SC28-8309-0

System/370 VS BASIC
Installation Reference
Program Product Material

Program Number: 5748-XX1

PREFACE

This publication is intended for system
programmers and planners, who will be
responsible for the installation and
maintenance of the IBM VS BASIC Processor
in one of the following systems:

e 0S/VS2(TSO)

VM/370(CMS)

e 0OS5/Vsl
e OS/VS2
¢ DOS/VS

This publication describes the requirements
and procedures for installing and running
the VS BASIC Processor. It is organized as
follows:

e The "Introduction" presents a broad
overview of the VS BASIC Processor and
discusses some preliminary information
that is necessary before the product
can be installed.

¢ The "Installation Procedures" section
is divided into four parts. If you
intend to use VS BASIC in an
0S/VS2(TSO) environment see the part
"Installing VS BASIC as an Interactive
and Batch Processor under 0S/VS2(TSO)".
This section can also be used to
optionally install VS BASIC as a batch
processor in the batch environment of
0S/Vs2(Ts0). If you intend to install
VS BASIC as a batch processor only
under 0S/VS1l or 0S/VS2 see the part
"Installing VS BASIC as a Batch

First Edition (May 1974)

Processor under 0S/VS1l oxr 0OS/vs2". If
you intend to install VS BASIC under
CMS see the part "Installing VS BASIC
as an Interactive and Batch Processor
under VM/370(CMS)." If you intend to
install VS BASIC under DOS/VS see the
part "Installing VS BASIC as a Batch
Processor under DOS/VS."

The "Storage Estimates" section
contains the real and virtual storage
requirements of the VS BASIC Processor
for each system under which it
operates.

The "Diagnostic Messages" section
descripes how to obtain diagnostic
messages for each system.

The "System Programming" section
contains information of interest to
system programmers for changing the
installation procedures described in
this book or for adapting it to special
conditions that exist in a particular
computer installation. Also,
information that is not strictly
classified as installation or operating
procedures but which is necessary
before the VS BASIC Processor can be
used by application programmers is
described.

The "Appendixes" section contains. the
installation tape procedures for each
system under which VS BASIC can be
installed. It also lists the VS BASIC
Processor modules and contains a copy
of the sample program that is produced
during the installation.

This edition corresponds to Release 1.0 of the IBM System/370 VS BASIC

Processor.

Changes are periodically made to the specifications herein; any such

changes will be reported in subsequent revisions or Technical

Newsletters. Before using this publication in conjunction with the
operation of any IBM system, refer to the latest IBM System/360 and
System/370 Bibliography, Order No. GA22-6822 for editions that are

applicable and current.

Requests for copies of IBM publications should be made to your IBM

representative or to the IBM branch office serving your area.

A form for reader's comments is provided at the back of this
publication. If the form has beem removed, comments may be addressed to
IBM Corporation, Programming Publications, 1271 Avenue of the Americas,
New York, New York, 10020.

©® Copyright International Business Machines Corporation 1974

As this book is revised, a summary of
amendments will be included with the TNL or
complete revision. It will be inserted
immediately following the cover page and
will highlight the changes made. As the
book changes over a period of time, these
summaries of amendments will enable you to
build, as the first part of your book, a
permanent section that will trace, in
reverse chronological order, the
development of this publication. Any
revision of the complete book will include
a reprinting of all previous summaries of
amendments.

REFERENCE PUBLICATIONS

It is assumed that all readers installing
VS BASIC under 0OS/VS are familiar with the
contents of the following publications:

0S/VS Linkage Editor and Loader, Order
No. GC26-3813

0S/VS JCL Services, Order No. GC28-0617

0S/VS JFC Reference, Order No. GC28-0618

0S/VS Utilities, Order No. GC35-0005

0S/VS Message Library: Routing and
Descriptor Codes, Order No. GC38-1004

0S/VS Message Library: Utilities
Messages, Order No. GC38-1005

0S/VS Message Library: Linkage Editor
and Loader Messages, Order No. GC38-1007

Those readers who are using 0S/VS1l should
also be familiar with the following
publications:

0s/Vsl System Generation Reference,
Order No. GC26-3791

Operator's Library: 0S/VSl Reference,

Order No. GC38-0110

0S/VS Message Library: VS1 System
Messages, Order No. GC38-1001

0S/VS Message Library: VS1 System
Codes, Order No. GC38-1003

Those readers who are using 0S/VS2 should
also be familiar with the following
publications:

0S/VS2 System Generation keference,
Order No. GC26-3792

Operator's Library:
Order No. GC38-0210

VS2 Reference,

0S/VS Message Liprary: VS2 System
Messages, Order No. GC38-1002

0S/VS Message Librarv: VS2 System
Codes, Order ilo. GC38-1008

Readers who are TSO under 0S/VS2 should be
familiar with these additional
publications:

0S/VS2 TSO Guide, Orcder No. GC2§-0644

0S/VS2 TSO Guide to Writing a Terminal
Monitor Program or a Command Processor,
Order No. GC28-0648

Operator's Library:
No. GC38-0220

05/VS2 TSO, Order

0S/VS Message Library: VS2 TSO
Messages, Order No. GC38-1009

Readers who are installation VS BASIC under
VM/370(CMS) should be familiar with the
contents of the following publications:

IBM VM/370 Plannina and System
Generation Guide, Order No. GC20-1801

IBM VM/370 Command Language Guide for
General User, Order No. GC20-1804

IBM VNM/370 Operator's Guide, Order
No. GC20-1806

Readers who are installing VS EASIC under
DOS/VS should be familiar with the contents
of the following publications:

DOS/VS System Control Statements, Order
No. GC33-5376

DOS/VS System Generation, Order
No. GC33-5377

Operator's Library DOS/VS Operating
Procedures, Order No. GC33-5378

DOS/VS Messages, Order No. GC33-5379

DOS/VS Utilities, Order No. GC33-5381

CONTENTS

INTRODUCTION & 2 o o @ o o o o o o o o o o a o a o o o o « o « =

INSTALLATION PROCEDURES o « o o o « o o « o o o o o o o o o« o o =
Format of the VS BASIC Processor Distribution Tape
Installing VS BASIC as an Interactive and Batch Processor under
0S/Vs2(TsSO) e o e 4 e e ® o e s e o @ e e e e e o e
Requirements for Installatlon under OS/VSZ(TSO) e e e e e e e .
Equipment Configuration for 0OS/VS2(TSO) . . . « . .« « « « « .
0S/VS2(TsSO) System Generation Requirements . .« ¢« o o« o o o« .
0S/VS2(TsO) Installation Requirements . . . o . e e e
Overview of the Installation Procedure under OS/VSZ(TSO) . - .
Installation Procedure for VS BASIC under 0S/VS2(TSO)
Installing VS BASIC as a Batch Processor under 0S/VS1l or OS/VS2 .
Requirements for Installation under 0S/VS1l and OS/VS2 . « . . .
Equipment Configuration for 0S/vVsl and 0S/VS2 « . .« .
0S/VSsl and 0S/VS2 System Generation Requirements
0S/VS1l and 0S/VS2 Installation Requirements
Overview of the Installation Procedure under 0S/VS1l or OS/VSZ .
Installation Procedure for VS BASIC under OS/VS1l or 0OS/VsS2 . .
Installing VS BASIC as an Interactive and Batch Processor under
VM/370(CMS) e« o s = o o e e e e e e e
Requirements for Installatlon under VM/370(CMS) “ e e e e e e
Equipment Configuration for VM/370(CMS) ¢« ¢« « « « .
VM/370(CMS) System Generation Requirements
VM/370(CMS) Installation Requirements . . . « e e e e e e
Overview of the Installation Procedure under VM/370(CMS) - e .
Installation Procedure for VS BASIC under VM/370(CMS)
Installing VS BASIC as a Batch Processor under DOS/VS
Requirements for Installation under DOS/VS . . o« & « o ¢ « o« &
Equipment Configuration for DOS/VS . . ¢ ¢ . ¢ ¢ ¢ o o « « &
DOS/VS System Generation Requirements . . . « « « ¢« « « ¢ o« .
DOS/VS Installation Requirements - e e e e e e
Overview of the Installation Procedure under DOS/VS « o 4 e«
Installation Procedure for VS BASIC under DOS/VS « . . .

STORAGE ESTIMATES + + v o o o o o o o o o o o o o o o e o o 0w

DIAGNOSTIC MESSAGES e ® e e = o % = @ o 8 e & e s @ a o
Obtaining a Listing of All VS BASIC Diagnostic Messages . « .« «
Under OS/VS +v v v ¢ o o o o a « o o s o o 2 a « o s o a s o «
UNnder CMS o« o o o o o o s o o o = o o o = o« a o« a o o o « o o o
Under DOS/VS ¢ v v e 4 o « « o a o o o o o o « o o o o« o« o o o

SYSTEM PROGRAMMING . &« 4 « o o o o o« o o = o« o o a o a » o s« o =
System Programming Considerations for All Systems Users
Separable Library Facility =« ¢ « ¢ ¢ o o 2 « o o o o« o o o o =

Requirements for Writing Routines under SLF « . . .
Writing a Function Evaluating Routine under SLF
Sample SLF Function Evaluating Routines
Writing a Scanning Routine under SLF .« ¢ ¢ « o « o o « o o =
Sample SLF Scanning Routine e e e e e .
Modifying the Branch Information Table (ICDBIFTB) and

Reassembling the Run-Time Routine ICDKBFTB

Sample SLF Branch Information Table (ICDKBFTB) Modlflcatlons
Installing Your SLF MoOAULIES .« « v o« & o o o o o o o o o o o =

Space Considerations for SLF . . . <« ¢ ¢ ¢ ¢ o v o o o o o &
System Programming Considerations for 0S/VSl, 0S/VS2, 0S/VS2(TSO)
and DOS/VS Users e« s e o & s 2 e s e e @ s o 2 e s =

Guidelines for Creating VSAM Files Using Access Method Services
Creating VSAM Files for VS BASIC USEXS =« « o « o o « o « o o« &
Defining a VSAM Master Catalog © o s s e o o o

Job Control Statements Required for a VSAM Master Catalog . .

DEFINE Command Required for a VSAM Master Catalog .
Defining a VSAM Data Space - e .

Job Control Statements Requlred for a VSAM Data Space

DEFINE Command Required for a VSAM Data Space . . .
Defining a VSAM File
Job Control Statements Requ1red for a VSAM Flle .- .
DEFINE Command Required for a VSAM File

Examples of Using Access Method Services to Define VSAM

Example of Using Access Method Services under 0OS/VS

Files . .

Example of Using Access Method Services under 0S/VS2(TSO)

(Without Command Procedures) .« .« « « & o o« o« o « «

Example of Using Access Method Services under 0S/VS2(TSO)

Command Procedures) . . « ¢ o ¢ 4 « « o « 4 . o o
Example of Using Access Method Services under DOS/VS
System Programming Considerations for 0S/VS2 (TSO) Users

Preparing a LOGON Procedure under TSO . « .+« « « o .+ .

Keyboard Characters for VS BASIC TSO Terminal Users .

System Programming Considerations for 0S/VS1l and 0S/VS2 Users

-

(With

Placing Components of the VS BASIC Processor into the Link Pack

Area of OS/VS <« «

Installing VS BASIC Components in the Llnk Pack Area of

System Programming Considerations for VM/370(CMS) Users

CMS Preparations for New VS BASIC Users
Replacing Routines of the VS BASIC Processor under CMb
Regenerating the VS BASIC Load Modules under CMS . .

APPENDIX A: DISTRIBUTION TAPE INSTALLATION PROCEDURES .
Distribution Tape Installation JCL Procedure for 0OS/VS

Distribution Tape Installation JCL Procedure for 0OS/VS2(TSO)

-

oS/VSs .

Distribution Tape Installation EXEC Procedure for VM/370(CMS)

Distribution Tape Installation JCL Procedure for DOS/VS

APPENDIX B: VS BASIC PROCESSOR MODULES .« . o« o o o« o« &

Executor Modules . . o ¢ ¢ & o« 4« o o o o o o o « o o o
Compiler Modules . . ¢ ¢ v o« v o o o o = o « o « a « =

All SYStemS o v 4 ¢ 4« 4 4 4 4 e e e e 4 e e e e e e
Library Modules . . ¢ v ¢ v o & o o o o o « o « o « «

All systems - « o e o s o a o o o o o
Debug Modules (TSO and CMS Only) e 4 e e e e e e e e
Miscellaneous Modules « . . . ¢ & ¢ & o o o o o « o o

APPENDIX C: VS BASIC SAMPLE PROGRAM « « « « o « o o« « &
Output from Sample PrOGram « « « « « « 2 « o o « o «

INDEX « o o o o o o o o o o o o o o o 2 « o 2 o o s o =

Table 1.
Table 2.
BASIC w «¢ v ¢ o o o o o « o =
Table 3. Auxilliary Storage
OS/VS2(TSO) . v ¢ o o o « « &
Table 4. Auxilliary Storage
0S/VS1 Oor OS/VS2 o o o o o o
Table 5. Auxilliary Storage
VM/370{CMS) . . « . .
Table 6. Auxilliary Storage
DOS/VS &« o o o o o o o o o =
Table 7.
Table 8.

s e o e

Required for Installing VS BASIC under

Required for Installing VS BASIC under

Required for Installing VS BASIC under

-

Terminal Keyboard Special Characters for TSO .
Terminal Keyboard Special Characters for CMS .

Files on the VS BASIC Distribution Tape or Disk
Dynamic Storage Required for Installing and Executing VS

TABLES

Required for Installing VS BASIC under

-

11
51
52
53

53

INTRODUCTION

The VS BASIC Processor is designed to operate in virtual storage
systems, both time-sharing and batch. The processor is a problem
program that runs under the following systems:

Time~-sharing
e 0S/VS2(TS0O)

e VM/370(CMS)

Batch
¢ OS/VS1
e 0OS/VS2
* VM/370(CMS)
® DOS/VS

The VS BASIC Processor can be logically divided into four parts: an
executor, a compiler, a library, and a debug processor. The executor
serves as an interface between the system, under which VS BASIC is
running, and the other three parts of the processor. It insulates the
processor from the system and permits it to operate without any
dependence on the host system. The executor intercepts and relays any
processor requests for system services.

The compiler is a fast, one-pass language translator that accepts
source programs written in the VS BASIC language and produces object
code that is suitable for execution on a System/370 machine.
Optionally, the compiler will process programs in long or short
precision, permit the compilation to proceed into execution, store the
object code produced, or produce object code that has been tailored to
meet the needs of the debug processor.

The library contains run-time routines that assist in the execution
of VS BASIC programs. In addition, it also contains routines that
execute intrinsic library functions.

Since the compiler, library and 0S/VS and TSO executors are
reentrant, they can be installed under OS/VS in the link pack area
making them available to a number of users simultaneously.

The debug processor permits the user to set breakpoints in his
program as it is executing, display the contents of his program
variables, and to trace the flow of control through the program. It is
available only under TSO and CMS (interactive only).

The VS BASIC Processor is distributed on one tape. This tape
contains all the processor components required plus procedures for link
editing them into any system under which VS BASIC is designed to
operate.

Introduction

9

INSTALLATION PROCEDURES

FORMAT OF THE VS BASIC PROCESSOR DISTRIBUTION TAPE

All the modules that are required to install VS BASIC on any system,
under which it is designed to run, are contained on one installation
tape. If you are a DOS/VS user, you have the option of receiving a disk
instead of a tape. The format of the installation tape or disk is shown
in Table 1.

Table 1. Files on the VS BASIC Distribution Tape or Disk

r T T

| File No. | | Record Characteristics |
| | Contents | RECFM LRECEL BLKSIZE |
b + -4 — :
| 1 | DOS JCL and object code for the | FB 80 3440 |
| | compiler, library, and executor |

| | and source macros and modules | |
| | for SLF | I
| I , | I
| 2 | 0s/vS Installation JCL i FB 80 80

| | Procedure | |
| I [I
3	05/VS(TSO) Installation JCL	FB 80 80
	Procedure	
[
4	0S/VS Executor Module	FB 80 3200
		I
5	TSO Executor Module	FB 80 3200

| I I I
| 6 | TSO RENUM Modules | FB 80 3200 I
I | | I
| 7 | TSO HELP Command Messages | FB 80 3200

| | | I
| 8 | CMS Installation EXEC Procedure | FB 80 3200 i
I I I |
| 9 | VS BASIC Compiler Module | FB 80 3200

[I | |
| 10 | VS BASIC Library Module | FB 80 3200

I | | |
| 11 | VS BASIC Debug Module | FB 80 3200

| | I |
| 12 | CMS Executor Module | FB 80 3200

! | | |
| 13 | CMS Utility Conversion Module | FB 80 3200 |
I [I : |
| 14 | CMS HELP Module | FB 80 3200 |
I | | |
| 15 | HELP Error Message File | FB 80 3200

I | I |
| 16 | Sample Program | FB 80 3200 |
I | I |
| 17 | Separable Library Function (SLF) | FB 80 3200 |
| | Macro Source | |
I I I I
| 18 | ICDKBFTB Source Module (for SLF) | FB 80 3200 |
L 1 L J

Installation Procedures 11

INSTALLING VS BASIC AS AN INTERACTIVE AND BATCH PROCESSOR UNDER
0S/VS2(TS0O)

This section describes installing VS BASIC as an interactive processor
under TSO. It optionally permits you to install, simultaneously, VS
BASIC as a batch processor in your OS/VS2 system. For information on
installing the VS BASIC as a batch processor only under 0S/VS1, 0S/VS2
(without TSO), or DOS/VS, or as an interactive and batch processor under
VM/370(CMS), see the appropriate section of this book.

Note: If you are using private libraries to install VS BASIC, the
private libraries can be transferred to an 0S/VS1l system and VS BASIC
will execute. Any system dependencies (that is, link list procedures)
must be repeated for 0S/Vsl. If you are using the system libraries you
will have to install VS BASIC following the instructions for 0S/Vsi.

REQUIREMENTS FOR INSTALLATION UNDER OS/VS2(TSO)

Equipment Configuration for 0S/VS2(TS0)

o A System/370 machine configuration that can support the 0S/VS2(TSO)
environment (Model 145 or equivalent).

¢ At least one magnetic tape device. For 0S/VS2(TSO), the VS BASIC
processor is distributed only on magnetic tape.

05/VS2(TS0O) System Generation Requirements

¢ An installed Release 1.6 or a subsequent release of 0S/VS2.

e The Time Sharing Option.

e TSO Utilities Maintenance Release VIM3 must be applied to TSO.

e The TSO EDIT, HELP information (EDIT member). (This is optional;
however, if your users intend to use the HELP command with VS BASIC,
it must be available.)

¢ The Floating-point Instruction Set.

¢ The Extended-precision, Floating-point Instruction Set. (This
feature is optional; however, if your users intent to make use of

the VS BASIC DOT, PRD, and SUM functions in extended-precision, it
must be available.)

¢ The following access methods:
TCAM
QSAM
BSAM
VSAM (optional)

¢ The Level F Linkage Editor (alias IEWL).

Installation Procedures 13

The following OS/VS utilities:

IEBGENER

IEBUPDTE

IEHLIST

IEHPROGM
The line printer must be output class A.
The card punch must be output class B.

SYSDA must be available.

Release 1.6 also requires the following:

.

TSO Enhancement Package #2 must be applied (Release 1.6 of 0S/VS2
only).

VS BASIC ICR must be applied (Release 1.6 of 0S/VS2 only). VS BASIC
ICR is available with the following feature numbers:

5036 800bpi
5037 1600bpi

In addition, the optional source is available with these feature
numbers:

5425 800bpi
5426 1600bpi

VS BASIC ICR must be installed after the TSO Enhancement Package #2.

0S/VS2(Ts0) Installation Requirements

14

The distribution tape for VS BASIC
A minimum region size of 128K.

Space available on SYS1.LINKLIB or a private library for the VS
BASIC TSO interactive and batch executors, compiler, library, debug
processor, and RENUM facility. (See Table 3 in the "Storage
Estimates" section for the storage requirements.)

Optionally, space available on SYS1.HELP or a private library for
the VS BASIC extensions to the HELP facility. (See Table 3 in the
"Storage Estimates" for the storage requirements.)

Optionally, space available on SYS1.LINKLIB or a private library for
the VS BASIC batch executor, only if you wish to install the batch
executor in separate library. (See Table 3 in the "Storage
Requirements" section for the storage requirements.)

Space available on SYS1.PROCLIB for the installation JCL procedure,
VSBDEF, which you will write to define the target libraries for the
installation procedure. (See Table 3 in the "Storage Estimates"
section for the storage requirements.)

OVERVIEW OF THE INSTALLATION PROCEDURE UNDER 0S/VS2(TSO)

To help you understand and select the information required for the
installation of VS BASIC under 0S/VS2(TSO), the following sequence of
events is given:

Ensure that your system conforms to the installation requirements of
the VS BASIC Processor.

Determine the target libraries that you will use. The VS BASIC
Processor under 0S/VS2{TSO) can use up to three libraries. One
library is required for the interactive and batch versions of the
executor, the compiler, the debug processor, the RENUM facility, and
the run-time library. A second library is optionally required if
you are installing the VS BASIC modifications to the TSO EDIT HELP
facility. A third library is optionally required if you are
installing the batch version of the executor in a library different
from the library containing the interactive version.

Prepare and run a JCL procedure that will be placed on SYS1.PROCLIB
and that will define the the target libraries to your system.

Prepare and run a JCL procedure that will ensure that any new
private libraries that you may be creating for the VS BASIC
Processor do not already exist in your system.

Allocate and catalog any new private libraries, if used.

Mount the distribution tape and start the reader to the third file
on the tape.

Decide whether you will concatenate any private libraries with
SYS1.LINKLIB or whether you will identify tham with STEPLIB DD
statements.

Prepare a TSO LOGON procedure for your TSO users.

Test the success of the installation procedure using the sample
program, card deck that is provided.

Installation Procedures 15

INSTALLATION PROCEDURE FOR VS BASIC UNDER 0S/VS2(TSO)

This procedure is designed to install VS BASIC as an interactive and
optionally a batch processor under 0S/VS2(TSO) only. If you wish to
install VS BASIC as a batch processor only under 0S/VS1l or 0S/VS2, refer
to the section "Installing VS BASIC as a Batch Processor under 0S/VSl
and 0S/VSs2".

1

16

Prepare and run the following JCL procedure that will add to
SYS1.PROCLIB, VSBDEF, a JCL procedure that defines the libraries
that will contain the VS BASIC compiler, library, executors, HELP
facility, debug processor, and RENUM modules:

TMQO O

//DEFINE JOB accounting-information,MSGLEVEL=(1,1)
// EXEC PGM=IEBUPDTE, PARM=NEW

//SYSPRINT DD SYSOUT=A

//S8YSUT2 DD DSN=SYS1.PROCLIB,DISP=0LD

//SYSIN DD DATA

./ ADD NAME=VSBDEF, LIST=ALL

./ NUMBER NEW1=10,INCR=10

//VSB EXEC PGM=IEHLIST

//SYSPRINT DD DUMMY

//SYSIN DD DUMMY

//TLNK DD DSN=librarz-name, DISP=(OLD,PASS)
//VLNK DD DSN=library-name,DISP=(OLD, PASS)
//SYSHELP DD DSN=libra£y-name(EDIT),DISP=(OLD,PASS)
//HELP DD DSN=library-name,DISP=(OLD, PASS)
//TAPE DD LABEL~=(,NL) .UNIT=(2400,,DEFER),

/7 DCB=DEN=denSitX,VOL=(,RETAIN,SER=VSBAS),
// DIspP=(0OLD,PASS)

o/ ENDUP

/*

An explanation of the lettered statements follows:

B

Supply any accounting-information that your computing center
requires.

This statement defines the library that will contain the VS
BASIC interactive version of the executor, compiler, library,
debug processor, and RENUM facility. You must supply the
following information:

library-name - is the name of the library to be used. You may
specify either SYS1.LINKLIB or a private library name.
The private library name may refer to a library that
already exists or indicate the name of a new library that
will be created later in the installation procedure.

This statement defines the library that will contain the batch
version of the VS BASIC executor. Installing the batch
executor is optional. If you want the batch version of the VS
BASIC executor installed in a separate library, you must
supply the following information:

library-name - is the name of the library to be used. You may
specify either SYS1.LINKLIB or a private library name (it
may be the same private library name specified in the
TLNK statement). The private library name may refer to a
library that already exists or indicate the name of a new
library that will be created later in the installation
procedure.

If you do not want the batch version, replace this statement
with the following statement:

//VLNK DD DSN=g&&any-name,UNIT=SYSDA
Vs DISP=(NEW, PASS), SPACE=(CYL(1,1,3))

where:

any-name -~ is any name that you choose for a temporary data
set.

This statement is optional and defines the library that
contains the EDIT member of SYS1.HELP. Note that this data
set must be accessed sequentially name(EDIT). If you want the
VS BASIC modifications for the HELP facility, you must supply
the following information.

library-name - is the name of the library that contains the
EDIT member of SYS1.HELP. You may specify either
SYS1.HELP or the private library name in which the EDIT
member resides.

If you do not want the HELP facility updated, replace this
statement with the following statement:

// SYSHELP DD DUMMY

Tnis statement defines the library that will contain the VS
BASIC modifications to the TSO HELP facility. Installing
these modifications is optional. If you want this additional
capability, you must supply the following information:

library-name - is the name of the library to be used. You may
specify either SYS1.HELP or a private library name. The
private library name may refer to a library that already
exists or indicate the name of a new library that will be
created later in the installation procedure.

If you do not want them, replace this statement with the
following statement:

7/ HELP DD DUMMY
This statement defines the magnetic tape unit on which the

distribution tape is mounted. You must supply the following
information:

density - indicates the density of the distribution tape.
Specify 2 if the tape is 800 BPI or 3 if the tape is 1600
BPI.

in step 1 , you specified private, library names for the

If,

2 libraries that you plan to create, make sure that those names do
not already exist in your system. The following JCL procedure can
be used if you are not sure and it will also delete a data set that
may have the same name:

a

C
D

//DELETE JOB accounting-information, MSGLEVEL=(1,1)
// EXEC PGM=IEHPROGM

//SYSPRINT DD SYSOuUT=A

//TARGET DD VOL=(PRIVATE, RETAIN, SER=serial-number)
// UNIT=unit,DISP=0LD

//SYSIN DD *

SCRATCH DSN=library-name,VOL=unit=serial-number
UNCATLG DSN=library-name

/%

Installation Procedures 17

3

18

An explanation of the lettered statements follows:

B

Supply any accounting-information that your computing center
requires.

This statement locates the volume that is to be searched for an
old data set with the same name as the new library that is to
be created. Supply the following information:

unit - indicates the direct access unit on which the volume is
mounted.

serial-number - indicates the volume serial number of the
volume to be searched.

Note: If you need to search more than one volume, you must
insert a similar statement for each volume to be
searched. You must, however, use a different ddname on
each statement (for example, TARGET, TARGET1, TARGET2)

This statement scratches the old data set. Supply the
following information.

library-name - must be the same as the library name that you
specified in the TLNK, VLNK, or HELP DD statements in
step 1 . to be scratched.

unit - indicates the direct access unit on which the library
resides.

serial-number - indicates the volume serial number of the
volume containing the old data set that is to be
scratched.

Note: If you are using more than one private library, you must
include a SCRATCH statement for each library name. If
the library was created with an expiration date, it
cannot be scratched unless you specify PURGE.

This statement uncatalogs the o0ld data set. Supply the
following information:

library-name - must be the same as the library name that you
specified in the TLNK, VLNK, or HELP DD statements in
step 1 .

Note: If you are using more than one private library, you must
include an UNCATLG statement for each library name.
Release 2.0 of 0S/VS2 does not support UNCATLG, use a
JCL procedure for uncataloging.

Allocate and catalog the new private libraries. The following JCL
procedure will accomplish this:

a

//ALLOC JOB accounting-information, MSGLEVEL=(1,1)
/7 EXEC PGM=IEHLIST

//SYSPRINT DD SYSOUT=A

//LINK DD DSN=library-name,UNIT=unit

/7 VOL=(PRIVATE,RETAIN,SER=serial-number)
/7 SPACE=(TRK, (tracks,1,directory-records))
/7 DISP=(NEW,CATLG)

//HELP DD DSN=library-name,UNIT=unit,

Va4 VOL=PRIVATE,RETIAN, SER=serial-number)
/7 SPACE=TRK, (tracks,1,directory-records))
/77 DCB=DSORG=PO, RECFM=F, LRECL=80,

/77 BLKSIZE=7280),DISP=(NEW,CATLG)

/*

4

An explanation of the lettered statements follows:

B

Supply any accounting-information that your computing center
requires.

This statement cataloges and allocates a new private library.
You must supply the following information:

library-name - must be the same as the library name that you
specified in the TLNK or VLNK DD statements in step 1 .

unit - identifies the direct access unit on which the new
private library will be created.

serial-number - identifies the volume serial number of the
volume on which the new private library is to be created.

tracks - indicates the number of tracks that will be required.
See Table 3 in the "Storage Estimates" section for the
amount of storage required by SYS1.LINKLIB.

directory-records - indicates the number of directory records
that are required. See Table 3 in the "Storage
Estimates" section for the number of records required by
SYS1.LINKLIB.

Note: If you are using more than one private library, you must
include one of these statements for each new library that
you specified in the TLNK or VLNK DD statements in
step 1 . You must, however, use a different ddname on
each statement (for example, LINK and LINK1).

This statement cataloges and allocates a new private library
for the HELP facility modifications. You must supply the
following information:

library-name - must be the same as the library name that you
specified in the HELP DD statement in step 1 .

unit - identifies the direct access unit on which the new
private library will be created.

serial-number - identifies the volume serial number of the
volume on which the new private library will be created.

tracks - indicates the number of tracks that will be required.
See Table 3 in the "Storage Estimates" section for the
amount of storage required by SYS1.HELP.

directory-records - indicates the number of directory records
that are required. See Table 3 in the "Storage
Estimates™ section for the number of records required by
SYS1.HELP. ’

Mount the VS BASIC distribution tape on the magnetic tape device
described by the TAPE DD statement in step 1 .

5 Start the reader to the tape device. Use the following command:

START RDR,cuu, LABEL=(3,NL)
where:

cuu - is the channel and unit address of the tape unit
on which the distribution is mounted.

The JCL is read off the tape. The tape must then be readied again
to read the actual installation procedure, VSBPP. After the START

Installation Procedures 19

20

RDR, issue a VARY command to take the tape device off-line making
it available to be allocated for the second read. During the
processing, the VSBDEF installation JCL procedure will be executed.
Then the JCL procedure on the distribution tape (VSEPP for TSO)
will 1link edit the compiler, library, batch and/or interactive
executors, debug processor, and RENUM facility and place them and
the HELP facility members into the libraries that you choose in the
TLNK, VLNK, or HELP DD statements in step 1 . If the
installation has been successful, a sample VS BASIC source program
will be punched into a card deck. If the card deck is not
produced, attempt to reinstall the processor. If the deck is still
not produced, contact your IBM representative.

Before you can begin using VS BASIC at a terminal or make it
available to your users, you must, first, consider an assumption
that 0S/VS makes. O0S/VS2 assumes that the VS BASIC Processor
resides on SYS1.LINKLIB. Therefore, if you have placed it there,
you may omit this step and go on to the next step. However, if you
have placed VS BASIC into a private library, you must do either
step 6A or 6B. Step 6A describes how to concatenate private
libraries with SYS1.LINKLIB using the Link Library List option of
SYS1.PARMLIB. Step 6B describes using a STEPLIB DD statement in
the TSO LOGON procedure or batch JCL to define private libraries.

Prepare the following JCL procedure that will utilize the Link
Library List option of SY¥S1.PARMLIB to concatenate your
private libraries with SYS1.LINKLIB:

!I //CONCAT JOB accounting-information,MSGLEVEL=(1,1)
/7 EXEC PGM=IEBUPDTE, PARM=NEW
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSN=SYS1.PARMLIE,DISP=0LD
//SYSIN DD DATA
./ ADD NAME=LNKSTO00, LIST=ALL
o/ NUMBER NEW1=01,INCR=02
:’ SYS1.LINKLIB,...,library-name,; [,library-name,]
./ ENDUP
/%

An explanation of the lettered statement follows:

!’ Supply any accounting-information that your computing
center requires.

[’ This statement concatenates your private library names
with SYS1.LINKLIB. Supply the following information:

library-name, [,library-namen] - must be the same as the
library names that you specified in the TLNK or VLNL
DD statements in step 1 . Be sure to include any
libraries that are already specified in the link
library list.

Note: After concatenating your private libraries to
SYS1.LINKLIB, you must re-IPL your system before
you can use VS BASIC.

When you prepare the TSO LOGON procedure for your terminal
users, be sure to include a STEPLIB DD statement of the
following form for each private library used in place of
SYS1.LINKLIB:

//STEPLIB DD DSN=library-name,DISP=SHR

where:

library-name - is the same as that specified in the TLNK
DD statements in step 1 .

Note: You must inform your batch users that they must
include a similar STEPLIB DD statement for the TLNK
and VLNK libraries in the JCL that they submit with
their jobs. If you are using a separate library
for the batch version of the executor, they must
also include the following DD statement immediately
after the STEPLIB DD statement:

// DD DSN=library-name, DISP=SHR
where:

library-name - is the same as that specified in the VLNK
DD statement in step 1.

TSO assumes that the HELP facility resides on SYS1.HELP.

Therefore, if you have placed it there, you may omit this step and
go on to the next step. However, if you placed the HELP facility
into a private library, you must include a STEPLIB DD statement of
the following form in the LOGON procedure that you prepare for your
terminal users:

//STEPLIB DD DSN=library-name,DISP=SHR
/7 DD DSN=SYS1.HELP,DISP=SHR

where:
library-name - is the same as that specified in the HELP

statement in step 1 .

Prepare a LOGON procedure for your TSO terminal users. See the
section "TSO LOGON Procedure Considerations" in the "System
Programming" part of this book for detailed information.

o0

procedure, test the operation of the VS BASIC processor in your
system. To run the sample program under TSO, you must first place
the program into any data set to make it available at your
terminal. The following JCL procedure will accomplish this:

9 Using the sample program deck produced by the installation

!! //SAMPLE JOB accounting-information, MSGLEVEL=(1,1)

/7 EXEC PGM=IEBUPDTE, PARM=NEW
//SYSPRINT DD SYSOUT=A
:’ //5YSUT2 " DD DSN=data-set-name, UNIT=unit,DISP=(MOD,CATLG),
/7 VOL=SER=serial-number, SPACE=(TRK(1,1,1)),
// DCB=(RECFM=FB, LRECL=80, BLKSIZE=3200)
//SYSIN DD
./ ADD NAME=VSBSAMP

card Deck for VSBSAMP

./ ENDUP
. /%

An explanation of the lettered statements follows:

I} sSupply any accounting-information that your computing center
requires.

Installation Procedures 21

22

This statement defines the data set that will contain the
sample program. Supply the following information:

data~-set-name - is the name of any data set in which you
choose to place the sample program.

unit - identifies the direct access unit on which the data set
resides.

serial-number - identifies the volume serial number of the
volunie on which the data set resides.

Once the sample program deck has been placed into a data set,
refer to the publication System/370 VS BASIC TSO Terminal
User's Guide, Order No. SC28-8304, for information on running
the sample program in an interactive environment. You will
need the following command:

run vsbsamp source

To run the sample program in a batch environment, refer to the
publication System/370 VS BASIC 05/VS and DOS/VS Programmer's
Guide, Order No. SC28-8308. You will need the following job
control statements:

//SAMPRUN JOB accounting-information,MSGLEVEL=(1,1)

4 EXEC PGM=ICDOSBSC
//SYSPRINT DD SYSOUT=A
//CONTROL DD *

RUN VSBSAMP SOURCE

Ccard Deck for VSBSAMP

-
-

/%
//8¥S005 DD UNIT=SYSDA,SPACE=(TRK, (10,10))
//8Y¥S009 DD UNIT=SYSDA,SPACE=(TRK, (10,10))
/%

Note: When running the sample program, the two data sets
SYS005 and SYS009 are required. If the VS BASIC Processor was
not installed on SYS1.LINKLIB, you must also include a STEPLIB
DD statement of the following form:

//STEPLIB DD DSN=library-name,DISP=SHR

INSTALLING VS BASIC AS A BATCH PROCESSOR UNDER OS/VS1l OR 0OS/VS2

This section describes installing VS BASIC as a batch processor only
under 0OS/VS1l and 0S/VS2. For information on installing VS BASIC as an
interactive and batch processor under 0S/VS2(TSO) or VM/370(CMS), or as
a batch processor under DOS/VS, see the appropriate section of this
book.

REQUIREMENTS FOR INSTALLATION UNDER 0OS/VS1l AND 0S/VS2

Equipment Configuration for 0S/VS1l and 0S/VS2

* A System/370 machine configuration that can support the 0S/Vsl
(Model 135 or equivalent) or the 0S/VS2 (Model 145 or equivalent)
environments.

e At least one magnetic tape device. For 0S/VS1l and 0S/VS2, the VS
BASIC Processor is distributed only on magnetic tape.

0S/VS1 and 0S/VS2 System Generation Requirements

¢ An installed release of 0S/VSl or 0S/VS2.

¢ The Floating-point Instruction Set.

e The Extended-precision, Floating-point Instruction Set. (This
feature is optional; however, if your users intend to make use of
the VS BASIC DOT, PRD, and SUM functions in extended-precision, it
must be available.)

e The following access methods:

QSAM
BSAM
VSAM (optional)

¢ The Level F Linkage Editor (alias IEWL).

¢ The following 0S/VS utilities:

IEBGENER

IEBUPDTE (optional)

IEHLIST

IEHPROGM
e The line printer must be output class A.
e The card punch must be output class B.

e SYSDA must be available.

Installation Procedures 23

0s/vVSl and 0S/VS2 Installation Requirements

24

The distribution tape for VS BASIC.
A minimum region or partition size of 128K.

Space available on SYS1.LINKLIB or a private library for the Vs
BASIC executor compiler, and library. (See Table 4 in the "Storage
Estimates" section for the storage requirements.)

Space available on SYS1.PROCLIB or a private library for the
installation JCL procedure, VSBDEF, which you will write to define
the target libraries for the installation procedure. (See Table 4
in the "Storage Estimates" section for the storage requirements.)

OVERVIEW OF THE INSTALLATION PROCEDURE UNDER 0S/VS1l OR 0S/VS2

To help you understand and select the information required for the
installation of VS BASIC as a batch processor only under 0S/VSl oxr
0S/VS2, the following sequence of events is given:

Ensure that your system conforms to the installation requirements of
the VS BASIC Processor.

Determine the target library that you will use. The VS BASIC
processor under 0S/VS requires one library for the batch executor,
the compiler, and the run-time library.

Prepare and run a JCL procedure that will be placed on SYS1.PROCLIB
and that will define the target library to your system.

Prepare and run a JCL procedure that will ensure that a new private
library that you may be creating for the VS BASIC Processor does not
already exist in your system.

Allocate and catalog the new private library, if used.

Mount the distribution tape and start the reader to the second file
on the tape.

Decide whether you will concatenate the private library, if used,
with SYS1.LINKLIB or whether you will identify it with a STEPLIE DD
statement.

Test the success of the installation procedure using the sample
program, card deck that is provided.

Installation Procedures 25

INSTALLATION PROCEDURE FOR VS BASIC UNDER 0S/VS1l OR 0S/VS2

This procedure is designed to install VS BASIC as a batch processor only
under 0S/VS1l or 0S/VS2. If you wish to install VS BASIC as both a batch
and an interactive processor under 0S/VS2(TS0O), refer to the section
"Installing VS BASIC as an Interactive and Batch Processor under

0s/vs2{Ts0)."

1

26

Prepare the following JCL procedure that will add to SY¥S1.PROCLIE,
VSBDEF, a JCL procedure that defines the libraries that will
contain the VS BASIC compiler, library, and executor modules:

I} //INSTALL JOB accounting-information, MSGLEVEL=(1,1)
//DEFINE EXEC PGM=IEBUPDTE, PARM=NEW
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSN=SYS1.PROCLIB,DISP=OLD
//SYSIN DD DATA
o/ ADD NAME=VSBDEF, LIST=ALL
o NUMBER NEW1=10, INCR=10
//VSB EXEC PGM=IEHLIST
//SYSPRINT DD DUMMY
//SYSIN DD DUMMY
F} //VLNK DD DSN=1library-name,DISP=(OLD, PASS)
' //TAPE DD LABEL=(,NL),UNIT=(2400, ,DEFER),
77/ DCB=DEN=density, VOL=(, RETAIN, SER=VSBAS) ,
7/ DISP=(OLD, PASS)
o ENDUP
J*

An explanation of the lettered statements follows:

I} sSupply any accounting-information that your computing center
requires.

B} This statement defines the library that will contain the Vs
BASIC compiler, library, and executor. You must supply the
following information:

library-name - is the name of the library to be used. You may
specify either SYS1.LINKLIB or a private library name.
The private library name may refer to a library that
already exists or indicate the name of a new library that
will be created later in the installation procedure.

EI This statement defines the magnetic tape unit on which the
distribution tape will be mounted. You must supply the
following information:

density - indicates the density of the distribution tape.
Specify 2 if the tape is 800 BPI or 3 if the tape is 1600
BPI.

If in step 1 , you specified a private, library name for the
library that you plan to create, make sure that its name does not
already exist in your system. The following JCL procedure can be
used if you are not sure and it will also delete a data set that
may have the same name:

I} //DELETE JOB accounting-information, MSGLEVEL=(1,1)
// EXEC PGM=IEHPROGM
//SYSPRINT DD SYSOUT=A
B //tarceT DD UNIT=unit,VOL=(PRIVATE,RETAIN,
/7 SER=serial-number),DISP=0OLD
//SYSIN DD *
SCRATCH DSNAME=library-name,VOL=unit=serial-number
D UNCATLG DSNAME=library-name

/¥

An explanation of the lettered statements follows:

!! Supply any accounting-information that your computing center
requires.

B This statement locates the volume that is to be searched for
an old data set with the name as the new library that is to be
created. Supply the following information:

unit - indicate the direct access unit on which the volume is
mounted.

gserial-number - indicate the volume serial number of the
volume to be searched.

EI This statement scratches the old data set. Supply the
following information:

library-name - must be same as the library name that you
specified in the VLNK DD statement in step 1 .

unit - indicates the direct access unit on which the library
is mounted.

serial-number - indicates the volume serial number of the
volume to be searched.

Note: If the library was created with an expiration date, it
cannot be scratched unless you specify PURGE.

[J This statement uncataloges the old data set. Supply the
following information:

library-name - must be the same as the library name that you
specified in the VLNK DD statement in step 1 .

Note: Release 2.0 of 0S/VS2 does not support UNCATLG; use a
JCL procedure for uncataloging.

Allocate and catalog the new private library. The following JCL
procedure will accomplish this:

I! //ALLOC JOB accounting-information, MSGLEVEL=(1,1)
// EXEC PGM=IEHLIST
//SYSPRINT DD SYSOUT=A

:’ //LINK DD DSN=library-name,UNIT=unit,
// VOL=(PRIVATE,RETAIN, SER=serial-number),
// SPACE=(TRX, (tracks,1,directory-records)),
// DISP=(NEW,CATLG)
/%

An explanation of the lettered statements follows:

(A Supply any accounting-information that your computing center
requires.

:’ This statement cataloges and allocates the new private
library. Supply the following information:

library-name - must be the same as the library name that you
specified in the VLNK DD statement in step 1 .

unit - indicates the direct access unit on which the new
private library will be created.

serial-number - identifies the volume serial number of the
volume on which the new private library is to be created.

Installation Procedures 27

O H

28

tracks - indicates the nubmer of tracks that will be required.
See Table 4 in the "Storage Estimates"™ section for the
amount of storage required by SYS1.LINKLIB.

directory~-records - indicates the number of directory records
that are required. See Table 4 in the "Storage Estimates"
section for the number of directory records required by
SYS1.LINKLIB.

Mount the VS BASIC distribution on the tape device described by the
TAPE DD statement in step 1 .

Start the reader to the tape device. Use the following command:
START RDR,cuu,LABEL={2,NL)
where:

cuu - is the channel and unit address of the tape unit on
which the the distribution tape is mounted.

The JCL will be read from the tape. The tape must then be readied
again to read the actual installation procedure VSBPP. After the
START RDR, issue a VARY command to take the tape device off-line
making it available to be allocated for the second read. During
its processing, the VSBDEF installation JCL procedure will be
executed. Then the JCL procedure on the distribution tape (VSBEPP
for 0S) will link edit the compiler, library, and executor and
place them into the library that you chose in the VLNK DD statement
in step 1 . If the installation has been successful, a sample VS
BASIC source program will be punched into a card deck. If the card
deck is not produced, attempt to reinstall the processor. If the
deck is still not produced, contact your IBM representative.

Before you can begin using VS BASIC in a batch environment, you
must, first, consider an assumption that 0S/VS makes 0S/VS assumes
that the VS BASIC Processor resides on SYS1.LINKLIB. Therefore, if
you have placed it there, you may omit this step and go on to the
next step. However, if you have placed VS BASIC into a private
library, you must do either step 6A or 6B. Step 6A describes how
to concatenate private libraries with SYS1.LINKLIB using the Link
Library List option of SYS1.PARMLIB. Step 6B describes using a
STEPLIB DD statement in your batch JCL to define private libraries.

Prepare the following JCL procedure that will utilize the Link
Library List option of SYS1.PARMLIB to concatenate your private
library with SYS1.LINKLIB:

l’ //CONCAT JOB accounting-information, MSGLEVEL=((1,1)
// EXEC PGM=IEBUPDTE, PARM=NEW
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSN=SYS1.PARMLIB,DISP=0LD
//SYSIN DD DATA
</ ADD NAME=LNKLST00, LIST=ALL
./ NUMBER NEW1=01,INCR=02
I} sYS1.LINKLIB,library-name
./ ENDUP
/%

An explanation of the lettered statement follows:

(A Supply any accounting-information that your computing
center requires.

:’ This statement concatenates your private library name with
SYS1.LINKLIB. Supply the following information:

library-name - must be the same as the library name that
you specified in the VLNK DD statement in step 1 .
Be sure to include any libraries that are already
specified in the 1link library list.

Note: After concatenating your private library to
SYS1.LINKLIB, you must re-IPL your system before
you can use VS BASIC.

Advise all the potential users of VS BASIC that they will
have to include a STEPLIB DD statement of the following
form in the JCL of any program that uses VS BASIC.

//STEPLIB DD DSN=1library-name,DISP=SHR
where:

library-name - must be the same as that specified in
the VLNK DD statement in step 1 .

Using the sample program produced by the installation procedure,
test the operation of the VS BASIC processor. See the publication
System/370 VS BASIC: 0S/VS and DOS/VS Programmer's Guide, Order
No. SC28-8308, for information on compiling and executing VS BASIC
programs. You will need the following control statements:

//SAMPRUN JOB accounting-information,MSGLEVEL=(1,1)
// EXEC PGM=ICDOSBSC
//SYSPRINT DD SYSOUT=A
//7CONTROL DD /*
RUN VSBSAMP SOURCE

Card Deck for VSBSAMP

/*

//5Y¥S005 DD UNIT=SYSDA,SPACE=(TRK, (10,10))
//78Y¥S009 DD UNIT=SYSDA,SPACE=(TRK, (10,10))
/* ‘

Note: When running the sample program, the two cdata sets SYS005
and SYS009, are required. 1In addition, if the VS BASIC Processor
was not installed on SYS1.LINKLIB, you must also include a STEPLIB
DD statement of the following form:

//STEPLIB DD DSN=library-name,DISP=SHR

Installation Procedures 29

INSTALLING VS BASIC AS AN INTERACTIVE AND BATCH PROCESSOR UNDER
VM/370(CMS)

This section describes installing VS BASIC as an interactive and batch
processor under VM/370(CMS). For information on installing the VS BASIC
as an interactive and batch processor under 0S/VS2(TS0O) or as a batch
processor under 0S/VSl, 0S/VS2, or DOS/VS, see the appropriate section
of this book.

REQUIREMENTS FOR INSTALLATION UNDER VM/370(CMS)

Equipment Configuration for VM/370(CMS)

e A System/370 machine configuration that can support the VM/370 (CMS)
environment (Model 135 or equivalent).

¢ At least one magnetic tape device. For VM/370{(CMS), the VS BASIC
processor is distributed only on magnetic tape.

VM/370(CMS) System Generation Requirements

e An installed Release 1 PLC 13 or a subsequent release of
VM/370(CMS).

¢ The Floating-voint Instruction Set.

¢ The Extended-precision, Floating-point Instruction Set. (This
feature is optional; however, if your users intend to make use of
the VS BASIC DOT, PRD, and SUM functions in extended-precision, it
must be available.)

¢ The TSOLIB TXTLIB. (This feature is optional; however, if your
users intend to use the VS BASIC Debug Processor it must be
available.)

e Support for the following OS access methods:

QSAM
BSAM

Note: VSAM is available in VS BASIC; however, VNM/370(CMS) does not
support it.

VM/370(CMS) Installation Requirements

¢ The distribution tape for VS BASIC.

o The virtual machine in which you will install VS BASIC must be
defined with a minimum of 256K of virtual storace.

e A virtual printer must be defined for your virtual machine.
» Space available on the system (S) disk for the VS BASIC compiler,

library, executor, debug processor, utility program, HELP facility,

Installation Procedures 31

and HELP message file. (See Table 5 in the "Storage Estimates"
section for more specific information on the the various devices
that can be used.)

The following file identifiers must not exist on the system (S)
disk:

VSBINSTL EXEC
VSB1 TEXT
VSB2 TEXT
VSB3 TEXT
VSBU TEXT
VSB5 TEXT
VSB6 TEXT
VSBMSG LIST
SAMPLE VSBASIC

VSB TXTLIB

OVERVIEW OF THE INSTALLATION PROCEDURE UNDER VM/370(CMS)

To help you understand and select information required for the
installation of VS BASIC under VM/370(CMS), the following sequence of
events is given:

e After complying with the installation requirements listed above, log
onto VM/370 and IPL CMS.

e Move the VS BASIC installation EXEC procedure from the distrioputicn
tape into CMS.

e Ensure that the files that the VS BASIC installation procedure will
create do not conflict with any files that you may already have on
your system.

e Execute the VS BASIC installation procedure.

¢ Test the success of the installation procedure using the sample
program that is provided in the SAMPLE VS BASIC file.

Installation Procedures 33

INSTALLATION PROCEDURE FOR VS BASIC UNDER VM/370(CMS)

This procedure is designed to install the VS BASIC processor under
VM/370(CMS) only.

1
2

3

) F

34

Mount the distribution tape on any available magnetic tape device.

Log onto VM/370 with a user identification that has been assigned a
privilege class of B.

Attach a real tape device to your user identification. The device
must be attached at virtual address 181. Use the following
command:

attach cuu to userid as 181
where:

cuu - is the channel and unit address of the actual tape
device.

userid - is the user identification that you logged on with in
step 2 .

IPL CMS.

Access the system disk (S) as your A disk. Use the following
command :

access 191 a
Move the VS BASIC installation EXEC procedure (VSBINSTL EXEC) from
the distribution tape to disk. Use the following commands (the
system responses have been included):

B filedef input-file tapl (recfm fb block 3200)
R;

:’ filedef output-file disk vsbinstl exec (recfm f block 80)
R;

tape rew
R;

tape fsf 7
R;

movefile input-file output-file
R;

An explanation of the lettered commands follows:

I} This command defines the input file on the distribution tape.
Supply the following information:

input-file - is any unique ddname (that is, one that does not
already exist in any other FILEDEF command).

[’ This command defines the output file into which the
installation EXEC procedure will be placed. Supply the
following information:

output-file - is any unique ddname. In addition, it must not
be the same name that you specified for input-file above.

This command moves the installation EXEC procedure from the
distribution tape onto your A disk and assigns it the file
identifier of VSBINSTL EXEC. Supply the following information:

input-file - must the same ddname that you specified for
input-file above.

output-file - must be the same ddname that you specified for
output-file above.

7 Execute the VSBINSTL EXEC pricedure. Use the following command:

The

exec vsbinstl install

installation procedure begins with the following message

acknowledging the start of the process:

C

INSTALLATION FOR VSBASIC PROGRAM PRODUCT (5748-XX1)

From this point on the installation procedure will prompt you
for additional information.

Specify the characteristics of the distribution tape. The
following message will be printed at your terminal:

IF THE TAPE BEING INSTALLED IS OTHER THAN 9 TRACK DENSITY
800, ENTER IT'S MODE AND DENSITY AS FOLLOWS:

FOR 9 TRACK 6250 ENTERecscwsess9 6250
FOR 9 TRACK 1600 ENTER««cwsasenss9 1600

You must respond with one of the following:

6250
1600
CR

Ensure that the system disk (S) has been accessed as your A
disk. The following message will be typed at your terminal:

THE SYSTEM DISK TO RECEIVE THE COMPILER MUST BE ACCESSED
IN READ/WRITE STATUS AS THE °'A' DISK. IF NOT, ENTER
END, ACCESS THE SYSTEM DISK IN THE PROPER STATUS AND
EXECUTE THIS EXEC AGAIN.

IF IT IS ACCESSED AS THE READ/WRITE 'A' DISK, PRESS
RETURN.

You must respond with one of the following:

end}

CR

If the system disk is not accessed as your reads/write A disk,
enter END. The following response will be typed at your
terminal: *EXIT FOR SYSTEM DISK ACCESS' Do step 5 , and

repeat step 7 from the beginning. If the system disk is
correctly accessed, enter CR and continue.

The installation procedure then checks that to be created do
not already exist. One or more of the following messages will
be typed at your terminal if the corresponding file cannot be
found:

FILE 'VSBl1 TEXT A' NOT FOUND
FILE *VSB2 TEXT A‘' NOT FOUND
FILE 'VSB3 TEXT A' NOT FOUND
FILE 'VSB4 TEXT A" NOT FOUND

Installation Procedures 35

36

FILE *VSBS TEXT A' NOT FOUND

FILE 'VSB6 TEXT A' NOT FOUND

FILE *'VSBMSG LIST A' NOT FOUND
FILE 'SAMPLE VSBASIC A' NOT FOUND
FILE "VSB TXTLIB A' NOT FOUND

However, if any of these files already exist, the following
error message is typed for each file found and the
installation procedure is terminated:

*filename filetype filemode' ALREADY EXISTS ... RENAME
OR ERASE IT AND TRY AGAIN
R(00002) ;

If any of the error messages are typed, use the appropriate
RENAME or ERASE commands to change the name of the files or to
eliminate them completely, and repeat step 7 from the
beginning.

After the VS BASIC modules have been loaded, the following
message is typed:

THE FOLLOWING NAMES ARE UNDEFINED:
ICDJUSTB

ICDJUSTB is the module name reserved for a user-written
routine used under the Separable Library Facility (SLF). 1In
addition, load maps are printed off-line.

At this point, the installation procedure is finished. The
following message acknowledges that:

INSTALLATION/REGEN COMPLETE
R;

During its processing, the VSBINSTL procedure moves the
components of the VS BASIC Processor into the system and
creates the following files.

r-
|File

|Identifier Contains

[N

s

| VSB TXTLIB A2 Text Decks for All Members

(retain for PTFs and SLF)

Object Code for Compiler

(for CHAIN requests only)

Object Code for Run-time Library
Object Code for Debug Facility
Object Code for Conversion
Utility (ICDLUTIL)

Object Code for Compiler and Executor
Error Messages for HELP Facility
Object Code for the HELP Command
Interface

Sample VS BASIC Source Program

I
|VSBCOMP MODULE A2

|

| VSBRUN MODULE A2
| VSBTEST MODULE A2
| VSBUTIL MODULE A2

| VSBASIC MODULE A2
| VSBMSG LIST A2
| VSBHELP MODULE A2

po e . e v s . . . e S . S e e]
b i s . s s . et . e, S, s, e, e, e, et e,

!
|SAMPLE ~ VSBASIC Al
L

If these files are not available, and no errors were detected,
attempt to reinstall the VS BASIC Processor by reentering the
EXEC VSBINSTL INSTALL command and repeating step 7 from the
beginning. If these files are still not available, contact
your IBM representative.

Note: Before you attempt to reinstall, you should delete all
of the files that may have been installed prior to the
point of failure.

the operation of the VS BASIC processor. See the publication
System/370 VS BASIC: CMS Terminal User's Guide, Order

No. SC28-8306, for information on compiling and executing VS BASIC
programs. You will need the following command:

8 Using the sample VS BASIC program in the file SAMPLE VSBASIC, test

vsbasic sample (source)

Note: Because of the need for TSOLIB TXTLIB and formatting the
users A disk and because certain terminal keyboard
characters may not be available or may conflict with the CMS
line editing characters, it is recommended that you make the
appropriate changes in your user's directories and provide
your terminal users with profiles that define these items.
See the section "CMS Preparations for New VS BASIC User's"
for more specific information.

Installation Procedures 37

INSTALLING VS BASIC AS A BATCH PROCESSOR UNDER DOS/VS

This section describes installing VS BASIC as a batch processor under
DOS/VS. For information on installing VS BASIC as an interactive and
batch processor under 0S/VS2(TSO) or VM/370(CMS) or as a batch processor
under 0S/VS1l or 0S/VS2, see the appropriate section of this book.

REQUIREMENTS FOR INSTALLATION UNDER DOS/VS

Equipment Configuration for DOS/VS

e A System/370 machine configuration that can support the DOS/VS
environment (Model 115 or equivalent).

¢ At least one magnetic tape device or one disk device. For DOS/VS,

the VS BASIC processor is distributed on either magnetic tape or
disk.

DOS/VS System Generation Requirements

¢ An installed Release 28 or subsequent release of DOS/VS.
e The Floating-point Instruction Set.

e The Extended-precision, Floating-point Instruction Set. (This
feature is optional; however, if your users intend to make use of
the VS BASIC DOT, PRD, and SUM in extended-precision, it must be
available.)

e The following access methods:

QSAM
BSAM
VSAM (optional)

¢ The following DOS/VS utility programs:

DSTRB
DITTO
MAINT
ASSEMBLY

e The following system options:
FOPT (Optional Features Macro)
AB=YES (ABEND)

PC=YES (Program Check)
TOD=YES (Time of Day)

DOS/VS Installation Requirements

e The distribution tape or disk for Vs BASIC.

e A temporary scratch tape or disk file for the installation
procedure.

38

A minimum partition size of 128K.

Space available in the system or a private relocatable library for
the VS BASIC processor modules. (See Table 6 in the "Storage
Estimates" section of this book for the storage requirements.)

Space available in the system or a private core image library for
the link edited VS BASIC processor modules. (See Table 6 in the
"Storage Estimates™ section of this book for the storage
requirements.)

Optionally, space available in the system or a private source
statement library for macros and ICDKBFTB source that is required
for the Separable Library Facility. (See Table 6 in the "Storage
Estimates" section of this book for the storage requirements.)

Installation Procedures

39

OVERVIEW OF THE INSTALLATION PROCEDURE UNDER DOS/VS

To help you understand and select information required for the
installation of VS BASIC under DOS/VS, the following sequence of events
is given:

40

Ensure that your system conforms to the installation requirements of
the VS BASIC Processor.

Determine the target libraries that you will use. The VS BASIC
Processor under DOS/VS requires a relocatable and a core image
library for the batch executor, the compiler, and the run-time
library. You may, optionally, use a source statement library if you
wish to make the Separable Library Facility available when you
install VS BASIC.

Allocate space for the new libraries and define their extents to the
system.

Deblock the distribution tape or disk file.
Assign the system input to the tape or disk device.
Assign any private libraries that you may be using.

Test the success of the installation procedure using the sample
program, card deck that is provided.

INSTALLATION PROCEDURE FOR VS BASIC UNDER DOS/VS

This procedure is designed to install VS BASIC as a batch processor
under DOS/VS only.

-‘
2

Select a DOS/VS partition in whcih you will be running the VS BASIC
processor. The installation procedure assumes that the background
partition will be used.

Make sure that the timer is assigned to the partition in which Vs
BASIC will be running. If it is not, enter the following command:

TIMER BG
Fi
F2
F3
F4

If you are using the system relocatable, core image and optional
source statement libraries or if you are using pre-allocated,
private libraries in place of the system libraries, you may skip
this step and go to step 4 . If you are using private libraries
that have not been pre-allocated, do step 3A , 3B , or 3C , as
required. Step 3A allocates a private core image library and step
3B allocates a private relocatable library. 1If you plan to make
the Separable Library Facility available during the installation
procedure, do step 3C, which allocates a private source statement
library. Finally, do step 3D, which places label information about
your private libraries on SYSRES.

The following JCL procedure allocates a private core image
library:

//7 JOB VSBPCL
// ASSGN SYS003,X'cuu’
/7 DLBL IJSYSPC,'VS BASIC PCIL',date,SD
// EXTENT SYsS003,disk-label,1,0,first-track,total-tracks
/7 EXEC CORG2Z
NEWVOL CL=cylinders{(directory-tracks)

B EB

/%
/&

An explanation of the lettered statements follows:

l’ This statement assigns SYS003 to an actual disk device.
You must supply the channel and unit address of the device
on which the private core image library is to reside. The
device chosen must be of the same type as the device
assigned to SYSRES.

:l This statement assigns a label to the private core image
library that you will be using. You may supply an
expiration date or accept the date defined for your
system. Without the date specified, the statement would
appear as:

// DLBL IJSYSPC,'VS BASIC PCIL',,SD
!I This statement defines the amount of storage that the
private library will require. You must supply the
following information:
disk-label - specifies the label of the disk to be used.
first-track - indicates the first track of the private

library.

Installation Procedures 41

42

total-tracks - indicates the total number of tracks
required by the VS BASIC processor modules. See
Table 6 in the "Storage Estimates"™ section of this
book for the number of tracks required by SYSCLB.

This statement provides additional storage information
about the private core image library. You must supply the
following information:

cylinders - indicates the number of cylinders required by
the VS BASIC processor modules. See Table 6 in the
"Storage Estimates®" section for the number of
cylinders required by SYSCLB. This must include at
least 10 tracks more than the space required for the
library and its directory.

directory-tracks - indicates the number of tracks that are
required by the directory. See Table 6 in the
"Storage Estimates" section for the number of
directory records required by SYSCLB.

The following JCL procedure allocates a private relocatable
library:

B B

// JOB VSBPRLB
// ASSGN SYSRLB,X'cuu'
/7 DLBL IJSYSRL,'VS BASIC PRLB',date,SD
// EXTENT SYSRLB,disk-label,1,0,first-track,total-tracks
/7 EXEC CORGZ
NEWVOIL, RlL=cylinders(directory-records)

An explanation of the lettered statements follows:

This statement assigns SYSRLB to an actual disk device.
You must supply the channel and unit address of the device
on which the private relocatable library will reside. The
device chosen must be of the same type as the device
assigned to SYSRES.

This statement assigns a label to the private relocatable
library that you will be using. You may supply an
expiration date or accept the date defined for your
system. Without the date specified, the statement would
appear as:

// DLBL IJSYSRL,'VS BASIC PRLB',,SD
This statement defines the amount of storage that the

private library will require. You must supply the
following information:

disk-label - specifies the label of the disk to be used.

first-track - indicates the first track of the private

library.

total-tracks -~ indicates the total number of tracks

required by the VS BASIC processor modules. See
Table 6 in the "Storage Estimates" section of this
book for the number of tracks required by SYSRLB.

This state provides additional storage information about
the private relocatable library. You must supply the
following information:

cylinders - indicates the number of cylinders required by
the VS BASIC processor modules. See Table 6 in the
"Storage Estimates" section of this book for the
number of cylinders required by SYSRLB. This must
include at least 10 tracks more than the space
required for the library and its directory.

directory-tracks - indicates the number of tracks that are
required by the directory. See Table 6 in the
"Storage Estimates" section of this book for the
number of directory records required by SYSRLB.

statement library:

C The following JCL procedure allocates a private source

B o8

// JOB VSBPSSL
// ASSGN SYSSLB,X'cuu'
// DLBL IJSYSSL,'VS BASIC PSSL',date,SD
// EXTENT SYSSLB,disk-label,1,0,first-track,total-tracks
// EXEC CORGZ,REAL
NEWVOL CL=cylinders(directory-tracks)

/%
/&

An explanation of the lettered statements follows:

This statement assigns SYSSLB to an actual disk device.
You must supply the channel and unit address of the device
on which the private source statement library is to reside.
The device chosen must be of the same type as the device
assigned to SYSRES.

This statement assigns a label to the private source
statement library that you will be using. You may supply
an expiration date or accept the date defined for your
system. Without the date specified, the statement would
appear as:

// DLBL IJSYSSL,'VS BASIC PSSL',,SD

This statement defines the amount of storage that the
private library will require. You must supply the
following information:

disk-label - specifies the label of the disk to be used.

first-track - indicates the first track of the private
library.

total-tracks - indicates the total number of tracks
required by the macros and: ICDKBTFB source for the
Separable Library Facility. See Table 6 in the
"Storage Estimates" section of this book for the
number of tracks required by SYSSLB.

This statement provides additional storage information
about the private source statement library. You must
supply the following information:

cylinders - indicates the number of cylinders required by
the macros and ICDKBFIB source for the Separable
Library Facility. See Table 6 in the "Storage
Estimates" section for the number of cylinders
required by SYSSLB. This must include at least 10
tracks more than the space required for the library
and its directory.

Installation Procedures 43

directory-tracks -~ indicates the number of tracks that are
required by the directory. See Table 6 in the
"Storage Estimates" section for the number of
directory records required by SYSSLB.

The following JCL procedure stores label information in SYSRES,
thus eliminating the need to repeat these statements each time
SYSRLB is assigned:

// JOB VSBLABEL
/7 OPTION PARSTD

Existing SYSRES Label Information

/7 DLBL IJSYSCL,'VS BASIC PCIL®',date,SD
// EXTENT SYSCLB,disk-label,l1,0,first-track,total-tracks
/7 DLBL IJSYSRL,'VS BASIC PRLB',date,SD
/7 EXTENT SYSRLB,disk-label,1,0,first-track,total-tracks
// DLBL IJSYSSL,'VS BASIC PSSL',date,SD
// EXTENT SYSSLB,disk-label,1,0,first-track,total-tracks

Include only those DLBL and EXTENT statements that are required
for the private libraries that you are using. The information
specified here is the same as that specified in steps 3a, 3b,
and 3c.

Deblock the distribution tape or disk. Do step 4A or U4B. Step UA
deblocks a distribution tape and step 4B deblocks a distribution
disk.

A The following JCL procedure deblocks a distribution tape:

// J0B DEBLOCK TAPE
JN' // ASSGN SYS004,X'cuu'
B // RASSGN SYS005,X'cuu’
/7 UPSI 10100
// EXEC DSTRB
// UDS DBL
// END

An explanation of the lettered statements follows:

I! This statement assigns the tape device on which the
distribution tape will be mounted. You must supply the
channel and unit address of the tape device to be used.

[’ This statement assigns the tape device on which the
deblocked output will be placed. You must supply the
channel and unit address of the tape device to be used.

IE; The following JCL procedure deblocks a distribution disk:

/7 JOB DEBLOCK

// ASSGN SYS004,X'cuu’

// ASSGN SYS005,X'cuu’

// DLBL UIN,*'A5748XX1.SYSIN.V1M1.DOSJCL",,SD

// EXTENT SYsS004,disk-label,1,0,first-track,total-tracks
// DLBL UOUT,'any-file-id',date,SD

// EXTENT SYS005,disk-label,1,0,first-track,total-tracks
// EXEC DSTRB DKDK

/7 UDS DBL

/7 END

noolla>

4y

An

explanation of the lettered statements follows:

This statement assigns the disk device on which the
distribution disk will be mounted. You must supply the
channel and unit address of the disk device to be used.

This statement assigns the disk device on which the
deblocked output will be placed. You must supply the
channel and unit address of the disk device to be used.

This statement defines the extent of the installation
file. You must supply the following information:

disk-label - specifies the label of the distribution disk.

first-track - indicates the first track of the
installation file.

total-tracks - indicates the total number of tracks
required by the installation file. This information
should be obtained from a VTOC listing of the
distribution disk.

This statement assigns a label to the data set that will
contain the deblocked distribution disk. You must supply
the following information: '

any-file-id - supply any appropriate file-id for the
deblocked data set.

date - indicates an expiration date for the data set. You
may accept the default that is defined for your
system. Without the date specified, the statement
would appear:

// DLBL UOUT, 'any-file-id*,,SD

This statement defines the amount of storage that the
deblocked data set will require. You must supply the
following information:

disk-label - specifies the label of the disk that you have
selected to contain the data set.

first-track - indicates the first track of the data set.

total-tracks - indicates the total number of tracks
required by the data set. See Table 6 in the
"Storage Estimates" section of this book for the
number of tracks required by the deblocked
installation file.

Read the deblocked distribution tape or disk. Use the following
command

for a tape installation.

ASSGN SYSIN,X'cuu'

where:

cuu

- is the channel and unit address of the device containing
either the deblocked tape.

For a disk installation, use the following commands:

7/
//

DLBL IJSYSIN,‘'any-file-id*,,SD
EXTENT SYSIN
ASSGN SYSIN,X'cuu'

Installation Procedures 45

6

4eé

where:

The

any-file-id - is the same file-id that you specified for the
deblocked installation file in the // DLBL UOUT statement
in step 4B .

cuu - is the channel and unit address of the device containing
the deblocked installation file.

actual installation is begun. From this point on the

installation procedure will prompt you at the console for
additional information that may be required. The following message
is typed out acknowledging the start of the procedure:

A

VS BASIC DOS INSTALLATION

5748-XX1 COPYRIGHT IBM CORP. 1972

REFER TO INSTRUCTIONS ON COPYRIGHT NOTIiCE, 120-2083
NOTE TO USERS

* TO ALLOW USERS TO SKIP JOBS OR INSERT JCL DEFINING

LIBRARIES,

* THE SYSTEM WILL PAUSE FOR OPERATOR RESPONSE. A MESSAGE WILL

* ACCOMPANY EACH PAUSE EXPLAINING THE RESPONSE REQUIRED.

// JOB 1 CONDS OF VS BASIC DOS/VS BATCH

// OPTION LOG

¥ IF YOU ARE USING PRIVATE LIBRARIES FOR THE CIL AND RLBEB,

* PLEASE ASSIGN THEM PERMANENTLY AT THIS TIME.

* RESPOND WITH EOB TO CONDENSE THESE LIBRARIES OR CANCEL.

// PAUSE

* ¥ ¥ ¥

Job 1, referred to in the message, condenses the core image and
relocatable libraries and deletes the VS BASIC modules from the
relocatable library. Use the following commands for a
permanent assignment of your private libraries:

ASSGN SYSRLB,X'cuu'
ASSGN SYSCLB,X'cuu'

where:

cuu - is the channel and unit address of the device that
contains the pre-allocated private libraries.

Signal EOB if you want to condense the libraries or cancel the
job if you are not using private libraries.

The installation procedure continues with jobs 2 and 3. Job 2
executes the MAINT utility program to catalog the VS BASIC
object modules into SYSRLB or your private library if you
specified one. After the modules have been cataloged, job 3
link edits the modules into SYSCLB or your private core image
library. This job produces a link edit map.

Before job U4 executes. the following message is printed at
your console:

// JOB 4 SLF PLACE SOURCE AND MACROS IN SSL

* THIS JOB PLACES MACROS AND A SOURCE MODULE FOR THE SLF
* FACILITY IN THE SSL. IF YOU ARE USING A PRIVATE SSL,
* PLEASE ASSIGN IT PERMANENTLY AT THIS TIME.

* THEN RESPOND EOB TO CONTINUE. OTHERWISE, CANCEL.

// PAUSE

Job 4 places source macros and ICDKBFTB into a source statement
library. If you wish to install SLF at this time and you are
using a private source statement library, enter the following
command for a permanent assignment:

ASSGN SYSSLB,X'cuu'

where:

cuu - is the channel and unit address of the device that
contains the pre-allocated private library.

Then signal EOB. If you do not wish to install SLF, cancel
this job.

If you did not cancel job 4, it will assemble the macros. You
must define a tape or a disk file for the temporary output of
the assembly. The following message is printed at your
console:

// OPTION LOG,NODECK,EDECK

* TO ASSEMBLE VS BASIC MACROS FOR THE SEPARABLE LIBRARY
* FEATURE, ASSIGN SYSPCH TO A TAPE OR TO A FILE ON DISK
* USING DLBL AND EXTENT CARDS.

// PAUSE

Use the following commands for a scratch tape:
ASSGN SYSPCH,X'cuu'

or for a scratch disk file:
// DLBL IJSYSPH,'any-file-id',,SD

// EXTENT SYSPCH,disk-label,l1l,0,first-track,6C
ASSGN SYSPCH,X'cuu'

where:

cuu - is the channel and unit address of the tape or disk
device that contains the scratch file.

any-file-id - is any appropriate file-id.

first-track - indicates the first track of the scratch
file.

Job 4 continues by cataloging the macros, in E-deck form, in
the source statement library. The following message is printed
at your console:

* IF YOU HAVE USED A SCRATCH TAPE,

* PLEASE ASSIGN SYSIPT TO THE SAME TAPE.

* IF YOU HAVE USED A DISK, ASSIGN SYSIPT TO THAT DISK FILE
* RESPOND EOB .

// PAUSE

Use the following commands for tape:

MTC WTM,X'cuu',1l
MTC REW,X'cuu'
ASSGN SYSPCH,X'00D'
ASSGN SYSIPT,X'cuu'

or for disk:
CLOSE SYSPCH,X'00D'
// DLBL IJSYSIN, 'any-file-id°®
// EXTENT SYSIPT
ASSGN SYSIPT,X'cuu'
where cuu and any-file-id are the same as specified in step 6C.
The installation procedure continues by executing the MAINT

utility program to catalog the macros. When the end of file is
reached, the following message will be printed at the console:

Installation Procedures 47

7

8

48

* DOS/VS BASIC INSTALLATION COMPLETE

Punch the sample program onto a card deck. If you are using a
distribution tape, you must use DITTO. For a distribution disk,

use the

/77
/77
7/
7/
Va4
7/
e
/&

where:

cuu

following JCL procedure:

JOB COPY

ASSGN sYS005,X'cuu’

ASSGN SY¥s006,X*'00D*

DLBL UIN, 'A5748XX1.SYSIN.V1M1l.SAMPLE',,SD

EXTENT SYS005,disk-label,1,0,first-track,total-tracks
EXEC CDKCD

URC TF,A=(3200)

- is the channel and unit address of the disk device
containing the distribution disk.

disk-label - specifies the label of the distribution disk.

first-track - indicates the first track of the sample program.

total-tracks -~ indicates the total number of tracks required by

the sample program. This information should be obtained
from a VTOC listing of the distribution disk.

Using the sample program deck, test the operation of the VS BASIC
Processor. See the publication System/370 VS BASIC: 0S/VS and
DOS/VS Programmer's Guide, Order No. SC28-8303, for information on

compiling and executing VS BASIC programs. You will need the
following job control statements to run this program:

/7
V4
7/
//
7/
/7
7/
/7

JOB SAMPLE

ASSGN SYS005,x"cuu’

DLBL SYS005,'IJsyYsxx',,SD

EXTENT SYS005,°'disk-label",1,0,first-track,10
ASSGN 8YS009,x'cuu’

DLBL SYS009,'IJdsysxx',,SD

EXTENT SYS009,'disk-label',1,0,first-track,10
EXEC PGM=ICDDSBSC,SIZE=6U4K

RUN * SOURCE

Sample Program Deck

/¥
/&

-

where:

cuu - is the channel and unit address of the devices that will
contain the data sets used by the sample programn.

xx - is any valid two-digit number that will complete the
DOS/VS file-id.

disk-label - is the label of the disk that you are using for
the files required.

first-track - is the first track of each disk file.

Note: When running the sample program, the two data sets SYS005
and SYS009 are required.

If the sample program card deck is not produced and no errors were

detected, attempt to reinstall the processor. If the deck is still
not produced, contact you IBM representative.

Installation Procedures 49

STORAGE ESTIMATES

Table 2. Dynamic Storage Required for Installing and Executing VS
BASIC
r T 1
| |Minimum Region, Partition, or Virtual Machine Size |
b T T 4
= | |For Execution without|For Execution withj|
|System | For Installation| Debug | Debug]
i 1 —— 1 L %
|r03/v51 T 128K 128K |
|0S/VS2 | 128K 128K
|0S/VS2 (TSO) | 128K 128K 256K
|VM/370 (CMS) | 256K 300K1 384K1 |
| DOS/VS | 128K 256K |
F + -- -
| 1These storage estimates for CMS are given with the understanding that}
| users who will be accessing a large number of disks or whose disks |
| contain a large number of files may require additional storage for |
| in-storage indexes. . |
L 3

Storage Estimates 51

Table 3. Auxilliary Storage Required for Installing VS BASIC under
0S/VS2(TS0)
r T T " T "]
| | |Cylinders Required | Tracks Required |
| ! k t 1
| |Number of 2314/ 3330/ ; 2314/ 3330/ |
| |Directory|2305-1 2305-2 2319 3333 3400]2305-1 2305-2 2319 3333 3340]
|Date Set|Records® |Drum Drum Disk Disk Disk|Drum Drum Disk Disk Diskj
¢ t + + 4
|sysi. | | | |
| PROCLIB | 1 | 1 1 1 1 1]
| | I
| sysi. | | |
| LINKLIB | [| |
fora | I |
Private			
Library			
(includ-		v	
ing TOS	[
and	[
batch			
execu-			
tors) I 15 6 4 51 62 60 120 67 104]			
		I	
sysi.			
LINKLIB			
lor a			
Private			
Library			
(for the]			
batch			
executor			
only)	1		4 4 7 4 6]
!			
sysi.		I	
HELP or			
la		[
Private			
Library	1	5 3 4	S0 us 96 55 90
= L 1 L ‘11			
*The number of 256-byte records allocated for a directory when a new partitioned data			
set is being defined. (See the description of the SPACE parameter of the DD statement			
in the publication 0S/VS JCL Reference, Order No. GC28-0618.) The number of directory			
records that can be contained on a track is as follows:			
IBM 2305-1 Drum Storage - 16			
IBM 2305-2 Drum Storage - 26			
IBM 2314 Disk Storage - 17			
IBM 2319 Disk Storage - 17			
IBM 3330 Disk Storage - 28			
IBM 3333 Disk Storage - 28			
IBM 3340 Disk Storage - 16			
L J

52

Table 4. Auxilliary Storage Required for Installing VS BASIC under
0S/Vsl or 0S/VS2

r T T 1 1
| | |Cylinders Required | Tracks Required |
| | k t -—
| |Number of| 2314/ 3330/ | 2314/ 3330/ |
| |Directory}2305-1 2305-2 2319 3333 3340 |2305-1 2305-2 2319 3333 3340]
|Data Set|Records® |Drum Drum Disk Disk Disk |Drum Drum Disk Disk Disk|
k t + + 1
| sYs1. | | | |
| PROCLIB | 1 | | 1 1 1 1 1)

| I | |
jsysi. | | I |
| LINKLIB | | | |
lora | | | |
| Private | | | |
|Library | 8 | 3 2 31 26 25 50 28 49|
% L L L ‘Jl
|1The number of 256-byte records allocated for a directory when a new partitioned data |
| set is being defined. (See the description of the SPACE parameter of the DD statement|
| in the publication 0S/VS JCL Reference, Order No. GC28-0618.) The number of directory|
| records that can be contained on a track is as follows: |
| |
| IBM 2305-1 Drum Storage - 16 |
| IBM 2305-2 Drum Storage - 26 |
| IBM 2314 Disk Storage - 17 |
| IBM 2319 Disk Storage - 17 |
| IBM 3330 Disk Storage - 28 |
| IBM 3333 Disk Storage - 28 |
| IBM 3340 Disk Storage - 16 |
L 4

Table 5. Auxilliary Storage Required for Installing VS BASIC under

VM/370(CMS)
r T T - " 1
[| | Cylinders Required |
| I k- i
| | | 2314/2319 3330/3333 |
| Component { Number of Blocks | Disk Disk |
L 4 1 4
r T [])]
| VS BASIC Processor | 241 | 4 2
| | | I
| ! | I
|HELP Facility and Messages| 371 | 7 4y
| ! | I
| Conversion Utility | 11 | 1 1
| ! I I
| Sample Program | 10 | 1 1
| | | I
|VSBINSTL Installation | 40 | 1 1
| Procedure | | |
b + + S—
|Total (without VSB TXTLIB) | 673 | 14 7
b ¢ +=
| VSB TXTLIB I 412 | 8 4
L L 4 ——
r + +
| Total [1085 | 22 11 I
L 4L 4 y

Storage Estimates 53

Table 6. Auxilliary Storage Required for Installing VS BASIC under
DOS/VS

Cylinders Required? Tracks Required=2
23147 3330/

2319 3333 3340
Disk Disk Disk

2314/ 3330/
2319 3333 3340
Disk Disk Disk

Number of
Directory
Recordst,?

|Library

| SYSRLB or a
|Private
|Relocatable
| Library 40 21 23
I

| SYSCLB or a
|Private
|Core Image
|Library

|

| SYSSLB or a
|Private

| source

| Statement
|Library

I

| S¥S005

| (Deblocked
|Installation
|File)

L

18 10 11

20 11 19

1 6 4 7 106 69 124

——————— e e ——_ e —_————— e e — e]
o e e e e e s s e e

T
!
I
I
|
I
%
I
|
I
I
I
!
|
I
I
|
|
|
|
I
I
|
I
|
I
|
L

e o e . . — . ——————— —— — — — — — —— — et ol e —— — v o]

s
|tSee the description of the NEWVOL statement in the publication DOS/VS
| System Control Statements, Order No. GC33-5376.

| 2See the description of the EXTENT statement in the publication DOS/VS
System Control Statements, Order No. GC33-5376.

3The number of 256-byte directory records that can be contained on one
track is as follows:

IBM 2319 Disk Storage - 17
IBM 3330 Disk Storage - 28
IBM 3333 Disk Storage - 28
IBM 3340 Disk Storage - 16

e s e e . s s o — — S — ——

I
I
I
|
| IBM 2314 Disk Storage - 17
|
|
I
|
L

54

DIAGNOSTIC MESSAGES

OBTAINING A LISTING OF ALL VS BASIC DIAGNOSTIC MESSAGES

This section describes how to obtain a reference copy of all the VS
BASIC messages under 0OS/VS, CMS, and DOS/VS.

UNDER 0OS/VS

The 0S/VS and 0S/VS2(TSO) installation procedures will print out a
complete listing of all the VS BASIC messages as part of their normal
operation. However, should you, at some time, wish to obtain additional
copies, follow this procedure:

1 Mount the VS BASIC distribution tape on a magnetic tape device.

2 Prepare and execute the following procedure:

//LISTMSG JOoB ...
/77 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
//8YSUT1 DD UNIT=2400,LABEL=(15,NL) ,DISP=(OLD,PASS),
/7 VOL=(,RETAIN,SER=VSBAS),
7/ DCB=(DEN=density,RECFM=FB, LRECL=80,BLKSIZE=3200)
//8YSUT2 DD SYSOUT=A,DCB=(RECFM=F, BLKSIZE=80)
//SYSIN DD DUMMY
7*
UNDER CMS

The CMS installation procedure does not print a copy of the error
messages for you; therefore, if you want a complete listing as a
reference copy, you must issue the following CMS command after the
installation is complete:

PRINT VSBMSG LIST *

UNDER DOS/VS

The DOS/VS installation procedure does not print a copy of the error
messages for you; therefore, if you want a complete listing as a
reference copy, you must use DITTO. The file-id of the message data set
on the distribution disk is *'A5748XX1.SYSIN.V1M1.MESSAGE'.

Diagnostic Messages 55

SYSTEM PROGRAMMING

SYSTEM PROGRAMMING CONSIDERATIONS FOR ALL SYSTEMS USERS

SEPARABLE LIBRARY FACILITY

The Separable Library Facility (SLF) is a feature of the VS BASIC
processor that permits a terminal user of system programmer to write his
own assembly language routine which can be added to the VS BASIC
run-time library as an intrinsic function. At execution-time, this
user-written routine will operate like any other VS BASIC intrinsic
function, for example, SIN, DAT, or SUM. As a result, frequently used
functions need not be repeatedly defined with DEF statements in each
program that uses them. With SLF, a function can defined once,
installed in the library, and made available to all users. In addition,
through SLF, functions not provided by VS BASIC or not possible at the
source code level can be used.

Note: As with all user modifications to IBM Program Products, the
responsibility for using and maintaining routines written under
SLF remains with you, the system programmer. Extreme caution
should be exercised in using SLF because of the possibility of
adverse effects that errors could have on your system.

Regquirements for Writing Routines under SLF

For each new routine or collection of routines to be added to the VS
BASIC library, there are four things that must be done:

e Write the routine that is to be added to the library. This routine
will contain the code that will actually evaluate the function that
is required. The code in the routine must conform to the standards
that are outlined in the section "Writing a Function Evaluating
Routine under SLF".

e Write a scanning routine that will be added to the compiler. This
routine will receive control whenever a 3 character name that has a
pound sign (#) as the last character is encountered. Your scan
routine must determine whether the name encountered is the name of
your intrinsic function and notify the caller. If so, the compiler
will then handle it as a valid function reference and process it
accordingly. The code in the scanning routine must conform to the
standards outlined in the section "Writing a Scanning Routine under
SLF".

e Modify the run-time routine (ICDKBFTB) that contains a table of
addresses (ICDBIFTB) of all the run-time routines. You must add,
through a V-type address constant, the address of the function
evaluating routines that you will be adding.

e Reinstall the VS BASIC processor to incorporate the changes that you
have made.

System Programming 57

Writing a Function Evaluating Routine under SLF

All routines written under SLF that are to be used to evaluate intrinsic
functions must conform to the following standards or they will not
operate successfully in conjunction with the VS BASIC processor.

ROUTINE NAME: The name of each routine that you will write to evaluate
your intrinsic functions must be:

ICDKxx#
where:

xxX - is the first two characters of the three character name
that will be used in your VS BASIC program as the
function reference. The last character must always be a
pound sign (#).

SOURCE LANGUAGE FOR YOUR ROUTINE: All routines written under SLF to
evaluate intrinsic functions must be written in assembler language.
Assembler language is required because there is the need to carefully
specify register usage and to resolve addresses through specific base
and displacement schemes. Neither of capabilities is available in
higher level languages.

REGISTER USAGE: The following registers contain addresses that will be
of use to you in writing evaluating routine:

Register cContents

7 Address of the Array Area Base
8 Address of the User Area Base
11 Address of the User Routine (use
this register as your base register)
13 Address of the Run-time Library
14 Address of the Parameter List

Registers 0, 2, 3, 4, 5, and 15 are available as work registers. If
additional registers are required, these registers must be saved on
entry to your routine and restored before the return is made. This also
applies to the floating point registers with the exception of register
0, which is used to return the result of a numeric function.

EVALUATING THE PARAMETERS PASSED BY THE FUNCTION REFERENCE: Naturally,
the needs of your application and the function to be performed will
determine the number and type of parameters that are to be included with
the function reference. 1In your source program, the parameters must be
enclosed by parentheses and separated by commas. The standard compiler
routines will process your function reference and its parameters after
your scanning routine has informed the compiler that it is a wvalid
function reference. These compiler routines will prepare a parameter
list and pass the address of it to your evaluating routine via register
14.

58

The parameter list is pointed to by register 14 has the following

format:

Parameter List

Register 14 -

Number of Parameters

}.-_

| Type and Displacement of Parameter 1

—t— s e e

Type and Displacement of Parameter n

Result Entry for Character Functions

(not present for numeric)

e a e e

L————mmmeee1 word

— s, . . . e i e

|
]
|
\'

Each parameter in the parameter list that describes the type and
displacement of a parameter and the result entry has the following

format:

Byte Ccontents

0 Argument Code
Bit Value Meaning
B*'00001000' Character Type

B*00000100°

Array Element

B'00000010' Array

B*'00000001"

Note: These bit values may be combined where required (for

Simple Expression or Variable

example, a character array would be B'00001010').
1 Character String Length (if known at compile-time)
2,3 Address of Parameter (in BDDD form, where B is the base

register and DDD is the displacement)

The base and displacement (BDDD) has a different meaning for each

type of argument code.

Argqument Type
Character Variables
and Array Elements

Array Element

Array

Corresponding BDDD

The first byte of the address pointed to by
BDDD contains the length of the string.

The BDDD is the address of the displacement of

the element from the array area base
(register 7).

The BDDD is a displacement (B is 0) into the
array entry table, which is located at the
displacement contained in ARRPTRS INTO THE

USER AREA BASE (REGISTER 8). At that

location, the array descriptor is 12 bytes

long and has the following format:

Byte Contents

0-3 Offset to array data from data from

beginning of array area
(register 7).

4,5 Maximum value of the first
subscript.

System Programming

59

Arqument Type Byte Contents
6,7 Maximum value of the second
subscript.

8 Length, in bytes, of each
element.

9 Number of dimensions (0 for a
one dimensional array and 1
for a two dimensional array.

10-11 Maximum number of elements.

Simple Expression The BDDD is the address of the data.
or Variable

WORK AREA: If you want your evaluating routine to be re-entrant, you
must put any data fields that will be changed (that is, $ave areas of
flags) into a work space in the user area. This includes any execute
instructions that are to be built. The work space is located at the
offset contained in the data area LEVOABS from the user area base
(register 8). The work space is 16 words in length. If you are not
concerned with having a re-entrant routine your work space may be within
your routine.

Note: If you have your compiler installed in the 0S/VS link pack area
and you write an SLF routine that is not re-entrant, you will not
be able to keep the compiler in the link pack area.

DETERMINING WHETHER LONG OR SHORT PRECISION IS REQUIRED: When
evaluating numeric arguments or function, your routine must know whether
the VS BASIC processor is running with long or short precision. A byte
in the user area indicates the current precision. The byte is located
at the offset contained in the data area SLBYTE from the user area base
(register 8). A value of X'00' indicates short precision and a value of
X'08' indicates long precision.

ERROR _PROCESSING: The VS BASIC processor has two run-time routines that
will handle execution-time errors. Their names are ICDKERRR and
ICDKERRT and their addresses can be resolved with an EXTERN or a V-type
constant (VCON). ICDKERRR will print an error message and return
control to your program; ICDKERRT will print an error message and
terminate your program. Any VS BASIC error message can be issued by
doing the following:

1. Loading register 0 with the error number.

2. Loading register 2 with the address of your routine name in EBCDIC.
(This is required only for messages that contain a variable field
in the text.)

3. Branching to ICDKERRR or ICDKERRT.

The error number that is loaded into register 0 is the last two
digits of the number in the message identifier. For example, if you
want to print the message:

ICD414 OVERFLOW

and return to your program, load the number 14 into register 0 and
branch to ICKDERRR with the following instructions:

L any-register,=V(ICDKERRR)
BALR R 11,any-register

60

Use these instructions for ICDRERRT:

L any-register,=V(ICDKERRT)
BALR R 11,any-register

VS BASIC PROCESSOR MACROS: SLF makes available VS BASIC Processorxr
macros that are useful in writing your own library routines. These
macros provide you with access to the data areas and information used by
the VS BASIC Processor during compilation and execution. The
information provided includes the format of the Communications Region,
the User Terminal Table, the Object Code Area, the Variable and Constant
Area, the Branch Information Table, and a list of the equates for the
run-time registers. The macros are:

ICDKMAP - Communications Region, User Terminal Table
ICDOBJA - Object Code Area

ICDVARCN - Variable and Constant Area

ICDBIFTB - Branch Information Table

See the publication System/370 VS BASIC Program Logic, Order
No. LY28-6u422 for a complete description of these areas and their
contents.

RETURNING VALUES FROM THE EVALUATING ROUTINE: The results of a numeric
function are returned in floating-point register 0. For character
functions, the last word of the parameter list is used to return the
result. The format of the result entry is the same as that of the
parameter entries. See the description in the section "Evaluating the
Parameters Passed by the Function Reference" for a detailed description
of the result entry.

RETURNING CONTROL TO THE CALLING ROUTINE: Located immediately following
the result entry for character arrays of the last parameter for numeric
arrays is the return point in the object code. Point register 14 past
the last entry in the parameter list and branch via register 14.

Sample SLF Function Evaluating Routines

Example 1:

This is an example of a VS BASIC SLF, user-written routine to evaluate a
character function. The name of the function is BA# and its purpose is
to receive a character string contained in a character variable or array
element and fill any blanks with asterisks. The result will be returned
in the area specified by the last item in the parameter list. The name
of the routine is ICDKBA# and it is not re-entrant.

The compiler will process the BA# function whenever it appears in a
VS BASIC program and produce object code that will call the routine
ICDKBA#. The object code contains the following instructions:

L R11,=V(ICDKBA#)
BALR RI14,R11

and the argument list:

r T T 1
I | 1 | I
L } -4
r T T T T T T

| 0 | 91c | | B D D Dy |
[L 1 } 1 1 +— 4
F T T 1
| | B D D Da |
I 1 1 1 1 i
1< 4 bytes >

System Programming 61

where:
1 - is the number of arguments
9 - indicates that the argument is a character variable
C - indicates that the argument is a character array element

BDDD, - is the displacement of the actual argument if scalar or the

displacement of an array element displacement if the argument is an
array element.

BDDD, - is the displacement of the area in which the return value

is to be placed. This is the character variable to which the
function is assigned.

The actual argument has the following format:

T
L L |
L 1 i
+
|

Character String

L LL bytes >

— i e ek

The array element displacement has the following format:

r T T T T L a L)
| L L | D D D D D D |
'L_ 4 4 L 4 L L 1 {
I< 4 bytes >|

where:
LL - is the length of the character string.

DDDDDD -~ is the displacement into the array area of the actual

array element. The contents of register 7 (R7) must be added to
this value.

62

The assembler language code for the routine ICDKBA# follows:

ICDKBA#

ICDKB1

ICDKB2

ICDKB3
ICDKBU
ICDKB5

ERR1

ERR2
ERR3

ONE
ROUTNAME
RO

R2

R3

R4

R7

R11

R14

CSECT
USING
CLC
BNE
™
BNE
MvC
LA
MVC
LA

SR

IC
T™
BNO

LA

BR
DC

DC

EQU
EQU
EQU
EQU
EQU
EQU
EQU
END

ICDKBA#,R11
0(1,R14),ONE
ERR1

4 (R14),X*08"*
ERR2
ICDKB1+2(2),6(R14)
R2,0(0)
ICDKB2+2(2),10(R14)
R3,0(0)

RY4,RY
RY4, 0 (R2)

4 (R14), X" 04"
ICDKBN3
R2,0(R2)
R2,0(R2,R7)
ICDKBY
R2,1(R2)

R4, 0(R3)
R3,1(R3)
0(R3,1),0(R2)
0(R3),C' '
ICDKB5
0(R3),C'*'
R2,1(R2)

R4, ICDKB5
12(R14)

RO, 41

ERR3

RO, 42

R2, ROUTNAME
R11,=V (ICDKERRT)
R11

F'1°

CL4"BA# '

PRAdswWNhO

=R

Is there only one argument?

If not, print an error message.
Is it a character argument?

If not, print an error message.
Develop the address of the
argument.

Develop the address of the return
area.

Obtain the length of the argument.
Is the argument an array element?

If not, skip array element processing.

Obtain array displacement address.
Develop address of array element.

Skip over length indicator.

Place the length in the return area.
Locate the character to be moved.
Move the character.

Is it a blank?

If not, branch to -get next character.

If blank, substitute an asterisk.
Locate next character to be moved.
Are there more characters to move?
If not, return to the caller.
Locate message for incorrect number
of arguments.

Locate message for incorrect type.
Indicate the name of this function.
Branch to the run-time error
routine to terminate execution.

The constant one.

The name of this function in EBCDIC.
Equate for register (.

Equate for register 2.

Equate for register 3.

Equate for register 4.

Equate for register 7.

Equate for register 11.

Equate for register 14.

System Programming

63

Example 2:

This is an example of a VS BASIC SLF,- user-written routine to evaluate a
numeric function.
receive two numbers contained in numeric variables or array elements and

calculate the sum of their squares.

The name of the function is SQ# and its purpose is to

The result is returned in register

0. The name of the routine will be ICDKSQ# and it is to be re-entrant.

The compiler will process the SQ# function whenever it appears in a
VS BASIC program and produce object code that will call the routine
ICDKSQ#. The object code contains the following instruction:

L R11,=V(ICDKSQ#)

BALR R14,R11

and the argument list:

r T 1 1
| { | |
L §| i]
T 1 T T T T b
| 0 | /2 | B Dy |
[1L L. [l 1 [J
[3] L)] Ll v 1
| 0 [12| | B D2 |
% 1 i 1 1 [1 ___,l
| < —-—-U4 bytes >|
where:
2 - is the number of arguments
1 - indicates that the argument is a numeric variable
2 - indicates that the argument is a numeric array element

BDDD; - is the displacement of the actual argument if scalar or the
displacement of an array element displacement for the first

argument

BDDD, - is the displacement of the actual argument is scalar or the
displacement of an array element displacement for the second

argument

Each actual argument may have one of the following formats:

Short Precision

r T T L] T T T T 1
| Data I
I': L L L. L 1 L 1 {
| < 4 bytes >|
Long Precision

r T 1 ¥ T T T T A
| Data |
L [1 4 1 i { 1 ___4'
1] LJ T T v T L) T

| Data |
II: L 1 L i 4 4 L _Jl
| < 4 bytes >|

64

The array displacement has the following format:

r T q T T L) T 1
| | D D D D D D |
', L 4 L L 4 L 1
| < 4 bytes >|

where:

DDDDDD - is the displacement into the array area of the actual

array element. The contents of register 7 (R7) must be added to
this value.

System Programming 65

The assembler language code for the routine ICDKSQ# follows:

ICDKSQ#

ICDKAl

ICDKA2

ICDKA3

ERR1

ERR2
ERR3

TWO
ROUTNAME
RO
R2
R3
R7
R8
R11
R14
FRO
FR2

PRG

SVOFLT2
SVOFLT4

66

CSECT
USING PRG,R8
USING ICDKSQ#,R11

STD FR2, SVOFLT2
cLC 0(4,R14),TWO
BNE ERR1

™ 4 (R14),X'08"
BE ERR2

™ 8 (R14),X'08"
BE ERR2

MVC SVOFLTY (2) ,LA2
MVC SVOFLTU4+2(2),6(R14)
EX RO,SVOFLT4

™ 4(R1U4), X' 04"
BNO ICDKA1

L R2,0(R2)

LA R2,0(R2,R7)
MVC SVOFLTH (2) ,LA3
MVC SVOFLT4+2(2),10 (R14)
EX RO, SVOFLTY4

™ 4(R14),X' 04"
BNO ICDKA2

L R3,0(R3)

LA R3, 0(R3,R7)

™ SLBTYPE, DLPREC
BO ICDKA3

LE FRO, 0(R2)

MER FRO, FRO

LE FR2,0(R3)

MER FR2, FR2

AER FRO, FR2

LE FR2,SVOFLT2

B 12 (R14)

LD FRO, 0(R2)

MDR FRO, FRO

LD FR2, 0(R3)

MDR FR2, FR2

ADR FRO, FR2

LD FR2, SVOFLT2

B 12 (R14)

LA RO, 41

B ERR3

LA RO, 42

LA R2, ROUTNAME

L R11,=V(ICDKERRT)
BR R11

DC F'2°

DC CL4"SQO# *

EQU 0

EQU 2

EQU 3

EQU 7

EQU 8

EQU 11

EQU 14

EQU 0

EQU 2

ICDKMAP

DSECT

ORG LEVOABS

DS D

DS D

END

ESTABLISH ADDRESSABILITY FOR PRG.

ESTABLISH ADDRESSABILITY.

SAVE REGISTER 2.

ARE THERE ONLY TWO ARGUMENTS?

IF NOT, PRINT AN ERROR MESSAGE.

IS IT A CHARACTER ARGUMENT?

IF NOT, PRINT AN ERROR MESSAGE.

IS THE SECOND CHARACTER?

IF NOT, PRINT AN ERROCR.

SET UP AN INSTRUCTION TO DEVELOP
THE ADDRESS OF THE FIRST ARGUMENT.

IS THE ARGUMENT AN ARRAY ELEMENT?
IF NOT, SKIP ARRAY PROCESSING.
OBTAIN ARRAY DISPLACEMENT ADDRESS.
DEVELOP ACTUAL ADDRESS OF ELEMENT.
SET UP AN INSTRUCTION TO DEVELOP
THE ADDRESS OF THE 2ND ARGUMENT.

IS THE ARGUMENT AN ARRAY ELEMENT?

IF NOT, SKIP ARRAY PROCESSING.

OBTAIN ARRAY DISPLACEMENT ADDRESS.

DEVELOP ACTUAL ADDRESS OF ELEMENT.

IS PROCESSOR IN LONG PRECISION MODE?

IF SO, CALCULATE IN LONG PRECISION.

OBTAIN VALUE OF THE FIRST ARGUMENT.

SCQUARE THAT VALUE.

OBTAIN VALUE OF THE SECOND ARGUMENT.

SQUARE THAT VALUE.

ADD, LEAVING RESULT IN REGISTER 0.

RESTORE REGISTER 2.

RETURN TO THE CALLER.

OBTAIN VALUE OF THE FIRST ARGUMENT.

SQUARE THAT VALUE.

OBTAIN VALUE OF THE SECOND ARGUMENT.

SQUARE THAT VALUE.

ADD, LEAVING RESULT IN REGISTER O.

RESTORE REGISTER 2.

RETURN TO THE CALLER.

LOCATE MESSAGE FOR INCORRECT NUMBER
OF ARGUMENTS.

LOCATE MESSAGE FOR INCORRECT TYPE.

INDICATE THE NAME OF THIS FUNCTION.

BRANCH TO THE RUN-TIME ERROR
ROUTINE TO TERMINATE EXECUTION.

THE CONSTANT TWO.

THE NAME OF THIS FUNCTION IN EBCDIC.

EQUATE FOR REGISTER 0.

EQUATE FOR REGISTER 2.

EQUATE FOR REGISTER 3.

EQUATE FOR REGISTER 7.

EQUATE FOR REGISTER 8.

EQUATE FOR REGISTER 11.

EQUATE FOR REGISTER 14.

EQUATE FOR FLOATING REGISTER O.

EQUATE FOR FLOATING REGISTER 2.

ISSUE MACRO FOR ICDKMAP.

LOCATE SAVE AREA IN COMMUNICATIONS
REGION FOR RE-ENTRANT PROGRAMS.
SAVE AREA FOR FLOATING REGISTER 2.
SAVE AREA FOR FLOATING REGISTER 4.

Example 3 (CMS only):

This an example of a VS BASIC SLF, user-written routine to evaluate a
character function. The name of the function is RD# and its purpose is
to receive the name of a CMS file with a filetype of VSBREC and the name
of an 80-byte variable and read one record from the file into the
variable. It will return a code in register 0 indicating whether the
read was successful. The name of the routine is ICDKRD#.

The compiler will process the RD# function whenever it appears in a VS
BASIC program and produce object code that will call the routine
ICDKRD#. The object code contains the following instructions:

L R11,=V(ICDKRD#)
BALR R14,R11

and the argument list:

r T T 1
I 2 | |
' - 4 [l 4
r T T T T Li T 1
| 0 |9 | | B D D Dy |
L 1 B + 4 4 1 d
r T T T T b
[0 |9 | | B D D D, |
l_ L L L L L L _{
| < 4 bytes >]
where:
2 - is the number of arguments
9 - indicates that the argument is a character variable

BDDD; - is the displacement of the first actual argument

BDDD, - is the displacement of the second actual argument

The actual arguments have the following format:

First Argument

r T T
I 01 8]
L

1

T T T T 1 ‘! T
Filename
4 1 4 i | 1 i L i '} L. L i 4. L L

< 8 bytes >

——+
— e e

Second Argument

r T T | 1 1. T ¥] T T T 1 T T T T 1
[510 | variable for 80-byte Record } { |
L L % L A R 4 L L 41 1 d L L L L i %

|< 80 bytes >|

System Programming 67

The assembler language code for the routine ICDKRD# follows:

ICDKRD#

ERRET

ONE
PLIST
Pl

RESOLVE
RO

R1

RrR2

RY

R11

R14

R15

Note:

68

ESTABLISH ADDRESSABILITY.

SAVE REGISTER 1, USED BY I/O.

OBTAIN FILENAME DESCRIPTOR.

SET UP AN INSTRUCTION TO DEVELOP
THE ADDRESS OF THE FIRST ARGUMENT.

PUT THE FILENAME INTO THE PARM LIST.

OBTAIN VARIABLE DESCRIPTOR.

SET UP AN INSTRUCTION TO DEVELOP
THE ADDRESS OF THE 2ND ARGUMENT.

SKIP OVER STRING LENGTH INDICATOR.

LOCATE THE READ PARAMETER LIST.

FSREAD (R15),BUFFER=(R2),BSIZE=80, ERROR-ERRET READ THE RECORD

CSECT
USING ICDKRD#,R11
LR R4 ,R1

L R15,4(R14)
STH R15,RESOLVE+2
EX 0,RESOLVE
MVC P1,1(R2)

L R15,8(R14)
STH R15, RESOLVE+2
EX 0,RESOLVE
LA R2,1(R2)

LA R15,PLIST
SDR RO, RO

LR R1,R4

B 12 (R14)

LD RO, ONE

LR R1,RY

B 12(R14)

DC D'1"

DS 0D

DC cLg" '

DC CL8'VSBREC'
DC CL2'A1"

LA R2,0

EQU 0

EQU 1

EQU 2

EQU 4

EQU 11

EQU 14

EQU 15

END

INDICATE THAT THE READ IS SUCCESSFUL
RESTORE REGISTER 1.

RETURN TO THE CALLER.

INDICATE THAT READ FAILED.

RESTORE REGISTER 1.

RETURN TO THE CALLER.

THE CONSTANT ONE.

THE READ PARAMETER LIST.

INSTRUCTION TO BE EXECUTED.
EQUATE FOR REGISTER O.
EQUATE FOR REGISTER 1.
EQUATE FOR REGISTER 2.
EQUATE FOR REGISTER 4.
EQUATE FOR REGISTER 11.
EQUATE FOR REGISTER 14.
EQUATE FOR REGISTER 15.

This program uses CMS macros and does not do any error checking.

Example 4 (CMS only):

This is an example of a VS BASIC SLF, user-written routine to evaluate a
character function. The name of the function is WR# and its purpose is
to receive a CMS filename and the name of an 80-byte character variable
containing data. The routine will write the 80-byte variable into a CMS

file that it will create with the filename
filetype of VSBREC. It will return a code
whether the read was successful. The name

The compiler will process the WR# function
BASIC program and produce object code that

indicated and assign it a
in register 0 indicating
of the routine is ICDKWR#.

whenever it appears in a VS
will call the routine

ICDKWR#. The object code contains the following instructions:

L R11,=V(ICDKWR#)
BALR R14,R11

and the argument list:

r T T 1
| | | |
[R _ { 4 4
C T T Al T T T 1
[o 19 | | B D D Dy |
——t——t T e e
| o |9 | | B D D Ds |
If 1 1 4 A4 1 L 1!
i< 4 bytes >]
where:

2 - is the number of arguments

9 - indicates that the argument is a character variable

BDDD; - is the displacement of the first actual argument

BDDD, - is the displacement of the second actual argument

The actual arguments have the following format:

First Argument

r T T T T. T T T LR L] T T T T T T T T 1

| O 8 | Filename of CMS File to be Created |

L L + L i I 1 1 L L 1 L 4L L L L A L ,1I
|< 8 bytes >|

Second Argument

r T T T T T T T . T T T T T T T T 1

| 5 0 | Variable Containing an 80-byte kecord

L L ‘lf L L L L L L L 1 4L 4 1 L 4 J'
|< 80 bytes >|

System Programming 69

The ass

ICDKWR#

ERRET

ONE
PLIST
P1

RESOLVE
RO

R1

R2

R4

R11

R1Y4

R15

Note:

70

embler language code for the routine ICDKWR# follows:
CSECT
USING ICDKWR#,R11 ESTABLISH ADDRESSABILITY.
LR R4,R1 SAVE REGISTER 1, USED BY I/0.
L R15,4(R1W) OBTAIN FILENAME DESCRIPTOR.
STH R15,RESOLVE+2 SET UP AN INSTRUCTION TO DEVELOP
EX 0,RESOLVE THE ADDRESS OF THE FIRST ARGUMENT.
MVC P1,1(R2) PUT THE FILENAME INTO THE PARM LIST.
L R15,8(R14) OBTAIN VARIABLE DESCRIPTOR.
STH R15,RESOLVE+2 SET UP AN INSTRUCTION TO DEVELOP
EX 0,RESOLVE THE ADDRESS OF THE 2ND ARGUMENT.
LA R2,1(R2) SKIP OVER STRING LENGTH INDICATOR.
LA R15,PLIST LOCATE THE WRITE PARAMETER LIST.
FSWRITE (R15),BUFFER=(R2),BSIZE=80,ERROR=ERRET WRITE A RECORD.
SDR RO,RO INDICATE THAT THE WRITE IS SUCCESSFUL.
LR R1,R4 RESTORE REGISTER 1.
B 12(R14H) RETURN TO THE CALLER.
LD RO, ONE INDICATE THAT THE WRITE FAILED.
LR R1,RY4 RESTORE REGISTER 1.
B 12 (R1W) RETURN TO THE CALLER.
DC D'1* THE CONSTANT ONE.
DS 0D THE WRITE PARAMETER LIST.
DC cLs* °
DC CL8"'VSBREC'
DC CL2*A1"
LA R2,0 INSTRUCTION TO BE EXECUTED.
EQU 0 EQUATE FOR REGISTER 0.
EQU 1 EQUATE FOR REGISTER 1.
EQU 2 EQUATE FOR REGISTER 2.
EQU) EQUATE FOR REGISTER 4.
EQU 11 EQUATE FCOR REGISTER 11.
EQU 14 EQUATE FOR REGISTER 14.
EQU 15 EQUATE FOR REGISTER 15.
END

This program uses CMS macros and does not do any error checking.

Writing a Scanning Routine under SLF

All routines written under SLF that are to be used to scan function
names must conform to the following standards or they will not operate
successfully in conjunction with the compiler portion of the VS BASIC
processor.

ROUTINE NAME: The name of the routine that you will write to scan all
three character names ending in a pound sign must be:

ICDJUSTB

This is the name the compiler has been designed to check for whenever an
appropriate name has been encountered in your source program.

REGISTER USAGE: The following registers contain addresses that will be
of use to you in writing your scanning routine:

Register Contents

6 Address of the User Routine (use this register as your
base register)
10 Address of the Return Point
15 Address of the 3-character Name to be Checked

Registers 2 and 3 are available as work registers. There is no need
to save and restore them. However, if additional registers are
required, they must be saved and restored. This should be avoided since

your scanning routine would not pe re-entrant. Register 9 is the
register to be used to return an indication to the compiler of the
results of the search.

DETERMINING THE SIZE OF ICDKBFTB: Insert at the end of your program the
macro ICDBIFTB, which is required to calculate the entry number in
BIFTAB for your function name. This macro must be followed by an equate
that will use the addresses contained in the first and last entries in
BIFTAB to calculate the number of entries in the table.

Example:
ICDBIFTB
ENTNUM EQU (LCSTEND-LCSTART) /4
END

CREATING AN INTERANL TABLE TO IDENTIFY YOUR INTRINSIC FUNCTION ROUTINES:
To identify each of your intrinsic functions that were written under
SLF, you must create an internal table that contains one entry for each
routine that you created. The entries are placed into the table
sequentially. Each entry has the following format:

Internal Function Table Entry

| R T T T T 1
| Function Name |Reserved|Function| Flags |Not Used| Entry |
| (in EBCDIC) | | Type] | | Number |
L B S Lo P . L 4 J
0 3 4 5 6 7

Byte Contents
0-2 Name of the function in EBCDIC. This name must be 3
characters in length with a pound sign (#) as the last

character.
3 Reserved
4 Function type: if the function is numeric this byte should

be X'00'; if the function is character this byte should be
X'08'. All other bits should be turned off.
5 Function flags:

Bit Values Meaning

B*'00110000*' A parameter is required

B'00100100* A parameter is not required
B'00100000* A parameter is optional

B*00110001* An array is required as a parameter
B'00100001' An array may optionally be used as a

parameter
6 Not used. You may use this byte for your search of the
table, if you are using a hasing algorithm.
7 Entry number in the branch information table (ICDBIFTB) of

the entry for this function. The first entry number
available is determined by computing
ENTNUM(LCLSTEND-LCSTART)/4. This corresponds to adding a
V-type address constant for your routine to the end of the
execution-table. Each succeeding entry should be kept in
sequential order (that is, ENTNUM is the number of the
first address added, ENTNUM + 1 is the number of the second
address added, ENTNUM + 2 is the number of the third
address added, and so on). Refer to the sample program in
the section "Sample for SLF Scanning Routine" for more
information.

SEARCHING YOUR INTERNAL FUNCTION TABLE: The easiest method for scanning
your internal function table is a sequential search. However, as you
add more routines and the internal table gets larger, the time required

System Programming 71

to compiler a program will increase. The additional time is required
because this your scanning routine is called every time an appropriate
three-character name is encountered. Therefore, if you notice that your
compile-time has increased considerably, you might want to write a more
sophisticated search routine using some type of hashing algorithm.

OBTAINING THE FUNCTION NAME TO BE CHECKED FOR VALIDITY: The compiler
will place the address of the three-byte name to be checked in register
15.

NOTIFYING THE COMPILER OF THE RESULTS OF THE SEARCH: After you have
searched your internal table for the name that the compiler passed to
your scan routine, you must indicate to the compiler whether the name is
valid. If the name is one of your intrinsic function, place the address
of the corresponding entry in your internal function table in register
9. If the name is not valid set register 9 to zeros. Finally, return
control to the caller with a branch to register 10.

Sample SLF Scanning Routine

When the compiler encounters a reference to a three character name that
has a pound sign (#) as the last character it calls a routine called
ICDJUSTB. ICDJUSTB is the user-written scanning routine that will
determine if the user function name is valid under SLF. The compiler
passes ICDJUSTB the name to be checked in register 15. The entries in
an Internal Function Table are checked for a match and the address of
the corresponding user-written function evaluating routine is returned
to the compiler in register 9.

72

The assembler language code for an ICDJUSTB that will check for the routines ICDKBA#,

ICDKSQ#,

ICDJUSTB

Loop

RETURN
FCTTBL

ENDTBL
NUMENT
R3

R6

R9

R10
R15
INPUT
NAME

ENTNUM

ICDKRD#, and ICDKWR# follows:

CSECT

USING ICDJUSTB, R6 Establish addressability.

USING INPUT,R15 Establish addressability for input.
LA R9, FCTTBL Get address of your function table.
L R3,NUMENT Get number of entries in table.
EQU * Beginning of table scanning loop.
CLC NAME, 0(R9) Is the name passed in the table.
BE RETURN If so, return to the caller.

LA R9,8(R9) If not, continue scanning table.
BCT R3,LOOP Branch to compare next entry.

SR R9,R9 If name is not found, zero register 9
BR R10 Return to the calling routine.

DS 0D Start of your SLF function table.
DC CL3'BA#" Name of function BA#.

DS X

DC XL1'08" Type of function BA#.

DC XL1'30° Function codes for BA#.

DS X

DC ALl (ENTNUM) ICDKBFTB entry number for BA#.

DC CL3'SQ#" Name of function SQ#.

Ds X

DC XL1*00" Type of function SQ#.

DC XLi*30" Function codes for SQ#.

DS X

DC AL1 (ENTNUM+1) ICDKBFTB entry number for SQ#.

DC CL3*RD#" Name of function RD#.

Ds X

DC XL1'00' Type of function RD#.

DC XL1i*30" Function codes for RD#.

DS X

DC AL1 (ENTNUM+2) ICDKBFTB entry number for RD#.

DC CL3"WR#"* Name of function WR#.

DS X

DC XL1* 00" Type of function WR#.

DC XL1'30" Function codes for WR#H.

DS X

DC AL1 (ENTNUM+3) ICDKBFTB entry number for WR#.

EQU * End of your SLF function table

DC A((ENDTBL-FCTTBL)/8) Number of functions in your table.
EQU 3 Equate for register 3.

EQU 6 Eqguate for register 6.

EQU 9 Equate for register 9.

EQU 10 Equate for register 10.

EQU 15 Equate for register 15.

DSECT

DS CL3 Three-byte input name to be checked.
ICDBIFTB Issue the macro ICDBIFTE.

EQU (LCLSTCND-LCSTART) /4 Next available entry number.

END

Modifying the Branch Information Table (ICDBIFTB) and Reassembling the

Run~Time Routine ICDKBFTB

The branch information table (ICDBIFTB) must be updated to include
V-type address constants for each of the new intrinsic functions that
you wish to add. The source code for the module ICDKBFTB, which
contains the branch information table, has been provided to you in the
form of a card deck. V-type address constants for your routines must be

placed after LCLSTEND in ICDKBFTB.

Make sure that the order of the

address constants corresponds to the entry numbers that were assigned in

the scanning routine ICDJUSTB.

System Programming 73

Sample SLF Branch Information Table (ICDKBFTB) Modifications

To locate the new library routines that were shown in the preceding
examples, the following V-type address constants must be added to
ICDKBFTB just before the END statement in the order in which they appear
in the scanning routine ICDJUSTB:

DC V(ICDKBA#)
DC V (ICDKSQ#)
DC V(ICDKRD#)
DC V (ICDKWR#)

Example:

ICDKBFTB CSECT

ICDSIFTB TYPE=CSECT
LCSTART DS OF
LCKORGE DC V (ICKDORGE)
LCKATTN DC V (ICDKATTN)
LCKINTP DC V(ICDKINTP)

LCKVEXT DC V (ICDKVEXT)
LCKVXTR DC V (ICDKVXTR)
LCKOPN1 DC V (ICDKIPN1)
LCLSTEND DS oF
DC V (ICDKBA#)
DC V (ICDKSQ#)
DC V (ICDKRD#)
DC V{(ICDKWR#)

Installing Your SLF Modules

UNDER 0S/VS: The procedure descirbed in this section will install your
SLF modules into the VS BASIC Processor under 0S/VS.

Write the required routines (ICDKxx# and ICDJUSTB).

Either punch the contents of file 18 or using IEBUPDTE place its
contents on a disk. File 18 contains the source for ICDKBFTB.

Modify ICDKBFTB.

Using IEBUPDTE, place the contents of file 17 into SYS1.MACLIB or a
private macro library. File 17 contains the macros required for
assembling the SLF modules.

Assembly ICDKxx#, ICDJUSTB, and ICDKBFTB.

O LW N

After all the necessary routines have been written and assembled, it is
necessary to link edit them into the VS BASIC processor. You can use
the following JCL procedure to accomplish this under 0S/VS:

B

EE B

accounting-information,MSGLEVEL=(1,1)
PGM=IEWL, PARM='LIST, MAP, NCAL, RENT',
REGION=128K

SYSOUT=A, SPACE=(121,(1000,50) ,RLSE)
DSN=§&any-name, UNIT=SYSDA,
SPACE=(1500, (35,5),,,ROUND)
DSN=new-1library-name, DISP=(NEW, CATLG) ,
UNIT=unit,VOL=SER=serial-number,
SPACE=(TRK, (60,1,1))

ICDBFTB(R)

ICDKxx# (R)

ICDJUSTB

PGM=I1EWL,PARM="LIST,MAP,NCAL,RENT*,

//REP JOB
//STEP1 EXEC
//
//SYSPRINT DD
//8YSUT1 DD
//
//SYSLMOD DD
//
//
//SYSLIN DD *
Object Code for ICDKBFTB
NAME
Object Code for ICDKxx#
NAME
Object Code for ICDJUSTB
NAME
/*
//STEP2 EXEC
/7

//SYSPRINT DD

//8YSUT1 DD

/7

//SYSLIB DD

//SYSLMOD DD

//SYSLIN DD
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
NAME

REGION=128K

SYSOUT=A

DSN=§& &éany-name, UNIT=SYSDA,
SPACE=(1500, (35,5),,,ROUND)
DSN=o0ld-library-name, DISK=SHR
DSN=new-library-name,DISP=SHR
*

SYSLIB(ICDJCOMP)
SYSLIB(ICDJNUCL)
SYSLIB(ICDJNUC1)
SYSLIB(ICDJINUC2)
SYSLIB(ICDJNUC3)
SYSLIB(ICDJINUCY)
SYSLIB(ICDJNUCS)
SYSLIB(ICDJDEFR)

SYSLIB (ICDJRUNA)
SYSLIB(ICDJCMPA)
SYSLIB(ICDJERR)
SYSLIB(ICDJMATV)
SYSLIB(ICDJFUTS)
SYSLIB(ICDFINFO)
SYSLIB(ICDJIOVB)
SYSLIB(ICDJVERB)
SYSLIB(ICDUSFN)

SYSLMOD (ICDJUSTB)
SYSLIB(ICDJVREC)
SYSLIB(ICDJDUMY)
ICDJCOMP (R)

System Programming

75

/*

//STEP3 EXEC PGM=IEWL,PARM="LIST,MAP',COND=(8,LE),
V4 REGION=128K
//SYSPRINT DD SYSOUT=A, SPACE=(121, (1000, 50) ,RLSE)
B //sysur: DD DSN=§&any-name , UNIT=SYSDA,
/7 SPACE=(1500, (35,5),,,ROUND)
!! //SYSLMOD DD DSN=new-library-name,DISP=(OLD,PASS),
V4 VOL=SER=serial-number,
@ //sysiis DD DSN=new-library-name
V4 DD DSN=old-library-name,DISP=SHR
//7SYSLIN DD *
INCLUDE SYSLIB(ICDKBFTB,ICDKERR,ICDKGSUB,
ICDKDSURB, ICDKSSUB)
INCLUDE SYSLIB(ICDKMAT, ICDKVIOR)
NAME ICDKRTNS (R)
VA

An explanation of the lettered statements follows:

[} Supply any accounting~information that your computing center
requires.

:I Supply any appropriate name for the utility data set. The same
name can be used for both statements.

!I This statement defines the new SLF library in which you wish to
place the SLF modules. Supply the following information:

new-library-name - is the name of the lbirary into which you
wish to install the SLF version of the VS BASIC compiler.
You may specify either SYS1.LINKLIB or a private library.

unit - indicates the direct-access on which the new library
will be placed.

serial-number - indicates the volume serial number of the
volume on which the VS BASIC compiler resides.

Note: This procedure assumes that the output from your
assembly of ICDJUSTB, ICDKBFTB, and ICDKxx# will be in
the form of a card deck. 1If you have placed the object
code for these modules onto disk or tape you must
substitute in the SYSLIN DD statement the appropriate
parameters to define the tape or disk. You may use your
old library, which contains the VS BASIC modules,
however, remember that ICDKBFTB, ICDJUSTB, and VS BASIC
load modules will be replaced.

:l This statement refers to the old library containing the VS
BASIC compiler modules.

Ei This statement refers to the new library that will contain the
modified ICDKBFTB and ICDKxx#. It is concatenated with the old

library from which it will obtain the remainder of the required
object modules.

UNDER CMS: The procedure described in this section will install your

SLF modules into the VS BASIC Processor under CMS.

1 Mount the distribution tape on any available magnetic tape device.
privilege class of B.

2 Log onto VM/370 with a user identification that has been assigned a

76

3

4
5

6

7

8

Attach a real tape device to your user identification. The device
must be attached at virtual address 181. Use the following
command :

attach cuu to userid as 181

where:
cuu - is the channel and unit address of the actual tape
device.

userid - is the user identification that you logged on with in
step 2 .

IPL CMS.

Access the system disk (S) as your A disk. Use the following
command :

access 191 a

Place the last two files on the distribution tape into CMS files.
File 17 is to be split into macro files and file 18 is to be placed
into an assembler language source file. Use the following commands
(the system responses have been included):

tape fsf 16
R;

tappds * macro al (update coll)
R;

tappds * assemble al (update coll)
R;

Note: The TAPPDS * MACRO command will create 12 files. They are:

ICDKMAP MACRO Al
ICDOBJA MACRO Al
ICDVARCN MACRO Al
ICDBIFTB MACRO Al
ICDKPRGA MACRO Al
ICDKREG MACRO Al
ICDGBIF1 MACRO Al
ICDSET1 MACRO Al
ICDKMSG MACRO Al
PRG MACRO Al
ZH#UTT MACRO Al
ZH#COMM MACRO Al

The TAPPDS * ASSEMBLE command will create the file:
ICDKBFTB ASSEMBLE Al
Create a macro library. Use the following command:
maclib gen vsbmac icdkmap prg icdojba icdvarcn
z#utt icdbiftb icdkprga icdkreg icdgbifl icdsetl

icdkmsg z#comm

Note: To type the pound sign (#) you must precede it with a double
quote ("), (for example, z"#comm).

Edit the source file for ICDKBFTB to include the V-type address
constants for your new library routines.

System Programming 77

10
11

12
13

78

Make the macro library that you just created available. Issue the
following command:

global maclib vsbmac
Assemble the file containing ICDKBFTB.
Create CMS files containing the assembler language source code for

your new library routines and for the scanning routine ICDJUSTB.
Assemble these files.

Create a text library that contains the text files of your new
library routines, the new ICDKBFTB and the text file of your
scanning routine 1CDJUSTB. Use the following command:

txtlib gen vsbnew icdkustb icdkbftb icdkxx# ...
Issue the following command to regenerate the VS BASIC modules:

exec vsbinstl regen

Note: This command will replace the o0ld VS BASIC modules,
therefore, if you wish to retain the o0ld modules you must rename
them temporarily.

From this point on the regeneration procedure will prompt you for
responses. The procedure types out the following message:

REGEN OF THE VS BASIC MODULES

Ensure that the system disk (S) has been accessed as your A
A disk. The following message will be typed at your terminal:

THE SYSTEM DISK SHOULD BE ACCESSED IN READ/WRITE STATUS
AS THE 'A' DISK. IF NOT, ENTER 'END', REACCESS THE
SYSTEM DISK IN THE PROPER STATUS AND REISSUE THIS EXEC
AGAIN.

IF IT IS ACCESSED AS THE READ/WRITE *A' DISK, PRESS
RETURN.

You must respond with one of the following:

end
CR

If the system disk is not access as your read/write A disk,
enter END. The following response will be typed at your
terminal:

'EXIT FOR SYSTEM DISK ACCESS'

Do 5 , and repeat step 13 from the beginning. If the system
disk is correctly accessed, the procedure continues.

Enter the names to be used for the regeneration. The
following message will be typed at your terminal:

ENTER THE TXTLIB NAMES TO BE SEARCHED DURING THE REGEN OF
THE COMPILER (TO A MAXIMUM OF 7)

IF ONLY THE TXTLIB 'VSB' AS CREATED AT INSTALLATION TIME
IS TO BE SEARCHED, PRESS THE RETURN KEY.

At this point enter the name of your SLF txtlib followed by
VSB (for example, slf vsb).

After the VS BASIC modules have been regenerated, the
following message is typed and the regeneration procedure is
completed:

INSTALLATION/REGEN COMPLETE
R;

UNDER DOS/VS: The required macros were automatically placed in your
source statement library, in EDECK form, if you did not cancel job 4
during the installation of VS BASIC under DOS/VS (step 6B). The source
for ICDKBFTB was placed in the source statement library at that time
also. Using the maintenance program, MAINT, with a CATALR statement,
catalog the assembled SLF modules in the same library as the old Vs
BASIC modules. The old modules will be replaced if you do not rename
them. To relink edit the VS BASIC modules, use the following procedure:

// JOB
// OPTION CATAL
ACTION MAP

PHASE ICDJCOMP, ICDDSBSC+16K,NOAUTO
INCLUDE ICDJNUCL
INCLUDE ICDJNUC1
INCLUDE ICDJNUC2
INCLUDE ICDJNUC3
INCLUDE ICDJNUCHU
INCLUDE ICDJNUCS
INCLUDE ICDJDEFR
INCLUDE ICDJRUNA
INCLUDE ICDJCMPA
INCLUDE ICDJERR
INCLUDE ICDJMATV
INCLUDE ICDJFUTS
INCLUDE ICDJINFO
INCLUDE ICDJIOVB
INCLUDE ICDJVERB
INCLUDE ICDJUSFN
INCLUDE ICDJUSTB
INCLUDE ICDJVREC
INCLUDE ICDJDUMY

PHASE ICDKRTNS, ICDDSBSC+16K
INCLUDE ICDKBFTB
INCLUDE ICDKERR
INCLUDE ICDKGSUB
INCLUDE ICDKDSUB
INCLUDE ICDKSSUB
INCLUDE ICDKIOVB
INCLUDE ICDKVIOR

/7 LBLTYPE NDS(4)

// EXEC LNKEDT

/&

Space Considerations for SLF

As you increase the size of the VS BASIC library by adding new SLF
routines, the library may reach a point at which it will exceed the size
of the compiler. This is a problem since the library is designed to
overlay the compiler during execution. If the library exceeds the size
of the compiler it will extend past the compiler when it is loaded and
will overlay the beginning of the user area, which immediately follows
the compiler in storage.

Using the load maps that are produced when you install your SLF
routines, you can determine how much space is available for additional
SLF routines. The compiler load map will list the location of the
module ICDJDUMY, the last module in the compiler. This routine is an

System Programming 79

empty DSECT occupying 9K of storage; therefore, the location shown for
ICDJDUMY plus 9K will produce the size of the compiler. The library
load map will list the location of the last SLF routine that was added
as the last routine in the library. The location of the last SLF
routine plus its size will produce the size of the library. The
difference between the size of the compiler and the size of the library
is the amount of space available to you for additional SLF routines.
The size of the compiler must always be greater than or equal to the
size of the library.

Sshould the size of the library exceed the size of the compiler and you
wish to install additional SLF routines, can do the following to adjust
the VS BASIC processor for the additional space requirements.

Replace ICDJDUMY with a new, larger ICDJDUMY that contains an DS
instruction defining the size of the new SLF routine.

procedure VSBINSTL EXEC (see the section "Distribution Tape
Installation EXEC Procedure for VM/370(CMS)") the following LOAD
command:

2 For CMS only, locate in the CMS distribution tape installation

LOAD ICDBLDTB ICDPRSCN ICDWNSCN ICDLSSCN ICDSTSCN (ORIGIN
2F000)

Change the ORIGIN parameter by adding to it the size of the new SLF
routine.

3 Install the new SLF routine.

SYSTEM PROGRAMMING CONSIDERATIONS FOR 0S/VSl, 0S/VS2, 0OS/VS2(TSQO) AND
DOS/VS USERS

GUIDELINES FOR CREATING VSAM FILES USING ACCESS METHOD SERVICES

This section of the book is designed as a brief introduction to creating
VsAM files for your VS BASIC programmers using the facilities of Access
Method Services. Primary emphasis will be on certain JCL statements and
on the DEFINE command of Access Method Services. This section is not
intended to teach you how to use or maintain VSAM; therefore, most of
the parameters and options of the required JCL and DEFINE commands will
not be discussed nor will any of the other commands available through
Access Method Services. You should refer to the following publciations
for a complete description of managing and using VSAM and Access Method
Services:

Under 0S/VS

0S/VS Virtual Storage Access Method (VSAM)
Programmer's Guide
Order No. GC26-3818

0S/VS Access Method Services
Order No. GC35-0009

Under DOS/VS:

DOS/VS Data Management Guide
Order No. GC33-5372

DOS/VS Utilities.
Access Method Services
Order No. GC33-5382

80

CREATING VSAM FILES FOR VS BASIC USERS

There are three steps to creating a VSAM file:
1 Defining a VSAM Master Catalog

Create a VSAM master catalog. The VSAM master catalog is a central
information point for all VSAM files and the direct access storage
volumes that contain them. The catalog provides VSAM with the
information to allocate space for files, verify that the user is
authorized to use them, compile statistics on their use, and relate
relative addresses to physical locations. All VSAM files and
indexes must be cataloged in the VSAM master catalog (under 0S/VS,
a user catalog may be used in place of the master catalog; however,
the user catalogs must have a pointer to them in the master
catalog). The master catalog is created only once by defining it
through job control and the DEFINE command of Access Method
Services.

2 Defining a VSAM Data Space

Allocate an area of direct access storage to VSAM for a non-unique
file. (A unique file does not require a predefined data space.
When it is defined, it acquires its own unique data space. This
data area, called a VSAM data space, is owned by VSAM and is
available for VSaM files that will be created later. A data space
consists of one or more extents on a volume and is described in the
VTOC as well as in the VSAM master catalog. Data spaces are
allocated through job control and the DEFINE command of Access
Method Services, and are created as needed to contain VSAM files.

3 Defining a VSAM File

Define a VSAM file in a VSAM data space and enter information about
the file characteristics in the VSAM master catalog is the file
that the VS BASIC programmer will process through his programs.
These VSAM files must be defined for your VS BASIC users whenever
they need to create a new VSAM file in their programs. The BASIC
users will have to notify you in advance so that you can define the
needed files through job control and the DEFINE command of Access
Method Services.

DEFINING A VSAM MASTER CATALOG

Usually, the first job that you will run after you have installed VSAM
in your operating system for the first time is a job to create your
master catalog. (Some systems have a predefined master catalog, and it
is not necessary to define one.) Without a master catalog you cannot
define data spaces or files. The volume on which the master catalog is
defined must always be available to the operating system. (Under 0S/VS,
user catalogs may also be defined and may be used in place of or in
addition to the master catalog. The user catalog performs the same
functions as the master catalog; however, the master catalog is still
required to contain pointers to the user catalog. If a user catalog is
used, it must be identified by the VS BASIC programmer in his job
control with a JOBCAT or STEPCAT DD statement.)

System Programming 81

Job Control Statements Required for a VSAM Master Catalog

UNDER 0S/VS: An OS/VS DD statement of the following form is required in
the job that executes Access Method Services to create a master catalog:

//ddname DD DISP=0LD,UNIT=unit,VOL=SER=serial-number

where:
ddname - is any appropriate ddname.

unit - is the direct access device on which you want the master
catalog to reside.

serial-number - is the volume serial number of the volume on which
the master catalog is to reside.

UNDER DOS/VS: A DLBL and an EXTENT statement of the following form are
required in the job that executes Access Method Services to create a
master catalog:

// DLBL IJSYSCT,*file-id*,,VSAM
// EXTENT SYSCAT,disk-label,1,,first-track,total-tracks

where:
file-id - is the name that is to be assigned to the master catalog.

disk-label - is the label of the disk on which the master catalog
is to reside.

first-track - is the number of the first track of the extent.

total-tracks - is the number of tracks required by the master
catalog.

DEFINE Command Required for a VSAM Master Catalog

The DEFINE command of Access Method Services for a master catalog is as
follows:

DEFINE MASTERCATALOG (NAME (catalog-name) FILE(ddname)-
VOLUMES(serial-number)...)

where:
catalog-name - is the name that you choose for the catalog.
ddname - is the ddname on the DD statement or the filename on the
DLBL statement that defines the data set on which the master

catalog will reside.

serial-number - is the serial number of the volume on which the
master catalog is to be placed.

Note: If you wish to define a user catalog under 0S/VS, you can use the
same DD statement and DEFINE command; however, you must
substitute the keyword USERCATALOG for MASTERCATALOG in the
DEFINE command.

See the section "Examples of Using Access Method Services to Define

VSAM Files" for an illustration of how these statements are actually
used to define a master catalog.

82

DEFINING A VSAM DATA SPACE

All VSAM files that your users will process are stored in VSAM data
spaces. Non-unique files may share the same data space; however, a
unique file will allocate and occupy its own data space. To define a
VSAM file that can share a data space with other files, the data space
in which you are going to place the file must have been defined
previously. A data space can occupy all or a part of a direct-access
volume. It cannot occupy more than one volume. Several data spaces
can, however, share the same volume. And, in addition, the same data
space can be defined on several different volumes.

Job Control Statements Required for a VSAM Data Space

UNDER OS/VS: An OS/VS DD statement that is identical to the DD
statement for the master catalog is required in the job that executes
Access Method Services to create a data space. The only exception is
that the ddname will be different; all other information is the same.
If you are using a user catalog you must also include a JOBCAT or
STEPCAT DD statement for the user catalog.

UNDER_DOS/VS: A DLBL and an EXTENT statement that are identical to the
statements for the master catalog are required in the job that executes
Access Method Services to create the data space. The only difference on
the DLBL statement is that IJSYSCB is replaced by any DOS file-name that
you choose. The only exception on the EXTENT statement is that the
track information should reflect the amount of space required by the
data space.

DEFINE Command Required for a VSAM Data Space

The DEFINE command of Access Method Services for a data space is as
follows:

DEFINE SPACE (FILE(ddname) VOLUMES(serial-name) space€...)

where:

ddname - is the ddname of the OS DD statement or the file name
assigned on the DOS DLBL statement that defines the data set
on which the data space will reside.

serial-number - is the volume serial number of the volume on which
the data space is to reside.

space - is the amount of space required by the data space. This is
specified by the appropriate CYLINDER,TRACK, or RECORD
parameter of the DEFINE command.

Note: 1If you are a user catalog under 0S/VS, you must include the
CATALOG option specifying the name of the user catalog.

See the section "Examples of Using Access Method Services to Define

VSAM Files" for an illustration of how these statements are actually
used to define a data space.

System Programming 83

DEFINING A VSAM FILE

VSAM can be defined as either key-sequenced or entry-sequenced. The
optional parameters of the DEFINE command determine the type of file
that is defined. Each file is defined as a cluster. For key-sequenced
files, the cluster contains two parts, a data portion that is the file
and an index portion. Entry-sequenced are defines with only a data
portion.

Job Control Statements Required for a VSAM File

There are no special requirements for job control statements when using
Access Method Services to define a VSAM file. The only exception occurs
under 0S/VS when you are using a user catalog. 1In this case, you must
include a JOBCAT or STEPCAT DD statement to identify the user catalog.

DEFINE Command Required for a VSAM File

The. DEFINE command for key-sequenced files is as follows:

DEFINE CLUSTER (NAME (cluster-name) FILE(ddname) VOLUMES(serial-number)
KEYS (key-length kev-position) space ...)

where:
cluster-name - is the name of the cluster being defined.
ddname - is the ddname of the DD statement or the name assigned on
the DLBL statement that defines the data set on which the
corresponding data space resides.

serial-number - is the volume serial number of the volume on which
the file is to reside.

key-length - is the length of the key in each record in the file.

key-position - is the starting position of the key in each record.
The key position specified here is calculated from position 0
not position 1. Therefore, position 0 is really the first
position in the record. This differs from the way VS BASIC
specifies the key position. In VS BASIC the key position is
calculated from position 1.

space - is the amount of space required by the file. This is
specified by the appropriate CYLINDER, TRACK, or RECORD
parameter of the DEFINE command.

Note: If you are using a user catalog under 0S/VS, you must include the
CATALOG option specifying the name of the user catalog.

The define command for an entry-sequenced file is the same as for a
key-sequenced file except that you do not specify the KEYS parameter and
you must specify the NONINDEXED parameter.

See the section "Examples of Using Access Method Services to Define

VSAM Files" for an illustration of how these statements are actually
used to define a data space.

84

EXAMPLES OF USING ACCESS METHOD SERVICES TO DEFINE VSAM FILES

The following examples show how to define a catalog, a data space, and a
key sequenced file under 0S/VS and DOS/VS. A set of examples has also
been included for the TSO terminal user so that the Access Method
Services jobs can be entered from the terminal. It is assumed, for
0S/VS only, that a master catalog has been previously created, and that
this example will create a user catalog. For DOS/VS, a master catalog
will be created since DOS does not permit user catalogs.

The catalog is to have 300 records, a name of NEWCAT, and is to
reside on volume 326444 on a 3330 disk device. The data space is to
occupy 100 cylinders; the key-sequenced file is to be called NEWFILE and
will contain 1000, 100-byte records with a 10 byte key starting in the
first position of the record.

Example of Using Access Method Services under 0S/VS

Defining a User Catalog under 0S/VS

//CATALOG JOB “ee

/7 EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=A

7//VOL DD DISP=OLD,UNIT=3330,VOL=SER=326444
//SYSIN DD *

DEFINE USERCATALOG (NAME (NEWCAT) FILE(VOL)-
VOLUMES (326444) RECORDS(300))

/%

Defining a Data Space under 0OS/VS

//DATASP JOB e

//JOBCAT DD DSNAME=NEWCAT ,DISP=0LD

4 EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=A

//VOL DD DISP=0OLD,UNIT=3330,VOL=SER=326444
//SYSIN DD *

DEFINE SPACE (FILE(VOL) VOLUMES(326444)-
CYLINDERS(100)) CATALOG(NEWCAT)
Ve

Note: If the master catalog was to be used instead of the user catalog,

the JOBCAT DD statement and the CATALOG option of the DEFINE
command would be omitted.

Defining a Key-Sequenced VSAM File under 0S/VS

//CLUST JOB e

//J0BCAT DD DSNAME=NEWCAT,DISP=0LD
Va4 EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

DEFINE CLUSTER (NAME (NEWFILE) FILE(VOL)-
VOLUMES (326444) RECORDS(1000)-
RECORDSIZE(100 100)-
KEY¥S(10,0)) CATALOG(NEWCAT)
/*

Note: If the master catalog was to be used instead of the user catalog,
the JOBCAT DD statement and the CATALOG option of the DEFINE
command would be omitted unless the master catalog is passwoxd
protected.

System Programming 85

Example of Using Access Method Services under 0S/VS2(TSO) (Without
command Procedures)

The following commands free and allocate files that are necessary for
running Access Method Services (system responses are not shown):

free f(sysin,sysprint)
alloc f(sysprint) da(*)
alloc f (sysin) da(*)
alloc f(vol) old volume(326444)
The following command calls Access Method Services:
call 'sysl.linklib(idcams)"

The following command defines the usercatalog:

define usercatalog (name(newcat) file (vol) volumes(326444)-
records(300))

The following command defines the data space:

define space (file(vol) volumes(326444) cylinders{100))-
catalog (newcat)

The following command defines the key-sequenced file:

define cluster (name(newfile) file(vol) volumes(326444) -
records(1000) recordsize(100 100) keys(10 0)) catalog(newcat)

Note: If the master catalog was to be used instead of the user catalog,
the CATALOG option of the DEFINE command would be omitted. In
addition, the following JOBCAT or STEPCAT DD statement must be
placed in the user's LOGON procedure and he must Logon again:

/7 JOBCAT DD DSN=NEWCAT, DISP=SHR
STEPCAT

Example of Using Access Method Services under 0S/VS2(TsS0) (With Command
Procedures)

The following are the input files for:

edit 'defcat' data nonum

define usercatalog (name(newcat) file(vol) volumes(326444)--
records (300))

save

edit 'defspace' data nonum

define space (file(vol) volumes(326444) cylinders(100))--
catalog (newcat)

save

edit 'defclust' data nonum
define cluster (name(newfile) file(vol) volumes(326444)--
records(1000) recordsize(100 100) keys(10,0)) catalog(newcat)

Note: If the master catalog was to be used instead of the user catalog,
the CATALOG option of the DEFINE command would be omitted. 1In
addition, when continuing lines under EDIT, you must enter two
consecutive hyphens to represent the continuation character.

The following file is the command procedure that will execute Access
Method Services. It locates the correct DEFINE command to pass to

86

Access Method Services through the parameter ('§é command.®'). This
parameter corresponds to the name of the file that contains the DEFINE
command.

edit 'vsamproc' clist new

00010 proc 1 command

00020 free f(sysin,sysprint)

00030 alloc f(sysprint) da(*)

00040 alloc f(sysin) da(®gcommand."')
00050 alloc f(vol) old volume(326444)
00060 call 'sysl.linklib(idcams)"'
00070 free f(sysin,sysprint)

00080 end

save

end

Note: Before this command procedure can be executed, the following
JOBCAT DD statement must be placed in your logon procedure and
you must logon again:

//STEPCAT DD DSN=NEWCAT,DISP=SHR

The following are the commands that you must enter to execute your
command procedure to define the catalog, data space, and file:

exec ‘'vsamproc' 'defcat'

exec 'vsamproc' ‘*defspace’
exec 'vsamproc' ‘'defclust'

Example of Using Access Method Services under DOS/VS

Defining a Master Catalog under DOS/VS

// JOB
// DLBL IJSYSCT,'NEWCAT',,VSAM
// EXTENT SYSCAT,326444,1,,100,25
// EXEC IDCAMS,SIZE=26K
DEFINE MASTERCATALOG (NAME(NEWCAT) VOLUMES (326444)-
FILE(IJSYSCT) RECORDS(300))

Note: Before this sample job to define the master catalog can be run
the following command must be issued during IPL (the choice of
devices is arbitrary here):

CAT UNIT=X"130"

Defining a Data Space under DOS/VS

// JOB
// ASSGN sYsS001,X*'130"
// DLBL VOL,,,VSAM
// EXTENT SYS001,326444,1,,50,2000
// EXEC IDCAMS,SIZE=26K
DEFINE SPACE FILE(VOL) VOLUMES(326444) CYLINDERS(100))
VA
4

System Programming 87

Defining a Key-Sequenced File under DOS/VS

// JOB
// EXEC IDCAMS,SIZE=26K
DEFINE CLUSTER (NAME(NEWFILE) FILE(VOL) VOLUMES(3264u44)-
RECORDS(1000) RECORDSIZE{100 100) KEYS(10 0))
/¥
/8

SYSTEM PROGRAMMING CONSIDERATIONS FOR_ 0S/VS2 (TSO) USERS

PREPARING A LOGON PROCEDURE UNDER TSO

Before your VS BASIC user can log onto TSO and begin using VS BASIC, you
must, first, create a TSO LOGON procedure for them and place it on
SYS1.PROCLIB. The following job will do this:

!! //VSBPROC JOB accounting-information, MSGLEVEL=(1,1)
/77 EXEC PGM=IEBUPDTE, PARM=NEW
//SYSPRINT DD SYSOUT=A
//7SYSUT2 DD DSN=SYS1.PROCLIB,DISP=0LD
//SYSIN DD DATA
./ ADD NAME=any-name,LIST=ALL
./ NUMBER NEW1=10,INCR=10

@ g\ //stepname EXEC PGM=IKJEFTO01
7/SYSPRINT DD SYSOUT=A
//SYSUADS DD DSN=SYS1.UADS,DISP=SHR

Bl ./ sysuerr DD DSN=library-name,DISP=SHR
7/ DD DSN=SYS1.HELP,DISP=SHR

//name;, DD DYNAM

//namen DD DYNAM
/%

An explanation of the lettered statements follows:

lg Supply any accounting-information that your computing center
requires.

:’ This statement identifies the procedure being added to
SYS1.PROCLIB. Supply any-name that is appropriate.

!I This statement executes the terminal monitor program that is
distributed with TSO (IKJEFT01). If you have written your own
monitor program substitute its name for IKJEFTO0l. You must supply
a stepname, which the terminal user is to include in his LOGON
command.

[: This statement identifies the library that contains the VS BASIC
modifications to the HELP facility. Supply the same library-name
that you specified in the //HELP DD statement in step 1 of the TSO
installation procedure.

Ei This statement and the succeeding DD DYNAM statements reserve
entries for user files that may be used from the terminal. The
name selected should not conflict with any other names that the
user is likely to have. Suggested names that will work for Vs
BASIC users are DD01 through DD99. The number of DD DYNAM
statements that you include should be based on the estimated needs
of your users.

88

Note: This procedure assumes that the VS BASIC Processor resides on
SYS1.LINKLIB. If it does not, you must insert a STEPLIB DD
statement of the following form:

//STEPLIB DD DSN=library-name,DISP=SHR

At the point marked E» in the LOGON procedure.

If you are using VSAM files, you must insert an additional DD statement
of the form:

//ddname DD UNIT=unit,DISP=SHR,VOL=SER=serial-number

This statement identifies the data set on which your VSAM catalog
resides. See the example of defing a VSAM catalog under TSO in the
section "Creating VSAM Files" for an illustration of the relationship
between this DD statement and your DEFINE command.

One additional DD statement is required if you are using a VSAM user
catalog in place of a master catalog for your files. Its form is:

//STEPCAT DD DSN=catalog-name,DISP=SHR

This STEPCAT DD statement identifies the user catalog that you are
using. It must be placed in the LOGON procedure at the place
marked i} ; however, it must precede a STEPLIB DD statement, if used.
Here, too see the example of defining a VSAM for the relationship
between this statement and your DEFINE command.

System Programming 89

KEYBOARD CHARACTERS FOR VS BASIC TSO TERMINAL USERS

Table 7. Terminal Keyboard Special Characters for TSO

r T 1
|] Corresponding TSO Terminal Keyboard Representations?|
| VS H T T T T 4
BASIC I	I 2741		Tele-			
Special		I T T i	type®			
Characters	1050	2260/5	BCD	PTTC	Corr	3270 {33 & 35
1 + 1 L L 1 1 4 4						
r 1 1						
.	- - .					
<	< < < < <					
((((((((
+	+ + + + + + +					

o | | | * | t | |
| 13 | & & & & & & & |
| ! | ! ! ! ! ! v
| % | $ $ $ $ $ $ $ |
[* | * * * * * * * |
|) |))))))) |
| ; | ; H H ; H i i |
|- ! - - - - - - -
| 7 | / / / / / / /|
I ’ I '] [[[’ . ’ i
| > I > > >] > > |
| ? | ? ? ? ? ? ? ?

| : | : : : : : : : |
| # | # # # # # # #]
i a | a a a a @ a ?

I L} I] L L] L} L} L} L} |
I = ! = = .'—_ .: = = = I
I L l w . " " w I
| t | * % ** *% sk *% * ¥ t or **|
| < | >= >= >= 1= >= >= |
| 2 I <= <= = {= <= <= |
| % | <> <> <> {1 <> <> |
L 4 .]
r N
|*Wherever a blank appears in this table it means that the character is|
| not available on the terminal in question. }
| |
| 2Teletype is a trademark of the Teletype Corporation, Skokie, |
| Illinois. |
L J

SYSTEM PROGRAMMING CONSIDERATIONS FOR 0S/VS1 AND 0OS/VS2 USERS

PLACING COMPONENTS OF THE VS BASIC PROCESSOR INTO THE LINK PACK AREA OF
0os/vVs

Since the VS BASIC compiler, library, and executors are designed to be
re-entrant, it is recommended that these components be installed in the
link pack area of 0S/VS1l or 0S/VS2. A considerable savings in storage
that the speed with which these components can be accessed will result.

90

Naturally, if you have the space available in your link pack area,
all three components should be placed there. If you do not have room
for all of these components, the following are general guidelines which
will help you you decide which components to place in the link pack
area:

If Your Programs
Require

Then Place These Components
in the Link Pack Area

Lengthy Compilations Executor and Compiler

Large Amounts of I/O Executor and Library

Lengthy or Numerous
Executions

Executor and Library

,_.._...__.____...,...__,
e e e e o e ——
T L IS " ——

Note: Because parts of the Debug facility are not re-entrant, they
cannot be placed in the link pack area. In addition, if you create any
SLF routine that is not re-entrant you will not be able to place the
re-link edited compiler or library into the link pack area. The RENUM
modules are also re-entrant; however, unless you plan to use the RENUM
facility frequently, do not place them into the link pack area.

Installing VS BASIC Components in the Link Pack Area of 0S/VS

UNDER_0S/VS2: There are two methods that can be used to place
re-entrant components of the VS BASIC Processor into the 0S/VS link pack
area. The first method requires that you copy the link edited
components into SYS1.LPALIB. You must then perform a cold start of your
system. A faster variation of the method can be achieved by adding to
the list of names in the member IEALODOO the names of the components you
wish added to the link pack area before you perform the cold start.

The second method used a modified link pack area but can be
accomplished using either a warm or cold start. During your IPL (either
cold or warm) include an MLPA command that specifies the member IEASYSnn
containing a list of names of the components to be placed in the
modified link pack area. You must add your component names to the list.

For more information on either method, refer to the publications:

0S/VS2 Planning and Use Guide, Order No. GC28-0600
0S/VS2 System Generation Reference, Order No. GC26-3792

UNDER 0S/VSl: Copy the new components into SYS1.LINKLIB. Include the
new components in the list IEAIGGxxX (where xx are any alphameric
characters other than those specified in the system member names).
IEAIGGxx is a member of SYS1.PARMLIB. In addition, IEAIGGxx must be
included in the RAM parameter list during IPL.

For more information on this method, refer to the publications:

0S/VS1l Planning and Use Guide, Order No. GC24-5090
0S/VS1 System Generation Reference, Order No. GC26-3790

System Programming 91

SYSTEM PROGRAMMING CONSIDERATIONS FOR VM/370(CMS) USERS

CMS Preparations for New VS BASIC Users

Because it is assumed that your VS BASIC users may not be familiar with
the operation or requirements of CMS, it is recommended that you make
some additional preparations for them that will facilitate their use of
VS BASIC under CMS. The major considerations are:

¢ Conflicts between the CMS logical line editing characters and
characters that may be required by the VS BASIC FORM, Image
Arithmetic Assignment, and certain I/0 statements. The characters
in conflict are the pound sign (#), the at sign (a), and the double
quote (").

¢ The need to format the user's A disk.

¢ The need to provide a GLOBAL TXTLIB command for TSOLIB when VS BASIC
debug is to be used.

¢ The lack of support by certain CMS terminals of characters that are
a part of the VS BASIC character set (for example, the less than
sign (<) on a 2741 terminal with a corresponding keyboard).

Before you permit any of your VS BASIC users to begin operating, it
is recommended that you do the following:

Change the line editing characters with the USER statement in the
user's directory.

Log onto CMS as the user and format his A disk with a FORMAT
command.

GLOBAL TXTLIB command for TSOLIB, if required, an SET INPUT and
OUTPUT commands for any VS BASIC characters that are not supported
by the terminal that users will be using. This can be limited to
the more important characters such as the less than sign. Refer to
Table 8,for a list of the characters supported by each type of
terminal and the corresponding hexadecimal value required to create
the missing character.

3 Copy a PROFILE EXEC procedure onto his A disk that contains a

4Notify your users of the new characters that will be available.

92

Table 8. Terminal Keyboard Special Characters for CMS

r T T 1
|VS | | Correspond Terminal Keyboard Representations?

|BASIC | ; T T r y
|Special |Hexa- | | 2741 | | Tele- |
|Charac- |decimal] F T T— 4 | type3 |
|ters |value2 | 1050 PTTC | Corr | APL | 3270 | 33&35 1
L 4+ 1 L 1 L L 1 b |
r T T 1
| . | 4B | . . B . . .]
<	uc	< < < < < <
(4D	((((((
+	4LE	+ + + + + +
] [4r	[I !	[t
&	50	& & & & &
!	5a	! ! ! !
$	5B	$ $ $ $ $
*	5¢	* * * * * *
)	SD)))))) i
;	SE	H ; ; H H ; [
-	60	- - - - - -
/	61	/ / / / /
’	6B l ’ . [’ ’] l	
>	6E	> > t > > >
2	6F	? ? 2 ? ? ? i
:	7A	: : : : : :

| # | 7B | # 4 # # # |
| a | 7c | a a a a a |
l L] ' 7D l . 1 1] . [] 1 '
l = | 7E | = = = = = = l
[t | 8A | *% *% ** *% * % ** |
I < I 8C I = = >= >= >= = l
[> | AE | = <= <= <= = 1
| # | BE | < <> <> <> <> |
IL' L 1 ————— 1]
| *Wherever a blank appears in this table it means that the character isj|
| not available on the terminal in question. |
| |
| 2CMS offers, through the SET command, the ability to create or change |
| any of the keyboard symbols. These hexadecimal values can be used in|
| the SET INPUT or SET OUTPUT commands. See the publication IBM |
| Virtual Machine Facility/370: Terminal User's Guide, Order |
| No. GC20-1810, for more detailed information on using the set]
| command. |
| |
|3Teletype is a trademark of the Teletype Corporation, Skokie,]
| Illinois. |
L J

REPLACING ROUTINES OF THE VS BASIC PROCESSOR UNDER CMS

The CMS exec procedure VSBINSTL that you used to install VS BASIC has
the facility to replace compiler and library modules distributed on tape
at PTFs.

The only reserved fileid is 'xxxxxxxx TEXT' where xxxxxxxxX is the
name of the TXTLIB that the new compiler or library routines will be
added to during the PTF installation. (See the sample console input in
step 3D below). Before you can install a PTF the file VSB TEXT, which
was created during the installation of the VS BASIC Processor, must be
available.

To execute the exec procedure in PTF mode follow the steps below:

1 Mount the PTF tape at virtual address 181.

System Programming 93

Wi

94

If the VSBINSTL EXEC is no longer available refer to the CMS

installation section for the commands necessary to reload it from

one of the installation tapes.
Execute the exec as follows:
exec vsbinstl ptf

From this point on, the PTF procedure will prompt you for
responses. The procedure types out the following message:

PTFS ON TAPE FOR VS BASIC PROGRAM PRODUCE 5748-XX1

Note: If you regenerate the VS BASIC modules, the existing modules
will be replaced. Rename any existing modules that you wish

to retain.

A Indicate the position on the PTF tape of the PTF to be

applied. Most PTF tapes contain only one PTF; however, refer
to PTF cover letter. If there is more than one PTF on the

tape, you must repeat this procedure to each PTF. The
following message is typed at your terminal:

NEXT ENTER THE PTF POSITICN ON TAPE

I.E. FIRST PTF ENTER 1
SECOND PTF ENTER ... 2
ETC.

Respond with
1
2

Specify the characteristics of the PTF tape. The procedure
types the following at your terminal:

NOW, IF THE PTF TAPE IS OTHER THAN 9 TRACK DENSITY 800,
IT'S
MODE AND DENSITY AS FOLLOWS:

FOR 9 TRACK 6250 ENTER::ecesaaccccsccscssanaecs 6250
FOR 9 TRACK 1600 ENTER:ccccceasceaccascansaas 1600

ELSE PRESS RETURN

You must enter one of the following:

6250
1600
CR

Ensure that the system disk (S) has been accessed as your A
disk. The following message will be typed at your terminal:

THE SYSTEM DISK TO RECEIVE THE COMPILER MUST BE ACCESSED IN

READ/WRITE STATUS AS THE *A' DISK. IF NOT, ENTER 'END',
ACCESS THE SYSTEM DISK IN THE PROPER STATUS AND EXECUTE
THIS EXEC AGAIN.

IF IT IS ACCESSED AS THE READ/WRITE 'A' DISK, PRESS RETURN.

You must respond with one of the following:

(&}

If the system disk is not accessed as your read/write A disk,
enter END. The following response will be typed at your
terminal:

EXIT FOR SYSTEM DISK ACCESS

Do 5 , and repeat step 7 from the beginning. If the system
disk is correctly accessed, enter CR and continue.

Indicate the txtlib to receive the new module. The following
message is typed:

SPECIFY THE NAME OF THE TXTLIB TO RECEIVE THE

MODULES ... BEWARE, THE TXTLIB CANNOT ALREADY CONTAIN MEMBERS
WITH

THE SAME NAMES AS THOSE BEING REPLACED.

You must enter a new TXTLIB name, for example:
testlib

A TXTLIB file with the filename TESTLIB will be created for
the modules if this file does not already exist. If the file
TESTLIB TXTLIB already exists on an accessed disk, the PTF
modules will be added to the existing file. If the file does
not exist, the following message will be typed at your
terminal:

FILE 'TESTLIB TXTLIB' NOT FOUND

This message can be ignored. 1In addition, a TEXT file will
also be created with the filename TESTLIB. If a file with the
name TESTLIB TEXT already exists, the following error message
will be typed at your terminal:

*TESTLIB TEXT' ALREADY EXISTS... RENAME OR ERASE IT AND
REISSUE

THIS EXEC

R (00002);

You must rename or erase the existing file and repeat step 3
from the beginning. If this file does not exist, the
following message is typed:

FILE 'TESTLIB TEXT' NOT FOUND

This message can be ignored. The installation procedure will
then create the TXTLIB and TEXT files.

The procedure continues by moving the PTF text to disk as
'TESTLIB TEXT', and generates or adds to 'TESTLIB TXTLIB' the
new text modules.

The system will then type:

IF THERE IS AN ADDITIONAL PTF ON THIS TAPE WHICH YOU WISH TO
APPLY AT

THIS TIME, ENTER THE TAPE POSITION FOR THAT PTF AS EXPLAINED
EARLIER

IF NOT PRESS RETURN

You must enter either the tape position or CR. Additional

PTF's will then be applied, or the procedure finishes at this
point.

System Programming 95

96

Indicate whether you wish to regenerate the VS BASIC modules
now or later. The procedure types:

THE REGENERATION OF THE VS BASIC MODULES MAY BE DEFERRED UNTIL
A LATER TIME. IF YOU WISH TO DO SO ENTER 'NOREGEN".
OTHERWISE PRESS RETURN AND THE REGENERATION WILL BE DONE NOW.

You must enter either NOREGEN or CR. If you wish to delay
regenerating the VS BASIC modules until a later time enter
NOREGEN. The procedure finishes at this point, and the
following message is typed:

PTF INSTALLATION COMPLETE
R;

When you decide to regenerate the VS BASIC modules, you will
have to execute the VSBINSTL procedure as described in the
section "Regenerating the VS BASIC Load Modules under CMS."

If you wish to regenerate the VS BASIC module immediately
enter CR. The system will type the following message:

TO REGEN THE VS BASIC MODULES THE PROPER TXTLIBS MUST BE
GLOBALED.

IF 'VSB TXTLIB' THAT WAS CREATED AT INSTALL TIME IS NOT
AVAILABLE. BY THAT NAME ENTER IT'S CORRECT NAME; ELSE, PRESS
RETURN.

Enter the TXTLIB filename or CR. The following message will be
printed at your console:

REGEN OF COMPILER MODULES WITH TXTLIBS aaaaaaaa bbbbbbbb
where:

aaaaaaaa - is the txtlib containing the modules replaced in the
PTF,

bbbbbbbb - is the install time txtlib containing all the VS BASIC
modules (VSB).

The compiler modules are regenerated. During this procedure,
the following message is typed and can be ignored:

THE FOLLOWING NAMES ARE UNDEFINED
ICDJSRCH

When the installation is complete, the following message
indicates this:

INSTALLATION/REGEN COMPLETE
R;

Load maps of the VS BASIC modules are printed during the
regeneration.

REGENERATING THE VS BASIC LOAD MODULES UNDER CMS

The exec VSBIBSTL has the facility to regenerate the VS BASIC modules.

This

facility may be required if the modules are moved on disk or if

modules are modified. The file VSB TEXT must be available.

Issue the following command to regenerate the VS ABSIC modules:

Note:

exec vsbinstl regen

This command will replace existing VS BASIC modules; therefore,
if you wish to retain the o0ld modules you must rename them.

From this point on the regeneration procedure will prompt you for
responses. The procedure types out the following message:

A

REGEN OF THE VS BASIC MODULES

Ensure that the system disk (S) has been accessed as your A disk.
The following message will be typed at your terminal:

THE SYSTEM DISK SHOULD BE ACCESSED IN READ/WRITE STATUS AS THE 'A°

DISK. IF NOT, ENTER 'END' REACCESS THE SYSTEM DISK IN THE PROPER

STATUS AND REISSUE THIS EXEC AGAIN.
IF IT IS ACCESSED AS THE READ/WRITE 'A' DISK, PRESS RETURN.
You must respond with one of the following:

end
CR

If the system disk is not accessed as your read/write A disk, enter

END. The following response will be typed at your terminal:
'EXIT FOR SYSTEM DISK ACCESS'.

Re-enter the EXEC VSBINSTL REGEN command. If the system disk is
correctly accessed, the procedure continues.

Enter the names to be used for the regeneration. The following
message will be typed at your terminal:

ENTER THE TXTLIB NAMES TO BE SEARCHED DURING THE REGEN OF THE
COMPILER (TO A MAXINUM OF 7)

IF ONLY THE TXTLIB 'VSB' AS CREATED AT INSTALLATION TIME IS TO
BE SEARCHED, PRESS THE RETURN KEY.

At this point enter the name of your txtlib followed by VSB (for
example, testlib vsb) or enter CR.

After the VS BASIC modules have been regenerated, the following
message is typed and the regeneration procedure is completed:

INSTALLATION/REGEN COMPLETE
R;

System Programming

97

APPENDIX A: DISTRIBUTION TAPE INSTALLATION PROCEDURES

DISTRIBUTION TAPE INSTALLATION JCL PROCEDURE FOR 0OS/VS

//VSBPP JOB 1,PP.NUMBER.5748,MSGLEVEL=(1,1)

//*

//% 5T48-XX1 COPYRIGHT IBM CORP. 1974

//* REFER TO INSTRUCTIONS ON COPYRIGET NOTICE 120-2083
//%* 0S VS1/¥SZ ONLY

Vi

//* DEFINE TARGET LIBRARIES
//STP1 EXEC VSBDEF

/7*

//STP2 EXEC PGM=IEWL,PARM='LIST,MAP,NCAL,RENT®,REGION=128K,COND=(8,LE)
//SISPRINT DD SYSOUT=A,SPACE=(121, (1000,50) ,KLSE)

//SYSUT1 LD DSN=66VSBUT1,UNIT=SYSDA,SPACE=(1500, (35,5),,,ROUND)
//SYSLAOD DD DSN=*.STP1.VSBE.VLNK,DISP= (OLD,PASS)

//SYSLIN DD LABEL=(04,NL),DISP=(OLD,PASS),VOL=REF=+%.STP1.VSB.TAPE,

7/ DCB= (LRECL=80,BELKSIZE=3200, RECFM=FB)
Vi LINKEDIT VS EXECUTOR
/¥

//STP3 EXEC PGM=LEWL,PARM='LIST,MAP,NCAL,RENT®,COND=(8,LE) ,REGION=128K
//SYSPRINT DD SYSOUT=R,SPACE=(121, (1000,50) ,RLSE)

//SYSUT1 DD DSN=66VSBUT1,UNIT=SYSDA,SPACE=(1500, (35,5) ,, ,BOUND)
//SYSLMOD 0D DSN=%,STP1.VSB.VLNK,DISP=(OLD,PASS)

//SYSLIN DD LABEL=(0Y,NL),DISP=(OLD,PASS) ,VOL=REF=%_.STP1.VSE.TAPE,

/7 DCB= (LRECL=50,BLKSIZE=3200,RECFN=F35)
/7* LIRKEDLIT COMPILER MODULES
/r*

//STP4 EXEC PGN=IEWL,PARNM="LIST,MAF,NCAL,RENT?',COND=(8,LE),REGION=128K
//SYSPRINT DD SYSOUT=A,SPACE=(121, (1000,50) ,KRLSE)
//SYSLMOD LD DSN=%_.STP1.VSB.VLNK,DISP=(OLD,PASS)
//51SUT1 DD DLSN=EEVSBUT1,UNIT=SYSDA,SPACE= (1500, (35,5) ,, ,KOUND)
//SYSLIB DD DSN=*.STF1.VSB.YLNK,D1SP=(OLD,PASS)
//SYSLIN DD *
INCLUDE SYSLIB (ICDJINUCL)
INCLUDE SYSLIE (ICDJINUCT)
INCLUDE SYSLIB (ICDJNUC2)
INCLUODE SY¥SLIB (TCDINUC3)
INCLUDE SYSLID (1CLJINUCH)
INCLUDE SYSLIE (ICDJINUCS)
INCLUDE SYSLIB (ICDJIDEFK)
INCLUDE SYSLIB (ICDJRUNA)
INCLUDE SYSLIB (ICDJCNPA)
INCLUDE SYSLIB (ICDJERR)
INCLODE SYSLIE (ICDJIBARTV)
INCLUDE SYSLIB (ICDJFUTS)
INCLUDE SYSLIB (TCDJINFOQ)
INCLUDE SYSLIB (XCDJIOVE)
INCLUDE SYSL1B (ICDJVERE)
INCLUDE SYSLIB (ICDJUSFN)
INCLUDE SYSLIE (ICDIVKEC)
INCLUDE SYSLIB(ICDJDUMY)
NAME ICDJCOMP (k)
/*
/7 LINKEDIT COMPILER MEMBERS INTO LOAL MODULE
Ve
//STPS EXEC PGH=IEWL,PAKN="LIST,MAP,NCAL,KENT®,COND=(8,LE) ,KEGION=128K

Distribution Tape Installation JCL Procedure For OS/VS 99

//SYSPRINT DD SYSOUT=A,SPACE= (121, (1000,50) ,RLSE)

//SYSUTt DD DSN=E&VSHEUT1,UNIT=SYSDA,SPACE= (1500, (35,5) ,,,KOUND)
//SYSLHOD DD DSN=*% .STP1.VSB.VLNK,DISP=(OLD,PASS)

//SYSLIN DD LABEL=(10,8L),DISP=(OLD,PASS) ,VOL=REF=%_.STP1.VSE.TAPE,

// DCH= (LRECL=80,BLKSIZE=3200, RECFH=F})
I/ LINKEDIT RUNTIME ROUTINES
/r*

//STP6 EXEC PGH=IEWL,PAR¥='LIST,MAP,RENT',COND=(6,LE),REGION=128K
//SYSPRINT DD SYSOUT=A,SPACE=(121, (1000,50) ,RLSE)
//SISUT1 LD DSN=66VSEUT1,URIT=SYSDA,SPACE= (1500, (35,5),,,ROUND)
//SYSL1B DD BSN=%.STP1.V¥5B.VLNK,DISP=(OLD,PASS)
//SYSLAOD DD DSN=* .STP1.VSB.VLNK,DISP=(OLD,PASS)
//SYSLIN DD *
INCLUDE SYSLIB (ICDKBFTB,ICDKERR,ICDKGSUB,ICDKDSUB,ICDKSSUB, ICDRKIOVE)
INCLUDE SYSLIB (ICDKVIOR)
NAME ICDKRTNS (R)
/*

Vi LINKEDIT RUNTIME MBENBERS INTO LOAD HODULE

Vb

//STPT EXEC PGM=IEBGENEK,COND=(8,LE)

//SYSPRINT DD SYSOUT=A

//SYSUT1 DL LAEBEL=(15,NL),DLSP= (OLD,PASS) ,VOL=REF=%_STP1.VSB.TAPE,
7/ DCP= (LRECL=80,BLKSIZE=3200, RECFM=FR)

//SYSUT2 DD SYSOUT=A,DCB= (BLKSIZE=3200,LRECL=80,RECFM=FB)

//SYSIN DD DUMMY

/7% PRINT VS BASIC MESSAGES

/¥

//STP8 EXEC PGM=IEBGENER,COND= (8,LE)

//SYSPRINT DD SYSOUT=A

//SYSIN DD DUBMY

//SYISUT2 DD SYSQUT=E,DCB= (RECFM=F, BLKSIZE=80)

//SYSuUT1 DD LABEL=(16,NL) ,DISP=(OLD,PASS) ,VOL=REF=#%.STP1.VSB.TAPE,

7/ DCE= (LRECL=§0,RECPM=FB, BLKSIZE=3200)
/7 PUNCE SAMPLE PEOGRAM

V4

V4

100

DISTRIBUTION TAPE INSTALLATION JCL PROCEDURE FOR 0S/VS2(TSO)

//VSBPP JOB 1,PP.NUMBER.5748,MSGLEVEL=(1,1)

/r*

//* 5748-XX1 COPYRIGHT 1BM CORP. 1974

//%¥ REFPER TO INSTRUCTIONS ON COPYKIGET NOTICE 120-2083
//* TSO FOR VS2 AND VS1/¥S2Z BATCH

/7*

//* DEFINE TARGET LIBRARIES
//STP1 EXEC VSBDEF

/7*

//STPZ EXEC PGM=IEWL,PARM='LIST,MAP,NCAL,RENT®,COND=(8,LE),REGION=128K
//SYSPRINT DD SYSOUT=A

//SYSLMOD DD DSN=#%.STP1.VSE.VLNK,DISP=(OLD,PASS)

//SYSUTT DD DSN=66VSLUT1,UNIT=SYSDA,SPACE=(1500, (35,5) ,,,KOUND)
//SYSLIN DD LABEL=(04,NL),DISP=(OLD,PASS),VOL=BEP=*.STP1.VSB.TAPE,

7/ LCB= (LRECL=80, BLKSIZE=3200,RECFM=FE)

//* LINKEDIT VS EXECUTOR

Vs

//STP3 EXEC PGM=IEWL,PARM='LIST,MAP,NCAL,KENT',COND= (8,LE),REGION=128K
//SYSPRINT DD SYSOUT=A

//SYSLHOD DD DSN=#%,STP1.VSB.TLNK,DISP=(OLD,PASS)

//SYSUT1 DD DSN=£&VSBUT1,UNLT=SYSDA,SPACE= (1500, (35,5) , s ,ROUND)
//SYSLIN DD LABEL=(05,NL),DISP=(OLD,FASS),VOL=REF=#%,STP1.VSR.TAPE,

7/ pCB= (LRECL=60,BLKSIZE=3200,RECFM=FB)
J/* LINKEDIT TSO EXECUTOR
//*

//STP4 EXEC PGM=IEWL,PARM='LIST,MAP,NCAL,RENT',COND=(8,LE) ,REGION=128K
//SYSPRINT DD SYSOUT=R

//SYSLMOD DD DSN=#.STP1.VSB.TLNK,DISP=(OLD,PASS)

//SYSUT1 DD DSN=§&VSBUT1,UNIT=SYSDA,SPACE= (1500, (35,5} ,,,ROUND)
//SYSLIN BD LABEL=(06,NL),DISP=(OLD,PASS),VOL=REF=*,STP1.VSB.TAPE,

/7 DCB=(LRECL=80,BLKSIZ£=3200,RECFH=FB)
J/x LINKEDIT RENUM
/7*

//STPS EXEC PGH=IEWL,PARM='LIST,MAP,NCAL,RENT',REGION=128K,COND=(8,LE)
//SYSPRINT DD SYSOUT=A

//SYSLMOD DD DSN=#.STP1.VSE.TLNK,DISP= (OLD,PASS)

//S¥SUT1 DD DSN=66VSBUT1,UNIT=SYSDA,SPACE=(1500, (35,5) ,,,ROUND)
//SYSLIN DD LABEL=(09,NL) ,DISP=(OLD,PASS),VOL=REF=*.STP1.VSB.TAPE,

7/ DCE= (LRECL=80,BLKSIZE=3200,RECFN=FB)
7. LINKEDIT COMPILER ROUTINES
Vi

//STP6 EXEC PGM=IEWL,PARM='LIST,MAP,NCAL,RENT',REGION=126K,COND=(8,LE)
//SYSPRINT DD SYSOUT=A
//SYSLIB DD DSN=%,STP1.VSB.TLNK,DISP=(OLD,PASS)
//SISLMOD DD DSN=%.STP1.VSB.TLNK,DISP=(OLD,PASS)
//SYSUT1 DD DSN=§&VSEUT1,UNIT=SYSDA,SPACE=(1500, (35,5) ,, ,ROUND)
//SYSLIN DD *

INCLUDE SYSLIB (ICDJNUCL)

INCLUDE SYSLIE (ICDJNUC1)

INCLUDE SYSLIb (ICDJINUC2)

INCLUDE SYSLIB (ICDJINUC3)

INCLUDE SYSLIB (ICDJINUCH)

INCLODE SYSLIB (ICDJINUCS)

INCLUDE SYSLIB (ICDJDEFE)

Distribution Tape Installation JCL Procedure for 0S/VS2(TSO) 101

INCLUDE SYSLIE (ICDJRUNA)
INCLUDE SYSLIB (ICDJCMPA)
INCLUDE SYSLIB (ICDJERR)

INCLUDE SYSLIB (XCDJMATY)
INCLUDE SYSLIE (ICDJFUTS)
INCLUDE SYSLIB (ICDJINFO)
INCLUDE SYSLIB (ICDJIOVE)
INCLUDE SYSLIB (ICDJVERB)
INCLODE SYSLIB (ICDJUSFN)
INCLUDE SYSLIB (ICDJYKEC)
INCLUDE SYSLIB (ICDJDUNMY)

NAME ICDJCOMP (R)

I

/% LINKEDIT COMPILER LOAD MODULE

//*

//STP7 EXEC PGM=IEWL,PARN='LIST,MAP,NCAL,RENT',COND=(8,LE) ,REGION=128K
//SYSPRINT DD SYSOUT=A

//SYSLMOD DD DSN=%.STP1.VSB.TLNK,DISP= (OLD,PASS)

//SYSUT1 DD DBSN=§EVSBUT1,UNIT=SYSDA,SPACE= (1500, (35,5) ,,,ROUND)
//SYSLIN DD LABEL=(10,NL) ,DISP=(0OLD,PASS) ,VOL=REF=%_,STP1.VSB.TAPE,

7/ DCB= (LRECL=60, BLKSIZE=3200, RECPN=FB)
I/* LINKEDIT RUNTIME ROUTINES
//*

//STP8 EXEC PGM=IEWL,PARM='LIST,MAP,RENT',COND=(8,LE) ,REGION=128K
//SYSPRINT DD SYSOQUT=2
//SYSLIB DD DSN=#,STP1.VSB.TLNK,DISP=(OLD,PASS)
//SYSLMOD DD DSN=%.STP1.VSB.TLNK,DISP=(OLD,PASS)
//SYSUT1 DD DSN=6&VSBUT1,UNIT=5YSDA,SPACE= (1500, (35,5) ,,,ROUND)
//SYSLIN DD *
INCLUDE SYSLIB (ICDKBFTB,ICDKERR,ICDKGSUB,ICDKDSUB,ICDKSSUB,ICDKIOVE)
INCLUDE SYSLIB(ICDKVIOR)
NAME ICDKKTHS (R)
/*
7 LINKEDIT RUNTIME ROUTINES INTO LOAD MODULE
//STP9 EXEC PGM=IEWL,PARM=YLIST,MAP,NCAL',COND=(8,LE),REGION=128K
//SYSPRINT DD SYSOUT=A
//SYSLMOD DD DSN=#.STP1.VSE.TLNK,DISP=(OLD,PASS)
//SYSUGT1 DD DSN=66VSEUT1,UNIT=SYSDA,SPACE= (1500, (35,5),,,ROUND)
//SYSLIN DD LABEL=(11,NL),DISP=(OLD,PASS),VOL=REF=%.STP1.VSB.TAPE,

7/ DCH= (LEECL=80,BLKS12ZE=3200, RECFM=FB)
I/* LINKEDIT DEBUG ROUTINES
/¥

//STP10 EXEC PGN=IEWL,PARM='LIST,MAP®,COND=(§,LE),REGION=126K
//SYSPRINT DD SYSGUT=A
//SYSLIB DD DSN=%.STP1.VSB.TLNK,DISP=(OLD,PASS)
//SYSLMOD DD LSN=+%_,STP1.VSB.TLNK,DISP=(OLD,PASS)
//SYSUT1 DD DSN=66VSBUT1,UNIT=SYSDA,SPACE= (1500, (35,5) +, ,ROUND)
//SYSLIN DD *

INCLUDE SYSLIB (ICDELDTE)

INCLUDE SYSLIB (LCDPRSCN)

INCLUDE SYSLIB (ICDWNSCN)

INCLUDE SYSLIB (ICDLSSCN)

INCLUDE SYSLIE (ICDSTSCN)

INCLUDE SYSLIB (ICDPSCL)

INCLUDE SYSLIE (LCDEMACS)

102

INCLUDE SYSLIB (ICDZERO)

INCLUDE SYSLIB (ICDTSTYP)

INCLUDE SYSLIB (ICDIDCEHK)

INCLUDE SYSLIB (ICDPGMCK)

NAME ICDLDDBG (R)
/*
/7% LINKEDIT DEBUG MEMBERS INTO LOAD MODULE
ik
//5TP11 EXEC PGM=IEBGENER,COND=(8,LE)
//SYSPRINT DD SYSOUT=A
//SYSIN DD DUMMY
//SYSUT2 DD SYSOUT=B,DCB= (RECFM=F ,BLKSIZE=80)
//SYS0T1 LD LABEL=(16,NL) ,DISP=(OLD,PASS) ,VOL=REF=#%.STP1.VSB.TAPE,

7/ DCB= (LRECL=80,RECFM=FB,BLKSIZE=3200)
/7% PUNCH SAMPLE PROGHAN
Vi

//STP12 EXEC PGM=IEBGENEK,COND=(8,LE)

//SISPRINT DD SYSOUT=A

//SYSIN DD DUMMY

//SYSUT2 DD DSN=E&HELPTHMP,DISP= (NEW,PASS),UNIT=SYSDA,

7/ SPACE= (CYL, (2,2)) ,DCB= (RECFN=FB,BLKSIZE=3200,LRECL=80)
//SYSUT1 DD DCB= (RECFM=FB,LRECL=80,BLKSIZE=3200),

7/ VOL=REF=%*.STP1.VSB.TAPE,LABEL= (07,NL) ,DISP= (OLD,PASS)
I/ COPY VS BASIC HELP COMMAND AND ERROR MESSAGES

//*

//STP13 EXEC PGM=IEBGENER,COND=(8,LE)

//SYSPRINT DD SYSOUT=A

//SYSIN DD DUMMY

//SYSUT2 DD DSN=E&HELPTNP,DISP=(MOD,PASS),UNIT=SYSDA,
7/ SPACE=(CYL, (2,2)) ,DCB= (RECFM=FB,BLKSIZE=3200, LRECL=80)
//SISUTY Db *

./ ADD NAME=EDIT,LIST=ALL

/*

//* COPY ADD STATEMENT

//*

//STP14 EXEC PGM=IEBGENER,COND=(8,LE)

//SYSPRINT DD SYSOUT=A

//SYSIN DD DUMMY

//SYSUTZ DD DSN=6EHELPTMP,DISP= (MOD,PASS) ,UNIT=SYSDA,

7/ SPACE= (CYL, (2,2)) ,DCB= (KRECKFM=FB,BLKSIZE=3200,LRECL=80)

//SYSUT1 DD DSN=*.STP1.VSB.SYSHELP,DISP= (SHK,PASS),

// DCB= (RECFM=FB, LKECL=30, BLKSTZE=7260) ,VOL=REF=%.STP1.VSB.SYSHELP
J/* COPY SYSTEM ¥DIT DATASET FROM HELP LIBRARY

/r*

//STP15 EXEC PGH=IEBGENER,CONL=(8,LE)

//SYSPRINT DD SYSOUT=A

//SYSIN DD DUMMY

//SYSUT2 DD DSN=E&HELPTMP,DISP= (8OD,PASS) ,UNIT=SYSDA,

V4 SPACE=(CYL, (2,2)) ,UCB= (RECFM=FE, BLKSIZE=3200, LRECL=80)
//SYSUT1 DD LABEL=(15,NL) ,VOL=REF=*,STP1.VSE.TAPE,DISP=(OLD,PASS),
7/ DCB= (RECPM=PB,BLKSIZE=3200, LRECL=80)

//* COPY VS BASIC ERROR MESSAGES

/r*

//STP16 EXEC PGH=IEBUPDTE,PARM=NEW
//SYSFPRINT DD SYSOUT=A,SPACE= (CYL, (1,1)),

Distribution Tape Installation JCL Procedure for 0S/VS2(TSO) 103

V4 DCE= (RECFB=FE,BLKSIZE=1210,LRECL=121)
//SYSUT2 DD DSN=%_,STP1.VSB.HELP,DISP=(OLD,PASS),

7/ VOL=REF=* .STE1.VSB.HELP,

7/ DCE= (KECFM=FE,LRECL=60, BLKSIZE=7280)

//SYSIN DD BSN=65HELPTHP,DISP=(OLD,DELETE) ,UNIT=SYSDA,
/4 DCB= (RECFM=FB,BLKSIZE=3200,LRECL=80)

V7. ADD MEMEERS TO PRIVATE HELP LIERARY

V4

//

104

DISTRIBUTION TAPE INSTALLATION EXEC PROCEDURE FOR VM/370 (CMS)

el e oo d e o ok ok e e ool desie ok ook ok ol o s slkok e Ao oK ok e ok o ek sl kol ok ok ok ook ol 3k ok o ok e ok o s ok ok ok ok Kok

57T48-XX1 COPYRIGHT 18N COKP. 1974

VSBINSTL EXEC FOR RELEASE 1 VERSION 1 OF VS BASIC PROGHAM PRODUCT

L2 K BK 3R 2K

e e e e 3ok ol e Ao A o At o oo oK e e o o o KR R o AN OK AR R o K oK AR KR 30K K Ok e AOK R oK
SCONTKOL OFF

*

*

EIF EINDEX EQ 0 &GOTO —~CKHODE
*

E0FT = &1

&1I¥ BOPT EQ INSTALL BGOTO —-BASIN
&IF EOPT EQ PTF 6GOTO -PTF

&ETF¥ EO0PT EQ REGEN &GROTO —KEGEN

*

ETYPE SOPT 1S AN INVALID ARGUMENT

-CKMODE &EBEBGTYPE

ENTER THE AHRGUMENT *INSTALLY,'PTF', OK YREGEN' TO SPECIFY THE PURPOSE
FOE TETIS EXEC RUN.

SEND

*

GREAD ARGS

&IFP SINDEX HE 1 &GOTO -REPERR

&OPT = &1

EIF &0PT EQ INSTALL &6GUTO —BASIN

EIF &ORT EQ PTP EGOTO -PTF

&EIF HOPT EQ REGEN &GOTO -KEGEN

&§GOTCQ —REPERR

*

*

i e 0o 3K o 2 3 8 o Rk 3K 3 ok 3k ol ol e kol ol o a8k ok ok ok e ok ok o i ok ok vk ik Ak o 2 o ok ok ok a3k 8k 3k e ok ok i Aok 3 ok ko o 3k ok %k
-BASIN GLCONTINUE

*

SEEGTYPR

INSTALLATION FOR VS EBASIC PROGRAM PRODUCT (5748-XX1)

LEND

*

~CETRK ECONTINUE
ETKACK = 9TRACK
ELER = 800
SEEGTYPE

IF THE TAPE ERING INSTALLED IS OTHER TBAN 9 TRACK DENSITY 800,
ENT®E ITS DENSITY AS FOLLOWS:

FOR 9 TRACK 6250 ENTER . . o 6250

FPOR 9 TRACK 1600 ENTER . . . 1600
ELSE PRESS RETURN.

Distribution Tape Installation EXEC Procedure for VM/370 (CMS)

105

SEND
*

SREAD ARGS

&IF &INDEX KEQ O &GOTC —-CKDISK
EIF &EINDEX GT 1 8GOTO —-REPERR
&IF &1 EQ 800 6GOTO -L2

&IF &1 EQ 1600 $60T0 -LZ

&IF &1 NE 6250 &GOTO -KREPERR
*
=L2 ECONTINUF
EDEN = &1

*

*

-CKDISK &CONTINDE
*

EBEGTYPE

THE SYSTEM DISK TO RECEIVE THIS PRODUCT MUST BE ACCESSED IN
READ/WRITE STATUS AS THE *A' DISK. IF NOT, ENTEEK *ENDY,
ACCESS THE SYSTEM LISK IN THE PROPER STATUS AND EXECUTE THIS
EXEC AGAIN.

IFP 1T IS ACCESSED AS THE READ/WRITE 'A* DISK, PRESS RETURN.
GEND

*

ERFAD ARGS

&IF EINDEX FOQ 0 &GUTO -SETAC

GIF &1 EQ EBWD §GOTO —-RETRY

&GOTO —REPERR

*

~SETAC SCONTINUE

EFM = A

EFM1 = GCONCAT &FM 1

&FMZ = GCONCAT EFM 2

*

&EIP &EOFT EQ PTIF &GOTO -PTFHR

*

EBEGSTACK

VSBE1 9EXT

VSB2 TEXT

VSB3 TEXT

VSEB4 TEXT

VSBS TEXT

VSB6 TEXT
VSEMSG LIST
SAMPLE VSBASIC
V3B TXTLIB
SEND

*

&ESTERR = 0
ENUN = 9

&N = 0

&ELOOP -ENDLE EN KO GNUM
EN = EN + 1
EKERD AKGS

EFN = &1

106

&FT = &2

GERROR &GOTO -ENDLP

STATE &FN &FT GFM

ESTERR = 1

STYPE '6FN &FT &FM ' ALREADY EXISTS ... ERASE OR RENAME IT.
SEEGTYPE

AND TRY AGARIN.

GEND

—ENDLP GECONTIRUE

*

&EIF &ESTFRR NE O &GOTO —-STERR
*

GEKROR &6GOTO -FDERR
FI TAPE TAPT (RECFM FPB LKECL 80 BLOCK 3440 DEN &DEN E&TRACK)
*

FPILEDEF ¥SB1 DISK VSB1 TEXT &FM1 (RECPH F BLOCK 80)
FILEDEF VSB2 DISK VSB2Z TEXT &FM1 (RECFM P BLOCK 80)
FILEDEF VSB3 DISRK VSE3 TEXT &FM1 (RECFM F BLOCK 80)
FILEDEF VSBY DISK VSB4 TRAIT &FMT (RECFM F BLOCK 80)
FILEDEF VSES DISK VSBS TEXT &PM1 (RECFM F BLOCK 80)

FILEDEF VSB6 DISK VSE6 TEXT &6FM1 (RECFM F BLOCK 80) .
FILEDEF VSBHSG DISK VSBHSG LIST &FMT (KECFH F BLOCK &0)
FILEDEF SAMPLE DISK SAMPLE VSEASIC &FM1 (RECFH F BLOCK 60)
*

& ERROR §GOT0O -TAPERR

TAPE KEW

TAPE FS¥ 8

*

&ERROK &GOTO —MOVERR

MOVE TAPE VSE1

MOVE TAPE VSB2

MOVE TAPE VSB3

MOVE TAPE VSE4

MOVE TAPE VSBS

MOVE TAPE VSE6

MOVE TAFPE VSEMSG

MOVE TAPE SAMPLE

*

EFRROK &GOTO —~TXTERR

TXTLIE GEN VSE VSE1 VSEZ VSE3 VSE4 VSES VSES

*

EE = 0

£LO0OP -ERALOOP &E EQ 6

EE = &E + 1

SVSBN = ECONCAT VSE &R

S EEKOR &GCTU -ERAERERR

ERRSE &YSEN TEXT 6FM1

~ERALOOP GCONLINUE

*x

GERROR &GOTO -GLOEKRR

GLOBAL TXTLIE VSE

*

Aok e o Aol o 3ok ok Kok o ol Rk ok ok B ot AR o Nk ok el A R R o A AR oK K a3 K ok e ok ok o o Ok R K R R R
-INSTALL GCEEROR GCONTINUR

SEBREGTYPE

Distribution Tape Installation EXEC Procedure for VM/370(CMS) 107

GEND

&STACK HT

LOAD ICDWEXEC ICDJINUCL ICDJINUCT ICDJINUCZ ICDJNUC3 ICDJINUCH ICDINUCS
INCLUDE ICDJDEFER ICDJIRUNA ICDJCMPA ICDJERR ICDJMATV ICDJFUTS ICDJIINFRO
LSTACK RT

INCLUDE ICDJIOVE ICDJVERE ICDJUSFN ICDJUSTE ICDJVREC ICDJDUMY
PRINT LOAD HMAP

GENMOD VSBASIC

GENMOD VSBCOMP (FROM ICDJNUCL TO ICDJDUMY)

GSTACK HT

LOAD ICDKBFTEB ICDKERR ICDKDSUE ICDKGSUB ICDKSSUE ICDKIOVE (OKIGIN 22000
&ESTACK RT

INCLUDE ICDKVIOR

PRINT LOAD MAP

GENMOD VSBRUN

&STACK HT

LOAD ICDEBLDTE ICDPRSCN ICDWNSCN ICDLSSCN ICDSTSCN (ORIGIN 2F000
ESTACK RT

INCLUDE ICDPSCL ICDPMACS ICDZFRO ICDTSTYP ICDIDCHK ICDPGMCK

PRINT LOAD BAP

GENMOD VSBTEST

LOAD ICDLUTIL

PRINT LOAD MNAP

GENMOD VSBUTIL

LOAD ICDLHELP

PEINT LOAD HAP

ERASE LORD MAP

GENMOD VSBHELP

SERROK &GOTO —KENERR

RENAME VSBASIC HMODULE &FM EFMZ

RENAME VSBCOMP MODULE &FR EPM2Z

HRENAME VSBRUN MODULE &FM = = &FM2Z

"oy
non

KRENAME VSBTEST MODULE &FM = = HFM2
RENARME VSBUTIL MODULE LFM = = GEFM2
RENAME VSBMSG LIST LFM = = &GFM2

RENAME VSBHELP SODULE 6FM = = BFMZ

RENANE VSB TXTLIB &FM = = &6FM2
—END SBEGTYPE

INSTALLATION/REGEN COMPLETE
EEND

EEXIT

*

*

e e o e ek ok i Sk o ok 3K O ko ke k3 o ok e ok o ol s ok 3k o o ek okl e ok skl sk ok ok e ok o o ok 3 oK ok ok ok ok ok ok ok ke
~-PTF ECONTINUE

EBEGTYPE

PTF INSTALLATION FROM TAPE FOK V3 BASIC PROGRAM PRODUCT (5748-XX1)

ENTER THE PTF POSITION ON TAPE

108

I.E. FIRST PTF ENTER ... 1

SECOND PTF ENTER... 2
ETC.

GEND

*

SREAD ARGS

&IF &INDEX NE 1 &GOTO -REPEER

EPTFNO = &1

&EGOTO —CKTRK

*

-PTFWK GECONTINUE

EBFGTYPE

SPECIFY THE NAME OF THE TXTLIB TO RECEIVE THE PTF MODULES. BEWARE

THE TXTLIR CANNOT ALREADY CONTAIN MEMBERS WITH THE SAME NAMES AS THOSE
BEING REPLACED.

SEND

*

EREAD AERGS

*

GIF LINDEX NE 1 6GOTU —-REPEKR

ETXTNAY = &1

&0P = GEN

EFRROR &EGOTO -NEW

STATE &ETXTNAM TXTLIB &FM

&50F = ADD

*

—~NEW GLERROR &GOTO —-NOTEXT

STRTE STXTNAM TEXT &FM

ETYPE 'STYXTNAM TEXT &PM ' ALREADY EXISTS ... RENAME OR ERASE IT
ETYPE AND REISSUE THIS EXEC.

EGOTO -STERR

*

-NOTEXT SERKOR &GOTO ~FDERR

¥1 TAPE TAP1 (RECFM FB LRECL 80 BLOCE 3440 DEN EDEN &STKACK)
FI PTF DISK GETXTNAM TEXT 6FM1 (RECPM ¥ BLOCK 80)

-PTFLOUP &CONTINUE

EFILES = EPTFNO + EPTPNO - 1

*

-PTPPOS ECONTINUE
ERRROR &GOTO ~TAPERR
TAPE REW

TAPE PSF EFILILES

*

GERROR 6GOTO —-MOVERK
MOVEFILE TAPE PTF
*

EERROE 6GOTO -TXTREERR
TXTLIE S0P GTXTNAM ETXINAM
*

EERROKR &6GOTO —ERAERE
FRASE GTXTNAM TEXT
*

EBEGTYPE

Distribution Tape Installation EXEC Procedure for VM/370(CMS) 109

IF THERE 1S AN ADDITIONWAL PIF ON THIS TAPE WHICH YOU wISH TO
APPLY AT THIS TIME, LENTER THE TAFE POSITION FOR TEAT PIP AS
EXPLAINED EARLIER, IF¥ NOT PKESS HETURN.

SEND

*

SREAD ARGS

&£IFP SINDEX E¢G 0 &GOTO -ENDPTF

EPTFRO = &1

&OF = ADD

&£GOTO -~PTFLOOF

#*

—ENDPTF GCONTINUE

SBEEGTYPE

THE KEGEN OF THE LOAD HMODULES HAY BE DEFERED UNTIL A LATER
TIME. IP YOU WISH TO DO SO, ENTER *NOREGEN".

OGTHERWISE PRESS KRETURN AND THE REGEN WILL BE DONE NOW.
LEND

*

-PTPRA &EREAD AKRGS

&EIF SINDEX EQ O EGGTU —PTPREGEN

EIF &1 BEQ NOREGEN 6GOTO —-FINIPTPF

ETYPE &1 IS AN INVALID KEPLY ... TKY AGAIN WITE NOREGEN
EGUTO ~PTFRA

*

-PTPREEGEN &EGEGTYPE

TO REGEN THE MODULES, THE PROPEK TATLIBS MUST BE GLOBALED. IF
YWSE TXTLIB' CEEATED AT INSTALLATION TINE 1S NOT AVAILAELE
BY THRYT NAME, ENTER IT'S CORRECT NAME. ELSE, PRESS HETURN.
EEND

*

SINSTLIB = VSB

*

6READ ARGS

SIF SINDEX EQG O EGOTO ~EEGENV

SINSTLIB = &1

~KEGENV SCONTINUE

STYPF REGEN OF MODULES WITH TXTLIES STXTNAH SINSTLID

*

HERRORK &£GOTO -GLOERK

GLOBAL TXTLIB &TXTNAM SINSTLIE

&GOTO ~INSTALL

*

~-FINIPTF EEKROK &§GOTO —-RENERR

RENAME STXTRAN TXTLIB SFN = = EFN2

*

SEEGTYPE

PTF INSTALLATION COMPLETE

EEND

EFXIT

*

*

ok X e 3k e ok e ke o e ok Bk A ook ot ok o ok ok ok e ol ok o i 33 e A Rk o i ok ol sk K AR ek b ok 3k 3 ofe ok ko ok ok ok ok ok sk ok ok
-KREGEN SCONTINUE

110

GBEGTYPE

REGEN OF THE VS BASIC LOAD MODULES

THE SYSTEM SHOULD BE ACCESSED IN READ/WRITE STATUS AS THE 'A?
DISK. IF NOT, ENTER 'END'; REACCESS THE SYSTEM DISK AND REISSUE
THRIS EXEC. .

IP IT IS ACCESSED AS THE READ/WRITE *A* DISK, PRESS RETUEN.
GEND ’

*

SKEAD ARGS

&IF SINDEX EQ O &GOTO —SETA1

&EIF &1 BEQ END &GOTO -RETRY

£GOTO —REPERK

*

-SETAT1 EFM = A

&E¥H1 = ECONCAT &FHM 1

E§FM2 = LCONCAT &EFM 2

*

GEEGIYPE

ENTER THE TXTLIB NAMES TO BE SEARCHED DURING REGEN OF THE COMPILER (TO
A MAXIMUM OF 7). IF ONLY THE TXTLIB °*VSB® AS CREATED AT INSTALLATION
TIME IS TO BE SEARCHED, PRESS THE RETURN KEY.

SEND

*

ETXTLIB = VSB

EREAD ARGS

§IF SINDEX EQ O 6GOTG —REGENLIB

&IF SINDEX GF 7 £GOTO —REPERR

§TXTLIE = &1

*

-REGENLIB GERROR £GOTO -GLOEKR

GLOBAL TXTLIE SFXTLIB £2 &3 &4 &5 &6 S7

§G60TO —INSTALL

*

*

ok ok Ak ool o ok ok ok Ak o ok o o ok oK ik ok ok s kol ol o ook e o e Ak K ok o ok ok oK oK ok AR o ok ok ok ROKOK K K ok ok o ok ok ok ok Kk
-REPERR §TYPE INVALID REPLY

ERETCODE = 1

EEXIT ERETCODE

*

~-RETRY GTYFE EXIT FOR SYSTEM DISK ACCESS

EEXIT

*

-STERR GRETCODE P
GEEXIT &RETCODE
*

It

)
L

-FDERR &RETCODE =
§GOTO ~ERREXIT

*

~TAPERR SRETCODE = 4
£GOTO —ERREXIT

*

Distribution Tape Installation EXEC Procedure for VM/370(CMS) 111

-HOVERR SRETCODE = 5
£GOTO —ERREXIT

*

—~TXTEKR SRETCODE = 6
&GOTO0 —ERREXIT

*

-ERAKRK &RETCODE = 7
E60TO —ERREXIT

*

-GLOERK SRETCODE = 8
§6GTO —ERREXIT

#*

~RENERR ERETCODE 11

*

*

~ERRRXIT &TYPE INTERNAL ERROR SRETCODE

HRXIT SRETCGDE

*

*

* END OF CMS INSTALLATION PKOCEDURE

o 3 2 ok g o 2k o ok oje ok e 2 3k s o ok sl ok 3k ok ok s ok A ok e ok 3 sk ok 3k 3k ok 3k 3 3 o ok 3k e ke a2 o e s e ol e e s ok o Ok ok ok ok ok ok ok ok ke K

112

DISTRIBUTION TAPE INSTALLATION JCL PROCEDURE FOR DOS/VS

¥S BASIC DOS INSTALLATION
5748-%XX1 COPYRIGHT IBM CORP.197Z
REFER TO INSTRUCTIONS ON COPYKIGHT NOTICE, 120-2083
NOTE TO USERS

* TO ALLOW USERS TO SKIP JOES OR INSERT JCL DEPINING LIBRARIES,
* THE SYSTEM WILL PAUSE FOR OPERATOR RESPONSE. A MESSAGE WILL
* ACCOMPANY EACH PAUSE EXPLAINING THE KESPONSE REQUIRED.
// JOE 1 CONDS OF VS BASIC DOS/VS BATCH
// OPTION LOG
* IF¥ YOU ARE USING PRIVATE LIERARIES FOR THE CIL AND ELB,
* PLEASE ASSIGN THEM PERMANENTLY AT THIS TIMK.
* RESPOND WITH EOB TO CONDENSE THESE LIBRARIES OR CANCEL
// PAUSE
// EXFC MAINT

DFLETR ICD.ALL

CONDS EKL,CL
/5
// JCB 2 CATALR ALL VS BASIC MODULES IN RLB
// BXEC MAINT

* * N %

CATALR STAYEMENTS FOR THE VS BASIC MODULES

/*
/&
// J0B 3 LINKEDIT VS BASIC HODULES INTO THE CIL
// OPTION CATAL
ACTION MAP
PHASE ICDDSBSC,ROOT
INCLUDE 1CDZEXEC
INCLUDE ICDQZOPN
INCLUDE ICDOZPUT
INCLUDE ICDGZENT
INCLUDE ICDQZDEL
INCLUDE ICDQZPNT
INCLUDE ICLQZGET
INCLUDE ICDOQZCLS
INCLUDE ICDQZERR
PEASE ICDJCOMP,*,NOAUTO
INCLUDE ICDJNUCL
INCLUDE ICDJNUC1
INCLUDE ICDJNUCZ
INCLUDE ICDJNUC3
INCLUDE ICDJINUCH
INCLUDE 1CDJNUCS
INCLUDF ICDJDEFR
INCLUDE ICDJRUNA
INCLUDE ICDJCMPA
INCLUDE ICDJERR
INCLUDE ICDJMATV
INCLUDE ICDJFUTS
INCLUBE ICDJINFO

Distribution Tape Installation JCL Procedure For DOS/VS 113

INCLUDE ICDJIOVE
INCLUDE ICDJVERB
INCLUDE ICDJUSPN
INCLUDE ICDJVREC
FHASE ICDKRTNS,ICDJCOMP
INCLUDE LCLKBFTB
INCLUDE ICDKERR
INCLUDE ICDKGSUB
INCLUDE ICDKDSUB
INCLUDE ICDKSSUB
INCLUDE ICDKIOVB
INCLUDE ICDKVIOR
// LBLTYP NSD (4)
// EXEC LNKEDT
/6
// JOB 4 SLF PLACE SOURCE AND MACROS IN SSL
* THIS JOB PLACES MACROS AND A SOURCE KMODULE POR THE SLP
* FACILITY IN THE SSL. IF YOU ARE USING A PRIVATE SSL,
* PLEASE ASSIGN IT PERMANENTLY AT THIS TIME.
* THEN HRESPOND EOB TO CONTINDE. OFHERWISE,CANCEL.
// PAUSE
// EXEC MAINT

CATALS STATEMENT FOR ICDKBFTEB
/*‘
// OPTLON LOG,NODECK,EDECK

* TO ASSEMELE VS BASIC MACROS FOR THE SFPARABLE LIERARY

* FEATURE, MASSIGN SYSPCH TO A SCHATCH TAPE OR TO A PILE ON DISK
* USING DLEL AND EXTEN® CAERDS.

// PAUSE
// EXEC ASSENBLY

TITLF 'ASSEMELY OP VS BASIC SLF MACKOS®

CRTALE STATEMENTS FOR VS BASIC MACROS

/¥

* IF YOU HAVE USED B SCRATCH TAPE,

*+ PLEASE ASSIGN SYSIPT TO THE SAME TAPE.

* IF YOU HAVE USED A DISK, ASSIGN SYSIPT TO THAT DISK FILE
* RESPOND EOB

// PAUSE

// EXEC MAINT

* DOS/VS BASIC INSTALLATION COMPLETE

/6

114

EXECUTOR MODULES

TSO ONLY

ICDQEXEC

0S/VS ONLY

ICDYEXEC

CMS ONLY

ICDWEXEC

DOS/VS ONLY

ICDZEXEC
ICDZVCLS
ICDZVDEL
ICDZVENT
ICDZVERR
ICDZVGET
ICDZVOPN
ICDZVPNT
ICDZVPUT

TSO AND 0OS/VS ONLY

ICDQVCLS
ICDQVDEL
ICDQVENT
ICDQVERR
ICDQVGET
ICDWVOPN
ICDQVPNT
ICDQVPUT

COMPILER MODULES

ALL SYSTEMS

ICDJCMPA
ICDJIDEFR
ICDJDUMY
ICDJERR

ICDJFUTS
ICDJINFO
ICDJIOVB
ICDIMATV
ICDJNUC1
ICDJINUC2
ICDJNUC3

APPENDIX B:

VS BASIC PROCESSOR MODULES

Appendix B:

VS BASIC Processor Modules

115

ICDJINUCHY
ICDJINUC5
ICDJINUCL
ICDJRUNA
ICDJUSFN
ICDJVERB

TsO, 0Ss/Vs, AND DOS/VS ONLY

ICDJVREC

LIBRARY MODULES

ALL SYSTEMS

ICDKBFTB
ICDKCNVT
ICDKDSUB
ICDKERR

ICDKETOF
ICDKGSUB
ICDKINPT
ICDKINTP
ICDKIOVB

TsO, 0S/VsS, AND DOS/VS ONLY

ICDKKLN
ICDKKPS
ICDKRLN
ICDKVIOR

ICDKMAT

ICDKMINV
ICDJINCPD
ICDJORGE
ICDKPLIN
ICDKPRNT
ICDKREAD
ICDKSSUB
ICDKTOUT

DEBUG MODULES (TSO AND CMS ONLY)

ICDADRES
ICDATTN
ICDATTO
ICDBLDTB
ICDCHAIN
ICDCDSCN
ICDCMTBL
ICDDBG
ICDDSCAN
ICDEVALU
ICDFLOW
ICDFOSUB
ICDGOGO

TSO ONLY

ICDHELPO

116

ICDIDCHK
ICDIFOB
ICDISCAN
ICDLBKO
ICDLISTO
ICDLFQO
ICDLSSCN
ICDMSSG
ICDMSSGS
ICDNSCAN
ICDOBEY
ICDOFFO
ICDOFFWO

ICDONITR
ICDPGMCK
ICDPMAC
ICDPMACS
ICDPRSCN
ICDPSCL
ICDRDIM
ICDRUNO
ICDSCAN
ICDSETO
ICDSSCAN
ICDSSCN
ICDSTCNV

ICDSTSCN
ICDTBACK
ICDTSCN
ICDTSRCH
ICDTSTYP
ICDVSCN
ICDWHENO
ICDWHRO
ICDWNSCN
ICDWNTST
ICDZERO

MISCELLANEOUS MODULES

TSO ONLY
ICDQRNME
ICDORNMS
CMS ONLY

ICDLHELP
ICDLUTIL

Appendix B: VS BASIC Processor Modules 117

APPENDIX C: VS BASIC SAMPLE PROGRAM

0 REM DO AN OPEN, CLOSE, GET, PUT, RESET, RESET END, EOF, CONV, ETC.
1 B$='SAMPLE'

2 IF X$ = 'CHAIN' GO TO 997

3 C$(1) = 'Syso05"

5 X = FN1 ('SAMPLE')

10 FNA = A+B

15 DIM E$2

20 GO TO 40,30 ON FNA+1

30 LET X=FN2(30)

40 MAT READ X$(3),X(4)

50 FOR X=1 TO 3

55 IF X<>NUM(FNZ$ (X$(X))) THEN Y=FN2(50)
57 IF X(X)=6 THEN 59 ELSE Y=FN2(57)
59 NEXT X

65 DEF FN2(I)

70 PRINT 'ERROR AT STATEMENT'; I

80 E=E+1

85 E$='UN'

90 RETURN X

100 REM REM 'ABC' 'XYZ

105 FNEND

110 :*%***PROGRAM ######## BEGINNING.,
120 REM

130 GO TO 300

150 FN1(A$)

160 IF X$='CHAIN' GO TO 190 ELSE 170
170 PRINT USING 110,2$%

178 LET B$=AS$

180 RETURN X

-9

190PRINTUSING300, '"PROGRAM ';STR(B$,1,LEN(B$)) ;' ENDS '";E$;'SUCCESSFULLY,"', '***x*!

200 PRINT USING 320, E

210 RETURN X

220 FNEND

230 MAT GET 'SYs005',C$(5),EOF 250

240 X=FN2(240)

250 FOR X=1 TO 3

253 IF C$(X) =A$(X) THEN 254 ELSE Y=FN2(253)
254 NEXT X

255 CLOSE 'SYS005'

256 PUT 'SYS005','SYs005','TwWo','THREE'

259 PUT 'SYS005' , 'FOUR', 5

260 CLOSE C$ (RND*0,.8+1)

261 GET 'SYs005', R$,S$,T$,U$,U

262 IF T$ <> '"THREE' THEN A=FN2(262)

263 IF U$ <> 'FOUR' THEN A=FN2(263)

264 IF U<>5 THEN A = FN2(264)

270 RESET 'SYS005'

280 GET 'SYS005', T$

290 IF T$ <> 'SYS005' THEN A=FN2(190)

295 GO TO 420

300 FORM POS 6, 3*C, Cc2, C, POS , C, SKIP 2
320 :*****NUMBER OF ERRORS =###

340 DATA 'SYS005','Two','THREE',3%6,2,1,5,16,19,30,40,25,21,7,2
350 DIM D$(3)

Appendix ¢: VS BASIC Sample Program 119

361 RESTORE

362 MAT READ D$

363 RESTORE

365 MAT A$(3)=D$

370 PUT D$(1),. MAT D$

380 CLOSE 'sSys'!|'005"

390 FOR J=1 TO 3

395 IF NUM(FNZ$(D$(T))) = J GO TO U400 ELSE Y=FN2(395)
400 GOSUB 600 ON K

402 IF K= 1THENU40S

405 NEXT J

410 GO TO 150

420 RESTORE

440 USE X$

450 REM sk ok ok ok sk ak 3k o ok Ak o ok ok

452 PUT 'SYS009',E,E$

460 GOTO 997

462 X1=FN2(462)

464 GO TO 997

470 DEF FNZ$(B$)

480 IF B$='SYS005' THEN RETURN '1°'

490 IF B$='TWO' THEN RETURN '2'

500 IF B$='THREE' THEN RETURN '3' ELSF X1=FN2(500)
510 RETURN '4!

520 FNEND

600 IF ABS(K)=J THEN X1=FN2(600)

610 K=TJ

620 RETURN

690 RESTORE

700 FOR I=1 TO 3

710 RK=2%I-1

720 IF I <> THEN GOSUR 830,888,838 ON ABS(K) ELSE GOSUB 800
722 GO TO 730

725 READ E$(I)

730 NEXT I

740 IF I=3 THEN RETURN ELSE X=FN2(740)
800 IF I=2 THEN RETURN ELSE X=FN2(800)
810 RETURN

830 IF I=2 THEN X=FN2(830)

840 IF E$(1) <> 'SYS005' &€ E$ (3) <> 'THREE!' THEN 850 ELSE X=FN2(840)
850 GO TO 870,8880 ON I

860 X=FN2(860)

870 IF E$(1) = 'SYS005' THEN X1=FN2(870)

880 IF E$(2)<>'TWO' THEN RETURN ELSE X1=FN2(880)
890 RETURN

995 X1=FN2(995)

996 STOP

Q07 PRINT %k ok ok ok ok ok ok ok ok ok sk sk ok ke 3k ok ok ok 3k ok ok ok sk ok oe ok ok ok ok sk ok 0
998 CLOSE 'SYS009'

999 GET 'SYS009',E,E$

1000 GOSUB 690

1002 RESTORE

1003 READ MAT D$,G1,H1,J1,K1

1005 FOR I = 1 TO 10

2000 READ W(I)

120

3000 NEXT I

4000 N= W(1)

5000 FOR I = 2 TO 10

6000 N = N+W(I)

7000 NEXT I

8000 N= 100/N

9000 K=0

10000 FOR I = 1 TO 10

11000 S(I) = INT(N*W(I)+.5)
12000 K = MAX(K,S(I))

13000 NEXT I

14000 PRINT

15000 PRINT USING 15500, 'PERCENTAGE BAR CHART'
15500 FORM POS11,C,SKIP
16000 PRINT

17000 FOR W = K TO 1 STEP -1
17500 Q=W

18000 FOR J=1 TO W/5

18500 Q=0-5

18600 IF Q=000 THEN PRINT W;
18700 NEXT J

19000 B=(W=(5%*A))

20000 IF B = 0 THEN PRINT B
21000 FOR I = 1 TO 10

22000 IF S(I) < B THEN 26000
23300 Z= (3*I+3)

24000 PRINT USING 24500 ,'xx!
24500 FORM POSZ,C

26000 NEXT I

27000 PRINT

28000 NEXT W

29000 PRINT

29100 PRINT USING 29200
29200 FORM POS6

30000 FOR I = 1 TO 10

31000 PRINT USING 31500,I
31500 FORM PIC(Z#),X

32000 NEXT I

32002 X$='CHAIN'

32003 X=FN1(X$)

34000 END

Appendix C: VS BASIC Sample Program 121

OUTPUT FROM SAMPLE PROGRAM

¥k ¥ k¥ PROGRAM SAMPLE BEGINNMNING.
ke ok ot ke ok ook s ok ok skl sk ok ook ook ok ok stk ok ok ok ok sk ok ok ok

PEPCENTAGE BAR CHART

XX
XX
XX
XX
20 XX
XX
XX XX
XX XX
XX XX
15 XX XX ¥YX
X¥ XX XX
XX XX XX XX
X¥ XX XX XX
XX XX XX XX XX
10 XX XY XX XX XX XX
XX XX XX XX XX XX
XX XX XX XX XX XX
XX XX XX XX XX XX
XX XX XX XX XX XX
5 XX XX XX XX XY XX
XX XX XX XX XY XX XX
XX XX XX XX XX XX XX XX
XX XX XX XX XX ¥X XX XX
XX XX ¥X XX XX ¥X XX XX XX XX

**x% DROGRAM SAMPLE ENDS SUCCESSFULLY,

*¥xkkNUMBER OF ERRORS = 0
R; T=0.64/1.42 11:14:04

122

A disk

formatting of 92

for installation 34
AB system option 38
ACCESS command 34
Access Method Services

examples of 85-88

for veaM files 80-89
access methods

for DOS/VS 38

for 0S/VS1 and 2 23

for 0s/vs2(Ts0O) 13

for vM/370(CMS) 31
ASSGN command

for SYSCLB U46-

for SYSIN 45

for SYSIPT 47

for SYSPCH 47

for SYSRLB U6

for SYSSLB 46
ATTACH command 34
Auxilliary Storage

for DOS/VS 54

for 0s/vS1i and 2 53

for 0s/vS2(TSO) 52

for vM/370(CMS) 53

background partition 41
block size (BLKSIZE) 11
branch information table
example of 74
modifying 73
BSAM
for DOS/VS 38
for 0S/vSl1l and 2 23
for 0S/VS2(TS0O) 13
for vM/370(CMS) 31

card punch
for 0os/vsl and 2 23
for 05/VS2(Ts0) 14
CDKCD 48
CMS (see VM/370(CMS))
Compiler
defining library for
under 0S/VS1l and 2
under 0S/VS2(TSO)
on distribution tape
general description 9

26

16,17
11

concatenating private files

under 0S/VSl and 2 28,

under 0S/VS2(TSO) 20

CORGZ
for SYSCLB 41,42
for SYSRLB 42,43
for SYSSLB 43,44

29

data space

DEFINE command for 83
defining 81-83
JCL for 83

auxilliary storage for 5
JCL for 44

Debug (VS BASIC)

defining library for 16,
on distribution tape 11
general description 9

DEFINE command

general description 80
for VSAM clusters 84

for VSAM data spaces 83
for VSAM master catalog

diagnostic messages

obtaining under DOS/VS 5
obtaining under 0S/VS 55

n

17

82

5

obtaining under VM/370(CMS)

distribution tape/disk

block sizes on 11
deblocking for DOS/VS 44

deblocking distribution tape/disk

55

EXEC procedure for VM/370(CMs) 105

file numbers on 11
format of 11
HELP error message file
ICDKBFTB on 11
JCL procedures on
for DOS/VS 113,114
for 0s/vs 99,100
for 0sS/VS2(TSO) 101-1
logical record lengths on
reading
under DOS/VS U5
under OS/VS1l and 2 28
under 0S/VS2(TSO) 19
under VM/370(CMS) 34
records formats on 11
sample program on 11
SLF macro source on 11
VS BASIC compiler on 11
VS BASIC debug on 11
VS BASIC library on 11

DITTO

for diagnostic messages
requirement for 38
for sample program 48

DOS/VS

access methods 38
auxilliary storage 54

11

ou

55

11

on distribution tapesdisk 11
80-87

defining VSAM files for
dynamic storage for 51

equipment configuration for

installation procedure fo

installation JCL for
installing SLF 79
libraries for 39

r

38

41
installation requirements for

113-114

38

obtaining diagnostic messages under
obtaining sample program under 48

Index

INDEX

-112

55

123

overview of installation 40

running sample program under 48,49
system generation requirements for

system options for 38

utility programs for 38
DSTRBE

for deblocking disk 44,45

for deblocking tape 4u

requirement for 38

equipment configuration
for DOS/VS 38
for 0s/vsi and 2 23
for OS/vs2(TsO) 13
for vM/370(CMS) 31
error processing (SLF) 60
EXEC command 35,36
executor module
on distribution tapes/disk 11
libraries for
under 0S/VS1l and 2 26
under 0S/VS2(TSO) 16,17
extended-precision, floating-point
instruction set
for DOS/VS 38
for Ossvsl and 2 23
for 0Os/vs2(TsO) 13
for VvM/370(CMS) 31

file identifiers (VM/370(CMS))
created 36
restrictions on names 32
file numbers 11
FILEDEF command 34
files 11
floating-point instruction set
for DOS/VS 38
for Os/vsl and 2 23
for 0S/vs2(TsO) 13
for VM/370(CMS) 31
FOPT system option 38
function evaluating routines (SLF)
examples of 61-70
writing 58

GLOBAL command 92

HELP command messages 11
HELP error message file 11
HELP facility 21

HELP module 11

124

38

ICDBIFTB
example of 74
modifying 73
requirement for 61
ICDJUSTB 70
ICDKBFTB
size of 71
on distribution tapes/disk 11
ICDKERRR 60
ICDKERRT 60
ICDKMAP 61
ICDKOBJA 61
ICDRxx# 58
ICDVARCN 61
ICR (see VS BASIC ICR)
IEAIGGxX 91
IEALODOO 91
IEASYSnn 91
IEBGENER
for 0S/vS1 and 2 23,55
for 0S/VsS2(Ts0) 14,55
IEBUPDTE
for 0S/vVsSl and 2

concatenating libraries 28,29

defining libraries 26
option for 23
for 0S/VS2(TSO)
concatenating libraries 20
defining libraries 26
requirement for 14
for sample program 21,22
IEHLIST
for 08/vSl and 2)
allocating libraries 27,28
defining libraries 26
requirement for 23
for 0S/VvsS2(TsSO)
allocating libraries 18,19
defining libraries 16,17
requirement for 14
IEHPROGM
for 0s/VSl and 2
defining libraries 26,27
requirement for 23
for 0S/VS2(TSO)
defining libraries 17,18
requirement for 14
IEWL (see linkage editor)
installation EXEC procedure 11
installation JCL procedure
for DOS/vVs 11
for oOs/vs 11
for 0s/vs2(Tso) 11
installation procedures
for DOS/VS
auxilliary storage for 54
console prompts for 46,47
dynamic storage for 51
equipment configuration for
overview of 40
requirements for 38

system generation requirements

for 38
using 41
for link pack area 91
for 0S/vsl and 2
auxilliary storage for 53
dynamic storage for 51

equipment configuration for 23
overview of 25
requirements for 24
system generation requirements
for 23
using 26-31
for 0S/VS2(TSO)
auxilliary storage for 52
dynamic storage for 51
equipment configuration for 13
overview of 15
requirements for 14
system generation requirements
for 13
using 16-23
for Separable Library Facility
under DOS/VS 79
under 0S/VS 74-76
under VM/370(CMS) 76-79
for VM/370(CMS)
auxilliary storage for 53
dynamic storage for 51
equipment configuration for 31
overview of 33
requirements for 31
system generation requirements
for 31
terminal prompts for 35,36
using 34
installation requirements
for DOS/VS 38
for 0S/VSl1 and 2 23
for 0s/vs2(Tso) 13
for vM/370(CMS) 31
IPL CMS 34

keyboard characters
for 0sS/vVsS2(TSO) 90
for vM/370(CMS) 92,93

label information (SYSRES) 44
LEVOABS save area 60
library (VS BASIC)
defining
under 0OS/Vs1l and 2 26
under 0S/VS2(TSO) 16,17
on distribution tapesdisk 11
general description of 9
line printer
for 0S/vsl and 2 23
for 0S/VS2(TSO) 14
link library list (LNKSTO00)
under 0S/VSl and 2 28,29
under 0S/VS2(TSO) 20
link pack area
general description of 91
installation procedures for 91
linkage editor (IEWL)
for 0S/vsl and 2 23
for 0S/VsS2(TsO) 13
logical line editing 92
logical record length (LRECL) 11
LOGON procedure (see TSO LOGON procedure)

macro source code 11
macros 47
MAINT 38
master catalog

defining 81

JCL for 82

DEFINE command for 82
MOVEFILE command 34

object modules
cataloging 46
link editing U6

08/VsS
executor module 11
installation file 11
installation JCL procedure 99,100
utilities

for 0Ss/vsl and 2 23
for 0S/Vs2(TsSO) 14

0sS/Vsl
access methods for 23
auxilliary storage for 53
defining VSAM files for 80-89
on distribution tape 11
dynamic storage for 51
equipment configuration for 23
installation JCL procedure for 99-100
installation procedure for 23
installation requirements for 23
installing SLF under 74-76
libraries for 24
obtaining diagnostic messages under 55
overview of installation for 25
running sample program under 29
system generation requirements for 23
system programming considerations

for 90,91
utility programs for 23
0S/VS2

access methods for 23
auxilliary storage for 53
defining VSAM files for 80-89
on distribution tape 11
dynamic storage for 51
equipment configuration for 23
installation JCL procedure for 99-100
installation procedure for 23
installation requirements for 23
installing SLF under 74-76
libraries for 24
obtaining diagnostic messages under 55
overview of installation for 25
running sample program under 29
system generation requirements for 23
system programming considerations
for 90,91
utility programs for 23

0S/VS2(TSO)
access methods for 13
auxilliary storage for 52
defining vsaM files for 80-89
on distribution tape 11
dynamic storage for 51
equipment configuration for 13
installation JCL procedure for 101-104

Index 125

installation procedure for 13 for 0s/vs2(Tso) 13
installation requirements for 13 for vM/370(CMS) 31
installating SLF under 74-76

libraries for 14

obtaining diagsnotic messages under 55

overview of installation under 15

running sample program under 21,22 record formats (RECFM) 11
system generation requirements for 13 re-entrant programs 60
system programming considerations regenerating modules 97,98
for 88-90 register usage (SLF)
utility programs for 14 for function evaluating routines 58
overview of installation for scanning routines 70
for DOsS/VS 40 RENUM module 11
for 0S/VSl and 2 25 restrictions (CMS)
for 0S/vS2(TsSO) 15 on file identifiers 32
for vM/370(CMS) 33 on VSAM 31
PARSTD option 44 S disk (see system disk)
PC system option 38 sample program
private core image library on distribution tapes/disk 11
allocating 41,42 output from 122
assigning 46 punching into cards (DOS/VS) 48
auxilliary storage for 54 running
label information for 44 under DOS/VS 48,49
option for 39 under 0S/VS1 and 2 29
private libraries under 0OS/VS2(TSO) 21,22
under 0S/VS1 and 2 under VM/370(CMS) 37
allocating 27-28 source statements for 119-121
auxilliary storage for 53 SAMPLE VSBASIC
concatenating 28,29 created by 36
‘defining 26 restrictions on 32
deleting 26,27 scanning routine
option for 24 description of 70-73
STEPLIB DD statement for 28,29 example of 72-73
under 0S/VS2(TSO) scratch file (DOS/VsS) 38
allocating 18,19 Separable Library Facility
auxilliary storage for 52 branch information table for 74
concatenating 20 determining precision for 60
defining 16,17 error processing by 60
deleting 17,18 evaluating parameters for 58-60
option for 14 examples
STEPLIB DD statement for 20 of function evaluating
in TSO LOGON procedure 20 routines 61-70
private relocatable library of scanning routine 72,73
allocating 42,43 function evaluating routines for 58
assigning U6 general description of 57
auxilliary storage for 54 ICDBIFTB used by 73
label information for 4t installing
option for 39 under DOS/VS 79
private source statement library under 0OS/VS 74-76
allocating 43,44 under VM/370(CMS) 76-79
assigning 46 internal table for 71,72
auxilliary storage for 54 macro source for 11
label information for 44 register usage
option for 39 by function evaluating routines 58
privilege class B 34 by scanning routines 70
PROFILE EXEC 92 requirements for 57
PTFs (VM/370(CMS)) 93-96 returning control from 61

returning values from 61
scanning routine for 70
size of ICDKBFTB for 71
source language for 58

QSAM space considerations for 79,80
for DOS/vVsS 38 VS BASIC macros for 61
for 0Ss/vSsl and 2 23 work area 60

126

SET INPUT command 92
SET OUTPUT command 92
SLBYTE 60

SLF (see Separable Library Facility)

space considerations (SLF) 79,80
STEPLIB DD statement
for 0OS/vsSl1 and 2 28,29
for 05/VS2(TS0O) 20
storage estimates 51-54
SYS1.HELP
auxilliary storage for 52
defining 16,17
requirement for 14
SYS1.LINKLIB
under 0S/VS1 and 2
auxilliary storage for 53
concatenating to 28,29
defining 26
requirement for 24
under 0S/VS2(TSO)
auxilliary storage for 52
concatenating to 20
defining 16,17
requirement for 14
S¥S1.LPALIB 91
SYS1.PARMLIB
for concatenating libraries
under 0S/VS1 and 2 26
under 0S/VS2(TSO) 20
SYS1.PROCLIB
for 0S/VS1 and 2
adding to 26
auxilliary storage for 53
requirement for 24
for 0S/VS2{(Ts0)
adding to 16,17
auxilliary storage for 52
requirement for 14
SYSCLB)
auxilliary store for 5i
requirement for 39
SYSDA
for 0S/Vsl and 2 23
for 0S/VS2(TSO) 14
SYSHELP DD statement 21
SYSRES 44
SYSRLB
auxilliary storage for 54
requirement for 39
SYSSLB
auxilliary storage for 54
option for 39
system core image library 39
system disk (S)
accessing 34
auxilliary storage for 53
requirement for 31
system generation requirements
under DOS/VS 38
under 0S/VS1l and 2 23
under 0OS/VS2(Ts0) 13
under VM/370(CMS) 31
system options (DOS/VS) 38
system programming considerations
for all systems 57
for 0S/VS only 90,91
for 0S/VvS1l and 2, 0S/VS2(TSO),
VM/370(CMS) only 80-88

for 0S/VS2(TSO) only 88-89
for Separable Library Facility
(SLF) 41-80

for VM/370(CMS) only 92-98
system releases

for DOS/VS 38

for 0s/vsl and 2 23

for 0s/vs2(TsO) 13

for vM/370(CMS) 31
system relocatable library 39
system source statement library 39

TAPE command 34
TCAM 13
temporary file 47
TIMER 41
TOD system option 38
TSO (see 0S/VS2(TS0))
TSO HELP data set 13
TSO LOGON procedure
for HELP facility 21
preparing 88,89
for private libraries 20
TSO Enhancement Package #2 13
TSO Utilities Maintenance Release VIM3 13
TSOLIB TXTLIB
GLOBAL command for 92
requirement for 31

user catalog 82
utility conversion module (VM/370(CMS)) 11
utility programs

for DOS/VS 38

for 05/VvS1l and 2 23

for 0S/VS2(TSO) 14

VIM3 (see TSO Utilities Maintenance Release
VIM3)
virtual address 181 34
virtual printer 31
Virtual Storage Access Method (VSAM)
Access Method Services for 80-88
creating VSAM files 80
DEFINE command
for VSAM cluster 84
for VSAM data space 83
for VSAM master catalog 82
for VSAM user catalog 81
defining a cluster 81,8u4
defining a data space 81,83
defining a master catalog 81
defining a user catalog 82
examples of use 85-88
JCL
for cluster 84
for data space 83
for master catalog 82
for user catalog 81

Index 127

READER’'S COMMENTS

TITLE: System/370 VS BASIC ORDER NO. SC28-8309-0
Installation Reference Material

Your comments assist us in improving the usefulness of our publications; they are an important part
of the input used in preparing updates to the publications. All comments and suggestions become
the property of IBM.

Please do not use this form for technical questions about the system or for requests for additional
publications; this only delays the response. Instead, direct your inquiries or requests to your IBM
representative or to the IBM Branch Office serving your locality.

Corrections or clarifications needed:

Page Comment

Please include your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

SC28-8309-0

aury s1q3 Juote IO

..

FIRST CLASS
PERMIT NO. 33504
NEW YORK, N.Y.

]
]
BUSINESS REPLY MAIL]
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES L]
]
]
POSTAGE WILL BE PAID BY . . . I
]
IBM CORPORATION
X []
1271 Avenue of the Americas —
New York, New York 10020
Attention: PUBLICATIONS
fold fold

International Business Machines Corporation

Data Processing Division
1133 Westchester Avenue, White Plains, New Yaork 10604

[U.S.A. only]

I1BM World Trade Corporation
‘821 United Nations Plaza, New York, New York 10017

[International]

®eescascst et senncsns

0-60€8-8C3S 'V 'S’'Nul pawuiid WY1 JISVE SA 0LE/S

5C28-8309-0

HEN

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

0-60£8-8Z0S 'V 'S N ul pawulyd INHI JISVE SA OLE/S

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	replyA
	replyB
	xBack

