IBM 4300 Processors
Principles of Operation
for ECPS:VSE Mode

Systems

GA22-7070-1
File No. 4300-01

IBM 4300 Processors
Principles of Operation
for ECPS:VSE Mode

Second Edition (September 1980)

This major revision obsoletes GA22-7070-0. The document has been revised
extensively for clarification and to conform with the wording for common
functions in the most recent edition of IBM System/370 Principles of
Operation, GA22-7000-6. Some material has been rearranged within a
chapter, and other material has been moved from one chapter to another.

Changes are identified by a vertical bar in the left margin, except where
existing material has been merely rearranged.

Changes are periodically made to the information herein; before using this
publication in connection with the operation of IBM equipment, refer to the
latest IBM System/370 and 4300 Processors Bibliography,
GC20-0001, for the editions that are applicable and current.

It is possible that this material may contain reference to, or information
about, IBM products (machines and programs), programming, or services
that are not announced in your country. Such references or information
must not be construed to mean that IBM intends to announce such IBM
products, programming, or services in your country.

Publications are not stocked at the address given below; requests for IBM
publications should be made to your IBM representative or to the IBM
branch office serving your locality.

A form for reader’s comments is provided at the back of this publication. If
the form has been removed, comments may be addressed to IBM
Corporation, Product Publications, Department B98, PO Box 390,
Poughkeepsie, NY, U.S.A. 12602. IBM may use or distribute any of the
information you supply in any way it believes appropriate without incurring
any obligation whatever. You may, of course, continue to use the
information you supply.

© Copyright International Business Machines Corporation 1979, 1980

Preface

This publication provides, for reference purposes, a
detailed definition of the architecture of IBM 4300
Processors when operating in the Extended Control
Program Support: Virtual Storage Extended
(ECPS:VSE) mode.

The publication describes each function of the
architecture to the level of detail that must be
understood in order to prepare an
assembler-language program that relies on that
function. It does not, however, describe the
notation and conventions that must be employed in
preparing such a program.

The information in this publication is provided
principally for use by assembler-language
programmers, although anyone concerned with the
functional details of the IBM 4300 Processors will
find it useful. '

This publication is written as a reference
document and should not be considered an
introduction or a textbook.

All facilities discussed in this publication are not
necessarily available on every processor. Further-
more, in some instances the definitions have been
structured to allow for some degree of extensibility,
and therefore certain capabilities may be described
or implied that are not offered on any model. An
example of such capabilities is the provision for the

number of channel-mask bits in the control register.

The allowance for this type of extensibility should
not be construed as implying any intention by IBM
to provide such capabilities. For information about
the characteristics and availability of features on a
specific processor, use the functional characteristics
manual for that processor. The availability of
features on processors is summarized in the IBM

4300 Processors Summary and Input/Output &
Data Communications Equipment Configurator,
GA33-1523.

This publication applies only to the ECPS:VSE
mode of operation. The IBM System/370
Principles of Operation, GA22-7000, should be
consulted regarding the functions of the
architecture which applies when the processor
operates in the System/370 mode.

Size Notation

The letters K and M denote the multipliers 210 and
220 respectively. Although the letters are
borrowed from the decimal system and stand for
kilo (10%) and mega (1096), they do not have the
decimal meaning but instead represent the power of
2 closest to the corresponding power of 10. Their
meaning in this publication is as follows:

Symbol Value
K (kilo) 1,024 = 210
M (mega) 1,048,576 = 220

The following are some examples of the use of K
and M:
2,048 is expressed as 2K.
4,096 is expressed as 4K.
65,536 is expressed as 64K (not 65K).
224 is expressed as 16M.

When the words "'thousand" and ''million" are
used, no special power-of-2 meaning is assigned to
them.

iii

iv

This page left blank intentionally.

Contents

Chapter 1. Introduction 1-1
The IBM 4300 Processors 1-1
Compatibility 1-2
Compatibility Among 4300 Processors 1-2

Compatibility Between 4300 Processors and
System /370 1-2

Control-Program Compatibility 1-2
Problem-State Compatibility 1-2
Chapter 2. Organization 2-1
Main Storage 2-1
Central Processing Unit 2-2
Program-Status Word 2-2
General Registers 2-2
Floating-Point Registers 2-3
Control Registers 2-3
Input and Output 2-3
Channels 2-4
Input/Output Devices and Control Units 2-4
Operator Facilities 2-4
Chapter 3. Storage 3-1
Storage Addressing 3-1
Information Formats 3-2
Integral Boundaries 3-2
One-Level-Addressing Facility 3-3
Storage Size 3-3
Pages 3-4
Page Frames 3-4
Page Description 3-4
Storage Key 3-4
Page Bits 3-4
Page States 3-5
Frame Index 3-5
Page and Frame Control 3-6
Capacity Counts 3-6
Storage-Control Instructions 3-6
Key-Controlled Protection 3-7
Reference Recording 3-8
Change Recording 3-8
Assigned Storage Locations 39
Storage While CPU is in Operating State 3-9

Storage While CPU is in Load State 3-10

Chapter 4. Control 4-1
Stopped, Operating, Load, and Check-Stop States 4-1
Stopped State 4-2
Operating State 4-2
Load State 4-2
Check-Stop State 4-2
Program-Status Word 4-2
EC and BC Modes 4-3
Program-Status-Word Format in EC Mode 4-4

Program-Status-Word Format in BC Mode 4-6
Control Registers 4-7
Program-Event Recording 4-8
Control-Register Allocation 4-9
Operation 4-9
Identification of Cause 4-10
Priority of Indication 4-10
Storage-Area Designation 4-11
PER Events 4-11
Successful Branching 4-11
Instruction Fetching 4-11
Storage Alteration 4-11
General-Register Alteration 4-12
Indication of Events Concurrently with Other Interrup-
tion Conditions 4-12
External-Signal Facility 4-16
‘ Timing 4-16
Time-of-Day Clock 4-16
Format 4-16
States 4-16
Setting and Inspecting the Clock 4-17
Clock Comparator 4-18
CPU Timer 4-19
Interval Timer 4-20
Externally Initiated Functions 4-21
Resets 4-21
Program Reset 4-23
Initial Program Reset 4-23
Clear Reset 4-23
Power-On Reset 4-24
Initial Program Loading 4-24
Machine Save 4-25

Chapter 5. Program Execution
Instructions 5-1
Operands 5-1
Instruction Format 52
Register Operands 5-3
Immediate Operands 5-3
Storage Operands 5-3
Address Generation 5-3
Sequential Instruction-Address Generation 5-3
Operand-Address Generation 5-4
| Branch-Address Generation 5-4
Instruction Execution and Sequencing 5-5
Interruptions 5-5 ‘
Types of Instruction Ending 5-5
Interruptible Instructions 5-6
Point of Interruption 5-6
Execution of Interruptible Instructions 5-6
Exceptions to Nullification and Suppression 5-7
Storage Change and Restoration for Page-Access
Exceptions 5-7

5-1 ’

Trial Execution for TRANSLATE and EDIT 5-7
Update for Suppression 57
Sequence of Storage References 5-8
Instruction Fetching 5-8
Page-Description Accesses 5-9
Storage-Operand References 5-10
Storage-Operand Fetch References 5-10
Storage-Operand Store References 5-10
Storage-Operand Update References 5-10
Storage-Operand Consistency 5-11
Single-Access References 5-11
Multiple-Access Operands 5-11
Relation between Operand Accesses 5-11
Other Storage References 5-12
Serialization 5-12
CPU Serialization 5-12
Channel Serialization 5-13

Chapter 6. Interruptions 6-1
Interruption Action 6-1
Source Identification 6-4
Enabling and Disabling - 6-4
Instruction-Length Code 6-5
Zero ILC 6-5
ILC on Instruction-Fetching Exceptions 6-5
Exceptions Associated with the PSW 6-6
Early Exception Recognition 6-6
Late Exception Recognition 6-7
External Interruption 6-7
Clock Comparator 6-8
CPU Timer 6-8
External Signal 6-8
Interrupt Key 6-8
Interval Timer 6-8
Input/Output Interruption 6-9
Machine-Check Interruption 6-9
Program Interruption 6-10
Program-~Interruption Conditions 6-10
Addressing Exception 6-10
Data Exception 6-11
Decimal-Divide Exception 6-11
Decimal-Overflow Exception 6-11
Execute Exception 6-11
Exponent-Overflow Exception 6-11
Exponent-Underflow Exception 6-12
Fixed-Point-Divide Exception 6-12
Fixed-Point-Overflow Exception 6-12
Floating-Point-Divide Exception 6-12
Monitor Event 6-12
Operation Exception 6-12
Page-Access Exception 6-13
Page-State Exception 6-13
Page-Transition Exception 6-13
PER Event 6-13
Privileged-Operatioh Exception 6-14
Protection Exception 6-14
Significance Exception 6-14

vi

Special-Operation Exception 6-14
Specification Exception 6-14

Recognition of Access Exceptions 6-15

Multiple Program-Interruption Conditions
Restart Interruption 6-18
Supervisor-Call Interruption 6-18
Priority of Interruptions 6-19

Chapter 7. General Instructions 7-1
Data Format 7-2
Binary-Integer Representation 7-2
Signed and Unsigned Binary Arithmetic
Signed and Logical Comparison 7-3
Instructions 7-4
ADD 7-7
ADD HALFWORD 7-7
ADD LOGICAL 7-7
AND 7-7
BRANCH AND LINK 7-8
BRANCH ON CONDITION 7-9
BRANCH ON COUNT 7-9
BRANCH ON INDEX HIGH 7-10
BRANCH ON INDEX LOW OR EQUAL
COMPARE 7-11
COMPARE AND SWAP 7-11

7-3

COMPARE DOUBLE AND SWAP 7-11

COMPARE HALFWORD 7-13
COMPARE LOGICAL 7-13

6-16

7-10

COMPARE LOGICAL CHARACTERS UNDER

MASK 7-13
COMPARE LOGICAL LONG 7-14
CONVERT TO BINARY 7-15
CONVERT TO DECIMAL 7-16
DIVIDE 7-16

EXCLUSIVE OR 7-16
EXECUTE 7-17

INSERT CHARACTER 7-18
INSERT CHARACTERS UNDER MASK
LOAD 7-19

LOAD ADDRESS 7-19

LOAD AND TEST 7-19

LOAD COMPLEMENT 7-19
LOAD HALFWORD 7-20
LOAD MULTIPLE 7-20

LOAD NEGATIVE 7-20
LOAD POSITIVE 7-20
MONITOR CALL 7-21

MOVE 7-21

MOVE INVERSE 7-22

MOVE LONG 7-22

MOVE NUMERICS 7-24
MOVE WITH OFFSET 7-25
MOVE ZONES 7-26
MULTIPLY 7-26

MULTIPLY HALFWORD 7-26
OR 7-27

7-18

PN

PACK 7-28

SET PROGRAM MASK 7-28

SHIFT LEFT DOUBLE 7-28

SHIFT LEFT DOUBLE LOGICAL 7-29
SHIFT LEFT SINGLE 7-29

SHIFT LEFT SINGLE LOGICAL 7-30
SHIFT RIGHT DOUBLE 7-30

SHIFT RIGHT DOUBLE LOGICAL 7-30
SHIFT RIGHT SINGLE 7-31

SHIFT RIGHT SINGLE LOGICAL 7-31
STORE 7-31

STORE CHARACTER 7-32

STORE CHARACTERS UNDER MASK 7-32
STORE CLOCK 7-32

STORE HALFWORD 7-33

STORE MULTIPLE 7-33

SUBTRACT 7-33

SUBTRACT HALFWORD 7-34
SUBTRACT LOGICAL 7-34
SUPERVISOR CALL 7-34

TEST AND SET 7-35

TEST UNDER MASK 7-35
TRANSLATE 7-36

TRANSLATE AND TEST 7-36
UNPACK 7-37

Chapter 8. Decimal Instructions 8-1
Decimal-Number Formats 8-1
Zoned Format 8-1
Packed Format 8-1
Decimal Codes 8-1
Decimal Operations 8-2
Decimal-Arithmetic Instructions 8-2
Editing Instructions 8-3
Execution of Decimal Instructions 8-3
Other Instructions for Decimal Operands 8-3
Instructions 8-3
ADD DECIMAL 8-4
COMPARE DECIMAL 8-5
DIVIDE DECIMAL 8-5
EDIT 8-6
EDIT AND MARK 8-9
MULTIPLY DECIMAL 8-9
SHIFT AND ROUND DECIMAL 8-10
SUBTRACT DECIMAL 8-11

ZERO AND ADD 8-11
Chapter 9. Floating-Point Instructions 9-1
Floating-Point Number Representation 9-1
Normalization 9-2
Floating-Point-Data Format 9-2
Instructions 9-4

ADD NORMALIZED 9-6

ADD UNNORMALIZED 9-7
COMPARE 9-8

DIVIDE 9-8

HALVE 9-9

LOAD 9-10 -

LOAD AND TEST 9-10

LOAD COMPLEMENT 9-10

LOAD NEGATIVE . 9-11

LOAD POSITIVE 9-11

LOAD ROUNDED 9-11

MULTIPLY 9-12

STORE 9-13

SUBTRACT NORMALIZED 9-14
SUBTRACT UNNORMALIZED 9-14

Chapter 10. Control Instructions 10-1
CLEAR PAGE 10-3
CONNECT PAGE 10-3
DECONFIGURE PAGE 10-3
DIAGNOSE 10-4
DISCONNECT PAGE 10-5
INSERT PAGE BITS 10-5
INSERT PSW KEY ‘10-5
INSERT STORAGE KEY 10-5
LOAD CONTROL 10-6
LOAD FRAME INDEX 10-6
LOAD PSW 10-7
MAKE ADDRESSABLE 10-7
MAKE UNADDRESSABLE 10-7
RESET REFERENCE BIT 10-8
RETRIEVE STATUS AND PAGE 10-8
SET CLOCK 10-8
SET CLOCK COMPARATOR 10-9
SET CPU TIMER 10-9
SET PAGE BITS 10-9
SET PSW KEY FROM ADDRESS 10-10
SET STORAGE KEY 10-10
SET SYSTEM MASK 10-11
STORE CAPACITY COUNTS 10-11
STORE CLOCK COMPARATOR 10-11
STORE CONTROL 10-12
STORE CPU ID 10-12
STORE CPU TIMER 10-13
STORE THEN AND SYSTEM MASK 10-13
STORE THEN OR SYSTEM MASK 10-13
Chapter 11. Machine-Check Handling 11-1
Machine-Check Detection 11-1
Correction of Machine Malfunctions 11-2
Error Checking and Correction 11-2
CPU Retry 11-2
Handling of Machine Checks 11-2
Validation 11-3
Invalid CBC in Storage 11-3
Invalid CBC in Page Descriptions 11-3
Invalid CBC in Registers 11-4
Check-Stop State 11-4
Machine-Check Interruption 11-5
Exigent Conditions 11-5
Repressible Conditions 11-5
Interruption Action 11-6
Point of Interruption 11-7

vii

Machine-Check-Interruption Code 11-7
Subclass 11-8
System Damage 11-8
Instruction-Processing Damage 11-8
System Recovery 11-9
Interval-Timer Damage 11-9
Timing-Facility Damage 11-9
External Damage 11-9
Degradation 11-9
Warning 11-10
Auxiliary Bits 11-10
Delayed 11-10
Storage Error Uncorrected 11-10
Storage-Key Error Uncorrected 11-10
Machine-Check Interruption-Code Validity
Bits 11-10
PSW-EMWP Validity 11-10
PSW Mask and Key Validity “11-10
PSW Program-Mask and Condition-Code
Validity 11-10
PSW-Instruction-Address Validity 11-11
Failing-Storage-Address Validity 11-11
Floating-Point-Register Validity 11-11
General-Register Validity 11-11
Control-Register Validity 11-11
Storage Logical Validity 11-11
CPU-Timer Validity 11-11
Clock-Comparator Validity 11-11
Machine-Check Extended Interruption
Information 11-11
Register-Save Areas 11-11
Failing-Storage Address 11-12
Machine-Check Masking 11-12
Recovery-Report Mask 11-12
Degradation-Report Mask 11-12
External-Damage-Report Mask 11-12
Warning Mask 11-12

Chapter 12. Input/Output Operations 12-1
Attachment of Input/Output Devices 12-2
Input/Output Devices 12-2
Control Units 12-2
Channels 12-3
Modes of Operation 12-3
Types of Channels 12-4
1/0-System Operation 12-5
Compatibility of Operation 12-6
Coantrol of Input/Output Devices 12-7
Input/Output Device Addressing 12-7
States of the Input/Output System 12-8
Resetting of the Input/Output System 12-10
I/0-System Reset 12-10
I/0 Selective Reset 12-10
Effect of Reset on a Working Device 12-10
Reset Upon Malfunction 12-10
Condition Code 12-11
Instruction Formats 12-13

viii
N

Instructions 12-14

CLEAR I/O 12-14

HALT DEVICE 12-16

HALT 1/0 12-19

START 1I/0 12-21

START 1/0 FAST RELEASE 12-21

STORE CHANNEL ID 12-23

TEST CHANNEL 12-24

TEST 1/0 12-25
Input/Output-Instruction-Exception Handling 12-27

Execution of Input/Output Operations 12-27

Blocking of Data 12-28
Channel-Address Word 12-28
Channel-Command Word 12-28
Command Code 12-29
Designation of Storage Area 12-30
Chaining 12-31

Data Chaining 12-32

Command Chaining 12-33
Skipping 12-34
Program-Controlled Interruption 12-34
Commands 12-35

Write 12-36

Read 12-36

Read Backward 12-36

Control 12-37

Sense 12-37

Transfer in Channel 12-39
Command Retry 12-39

Conclusion of Input/Output Operations 12-40

Types of Conclusion 12-40
Conclusion at Operation Initiation 12-40
Immediate Operations 12-41
Conclusion of Data Transfer 12-41
Termination by HALT I/O or HALT
DEVICE 12-42
Termination by CLEAR I/0 12-44
Termination Due to Equipment
Malfunction 12-44
Input/Output Interruptions 12-44
Interruption Conditions 12-44
Channel-Available Interruption 12-45
Priority of Interruptions 12-46
Interruption Action 12-46
Channel-Status Word 12-47
Unit Status 12-48
Attention 12-48
Status Modifier 12-48
Control-Unit End 12-48
Busy 12-49
Channel End 12-50
Device End 12-51
Unit Check 12-51
Unit Exception 12-52
Channel Status 12-52
Program-Controlled Interruption 12-52
Incorrect Length 12-53
Program Check 12-53

Protection Check 12-54

Channel-Data Check 12-54
Channel-Control Check 12-54
Interface-Control Check 12-54
Chaining Check 12-55

Contents of Channel-Status Word 12-55
Information Provided by Channel-Status
Word 12-55
Subchannel Key 12-56
CCW Address 12-56

Count 12-57

Status 12-57
Channel Logout 12-60
I/0-Communication Area 12-60

Chapter 13. Operator Facilities 13-1
Manual Operation 13-1
Basic Operator Facilities 13-1
Address-Compare Controls 13-1
Alter-and-Display Controls 13-2
Check Control 132
Check-Stop Indicator 13-2
IML Controls 132
Interrupt Key 13-3
Interval-Timer Control 13-3
Load Indicator 13-3
Load-Clear Key 13-3
Load-Normal Key 13-3
Load-Unit-Address Controls 13-3
Machine-Save Key 13-3
Manual Indicator 13-3
Mode Indicator 13-4
Power Controls 13-4
Rate Control 13-4
Restart Key 13-4
Save Indicator 13-4
Start Key 13-4
Stop Key 13-4
Storage-Size Control 13-4
System-Reset-Clear Key 13-5
System-Reset-Normal Key 13-5
Test Indicator 13-5
TOD-Clock Control 13-5
Wait Indicator 13-5

Appendix A. Number Representation and Instruction-Use
Examples A-1
Number Representation A-2
Binary Integers A-2
Signed Binary Integers A-2
Unsigned Binary Integers A-3
Decimal Integers A-3
Floating-Point Numbers A-4
Conversion Example A-5
Instruction-Use Examples A-5
Machine Format A-5
Assembler-Language Format A-§

General Instructions A-6

ADD HALFWORD (AH) A-6
AND (N, NR, NI, NC) A-6
And (NT) A-6
BRANCH AND LINK (BAL, BALR) A-7
BRANCH ON CONDITION (BC, BCR) A-7
BRANCH ON COUNT (BCT, BCTR) A-7
BRANCH ON INDEX HIGH (BXH) A-8
BRANCH ON INDEX LOW OR EQUAL
(BXLE) A-9
COMPARE HALFWORD (CH) A-9
COMPARE LOGICAL (CL, CLC, CLI, CLR) A-9
Compare Logical (CLC) A9
Compare Logical (CLI) A9
Compare Logical (CLR) A-10
COMPARE LOGICAL CHARACTERS UNDER MASK
(CLM) A-10
COMPARE LOGICAL LONG (CLCL) A-10
CONVERT TO BINARY (CVB) A-12
CONVERT TO DECIMAL (CVD) A-12
DIVIDE (D, DR) A-12
EXCLUSIVE OR (X, XC, XI, XR) A-13
Exclusive Or (XC) A-13
Exclusive Or (XI) A-14
EXECUTE (EX) A-14
INSERT CHARACTERS UNDER MASK
(ICM) A-15
LOAD (L, LR) A-15
LOAD ADDRESS (LA) A-16
LOAD HALFWORD (LH) A-16
MOVE (MVC, MVI) A-16
Move (MVC) A-16
Move (MVI) A-17
MOVE LONG (MVCL) A-17
MOVE NUMERICS (MVN) A-18
MOVE WITH OFFSET (MVO) A-18
MOVE ZONES (MVZ) A-19
MULTIPLY (M, MR) A-19
MULTIPLY HALFWORD (MH) A-20
OR (0, OR, 0OI, OC) A-20
Or (OD) A-20
PACK (PACK) A-20
SHIFT LEFT DOUBLE (SLDA) A-21
SHIFT LEFT SINGLE (SLA) A-21
STORE CHARACTERS UNDER MASK
(STCM) A-21
STORE MULTIPLE (STM) A-22
TEST UNDER MASK (TM) A-22
TRANSLATE (TR) A-22 ;
TRANSLATE AND TEST (TRT) A-23
UNPACK (UNPK) A-25

Decimal Instructions A-25

ADD DECIMAL (AP) A-25
COMPARE DECIMAL (CP) A-26
DIVIDE DECIMAL (DP) A-26
EDIT (ED) A-26

EDIT AND MARK (EDMK) A-27

ix

MULTIPLY DECIMAL (MP) A-28
SHIFT AND ROUND DECIMAL (SRP) =~ A-28

Decimal Left Shift A-28
Decimal Right Shift A-29
Decimal Right Shift and Round A-29

Multiplying by a Variable Power of 10 A-29
ZERO AND ADD (ZAP) A-30

Floating-Point Instructions A-30

ADD NORMALIZED (AD, ADR, AE, AER,

AXR) A-30

ADD UNNORMALIZED (AU, AUR, AW,

AWR) A-30

COMPARE (CD, CDR, CE, CER) A-31

Floating-Point-Number Conversion A-31
Fixed Point to Floating Point A-31

Floating Point to Fixed Point A-32

Multiprogramming and Multiprocessing
Examples A-32
Example of a Program Failure Using OR
Immediate A-32
COMPARE AND SWAP (CS, CDS) A-33
Setting a Single Bit A-33
Updating Counters A-34

Appendix B. Lists of Instructions B-1
Explanation of Symbols in "Characteristics” and "Op
Code" Columns B-1

Appendix C. Condition-Code Settings C-1

Index X-1

Chapter 1. Introduction

Contents
The IBM 4300 Processors 1-1
Compatibility 1-2
Compatibility Among 4300 Processors 1-2

Compatibility Between 4300 Processors and
System/370 1-2
Control-Program Compatibility 1-2
Problem-State Compatibility 1-2

The IBM 4300 Processors

The IBM 4300 Processors are small and moderately
sized processors that have evolved from
System/370. They may be used in one of two
architectural modes of operation. When operating
in the Extended Control Program Support: Virtual
Storage Extended (ECPS:VSE) mode, a processor
provides new facilities that are designed specifically
to enhance the DOS/VSE control program. To run
control programs such as VM/370 and OS/VS1,
which do not use these facilities, a processor is
placed in the System/370 mode. This publication
describes the architecture of the 4300 Processors
when operating in the ECPS:VSE mode.

The architecture of a machine defines its
attributes as seen by the programmer, that is, the
conceptual structure and functional behavior of the
machine, as distinct from the organization of the
data flow, the logical design, the physical design,
and the performance of any particular
implementation. Several dissimilar machine
implementations may conform to a single
architecture. When programs running on different
machine implementations produce the results that
are defined by a single architecture, the
implementations are considered to be compatible.

The ECPS:VSE mode includes a new
storage-control facility, called one-level addressing,
for creating a single virtual storage of up to
16,777,216 bytes, which both the CPU and the
channels address directly using one uniform set of
virtual addresses. Mapping the virtual storage onto
the real storage is performed internal to the
machine.

The one-level-addressing facility provides new
instructions and interruptions which the control
program uses to determine which parts of virtual
storage currently are mapped onto real storage and
thereby are made addressable. These instructions
and interruptions, and the associated internal
address-mapping functions, take the place of
dynamic address translation (DAT) and channel
indirect data addressing in System/370.

The ECPS:VSE mode also includes a new
status-saving function, called machine save, which
preserves the entire CPU state and the first 2,048
(2K) bytes of storage. The operator uses machine
save in preparation for a complete storage dump.
Machine save replaces the store-status function of
System/370, which necessarily alters some of the
storage to be dumped.

If multiple virtual storages are not required, the
ECPS:VSE mode affords the following advantages
when compared to System/370:

« Simpler storage-mapping function, with more of
the function performed automatically by the
machine

» Improved control-program performance, because
the control program need not translate the
virtual addresses of channel programs
Programming of the machine has been simplified,

relative to System/370, by omitting the following

functions:

« Multiprocessing and associated instructions

» Machine-check logout and full channel logout
These model-dependent logouts are replaced by

internal facilities for diagnosing machine

malfunctions. This removes model-dependent
error-handling procedures from the control program
and improves serviceability.

Chapter 1. Introduction 1-1

Compatibility

Compatibility Among 4300 Processors
Although models of the 4300 Processors differ in
implementation and physical capabilities, logically
they are upward and downward compatible.
Compatibility provides for simplicity in education,
availability of system backup, and ease in system
growth. Specifically, any program will give
identical results on any model, provided that it:

1. Is not time-dependent.

2. Does not depend on system facilities (such as
storage capacity, I/O equipment, or optional
features) being present when the facilities are
not included in the configuration.

3. Does not depend on system facilities being
absent when the facilities are included in the
configuration. For example, the program
should not depend on interruptions caused by
the use of operation codes or command codes
that in some models are not assigned or not
installed. Also, it must not use or depend on
fields associated with uninstalled facilities. For
example, data should not be placed in an area
used by another model for logout. Similarly,
the program must not use or depend on
unassigned fields in machine formats (control
registers, instruction formats, etc.) that are not
explicitly made available for program use.

4. Does not depend on results or functions that
are defined in this publication to be
unpredictable or model-dependent, or on
special-purpose functions (such as emulators)
that are not described in this publication. This
includes the requirement that the program
should not depend on the assignment of I/O
addresses.

5. Does not depend on results or functions that
are defined in the functional-characteristics
publication for a particular model to be
deviations from this publication.

Compatibility Between 4300 Processors
and System/370

Control-Program Compatibility

If the preceding compatibility restrictions are
observed, a program written for the 4300
Processors or System/370 will run on the other
system. However, because of the compatibility
restrictions, control programs cannot be transferred
between these systems if they take advantage of
facilities that are available on one system but not °
the other. In particular, the 4300 Processors do
not offer-the System/370 dynamic-address-

1-2 IBM 4300 Processors Principles of Operation

translation facility in the ECPS:VSE mode and,
hence, cannot execute programs which rely on this
particular facility.

To provide full control-program compatibility
between System/370 and the 4300 Processors, the
4300 Processors offer an alternate microprogram
that causes the machine to assume the
characteristics of a System/370 model. When the
machine is in this mode, the operation of the
machine is as described in the IBM System/370
Principles of Operation, GA22-7000.

Problem-State Compatibility

A high degree of compatibility exists at the

problem-state level between 4300 Processors

operating in the ECPS:VSE mode and System/370.

Because the majority of a user’s applications are

written for the problem state, this problem-state

compatibility is useful in many installations.

A program written to run in the problem state on
4300 Processors or System/370 will run on the
other system, provided that it:

1. Observes the limitations described in the
section '"Compatibility Among 4300
Processors. "

2. Is not dependent on results defined in this
publication or in the IBM System/370
Principles of Operation, as appropriate, to be
unpredictable or model-dependent (an
extension of the fourth rule in the section
" Compatibility Among 4300 Processors'').

3. Is not dependent on control-program facilities
which are unavailable on the system.

To allow the problem programmer to guard
against the effects of facilities that are available on
System/370 but not on 4300 Processors, this
publication in several places describes the results of
such effects. For example, when a program is
written which shares storage in a multiprogramming
environment on a single-CPU configuration,
precautions should be taken to allow such a
program to run correctly on a multiple-CPU
(multiprocessing) configuration.

Specifically, COMPARE AND SWAP,
COMPARE DOUBLE AND SWAP, and TEST
AND SET are the only instructions which should
be used to create interlocks between concurrent
programs. These are the only instructions that do
not, between fetching and storing of the storage
operand, permit another CPU to access the operand
location. The instructions AND (NI or NC),
EXCLUSIVE OR (XI or XC), and OR (OI or OC)
should not be used for such interlocks.

The program may also have to take into account
that serialization of CPU operations, which is
performed by all interruptions and by the execution
of certain instructions, affects the sequence of
events as observed by other CPUs in a
multiprocessing configuration as well as by
channels. (See the section 'Serialization" in
Chapter 5, "Program Execution.")

Programming Note

This publication assigns meanings to various
operation codes, to bit positions in instructions,
channel-command words, registers, and table
entries, and to fixed locations in the low 512 bytes
of storage (addresses 0-511). Other operation
codes, bit positions, and low-storage locations are
specifically noted as being available for
programming use. The remaining ones are

unassigned and reserved for future assignment to
new facilities and other extensions of the
architecture.

To ensure that existing programs run if and
when such new facilities are installed, programs
should not depend on an indication of an exception
as a result of invalid values that are currently
defined as being checked. If a value must be
placed in unassigned positions that are not checked,
the program should enter zeros. When the machine
provides a code or field, the program should take
into account that new codes and bits may be
assigned in the future. The program should not use
unassigned low-storage locations for keeping
information since these locations may be assigned
in the future in such a way that the machine causes
this location to be changed.

Chapter 1. Introduction 1-3

Chapter 2. Organization

Contents

Main Storage 2-1

Central Processing Unit 2-2
Program-Status Word 2-2
General Registers 2-2
Floating-Point Registers 2-3
Control Registers 2-3

Input and Output 2-3
Channels 2-4
Input/Output Devices and Control Units 2-4

Operator Facilities 2-4

Logically, IBM 4300 Processors consist of main
storage, a central processing unit (CPU), operator
facilities, and channels. The channels allow
input/output (I/0) devices to be attached, usually
through control units. (See the figure "Logical
Structure.")

Specific processors may differ in their internal
characteristics, the number and types of channels,
the size of main storage, and the representation of
the operator facilities. The differences in internal
characteristics are apparent to the observer only as
differences in machine performance.

Main cPU
Storage
/ /
“|Channel Channel

oO—
o—
~

T

Logical Structure

1/0 Devices

Main Storage

The 4300 Processors provide fast-access main
storage and storage-control functions for high-
speed processing of data by the CPU and channels.
The storage-control functions permit main storage
to be controlled at two levels: real storage and
virtual storage.

Real storage is the storage where data and
instructions actually reside at the time they are
accessed by the CPU and channels, but neither
CPU programs nor channel programs can address
real storage directly. The size of real storage
depends on the model.

Virtual storage allows both CPU programs and
channel programs to address an apparent main
storage of up to 16,777,216 (16M) bytes. Virtual
storage may be larger than the underlying real
storage. If the virtual storage is larger than the real
storage, a supervisory control program using the
storage-control functions of the machine is required
for controlling which parts of virtual storage are
currently mapped onto real storage. This control is
dynamic and transparent to the other programs
except for the time delay.

Chapter 2. Organization 2-1

Central Processing Unit

The central processing unit (CPU) is the
controlling center of the machine. It contains the
sequencing and processing facilities for instruction
execution, interruption action, timing functions,
initial program loading, and other machine-related
functions.

The physical makeup of the CPU in the various
models of the machine may be different, but the
logical function remains the same. The result of
executing a valid instruction is the same for each
model.

The CPU, in executing instructions, can process
binary integers and floating-point numbers of fixed
length, decimal integers of variable length, and
logical information of either fixed or variable
length. Processing may be in parallel or in series;
the width of the processing elements, the
multiplicity of the shifting paths, and the degree of
simultaneity in performing the different types of
arithmetic differ from one CPU to another without
affecting the logical resuits.

Instructions which the CPU executes fall into
five classes: general, decimal, floating-point,
control, and input/output instructions. The general
instructions are used in performing fixed-point
arithmetic operations and logical, branching, and
other nonarithmetic operations. The decimal
instructions operate on data in the decimal format,
and the floating-point instructions on data in the
floating-point format. The control instructions and
the input/output instructions are privileged
instructions that can be executed only when the
CPU is in the supervisor state.

To perform its functions, the CPU may use a
certain amount of internal storage. An example of
such functions is the mapping of virtnal storage to
real storage. Although this internal storage may
use the same physical storage medium as main
storage, it is not considered part of main storage
and is not addressable by programs.

The CPU provides registers which are available
to programs but. do not have addressable
representations in main storage. They include the
current program-status word (PSW), the general
registers, the floating-point registers, the control
registers, and the registers for the time-of-day
(TOD) clock, the clock comparator, and the CPU
timer. The instruction operation code determines
which type of register is to be used in an operation.
See the figure "General, Floating-Point, and
Control Registers" later in this chapter for the
format of those registers.

2-2 IBM 4300 Processors Principles of Operation

Program-Status Word

The program-status word (PSW) includes the
instruction address, condition code, and other
information used to control instruction sequencing
and to determine the state of the CPU. The active
or controlling PSW is called the current PSW. It
governs the program currently being executed.

The CPU has an interruption capability, which
permits the CPU to switch rapidly to another
program in response to exceptional conditions and
external stimuli. When an interruption occurs, the
CPU places the current PSW in an assigned storage
location, called the old-PSW location, for the
particular class of interruption. The CPU fetches a
new PSW from a second assigned storage location.
This new PSW determines the next program to be
executed. When it has finished processing the
interruption, the interrupting program reloads the
old PSW, making it again the current PSW, so that
the interrupted program can continue.

There are six classes of interruption: external,
1/0, machine check, program, restart, and
supervisor call. Each class has a distinct pair of
old-PSW and new-PSW locations permanently
assigned in storage.

General Registers

Instructions may designate information in one or
more of 16 general registers. The general registers
may be used as base-address registers and index
registers in address arithmetic and as accumulators
in general arithmetic and logical operations. Each
register contains 32 bits. The general registers are
identified by the numbers 0-15 and are designated
by a four-bit R field in an instruction. Some)
instructions provide for addressing multiple general
registers by having several R fields. For some
instructions, the use of a specific general register is
implied rather than explicitly designated by an R
field of the instruction.

For some operations, two adjacent general
registers are coupled, providing a 64-bit format. In
these operations, the program must designate an
even-numbered register, which contains the
leftmost (high-order) 32 bits. The next
higher-numbered register contains the rightmost
(low-order) 32 bits.

In addition to their use as accumulators in
general arithmetic and logical operations, 15 of the
16 general registers are also used as base-address
and index registers in address generation. In these
cases, the registers are designated by a four-bit B
field or X field in an instruction. A value of zero
in the B or X field specifies that no base or index is

to be applied, and, thus, general register 0 cannot
be designated as containing a base address or
index.

Floating-Point Registers

Four floating-point registers are available for
floating-point operations. They are identified by
the numbers 0, 2, 4, and 6. Each floating-point
register is 64 bits long and can contain either a
short (32-bit) or a long (64-bit) floating-point
operand. A short operand occupies the leftmost bit
positions of a floating-point register. The rightmost
portion of the register is ignored and remains
unchanged in arithmetic operations that call for
short operands. Two pairs of adjacent
floating-point registers can be used for extended
operands: registers 0 and 2, and registers 4 and 6.
Each of these pairs provides for a 128-bit format.

R Field Reg Number Control Registers

‘4— 328Bits —

General Registers

|«— 32 Bits —>

Control Registers

The CPU has provisions for 16 control registers,
each having 32 bit positions. The bit positions in
the registers are assigned to particular facilities in
the system, such as program-event recording, and
are used either to specify that an operation can
take place or to furnish special information
required by the facility.

The control registers are identified by the
numbers 0-15 and are designated by four-bit R
fields in the instructions LOAD CONTROL and
STORE CONTROL.. Multiple control registers can
be addressed by these instructions.

Input and Output

Input/output (I/0) operations involve the transfer
of information between main storage and an 1/0
device. I/0 devices and their control units attach
to channels, which control this data transfer.

Floating-point Registers

fe—————64 Bits ————»

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 10
1011 11
1100 12
1101 13
1110 14

111 15

Note: The braces indicate that the two ragisters may be coupled as a double-register pair, designated by specifying the lower-
numbered register in the R field. For example, the general-register pair O and 1 is designated in the R field by the number 0.

General, Floating-Point, and Control Registers

Chapter 2. Organization 2-3

Channels

A channel relieves the CPU of the burden of
communicating directly with I/O devices and
permits data processing to proceed concurrently
with I/O operations. A channel connects with the
CPU, with main storage, and with control units.

A channel may be an independent unit, complete
with the necessary logical and internal-storage
capabilities, or it may time-share CPU facilities and
be physically integrated with the CPU. In either
case, the functions performed by a channel are
identical. The maximum data-transfer rate may
differ, however, depending on the implementation.

There are three types of channels: byte-
multiplexer, block-multiplexer, and selector
channels.

Input/Output Devices and Control Units
Input/output devices include such equipment as
card readers and punches, magnetic-tape units,
direct-access storage, displays, keyboards, printers,
teleprocessing devices, communications controllers,
and sensor-based equipment. Many I/0O devices

2-4 IBM 4300 Processors Principles of Operation

function with an external medium, such as punched
cards or magnetic tape. Some I/O devices handle
only electrical signals, such as those found in
sensor-based networks. In either case, I/O-device
operation is regulated by a control unit. In all
cases, the control-unit function provides the logical
and buffering capabilities necessary to operate the
associated 1/0 device. From the programming
point of view, most control-unit functions merge
with I/O-device functions. The control-unit
function may be housed with the I/O device or in
the CPU, or a separate control unit may be used.

Operator Facilities
The operator facilities provide the functions
necessary for operator control of the machine.
Associated with the operator facilities may be an
operator-console device, which may also be used as
an I/O device for communicating with the program.
The main functions provided by the operator
facilities are system reset, clearing, initial program
loading, start, stop, alter, and display.

Chapter 3. Storage

Contents
Storage Addressing 3-1
Information Formats 3-2
Integral Boundaries 3-2
One-Level-Addressing Facility 3-3
Storage Size 3-3
Pages 3-4
Page Frames 3-4
Page Description 3-4
Storage Key 3-4
Page Bits 3-4
Page States 3-5
Frame Index 3-5

This chapter discusses the representation of
information in storage, how information is
addressed, and the one-level-addressing facility for
controlling virtual and real storage. The chapter
also contains a list of permanently assigned storage
locations.

The term "main storage" is used generically to
describe both virtual and real storage, in order to
distinguish this fast-access storage from auxiliary
storage, such as direct-access storage devices.
Physically, main storage may be composed of a
high-capacity fast storage medium and a smaller
but faster buffer storage, sometimes called a cache.
The effects, except on performance, of the physical
construction and the use of distinct storage media
are not observable by the program. Because, in
this publication, most references to main storage
apply to virtual storage, the abbreviated term
"storage" is generally used in place of ''virtual
storage' when the meaning is clear.

All addresses of storage locations are virtual
addresses, because they always refer to virtual
storage. Hence, when applied to main storage,
address means virtual address in this publication.

Storage Addressing

Storage is viewed as a long horizontal string of bits.

For most operations, accesses to storage proceed in
a left-to-right sequence. The string of bits is

Page and Frame Control 3-6
Capacity Counts 3-6
Storage-Control Instructions 3-6
Key-Controlled Protection 3-7
Reference Recording 3-8
Change Recording 3-8
Assigned Storage Locations 3-9
Storage While CPU is in Operating State 39
Storage While CPU is in Load State 3-10

subdivided into units of eight bits. An eight-bit
unit is called a byte, which is the basic building
block of all information formats.

Each byte location in storage is identified by a
unique nonnegative integer, which is the address of
that byte location or, simply, the byte address.
Adjacent byte locations have consecutive addresses,
starting with O on the left and proceeding in a -
left-to-right sequence. Addresses are 24-bit
unsigned binary integers, which provide 16,777,216
(224 or 16M) byte addresses.

The CPU performs address generation when it
forms an operand or instruction address. It also
performs address generation when it increments an
address to access successive bytes of a field.
Similarly, the channel generates an address when it
increments an address to fetch a channel-command
word (CCW) from a CCW list or to transfer data.

When, during address generation, an address is
obtained that exceeds 224 — 1, the carry out of the
high-order bit position of the address is ignored.
This handling of an address of excessive size is
called wraparound.

The effect of wraparound is to make the
sequence of addresses appear circular; that is,
address O appears to follow the maximum byte
address, 16,777,215. In 16M-byte storage,
information may be located partially in the last and
partially in the first locations of storage and is

Chapter 3. Storage 3-1

processed without any special indication of crossing
the maximum-address boundary.

Information Formats

Information is transmitted between storage and the
CPU or a channel one byte, or a group of bytes, at
a time. Unless otherwise specified, a group of
bytes in storage is addressed by the leftmost byte of
the group. The number of bytes in the group is
either implied or explicitly specified by the
operation to be performed. When used in a CPU
operation, a group of bytes is called a field.

Within each group of bytes, bits are numbered in
a left-to-right sequence. The leftmost bits are
sometimes referred to as the ''high-order' bits and
the rightmost bits as the "low-order" bits. Bit
numbers are not storage addresses, however. Only
bytes can be addressed. To operate on individual
bits of a byte in storage, it is necessary to access
the entire byte.

The bits in a byte are numbered O through 7,
from left to right.

The bits in an address are numbered 8 through
31. Within any other fixed-length format of
multiple bytes, the bits making up the format are
consecutively numbered starting from 0.

For purposes of error detection, and in some
models for correction, one or more check bits may
be transmitted with each byte or with a group of
bytes. Such check bits are generated automatically
by the machine and cannot be directly controlled
by the program. References in this publication to
the length of data fields and registers exclude
mention of the associated check bits. All storage
capacities are expressed in number of bytes.

When the length of an operand field is implied
by the operation code of an instruction, the field is
said to have a fixed length, which can be one, two,

3-2 IBM 4300 Processors Principles of Operation

four, or eight bytes.

When the length of an operand field is not
implied but is stated explicitly, the field is said to
have variable length. Variable-length operands can
vary in length by increments of one byte.

When information is placed in storage, the
contents of only those byte locations are replaced
that are included in the designated field, even
though the width of the physical path to storage
may be greater than the length of the field being
stored.

Integral Boundaries

Certain units of information must be located in
storage on an integral boundary. A boundary is
called integral for a unit of information when its
storage address is a multiple of the length of the
unit in bytes. Special names are given to fields of
two, four, and eight bytes when they are located on
an integral boundary. A halfword is a group of two
consecutive bytes on a two-byte boundary and is
the basic building block of instructions. A word is
a group of four consecutive bytes on a four-byte
boundary. A doubleword is a group of eight
consecutive bytes on an eight-byte boundary. (See
the figure "Integral Boundaries with Storage
Addresses.")

When storage addresses designate halfwords,
words, and doublewords on integral boundaries, the
binary representation of the address contains one,
two, or three rightmost zero bits, respectively.

Instructions must appear on two-byte integral
boundaries, and channel-command words and the
storage operands of certain instructions must
appear on other integral boundaries. The storage
operands of most instructions do not have
boundary-alignment requirements.

S — Storage Addresses

Bytes ol1lz2]3|s{s|e]7
Halfwords 0 2 ! y ! 6
1 i 1 1
Words 0 I r I 4 I ! r
1 1 1 i 1 i
lj T I lj] 1 T

Doublewords 0

] 1 S—] | 1

Integral Boundaries with Storage Addresses

Programming Note

For fixed-field-length operations with field lengths
that are a power of 2, significant performance
degradation is possible when storage operands are
not positioned at addresses that are integral
multiples of the operand length. To improve
performance, frequently used storage operands
should be aligned on integral boundaries.

One-Level-Addressing Facility
The one-level-addressing facility may be used by
the control program to create virtual storage that is
larger than the actual capacity of the underlying
real storage. Other programs and channels address
this virtual storage directly as if all data and
instructions actually resided in virtual storage.
Main storage is volatile; that is, the contents are
not preserved when power is off.

Storage Size
The storage size is the number of addressable byte
locations provided in virtual storage. A model may
allow one or more storage sizes. If more than one
storage size is provided, the current storage size is
determined by the manual storage-size control
during an initial microprogram loading (IML)
operation. The storage size cannot be changed by
programming.

The storage size is always a multiple of 2,048
(2K) bytes, up to a maximum of 16,777,216 (16M)
bytes.

When the storage size exceeds the size of real
storage, the parts of virtual storage which are
currently not directly accessible may be kept on
auxiliary storage, such as direct-access storage
devices (DASD). The transfer of the contents of
virtual storage to and from auxiliary storage may be
controlled by a supervisory control program using
1/0 instructions in such a way that the remaining
CPU programs and channel programs can address
any part of virtual storage as if it were all directly
accessible.

Storage addresses range from zero to one less
than the storage size. If the CPU attempts to refer
to a storage location that is not provided or to the
corresponding page description (see below), that
attempt is indicated by an addressing exception or,
in the case of the LOAD FRAME INDEX
instruction, by the condition code. If an I/O
operation attempts to access a storage location that
is not provided, the operation is terminated by an
1/O-interruption condition indicating program
check.

Normally, the indication that a location is not
provided is given only when the information
associated with that location is actually required,
and not when the operation can be completed
without that information.

When the storage size is set to the maximum
value of 16M bytes, all storage locations are
provided; addressing exceptions or program checks
for CCW or data locations cannot occur.

Chapter 3. Storage 3-3

Pages
Virtual storage is divided into pages, each page
consisting of 2,048 (211) consecutive bytes on a
2,048-byte address boundary. Virtual storage has
up to 8,192 (213) pages of storage. The size of
virtual storage and, hence, the number of pages
provided depend on the model and on the setting of
the manual storage-size control, if one is provided.
Storage-control instructions, except for INSERT
STORAGE KEY and SET STORAGE KEY, refer
to a page by the address of any byte in that page.
The low-order 11 bits of an operand address
referring to a whole page are ignored. The
INSERT STORAGE KEY and SET STORAGE
KEY instructions also use a page address, but the
low-order four bits of their operand address must
be zeros.

Page Frames

Real storage is divided into page frames, each
capable of containing the data for one page of
virtual storage. The size of real storage and, hence,
the number of page frames present in the machine
depend on the model. Real storage is not explicitly
addressable by CPU programs and channel
programs.

A page in virtual storage, to be accessible to
CPU programs and channel programs, must be
associated with a page frame in real storage. An
instruction is provided which assigns to a page a
free page frame selected by the machine. This
instruction is said to connect the page to its
assigned frame. Thereafter, the page frame is
referred to by the address of the corresponding
page. When any previous contents of the page
have been retrieved from external storage and the
page is ready for accessing by a CPU program,
another instruction is used to make the page
addressable.

As the supply of free page frames diminishes, the
control program may make a page not addressable
and, if any bytes in the page have been changed,
write the contents of the page on auxiliary storage.
An instruction may then be issued to disconnect the
page, thus freeing its frame.

A page frame cannot be assigned to more than
one page at a time.

Page Description

Associated with each virtual-storage page which is
provided are a seven-bit storage key, three
programmable page bits, a page state, and the
frame index of the page frame currently assigned to
the page, if any. This information, called the page
description, is maintained in internal storage.

3-4 IBM 4300 Processors Principles of Operation

Storage Key
A storage key is associated with each page that is
provided.

ACC [FIR(C

0 4 6

The bit positions in the storage key are allocated
as follows:

Access-Control Bits (ACC): The four
access-control bits, bits 0-3, are matched with the
four-bit access key whenever information is stored,
or whenever information is fetched from a location
that is protected against feiching.

Fetch-Protection Bit (F): The fetch-protection bit,
bit 4, controls whether protection applies to
fetch-type references: a zero indicates that only
store-type references are monitored and that
fetching with any access key is permitted; a one
indicates that protection applies both to fetching
and storing. No distinction is made between the
fetching of instructions and of operands.

Reference Bit (R): The reference bit, bit 5,
normally is set to one each time a location in the
corresponding page is referred to either for storing
or for fetching of information.

Change Bit (C): The change bit, bit 6, is set to
one each time information is stored at a location in
the corresponding page.

The entire storage key is set by SET STORAGE
KEY and inspected by INSERT STORAGE KEY.
The reference and change bits are also set by SET
PAGE BITS and inspected by INSERT PAGE
BITS. Additionally, the instruction RESET
REFERENCE BIT provides a means of inspecting
the reference and change bits and of setting the
reference bit to zero.

Page Bits

The three programmable page bits associated with
each page may be set by the instruction SET PAGE
BITS and inspected by INSERT PAGE BITS. The
page bits are disregarded by the machine during
other operations.

Programming Note

The page bits may be used by the program to assist
in managing pages. For example, one of the bits
may indicate whether a version of the
corresponding page exists on auxiliary storage.

Page States

A page may be in one of three states:
o Disconnected

« Connected

+ Addressable

If disconnected, the page does not have a page
frame assigned to it. Any attempt by the CPU to
access a disconnected page causes a page-access
exception or, when a CLEAR PAGE instruction is
being executed, a page-state exception. Any
attempt by a channel to access a disconnected
page, in order to fetch a CCW or to access a data
area designated during the execution of a CCW,
creates an I/O-interruption condition indicating
protection check. However, if a CCW is
prefetched, a protection check is not indicated until
the CCW is due to be executed.

If connected, the page has a page frame assigned
to it. A connected page may be accessed, if the
protection mechanism permits:

1. By I/0 channels
2. By the CPU as the operand of the CLEAR
PAGE instruction

Except when executing CLEAR PAGE, an
attempt by the CPU to access a connected page
causes a page-access exception.

If addressable, the page has a page frame
assigned to it, and the CPU and I/0 channels may
access the page if the protection mechanism
permits.

Although the addressable state implies that the
page is also connected, the term ''connected state"
refers specifically to the state of a page that is
neither addressable nor disconnected.

The page state is checked for all storage accesses
to locations that are explicitly or implicitly accessed
by the CPU or by a channel.

The page state is changed by instructions, which

may make the transition from the disconnected to
the connected state and from the connected to the
addressable state, or vice versa. The instructions
are CONNECT PAGE, DECONFIGURE PAGE,
DISCONNECT PAGE, MAKE ADDRESSABLE,
and MAKE UNADDRESSABLE. Most of these
instructions may also be applied to pages which are
already in the desired state. An attempt to change
directly from disconnected to addressable, or vice
versa, causes a page-transition exception. A
page-transition exception is also caused by
DECONFIGURE PAGE when applied to a
disconnected page.

The first page, page 0, containing byte locations
0 to 2047, is always addressable. It cannot be
placed in the connected or disconnected state.

The clear-reset function causes a number of
consecutive pages, starting with page 0, to be
assigned to page frames, cleared, and placed in the
addressable state. (See the section ''Clear Reset'
in Chapter 4, "Control.")

Programming Notes

1. The three page states permit programs to
distinguish pages in the disconnected state,
which cannot be accessed at all, from pages in
the connected state, which are undergoing 1/0O
operations to or from auxiliary page storage,
and from pages in the addressable state, which
are ready for normal storage access.

2. The storage-control instructions other than
CLEAR PAGE operate on page descriptions,
not pages. Instructions which operate on page
descriptions do not make storage accesses and
do not cause page-access or protection
exceptions.

3. All channel accesses to storage appear as if
they referred to pages and not to the associated
page frames. If a page that is being accessed
by a channel becomes disconnected and
another channel access is attempted, protection
check is indicated, and the I/O operation
terminates. If the page becomes disconnected
and then becomes reconnected before
protection check is indicated, protection check
may be indicated subsequently, or accesses may
continue using the newly assigned page frame.

Frame Index

A unique 16-bit unsigned binary integer is assigned
to each page frame existing in the machine. This
integer is the frame index of the page frame. The
value of the frame index ranges from zero up to,
but not including, the existing-frame-capacity count
(EFCC) (see the section "Capacity Counts' in this
chapter).

When a CONNECT PAGE instruction connects
a page to a frame, the frame index of the
connected frame is returned by the instruction.

The frame index remains associated with that page
until the page is disconnected. When the same
page is connected again, the new frame index is, in
general, different and unpredictable unless there
was only one free frame remaining.

The frame index for an already connected or
addressable page may be displayed by LOAD
FRAME INDEX.

When DECONFIGURE PAGE makes a page
frame unavailable, the frame index of that frame
will not recur until a clear-reset operation is
performed.

Chapter 3. Storage 3-5

The frame index currently associated with a page
is part of its page description. A disconnected page
has no frame index, and LOAD FRAME INDEX
returns no frame-index value for a disconnected

page.

Programming Notes ,

1. The frame index assists the control program in
maintaining compact tables of connected or
addressable pages. The frame index is not, and
should not be interpreted as, the address of a
frame in real storage. The algorithm for
assigning a frame index to a page frame is
implementation-dependent. Programming
should not depend on a particular algorithm.

2. The set of frame indexes is dense if the EFCC
equals the AFCC, that is, if there are no
unavailable page frames. It becomes nondense
to the extent that frames are made unavailable
by DECONFIGURE PAGE or by maintenance
intervention.

3. DECONFIGURE PAGE removes a page frame
from contention for connection when a
machine check has indicated damage to a page.
This can be done only while the frame is
connected to a page, because a frame cannot be
addressed directly.

Page and Frame Control

Capacity Counts

Four internally maintained counts are defined to
assist the program in managing pages and page
frames. Each count is a 16-bit unsigned binary
integer. The counts are set or updated by the
machine. They are displayed by the STORE
CAPACITY COUNTS instruction, which stores
each count as a 32-bit integer with 16 high-order
zero bits.

The page-capacity count (PCC) is the number of
virtual-storage pages provided by the machine. The
pages have page addresses from 0 to PCC minus
one. The value of the PCC is equal to the storage
size divided by 2,048; it is set during clear reset
according to the current setting of the manual
storage-size control, if one is provided.

The existing-frame-capacity count (EFCC) is the
number of page frames existing in a particular
implementation of the machine. The EFCC
. reflects the total capacity of real storage. The
value of the EFCC is set during clear reset.

The available-frame-capacity count (AFCC) is
the number of page frames connected or available
for connection to pages. The value of AFCC may

3-6 IBM 4300 Processors Principles of Operation

be equal to or less than the EFCC. During CPU
operation, the AFCC may be decreased by the
instruction DECONFIGURE PAGE. The
clear-reset function initializes the AFCC to the
value of the EFCC less the number of frames that
are kept unavailable for connection by maintenance
intervention.

The free-frame-capacity count (FFCC) is the
number of available page frames that are currently
not connected to pages. The value of the FFCC
may range from zero to the AFCC minus one.
During CPU operation, the value of the FFCC may
be changed by the instructions CONNECT PAGE
and DISCONNECT PAGE. The clear-reset
operation initializes the FFCC to zero or to the
value of AFCC minus PCC, depending on whether
the AFCC is less than the PCC or not.

Since page 0 must always be addressable, the
frame connected to page O is considered available
but not free. Hence, the minimum value of the -
AFCC is one, and the maximum value of the
FFCC is the AFCC minus one.

Storage-Control Instructions

CONNECT PAGE is used to change a page from
the disconnected to the connected state. MAKE
ADDRESSABLE changes a page from connected to
addressable. MAKE UNADDRESSABLE changes
the page state from addressable to connected.
DISCONNECT PAGE changes the page state from
connected to disconnected. DECONFIGURE
PAGE disconnects a connected page and makes the
corresponding page frame and its frame index
unavailable. LOAD FRAME INDEX tests the
page state of a page and displays its frame index, if
any. These six instructions do not change or check
the storage key of the specified pages.

CLEAR PAGE sets the contents of a page to
zero and validates the page.

SET STORAGE KEY replaces the storage key of
a page. INSERT STORAGE KEY retrieves the
storage key of a page except, in the BC mode, for
the reference and change bits. RESET
REFERENCE BIT tests the reference and change
bits and resets the reference bit to zero.

SET PAGE BITS tests the reference and change
bits of a page and then explicitly sets them along
with the three programmable page bits of that page.
INSERT PAGE BITS retrieves the values of the
three page bits, the reference bit, and the change
bit of a page.

All storage-control instructions are privileged.

Key-Controlled Protection

Key-controlled protection is provided to protect the
contents of storage from destruction or misuse
caused by erroneous or unauthorized storing or
fetching by the program. It affords protection
against improper storing or against both improper
storing and fetching, but not against improper
fetching alone.

When key-controlled protection applies to a
storage access, a store is permitted only when the
storage key matches the access key associated with
the request for storage access; a fetch is permitted
when the keys match or when the fetch-protection
bit of the storage key is zero.

The keys are said to match when the four
access-control bits of the storage key are equal to
the access key, or when the access key is zero.

... The protection action is sumrqgrized in the figure
Summary of Protection Action.

When the access to storage is initiated by the

] CPU, and key-controlled protection applies, the

PSW key is the access key which is used as the
compare value. The PSW key occupies bit positions
8-11 of the current PSW.

When the reference is made by a channel, and
key-controlled protection applies, the subchannel
key associated with the 1/O operation is the access
key which is used as the compare value. The
subchannel key is specified for an I/O operation in
bit positions 0-3 of the channel-address word
(CAW); the subchannel key is later placed in bit
positions 0-3 of the channel-status word (CSW)
that is stored as a result of the I/O operation.

When a CPU access is prohibited because of
protection, the operation is suppressed or
terminated, and a program interruption for a
protection exception takes place. When a channel
access is prohibited, protection check is indicated in
the CSW stored as a result of the operation.

Conditions

Is Access to
Storage Permitted?

Fetch-Protection
Bit of
Storage Key Key Relation Fetch Store
0 Match Yes Yes
0 Mismatch Yes No
1 Match Yes Yes
1 Mismatch No No

Explanation:

information

storage location are not changed.

Match The four access-control bits of the storage
key are equal to the access key, or the access
key is zero.

Yes Access is permitted.

No Access is not permitted. On fetching, the

is not made available to the
program; on storing, the contents of the

Summary of Protection Action

Chapter 3. Storage 3-7

When a store access is prohibited because of
key-controlled protection, the contents of the
protected location remain unchanged. When a
fetch access is prohibited, the protected information
is not loaded into a register, moved to another

- storage location, or provided to an I/O device. For
a prohibited instruction fetch, the instruction is
suppressed and an arbitrary instruction-length code
is indicated.

Key-controlled protection is always active,
regardless of whether the CPU is in the problem or
supervisor state, and regardless of the type of CPU
instruction or channel-command word being
executed.

All accesses to storage locations that are
explicitly designated by the program and that are
used by the CPU to store or fetch information are
subject to key-controlled protection.

All storage accesses by a channel to fetch a
CCW or to access a data area designated during
the execution of a CCW are subject to
key-controlled protection. However, if a CCW or
output data is prefetched, a protection check is not
indicated until the CCW is due to be executed or
the data is due to be written.

Key-controlled protection is not applied to
accesses that are implicitly made by the CPU or
channel for such sequences as:

« Interruptions,
« Updating the interval timer,
¢ Fetching the CAW during the execution of an

1/0 instruction,

« Storing the CSW by an I/0 instruction or
interruption,
« Storing channel identification during the

execution of STORE CHANNEL ID,

« Limited channel logout, or
o Initial program loading.

Similarly, protection does not apply to accesses
initiated via the operator facilities for altering or
displaying information. However, when the
program explicitly designates these locations, they
are subject to protection.

Reference Recording
Reference recording provides information for use in
selecting pages for replacement. Reference
recording uses the reference bit, bit 5 of the storage
key. The reference bit is set to one each time a
location in the corresponding page is referred to
either for fetching or storing information.
Reference recording is always active and takes
place for all storage accesses, including those made
by any CPU, 1/0, or operator facility. It takes

3-8 1IBM 4300 Processors Principles of Operation

place for implicit accesses made by the machine,
such as those which are part of interruptions and
1/O-instruction execution.

Reference recording does not occur for operand
accesses of the following instructions since they
directly refer to a page description without
accessing a storage location:

CONNECT PAGE

DECONFIGURE PAGE (reference bit is set to zero)
DISCONNECT PAGE (reference bit is set to zero)
INSERT PAGE BITS

INSERT STORAGE KEY

LOAD FRAME INDEX

MAKE ADDRESSABLE

MAKE UNADDRESSABLE)

RESET REFERENCE BIT (reference bit is set to zero)
SET PAGE BITS (reference bit is set to a specified value)
SET STORAGE KEY (reference bit is set to a specified
value)

The record provided by the reference bit is
substantially accurate. The reference bit may be
set to one by fetching data or instructions that are
neither designated nor used by the program, and,
under certain conditions, a reference may be made
without the reference bit being set to one. Under
certain unusual circumstances, a reference bit may
be set to zero by other than explicit program
action.

Change Recording

Change recording provides information as to which

pages have to be saved in auxiliary storage when

they are replaced in main storage. Change
recording uses the change bit, bit 6 of the storage
key.

The change bit is set to one each time a store
access causes the contents in the corresponding
page to be changed. A store access that does not
change the contents of storage may or may not set
the change bit to one.

The change bit is not set to one for an attempt
to store if the access is prohibited. In particular:

1. For the CPU, a store access is prohibited
whenever an access exception exists for that
access, or whenever an exception exists which
is of higher priority than the priority of an
access exception for that access.

2. For I/0, a store access is prohibited whenever
a key-controlled-protection condition exists for
that access.

Change recording is always active and takes
place for all store accesses to storage, including
those made by any CPU, 1/0, or operator facility.
It takes place for implicit references made by the
machine, such as those which are part of (
interruptions. !

Change recording does not take place for the
operands of the following instructions since they
directly modify a page description without
modifying a storage location:

CONNECT PAGE

DECONFIGURE PAGE (change bit is set to zero)
DISCONNECT PAGE (change bit is set to zero)
MAKE ADDRESSABLE

MAKE UNADDRESSABLE

RESET REFERENCE BIT

SET PAGE BITS (change bit is set to a specified value)
SET STORAGE KEY (change bit is set to a specified
value)

Change bits are not necessarily restored on CPU
retry (see the section ""CPU Retry" in Chapter 11,
"Machine-Check Handling"). See the section
"Exceptions to Nullification and Suppression" in
Chapter 5, "Program Execution," for a description
of the handling of the change bit in certain unusual
situations.

Assigned Storage Locations

Assigned locations in storage have different uses
when the CPU is in the operating state or in the
load state. This section is summarized in the figure
" Assigned Storage Locations."

Programming Note

In the BC mode, there is no implicit storing in

locations 128 and above if all of the following

conditions are met:

1. The manual check control is set to stop.

2. The MONITOR CALL and STORE
CHANNEL ID instructions are not issued.

3. The page-capacity count is equal to-or less than
the available-frame-capacity count and all
pages are addressable.

Storage While CPU is in Operating State
This section shows the format and extent of the
assigned storage locations while the CPU is in the
operating state. Unless specifically noted, the
usage applies to both the EC and BC modes.

0-7 Restart New PSW: The new PSW is
fetched from locations 0-7 during a
restart interruption.

8-15 Restart Old PSW: The current PSW is
stored as the old PSW at locations 8-15
during a restart interruption.

24-31 External Old PSW: The current PSW

is stored as the old PSW at locations
24-31 during an external interruption.

32-39

40-47

48-55

56-63

64-71

72-75

80-83

88-95

96-103

104-111

112-119

120-127

132-135

136-139

Supervisor-Call Old PSW: The current
PSW is stored as the old PSW at
locations 32-39 during a supervisor-call
interruption.
Program Old PSW: The current PSW
is stored as the old PSW at locations
40-47 during a program interruption.
Machine-Check Old PSW: The current
PSW is stored as the old PSW at
locations 48-55 during a machine-check
interruption.
Input/Output Old PSW: The current
PSW is stored as the old PSW at
locations 56-63 during an I/0
interruption.
CSW: The channel-status word (CSW)
is stored at locations 64-71 during an
1/0 interruption. Part or all of it may
be stored during the execution of
START I/0, START 1/0 FAST
RELEASE, TEST 1/0, CLEAR 1/0,
HALT I/0, or HALT DEVICE, in
which case condition code 1 is set.
CAW: The channel-address word
(CAW) is fetched from locations 72-75
during the execution of START I/0O
and START I/0 FAST RELEASE.
Interval Timer: Locations 80-83
contain the interval timer. The interval
timer is updated whenever the CPU is
in the operating state and the manual
interval-timer control is set to enable.
External New PSW: The new PSW is
fetched from locations 88-95 during an
external interruption.
Supervisor-Call New PSW: The new
PSW is fetched from locations 96-103
during a supervisor-call interruption.
Program New PSW: The new PSW is
fetched from locations 104-111 during
a program interruption.
Machine-Check New PSW: The new
PSW is fetched from locations 112-119
during a machine-check interruption.
Input/Output New PSW: The new
PSW is fetched from locations 120-127
during an I/0O interruption.
External-Interruption Code: During an
. external interruption in the EC mode,
the interruption code is stored at
locations 134-135, and zeros are stored
at locations 132-133.
Supervisor-Call-Interruption
Identification: During a supervisor-call

‘Chapter 3. Storage 3-9

140-143

144-147

148-149

150-151

152-155

156-159

168-171

3-10

interruption in the EC mode, the
instruction-length code is stored in bit
positions 5 and 6 of location 137, and
the interruption code is stored at
locations 138-139. Zeros are stored at
location 136 and in the remaining bit
positions of 137.

Program-Interruption Identification:
During a program interruption in the
EC mode, the instruction-length code is
stored in bit positions 5 and 6 of
location 141, and the interruption code
is stored at locations 142-143. Zeros
are stored at location 140 and in the
remaining bit positions of 141.
Access-Exception Address: During a
program interruption due to a
page-access exception, the address for
which the exception is being indicated is
stored at locations 145-147, and zeros
are stored at location 144,
Monitor-Class Number: During a
program interruption due to a monitor
event, the monitor-class number is
stored at location 149, and zeros are
stored at 148.

PER Code: During a program
interruption due to a program event, the
program-event-recording (PER) code is
stored in bit positions 0-3 of location
150, and zeros are stored in bit
positions 4-7 and at location 151. This
field can be stored only when the
instruction causing the PER condition
was executed under the control of a
PSW specifying the EC mode.

PER Address: During a program
interruption due to a program event, the
program-event-recording (PER) address
is stored at locations 153-155, and
zeros are stored at location 152. This
field can be stored only when the
instruction causing the PER condition
was executed under the control of a
PSW specifying the EC mode.

Monitor Code: During a program
interruption due to a monitor event, the
monitor code is stored at locations
157-159, and zeros are stored at
location 156.

Channel ID: The four-byte channel-
identification information is stored at
locations 168-171 during the execution
of STORE CHANNEL ID.

IBM 4300 Processors Principles of Operation

176-179

185-187

216-223

224-231

232-239

248-251

352-383

384-447

448-511

Storage
0-7

Limited Channel Logout: The
limited-channel-logout information is
stored at locations 176-179. This field
may be stored only when the CSW or a
portion of the CSW is stored.

I/0 Address: During an 1/0
interruption in the EC mode, the
two-byte I/0 address is stored at
locations 186-~187, and zeros are stored
at location 185.

CPU-Timer Save Area: During a
machine-check interruption, the
contents of the CPU timer are stored at
locations 216-223.

Clock-Comparator Save Area: During a
machine-check interruption, the
contents of the clock comparator are
stored at location 224-231.
Machine-Check-Interruption Code:
During a machine-check interruption
the machine-check-interruption code is
stored at locations 232-239.
Failing-Storage Address: During a
machine-check interruption, a
failing-storage address, if any, is stored
at locations 249-251, and zeros are
stored at location 248.
Floating-Point-Register Save Area:
During a machine-check interruption,
the contents of the floating-point
registers are stored at locations
352-383.

General-Register Save Area: During a
machine-check interruption, the
contents of the general registers are
stored at locations 384-447.
Control-Register Save Area: During a
machine-check interruption, the
contents of the control registers are
stored at locations 448-511.

While CPU is in Load State
IPL PSW: The first eight bytes read
during the IPL initial read operation are
stored at locations 0-7. The contents of
these locations are used as the new
PSW at the completion of the IPL
operation. These locations may also be
used for temporary storage at the
initiation of the IPL. operation.
IPL CCWI: Bytes 8-15 read during
the IPL initial read operation are stored
at locations 8-15. The contents of
these locations are ordinarily used as

16-23

the next CCW in an IPL CCW chain
after completion of the IPL initial-read
operation.

IPL CCW?2: Bytes 16-23 read during
the TPL initial read operation are stored
at locations 16-23. The contents of
these locations may be used as another
CCW in the IPL. CCW chain to follow
IPL CCW1.

Chapter 3. Storage

3-11

Hex Dec

0 0 | Restart New PSW or |PL PSW
4 4

8 8 | Restart Old PSW or IPL CCwl
c 12

10 16 IPL CCw2

1% 20

18 24 | External 0O1d PSW

1C 28

20 32 Supervisor-Call 01d PSW
24 36

28 40 | Program 01d PSW

2C 44

30 48 | Machine-Check 01d PSW
34 52

38 56 | Input/Output O1d PSW

3C 60

40 64 | Channel-Status Word

44 68

48 72 | Channel-Address Word

4C 76

50 80 Interval Timer

54 84

58 88 | External New PSW

5 92

60 96 } Supervisor-Call New PSW

64 100

68 104 | Program New PSW

6C 108

70 112 | Machine-Check New PSW
74 116

78 120 Input/Output New PSW

7C 124

Assigned Storage Locations (Part 1 of 3)

3-12

IBM 4300 Processors Principles of Operation

Hex

Dec

80

128

84

132

0

0000000 O| External-interruption Code

88

136

0

0000 O0fiLC|{O| Superv-Call-Interruption Code

8C

140

0

000O0O0)ILC|O Program-interruption Code

90

144

0

Access-Exception Address

94

148

Monitor Class #|{PER Cdef0 0 00 00000000

928

152

PER Address

9C

156

oOjlo|lojl oo} O} O
OoO|lojo|lo]loOo] O} O
ojojlojlo]lo|lo} ©
oO|lojo|lo| oo} O
oOlolOo|loc|oOo]|loOo]| ©
QOlo| ool O| O] ©
ol ool OO0 O] ©

0
0
0

Monitor Code

AQ
Ak

160
164

A8

168

Channel ID

AC

172

BO

176

Limited Channel Logout

B4

180

B8

184

000060000OC 1/0 Address

BC

188

co
C4
c8
cc
DO
D4

192
196
200
204
208
212

D8
DC

216
220

CPU-Timer Save

Area

EO
E4

224
228

Clock-Comparator Save Area

E8
EC

232
236

Machine-Check Interruption Code

FO
Fa

240

244

F8

248

00000000

Failing-Storage Address

Assigned Storage Locations (Part 2 of 3)

Chapter 3. Storage

3-13

Hex

Dec

FC

100
104
108

154
158
15C

252
256
260
264

340
344
348

160
164
168
16C
170
174
178
17C

352 | Floating-Point-Register Save Area
356
360
364
368
372
376
380

180
184
188
18C

1B4
1B8
1BC

384 | General-Register Save Area
388
392
396

436
440
a4y

1Co
1C4
1C8
1cc

1F4
1F8
1FC

448 | Control-Register Save Area
452
456
460

500
504
508

Assigned Storage Locations (Part 3 of 3)

3-14

IBM 4300 Processors Principles of Operation

& T

Chapter 4. Control

Contents

Stopped, Operating, Load, and Check-Stop States 4-1
Stopped State 4-2 .
Operating State 4-2
Load State 4-2
Check-Stop State 4-2

Program-Status Word 4-2
EC and BC Modes 4-3
Program-Status-Word Format in EC Mode 4-4
Program-Status-Word Format in BC Mode 4-6

Control Registers 4-7

Program-Event Recording 4-8
Control-Register Allocation 4-9
Operation 49

Identification of Cause 4-10

Priority of Indication 4-10
Storage-Area Designation 4-11
PER Events 4-11

Successful Branching 4-11

Instruction Fetching 4-11

Storage Alteration 4-11

General-Register Alteration 4-12

This chapter describes in detail the facilities for
controlling, measuring, and recording the operation
of one or more CPUs.

Stopped, Operating, Load, and Check-Stop
States

The stopped, operating, load, and check-stop states
are four mutually exclusive states of the CPU.
When the CPU is in the stopped state, instructions
and interruptions, other than the restart
interruption, are not executed. In the operating
state, the CPU executes instructions and takes
interruptions, subject to the control of the
program-status word (PSW) and control registers,
and in the manner specified by the setting of the
operator-facility rate control. The CPU is in the

Indication of Events Concurrently with Other
Interruption Conditions 4-12
External-Signal Facility 4-16
Timing 4-16
Time-of-Day Clock 4-16
Format 4-16
States 4-16
Setting and Inspecting the Clock 4-17
Clock Comparator 4-18
CPU Timer 4-19
Interval Timer 4-20
Externally Initiated Functions 4-21
Resets 4-21
Program Reset 4-23
Initial Program Reset 4-23
Clear Reset 4-23
Power-On Reset 4-24
Initial Program Loading 4-24
Machine Save 4-25

load state during the initial-program-loading
operation. The CPU enters the check-stop state
only as the result of machine malfunctions.

A change between these four CPU states cannot
be effected by the program. The states are not
controlled or identified by bits in the PSW. The
stopped, load, and check-stop states are indicated
to the operator by means of the manual indicator,
load indicator, and check-stop indicator
respectively. These three indicators are off when
the CPU is in the operating state.

The CPU timer is updated when the CPU is in
the operating state or the load state. The
time-of-day clock is updated whenever power is on.
The interval timer is updated only when the CPU is
in the operating state.

Chapter 4. Control 4-1

| Stopped State

The state of the CPU is changed from operating to

stopped by the stop function. The stop function is

performed when:

« The stop key is activated while the CPU is in the
operating state.

« The CPU has finished the execution of a unit of
operation initiated by performing the start
function with the rate control set to instruction
step.

When the stop function is performed, the
transition from the operating to the stopped state
occurs at the end of the current unit of operation.
When the wait-state bit of the PSW is one, the

transition takes place immediately, provided no
interruptions are pending for which the CPU is

enabled. In the case of interruptible instructions,

the amount of data processed in a unit of operation

depends on the particular instruction and may
depend on the model.

Before entering the stopped state, all pending
allowed interruptions are taken while the CPU is
still in the operating state. They cause the old
PSW to be stored and the new PSW to be fetched
before the stopped state is entered. When the CPU
is in the stopped state, interruption conditions
remain pending.

The CPU is also placed in the stopped state:

+ When a reset is completed, except when the reset
operation is performed as part of initial program
loading, and

« When an address comparison indicates equality
and stopping on the match is specified
The execution of resets is described in the

section "Resets" in this chapter, and address

comparison is described in the section

" Address-Compare Controls' in Chapter 13,

"Operator Facilities." ’

Operating State
The state of the CPU is changed from stopped to
operating when the start function is performed or
when a restart interruption occurs. However, the
effect of performing the start function is
unpredictable when the stopped state was entered
by means of a reset.

The start function is performed on the CPU in
the stopped state when the start key is activated.

When the wait-state bit is one and the rate
control is set to instruction step, the start function
causes no instruction to be executed, but all
pending allowed interruptions are taken before the
CPU returns to the stopped state.

4-2 IBM 4300 Processors Principles of Operation

| Load State

The CPU enters the load state when the
load-normal or load-clear key is activated (see the
section "Initial Program Loading" in this chapter).
When the initial-program-loading operation is
completed successfully, the CPU state changes from
load to operating, provided the rate control is set to
process; if the rate control is set to instruction step,
the CPU state changes from load to stopped.

I Check-Stop State

The check-stop state, which the CPU enters on
certain types of machine malfunction, is described
in Chapter 11, ""Machine-Check Handling."

Programming Notes

1. Except for the relationship between execution
time and real time, the execution of a program
is not affected by stopping the CPU.

2. When, because of a machine malfunction, the
CPU is unable to end the execution of an
instruction, the stop function is ineffective, and
a reset function has to be invoked instead. A
similar situation occurs when an unending
string of interruptions results from a PSW with
a PSW-format error of the type that is
recognized early, or from a persistent
interruption condition, such as one due to the
CPU timer.

3. Input/output operations continue to completion
after the CPU enters the stopped state. The
interruption conditions due to completion of
I/0 operations remain pending when the CPU
is in the stopped state.

Program-Status Word
The current program-status word (PSW) contains
information required for the execution of the
currently active program. The PSW is 64 bits in
length and includes the instruction address,
condition code, and other control fields. In
general, the PSW is used to control instruction
sequencing and to hold and indicate much of the
status of the CPU in relation to the program
currently being executed. Additional control and
status information is contained in control registers
and permanently assigned storage locations.

Control is switched during an interruption of the
CPU by storing the current PSW, so as to preserve
the status of the CPU, and then loading a new
PSW.

The status of the CPU can be changed by
loading a new PSW or part of a PSW.

PN

The instruction LOAD PSW introduces a new
PSW. The instruction address is updated by
sequential instruction execution and replaced by
successful branches. Other instructions are
provided which operate on a portion of the PSW.
The figure ""Operations on System Mask, PSW Key,
and Program Mask' summarizes these instructions.

A new or modified PSW becomes active (that is,
the information introduced into the current PSW
assumes control over the CPU) when the
interruption or the execution of an instruction that
changes the PSW is completed. The interruption
for program-event recording associated with an
instruction that changes the PSW occurs under
control of the PER mask that is effective at the
beginning of the operation.

Bits 0-7 of the PSW are collectively referred to
as the system mask.

EC and BC Modes

Two control modes are provided for the formatting
and use of control and status information: the
extended-control (EC) mode and the basic-control

(BC) mode. Certain functions available in the EC
mode are not available, or are available in a
restricted form, in the BC mode. The mode
currently in effect is specified by PSW bit 12. Bit
12 is one for the EC mode and zero for the BC
mode.

Program-event recording can be specified only in
the EC mode, because the PSW bit to turn this
function on is not available in the BC mode.

In the EC mode, I/0 interruptions can be
controlled individually for up to 32 channels using
the correspondingly numbered 32 mask bits in
control register 2; there is also a summary-mask bit
for I/0 interruptions, bit 6 of the PSW. The BC
mode operates in this manner only for channels 6
and up: these channels are individually controlled
by the corresponding bits of control register 2, as
well as the summary-mask bit, bit 6 of the PSW;

channels 0-5 are controlled separately by bits 0-5
of the PSW and are not subject to the summary
mask or to mask bits in control register 2.

When interruptions occur while in the EC mode,
the interruption code and instruction-length code
are stored at various permanently assigned storage
locations according to the class of interruptions. In
the BC mode, the interruption code and

Condition
System Mask| PSW Key Code and
(PSW bits | (PSW bits Program
0-7) 8-11) Mask*
Instruction Saved| Set |Saved| Set |Saved| Set
BRANCH AND LINK No No No No Yes | No
INSERT PSW KEY No No Yes | No No No
SET PROGRAM MASK No No No No No Yes
SET PSW KEY FROM ADDRESS No No No Yes | No No
SET SYSTEM MASK No Yes | No No No No
STORE THEN AND SYSTEM MASK; Yes | ANDs| No No No No
STORE THEN OR SYSTEM MASK { Yes | ORs | No No No No -
Explanation:
* PSW bits 18-23 in EC mode; PSW bits 34-40 in BC mode.
ANDs The logical AND of the immediate field in the instruc-
tion and the current system mask replaces the current
system mask.
ORs The logical OR of the immediate field in the instruc-
tion and the current system mask replaces the current
system mask.

Operations on System Mask, PSW Key, and Program Mask

Chapter 4. Control 4-3

instruction-length code for all except ,
machine-check interruptions are placed in the PSW.
The program-mask and condition-code fields in

the PSW are allocated to different bit positions in
the two control modes. The instruction INSERT
STORAGE KEY provides the reference and change
bits when in the EC mode but produces zeros in
the corresponding bit positions when in the BC
mode.

Programming Notes _

1. The BC mode provides a PSW format that is
compatible with the PSW of System/360.

2. The choice between EC and BC modes affects
only those aspects of operation that are
specifically defined to be different for the two
modes. It does not affect the operation of any
functions that are not associated with the
control bits in the PSW provided only in the
EC mode, and it does not affect the validity of
any instructions. The instructions SET
SYSTEM MASK, STORE THEN AND
SYSTEM MASK, and STORE THEN OR
SYSTEM MASK perform the specified function
on the leftmost byte of the PSW regardless of
the mode specified by the current PSW. On
the other hand, the instruction SET
PROGRAM MASK introduces a new program
mask regardless of the PSW bit positions
occupied by the mask.

Program-Status-Word Format in EC Mode

The following is a summary of the functions of the
PSW fields in the EC mode. (See the figure "PSW
Format in EC Mode.'")

PER Mask (R): Bit 1 controls whether the CPU is
enabled for interruptions associated with
program-event recording (PER). When the bit is

zero, no PER event can cause an interruption.
When the bit is one, interruptions are permitted
subject to the PER-event-mask bits in control
register 9.

I/0 Mask (I0): Bit 6 controls whether the CPU is
enabled for I/O interruptions. When the bit is
zero, an I/0 interruption cannot occur.. When the
bit is one, 1/0 interruptions are subject to the
channel-mask bits in control register 2; when a
channel-mask bit is zero, the associated channel
cannot cause an I/O interruption; when the
channel-mask bit is one, an interruption condition
at the channel can cause an interruption.

External Mask (EX): Bit 7 controls whether the
CPU is enabled for interruption by conditions
included in the external class. When the bit is
zero, an external interruption cannot occur. When
the bit is one, an external interruption is subject to
the corresponding external subclass-mask bits in
control register 0; when the subclass-mask bit is
zero, conditions associated with the subclass cannot
cause an interruption; when the subclass-mask bit
is one, an interruption in that subclass can occur.

PSW Key: Bits 8-11 form the access key for
storage references by the CPU. This PSW Kkey is
matched with a storage key whenever information
is stored, or whenever information is fetched from
a location that is protected against fetching.

EC Mode (E): Bit 12, which controls the format
of the PSW and the mode of operation of the CPU,
is one when the CPU is in the extended-control
(EC) mode.

m

Prog
OIR|0 0 0 0)0}X]| Key |E|M|W|P|O 0jC C| Mask

00000O0O0CGOC

0 6 8 12 16 18 20

31

00000000O0

Instruction Address

32 40
PSW Format in EC Mode

4-4 IBM 4300 Processors Principles of Operation

63

Machine-Check Mask (M): Bit 13 controls
whether the CPU is enabled for interruption by
machine-check conditions. When the bit is zero, a
machine-check interruption cannot occur. When
the bit is one, machine-check interruptions due to
system damage and instruction-processing damage
are permitted, but interruptions due to other
machine-check-subclass conditions are subject to
the subclass-mask bits in control register 14,

Wait State (W): When bit 14 is one, the CPU is
waiting; that is, no instructions are processed by
the CPU, but interruptions may take place. When
bit 14 is zero, instruction fetching and execution
occur in the normal manner. The wait indicator is
on when the bit is one.

Problem State (P): When bit 15 is one, the CPU
is in the problem state. When bit 15 is zero, the
CPU is in the supervisor state. In the supervisor
state, all instructions are valid. In the problem
state, only those instructions are valid that cannot
be used to affect the system integrity. The
instructions that are not valid in the problem state
are called privileged instructions.. When a CPU in
the problem state attempts to execute a privileged
instruction, a privileged-operation exception is
recognized, and a program interruption takes place.

Condition Code (CC): Bits 18 and 19 are the two
bits of the condition code. The condition code is
set to a value of 0, 1, 2, or 3, depending on the
result obtained in executing certain instructions.
Most arithmetic and logical operations, as well as
some other operations, set the condition code. The

instruction BRANCH ON CONDITION can
specify any selection of the condition-code values
as a criterion for branching. A table in Appendix
C summarizes the condition-code values that may
be set for all instructions which set the condition
code of the PSW.

Program Mask: Bits 20-23 are the four
program-mask bits. Each bit is associated with a
program exception, as follows:

Program-

Mask Bit Program Exception
20 Fixed-point overflow
21 Decimal overflow
22 Exponent underflow
23 Significance

When the mask bit is one, the exception results
in an interruption. When the mask bit is zero, no
interruption occurs. The setting of the exponent-
underflow-mask bit or the significance-mask bit
also determines the manner in which the operation
is completed when the corresponding exception
occurs.

Instruction Address: Bits 40-63 form the
instruction address. This address designates the
location of the leftmost byte of the next
instruction. -

Bit positions 0, 2-5, 16, 17, and 24-39 are
unassigned and must contain zeros. A specification
exception is recognized when these bit positions do
not contain zeros.

Chapter 4. Control 4-5

Program-Status-Word Format in BC Mode EC Mode (E): Bit 12, which controls the format
of the PSW and the mode of operation of the CPU,
The following is a summary of the functions of the | is zero when the CPU is in the basic-control (BC)
PSW fields in the BC mode. (See the figure "PSW mode.
Format in BC Mode.")
Machine-Check Mask (M): Bit 13 controls
Channel Masks 0-5: Bits 0-5 control whether the whether the CPU is enabled for interruption by
CPU is enabled for I/0O interruptions from machine-check conditions. The meaning is the
channels 0-5, respectively. When a bit is zero, the same as in the EC mode.
associated channel cannot cause an I/0
interruption. When the bit is one, an interruption
condition at the channel can cause an I/0
interruption.

Wait State (W): When bit 14 is one, the CPU is
waiting. The meaning is the same as in the EC
mode.

I/0 Mask (I0): Bit 6 controls whether the CPU is Problem State (P): When bit 15 is one, the CPU

enabled for I/0 interruptions from channels 6 and is in the problem state. When bit 15 is zero, the
higher. When the bit is zero, these channels l CPU is in the supervisor state. The meaning is the
cannot cause I/0O interruptions. When the bit is same as in the EC mode.

one, I/0 interruptions are subject to the ‘
channel-mask bits of the corresponding channels in Interruption Code: Bits 16-31 in the old PSW,

control register 2: when a channel-mask bit is zero, which is stored during a program, supervisor-call,
the associated channel cannot cause an I/O external, or I/O interruption, identify the cause of
interruption; when the channel-mask bit is one, an | the interruption. This field is not used or checked
interruption condition at the channel can cause an in the current PSW. When a new PSW is
interruption. introduced, the contents of this field are ignored.
External Mask (EX): Bit 7 controls whether the Instruction-Length Code (ILC): The code in bit
CPU is enabled for interruption by conditions positions 32 and 33 of the old PSW indicates the
included in the external class. When the bit is length of the last-interpreted instruction when a
zero, an external interruption cannot occur. The program or supervisor-call interruption occurs. See
meaning is the same as in the EC mode. the section "Instruction-Length Code' in Chapter
6, "Interruptions." When a new PSW is introduced,
PSW Key: Bits 8-11 form the access key for the contents of this field are ignored.
storage references by the CPU. The meaning is the
same as in the EC mode. Condition Code (CC): Bits 34 and 35 are the two

bits of the condition code. The meaning is the
same as in the EC mode.

Chan Masks }|I|E
0-5 0{X| Key [|E[M|W|P Interruption Code
0 6 8 12 16 31
Prog
ILc|cc Mask Instruction Address
32 34 36 40 o 63

PSW Format in BC Mode

4-6 IBM 4300 Processors Principles of Operation

Program Mask: Bits 36-39 are the four
program-mask bits. Each bit is associated with a
program exception, as follows: -

Program-

Mask Bit Program Exception
36 Fixed-point overflow
37 Decimal overflow
38 Exponent underflow
39 Significance

When the mask bit is one, the exception results
in an interruption. When the mask bit is zero, no
interruption occurs. The setting of the exponent-
underflow-mask bit or the significance-mask bit
also determines the manner in which the operation
is completed when the corresponding exception
occurs.

Instruction Address: Bits 40-63 form the
instruction address. This address designates the
location of the leftmost byte of the next
instruction.

Control Registers
The control registers provide a means for
maintaining and manipulating control information
that resides outside the PSW. There may be up to
sixteen 32-bit control registers.

One or more specific bit positions in control

registers are assigned to each facility requiring such

register space.
The LOAD CONTROL instruction loads control
information from storage into control registers,

whereas the STORE CONTROL instruction
transfers information from control registers to
storage.

The instruction LOAD CONTROL causes all
register positions, within those registers designated
by the instruction, to be loaded. Information
loaded into the control registers becomes active
(that is, assumes control over the system) at the
completion of the instruction causing the
information to be loaded.

When STORE CONTROL is executed, it returns
the current value in each register position. Values
corresponding to unassigned register positions are
unpredictable.

Only the general structure of control registers is
described here; a definition of the register positions
appears with the description of the facility with
which the register position is associated. The figure
" Assignment of Control-Register Fields' shows the
control-register positions which are assigned and
the initial value of the field upon execution of
reset.

Programming Note

To ensure that existing programs run if and when
new facilities using additional control-register
positions are installed, the program should load
zeros in unassigned control-register positions.
Although STORE CONTROL may provide zeros in
the bit positions corresponding to unassigned
register positions, the program should not depend
on such zeros. It is permissible, however, for the
program to load into the control registers, by
LOAD CONTROL, any information previously
stored by means of STORE CONTROL.

Chapter 4. Control 4-7

Ctri Initial
Reg |[Bits Name of Field Associated with Value
0 0 |Block-multiplexing control Block-multiplexing channels 0
0 1 SSM-suppression control SET SYSTEM MASK 0
0 | 20 |Clock-comparator mask Clock comparator 0
0 | 21 CPU-timer mask CPU timer 0
0| 24 Interval-timer mask Interval timer 1
0. 25 Interrupt-key mask Interrupt key 1
0 | 26 |External-signal mask External signal 1
2 | 0-31{Channel masks Channels 1
8 |16-31|Monitor masks MONITOR CALL 0
9 0 |Successful-branching-event mask|Program-event recording 0
9 1 Instruction-fetching-event mask{Program-event recording 0
9 2 |Storage-alteration-event mask |Program-event recording 0
9 3 GR-?lteration—event mask Program-event recording 0
9 [16-31|PER' general-register masks Program-event recording 0
10 { 8-31|PER starting address Program-event recording 0
" 8-31|PER ending address Program-event recording 0
14 0 |Unused? Machine-check handling 1
14 4 |Recovery-report mask Machine-check handling 0
14 5 |Degradation-report mask Machine-check handling 0
14 6 |External-damage-report mask Machine-check handling 1
14 7 |Warning mask Machine-check handling 0

Explanation:

The fields not listed are unassigned.
PER means program-event recording.
This bit is not used but is initialized to one for consistency with the
System/370 definition.

| Assignment of Control-Register Fields

Program-Event Recording

The purpose of the program-event-recording (PER)

facility is to assist in debugging programs. It
permits the program to be alerted to the following
types of PER events:

Execution of a successful branch instruction.
Fetching of an instruction from the designated
storage area.

Alteration of the contents of the designated
storage area.

4-8

IBM 4300 Processors Principles of Operation

+ Alteration of the contents of designated general

registers.

The program can selectively specify one or more
of the above types of events to be monitored. The
information concerning a PER event is provided to
the program by means of a program interruption,
with the cause of the interruption being identified
in the interruption code. Program-event recording

is only available in the EC mode.

Control-Register Allocation

The information for controlling program-event
recording resides in control registers 9, 10, and 11
and consists of the following fields:

Control Register 9:

EM Gen.-Reg. Masks

0 4 16 3

Control Register 10:

Starting Address

Control Register 11:

Ending Address

PER-Event Masks (EM): Bits 0-3 of control
register 9 specify which types of events are
monitored. The bits are assigned as follows:

Bit 0: Successful-branching event

Bit 1: Instruction-fetching event

Bit 2: Storage-alteration event

Bit 3: General-register-alteration event

Bits 0-3, when ones, specify that the
corresponding types of events are monitored.
When a bit is zero, the corresponding type of event
is not monitored.

PER General-Register Masks: Bits 16-31 of
control register 9 specify which general registers
are monitored for replacement of their contents.
The 16 bits, in the order of ascending bit numbers,
correspond one for one with the 16 registers, in the
order of ascending register numbers. When a bit is
one, the associated register is monitored for
replacement; if zero, the register is not monitored.

PER Starting Address: Bits 8-31 of control
register 10 are the address of the beginning of the
monitored storage area.

PER Ending Address: Bits 8-31 of control
register 11 are the address of the end of the
monitored storage area.

Programming Note

Models may operate at reduced performance while
the CPU is enabled for PER events. To ensure
that CPU performance is not degraded because of
the operation of the program-event-recording
facility, programs that do not use it should disable
the facility by setting the PER mask in the
EC-mode PSW to zero. No degradation due to
program-event recording occurs in the BC mode or
when the PER mask in the EC-mode PSW is zero.
Disabling of program-event recording in the EC
mode by means of the masks in control register 9
does not necessarily prevent performance
degradation due to the facility.

Operation

Program-event recording (PER) is under control of
bit 1 of the EC-mode PSW, the PER mask. When
the mask is zero, no PER event can cause an
interruption. When the mask is one, a monitored
event, as specified by the contents of control
registers 9, 10, and 11, causes a program
interruption. In BC mode, program-event recording
is disabled.

An interruption due to a PER event is taken
after the execution of the instruction responsible
for the event. The occurrence of the event does
not affect the execution of the instruction, which
may be either completed, terminated, suppressed, or
nullified.

When the CPU is disabled for a particular PER
event at the time it occurs, either by the mask in
the PSW or by the masks in control register 9, the
event is not recognized.

A change to the PER mask in the PSW or to the
PER control fields in control registers 9, 10, and 11
affects program-event recording starting with the
execution of the immediately following instruction.
If the CPU is enabled for some PER event but an
instruction causes the CPU to be disabled for that
particular event, the event causes a PER condition
to be recognized if it occurs during the execution of
the instruction.

When LOAD PSW or SUPERVISOR CALL
causes a PER condition and at the same time
changes CPU operation from the EC mode to the
BC mode, the PER interruption is taken with the
old PSW specifying the BC mode and with the
interruption code stored in the old PSW. The
additional information identifying the PER
condition is stored in its regular format at locations
150-155.

Chapter 4. Control = 4-9

Program-event recording applies to emulation
instructions in the following way. Emulation
instructions indicate all events that have occurred
and may additionally indicate events that did not
occur and were not called for in the instruction,
provided monitoring was enabled for the type of
event by the PER mask in the PSW and the
PER-event masks, bits 0-3 in control register 9. In
such cases, the contents of the remaining positions
in control registers 9, 10, and 11 may be ignored.
Thus, for example, an emulation instruction may
cause general-register alteration to be indicated
even though no general registers are altered and
even though bits 16-31 of control register 9 are all
Zeros.

Identification of Cause

A program interruption for PER sets bit 8 of the
interruption code to one and places identifying
information in storage locations 150-155. The
format of the information stored at locations
150-15S5 is as follows:

Locations 150-151:

PC |000000000000

0 4 15

Locations 152-155:

00000000 PER Address

0 8 31

The event causing a PER interruption is
identified by a one in bit positions 0-3 of location
150, the PER code (PC), with the rest of the bits
in the code set to zeros. The bit position in the
PER code for a particular event is the same as the
bit position for that event in the PER event-mask
field in control register 9.

The PER address at locations 153-155 is the
address of the instruction causing the event. When
the instruction is executed by means of EXECUTE,
the address of the location containing the
EXECUTE instruction is placed in the PER-address
field. In either case, the address of the instruction
to be executed next is placed in the PSW. Zeros
are stored in bit positions 4-7 of location 150 and
at locations 151 and 152.

4-10 IBM 4300 Processors Principles of Operation

Priority of Indication

When a PER interruption occurs and more than

one designated PER event has been recognized, all

recognized PER events are concurrently indicated
in the PER code. Additionally, if another program
interruption condition concurrently exists, the
interruption code for a program interruption
indicates both the PER condition and the other
condition.

Except as listed below, a PER event does not
cause premature interruption of the interruptible
instruction, and the PER condition is held pending
until the completion of the instruction.

« When the execution of an interruptible
instruction is due to be interrupted by an I/0,
external, or repressible machine-check condition,
an interruption for a pending PER condition
occurs first, and the 1/0, external, or
machine-check interruption is subsequently
subject to the control of mask bits in the new
PSW.

« Similarly, when the CPU is placed in the stopped
state during the execution of an interruptible
instruction, an interruption for a pending PER
condition occurs before the stopped state is
entered.

« When any program exception is encountered, the
pending PER condition is indicated concurrently.

« Depending on the model, in certain situations, a
PER condition may cause the execution of an
interruptible instruction to be interrupted
without an associated asynchronous condition or
program exception.

In the case of an instruction-fetching event for
SUPERVISOR CALL, the PER interruption occurs
immediately after the supervisor-call interruption.

Programming Notes

1. In the following cases an instruction can both
cause a program interruption for a PER event
and change the value of masks controlling an
interruption for PER events. The original mask
values determine whether a program
interruption takes place for the PER event.

a. The instructions LOAD PSW, SET
SYSTEM MASK, STORE THEN AND
SYSTEM MASK, and SUPERVISOR
CALL can cause an instruction-fetching
event and disable the CPU for PER
interruptions. Additionally, STORE THEN
AND SYSTEM MASK can cause a
storage-alteration event to be indicated. In

all these cases, the program old PSW
associated with the program interruption for
the PER event may indicate that the CPU
was disabled for that type of PER event.
b. An instruction-fetching event may be
recognized during execution of a LOAD
CONTROL instruction which also changed
the value of the PER-event masks in
control register 9 or the addresses in
control registers 10 and 11 controlling
indication of instruction-fetching events.

2. No instructions can both change the values of
general-register-alteration masks and cause a
general-register-alteration event to be
recognized.

3. When a PER interruption occurs during the
execution of an interruptible instruction, the
ILC indicates the length of that instruction or
EXECUTE, as appropriate. When a PER
interruption occurs as a result of LOAD PSW
or SUPERVISOR CALL, the ILC indicates the
length of these instructions or EXECUTE, as
appropriate, unless a concurrent specification
exception on LOAD PSW calls for an ILC of 0.

4. When a PER interruption is caused by
branching, the PER address identifies the
branch instruction (or EXECUTE, as
appropriate), whereas the old PSW points to
the next instruction to be executed. When the
interruption occurs during the execution of an
interruptible instruction, the PER address and
the instruction address in the old PSW are the
same.

Storage-Area Designation

Two of the PER events—instruction fetching and
storage alteration—involve the designation of an
area in storage. The storage area monitored for the
references starts at the location designated by the
starting address in control register 10 and extends
up to and including the location designated by the
ending address in control register 11. The area
extends to the right of the starting address.

The set of addresses monitored for
instruction-fetching and storage-alteration events
wraps around at address 16,777,215, that is,
address O is considered to follow address
16,777,215. When the starting address is less than
the ending address, the area is contiguous. When
the starting address is greater than the ending
address, the set of locations monitored includes the
area from the starting address to address
16,777,215 and the area from address 0 to, and
including, the ending address. When the starting

address is equal to the ending address, only the
location designated by that address is monitored.

The monitoring of storage alteration and
instruction fetching is performed by comparing all
24 bits of the monitored address with the starting
and ending addresses.

PER Events

Successful Branching
Execution of a successful branch operation causes a
program-event interruption if bit O of the
PER-event-mask field is one and the PER mask in
the PSW is one.

A successful branch occurs whenever one of the
following instructions causes control to be passed to
the instruction designated by the branch address:

BRANCH ON CONDITION

BRANCH AND LINK

BRANCH ON COUNT

BRANCH ON INDEX HIGH

BRANCH ON INDEX LOW OR EQUAL

The branch event is also indicated by an
emulation instruction when the emulation
instruction itself causes a branch. That is, the
branch event is indicated when the location of the
next instruction executed by the CPU after leaving
emulation mode does not immediately follow the
location of the emulation instruction.

The event is indicated by setting bit 0 of the
PER code to one.

Instruction Fetching

Fetching the first byte of an instruction from the
storage area designated by the contents of control
registers 10 and 11 causes a program-event
interruption if bit 1 of the PER-event-mask field is
one and the PER mask in the PSW is one.

A PER event for instruction fetching is
recognized whenever the CPU executes an
instruction whose initial byte is located within the
monitored area. When the instruction is executed
by means of EXECUTE, a PER event is recognized
when the first byte of the EXECUTE instruction or
the target instruction or both is located in the
monitored area.

The event is indicated by setting bit 1 of the
PER code to one.

Storage Alteration

Storing of data by the CPU in the storage area
designated by the contents of control registers 10
and 11 causes a program-event interruption if bit 2

Chapter 4. Control 4-11

of the PER-event-mask field is one and the PER
mask in the PSW is one.

The contents of storage are considered to have
been altered whenever the CPU executes an
instruction that causes all or part of an operand to
be stored within the monitored area of storage.
Alteration is considered to take place whenever
storing is considered to take place for purposes of
indicating protection exceptions. (See the section
"Recognition of Access Exceptions' in Chapter 6,
"Interruptions.') Storing constitutes alteration for
program-event-recording purposes even if the value
stored is the same as the original value.

Implied locations that are referred to by the
CPU in the process of interval-timer updating,
interruptions, and execution of I/O instructions,
including the interval-timer, PSW, and CSW
locations, are not monitored. These locations,
however, are monitored when information is stored
there explicitly by an instruction. Similarly,
monitoring does not apply to storing of data by a
channel.

The instructions COMPARE AND SWAP and
COMPARE DOUBLE AND SWAP are considered
to alter the second-operand location only when
storing actually occurs.

The instruction STORE CHARACTERS
UNDER MASK is not considered to alter the
storage location when the mask is zero.

The event is indicated by setting bit 2 of the
PER code to one.

General-Register Alteration

Alteration of the contents of a general register
causes a program-event interruption if bit 3 of the
PER-event-mask field is one, the alteration mask
corresponding to that general register is one, and
the PER mask in the PSW is one. ’

The contents of a general register are considered
to have been altered whenever a new value is
placed in the register. Recognition of the event is
not contingent on the new value being different
from the previous one. The execution of an
RR-format arithmetic or movement instruction is
considered to fetch the contents of the register,
perform the indicated operation, if any, and then
replace the value in the register. The register can
be designated implicitly, such as in TRANSLATE
AND TEST and EDIT AND MARK, or explicitly
by an RR, RX, or RS instruction, including
BRANCH AND LINK, BRANCH ON COUNT,
BRANCH ON INDEX HIGH, and BRANCH ON
INDEX LOW OR EQUAL.

The instructions EDIT AND MARK and
TRANSLATE AND TEST are considered to have

4-12 IBM 4300 Processors Principles of Operation

altered the contents of general register 1 only when
these instructions have caused information to be
placed in the register.

The instructions MOVE LONG and COMPARE
LOGICAL LONG are always considered to alter
the contents of the four registers specifying the two
operands, including the cases where the padding
byte is used, when both operands have zero length,
or when condition code 3 is set for MOVE LONG.

The instruction INSERT CHARACTERS
UNDER MASK is not considered to alter the
general register when the mask is zero.

The instructions COMPARE AND SWAP and
COMPARE DOUBLE AND SWAP are considered
to alter the general register, or general-register pair,
designated by R, only when the contents are
actually replaced, that is, when the first and second
operands are not equal.

The event is indicated by setting bit 3 of the
PER code to one.

Programming Note

The following are some examples of

general-register alteration:

1. Register-to-register load instructions are
considered to alter the register contents even
when both operand addresses designate the
same register.

2. Addition or subtraction of zero and
multiplication or division by one are considered
to constitute alteration.

3. Logical and fixed-point shift operations are
considered to alter the register contents even
for shift amounts of zero.

4. The branching instructions BRANCH ON
INDEX HIGH and BRANCH ON INDEX
LOW OR EQUAL are considered to alter the
first operand even when zero is added to its
value.

Indication of Events Concurrently with

Other Interruption Conditions

The following rules govern the indication of PER

events caused by an instruction that has also caused

a program exception or the monitor event to be

indicated, or that causes a supervisor-call

interruption.

1. The indication of an instruction-fetching event
does not depend on whether the execution of
the instruction was completed, terminated,
suppressed, or nullified. The event, however, is
not indicated when an access exception
prohibits access to the first byte of the
instruction. When the first halfword of the
instruction is accessible but an access exception

applies to the second or third halfword of the
instruction, it is unpredictable whether the
instruction-fetching event is indicated.

When the operation is completed, the event is
indicated regardless of whether any program
exception or the monitoring event is
recognized.

Successful branching, storage alteration, and
general-register alteration are not indicated for
an operation or, in case the instruction is
interruptible, for a unit of operation that is
suppressed or nullified.

When the execution of the instruction is
terminated, general-register or storage
alteration is indicated whenever the event has
occurred, and a model may indicate the event if
the event would have occurred had the
execution of the instruction been completed,
even if altering the contents of the result field
is contingent on operand values.

When LOAD PSW or SUPERVISOR CALL
causes a PER condition and at the same time
introduces a new PSW with the type of
PSW-format error that is recognized
immediately after the PSW becomes active, the
interruption code identifies both the PER
condition and the specification exception.
When these instructions introduce a
PSW-format error of the type that is recognized
as part of the execution of the following
instruction, the PSW is stored as the old PSW
without the specification exception being
recognized.

The indication of PER events concurrently with
other program interruption conditions is
summarized in the figure "Indication of PER
Events."

Chapter 4. Control 4-13

Except.ion

PER Event

Branch

Instr

Storage
Alter-
ation

GR
Alter-
ation

Operation :
Privileged operation:
Execute
Protection
Instruction
Operand
Addressing
Instruction
Operand
Specification
0dd instruction address
Invalid PSW format
Other
Data
Invalid sign
Other
Fixed-point overflow
Fixed-point divide
Division
Conversion
Decimal overflow
Decimal divide
Exponent overflow
Exponent underflow
Sighificance
Floating-point divide
Special operation
Page access
Instruction
Operand
Page state
Page transition
|Monitor event

[X7 NVe B4 nnoOooOooOouvmoowm [R N 72 wowm

PR XKXRX XXX XXK XXX XX |

—

KX XX |

Indication of PER Events (Part 1 of 2)

4-14 IBM 4300 Processors Principies of Operation

Explanation:

¢

The operation or, in the case of the interruptible
instructions, the unit of operation is completed.

The operation or, in the case of the interruptible
instructions, the unit of operation is nullified. The
instruction address in the old PSW has not been updated.

The operation or, in the case of the interruptible
instructions, the unit of operation is suppressed.

The execution of the instruction is terminated.

The event is indicated with the exception if the event
has occurred; that is, the contents of the monitored
storage location or general register were altered, or an
attempt was made to execute an instruction whose first
byte is located in the monitored area.

A model is permitted, but not required, to indicate the
event if the event would have occurred had the operation
been completed but did not take place because the execu-
tion of the instruction was terminated.

The event is not indicated.

When an access exception applies to the second or third
halfword of the instruction but the first halfword is
accessible, it is unpredictable whether the instruction-
fetching event is indicated.

This condition may occur in the case of the interrupt-
ible instructions when the event is recognized in the
unit of operation that is completed and when the excep-
tion causes the next unit of operation to be suppressed

or nullified.

Indication of PER Events (Part 2 of 2)

Programming Notes

1.

The execution of the interruptible instructions
MOVE LONG (MVCL) and COMPARE
LOGICAL LONG (CLCL) can cause events
for general-register alteration and instruction
fetching. Additionally, MVCL can cause the
storage-alteration event.

Since the execution of MVCL. and CLCL
can be interrupted, a program event may be

-indicated more than once. It may be necessary,

therefore, for a program to remove the

redundant event indications from the PER data.

The following rules govern the indication of the
applicable events during execution of these two
instructions:

The instruction-fetching event is indicatc
whenever the instruction is fetched for
execution, regardless of whether it is the
initial execution or a resumption.

The general-register-alteration event is
indicated on the initial execution and on
each resumption and does not depend on
whether or not the register actually is
changed.

The storage-alteration event is indicated
only when data has been stored in the
monitored area by the portion of the
operation starting with the last initiation
and ending with the last byte transferred

Chapter 4. Control 4-15

before the interruption. No special
indication is provided on premature
interruptions as to whether the event will
occur again upon the resumption of the
operation. When the storage area
designates a single byte location, a
storage-alteration event can be recognized
only once in the execution of MOVE
LONG.

2. The following is an outline of the general
action a program must take to delete the
redundant entries in the PER data for MOVE
LONG and COMPARE LOGICAL LONG so
that only one entry for each complete execution
of the instruction is obtained:

a. Check to see if the PER address is equal to
the instruction address in the old PSW and
if the last instruction executed was MVCL
or CLCL.

b. If both conditions are met, delete
instruction-fetching and register-alteration
events.

c. If both conditions are met and the event is
storage alteration, delete the event if some
part of the remaining destination operand is
within the monitored area.

External-Signal Facility

The external-signal facility consists of six signal-in
lines and an external-signal mask, which is bit 26
of control register 0. Each of the six signal-in
lines, when pulsed, sets up the condition for one of
six distinct interruptions (see the section ''External
Signal" in Chapter 6, "Interruptions').

For a detailed description, see the System/360
and System/370 Direct Control and External
Interruption Features~Original Equipment
Manufacturers’ Information, GA22-6845.

Timing

The timing facilities include four facilities for
measuring time: the time-of-day clock, the clock
comparator, the CPU timer, and the interval timer.

Time-of-Day Clock

The time-of-day (TOD) clock provides a high-
resolution measure of real time suitable for the
indication of date and time of day. The cycle of
the clock is approximately 143 years.

Format

The time-of-day clock is a binary counter with the
format shown in the following illustration. The bit
positions of the clock are numbered 0 to 63,

4-16 IBM 4300 Processors Principles of Operation

corresponding to the bit positions of a 64-bit
| unsigned binary integer.

l——l microsecond

0 51 63

In the basic form, the time-of-day clock is

l incremented by adding a one in bit position 51

every microsecond. In models having a higher or
lower resolution, a different bit position is
incremented at such a frequency that the rate of
advancing the clock is the same as if a one were
added in bit position 51 every microsecond. The
resolution of the time-of-day clock is such that the
incrementing rate is comparable to the
instruction-execution rate of the model.

When incrementing of the clock causes a carry
to be propagated out of bit position 0, the carry is
ignored, and counting continues from zero on. The
program is not alerted, and no interruption
condition is generated as a result of the overflow.

The operation of the clock is not affected by any
normal activity or event in the system. Incre-
menting of the clock does not depend on whether
the wait-state bit of the PSW is one or whether the
CPU is in the stopped, operating, or load state. Its
operation is not affected by program, initial-
program, or clear resets or by initial program
loading. Operation of the clock is also not affected
by the setting of the rate control or by an initial-
microprogram-loading operation. The clock is not

incremented when the power is off.

States

The following states are distinguished for the time-
of-day clock: set, not set, error, and not
operational. The state determines the condition
code set by execution of STORE CLOCK. The
clock is incremented, and is said to be running,
when it is in either the set state or the not-set state.

Not-Set State: When the power is turned on, the
clock is set to zero, and the clock enters the not-set
state. The clock is incremented when in the not-set

state. Incrementing begins at zero.

When the clock is in the not-set state, execution
of STORE CLOCK causes condition code 1 to be
set and the current value of the running clock to be
stored. :

Set State: Execution of SET CLOCK when the
manual TOD-clock control is set to the enable-set
position causes the clock to enter the set state from
the not-set, set, or error state if no exceptions are
encountered.

Incrementing of the clock begins with the first
stepping pulse after the clock enters the set state.

When the clock is in the set state, execution of
STORE CLOCK causes condition code 0 to be set
and the current value of the running clock to be
stored.

Error State: The clock enters the error state when
a malfunction is detected that is likely to have
affected the validity of the clock value. A
timing-facility-damage machine-check-interruption
condition is generated whenever it enters the error
state.

When STORE CLOCK is executed and the clock
is in the error state, condition code 2 is set, and the
value stored is zero.

Not~Operational State: The clock is in the
not-operational state when it is disabled for
' maintenance. It depends on the model if the clock
can be placed in this state. Whenever the clock
enters the not-operational state, a timing-facility-
damage machine check is generated.

When the clock is in the not-operational state,
execution of STORE CLOCK causes condition
code 3 to be set, and zero is stored.

Setting and Inspecting the Clock

The clock can be set to a specific value by
execution of SET CLOCK if the manual TOD-
clock control is set to the enable-set position.
Setting the clock replaces the values in all bit
positions from bit position 0 through the rightmost
position that is incremented when the clock is
running.

The time-of-day clock can be inspected by
executing STORE CLOCK, which causes a 64-bit
value to be stored. Two executions of STORE
CLOCK always store different values if the clock is
running.

The values stored for a running clock always
correctly imply the order of execution of STORE
CLOCK. Zeros are stored in positions to the right
of the bit position that is incremented.

Programming Notes
1. Bit position 31 of the clock is incremented

every 1.048576 seconds; for some applications,
reference to the high-order 32 bits of the clock
may provide sufficient resolution.
Communication between systems is facilitated
by establishing a standard time origin, or
standard epoch, which is the calendar date and
time to which a clock value of zero
corresponds. January 1, 1900, 0 AM
Greenwich Mean Time (GMT) is recommended
as the standard epoch for the clock.

A program using the clock value as a time-of-
day and calendar indication must be consistent
with the programming support under which the
program is to run. If the programming support
uses the standard epoch, bit 0 of the clock
remains one through the years 1972-2041.
Ordinarily, testing the high-order bit for a one
is sufficient to determine if the clock value is in
the standard epoch.

In converting to or from the current date or
time, the programming support assumes each
day to be 86,400 seconds. It does not take into
account "leap seconds" inserted or deleted
because of time-correction standards.

Because of the limited accuracy of manually
setting the clock value, the low-order bit
positions of the clock, expressing fractions of a
second, are normally not valid as indications of
the time of day. However, they permit
elapsed-time measurements of high resolution..
The following chart shows the time interval
between instants at which various bit positions
of the time-of-day clock are stepped. This time
value may also be considered as the weighted
time value that the bit, when one, represents.

T0D- Stepping Interval

Clock

Bit Days|Hours|[Minutes| Seconds
51 0.000 001
47 0.000 016
43 0.000 256
39 0.004 096
35 0.065 536
31 1.048 576
27 16.777 216
23 4 28.435 456
19 1 11 34.967 296
15 19 5 19.476 736
11 12 17 25 11.627 776
7 203 14 43 6.044 416
3 13257 19 29 36.710 656

Chapter 4. Control 4-17

6. The following chart shows the clock setting at
the start of various years. The clock settings,
expressed in hexadecimal notation, correspond
to 0 AM Greenwich Mean Time on January 1
of each year.

Year | Clock Setting (Hex)

1900 | 0000 0000 0000 0000
1976 | 8853 BAFO B400 0000
1980 | 8F80 9FD3 2200 0000
1984 | 96AD 84B5 9000 0000
1988 | 9DDA 63997 FEOO 0000
1992 | A507 4E7A 6C00 0000
1996 | AC34 335C DAGO 0000
2000 | B361 183F 4800 0000

7. The stepping value of time-of-day-clock bit
position 63, if implemented, is 2~ 12 micro-
seconds, or approximately 244 picoseconds.
This value is called a clock unit.

The following chart shows various time
intervals in clock units expressed in
hexadecimal notation.

Interval Clock Units (Hex)
1 microsecond 1000
1 millisecond 3E 8000
1 second F424 0000
1 minute 39 3870 0000
1 hour D69 3A40 0000
1 day 1 41DD 7600 0000
365 days 1CA E8C1 3E00 0000
366 days 1CC 2A9E B400 0000
1,461 days! 72C E4E2 6E00 0000
1 Number of days in four years,
including a leap year.

Clock Comparator

The clock comparator provides a means of causing

an interruption when the time-of-day-clock value
~exceeds a value specified by the program.

The clock comparator has the same format as the
time-of-day clock. In the basic form, the clock
comparator consists of bits 0-47, which are
compared with the corresponding bits of the
time-of-day clock. In some models, higher
resolution is obtained by providing more than 48
bits. The bits in positions provided in the clock
comparator are compared with the corresponding
bits of the clock. When the resolution of the clock
is less than that of the clock comparator, the

4-18 IBM 4300 Processors Principles of Operation

contents of the clock comparator are compared
with the clock value as this value would be stored
by executing STORE CLOCK.

The clock comparator causes an extérnal
interruption with the interruption code 1004 (hex).
A request for a clock-comparator interruption exists
whenever either of the following conditions exists:
1. The time-of-day clock is running and the value
of the clock comparator is less than the value in
the compared portion of the clock, both values
being considered unsigned binary integers.
Comparison follows the rules of unsigned
binary arithmetic.

2. The time-of-day clock is in the error state or
the not-operational state. »

A request for a clock-comparator interruption
does not remain pending when the value of the
clock comparator is made equal to or greater than
that of the time-of-day clock or when the value of
the time-of-day clock is made less than the
clock-comparator value. The latter may occur as a
result of the time-of-day clock either being set or
wrapping to zero.

The clock comparator can be inspected by
executing the instruction STORE CLOCK
COMPARATOR and can be set to a specific value
by executing the SET CLOCK COMPARATOR
instruction.

The contents of the clock comparator are
initialized to-zero by initial program reset.

Programming Notes

1. An interruption request for the clock
comparator persists as long as the
clock-comparator value is less than that of the
time-of-day clock or as long as the time-of-day
clock is in the error or not-operational state.
Therefore, one of the following actions must be
taken after an external interruption for the
clock comparator has occurred and before the
CPU is again enabled for external
interruptions: the value of the clock comparator
has to be replaced, the time-of-day clock has to
be set, or the clock-comparator submask has to
be set to zero. Otherwise, loops of external
interruptions are formed.

2. The instruction STORE CLOCK may store a
value which is greater than that in the clock
comparator, even though the CPU is enabled
for the clock-comparator interruption. This is
because the time-of-day clock may be

incremented one or more times between when
instruction execution is begun and when the
clock value is accessed. In this situation, the
interruption occurs when the execution of
STORE CLOCK is completed.

CPU Timer

The CPU timer provides a means for measuring
elapsed CPU time and for causing an interruption
when a prespecified amount of time has elapsed.

The CPU timer is a binary counter with a format
which is the same as that of the time-of-day clock,
except that bit O is considered a sign. In the basic
form, the CPU timer is decremented by subtracting
a one in bit position 51 every microsecond. In
models having a higher or lower resolution, a
different bit position is decremented at such a
frequency that the rate of decrementing the CPU
timer is the same as if a one were subtracted in bit
position 51 every microsecond. The resolution of
the CPU timer is such that the stepping rate is
comparable to the instruction-execution rate of the
model.

The CPU timer requests an external interruption
with the interruption code 1005 (hex) whenever
the CPU-timer value is negative (bit O of the CPU
timer is one). The request does not remain pending
when the CPU-timer value is changed to a
nonnegative value.

When both the CPU timer and the time-of-day
clock are running, the stepping rates are
synchronized such that both are stepped at the
same rate. Normally, decrementing the CPU timer
is not affected by concurrent 1/O activity.
However, in some models the CPU timer may stop
during extreme 1/0 activity and other similar
interference situations. In these cases, the time
recorded by the CPU timer provides a more
accurate measure of the CPU time used by the
program than that which would have been recorded
had the CPU timer continued to step.

The CPU timer is decremented when the CPU is
in the operating state or the load state. When the
manual rate control is set to instruction step, the
CPU timer is decremented only during the time in
which the CPU is actually performing a unit of
operation. However, depending on the model, the
CPU timer may or may not be decremented when
the time-of-day clock is in the error or
not-operational state.

Depending on the model, the CPU timer may or
may not be decremented when the CPU is in the
check-stop state.

The CPU timer can be inspected by executing
the instruction STORE CPU TIMER and can be set
to a specific value by executing the SET CPU
TIMER instruction.

The CPU timer is set to zero by initial program
reset.

Programming Notes

1. The CPU timer in association with a program
may be used both to measure CPU-execution
time and to signal the end of a time interval on
the CPU.

2. The time measured for the execution of a
sequence of instructions may depend on the
effects of such things as I/0O interference, page
faults, and instruction retry. Hence, repeated
measurements of the same sequence on the
same installation may differ.

3. The fact that a CPU-timer interruption does
not remain pending when the CPU timer is set
to a positive value eliminates the problem of an
undesired interruption. This would occur if,
between the time when the old value is stored
and a new value is set, the CPU is disabled for
CPU-timer interruptions and the CPU timer
value goes from positive to negative.

4. The fact that CPU-timer interruptions are
requested whenever the CPU timer is negative
rather than just when the CPU timer goes from
positive to negative eliminates the requirement
for testing a value to ensure that it is positive
before setting the CPU timer to that value.

As an example, a program being timed by
the CPU timer is interrupted for a cause other
than the CPU timer, external interruptions are
disallowed by the new PSW, and the
CPU-timer value is then saved by STORE CPU
TIMER. This value could be negative if the
CPU timer went from positive to negative since
the interruption. Subsequently, when the
program being timed is to continue, the CPU
timer may be set to the saved value by SET
CPU TIMER. A CPU-timer interruption will
occur immediately after external interruptions
are again enabled if the saved value was
negative.

The persistence of the CPU-timer-
interruption request means, however, that after
an external interruption for the CPU timer has
occurred, either the value of the CPU timer has
to be replaced or the CPU-timer submask has
to be set to zero before the CPU is again

Chapter 4. Control 4-19

enabled for external interruptions. Otherwise,
loops of external interruptions are formed. .

5. The instruction STORE CPU TIMER may store
a negative value even though the CPU is
enabled for the interruption. This is because
the CPU-timer value may be decremented one
or more times between the instants when
instruction execution is begun and when the
CPU timer is accessed. In this situation, the
interruption occurs when the execution of
STORE CPU TIMER is completed.

Interval Timer

The interval timer is a binary counter that occupies
a word at storage location 80 and has the following
format:

0 24 31

The interval timer is treated as a 32-bit signed
binary integer. In the basic form, the contents of
the interval timer are reduced by one in bit position
23 every 1/300 of a second. Higher resolution of
timing may be obtained in some models by counting
with higher frequency in one of the positions 24
through 31. In each case, the frequency is adjusted
to cause decrementing in bit position 23 at the rate
of 300 times per second. The cycle of the interval
timer is approximately 15.5 hours. '
of 300 times per second. The cycle of the interval
timer is approximately 15.5 hours.

The interval timer causes an external
interruption, with bit 8 of the interruption code set
to one and bits 0-7 set to zeros. Bits 9-15 of the
interruption code are zeros unless set to ones for
another condition that is concurrently indicated.

A request for an interval-timer interruption is
generated whenever the interval-timer value is
decremented from a positive or zero number to a
negative number. The request is preserved and
remains pending in the CPU until it is cleared by
an interval-timer interruption or a program reset.
The overflow occurring as the interval-timer value
is decremented from a large negative number to a
large positive number is ignored.

The interval timer is not necessarily
synchronized with the time-of-day clock.

The interval-timer contents are updated at the
appropriate frequency whenever other machine
activity permits. The updating occurs only between
instruction executions, except that the interval

4-20 IBM 4300 Processors Principles of Operation

I timer may be updated between units of operation of
an interruptible instruction, such as MOVE LONG.
An updated interval-timer value is normally
available at the end of each instruction execution.
When the execution of an instruction or other
machine activity causes updating to be delayed by
more than one period, the contents of the interval
timer may be reduced by more than one unit in a
single updating cycle. Interval-timer updating may
be omitted when I/0 data transmission approaches
the limit of storage capability, or when a channel
sharing CPU equipment and operating in burst
mode causes CPU activity to be locked out. The
program is not alerted when omission of updating
causes the real-time count to be lost.

When the contents of the interval timer are
fetched by a channel or are used as the source of
an instruction, the result is unpredictable.
Similarly, storing by the channel at location 80
causes the contents of the interval timer to be
unpredictable.

The interval timer is not decremented when the
manual interval-timer control is set to disable. The
interval timer is also not decremented when the
CPU is not in the operating state or when the
manual rate control is set to instruction step.

Depending on the model, the interval timer may
or may not be decremented when the time-of-day
clock is in the error, stopped, or not-operational
state.

Programming Notes

1. The value of the interval timer is accessible by
fetching the word at location 80 as an operand,
provided the location is not protected against
fetching. It may be changed at any time by
storing a word at location 80. When location
80 is protected, any attempt by the program to
change the value of the interval timer causes a

program interruption for protection exception.
2. The value of the interval timer may be changed
without losing the real-time count by storing
the new value at locations 84-87 and then
shifting bytes 80-87 to locations 76-83 by
means of the instruction MOVE (MVC). Thus,
in a single operation, the new interval-timer
value is placed at location 80, and the old value
is made available at location 76.
If any means other than the instruction
MOVE (MVC) are used to interrogate and
then replace the value of the interval timer,

including MOVE LONG or two separate
instructions, the program may lose a time
increment when an updating cycle occurs
between fetching and storing.

3. When the value of the interval timer is to be
recorded on an I/O device, the program should
first store the interval-timer value in a
temporary storage location to which the I/0O
operation subsequently refers. When the
channel fetches the interval-timer value directly
from location 80, the value obtained is
unpredictable.

Externally Initiated Functions

Resets
Four reset functions are provided:
e Program reset
» Initial program reset
o Clear reset
« Power-on reset

Program reset provides a means of clearing
equipment-check indications and any resultant
unpredictability in the CPU and 1/0 state with the
least amount of information destroyed. In
particular, it is used to clear check conditions when

the machine state is to be preserved for analysis or
resumption of operation.

Initial program reset provides the functions of
program reset together with initialization of the
current PSW, CPU timer, clock comparator, and
control registers.

Clear reset causes initial program reset to be
performed and, additionally, clears or initializes all
storage locations and registers, with the exception
of the time-of-day clock. Such clearing is useful in
debugging programs and in ensuring user privacy.
Clearing does not affect external storage, such as
direct-access storage devices used by the control
program to hold the contents of unaddressable
pages.

Power-on reset combines the functions of clear
reset with initializing the time-of-day clock and
selecting storage size.

Program reset and clear reset are initiated
manually using the operator facilities (see Chapter
13, ""Operator Facilities"). Initial program reset is
part of the initial-program-loading function.
Power-on reset is performed as part of turning
power on. The reset actions are tabulated in the
figure "Summary of Reset Actions."

Chapter 4. Contirol 4-21

Reset Function

Program|Program| Clear on
Area Affected Reset Reset Reset Reset

Initial Power-|.

CPU

Channels

PSW

CPU timer

Clock comparator
Time-of-day clock
Control registers
General registers
Floating-point registers
Capacity counts

Page descriptions
Storage

Machine-save information

S

ccccccacacccaca>mw
—

N
cCcCcccacc-—Cooono>xw

< TVO—OOO—COOOR
—
<TVO—-—0OO——-O0O0OIWV»

Explanation:

C The condition or contents are cleared. |If the area affected
is a field, the contents are cleared to zero with valid
checking-block code.

| The state or contents are initialized. |If the area affected
is a field, the contents are set to their initial values
with valid checking-block code.

P The first n storage pages are cleared and made address-
able, where n is the lesser of the available-frame-
capacity and page-capacity counts. Any remaining pages are
lfeft disconnected.

R 1/0-system reset is performed in the channels, and pending
I/0-interruption conditions are cleared. As part of this
reset, system reset is signaled to the 1/0 control units
and devices configured to the channels.

S The CPU is reset; current operations, if any, are termina-
ted; interruption conditions in the CPU are cleared; and the
CPU is placed in the stopped state.

T The time-of-day clock is initialized to zero and validated,
and it enters the not-set state.

U The contents remain unchanged. However, the resulting
value is unpredictable if an operation is in progress that
changes the contents of the field at the time of reset.

Y The machine-save information is made invalid.

1 Access to the time-of-day clock by means of STORE CLOCK at
the time a reset function is performed does not affect the
value of the time-of-day clock.

2 |f a machine-save function is in progress at the time of
the reset, the machine-save function is halted, and any
partially altered machine-save information is made invalid.

Summary of Reset Actions

4-22 IBM 4300 Processors Principles of Operation

Program Reset

Program reset causes the following actions:

1. The execution of the current instruction or
other processing sequence, such as an
interruption, is terminated, and all program-
interruption and supervisor-call-interruption
conditions are cleared.

2. Any pending external-interruption conditions
are cleared.

3. Any pending machine-check-interruption
conditions, error indications, and check-stop
state are cleared.

4. Any buffers containing prefetched instructions,
operands, or results due to be stored are
cleared.

5. The CPU is placed in the stopped state after
actions 1-4 have been completed.

6. 1/0-system reset is performed in each channel.

7. Any ongoing machine-save function is halted,
and any partially altered machine-save
information is made invalid.

Register and storage contents remain unchanged
by program reset. However, if a register or storage
location is being accessed at the time the
program-reset operation is performed, the
subsequent contents of the register or location are
unpredictable.

As part of the I/0-system reset performed (see
the section ''I/O-System Reset'' in Chapter 12,
"Input/Output Operations''), pending
I/O-interruption conditions are cleared, and system
reset is signaled to all control units and devices
configured to the channel. The effect of system
reset on 1/O control units and devices and the
resultant control-unit and device state are described
in the appropriate publication on the control unit or
device. A system reset, in general, resets only
those functions in a shared control unit or device
that are associated with the particular channel
signaling the reset.

Program reset is performed when the
system-reset-normal key is activated. It is also part
of the initial-program-reset function.

Initial Program Reset
Initial program reset combines the program-reset
functions with the following actions:
1. The contents of the current PSW, CPU timer,
and clock comparator are set to zero.
2. All assigned control-register positions are set to
their initial values.
These clearing and initializing functions include
validation.
_Setting the current PSW to zero causes the PSW
to assume the BC-mode format. The

instruction-length code and interruption code in the
PSW are unpredictable, because these values are
not retained when a new PSW is introduced.

Initial program reset is part of the clear-reset
function. It is also part of the
initial-program-loading function when the
load-normal or load-clear key is activated.

Clear Reset

Clear reset combines the initial-program-reset
function with an initializing function which causes
the following actions:

1. The general and floating-point registers are set

to zero.

2. The storage key of every storage page is set to
Zero.

3. The page bits of every storage page are set to
Zeros.

4. All page frames that had been made
temporarily unavailable by DECONFIGURE
PAGE instructions are made available. (This
excludes frames made permanently unavailable
by maintenance intervention.)

5. The page-capacity, existing-frame-capacity,
available-frame-capacity, and free-frame-
capacity counts are initialized.

6. Let n be the lesser of AFCC, the current
available-frame-capacity count, and PCC, the
page-capacity count. Then each of n page
frames is assigned to one of the first n storage
pages, namely those with page addresses O to n
minus one. These pages are cleared to zero
bytes and have their page states set to
addressable. Any remaining pages have their
page states set to disconnected.

7. Any previously saved machine-save information
is invalidated.

Validation is included in setting registers and
capacity counts and in clearing storage and page
descriptions. .

Clear reset is performed when the system-reset-
clear key is activated. Clear reset is also part of
the power-on-reset function, and part of the
initial-program-loading function when performed
upon activating the load-clear key.

Programming Notes

1. For the program-reset operation not to affect
the contents of fields that are to be left
unchanged, the CPU must not be executing
instructions and must be disabled for all
interruptions at the time of the reset. Except
for the operation of the time-of-day clock,
interval timer, and CPU timer and for the
possibility of taking a machine-check

Chapter 4. Control 4-23

interruption, all CPU activity can be quiesced
by placing the CPU in the wait state and by
disabling it for I/O and external interruptions.
To avoid the possibility of causing a reset at the
time the timing facilities are being updated or a
machine-check interruption occurs, the CPU
must be in the stopped state.

2. Program reset, initial program reset, and clear
reset do not affect the value and state of the
time-of-day clock.

3. The conditions under which the CPU enters the
check-stop state are model-dependent and
include malfunctions that preclude the
completion of the current operation. Hence, if
program reset or initial program reset is
executed while the CPU is in the check-stop
state, the contents of the PSW, registers, and
storage locations, including the page
descriptions and the storage location accessed
at the time of the error, may still be in error
after the check-stop state is cleared by these
resets. In such a case, a clear reset is required
to clear the error.

4. Clear reset causes all bit positions of the
interval timer to be cleared to zeros.

5. Program reset and initial program reset leave
machine-save information unchanged if no
machine save is being performed at the time of
the reset.

Power-On Reset

Power-on reset causes the following actions:

1. The clear-reset function is performed.

2. The value of the time-of-day clock is set to
zero, and the clock enters the not-set state.

Power-on reset is part of the power-on sequence

of the machine. The power-on sequence is not

complete until the clear-reset function has been

performed successfully and the time-of-day clock

'has entered the not-set state. The power-on

sequences for control units and 1I/0 devices are

described in the appropriate System Library (SL)

publications.

Initial Program Loading

Initial program loading (IPL) is provided to initiate
processing when the contents of storage or of the
PSW are not suitable for processing. .

Initial program loading is initiated manually by
designating an input device with the
load-unit-address controls and subsequently
activating the load-normal or load-clear key. The
load-normal key causes an initial-program-reset
operation to be performed, and the load-clear key
causes a clear-reset operation to be performed.

‘424 IBM 4300 Processors Principles of Operation

The CPU enters the load state. Subsequently, a
read operation is initiated from the selected input
device. The CPU does not necessarily enter the
stopped state during the execution of the reset
operation. The load indicator is on while the CPU
is in the load state.

The read operation is performed as if a START
I/0 instruction were executed that specified the
channel, subchannel, and I/O device designated by
the load-unit-address controls. The operation uses
an implied channel-address word (CAW)
containing a subchannel key of zero, and a
channel-command-word (CCW) address of 0, but
the CAW location in storage, location 72, is not
accessed. The load-unit-address controls provide
the 12 rightmost bits of the I/O address; zeros are
implied for the leftmost bits.

Although the location of the first CCW to be
executed is specified by the CCW address as 0, the
first CCW actually executed is an implied CCW,
containing, in effect, a read command with the
modifier bits set to zeros, a data address of 0, a
byte count of 24, the chain-command flag set to
one, the SLI flag set to one, the chain-data flag set
to zero, the skip flag set to zero, and the PCI flag
set to zero. The CCW fetched, as a result of
command chaining, from storage location 8 or 16,
as well as any subsequent CCW in the IPL
sequence, is interpreted the same as a CCW in any
1/0 operation, except that any PCI flags that are
specified in CCWs used for the IPL sequence are
ignored.

When the I/O device provides channel-end
status for the last operation of the IPL chain and
no exceptional conditions are detected in the
operation, a new PSW is obtained from storage
locations 0-7. When this PSW specifies the EC
mode, the I/O address that was used for the IPL
operation is stored at locations 186-187, and zeros
are stored at location 185; when the BC mode is
specified, the I/0O address is stored at locations
2-3. The CPU leaves the load state and enters the
operating state, with CPU operation proceeding
under the control of the new PSW, provided the
rate control is set to process; if the rate control is
set to instruction step, the CPU enters the stopped
state after the new PSW has been obtained.

When channel-end status for the IPL operation
is presented, either separate from or along with
device-end status, no I/O-interruption condition is
generated. Similarly, any PCI flags specified by the
program in the CCWs used for the IPL sequence
are ignored. If the device-end status for the IPL
operation is provided separately after channel-end

status, it causes an I/0O interruption condition to be
generated.

If the IPL 1/0 operation or the PSW loading is
not completed satisfactorily, the CPU remains in
the load state, and the load indicator remains on.
This occurs when the device designated by the
load-unit-address controls is not operational, when
the device or channel signals any condition other
than channel end, device end, or status modifier
during or at the completion of the IPL I/0
operation, or when the PSW loaded from location 0
has a PSW-format error that is recognized during
the loading procedure. The address of the I/O
device used in the IPL operation is not stored. The
contents of storage locations 0-7 are unpredictable.
The contents of other storage locations remain
unchanged, except possibly for those locations due
to be changed by the read operations.

When fewer than eight bytes are read into
locations 0-7, the PSW fetched from location O at
the conclusion of the IPL operation is
unpredictable.

Programming Notes

1. The information read and placed at locations
8-15 and 16-23 may be used as CCWs for
reading additional information during the IPL
sequence: the CCW at location 8 may specify
reading additional CCWs elsewhere in storage,
and the CCW at location 16 may specify the
transfer-in-channel command, causing transfer
to these CCWs.

The status-modifier bit has its normal effect
during the IPL operation, causing the channel
to fetch and chain to the CCW whose address
is 16 higher than that of the current CCW.
This applies also to the initial chaining that
occurs after completion of the read operation
specified by the implicit CCW.

The PSW that is loaded at the completion of
the IPL procedure may be provided by the first
eight bytes of the IPL I/0 operation or may be
placed at locations 0-7 by a subsequent CCW.,

2. When the PSW in location 0 has bit 14 set to
one, the CPU is placed in the wait state after
the IPL procedure is completed; at that point,

the load and manual indicators are off, and the
wait indicator is on.

3. Activating the load-normal key permits an IPL
program to be loaded with a minimum
disturbance of storage contents. This function
may be useful in debugging. When the power
is turned on or the load-clear key is activated,
the TPL program starts with a cleared machine
in a known state, except that information on
external storage remains unchanged.

Machine Save

The machine-save operation saves the current CPU

status and the status and contents of storage page O

for subsequent retrieval by programming. The

operation is initiated manually by the machine-save
key (see Chapter 13, "Operator Facilities'). The

saved information may be retrieved by issuing a

RETRIEVE STATUS AND PAGE instruction.

Machine save causes the following actions:

1. The current contents of all CPU registers and
the status of page O are saved in internal
storage. The format of the saved information is
not defined. The figure "Machine Status,
Retrieval Format" describes the machine-status
information in the 256-byte format in which it
is moved to addressable storage by a
subsequent RETRIEVE STATUS AND PAGE
instruction.

2. The current contents of page 0, that is, the
2,048 bytes at addresses 0-2047, are saved in
internal storage.

The register contents and the status and contents
of page 0 remain unchanged.

When a machine-save operation has been
successfully completed, the save indicator is turned
on.
A machine save replaces the information saved
by the previous machine save.

When a clear-reset operation is performed, any
previously saved information becomes invalid.
Subsequent execution of the RETRIEVE STATUS
AND PAGE instruction returns condition code 3
until another machine-save operation is successfully
performed.

A reset operation occurring while a machine save
is in progress halts the machine-save operation. If
an incomplete machine save partially alters

Chapter 4. Control 4-25

Byte
Offset Bits Contents
0-7 CPU timer!
8-15 Clock comparator'
16-23 . Program-status word
24-31 Time-of-day clock
32-63 Floating-point registers 0, 2, 4, 6
64-127 General registers 0-15
128-191 Contro] registers 0-15
192-199 cPU DT
200-203 Page-capacity‘count2
204-207 Existing~-frame-capacity count?
208-211 Available-frame-capacity count
212-215 Free-frame-capacity count
216 0 Zero
1-3 Page bits of page 0
4 Zero
5 Reference bit of page 0
6 Change bit of page O
7 Zero
217 0-3 Access~-control bits of page 0
4 Fetch-protection bit of page 0
5-7 Zeros
218-219 Frame index? of page 0
220-255 Zeros

Explanation:

L The formats of these fields are the same as
those produced by STORE CPU TIMER, STORE CLOCK
COMPARATOR, STORE CLOCK, and STORE CPU 1D,
respectively.

2 The capacity counts and the frame index are
right-aligned with leftmost bits of zeros.

Machine Status, Retrieval Format

previously saved information, the saved information
is indicated to be invalid, and subsequent execution
of RETRIEVE STATUS AND PAGE returns
condition code 3 until the next successful
machine-save operation. Invalid machine saves
cannot be retrieved.

The CPU must be in the stopped state before a

machine-save operation can be initiated. If an 2.

error is encountered during the operation, the saved
information becomes invalid, the CPU enters the
check-stop state, and the save indicator is not
turned on.

3.
Programming Notes
1. Machine save may be used as part of a
machine-dump procedure when the normal 4.

supervisor program is not functioning properly,
such as after a hard wait (wait state with
interruptions disabled). By preserving the
complete machine status and page 0, machine
save permits loading a dump program, which

4-26 IBM 4300 Processors Principles of Operation

can preserve additional pages if necessary. The
dump program can then merge the saved
information with the undisturbed pages to
create a complete image of the machine at the
time of the machine save. The machine should
not be cleared before loading the dump
program.

When the supervisor program is still
functioning, it is less disruptive to use the
supervisor to invoke a dump program without a
machine save. An intermediate option is the
restart function.

The format of the byte at offset 216
corresponds to the byte inserted by the
instruction INSERT PAGE BITS.

Unassigned bits in the retrieval format of the
machine status are stored as zeros. The
program should not depend on such zeros,
however, to ensure that existing programs run if
new facilities using these bits are defined.

Chapter 5. Program Execution

Contents

Instructions 5-1
Operands 5-1
Instruction Format 5-2
Register Operands 5-3
Immediate Operands 5-3
Storage Operands 5-3
Address Generation 5-3
Sequential Instruction-Address Generation 5-3
Operand-Address Generation 5-4
Branch-Address Generation 5-4
Instruction Execution and Sequencing 5-5
Interruptions 5-5
Types of Instruction Ending 5-5
Interruptible Instructions 5-6
Point of Interruption 5-6
Execution of Interruptible Instructions 5-6
Exceptions to Nullification and Suppression 5-7
Storage Change and Restoration for Page-Access
Exceptions 5-7

Normally, operation of the CPU is controlled by
instructions in storage that are executed
sequentially, one at a time, left to right in an
ascending sequence of storage addresses. A change
in the sequential operation may be caused by
branching, LOAD PSW, interruptions, or manual
intervention.

Instructions

Each instruction consists of two major parts:

* An operation code (op code), which specifies the
operation to be performed, and

« The designation of the operands that participate

Operands

Operands can be grouped in three classes: operands
located in registers, immediate operands, and
operands in storage. Operands may be either
explicitly or implicitly designated.

Trial Execution for TRANSLATE and EDIT 5-7

Update for Suppression 5-7
Sequence of Storage References 5-8
Instruction Fetching 5-8
Page-Description Accesses 5-9
Storage-Operand References 5-10
Storage-Operand Fetch References 5-10
Storage-Operand Store References 5-10
Storage-Operand Update References 5-10
Storage-Operand Consistency 5-11
Single-Access References 5-11
Multiple-Access Operands 5-11
Relation between Operand Accesses 5-11
Other Storage References 5-12
Serialization 5-12
CPU Serialization 5-12
Channel Serialization 5-13

Register operands can be located in general,
floating-point, or control registers, with the type of
register identified by the op code. The register
containing the operand is specified by identifying
the register in a four-bit field, called the R field, in
the instruction. For some instructions, an operand
is located in an implicitly designated register, the
register being implied by the op code.

Immediate operands are contained within the
instruction, and the eight-bit field containing the
immediate operand is called the I field.

Operands in storage may either have an implied
length, be specified by a bit mask, or, in other
cases, be specified by a four-bit or eight-bit length
specification, called the L field, in the instruction.
The addresses of operands in storage are specified
by means of a format that uses the contents of a
general register as part of the address. This makes
it possible to:

1. Specify a complete address by using an
abbreviated notation

Chapter 5. Program Execution 5-1

2. Perform address manipulation using instructions
which employ general registers for operands

3. Modify addresses by program means without
alteration of the instruction stream

4. Operate independently of the location of data
areas by directly using addresses received from
other programs

The address used to refer to storage either is
contained in a register designated by the R field in
the instruction or is calculated from a base address,
index, and displacement, designated by the B, X,
and D fields, respectively, in the instruction.

For purposes of describing the execution of
instructions, operands are designated as first and
second operands and, in some cases, third
operands.

In general, two operands participate in an
instruction execution, and the result replaces the
first operand. An exception is instructions with
"store" in the instruction name, other than STORE
THEN AND SYSTEM MASK and STORE THEN
OR SYSTEM MASK, where the result replaces the
second operand. Except when otherwise stated, the
contents of all registers and storage locations
participating in the addressing or execution part of
an operation remain unchanged.

Instruction Format

An instruction is one, two, or three halfwords in
length and must be located in storage on a
halfword boundary. Each instruction is in one of
six basic formats: RR, RX, RS, SI, S, and SS, with
two variations of SS. (See the figure ''Basic
Instruction Formats.")

Some instructions contain fields that vary slightly
from the basic format, and in some instructions the
operation performed does not follow the general
rules stated in this section. All of these exceptions
are explicitly identified in the individual instruction
descriptions.

The format names indicate, in general terms, the
classes of operands which participate in the
operation:

« RR denotes a register-and-register operation.

« RX denotes a register-and-indexed-storage
operation.

« RS denotes a register-and-storage operation.

« SI denotes a storage-and-immediate operation.

+ S denotes an operation using an implied operand
and storage.

« SS denotes a storage-and-storage operation.

5-2 IBM 4300 Processors Principles of Operation

RR Format

Op Code; Rj Ro

0 8 12 15
RX Format

Op Code| Rj X9 Bo Dy
0 8 12 16 20 31
RS Format

Op Code| Rj R3 Bo Do
0 8 12 16 20 31
St Format

Op Code) B1 Dy
0 8 16 20 31
S Format

Op Code Bo Doy
0 16 20 31
SS Format
/ /

Op Code L By 9] Bo D;:I

0 8 16 20 32 36 47

/ /
Op Codej L1 | Lo | Bj 91 Bo D;:I
0 8 12 16 20 32 36 47

Basic Instruction Formats

The first byte or, in the S format, the first two
bytes of an instruction contain the op code. For
some instructions in the S format, all or a portion
of the second byte is ignored.

The first two bits of the first or only byte of the
op code specify the length and format of the
instruction, as follows:

Bit

Positions Instruction Instruction
(0-1) Length Format
00 One halfword RR
01 Two halfwords RX
10 Two halfwords RS/S/SI
11 Three halfwords SS

In the format illustration for each individual
instruction description, the op-code field shows the
op code as hexadecimal digits within single quotes.
The hexadecimal representation uses 0-9 for the
codes 0000-1001 and A-F for the codes
1010-1111.

The remaining fields in the format illustration
for each instruction are designated by code names,
consisting of a letter and possibly a subscript
number. The subscript number denotes the
operand to which the field applies.

Register Operands

In the RR, RX, and RS formats, the contents of the
register designated by the R field are called the
first operand. The register containing the first
operand is sometimes referred to as the
"first-operand location.” In the RR format, the R,
field designates the register containing the second
operand, and the same register may be designated
for the first and second operand. In the RS format,
the use of the R field depends on the instruction.

The R field designates a general register in the
general instructions and a floating-point register in
the floating-point instructions. In the instructions
LOAD CONTROL and STORE CONTROL the R
field designates a control register.

Unless otherwise indicated in the individual
instruction description, the register operand is one
register in length (32 bits for a general register or a
control register and 64 bits for a floating-point
register), and the second operand is the same
length as the first.

Immediate Operands

In the SI format, the contents of the eight-bit
immediate-data field, the I, field of the instruction,
are used directly as the second operand. The B,
and D, fields designate the first operand, which is
one byte in length.

Storage Operands

In the SI and SS formats, the contents of the
general register designated by the B; field are
added to the contents of the D; field to form the
first-operand address. In the S, RS, and SS
formats, the contents of the general register
designated by the B, field are added to the
contents of the D, field to form the
second-operand address. In the RX format, the
contents of the general registers designated by the
X, and B, fields are added to the contents of the
D, field to form the second-operand address.

In the SS format, with two length fields given,
L, specifies the number of additional operand bytes
to the right of the byte designated by the
first-operand address. Therefore, the length in
bytes of the first operand is 1-16, corresponding to
a length code in L of 0-15. Similarly, L, specifies
the number of additional operand bytes to the right
of the location designated by the second-operand
address. Results replace the first operand, and are
never stored outside the field specified by the
address and length. If the first operand is longer
than the second, the second operand is extended on
the left with zeros up to the length of the first
operand. This extension does not modify the
second operand in storage.

In the SS format with a single, eight-bit length
field, L specifies the number of additional operand
bytes to the right of the byte designated by the
first-operand address. Therefore, the length in
bytes of the first operand is 1-256, corresponding
to a length code in L of 0-255. Storage results
replace the first operand and are never stored
outside the field specified by the address and
length. In this format, the second operand has the
same length as the first operand, except for the
following instructions: EDIT, EDIT AND MARK,
TRANSLATE, and TRANSLATE AND TEST.
RETRIEVE STATUS AND PAGE does not use the
L field, the operand lengths being fixed.

Address Generation

Execution of instructions by the CPU involves
generation of the addresses of instructions and
operands.

Sequential Instruction-Address Generation
When an instruction is fetched from the location
designated by the current PSW, the instruction
address is increased by the number of bytes in the
instruction, and the instruction is executed. The
same steps are then repeated using the new value

Chapter 5. Program Execution 5-3

of the instruction address to fetch the next
instruction in the sequence.

Instruction addresses wrap around, with the
halfword at location 224 — 2 being followed by the
halfword at location 0. Thus, any carry out of
PSW bit position 40, as a result of updating the
instruction address, is lost. '

Operand-Address Generation

An operand address that refers to storage either is
contained in a register designated by an R field in
the instruction or is calculated from the sum of
three binary numbers: base address, index, and
displacement.

The base address (B) is a 24-bit number
contained in a general register specified by the
program in a four-bit field, called the B field, in the
instruction. Base addresses can be used as a means
of independently addressing each program and data
area. In array-type calculations, it can specify the
location of an array, and, in record-type processing,
it can identify the record. The base address
provides for addressing the entire storage. The
base address may also be used for indexing.

The index (X) is a 24-bit number contained in a
general register designated by the program in a
four-bit field, called the X field, in the instruction.
It is included only in the address specified by the
RX instruction format. The RX format instructions
permit double indexing; that is, the index can be
used to provide the address of an element within an
array. '

The displacement (D) is a 12-bit number
contained in a field, called the D field, in the
instruction. The displacement provides for relative
addressing of up to 4,095 bytes beyond the location
designated by the base address. In array-type
calculations, the displacement can be used to
specify one of many items associated with an
element. In the processing of records, the
displacement can be used to identify items within a
record.

In forming the address, the base address and
index are treated as 24-bit unsigned binary
integers. The displacement is similarly treated as a
12-bit unsigned binary integer, and 12 zeros are
appended on the left. The three are added as
24-bit binary numbers, ignoring overflow. The sum
is always 24 bits long. The bits of the generated
address are numbered 8-31, corresponding to the
numbering of the base-address and index bits in the
general register.

A zero in any of the By, B,, or X, fields
indicates the absence of the corresponding address

5-4 IBM 4300 Processors Principles of Operation

component. For the absent component, a zero is
used in forming the address, regardless of the
contents of general register 0. A displacement of
zero has no special significance.

When an instruction description specifies that
the contents of a general register designated by an
R field are used to address an operand in storage,
bit positions 8-31 of the register provide the
operand address.

An instruction can designate the same general
register both for address computation and as the
location of an operand. Address computation is
completed prior to the execution of the operation.

Unless otherwise indicated in an individual
instruction definition, the generated operand
address designates the leftmost byte of an operand
in storage.

Programming Note

Negative values may be used in index and
base-address registers. Bits 0-7 of these values are
always ignored.

Branch-Address Generation

For branch instructions, the address of the next
instruction to be executed when the branch is taken
is called the branch address. Depending on the
branch instruction, the instruction format may be
RR, RS, or RX.

In the RS and RX formats, the branch address is
designated by a base address, a displacement, and,
for RX, an index.. In the RS and RX formats, the
branch address generation follows the normal rules
for operand-address generation.

In the RR format, the contents of bit positions
8-31 of the general register designated by the R,
field are used as the branch address. General
register 0 cannot be designated as containing a
branch address. A value of zero in the R, field
causes the instruction to be executed without
branching.

For several branch instructions, branching
depends on satisfying a specified condition. When
the condition is not satisfied, the branch is not
taken, normal sequential instruction execution
continues, and the branch address is not used.
When a branch is taken, bits 8-31 of the generated
branch address replace bits 40-63 of the current
PSW. The branch address is not used to address
storage as part of the branch operation.

A specification exception due to an odd branch
address and access exceptions due to fetching of
the instruction at the branch location are not
recognized as part of the branch operation but

instead are recognized as exceptions associated
with the execution of the instruction at the branch
location.

A branch instruction, such as BRANCH AND
LINK, can designate the same general register for
branch-address computation and as the location of
an operand. Branch-address computation is
completed before the remainder of the operation is
executed.

| Instruction Execution and Sequencing
The program-status word (PSW), described in
Chapter 4, "Control," contains information
required for proper program execution. The PSW
is used to control instruction sequencing and to
hold and indicate the status of the machine in
relation to the program currently being executed.
The active or controlling PSW is called the current
PSW.

Branch instructions perform the functions of
decision-making, loop control, and subroutine
linkage. A branch instruction affects instruction
sequencing by introducing a new instruction
address into the current PSW.

Facilities for decision making are provided by
the BRANCH ON CONDITION instruction. This
instruction inspects a condition code that reflects
the result of a majority of the arithmetic, logical,
and 1/0 operations. The condition code, which
consists of two bits, provides for four possible
condition-code settings: 0, 1, 2, and 3.

The specific meaning of any setting depends on
the operation that sets the condition code. For
-example, the condition code reflects such
conditions as zero, nonzero, first operand high,
equal, overflow, and channel busy. Once set, the
condition code remains unchanged until modified
by an instruction that causes a different condition
code to be set. See Appendix C, ''Condition-Code
Settings," for a summary of the instructions which
set the condition code.

Loop control can be performed by the use of
BRANCH ON CONDITION to test the outcome of
address arithmetic and counting operations. For
some particularly frequent combinations of
arithmetic and tests, the instructions BRANCH ON
COUNT, BRANCH ON INDEX HIGH, and
BRANCH ON INDEX LOW are provided. These
branches, being specialized, provide increased
performance for these tasks.

Subroutine linkage is provided by the BRANCH
AND LINK instructions, which permit not only the
introduction of a new instruction address but also
the preservation of the return address and
associated information. Subroutine linkage
between a program and the supervisor program is
provided by means of the SUPERVISOR CALL
instruction. ’

Interruptions ,
Interruptions permit the CPU to change state as a
resuit of conditions external to the system, in
input/output (I/0) devices, or in the CPU itself.
Details are to be found in Chapter 6,
"Interruptions."

Six classes of interruption conditions are
possible: external, I/O, machine check, program,
restart, and supervisor call. Each class has two
related PSWs, called old and new, in permanently
assigned storage locations. In all classes, an
interruption involves storing information identifying
the cause of the interruption, storing the current
PSW at the old-PSW position, and fetching the
PSW at the new-PSW position, which becomes the
current PSW.

The old PSW contains CPU-status information
necessary for resumption of the interrupted
program. At the conclusion of the program
invoked by the interruption, the instruction LOAD
PSW may be used to restore the current PSW to the
value of the old PSW.

Types of Instruction Ending

Instruction execution ends in one of five ways:
completion, nullification, suppression, termination,
and partial completion.

Completion of instruction execution provides
results as called for in the definition of the
instruction. When an interruption occurs after the
completion of the execution of an instruction, the
instruction address in the old PSW designates the
next instruction to be executed.

Suppression of instruction execution causes the
instruction to be executed as if it specified ''no
operation." The contents of any result fields,
including the condition code, are not changed. The
instruction address in the old PSW on an
interruption after suppression designates the next
sequential instruction.

Nullification of instruction execution has the
same effect as suppression, except that when an
interruption occurs after the execution of an
instruction has been nullified, the instruction

Chapter 5. Program Execution 5-5

address in the old PSW designates the instruction
whose execution was nullified instead of the next
sequential instruction.

Termination of instruction execution causes the
contents of any fields due to be changed by the
instruction to be unpredictable. The operation may
have replaced all, part, or none of the contents of
the designated result fields and may have changed
the condition code if such change was called for by
the instruction. Unless the interruption is caused
by a machine-check condition, the validity of the
instruction address in the PSW, the interruption
code, and the ILC are not affected, and the state
or the operation of the machine has not been
affected in any other way. The instruction address
in the old PSW on an interruption after termination
designates the next sequential instruction.

Partial completion of instruction execution
occurs only for interruptible instructions; it is
described in the next section.

Interruptible Instructions

Point of Interruption

For most instructions, the entire execution of an
instruction is one operation. An interruption is
permitted between operations; that is, an
interruption can occur after the performance of one
operation and before the start of a subsequent
operation.

For the following instructions, referred to as
interruptible instructions, an interruption is
permitted after partial completion of the
instruction:

COMPARE LOGICAL LONG
MOVE LONG

The execution of an interruptible instruction is
considered to consist of a number of units of
operation, and an interruption is permitted between
units of operation. The amount of data processed
in a unit of operation depends on the particular
instruction and may depend on the model and on
the particular condition that causes the execution of
the instruction to be interrupted.

Whenever points of interruption that include
those occurring within the execution of an
interruptible instruction are discussed, the term
"unit of operation" is used. For a noninterruptible
instruction, the entire execution comnsists, in effect,
of one unit of operation.

Execution of Interruptible Instructions

The execution of an interruptible instruction is
completed when all units of operation associated

5-6 IBM 4300 Processors Principles of Operation

with that instruction are completed. When an
interruption occurs after completion, nullification,
or suppression of a unit of operation, all prior units
of operation have been completed.

On completion of a unit of operation other than

_ the last one (and on nullification of any unit of

operation), the instruction address in the old PSW
designates the interrupted instruction, and the
operand parameters are adjusted such that the
execution of the interrupted instruction is resumed
from the point of interruption when the old PSW
stored on the interruption is made the current PSW.
It depends on the instruction how the operand
parameters are adjusted.

When a unit of operation is suppressed, the
instruction address in the old PSW designates the
next sequential instruction. The operand
parameters, however, are adjusted so as to indicate
the extent to which instruction execution has been
completed. If the instruction is reexecuted after
the conditions causing the suppression have been
removed, the execution is resumed from the point
of interruption. As in the case of completion and
nullification, it depends on the instruction how the
operand parameters are adjusted.

When an exception which causes termination
occurs as part of a unit of operation of an
interruptible instruction, the entire operation is
terminated, and the contents, in general, of any
fields due to be changed by the instruction are
unpredictable. On such an interruption, the
instruction address in the old PSW designates the
next sequential instruction.

Programming Notes

1. Any interruption, other than supervisor call and
some program interruptions, can occur after a
partial execution of an interruptible instruction.
In particular, interruptions for external, I/0,
machine-check, restart, and program
interruptions for access exceptions and PER
events can occur between units of operation.

2. The amount of data processed in a unit of
operation of an interruptible instruction
depends on the model and may depend on the
type of condition which causes the execution of
the instruction to be interrupted or stopped.
Thus, when an interruption occurs at the end of
the current unit of operation, the length of the
unit of operation may be different for different
types of interruptions. Also, when the stop
function is requested during the execution of an
interruptible instruction, the CPU enters the

stopped state at the completion of the execution
of the current unit of operation. Similarly, in
the instruction-step mode, only a single unit of
operation is performed, but the unit of
operation for the various cases of stopping may
be different.

Exceptions to Nullification and Suppression
In certain unusual situations, the result fields of an
instruction having a store-type operand are
changed in spite of the occurrence of an exception
which would normally result in nullification or
suppression. These situations are exceptions to the
general rule that the operation is treated as a
no-operation when an exception requiring
nullification or suppression is recognized. Each of
these situations may result in the turning on of the
change bit associated with the store-type operand,
even though the final result in storage may appear
unchanged. Depending on the particular situation,
additional effects may be observable, the extent of
which is described for each of the situations.

All of these situations are limited to the extent
that a store access does not occur and the change
bit is not set when the store access is prohibited.
For the CPU, a store access is prohibited whenever
an access exception exists for that access, or
whenever an exception exists which is of higher
priority than the priority of an access exception for
that access. ’

When, in these situations, an interruption for an
exception requiring suppression occurs, the
instruction address in the old PSW designates the
next sequential instruction. When an interruption
for an exception requiring nullification occurs, the
instruction address in the old PSW designates the
instruction causing the exception even though
partial results may have been stored.

Storage Change and Restoration for Page-Access
Exceptions

For page-access exceptions, on some systems, a
channel may observe the effects on storage
described in the following case.

When, for an instruction having a store-type .
operand, a page-access exception is recognized for
any operand of the instruction, that portion, if any,
of the store-type operand which would not cause an
exception may change to an intermediate value and
then back to the original value.

The accesses associated with storage change and
restoration for page-access exceptions are only
observable by a channel.- Except for

multiple-access operands, the intermediate value, if
any, is always equal to what would have been the
final value if the page-access exception had not
occurred.

Programming Notes

1. Storage change and restoration for page-access
exceptions occur in two main situations:

a. The exception is recognized for a portion of
a store-type operand which crosses a page
boundary, and the other portion has no
access exception.

b. The exception is recognized for one
operand of an instruction having two
storage operands (for example, an
SS-format instruction or MOVE LONG),
and the other operand, which is a
store-type operand, has no access
exception.

2. To avoid letting the channel observe
intermediate operand values due to storage
change and restoration for page-access
exceptions (especially when a CCW chain is
modified), either one storage page should be
operated on at a time or preliminary testing
should be performed to ensure that all required
pages are addressable.

Trial Execution for TRANSLATE and EDIT

For the instructions TRANSLATE (TR), EDIT
(ED), and EDIT AND MARK (EDMK), the
portions of the operands that are actually used in
the operation may be established in a trial
execution for operand accessibility that is
performed before the execution of the instruction is
started. This trial execution consists in an
execution of the instruction in which results are not
stored. If the first operand of TR or either operand
of ED or EDMK is changed by an I/O operation
after the initial trial execution but before
completion of execution, the contents of any fields
due to be changed by the instruction are
unpredictable. Furthermore, it is unpredictable
whether or not an interruption occurs for an access
exception that was not initially applicable.

Update for Suppression .
When, for an instruction with a store-type operand,
an exception is recognized whose priority is equal
to or lower than an access exception for some
portion of the store-type operand, an update which
does not change the contents of the location may
occur for that portion of the store-type operand.

Chapter §.. Program Execution 5-7

When the exception is a specification exception
for a store-type operand which requires alignment
on integral boundaries, the update which may occur
is limited to the single byte at the location specified
by the operand address.

Programming Note

Examples of when an update may occur to the

destination-operand location in storage are:

« Decimal-divide exception for DIVIDE
DECIMAL

« Specification exception for an odd register
number for COMPARE DOUBLE AND SWAP

« Data exception for an invalid decimal sign for
ADD DECIMAL

Sequence of Storage References
Conceptually, the CPU processes instructions one
at a time, with the execution of one instruction
preceding the execution of the following
instruction. The execution of the instruction
specified by a successful branch follows the
execution of the branch. Similarly, an interruption
takes place between instructions or, for
interruptible instructions, between units of
operation of such instructions.

The sequence of events implied by the processing
just described is sometimes called the conceptual
sequence.

Each operation appears to the program to be
performed sequentially, with the current instruction
being fetched after the preceding operation is
completed and before the execution of the current
operation is begun. This appearance is maintained,
even though the storage-implementation
-characteristics and overlap of instruction execution
with storage accessing may cause actual processing
to be different. The results generated are those
that would have been obtained had the operations
been performed in the conceptual sequence. Thus,
it is possible for an instruction to modify the next
succeeding instruction in storage.

In simple models in which operations are not
overlapped, the conceptual and actual sequences
are essentially the same. However, in more
complex machines, overlapped operation, buffering
of operands and results, and execution times which
are comparable to the propagation delays between
units can cause the actual sequence to differ
considerably from the conceptual sequence. In
these machines, special circuitry is employed to
detect dependencies between operations and ensure
that the results obtained are those that would have

5-8 IBM 4300 Processors Principles of Operation

been obtained if the operations had been performed
in the conceptual sequence. However, channels
may, unless otherwise constrained, observe a .
sequence that differs from the conceptual sequence.

It can normally be assumed that the execution of
each instruction occurs as an indivisible event.
However, in actual operation, the execution of an
instruction consists of a series of discrete steps.
Depending on the instruction, operands may be
fetched and stored in a piecemeal fashion, and
some delay may occur between fetching operands
and storing results. "As a consequence, a channel
may be able to observe intermediate or partially
completed results.

When the program on the CPU interacts with a
program on a channel, the programs may have to
take into consideration that a single operation may
consist of a series of storage references, that a
storage reference may in turn consist of a series of
accesses, and that the conceptual and actual
sequences of these accesses may differ. Storage
references associated with instruction execution are
of the following types: instruction fetches and
storage-operand references. For the purposes of
the following discussion, page-description accesses
are also considereéd to be storage references.

Programming Note

The sequence of execution may differ from the

simple conceptual definition in the following ways.

o As viewed by a program in a channel, the
execution of an instruction may appear to be
performed as a sequence of piecemeal steps.
This is described for each type of storage
reference in one of the following sections.

+ As viewed by a program in a channel, the
storage-operand accesses associated with one
instruction are not necessarily performed in the
conceptual sequence. (See the section "'Relation
Between Operand Accesses'' in this chapter.)

» As viewed by a program in a channel, in certain
unusual situations, the contents of storage may
appear to change and then be restored to the
original value. (See the section ''Storage Change
and Restoration for Page Access Exceptions"
earlier in this chapter.)

Instruction Fetching

Instruction fetching consists in fetching the one,
two, or three halfwords specified by the instruction
address in the current PSW. The immediate field
of an instruction is accessed as part of an
instruction fetch. If, however, an instruction

specifies a storage operand at the location occupied
by the instruction itself, the location is accessed
both as an instruction and as a storage operand.
The fetch of the target instruction of EXECUTE is
considered to be an instruction fetch.

The bytes of an instruction may be fetched
piecemeal and are not necessarily accessed in a
left-to-right direction. The instruction may be
fetched multiple times for a single execution; for
example, it may be fetched for testing the
addressability of operands or for inspection of PER
events, and it may be refetched for actual
execution.

Instructions are not necessarily fetched in the
sequence in which they are conceptually executed
and are not necessarily fetched for each time they
are executed. In particular, the fetching of an
instruction may precede the storage-operand
references for an instruction that is conceptually
earlier. The instruction fetch occurs prior to all
storage-operand references for all instructions that
are conceptually later.

There is no limit established as to the number of
instructions which may be prefetched, and multiple
copies of the contents of a single storage location
may be fetched. As a result, the instruction
executed is not necessarily the most recently
fetched copy. Storing caused by channels does not
necessarily change the copy of prefetched
instructions. However, if a store that is
conceptually earlier occurs on the CPU and
modifies the location from which the instruction is
subsequently fetched, the updated information is
obtained.

All copies of prefetched instructions are
discarded when:

o A serializing function is performed
o The CPU enters the operating state

Programming Note

When a channel modifies an instruction, it is
possible for the CPU to recognize the changes to
some but not all modified bit positions of the
instruction.

Page-Description Accesses

References to the page description are handled as

follows:

1. Whenever a reference to storage is made and
key-controlled protection applies to the
reference, the four access-control bits and the
fetch-protection bit associated with the storage
location are inspected concurrently with the
reference to the storage location.

When storing is performed, the change bit is set
in the associated storage key concurrently with
the store operation.

The instruction SET STORAGE KEY causes all
seven bits to be set concurrently in the storage
key. The access to the storage key for SET
STORAGE KEY follows the sequence rules for
storage-operand store references and is a
single-access reference.

The instruction INSERT STORAGE KEY
provides a consistent image of the field, which
consists of all seven bits of the storage key.
The access to the storage key for INSERT
STORAGE KEY follows the sequence rules for
storage-operand fetch references and is a
single-access reference.

The instruction RESET REFERENCE BIT
modifies only the reference bit. All other bits
of the storage key remain unchanged. The
reference bit and change bit are examined
concurrently to set the condition code. The
access to the storage key for RESET
REFERENCE BIT follows the sequence rules
for storage-operand update references. The
reference bit is the only bit which is updated.
The instruction SET PAGE BITS provides a
consistent image of the change bit. The
instruction modifies both the reference and
change bits, and the three programmable page
bits. The page bits are only accessible by the
CPU. The access to the change bit follows the
sequence rules for storage-operand update
references, with the following exception: if
the change bit is being set to zero, no storing in
the associated storage page by a channel is
permitted between the fetching of the change
bit and the setting of the change bit to zero.
The instruction INSERT PAGE BITS inspects
but does not modify the reference, change, and
page bits. The page bits are only accessible by
the CPU. The access to the reference, change,
and page bits follows the sequence rules for
storage-operand fetch references and is a
single-access reference.

Whenever a reference to storage is made and
page-state checking applies to the reference,
the page state and frame index associated with
the storage location must appear to be
inspected concurrently with the reference to the
storage location.

The instruction CONNECT PAGE causes the
page state and frame index to be set
concurrently in the page description, with the

Chapter 5. Program Execution 5-9

access to the page state and frame index
following the sequence rules for
storage-operand store references.

10. During the execution of the instructions
DECONFIGURE PAGE and DISCONNECT
PAGE, the accesses to set the reference bit and
the change bit to zeros occur concurrently with
or after the access to set the page state to -
disconnected.

11. The instructions MAKE ADDRESSABLE and
MAKE UNADDRESSABLE modify only the
page state.

12. The instruction LOAD FRAME INDEX
inspects but does not modify the page state and
frame index. The page state and frame index
may only be modified explicitly by other
instructions.

The record of references provided by the
reference bit is not necessarily accurate, and the
handling of the reference bit is not subject to the
concurrency rules. However, in the majority of
situations, reference recording approximately
coincides with the storage reference.

In certain situations, the change bit may be set
when no storing has actually taken place.

Storage-Operand References
A storage-operand reference is the fetching or
storing of the explicit operand or operands in the
storage locations specified by the instruction.
During the execution of an instruction, all or
some of the storage operands for that instruction
may be fetched, intermediate results may be
maintained for subsequent modification, and final
results may be temporarily held prior to placing
them in storage. Stores caused by channels do not
necessarily affect these intermediate results.
Storage-operand references are of three
types: fetches, stores, and updates.

Storage-Operand Fetch References

When the bytes of a storage operand participate in
the instruction execution only as a source, the
operand is called a fetch-type operand, and the
reference to the location is called a storage-operand
fetch reference. A fetch-type operand is identified
in individual instruction definitions by indicating
that the access exception is for fetch.

All bits within a single byte of a fetch reference
are accessed concurrently. When an operand
consists of more than one byte, the bytes may be
fetched from storage piecemeal, one byte at a time.
Unless otherwise specified, the bytes are not
necessarily fetched in any particular sequence.

5-10 IBM 4300 Processors Principles of Operation

Storage-Operand Store References

When the bytes of a storage operand participate in
the instruction execution only as a destination, to
the extent of being replaced by the result, the
operand is called a store-type operand, and the
reference to the location is called a storage-operand
store reference. A store-type operand is identified
in individual instruction definitions by indicating
that the access exception is for store.

All bits within a single byte of a store reference
are accessed concurrently. When an operand
consists of more than one byte, the bytes may be
placed in storage piecemeal, one byte at a time.
Unless otherwise specified, the bytes are not
necessarily stored in any particular sequence.

The CPU may delay storing results into storage.
There is no defined limit on the length of time that
results may remain pending before they are stored.

This delay does not affect the sequence in which
results are placed in storage. The results of one
instruction are placed in storage after the results of
all preceding instructions have been placed in
storage and before any results of the succeeding
instructions are stored as observed by channels.
The results of any one instruction are stored in the
sequence specified for that instruction.

The CPU does not fetch operands from a storage
location until all information destined for that
location by the CPU has been stored. Prefetched
instructions may appear to be updated before the
information appears in storage.

The stores are necessarily completed only as a
result of a serializing operation and before the CPU -
enters the stopped state.

Storage-Operand Update References

In some instructions, the storage-operand location
participates both as a source and as a destination.
In these cases, the reference to the location consists
first of a fetch and subsequently of a store. Such
an operand is called an update-type operand, and
the combination of the two accesses is referred to.
as an update reference. Instructions such as
MOVE ZONES, TRANSLATE, OR (OC, OI), and
ADD DECIMAL cause an update to the
first-operand location. No special interlock is
provided between the fetch and store, and accesses
by channels are permitted. An update-type
operand is identified in the individual instruction
definition by indicating that the access exception is
for both fetch and store. The fetch and store
accesses associated with an update reference do not
necessarily occur one immediately after the other,

and it is possible for a channel to make one or
more interleaved accesses to the same location.
The interleaved accesses can be either fetches or
stores.

Storage-Operand Consistency

Single-Access References

A fetch reference is said to be a single-access
reference if the value is fetched in a single access
to each byte of the data field. In the case of
overlapping operands, the location may be accessed
once for each operand. A store-type reference is
said to be a single-access reference if a single store
access occurs to each byte location within the data
field. An update reference is said to be
single-access if both the fetch and store accesses
are each single-access.

Except for the accesses associated with
multiple-access operands and the stores associated
with storage change and restoration for page-access
exceptions, storage-operand references are
single-access references.

Multiple-Access Operands

For some instructions, multiple accesses may be

made to all or some of the bytes of a storage

operand. The following cases are those
storage-operand references which may be
multiple-access ones.

1. The storage references associated with the
decimal operands of the following instructions
are not necessarily single-access
references: the decimal instructions and the
instructions CONVERT TO BINARY,
CONVERT TO DECIMAL, MOVE WITH
OFFSET, PACK, and UNPACK.

2. The operands of MOVE INVERSE.

3. The stores into that portion of the first operand
of MOVE LONG which is filled with padding
bytes.

When a storage-operand store reference to a
location is not a single-access reference, the
contents placed at a byte location are not
necessarily the same for each store access; thus,
intermediate results in a single-byte location may
be observed by channels.

Programming Notes
1. When multiple fetch accesses are made to a
single byte that is being changed by a channel,

the result is not necessarily limited to that
which could be obtained by fetching the bits
individually. For example, the execution of
MULTIPLY DECIMAL may consist of
repetitive additions and subtractions each of
which causes the second operand to be fetched
from storage. '

2. When CPU instructions are used to modify
storage locations being accessed by a channel
simultaneously, multiple store accesses to a
single byte by the CPU may result in
intermediate values being observed by a
channel. To avoid these intermediate values
(especially when modifying a CCW chain),
only instructions making single-access
references should be used.

Relation between Operand Accesses
Storage-operand fetches associated with one
instruction execution must appear to precede all
storage-operand references for conceptually
subsequent instructions. A storage-operand store
specified by one instruction must appear to precede
all storage-operand stores specified by conceptually
subsequent instructions, but it does not necessarily
precede storage-operand fetches specified by
conceptually subsequent instructions. However, a.
storage-operand store must precede a conceptually
subsequent storage-operand fetch from the same
main-storage location.

When an instruction has two storage operands
both of which cause fetch references, it is
unpredictable which operand is fetched first, or
how much of one operand is fetched before the
other operand is fetched. When the two operands
overlap, the common locations may be fetched
independently for each operand.

When an instruction has two storage operands,
the first of which causes a store and the second a
fetch reference, it is unpredictable how much of the
second operand is fetched before the results are
stored. In the case of destructively overlapping
operands, the portion of the second operand which
is common to the first is not necessarily fetched
from storage.

When an instruction has two storage operands,
the first of which causes an update reference and
the second a fetch reference, it is unpredictable
which operand is fetched first, or how much of one
operand is fetched before the other operand is
fetched. Similarly, it is unpredictable how much of
the result is processed before it is returned to ‘
storage. In the case of destructively overlapping

Chapter 5. Program Execution 5-11

operands, the portion of the second operand which
is common to the first is not necessarily fetched
from storage. '

Programming Note :

The independent fetching of a single location for
each of two operands may affect the program
execution in the following situation.

When the same storage location is designated by
two operand addresses of ‘an instruction, and a
channel causes the contents of the location to
change during execution of the instruction, the old
and new values of the location may be used -
simultaneously. For example, comparison of a field
to itself may yield a result other than equal, or

EXCLUSIVE-ORing of a field to itself may yield a

result other than zero.

Other Storage References

Store accesses for interruption codes not stored
within the old PSW are not necessarily
single-access stores. The external and SVC
interruption-code stores occur between the
conceptually previous and conceptually subsequent
operations. The program interruption-code store
accesses may precede the storage-operand
references associated with the instruction which
results in the program interruption.

The CSW and I/O-communications-area stores
occur within the conceptual limits of the
interruption or I/0 instruction with which they are
associated.

Updating of the interval timer occurs after
storage-operand references for the conceptually
previous instruction and before storage-operand
references for the conceptually subsequent
instruction. Interval-timer updates can also occur -
within an interruptible instruction between units of
~operation.

Serialization

The sequence of functions performed by a CPU is
normally independent of the functions performed
by channels. Similarly, the sequence of functions
performed by a channel is normally independent of
the functions performed by other channels and by
the CPU. However, at certain points in its
execution, serialization of the CPU occurs.
Serialization also occurs at certain points for
channels.

5-12 IBM 4300 Processors Principles of Operation

CPU Serialization

All interruptions and the execution of certain

instructions cause serialization of CPU operation.

A serialization operation consists in completing all

conceptually previous storage accesses by the CPU,

as observed by channels, before the conceptually
subsequent storage accesses occur. Serialization
affects the sequence of all CPU accesses to storage
and to the page descriptions.

Serialization is performed by all 1nterrupt10ns
and by the execution of the following instructions:
1. The general instructions BRANCH ON

CONDITION (BCR) with the M; and R, field
containing all ones and all zeros, respectively,
and COMPARE AND SWAP, COMPARE
DOUBLE AND SWAP, STORE CLOCK,
SUPERVISOR CALL, and TEST AND SET.

2. LOAD PSW and SET STORAGE KEY.

3. All I/O instructions.

The sequence of events associated with a
serializing operation is as follows:

o All conceptually previous storage accesses by the
CPU are completed, as observed by channels.
This includes all conceptually previous stores and
changes to page descriptions.

o The normal function associated with the
serializing operation is performed. In the case of
instruction execution, operands are fetched, and
the storing of results is completed. The
exceptions are LOAD PSW, in which the
operand may be fetched before previous stores
have been completed, and interruptions, in which
the interruption code and associated fields may
be stored prior to the serialization. The fetching
of the serializing instruction occurs before the
execution of the instruction and may precede the
execution of previous instructions, but may not
precede the completion of the previous
serializing operation. In the case of an
-interruption, the old PSW, the interruption code,
and other information, if any, are stored, and the
new PSW is fetched, but not necessarily in that
sequence.

o Finally, instruction fetch and operand accesses
for conceptually subsequent operations may
begin.

A serializing function affects the sequence of
storage accesses that are under the control of the
CPU. It does not affect the sequence of storage
accesses under the control of a channel.

Programming Notes

1.

When a serializing operation takes place,
channels observe instruction and operand
fetching and result storing to take place in the
sequence established by the serializing
operation.

Storing by a channel into a location from
which a serializing instruction is fetched does
not necessarily affect the execution of the
serializing instruction unless a serializing
operation has been performed after the storing
and before the execution of the serializing
instruction.

For programs that are intended to run also on
multiprocessing configurations of System/370,
it should be noted that the serializing
operations affect the sequence of CPU accesses
to storage and to the storage key, as observed
by other CPUs as well as by channels.
Therefore, serializing instructions should be
inserted wherever it is necessary to control the
interaction of programs that may run
concurrently on different CPUs.

Channel Serialization
Serialization of a channel occurs as follows:

1.

For a single channel program, all storage
accesses and page-description accesses by the
channel follow the execution of START I/0 or
START 1/0 FAST RELEASE, as observed by
the CPU and other channels. This includes all
accesses for the CAW, CCWs, and data.
For the last CCW of a chain, all storage
accesses and page-description accesses are
completed, as observed by the CPU and other
channels, before the interruption condition
indicating channel end is presented to the CPU.
If a CCW in the chain contains a PCI bit which
is one, all storage accesses and page-description
accesses due to CCWs preceding it in the chain
are completed, as observed by the CPU and
other channels, before the PCI condition is
presented to the CPU.

The serialization of a channel does not affect the

sequence of storage accesses or page-description
accesses caused by a program in the CPU or

another channel.

It also does not affect the

sequence of storage accesses or page-description
accesses caused by other channel programs on the
same channel.

Chapter 5. Program Execution 5-13

Chapter 6. Interruptions

Contents

Interruption Action 6-1
Source Identification 6-4
Enabling and Disabling 6-4
Instruction-Length Code 6-5
Zero ILC 6-5
ILC on Instruction-Fetching Exceptions 6-5
Exceptions Associated with the PSW 6-6
Early Exception Recognition 6-6
Late Exception Recognition 6-7
External Interruption 6-7
Clock Comparator 6-8
CPU Timer 6-8
External Signal 6-8
Interrupt Key 6-8
Interval Timer 6-8
Input/Qutput Interruption 6-9
Machine-Check Interruption 6-9
Program Interruption 6-10
Program-Interruption Conditions 6-10
Addressing Exception 6-10
Data Exception 6-11
Decimal-Divide Exception 6-11
Decimal-Overflow Exception 6-11

The interruption facility permits the CPU to change
its state as a result of conditions external to the
system, within the system, or within the CPU itself.
To permit fast response to conditions of high
priority and immediate recognition of the type of
condition, interruption conditions are grouped into
six classes: external, input/output, machine check,
program, restart, and supervisor call.

Interruption Action
An interruption consists in storing the current PSW
as an old PSW, storing information identifying the
cause of the interruption, and fetching a new PSW.
Processing resumes as specified by the new PSW.
The old PSW stored on an interruption normally
contains the address of the instruction that would
have been executed next had the interruption not
occurred, thus permitting resumption of the
interrupted program. For program and

Execute Exception - 6-11
Exponent-Overflow Exception 6-11
Exponent-Underflow Exception 6-12
Fixed-Point-Divide Exception 6-12
Fixed-Point-Overflow Exception 6-12
Floating-Point-Divide Exception 6-12
Monitor Event 6-12
Operation Exception 6-12
Page-Access Exception 6-13
Page-State Exception 6-13
Page-Transition Exception 6-13
PER Event 6-13
Privileged-Operation Exception 6-14
Protection Exception 6-14
Significance Exception 6-14
Special-Operation Exception 6-14
Specification Exception 6-14
Recognition of Access Exceptions 6-15
Multiple Program-Interruption Conditions 6-16

Restart Interruption 6-18

Supervisor-Call Interruption 6-18

Priority of Interruptions 6-19

supervisor-call interruptions, the information stored
also contains a code that identifies the length of
the last-executed instruction, thus permitting the
program to respond to the cause of the
interruption. In the case of some program
conditions for which the normal response is
reexecution of the instruction causing the
interruption, the instruction address directly
identifies the instruction last executed.

Except for restart, an interruption can take place
only when the CPU is in the operating state. The
restart interruption can occur with the CPU in
either the stopped or operating state.

The details of source identification, location
determination, and instruction execution are
explained in later sections and are summarized in
the figure "Interruption Action."

Chapter 6. Interruptions 6-1

PSW- |Mask Bits
Mask jin Ctr1l Execution of
Bits |Registers Instruction
Source Interruption ILC Identified
ldentification Code EC|BC|Reg, Bit Set by 01d PSW
MACH INE CHECK Locations 232-239!
(old PSW 48,
new PSW 112)
Exigent condition 13]13 X terminated
Repressible cond 13{13| 14, 4-7 X unaffected
SUPERVISOR CALL Locations 138-139
(old PSW 32, in EC mode and
new PSW 96) 34-35 in BC mode
Instruction bits 00000000 ssssssss 1,2 completed
PROGRAM Locations 142-143
(old PSW 40, in EC mode and
new PSW 104) [42-43 in BC mode
Operation 00000000 p0000001 1,2,3|suppressed
Privileged oper 000600000 p0000010 1,2 suppressed
Execute 00000000 p0000011 2 suppressed
Protection 00000000 p0000100 1,2,3|suppressed or terminated
Addressing 00000000 p0000101 1,2,3|suppressed or terminated
Specification 00000000 p0000110 0,1,2,3|suppressed or completed
Data 00000000 p0000111 2,3 |suppressed or terminated
Fixed-pt overflow (00000000 p0001000 {20}36 1,2 |completed
Fixed-point divide|00000000 p0001001 1,2 suppressed or completed
Decimal overflow (00000000 p0001010 (21|37 2,3 |completed
Decimal divide 00000000 p0001011 2,3 |suppressed
Exponent overflow |00000000 p0001100 1,2 |completed
Exponent underflow|00000000 p0001101 2238 1,2 |completed
Significance 00000000 p0001110 |23(39 1,2 comp leted
Floating-pt divide|00000000 p0001T11 1,2 |suppressed
Special operation |00000000 p0010011 0, 1 2 suppressed
Page access 00000000 p0011000 1,2,3|nullified
Page state 00000000 p00O1t1010 2 suppressed
Page transition 00000000 p0011011 2 suppressed
Monitor event 00000000 p1000000 .| 8, 16+ 2 |completed
PER event 00000000 1nOnnnnn3| 1| *| 9, 0-3 |0,1,2,3|completed

6-2

Interruption Action (Part 1 of 2)

IBM 4300 Processors Principles of Operation

PSW- |Mask Bits
Mask {in Ctrl Execution of
Bits |Registers Instruction
Source Interruption iLC Identified
ldentification Code EC|BC|Reg, Bit Set by 01d PSW
EXTERNAL Locations 134-135
(o1d PSW 24, in EC mode and
new PSW 88) 26-27 in BC mode
Interval timer 00000000 leeceeecee 7V 7|1 0, 24 X unaffected
Interrupt key 00000000 eleeceecee | 7| 7| 0, 25 X unaffected
External signal 2 |00000000 eeleeecee | 7| 7{ 0, 26 X unaffected
External signal 3 [00000000 eceleeee | 7| 7({ 0, 26 X unaffected
External signal 4 |00000000 eeeeleee | 7] 7| 0, 26 X unaffected
External signal 5 [00000000 eeeeelee | 7| 7| 0, 26 X unaffected
External signal 6 |00000000 eeeeceele | 7| 7| O, 26 X unaffected
External signal 7 [00000000 eeeceeeel 71 7] 0, 26 X unaffected
Clock comparator |00010000 00000100 | 7{ 7| O, 20 X unaffected
CPU timer 00010000 00000101 71 71 0, 21 x unaffected
INPUT/OUTPUT Locations 186-187
(old PSW 56, in EC mode and
new PSW 120) |58-59 in BC mode
Channel 0 00000000 dddddddd | 6] 0| 2, 03 X unaffected
Channel 1 00000001 dddddddd | 6| 1| 2, 13 X unaffected
Channel 2 00000010 dddddddd | 6| 2| 2, 2?2 X unaffected
Channel 3 00000011 dddddddd | 6| 3| 2, 32 X unaffected
Channel &4 00000100 dddddddd | 6| 4| .2, 42 X unaffected
Channel 5 00000101 dddddddd 6] 5 2, 55 X unaffected
Channel 6 & up cccccccc dddddddd | 6] 6} 2, 6+ x unaffected
RESTART Locations 2-3 in
{(old PSW 8, BC mode
new PSW 0)
Restart key 00000000 000000006 X unaffected

Explanation:

1 A model-independent machine-check interruption code of 64 bits is stored at loca-
tions 232-239.

2 The effect of the machine-check condition is identified by the validity bits in
the machine-check interruption code. The instruction is unaffected only if all
the associated validity bits are ones.

3 When the interruption code indicates a PER event, an ILC of 0 may be stored
only when bits 8-15 of the interruption code are 10000110 (PER, specification).

4 The unit of operation is completed, unless a program exception concurrently
indicated causes the unit of operation to be nullified, suppressed, or
terminated.

5 For channels 0-5, channel masks in control register 2 have no effect in the
BC mode.

6 Bits 16-31 in the old PSW in the BC mode are set to zeros.

is provided in the EC mode.

Plus the following bits in the control register.

In the BC mode, program-event recording is disabled.

Channel-address bits.

Device-address bits.

If one, the bit indicates another concurrent external-interruption condition.

A possible nonzero code, indicating another concurrent program-interruption

condition.

If one, the bit indicates a concurrent PER-event interruption condition.

Bits of the | field of SUPERVISOR CALL.

x Unpredictable in the BC mode; not stored in the EC mode.

No interruption code

s+

>0 a0

V20 o

Interruption Action (Part 2 of 2)

Chapter 6. Interruptions

6-3

Source Identification

The six classes of interruptions (external, I/0,
machine check, program, restart, and supervisor
call) are distinguished by the storage locations at
which the old PSW is stored and from which the
new PSW is fetched. For most classes, the causes
are further identified by an interruption code and,
for some classes, by additional information placed
in permanently assigned storage locations during
the interruption. (See also the section "Assigned
Storage Locations" in Chapter 3, "Storage.") For
external, I/O, program, and supervisor-call
interruptions, the interruption code consists of 16
bits.

For external interruptions in the EC mode, the
interruption code is stored at locations 134-135. In
the BC mode, the interruption code is placed in the
old PSW.

For I/0 interruptions in the EC mode, the
interruption code, which contains the I/0 address,
is stored at locations 186-187. In the BC mode,
the interruption code is placed in the old PSW.
Additional information is provided by the contents
of the channel-status word (CSW) stored at
location 64. Further information may be provided
by the limited channel logout stored at location
176.

For machine-check interruptions, the
interruption code consists of 64 bits and is stored
at locations 232-239. Additional information for
identifying the cause of the interruption and for
recovering the state of the machine may be
provided by the contents of the machine-check save
areas. (See Chapter 11, "Machine-Check
Handling.")

For program interruptions in the EC mode, the
interruption code is stored at locations 142-143,
and the instruction-length code is stored in bit

positions 5 and 6 of location 141. In the BC mode,

the interruption code and instruction-length code
are placed in the old PSW. Further information
may be provided in the form of the
access-exception address, monitor-class number,
monitor code, PER code, and PER address, which
are stored at locations 144-159.

For restart interruptions in the EC mode, no
interruption code is stored. In the BC mode, an
interruption code of zero is placed in the old PSW.

For supervisor-call interruptions in the EC mode,
the interruption code is stored at locations
138-139, and the instruction-length code is stored
in bit positions 5 and 6 of location 137. In the BC
mode, the interruption code and instruction-length
code are placed in the old PSW.

6-4 IBM 4300 Processors Principles of Operation

Enabling and Disabling

By means of mask bits in the current PSW and in
control registers, the CPU may be enabled or
disabled for all external, I/O, and machine-check
interruptions and for some program interruptions.
When a mask bit is one, the CPU is enabled for the
corresponding class of interruptions, and these
interruptions can take place.

When a mask bit is zero, the CPU is disabled for
the corresponding interruptions. The conditions
that cause I1/O or external interruptions remain
pending. Machine-check-interruption conditions,
depending on the type, are ignored, remain
pending, or cause the CPU to enter the check-stop
state. The disallowed program-interruption
conditions are ignored, except that some causes are
indicated also by the setting of the condition code.

Program interruptions for which mask bits are
not provided, as well as the supervisor-call and
restart interruptions, are always taken.

The mask bits may allow or disallow all
interruptions within the class, or they may
selectively allow or disallow interruptions for
particular causes. This control may be provided by
mask bits in the PSW that are assigned to particular
causes, such as the bits assigned to the four
maskable program-interruption conditions.
Alternatively, there may be a hierarchy of masks,
where a mask bit in the PSW controls all
interruptions within a type, and mask bits in a
control register provide more detailed control over
the sources.

When the mask bit is one, the CPU is enabled
for the corresponding interruptions. When the
mask bit is zero, these interruptions are disallowed.
Interruptions that are controlled by a hierarchy of
masks are allowed only when all controlling mask
bits are ones.

Programming Notes

1. Mask bits in the PSW provide a means of
disallowing all maskable interruptions; thus,
subsequent interruptions can be disallowed by
the new PSW introduced by an interruption.
Furthermore, the mask bits can be used to
establish a hierarchy of interruption priorities,
where a condition in one class can interrupt the
program handling a condition in another class
but not vice versa. To prevent an
interruption-handling routine from being
interrupted before the necessary housekeeping
steps are performed, the new PSW must disable
the CPU for further interruptions within the
same class or within a class of lower priority.

2. Since the mask bits in control registers are not
changed as part of the interruption procedure,
these masks cannot be used to prevent an
interruption immediately after a previous
interruption in the same class. The mask bits in
control registers provide a means for selectively
enabling the CPU for some sources and
disabling it for others within the same class.

Instruction-Length Code

The instruction-length code (ILC) occupies two bit
positions and provides the length of the last
instruction executed. It permits identifying the
instruction causing the interruption when the
instruction address in the old PSW designates the
next sequential instruction. The ILC is provided
also by the BRANCH AND LINK instructions.

When the old PSW specifies the EC mode, the
ILC for program and supervisor-call interruptions is
stored in bit positions 5 and 6 of the bytes at
locations 137 and 141, respectively. For external,
1/0, machine-check, and restart interruptions, the
ILC is not stored since it cannot be related to the
Iength of the last-executed instruction.

When the old PSW specifies the BC mode, the
ILC is stored in bit positions 32 and 33 of that
PSW. The ILC is meaningful, however, only after
a supervisor-call or program interruption. For
machine-check, external, I/O, and restart
interruptions, the ILC does not indicate the length
of the last-executed instruction and is
unpredictable. Similarly, the ILC is unpredictable
in the PSW stored during execution of the
machine-save function and when the PSW is
displayed.

For supervisor-call and program interruptions, a
nonzero ILC identifies in halfwords the length of
the instruction that was last executed. Whenever
an instruction is executed by means of EXECUTE,
instruction-length code 2 is set to indicate the
length of EXECUTE and not that of the target
instruction.

The value of a nonzero instruction-length code is
related to the leftmost two bits of the instruction.
The value is not contingent on whether the
operation code is assigned or on whether the
instruction is installed. The following table
summarizes the meaning of the instruction-length
code:

ILC Instr
Bits Instruction

Decimal|Binary| 0-1 Length

0 00 Not available

1 01 00 One halfword

2 10 01 Two halfwords

2 10 10 Two halfwords

3 1 11 Three halfwords
Zero ILC

Instruction-length code 0, after a program
interruption, indicates that the location of the
instruction causing the interruption is not made
available to the program.

An ILC of 0 occurs when a specification
exception is recognized that is due to a
PSW-format error, other than one due to an odd
instruction address, and the invalid PSW has been
introduced by LOAD PSW or an interruption. (See
the section "Exceptions Associated with the PSW"
later in this chapter.) In the case of LOAD PSW,
the address of the instruction has been replaced by
the instruction address of the new PSW. When the
invalid PSW is introduced by an interruption, the
PSW-format error cannot be attributed to an
instruction.

In the case of LOAD PSW and the
supervisor-call interruption, a PER event may be
indicated concurrently with a specification
exception having an ILC of 0.

ILC on Instruction-Fetching Exceptions

When a program interruption occurs because of an

exception that prohibits access to the instruction,

the instruction-length code cannot be set on the
basis of the first two bits of the instruction. As far
as the significance of the ILC for this case is
concerned, the following two situations are
distinguished:

1. When an odd instruction address causes a
specification exception to be recognized or
when an addressing or protection exception is
encountered on fetching an instruction, the ILC
is set to 1, 2, or 3, indicating the multiple of 2
by which the instruction address has been
incremented. It is unpredictable whether the
instruction address is incremented by 2, 4, or 6.
By reducing the instruction address in the old

Chapter 6. Interruptions 6-5

PSW by the number of halfword locations
indicated in the ILC, the address originally
appearing in the PSW may be obtained.

2. When a page-access exception is recognized
while fetching an instruction, including the
target instruction of EXECUTE, the ILC is
arbitrarily set to 1, 2, or 3. In this case, the
operation is nullified, and the instruction
address is not incremented.

The ILC is not necessarily related to the first
two bits of the instruction when the first halfword
of an instruction can be fetched but an access
exception is recognized on fetching the second or
third halfword. The ILC may be arbitrarily set to
1, 2, or 3 in these cases. The instruction address is
or is not updated, as described in situations 1 and 2
above.

When any exceptions other than page access are
encountered on fetching the target instruction of
EXECUTE, the ILC is 2.

Programming Notes

1. A nonzero instruction-length code for a
program interruption indicates the number of
halfword locations by which the instruction
address in the old PSW must be reduced to
obtain the address of the last instruction
executed, unless one of the following situations

exists:
a. The interruption is caused by a page-access
exception.

b. An interruption for a PER event occurs
before the execution of an interruptible
instruction is ended.

c. The interruption is caused by a PER event
due to LOAD PSW or a branch or linkage
instruction, including SUPERVISOR
CALL.

d. The interruption is caused by an access
exception encountered in fetching an
instruction, and the instruction address has
been introduced into the PSW by a means
other than sequential operation (by a
branch instruction, LOAD PSW, or an
interruption).

e. The interruption is caused by a specification
exception because of an odd instruction
address.

For situations a and b above, the instruction
address in the PSW is not incremented, and the
instruction designated by the instruction
address is the same as the last one executed.
These two are the only cases in which the

6-6 IBM 4300 Processors Principles of Operation

instruction address in the old PSW identifies
the instruction causing the exception.

For situations c, d, and e, the instruction
address has been replaced as part of the
operation, and the address of the last
instruction executed cannot be calculated using
the one appearing in the old PSW.

2. When a PER event is indicated, bit 8 in the
interruption code is one, the PER address in the
word at location 152 identifies the location of
the instruction causing the interruption, and the
instruction-length code (I1.C) is redundant.
Similarly, the ILC is redundant when the
operation is nullified, since in this case the
instruction address in the PSW is not
incremented. If the ILC value is required in
this case, it can be derived from the operation
code of the instruction identified by the old
PSW.

Exceptions Associated with the PSW
Exceptions associated with erroneous information
in the current PSW may be recognized when the
information is introduced into the PSW or may be
recognized as part of the execution of the next
instruction. Errors in the PSW which are
specification-exception conditions are called
PSW-format errors.

Early Exception Recognition

A program interruption for a specification
exception occurs immediately after the PSW
becomes active if a one is introduced into an
unassigned bit position of an EC-mode PSW (that
is, bit positions 0, 2-5, 16, 17, or 24-39).

The interruption takes place regardless of
whether the wait state is specified. If the invalid
PSW causes the CPU to become enabled for a
pending 1/0, external, or machine-check
interruption, the program interruption is taken
instead, and the pending interruption is subject to
the mask bits of the new PSW introduced by the
program interruption.

When the execution of LOAD PSW or an
interruption introduces a PSW with one of the
above error conditions, the instruction-length code
is set to 0, and the newly introduced PSW, except
for the interruption code and the instruction-length
code in the BC mode, is stored unmodified as the
old PSW. When one of the above error conditions
is introduced by execution of SET SYSTEM MASK
or STORE THEN OR SYSTEM MASK, the
instruction-length code is set to 2, and the

instruction address is updated by two halfword
locations. The PSW containing the invalid value
introduced into the system-mask field is stored as
the old PSW.

When a PSW with one of the above error
conditions is introduced during initial program
loading, the loading sequence is not completed, and
the load indicator remains on.

Late Exception Recognition

For the following conditions, the exception is

recognized as part of the execution of the next

instruction: \

« A specification exception is recognized due to an
odd instruction address in the PSW (PSW bit 63
is one).

« An access exception (addressing, page-access, or
protection) is associated with the location
designated by the instruction address or with the
location of the second or third halfword of the
instruction starting at the designated address.
The instruction-length code and instruction

address stored in the program old PSW under these

conditions are discussed in the section "ILC on

Instruction-Fetching Exceptions" in this chapter.

If the invalid PSW causes the CPU to be enabled
for a pending 1/0, external, or machine-check
interruption, the corresponding interruption occurs,
and the PSW invalidity is not recognized.

Similarly, the specification or access exception is

not recognized in a PSW specifying the wait state.

Programming Notes

1. The execution of LOAD PSW, SET SYSTEM
MASK, STORE THEN AND SYSTEM MASK,
and STORE THEN OR SYSTEM MASK is
suppressed on an addressing or protection
exception, and hence the program old PSW
provides information concerning the program
causing the exception.

2. When the first halfword of an instruction can
be fetched but an access exception is
recognized on fetching the second or third
halfword, the ILC is not necessarily related to
the operation code.

3. If the new PSW introduced by an interruption
contains a PSW-format error, a string of
interruptions occurs. (See the section 'Priority
of Interruptions" in this chapter.)

External Interruption
The external interruption provides a means by
which the CPU responds to various signals

originating either from within or from without the
system.

An external interruption causes the old PSW to
be stored at location 24 and a new PSW to be
fetched from location 88.

The source of the interruption is identified in the
interruption code. When the old PSW specifies the
EC mode, the interruption code is stored at
locations 134-135, and zeros are stored at locations
132-133. When the old PSW specifies the BC
mode, the interruption code is placed in bit
positions 16-31 of the old PSW, and the
instruction-length code is unpredictable.

External-interruption conditions are of two
types: those for which an interruption request
condition is held pending, and those for which the
condition directly requests the interruption. Clock
comparator and CPU timer are conditions which
directly request external interruptions. If a
condition which directly requests an external
interruption is removed before the request is
honored, the request does not remain pending, and
no interruption occurs. Conversely, the request is
not cleared by the interruption, and if the condition
persists, more than one interruption may. result
from a single occurrence of the condition.

When several interruption requests for a single
source are generated before the interruption is
taken, and the interruption condition is of the type
which is held pending, only one request for that
source is preserved and remains pending.

An external interruption for a particular source
can occur only when the CPU is enabled for
interruption by that source. The external
interruption occurs at the completion of a unit of
operation. Whether the CPU is enabled for
external interruption is controlled by the external
mask, PSW bit 7, and external subclass mask bits in
control register 0. Each source for an external
interruption has a subclass mask bit assigned to it,
and the source can cause an interruption only when
the external-mask bit is one and the corresponding
subclass-mask bit is one. The use of the subclass-
mask bits does not depend on whether the CPU is
in the EC or BC mode.

When the CPU becomes enabled for a pending
external-interruption condition, the interruption
occurs at the completion of the instruction
execution or interruption that causes the enabling.

More than one source may present a request for
an external interruption at the same time. When
the CPU becomes enabled for more than one
concurrently pending request, the interruption

Chapter 6. Interruptions 6-7

occurs for the pending condition or conditions
having the highest priority.

The priorities for external-interruption requests
in descending order are as follows:

Interval timer, interrupt key, external signals 2-7
Clock comparator
CPU timer :

The interval timer, interrupt key, and external
signals 2-7 are of equal priority; if more than one
of these conditions is pending and allowed, the
conditions are indicated concurrently. All other
requests are honored one at a time.

Clock Comparator

An interruption request for the clock comparator

exists whenever either of the following conditions is

met:

1. The time-of-day clock is in the set or not-set
state, and the value of the clock comparator is
less than the value in the compared portion of
the time-of-day clock, both compare values
being considered unsigned binary integers.

2. The time-of-day clock is in the error or
not-operational state.

If the condition responsible for the request is
removed before the request is honored, the request
does not remain pending, and no interruption
occurs. Conversely, the request is not cleared by
the interruption, and, if the condition persists, more
than one interruption may result from a single
occurrence of the condition.

The clock-comparator condition is indicated by
an external-interruption code of 1004 (hex).

The subclass-mask bit is in bit position 20 of
control register 0. This bit is initialized to zero.

CPU Timer
An interruption request for the CPU timer exists
whenever the CPU-timer value is negative (bit O of
the CPU timer is one). If the value is made
positive before the request is honored, the request
does not remain pending, and no interruption
occurs. Conversely, the request is not cleared by
the interruption, and, if the condition persists, more
than one interruption may occur from a single
occurrence of the condition.

The CPU-timer condition is indicated by an
external-interruption code of 1005 (hex).

The subclass-mask bit is in bit position 21 of
control register 0. This bit is initialized to zero.

External Signdl

An interruption request for an external signal is
generated when a signal is received on one or more

6-8 IBM 4300 Processors Principles of Operation

of the signal-in lines.” Up to six signal-in lines may
be connected, providing for external signal 2
through external signal 7.The request is preserved
and remains pending in the CPU until it is cleared.
The pending request is cleared when it causes an
interruption and by program reset.

Facilities are provided for holding a separate
external-signal request pending for each of the six
lines.

External signals 2-7 are indicated by setting to
one interruption-code bits 10-15, respectively. Bits
0-7 are set to zeros, and any other bits in the
rightmost byte are set to zeros unless set to ones
for other conditions that are concurrently indicated.

All external signals are subject to control by the
subclass-mask bit in bit position 26 of control
register 0. This bit is initialized to one.

External signaling is independent of 1/0
operations and interruptions.

Programming Note

The pattern presented in bit positions 10-15 of the
interruption code depends on the pattern received
before the interruption is taken. Because of circuit
skew, all simultaneously generated external signals
do not necessarily arrive at the same time, and
some may not be included in the external
interruption resulting from the earliest signals.
These late signals may cause another interruption
to be taken.

Interrupt Key

An interruption request for the interrupt key is
generated when the operator activates that key.
The request is preserved and remains pending in
the CPU until it is cleared. The pending request is
cleared when it causes an interruption and by
program reset.

When the interrupt key is activated while the
CPU is in the load state, it depends on the model
whether an interruption request is generated or the
condition is lost.

The interrupt-key condition is indicated by
setting bit 9 in the interruption code to one and by
setting bits 0-7 to zeros. Bits 8 and 10-15 are
zeros unless set to ones for other conditions that
are concurrently indicated. .

The subclass-mask bit is in bit position 25 of
control register 0. This bit is initialized to one.

Interval Timer
An interruption request for the interval timer is
generated when the value of the interval timer is

decremented from a positive number or zero to a
negative number. The request is preserved and
remains pending in the CPU until it is cleared. The
pending request is cleared when it causes an
interruption and by program reset.

The interval-timer condition is indicated by
setting bit 8 in the interruption code to one and by
setting bits 0-7 to zeros. Bits 9-15 are zeros unless
set to ones for other conditions that are
concurrently indicated.

The subclass-mask bit is in bit position 24 of
control register 0. This bit is initialized to one.

Input/Output Interruption

The input/output (I/0) interruption provides a
means by which the CPU responds to conditions in
1/0 devices and channels.

A request for an I/O interruption may occur at
any time, and more than one request may occur at
the same time. The requests are preserved and
remain pending in channels or devices until
accepted by the CPU. The I/0 interruption occurs
at the completion of a unit of operation. Priority is
established among requests so that only one
interruption request is processed at a time. For
more details, see the section ''Input/Output
Interruptions'' in Chapter 12, "Input/Output
Operations."

When the CPU becomes enabled for I/0
interruptions and a channel has established priority
for a pending I/O-interruption condition, the
interruption occurs at the completion of the
instruction execution or interruption that causes the
enabling.

An I/0 interruption causes the old PSW to be
stored at location 56, a channel status word to be
stored at location 64, and a new PSW to be fetched
from location 120. Upon detection of equipment
errors, additional information may be stored in the
form of a limited channel logout at location 176.

When the old PSW specifies the EC mode, the
I/0 address identifying the channel and device
causing the interruption is stored at locations
186-187, and zeros are stored at location 185.
When the old PSW specifies the BC mode, the
interruption code in PSW bit positions 16-31
contains the I/0 address, and the
instruction-length code in the PSW is
unpredictable.

An I/0 interruption can occur only while the
CPU is enabled for interruption by the channel
presenting the request. Mask bits in the PSW and
channel masks in control register 2 determine

whether the CPU is enabled for interruption by a
channel; the method of control depends on whether
the current PSW specifies the EC or BC mode.

The channel-mask bits in control register 2 start
at bit position 0 and extend for as many contiguous
bit positions as the number of channels provided.
The assignment is such that a bit is assigned to the
channel whose address is equal to the position of
the bit in control register 2. Channel-mask bits for
installed channels are initialized to one. The state
of the channel-mask bits for unavailable channels is
unpredictable.

When the current PSW specifies the EC mode,
each channel is controlled by the 1/0O-mask bit,
PSW bit 6, and by the corresponding channel-mask
bit in control register 2; the channel can cause an
interruption only when the I/0O-mask bit is one and
the corresponding channel-mask bit is one.

When the current PSW specifies the BC mode,
interruptions from channels 6 and up are controlled
by the I/O-mask bit, PSW bit 6, in conjunction
with the corresponding channel-mask bit: the
channel can cause an interruption only when the
I/O-mask bit is one and the corresponding
channel-mask bit is one. Interruptions from
channels 0-5 are controlled by channel-mask bits
0-5 in the PSW: an interruption can occur only
when the mask bit corresponding to the channel is
one. In the BC mode, bits 0-5 in control register 2
do not participate in controlling I/O interruptions;
they are, however, preserved in the control register
if the corresponding channels are installed.

Machine-Check Interruption

The machine-check interruption is a means for
reporting to the program the occurrence of
equipment malfunctions. Information is provided
to assist the program in determining the location of
the fault and extent of the damage.

A machine-check interruption causes the old
PSW to be stored at location 48 and a new PSW to
be fetched from location 112. When the old PSW
specifies the BC mode, the contents of the
interruption-code and ILC fields in the old PSW
are unpredictable. :

The cause and severity of the malfunction are
identified by a 64-bit machine-check-interruption
code stored at locations 232-239. Further
information identifying the cause of the
interruption and the location of the fault may be
stored at locations 216-511.

The interruption action and the storing of the
associated information are under the control of

Chapter 6. Interruptions 6-9

PSW bit 13 and bits in control register 14. See
Chapter 11, "Machine-Check Handling," for more
detailed information.

Program Interruption
Program interruptions are used to report exceptions
and events which occur during execution of the
program. Exceptions include the improper
specification or use of instructions and data.
Events are detected during monitoring (monitor
events) and program-event recording (PER events).
A program interruption causes the old PSW to be
stored at location 40 and a new PSW to be fetched
from location 104.
The cause of the interruption is identified by the
interruption code. When the old PSW specifies the

EC mode, the interruption code is placed at
locations 142-143, the instruction-length code is
placed in bit positions 5 and 6 of the byte at
location 141 with the rest of the bits set to zeros,
and zeros are stored at location 140. When the old
PSW specifies the BC mode, the interruption code
and the ILC are placed in the old PSW. For some
causes, additional information identifying the
reason for the interruption is stored at locations
144-159 in both the EC and BC modes.

Except for the PER-event condition, the
condition causing the interruption is indicated by a
coded value placed in the rightmost seven bit
positions of the interruption code. Only one
condition at a time can be indicated. Bits 0-7 of
the interruption code are set to zeros.

The PER-event condition is indicated by setting
bit 8 of the interruption code to one, with bits 0-7
set to zeros. When this is the only condition, bits
9-15 are also set to zeros. When a PER-event
condition is indicated concurrently with another
program interruption condition, bit 8 is one, and
the coded value for the other condition appears in
bit positions 9-15.

A program interruption can occur only when the
corresponding mask bit, if any, is one. The
program mask in the PSW permits masking four of
the exceptions, bit 1 in control register O controls
whether SET SYSTEM MASK causes a
special-operation exception, bits 16-31 in control
register 8 control interruptions due to monitor
events, and, in the EC mode, masks are provided
for controlling interruptions due to PER events.
When the mask bit is zero, the condition is ignored;
the condition does not remain pending.

6-10 IBM 4300 Processors Principles of Operation

Programming Notes

1. When the new PSW for a program interruption
has a PSW-format error or causes an exception
to be recognized in the process of instruction
fetching, a string of program interruptions takes
place. See the section ''Priority of
Interruptions" in this chapter for a description
of how such strings are terminated.

2. Some of the conditions indicated as program
exceptions may be recognized also by an'1/0
operation, in which.case the exception is
indicated in the channel-status word.

Program-Interruption Conditions
The following is a detailed description of each
program-interruption condition.

Addressing Exception

An addressing exception is recognized when the
CPU causes a reference to a virtual-storage
location that is not provided. A storage location is
not provided when the page address, bits 8-20 of
the storage address, equals or exceeds the
page-capacity count. An address designating a
storage location that is not provided is referred to
as invalid. .

The execution of the instruction is suppressed
when the location of the instruction, including the
location of the target instruction of EXECUTE, is
not provided. Except for some specific instructions
whose execution is suppressed, the operation is
terminated when an operand location is not
provided. For termination, changes may occur only
to result fields, which include the condition code,
registers, and any storage locations that are
provided and that are designated to be changed by
the instruction. Therefore, if an instruction is due
to change only the contents of a field in storage,
and every byte of the field is in a location that is
not provided, the operation is suppressed.

The instructions whose execution is always
suppressed are LOAD PSW, SET CLOCK
COMPARATOR, SET CPU TIMER, SET
SYSTEM MASK, STORE-CLOCK
COMPARATOR, STORE CPU ID, STORE CPU
TIMER, STORE THEN AND SYSTEM MASK,
and STORE THEN OR SYSTEM MASK.

When part of an operand location is provided
and part is not, storing may be performed in the
part that is provided.

When the address of any halfword of an
instruction is invalid, the instruction-length code

(ILC) is 1, 2, or 3, indicating the multiple of 2 by
which the instruction address has been
incremented. It is unpredictable whether the ILC
is 1,2, or 3.

In all cases of addressing exceptions not
associated with instruction fetching, the IL.C is 1,
2, or 3, designating the length of the instruction
that caused the reference. When an addressing
exception is associated with fetching the target of
EXECUTE, the ILC is 2.

Data Exception

A data exception is recognized when:

1. The sign or digit codes of operands in the
decimal instructions (described in Chapter 8,
"Decimal Instructions') or in CONVERT TO
BINARY are invalid.

2. The operand fields in ADD DECIMAL,
COMPARE DECIMAL, DIVIDE DECIMAL,
MULTIPLY DECIMAL, and SUBTRACT
DECIMAL overlap in a way other than with
coincident rightmost bytes; or operand fields in
ZERO AND ADD overlap, and the rightmost
byte of the second operand is to the right of
the rightmost byte of the first operand.

3. The multiplicand in MULTIPLY DECIMAL
has an insufficient number of high-order zeros.

For all instructions other than EDIT and EDIT
AND MARK, the action taken for a data exception
depends on whether a sign code is invalid. The
operation is suppressed when a sign code is invalid,
regardless of whether any other condition causing
the exception exists; when no sign code is invalid,
the operation is terminated. When the operation is
terminated, the contents of the sign position in the
rightmost byte of the result field either remain
unchanged or are set to the preferred sign code; the
contents of the remainder of the result field are
unpredictable.

In the case of EDIT and EDIT AND MARK, an
invalid sign code is not recognized; the operation is
terminated on a data exception for an invalid digit
code.

The instruction-length code is 2 or 3.

Programming Notes

1. The definition for data exception permits
termination when digit codes are invalid but no
sign code is invalid. On some models, valid
digit codes may be placed in the result location
even if the original contents were invalid. Thus
it is possible, after getting a data exception, for
all fields to appear valid.

2. When, on a program interruption for data
exception, the program finds that a sign code is
invalid, the operation has been suppressed if
the following two conditions are met:

a. The invalid sign of the source field is not
located in the numeric portion of the result
field.

b. The sign code appears in a position
specified by the instruction to be checked
for valid sign. (This condition excludes the
first operand of ZERO AND ADD and
both operands of EDIT and EDIT AND
MARK.)

An invalid sign code for the rightmost byte
of the result field is not generated when the
operation is terminated. However, an invalid
second-operand sign code is not necessarily
preserved when it appears in the numeric
portion of the result field.

Decimal-Divide Exception

A decimal-divide exception is recognized when in
decimal division the divisor is zero or the quotient
exceeds the specified data-field size.

The decimal-divide exception is indicated only if
the sign codes of both the divisor and dividend are
valid and only if the digit or digits used in
establishing the exception are valid.

The operation is suppressed.

The instruction-length code is 2 or 3.

Decimal-Overflow Exception

A decimal-overflow exception is recognized when
one or more significant high-order digits are lost
because the destination field in a decimal operation
is too short to contain the result.

The interruption may be disallowed by PSW bit
21 in the EC mode and by PSW bit 37 in the BC
mode.

The operation is completed. The result is
obtained by ignoring the overflow information, and
condition code 3 is set.

The instruction-length code is 2 or 3.

Execute Exception
The execute exception is recognized when the
target instruction of EXECUTE is another
EXECUTE.

The operation is suppressed.

The instruction-length code is 2.

Exponent-Overflow Exception

An exponent-overflow exception is recognized
when the result characteristic in floating-point

Chapter 6. Interruptions 6-11

addition, subtraction, multiplication, or division
exceeds 127 and the result fraction is not zero.
The operation is completed. The fraction is
normalized, and the sign and fraction of the result
remain correct. The result characteristic is made
128 smaller than the correct characteristic.
The instruction-length code is 1 or 2.

Exponent-Underflow Exception

An exponent-underflow exception is recognized
when the result characteristic in floating-point
addition, subtraction, multiplication, halving, or
division is less than zero and the result fraction is
not zero.

The operation is completed. The exponent-
underflow mask also affects the result of the
operation. When the mask bit is zero, the sign,
characteristic, and fraction are set to zero, making
the result a true zero. When the mask bit is one,
the fraction is normalized, the characteristic is
made 128 larger than the correct characteristic, and
the sign and fraction remain correct.

The instruction-length code is 1 or 2.

Fixed-Point-Divide Exception
A fixed-point-divide exception is recognized when
in fixed-point division the divisor is zero or the
quotient exceeds the register size, or when the
result of CONVERT TO BINARY exceeds 31 bits.
In the case of division, the operation is
suppressed. The execution of CONVERT TO
BINARY is completed by ignoring the high-order
bits that cannot be placed in the register.
The instruction-length code is 1 or 2.

Fixed-Point-Overflow Exception

A fixed-point-overflow exception is recognized
when an overflow occurs during signed binary
arithmetic or left-shift operations.

The interruption may be disallowed by PSW bit
20 in the EC mode and by PSW bit 36 in the BC
mode.

The operation is completed. The result is
obtained by ignoring the overflow information, and
condition code 3 is set.

The instruction-length code is 1 or 2.

Floating-Point-Divide Exception
A floating-point-divide exception is recognized
when a floating-point division by a number with a
zero fraction is attempted.

The operation is suppressed.

The instruction-length code is 1 or 2.

6-12 IBM 4300 Processors Principles of Operation

Monitor Event
A monitor event is recognized when MONITOR
CALL is executed and the monitor-mask bit in
control register 8 corresponding to the class
specified by instruction bits 12-15 is one.

The monitor event can occur in both the EC and
BC modes.

Control Register 8:

////////7//7////] Monitor Masks
0 16 31

The monitor-mask bits, bits 16-31 of control
register 8, correspond to monitor classes 0-15,
respectively. Any number of monitor-mask bits may
be on at a time; together they specify the classes of
monitor events that are monitored at that time.
The mask bits are initialized to zero.

When a MONITOR CALL instruction is
interpreted for execution and the corresponding
monitor-mask bit is one, a program interruption for
monitoring occurs. The cause of the interruption is
identified by setting bit 9 of the interruption code
to one, and by the information stored at locations
148-149 and 156-159. The format of the
information stored at these locations is the same in
the EC and BC modes and is as follows:

Locations 148-149:

Monitor
00000000| Ctass No.

0 8 15

Locations 156-159:

00000000 Monitor Code

0 8 31

The contents of bit positions 8-15 of MONITOR
CALL are stored at location 149 and constitute the
monitor-class number. The address specified by
the B and D fields of the instruction forms the
monitor code, which is stored at locations 157-159.
Zeros are stored at locations 148 and 156.

The operation is completed, and the
instruction-length code is 2.

Operation Exception
An operation exception is recognized when the

| CPU encounters an instruction with an invalid

operation code. The operation code may not be

assigned, or the instruction with that operation

code may not be available on the CPU.

For the purpose of checking the operation code
of an instruction, the operation code is defined as
follows:

1. When the first eight bits of an instruction have
the value B2 (hex), the first 16 bits form the
operation code.

2. In all other cases, the first eight bits alone form
the operation code.

The operation is suppressed.

The instruction-length code is 1, 2, or 3.

Programming Notes

1. Some models may offer instructions not
described in this publication, such as those
provided for emulation or as part of special or
custom features. Consequently, operation
codes not described in this publication do not
necessarily cause an operation exception to be
recognized. Furthermore, these instructions
may cause modes of operation to be set up or
may otherwise alter the machine so as to affect
the execution of subsequent instructions. To
avoid causing such an operation, an instruction
with an operation code not described in this
publication should be issued only when the
specific function associated with the operation
code is desired.

2. The operation code 00, with a two-byte
instruction format, currently is not assigned. It
is improbable that this operation code will ever
be assigned.

3. In the case of I/O instructions with the values
9C, 9D, and 9E in bit positions 0-7, the value
of bit 15 is used to distinguish between two
instructions. Bits 8-14, however, are not
checked for zeros, and these operation codes
never cause an operation exception to be
recognized.

To ensure that presently written programs
run if and when the I/O operation codes (9C,
9D, 9F, and 9F) are extended further to
provide for new functions, only zeros should be
placed in the unused bit positions in the second
op-code byte. In accordance with these
recommendations, the operation codes for the
I/0 instructions are shown as 9C00, 9CO1,
9D00, etc.

Page-Access Exception
A page-access exception is recognized when storage
is addressed either explicitly or implicitly by the

CPU and the addressed storage location is in a
page that is in the connected or disconnected state.

The exception is recognized as part of the
execution of the instruction when an attempt is
made to access either the instruction or operand
location. However, page-access exceptions are not
recognized for the page operands of the
instructions CLEAR PAGE, CONNECT PAGE,
DECONFIGURE PAGE, DISCONNECT PAGE,
MAKE ADDRESSABLE, and MAKE
UNADDRESSABLE.

The unit of operation is nullified, except for the
possible effects on storage described in the section
"Nontransparent Nullification" in this chapter.

The address of the storage location causing the
exception is stored at locations 145-147, and zeros
are stored at location 144. The low-order 11 bits of
the address stored are unpredictable.

When the exception occurs during a reference to
an operand location, the instruction-length code
(ILC) is 1, 2, or 3 and indicates the length of the
instruction causing the exception. When the
exception occurs during fetching of an instruction,
the ILC is 1, 2, or 3, the value being unpredictable.

Page-State Exception
A page-state exception is recognized when the
target page of the CLEAR PAGE instruction is in
the disconnected state.

The operation is suppressed.

The instruction-length code is 2.

Page-Transition Exception

A page-transition exception can only be recognized
for instructions that cause a page-state transition.
These instructions are CONNECT PAGE,
DECONFIGURE PAGE, DISCONNECT PAGE,
MAKE ADDRESSABLE, and MAKE
UNADDRESSABLE.

The exception is recognized as part of the
execution of the instruction when attempting to
perform an invalid page-state transition. For the
definition of an invalid page-state transition, see
the section ''Page States" in Chapter 3, "Storage."

The operation is suppressed.

The instruction-length code is 2.

PER Event

A PER event is recognized when program-event
recording is specified by the contents of control
registers 9-11 and one or more of these events
occur. :

Chapter 6. Interruptions 6-13

The interruption may be disallowed by PSW bit
1 in the EC mode. Program-event recording is
disallowed in the BC mode.

The unit of operation is completed, unless
another condition has caused the unit of operation
to be nullified, suppressed, or terminated.

As part of the interruption, information
identifying the event is stored at locations 150-155.
See the section "Program-Event Recording,"” in
Chapter 4, "Control," for a detailed description of
the interruption condition.

The instruction-length code is 0, 1, 2, or 3.
Code 0 is set only if a specification exception is
indicated concurrently.

Privileged-Operation Exception
A privileged-operation exception is recognized
when the CPU encounters a privileged instruction
in the problem state.

The operation is suppressed.

The instruction-length code is 1 or 2.

Protection Exception

A protection exception is recognized when the
CPU attempts to access a storage location that is
protected against the type of reference by the
storage key.

The execution of an instruction is suppressed
when the location of the instruction, including the
location of the target instruction of EXECUTE, is
protected against fetching. Except for some
specific instructions whose execution is suppressed,
the operation is terminated when a protection
exception is encountered during a reference to an
operand location. Changes may occur only to
result fields. In this context, the term "result field"
includes condition code, registers, and storage
locations, if any, which are designated to be
changed by the instruction. However, no change is
made to a storage location when a reference to that
location causes a protection exception. Therefore,
if an instruction is due to change only the contents
of a field in storage, and every byte of that field
would cause a protection exception, the operation is
suppressed.

The instructions whose execution is always
suppressed are: LOAD PSW, SET CLOCK
COMPARATOR, SET CPU TIMER, SET
SYSTEM MASK, STORE CLOCK
COMPARATOR, STORE CPU ID, STORE CPU
TIMER, STORE THEN AND SYSTEM MASK,
and STORE THEN OR SYSTEM MASK.

6-14 IBM 4300 Processors Principles of Operation

On fetching, the protected information is not
loaded into an addressable register nor moved to
another storage location. When a part of an
operand is protected against storing and part is not,
storing may be performed in the unprotected part.
However, the contents of a protected location
remain unchanged.

For a protected operand location, the
instruction-length code (IL.C) is 1, 2, or 3,
designating the length of the instruction that
caused the reference.

When the location of any part of an instruction
is protected against fetching, the ILC is 1, 2, or 3,
indicating the multiple of 2 by which the
instruction address has been incremented. It is
unpredictable whether the ILC is 1, 2, or 3.

Significance Exception

A significance exception is recognized when the
result fraction in floating-point addition or
subtraction is zero.

The interruption may be disallowed by PSW bit
23 in the EC mode and by PSW bit 39 in the BC
mode.

The operation is completed. The significance
mask also affects the result of the operation. When
the mask bit is zero, the operation is completed by
replacing the result with a true zero. When the
mask bit is one, the operation is completed without
further change to the characteristic and sign of the
result. '

The instruction-length code is 1 or 2.

Special-Operation Exception
A special-operation exception is recognized when
the instruction SET SYSTEM MASK is
encountered in the supervisor state and the SSM-
suppression-control bit, bit 1 of control register 0,
is one.

The execution of SET SYSTEM MASK is
suppressed.

The instruction-length code is 2.

Specification Exception

A specification exception is recognized for the

following causes:

1. An odd instruction address is introduced into
the PSW.

2. An operand address does not designate an
integral boundary in an instruction requiring
such integral-boundary designation.

3. The storage address in INSERT STORAGE
KEY or SET STORAGE KEY does not have
zeros in the four low-order bit positions.

4. An odd-numbered general register is designated
by an R field of an instruction that requires an
even-numbered register designation.

5. A floating-point register other than 0, 2, 4, or 6
is specified for a short or long operand, or a
floating-point register other than 0 or 4 is
specified for an extended operand. ,

6. The multiplier or divisor in decimal arithmetic
exceeds 15 digits and sign.

7. The length of the first-operand field is less than
or equal to the length of the second-operand
field in decimal multiplication or division.

8. Bit positions 8-11 of MONITOR CALL do not
contain zeros.

9. A one is introduced into an unassigned bit
position of an EC-mode PSW (bit positions 0,
2-5, 16, 17, and 24-39).

10. Page O is designated to become connected or
disconnected.

The execution of the instruction identified by the
old PSW is suppressed. However, for cause 9, the
operation that introduces the new PSW is
completed, but an interruption occurs immediately
thereafter.

When the instruction address is odd (cause 1),
the instruction-length code (ILC) is 1, 2, or 3,
indicating the multiple of 2 by which the
instruction address has been incremented. It is
unpredictable whether the ILC is 1, 2, or'3.

For causes 2-8 and 10, the ILC is 1, 2, or 3,
designating the length of the instruction causing the
exception.

When the exception is recognized because of
cause 9, and-the invalid bit value has been
introduced by LOAD PSW or an interruption, the
ILC is 0. When the exception due to cause 9 is
introduced by SET SYSTEM MASK or STORE
THEN OR SYSTEM MASK, the ILC is 2.

See the section "Exceptions Associated with the
PSW'" in this chapter for a discussion of when the
exceptions associated with the PSW are recognized.

Recognition of Access Exceptions

The addressing, page-access, and protection
exceptions are collectively referred to as access
exceptions.

Any access exception is recognized as part of the
execution of the instruction with which the
exception is associated. An access exception is not
recognized when the CPU has made an attempt to
fetch from an inaccessible location or has detected

some other access-exception condition, but a
branch instruction or an interruption changes the
instruction sequence such that the instruction is not
executed.

Every instruction can cause an access exception
to be recognized because of instruction fetch.
Additionally, access exceptions associated with
instruction execution may occur because of an
access to an operand in storage.

An access exception due to fetching an
instruction is indicated when the first instruction
halfword cannot be fetched without encountering
the exception. When the first halfword of the
instruction has no access exceptions, access
exceptions may be indicated for additional
halfwords according to the instruction length
specified by the first two bits of the instruction;
however, when the operation can be performed
without accessing the second or third halfwords of
the instruction, it is unpredictable whether the
access exception is indicated for the unused part.
Since the indication of access exceptions for
instruction fetch is common to all instructions, it is
not covered in the individual instruction
definitions.

Except where otherwise indicated in the
individual instruction description, the following
rules apply for exceptions associated with an access
to an operand location. For a fetch-type operand,
access exceptions are necessarily indicated only for
that portion of the operand which is required for
completing the operation. It is unpredictable
whether access exceptions are indicated for those
portions of a fetch-type operand which are not
required for completing the operation. For a
store-type operand, access exceptions are
recognized for the entire operand even if the
operation could be completed without the use of
the inaccessible part of the operand. In situations
where the value of a store-type operand is defined
to be unpredictable, it is unpredictable whether an
access exception is indicated.

Whenever an access to an operand location can
cause an access exception to be recognized, the
word "access" is included in the list of program
exceptions in the description of the instruction.
This entry also indicates which operand can cause
the exception to be recognized and whether the
exception is recognized on a fetch or store access
to that operand location. Access exceptions are
recognized only for the portion of the operand as
defined by each particular instruction.

Chapter 6. Interruptions 6-15

Multiple Program-Interruption Conditions
Except for PER events, only one program-
interruption condition is indicated with a program
interruption. The existence of one condition,
however, does not preclude the existence of other
conditions. - When more than one program-
interruption condition exists, only the condition
having the highest priority is identified in the
interruption code.

With two conditions of the same priority, it is
unpredictable which is indicated. In particular, the
priority of access exceptions associated with the
two parts of an operand that crosses a page
boundary is unpredictable and is not necessarily
related to the sequence specified for the access of
bytes within the operand.

The type of ending which occurs (nullification,
suppression, or termination) is that which is defined
for the type of exception that is indicated in the
interruption code. However, if a condition is
indicated which permits termination, and another
condition also exists which would cause either
nullification or suppression, then the unit of
operation is suppressed.

6-16 IBM 4300 Processors Principles of Operation

The figure "Priority of Program-Interruption
Conditions'" lists the priorities of all
program-interruption conditions other than PER
events. All exceptions associated with references
to storage for a particular instruction halfword or a
particular operand byte are grouped as a single
entry called "access." The priorities of access
exceptions for a single access are, in descending
order of priorities:

1. Addressing exception
2. Page-access exception
3. Protection exception

The relative priorities of any two conditions can
be found by comparing the priority numbers within
a table from left to right until a mismatch is found.
If the first inequality is between numeric
characters, either the two conditions are mutually
exclusive or, if both can occur, the condition with
the smaller number is indicated. If the first
inequality is between alphabetic characters, then
the two conditions are not exclusive, and it is
unpredictable which is indicated when both occur.

—_—
.

Specification exception due to a one in an unassigned
bit position of an EC-mode PSW.

Specification exception due to an odd instruction
address in the PSW. _

Access exceptions for first halfword of EXECUTE .2
Access exceptions for second halfword of EXECUTE.
Specification exception due to target instruction_of
EXECUTE not being specified on halfword boundary.
Access exceptions for first instruction halfword.
Access exception for second instruction halfword
Access exception for third instruction halfword.3
Operation exception.

Privileged-operation exception.

Execute exception.

Special-operation exception.

Specification exception due to conditions other than
those included in 1, 2 and 5 above.

Access exceptions for any particular access to an
operand in storgge.

Data exception.

Decimal-divide exception.6

Page-state exception.

Page-transition exception.

0. Fixed-point divide, floating-point divide, and
conditions, other than PER events, which result in
compietion. These conditions are mutually exclusive,
or their priority is specified in the corresponding
definitions.

Ul & W ~N

o OO0 Ow>
WA -

-0 0 00 00 o] 00 NN NN IO
moo

Explanation:

Numbers indicate priority, with priority decreasing in
ascending order of numbers; letters indicate no priority.

1 A one may be introduced in an unassigned bit position of
an EC-mode PSW by a new PSW loaded as a result of an in-
terruption or by the instructions LOAD PSW, SET SYSTEM
MASK, and STORE THEN OR SYSTEM MASK. The priority shown
in the chart is that for a PSW error introduced by an in-
terruption and may also be considered as the priority for
a PSW error introduced by the previous instruction. The
error is introduced only if the instruction encounters no
other exceptions. The resulting interruption has a higher
priority than any interruption caused by the instruction
which would have been executed next; it has a lower
priority, however, than any interruption caused by the
instruction which introduced the erroneous PSW.

Priority of Program-Interruption Conditions (Part 1 of 2)

Chapter 6. Interruptions 6-17

2

Explanation (Continued):

Priorities 3, 4, and 5 apply only to an EXECUTE instruc-
tion. Priorities 6-10 apply to instructions other than
EXECUTE, including the target instruction of EXECUTE.

Separate accesses may occur for each halfword of an in-
struction. The second instruction halfword is accessed
if bits 0-1 of the instruction are not both zeros. The
third instruction halfword is accessed only if bits 0-1
of the instruction are both ones. Access exceptions for
one of these halfwords are not necessarily recognized if
the instruction can be completed without use of the con-
tents of the halfword or if an exception of priority

8, 9, or 10 can be determined without the use of the
halfword. '

As in instruction fetching, separate accesses may occur
for each portion of an operand. Each of the accesses is
of equal priority. Addressing exceptions for INSERT
STORAGE KEY, RESET REFERENCE BIT, and SET STORAGE KEY are
also included in 8.B. For MOVE LONG and COMPARE LOGICAL
LONG, an access exception for a particular operand can be
indicated only if the R field for that operand designates
an even-numbered register.

The exception can be indicated only if the sign, digit, or
digits responsible for the exception were fetched without

encountering an access exception.

are valid.

6 The exception can be indicated only if the digits used
in establishing the exception, and also the signs, were
fetched without encountering an access exception, and
only if the digits used in establishing the exception

Priority of Program-Interruption Conditions (Part 2 of 2)

Restart Interruption

The restart interruption provides a means for the
operator to invoke the execution of a specified
program. The CPU cannot be disabled for this
interruption.

A restart interruption causes the old PSW to be
stored at location 8 and a new PSW, specifying the
start of the program to be executed, to be fetched
from location 0. The instruction-length code and
interruption code are not stored in the EC mode.
In the BC mode, the instruction-length code in the
PSW is unpredictable, and zeros are stored in the
interruption-code field.

If the CPU is in the operating state, the
exchange of the PSWs occurs at the completion of
the current unit of operation and after all pending
interruption conditions for which the CPU is
enabled have been taken. If the CPU is in the
stopped state, the CPU enters the operating state
and exchanges the PSWs without first taking any
pending interruptions.

6-18 IBM 4300 Processors Principles of Operation

The restart interruption is initiated by activating
the restart key.

When the rate control is set to instruction step, it
is unpredictable whether restart causes a unit of
operation or additional interruptions to be
performed after the PSWs have been exchanged.

Programming Note

In order to perform restart when the CPU is in the
check-stop state, the CPU has to be reset. This
can be accomplished by means of the system-reset-
normal key, which does not clear the contents of
program-addressable registers, including the control
registers, but causes the channels to be reset.

Supervisor-Call Interruption

The supervisor-call interruption occurs when the
instruction SUPERVISOR CALL is executed. The
CPU cannot be disabled for the interruption, and
the interruption occurs immediately upon the
execution of the instruction.

The supervisor-call interruption causes the old
PSW to be stored at location 32 and a new PSW to
be fetched from location 96.

The contents of bit positions 8-15 of
SUPERVISOR CALL are placed in the rightmost
byte of the interruption code. The leftmost byte of
the interruption code is set to zero. The
instruction-length code is 1, unless the instruction
was executed by means of EXECUTE, in which
case the code is 2.

When the old PSW specifies the EC mode, the
interruption code is placed in locations 138-139,
the instruction-length code is placed in bit positions
5 and 6 of the byte at location 137, with the other
bits set to zeros, and zeros are stored at location
136. When the old PSW specifies the BC mode,
the interruption code and instruction-length code
appear in the old PSW.

Priority of Interruptions

During the execution of an instruction, several
interruption-causing events may occur
simultaneously. The instruction may give rise to a
program interruption, a request for an external
interruption may be received, equipment
malfunctioning may be detected, an
1/O-interruption request may be made, and the
restart key may be activated. Instead of the
program interruption, a supervisor-call interruption
might occur; or both can occur if program-event-
recording is active. Simultaneous interruption
requests are honored in a predetermined order.

An exigent machine-check condition has the
highest priority. When it occurs, the current
operation is terminated. Program and
supervisor-call interruptions that would have
occurred as a result of the current operation may be
eliminated. Any pending repressible
machine-check conditions may be indicated with
the exigent machine-check interruption. Every
reasonable attempt is made to limit the side effects
of an exigent machine-check condition, and
requests for I/O and external interruptions
normally remain unaffected.

In the absence of an exigent machine-check
condition, interruption requests existing
concurrently at the end of a unit of operation are
honored, in descending order of priority, as follows:

Supervisor call

Program

Repressible machine check
External

Input/output

Restart

The processing of multiple simultaneous
interruption requests consists in storing the old
PSW and fetching the new PSW belonging to the
interruption first taken. This new PSW is
subsequently stored without the execution of any
instructions, and the new PSW associated with the
next interruption is fetched. Storing and fetching
of PSWs continues until no more interruptions are
to be serviced. The priority is reevaluated after
each new PSW is loaded. Each evaluation is
performed taking into consideration any additional
interruptions which may have become pending.
Additionally, external and I/O interruptions, as
well as machine-check interruptions due to
repressible conditions, are taken only if the current
PSW at the instant of evaluation indicates that the
CPU is interruptible for the cause.

Instruction execution is resumed using the
last-fetched PSW. The order of executing
interruption subroutines is, therefore, the reverse of
the order in which the PSWs are fetched.

If the new PSW for a program interruption has
an odd instruction address or causes an access
exception to be recognized, another program
interruption occurs. Since this second interruption
introduces the same unacceptable PSW, a string of
interruptions is established. These program
exceptions are recognized as part of the execution
of the following instruction, and the string may be
broken by an external, I/O, machine-check, or
restart interruption or by the stop function.

If the new PSW for a program interruption
contains a one in an unassigned bit position of an
EC-mode PSW, another program interruption
occurs. This condition is of higher priority than
restart, I/0, external, or repressible machine-check
conditions, or the stop function, and program reset
has to be used to break the string of interruptions.

A string of interruptions for other interruption
classes can also exist if the new PSW is enabled for
the interruption just taken. These include
machine-check interruptions, external interruptions,
and 1/0 interruptions due to PCI conditions
generated because of CCWs which form a loop.
Furthermore, a string of interruptions involving
more than one interruption class can exist. For
example, assume that the CPU timer is negative
and the CPU-timer subclass mask is one. If the
external new PSW has a one in an unassigned bit
position in the EC mode, and the program new
PSW is enabled for external interruptions, then a
string of interruptions occurs, alternating between
external and program. Even more complex strings

Chapter 6. Interruptions 6-19

of interruptions are possible. As long as more
interruptions must be serviced, the string of
interruptions cannot be broken by employing the
stop function; program reset is required.

Interruptions for all requests for which the CPU
is enabled are taken before the CPU is placed in
the stopped state. When the CPU is in the stopped
state, restart has the highest priority.

Programming Note

The order in which concurrent interruption requests
are honored can be changed to some extent by
masking.

6-20 IBM 4300 Processors Principles of Operation

Chapter 7. General Instructions

Contents

Data Format 7-2
Binary-Integer Representation 7-2
Signed and Unsigned Binary Arithmetic 7-3
Signed and Logical Comparison 7-3
Instructions 7-4
ADD 7-7
ADD HALFWORD 7-7
ADD LOGICAL 7-7
AND 7-7
BRANCH AND LINK 7-8
BRANCH ON CONDITION 7-9
BRANCH ON COUNT 7-9
BRANCH ON INDEX HIGH 7-10
BRANCH ON INDEX LOW OR EQUAL 7-10
COMPARE 7-11
COMPARE AND SWAP 7-11
COMPARE DOUBLE AND SWAP 7-11
COMPARE HALFWORD 7-13
COMPARE LOGICAL 7-13
COMPARE LOGICAL CHARACTERS UNDER
MASK 7-13
COMPARE LOGICAL LONG 7-14
CONVERT TO BINARY 7-15
CONVERT TO DECIMAL 7-16
DIVIDE 7-16
EXCLUSIVE OR 7-16
EXECUTE 7-17
INSERT CHARACTER 7-18
INSERT CHARACTERS UNDER MASK 7-18
LOAD 7-19
LOAD ADDRESS 7-19
LOAD AND TEST 7-19
LOAD COMPLEMENT 7-19
LOAD HALFWORD 7-20
LOAD MULTIPLE 7-20
LOAD NEGATIVE 7-20

LOAD POSITIVE 7-20
MONITOR CALL 7-21
MOVE 7-21

MOVE INVERSE 7-22
MOVE LONG 7-22

MOVE NUMERICS 7-24
MOVE WITH OFFSET 7-25
MOVE ZONES 7-26

MULTIPLY 7-26
MULTIPLY HALFWORD 7-26
OR 7-27

PACK 7-28

SET PROGRAM MASK 7-28

SHIFT LEFT DOUBLE 7-28

SHIFT LEFT DOUBLE LOGICAL 7-29
SHIFT LEFT SINGLE 7-29

SHIFT LEFT SINGLE LOGICAL 7-30
SHIFT RIGHT DOUBLE 7-30

SHIFT RIGHT DOUBLE LOGICAL 7-30
SHIFT RIGHT SINGLE 7-31

SHIFT RIGHT SINGLE LOGICAL 7-31
STORE 7-31

STORE CHARACTER 7-32

STORE CHARACTERS UNDER MASK 7-32
STORE CLOCK 7-32

STORE HALFWORD 7-33

STORE MULTIPLE 7-33

SUBTRACT 7-33

SUBTRACT HALFWORD 7-34
SUBTRACT LOGICAL 7-34
SUPERVISOR CALL 7-34

TEST AND SET 7-35
TEST UNDER MASK 7-35
TRANSLATE 7-36

TRANSLATE AND TEST 7-36
UNPACK 7-37

Chapter 7. General Instructions

7-1

This chapter includes all the unprivileged
instructions described in this publication, other than
the decimal and floating-point instructions.

Data Format

The general instructions treat data as being of four
types: signed binary integers, unsigned binary
integers, unstructured logical data, and decimal
data. Data is treated as decimal by the conversion,
packing, and unpacking instructions. Decimal data
is described in Chapter 8, ''Decimal Instructions."

Data resides in general registers or in storage or
is introduced from the instruction stream.

In a storage-to-storage operation the operand
fields may be defined in such a way that they
overlap. The effect of this overlap depends upon
the operation. When the operands remain
unchanged, as in COMPARE or TRANSLATE
AND TEST, overlapping does not affect the
execution of the operation. For instructions such
as MOVE and TRANSLATE, one operand is
replaced by new data, and the execution of the
operation may be affected by the amount of
overlap and the manner in which data is fetched or
stored. For purposes of evaluating the effect of
overlapped operands, data is considered to be
handled one eight-bit byte at a time. All
overlapping fields are considered valid.

Binary-Integer Representation
Binary integers are treated as signed or unsigned.

In an unsigned binary integer, all bits are used to
express the absolute value of the number. When
two unsigned binary integers of different lengths
are added, the shorter number is considered to be
extended on the left with zeros.

For signed binary integers, the leftmost bit
represents the sign, which is followed by the
numeric field. Positive numbers are represented in
true binary notation with the sign bit set to zero.
Negative numbers are represented in two’s-
complement binary notation with a one in the
sign-bit position.

Specifically, a negative number is represented by
the two’s complement of the positive number of the
same absolute value. The two’s complement of a
number is obtained by inverting each bit of the
number, including the sign, and adding a one in the
low-order bit position.

This type of number representation can be
considered the low-order portion of an infinitely
long representation of the number. When the
number is positive, all bits to the left of the most
significant bit of the number are zeros. When the
number is negative, all these bits are ones.

7-2 IBM 4300 Processors Principles of Operation

Therefore, when a signed operand must be
extended with high-order bits, the extension is
achieved by setting these bits equal to the sign bit
of the operand.

The notation for signed binary integers does not
include a negative zero. It has a number range in
which the set of negative numbers is one larger
than the set of positive numbers. The maximum
positive number consists of a sign bit of zero
followed by all ones, whereas the maximum
negative number (the negative number with the
greatest absolute value) consists of a sign bit of one
followed by all zeros. The number zero consists of
all-zero bits.

A signed binary integer of either sign, except for
zero and for the maximum negative number, is
changed to the number with opposite sign by
forming its two’s complement. This operation of
complementing a number is equivalent to
subtracting the number from zero. The
complement of zero is zero.

The complement of the maximum negative
number cannot be represented in the same number
of bits. When an operation, such as a subtraction
of the maximum negative number from zero,
attempts to produce the complement of the
maximum negative number, the result is the
maximum negative number, and a fixed-point-
overflow exception is recognized. An overflow
does not result, however, when the maximum
negative number is complemented as an
intermediate result but the final result is within the
representable range. An example of this case is a
subtraction of the maximum negative number from
minus one. The product of two maximum negative
numbers is representable as a double-length
positive number.

In discussions of signed binary integers in this
publication, a signed binary integer includes the
sign bit. Thus, the expression ''32-bit signed binary
integer" denotes an integer with 31 numeric bits
and a sign bit, and the expression "64-bit signed
binary integer'' denotes an integer with 63 numeric
bits and a sign bit.

In some operations, the result is achieved by the
use of the one’s complement of the number. The
one’s complement of a number is obtained by
inverting each bit of the number.

In an arithmetic operation, a carry out of the
numeric field of a signed binary integer changes the
sign. However, in algebraic left-shifting the sign
bit does not change even if significant high-order
bits are shifted out.

Programming Notes

1. An alternate way of forming the two’s
complement of a signed binary integer is to
invert all bits to the left of the rightmost one
bit, leaving the rightmost one bit and all zero
bits to the right of it unchanged.

2. The numeric bits of a signed binary integer may
be considered to represent a positive value,
with the sign representing a value of either zero
or the maximum negative number.

Signed and Unsigned Binary Arithmetic
Addition of signed binary integers is performed by
adding all bits of each operand, including the sign
bits. When one of the operands is shorter, the
shorter operand is extended on the left to the
length of the longer operand by propagating the
sign-bit value. If the carry out of the sign-bit
position and the carry out of the high-order
numeric bit position disagree, an overflow occurs.
The sign bit is not changed after the overflow.

Subtraction is performed by adding the one’s
complement of the second operand and a low-order
one to the first operand.

Signed addition and subtraction produce an
overflow when the result is outside the range of
representation for signed binary integers.
Specifically, for ADD and SUBTRACT, which
operate on 32-bit signed binary integers, there is an
overflow when the proper result would be greater
than or equal to +231 or less than —231. The
actual result placed in the general register after an
overflow differs from the proper result by 232. An
overflow causes a program interruption for
fixed-point overflow if it is allowed.

Addition of unsigned binary integers is
performed by adding all bits of each operand.
When one of the operands is shorter, the shorter
operand is extended on the left with zeros.
Unsigned binary arithmetic is used in address
arithmetic for adding the X, B, and D fields. It is
also used to obtain the addresses of the function
bytes in the instructions TRANSLATE and
TRANSLATE AND TEST. Furthermore, unsigned
binary arithmetic is used on 32-bit unsigned binary
integers by the instructions ADD LOGICAL and
SUBTRACT LOGICAL. Given the same two
operands, ADD and ADD LOGICAL produce the
same 32-bit result. The instructions differ only in
the interpretation of this result. ADD interprets
the result as a signed binary integer and inspects it
for sign, magnitude, and overflow to set the

condition code accordingly. ADD LOGICAL
interprets the result as an unsigned binary integer
and sets the condition code according to whether
the result is zero and whether there was a carry out
of the high-order bit position. Such a carry is not
necessarily considered an overflow, and no program
interruption can occur for ADD LOGICAL.

SUBTRACT LOGICAL differs from ADD
LOGICAL in that the one’s complement of the
second operand and a low-order one are added to
the first operand.

Programming Notes

1. Logical addition and subtraction may be used
to program multiple-precision arithmetic. Thus,
for multiple-precision binary-integer addition,
ADD LOGICAL is used to add the
corresponding lower-order parts of the
operands. If the condition code indicates a
carry, a one is added to the first operand of the
next higher pair of integers before adding the
second operand. If the integers are signed, the
ADD instruction is used on the highest-order
parts after propagating any carry. The
condition code then indicates any overflow or
the proper sign and magnitude of the entire
result; an overflow is also indicated by a fixed-
point-overflow interruption if it is allowed. If
the integers are unsigned, ADD LOGICAL is
used throughout.

2. Another use for ADD LOGICAL is to
increment values representing binary counters,
which are allowed to wrap around from all ones
to all zeros without necessarily indicating
overflow.

Signed and Logical Comparison

Comparison operations determine whether two
operands are equal or not and, for most operations,
which of two unequal operands is the greater
(high). Signed-binary comparison operations. are
provided which treat the operands as signed binary
integers, and logical comparison operations are
provided which treat the operands as unsigned
binary integers or as unstructured data.

The instructions COMPARE and COMPARE
HALFWORD are signed-binary comparison
operations. These instructions are equivalent to
SUBTRACT and SUBTRACT HALFWORD
without replacing either operand, the resulting
difference being used only to set the condition
code. The operations permit comparison of
numbers of opposite sign which differ by 232 or

Chapter 7. General Instructions 7-3

more. Thus, unlike SUBTRACT, COMPARE can
cause no overflow.

Logical comparison of two operands is
performed byte by byte, in a left-to-right sequence.
The operands are equal when all their bytes are
equal. When the operands are unequal, the
comparison result is determined by a left-to-right
comparison of corresponding bit positions in the
first unequal pair of bytes: the zero bit in the first
unequal pair of bits indicates the low operand, and
the one bit the high operand. Since the remaining
bit and byte positions do not change the
comparison, it is not necessary to continue
comparing unequal operands beyond the first
unequal bit pair. '

Instructions

The general instructions and their mnemonics,
formats, and operation codes are listed in the figure
"Summary of General Instructions." The figure
also indicates when the condition code is set and
the exceptional conditions in operand designations,
data, or results that cause a program interruption.

7-4 IBM 4300 Processors Principles of Operation

A detailed definition of instruction formats,
operand designation and length, and address
generation is contained in the section
"Instructions" in Chapter 5, ""Program Execution."
Exceptions to the general rules stated in that
section are explicitly identified in the individual
instruction descriptions.

Several instruction descriptions in this chapter
contain references to other CPUs, even though the
ECPS:VSE mode makes no provision for
multiprocessing, so as to permit the writing of
problem-state programs that are compatible with
multiprocessing configurations of System/370 (see
the section "Problem-State Compatibility' in
Chapter 1, "Introduction").

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic
operand designations for the assembler language
are shown with each instruction. For LOAD AND
TEST, for example, LTR is the mnemonic and R,
R, the operand designation.

Mne- Op
Name monic Characteristics Code

ADD AR RR C IF R 1A
ADD A RX C A IF R SA
ADD HALFWORD AH RX C A IF R 4A
ADD LOGICAL ALR JRR C R 1E
ADD LOGICAL AL RX C A R 5E
AND NR RR C R 14
AND N RX C A R 54
AND (character) NC SS ¢ A ST D4
AND (immediate) NI St C A ST |94
BRANCH AND LINK BALR]RR B R 05
BRANCH AND LINK BAL RX B R 45
BRANCH ON CONDITION BCR |RR $1 B 07
BRANCH ON CONDITION BC RX B 47
BRANCH ON COUNT BCTR {RR B R 06
BRANCH ON COUNT BCT [RX B R 46
BRANCH ON INDEX HIGH BXH RS B R 86
BRANCH ON INDEX LOW OR EQUAL BXLE [RS B R 87
COMPARE CR RR C 19
COMPARE c RX € A 59
COMPARE AND SWAP CS RS C A SP $ R ST|[BA
COMPARE DOUBLE AND SWAP cDS RS C A SP $ R ST|BB
COMPARE HALFWORD CH RX C A 49
COMPARE LOGICAL CLR |RR C 15
COMPARE LOGICAL CL RX C A 55
COMPARE LOGICAL (character) CLC SS C A D5
COMPARE LOGICAL (immediate) cLI St C A 95
COMPARE LOGICAL CHARACTERS UNDER MASK{CLM (RS C A BD
COMPARE LOGICAL LONG CLCL |RR C A SP 1l R OF
CONVERT TO BINARY cvB RX A IK R 4F
CONVERT TO DECIMAL (W'D RX A ST{4E
DIVIDE DR RR SP 1K R 1D
DIVIDE D RX A SP 1K R 5D
EXCLUSIVE OR XR RR C R 17
EXCLUSIVE OR X RX C A R 57
EXCLUSIVE OR {character) XC SS C A STiD7
EXCLUSIVE OR (immediate) X1 SI € A ST[97
EXECUTE EX RX A SP EX 4y
INSERT CHARACTER Ic RX A R 43
INSERT CHARACTERS UNDER MASK ICM [RS C A R BF
LOAD LR RR R 18
LOAD L RX A R 58
LOAD ADDRESS LA RX R 41
LOAD AND TEST LTR |RR C R 12
LOAD COMPLEMENT LCR |RR C IF R 13
LOAD HALFWORD LH RX A R 48
LOAD MULTIPLE LM RS A R 928
LOAD NEGATIVE LNR. |RR € R 1"
LOAD POSITIVE LPR RR C IF R 10
MONITOR CALL MC S| SP MO AF
MOVE (character) MVC SS A ST|D2

Summary of General Instructions (Part 1 of 2) .

Chapter 7. General Instructions

7-5

PER general-register-alteration event

Mne- Op
Name monic Characteristics Code

MOVE (immediate) MV S A ST(92
MOVE INVERSE MVCIN|SS A ST|E8
MOVE LONG MVCL |RR C A SP h R ST|OE
MOVE NUMERICS MVN [SS A ST|D1
MOVE WITH OFFSET MVG [SS A ST|F1
MOVE ZONES MvZ |SS - A ST|D3
MULTIPLY MR RR SP R 1C
MULTIPLY M RX A SP R 5C
MULTIPLY HALFWORD MH RX A R 4C
OR OR RR C R 16
OR o RX C A R 56
OR (character) oc SS € A ST|Dé
OR (immediate) 0l SI ¢ A ST|96
PACK PACK |[SS A ST|F2
SET PROGRAM MASK SPM |RR L 04
SHIFT LEFT DOUBLE SLDA (RS C SP IF R 8F
SHIFT LEFT DOUBLE LOGICAL SLDL |RS SP R 8D
SHIFT LEFT SINGLE SLA RS C IF R 8B
SHIFT LEFT SINGLE LOGICAL SLL |RS R 89
SHIFT RIGHT DOUBLE SRDA (RS C SP R 8E
SHIFT RIGHT DOUBLE LOGICAL SRDL (RS SP R 8C
SHIFT RIGHT SINGLE SRA [RS C R 8A
SHIFT RIGHT SINGLE LOGICAL SRL [RS R 88
STORE ST RX A ST|50
STORE CHARACTER STC [RX A ST42
STORE CHARACTERS UNDER MASK STCM (RS A .~ ST|BE
STORE CLOCK STCK |S C A $ ST|B205
STORE HALFWORD STH [RX A ST|40
STORE MULTIPLE STM [RS A ST|90
SUBTRACT SR RR -C IF R 1B
SUBTRACT S RX C A 3 R 5B
SUBTRACT HALFWORD SH RX C A IF R 4B
SUBTRACT LOGICAL SLR |RR " C R 1F
SUBTRACT LOGICAL SL RX -C A R 5F
SUPERVISOR CALL SvC (RR $ 0A
TEST AND SET TS s ¢ A $ ST|93
TEST UNDER MASK ™ SI € A 91
TRANSLATE TR SS A ST|DC
TRANSLATE AND TEST TRT |SS C A R DD
UNPACK UNPK [SS A ST|F3

Explanation:

A Access exceptions RR RR instruction format

B PER branch event RS RS instruction format

c Condition code is set RX RX instruction format

D Data exception S S instruction format

EX Execute exception SI SI instruction format

IF Fixed-point-overflow exception SP Specification exception

Il Interruptible instruction SS SS instruction format

IK Fixed-point-divide exception ST PER storage-alteration event

L New condition code loaded S Causes serialization

MO Monitor event $I Causes serialization when the M;

R

and R% fields contain all ones
]

and a

zeros, respectively

Summary of General Instructions (Part 2 of 2)

7-6 IBM 4300 Processors Principles of Operation

ADD
AR R1,R2 [RR]
"1A' Ry | Ry
0 8 12 15
A R1.D2(X2,B2) [RX]
'5A Ry | X2 | B2 Dy
0 8 12 16 20 31

The second operand is added to the first operand,
and the sum is placed in the first-operand location.
The operands and the sum are treated as 32-bit
signed binary integers.

An overflow causes a program interruption when
the fixedpointoverflow mask bit is one.

Resulting Condition Code:

0 Sum is zero

1 Sum is less than zero

2 Sum is greater than zero
3 Overflow

Program Exceptions:
Access (fetch, operand 2 of A only)
Fixed-Point Overflow

ADD HALFWORD

AH R1,D2(X2,B2) [RX]

"4A' Ri | X2 | B2 D2

0 8 12 16 20 31

The second operand is added to the first operand,
and the sum is placed in the first-operand location.
The second operand is two bytes in length and is
treated as a 16-bit signed binary integer. The first
operand and the sum are treated as 32-bit signed
binary integers.

An overflow causes a program interruption when
the fixed-point-overflow mask bit is one.

Resulting Condition Code:

0 Sum is zero
1 Sum is less than zero
2 Sum is greater than zero

3 Overflow

Program Exceptions:
Access (fetch, operand 2)
Fixed-Point Overflow

Programming Note
An example of the use of ADD HALFWORD is
given in Appendix A.

ADD LOGICAL

ALR RysR2 [RR]
"1E' Ry | Ry
0 g8 12 15
AL R1,D2(X2,B2) [RX]
'5E R1 | X2 | B2 D2
0 8 12 16 20 31

The second operand is added to the first operand,
and the sum is placed in the first~operand location.
The operands and the sum are treated as 32-bit
unsigned binary integers.

Resulting Condition Code:

0 Sum is zero, with no carry
Sum is not zero, with no carry
Sum is zero, with carry

Sum is not zero, with carry

W N =

Program Exceptions:
Access (fetch, operand 2 of AL only)

AND
NR R1,R2 [RR]
"1y! R1 | Rg
0 8 12 15
N R,D2(X2,B2) [RX]
"5y Ry | X2 | B2 Dy
0 8 12 16 20 31

Chapter 7. General Instructions 7-7

NI D1(B1),12 [S1]
‘94! lg Bq Dy
0 8 16 20 31
NC D1(L,Bq),D2(B3) [SS]
‘Dy’ B 6 B é
L 1 1 2 2
/ /
0 8 16 20 32 36 47

The AND of the first and second operands is
placed in the first-operand location.

The connective AND is applied to the operands
bit by bit. A bit position in the result is set to one
if the corresponding bit positions in both operands
contain ones; otherwise, the result bit is set to zero.

For NC, each operand is processed left to right.
When the operands overlap, the result is obtained
as if the operands were processed one byte at a
time and each result byte were stored immediately
after the necessary operand byte is fetched.

For NI, the first operand is one byte in length,
and only one byte is stored. ’

Resulting Condition Code:
0 Result is zero

1 Result is not zero
2 -

3 -

Program Exceptions:

Access (fetch, operand 2, N and NC; fetch and
store, operand 1, NI and NC)

Programming Notes

1. An example of the use of the AND instruction
is given in Appendix A.

2. The instruction AND may be used to set a bit
to zero.

3. Accesses to the first operand of NI and NC
consist in fetching a first-operand byte from
storage and subsequently storing the updated
value. These fetch and store accesses to a
particular byte do not necessarily occur one
immediately after the other. Thus, the
instruction AND cannot be safely used to
update a location in storage if the possibility
exists that another CPU or a channel may also
be updating the location. An example of this
effect is shown for the instruction OR (OI) in
the section '"Multiprogramming and
Multiprocessing Examples' in Appendix A.

7-8 IBM 4300 Processors Principles of Operation

BRANCH AND LINK

BALR R1,R2 [RR]
‘o5’ Ry Ro
0 8 12 15
BAL R1,02(X2,B2) [RX]
‘45" Ri | X2 | B2 Dy
0 8 12 16 20 31

Information from the current PSW, including the
updated instruction address, is loaded as link
information in the general register designated by
R;. Subsequently, the instruction address is
replaced by the branch address.

In the RX format, the second-operand address is
used as the branch address. In the RR format, bits
8-31 of the general register designated by R, are
used as the branch address; however, when the R,
field contains zeros, the operation is performed
without branching. The branch address is
computed before the link information is loaded.

The link information consists of the
instruction-length code (ILC), the condition code
(CC), the program mask bits, and the updated
instruction address, arranged in the following
format:

Prog .
ILC|CC|Mask Instruction Address
0 2 4 8 31

The instruction-length code is 1 or 2.
Condition Code: The code remains unchanged.
Program Exceptions: None.

Programming Notes

1. An example of the use of BRANCH AND
LINK is given in Appendix A. '

2. When the R, field in the RR format contains
all zeros, the link information is loaded without
branching.

3. When BRANCH AND LINK is the target
instruction of EXECUTE, the
instruction-length code is 2.

4. The format and the contents of the link
information do not depend on whether the

PSW specifies the EC or BC mode. In both
modes, the link information is in the format of
the rightmost 32 bit positions of the BC-mode
PSW.

BRANCH ON CONDITION

BCR My,R [RR]
'07' My | Ry
0 8 12 15
BC M1,D2(X2,B2) [RX]
‘47" My | Xo | By Dy
0 8 12 16 20 31

The instruction address in the current PSW is
replaced by the branch address if the condition
code has one of the values specified by M;;
otherwise, normal instruction sequencing proceeds
with the updated instruction address.

In the RX format, the second-operand address is
used as the branch address. In the RR format, bits
8-31 of the general register specified by R, are
used as the branch address; however, when the R,
field contains zeros, the operation is performed
without branching. ‘

The M, field is used as a four-bit mask. The
four condition codes (0, 1, 2, and 3) correspond,
left to right, with the four bits of the mask, as
follows:

Mask
Condition Instruction Position
Code Bit Value
0 8 8
1 9 4
2 10 2
3 11 1

The current condition code is used to select the
corresponding mask bit. If the mask bit selected by
the condition code is one, the branch is successful.
If the mask bit selected is zero, normal instruction
sequencing proceeds with the next sequential
instruction.

When the M; and R, fields of BCR are all ones
and all zeros, respectively, a serialization function
is performed. CPU operation is delayed until all
previous accesses by this CPU to storage have been
completed, as observed by channels and other
CPUs. No subsequent instructions or their
operands are accessed by this CPU until the
execution of this instruction is completed.

Condition Code: The code remains unchanged.
Program Exceptions: None.

Programming Notes

1. An example of the use of BRANCH ON
CONDITION is given in Appendix A.

2. When a branch is to depend on more than one
condition, the pertinent condition codes are
specified in the mask as the sum of their mask
position values. A mask of 12, for example,
specifies that a branch is to be made when the
condition code is O or 1.

3. When all four mask bits are zero or when the
R, field in the RR format contains zero, the
branch instruction is equivalent to a
no-operation. When all four mask bits are
ones, that is, the mask value is 15, the branch is
unconditional unless the R, field in the RR
format is zero.

4. Execution of BCR 15,0 (that is, an instruction
with a value of 07F0 hex) may result in
significant performance degradation. To ensure
optimum performance, the program should
avoid use of BCR 15,0 except in cases when
the serialization function is actually required.

5. Note that the relation between the RR and RX
formats in branch-address specification is not
the same as in operand-address specification.
For branch instructions in the RX format, the
branch address is the address specified by X,,
B,, and Dj; in the RR format, the branch
address is contained in the register specified by
R,. For operands, the address specified by X,
B,, and D, is the operand address, but the
register specified by R, contains the operand
itself. - ‘

BRANCH ON COUNT

BCTR R1,Rp [RR]

'06' | Ry | Ry

0 8 12 15

Chapter 7. General Instructions 7-9

BCT Ri,D2(X2,B2) [RX]

"4e' R1 X9 -| Bp Doy

0 8 12 16 20 31

A one is subtracted from the first operand, and the
result is placed in the first-operand location. The
first operand and result are treated as 32-bit binary
integers, with overflow ignored. When the result is
zero, normal instruction sequencing proceeds with
the updated instruction address. When the result is
not zero, the instruction address in the current
PSW is replaced by the branch address.

In the RX format, the second-operand address is
used as the branch address. In the RR format, the
contents of bit positions 8-31 of the general
register specified by R, are used as the branch
address; however, when the R, field contains zeros,
the operation is performed without branching.

The branch address is computed before the
counting operation.

Condition Code: The code remains unchanged.
Program Exceptions: None.

Programming Notes

1. An example of the use of BRANCH ON
COUNT is given in Appendix A.

2. The first operand and result can be considered
as either signed or unsigned binary integers
since the result of a binary subtraction is the
same in both cases.

3. An initial count of one results in zero, and no
branching takes place; an initial count of zero
results in —1 and causes branching to be
executed; an initial count of —1 results in =2
and causes branching to be executed; and so
on. In a loop, branching takes place each time
the instruction is executed until the result is
again zero. Note that, because of the number
range, an initial count of =231 results in a
positive value of 231 — 1,

4. Counting is performed without branching when
the R, field in the RR format contains zero.

BRANCH ON INDEX HIGH

BXH R1,R3,D2(B2) [RS]

'86' R R3 Bo Dy

0 8 12 16 20 31

7-10 IBM 4300 Processors Principles of Operation

BRANCH ON INDEX LOW OR EQUAL

BXLE Rq,R3,09(By) [RS]

‘87" Ri | R3 | B2 D2

0 8 12 16 20 31

An increment is added to the first operand, and the
sum is compared with a compare value. The result
of the comparison determines whether branching
occurs. Subsequently, the sum is placed in the
first~operand location. The second-operand
address is used as a branch address. The Rj field
designates registers containing the increment and
the compare value.

For BXH, when the sum is high, the instruction
address in the current PSW is replaced by the
branch address. When the sum is low or equal,
normal instruction sequencing proceeds with the
updated instruction address.

For BXLE, when the sum is low or equal, the
instruction address in the current PSW is replaced
by the branch address. When the sum is high,
normal instruction sequencing proceeds with the
updated instruction address.

When the R; field is even, it designates a pair of
registers; the contents of the even and odd registers
of the pair are used as the increment and the
compare value, respectively. When the R; field is
odd, it designates a single register, the contents of
which are used as both the increment and the
compare value.

For purposes of the addition and comparison, all
operands and results are treated as 32-bit signed
binary integers. Overflow caused by the addition is
ignored. »

The original contents of the compare-value
register are used as the compare value even when
that register is also specified to be the first-operand
location. The branch address is computed before
the addition and comparison. /

The sum is placed in the first-operand location,
regardless of whether the branch is taken.

Condition Code: The code remains unchanged.
Program Exceptions: None.
Programming Notes

1. An example of the use of BRANCH ON
INDEX HIGH is given in Appendix A.

=N

2. The word "index" in the names of these
instructions indicates that one of the major
purposes is the incrementing and testing of an
index value. The increment, being a signed
binary integer, may be used to increase or
decrease the value in register R by an arbitrary

amount,
COMPARE
CR Ri,R2 [RR]
‘19! R1q Ro
0 8 12 15
c R~|,D2(X2,Bz) [RX]
‘59! Ry X2 By Dy
0 8 12 16 20 31

The first operand is compared with the second
operand, and the result is indicated in the condition
code. The operands are treated as 32-bit signed
binary integers.

Resulting Condition Code:
0 Operands are equal

1 First operand is low
2 First operand is high
3

Program Exceptions:
Access (fetch, operand 2 of C only)

COMPARE AND SWAP

cs R1,R3,D2(B2) [RS]

'BA' Ry R3 Bo Do

0 8 12 16 20 31

COMPARE DOUBLE AND SWAP

coS R1,R3,D2(By) [RS]

‘BB’ Rq R3 Bo Do

0 8 12 16 20 31

The first and second operands are compared. If
they are equal, the third operand is stored at the
second-operand location. If they are unequal, the
second operand is loaded into the first-operand
location. The result of the comparison is indicated
in the condition code.

For CS, the first and third operands are 32 bits
in length, with each operand occupying a general
register. The second operand is a word in storage.

For CDS, the first and third operands are 64 bits
in length, with each operand occupying an
even-odd pair of general registers. The second
operand is a doubleword in storage.

When the result of the comparison is unequal,
the second-operand location remains unchanged.
However, on some models, the value may be
fetched and subsequently stored back into the
second-operand location. No access by another
CPU to the second-operand location is permitted
between the moment that the second operand is
fetched for comparison and it is stored.

When an equal comparison occurs, no access by
another CPU to the second-operand location is
permitted between the moment that the second
operand is fetched for comparison and the moment
that the third operand is stored at the
second-operand location.

Serialization is performed before the operand is
fetched, and again after the operation is completed.
CPU operation is delayed until all previous accesses
by this CPU to storage have been completed, as
observed by channels and other CPUs, and then
the second operand is fetched. No subsequent
instructions or their operands are accessed by this
CPU until the execution of this instruction is
completed, including placing the result value, if
any, in storage, as observed by channels and other
CPUs. :

The second operand of CS must be designated
on a word boundary. The R; and Rj fields for
CDS must each designate an even register, and the
second operand for CDS must be designated on a
doubleword boundary. Otherwise, a specification
exception is recognized.

Resulting Condition Code:

0 First and second operands equal, second
operand replaced by third operand

1 First and second operands unequal, first
operand replaced by second operand

2 — :

3 -

Chapter 7. General Instructions 7-11

Program Exceptions:
Access (fetch and store, operand 2)
Specification

Programming Notes

1. Several examples of the use of the COMPARE
AND SWAP and COMPARE DOUBLE AND
SWAP instructions are given in Appendix A.

2. The instruction CS can be used by programs

sharing common storage areas in either a

multiprogramming or multiprocessing .

environment. Two examples are:

a. By performing the following procedure, a
program can modify the contents of a

_storage location even though the possibility
exists that the program may be interrupted
by another program that will update the
location or even though the possibility
exists that another CPU may simultaneously
update the location. - First, the entire word
containing the byte or bytes to be updated

. is loaded into a general register. Next, the
updated value is computed and placed in
another general register. Then the
instruction CS is executed with the R, field
designating the register that contains the
original value and the R; field designating
the register that contains the updated value.
If condition code O is set, the update has
been successful. If condition code 1 is set,
the storage location no longer contains the
original value, the update has not been
successful, and the general register
designated by the R; field of the CS
instruction contains the new current value
of the storage location. When condition
code 1 is set, the program can repeat the
procedure using the new current value.

b. The instruction CS can be used for
controlled sharing of a common storage
area in a manner similar to that described
in the programming note under TEST AND
SET, but it provides the added capability of
leaving a message when the common area is
in use. To -accomplish this, a word in
storage can be used as a control word, with
a zero value in the word indicating that the
common area is not in use, a negative value
indicating that the area is in use, and a
nonzero positive value indicating that the
common area is in use and that the value is
the address of the most recent message
added to the list. Thus, any number of

7-12 IBM 4300 Processors Principles of Operation

programs desiring to seize the area can use
CS to update the control word to indicate
that the area is in use or to add messages to
the list. The single program which has
seized the area can also safely use CS to
remove messages from the list.
The instruction CDS can be used in a manner
similar to that described for CS. In addition, it
has another use. Consider a chained list, with
a contro] word used to address the first message
in the list, as described in programming note 2b
above. If multiple programs are permitted to
add and delete messages by using CS, there is a
possibility the list will be incorrectly updated.
This would occur if, after one program has
fetched the address of the most recent message
in order to remove the message, another
program removes the first two messages and
then adds the first message back into the chain.
The first program, on continuing, cannot easily
detect that the list is changed. By increasing
the size of the control word to a doubleword
containing both 'the first message address and a
word with a change number that is incremented
for each modification of the list, and by using
CDS to update both fields together, the
possibility of the list being incorrectly updated
is reduced to a negligible level. That is, an
incorrect update can occur only if the first
program is delayed while changes exactly equal
in number to a multiple of 232 take place and
only if the last change places the original
message address in the control word.
The instructions CS and CDS do not interlock
against storage accesses by channels.
Therefore, the instructions should not be used
to update a location which is in an I/O input
area, since the input data may be lost.
For the case of a condition-code setting of 1,
the instructions CS and CDS may or may not,
depending on the model, cause any of the
following to occur for the second-operand
location: a PER storage-alteration event may
be recognized; a protection exception for
storing may be recognized; and, provided no
access exception exists, the change bit may be
turned on. '

COMPARE HALFWORD

CH R1,D2(X9,B2) [RX]

'49' Ry X9 Bo ~ Do

0 8 12 16 20 31

The first operand is compared with the second
operand, and the result is indicated in the condition
code. The second operand is two bytes in length
and is treated as a 16-bit signed binary integer.
The first operand is treated as a 32-bit signed
binary integer. '

Resulting Condition Code:
0 Operands are equal

1 First operand is low
2 First operand is high
3

Program Exceptions:
Access (fetch, operand 2)

Programming Note
An example of the use of COMPARE
HALFWORD is given in Appendix A.

COMPARE LOGICAL

CLR R1,R9 [RR]
15! Ry Ry

0 8 12 15
cL R1,D2(X5,B9) [RX]

‘55! Ry X9 Bo Doy
0 8 12 16 20 31
cL! D1(By),12 (st}

‘95! F] B D4
0 8 16 20 31

cLC D1(L,Bq1),D2(B>y) [SS]

B é B 6
‘s’ L
1 /1 2 /2

0 8 16 20 32 36 47

The first operand is compared with the second
operand, and the result is indicated in the condition
code.

The comparison proceeds left to right, byte by
byte, and ends as soon as an inequality is found or
the end of the fields is reached. For CL and CLC,
access exceptions may or may not be recognized for
the portion of a storage operand to the right of the
first unequal byte.

Resulting Condition Code:
0 Operands are equal

1 First operand is low
2 First operand is high
3

Program Exceptions:
Access (fetch, operand 2, CL and CLC; fetch,
operand 1, CLI and CLC)

Programming Notes :

1. Examples of the use of the COMPARE
LOGICAL instructions are given in Appendix
A. .

2. The COMPARE LOGICAL instructions treat
all bits of each operand alike as part of a field
of unstructured logical data. For CLC, the
comparison may extend to field lengths of 256
bytes.

COMPARE LOGICAL CHARACTERS
UNDER MASK

CLM R1,M3,D2(B2y) (RS]

'BD' Ry M3 By Do

0 8 12 16 20 3

The first operand is compared with the second
operand under control of a mask, and the result is
indicated in the condition code.

The contents of the M; field are used as a mask.
These four bits, left to right, correspond one for
one with the four bytes, left to right, of the general
register designated by the R; field. The byte
positions corresponding to ones in the mask are

Chapter 7. General Instructions 7-13

considered as a contiguous field and are compared
with the second operand. The second operand is a
contiguous field in storage, starting at the
second-operand address and equal in length to the
number of ones in the mask. The bytes in the
general register corresponding to zeros in the mask
do not participate in the operation.

The comparison proceeds left to right, byte by
byte, and ends as soon as an inequality is found or
the end of the fields is reached.

When the mask is not zero, exceptions associated
with storage-operand access are recognized for no
more than the number of bytes specified by the
mask. Access exceptions may or may not be
recognized for the portion of a storage operand to
the right of the first unequal byte. When the mask
is zero, access exceptions are recognized for one
byte.

Resulting Condition Code:

0 Selected bytes are equal, or mask is zero
1 Selected field of first operand is low

2 Selected field of first operand is high
3

Program Exceptions:
Access (fetch, operand 2)

Programming Note

An example of the use of COMPARE LOGICAL
CHARACTERS UNDER MASK is given in
Appendix A.

COMPARE LOGICAL LONG

cLCL R1sRy [RR]

'oF' R1 Ro

0 8 12 15

The first operand is compared with the second
operand, and the result is indicated in the condition
code. The shorter operand is considered to be
extended on the right with padding bytes.

The R, and R; fields each specify an even-odd
pair of general registers and must designate an
even-numbered register; otherwise, a specification
exception is recognized. ’

The location of the leftmost byte of the first
operand and second operand is designated by bits
8-31 of the general registers specified by the R,
and R, fields, respectively. The number of bytes in

7-14 IBM 4300 Processors Principles of Operation

the first-operand and second-operand locations is
specified by bits 8-31 of general registers Ry +1
and Ry+1, respectively. Bit positions 0-7 of
register R,+1 contain the padding byte. The
contents of bit positions 0-7 of registers Ry, R,,
and R;+1 are ignored.

Graphically, the contents of the registers just
described are as follows:

Ry |////////] First-Operand Address

0 8 ' 31

Ry+1 |////////] First-Operand Length

0 8 31

R2 ////////] Second-Operand Address
0 8 31

Ro+1 Pad Second-0perand Length

0 8 31

The comparison proceeds left to right, byte by
byte, and ends as soon as an inequality is found or
the end of the longer operand is reached. If the
operands are not of the same length, the shorter
operand is considered to be extended on the right
with the appropriate number of padding bytes.

If both operands are of zero length, the operands
are considered to be equal.

The execution of the instruction is interruptible.
When an interruption occurs, other than one that
causes termination, the contents of registers R;+1
and Ry+1 are decremented by the number of bytes
compared, and the contents of registers Ry and R,
are incremented by the same number, so that the
instruction, when reexecuted, resumes at the point
of interruption. The high-order bits which are not
part of the address in registers R; and R, are set to
zeros, the contents of the high-order byte of
registers Ry+1 and Ry+1 remain unchanged; and
the condition code is unpredictable. If the
operation is interrupted after the shorter operand
has been exhausted, the length field pertaining to
the shorter operand is zero, and its address is
updated accordingly.

If the operation ends because of an inequality,
the address fields in registers R; and R, at
completion identify the first unequal byte in each
operand. The lengths in bit positions 8-31 of

£

registers Ry+1 and Ry+1 are decremented by the
number of bytes that were equal, unless the
inequality occurred with the padding byte, in which
case the length field for the shorter operand is set
to zero. The addresses in registers R; and R, are
incremented by the amounts by which the
corresponding length fields were reduced.

If the two operands, including the padding byte,
if necessary, are equal, both length fields are made
zero at completion, and the addresses are
incremented by the corresponding operand-length
values. The bits which are not part of the address
in registers Ry and R, are set to zeros, including
the case when one or both of the initial length
values are zero. The contents of bit positions 0-7
of registers R;+1 and R,+1 remain unchanged.

Access exceptions for the portion of a storage
operand to the right of the first unequal byte may
or may not be recognized. For operands longer
than 2,048 bytes, access exceptions are not
recognized more than 2,048 bytes beyond the byte
being processed. Access exceptions are not
indicated for locations more than 2,048 bytes
beyond the first unequal byte.

When the length of an operand is zero, no access
exceptions are recognized for that operand. Access
exceptions are not recognized for an operand if the
R field associated with that operand is odd.

Resulting Condition Code:
0 Operands are equal, or both have zero length
1 First operand is low
2 First operand is high
3

Program Exceptions:
Access (fetch, operands 1 and 2)
Specification

Programming Notes

1. An example of the use of COMPARE
LOGICAL LONG is given in Appendix A.

2. When the Ry and R; fields are the same, the
operation proceeds in the same way as when
two distinct pairs of registers having the same
contents are specified, and, in the absence of
dynamic modification of the operand area by
another CPU or a channel, condition code 0 is
set. However, it is unpredictable whether
access exceptions are recognized for the
operand since the operation can be completed
without storage being accessed.

3. Other programming notes concerning
interruptible instructions are included in the
section "Interruptible Instructions' in Chapter
5, "Program Execution."

4. Special precautions should be taken when
COMPARE LOGICAL LONG is made the
target of EXECUTE. See the programming
note concerning interruptible instructions under
EXECUTE.

CONVERT TO BINARY

CcvB R1,D2(X2,B2) [RX]

"yf! Rq X Bo Do

0 8 12 16 20 31

The radix of the second operand is changed from
decimal to binary, and the result is placed in the
first-operand location.

The second operand occupies eight bytes in
storage and is treated as packed decimal data, as
described in Chapter 8, "Decimal Instructions." It
is checked for valid sign and digit codes, and a data
exception is recognized when an invalid code is
detected.

The result of the conversion is a 32-bit signed
binary integer, which is placed in the general
register specified by R;. The maximum positive
number that can be converted and still be
contained in a 32-bit register is 2,147,483,647; the
maximum negative number (the negative number
with the greatest absolute value) that can be
converted is —2,147,483,648. For any decimal
number outside this range, the operation is
completed by placing the 32 low-order bits of the
binary result in the register, and a fixed-point-
divide exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)
Data

Fixed-Point Divide

Programming Notes

1. An example of the use of CONVERT TO
BINARY is given in Appendix A.

2. When the second operand is negative, the result
is in two’s-complement notation.

Chapter 7. General Instructions 7-15

CONVERT TO DECIMAL

CVD R15D2(X2,B2) [RX]

"4E! Ri | X2 | By Dy

0 8 12 16 20 31

The radix of the first operand is changed from
binary to decimal, and the result is stored at the
second-operand location. The first operand is
treated as a 32-bit signed binary integer.

The result occupies eight bytes in storage and is
in the format for packed decimal data, as described
in Chapter 8, ""Decimal Instructions.’" The
low-order four bits of the result represent the sign.
A positive sign is encoded as 1100; a negative sign
is encoded as 1101.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)

Programming Notes

1. An example of the use of CONVERT TO
DECIMAL is given in Appendix A.

2. The number to be converted is a 32-bit signed
binary integer obtained from a general register.
Since 15 decimal digits are available for the
result, and the decimal equivalent of 31 bits
requires at most 10 decimal digits, an overflow
cannot occur.

DIVIDE
DR R1,Ro [RR]
"1’ R1 | Ro
0 8 12 15
D R1,D2(X2,B2) [RX]
'sp' Ri | X2 | By Dy
0 8 12 16 20 31

The doubleword first operand (the dividend) is
divided by the second operand (the divisor), and
the remainder and the quotient are placed in the
first-operand location.

7-16 IBM 4300 Processors Principles of Operation

The R, field of the instruction specifies an
even-odd pair of general registers and must
designate an even-numbered register. When R is
odd, a specification exception is recognized.

The dividend is treated as a 64-bit signed binary
integer. The divisor, the remainder, and the
quotient are treated as 32-bit signed binary
integers. The remainder and quotient replace the
dividend in the pair of registers specified by the R
field. The remainder is placed in the
even-numbered register, and the quotient is placed
in the odd-numbered register.

The sign of the quotient is determined by the
rules of algebra. The remainder has the same sign
as the dividend, except that a zero quotient or a
zero remainder is always positive. When the
magnitudes of the dividend and divisor are such
that the quotient cannot be expressed by a 32-bit
signed binary integer, a fixed-point-divide
exception is recognized, and the operation is
suppressed.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (fetch, operand 2 of D only)
Fixed-Point Divide

Specification

EXCLUSIVE OR

XR Ri,sR2 [RR]
“17' Ry | Rg
0 8 12 15
X R1,D2(X2,B2) [RX]
'57! R1 X2 Bo Do
0 8 12 16 20 31
X1 D1(B1), 12 [S11]
‘97! l2 B1 - Dq
0 8 16 20 31

XC D1(L,Bq),Dp(Bg) (sS]

'n7' L B 6 B A
1 1 2 D2
/ /

0 8 16 20 32 36 47

The EXCLUSIVE OR of the first and second
operands is placed in the first-operand location.

The connective EXCLUSIVE OR is applied to
the operands bit by bit. A bit position in the result
is set to one if the corresponding bit positions in
the two operands are unlike; otherwise, the result
bit is set to zero.

For XC, each operand is processed left to right.
When the operands overlap, the result is obtained
as if the operands were processed one byte at a
time and each result byte were stored immediately
after the necessary operand byte is fetched.

For XI, the first operand is one byte in length,
and only one byte is stored.

Resulting Condition Code:
0 Result is zero

1 Result is not zero
2 _— i

3 -

Program Exceptions:

Access (fetch, operand 2, X and XC; fetch and
store, operand 1, XI and XC)

Programming Notes

1. An example of the use of EXCLUSIVE OR is
given in Appendix A.

2. The instruction EXCLUSIVE OR may be used
to invert a bit, an operation particularly useful
in testing and setting programmed binary bit
switches.

3. A field EXCLUSIVE-ORed with itself becomes
all zeros.

4. For XR, the sequence A EXCLUSIVE-OR B, B
EXCLUSIVE-OR A, A EXCLUSIVE-OR B
results in the exchange of the contents of A
and B without the use of an additional general
register.

5. Accesses to the first operand of XI and XC
consist in fetching a first-operand byte from
storage and subsequently storing the updated
value. These fetch and store accesses to a
particular byte do not necessarily occur one
immediately after the other. Thus, the
instruction EXCLUSIVE OR cannot be safely

used to update a location in storage if the
possibility exists that another CPU or a channel
may also be updating the location. An example
of this effect is shown for the instruction OR
(OI) in the section "Multiprogramming and
Multiprocessing Examples' in Appendix A.

EXECUTE
EX R1,D2(X2,B2) [RX]
'ay' | Ry | Xp | B D,
0 8 12 16 20 31

The single instruction at the second-operand
address is modified by the contents of the general
register specified by Ry, and the resulting target
instruction is executed.

When the R, field is not zero, bits 8-15 of the
instruction designated by the second-operand
address are ORed with bits 24-31 of the register
specified by R;. The ORing does not change either
the contents of the register specified by R; or the
instruction in storage, and it is effective only for
the interpretation of the instruction to be executed.
When the R, field is zero, no ORing takes place.

The target instruction may be two, four, or six
bytes in length. The execution and exception
handling of the target instruction are exactly as if
the target instruction were obtained in normal
sequential operation, except for the instruction
address and the instruction-length code.

The instruction address of the current PSW is
increased by the length of EXECUTE. This
updated address and the instruction-length code of
EXECUTE are used, for example, as part of the
link information when the target instruction is
BRANCH AND LINK. When the target
instruction is a successful branching instruction, the
instruction address of the current PSW is replaced
by the branch address specified by the target
instruction.

When the target instruction is in turn an
EXECUTE, an execute exception is recognized.

The effective address of EXECUTE must be
even; otherwise, a specification exception is
recognized. When the target instruction is two or
three halfwords in length but can be executed
without fetching its second or third halfword, it is
unpredictable whether access exceptions are
recognized for the unused halfwords. Access
exceptions are not recognized for the
second-operand address when the address is odd.

Chapter 7. General Instructions 7-17

Condition Code: The code may be set by the
target instruction.

Program Exceptions:

Access (fetch, target instruction)
Execute ’

Specification

Programming Notes

1. An example of the use of EXECUTE is given
in Appendix A.

2. The ORing of eight bits from the general
register with the designated instruction permits
indirect length, index, mask, immediate-data,
and register specification.

3. The fetching of the target instruction is
considered to be an instruction fetch for
purposes of program-event recording and for
purposes of reporting access exceptions.

4. An access or specification exception may be
caused by EXECUTE or by the target
instruction.

5. When an interruptible instruction is made the
target of EXECUTE, the program normally
should not designate any register updated by
the interruptible instruction as the Ry, X,, or
B, register for EXECUTE, since on resumption
of execution after an interruption, or if the
instruction is refetched without an interruption,
the updated values of these registers will be
used in the execution of EXECUTE. Similarly,
the program should normally not let the
destination field of an interruptible instruction
include the location of the EXECUTE, since
the new contents of the location may be
interpreted when resuming execution.

INSERT CHARACTER

Ic R1,D2(X2,B2) [RX]

‘43" Ri | X2 | By Dy

0 8 12 16 20 31

The byte at the second-operand location is inserted
into bit positions 24-31 of the general register
designated by the R; field. The remaining bits in
the register remain unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)

7-18 IBM 4300 Processors Principles of Operation

INSERT CHARACTERS UNDER MASK

ICM R],M3,Dz(32) '[RS}

'BF' Ry M3 Bo Do
0 8 12 16 20 31

Bytes from contiguous locations beginning at the
second-operand address are inserted into the
first-operand location under control of a mask.

The contents of the M field are used as a mask.
These four bits, left to right, correspond one for
one with the four bytes, left to right, of the general
register designated by the R, field. The byte
positions corresponding to ones in the mask are
filled, left to right, with bytes from successive
storage locations beginning at the second-operand
address. When the mask is not zero, the length of
the second operand is equal to the number of ones
in the mask. The bytes in the general register
corresponding to zeros in the mask remain
unchanged.

The resulting condition code is based on the
mask and on the value of the bits inserted. When
the mask is zero or when all inserted bits are zeros,
the condition code is set to 0. When the inserted
bits are not all zeros, the code is set according to
the leftmost bit of the storage operand: if this bit is
one, the code is set to 1; if this bit is zero, the code
is set to 2.

When the mask is not zero, exceptions associated
with storage-operand access are recognized only for
the number of bytes specified by the mask. When
the mask is zero, access exceptions are recognized
for one byte.

Resulting Condition Code:

0 All inserted bits are zeros, or mask is zero

1 Leftmost bit of the inserted field is one

2 Leftmost bit of the inserted field is zero, and
not all inserted bits are zeros

3 -

Program Exceptions:
Access (fetch, operand 2)

Programming Notes

1. Examples of the use of INSERT
CHARACTERS UNDER MASK are given in
Appendix A.

2. The condition code for INSERT
CHARACTERS UNDER MASK (ICM) is

defined such that, when the mask is 1111, the
instruction causes the same condition code to
be set as for LOAD AND TEST. Thus, the
instruction may be used as a storage-to-register
load-and-test operation.

3. An ICM instruction with a mask of 1111 or
0001 performs a function similar to that of a
LOAD (L) or INSERT CHARACTER (IC),
respectively, with the exception of the
condition-code setting. - However, the
performance of ICM may be slower.

LOAD
LR R{,Rp [RR]
'18' | Ry | Ry
0 8 12 15
L R1,D2(X2,8B2) [RX]
‘58" | Ry | Xg | By D,
0 8 12 16 20 3

The second operand is placed unchanged in the
first-operand location.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2 of L only)

Programming Note
An example of the use of LOAD is given in
Appendix A.

LOAD ADDRESS

LA R1,D2(X2,B2) [RX]

y' Ry Xo By Do

0 8 12 16 20 31

The address specified by the X,, B,, and D, fields
is placed in bit positions 8-31 of the general
register specified by the Ry field. Bits 0-7 of the
register are set to zeros. The address computation
follows the rules for address arithmetic.

No storage references for operands take place,
and the address is not inspected for access
exceptions. :

Condition Code: The code remains unchanged.

Program Exceptions: None.

Programming Notes

1. An example of the use of the LOAD
ADDRESS instruction is given in Appendix A.

2. The same general register may be specified by
the Ry, X,, and B, fields, except that general
register 0 can be specified only by the R, field.
In this manner, it is possible to increment the
low-order 24 bits of a general register, other
than register 0, by the contents of the D, field
of the instruction. The register to be
incremented should be specified by R; and by
either X, (with B, set to zero) or B, (with X,
set to zero).

LOAD AND TEST

LTR R1,Ry [RR]

12" R1 Ry

The second operand is placed unchanged in the
first~-operand location, and the sign and magnitude
of the second operand, treated as a 32-bit signed
binary integer, are indicated in the condition code.

Resulting Condition Code:

0 Result is zero

1 Result is less than zero

2 Result is greater than zero
3 -

Program Exceptions: None.

Programming Note

When the Ry and R, fields designate the same
register, the operation is equivalent to a test '
without data movement.

LOAD COMPLEMENT

LCR R1,R9 [RR]

"13! Ry Ry -

The two’s complement of the second operand is

placed in the first-operand location. The second
operand and result are treated as 32-bit signed
binary integers. ’ '

Chapter 7. General Instructions 7-19

An overflow causes a program interruption when
the fixed-point-overflow mask bit is one.

Resulting Condition Code:

0 Result is zero

1 Result is less than zero

2 Result is greater than zero
3 Overflow

Program Exceptions:
Fixed-Point Overflow

Programming Note

The operation complements all numbers Zero and
the maximum negative number remain unchanged.
An overflow condition occurs when the maximum

negative number is complemented.

LOAD HALFWORD

LH R1,D2(X5,B9) [RX]

‘48' Rq X2 Bo Dy

0 8 12 16 20 31

The second operand is extended to a 32-bit signed
binary integer and placed in the first-operand
location. The second operand is two bytes in
length and is considered to be a 16-bit signed
binary integer. The second operand is extended by
propagating the sign-bit value through the 16
high-order bit positions.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)

Programming Note
An example of the use of LOAD HALFWORD is
given in Appendix A.

LOAD MULTIPLE

LM R],R3,D2(Bz) [RS]

'98' R1q R3 Bo Do

0 8 12 16 20 31

The set of general registers starting with the
register specified by Ry and ending with the
register specified by R3 is loaded from storage

'7-20 IBM 4300 Processors Principles o1 Uperation

beginning at the location designated by the
second-operand address and continuing through as
many locations as needed.

The general registers are loaded in the ascending
order of their register numbers, starting with the
register specified by Ry and continuing up to and
including the register specified by R3, with register
0 following register 15.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)

Programming Note

All combinations of register numbers specified by
R; and R; are valid. When the register numbers
are equal, only four bytes are transmitted. When
the number specified by Rj is less than the number
specified by R, the register numbers wrap around
from 15 to O.

LOAD NEGATIVE

LNR R1,R2 [RR]

11" Ry Ro

The two’s complement of the absolute value of the
second operand is placed in the first-operand
location. The second operand and result are
treated as 32-bit signed binary integers.

Resulting Condition Code:
0 Result is zero

1 Result is less than zero
2 -
3

Program Exceptions: None.

Programming Note

The operation complements positive numbers;
negative numbers remain unchanged. The number
zero remains unchanged.

LOAD POSITIVE

LPR R1,R9 [RR}

"10' Ry Roy

0 8 12 15

&

The absolute value of the second operand is placed
in the first-operand location. The second operand
and the result are treated as 32-bit signed binary
integers.

An overflow causes a program interruption when
the fixed-point-overflow mask bit is one.

Resulting Condition Code:

0 Result is zero

1 —

2 Result is greater than zero
3 Overflow

Program Exceptions:
Fixed-Point Overflow

Programming Note

The operation complements negative numbers;
positive numbers and zero remain unchanged. An
overflow condition occurs when the maximum
negative number is complemented; the number
remains unchanged. ‘

MONITOR CALL

MC D](B]),lz [St]

'AF') B1 D4

0 8 16 20 31

A program interruption is caused if the appropriate
monitor-mask bit in control register 8 is one.

The monitor-mask bits are in bit positions 16-31
of control register 8, which correspond to monitor
classes 0-15, respectively.

Bit positions 12-15 in the I, field contain a
binary number specifying one of 16 monitoring
classes. When the monitor-mask bit corresponding
to the class specified by the I, field is one, a
monitor-event program interruption occurs. The
contents of the I, field are stored at location 149,
with zeros stored at location 148. Bit 9 of the
program-interruption code is set to one.

The first-operand address is not used to address
data; instead, the address specified by the B, and
D, fields forms the monitor code, which is placed
in the word at location 156. Address computation
follows the rules of address arithmetic; bits 0-7 are
set to zeros.

When the monitor-mask bit corresponding to the
class specified by bits 12-15 of the instruction is
zero, no interruption occurs, and the instruction is
executed as a no-operation.

Bit positions 8-11 of the instruction must
contain zeros; otherwise, a specification exception
is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:
Monitor Event
Specification

Programming Notes

1. The MONITOR CALL instruction provides the
capability for passing control to a monitoring
program when selected points are reached in
the monitored program. This is accomplished
by implanting MONITOR. CALL instructions at
the desired points in the monitored program.
This function may be useful in performing
various measurement functions; specifically,
tracing information can be generated indicating
which programs were executed, counting
information can be generated indicating how
often particular programs were used, and timing
information can be generated indicating how
long a particular program required for
execution.

2. The monitor masks provide a means of
disallowing all interruptions due to MONITOR
CALL or allowing monitoring for all or selected
classes.

3. The monitor code provides a means of
associating descriptive information, in addition
to the class number, with each MONITOR
CALL instruction. Without the use of a base
register, up to 4,096 distinct monitor codes can
be associated with a monitoring interruption.
With the base register designated by a nonzero
value in the By field, each monitoring
interruption can be identified by a 24-bit code.

MOVE
MV D1(B1),12 [S1]
‘92" P B1q Dy
0 8 16 20 N
MVC Dq1(L,B7),D2(B2) [sS]
‘D2 L B é B é
1 1 2 2
/ /
0 8 16 20 32 36 47

Chapter 7. General Instructions -7-21

The second operand is placed in the first-operand
location. ,

For MVC, each operand is processed left to
right. When the operands overlap, the result is
obtained as if the operands were processed one
byte at a time and each result byte were stored
immediately after the necessary operand byte is
fetched.

For MVI, the first operand is one byte in length,
and only one byte is stored.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2 of MVC, store, operand
1, MVI and MVC)

Programming Notes

1. Examples of the use of the MOVE instructions
are given in Appendix A.

2. It is possible to propagate one byte through an
entire field by having the first operand start
one byte to the right of the second operand.

MOVE INVERSE

MVCIN Dq(L,Bq),D2(Bp) [SS]

/ /
'E8’ L B D B D
1 /l 2 /2

0 8 16 20 32 36 47

The second operand is placed in the first-operand
location with the left-to-right sequence of the bytes
inverted.

The first-operand address designates the leftmost
byte of the first operand. The second-operand
address designates the rightmost byte of the second
operand. Both operands have the same length.

The result is obtained as if the second operand
were processed from right to left and the first
operand from left to right. The second operand
may wrap around from location 0 to location
16,777,215. The first operand may wrap around
from location 16,777,215 to location 0.

When the operands overlap by more than one
byte, the contents of the overlapped portion of the
result field are unpredictable.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2; store, operand 1)

7-22 IBM 4300 Processors Principles of Operation

Programming Notes

1. The contents of each byte moved remain
unchanged.

2. MOVE INVERSE is the only SS-format
instruction for which the second-operand
address designates the rightmost, instead of the
leftmost, byte of the second operand.

MOVE LONG

MVCL R1.R2 [RR]
'OE ' Ry | Ry

0 8 12 15

The second operand is placed in the first-operand
location, provided overlapping of operand locations
does not affect the final contents of the
first-operand location. The remaining rightmost
byte positions, if any, of the first-operand location
are filled with padding bytes.

The R; and R, fields each specify an even-odd
pair of general registers and must designate an
even-numbered register; otherwise, a specification
exception is recognized. '

The location of the leftmost byte of the first
operand and second operand is designated by bits
8-31 of the general registers specified by the R;
and R, fields, respectively. The number of bytes in
the first-operand and second-operand locations is
specified by bits 8-31 of general registers Ry +1
and R,+1, respectively. Bit positions 0-7 of
register R,+1 contain the padding byte. The
contents-of bit positions 0-7 of registers Ry, R,,
and R;+1 are ignored.

Graphically, the contents of the registers just
described are as follows: '

R1 ////////) First-Operand Address

0 8 31

Ri+t1 1//////7/]| First-Operand Length

0 8 - 31

R //1/////] Second-Operand Address

0 8 31

Ro+1 | Pad

Second-0Operand Length

0 8 31

The movement starts at the left end of both
fields and proceeds to the right. The operation is
ended when the number of bytes specified by bit
positions 8-31 of register R{+1 have been moved
into the first-operand location. If the second
operand is shorter than the first operand, the
remaining rightmost bytes of the first-operand
location are filled with the padding byte.

As part of the execution of the instruction, the
values of the two length fields are compared for the
setting of the condition code, and a check is made
for destructive overlap of the operands. Operands
are said to overlap destructively when the
first-operand location is used as a source after data
has been moved into it. When the operands
overlap destructively, no movement takes place,
and condition code 3 is set.

Operands do not overlap destructively, and
movement is performed, if the leftmost byte of the
first operand does not coincide with any of the
second-operand bytes participating in the operation
other than the leftmost byte of the second operand.
When an operand wraps around from location
16,777,215 to location 0, operand bytes in
locations up to and including 16,777,215 are
considered to be to the left of bytes in locations
from O up.

When the length specified by bit positions 8-31
of register Ry +1 is zero, no movement takes place,
and condition code O or 1 is set to indicate the
relative values of the lengths.

The execution of the instruction is interruptible.
When an interruption occurs other than one that
causes termination, the contents of registers R;+1
and Ry+1 are decremented by the number of bytes
moved, and the contents of register R; and R, are
incremented by the same number, so that the
instruction, when reexecuted, resumes at the point
of interruption. The high-order bits which are not
part of the address in registers R, and R, are set to
zeros; the contents of the high-order byte of
registers Ry +1 and R,+1 remain unchanged; and
the condition code is unpredictable. If the
operation is interrupted during padding, the length
field in register Ry+1 is 0, the address in register
R, is incremented by the original contents of
register Ry+1 , and registers Ry and Ry +1 reflect
the extent of the padding operation.

When the first-operand location includes the

location of the instruction, the instruction may be
refetched from storage and reinterpreted even in
the absence of an interruption during execution.
The exact point in the execution at which such a
refetch occurs is unpredictable.

As viewed by channels and other CPUs, that
portion of the first operand which is filled with the
padding byte is not necessarily stored into in a
left-to-right direction and may appear to be stored
more than once.

At the completion of the operation, the length in
register R;+1 is decremented by the number of
bytes stored at the first-operand location, and the
address in register R is incremented by the same
amount. The length in register Ro+1 is
decremented by the number of bytes moved out of
the second-operand location, and the address in
register R, is incremented by the same amount.
The bits which are not part of the address in
registers Ry and R, are set to zeros, including the
case when one or both of the original length values
are zeros or when condition code 3 is set. The
contents of bit positions 0-7 of registers Ry+1 and
R,+1 remain unchanged.

When condition code 3 is set, no exceptions
associated with operand access are recognized.
When the length of an operand is zero, no access
exceptions for that operand are recognized.
Similarly, when the second operand is longer than
the first operand, access exceptions are not
recognized for the part of the second-operand field
that is in excess of the first-operand field. For
operands longer than 2,048 bytes, access exceptions
are not recognized for locations more than 2,048
bytes beyond the current location being processed.
Access exceptions are not recognized for an
operand if the R field associated with that operand
is odd. Also, when the R, field is odd, PER
storage alteration is not recognized, and no change
bits are set.

Resulting Condition Code:

0 First-operand and second-operand lengths are
equal -
1 First-operand length is low

N

First-operand length is high
3 No movement performed because of
destructive overlap

Program Exceptions:

Access (fetch, operand 2; store, operand 1)
Specification '

Chapter 7. General Instructions 7-23

Programming Notes

1.

7-24

The instruction MOVE LLONG may be used for
clearing storage by setting the padding byte to
zero and the second-operand length to zero.
However, the stores associated with this
clearing may be multiple-access stores and
should not be used to clear an area if the
possibility exists that a channel or another CPU
will attempt to access and use the area as soon
as it appears to be zero.

The program should avoid specification of a

length for either operand which would result in

an addressing exception. Addressing (and also
protection) exceptions may result in termination
of the entire operation, not just the current unit
of operation. The termination may be such
that the contents of all result fields are
unpredictable; in the case of MVCL, this
includes the condition code and the two
even-odd general-register pairs, as well as the
first-operand location in main storage. The
following are situations that have actually
occurred on one or more models.

a. When a protection exception occurs on a
2,048-byte block of a first operand which is
several blocks in length, stores to the
protected block are suppressed. However,
the move continues into the subsequent

blocks of the first operand, which are not
protected. Similarly, in the case of

reconfigurable storage, an addressing
exception on a block does not necessarily
suppress processing of subsequent blocks
which are addressable.

b. The model may update the general registers
only when an I/O interruption occurs or
when a program interruption occurs which
is required to nullify or suppress. Thus, if
after a move into several blocks of the first
operand, an addressing or protection
exception occurs, the registers remain
unchanged.

When the first-operand length is zero, the

operation consists in setting the condition code

and setting the high-order bytes of registers R;

and R, to zero.

When the contents of the Ry and R, fields are

the same, the operation proceeds the same way

as when two distinct pairs of registers having
the same contents are specified. Condition
code O is set.

The following is a detailed description of those

cases in which movement takes place, that is,

IBM 4300 Processors Principles of Operation

where destructive overlap does not exist.

Depending on whether the second operand

wraps around from location 16,777,215 to

location 0, movement takes place in the
following cases: _

a. When the second operand does not wrap
around, movement is performed if the
leftmost byte of the first operand coincides
with or is to the left of the leftmost byte of
the second operand, or if the leftmost byte
of the first operand is to the right of the
rightmost second-operand byte participating
in the operation.

b. When the second operand wraps around,
movement is performed if the leftmost byte
of the first operand coincides with or is to
the left of the leftmost byte of the second
operand, and if the leftmost byte of the
first operand is to the right of the rightmost
second-operand byte participating in the
operation.

The rightmost second-operand byte is
determined by using the smaller of the
first-operand and second-operand lengths.

When the second-operand length is one or
zero, destructive overlap cannot exist.

Special precautions must be taken if MOVE

LONG is made the target of EXECUTE. See

the programming note concerning interruptible

instructions under EXECUTE.

Since the execution of MOVE LONG is

interruptible, the instruction cannot be used for

situations where the program must rely on
uninterrupted execution of the instruction or on
the interval timer not being updated during the
execution of the instruction. Similarly, the
program should normally not let the first
operand of MOVE LONG include the location
of the instruction since the new contents of the
location may be interpreted for a resumption
after an interruption, or the instruction may be
refetched without an interruption.

Further programming notes concerning

interruptible instructions are included in the

section "Interruptible Instructions" in Chapter

5, "Program Execution."

MOVE NUMERICS

MVN

D1(L,By),D2(B2) [SS]

/
‘1! L | By Dy By Dy
/ —/

8 16 20 32 3s6 47

The rightmost four bits of each byte in the second
operand are placed in the rightmost bit positions of
the corresponding bytes in the first operand. The
leftmost four bits of each byte in the first operand
remain unchanged.

Each operand is processed left to right. When
the operands overlap, the result is obtained as if the
operands were processed one byte at a time and
each result byte were stored immediately after the
necessary operand byte is fetched.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2; fetch and store,
operand 1)

Programming Notes

1. An example of the use of MOVE NUMERICS
is given in Appendix A.

2. MVN moves the numeric portion of a
decimal-data field that is in the zoned format.
The zoned-decimal format is described in
Chapter 8, "Decimal Instructions."” The
operands are not checked for valid sign and
digit codes.

3. Accesses to the first operand of MVN consist in
fetching the rightmost four bits of each byte in
the first operand and subsequently storing the
updated value of the byte. These fetch and
store accesses to a particular byte do not
necessarily occur one immediately after the
other. Thus, this instruction cannot be safely
used to update a location in storage if the
possibility exists that another CPU or a channel
may also be updating the location. An example
of this effect is shown for the instruction OR
(OI) in the section "Multiprogramming and
Multiprocessing Examples' in Appendix A.

MOVE WITH OFFSET

MVO D1(L1,B1),Da(L2,B2) [SS]

'F1! L L B 6 B é
1 1 2 1 1 2 2
/ /

0 8 12 16 20 32 3e6 47

The second operand is placed to the left of and
adjacent to the rightmost four bits of the first
operand. v

The rightmost four bits of the first operand are
attached as the rightmost bits to the second

operand, the second operand bits are offset by four
bit positions, and the result is placed in the
first-operand location.

The result is obtained as if the operands were
processed right to left. When necessary, the second
operand is considered to be extended on the left
with zeros. If the first operand is too short to
contain all of the second operand, the remaining
leftmost portion of the second operand is ignored.
Access exceptions for the unused portion of the
second operand may or may not be indicated.

When the operands overlap, the result is
obtained as if the operands were processed one
byte at a time and each result byte were stored
immediately after the necessary operand bytes are
fetched. The left digit of each second-operand
byte remains available for the next result byte and
is not refetched.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2; fetch and store,
operand 1)

Programming Notes

1. An example of the use of MOVE WITH
OFFSET is given in Appendix A.

2. Access to the rightmost byte of the first
operand of MVO consists in fetching the
rightmost four bits and subsequently storing the
updated value of this byte. These fetch and
store accesses to the rightmost byte of the first
operand do not necessarily occur one
immediately after the other. Thus, this
instruction cannot be safely used to update a
location in storage if the possibility exists that
another CPU or a channel may also be
updating the location. An example of this
effect is shown for the instruction OR (OI) in
the section "Multiprogramming and
Multiprocessing Examples' in Appendix A.

3. MVO may be used to shift packed decimal data
by an odd number of digit positions. The
packed-decimal format is described in Chapter
8, "Decimal Instructions."" The operands are
not checked for valid sign and digit codes. In
many cases however, the instruction SHIFT
AND ROUND DECIMAL may be more
convenient to use.

Chapter 7. General Instructions 7-25

MOVE ZONES

MVZ D1(L,B1),Da(B>p) [SS]
- / g
3 L B D B
1 /1 2 /2
0 8 16 20 32 36 47

The leftmost four bits of each byte in the second
operand are placed in the leftmost four bit positions
of the corresponding bytes in the first operand.

The rightmost four bits of each byte in the first
operand remain unchanged.

Each operand is processed left to right. When
the operands overlap, the result is obtained as if the
operands were processed one byte at a time and
each result byte were stored immediately after the
necessary operand byte is fetched.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2; fetch and store,
operand 1)

Programming Notes

1. An example of the use of MOVE ZONES is
given in Appendix A.

2. MVZ moves the zoned portion of a decimal
field in the zoned format. The zoned format is
described in Chapter 8, ''Decimal Instructions."
The operands are not checked for valid sign
and digit codes.

3. Accesses to the first operand of MVZ consist in
fetching the leftmost four bits of each byte in
the first operand and subsequently storing the
updated value of the byte. These fetch and
store accesses to a particular byte do not
necessarily occur one immediately after the
other. Thus, this instruction cannot be safely
used to update a location in storage if the
possibility exists that another CPU or a channel
may also be updating the location. An example
of this effect is shown for the instruction OR
(OI) in the section "Multiprogramming and
Multiprocessing Examples' in Appendix A.

MULTIPLY

MR RyRy [RR]
"1’ | Ry | Ry

0 8 12 15

7-26 IBM 4300 Processors Principles of Operation

M R1,02(X2,B2) [RX]

‘s¢! Rq X2 Bo Do

0 8 12 16 20 31

The second word of the first operand
{multiplicand) is multiplied by the second operand
(multiplier), and the doubleword product is placed
at the first-operand location.

The R field of the instruction specifies an
even-odd pair of general registers and must
designate an even-numbered register. When R is
odd, a specification exception is recognized.

Both the multiplicand and multiplier are treated
as 32-bit signed binary integers. The multiplicand
is taken from the odd-numbered register of the pair
specified by the R; field. The contents of the
even-numbered register are ignored. The product is
a 64-bit signed binary integer, which replaces the
contents of the even-odd pair of general registers
specified by the R; field. An overflow cannot
occur.

The sign of the product is determined by the
rules of algebra from the multiplier and
multiplicand sign, except that a zero result is
always positive.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2 of M only)
Specification

Programming Notes

1. An example of the use of MULTIPLY is given
in Appendix A.

2. The significant part of the product usually
occupies 62 bits or fewer. Only when two
maximum negative numbers are multiplied are
63 significant product bits formed.

MULTIPLY HALFWORD
MH R1,D02(X2,B2) [RX]
‘uc' Ri | X2 | Ba Dy
0 8 12 16 20 31

The first operand (multiplicand) is multiplied by
the second operand (multiplier), and the product is
placed at the first-operand location. The second
operand is two bytes in length and is considered to
be a 16-bit signed binary integer.

The multiplicand is treated as a 32-bit signed
binary integer and is replaced by the low-order 32
bits of the signed-binary-integer product. The bits
to the left of the 32 low-order bits are not tested
for significance; no overflow indication is given.

The sign of the product is determined by the
rules of algebra from the multiplier and
multiplicand sign, except that a zero result is
always positive.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)

Programming Notes

1. An example of the use of MULTIPLY
HALFWORD is given in Appendix A.

2. The significant part of the product usually
occupies 46 bits or fewer. Only when two
maximum negative numbers are multiplied are
47 significant product bits formed. Since the
low-order 32 bits of the product are stored
unchanged, ignoring all bits to the left, the sign
bit of the result may differ from the true sign of
the product in the case of overflow. For a
negative product, the 32 bits placed in register
R; are the low-order part of the product in
two’s-complement notation.

OR
OR R1,Rp [RR]
“16' Ry | Ry
0 8 12 15
0 Ry,D2(X2,B2) [RX]
56 Ri | X2 | B2 Dy
0 8 12 16 20 31
Gl D1(Bq), 12 [s1]
96 Py By D4
0 8 16 20 31

ocC D1(L,By),Da(Bp) [SS]

‘D6’ L B 6 B é
1 /1 2 /2

0 8 16 20 32 36 47

The OR of the first and second operands is placed
in the first-operand location.

The connective OR .is applied to the operands bit
by bit. A bit position in the result is set to one if
the corresponding bit position in one or both
operands contains a one; otherwise, the result bit is
set to zero. :

For OC, each operand is processed left to right.
When the operands overlap, the result is obtained
as if the operands were processed one byte at a
time and each result byte were stored immediately
after the necessary operand byte is fetched.

For OI, the first operand is only one byte in
length, and only one byte is stored.

Resulting Condition Code:
0 Result is zero
1 Result is not zero
o) -
3

Program Exceptions:
Access (fetch, operand 2, O and OC; fetch and
store, operand 1, OI and OC)

Programming Notes

1. Examples of the use of the OR instructions are
given in Appendix A.

2. The instruction OR may be used to set a bit to
one.

3. Accesses to the first operand of OI and OC
consist in fetching a first-operand byte from
storage and subsequently storing the updated
value. These fetch and store accesses to a
particular byte do not necessarily occur one
immediately after the other. Thus, the
instruction OR cannot be safely used to update
a location in storage if the possibility exists that
another CPU or a channel may also be
updating the location. An example of this
effect is shown in the section
"Multiprogramming and Multiprocessing
Examples' in Appendix A.

Chapter 7. General Instructions 7-27

PACK
PACK Dy(Lq1,B7),D2(L2,B)) [SS]
P2t | L A A
1| L2 | By Dy | B2 D2
_ / /
0 8 12 16 20 32 36 47

The format of the second operand is changed from
zoned to packed, and the result is placed in the
first-operand location. The zoned and packed
formats are described in Chapter 8, "'Decimal
Instructions."

The second operand is treated as having the
| zoned format. The numerics are treated as digits.
All zones are ignored, except the zone in the
rightmost byte, which is treated as a sign.

The sign and digits are moved unchanged to the
first operand and are not checked for valid codes.
The sign is placed in the rightmost four bit
positions of the rightmost byte of the result field,
and the digits are placed adjacent to the sign and
to each other in the remainder of the result field.

The result is obtained as if the operands were
processed right to left. When necessary, the second
operand is considered to be extended on the left
with zeros. If the first operand is too short to
contain all digits of the second operand, the
remaining leftmost portion of the second operand is
ignored. Access exceptions for the unused portion
of the second operand may or may not be
indicated.

When the operands overlap, the result is
obtained as if each result byte were stored
immediately after the necessary operand bytes are
fetched. Two second-operand bytes are needed for
each result byte, except for the rightmost byte of
the result field, which requires only the rightmost
second-operand byte.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2; store, operand 1)

Programming Notes

1. An example of the use of PACK is given in
Appendix A. : .

2. The PACK instruction may be used to
interchange the two hexadecimal digits in one
byte by specifying a zero in the L; and L,
fields and the same address for both operands.

3. To remove the zones of all bytes of a field,
including the rightmost byte, both operands

7-28 IBM 4300 Processors Principles of Operation

must be extended on the right with a- dummy
byte, which subsequently is ignored in the
result field. ‘

SET PROGRAM MASK

SPM R [RR]

ou' | Ry [/717
0 8 12 15

The contents of the general register specified by
the Ry field are used to set the condition code and
the program mask of the current PSW. Bits 12-15
of the instruction are ignored.

Bits 2 and 3 of the register specified by the R;
field replace the condition code, and bits 4-7
replace the program mask. Bits 0, 1, and 8-31 of
the register specified by the R, field are ignored.

Resulting Condition Code:

0 Bit 2 is zero, and bit 3 is zero
1 Bit 2 is zero, and bit 3 is one
2 Bit 2 is one, and bit 3 is zero
3 Bit 2 is one, and bit 3 is one

Program Exceptions: None.

Programming Notes
Bits 2-7 of the general register may have been
loaded from the PSW by BRANCH AND
LINK.

2. The instruction permits setting of the condition
code and the mask bits in either the problem or
supervisor state.

The program should take into consideration
that the setting of the program mask can have a
significant effect on subsequent execution of
the program. Not only do the four mask bits
control whether the corresponding interruptions
occur, but the exponent-underflow and
significance masks also determine the result
which is obtained.

SHIFT LEFT DOUBLE
SLDA R1,D2(B3) [RS]
'8F ' Ry (77771 By Dy
0 g8 12 16 20 31

The double-length numeric part of the first operand
is shifted left the number of bits specified by the

PESUNaN

second-operand address. Bits 12-15 of the
instruction are ignored.

The R, field of the instruction specifies an
even-odd pair of general registers and must
designate an even-numbered register. When R, is
odd, a specification exception is recognized.

The second-operand address is not used to
address data; its low-order six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

The first operand is treated as a 64-bit signed
binary integer. The sign position of the even
register remains unchanged. The leftmost position
of the odd register contains a numeric bit, which
participates in the shift in the same manner as the
other numeric bits. Zeros are supplied to the
vacated register positions on the right.

If one or more bits unlike the sign bit are shifted
out of bit position 1 of the even register, an
overflow occurs. The overflow causes a program
interruption when the fixed-point-overflow mask
bit is one.

Resulting Condition Code:

0 Result is zero

1 Result is less than zero

2 Result is greater than zero
3 Overflow

Program Exceptions:
Fixed-Point Overflow
Specification

Programming Notes

1. An example of the use of SHIFT LEFT
DOUBLE is given in Appendix A.

2. The eight shift instructions provide the
following three pairs of alternatives: left or
right, single or double, and signed or logical.
The signed shifts differ from the logical shifts
in that, in the signed shifts, overflow is
recognized, the condition code is set, and the
leftmost bit participates as a sign.

3. A zero shift amount in the two signed
double-shift operations provides a
double-length sign and magnitude test.

4. The base register participating in the generation
of the second-operand address permits indirect
specification of the shift amount. A zero in the
B, field indicates the absence of indirect shift
specification.

SHIFT LEFT DOUBLE LOGICAL

SLDL R1,D2(B3) [RS]
‘8D’ Ry |////] By Dy
0 8 12 16 20 31

The double-length first operand is shifted left the
number of bits specified by the second-operand
address. Bits 12-15 of the instruction are ignored.

The R; field of the instruction specifies an
even-odd pair of general registers and must
designate an even-numbered register. When R; is
odd, a specification exception is recognized.

The second-operand address is not used to
address data; its low-order six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

All 64 bits of the first operand participate in the
shift. Bits shifted out of bit position O of the
even-numbered register are not inspected and are
lost. Zeros are supplied to the vacated register
positions on the right.

Condition Code: The code remains unchanged.

Program Exceptions:
Specification

SHIFT LEFT SINGLE

SLA R1.D2(B3) [RS]
‘8B’ Ry {///7] Bg Dy
0 8 12 16 20 31

The numeric part of the first operand is shifted left
the number of bits specified by the second-operand
address. Bits 12-15 of the instruction are ignored.
The second-operand address is not used to
address data; its low-order six bits indicate the

| number of bit positions to be shifted. The

remainder of the address is ignored.

The first operand is treated as a 32-bit signed
binary integer. The sign of the first operand
remains unchanged. All 31 numeric bits of the
operand participate in the left shift. Zeros are
supplied to the vacated register positions on the
right.

Chapter 7. General Instructions 7-29

If one or more bits unlike the sign bit are shifted
out of bit position 1, an overflow occurs. The
overflow causes a program interruption when the
fixed-point-overflow mask bit is one.

Resulting Condition Code:

0 Resuit is zero

i Result is less than zero

2 Result is greater than zero
3 Overflow

Program Exceptions:
Fixed-Point Overflow

Programming Notes

1. An examplé of the use of SHIFT LEFT
SINGLE is given in Appendix A.

2. For numbers with an absolute value of less than

230 a left shift of one bit position is equivalent

to multiplying the number by two.

3. Shift amounts from 31 to 63 cause the entire
numeric part to be shifted out of the register,
leaving a result of the maximum negative
number or zero, depending on whether or not
the initial contents were negative.

SHIFT LEFT SINGLE LOGICAL

SLL R1,D2(B2) [RS]
‘89! Ry {///7] Bg Dy
0 8 12 16 20 31

The first operand is shifted left the number of bits
specified by the second-operand address. Bits
12-15 of the instruction are ignored.

The second-operand address is not used to
address data; its low-order six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

All 32 bits of the first operand participate in the
shift. Bits shifted out of bit position 0 are not
inspected and are lost. Zeros are supplied to the
vacated register positions on the right.

Condition Code: The code remains unchanged.

Program Exceptions: None.

7-30 IBM 4300 Processors Principles of Operation

SHIFT RIGHT DOUBLE

SRDA ‘R7,D2(B2p) [RS]
'sE’ Ry [////1 By Do
0 8 12 16 20 31

The double-length numeric part of the first operand
is shifted right the number of places specified by
the second-operand address. Bits 12-15 of the
instruction are ignored. v

The R; field of the instruction specifies an
even-odd pair of general registers and must
designate an even-numbered register. When R, is
odd, a specification exception is recognized.

The second-operand address is not used to
address data; its low-order six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored. v

The first operand is treated as a 64-bit signed
binary integer. The sign position of the even
register remains unchanged. The leftmost position
of the odd register contains a numeric bit, which
participates in the shift in the same manner as the
other numeric bits. Bits shifted out of bit position
31 of the odd-numbered register are not inspected
and are lost. Bits equal to the sign are supplied to
the vacated register positions on the left.

Resulting Condition Code:

0 Result is zero

1 Result is less than zero

2 Result is greater than zero
3

Program Exceptions:
Specification

SHIFT RIGHT DOUBLE LOGICAL

SRDL R1,D2(Bp) [RS]
‘sc' Ry [///7] By Dy

0 8 12 16 20 31

The double-length first operand is shifted right the
number of bits specified by the second-operand
address. Bits 12-15 of the instruction are ignored.
The R field of the instruction specifies an
even-odd pair of general registers and must

designate an even-numbered register. When R, is
odd, a specification exception is recognized.

The second-operand address is not used to
address data; its low-order six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

All 64 bits of the first operand participate in the
shift. Bits shifted out of bit position 31 of the
odd-numbered register are not inspected and are
lost. Zeros are supplied to the vacated register
positions on the left.

Condition Code: The code remains unchanged.

Program Exceptions:
Specification

SHIFT RIGHT SINGLE

SRA R1,D2(B3y) [RS]

"8A' Ry |///7] By Do
0 8 12 16 20 31

The numeric part of the first operand is shifted
right the number of bits specified by the
second-operand address. Bits 12-15 of the
instruction are ignoréd.

The second-operand address is not used to
address data; its low-order six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

The first operand is treated as a 32-bit signed
binary integer. The sign of the first operand
remains unchanged. All 31 numeric bits of the
operand participate in the right shift. Bits shifted
out of bit position 31 are not inspected and are
lost. Bits equal to the sign are supplied to the
vacated register positions on the left.

Resulting Condition Code:

0 Result is zero

1 Result is less than zero

2 Result is greater than zero
3 —

Program Exceptions: None.

Programming Notes

1. A right shift of one bit position is equivalent to
division by 2 with rounding downward. When
an even number is shifted right one position,

the result is equivalent to dividing the number
by 2. When an odd number is shifted right one
position, the result is equivalent to dividing the
next lower number by 2. For example, +5
shifted right by one bit position yields +2,
whereas =5 yields —3.

2. Shift amounts from 31 to 63 cause the entire
numeric part to be shifted out of the register,
leaving a result of —1 or zero, depending on
whether or not the initial contents were
negative.

SHIFT RIGHT SINGLE LOGICAL

SRL R1,D2(B2) [RS]
88’ Ry |////] By Do
0 8 12 16 20 31

The first operand is shifted right the number of bits
specified by the second-operand address. Bits
12-15 of the instruction are ignored.

The second-operand address is not used to
address data; its low-order six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

All 32 bits of the first operand participate in the
shift. Bits shifted out of bit position 31 are not
inspected and are lost. Zeros are supplied to the
vacated register positions on the left.

Condition Code: The code remains unchanged.

Program Exceptions: None.

STORE
ST R1,D2(X2,B2) [RX]
'50' Ry | X2 | By Dy
0 8 12 16 20 31

The first operand is stored at the second-operand
location.

The 32 bits in the general register are placed
unchanged at the second-operand location.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)

Chapter 7. General Instructions 7-31

STORE CHARACTER

STC RI,Dz(Xz,Bz) [RX]

‘42! R4 X9 By Dy

0 8 12 16 20 31

Bits 24-31 of the general register designated by the
R, field are placed unchanged at the
second-operand location. The second operand is
one byte in length.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)

STORE CHARACTERS UNDER MASK

STCM R15M3,D2(B2) (RS]

'BE' Rq M3 Bo Dy

0 8 12 16 20 31

Bytes selected from the first operand under control
of a mask are placed in contiguous byte locations
beginning at the second-operand address.

The contents of the M; field are used as a mask.
These four bits, left to right, correspond one for
one with the four bytes, left to right, of the general
register designated by the R, field. The bytes
corresponding to ones in the mask are placed in the
same order in successive and contiguous storage
locations beginning at the second-operand address.
When the mask is not zero, the length of the
second operand is equal to the number of ones in
the mask. The contents of the general register
remain unchanged.

When the mask is not zero, exceptions associated
with storage-operand accesses are recognized only
for the number of bytes specified by the mask.

When the mask is zero, the single byte
designated by the second-operand address remains
unchanged; however, on some models, the value
may be fetched and subsequently stored back at the
same storage location. No access by another CPU
is permitted to the location designated by the
second-operand address between the moment that
the value is fetched and the value is stored.

Condition Code: The code remains unchanged.

7-32 IBM 4300 Processors Principles of Operation

Program Exceptions:
Access (store, operand 2)

Programming Notes

1. An example of the use of STORE
CHARACTERS UNDER MASK is given in
Appendix A.

2. STCM with a mask of 0111 may be used to
store a three-byte address, for example, in
modifying the address in a CCW.

3. STCM with a mask of 1111, 0011, or 0001
performs the same function as STORE (ST),
STORE HALFWORD (STH), or STORE
CHARACTER (STC), respectively. However,
on most models, the performance of STCM will
be slower.

4. Using STCM with a zero mask should be
avoided since this instruction, depending on the
model, may perform a fetch and store of the
single byte specified by the second-operand
address. This access is not interlocked against
accesses by channels. In addition, it may cause
any of the following to occur for the byte
specified by the second-operand address: a
PER storage-alteration event may be
recognized; access exceptions may be
recognized; and, provided no access exceptions
exist, the change bit may be turned on.

STORE CLOCK

STCK Dy (By) (s]

'B205' B Dy

0 s 16 20 31

The current value of the time-of-day clock is stored
at the eight-byte field designated by the
second-operand address, provided the clock is in
the set or not-set state.

Zeros are stored for the rightmost bit positions
that are not provided by the clock.

Zeros are stored at the operand location when
the clock is in the error state or in the
not-operational state.

The quality of the clock value stored by the
instruction is indicated by the resultant
condition-code setting.

A serialization function is performed before the
value of the clock is fetched and again after the
value is placed in storage. CPU operation is
delayed until all previous accesses by this CPU to

TN

storage have been completed, as observed by
channels and other CPUs, and then the value of
the clock is fetched. No subsequent instructions or
their operands are fetched by this CPU until the
clock value has been placed in storage, as observed
by channels and CPUs.

Resulting Condition Code:

0 Clock in set state

Clock in not-set state

Clock in error state

Clock in not-operational state

W N =

Program Exceptions:
Access (store, operand 2)

Programming Notes

1. Bit position 31 of the clock is incremented
every 1.048576 seconds; hence, for timing
applications involving human responses, the
high-order clock word may provide sufficient
resolution.

2. Condition code 0 normally indicates that the
clock has been set by the control program.
Accordingly, the value may be used in
elapsed-time measurements and as a valid
time-of-day and calendar indication. Condition
code 1 indicates that the clock value is the
elapsed time since the power for the clock was
turned on. In this case the value may be used
in elapsed-time measurements but is not a valid
time-of-day indication. Condition codes 2 and
3 mean that the value provided by STORE
CLOCK cannot be used for time measurement
or indication.

3. If a problem program written for the
ECPS:VSE mode is to be run also on a model
of System/370, then the program should take
into account the fact that, on a model of
System/370, the value stored when the
condition code is 2 or 3 is not necessarily zero.

STORE HALFWORD

STH R1,D2(X2,B2) [RX]

‘60" | Ry | X9 | B2 Dy

0 8 12 16 20 31

Bits 16-31 of the general register designated by the
R, field are placed unchanged at the
second-operand location. The second operand is
two bytes in length. :

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)

STORE MULTIPLE

STM R],R3,Dz(32) [RS]

‘90’ Rq R3 Bo Do

0 8 12 16 20 31

The contents of the set of general registers starting
with the register specified by R; and ending with
the register specified by R; are placed in the
storage area beginning at the location designated
by the second-operand address and continuing
through as many locations as needed.

The general registers are stored in the ascending
order of register numbers, starting with the register
specified by R and continuing up to and including
the register specified by Rj, with register 0
following register 15.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)

Programming Note
An example of the use of STORE MULTIPLE is
given in Appendix A.

SUBTRACT
SR R1,R2 [RR]
‘18 Ry | Ry
0 8 12 15
S R1,D2(X2,B9) [RX]
'sB' Ri | X2 | B D2
0 8 12 16 20 31

The second operand is subtracted from the first
operand, and the difference is placed in the
first-operand location. The operands and the
difference are treated as 32-bit signed binary
integers.

Chapter 7. General Instructions 7-33

An overflow causes a program interruption when
the fixed-point-overflow mask bit is one.

Resulting Condition Code:

0 Difference is zero

1 Difference is less than zero

2 Difference is greater than zero
3 Overflow

Program Exceptions:
Access (fetch, operand 2 of S only)
Fixed-Point Overflow

Programming Notes

1. When, in the RR format, the R; and R, fields
designate the same register, subtracting is
equivalent to clearing the register.

2. Subtracting a maximum negative number from
another maximum negative number gives a zero
result and no overflow.

SUBTRACT HALFWORD

SH o RyuDp(Xp,By) IRXI

‘48" R1 | X2 | By D2

0 8 12 16 20 31

The second operand is subtracted from the first
operand, and the difference is placed in the
first-operand location. The second operand is two
bytes in length and is treated as a 16-bit signed
binary integer. The first operand and the
difference are treated as 32-bit signed binary
integers.

An overflow causes a program interruption when
the fixed-point-overflow mask bit is one.

Resulting Condition Code:

0 Difference is zero

1 Difference is less than zero

2 Difference is greater than zero
3 Overflow

Program Exceptions:
Access (fetch, operand 2)
Fixed-Point Overflow

SUBTRACT LOGICAL
SLR Ry,Ry [RR]
"1F! R1 | Ry

0 8 12 15

7-34 IBM 4300 Processors Principles of Operation

SL R1,D2(X2,B2) [RX]

‘5! Ry X2 Bo Dy

0 8 12 16 . 20 31

The second operand is subtracted from the first
operand, and the difference is placed in the
first-operand location. The operands and the
difference are treated as 32-bit unsigned binary
integers.

Resulting Condition Code:

0 -

1 Difference is not zero, with no carry
2 Difference is zero, with carry

3 Difference is not zero, with carry

Program Exceptions:
Access (fetch, operand 2 of SL only)

Programming Notes

1. Logical subtraction is performed by adding the
one’s complement of the second operand and a
low-order one to the first operand. The use of
the one’s complement and the low-order one
instead of the two’s complement of the second
operand results in a carry when subtracting
zero.

2. SUBTRACT LOGICAL differs from
SUBTRACT only in the meaning of the
condition code and in the absence of the
interruption for overflow.

3. A zero difference is always accompanied by a
carry out of the high-order bit position.

4. The condition-code setting for SUBTRACT
LOGICAL can also be interpreted as indicating
the presence and absence of a borrow, as

follows:

1 Difference is not zero, with borrow

2 Difference is zero, with no borrow

3 Difference is not zero, with no borrow

SUPERVISOR CALL

SvC | [RR]

"0A' |
0 8 15

The instruction causes a supervisor-call
interruption, with the I field of the instruction
providing the interruption code.

Bits 8-15 of the instruction, with eight
high-order zeros appended, are placed in the
supervisor-call interruption code that is stored in
the course of the interruption. See
"Supervisor-Call Interruption" in Chapter 6,
"Interruptions."

A serialization function is performed. CPU
operation is delayed until all previous storage
accesses by this CPU to storage have been
completed, as observed by channels and and other
CPUs. No subsequent instructions or their
operands are accessed by this CPU until the
execution of this instruction is completed.

Condition Code: The code remains unchanged and
is saved as part of the old PSW. A new condition
code is loaded as part of the supervisor-call
interruption.

Program Exceptions: None.

TEST AND SET

TS D2(Bp) (s}
‘93" |/////11/] By Dy
0 8 16 20 31

The leftmost bit (bit position 0) of the byte located
at the second-operand address is used to set the
condition code, and then the byte is set to all ones.
Bits 8-15 of the instruction are ignored. ‘

The byte in storage is set to all ones as it is
fetched for the testing of bit position 0. No access
by another CPU to this location is permitted
between the moment of fetching and the moment
of storing all ones.

A serialization function is performed before the
byte is fetched and again after the storing of all
ones. CPU operation is delayed until all previous
accesses by this CPU to storage have been
completed, as observed by channels and other

CPUs, and then the byte is fetched. No subsequent
instructions or their operands are accessed by this
CPU until the all-ones value has been placed in
storage, as observed by channels and other CPUs.

Resulting Condition Cede:

0 Leftmost bit of byte specified was zero
1 Leftmost bit of byte specified was one
2 -
3

Program Exceptions:
Access (fetch and store, operand 2)

Programming Notes

1. TEST AND SET may be used for controlled
sharing of a common storage area by more than
one program. To accomplish this, bit position 0
of a byte must be designated as the control bit.
The desired interlock can be achieved by
establishing a program convention in which a
zero in the bit position indicates that the
common area is available but a one means that
the area is being used. Each using program
then must examine this byte by means of TEST
AND SET before making access to the common
area. If the test sets condition code O, the area
is available for use; if it sets condition code 1,
the area cannot be used. Because TEST AND
SET permits no other CPU access to the test
byte between the moment of fetching (for
testing) and the moment of storing all ones
(setting), the possibility is eliminated of a
second program testing the byte before the first
program is able to set it.

2. It should be noted that TEST AND SET does
not interlock against storage accesses by
channels.

TEST UNDER MASK

™ D1(B1),l9 [S1]

'91! 2 B1q D1

0 8 16 20 31

A mask is used to select bits of the first operand,
and the result is indicated in the condition code.

The byte of immediate data, I,, is used as an
eight-bit mask. The bits of the mask are made to
correspond one for one with the bits of the byte in
storage designated by the first-operand address.

A mask bit of one indicates that the storage bit
is to be tested. When the mask bit is zero, the

storage bit is ignored. When all storage bits thus
selected are zero, condition code 0 is set.
Condition code 0 is also set when the mask is all
zeros. When the selected bits are all ones,
condition code 3 is set; otherwise, the code is set to
1.

Access exceptions associated with the storage
operand are recognized for one byte even when the
mask is all zeros. ’

Chapter 7. General Instructions 7-35

Resulting Condition Code:

0 Selected bits all zeros; or the mask is all zeros
1 Selected bits mixed zeros and ones
2 -

3 Selected bits all ones

Program Exceptions:
Access (fetch, operand 1)

Programming Note :
An example of the use of TEST UNDER MASK is
given in Appendix A.

TRANSLATE
TR D1(L,By),D2(B2) [SS]
b T2 | 0
‘nc’ L B D
1 /l 2 /2
0 8 16 20 32 36 47

The bytes of the first operand are used as eight-bit
arguments to reference a list designated by the
second-operand address. Each function byte
selected from the list replaces the corresponding
argument in the first operand.

The L field designates the length of only the
first operand.

The bytes of the first operand are selected one
by one for translation, proceeding left to right.
Each argument byte is added to the initial .

second-operand address. The addition is performed

following the rules for address arithmetic, with the
argument byte treated as an eight-bit unsigned
binary integer and extended with high-order zeros.
The sum is used as the address of the function byte,
which then replaces the original argument byte.

The operation proceeds until the first-operand
field is exhausted. ' The list is not altered unless an
overlap occurs.

When the operands overlap, the result is
obtained as if each result byte were stored
immediately after the corresponding function byte
is fetched.

Access exceptions are recognized only for those
bytes in the second operand which are actually
required.

Condition Code: The code remains unchanged.
Program Exceptions:

Access (fetch, operand 2; fetch and store,
operand 1)

7-36 IBM 4300 Processors Principles of Operation

Programming Notes

1. An example of the use of TRANSLATE is
given in Appendix A.

2. The instruction TRANSLATE may be used to
convert data from one code to another code.

3. The instruction may also be used to rearrange
data. This may be accomplished by placing a
pattern in the destination area, by designating
the pattern as the first operand of
TRANSLATE, and by designating the data that
is to be rearranged as the second operand.
Each byte of the pattern contains an eight-bit
number specifying the byte destined for this
position. Thus, when the instruction is
executed, the pattern selects the bytes of the
second operand in the desired order.

4. The fetch and subsequent store accesses to a
particular byte in the first-operand field do not
necessarily occur one immediately after the
other. Thus, this instruction cannot be safely
used to update a location in storage if the
possibility exists that another CPU or a channel
may also be updating the location. An example
of this effect is shown for the instruction OR
(OI) in the section "Multiprogramming and
Multiprocessing Examples" in Appendix A.

5. Because each eight-bit argument byte is added
to the initial second-operand address to obtain
the address of a function byte, the list may
contain 256 bytes. In cases where it is known
that not all eight-bit argument values will:
occur, it is possible to reduce the size of the
list.

| 6. Significant performance degradation is possible

when the second-operand address of
TRANSLATE designates a location that is less
than 256 bytes to the left of a 2,048-byte.
boundary. This is because the machine may
perform a trial execution of the instruction to
determine if the second operand actually
crosses the boundary.

TRANSLATE AND TEST

TRT Dq(L,B1),D2(B3) [ss]
‘D' L B 6 | B 6:
1| /1 2 /2

0 8 16 20 32 36 47

The bytes of the first operand are used as eight~bit
arguments to select function bytes from a list
designated by the second-operand address. - The

first nonzero function byte is inserted in general
register 2, and the related argument address in
general register 1.

The L field designates the length of only the
first operand.

The bytes of the first operand are selected one
by one for translation, proceeding from left to
right. The first operand remains unchanged in
storage. Fetching of the function byte from the list
is performed as in TRANSLATE. The function
byte retrieved from the list is inspected for a value
of zero.

When the function byte is zero, the operation
proceeds with the next byte of the first operand.
When the first-operand field is exhausted before a
nonzero function byte is encountered, the operation
is completed by setting condition code 0. The
contents of general registers 1 and 2 remain
unchanged.

When the function byte is nonzero, the
operation is completed by inserting the function
byte in general register 2 and the related argument
address in general register 1. This address points
to the argument byte last translated. The function
byte replaces bits 24-31 of general register 2. The
address replaces bits 8-31 of general register 1.
Bits 0-7 of general register 1 and bits 0-23 of
general register 2 remain unchanged.

When the function byte is nonzero, either
condition code 1 or 2 is set, depending on whether
the argument byte is the rightmost byte of the first
operand. Condition code 1 is set if one or more
argument bytes remain to be translated. Condition
code 2 is set if no more argument bytes remain.

Access exceptions are recognized only for those
bytes in the second operand which are actually
required. Access exceptions are not recognized for
those bytes in the first operand which are to the
right of the first byte for which a nonzero function
byte is obtained.

Resulting Condition Code:

0 All function bytes zero

1 Nonzero function byte; first-operand field
not exhausted

2 Nonzero function byte; first-operand field
exhausted

3 —_

Program Exceptions:
Access (fetch, operands 1 and 2)

Programming Notes

1. An example of the use of TRANSLATE AND
TEST is given in Appendix A.

2. The instruction TRANSLATE AND TEST may
be used to scan the first operand for characters
with special meaning. The second operand, or
list, is set up with all-zero function bytes for
those characters to be skipped over and with
nonzero function bytes for the characters to be
detected.

UNPACK

UNPK Dy(Lq,B1),D2(L2,B2) [SS]
'F3T Ly | L2 | By §1 B2 éz
0 8 12 16 20 32 36 47

The format of the second operand is changed from
packed to zoned, and the result is placed in the
first-operand location. The packed and zoned
formats are described in Chapter 8, "Decimal
Instructions."

The second operand is treated as having the
packed format. Its digits and sign are placed
unchanged in the first-operand location, using the
zoned format. Zones with coding of 1111 are
supplied for all bytes except the low-order byte,
which receives the sign of the second operand. The
sign and digits are not checked for valid codes.

The result is obtained as if the operands were
processed right to left. When necessary, the second
operand is considered to be extended on the left
with zeros. If the first-operand field is too short to
contain all digits of the second operand, the
remaining leftmost portion of the second operand is
ignored. Access exceptions for the unused portion
of the second operand may or may not be
indicated.

When the operands overlap, the result is
obtained as if the operands were processed one
byte at a time and each result byte were stored
immediately after the necessary operand byte is
fetched. The entire rightmost second-operand byte
is used in forming the first result byte. For the
remainder of the field, information for two result
bytes is obtained from a single second-operand
byte, and the leftmost four bits of the byte remain
available and are not refetched. Thus, two result
bytes are stored immediately after fetching a single
operand byte.

Chapter 7. General Instructions 7-37

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2; store, operand 1)

Programming Notes

1.

2.

7-38

An example of the use of UNPACK is given in
Appendix A. ,

A field that is to be unpacked can be destroyed
by improper overlapping. To save storage
space for unpacking by overlapping the
operands, the rightmost position of the first
operand must be to the right of the rightmost
position of the second operand by the number
of bytes in the second operand minus 2. If
only one or two bytes are to be unpacked, the
low-order positions of the two operands may
coincide.

IBM 4300 Processors Principles of Operation

Chapter 8. Decimal Instructions

Contents

Decimal-Number Formats 8-1
Zoned Format 8-1
Packed Format 8-1
Decimal Codes 8-1
Decimal Operations 8-2
Decimal-Arithmetic Instructions 8-2
Editing Instructions 8-3
Execution of Decimal Instructions 8-3
Other Instructions for Decimal Operands 8-3

The decimal instructions of this chapter perform
arithmetic and editing operations on decimal data.
Additional operations on decimal data are provided
by several of the instructions in Chapter 7,
"General Instructions." Decimal operands always
reside in storage, and all instructions operating on
decimal data use the SS instruction format.

Decimal-Number Formats

Decimal numbers may be in either the zoned or
packed format. Both decimal-number formats have
from one to 16 bytes, each byte consisting of a pair
of four-bit codes. The four-bit codes include
decimal-digit codes, sign codes, and a zone code.
Decimal operands occupy storage fields that start
on a byte boundary.

Zoned Format

/
Z | N|Z]|N y Z | N JZ/S| N

In the zoned format, the rightmost four bits of a

| byte are called the numeric bits (N) and normally
comprise a code representing a decimal digit. The
leftmost four bits of a byte are called the zone bits
(Z), except for the rightmost byte of a decimal
operand, where these bits may be treated either as
a zone or as a sign (S).

Instructions 8-3
ADD DECIMAL 8-4
COMPARE DECIMAL 8-5
DIVIDE DECIMAL 8-5
EDIT 8-6
EDIT AND MARK 8-9
MULTIPLY DECIMAL 8-9
SHIFT AND ROUND DECIMAL 8-10
SUBTRACT DECIMAL 8-11
ZERO AND ADD 8-11

Decimal digits in the zoned format may be part
of a larger character set, which includes also
alphabetic and special characters. The zoned
format is, therefore, suitable for input, editing, and
output of numeric data in human-readable form.
There are no decimal-arithmetic instructions which
operate directly on decimal numbers in the zoned
format; such numbers must first be converted to
the packed format.

Packed Format

In the packed format, each byte contains two
decimal digits (D), except for the rightmost byte,
which contains a sign to the right of a decimal
digit. Decimal arithmetic is performed with
operands in the packed format and generates
results in the packed format.

For all decimal instructions in this chapter other
than EDIT and EDIT AND MARK, both operands
are in the packed format.

Decimal Codes
The decimal digits 0-9 have the binary encoding
0000-1001.

The preferred sign codes are 1100 for plus and
1101 for minus. These are the sign codes

Chapter 8. Decimal Instructions 8-1

generated for the results of the decimal-arithmetic
instructions and the CONVERT TO DECIMAL
instruction.

Alternate sign codes are also recognized as valid
when appearing in the sign position: 1010, 1110,
and 1111 are alternate codes for plus, and 1011 is
an alternate code for minus. Alternate sign codes
are accepted for any decimal operand but are never
generated or propagated in the signed result of a
decimal-arithmetic instruction or CONVERT TO
DECIMAL, even when an operand remains
otherwise unchanged, such as when adding zero to
a number. An alternate sign code is, however, left
unchanged by the instructions MOVE NUMERICS,
MOVE WITH OFFSET, MOVE ZONES, PACK,
and UNPACK.

When an invalid code is detected, a data
exception is recognized. For the decimal-arithmetic
instructions, the action taken for a data exception
depends on whether a sign code is invalid. When a
sign code is invalid, the operation is suppressed
regardless of whether any other condition causing
an exception exists. When no sign code is invalid,
the operation is terminated.

For the editing instructions EDIT and EDIT
AND MARK, an invalid sign code is not
recognized. The operation is terminated for a data
exception due to an invalid digit code. No validity
checking is performed by the instructions MOVE
NUMERICS, MOVE WITH OFFSET, MOVE
ZONES, PACK, and UNPACK. '

The zone code 1111 appears in the left four bit
positions of each byte representing a decimal digit
in zoned-format results. Zoned-format results are
produced by the instructions EDIT, EDIT AND
MARK, and UNPACK, except that the left four bit
positions of the rightmost byte produced by
UNPACK contain whatever code exists in the sign
position of the packed operand. The right four bit
positions of each byte in the zoned format contain
a decimal-digit code, = v

The meaning of the decimal codes is summarized
in the figure "Summary of Digit and Sign Codes."

Programming Notes _

1. Since 1111 is both the zone code and an
alternate code for plus, unsigned (positive)
decimal numbers may be represented in the
zoned format with 1111 codes in all byte
positions. The result of the PACK instruction
converting such a number to the packed format
may be used directly as an operand for decimal
instructions.

8-2 . IBM 4300 Processors Principles of Operation

2. The use of the alternate minus code 1011 is not

recommended.

Recognized As
Code Digit Sign
0000 0 Invalid
0001 1 Invalid
0010 2 Invalid
0011 3 Invalid
0100 4 Invalid
0101 5 Invalid
0110 6 Invalid
0111 7 Invalid
1000 8 Invalid
1001 |. 9 Invalid
1010 Invalid Plus
1011 Invalid Minus
1100 | Invalid | Plus (preferred)
1101 | Invalid | Minus (preferred)
1110 Invalid Plus
1111 | 1nvalid ‘Plus (zone)

Summary of Digit and Sign Codes

Decimal Operations

The decimal instructions in this chapter consist of
two classes, the decimal-arithmetic instructions and
the editing instructions.

Decimal-Arithmetic Instructions

The decimal-arithmetic instructions, which comprise
all of the instructions in this chapter except the two
editing instructions, perform addition, subtraction,
multiplication, division, comparison, and shifting.

Operands of the decimal-arithmetic instructions
are in the packed format and are treated as signed
decimal integers. A decimal integer is represented
in true form as an absolute value with a separate
plus or minus sign. It contains an odd number of
decimal digits, from one to 31, and the sign; this
corresponds to an operand length of one to 16
bytes.

A decimal zero normally has a plus sign, but
multiplication, division, and overflow may produce
a zero value with a minus sign. Such a negative
zero is a valid operand and is treated as equal to a
positive zero by the COMPARE DECIMAL
instruction. .

The lengths of the two operands specified in the
instruction need not be the same. If necessary, the
shorter operand is considered to be extended with
zeros to the left of the high-order digit. Results,
however, cannot exceed the first-operand length as
specified in the instruction.

When a carry or some high-order nonzero digits
of the result are lost because the first-operand field
is too short, the result is obtained by ignoring the
overflow information, condition code 3 is set, and,
if the decimal-overflow mask bit is one, a program
interruption for decimal overflow occurs. The
operand lengths alone are not an indication of
overflow; significant digits must have been lost
during the operation.

The operands of decimal-arithmetic instructions
should not overlap at all or should have coincident
rightmost bytes. In ZERO AND ADD, the
operands may also overlap in such a manner that
the rightmost byte of the first operand (which
becomes the result) is to the right of the rightmost
byte of the second operand. For these cases of
proper overlap, the result is obtained as if operands
were processed right to left. Because the codes for
digits and signs are verified during the performance
of the arithmetic, improperly overlapping operands
are recognized as data exceptions.

Programming Note

The same decimal field in storage may be specified
for both operands of the instructions ADD
DECIMAL, COMPARE DECIMAL, DIVIDE
DECIMAL, MULTIPLY DECIMAL, and
SUBTRACT DECIMAL. Thus, a decimal number
may be added to itself, compared to itself, etc.
SUBTRACT DECIMAL may be used to set a
decimal field in storage to zero.

Editing Instructions
The editing instructions are EDIT and EDIT AND
MARK.. For these instructions, only one operand
(the pattern) has an explicitly specified length.
The other operand (the source) is considered to
have as many digits as necessary for the completion
of the operation.

Overlapping operands for the editing instructions
yield unpredictable results.

Execution of Decimal Instructions

During the execution of a decimal instruction, all
bytes of the operands are not necessarily accessed
concurrently, and the fetch and store accesses to a

single location do not necessarily occur one
immediately after the other. Furthermore, for
decimal instructions, intermediate values may be
placed in the result field that may differ from the
original operand and final result values. Thus, in a
multiprocessing system, an instruction such as ADD
DECIMAL cannot be safely used to update a »
shared storage location when the possibility exists
that another CPU may also be updating that
location.

Other Instructions for Decimal Operands
In addition to the decimal instructions in this
chapter, the instructions MOVE NUMERICS and
MOVE ZONES are provided for operating on data
in the zoned format. Two instructions are provided
for converting data between the zoned and packed
formats: the PACK instruction transforms zoned
data into packed data, and UNPACK performs the
reverse transformation. The MOVE WITH
OFFSET instruction operates on packed data. Two
instructions are provided for conversion between
the packed-decimal and binary formats. The
CONVERT TO BINARY instruction converts
packed decimal to binary, and CONVERT TO
DECIMAL converts binary to packed decimal.
These seven instructions are not considered to be
decimal instructions and are described in Chapter
7, "General Instructions.”" The editing instructions
in this chapter may also be used to change data
from the packed to the zoned format.

Instructions

The decimal instructions and their mnemonics,
formats, and operation codes are listed in the figure
"Summary of Decimal Instructions." The figure
also indicates when the condition code is set and
the exceptional conditions in operand designations,
data, or results that cause a program interruption.

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic
operand designation for the assembler language are
shown with each instruction. For ADD
DECIMAL, for example, AP is the mnemonic and
D(L;,B;), DyL,B,) the operand designation.

Chapter 8. Decimal Instructions 8-3

Mne- Op
Name monic Characteristics Code

ADD DECIMAL AP SS ¢C A D DF ST|FA
COMPARE DECIMAL CcP SS ¢C A D F9
DIVIDE DECIMAL DP SS A SP|D DK ST|FD
EDIT ED SS € A D ST|DE
EDIT AND MARK EDMK |SS C A D R ST|DF
MULTIPLY DECIMAL MP SS A SP|D ST|FC
SHIFT AND ROUND DEC IMAL SRP SS C A D DF ST{FO
SUBTRACT DECIMAL SP SS C A D . DF ST|FB
ZERO AND ADD ZAP SS C A D DOF ST|F8

Explanation:

A Access exceptions

C Condition code is set

D Data exception

DF Decimal-overflow exception
DK Decimal-divide exception

SP
SS
ST

Specification exception
SS instruction format
PER storage-alteration event

R PER general-register-alteration event

' Summary of Decimal Instructions

ADD DECIMAL

AP D1(Ly,B1),D2(L2,B2) [SS]

/
'FA' Ly Lo B1 Bo 92

N O N
—_—

0 8 12 16 20 32 3s 47

The second operand is added to the first operand,
and the resulting sum is placed in the first-operand
location. The operands and result are in the
packed format.

Addition is algebraic, taking into account the
signs and all digits of both operands. All sign and
digit codes are checked for validity.

If the first operand is too short to contain all
significant digits of the sum, decimal overflow
occurs. The operation is completed. The result is
obtained by ignoring the overflow information, and
condition code 3 is set. If the decimal-overflow
mask is one, a program interruption for decimal
overflow takes place.

8-4 IBM 4300 Processors Principles of Operation

The sign of the sum is determined by the rules of
algebra. When the operation is completed without
an overflow, a zero sum has a positive sign. When
high-order digits are lost because of an overflow, a
zero result may be either positive or negative, as
determined by what the sign of the correct sum
would have been.

Resulting Condition Code:

0 Sum is zero

1 Sum is less than zero

2 Sum is greater than zero
3 Overflow

Program Exceptions:

Access (fetch, operand 2; fetch and store,
operand 1)

Data

Decimal Overflow

Programming Note
An example of the use of ADD DECIMAL is given
in Appendix A.

COMPARE DECIMAL

cP - Dy(Lq,By),Da(L2,B2) [SS]

'F9' L L B é B 6
1 2 1 1 2 2
/ /

0 8 12 16 20 32 36 47

The first operand is compared with the second
operand, and the resuit is indicated in the condition
code. The operands are in the packed format.

Comparison is algebraic and follows the
procedure for decimal subtraction, except that both
operands remain unchanged. When the difference
is zero, the operands are equal. When a nonzero
difference is positive or negative, the first operand
is high or low, respectively.

Overflow cannot occur because the difference is
discarded.

All sign and digit codes are checked for validity.

Resulting Condition Code:
0 Operands are equal

1 First operand is low
2 First operand is high
3

Program Exceptions:
Access (fetch, operands 1 and 2)
Data

Programming Notes

1. An example of the use of COMPARE
DECIMAL is given in Appendix A.

2. The comparison operation does not distinguish
between valid sign codes. A valid plus or
minus sign is equivalent to any other valid plus
or minus sign, respectively.

DIVIDE DECIMAL

DP D1(L1,B1),D2(L2,B7) [SS]

'Fp’ L L B é B é
1 2 1 1 2 2
/ /

0 8 12 16 20 32 36 47

The first operand (the dividend) is divided by the
second operand (the divisor). The resulting
quotient and remainder are placed in the
first-operand location. The operands and result are
in the packed format.

The quotient is placed leftmost in the
first-operand location. The number of bytes in the

quotient is equal to the difference between the
dividend and divisor lengths (L - Ly). The
remainder is placed rightmost in the first-operand
location and has a length equal to the divisor
length. Together, the quotient and remainder
occupy the entire first operand; therefore, the
address of the quotient is the address of the first
operand.

The divisor length cannot exceed 15 digits and
sign (L, not greater than seven) and must be less
than the dividend length (L, less than L);
otherwise, a specification exception is recognized.
The operation is suppressed, and a program
interruption occurs.

The dividend, divisor, quotient, and remainder
are all signed decimal integers, right-aligned in
their fields. All sign and digit codes of the
dividend and divisor are checked for validity.

The sign of the quotient is determined by the
rules of algebra from the dividend and divisor
signs. The sign of the remainder has the same
value as the dividend sign. These rules hold even
when the quotient or remainder is zero.

Overflow cannot occur. If the divisor is zero or
the quotient is too large to be represented by the
number of digits allowed, a decimal-divide
exception is recognized. The operation is
suppressed, and a program interruption occurs. The
operands remain unchanged in storage. The
decimal-divide exception is indicated only if the
sign codes of both the dividend and divisor are
valid, and only if the digit or digits used in
establishing the exception are valid.

Condition Code: The code remains unchanged.

Program Exceptions:

" Access (fetch, operand 2; fetch and store,

operand 1)
Data
Decimal Divide
Specification

Programming Notes

1. An example of the use of DIVIDE DECIMAL
is given in Appendix A. '

2. The dividend cannot exceed 31 digits and sign.
Since the remainder cannot be shorter than one
digit and sign, the quotient cannot exceed 29
digits and sign.

3. The condition for a decimal-divide exception
can be determined by a trial subtraction. The
leftmost digit of the divisor is aligned one digit
to the right of the leftmost dividend digit.

Chapter 8. Decimal Instructions 8-5

When the divisor, so aligned, is less than or
equal to the dividend, a divide exception is
indicated.

4. A decimal-divide exception always occurs when
the leftmost dividend digit is not zero.

EDIT
ED D1(L,By),D2(B2) [SS]

s | o |52] 0
'DE' L

1 A 2 | D2
0 8 16 20 32 36 47

The second operand (the source), which normally
contains one or more decimal numbers in the
packed format, is changed to the zoned format and
modified under the control of the first operand (the
pattern). The edited result replaces the first
operand.

The length field specifies the length of the first
operand, which may contain bytes of any value.

The length of the source is determined by the
operation according to the contents of the pattern.
The source has the packed format. The leftmost
four bits of each source byte must specify a decimal
digit code (0000-1001); a sign code (1010-1111)
is recognized as a data exception. The rightmost
four bits may specify either a sign or a decimal
digit. Access and data exceptions are recognized
only for those bytes in the second operand which
are actually required.

The result is obtained as if both operands were
processed left to right one byte at a time.
Overlapping pattern and source fields give
unpredictable results.

During the editing process, each byte of the
pattern is affected in one of three ways:

1. It is left unchanged.

2. It is replaced by a source digit expanded to the
zoned format.

3. It is replaced by the first byte in the pattern,
called the fill byte.

Which of the three actions takes place is
determined by one or more of the following: the
type of the pattern byte, the state of the
significance indicator, and whether the source digit
examined is zero.

Pattern Bytes: There are four types of pattern
bytes: digit selector, significance starter, field

8-6 IBM 4300 Processors Principles of Operation

separator, and message byte. Their coding is as
follows:

Name Code
Digit selector 0010 0000
Significance starter | 0010 000!
Field separator 0010 0010
Message byte Any other

The detection of either a digit selector or a
significance starter in the pattern causes an
examination to be made of the significance
indicator and of a source digit. As a result, either
the expanded source digit or the fill byte, as
appropriate, is selected to replace the pattern byte.
Additionally, encountering a digit selector or a
significance starter may cause the S1gmf1cance
indicator to be changed.

The field separator identifies individual fields in
a multiple-field editing operation. It is always
replaced in the result by the fill byte, and the
significance indicator is always off after the field
separator is encountered. ; '

Message bytes in the pattern are either replaced
by the fill byte or remain unchanged in the result,
depending on the state of the significance indicator.
They may thus be used for padding, punctuation, or
text in the significant portion of a field or for the
insertion of sign-dependent symbols.

Fill Byte: The first byte of the pattern is used as
the fill byte. The fill byte can have any code and
may concurrently specify a control function. If this
byte is a digit selector or significance starter, the
indicated editing action is taken after the code has
been assigned to the fill byte.

Source Digits: Each time a digit selector or
significance starter is encountered in the pattern, a
new source digit is examined for placement in the
pattern field. Either the source digit is disregarded,
or it is expanded to the zoned format, by
appending the zone code 1111 on the left, and
stored in place of the pattern byte.

The source digits are selected one byte at a time,
and a source byte is fetched for inspection only
once during an editing operation. Each source digit
is examined only once for a zero value. The
leftmost four bits of each byte are examined first,

| and the rightmost four bits, when they represent a

decimal-digit code, remain available for the next
pattern byte that calls for a digit examination.
When the leftmost four bits contain an invalid digit
code, the operation is terminated.

At the time the left digit of a source byte is
examined, the rightmost four bits are checked for
the existence of a sign code. When a sign code is
encountered in the rightmost four bit positions,
these bits are not treated as a decimal-digit code,
and a new source byte is fetched from storage
when the next pattern byte calls for a source-digit
examination.

When the pattern contains no digit selector or
significance starter, no source bytes are fetched and
examined.

Significance Indicator: The significance indicator
is turned on or off to indicate the significance or
nonsignificance, respectively, of subsequent source
digits or message bytes. Significant source digits
replace their corresponding digit selectors or
significance starters in the resuit. Significant
message bytes remain unchanged in the result.

The significance indicator, by its on or off state,
indicates also the negative or positive value,
respectively, of a completed source field and is used
as one factor in the setting of the condition code.

The indicator is set to off at the start of the
editing operation, after a field separator is
encountered, or after a source byte is examined
that has a plus code in the rightmost four bit
positions.

The indicator is set to on when a significance
starter is encountered whose source digit is a valid
decimal digit, or when a digit selector is
encountered whose source digit is a nonzero
decimal digit, provided that in both instances the
source byte does not have a plus code in the
rightmost four bit positions.

In all other situations, the indicator is not
changed. A minus sign code has no effect on the
significance indicator.

Result Bytes: The result of an editing operation
replaces and is equal in length to the pattern. Itis
composed of pattern bytes, fill bytes, and zoned
source digits.

If the pattern byte is a message byte and the
significance indicator is on, the message byte
remains unchanged in the result. If the pattern
byte is a field separator or if the significance
indicator is off when a message byte is encountered
in the pattern, the fill byte replaces the pattern
byte in the result.

If the digit selector or significance starter is
encountered in the pattern with the significance
indicator off and the source digit zero, the source
digit is considered nonsignificant, and the fill byte
replaces the pattern byte. If the digit selector or
significance starter is encountered with either the
significance indicator on or with a nonzero decimai
source digit, the source digit is considered
significant, is changed to the zoned format, and
replaces the pattern byte in the result.

Condition Code: The sign and magnitude of the
last field edited are used to set the condition code.
The term "last field" refers to those source bytes in
the second operand selected by digit selectors or
significance starters after the last field separator.
When the pattern contains no field separator, there
is only one field, which is considered to be the last
field. The last field is considered to be of zero
length if no digit selectors or significance starters
appear in the pattern, if none appear after the last
field separator, or if the last byte in the pattern is a
field separator.

Condition code 0 is set when the last field is
zero or of zero length.

Condition code 1 is set when the last field edited
is nonzero and the significance indicator is on,
indicating a result less than zero.

Condition code 2 is set when the last field edited
is nonzero and the significance indicator is off,
indicating a result greater than zero.

The figure ''Summary of EDIT Functions"
summarizes the functions of the editing operation.
The leftmost four columns list all the significant
combinations of the four conditions that can be
encountered in the execution of an editing
operation. The rightmost two columns list the
action taken for each case—the type of byte placed
in the result field and the new setting of the
significance indicator.

Resulting Condition Code:

0 Last field-is zero or of zero length

1 Last field is less than zero

2 Last field is greater than zero
3

Program Exceptions:

Access (fetch, operand 2; fetch and store,
operand 1)

Data

Chapter 8. Decimal Instructions 8-7

Programming Notes

1.

2.

Examples of the use of EDIT are given in
Appendix A.

Editing includes sign and punctuation control,
and the suppression and protection of leading
zeros by replacing them with blanks or
asterisks. It also facilitates programmed
blanking of all-zero fields. Several fields may
be edited in one operation, and numeric
information may be combined with text.

As a rule, the source is shorter than the pattern,
because each 4-bit source digit is generally
replaced by an 8-bit byte in the resuit.

The total number of digit selectors and
significance starters in the pattern must equal
the number of source digits to be edited.

If the fill byte is a blank, if no significance
starter appears in the pattern, and if the source
is all zeros, the editing operation blanks the
result field.

The resulting condition code indicates whether
or not the last field is all zeros and, if nonzero,
reflects the state of the significance indicator.
The significance indicator reflects the sign of
the source field only if the last source byte
examined contains a sign code in the low-order
digit position. For multiple-field editing
operations, the condition code reflects the sign
and value only of the field following the last
field separator.

Significant performance degradation is possible
when the second-operand address of EDIT
designates a location that is less than the length
of the first operand to the left of a 2,048-byte
boundary. This is because the machine may
perform a trial execution of the instruction to
determine if the second operand actually
crosses the boundary. It should be noted that
the second operand of EDIT, while normally
shorter than the first operand, can in the
extreme case have the same length as the first.

Results
Conditions State of
Significance
Previous State Right Four Indicator at
of Significance|SourcejSource Bits End of Digit
Pattern Byte Indicator Digit |Are Plus Code Result Byte Examination
Digit selector Off 0 * Fill byte Off
1-9 No Source digit On
1-9 Yes Source digit off
On 0-9 No Source digit On
0-9 Yes Source digit Off
Significance starter off 0 No Fill byte On
0 Yes Fill byte off
1-9 No Source digit On
1-9 Yes Source digit off
On 0-9 No Source digit On
0-9 Yes Source digit off
Field separator * *x *k Fill byte off
Message byte Off fi f* Fill byte off
On * ** Message byte On
Explanation:
». No effect on result byte or on new state of significance indicator
** Not applicable because source is not examined

Summary of EDIT Functions

8-8

IBM 4300 Processors Principles of Operation

EDIT AND MARK

EDMK D1(L,B¢),D2(B3) [SS]

'DF’ L B é B [/)
1 /1 2 /2

0 8 16 20 32 36 47

The second operand (the source), which normally
contains one or more decimal numbers in the
packed format, is changed to the zoned format and
modified under the control of the first operand (the
pattern). The address of each first significant
result byte is inserted in general register 1. The
edited result replaces the pattern.

The instruction EDIT AND MARK is identical
to EDIT, except for the additional function of
inserting the address of the result byte in bit
positions 8-31 of general register 1 whenever the
result byte is a zoned source digit and the
significance indicator was off before the
examination. Bits 0-7 of the register are not
changed.

Resulting Condition Code:
| 0 Last field is zero or of zero length
1 Last field is less than zero
2 Last field is greater than zero
3

Program Exceptions:

Access (fetch, operand 2; fetch and store,
operand 1)

Data

Programming Notes
1. Examples of the use of EDIT AND MARK are
| given in Appendix A.
2. The instruction EDIT AND MARK facilitates
the programming of floating currency-symbol .
| insertion. The address inserted in general
register 1 is one greater than the address where
a floating currency-sign would be inserted. The
instruction BRANCH ON COUNT (BCTR),
with zero in the R, field, may be used to
reduce the inserted address by one.
3. No address is inserted in general register 1
when the significance indicator is turned on as
a result of encountering a significance starter
with the corresponding source digit zero. To

ensure that general register 1 contains a valid
address when this occurs, the address of the
pattern byte that immediately follows the
significance starter should be placed in the
register beforehand.

4. When multiple fields are edited with one EDIT
AND MARK instruction, the address inserted
in general register 1 applies only to the last
field edited.

5. See also the programming note under EDIT
regarding performance degradation due to a
possible trial execution.

MULTIPLY DECIMAL
MP Dq(Lq,B1),Da(L3,By) [SS]
'FC' | Ly | L | By é, By éz
0 8 12 16 20 32 36 47

The product of the first operand (the multiplicand)

and the second operand (the multiplier) is placed in
the first-operand location. The operands and result
are in the packed format. :

The multiplier length cannot exceed 15 digits
and sign (L, not greater than seven) and must be
less than the multiplicand length (L, less than L);
otherwise a specification exception is recognized.
The operation is suppressed, and a program
interruption occurs.

The multiplicand must have at least as many
bytes of high-order zeros as the number of bytes in
the multiplier; otherwise, a data exception is
recognized, the operation is terminated, and a
program interruption occurs. This restriction
ensures that no product overflow occurs.

The multiplicand, multiplier, and product are all
signed decimal integers, right-aligned in their fields.
All sign and digit codes of the multiplicand and
multiplier are checked for validity.

The sign of the product is determined by the
rules of algebra from the multiplier and
multiplicand signs, even if one or both operands are
Zeros.

Condition Code: The code remains unchanged.
Program Exceptions:

Access (fetch, operand 2; fetch and store,
operand 1)

Chapter 8. Decimal Instructions 8-9

Data
Specification

Programming Notes

1. An example of the use of MULTIPLY
DECIMAL is given in Appendix A.

2. The product cannot exceed 31 digits and sign.
The leftmost digit of the product is always zero.

SHIFT AND ROUND DECIMAL

SRP D1(L7,B7),D2(Bp),13 [SS]

[
/ /
'Fo' L1 I3 Bt [/)] By 52

0 8 12 16 20 32 36 47

The first operand is shifted in the direction and for
the number of decimal-digit positions specified by
the second-operand address, and, when shifting to
the right is specified, the absolute value of the first
operand is rounded by the rounding digit, Is. The
first operand and the result are in the packed
format. »

The first operand is considered to be in th
packed-decimal format. Only its digit portion is
shifted; the sign position does not participate in the
shifting. Zeros are supplied for the vacated digit
positions. The result replaces the first operand.
Nothing is stored outside of the specified
first-operand location. .

The second-operand address, specified by the B,
and D, fields, is not used to address data; bits
26-31 are the shift value, and the high-order bits of
the address are ignored.

The shift value is a six-bit signed binary integer,
indicating the direction and the number of
decimal-digit positions to be shifted. Positive shift
values specify shifting to the left. Negative shift
values, which are represented in two’s complement
notation, specify shifting to the right. The
following are examples of the interpretation of shift
values.

Shift Value Amount and Direction
011111 31 digits to the left
000001 One digit to the left
000000 No shift

111111 One digit to the right
100000 32 digits to the right

For a right shift, the I5 field, bits 12-15 of the
instruction, are used as a decimal rounding digit.
The first operand, which is treated as positive by
ignoring the sign, is rounded by decimally adding

8-10 IBM 4300 Processors Principles of Operation

the rounding digit to the leftmost of the digits to be
shifted out and by propagating the carry, if any, to
the left. The result of this addition is then shifted

‘right. Except for validity checking and the

participation in rounding, the digits shifted out of
the low-order decimal-digit position are ignored
and are lost.

If one or more significant digits are shifted out
of the high-order digit positions during a left shift,
decimal overflow occurs. The operation is
completed. The result is obtained by ignoring the
overflow information, and condition code 3 is set.
If the decimal-overflow mask is one, a program
interruption for decimal overflow takes place.
Overflow cannot occur for a right shift, with or
without rounding, or when no shifting is specified.

In the absence of overflow, the sign of a zero
result is made positive. Otherwise, the sign of the
result is the same as the original sign, but the code
is the preferred sign code.

A data exception is recognized when the first
operand does not have valid sign and digit codes or
when the rounding digit is not a valid digit code.
The validity of the first-operand codes is checked
even when no shift is specified, and the validity of
the rounding digit is checked even when no
addition for rounding takes place.

Resulting Condition Code:

0 Result is zero

1 Result is less than zero

2 Result is greater than zero
3 Overflow

. Program Exceptions:

Access (fetch and store, operand 1)
Data
Decimal Overflow

Programming Notes

1. Examples of the use of SHIFT AND ROUND
are given in Appendix A.

2. SHIFT AND ROUND can be used for shifting
up to 31 digit positions left and up to 32 digit
positions right. This is sufficient to clear all
digits of any decimal number even with
rounding.

3. For right shifts, the rounding digit 5 provides
conventional rounding of the result. The
rounding digit O specifies truncation without
rounding.

4. When the B, field is zero, the six-bit shift value
is obtained directly from bits 42-47 of the
instruction.

PamaN

SUBTRACT DECIMAL

SP D1(Ly,B1),D2(L2,B2) [SS]

52| b
2/2

'FB' L1) B

NON
—

0 8 12 16 20 32 36 47

The second operand is subtracted from the first
operand, and the resulting difference is placed in
the first-operand location. The operands and result
are in the packed format.

SUBTRACT DECIMAL is executed the same as
ADD DECIMAL, except that the second operand is
considered to have a sign opposite to the sign in
storage. The second operand in storage remains
unchanged.

Resulting Condition Code:

0 Difference is zero

1 Difference is less than zero

2 Difference is greater than zero
3 Overflow

Program Exceptions:

Access (fetch, operand 2; fetch and store,
operand 1)

Data

Decimal Overflow

ZERO AND ADD

ZAP D1(L],B]),02(L2,Bz) [SS]

/ /
'F8' Ly | L2 | By 91 By 32

0 8 12 16 20 32 36 47

The second operand is placed in the first-operand
location. The operation is equivalent to an
addition to zero. The operand and result are in the
packed format.

Only the second operand is checked for valid
sign and digit codes. Extra high-order zeros are
supplied for the shorter operand if needed.

If the first operand is too short to contain all
significant digits of the second operand, decimal
overflow occurs. The operation is completed. The
result is obtained by ignoring the overflow
information, and condition code 3 is set. If the
decimal-overflow mask is one, a program
interruption for decimal overflow takes place.

A zero result is positive. However, when
significant high-order digits are lost because of
overflow, a zero result has the sign of the second
operand.

The two operands may overlap, provided the
rightmost byte of the first operand is coincident
with or to the right of the rightmost byte of the
second operand. In this case the result is obtained
as if the operands were processed right to left.

Resulting Condition Code:

0 Result is zero

1 Result is less than zero

2 Result is greater than zero
3 Overflow

Program Exceptions:

Access (fetch, operand 2; store, operand 1)
Data

Decimal Overflow

Programming Note

An example of the use of ZERO AND ADD is
given in Appendix A.

Chapter 8. Decimal Instructions 8-11

Chapter 9. Floating-Point Instructions

Contents

Floating-Point Number Representation 9-1
Normalization 9-2

Floating-Point-Data Format 9-2
Instructions 9-4

ADD NORMALIZED 9-6
ADD UNNORMALIZED 9-7
COMPARE 9-8

DIVIDE 9-8

HALVE 9-9

LOAD 9-10

Floating-point instructions are used to perform
calculations on operands with a wide range of
magnitude-and to yield results scaled to preserve
precision. '

The floating-point instructions provide for
loading, rounding, adding, subtracting, comparing,
multiplying, dividing, and storing; as well as
controlling the sign of short, long; and extended
operands. - Short operands generally permit faster
processing and require less storage than long or
extended operands. On the other hand, long and
extended operands permit greater. precision in
computation. Four floating-point registers are
provided. Instructions may perform either
register-to-register. or storage-and-register
operations.

Most of the instructions generate normalized
results, which preserve the highest precision in the
operation. For addition and subtraction,
instructions are also provided that generate
unnormalized results. Either normalized or
unnormalized numbers may be used as operands for
any floating-point operation.

Floating-Point Number Representation

A floating-point number consists of a signed
hexadecimal fraction and an unsigned seven-bit
binary integer called the characteristic. The
characteristic represents a signed exponent and is
obtained by adding 64 to the exponent value
(excess-64 notation). The range of the

LOAD AND TEST 9-10

LOAD COMPLEMENT 9-10

LOAD NEGATIVE 9-11

LOAD POSITIVE 9-11

LOAD ROUNDED 9-11

‘MULTIPLY 9-12

STORE 9-13

SUBTRACT NORMALIZED 9-14
SUBTRACT UNNORMALIZED 9-14

characteristic is 0 to 127, which corresponds to an
exponent range of -64 to +63. The value of a
floating-point number is the product of its fraction
and the number 16 raised to the power of the
exponent which is represented by its characteristic.

The fraction of a floating-point number is
treated as a hexadecimal number because it is
considered to be multiplied by a number which is a
power of 16. The name, fraction, indicates that the
radix point is assumed to be immediately to the left
of the leftmost fraction digit. The fraction is
represented by its absolute value and a separate
sign bit. The entire number is positive or negative,
depending on whether the sign bit of the fraction is
zZero or one, respectively.

When a floating-point operation would cause the
result exponent to exceed 63, the characteristic
wraps around from 127 to 0, and an
exponent-overflow condition exists. The resuit
characteristic is then too small by 128. When an
operation would cause the exponent to be less than
-64, the characteristic wraps around from O to 127,
and an exponent-underflow condition exists. The
result characteristic is then too large by 128, except
that a zero characteristic is produced when a true
zero is forced..

A true zero is a floating-point number with a.
zero characteristic, zero fraction, and plus sign. A
true zero may arise as the normal result of an
arithmetic operation because of the particular

Chapter 9. Floating-Point Instructions 9-1

magnitude of the operands. The result is forced to

be a true zero when:

1. An exponent underflow occurs and the
exponent-underflow mask bit in the PSW is
ZEero,

2. The result fraction of an addition or subtraction
operation is zero and the significance mask bit
in the PSW is zero, or

3. The operand of HALVE, one or both operands
of MULTIPLY, or the dividend in DIVIDE has
a zero fraction. .

When a program interruption for exponent
underflow occurs, a true zero is not forced; instead,
the fraction and sign remain correct, and the
characteristic is too large by 128. When a program
interruption for significance occurs, the fraction
remains zero, the sign is positive, and the
characteristic remains correct.

The sign of a sum, difference, product, or
quotient with a zero fraction is positive. The sign
of a zero fraction resulting from other operations is
established from the operand sign, the same as for
nonzero fractions.

Normalization

A quantity can be represented with the greatest
precision by a floating-point number of a given .
fraction length when that number is normalized. A
normalized floating-point number has a nonzero
leftmost hexadecimal fraction digit. If one or more
leftmost fraction digits are zeros, the number is said
to be unnormalized.

Unnormalized numbers are normalized by
shifting the fraction left, one digit at a time, until
the leftmost hexadecimal digit is nonzero and
reducing the characteristic by the number of
hexadecimal digits shifted. A number with a zero
fraction cannot be normalized; its characteristic
either remains unchanged, or it is made zero when
the result is forced to be a true zero. v

Floating-point operations may be performed with
or without normalization. Most operations are
performed only with normalization. Addition and
subtraction with short or long operands may be
specified as either normalized or unnormalized.

With unnormalized operations, leftmost zeros in
the result fraction are not eliminated. The result
may or may not be normalized, depending upon the
original operands.

In both normalized and unnormalized operations,
the initial operands need not be in normalized
form. The operands for multiplication and division
are normalized before the arithmetic process. For

9-2 IBM 4300 Processors Principles of Operation

other normalized operations, normalization takes
place when the intermediate arithmetic result is
changed to the final result.

When the intermediate result of addition,
subtraction, or rounding causes the fraction to
overflow, the fraction is shifted right by one
hexadecimal-digit position and the value one is
placed in the vacated leftmost digit position. The
fraction is then truncated to the final result length,
while the characteristic is increased by one. This
adjustment is made for both normalized and
unnormalized operations.

Programming Note

Up to three leftmost bits of the fraction of a
normalized number may be zeros, since the
nonzero test applies to the entire leftmost
hexadecimal digit.

Floating-Point-Data Format

Floating-point numbers have a 32-bit (short)
format, a 64-bit (long) format, or a 128-bit
(extended) format. Numbers in the short and long
formats may be designated as operands both in
storage and in the floating-point registers, whereas
operands having the extended format can be
designated only in the floating-point registers.

The floating-point registers contain 64 bits each
and are numbered 0, 2, 4, and 6. A short or long
floating-point number requires a single
floating-point register. An extended floating-point
number requires a pair of these registers: either
registers 0 and 2 or register 4 and 6; the two
register pairs are designated as O or 4, respectively.
When the Ry or R, field of a floating-point
instruction designates any register number other
than 0, 2, 4, or 6 for the short or long format, or
any register number other than O or 4 for the
extended format, the operation is suppressed, and a
program interruption for specification exception
occurs.

Short Floating-Point Number

/

S{Characteristic| 6-Digit ;raction

0 1 8 31

Long Floating-Point Number

/
14-Digit Fraction
/

S|{Characteristic

0 1 8 63

TN

Extended Floating-Point Number
High-Order Part

/
Leftmost 14 Digits
of 28-Digit Fraction
/

High-Order
S|Characteristic

0 1 8 63

Low-Order Part

/
Rightmost 14 Digits
of 28-Digit Fraction
/

Low-0rder
Si{Characteristic

64 72 127

In all formats, the first bit (bit 0) is the sign bit
(S). The next seven bits are the characteristic. In
the short and long formats, the remaining bits
constitute the fraction, which consists of six or 14
hexadecimal digits, respectively.

A short floating-point number occupies only the
leftmost 32 bit positions of a floating-point register.
The rightmost 32 bit positions of the register are
ignored when used as an operand in the short
format and remain unchanged when a short result
is placed in the register.

An extended floating-point number has a
28-digit fraction and consists of two long
floating-point numbers which are called the
high-order and low-order parts. The high-order
part may be any long floating-point number. The
fraction of the high-order part contains the leftmost
14 hexadecimal digits of the 28-digit fraction. The
characteristic and sign of the high-order part are
the characteristic and sign of the extended
floating-point number. If the high-order part is
normalized, the extended number is considered
normalized. The fraction of the low-order part
contains the rightmost 14 digits of the 28-digit
fraction. The sign and characteristic of the
low-order part of an extended operand are ignored.

When a result in the extended format is placed
in a register pair, the sign of the low-order part is
made the same as that of the high-order part, and,
unless the result is a true zero, the low-order
characteristic is made 14 less than the high-order
characteristic. When the subtraction of 14 would
cause the low-order characteristic to become less
than zero, the characteristic is made 128 greater
than its correct value. Exponent underflow is
indicated only when the high-order characteristic
underflows.

When an extended result is made a true zero,
both the high-order and low-order parts are made a
true zero.

The range covered by the magnitude (M) of a
normalized floating-point number depends on the
format.

In the short format:

16 65 < M < (1-16 6) x 1663
In the long format:

16 65 < M < (1 -16 14) x 1663
In the extended format:

16 65 < M < (1 - 16 28) x 1663
In all formats, approximately:

54x10 79 <M< 7.2 %1075

Although the final result of a floating-point
operation has six hexadecimal fraction digits in the
short format, 14 fraction digits in the long format,
and 28 fraction digits in the extended format,
intermediate results have one additional
hexadecimal digit on the right. This digit is called
the guard digit. The guard digit may increase the
precision of the final result because it participates
in addition, subtraction, and comparison operations

" and in the left shift that occurs during

normalization.

The entire set of floating-point operations is
available for both short and long operands. These
instructions generate a result that has the same
format as the operands, except that for
MULTIPLY, a long product is produced from a
short multiplier and multiplicand. Extended
floating-point instructions are provided only for
normalized addition, subtraction, and
multiplication. Two additional muitiplication
instructions generate an extended product from a
long multiplier and multiplicand. The rounding
instructions provide for rounding from extended to
long format and from long to short format.

Programming Notes

1. A long floating-point number can be converted
to the extended format by appending any long
floating-point number having a zero fraction,
including a true zero. Conversion from the
extended to the long format can be
accomplished by truncation or by means of
LOAD ROUNDED.

Chapter 9. Floating-Point Instructions 9-3

2. In the absence of an exponent overflow or
exponent underflow, the long floating-point
number constituting the low-order part of an
extended result correctly expresses the value of
the low-order part of the extended result when
the characteristic of the high-order part is 14 or
higher. This applies also when the result is a
true zero. When the high-order characteristic
is less than 14 but the number is not a true -
zero, the low-order part, when addressed as a
long floating-point number, does not have the

~ correct characteristic value.

3. The entire fraction of an extended result
participates in normalization. The low-order
part alone may or may not appear to be a
normalized long floating-point number,
depending on whether the 15th digit of the
normalized 28-digit fraction is nonzero or zero.

Instructions

The floating-point instructions and their
mnemonics, formats, and operation codes are listed
in the figure "Summary of Floating-Point
Instructions." The figure also indicates when the
condition code is set and the exceptional conditions
in operand designations, data, or results that cause
a program interruption.

9-4 IBM 4300 Processors Principles of Operation

Mnemonics for the floating-point instructions
have an R as the last letter when the instruction is
in the RR format. For instructions where all
operands are the same length, certain letters are
used to represent operand-format length and
normalization, as follows:

short normalized
short unnormalized
long normalized
long unnormalized
extended normalized

Xxgoam

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic
operand designation for the assembler language are
shown with each instruction. For a
register-to-register operation using LOAD (short),
for example, LER is the mnemonic and R R the
operand designation.

Mne- Op
Name monic Characteristics Code

ADD NORMALIZED (extended) AXR |RR C SP{EU EO LS 36
ADD NORMALIZED (long) ADR [RR C SP{EU EO LS 2A
ADD NORMALIZED (long) AD RX C A SP|EU EO LS 6A
ADD NORMALIZED (short) AER |[RR C SP(EU EO LS 3A
ADD NORMALIZED (short) AE RX ¢ A SP|EU EO LS 7A
ADD UNNORMALIZED (long) AWR |RR C Sp EO LS 2E
ADD UNNDRMALIZED (long) AW RX € A SP EO LS 6E
ADD UNNORMAL IZED (short) AUR [RR C SP EO LS 3E
ADD UNNORMALIZED (short) AU RX C SP EO LS 7E
COMPARE (long) CDR |RR € Sp 29
COMPARE (long) o] RX € A SP 69
COMPARE (short) CER |[RR C SP 39
COMPARE (short) CE |RX C A SP 79
DIVIDE (long) DDR |RR SP|EU EO FK 2D
DIVIDE (long) DD RX SP{EU EO FK 6D
DIVIDE (short) DER |RR SP|EU ED FK 3D
DIVIDE (short) DE RX A SP{EU EO FK D
HALVE (long) HDR {RR SPIEU 24
HALVE (short) HER |RR SP[EU 34
LOAD (long) LDR JRR SP 28
LOAD (long) LD RX A SP 68
LDAD (short) LER {RR SP 38
LDAD (short) LE |[RX A sp 78
LOAD AND TEST (tong) LTDR {RR C SP 22
LOAD AND TEST (short) LTER |RR C SP 32
LOAD COMPLEMENT (1long) LCDR {RR C SP 23
LOAD COMPLEMENT (short) LCER |[RR- C SP 33
LOAD NEGATIVE (1ong) LNDR |RR C Sp 21
LDAD NEGATIVE (short) LNER |RR C SP 31
LOAD POSITIVE (long) LPDR |RR C SP 20
LOAD POSITIVE (short) LPER |RR C sp 30
LOAD ROUN