commands (I/O) 12-35
chaining of 12-33

during initial program loading 4-24
code in CCW 12-29
control 12-37
read 12-36
read backward 12-36
rejection of 12-40

bit in I/O-sense data 12-38
retry of 12-39
sense 12-37
transfer in channel 12-39
write 12-36

communication area, I/O 12-60
COMPARE (C,CR) binary instructions 7-11
COMPARE (CD,CDR,CE,CER) floating-point

instructions 9-8
example A-31

COMPARE AND SWAP (CS) instruction 7-11
examples A-33

COMPARE DECIMAL (CP) instruction 8-5
example A-26

COMPARE DOUBLE AND SWAP (CDS)
instruction 7 -11

COMPARE HALFWORD (CH) instruction 7-13
example A-9

COMPARE LOGICAL (CL,CLC,CLI,CLR)
instructions 7-13

examples A-9
COMPARE LOGICAL CHARACTERS UNDER MASK

(CLM) instruction 7-13
example A-]O

COMPARE LOGICAL LONG (CLCL)
instruction 7 -14

example A-I0
compa',ison

address I 3-1
decimal 8-5
floating-point 9-8
logical 7-3
signed-binary 7-3

comparison (continued)

time-of-day-clock 4-16
compatibility 1-2

I/O operation 12-5
of BC-mode PSW with System/360 4-3

completion of instruction 5-5
conceptual sequence 5-8

effect on storage-operand accesses 5-11
conclusion of I/O operations 12-40
condition code 5-5

deferred 12-11
for SIOF function 12-22
in CSW 12-47

for I/O operations 12-11
in PSW 4-5, 4-6
settings C-l
tested by BRANCH ON CONDITION

instruction 7-9
validity bit for 11-10

conditions for interruption (see interruption)
CONNECT PAGE (CTP) instruction 10-3
connected state 3-5
connection of storage pages 3-4
connective (see logical connective)
consistency (storage operand) 5-11
console device 13-1
control 4-1

as an I/O command 12-37
instructions 10-1
manual (see manual operations)
page and page-frame 3-6
register 2-3

description and assignments 4-7
save area for 3-10
validity bit for 11-11

control unit 2-4, 12-2
end (I/O unit status) 12-48
sharing of 12-5

conversion
binary-to-decimal 7 -16
decimal-to-binary 7 -15
floating-point-number

basic example A-5
instruction-sequence examples A-31

of program from BC to EC mode 10-11
CONVERT TO BINARY (CVB) instruction 7-15

example A-12
CONVERT TO DECIMAL (CVD) instruction 7-16

example A-12
count field

in CCW 12-29
in CSW 12-47

contents of 12-58
counter updating (example) A-37
counting operations 7 -10
CPU (central processing unit) 2-1

checkpoint 11-2
hangup due to string of interruptions 4-2
identification (lD) 10-12
model number 10-12
registers 2-2

save area for 3-10
retry 11-2
serialization 5-12
state 4-1

no effect on time-of-day clock 4-16
timer 4-19

cxlcmal interruption 6-8
save area for 3-10

CPU (continued)

validity. bit for 11-11
version code 10-12

CR (see control register)
CSW (channel-status word) 12-47
current PSW 4-2, 5-5

stored during interruption 6-1

d
D field of instruction 5-4
damage

external 11-9
mask bit for 11-12

instruction-processing 11-8
interval-timer 11-9
system 11-8
timing-facility 11-9

data
chaining of (I/O) 12-3 2
check (bit in I/O-sense data) 12-38
exception 6-11
format for

decimal instructions 8-1
floating-point instructions 9-2
general instructions 7-2

I/O-sense 12-38
prefetching for output operation 12-30

decimal
comparison 8-5
digit codes 8-1
divide exception 6-11
instructions 8-1

examples A-25
number representation 8-1

examples A-4
operand overlap 8-3
overflow

exception 6-11
mask in PSW 4-5, 4-7

rounding and shifting 8-10
sign codes 8-1

decima1-to-binary conversion 7-15
decision making 5-5
DECONFIGURE PAGE (DEP) instruction 10-4
deferred condition code (see condition code, deferred)
degradation (machine-check condition) 11-9

mask bit for 11-12
delay, in storing 5-10
delayed (machine-check condition)
destructive overlap 7 -23
detect field (in limited channel logout)
device (see 1/ 0 device)

address (see I/O address)
consote 13-1

DIAGNOSE instruction
digit codes (decimal)
digit selector 8-6
direct-access storage
disabling

10-4
8-1

3-1

for interruptions 6-4
of interval timer 4-20

disallowed interruptions 6-4

11-10

12-60

DISCONNECT PAGE (DCTP) instruction 10-5
disconnected state 3-5
displacement 5-4
display (manual controls) 13-2
DIVIDE (D,DR) binary instructions 7-16

example A-12

Index X-3

DIVIDE (DD,DDR,DE,DER) floating-point
instructions 9-8

DIVIDE DECIMAL (DP) instruction 8-5
example A-26

divide exception
decimal 6-11
fixed-point 6-12
floating-point 6-12

doubleword 3-2
dump, standalone 13-3

e
early exception recognition 6-6
EC (extended-control) mode 4-3

control bit in PSW 4-4, 4-6
ECC (error checking and correction) 11-2
ECPS:VSE mode 1-1

selection of 13-2
ED IT (ED) instruction 8-6

example A-26
EDIT AND MARK (EDMK) instruction 8-9

example A-27
editing instructions 8-3
EFCC (existing-frame-capacity count) 3-6
enabling (for interruptions) 6-4
epoch (for time-of-day clock) 4-17
equipment check, bit in I/O-sense data 12-38
error

alert (in limited channel logout) 12-61
channel-equipment 12-13
channel-programming 12-13
checking and correction 11-2
device 12-13
effect of DIAGNOSE instruction 10-4
in PSW format 6-6
intermittent 11-3
state of time-of-day clock 4-17
storage 11-10
storage-key 11-10

event 6-10
PER 4-8

EX (EXECUTE) (see EXECUTE instruction)
exceptions 6-10

access 6-15
addressing 6-10
associated with PSW 6-6
data (decimal) 6-11
decimal-divide 6-11
decimal-overflow 6-11
early recognition of 6-6
execute 6-11
exponent-overflow
exponent-underflow
fixed-point-divide
fixed-point-overflow
floating-point-divide
late recognition of
operation 6-12
page-access 6-13
page-state 6-13

6-11
6-12

6-12
6-12
6-12

6-7

page-transition 6-13
privileged-operation

for I/O instructions
protection 6-14
significance 6-14

6-14
12-27

special-operation 6-14
specification 6-14

X-4 IBM 4300 Processors Principles of Operation

EXCLUSIVE OR (X,XC,XI,XR) instructions 7-16
examples A-13

EXECUTE (EX) instruction 7 -17
effect of address comparison on target instruction

of 13-2
example A-14
exceptions while fetching target instruction of 6-6
PER event for target instruction 4-11

execute exception 6-11
exigent machine-check condition 11-5
existing-frame-capacity count (EFCC) 3-6
exponent 9-1

(see also floating point)
overflow 9-1

exception 6-12
underflow 9-1

exception 6-12
mask in PSW 4-5, 4-7

extended control (see EC mode)
extended floating-point number 9-3
external

damage 11-9
mask bit for 11-12

interruption 6-7
clock-comparator 4-18, 6-8
CPU-timer 4-19, 6-8
external-signal 6-8
interrupt-key 6-8
interval-timer 4-20, 6-8

mask in PSW 4-4, 4-6
signal 6-8

facility 4-16
externally initiated functions 4-21

f
failing-storage address 11-12

assigned storage location for 3-10
validity bit for 11-11

fetch protection 3-7
bit in storage key 3-4

fetch reference 5-10
access exceptions for 6-15

fetching, of instructions 5-8
FFCC (free-frame-capacity count) 3-6
field 3-2
field separator 8-6
fill byte 8-6
fixed-length field
fixed point

3-2

(see also binary)
divide exception
overflow exception

mask in PSW
flags

6-12
6-12

4-5, 4-7

field-validity (in limited channel logout) 12-61
in CCW 12-28

floating point
(see also exponent)
comparison 9-8
conversion

basic example A-5
instruction-sequence examples A-31

data format 9-2
divide exception 6-12
instructions 9-1

examples A-30
numbers 9-1

floating point (continued)
examples A-4

register 2-2
save area for 3-11
validity bit for 11-11

shifting (see normalization)
format

data
decimal 8-1
floating-point 9-2
general-instruction 7-2

1/ 0 instruction 12-13
information 3-2
instruction 5-2
PSW 4-4

error 6-6
fraction 9-1
frame (see page frame)
frame index 3-5
free-frame-capacity count (FFCC) 3-6
fullword (see word)

g
general instructions 7-2

data formats for 7-2
examples A-6

general registers 2-2
alteration of (PER event) 4-12
save area for 3-10
validity bit for 11-11

guard digit 9-3

h
halfword 3-2
HALT DEVICE (HDV) instruction 12-16
HALT I/O (HIO) instruction 12-19
HALVE (HDR,HER) instructions 9-9
hexadecimal (hex) representation 5-3

i
I field of instruction
I/O (input/ output)

address 12-7

5-3
2-3, 12-2

assigned storage location for 3-10
format of 12-13
in limited channel logout
validity flags for 12-61

commands 12-35
communication area (IOCA)
control unit 2-4, 12-2
data block 12-28
device 2-4, 12-2

address 12-7
end (unit status)
error 12-13
not-ready state
status of 12-37

12-51

12-9

12-60

12-60

used for initial program loading
effect on CPU timer 4-19
effect on interval timer 4-20
error

4-24

alert (in limited channel logout) 12-61
with machine check 11-2

instructions 12-14
interface

control check -(channel status) 12-54
position (effect on interruption priority) 12-46

interface (continued)

interruption 6-9
action 12-46
conditions 12-44
priority 12-46

logout 12-60
mask in PSW 4-4, 4-6
operations 12-2

channel compatibility 12-6
conclusion of 12-40
initiation of 12-27
storage-area designation for 12-30
termination of 12-43

selective reset 12-10
sense data 12-37
status' 12-48, 12-52
system reset 12-10

as part of program reset 4-23
system state 12-8

IC (instruction counter) (see instruction address)
ID (see channel identification, CPU identification)
ILC (instruction-length code) 6-5
IML (initial microprogram loading) controls 13-2
immediate I/O operation 12-41
immediate operand 5-3
incorrect length (channel status) 12-53
index

for address generation 5-4
instructions for handling 7-10

register 2-2
indicator

check-stop 13-2
load 13-3
manual 13-3
mode 13-4
save 13-4
test 13-5
wait 13-5

information format 3-2
initial program loading (IPL)

assigned storage locations for
effect on CPU state 4-2

initial program reset 4-23
input/output (see I/O)

4-24
3-10

INSERT CHARACTER (IC) instruction 7-18
INSERT CHARACTERS UNDER MASK (ICM)

instruction 7 -18
examples A-15

INSERT PAGE BITS (IPB) instruction 10-5
INSERT PSW KEY (IPK) instruction 10-5
INSERT STORAGE KEY (ISK) instruction 10-6
instructions

address of 4-5, 4-7
validity bit for 11-12

classes of 2-2
control 10-1
damage to 11-8
decimal 8-1

examples A-25
examples of use A-5
execution 5-5
fetching of 5-8

access exception for 6-15
PER event 4-11

floating-point 9-1
examples A-30

format 5-2
I/O 12-13

general 7-2

Index X-5

instructions (continued)
examples A-6

I/O 12-14
exception handling 12-27
role in I/O operations 12-5

interruptible 5-6
length code (lLC) 6-5

assigned storage locations for 3-10
for program interruptions 6-10
for supervisor-call interruption 6-19
in Be-mode PSW 4-6

length of 5-3
modification by EXECUTE instruction 7-17
prefetching of 5-9
privileged 4-5

for control 10-1
for I/O 12-14

processing damage 11-8
sequence of execution 5-1
stepping of (rate control) 13-4

effect on CPU state 4-2
effect on CPU timer 4-19

storage-control 3-6
integer

binary 7-2
address as 5-4
examples A-2

decimal 8-2
integral boundary 3-2
interface (see I/O interface)
intermittent errors 11-3
internal storage (see storage, internal)
interrupt key 13-3

external interruption 6-8
interruptible instructions 5-6

COMPARE LOGICAL LONG 7-14
effect on interval timer 4-20
MOVE LONG 7-22
stopping of 4-2

interruption 6-1
(see also masks)
action

I/O 12-46
machine-check

classes 6-4
code 6-4

11-5

assigned storage locations for
I/O 6-9
in BC-mode PSW
machine-check
program 6-10
supervisor-call

conditions
clearing 4-23
I/O 12-44

4-6
11-5

6-19

effect on instruction sequence
external 6-7

3-10

5-5

identification, assigned storage locations for
input/ output 6-9
machine-check 6-9, 11-5

code 11-7
masking of 6-4
pending 6-4

external 6-7
I/O 12-9
machine-check 11-5
relation to CPU state 4-2

priority 6-19
access exceptions for 6-16

X-6 IBM 4300 Processors Principfes of Operation

3-12

interruption (continued)
external 6-8
I/O 12-46
PER event 4-10
program-interruption conditions 6-16

program 6-10
program-controlled (I/O) 12-34
restart 6-18
string (see string of interruptions)
supervisor-call 6-18

interval timer 4-20
damage 11-9
external interruption 6-8
manual control for 13-3
update reference 5-12

intervention required (bit in I/O-sense data)
invalid

address
CBC

6-10
11-2

in page description 11-3
in registers 11-4
in storage 11-3

channel programs 12-53
operation code 6-12

inverse move 7-22
10CA (I/O-communication area)
IPL (initial program loading)

12-60
4-24

assigned storageJocations for

k
key

access 3-7
for I/O (see subchannel key)

manual (see manual operations)
PSW (see PSW key)
storage (see storage key)
subchannel (see sub channel key)

key-controlled protection 3-7
exception for 6-14

I
L fields of instruction 5-3
late exception recognition 6-7
left-to-right addressing 3-1
length

field 3-2
I/O-block 12-53

(see also count field)
instruction 5-3
register operand 5-3

3-11

variable (storage operands) 5-3
limited channel logout 12-60

assigned storage location for 3-10
link information, for BRANCH AND LINK

instruction 7-8
linkage (subroutine) 5-5
LOAD (L,LR) binary instructions 7-19

example A-15
LOAD (LD,LDR,LE,LER) floating-point

instructions 9-10
LOAD ADDRESS (LA) instruction 7-19

examples A-16
LOAD AND TEST (L TDR,L TER) floating-point

instructions 9-10

12-38

LOAD AND TEST (LTR) binary instruction 7-19
load-clear key 13-3

LOAD COMPLEMENT (LCDR,LCER) floating-point
instructions 9-10

LOAD COMPLEMENT (LCR) binary instruction 7-19
LOAD CONTROL (LCTL) instruction 10-6
LOAD FRAME INDEX (LFI) instruction 10-6
LOAD HALFWORD (LH) instruction 7-20

examples A-16
load indicator 13-3
LOAD MULTIPLE (LM) instruction 7-20
LOAD NEGATIVE (LNDR,LNER) floating-point

instructions 9-11
LOAD NEGATIVE (LNR) binary instruction 7-20
load-normal key 13-3
LOAD POSITIVE (LPDR,LPER) floating-point

instructions 9-11
LOAD POSITIVE (LPR) binary instruction 7-20
LOAD PSW (LPSW) instruction 10-7
LOAD ROUNDED (LRDR,LRER) instructions 9-11
load state 4-1

assigned storage while in 3-10
in initial program loading 4-24

load-unit-address controls 13-3
loading (initial) (see initial program loading, initial

microprogram loading)
location not provided (of operand)
location 80 (for interval timer)
logical

6-10
4-20

arithmetic (,see unsigned binary arithmetic)
comparison 7-3
connective

AND 7-8
EXCLUSIVE OR 7-16
OR 7-27

data 7-2
logout

channel 12-60
limited channel 12-60

assigned storage location for 3-10
pending (bit in CSW) 12-47

long floating-point number 9-2
long I/O block 12-53
lookaside for storage keys 11-3
loop control 5-5
loop of interruptions (see string of interruptions)

m
machine check 11-1

(see also malfunction)
interruption 6-9, 11-5

action 11-6
code (MCIC) 11-7

mask in PSW 4-5, 4-6
subclass masks 11-12

machine-save key 13-3
machine-status saving and retrieval 4-25
main storage 3-1

(see also storage)
MAKE ADDRESSABLE (MAD) instruction
MAKE UNADDRESSABLE (MUN) instruction
malfunction 11-1

correction of 11-2
effect of DIAGNOSE instruction 10-4
effect on manual operation 13-1
indication of 11-2

manual indicator 13-3
(see also stopped state)

manual operations 13-1

10-7
10-7

manual operations (continued)
controls

address-compare
alter-and-display

13-1
13-2

check 13-2
IML 13-2
interval-timer
load-unit-address

13-3
13-3

power 13-4
rate 13-4
storage-size
TOO-clock

keys
interrupt
load-clear
load-normal
machine-save

13-4
13-6

13-3
13-3

13-3
13-4

restart 13-4
start 13-5
stop 13-5
system-reset-clear
system-reset-normal

masks 6-4
(see also interruption)
channel 6-9

13-5
13-5

in BRANCH ON CONDITION instruction 7-9
in COMPARE LOGICAL CHARACTERS UNDER

MASK instruction 7 -13
in INSERT CHARACTERS UNDER MASK

instruction 7 -18
in PSW 4-5, 4-6
in STORE CHARACTERS UNDER MASK

instruction 7-32
machine-check-subclass

degradation-report
external-damage-report

11-12
11-12

11-12
recovery-report 11-12
warning 11-12

monitor 6-12
PER event 4-9
PER general-register 4-9
program-interruption 6-10

maximum negative number 7-2
MCIC (machine-check-interruption code)
message byte 8-6
microprogram, initial loading of
mode

architectural 1-1
BC (see BC mode)
burst (channel operation) 12-3
byte-multiplex (channel operation)
EC (see EC mode)
ECPS:VSE 1-1
indicator 13-4
System/370 1-1

model
channel 12-24
CPU 10-12

13-2

11-8

12-3

modifier bits (in CCW command code) 12-29
MONITOR CALL (MC) instruction 7-21
monitor class and code, assigned storage locations

for 3-10
monitor event 6-12
monitoring

for PER events (see PER)
with MONITOR CALL 6-12

MOVE (MVC,MVI) instructions 7-21
examples A-16

MOVE INVERSE (MVCIN) instruction 7-22

Index X-7

MOVE LONG (MVCL) instruction 7-22
example A-17

MOVE NUMERICS (MVN) instruction 7-24
example A-18

MOVE WITH OFFSET (MVO) instruction 7-25
example A-18

MOVE ZONES (MVZ) instruction 7-26
example A .. 19

multiplexer channel 12-4
MULTIPLY (M,MR) binary instructions 7-26

examples A-19
MULTIPLY (MD,MDR,ME,MER,MXD,MXDR,MXR)

floating-point instructions 9-12
MULTIPLY DECIMAL (MP) instruction 8-9

example A-28
MULTIPLY HALFWORD (MH) instruction 7-26

example A-20
multiprocessing, considerations for 7-4, 8-3, A-32
multiprogramming examples A-32

n
11-2

11-3
near-valid CBC

in storage
negative zero

binary
decimal

7-2

example
8-2

A-4
new PSW 4-2

assigned storage locations for 3-9
fetched during interruption 6-1

no-operation
as an I/O command (control) 12-37
instruction (BRANCH ON CONDITION) 7-9

nonshared subchannel 12-4
normalization 9-2
not available (I/O-system state) 12-8
not operational

as I/O-system state 12-9, 12-10
as time-of-day-clock state 4-17

not ready, as I/O-device state 12-9
not set (time-of-day-clock state) 4-17
nullification of instruction 5-5

exceptions to 5-7
numbering

addresses (byte locations) 3-1
bits 3-2

numbers
binary 7-2

examples
CPU-model

A-2
10-12

decimal 8-1
examples

floating-point
examples

numeric bits
moving of

o

A-3
9-1

A-4
8-1
7-25

offset (for MOVE WITH OFFSET instruction)
old PSW 6-1

assigned storage locations for 3-9
one-level addressing 3-3
one's complement binary notation 7-3

used for SUBTRACT LOGICAL instruction
op code (operation code) 5-1
operand 5-1

X-8 IBM 4300 Processors Principles of Operation

7-25

7-34

operand (continued)
address generation for 5-4
immediate 5-3
length 5-1
overlap 7-2

decimal 8-3
reference types (fetch, store, and update)
register 5-3
sequence of references for 5-10
storage 5-3
used for result 5-2

operating state 4-1
assigned locations while in 3-9

operation
code (op code) 5-1

invalid 6-12
exception 6-12
unit of 5-6

operational state (I/O system) 12-8
operator facilities 2-4, 13-1
OR (O,OC,OI,OR) instructions 7-27

example of problem with OR immediate
examples A-20

organization (system) 2-1
overflow

binary 7-3
example A-2

decimal 6-11
exponent (see exponent overflow)
fixed-point 6-12

overlap
destructive 7-23
operand 7-2

decimal 8-3
operation 5-8

overrun (bit in I/O-sense data) 12-38

P
PACK (PACK) instruction 7-28

example A-20
packed decimal numbers 8-1

conversion from zoned format
conversion to zoned format
examples A-4

padding byte

7-28
7-37

5-10

A-32

for COMPARE LOGICAL LONG instruction
for MOVE LONG instruction 7-22

page 3-4
access exception 6-13, 6-15
address 3-4
bits 3-4
capacity count (PCC) 3-6
control of 3-6
description 3-4

sequence of references for
validation of 11-3

frame 3-4
control of 3-6

state 3-5
exception 6-13

transition exception
page zero

address ability of
saving and retrieval

parity bit 11-2

3-5

pattern for editing 8-6

6-13

4-25

PCC (page-capacity count) 3-6

5-9

PCI (see program-controlled interruption)

7-14

pending interruption (see interruption, pending)
PER (program-event recording) 4-8

address, wraparound 4-11
code and address 4-10

assigned storage locations for 3-10
ending address 4-9
events 4-8

general-register-alteration 4-12
instruction-fetching 4-11
masks 4-9
priority of interruptions 4-10
program-interruption condition
storage alteration 4-11
storage-area designation 4-11
successful branching 4-11

general-register masks 4-9
mask (in PSW) 4-4
starting address 4-9

point of damage 11-7
point of interruption 5-6

for machine check 11-7
postnormalization 9-2
power controls 13-4
power-on reset 4-24
precision (floating-point)
preferred sign codes 8-1
prefetching

for I/O 12-30
of instructions 5-9

pre normalization 9-2
priority (see interruption)
privileged instructions

for control 10-1
for I/O 12-14

4-5

9-1

privileged-operation exception
problem state 4-5, 4-6
processor (see CPU)
program

6-14

check (channel status)
relation to storage size

event recording (see PER)
events (see PER events)

12,.53
3-3

exceptions 6-10
execution 5-1
initial loading of 4-24
interruption 6-10

for I/O instructions 12-27
priority 6-16

mask (in PSW) 4-4, 4-6
validity bit for 11-10

reset 4-23
status word (see PSW)

program-controlled interruption (PCI)
channel status 12-52
flag 12-29

protection
check (channel status) 12-54

caused by disconnected page
exception 6-14

as an access exception 6-15
of storage (see storage protection)

3-5

PSW (program-status word) 2-2, 4-2
assigned storage locations for 3-9
BC-mode 4-6
EC-mode 4-4
exceptions associated with 6-6
format error 6-6
in initial program loading 4-24

6-14

12-34

PSW (continued)
assigned storage locations

in program execution 5-5
validity bits for 11-10

PSW key

r

in PSW 4-4, 4-6
used as access key
validity bit for

3-7
11-10

R field of instruction 5-3
range, floating-point 9-1
rate control 13-4
read (I/O command) 12-36
read backward (I/O command)
real storage 3-4
recovery

condition 11-5
system 11-9

mask bit for 11-12
redundancy 11-1
reference

bit 3-4
recording 3-8
sequence for storage 5-8

instructions 5-9
operands 5-10
page descriptions 5-9

single-access 5-11
register

base-address 2-2
control 2-3
designation of 5-3
floating-point 2-3
general 2-2
index 2-2 J

save areas 3-10, 11-11
validation 11-3
validity bits for 11-11

remote operating stations 13-1
report masks 11-12

3-12

12-36

repressible machine-check condition 11-5
RESET REFERENCE BIT (RRB) instruction
resets 4-21

effect on CPU state 4-2
effect on time-of-day clock 4-16
I/O 12-10

resolution
of clock comparator 4-18
of CPU timer 4-19
of interval timer 4-20
of time-of-day clock 4-16

restart
effect on CPU state 4-2
interruption 6-18
key 13-4

result operand 5-2
RETRIEVE STATUS AND PAGE (RSP)

instruction 10-8
retry

CPU 11-2
I/O command 12-39

rounding (decimal) 8-10
RR instruction format 5-2
RS instruction format 5-2
running (of time-of-day clock) 4-16
RX instruction format 5-2

10-8

Index X-9

s
S instruction format
save

areas for registers
indicator 13-4

5-2

3-10, 11-11

machine (status and page zero) 4-25
selective reset (I/O) 12-10
selector channel 12-4
self-describing block of I/O data 12-33
sense, as an I/O command 12-37
sense data (I/O) 12-37
sequence

code (in limited channel logout)
conceptual 5-8
instruction-execution
of storage references

serialization 5-12

5-1
5-8

12-61

completion of store operations 5-10
SET CLOCK (SCK) instruction 10-8
SET CLOCK COMPARATOR (SCKC)

instruction 10-9
SET CPU TIMER (SPT) instruction 10-9
SET PAGE BITS (SPB) instruction 10-9
SET PROGRAM MASK (SPM) instruction
SET PSW KEY FROM ADDRESS (SPKA)

instruction 10-10
set state (time-of-day clock) 4-17
SET STORAGE KEY (SSK) instruction
SET SYSTEM MASK (SSM) instruction
shared control unit and sub channel 12-4
SHIFT AND ROUND DECIMAL (SRP)

instruction 8-10
examples A-28

SHIFT LEFT DOUBLE (SLDA) instruction
example A-21

SHIFT LEFT DOUBLE LOGICAL (SLDL)
instruction 7-29

SHIFT LEFT SINGLE (SLA) instruction
example A-21

SHIFT LEFT SINGLE LOGICAL (SLL)
instruction 7-30

7-28

10-10
10-11

7-28

7-29

SHIFT RIGHT DOUBLE (SRDA) instruction
SHIFT RIGHT DOUBLE LOGICAL (SRDL)

7-30

instruction 7-30
SHIFT RIGHT SINGLE (SRA) instruction
SHIFT RIGHT SINGLE LOGICAL (SRL)

instruction 7-31
shifting

decimal 8-10
floating-point (see normalization)

short floating-point number 9-2
short I/O block 12-53
SI instruction format 5-2
sign bit

binary 7-2
floating-point

sign codes (decimal)
9-1

signal-in lines 6-8
signed binary

arithmetic
comparison
integer 7-2

examples
significance

7-3
7-3

A-2

exception 6-14

8-1

mask in PSW 4-4, 4-6
starter 8-7

7-31

X-I0 IBM 4300 Processors Principles of Operation

single-access reference
SIO and SIOF functions
size

notation for iii
of storage 3-3

skip flag in CCW 12-29

5-11
12-21

skipping (during I/O) 12-34
SLI (suppress-length indication) flag in CCW 12-29
solid errors 11-3
source

field in limited channel logout 12-60
of interruption 6-4

special-operation exception 6-14
specification exception 6-14
SS instruction format 5-2
SSM -suppression-control bit 6-14
standalone dump 13-3
standard epoch (for time-of-day clock) 4-17
start

function 4-2
key 13-4

START I/O (SIO) instruction 12-21
START I/O FAST RELEASE (SIOF) instruction 12-21
state

CPU (see CPU state)
I/O system 12-8
page 3-5
time-of-day clock 4-16

status
device 12-37
in CSW 12-47, 12-57
modifier (of I/O unit status) 12-48
program (see PSW)

stop
function 4-2
key 13-4

stopped state
of CPU 4-1

effect on completion of store operations 5-10
storage 3-1

address wraparound
for MOVE INVERSE instruction 7-22
for MOVE LONG instruction 7-23

addressing 3-1
(see also address)

alteration
manual control for 13-2
PER event 4-11

area designation
for I/O operations 12-30
for PER events 4-11

assigned locations in 3-9
auxiliary 3-1, 3-3
buffer (cache) 3-1
clearing

by CLEAR PAGE instruction 10-3
by clear-reset function 4-23

control instructions 3-6
control unit (in limited channel logout) 12-60
direct-access 3-1
display 13-2
error 11-10
failing address (see failing-storage address)
internal 2-2

for page descriptions 3-4
key 3-4

(see also page description)

storage (continued)
error 11-10
sequence of references to 5-9

location not provided 3-3
logical validity bit for 11-11
main 3-1
manual control of size 13-4
operand 5-3

consistency 5-11
fetch reference 5-10
store reference 5-10
update reference 5-11

protection 3-7
real 3-4
sequence of references 5-8
shared, examples A-32
size of 3-3
validation 11-3
virtual 3-4
volatile 3-3

STORE (ST) binary instruction 7-31
STORE (STD,STE) floating-point instructions
STORE CAPACITY COUNTS (STCAP)

instruction 10-11

9-13

STORE CHANNEL ID (STIDC) instruction 12-23
STORE CHARACTER (STC) instruction 7-32
STORE CHARACTERS UNDER MASK (STCM)

instruction 7-32
examples A-21

STORE CLOCK (STCK) instruction 7-32
STORE CLOCK COMPARATOR (STCKC)

instruction 10-11
STORE CONTROL (STCTL) instruction
STORE CPU ID (STIDP) instruction
STORE CPU TIMER (STPT) instruction
STORE HALFWORD (STH) instruction
STORE MULTIPLE (STM) instruction

example A-22
store reference 5-10

access exceptions for 6-15

10-12
10-12

10-13
7-33

7-33

STORE THEN AND SYSTEM MASK (STNSM)
instruction 10-13

STORE THEN OR SYSTEM MASK (STOSM)
instruction 10-13

string of interruptions
by clock comparator
by CPU timer 4-20

subchannel 12-4

4-2, 6-19
4-18

not operational (I/O-system state)
working (I/O-system state) 12-10

subchannel key
in CAW 12-28
in CSW 12-47

contents of 12-56
validity flag for 12-61

used as access key 3-7

12-10

used for initial program loading 4-24
subclass-mask bits 6-7

external-interruption 6-7
machine-check 11-12

subroutine linkage 5-5
SUBTRACT (S,SR) binary instructions 7-33
SUBTRACT DECIMAL (SP) instruction 8-11
SUBTRACT HALFWORD (SH) instruction 7-34
SUBTRACT LOGICAL (SL,SLR) instructions 7-34
SUBTRACT NORMALIZED (SD,SDR,SE,SER,SXR)

instructions 9-14
SUBTRACT UNNORMALIZED (SU,SUR,SW,SWR)

instructions 9-14

successful branching (PER event) 4-11
SUPERVISOR CALL (SVC) instruction 7-34
supervisor-call interruption 6-18
supervisor state 4-5, 4-6
suppress-length-indication (SLI) flag in CCW 12-29
suppression of instruction 5-5

exceptions to 5-7
swapping

by COMPARE (DOUBLE) AND SWAP
instructions 7 -11

by EXCLUSIVE OR instruction 7-17
synchronization, CPU timer with time-of-day

clock 4-19
system

damage 11-8
manual control of
mask (in PSW)

validity bit for

13-1
4-3

11-10
organization 2-1
recovery 11-9
reset (see resets)

I/O (see I/O-system reset)
system-reset-clear key 13-5
system-reset-normal key 13-5
System/370 mode 1-1

selection of 13-2

t
target instruction (see EXECUTE instruction)
termination

code (in limited channel logout)
of instruction 5-6

TEST AND SET (TS) instruction
TEST CHANNEL (TCH) instruction
TEST I/O (TIO) instruction 12-25

12-61

7-35
12-24

function performed by CLEAR I/O'
instruction 12-14

test indicator 13-5
TEST UNDER MASK (TM) instruction

example A-24
TIC (transfer-in-channel) I/O command
time-of-day (TOD) clock 4-16

effect of power-on reset 4-24
manual control for 13-5
setting and storing 4-17
state 4-16

effect on interval timer 4-20
unique values 4-17
validation 11-4

timeout, channel 12-4
timer

CPU (see CPU timer)
interval (see interval timer)

timing f acili ties 4-16
damage 11-9

for time-of-day dock 4-16
TOD clock (see time-of-day clock)
TOD-clock control 13-5

enables time-of-day clock 4-17

7-35

12-39

transfer-in-channel (TIC) I/O command 12-39
TRANSLATE (TR) instruction 7-36

example A-22
TRANSLATE AND TEST (TRT) instruction 7-36

example A-23
trial execution 5-7
true zero 9-1
two's complement binary notation 7-2

examples A-2

Index X-II

U
underflow (see exponent underflow)
unit check 12-51
unit exception 12-52
unit of operation 5-6
unit status 12-48

validity flag for 12-61
unnormalized floating-point number 9-2
UNPACK (UNPK) instruction 7-37

example A-25
unsigned binary

arithmetic 7-3
integer 7-2

examples A-3
in address generation 5-4

update reference 5-11

V
valid CBC 11-2
validation 11-3

of page description 11-3
of registers 11-4
of storage 11-3
of time-of-day clock 11-4

validity bits (in machine-cheek-interruption code)
validity flags (in limited channel logout) 12-61
variable-length field 3-2
version code 10-12
virtual address 3";1
virtual storage 3-4
VSE mode (see ECPS:VSE mode)

X-12 IBM 4300 Processors Principles of Operation

11-11

w
wait indicator 13-5
wait state (bit in PSW) 4-5, 4-6
warning (machine-check condition) 11-10

mask bit for 11-12
word 3-2
working state (I/O system) 12-9
wraparound

of instruction addresses 5-4
of PER addresses 4-11
of register numbers

for LOAD MULTIPLE instruction
for STORE MULTIPLE instruction

of storage addresses 3-1
for MOVE INVERSE instruction
for MOVE LONG instruction

of time-of-day clock 4-18
write (I/O command) 12-36

x
X field of instruction 5-4

Z
zero, true 9-1
ZERO AND ADD (ZAP) instruction

example A-30
zero instruction-length code 6-5
zone bits 8-1

moving of 7 -26
zoned decimal numbers 8-1

examples A-4

7-20
7-33

8-11

E
.E
III

£
cti
Q)
III

B
Q)

0-
~
"0

Q)

E
E
::::J
Cl
....
Q)

. oS
o

" 0
I Q) , > : :~
~ ~
J III
I cb
»
I ::::J
• III
l. III
l Q)

;0.
51
::::J
Q)
III
to

:l Q)

~ a:

IBM 4300 Processors
Principles of Operation
for ECPS:VSE Mode

Order No. GA22-7070-1

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers, and
operators of IBM systems. This form may be used to communicate your views about this publication.
They will be sent to the author's department for whatever review and action, if any, is deemed appropriate.
Comments may be written in your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use the information you
supply.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name and mailing address:

What is your occupation?

Number of latest Newsletter associated with this pUblication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the front cover or title page.)

G A22-7070-1

Reader's Comment Form

F old and tape Please Do Not Staple

"' " ,
BUSINESS REPLY MAIL
FI RST CLASS PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department B98
P.O. Box 390
Poughkeepsie, New York 12602

F old and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape Please Do Not Staple Fold and tape

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

Q)
c:
:J
Cl
c:
0
;;{
"0
(5
U.

(; ...
:::I
()

I

I
I
I

Q)

.S

...J
Cl
c:
o
;;{
"0
(5
U.

:;
()

I
I
I

o:J
~
..;:..
w
0
0
-c
0
(")
C'D
(I)
(I)

0
""" (I)

-c
~.
::l
~.
"2-
C'D
(I)

0
-h

0
"'0
C'D

""" Q)

!:t.
0
::l
-h
0
""" m
()
-c en

< en
m
~
0 c..
C'D

" C'D

Z
~
..;:..
w
0
0
6

GA22-7070-1

==-= =­= =-= == - - ------ -------------
International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

al
s:
~
w
o o
"tI .,
g
tD
en
en o
;;!
"tI .,
3"
o
-ti"
m
en
o -

" tD

Z
!:l
~
w
o o
6

