
• •

Fourth Edition (July 1988)

This edition, SC24-5239-03, is a major revision of SC24-5239-02, and applies to Release 6 of the IBM Virtual
Machine/System Product (5664-167) unless otherwise indicated in new editions or Technical Newsletters.
Changes are periodically made to the information contained herein; before using this publication in
connection with the operation of IBM systems, consult the latest IBM System/370, 30xx, 4300, and 9370
Processors Bibliography, GC20-0001, for the editions that are applicable and current.

Summary of Changes

For a detailed list of changes, see "Summary of Changes" on page 205.

Changes or additions to the text and illustrations are indicated by a vertical line to the left of the change.

In this manual are illustrations in which names are used. These names are fanciful and fictitious; they are
used solely for illustrative purposes and not for identification of any person or company.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM licensed program in
this publication is not intended to state or imply that only IBM's licensed program may be used. Any
functionally equivalent program may be used instead.

Ordering Publications

Requests for copies of IBM publications should be made to your IBM representative or to the IBM branch
office serving your locality., Publications are not stocked at the address given below.

A form for reader's comments is provided at the back of this publication; if the form has been removed,
comments may be addressed to IBM Corporation, Information Development, Department 060, P.O. Box 6,
Endicott, NY, U.S.A. 13'].60. IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

The form for reader's comments provided at the back of this publication may also be used to comment on
the VM/SP online HELP facility.

© Copyright International Business Machines Corporation 1983, 1984, 1986, 1988. All rights reserved.

NOP ... 47
NUMERIC ... 48
OPTIONS .. 49
PARSE ... 50
PROCEDURE 53
PULL .. 55
PUSH .. 56
QUEUE ... 57
RETURN .. 58
SAY ... 59
SELECT ... 60
SIGNAL .. 61

The Special Variable SIGL 63
Using SIGNAL with the INTERPRET Instruction 64

TRACE ... 65
A Typical Example 68
Format of TRACE output 68

UPPER ... 70

Chapter 4. Functions 71
Syntax .. 71
Calls to Functions and Subroutines 71

Search Order
Errors during Execution

Built-in Functions
ABBREV
ABS
ADDRESS
ARG .. .
BITAND .. .
BITOR
BITXOR .. .
CENTRE/CENTER
CMSFLAG
COMPARE
COPIES .. .

72
75
75
76
76
76
77
78
78
79
79
80
80
80

CSL .. 80
C2D .. 80
C2X .. 81
DATATYPE \......... 81

i
DATE .. 82
DBCS ... /83
DELSTR ... 84
DELWORD 84
DIAG/DIAGRC 84
DIGITS ... 84
D2C .. 85
D2X ... 85
ERRORTEXT 86
EXTERNALS 86
FIND ... 86
FORM .. 87
FORMAT .. 87
FUZZ .. 88
INDEX .. 88
INSERT ... 89

iv VM/SP System Product Interpreter Reference

Chapter 6. Numerics and Arithmetic
Introduction
Definition

Chapter 7. System Interfaces
Calls to and from the Language Processor

Calls Originating from the CMS Command Line
Calls Originating from the XED IT Command Line
Calls Originating from CMS EXECs
Calls Originating from EXEC 2 Programs
Calls Originating from a Clause That Is an EXF>ression
Calls Originating from a CALL Instruction or a Function Call
Calls Originating from a MODULE
Calls Originating from an Application Program

DMSEXI
The Extended Parameter List

U sing the Extended Parameter List
The File Block

Function Packages
Non-SVC Subcommand Invocation .
Direct Interface to Current Variables

The Request Block (SHVBLOCK)
Function Codes (SHVCODE)
Using Routines from the Callable Service Library

Chapter 8. Debug Aids
Interactive Debugging of Programs
Interrupting Execution and Controlling Tracing
Help

Chapter 9. Reserved Keywords and Special Variables
Reserved Keywords
Special Variables

Chapter 10. Some Useful CMS Commands

Chapter 11. Invoking Communications Routines

Appendix A. Error Numbers and Messages

Appendix B. Double Byte Character Set (DBCS)
General Description

DBCS Enabling Data
Mixed String Validation
Instruction Examples ..

DBCS Function Handling
Built-in Function Examples

External Functions
Counting Option
Function Descriptions
DBADJUST .
DBBRACKET
DBCENTER
DBCJUSTIFY
DB LEFT .
DBRIGHT

vi VM/SP System Product Interpreter Reference

127
127
128

135
135
135
136
136
136
136
137
138
138
141
142
142
144
145
146
147
148
149
151

155
155
157
158

159
159
160

161

163

165

173
173
174
174
174
176
178
181
181
182
182
182
182
183
183
184

viii VM/SP System Product Interpreter Reference

Introduction

What Systems Application Architecture Is
Systems Application Architecture is a definition - a set of software interfaces,
conventions, and protocols that provide a·framework for designing and developing
applications with cross-system consistency.

The SAA Procedures Language has been defined as a subset of VMjSP REXX. Its
purpose is to define a common subset of the language that can be used on several
environments. For VM users, this will not hinder your ability to program in REXX.
If you plan on running your programs on other environments, however, some
restrictions may apply and consulting the SAA Common Programming Interface
Procedures Language Reference is advised.

Systems Application Architecture:

• Defines a common programming interface you can use to develop applications
that can be integrated with each other and transported to run in multiple SAA
environments.

• Defines common communications support that you can use to connect
applications, systems, networks, and devices.

• Defines a common user access that you can use to achieve consistency in panel
layout and user interaction techniques.

• Offers some common applications written by IBM using the common
programming interface, the common communications support and the common
user access.

Supported Environments
SAA provides a framework across the these IBM computing environments:

• TSOjE in the Enterprise Systems Architecture/370™

• CMS in the VM/System Product or VMjExtended Architecture

• Operating System/400™

• Operating System/2™ Extended Edition.

Common Programming Interface
As its name implies, the common programming interface (CPI) provides languages,
commands, and calls that programmers can use to develop applications which take
advantage of the consistency offered by SAA. These applications can easily be
integrated and transported across the supported environments.

The components of the interface currently fall into two general categories:

• Languages

Application Generator
C
COBOL

* Operating System/2, Operating System/400, and Enterprise Systems Architecture/370 are trademarks of the
International Business Machines Corporation.

2 VM/SP System Product Interpreter Reference

Introduction

How to Use This Book

How to Read the ,Syntax Diagrams
Throughout this book, syntax is described using the structure defined below.

• Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The ~ symbol indicates the beginning of a statement.

The ~ symbol indicates that the statement syntax is continued.

The ~ symbol indicates that a line is continued from
the previous line.

The ~ symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start
with the ~ symbol and end with the ~ symbol.

• Required items appear on the horizontal line (the main path).

~STATEMENT---requi red-i temm---------........

• Optional items appear below the main path.

~STATEMENT---T------------.----------------........
L-oPtional-ite~

• When you can choose from two or more items, they are stacked vertically.

If you must choose one of the items, an item of the stack appears on the main
path.

~STATEMENT~reqUired-choicel~
required-choice2

If choosing one of the items is optional, the entire stack appears below the main
path.

~STATEMENT-.....,r-----------r------"""~"

t==0ptional-choicel==J
optional-choice2

• An arrow returning to the left above the main line indicates an item that can be
repeated.

+
~STATEMENT---repeatab 1 e-i temm---'-----------~~ ..

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items, or repeat a single choice.

4 VMjSP System Product Interpreter Reference

Introduction

6 VMjSP System Product Interpreter Reference

General Concepts

Where to Find More Information
This is the Reference Manual. Reference information is also available in a
convenient summary (card) form, the VMjSP System Product Interpreter Reference
Summary.

You can find useful information in the VMjSP System Product Interpreter User's
Guide and through the online HELP facility available with VMjSP. For any
program written in the Restructured Extended Executor (REXX) language, you can
get information on how the language processor interprets the program or a
particular instruction by using the REXX TRACE instruction.

Structure and General Syntax

Tokens

Programs written in the Restructured Extended Executor (REXX) language must
start with a comment (which distinguishes them from CMS EXEC and EXEC 2
language programs).

A REXX program is built from a series of clauses that are composed of: zero or
more blanks (which are ignored); a sequence of tokens (see below); zero or more
blanks (again ignored); and a semicolon (;) delimiter that may be implied by
line-end, certain keywords, or the colon (:) if it follows a single symbol. Each clause
is scanned from left to right before execution, and the tokens composing it are
identified. Instruction keywords are recognized at this stage, comments are removed,
and multiple blanks (except within literal strings) are converted to single blanks.
Blanks adjacent to special characters (including operators, see page 10) are also
removed.

Programs written in REXX are composed of tokens (of any length, up to an
implementation restricted maximum) that are separated by blanks or by the nature
of the tokens themselves. The classes of tokens are:

Comments:
A sequence of characters (on one or more lines) that are delimited by /*
and * /. Comments can contain other comments, as long as each begins
and ends with the necessary delimiters. Comments can be written
anywhere in a program. They are ignored by the language processor
(and hence may be of any length), but they do act as separators.

/* This is an example of a valid comment */
Literal Strings:

A sequence including any characters and delimited by the single quote (I)
or the double quote ("). Use two consecutive double quotes ("") to
represent a II character within a string delimited by double quotes.
Similarly, use two consecutive single quotes C I) to represent a I
character within a string delimited by single quotes. A literal string is a
constant and its contents are never modified when it is processed. A
literal string with no characters (that is, a string of length 0) is called a
null string.

8 VM/SP System Product Interpreter Reference

General Concepts

Numbers:

Operators:

These are valid exponential symbols:

17.3E-12
. 03e+9

Implementation maximum: A symbol may consist of up to 250
characters. (But note that its value, if it is a variable, is limited only by
the amount of storage available).

These are character strings consisting of one or more decimal digits
optionally prefixed by a plus or minus sign, and optionally including a
single period (.) that represents a decimal point. A number can also have
a power of ten suffixed in conventional exponential notation: an E
(uppercase or lowercase) followed optionally by a plus or minus sign then
followed by one or more decimal digits defining the power of ten.
Whenever a character string is used as a number, it is possible that
rounding will occur to a precision specified by the NUMERIC DIGITS
instruction (default nine digits). See pages 127-134 for a full definition of
numbers.

Numbers may have leading blanks (before and after the sign, if any) and
may have trailing blanks. Embedded blanks are not permitted. Note
that a symbol (see above) may be a number and so maya literal string.
A number cannot be the name of a variable.

These are valid numbers:

12
-17.9
127.0650
73e+128
I + 7.9E5

A whole number is a number that has a zero (or no) decimal part and
that would not normally be expressed by the language processor in
exponential notation. That is, it has no more digits before the decimal
point than the current setting of NUMERIC DIGITS (the default is 9).

Implementation maximum: The exponent of a number expressed in
exponential notation may have up to nine digits only.

The special characters: + - \ I % * I & = -, > < and the sequences >=
<= \> -,> \< -,< \= ~= /= >< <> == \== ~== 1== II
&& II ** » « »= \» ~» «= \« ~« are operator tokens
(see page 12), with or without embedded blanks or comments. One or
more blank(s), where they occur in expressions but are not adjacent to
another operator, also act as an operator.

Special Characters:
The characters, ; :) (together with the individual characters from
the operators have special significance when found outside of strings. All
these characters constitute the set of "special" characters. They all act as
token delimiters, and blanks adjacent to any of these are removed, with
the exception that a blank adjacent to the outside of a parenthesis is only
deleted if it is also adjacent to another special character.

10 VMjSP System Product Interpreter Reference

General Concepts

The following example shows how the continuation character can be used to
continue a clause.

say 'You can use a comma',
'to continue this clause.'

This would display:

Expressions and Operators

Expressions

Operators

Clauses can include expressions consisting of terms (strings, symbols, and function
calls) intersper~ed with operators and parentheses.

Terms include:

• Literal Strings (delimited by quotes), which are literal constants

• Symbols (no quotes), which are translated to uppercase. Those that do not
begin with a digit or a period may be the name of a variable, in which case they
are replaced by the value of that variable as soon as they are needed during
evaluation. Otherwise they are treated as a literal string. A symbol can also be
compound.

• Function invocations, see page 71, which are of the form:

-rymbO 1 ']I---r--------r- __ ___.
stri ng(I f

[express ion]

Evaluation of an expression is left to right, modified by parentheses and by operator
precedence in the usual algebraic manner (see below). Expressions are always wholly
evaluated, unless an error occurs during evaluation.

All data is in the form of "typeless" character strings, (typeless because it is not - as
in some other languages - of a particular declared type, such as Binary,
Hexadecimal, Array, etc.). Consequently, the result of evaluating any expression is
itself a character string. All terms and results may be the null string (a string of
length 0). Note that REXX imposes no restriction on the maximum length of
results, but there is usually some practical limitation dependent upon the amount of
storage available to the language processor.

The following pages describe how each operator (except for the prefix operators) acts
on two terms, which may be symbols, strings, function calls, intermediate results, or
subexpressions in parentheses. Each prefix operator acts on the term or
subexpression that follows it. There are four types of operators.

12 VM/SP System Product Interpreter Reference

General Concepts

Logical (Boolean)

True if terms are strictly equal (identical)

True if the terms are equal (numerically or when padded, etc.)

\ = =, -. = =, / = = True if the terms are NOT strictly equal (inverse of = =)

\=,-.=,/=

>

<

»

«

><

<>

>=

\ <, -. <

»=

\«,-.«

<=

\ >, -. >

«=

\»,-.»

Not equal (inverse of =)

Greater than

Less than

Strictly greater than

Strictly less than

Greater than or le"ss than (same as not equal)

Greater than or less than (same as not equal)

Greater than or equal to

Not less than

Strictly greater than or equal to

Strictly NOT less than

Less than or equal to

Not greater than

Strictly less than or equal to

Strictly NOT greater than

Note: Throughout the language, the not symbol, "-,", is synonymous with the
backslash ("\"). The two symbols may be used interchangeably according to
availability and personal preference. The backslash can appear in the following
operators: \(prefix not), \=, \==, \<, \>, \«, and \».

A character string is taken to have the value "false" if it is 0, and "true" if it is a 1.
The logical operators take one or two such values (values other than 0 or 1 are not
allowed) and return 0 or I as appropriate:

& AND
Returns I if both terms are true.

Inclusive OR
Returns I if either term is true.

&& Exclusive OR
Returns I if either (but not both) is true.

Prefix \,-. Logical NOT
Negates; 1 becomes 0 and vice-versa.

Operator Priorities
Expression evaluation is from left to right; this is modified by parentheses and by
operator precedence:

• When parentheses are encountered, the expression in parentheses is evaluated
first.

14 VMjSP System Product Interpreter Reference

General Concepts

Examples

Clauses

Null clauses

Labels

Suppose that the following symbols represent variables; with values as shown:

A has the value '3' and DAY has the value 'Monday'

Then:

A+5 -> 18 1
A-4*2 -> I -51
A/2 -> 11.51
B.5**2 -> IB.25 1
(A+1»7 -> IBI /* that is, False */
I 1=11 -> 111 /* that is, True */
I 1==11 -> IBI /* that is, False */
I 1..,==1 I -> 111 /* that is, True */
(A+1)*3=12 -> 111 /* that is, True */
Today is Day -> I TODAY IS Monday I
I I f it is I day -> I If it is Monday I
Substr(Day,2,3) -> lond l /* Substr is a function *)
I! IXXX I! I -> I !XXX! I
label « labd l -> 111 /* that is, True */
IB771 » 1111 -> IBI /* that is, False */
label » lab l -> 111 /* that is, True */
lab I « labd l -> 111 /* that is, True */
IBBBBOB I » I BEBBee I -> 111 /* that is, True */

Note: The last example would give a different answer if the" >" operator had been
used rather than" > >". Since "OEOOOO" is a valid number in exponential notation,
a numeric comparison is done, thus "OEOOOO" and "000000" evaluate as equal.

Clauses can be subdivided into five types:

A clause consisting only of blanks and/or comments is completely ignored (except
that if it includes a comment it will be traced, if appropriate).

Note: A null clause is not an instruction; putting an extra semicolon after the
THEN or ELSE in an IF instruction (for example) is not equivalent to using a
dummy instruction (as it would be in PL/I). The NOP instruction is provided for
this purpose.

A label is a clause that consists of a single symbol followed by a colon. The colon
acts as an implicit clause terminator, so no semicolon is required. Labels are used to
identify the targets of CALL instructions, SIGNAL instructions, and internal
function calls. They can be traced selectively to aid debugging.

Any number of successive clauses may be labels, so permitting multiple labels before
another type of clause. Duplicate labels are permitted, but since the search
effectively starts at the top of the program, the control, following a CALL or
SIGNAL instruction, will always be passed to the first occurrence of the label.

16 VM/SP System Product Interpreter Reference

General Concepts

Example:

/* If "Freda" has not yet been assigned a value, */
/* then next line gives "FRED" the value "FREDA" */
Fred=Freda

Symbols can be subdivided into four classes: constant symbols, simple symbols,
compound symbols, and stems. Simple symbols can be used for variables where the
name corresponds to a single value. Compound symbols and stems are used for
more complex collections of variables, such as arrays and lists.

Constant Symbols

Simple Symbols

A constant symbol starts with a digit (0-9) or a period.

The value of a constant symbol cannot be changed. It is simply the string consisting
of the characters of the symbol (that is, with any alphabetic characters translated to
uppercase).

These are constant symbols:

77
827.53
.12345
12e5
3D

/* Same as 12E5 */

A simple symbol does not contain any periods, and does not start with a digit (0-9).

By default, its value is the characters of the symbol (that is, translated to uppercase).
If the symbol has been used as the target of an assignment, it names a variable and
its value is the value of that variable.

These are simple symbols:

FRED
Whatagoodidea?
¢12

/* Same as WHATAGOODIDEA? */

Compound Symbols
A compound symbol contains at least one period, and at least one other character. It
can not start with a digit or a period, and if there is only one period, the period can
not be the last character.

The name begins with a stem (that part of the symbol up to and including the first
period), which is followed by parts of the name (delimited by periods) that are
constant symbols, simple symbols, or null.

These are compound symbols:

FRED.3
Array. I.J
AMESSY •• One.2.

Before the symbol is used, the values of any simple symbols (I, J, and One in the
example) are substituted into the symbol, thus generating a new derived name. This
derived name is then used just like a simple symbol. That is, its value is by default

18 VMjSP System Product Interpreter Reference

General Concepts

Notes

had a previous value or not. Following the assignment, a reference to any
compound symbol with that stem returns the new value until another value is
assigned to the stem or to the individual variable.

F or example:

ho 1 e. II empty II
hole.9 = "full"

say hole.1 hole.mouse hole.9

/* says "empty empty full II * /

Thus a whole collection of variables may be given the same value. For example,

total. = 0
do forever

say "Enter an amount and a name:"
pull amount name
if datatype(amount)='CHAR ' then leave
total.name = total.name + amount
end

Note: The value that has been assigned to the whole collection of variables can
always be obtained by using the stem. However, this is not the same as using a
compound variable whose derived name is the same as the stem. For example,

total~ = 0
null = 1111

total.null = total.null + 5
say total. total.null /* says "0 511 */
Collections of variables, referred to by their stem, can also be manipulated by the
DROP and PROCEDURE instructions. DROP FRED. drops all variables with that
stem (see page 40), and PROCEDURE EXPOSE FRED. exposes all possible
variables with that stem (see page 53).

1. When a variable is changed by the ARG, PARSE, or PULL instructions, the
effect is identical to an assignment. A stem used in a parsing template therefore
sets an entire collection of variables.

2. Since an expression may include the operator =, and an instruction may consist
purely of an expression (see next section), there would be a possible ambiguity
which is resolved by the following rule: any clause that starts with a symbol and
whose second token is = is an assignment, rather than an expression (or an
instruction). This is not a restriction, since the clause may be executed as a
command in several ways, such as by putting a null string before the first name,
or by enclosing the first part of the expression in parentheses.

Similarly, if a programmer unintentionally uses a REXX keyword as the variable
name in an assignment, this should not cause confusion. For example, the
clause:

Address='10 Downing Street ' ;

would be an assignment, not an ADDRESS instruction.

20 VM/SP System Product Interpreter Reference

General Concepts

Examples:

erase "*" listing /* not "multiplied by"! */

load progl "(" start /* not mismatched parentheses */

a = any
access 192 "blaH /* not IIdivided by ANY II */

The eMS Environment
When the environment selected is CMS (which is the default for execs), the
command is invoked exactly as if it had been issued from the command line (but
cleanup after the command has completed is different). See "Calls Originating from
a Clause That Is an Expression" on page 136. The language processor will create
two parameter lists:

• The result of the expression, tokenized and translated to uppercase, is placed in
a Tokenized Parameter List.

• The result of the expression, unchanged, is placed in an Extended Parameter
List.

The language processor then asks CMS to execute the command. The language
processor uses the same search order used for a command entered from the CMS
interactive command environment. The first token of the command is taken as the
command name. As soon as the command name is found, the search stops and the
command is executed.

The search order is:

1. Search for an exec with the specified command name:

a. Search for an exec in storage. If an exec with this name is found, CMS
determines whether the exec has a USER, SYSTEM, or SHARED attribute.
If the exec has the USER or SYSTEM attribute, it is executed.

If the exec has the SHARED attribute, the INSTSEG setting of the SET
command is checked. When INSTSEG is ON, all accessed directories and
minidisks are searched for an exec with that name. (To find a file in a
directory, read authority is required on both the file and the directory.) If
an exec is found, the filemode of the EXEC is compared to the filemode of
the eMS installation saved segment. If the filemode of the saved segment is
equal to or higher (closer to A) than the filemode of the directory or
minidisk, then the exec in the saved segment is executed. Otherwise, the
exec in the directory or on the minidisk is executed. However, if the exec is
in a directory and the file is locked, the execution will fail with an error
message.

b. Search for a file with the specified command name and a filetype EXEC on
any currently accessed directory or on any currently accessed minidisk.
CMS uses the standard search order (A through Z.) The table of active
(open) files is searched first. An open file may be used ahead of a file that
resides in a directory or on a minidisk higher in the search order. To find a
file in a directory, read authority is required on both the file and the
directory. If the file is in a directory and the file is locked, the execution will
fail with an error message.

2. Search for a translation or synonym for the command name. If found, search
for an exec with the valid translation or synonym by repeating Step 1. (For a

22 VM/SP System Product Interpreter Reference

General Concepts

would result in both a Tokenized Parameter List and an Extended Parameter
List being built for each command and submitted to CMS. The STATE
command would use the Tokenized Parameter List

(STATE (JACK (ASSEMBLE) (Al

while MYEXEC (if it were a REXX EXEC) would use the Extended Parameter
List

(MYEXEC Jack Assemblersource Al)

For full details of this assembler language interface, see page 135.

The COMMAND Environment
If you wish to issue commands without the search for execs or CP commands, and
without any translation of the parameter lists, (without any uppercasing of the
tokenized parameter list) you may use the environment called COMMAND. Simply
include the instruction ADDRESS COMMAND at the start of your exec (see page
29). Commands will be passed to CMS directly, using CMSCALL, described on
page 136.

The COMMAND environment name is recommended for use in "system" execs that
make heavy use of modules and nucleus functions. This makes these execs more
predictable (commands cannot be usurped by user execs, and operations can be
independent of the user's setting of IMPCP and IMPEX) and faster (the exec and
first abbreviation searches are avoided).

Issuing Subcommands from Your Program
A command being executed by CMS may accept subcommands. Usually, the
command will provide its own command line, from which it takes subcommands
entered by the user. But this can be extended so that the command will accept
subcommands from a REXX program.

A typical example is an editor. You can write a REXX program that issues editor
subcommands, and run your program during an editing session. Your program can
inspect the file being edited, issue subcommands to make changes, test return codes
to check that the subcommands have been executed as you expected, and display
messages to the user when appropriate. The user can invoke your program by
entering its name on the editor's command line.

The editor (or any other program that is designed to accept subcommands from the
language processor) must first create a subcommand entry point, naming the
environment to which subcommands may be addressed, and then call your program.
Programs that can issue subcommands are called macros. The REXX language
processor has the convention that, unless instructed otherwise, it directs commands
to a subcommand environment whose name is the file type of the macro. Usually,
editors name their subcommand entry point with their own name and claim that
name as the file type to be used for their macros.

For example, the XEDIT editor sets up a subcommand environment named XED IT,
and the filetype for XEDIT macros is also XEDIT. The macro issues subcommands
to the editor (for example, NEXT 4, or EXTRACT /ZONE/). The editor "replies"
with a return code (which the language processor assigns to the special variable RC)
and sometimes with further information, which may be assigned to other REXX
variables. For example, a return code of 1 from NEXT 4 indicates that end-of-file
has been reached; EXTRACT /ZONE/ assigns the current limits of the zone of
XEDIT to the REXX variables ZONE. 1 and ZONE.2. By testing RC and the other

24 VM/SP System Product Interpreter Reference

General Concepts

26 VM/SP System Product Interpreter Reference

ADDRESS

ADDRESS

~ADDRESS .----...... ,
-envi ronment L, . lJ

expreSSlon

LVALUEJ
expressionl-----

Where:

environment
is a literal string or a single symbol, which is taken to be a constant.

This instruction is used to effect a temporary or permanent change to the destination
of commands. The concept of alternative subcommand environments is described on
page 24.

To send a single command to a specified environment, an environment name
followed by an expression is given. The expression is evaluated, and the resulting
command string is routed to environment. After execution of the command,
environment will be set back to whatever it was before, thus giving a temporary
change of destination for a single command.

Example:

Address CMS 'STATE PROFILE EXEC AI

If only envi ronment is specified, a lasting change of destination occurs: all following
commands (clauses that are neither REXX instructions nor assignment instructions)
will be routed to the given command environment, until the next ADDRESS
instruction is executed. The previously selected environment is saved.

Example:

address CMS
'STATE PROFILE EXEC AI
if rc=O then ICOPY PROFILE EXEC A TEMP = =1
address XEDIT

Similarly, the VALUE form may be used to make a lasting change to the
environment. Here expression1 (which may be just a variable name) is evaluated,
and the result forms the name of the environment. The sub keyword VALUE may
be omitted as long as expression1 starts with a special character (so that it cannot be
mistaken for a symbol or string).

Example:

ADDRESS ('ENVIR' I I number)

If no arguments are given, commands will be routed back to the environment that
was selected before the previous lasting change of environment was made, and the
current environment name is saved. Repeated execution of just ADDRESS will
therefore switch the command destination between two environments alternately.

28 VM/SP System Product Interpreter Reference

ARG

ARG

~ARG------.----------r--- ---------+.~~

Ltemplate~

Where:

template
is a list of symbols separated by blanks and/or patterns.

ARG is used to retrieve the argument strings provided to a program or internal
routine and assign them to variables. It is just a short form of the instruction

~PARSE UPPER ARG L --.J;~
template

Unless a subroutine or internal function is being executed, the arguments given on
the program invocation will be read, translated to uppercase (i.e. a lowercase a-z to
an uppercase A-Z), and then parsed into variables according to the rules described in
the section on parsing (page 119). Use the PARSE ARG instruction if uppercase
translation is not desired.

If a subroutine or internal function is being executed, the data used will be the
argument string(s) passed to the routine.

The ARG (and PARSE ARG) instructions can be executed as often as desired
(typically with different templates) and will always parse the same current input
string(s). There are no restrictions on the length or content of the data parsed
except those imposed by the caller.

Example:

/* String passed to FRED EXEC is "Easy Rider" */

Arg adjective noun .

/* Now: "ADJECTIVE" contains IEASY I
/* "NOUN" contains IRIDERI

*/
*/

If more than one string is expected to be available to the program or routine, each
may be selected in turn by using a comma in the parsing template.

Example:

/* function is invoked by FRED(ldata XI,1,5) */

Fred: Arg string, num1, num2

/* Now:
/*
/*

"STRING" contains IDATA XI
"NUM1" contains 111
"NUM2" contains 15 1

*/
*/
*/

30 VMjSP System Product Interpreter Reference

CALL

CALL

~cALL--name-I'---f----------'--;-+-4

[express ion]

CALL is used to invoke a routine. The routine may be an internal routine, an
external routine, or a built-in function. The name must be a valid symbol, which is
treated literally, or a string. If a string is used for name (that is, name is specified in
quotes) the search for internal labels is bypassed, and only a built-in function or an
external routine will be invoked. Note that the names of built-in functions (and
generally the names of external routines too) are in uppercase, and hence the name
in the literal string should be in uppercase.

The invoked routine may optionally return a result upon its completion, which is
functionally identical to the clause:

~result=name(--r-I-f ---I --'--1)-;--­

[express ion]

except that the variable RESULT will become uninitialized if no result is returned by
the routine invoked.

VM/SP supports specifying up to ten expressions, separated by commas. The
expressions are evaluated in order from left to right, and form the argument string(s)
during execution of the routine. Any ARG or PARSE ARG instructions, or ARG
built-in function in the called routine will access these strings, rather than those
previously active in the calling program. Expressions may be omitted if desired.

The CALL then causes a branch to the routine called name using exactly the same
mechanism as function calls. The order in which these are searched for is described
in the section on functions (page 71), but briefly is as follows:

Internal routines:
These are sequences of instructions inside the same program, starting at
the label that matches name in the CALL instruction. If the routine
name is specified in quotes, then an internal routine will not be
considered for that search order.

Built-in routines:
These are routines built in to the language processor for providing
various functions. They always return a string containing the result of
the function. (See page 75.)

External routines:
Users can write or make use of routines that are external to the language
processor and the calling program. An external routine can be written in
any language, including REXX, which supports the system dependent

32 VMjSP System Product Interpreter Reference

CALL

example, "Off') upon return. Similarly,? (interactive debug) and! (command
inhibition) are saved across routines.

• NUMERIC settings (the DIGITS, FUZZ, and FORM of arithmetic operations,
described on page 48) are saved and are then restored on RETURN. A
subroutine can therefore set the precision, etc., that it needs to use without
affecting the caller.

• ADDRESS settings (the current and secondary destinations for commands - see
the ADDRESS instruction on page 28) are saved and are then restored on
RETURN.

• Exception conditions (SIGNAL ON condition) are saved and are then restored on
RETURN. This means that SIGNAL ON and SIGNAL OFF can be used in a
subroutine without affecting the conditions set up by the caller.

• Elapsed-time clocks - A subroutine inherits the elapsed-time clock from its caller
(see the TIME function on page 97), but since the time clock is saved across
routine calls, a subroutine or internal function can independently restart and use
the clock without affecting its caller. For the same reason, a clock started
within an internal routine is not available to the caller.

• OPTIONS ETMODE/EXMODE are saved and are then restored on RETURN.
For more - see the OPTIONS instruction on page 49.

Implementation maximum: The total nesting of control structures, which includes
internal routine calls, may not exceed a depth of 250.

34 VMjSP System Product Interpreter Reference

DO

Simple DO Group
If neither repetitor nor conditional is given, the construct merely groups a number of
instructions together. These are executed once. Otherwise, the group of instructions
is a repetitive DO loop, and they are executed according to the repetitor phrase,
optionally modified by the conditional phrase.

In the following example, the instructions are executed once.

Example:

/* The two instructions between DO and END will both */
/* be executed if A has the value 3. */
If a=3 then Do

a=a+2
Say I Smil e! I

End

Simple Repetitive Loops
If repetitor is not given or the repetitor is FOREVER, the group of instructions will
nominally be executed "forever"; that is, until the condition is satisfied or a REXX
instruction is executed that will end the loop (for example, LEAVE).

Note: For a discussion on conditional phrases, see "Conditional Phrases (WHILE
and UNTIL)" on page 38.

In the simple form of a repetitive loop, exprr is evaluated immediately (and must
result in a nonnegative whole number), and the loop is then executed that many
times:

Example:

/* This displays "Hello" five times */
Do 5

say 'Hello '
end

Note that, similar to the distinction between a command and an assignment, if the
first token of exprr is a symbol and the second token is an "=", the controlled form
of repetitor will be expected.

Controlled Repetitive Loops
The controlled form specifies a control variable, name, which is assigned an initial
value (the result of expri). The variable is then stepped (by adding the result of
exprb, at the bottom of the loop) each time the group of instructions is executed.
The group is executed repeatedly while the end condition (determined by the result
of exprt) is not met. If exprb is positive or zero, the loop will be terminated when
name is greater than exprt. If negative, the loop will be terminated when name is less
than exprt.

The expri, exprt, and exprb options must result in numbers. They are evaluated
once only, before the loop begins and before the control variable is set to its initial
value. The default value for exprb is 1. If exprt is not given, the loop will execute
indefinitely unless some other condition terminates it.

36 VM/SP System Product Interpreter Reference

DO

Note: The values taken by the control variable may be affected by the NUMERIC
settIngs, since normal REXX arithmetic rules apply to the computation of stepping
the control variable.

Conditional Phrases (WHILE and UNTIL)
Any of the forms of repetitor (none, FOREVER, simple, or controlled) can be
followed by a conditional phrase, which may cause termination of the loop. If
WHILE or UNTIL is specified, exprw or expru, respectively, is evaluated each time
around the loop using the latest values of all variables (and ml!-st evaluate to either 0
or 1), and the group of instructions will be repeatedly executed either while the result
is 1, or until the result is 1.

For a WHILE loop, the condition is evaluated at the top of the group of
instructions, and for an UNTIL loop the condition is evaluated at the bottom -
before the control variable has been stepped.

Example:

Do 1=1 to 10 by 2 until i>6
say i
end

/* Will display: 1, 3, 5, 7 */
Note: The execution of repetitive loops can also be modified by using the LEAVE
or ITERATE instructions.

38 VMjSP System Product Interpreter Reference

DROP

DROP

~DROP~....ItL....--name'-~-- --------+.~4

Where:

name
is a symbol, and valid variable symbol, separated from any other names by one
or more blanks or comments.

DROP is used to "unassign" variables; that is, to restore them to their original
uninitialized state.

Each variable specified will be dropped from the list of known variables. The
variables are dropped in sequence from left to right. It is not an error to specify a
name more than once, or to DROP a variable that is not known. If an EXPOSEd
variable is named (see the PROCEDURE instruction), the variable itself in the older
generation will be dropped.

Example:

j=4
Drop a x.3 x.j
/* would reset the variables: "A", "X.3", and "X.4" */
/* so that reference to them returns their name. */
If a stem is specified (that is, a symbol that contains only one period, as the last
character), all variables starting with that stem are dropped.

Example:

Drop x.
/* would reset all variables with names starting with "X." */

40 VM/SP System Product Interpreter Reference

IF

IF

~IF-expressionTJTHENTJinstruction L J
" ELSETJinstruction

,

The IF construct is used to conditionally execute an instruction or group of
instructions depending on the evaluation of the expression. The expression must
evaluate to 0 or 1.

The instruction after the THEN is executed only if the result of the evaluation was 1.
If an ELSE was given, the instruction after the ELSE is executed only if the result of
the evaluation was O.

Example:

if answer='YES ' then say 10K! I

else say 'Why not?1

Remember that if the ELSE clause is on the same line as the last clause of the
THEN part, you need a semicolon to terminate that clause.

Example:

if answer='YES ' then say 10K! I; else say 'Why not?1

The ELSE binds to the nearest IF at the same level. The NOP instruction can be
used to eliminate errors and possible confusion when IF statements are nested, as in
the following example.

Example:

if answer='YES ' then if name='FRED ' then say 10K, Fred. I

else nop
else say 'Why not?1

Notes:

1. The instruction includes all the more complex constructs such as DO groups and
SELECT groups, as well as the simpler ones and the IF instruction itself. A null
clause is not an instruction; so putting an extra semicolon after the THEN or
ELSE is not equivalent to putting a dummy instruction (as it would be in PLjI).
The NOP instruction is provided for this purpose.

2. The symbol THEN cannot be used within expression, because the keyword
THEN is treated differently, in that it need not start a clause. This allows the
expression on the IF clause to be terminated by the THEN, without a ";" being
required. Were this not so, people used to other computer languages would
experience considerable difficulties.

42 VM/SP System Product Interpreter Reference

INTERPRET

Example:

/* Here we have a small program. */
Trace lnt
name='Kitty'
indirect='name'
interpret Isay "Hello" ' indirect'Il!II'

when run gives the trace:

Here, lines 3 and 4 set the variables used in line 5. Execution of line 5 then
proceeds in two stages. First the string to be interpreted is built up, using a
literal string, a variable (INDIRECT), and another literal. The resulting pure
character string is then interpreted, just as though it were actually part of the
original program. Since it is a new clause, it is traced as such (the second *-*
trace flag under line 5) and is then executed. Again a literal string is
concatenated to the value of a variable (NAME) and another literal, and the
final result (He 11 0 Kitty!) is then displayed.

3. For many purposes, the VALUE function (see page 100) can be used instead of
the INTERPRET instruction. Line 5 in the last example could therefore have
been replaced by:

say IIHello" value(indirect)II!"

INTERPRET is usually only required in special cases, such as when more than
one statement is to be interpreted at once.

44 VM/SP System Product Interpreter Reference

LEAVE

LEAVE

~LEAVE--~-------r--- -------------~.~~

Lname~

LEAVE causes immediate exit from one or more repetitive DO loops (that is, any
DO construct other than that with a simple DO).

Execution of the group of instructions is terminated, and control is passed to the
instruction following the END clause, just as though the END clause had been
encountered and the termination condition had been met normally. However, on
exit, the control variable (if any) will contain the value it had when the LEAVE
instruction was executed.

If name is not specified, LEAVE will terminate the innermost active repetitive loop.
If name is specified, it must be the name of the control variable of a currently active
loop (which may be the innermost), and that loop (and any active loops inside it) is
then terminated. Control then passes to the clause following the END that matches
the DO clause of the selected loop.

Example:

do ;=1 to 5
say ;
if i=3 then leave
end

/* Would display the numbers: 1, 2, 3 */

Notes:

1. If specified, name must match the one on the DO instruction in all respects
except case. No substitution for compound variables is carried out when the
comparison is made.

2. A loop is active if it is currently being executed. If a subroutine is called (or an
INTERPRET instruction is executed) during execution of a loop, the loop
becomes inactive until the subroutine has returned or the INTERPRET
instruction has completed. LEAVE cannot be used to terminate an inactive
loop.

3. If more than one active loop uses the same control variable, the innermost will
be the one selected by the LEAVE.

46 VM/SP System Product Interpreter Reference

NUMERIC

NUMERIC

"-NUMERIC DIGITS ;~

expression
FOR

SCIENTIFIC
ENGINEERING

expression

FUZZ
expression

The NUMERIC instruction is used to change the way in which arithmetic
operations are carried out. The options of this instruction are described in detail on
pages 127-134, but in summary:

NUMERIC DIGITS

controls the precision to which arithnietic operations will be carried out. If
specified, expression must evaluate to a positive whole number, and the default is
9. This number must be larger than the FUZZ setting.

There is no limit to the value for DIGITS (except the amount of storage
available), but note that high~ precisions are likely to be very expensive in CPU
time. It is recommended that the default value be used wherever possible.

NUMERIC FORM

controls which form of exponential notation will be used for computed results.
This may be either SCIENTIFIC (in which case only one, nonzero digit will
appear before the decimal point), or ENGINEERING (in which case the power
of ten will always be a multiple of three). The default is SCIENTIFIC. The
FORM is set either directly by the subkeywords SCIENTIFIC or
ENGINEERING or is taken from the result of evaluating the expression
following VALUE. The result in this case must be either 'SCIENTIFIC' or
'ENGINEERING'. The subkeyword VALUE may be omitted if the expression
does not begin with a symbol or a literal string (i.e., if it starts with a special
character, such as an operator or parenthesis).

NUMERIC FUZZ

controls how many digits, at full precision, will be ignored during a numeric
comparison operation. If specified, expression must result in a nonnegative
whole number that must be less than the DIGITS setting. The default value for
FUZZ is O.

The effect of FUZZ is to temporarily reduce the value of DIGITS by the FUZZ
value before every comparison operation, so that the numbers are subtracted
under a precision of DIGITS-FUZZ digits during the comparison and are then
compared with o.

Note: The three numeric settings are automatically saved across subroutine and
internal function calls. See under the CALL instruction (page 32) for more details.

48 VM/SP System Product Interpreter Reference

PARSE

PARSE

~PARSE--~----~~ARG------------------~~----------r-·~

EXTERNAL ~template~ ,

Where:

template

NUMERIC---------1
PULL---------I
SOURCE--------i
VALUE WITH-

Lexpress i onJ
VAR-name---------------1
VERSION----------'

is a list of symbols separated by blanks and/or patterns.

The PARSE instruction is used to assign data (from various sources) to one or more
variables according to the rules described in the section on parsing (page 119).

If the UPPER option is specified, the data to be parsed is first translated to
uppercase (i.e., a lowercase a-z to an uppercase A-Z). Otherwise, no uppercase
translation takes place during the parsing.

If template is not specified, no variables will be set but action will be taken to get the
data ready for parsing if necessary. Thus for PARSE EXTERNAL and PARSE
PULL, a data string will be removed from the queue; and for PARSE VALUE,
expression will be evaluated. For PARSE VAR, the specified variable will be
accessed. If it does not have a value, the NOVALUE condition will be raised, if it is
enabled.

The data used for each variant of the PARSE instruction is:

PARSEARG

The string(s) passed to the program, subroutine, or function as the input
argument list are parsed. (See the ARG instruction for details and examples.)

Note: The argument string(s) to a REXX program or internal routine can also
be retrieved or checked by using the ARG built-in function, described on page
77.

PARSE EXTERNAL

The next string from the terminal input buffer (system external event queue) is
parsed. This queue may contain data that is the result of external asynchronous
events - such as user console input, or messages. If that queue is empty, a
console read results. Note that this mechanism should not be used for "normal"
console input, for which PULL is more general, but rather it could be used for
special applications (such as debugging) when the program stack cannot be
disturbed.

The number of lines currently in the queue may be found with the
EXTERNALS built-in function, described on page 86.

50 VM/SP System Product Interpreter Reference

PARSE

PARSE V AR name

The value of the variable specified by name is parsed. name must be a symbol
that is valid as a variable name (that is, it can not start with a period or a digit).
Note that the variable name may be included in the template, so that for
example:

PARSE VAR string word! string

will remove the first word from string and put it in the variable word], and

PARSE UPPER VAR string word! string

will also translate the data from string to uppercase before it is parsed.

PARSE VERSION

Information describing the language level and the date of the language processor
is parsed. This consists of five words: first the string "REXX370", then the
language level description (for example, "3.45"), and finally the interpreter
release date (for example, "20 Oct 1987").

Note: PARSE VERSION information should be parsed on a word basis rather
than on an absolute column position.

52 VM/SP System Product Interpreter Reference

P,ROCEDURE

Example:

Procedure Expose i j a. b.
/* This exposes "I", "J", and all variables whose */
/* names start with "A." or "B." * /
A.l=I?1 /* This will set "A.l" in the caller1s */

/* environment, even if it did not */
/* previously exist. */

Variables may be exposed through several generations of routines, if desired, by
ensuring that they are included on all intermediate PROCEDURE instructions.

Only one PROCEDURE instruction in each level of routine call is allowed; all
others (and those met outside of internal routines) are in error.

Notes:

1. An internal routine need not include a PROCEDURE instruction, in which case
the variables it is manipulating are those "owned" by the caller.

2. The PROCEDURE instruction must be the first instruction executed after the
CALL or function invocation - that is, it must be the first instruction following
the label.

See the CALL instruction and function descriptions on pages 32 and 71 for details
and examples of how routines are invoked.

54 VMjSP System Product Interpreter Reference

PUSH

PUSH

..---PUSH:----,--------,--- ------.~
~expression~

The string resulting from evaluating expression will be stacked LIFO (Last In, First
Out) onto the queue. If expression is not specified, a null string is stacked.

Note: The VM implementation of the queue is the program stack. The length of
an element in the program stack is restricted to 255 characters. If longer the data
will be truncated. The program stack contains one buffer initially, but additional
buffers can be created using the eMS command MAKEBUF.

Example:

a='Fred '
push
push a 2

/* Puts a null line onto the stack */
/* Puts "Fred 2" onto the stack */

The number of lines currently in the queue may be found with the QUEUED
built-in function, described on page 92.

56 VM/SP System Product Interpreter Reference

RETURN

RETURN

~RETURN----r-------r--- -----... ~
Lexpress i O~

RETURN is used to return control (and possibly a result) from a REXX program or
internal routine to the point of its invocation. .

If no internal routine (subroutine or function) is active, RETURN is identical to
EXIT. (See page 41.)

If a subroutine is being executed (see the CALL instruction), expression (if any) is
evaluated, control passes back to the caller, and the REXX special variable
RESULT is set to the value of expression. If expression is not specified, the special
variable RESULT is dropped (becomes uninitialized). The various settings saved at
the time of the CALL (tracing, addresses, etc.) are also restored. (See page 32.)

If a function is being executed, the action taken is identical, except that expression
must be specified on the RETURN instruction. The result of expression is then used
in the original expression at the point where the function was invoked. See the
description of functions on page 71 for more details.

If a PROCEDURE instruction was executed within the routine (subroutine or
internal function), all variables of the current generation are dropped (and those of
the previous generation are exposed) after expression is evaluated and before the
result is used or assigned to RESULT.

58 VM/SP System Product Interpreter Reference

SELECT

SELECT

"--SELECT;~HEN-expression~THEN [.J instructioL
, ,

~~----T------------------------------T--END;----·~~4
LOTHERWISE.....,r-~--____ "T""1

L) UinstructionlJ

SELECT is used to conditionally execute one of several alternative instructions.

Each expression following a WHEN is evaluated in turn and must result in 0 or 1.
If the result is I, the instruction following the THEN (which may be a complex
instruction such as IF, DO, or SELECT) is executed and control will then pass to
the END. If the result is 0, control will pass to the next WHEN clause.

If none of the WHEN expressions evaluate to 1, control will pass to the
instruction(s), if any, following OTHERWISE. In this situation, the absence of an
OTHERWISE will cause an error.

Example:

balance = balance - check
Select

when balance> 0 then
say 'Congratulations! You still have' balance 'dollars left.'

when balance = 0 then do
say 'Warning, Balance is now zero! STOP all spending.'
say "You cut it close this month! Hope you don't have any"
say "checks left outstanding."
end

Otherwise
say "You hav~ just overdrawn your account."
say "Your balance now shows" balance "dollars."
say "Oops! Hope the bank doesn't close your account."

end /* Select */

Notes:

1. A null clause is not an instruction, so putting an extra semicolon after a WHEN
clause is not equivalent to putting a dummy instruction. The NOP instruction is
provided for this purpose.

2. The symbol THEN cannot be used within expression, because the keyword
THEN is treated differently, in that it need not start a clause. This allows the
expression on the WHEN clause to be terminated by the THEN without a ;
(delimiter) being required.

60 VMjSP System Product Interpreter Reference

SIGNAL

FAILURE
raised if any host command indicates a failure condition upon return.

In VM, SIGNAL ON FAILURE will trap all negative return codes from
commands.

HALT
an external attempt is made to interrupt execution of the program.
For example, in VM, the eMS immediate command, HI (Halt
Interpretation), will create a halt condition. Refer to "Interrupting
Execution and Controlling Tracing" on page 157.

NOVALUE
an uninitialized variable is used in an evaluated expression, or following the
V AR subkeyword of the PARSE instruction.

SYNTAX
an interpretation error is detected.

If ON is specified, the given condition is enabled; and if OFF is specified, the
condition is disabled. The initial setting of all conditions is OFF.

When a condition is currently enabled (ON has been specified), the trap is in effect.
So, when the corresponding event occurs, instead of the usual action at that point,
execution of the current instruction will immediately cease. A "SIGNAL xxx"
(where xxx is ERROR, FAILURE, HALT, NOVALUE, or SYNTAX) is then
executed automatically. This (if not trapped itself) causes control to pass to the first
label in the program that matches the condition.

Example:

Signal on error

erase /* this command gives a nonzero */
/* return code */

ERROR: /* Program will continue from here */
say IIReturn code wasil rc

Once an event is trapped, its corresponding condition is disabled (before the
SIGNAL takes place), and a new SIGNAL ON instruction is required to re-enable
it. Therefore, for example, if the required label is not found, a normal syntax error
termination will occur, which traces the name of that label and the clause in which
the event occurred.

For ERROR and FAILURE, the REXX special variable RC is set to the command
return code error humber before control is transferred to the condition label. For
SYNTAX, RC is set to the syntax error number.

The conditions are saved on entry to a subroutine and are then restored on
RETURN. This means that SIGNAL ON and SIGNAL OFF can be used in a
subroutine without affecting the conditions set up by the caller. See under the
CALL instruction (page 32) for more details.

Notes:

1. In all cases, the condition will be raised immediately upon detection of the error
and the current instruction terminated. Therefore, the instruction during which
an event occurs may be only partly executed. For example, if SYNTAX is

62 VM/SP System Product Interpreter Reference

SIGNAL

Using SIGNAL with the INTERPRET Instruction
If, as the result of an INTERPRET instruction, a SIGNAL instruction is issued or a
trapped event occurs, the remainder of the string(s) being interpreted will not be
searched for the given label. In effect, labels within interpreted strings are ignored.

64 VMjSP System Product Interpreter Reference

TRACE

TRACE is primarily used for debugging. It controls the tracing action taken (that
is, how much will be displayed to the user) during execution of a REXX program.
The syntax of TRACE is more concise than other REXX instructions. The economy
of key strokes for this instruction is especially convenient since TRACE is usually
entered manually during interactive debugging.

The tracing action is determined from the option specified following TRACE, or
from the result of evaluating express i on. If the expression form is used, the
subkeyword VALUE preceding it may be omitted as long as expressi,on starts with a
special character or operator (so it cannot be mistaken for a symbol or string).

Alphabetic Character (Word) Options
Although it is acceptable to enter the word in full, only the capitalized character is
significant, all other letters are ignored. That is why these are referred to as
alphabetic character options.

TRACE actions taken correspond to the alphabetic character options as follows:

All

Commands

Error

Failure

Intermediates

Labels

Normal

Off

Results

Scan

all clauses are traced (that is, displayed) before execution.

all host commands are traced before execution, and any error
return code is displayed.

any host command resulting in an error return code is traced
after execution.

any host command resulting in a negative return code is traced
after execution. This is the same as the Normal option.

all clauses are traced before execution. Intermediate results
during evaluation of expressions and substituted names are also
traced.

labels passed during execution are traced. This is especially
useful with debug mode, when the language processor will pause
after each label. It is also convenient for the user to make note
of all subroutine calls and signals.

(Normal or Negative); any host command resulting in a negative
return code is traced after execution. This is the default setting.

nothing is traced, and the special prefix actions (see below) are
reset to OFF.

all clauses are traced before execution. Final results (contrast
with Intermediates option, above) of evaluating an expression
are traced. Values assigned during PULL, ARG, and PARSE
instructions are also displayed. This setting is recommended for
general debugging.

all remaining clauses in the data will be traced without being
executed. Basic checking (for missing ENDs etc.) is carried out,
and the trace is formatted as usual. This is only valid if the
TRACE S clause itself is not nested in any other instruction
(including INTERPRET or interactive debug) or in an internal
routine.

66 VMjSP System Product Interpreter Reference

TRACE·

Tracing Tips
1. If no option is specified on a TRACE instruction, or if the result of evaluating

the expression is null, the default tracing actions are restored. The defaults are
TRACE N , command inhibition (!) off, and interactive debug (?) off.

2. The trace actions currently in effect can be retrieved by using the TRACE
built-in function, described on page 99.

3. Comments associated with a traced clause are included in the trace, as are
comments in a null clause, if TRACE A, R, I, or S is specified.

4. Commands traced before execution always have the final value of the command
(that is, the string passed to the environment), and the clause generating it
produced in the traced output.

5. Trace actions are automatically saved across subroutine and function calls. See
under the CALL instruction (page 32) for more details.

A Typical Example
One of the most common traces you will use is:

TRACE ?R
/* Interactive debug is switched on if it was off, */
/* and tracing Results of expressions begins. */
Note: Tracing may be switched on, without requiring modification to a program, by
using the CMS command SET EXECTRAC ON. Tracing may also be turned on or
off asynchronously, (that is, while an exec is running) using the TS and TE
immediate commands. See page 157 for the description of these facilities.

Format of TRACE output
Every clause traced will be displayed with automatic formatting (indentation)
according to its logical depth of nesting etc., and results (if requested) are indented
an extra two spaces and are enclosed in double quotes so that leading and trailing
blanks are apparent.

Terminal control codes (for example, EBCDIC values less than '40'X) are replaced
by a question mark (?) to avoid terminal interference.

The first clause traced on any line will be preceded by its line number. If the line
number is greater than 99999, it is truncated on the left and the truncation is
indicated by a prefix of? For example, the line number 100354 would be shown as
?00354.

All lines displayed during tracing have a three-character prefix to identify the type of
data being traced. These can be:

- identifies the source of a single clause, that is, the data actually in the
program.

+++ identifies a trace message. This may be the nonzero return code from a
command, the prompt message when interactive debug is entered, an
indication of a syntax error when in interactive debug, or the traceback
clauses after a syntax error in the program (see below).

»> identifies the Result of an expression (for TRACE R) or the value assigned
to a variable during parsing, or the value returned from a subroutine call.

68 VM/SP System Product Interpreter Reference

UPPER

UPPER

-UPPER~vari ab 1 e·-'----- ------... ~4

Where:

variable
is a symbol, separated from any other variables by one or more blanks or
comments.

UPPER may be used to translate the contents of one or more variables to uppercase.
The variables are translated in sequence from left to right.

It is more convenient than using repeated invocations of the TRANSLATE built-in
function.

Example:

a='Hello ' ; b='there '
Upper a b
say a b /* would display "HELLO THERE" */
Only simple symbols and compound symbols may be specified (see page 18). An
error is signalled if a constant symbol or a stem is encountered. Using an
uninitialized variable is not an error, and has no effect, except that it will be trapped
if the NOV ALUE condition (SIGNAL ON NOVALUE) is enabled.

70 VM/SP System Product Interpreter Reference

Functions

Search Order

The following types of routines can be called as functions:

Internal If the routine name exists as a label in the program, the current
processing status is saved, so that it will later be possible to return to the
point of invocation to resume execution. Control is then passed to the
label found. As with a routine invoked by the CALL instruction, various
other status information (TRACE and NUMERIC settings, etc.) is saved
too. See the CALL instruction (page 32) for details of this. If an
internal routine is to be called as a function, any RETURN instruction
executed to return from it must have an expression specified. This is not
necessary if it is called only as a subroutine.

Example:

/* Recursive internal function execution •.. */
arg x
say Xl! =1 factorial(x)
exit

factorial: procedure
arg n

/* calculate factorial by •• */
/* recursive invocation. */

if n=0 then return 1
return factorial(n-l) * n

FACTORIAL is unusual in that it invokes itself (this is known as
"recursive invocation"). The PROCEDURE instruction ensures that a
new variable n is created for each invocation).

Built-in These functions are always available and are defined in the next section
of this manual. (See pages 75-105.)

External Users can write or make use of functions that are external to the user's
program and to the language processor. An external function can be
written in any language, including REXX, that supports the system
dependent interfaces used by the language processor to invoke it. Again,
when called as a function it must return data to the caller.

Notes:

1. Calling an external REXX program as a function is similar to calling
an internal routine. The external routine is, however, an implicit
PROCEDURE in that all the caller's variables are always hidden
and the status of internal values (NUMERIC settings, etc.) start with
their defaults (rather than inheriting those of the caller).

2. Other REXX programs can be called as functions. Either EXIT or
RETURN can be used to leave the invoked REXX program, and in
either case an expression must be specified.

The search order for functions is the same as in the list above. That is, internal
labels take precedence, then built~in functions, and finally external functions.

Internal labels are not used if the function name is given as a string (that is, is
specified in quotes); in this case the function must be built-in or external. This lets
you usurp the name of, say, a built-in function to extend its capabilities, yet still be
able to invoke the built-in function when needed.

72 VM/SP System Product Interpreter Reference

Functions

Yes

Yes

Yes

START

Autoload from:
1. RXUSERFN OK
2. RXLOCFN
3. RXSYSFN

Yes

Does EXEC
exist?

No

No

Yes

No

Prepare
invocation
for macro
or EXEC

Figure 2. External Routine Resolution and Execution

74 VMjSP System Product Interpreter Reference

Functions

ABBREV

ABS

ADDRESS

"-ABBREV(information, info [~)
, length

returns I if info is equal to the leading characters of i nformat i on and the length of
info is not less than 1 ength. Returns 0 if either of these conditions is not met.

1 ength, if specified, must be a nonnegative whole number. The default for 1 ength is
the number of characters in info.

Here are some examples:

ABBREV('Print','Pri') -> 1
ABBREV('PRINT','Pri ') -> 0
ABBREV('PRINT ' ,'PRI ' ,4) -> 0
ABBREV('PRINT','PRY') -> 0
ABBREV('PRINT',' I) -> 1
ABBREV('PRINT ' ,",l) -> 0

Note: A null string will always match if a length of 0 (or the default) is used. This
allows a default keyword to be selected automatically if desired; for example:

say I Enter option:'; pull option.
select /* keyword1 is to be the default */

when abbrev('keyword1 1,option) then
when abbrev('keyword2 1,option) then •..

otherwise nop;
end;

..-ABS(number)-----.... •

returns the absolute value of number. The result has no sign and is formatted
according to the current NUMERIC settings.

Here are some examples:

ABS(112.3 1)
ABS(I -0.307 1)
ABS(I -lo0E1 1)

->
->
->

12.3
0.307
10

"-ADDRESS ()------...... ~ ..

76 VM/SP System Product Interpreter Reference

Functions

BITAND

BITOR

Notes:

1. The argument strings to a: program or internal routine may be retrieved and
parsed directly using the ARG or PARSE ARG instructions - see pages 30, 50,
and 119.

2. Programs called as commands can have only 0 or 1 argument strings. The
program will have 0 argument strings if it is called with the name only and will
have 1 argument string if anything else (including blanks) is included with the
command.

~BITAND(stringl [I)
, [string2] [,pad]

returns a string composed of the two input strings logically ANDed together, bit by
bit. The length of the result is the length of the longer of the two strings. If no pad
character is provided, the AND operation terminates when the shorter of the two
strings is exhausted, and the unprocessed portion of the longer string is appended to
the partial result. If pad is provided, it is used to extend the shorter of the two
strings on the right, before carrying out the logical operation. The default for
stri ng2 is the zero length (null) string.

Here are some examples:

BITAND('73'x,'27'x)
BITAND('13'x,'5555'x)
BITAND('13'x,'5555'x,'74'x)
BITAND('pQrS' ,,'BF'x)

->
->
->
->

'23'x
'1155' x
'1154' x
'pqrs'

~BITOR(stringl [I)
, [string2] [,pad]

returns a string composed of the two input strings logically ORed together, bit by
bit. The length of the result is the length of the longer of the two strings. If no pad
character is provided, the OR operation terminates when the shorter of the two
strings is exhausted, and the unprocessed portion of the longer string is appended to
the partial result. If pad is provided, it is used to extend the shorter of the two
strings on the right, before carrying out the logical operation. The default for
stri ng2 is the zero length (null) string.

78 VM/SP System Product Interpreter Reference

Functions

CMSFLAG

COMPARE

COPIES

CSL

C2D

This is a CMS external function. See page 105.

~COMPARE(stringl,string2 --.------r-)--... ~ ...
L,pad~

returns 0 if the strings, stri ngl and stri ng2, are identical. If they are not identical,
the returned number is the position of the first character that does not match. The
shorter string is padded on the right with pad if necessary. The default pad character
is a blank.

Here are some examples:

COMPARE('abc','abc ')
COMPARE('abc','ak')
COMPARE('ab ','ab ')
COMPARE('ab ','ab',' I)

COMPARE (i ab I', I ab I , I X I)

COMPARE('ab-- ','ab','_')

->
->
->
->
->
->

~COPIES(string,n) ~ ..

o
2
o
o
3
5

returns n concatenated copies of stri ng. n must be a nonnegative whole number.

Here are some examples:

COPIES(iabc ' ,3)
COPIES (' abc' ,0)

->
->

'abcabcabc'
II

This is a CMS external function. See page 106

I ' -C2D(string [~) ~ ..
,n

Character to Decimal. Returns the decimal value of the binary representation of
stri ng. If the result cannot be expressed as a whole number, an error results. That
is, the result must.not have more digits than the current setting of NUMERIC
DIGITS.

If stri n9 is the null string, then '0' is returned.

80 VM/SP System Product Interpreter Reference

Functions

DATE

If type is specified, the returned result is 1 if stri ng matches the type, otherwise a 0
is returned. If stri ng is null, 0 is returned (except when type is X, which returns 1).
The following is a list of valid types. Only the capitalized and boldfaced letter is
significant (all letters following the significant letter are ignored).

Alphanumeric

Bits

c
Dbcs

Lowercase

Mixed case

Number

Symbol

Uppercase

Whole number

heXadecimal

returns 1 if stri ng contains only characters from the ranges a-z,
A-Z, and 0-9.

returns 1 if stri ng contains only the characters 0 and/or 1.

returns 1 if stri ng is a mixed SBCS/DBCS string.

returns 1 if s t ri ng only is a pure D BCS string enclosed by SO and
SI bytes.

returns 1 if string contains only characters from the range a-z.

returns 1 if stri ng contains only characters from the ranges a-z and
A-Z.

returns 1 if stri ng is a valid REXX number.

returns 1 if stri ng contains only characters that are valid in REXX
symbols (see page 9). Note that not only uppercase alpha be tics are
permitted, but lowercase alpha be tics as well.

returns 1 if stri ng contains only characters from the range A-Z.

returns 1 if stri ng is a REXX whole number under the current
setting of NUMERIC DIGITS.

returns 1 if stri ng contains only characters from the ranges a-f,
A-F, 0-9, and blank (so long as blanks only appear between pairs
of hexadecimal characters). Also returns 1 if string is a null string.

Here are some examples:

DATATYPE(' 12 I) -> 'NUM '
DATATYPE(") -> 'CHAR '
DATATYPE('123*') -> 'CHAR '
DATATYPE('12.3 1 ,'N ') -> 1
DATATYPE('12.3 1 ,'W ') -> 0
DATATYPE('Fred','M ') -> 1
DATATYPE(",'M ') -> 0
DATATYPE('Fred','L ') -> 0
DATATYPE('¢20K ' ,'S') -> 1
DATATYPE('BCd3 1 ,'X ') -> 1
DATATYPE('BC d3 1 ,'X') -> 1

~DATE (---,r-------r-)--.......
LoPtion~

returns the local date in the format: dd mon yyyy (for example, 27 Aug 1988), with
no leading zero on the day. The mon is the month name. If the active language has
an abbreviated form of the month name, then it will be used (for example, Jan, Feb,
and so on).

82 VM/SP System Product Interpreter Reference

Functions

DELSTR

DELWORD

DIAG/DIAGRC

I DIGITS

~DELSTR(string,n L =oJ)
,length

deletes the substring of stri ng that begins at the nth character, and is of length
1 ength. If 1 ength is not specified, the rest of s tri ng is deleted. If n is greater than
the length of string, the string is returned unchanged. n must be a positive whole
number.

Here are some examples:

DELSTR('abcd ' ,3)
DELSTR('abcde ' ,3,2)
DELSTR('abcde ' ,6)

->

->

->

'ab '
label
I abcde I

~DELWORD(string,n L =oJ)
,length

deletes the substring of stri ng that starts at the nth word. The 1 ength option refers
to the number of blank-delimited words. If 1 ength is omitted, it defaults to be the
remaining words in stri ng. n must be a positive whole number. If n is greater than
the number of words in s t ri ng, s t ri ng is returned unchanged. The string deleted
includes any blanks following the final word involved.

Here are some examples:

DELWORD('Now is the time ' ,2,2) -> 'Now time '
DELWORD('Now is the time 1,3) -> 'Now is I

DELWORD('Now is the time ' ,5) -> 'Now is the time '

These are CMS external functions. See page 108.

~DIGITS O------t .. ~ ..

returns the current setting of NUMERIC DIGITS.

Example:

DIGITSO -> 9 /* by default */

84 VM/SP System Product Interpreter Reference

Functions'

ERRORTEXT

EXTERNALS

FIND

Here are some examples:

D2X(9) -> 19 1

D2X(129) -> 1811

D2X(129 , 1) -> 111

D2X(129,2) -> 1811

D2X(129,4) -> 1OO81 1

D2X(257,2) -> 101 1

D2X(-127,2) -> 1811

D2X(-127,4) -> I FF811
D2X(12,0) -> II

Implementation maximum: The output string may not have more than 500
significant hexadecimal characters, though a longer result is possible if it has
additional leading sign characters (0 and F).

"---ERRORTEXT(n) .4

returns the error message associated with error number n. n must be in the range
0-99, and any other value is an error. If n is in the allowed range, but is not a '.
defined REXX error number, the null string is returned. See Appendix A, "Error
Numbers and Messages" on page 165 for a complete description of error numbers
and messages.

Here are some examples:

ERRORTEXT(16)
ERRORTEXT(60)

->
->

I Label not found I

I I

"---EXTERNALS () • 4

returns the number of elements in the terminal input buffer (system external event
queue), that is, the number of logical typed-ahead lines, if any. See PARSE
EXTERNAL on page 50 for a description of this queue.

Here is an example:

EXTERNALS 0 -> ° /* Usually */

WORDPOS is the preferred built-in function for this type of word search. Refer to
page 102 for a complete description.

"---FIND (stri ng ,phrase)-------.~4

86 VM/SP System Product Interpreter Reference

Functions

I FUZZ

INDEX

Here are some examples:

FORMAT (13 1,4) -> 31
FORMAT(11.73 1,4,0) -> 21
FORMAT(11.73 1,4,3) -> 1.730 1
FORMAT(I-.76 1,4,1) -> -0.8 1
FORMAT (13.03 1,4) -> 3.03 1
FORMAT(I - 12.73 1,,4) -> 1-12.73001
FORMAT(I - 12.73 1) -> 1-12.73 1
FORMAT (10.0001) -> 10 1

The first three arguments are as described above. In addition, expp and expt control
the exponent part of the result: expp sets the number of places to be used for the
exponent part, the default being to use as many as are needed. The expt sets the
trigger point for use of exponential notation. If the number of places needed for the
integer part exceeds expt, exponential notation will be used. Likewise, exponential
notation will be used if the number of places needed for the decimal part exceeds
twice expt. The default is the current setting of NUMERIC DIGITS. If 0 is
specified for expt, exponential notation is always used unless the exponent would be
O. The expp must be less than 10, but there is no limit on the other arguments. If 0
is specified for the expp field, no exponent will be supplied, and the number will be
expressed in "simple" form with added zeros as necessary. Otherwise, if expp is not
large enough to contain the exponent, an error results.

Here are some examples:

FORMAT(112345.73 1",2,2)
FORMAT(112345.73 1,,3,,0)
FORMAT(11.234573 1,,3,,0)
FORMAT(112345.73 1",3,6)
FORMAT(11234567e5 1,,3,0)

~FUZZ()-----"'''''''''

->
->
->
->
->

I 1. 234573E+04 I
11.235E+41
11.2351
112345.73 1

1123456700000.000 1

returns the current setting of NUMERIC FUZZ.

Example:

FUZZ(} -> o /* by default */

~ I NDEX (hays tack, needl e'-~----"""'-- ----...........
L,start.-l

returns the character position of one string, needl e, in another, haystack. If the
string needl e is not found, 0 is returned. By default the search starts at the first
character of haystack (start is of the value 1). This can be overridden by giving a
different start point, which must be a positive whole number.

88 VM/SP System Product Interpreter Reference

Functions

LASTPOS

LEFT

LENGTH

~LASTPOS(needle,haystack ...
L,start~

returns the position of the last occurrence of one string, needl e, in another,
haystack. (See also POS.) If the string needl e is not found, 0 is returned. By
default the search starts at the last character of haystack (that is,
start=LENGTH(string» and scans backwards. This may be overridden by specifying
start, the point at which to start the backwards scan. start must be a positive
whole number, and defaults to LENGTH(string) if larger than that value.

Here are some examples:

LASTPOS(' ','abc def ghi')
LASTPOS(' ','abcdefghi')
LASTPOS(' ','abc def ghi ' ,7)

->

->

->

~LEFT(string, length [:=oJ)
,pad

8
e
4

...

returns a string of length 1 ength, containing the leftmost 1 ength characters of
string. The string returned is padded with pad characters (or truncated) on the right
as needed. The default pad character is a blank. 1 ength must be nonnegative. The
LEFT function is exactly equivalent to SUBSTR(string,l, length[,pad]).

Here are some examples:

LEFT(I abc d 1,8)
LEFT (I abc d I ,8, I • I)

LEFT('abc def ' ,7)

->

->

->

'abcd
I abc d ••• I

'abc del

~LENGTH (stri ng)------........

returns the length of stri ng.

Here are some examples:

LENGTH('abcdefgh')
LENGTH('abc defg')
LENGTH(I I)

->
->

->

8
8
e

90 VMjSP System Product Interpreter Reference

Functions

OVERLAY

POS

QUEUED

~OVERLAY(new, target L I)-....
, LJ L I

n '[1 ength] [,pad]

overlays the string target, starting at the nth character with the string new, padded
or truncated to length 1 ength. If 1 ength is specified it must be positive or zero. If n
is greater than the length of the target string, padding is added before the new string.
The default pad character is a blank, and the default value for n is 1. If specified, n
must be a positive whole number.

Here are some examples:

OVERLAY(' ','abcdef',3)
OVERLAY('.',' abcdef ' ,3,2)
OVERLAY('qq','abcd ')
OVERLAY('qq','abcd ' ,4)
OVERLAY('123 1

,' abc ' ,5,6,'+')

->

->
->

->

->

lab def '
lab. ef '
'qqcd '
'abcqq'
'abc+123+++ '

~POS(needle,haystack-.--------;r--)-----·"'''
L,start~

returns the position of one string, needle, in another, haystack. (See also the
INDEX and LASTPOS functions.) If the string needl e is not found, 0 is returned.
By default the search starts at the first character of haystack (that is start is of the
value 1). This can be overridden by specifying start (which must be a positive
whole number), the point at which to start the search.

Here are some examples:

POS('day','Saturday')
POS(IXI ,'abc def ghi')
POS (I I, I abc def gh i I)
POSe ','abc def ghi ' ,5)

->

->

->

->

~QUEUED 0-------. ,.

6
o
4
8

returns the number of lines remaining in the queue at the time when the function is
invoked. If no lines are remaining, a PULL or PARSE PULL will read from the
terminal input buffer. If there is no terminal input waiting this causes a console read
(VM READ).

92 VMjSP System Product Interpreter Reference

Functions

REVERSE

RIGHT

SIGN

SOURCELINE

~REVERSE (stri ng)--------~

returns stri ng, swapped end for end.

Here are some examples:

REVERSE(I ABc. I)
REVERSE('XYZ I)

->
->

'.cBA'
I ZYXI

~RI GHT (s t ri ng, 1 ength---.---...-) ------~
L,pad~

returns a string of length 1 ength containing the rightmost 1 ength characters of
string. The string returned is padded with pad characters (or truncated) on the left'
as needed. The default pad character is a blank. 1 ength must be nonnegative.

Here are some examples:

RIGHT('abc d ' ,8)
RIGHT('abc def',5)
RIGHT('12 1,5,'01)

->
->
->

I abc d '
IC def '
1000121

~SIGN(number)--------'~""""

returns a-I, 0, or 1 that represents the sign of number after rounding to the current
setting of NUMERIC DIGITS. If number is less than 0 then '-1' is returned; if it is 0
then '0' is returned; and if it is greater than 0 then' l' is returned.

Here are some examples:

SIGN('12.3 1)
SIGN(' -0.307 1)
SIGN(0.0)

->
->
->

1
-1
o

~SOURCELINE(L.oJ)
n

If n is omitted, returns the line number of the final line in the source file.

94 VM/SP System Product Interpreter Reference

Functions

SUBSTR

SUBWORD

Here are some examples:

STRIP(I ab e I) -> lab e l

STRIPe' ab e I, I L I) -> lab e
STRIP(I ab e I , I t I) -> ab e l

STRIP('12.7000 1,,0) -> 112.71
STRIP('0012.700 1,,0) -> 112.71

~SUBSTR(string,n [I)
, [length] L, pad]

returns the substring of string that begins at the nth character, and is of length
1 ength, padded with pad if necessary. n must be a positive whole number.

If 1 ength is omitted the rest of the string will be returned. The default pad character
is a blank.

Here are some examples:

SUBSTRe' abc 1,2)
SUBSTR('abe ' ,2,4)
SUBSTR(' abe ' ,2,6,'.')

->
->
->

'be '
'be
I be .•.• I

Note: In some situations the positional (numeric) patterns of parsing templates are
more convenient for selecting substrings, especially if more than one substring is to
be extracted from a string.

~SUBWORD(string,n --r-------,r-)--... .. ~~
L, 1 ength.-J

returns the substring of stri ng that starts at the nth word, and is of length 1 ength,
blank-delimited words. n must be a positive whole number. If 1 ength is omitted, it
defaults to be the remaining words in stri ng. The returned string will never have
leading or trailing blanks, but will include all blanks between the selected words.

Here are some examples:

SUBWORD('Now is the time ' ,2,2)
SUBWORD('Now is the time ' ,3)
SUBWORD('Now is the time ' ,5)

->
->
->

I is the '
'the time '
II

96 VM/SP System Product Interpreter Reference

Functions

Long

Minutes

Normal

Reset

Seconds

returns time in the format: hh:mm:ss. uuuuuu (uuuuuu is the fraction of
seconds, in microseconds).

returns number of minutes since midnight in the format: mmmm (no
leading zeros).

returns the time in the default format 'hh:mm:ss', as described above.

returns sssssssss. uuuuuu, the number of seconds. microseconds since the
elapsed-time clock was started or reset (see below), and also resets the
elapsed-time clock to zero. The number will have no leading zeros, and
is not affected by the setting of NUMERIC DIGITS.

returns number of seconds since midnight in the format: sssss (no leading
zeros).

Here are some examples:

TIME(1 L I) -> 116:54:22.1234561 /* Perhaps */
TIMEO -> 116:54:22 1
TIME(1 HI) -> 116 1
TIME(1 M I) -> 11014 1 /* 54 + 60*16 */
TIME(' S I) -> 1608621 /* 22 + 60*(54+60*16) */
TIME('N ') -> 116:54:22 1
TIME(1 C I) -> '4:54pm '

The elapsed-time clock:

The elapsed-time clock may be used for measuring· real time intervals. On the first
call to the elapsed-time clock, the clock is started, and both TIME (1 E I) and TIME (1 R 1)
will return O.

The clock is saved across internal routine calls, which is to say that an internal
routine will inherit the time clock started by its caller, but if it should reset the clock
any timing being done by the caller will not be affected. An example of the
elapsed-time calculator:

time('E') -> 0 /* The first call */
/* pause of one second here */
time('E') -> 1.002345 /* or thereabouts */
/* pause of one second here */
time('R') -> 2.004690 /* or thereabouts */
/* pause of one second here */
time(1 R I) -> 1.002345 /*or thereabouts * /

Note: See the note under DATE about consistency of times within a single
expression. The elapsed-time clock is synchronized to the other calls to TIME and
DATE, so multiple calls to the elapsed-time clock in a single expression will always
return the same result. For the same reason, the interval between two normal
TIME/DATE results may be calculated exactly using the elapsed-time clock.

Implementation maximum: Should the number of seconds in the elapsed time exceed
nine digits (equivalent to over 31.6 years), an error will result.

98 VM/SP System Product Interpreter Reference

Functions

TRUNC

USERID

VALUE

~TRUNC(number [:=J)
,n

returns the integer part of number, and n decimal places. The default n is zero. If
specified, n must be a nonnegative whole number. number is truncated to n decimal
places (or trailing zeros are added if needed to make up the specified length).
Exponential form will not be used.

Here are some examples:

TRUNC (12.3)
TRUNC(127.09782,3)
TRUNC(127.1,3)
TRUNC (127 ,2)

->
->
->
->

12
127.097
127.100
127.00

Note: The number will be rounded according to the current setting of NUMERIC
DIGITS if necessary before being processed by the function.

~USERID ()-------t.~ ..

returns the system-defined User Identifier.

USERID() -> 'ARTHUR ' /* Maybe */

~VALUE(name)-----+·"'''

The value of the symbol name is returned. Like symbols appearing normally in
REXX expressions, lowercase characters in name will be translated to uppercase (i.e.
a lowercase a-z to an uppercase A-Z) and substitution in a compound name will
occur if possible. A name must be a valid REXX symbol, or an error results.

Here are some examples:

/* following:
VALUE(I fred I)
VALUE(fred)
VALUE('a'j)
VALUE('a'j 11j)

Drop A3; A33=7; J=3; fred='J' */
-> IJI /* looks up "FRED" */
-> 13 1 /* looks up "J" */
-> 'A3 1

_> 17 1

100 VM/SP System Product Interpreter Reference

Functions

WORD

WORDINDEX

WORDLENGTH

I WORDPOS

..-WORD(string,n) ••

returns the nth blank-delimited word in stri ng. n must be a positive whole number.
If there are fewer than n words in string, the null string is returned. This function is
exactly equivalent to SUBWORD(stri ng, n, 1).

Here are some examples:

WORD('Now is the time ' ,3)
WORD('Now is the time ' ,5)

->

->

'the '
II

..-WORDINDEX(string,n) ••

returns the position of the first character in the nth blank-delimited word in stri ng.
n must be a positive whole number. If there are fewer than n words in the string, 0
is returned.

Here are some examples:

·WORDINDEX('Now is the time ' ,3)
WORDINDEX('Now is the time ' ,6)

->

->

..-WORDLENGTH(string,n) ••

8
o

returns the length of the nth blank-delimited word in stri ng. n must be a positive
whole number. If there are fewer than n words in the string, 0 is returned.

Here are some examples:

WORDLENGTH('Now is the time ' ,2)
WORD LENGTH (' Now comes the time I ,2)
WORDLENGTH('Now is the time ' ,6)

->

->

->

2
5
o

"-WORDPOS(Phrase,string---'L---,--r-- ---.... ~.
, start---.J

102 VM/SP System Product Interpreter Reference

Functions

X2C

X2D

~X2C(hexstring) ~ ..

Hexadecimal to Character. Converts hexstring (a string of hexadecimal characters)
to character. If necessary, hexstri ng will be padded with a leading 0 to make an
even number of hexadecimal digits.

Blanks can optionally be added (at byte boundaries only, not leading or trailing) to
aid readability; they are ignored.

Here are some examples:

X2C (I F7 F2 A2 I)
X2C (I F7f2a21)
X2C(I F I)

->
->
->

'72s '
'72s '
'0F ' x

~X2D(hexstring [.oJ)
,n

/* EBCDIC */
/* EBCDIC */

...

Hexadecimal to Decimal. Converts hexstri ng (a string of hexadecimal characters)
to decimal. If the result cannot be expressed as a whole number, an error results.
That is, the result must have no more than NUMERIC DIGITS digits.

Blanks can optionally be added (at byte boundaries only, not leading or trailing) to
aid readability; they are ignored.

If hexstri ng is the null string, then '0' is returned.

If n is not specified, hexstri ng is processed as an unsigned binary number.

Here are some examples:

X2D('0E I) -> 14
X2D('81I) -> 129
X2D('F81 I) -> 3969
X2D(I FF81 1) -> 65409
X2D('c6 f0 1X) -> 240

Ifn is specified, the given sequence of hexadecimal digits is padded on the left with
zeros (note, not "sign-extended"), or truncated on the left to n characters. The
resulting string of n hexadecimal digits is taken to be a signed binary number:
positive if the leftmost bit is off, and negative, in two's complement notation, if the
leftmost bit is on. If n is 0, 0 is always returned.

104 VM/SP System Product Interpreter Reference

Functions

I CSL

returns the value 1 or 0 depending on the setting of fl ago Specify anyone of the
following fl ag names. (No abbreviations are allowed). For more information on
the flags listed below, refer to the VMjSP CMS Command Reference.

ABBREV returns 1 if, when searching the synonym tables, truncations will be
accepted; else returns o. Set by SET ABBREV ON; reset by SET
ABBREV OFF.

AUTOREAD returns 1 if a console read is to be issued immediately after command
execution; else returns o. Set by SET AUTOREAD ON; reset by SET
AUTOREAD OFF.

CMSTYPE returns 1 if console output is to be displayed (or typed) within an exec;
returns 0 if console output is to be suppressed. Set by SET CMSTYPE
RT or the immediate command RT. Reset by SET CMSTYPE HT or
the immediate command HT.

DOS returns 1 if your virtual machine is in the DOS environment; else returns
o. Set by SET DOS ON; reset by SET DOS OFF.

EXECTRAC returns 1 if EXEC Tracing is turned on (equivalent to the TRACE prefix
option "?"); else returns O. Set by SET EXECTRAC ON or the
immediate command TS. Reset by SET EXECTRAC OFF or the
immediate command TE. (See page 158.)

IMPCP returns 1 if commands that CMS does not recognize are to be passed to
CP; else returns O. Set by SET IMPCP ON; Reset by SET IMPCP OFF.
Applies to commands issued from the CMS command line and also to
REXX clauses that are commands to the 'CMS' environment.

IMPEX returns 1 if execs may be invoked by filename; else returns O. Set by SET
IMPEX ON; Reset by SET IMPEX OFF. Applies to commands issued
from the CMS command line and also to REXX clauses that are
commands to the 'CMS' environment.

PROTECT returns 1 if the CMS nucleus is storage-protected; else returns O. Set by
SET PROTECT ON; Reset by SET PROTECT OFF.

RELPAGE returns 1 if pages are to be released after certain commands have
completed execution; else returns O. Set by SET RELPAGE ON; Reset
by SET RELPAGE OFF.

SUBSET returns 1 if you are in the CMS subset; else returns o. Set by SUBSET
(this command is issued by some editors); reset by RETURN. (For
details, refer to "CMS subset" in the reference manual of the editor you
are using).

~CSL('rtnname retcode~')

It parJ

...

allows a REXX programmer to call a routine that resides in a callable services
library (CSL). Unlike other REXX functions (which use commas to separate
expressions), the CSL function uses blanks to separate the parameters.

106 VMjSP System Product Interpreter Reference

Functions

Example

DIAG

The retcode parameter contains the return code from the called CSL routine, and its
value will be greater than or equal to zero. However, if the REXX variable RC
contains a nonzero value, any value in retcode is meaningless.

The following example program section shows the CSL function of REXX calling a
routine DMSEXIFI to check whether or not a given shared file exists.

/* Portion of Example REXX Program that Uses CSL function */

fileid = 'SAMPLE FILE .subdirl.subdir2 1

f_len = length(fileid)
answer = csl('OMSEXIFI rtnc rsnc fileid f len

COMMIT 6 1
)

select
when rtnc = 0 then say 'File Exists '
Otherwise Do

Say 'File does not exist as specified. 1

Say 'Return code is 1 rtnc
Say 'Reason code is 1 rsnc

End
End

Exit rtnc

/* --- End of Example --- */

"-0 lAG (n--r[-?J"--'--[-,-da-t-aj--r-- -----l.~.

communicates with CP via a dummy DIAGNOSE instruction and returns data as a
character string. (This interface is described in the discussion on the DIAGNOSE
Instruction in the VM System Facilities for Programming.)

The n is the hexadecimal diagnose code to be executed. Leading zeros can be
omitted. The? indicates that diagnostic messages are to be displayed if appropriate.
The optional item, data, is dependent upon the specific diagnose code being
executed; it is generally the input data for the given diagnose.

(Warning: A DIAGNOSE instruction with invalid parameters may in some cases
result in a specification exception or a protection exception.)

The data returned is in binary format; that is, it is precisely the data returned by the
DIAGNOSE; no conversion is performed.

Note: The REXX built-in functions C2X and C2D can be used for converting the
returned data. Samples of the use of these functions are included in the descriptions
of Diagnoses 'OC' and '60'.

108 VM/SP System Product Interpreter Reference

Functions

F or example:

Diag(8,lquery rdr all I) /* fails because CP has no */

Diag(8,query rdr all)

/* IIqueryll command (only */
/* IIQUERY II). */

/* ordinarily works, but will*/
/* fail if IIqueryll, IIrdr ll or * /
/* lIall ll are variables that */
/* have been assigned values */
/* other than their own names*/

Diag(8,IQUERY RDR ALLI) /* is the best and safest. */

D I AG (0C) - Pseudo Timer

DIAGRC(0C)

The value returned is a 32 byte string containing the date, time, virtual time
used, and total time used.

For example, to display the virtual time:

Say IVirtual time =1 c2x(substr(diag(IC 1),17,8» I(Hex)1

/* This results in a display of the form */

Virtual time = 00000000004BF959 (Hex)

The virtual time may be displayed as a decimal value by using the C2D
function:

Say IVirtual time =1 c2d(substr(diag(IC 1),17,8»

/* This results in a display of the form */

Virtual time = 4979033

DIAG(14,acronym,rdrvaddr,addvals) - Input File Manipulation

DIAGRC(14,acronym,rdrvaddr,addvals)

Where:

1. acronym is one of those as described below.

2. rdrvaddr is the address of the virtual reader.

3. addva 1 s are one or more additional and sometimes optional values
associated with a given acronym. Acronym descriptions (below) describe
any additional, associated values as well.

The value returned is:

Character
position Contents

2

3 to 6

7 to 8

Condition code

A blank

F our bytes from register y + 1

Two blanks

110 VMjSP System Product Interpreter Reference

Functions

Parse value diag(14,'RNPUSFB','00C',15),
with cc 2 . 3 Ryp1 7 • 9 SFB

/* will read the next punch spool file block from */
/* the card reader at address X'00C' and assign: */
/* CC = the condition code */
/* RYP1 = the contents of register y+1 */
/* SFB = the 120 byte spool file block */

SF,rdrvaddr,spfileid - Select a File for processing

The spfil ei d specifies the spool file ide

There is no return string other than the condition code and Ry + 1 value.

Thus to select spool file number 8159 for processing from device X' OOC I:

Parse value diag(14,'SF','00C',8159),
with cc 2 . 3 Ryp1 7

/* will select a file for processing from the */
/* card reader at address X'00C' and assign: */
/* CC = the condition code */
/* RYP1 = the contents of register y+1 */

RPF, rdrvaddr, newcopy - RePeat active File nn times

The newcopy specifies the new copy count.

There is no return string other than the condition code and Ry + 1 value.

Thus to change the copy count for the active file on device X' OOC' to 5:

Parse value diag(14,'RPF','00C',5),
with cc 2 . 3 Ryp1 7

/* will repeat active file 5 times on the */
/* card reader at address X'00C' and assign: */
/* CC = the condition code */
/* RYP1 = the contents of register y+1 */

RSF, rdrvaddr - ReStart active File at beginning

There are no additional values associated with this acronym.

The return string is the first 4096 byte spool file buffer.

Thus to reset the active file on device X' OOC' to the beginning and read
the first spool buffer:

Parse value diag(14,'RSF','00C '),
with cc 2 . 3 Ryp1 7 . 9 buffer

BS, rdrvaddr - BackSpace one record

There are no additional values associated with this acronym.

The return string is the 4096 byte spool file buffer.

112 VM/SP System Product Interpreter Reference

Functions

Thus to obtain information about the next spool file without regard to
type, class, etc.:

Parse value diag(14,IRSFD 1 ,0,15,3800),
with cc 2 . 3 Ryp1 7 . 9 SFB,
129 data_3800 169 • 181 tag

/* will read the spool file block
/* from the card reader at address Xl 00C 1

/* assign:
/* CC = the condition code
/* RYP1 = the contents of register y+1
/* SFB = the 120 byte spool file block
/* DATA_3800 = the 3800 data
/* TAG = the tag data

*/
and */

*/
*/
*/
*/
*/
*/

(Refer to Notes 1 and 2 below for additional information.)

RSFDNPR,n[,numwords[,3800]] - Retrieve Subsequent File Descriptor Not
Previously Retrieved

The n is either 0 (to retrieve subsequent file descriptor not previously
retrieved), or 1 (to reset the previously retrieved flags for all the file
descriptors; then retrieve the first file descriptor). The optional numwords
specifies the number of doublewords of spool file block data to be
returned. (See item 3 of "Notes on Diagnose X 1 14 1

" below.) 3800 also
optional, may be specified to cause 40 bytes of 3800 information to be
included between the spool file block and the tag.

Thus to obtain information about the next not previously retrieved file
without regard to type, class etc.:

Parse value diag(14,IRSFDNPR 1 ,0,15),
with cc 2 • 3 Ryp1 7 . 9 SFB 129 . 181 tag

/* will read the spool file block
/* from the card reader at address XI00C 1

/* assign:
/* CC = the condition code
/* RYP1 = the contents of register y+1
/* SFB = the 120 byte spool file block
/* TAG = the tag data

*/
and */

*/
*/
*/
*/
*/

(Refer to Notes I and 2 below for additional information.)

Notes on Diagnose X'14'

1. Because only one bit is provided to indicate that the length of return data
is being explicitly stated and that 3800 data is being requested, if either is
specified (on RSFD or RSFDNPR calls), 40 bytes of 3800 data are
returned.

2. RSFD and RSFDNPR will wait for a file being used by a system function.
If, however, the file does not become available in the 250 millisecond time
limit, the function will return a null string for DIAG, normal return code
information for DIAGRC. For a discussion of possible causes for this
condition, see the notes on "DIAGNOSE Code XI 14 1

" in the VM System
Facilities for Programming.

3. For RNPRSFB, RNPUSFB, RMNSFB, RSFD, and RSFDNPR, the
default number of doublewords of spool file block is 13; however, the

114 VM/SP System Product Interpreter Reference

Functions

The same comparison may be expressed in terms of megabytes:

Say c2d(diag(60»/(1024*1024) > 1

with the same results.

DIAG(64,subcode,name) - Find, Load, or Purge a Named Segment

DIAGRC(64,subcode,name)

The input, subcode, is a I-character code indicating the subfunction to be
performed, followed by a third argument, name, the name of the segment.

The value returned is a 9-byte string consisting of the returned Rx and Ry
values, and a single byte condition code.

The subfunction codes are:

S Load the named segment in shared mode.
L Load the named segment in nonshared mode.
P Release the named segment from virtual storage.
F Find starting address of the named segment.
N Find starting address of the named saved system.

For example, to find the load address of the segment SPFSEG and display the
starting and ending addresses and the condition code:

spfsegaddr=diag(64,'F ' ,'SPFSEG ')
Say 'Start: I c2x(substr(spfsegaddr,2,3»,

End: I c2x(substr(spfsegaddr,6,3»,
CC:' substr(spfsegaddr,9,1)

/* which displays:
Start: 230000 End: 24FFFF CC: 0 */

indicating that the segment loads from 230000 to 24FFFF, and is already
loaded (cc = 0).

Warning: The Land S functions should be used with care. It is the coder's
responsibility to ensure that the loaded segment will not overlap virtual storage
(see DIAG 60 above). CP will load a segment in the middle of your virtual
storage if requested, so code carefully.

Note: You may use the CMS SEGMENT command instead of this function
to load and purge a Named Segment. See the VM/SP CMS Command
Reference, for a description of the SEGMENT command.

DIAG(8C) - Access Certain Device Dependent Information

DIAGRC(8C)

The value returned is a string no larger than 502 bytes. The string contains
device-dependent information about the device (the virtual console). If the
virtual machine is disconnected or the virtual console is a TTY device, then the
returned string is null.

116 VM/SP System Product Interpreter Reference

Functions

STORAGE

~STORAGE(-"""---------------"-- -----...,~4

Laddress-"""[-_-:~~~~~~:~~~~==:~
, [length] [,data]

returns the current virtual machine size expressed as a hexadecimal string if no
arguments are specified. Otherwise, returns 1 ength bytes from the user's memory
starting at address. The 1 ength is in decimal; the default is 1 byte. The address is a
hexadecimal number.

If data is specified, after the "old" value has been retrieved, storage starting at
address is overwritten with data (the 1 ength argument has no effect on this).

If 1 ength would imply returning storage beyond the virtual machine size, only those
bytes up to the virtual machine size are returned; and if an attempt is made to alter
any bytes outside the virtual machine size, they are left unaltered.

Warning: The STORAGE function allows any location in your virtual machine to be
altered. Do not use this function without due care and knowledge.

Example:

STORAGE (AA,9) ->
STORAGE () ->

•

'IBM VM/SP ' /* Maybe! */
I 15E0001 /* After DEF STOR 1400K */

118 VMjSP System Product Interpreter Reference

Parsing

Parsing Using String Patterns
A string can be used in a template to split up the data:

Parse value ITo be, or not to be?1 with wI 1,1 w2
/* would cause the data to be scanned for the comma, */
/* then split at that point, thus: */
wI = "To be"; w2 = " or not to be?"

wI would be set to To be, and w2 is set to or not to be? A string used in this way
is called a pattern. Note that the pattern itself (and only the pattern) is removed
from the data. In fact each section is treated in just the same way as the whole
string was in the previous example, and so either section can be split up into words.

Parse value ITo be, or not to be?1 with wI 1,1 w2 w3 w4
/* is equivalent to: */
wI = "To be"; w2 = "or"; w3 = "not"; w4 = "to be?"

w2 and w3 get the values or and not, and w4 would get the remainder: to be? If
UPPER were specified on the instruction, all the variables would be translated to
uppercase.

If the string in these examples did not contain a comma, the pattern would
effectively "match" the end of the string: so the variable to the left of the pattern
would get the entire input string, and the variables to the right would be set to null.
Note that a null string will never be found; it will always match the end of the
string.

The pattern can be specified as a variable by putting the variable name in
parentheses. The following instructions therefore have the same effect as the last
example:

comma=1 , I
Parse value ITo be, or not to be?1 with wI (comma) w2 w3 w4

Parsing Using Numeric Patterns
The third type of parsing mechanism is the numeric pattern. This works in the same
way as the string pattern except that it specifies a column number. So:

Parse value IFlying pigs have wingsl with xl 5 x2
/* splits the data at column 5. Equivalent to */
xl = "Flyi"; x2 = "ng pigs have wings"

splits the data at column 5, and xl becomes Flyi and x2 starts at column 5 and
becomes ng pigs have wings.

More than one pattern is allowed, so for example:

Parse value IFlying pigs have wingsl with xl 5 x2 10 x3
/* splits the data at columns 5 and 10. Equivalent to */
xl = "Flyi"; x2 = "ng pi"; x3 = "gs have wings"

splits the data at columns 5 and 10, and x2 becomes ng pi and x3 becomes gs have
wi ngs.

The numbers can be relative to the last number used, so

Parse value IFlying pigs have wingsl with xl 5 x2 +5 x3

has exactly the same effect as the last example: here the +5 can be thought of as
specifying the length of the data to be assigned to x2.

120 VM/SP System Product Interpreter Reference

Parsing

For the following examples, assume that the following string is being parsed (note
that all blanks are significant):

'This is the data which, I think, is scanned.'

Parsing with Literal PaHerns
Literal patterns cause scanning of the input data string to find a sequence that
matches the value of the literal. Literals are expressed as a quoted string.

When the template:

wi ',' w2 ',' rest

is used to parse the example string, the result is:

wi = "This is the data which~
w2 = " I think~

rest =" is scanned."

Here the string is parsed using a template that asks that each of the variables receive
a value corresponding to a portion of the original string between commas; the
commas are given as quoted strings. Note that the patterns (in this example, the
commas) themselves are removed from the data being parsed.

A different parse would result with the template:

wi ',' w2 ',' w3 ',' rest

which would result in:

wi = "This is the data which~
w2 = " I think~

w3 =" is scanned."
rest = "" (null)

This illustrates an important rule. When a match for a pattern cannot be found in
the input string, it instead "matches" the end of the string. Thus, no match was
found for the third ',' in the template, and so w3 was assigned the rest of the string.
REST was assigned a null value because the pattern on its left had already reached
the end of the string.

A p.ull pattern (a string of length 0) can be used to match the end of the data
explicitly. This is mainly useful with positional patterns (see below).

Note that all variables that appear in a template are assigned a new value.

If a variable is followed by another variable, a special action is taken. This is similar
to there being the pattern' '(a single blank) between them, except that leading
blanks at the current position in the input data are skipped over before the search
for the next blank takes place. This means that the value assigned to the left-hand
variable will be the next word in the string and will have neither leading nor trailing
blanks.

122 VM/SP System Product Interpreter Reference

Parsing

Use of the Period as a Placeholder
The symbol consisting of a single period acts as a placeholder in a template. It has
exactly the same effect as a variable name, except that no variable is set. It is
especially useful as a "dummy variable" in a list of variables or to collect unwanted
information at the end of a string. Thus, when the template:

••• word4 •

is used to parse the same example string:

IThis is the data which, I think, is scanned. 1

the result is:

word4 = "data"

That is, the fourth word (data) is extracted from the string and placed in the variable
word4.

Parsing with Positional Patterns and Relative Patterns
Positional patterns can be used to cause the parsing to occur on the basis of position
within the string, rather than on its contents. They take the form of signed or
unsigned whole numbers and can cause the matching operation to "back up" to an
earlier position in the data string. "Backing up" can only occur when positional
patterns are used.

Unsigned numbers in a template refer to a particular character column in the input.
For example, the template

s1 10 s2 20 s3

results in

51 = "This is
52 = "the data w"

53 = "hich, I think, is scanned."

Here s 1 is assigned characters from input through the ninth character, and s2

receives input characters 10 through 19. The final variable, s3, is assigned the
remainder of the input.

Signed numbers can be used as patterns to indicate movement relative to the
character position at which the previous pattern match occurred.

If a signed number is specified, the position used for the next match is calculated by
adding or subtracting the number given to the last matched position. The last
matched position is the position of the first character of the last match, whether
specified numerically or by a string. For example, the instructions:

a = 1123456789 1

parse var a 3 w1 +3 w2 3 w3

result in:

w1 = "345"

w2 = "6789"

w3 = "3456789"

The +3 in this case is equivalent to the absolute number 6 in the same position and
specifies the length of the data to be assigned to the variable wI.

124 VM/SP System Product Interpreter Reference

Parsing

When a literal pattern is followed by a signed(+ j-) positional pattern the literal
string WILL NOT BE REMOVED from the data being parsed. Instead it will be
parsed into the first variable following the literal pattern. Thus the following two
cases:

a='This is the data which, I think, is scanned.'

CASE 1:
CASE 2:

parse var a 'which' +5 y
parse var a 'which' x +5 y

would result in:

CASE 1: y = ", I think is scanned"
CASE 2: x = "whi ch"

y =", I think is scanned."

Note: If a number in a template is preceded by a "+" or a "-," this is taken to be a
signed positional pattern. There can be blanks between the sign and the number,
since initial scanning removes blanks adjacent to special characters.

Parsing Multiple Strings
A parsing template can parse multiple strings. This is effected by using the special
character comma (,) in the template. Each comma is an instruction to the parser to
move on to the next string. For each string a normal template (with patterns, etc.)
can be specified. The only time multiple strings are available is in the ARG (or
PARSE ARG) instruction. When an internal function or subroutine is invoked it
can have several argument strings, and a comma is used to access each in turn.
Thus the template:

wordl string1, string2, nurn

would put the first word of the first argument string into word1, the rest of that
string into stri ng1, and the next two strings into stri ng2 and nurn. If insufficient
strings were specified in the invocation, unused variables are set to null, as usual.

126 VM/SP System Product Interpreter Reference

Numerics and Arithmetic

Definition

If necessary, trailing zeros can be easily removed with the STRIP function (see
page 95), or by division by 1.

• A zero result is always expressed as the single digit O.

• Exponential form is used for a result depending on the setting of NUMERIC
DIGITS (the default is 9). If the number of places needed before the decimal
point exceeds the NUMERIC DIGITS setting, or the number of places after the
point exceeds twice the NUMERIC DIGITS setting, the number will be
expressed in exponential notation:

le6 * le6 -> lE+12
/* not 1000000000000 */

1 / 3E10 -> 3.33333333E-ll
/* not 0.0000000000333333333 */

A precise definition of the arithmetic facilities of the REXX language is given here.

Numbers

Precision

A number in REXX is a character string that includes one or more
decimal digits, with an optional decimal point. The decimal point may
be embedded in the number, or may be prefixed or suffixed to it. The
group of digits (and optional decimal point) constructed this way can
have leading or trailing blanks and an optional sign (+ or -) that must
come before any digits or decimal point. The sign can also have leading
or trailing blanks.

Therefore, number is defined as:

Where:
s;gn is either 1+1 or I_I

blanks are one or more spaces

~
di9itS
digits.digits
.digits-----1
di gits .-----'

d;g;ts are one or more of the decimal digits 0-9.

Note that a single period alone is not a valid number.

The maximum number of significant digits that can result from an
operation is controlled by the instruction:

~NUMERIC DIGITS---.L-----..--;~

express i onJ

express i on is evaluated and must result in a positive whole number.
This defines the precision (number of significant digits) to which
calculations are carried out. Results are rounded to that precision.

If express i on is not specified in this instruction, or if no NUMERIC
DIGITS instruction has been executed since the start of a program, the
default precision is used. The REXX standard for the default precision is
9.

128 VM/SP System Product Interpreter Reference

Numerics and Arithmetic

now been inspected the calculation is complete, otherwise the
accumulator is squared and the next bit is inspected for multiplication.
When the calculation is complete, the temporary result is ready for
division by or into I to provide the final answer. The multiplications
and division are done under the normal REXX arithmetic combination
rules, detailed below. (Note that a number is rounded to the current
setting of NUMERIC DIGITS before the first multiplication, and that
intermediate results are rounded after each subsequent multiplication.)

The % (integer divide) operator divides two numbers and returns the
integer part of the result, which will not be rounded unless the integer
has more digits than the current DIGITS setting. The result returned is
defined to be that which would result from repeatedly subtracting the
divisor from the dividend while the dividend is larger than the divisor.
During this subtraction, the absolute values of both the dividend and the
divisor are used: the sign of the final result is the same as that which
would result if normal division were used. Note that this operator may
not give the same result as truncating normal division (which could be
affected by rounding).

The II (remainder) operator will return the remainder from integer
division, and is defined such that:

a//b == a-(a%b)*b

Thus:

/* Again with: Numeri c di gits 5 */
2**3 -> 8
2**-3 -> 0.125
1.7**8 -> 69.758
2%3 -> 0
2.1//3 -> 2.1
10%3 -> 3
10//3 -> 1
-10//3 -> -1
10.2//1 -> 0.2
10//0.3 -> 0.1

Note: A particular algorithm for calculating exponentiation is used,
since it is efficient (though not optimal) and considerably reduces the
number of actual multiplications performed. It therefore gives better
performance and can give higher accuracy than the simpler definition of
repeated multiplication. Since results may differ from those of repeated
multiplication, the algorithm is defined here.

Arithmetic combination rules

The rules for combination of two numbers by the four basic operators
are as follows. All numbers have insignificant leading zeros removed .
before being used in computation.

Addition and Subtraction

The numbers are extended on the right and left as necessary and
then added or subtracted as appropriate.

130 VM/SP System Product Interpreter Reference

Numerics and Arithmetic

numeric values because leading/trailing blanks and leading zeroes are
significant with these operators.

A comparison of numeric values is effected by subtracting the two
numbers (calculating the difference) and then comparing the result with
O. For example, the operation:

A ? B

where? is any numeric comparison operator, is identical to:

(A - B) ? 10 1

It is therefore the difference between two numbers, when subtracted
under REXX subtraction rules, that determines their equality.

Comparison of two numbers is affected by a quantity called "fuzz,"
which is set by the instruction:

~NUMERI C Fuzz----,Lr------J~;---+-011
expression

Here express i on must result in a whole number that is zero or positive.
This FUZZ number controls the amount by which two numbers may
differ before being considered equal for the purpose of comparison. The
default is O.

The effect of FUZZ is to temporarily reduce the value of DIGITS by the
FUZZ value for each comparison operation. That is, the numbers are
subtracted under a precision of DIGITS-FUZZ digits during the
comparison. Clearly FUZZ must be less than DIGITS.

Thus if DIGITS = 9, and FUZZ = 1, the comparison will be carried
out to 8 significant digits, just as though NUMERIC DIGITS 8 had
been put in effect for the duration of the operation. Example:

Numeric digits 5
Numeric fuzz 0
say 4.9999 = 5
say 4.9999 < 5
Numeric fuzz 1
say 4.9999 = 5
say 4.9999 < 5

/* would display 0
/* would display 1

/* would display 1
/* would display 0

*/
*/

*/
*/

Exponential notation

The description above describes "pure" numbers, in the sense that the
character strings that describe numbers could be very long. For example:

10000000000 * 10000000000
would give 100000000000000000000

and

.00000000001 * .00000000001
would give 0.000000000000000000001

For both large and small numbers some form of exponential notation is
useful, both to make numbers more readable, and to reduce execution
time storage requirements. In addition, exponential notation is used
whenever the "simple" form would give misleading information. For
example:

numeri c di gits 5
say 54321*54321

132 VM/SP System Product Interpreter Reference

Numerics and Arithmetic

return the current settings of NUMERIC DIGITS, NUMERIC FORM,
and NUMERIC FUZZ, respectively.

Use of Numbers by REXX

Errors

Whenever a character string is used as a number (for example as an
argument to a built-in function, or the expressions on a DO clause),
rounding may occur according to the setting of NUMERIC DIGITS.

Various types of errors may occur in computation:

• Overflow IU nderflow

This error will occur if the exponential part of a result becomes
greater than 999999999 or becomes less than -999999999. The
exponential part of a result exceeds the range that can be handled by
the language processor. Since this allows for (very) large exponents,
overflow or underflow is treated as a terminating "syntax" error.

• Storage exception

Storage is needed for calculations and intermediate results, and on
occasion an arithmetic operation may fail due to lack of storage.
This is considered a terminating error as usual, rather than an
arithmetical error.

134 VMjSP System Product Interpreter Reference

System Interfaces

• CMS used the full CMS search order

• An Extended Plist is available.

CMS passes control to the language processor via the EXEC command handler
(DMSEXI, see below).

Calls Originating from the XEDIT Command Line
To invoke a REXX macro that is stored in a file with a filetype of XEDIT, the user
may enter on the XEDIT command line:

• Just the name of the macro and the argument string (if any). In this case,
XEDIT executes the subcommand MACRO, using the original command line as
the argument string. Note that if the macro has the same name as an XEDIT
built-in command, it will not be invoked unless MACRO is set ON (which is not
the default).

• The command MACRO followed by the name of the REXX macro (and the
argument string, if any). This will always invoke the specified macro, if it exists.

In both cases XED IT checks to see if the macro is already loaded into storage. If
not, it loads the macro if it exists, constructing an Extended Plist, a File Block, and
a Program Descriptor List. Word 4 of the Extended Plist points to the File Block
and the user call-type information is a X 'Oll. CMS passes control to the language
processor via the EXEC command handler (DMSEXI, see below).

If the user enters the name of the macro (macroname ...) on the XED IT command
line and the file macroname XEDIT is not found and IMPCMSCP is set ON, XEDIT
assumes that an exec or a CMS command is being invoked, and will try the normal
full CMS search order for the command, as though the command had been entered
from the CMS command line. In this case, the user-type information is a X I OB I as
usual.

Calls Originating from CMS EXECs
Calls from CMS EXECs must be explicit invocations of the exec. Only the
Tokenized Plist is available. If the called exec is written in REXX, DMSEXI
constructs an argument string from the tokenized Plist. The user call-type
information is dependent upon the setting of the &CONTROL statement - X I OD I

if MSG was specified (default), and X 'OE I if NOMSG was specified.

Calls Origi"ating from EXEC 2 Programs
Calls originating from EXEC 2 programs must again be explicit invocations of the
exec. However, EXEC 2 provides both the Tokenized Plist and the Extended Plist.
The user call-type information is a X I 011, which signifies that the Extended Plist is
available.

Calls Originating from a Clause That Is an Expression
For a REXX clause that is an expression, the resulting string is issued as a command
to whichever environment is currently selected (See pages 21-25). The Plist format
used is dependent upon the environment selected (by default or by the ADDRESS
instruction).

If the environment for the command is CMS, the call is the same as from the CMS
command line (same search order, same Plist structure, and the user call-type
information is set to XIOB').

136 VM/SP System Product Interpreter Reference

System Interfaces

A routine called as a function must return a result, but a routine called as a
subroutine need not. The caller sets Register 0 Bit 0 to:

o if the routine is called as a function
1 if the routine is called as a subroutine

(If the called routine is an exec written in REXX this information can be obtained
using the PARSE SOURCE instruction, described on page 51.)

If the REXX program is being called as a function, it must end with a RETURN or
EXIT instruction with an expression, and the resulting string is returned in the form
of an EV ALBLOK.

Note: DMSEXI always passes control to the language processor when the user
call-type information is X 105 1.

Calls Originating from a MODULE
REXX may be called from a user MODULE using any of the standard forms of
Plist:

• Only the Tokenized Plist: The user call-type information is a X I 00 I. Register 0
is not used.

• The Extended Plist: The user call-type information is a X 'Oll. Register 1 must
point to a doubleword-aligned 16-byte field, containing

CL8 I EXEC '
CL8 l execname '

The rest of the Tokenized Plist will not be inspected. Register 0 must point to
an Extended Plist. The FILEBLOK may be provided if desired (see page 144).

• The six-word Extended Plist: The user call-type information is X 105 I. Other
conditions are the same as for the Extended Plist. This form should be used if
more than one argument string is to be passed to the exec, or the exec is being
called as a function. (Note that if the exec returns data in an EVALBLOK, it is
the responsibility of the caller to free that storage.)

Note: You should use the CMSCALL macro to make your calls. CMSCALL has
parameters that allow you to setup your Plists and your user call-type information.
For example, if you use the COPY option, CMSCALL will allow you to pass a Plist
that resides above the 16Mb line back to REXX. See VM/SP Application
Development Reference for eMS for more information on the CMSCALL macro.

Calls Originating from an Application Program
An application program written in a language such as VS FORTRAN or OS/VS
COBOL can call REXX using a callable services library (CSL) routine. Calling this
routine is useful when the application program needs to invoke a CMS or CP
command.

138 VM/SP System Product Interpreter Reference

System Interfaces

number _of_args
is the number of input argument character strings being passed to the REXX
exec. There is a maximum of ten input character strings allowed on a call. (See
Usage Note 3 on page 141.) This field must be a four-byte binary number, and
it is used for input only.

inarg 1 ... inargn
are the character string arguments passed to the REXX exec. These fields are
used for input only.

inarg l_length ... inargn _length
are the lengths of the corresponding character string arguments. These fields
must be four-byte binary numbers, and they are used for input only.

return_area
is a buffer area to receive data from the REXX exec. This field must be a
fixed-length character string, and it is used for output only.

return_area _length
on input, this is the length of return_area; on output, this is the length of the
data returned in return_area. (See Usage Note 4 on page 141.) It must be a
four-byte binary integer.

For more information on calling REXX using a callable services library routine, see
the VMjSP Application Development Referencefor eMS.

Usage Notes:

1. This routine is useful when the application needs to invoke some CMS or CP
command. The REXX exec issues the CP or CMS command and passes the
results back to the application program.

2. An example of a good way to use DMSCCE is to issue a FILEDEF command
from an application program. A REXX exec named DATADEF, supplied with
VM, issues the FILEDEF command. The following code fragment from a PLjI
program shows an example of this:

/* Declares for parameters of CALL statement */
DCL DMSCCE CHAR(8) INIT('DMSCCE'),

RETCODE FIXED BIN(31) INIT(0),
DATADEF CHAR(8) INIT('DATADEF'),
ONE FIXED BIN(31) INIT(l),
ARG CHAR(37) INIT('INFILE DISK FILENAME FILETYPE A (PERM'),
ARGL FIXED BIN(31) INIT(37),
RET CHAR(10) INIT (' '),
RETL FIXED BIN(31) INIT(10);

/* Call statement to FILEDEF EXEC */
CALL DMSCSL (DMSCCE,RETCODE,DATADEF,ONE,ARG,ARGL,RET,RETL);

After the application program issues the above CALL statement, the FILEDEF
command is executed using the arguments supplied in the "ARG" parameter.

Note: Using DMSCCE to issue a FILEDEF command is especially useful if
your application program calls the SAA file-related functions OPEN,
READ, WRITE, or CLOSE. Your program can be portable across

140 VM/SP System Product Interpreter Reference

System Interfaces

The Extended Parameter List
The language processor may be called with an Extended Plist (in addition to the
8-byte Tokenized Plist) that allows the following possibilities:

• One or more arbitrary parameter strings (mixed case and untokenized) may be
passed to the language processor, and one string may be returned from it when
execution ends.

• A file other than that defined in the Tokenized Plist may be used. (The file type,
for example, need not be EXEC).

• A default target for commands (other than CMS) can be specified. If a file type
other than EXEC or blanks is specified, then it is stored in the file block. The
language processor can then use the information in the file block to send
commands to the appropriate environment.

• A program that exists in storage may be executed (instead of first being read
from a file). This in-storage execution option may be used for improved
performance when a REXX program is being executed repeatedly.

• A default target for commands may be specified that overrides the default
derived from the file type.

Using the Extended Parameter List
To use the Extended Plist, both Register 1 and Register 0 are used. Register 1
points to the Tokenized Plist. The first token of this Plist must be CL8X I EXEC I,
and the second token must contain the name of the exec or macro to be processed
unless a FILEBLOK that specifies the name is provided.

The user call-type information may have the following values:

X I 011 or X I OB I Extended Plist available. The argument string defined by words 2
and 3 (BEGARGS and ENDARGS) of the Extended Plist is used
to find the called name of the program and the argument string
passed to the language processor. The first two tokens of the

X '05 1

T okenized Plist are used.

a language processor call (for example, originating from a CALL
instruction or a function call to a REXX external routine). The
six-word Extended Plist is available. The argument list pointed to
by Word 5 of the Plist is used for the· strings accessed by the ARG
instruction and the ARG function. Only the first token of the
Tokenized Plist is used. If the argument list is specified, only the
first word of the BEGARGS/ENDARGS string is used (for the
called name of the program).

Any other value (for example, X I 00 I) only the Tokenized Plist is available.

Note: You should use the CMSCALL macro to make your calls. CMSCALL has
parameters that allow you to setup your user call-type information. Register 0
points to the Extended Plist.

142 VM/SP System Product Interpreter Reference

System Interfaces

The File Block
This block is pointed to by word 4 of the Extended Plist described above. It is only
needed if the language processor is to execute a non-EXEC file or is to execute from
storage, or is to have an address environment that is not the same as its file type. If
it is not required, word 4 of the Extended Plist should be set to O.

FBLOK DS 0F ** File block

*
*

*
*
*
*

*

DC CL8 1filename i

DC CL8 1filetype i

DC CL2 1filemode i

DC Wextlen l

logical name of program
(also physical name if not
in storage).

logical type of program (also
default destination for
commands -- blanks or "EXEC"
cause commands to be
passed to CMS environment).

normally 1* 1 or 1
length of extension block

in fullwords (may be 0).
*->
*->

Extension block starts here.
In-storage program definition

*
*

*

Following two words should be 0 if extlen >= 2 and
in-storage program is not supplied.

DC AL4(PROG) -> Start of program
descriptor list.

DC AL4(PGEND-PROG) Length of same in bytes.
*->
*

Initial Address environment (overrides default from
file type).

*

*
*
*
*

Should be set to 2F I 01 if not used and extlen = 4.
DC CL8 1environment i The initial environment.

May be a PSW for non-SVC
subcommand call.

DC CL8 1 envname 1 Name of an initial environment
for non-SVC subcommand call.

*-> End of FILEBLOK

The descriptor list for an in-storage program looks like this:

** Descriptor list for ,in-storage program
PROG DS 0F ** In storage program **

DC A(linel),F1lenl l Address, length of line 1
DC A(line2),F 1len2 1 Address, length of line 2

DC A(lineN),F1lenN I Address, length of line N
PGEND EQU *

Notes:

1. The in-storage program lines need not be contiguous, since each is separately
defined in the descriptor list.

2. For in-store execution, the file type is still required in the file block, since this
determines' the logical program name. The file type similarly sets the default
command environment, unless it is explicitly overridden by the name in the
extension block.

3. If the extension length is > = 4 Fullwords, the 3rd and 4th fullwords form an
8-character environment address that overrides the default address set from the
Filetype in the file block; and thus forms the initial ADDRESS to which
commands will be issued. This new address may be all characters (for example,
blank, eMS, or some other environment name), or it may be a PSW for

144 VM/SP System Product Interpreter Reference

System Interfaces

If, when the package RXnameFN is invoked with this request, RXfname is
contained within the package, RXnameFN will:

• load itself, if necessary
• install the NUCEXT entry point for the function
• return with a return code 0;

otherwise, the return code will be 1. This allows the function packages and entry
points to be automatically loaded by the language processor when necessary.

Non-SVC Subcommand Invocation
When a command is issued to an environment, there is an alternative non-SVC fast
path available for issuing commands. This mechanism may be used if an
environment'wishes to support a minimum-overhead subcommand call.

The fast path is used if the current eight character environment address has the form
of a PSW (signified by the fourth byte being X 1.00 I). This address may be set using
the Extended Plist (see above) or by normal use of the ADDRESS instruction jf the
PSW has been made available to the exec in some other way. Note that if a PSW is
used for the default address, the PARSE SOURCE string will use? as the name of
the environment unless an environment name has also been provided. You must
make sure you code the correct PSW format for the addressing mode you are
running in (System/370 mode PSW or 370-XA mode PSW).

The definition of the interface follows:

1. the language processor will pass control to the routine by executing an LPSW
instruction to load the eight-byte environment address. On entry to the called
program the following registers are defined:

Register 0 Extended Plist as per normal subcommand call. First word
contains a pointer to the PSW used, second and third words define
the beginning and end of the command string, and the fourth word
is O.

Register 1 Tokenized Plist. First doubleword will contain the PSW used,
second double word is 2F I -1 I. Note that the top byte of Register 1
does not have a flag.

Register 2 is the original Register 2 as encountered on the initial entry to the
language processor's external interface. This register is intended to
allow for the passing of private information to the subcommand
entry point, typically the address of a control block or data area.
This register is only safe if the exec is invoked via a BALR to the
entry point contained at label AEXEC in NUCON, otherwise this
register is altered by the SVC processor.

Register 13 points to an 18 Fullword save area.

Register 14 contains the return address.

(All other registers are undefined.)

2. It is the called program's responsibility to save Registers 9 through 12 and to
restore them before returning to the language processor. All other registers may
be used as work registers.

3. On return to the language processor, Registers 9 through 12 must be unchanged
(see Item 2 above), and Register 15 should contain the return code (which will

146 VM/SP System Product Interpreter Reference

System Interfaces

-2 Insufficient storage was available for a requested SET. Processing was aborted
(some of the request blocks may remain unprocessed - their SHVRET bytes will
be unchanged).

-3 (from SUBCOM). No EXECCOMM entry point found; for example, not called
from inside a REXX program.

The Request Block (SHVBLOCK)
Each request block in the chain must be structured as follows:

**
* SHVBLOCK: layout of shared-variable Plist element
**
SHVBLOCK DSECT
SHVNEXT DS A Chain pointer (0 if last block)

Available for private use, except SHVUSER DS F
*
SHVCODE
SHVRET

SHVBUFL
SHVNAMA
SHVNAML
SHVVALA
SHVVALL
SHVBLEN

*

during "Fetch Next".
DS CLI Individual function code
DS XLI Individual return code flags
DS H'01 Not used, should be zero
DS F Length of 'fetch ' value buffer
DS A Address of variable name
DS F Length of variable name
DS A Address of value buffer
DS F Length of value
EQU *-SHVBLOCK (length of this block = 32)
SPACE

* Function Codes (SHVCODE):
*
* (Note that the symbolic name codes are lowercase)
SHVSTORE EQU CIS I Set variable from given value
SHVFETCH EQU C'F' Copy value of variable to buffer
SHVDROPV EQU C'D' Drop variable
SHVSYSET EQU CIS I Symbolic name Set variable
SHVSYFET EQU C'f' Symbolic name Fetch variable
SHVSYDRO EQU C'd ' Symbolic name Drop variable
SHVNEXTV EQU C'N' Fetch "next" variable
SHVPRIV EQU Cipi Fetch private information

SPACE
*
* Return Code Flags (SHVRET):
*
SHVCLEAN EQU
SHVNEWV EQU
SHVLVAR EQU
SHVTRUNC EQU
SHVBADN EQU
SHVBADV EQU
SHVBADF EQU

X'00 1 Execution was OK
X' 01 ' Variable did not exist
X'02 1 Last variable transferred (for liN")
X'04 1 Truncation occurred during "Fetch"
X'08 1 Invalid variable name
X' 10 1 Value too long (EXEC 2 only)
X'80 1 Invalid function code (SHVCODE)

*---
Figure 3. Request Block (SHVBLOCK)

148 VM/SP System Product Interpreter Reference

System Interfaces

SHVNEWV is set if the variable did not exist before the operation, and in
this case the value copied to the buffer is the derived name of the variable
(after substitution etc.) - see page 18.

D and d Drop variable. The SHVNAMA/SHVNAML adlen describes the name of
the variable to be dropped. SHVV ALA/SHVV ALL are not used. The
name is validated to ensure that it does not contain invalid characters, and
the variable is then dropped, if it exists. If the name given is a stem, all
variables starting with that stem are dropped.

N Fetch Next variable. This function may be used to search through all the
variables known to the language processor (that is , all those of the
current generation, excluding those "hidden" by PROCEDURE
instructions). The order in which the variables are revealed is not
specified.

The language processor maintains a pointer to its list of variables: this is
reset to point to the first variable in the list whenever 1) a host command
is issued, or 2) any function other than "N" is executed via the
EXECCOMM interface.

Whenever an N (Next) function is executed the name and value of the
next variable available are copied to two buffers supplied by the caller.

SHVNAMA specifies the address of a buffer into which the name is to be
copied, and SHVBUFL contains the length of that buffer. The total
length of the name is put into SHVNAML, and if the name was truncated
(because the buffer was not big enough) the SHVTRUNC bit is set. If the
name is shorter than the length of the buffer, no padding takes place. The
value of the variable is copied to the users buffer area using exactly the
same protocol as for the Fetch operation.

If SHVRET has SHVL V AR set, the end of the list of known variables has
been found, the internal pointers have been reset, and no valid data has
been copied to the user buffers. If SHVTRUNC is set, either the name or
the value has been truncated.

By repeatedly executing the N function (until the SHYLY AR flag is set) a
user program may locate all the REXX variables of the current
generation.

P Fetch private information. This interface is identical to the F fetch
interface, except that the name refers to certain fixed information items
that are available. Only the first letter of each name is checked (though
callers should supply the whole name), and the following names are
recognized:

ARG Fetch primary argument string. The first argument string
that would be parsed by the ARG instruction is copied to
the user's buffer.

SOURCE Fetch source string. The source string, as described for
PARSE SOURCE on page 51, is copied to the user's buffer.

VERSION Fetch version string. The version string, as described for
PARSE VERSION on page 52, is copied to the user's
buffer.

150 VMjSP System Product Interpreter Reference

System Interfaces

VS FORTRAN Program-GETNXT

C This is the VS FORTRAN program GETNXT to get the values of all
C REXX variables from the TEST EXEC, store them in an array,
C and then display the variables with their values.
C GETNXT calls the CSL routine "DMSCGX" to get the values.
C

PROGRAM GETNXT
C
C DMSCSL - external interface routine to call csl routine

EXTERNAL DMSCSL
C
C Declare all parameters for the CSL call.
C This accommodates 20 variables with names + values up to 25 characters

INTEGER RTCODE,VARLEN,BUFLEN,ACVLEN,ACBLEN
CHARACTER*25 VARNAM(20)
CHARACTER*25 BUFFER(20)

C
C Input length of buffer and variable length for all variables

BUFLEN = 25
VARLEN = 25

C
C Initialize the return code

RTCODE = 0
J = 20

C
C Keep getting the next variable until they are all depleted
C (RC=206) or until you get 20 variables.

DO 10 I = 1, J
C
C Initialize the next variable and value

VARNAM(I) I I

BUFFER(I) = • •
C
C Make the call to I DMSCGX I

CALL DMSCSL('DMSCGX ',RTCODE,VARNAM(I),VARLEN,BUFFER(I),
1 BUFLEN,ACVLEN,ACBLEN)

C
C Display results

IF (RTCODE .EQ. 206) THEN
WRITE (6,31) I RTCODE = ',RTCODE
GO TO 40
END IF

WRITE (6,30) I I, VARNAM(I), I = • ,BUFFER(I)
10 CONTINUE
40 CONTINUE
30 FORMAT (A1,A25,A3,A25)
31 FORMAT (A10, 14)

END

152 VMjSP System Product Interpreter Reference

System Interfaces

154 VMjSP System Product Interpreter Reference

Debug Aids

example, CALL TRACE I changes the trace action to "I" and allows re-execution of
the statement after which the pause was made. Interactive debug is turned off
when it is in effect, if a TRACE instruction uses a prefix, or at any time, when a
TRACE 0 or TRACE with no options is entered.

The numeric fonn of the TRACE instruction may be used to allow sections of
the program to be executed without pause for debug input. TRACE n (that is,
positive result) allows execution to continue, skipping the next n pauses (when
interactive debug is or becomes active). TRACE -n (that is, negative result)
allows execution to continue without pause and with tracing inhibited for n
clauses that would otherwise be traced.

The trace action selected by a TRACE instruction is saved and restored across
subroutine calls. This means that if you are stepping through a program (say after
using TRACE ?R to trace Results) and then enter a subroutine in which you have no
interest, you can enter TRACE 0 to turn tracing off. No further instructions in the
subroutine are traced, but on return to the caller, tracing is restored.

Similarly, if you are interested only in a subroutine, you can put a TRACE ?R
instruction at its start. Having traced the routine, the original status of tracing is
restored and hence (if tracing was off on entry to the subroutine) tracing (and
interactive debug) is turned off until the next entry to the subroutine.

Tracing may be switched on (without requiring modification to a program) by using
the command SET EXECTRAC ON. Tracing may be also turned on or off
asynchronously, (that is, while a program is running) by using the TS and TE
immediate commands. See page 157 for the description of these facilities.

Since any instructions may be executed in interactive debug you have considerable
control over execution.

Some examples:

Say expr /* displays the result of evaluating the */

name=expr

Trace 0

Trace ?A

Trace L

exit

/* expression. */

/* alters the value of a variable.

/* (or Trace with no options) turns off
/* interactive debug and all tracing.

/* turns off interactive debug but continue
/* tracing all clauses.

*/

*/
*/

*/
*/

/* makes the language processor pause at labels */
/* only. This is similar to the traditional */
/* "breakpoint" function, except that you */
/* don't have to know the exact name and */
/* spelling of the labels in the program. */

/* terminates execution of the program. */

Do i=l to 10 /* displays ten elements of the array stem. */
say stem. i
end

156 VM/SP System Product Interpreter Reference

Debug Aids

Help

Similarly, if the shadow bit is seen to change from 1 to 0, all tracing is forced off.
This means that tracing may be controlled externally to the REXX program:
interactive debug can be switched on at any time without making any modifications
to the program. The TE command can be useful if a program is tracing clauses
without being in interactive debug (that is, after SET EXECTRAC ON, TRACE ? was
issued). TE may be used to switch off the tracing without affecting any other output
from the program.

If the external bit is on upon entry to a REXX program, the SOURCE string is
traced (see page 51) and interactive debug is switched on as normal -- hence with use
of the system trace bit, tracing of a program and all programs called from it, can be
easily controlled.

The internal "shadow" bit is saved and restored across internal routine calls. This
means that (as with internally controlled tracing) it is possible to turn tracing on or
off locally within a subroutine. It also means that if a TS interrupt occurs during
execution of a subroutine, tracing will also be switched on upon RETURN to the
caller. .

The CMSFLAG(EXECTRAC) function and the command QUERY EXECTRAC
may be used to test the setting of the system trace bit.

The command SET EXECTRAC ON turns on the trace bit. Using it before
invoking a REXX program causes the program to be entered with debug tracing
immediately active. If issued from inside a program, SET EXECTRAC ON has the
same effect as TRACE ?R (unless TRACE I or S is in effect), but is more global in
that all programs called are traced, too. The command SET EXECTRAC OFF
turns the trace bit off. Issuing this when the bit is on is equivalent to the instruction
TRACE 0, except that it has a system (global) effect.

Note: SET EXECTRAC OFF turns off the system trace bit at any time; for
example, if it has been set by a TS immediate command issued while not in a REXX
program.

The CMS command HELP REXX MENU displays a menu. You can then display
the description of any REXX instruction, REXX built-in function, or RXSYSFN
function from this menu.

Alternatively, any of these may be displayed directly by using:

~HELP REXX-.....,------------,.-----... ~ 4

L--instruction-name~
Lfunction-name~

158 VM/SP System Product Interpreter Reference

Keywords and Variables

Special Variables
There are three special variables that may be set automatically by the language
processor:

RC is set to the return code from any executed host command (or
subcommand). Following the SIGNAL events, SYNTAX, ERROR, and
FAILURE, RC is set to the code appropriate to the event: the syntax
error number (see appendix on error messages, page 165) or the
command return code. RC is unchanged following a NOV AL UE or
HALT event.

Note: Host commands executed manually from debug mode do not
cause the value of RC to change.

RESULT is set by a RETURN instruction in a subroutine that has been CALLed
if the RETURN instruction specifies an expression. If the RETURN
instruction has no expression on it, RESULT is dropped (becomes
unini tialized.)

SIGL contains the line number of the clause currently executing when the last
transfer of control to a label took place. (This could be caused by a
SIGNAL, a CALL, an internal function invocation, or a trapped error
condition.)

None of these variables has an initial value. They may be altered by the user, just
like any other variable, and they may be accessed, via the "Direct Interface to
Current Variables" on page 147. The PROCEDURE and DROP instructions also
affect these variables in the usual way.

Certain other information is always available to a REXX program. This includes
the name by which the program was invoked and the source of the program (which
is available using the PARSE SOURCE instruction, see page 51). The latter consists
of the string CMS followed by the call type and then the filename, filetype, and
filemode of the file being executed. These are followed by the name by which the
program was invoked and the initial (default) command environment.

In addition, PARSE VERSION (see page 52) makes available the version and date
of the language processor code that is running. The built-in functions TRACE and
ADDRESS return the current trace setting and environment name respectively.

Finally, the current settings of the NUMERIC function can be obtained using the
DIGITS, FORM, and FUZZ built-in functions.

160 VMjSP System Product Interpreter Reference

CMS Commands

XEDIT

XMITMSG

When used as an Editor, additional subcommands (macros) may be
written inREXX. XEDIT may also be used to write and read
menus (full screen displays). In both applications, XEDIT
variables may be assigned to REXX variables using the EXTRACT
subcommand of XEDIT.

Retrieves messages from a repository file. These messages can then
be displayed.

For more details on these CMS commands, refer to the VM/SP eMS Command
Reference.

162 VM/SP System Product Interpreter Reference

Return Codes

4. See the VMjSP Connectivity Programming Guide and Reference, which contains
scenarios and examples for using ADDRESS CPICOMM in a VMjSP
environment.

The list below shows the possible return codes from ADDRESS CPICOMM. The
return code values will be in the REXX variable RC.

o Routine was executed and control returned to the REXX exec
-7 Routine was not loaded in a callable services library
-8 Routine was dropped from a callable services library
-9 Insufficient storage was available
-10 More parameters than allowed were specified
-11 Fewer parameters than required were specified
-20 Invalid call
-22 Invalid REXX argument
-23 Subpool create failure
-24 REXX fetch failure
-25 REXX set failure
-26nnn Incorrect data length for parameter number nnn
-27nnn Invalid data type for parameter number nnn.
-28nnn Invalid variable name for parameter number nnn.

(For the last three return codes, note that parameters are numbered serially,
corresponding to the order in which they are coded. rtnname is always parameter
number 001, the next parameter is 002, etc.)

The retcode parameter contains the return code from the called communication
routine, and its value will be greater than or equal to zero. However, if the REXX
variable, RC, contains a nonzero value, any value in retcode is meaningless.

164 VMjSP System Product Interpreter Reference

by deleting a nucleus extension. Alternatively,
re-IPL CMS after defining a larger virtual
storage size for the virtual machine.

DMSREX451E Error 3 running In ft: Program is
unreadable

Explanation: The REXX program could not
be read from the minidisk. This problem
almost always occurs only when you are
attempting to execute an exec or program from
someone's minidisk for which you have
Read/Only access, while someone with
Read/Write access to that minidisk has altered
the program so that it no longer exists in the
same place on the minidisk.

System Action: Execution stops.

User Response: Reaccess the minidisk on
which the program (such as, exec) resides.

DMSREX452E Error 4 running In ft, line nn: Program
interrupted

Explanation: The system interrupted execution
of your REXX program. Usually this is due to
your issuing the HI (halt interpretation)
immediate command. Certain utility modules
may force this condition if they detect a
disastrous error condition.

System Action: Execution stops.

User Response: If you issued an HI command,
continue as planned. Otherwise, look for a
problem with a Utility Module called in your
exec or macro.

DMSREX453E Error 6 running fn ft, line nn:
Unmatched" /*" or quote

Explanation: The System Product Interpreter
reached the end of the file (or the end of data
in an INTERPRET statement) without finding
the ending "* /" for a comment or quote for a
literal string.

System Action: Execution stops.

User Response: Edit the exec and add the
closing "* /" or quote. You can also insert a
TRACE SCAN statement at the top of your
program and rerun it. The resulting output
should show where the error exists.

DMSREX454E Error 7 runningfnft, line nn: WHEN or
OTHERWISE expected

Explanation: The System Product Interpreter
expects a series of WHEN s and an
OTHERWISE within a SELECT statement.
This message is issued when any other
instruction is found or if all WHEN
expressions are found to be false and an
OTHERWISE is not present. The error is
often caused by forgetting the DO and END

166 VM/SP System Product Interpreter Reference

instructions around the list of instructions
following a WHEN. For example,

WRONG RIGHT

Select Select
When a=b then When a=b then DO

Say IA equals 81 Say IA
exit exit

Otherwise nop end
end Otherwise

end

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX455E Error 8 running fn ft, line nn:
Unexpected THEN or ELSE

equals 81

nop

Explanation: The System Product Interpreter
has found a THEN or an ELSE that does not
match a corresponding IF clause. This
situation is often caused by using an invalid
DO-END in the THEN part of a complex
IF-THEN-ELSE construction. For example,

WRONG

If a=b then do;
Say EQUALS
exit

else
Say NOT EQUALS

RIGHT

If a=b then do;
Say EQUALS
exit
end

else
Say NOT EQUALS

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX456E Error 9 running fn ft, line nn:
Unexpected WHEN or OTHERWISE

Explanation: The System Product Interpreter
has found a WHEN or OTHERWISE
instruction outside of a SELECT construction.
You may have accidentally enclosed the
instruction in a DO-END construction by
leaving off an END instruction, or you may
have tried to branch to it with a SIGNAL
statement (which cannot work because the
SELECT is then terminated).

System Action: Execution stops.

User Response: Make the necessary
correction.

DMSREX457E Error 10 runningfn ft, line nn:
Unexpected or unmatched END

Explanation: The System Product Interpreter
has found more ENDs in your program than
DOs or SELECTs, or the ENDs were placed so
that they did not match the DOs or SELECTs.

This message can be caused if you try to signal

User Response: Make the necessary
corrections.

DMSREX463E Error 16 running In It, line nn: Label
not found

Explanation: The System Product Interpreter
could not find the label specified by a SIGNAL
instruction or a label matching an enabled
condition when the corresponding (trapped)
event occurred. You may have mistyped the
label or forgotten to include it.

System Action: Execution stops. The name of
the missing label is included in the error
traceback.

User Response: Make the necessary
corrections.

DMSREX464E Error 21 running In It, line nn: Invalid
data on end of clause

Explanation: You have followed a clause, such
as SELECT or NOP, by some data other than
a comment.

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX465E Error 17 running In It, line nn:
Unexpected PROCEDURE

Explanation: The System Product Interpreter
encountered a PROCEDURE instruction in an
invalid position. This could occur because no
internal routines are active, because a
PROCEDURE instruction has already been
encountered in the internal routine, or because
the PROCEDURE instruction was not the first
instruction executed after the CALL or
function invocation. This error can. be caused
by "dropping through" to an internal routine,
rather than invoking it with a CALL or a
function call.

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX466E Error 26 running In It, line nn:
Invalid whole number

Explanation: The System Product Interpreter
found an expression in the NUMERIC
instruction, a parsing positional pattern, or the
right hand term of the exponentiation (**)
operator that did not evaluate to a whole
number, or was greater than the limit, for these
uses, of 999 999 999.

This message can also be issued if the return
code passed back from an EXIT or RETURN
instruction (when a REXX program is called as

168 VM/SP System Product Interpreter Reference

a command) is not a whole number or will not
fit in a System/370 register. This error may be
due to mistyping the name of a symbol so that
it is not the name of a variable in the
expression on any of these statements. This
might be true, for example, if you entered
"EXIT CR" instead of "EXIT RC."

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX467E Error 27 running In It, line nn: Invalid
DO syntax

Explanation: The System Product Interpreter
found a syntax error in the DO instruction.
You might have used BY or TO twice, or used
BY, TO, or FOR when you didn't specify a
control variable.

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX468E Error 30 running In It, line nn: Name or
string > 250 characters

Explanation: The System Product Interpreter
found a variable or a literal (quoted) string that
is longer than the limit.

The limit for names is 250 characters, following
any substitutions. A possible cause of this
error is the use of a period (.) in a name,
causing an unexpected substitution.

The limit for a literal string is 250 characters.
This error can be caused by leaving off an
ending quote (or putting a single quote in a
string) because several clauses can be included
in the string. For example, the string I don I t I

should be written as I don I I t I or \I don I t \I •

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX469E Error 31 running In It, line nn: Name
starts with numeric or "."

Explanation: The System Product Interpreter
found a symbol whose name begins with a
numeric digit or a period (.). The REXX
language rules do not allow you to assign a
value to a symbol whose name begins with a
numeric digit or a period, because you could
then redefine numeric constants which would
be catastrophic.

System Action: Execution stops.

User Response: Rename the variable correctly.
It is best to start a variable name with an

example, the command MSG * Hi! should be
written as I MSG * Hi! I, otherwise the System
Product Interpreter will try to multiply "MSG"
by "Hi!."

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX477E Error 42 running In It, line nn:
Arithmetic overflow Junderflow

Explanation: The System Product Interpreter
encountered a result of an arithmetic operation
that required an exponent greater than the
limit of 9 digits (more than 999 999 999 or less
than -999 999 999).

This error can occur during evaluation of an
expression (often as a result of trying to divide
a number by 0), or during the stepping of a
DO loop control variable.

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX478E Error 43 running In It, line nn: Routine
not found

Explanation: The System Product Interpreter
was unable to find a routine called in your
program. You invoked a function within an
expression, or in a subroutine invoked by
CALL, but the specified label is not in the
program, or is not the name of a built-in
function, and CMS is unable to locate it
externally.

The simplest, and probably most common,
cause of this error is mistyping the name.
Another possibility may be that one of the
standard function packages is not available.

If you were not trying to invoke a routine, you
may have put a symbol or string adjacent to a
"(" when you meant it to be separated by a
space or operator. The System Product
Interpreter would see that as a function
invocation. For example, the string 3(4+ 5)
should be written as 3* (4+5).

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX479E Error 44 running In It, line nn: Function
did not return data

Explanation: The System Product Interpreter
invoked an external routine within an
expression. The routine seemed to end without
error, but it did not return data for use in the
expression.

170 VM/SP System Product Interpreter Reference

This may be due to specifying the name of a
CMS module that is not intended for use as a
System Product Interpreter function. It should
be called as a command or subroutine.

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX480E Error 45 running In It, line nn: No data
specified on function RETURN

Explanation: A REXX program has been
called as a function, but an attempt is being
made to return (by a RETURN; instruction)
without passing back any data. Similarly, an
internal routine, called as a function, must end
with a RETURN statement specifying an
expression.

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX481E Error 49 running In It, line nn:
Interpreter failure

Explanation: The System Product Interpreter
carries ou~ numerous internal self-consistency
checks. It issues this message if it encounters a
severe error.

System Action: Execution stops.

User Response: Report any occurrence of this
message to your IBM representative.

DMSREX482E Error 19 running In It, line nn: String or
symbol expected

Explanation: The System Product Interpreter
expected a symbol following the keywords
CALL, SIGNAL, SIGNAL ON, or SIGNAL
OFF but none was found. You may have
omitted the string or symbol, or you may have
inserted a special character (such as a
parenthesis) in it.

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX483E Error 20 running In It, line nn: Symbol
expected

Explanation: The System Product Interpreter
either expected a symbol following the END,
ITERATE, LEAVE, NUMERIC, PARSE, or
PROCEDURE keywords or expected a list of
symbols following the DROP, UPPER, or
PROCEDURE (with EXPOSE option)
keywords. Either there was no symbol when
one was required or some other characters
were found.

DMSREX491E Error 18 running fn ft, line nn: THEN
expected

Explanation: All REXX IF and WHEN
clauses must be followed by a THEN clause.
Another clause was found before a THEN
statement was found.

System Action: Execution stops.

User Response: Insert a THEN clause between
the IF or WHEN clause and the following
clause.

DMSREX492E Error 32 running fn ft, line nn: Invalid
use of stem

Explanation: The REXX program attempted
to change the value of a symbol that is a stem.
(A stem is that part of a symbol up to the first
period. You use a stem when you want to
affect all variables beginning with that stem.)
This may be in the UPPER instruction where

172 VM/SP System Product Interpreter Reference

the action in this case is unknown, and
therefore in error.

System Action: Execution stops.

User Response: Change the program so that it
does not attempt to change the value of a stem.

DMSREXl106E Error 23 runningfnft, line nn: Invalid
SBCS/DBCS mixed string.

Explanation: A character string that has
unmatched SO-SI pairs (that is, an SO without
an SI) or an odd number of bytes between the
SO-SI characters was processed with OPTIONS
EXMODE in effect.

System Action: Execution stops.

User Response: Correct the invalid character
string.

DSCS Enabling Data
The OPTIONS instruction is used to control how REXX regards DBCS data.
DBCS operations are enabled using the EXMODE option. (See the OPTIONS
instruction on page 49 for more information.)

A pure D BCS string consists of only D BCS codes. The SO and SI are used to
bracket the DBCS data and distinguish it from the SBCS data. Since the SO and SI
are only needed in the mixed strings, they are not associated with the pure DBCS
strings.

Pure OBCS string
Mixed string
Mixed string

Mixed String Validation

->
->
->

AABBCC
ab<AABB>
<AABB>

The validation of mixed strings depends on the instruction, operator, or function. If
an invalid mixed string is used in one that does not allow invalid mixed strings under
DBCS enabled mode, it causes a SYNTAX ERROR.

The following rules must be followed for mixed string validation:

• SO and SI must be 'paired' in a string.

• Nesting of SO or SI is not permitted.

• Data between SO and SI must be an even byte length.

These examples show some possible misuses:

I ab<cd I _>
I <AA<BB>CC> ->
I <AABBC> I ->

INVALID - not paired
INVALID - nested
INVALID - odd byte length

When a variable is created/modified/referred in a REXX program under OPTIONS
EXMODE, it is validated whether it contains correct mixed string or not. Even
though a referred variable contains invalid mixed string, it depends on the
instruction/function/operator whether it causes a syntax error.

The ARG, PARSE, PULL, PUSH, QUEUE, SAY, TRACE, and UPPER
instructions all require valid mixed strings with OPTIONS EXMODE in effect.

Instruction Examples
Here are some examples that illustrate how instructions work with DBCS.

174 VM/SP System Product Interpreter Reference

SAY and TRACE

UPPER

The SAY and TRACE instructions are used to display data on the user's terminal.
As was true for the PUSH and QUEUE instructions, REXX will guarantee the
SO-SI pairs are kept for any data that is separated to meet the requirements of the
terminal line size. This is generally 130 bytes or fewer if the DIAG-24 value returns
a smaller value.

When the data is split up in shorter lengths, again the SO and SI integrity is kept
under OPTIONS EXMODE. However, if the terminal line size is less than 4, the
string will be treated as SBCS data, as 4 is the minimum for mixed string data.

Under OPTIONS EXMODE, the UPPER instruction translates only SBCS
characters in contents of one or more variables to uppercase, but it never translates
DBCS characters. If the content of a variable is not valid mixed string data, no
uppercasing will occur.

OBCS Function Handling
Some built-in functions can handle DBCS. The functions that deal with word
delimiting and length determining conform with the following rules under OPTIONS
EXMODE:

1. Counting characters- When counting the length of a string, SO and SI are
considered to be transparent, and not counted, for every string operation.

2. Character extraction from a string- When extracting a DBCS character from a
string, leading SO and trailing SI are not considered as part of one DBCS
character. For instance, 'AA' and 'BB' are extracted from' <AABB >', and SO
and SI are added to each DBCS character when they are finally preserved as
completed DBCS characters. When multiple characters are consecutively
extracted from a string SO and/or SI that are between characters are also.
extracted. For example, 'AA > < BB' is extracted from '< AA > < BB > " and
when the string is finally used as a completed string, the SO will prefix and the
SI will suffix it to give' < AA > < BB > '.

176 VM/SP System Product Interpreter Reference

WI = '<>< AA BB><CC 00><>'

SUBWORO(WI,I,I) --> '<AA>'
SUBWORO(WI,I,2) --> '<AA BB><CC>,
SUBWORO(WI,3,1) --> '<~O>'

SUBWORO(Wl,3) --> '<~O>'

W2 = '<AA BB><CC><> <DO>'

SUBWORO(W2,2,1)
SUBWORO(W2,2,2)

-->
-->

'<BB><CC>,
'<BB><CC><> <DO>'

Built-in Function Examples

ABBREV

COMPARE

COPIES

DATATYPE

Examples for current functions, those that support DBCS and follow the rules
defined, are given in this section. For full function descriptions and the syntax
diagrams, refer to Chapter 4, "Functions" on page 71.

ABBREV('<AABBCC>','<AABB>') --> 1
ABBREV('<AABBCC>','<AACC>') --> 0
ABBREV('<AA><BBCC>','<AABB>') --> 1
ABBREV('aa<>bbccdd','aabbcc') --> 1

Applying the 'Character comparison' and 'Character extraction from a string' rules.

COMPARE('<AABBCC>','<AABB><CC>')
COMPARE('ab<>cde','abcdx')
COMPARE('<AA><>','<AA>','<>')

--> 0
--> 5
--> 0

Applying the 'Character concatenation for padding', the 'Character extraction from
a string', and 'Character comparison' rules.

COPIES('<AABB>',2)
COPIES('<AA><BB>',2)
COPIES('<AABB><>',2)

--> '<AABBAABB>'
--> '<AA><BBAA><BB>'
--> '<AABB><AABB><>'

Applying the 'Character concatenation' rule.

OATATYPE('<AABB>') --> 'CHAR'
OATATYPE('<AABB>','O') --> 1
DATATYPE('<AABB>','C') --> 1
OATATYPE('a<AABB>b','O') --> 0
OATATYPE('a<AABB>b','C') --> 1
OATATYPE('abcde','C') --> 0
OATATYPE('<AABB','C') --> 0
Note: If string is invalid mixed string and
"C" or "0" is specified as type, 0 is returned.

178 VM/SP System Product Interpreter. Reference

LENGTH

REVERSE

SPACE

STRIP

LENGTH('<AABB><CCOO><>') --> 4

Applying the 'Counting characters' rule.

REVERSE('<AABB><CCOO><>') --> I <><OOCC><BBAA>I

Applying the 'Character extraction from a string' and 'Character concatenation' ,
rules.

SPACE('a<AABB CCOO>',l) -->
SPACE('a<AA><>< CCOO>',l,'x') -->
SPACE('a<AA><><CCOO>',l,'<EE>') -->

'a<AABB> <CCOO>I
I a<AA>x<CCOO> I
I a<AAEECCOO> I

Applying the 'Word extraction from a string' and 'Character concatenation' rules.

STRIP('<><AA><BB><AA><>',,'<AA>') --> '<BB>'

Applying the 'Character extraction from a string' and 'Character concatenation'
rules.

SUBSTR and DELSTR
SUBSTR('<><AA><><BB><CCOO>',1,2)
OELSTR('<><AA><><BB><CCOO>',1,2)
SUBSTR('<AA><><BB><CCOO>',2,2)
OELSTR('<AA><><BB><CCOO>',2,2)
SUBSTR('<AABB><>',1,2)
SUBSTR('<AABB><>',l)

-->
-->
-->
-->
-->
-->

I <AA><><BB>I
I <><CCOO>I
I <BB><CC>I
I <AA><><OO> I
I <AABB>I
I <AABB><> I

Applying the 'Character extraction from a string' and 'Character concatenation'
rules.

SUBWORD and DELWORD

TRANSLATE

SUBWORO('<>< AA BB><CC 00>1,1,2)
OELWORO('<>< AA BB><CC 00>1,1,2)
SUBWORO('<><AA BB><CC 00>1,1,2)
OELWORO('<><AA BB><CC 00>1,1,2)
SUBWORO('<AA BB><CC><> <00>1,1,2)
OELWORO('<AA BB><CC><> <00>1,1,2)

-->
-->
-->
-->
-->
-->

'<AA BB><CC>I
1<>< 00>1
'<AA BB><CC>I
1<><00>1
'<AA BB><CC>I
1<00>1

Applying the 'Word extraction from a string' and 'Character concatenation' rules.

TRANSLATE('abed ' , '<AABBCC>', label) --> I <AABBCC>dI
TRANSLATE('abed','<><AABBCC>','abe ') --> I <AABBCC>dI
TRANSLATE('abed','<><AABBCC>','ab<>e ') --> I <AABBCC>dI
TRANSLATE('a<>bed','<><AABBCC>','ab<>e ') --> I <AABBCC>dI
TRANSLATE('a<>xed','<><AABBCC>','ab<>e ') --> I <AA>x<CC>dI

Applying the 'Character extraction from a string', 'Character comparison', and
'Character concatenation' rules.

180 VM/SP System Product Interpreter Reference

Function Descriptions

DBADJUST

DBBRACKET

DBCENTER

~DBADJUST(string--.-------.--- --...........
C==,operation~

adjusts all contiguous SI-SO and SO-SI characters in string based on the operation
specified. Valid operations (of which only the capitalized letter is significant, all
others are ignored) are:

Blank

Remove

changes contiguous characters to blanks (X I 4040 I).

removes contiguous characters, and is the default.

Here are some examples:

DBADJUST('<AA><BB>a<>b','B')
DBADJUST('<AA><BB>a<>b','R')
DBADJUST('<><AABB>','B')

->
->
->

'<AA BB>a b '
I <AABB>ab I

1< AABB> I

~DBBRACKET(string)-----------+·"""

adds SO-SI brackets to a un-bracketed DBCS string. If stri ng is not a pure DBCS
string, a SYNTAX error results. That is, the input string must be an even number
of bytes in length and each byte must be a valid DBCS value.

Here are some examples:

DBBRACKET('AABB ')
DBBRACKET (I abc I)
DBBRACKET('<AABB>')

->
->
->

I <AABB> I

SYNTAX error
SYNTAX error

~DBCENTER (stri ng, 1 ength----,[r---=:~~~:~~:~~~~~~:~=I-)---t.~ ..

'[pad] [, opt ion]

returns a string of length 1 ength with stri ng centered in it, with pad characters
added as necessary to make up length. The default pad character is a blank. If the
string is longer than 1 ength, it will be truncated at both ends to fit. If an odd
number of characters are truncated or added, the right hand end loses or gains one
more character than the left hand end.

182 VMjSP System Product Interpreter Reference

I DBRIGHT

I DBRLEFT

returns a string of length 1 ength containing the leftmost 1 ength characters of stri ng.
The string returned is padded with pad characters (or truncated) on the right as
needed. The default pad character is a blank.

Opt i on is used to control the counting rule. "Y" will count SO and SI within mixed
strings as one. "N" will not count the SO and SI and is the default.

Here are some examples:

DBLEFT('ab<AABB>',4) -> 'ab<AA>'
DBLEFT('ab<AABB>' ,3) -> lab '
DBLEFT('ab<AABB>',4,'x','Y') -> 'abxx'
DBLEFT('ab<AABB>',3,'x ' ,'Y') -> 'abx'
DBLEFT('ab<AABB>',S,'<PP>') -> I ab<AABBPP> I

DBLEFT('ab<AABB>',9,'<PP>') -> 'ab<AABBPP> I

DBLEFT('ab<AABB>',S,'<PP>','Y') -> I ab<AABB> I

DBLEFT('ab<AABB>',9,'<PP>','Y') -> 'ab<AABB> I

~DBRI GHT (s t ri ng, 1 ength-Lr--=:===:==:=======:===I~) -------~
, [pad] [, opt ion]

returns a string of length 1 ength containing the rightmost 1 ength characters of
string. The string returned is padded with pad characters (or truncated) on the left
as needed. The default pad character is a blank.

Opt i on is used to control the counting rule. "Y" will count SO and SI within mixed
strings as one. "N" will not count the SO and SI and is the default.

Here are some examples:

DBRIGHT('ab<AABB>',4) -> I <AABB> I

DBRIGHT('ab<AABB>',3) -> I <BB>'
DBRIGHT('ab<AABB>',5,'x ' ,'Y') -> 'x<BB>'
DBRIGHT('ab<AABB>',10,'x','Y') -> 'xxab<AABB>'
DBRIGHT('ab<AABB>',S,'<PP>') -> '<PP>ab<AABB>'
DBRIGHT('ab<AABB>',9,'<PP>') -> ' <PP>ab<AABB>,
DBRIGHT('ab<AABB>',S,'<PP>','Y') -> 'ab<AABB>,
DBRIGHT(' ab<AABB>',ll,'<PP>','Y') -> ab<AABB>,
DBRIGHT('ab<AABB>',12,'<PP>','Y') -> '<PP>ab<AABB>,

~DBRLEFT (stri ng, 1 ength-.....,;-----.........,r-)--.. ~
L,oPtion~

returns the remainder from the DBLEFT function of stri ng. If 1 ength is greater
than the length of stri ng, a null string is returned.

184 VM/SP System Product Interpreter Reference

I DBTOSBCS

DBUNBRACKET

DBVAllDATE

~DBTOSBCS(string)---------i~~"

converts nBCS characters which have the range X 14241 I_X I 42FE 1 and nBCS
blanks within string to SBCS characters from X '41 1 to X'FE' and X'40' for
blanks. SO and SI brackets are removed where appropriate. Other nBCS
characters and all SBCS characters are not changed.

Here are some examples:

DBTOSBCS('<.S.d>/<.2.-.1>')
DBTOSBCS(:<AA BB>')

->
->

'Sd/2-1 1

'<AA> <BB> I
where; "." = X' 42 1

~DBUNBRACKET (stri ng)---------i~~ ..

removes the SO-SI brackets from a pure nBCS stri ng enclosed by SO and SI
brackets. If the s t ri ng is not bracketed, a SYNTAX error results.

Here are some examples:

DBUNBRACKET('<AABB>')
DBUNBRACKET(lab<AA>I)

->

->

IAABBI
SYNTAX error

~DBVALIDATE (stri ng'---r----r--- --.... ~
L,c~

returns 1 if the stri ng is a valid mixed string or SBCS string which has no SO or SI.
Otherwise, 0 is returned. Mixed string validation rules are:

1. Proper SO-SI pairing

2. nBCS string is an even number of bytes in length

3. Only valid nBCS character codes between SO and SI bytes.

If C is omitted, each nBCS character is not checked.

186 VMjSP System Product Interpreter Reference

188 VMjSP System Product Interpreter Reference

190 VM/SP System Product Interpreter Reference

lR R3,RI 1111

lR R6,RI Free storage area start
SPKA ° Set nucleus key
MVCl R6,R8 Move code to free storage
NUCEXT SET,MF=(E,NPlIST),NAME='RXUSERFN ' ,ENTRY=(R3),- X

ORIGIN=((R3),(R4»,KEY=NUClEUS,SYSTEM=YES, X
SERVICE=YES,ERROR=(RI0)

*-> See if we have a function •••
lTR R2,R2 Install "RXUSERFN" only?
BZR RIO Br if yes - return to caller

* R2 points to FUNlIST entry to be installed.
* R3 points to start of NUCXlOADed area.

A R3,FUNOFFS(,R2) Calculate true start address
lA R2,FUNlNAME(R2) Address of startup name
NUCEXT SET,MF=(E,NPlIST),NAME=(R2),ENTRY=(R3),KEY=NUClEUS, X

ORIGIN=(0,0),SYSTEM=YES,SERVICE=NO,ERROR=*
BR RIO Return to caller
DROP R12
SPACE 3
lTORG ,
TITLE 'USERFN: Code residing in free storage I

* The following code resides in free storage, and is capable *
* of replying to lOAD or RESET. *
* A lOAD call results in the identifying of the functions *
* passed as parameters following lOAD as entry points in *
* RXUSERFN. *
* A RESET service call from NUCXDROP will turn the functions *
* OFF. A PURGE service call is ignored. *

SPACE 2
FREEGO DS 0D
*

USING *,RI2
B STARTCOD

Force doubleword alignment
of free-loaded code.

DC Cl8 1>USERFN<' Eye-catcher for storage dump
STARTCOD EQU *

lR R10,R14 Save return address
ClC ARGl(8,RI),=Cl8 I lOAD ' Is this a load?
BE CHK4ARGS Yes, check for any args
ClC ARGl(8,RI),=Cl8 I RESET ' Reset?
BE DOOFF Yes, turn off functions
SlR R15,R15 In case of service call
ClI USERCTYP,EPlFABEN Is it an abend call?
BER R14 Br if yes - quick quit
lA R15,4 No, set error RC
BR Rl4 •• and return
SPACE I

CHK4ARGS EQU *
lA R15,1
ClI ARG2(Rl),X ' FF '
BER Rl4

Set possible return code
Any arguments passed?
No, error (already loaded)

* AUTOLOAD: switch on selected function *

*
* I lOAD I request. Check function name against FUNlIST.
*

192 VMjSP System Product Interpreter Reference

*
*
*

FUNLNAME EQU
FUNOFFS EQU
FUNLIST DC
LENTRY EQU

DC
DC

EFUNLIST EQU
DC

4,8 Offset & length of name
O,4 Offset to the routine
A(FUNC1-FREEGO),CL8 I RXUSER1 1
*-FUNLIST Length of a single entry
A(FUNC2-FREEGO),CL8 I RXUSER2 1
A(FUNC3-FREEGO),CL8 I RXUSER3 1
* End of the funlist proper
A(*-*) End fence

EJECT

*+-+-+-+-+-+-+-+-+~+-+

* A sample user written function is shown below. As many
* other functions can be added as the user desires. The only
* restriction is that the module must fit in the transient
* area (where it runs before loading itself as a nucleus
* extension).
* The normal order is to obtain an EVALBLOK (here done by
* the GETBLOK routine), do the function and put the result
* in the EVALBLOK, and finally to complete the EVALBLOK and
* return (here done by the EBLOCK routine).
*+-+-+~+-+

SPACE 2
* 'USERFN: USER1 - User function 11
* This function simply returns the first passed parameter!
FUNC1 EQU *

USING *,R12
LR R10,R14
LR R13,R0
USING EFPLIST,R13
L R11,EARGLIST
MVC SAVEFRET,EFUNRET
DROP R13
USING PARMBLOK,R11
L R1,PARM1LEN
LR R3,R1
BAL R14,GETBLOK
USING EVALBLOK,R5

Tell assembler of base
Save return address
Get copy of R0
Addressing for the plist
Get pointer to arg list
Save function return addr
Done with this for now
Tell assembler
Returned data length
Save it for later
Go get EVALBLOK
Tell assembler

* *
* other processing for function 1 would be here *
* *

L R15,PARM1ADR
EX R3,MOVEIT Move the data
LA R15,0 Set good return code
B EBLOCK Complete EVALBLOK & return

MOVEIT MVC EVDATA(0) ,0(R15). Move user parm to eval block
SPACE 2

* 'USERFN: USER2 - User function 21
FUNC2 EQU *

*
* code for user function 2 goes here!
*

*
*
*

SPACE 2

* 'USERFN: USER3 - User function 31

194 VM/SP System Product Interpreter Reference

L R4,SAVEFRET
ST R5,0(R4)
ST R3,EVLEN
BR R10
DROP R5

Get back return address
Pass address back to caller
Set it in EVALBLOK
Abandon ship

TITLE ICommon Error Processing Routines I

* Error handling routines. *
* Note that in order to avoid the generation of relocatable *
* address constants, the TYPLIN PLIST is "hand built" rather *
* than using WRTERM. *

BADPL
SPACE 3
EQU *
BALR R12,0
USING *,R12
LA R2,MSGI
B DISPMSG
SPACE 1

NOS TORE EQU *
BALR R12,0
USING *,R12
LA R2,MSG2

DISPMSG EQU *

Something's wrong with PLIST
Load base for this code
Tell assembler of this
Get message address
Go display the message

DMSFREE not successful
Load base for this code
Tell assembler of this
Get message address

BALR R12,0 Load base for this code
USING *,R12 Tell assembler of this
LR RI,R13 Use USERSAVE for plist
APPLMSG APPLID=USR, TEXTA=(R2) ,ERROR=* ,MF=(E, (RI»

NODISPLI EQU *
LA R15,4
BR R10
SPACE 1

MSGI All (MSGIEND)

Set non-zero return code
Return

DC C' DMSRUF070E Invalid parameter I
MSGIEND EQU *-MSGI-I

SPACE
MSG2 All (MSG2END)

DC C' DMSRUF450E Machine storage exhausted I
MSG2END EQU *-MSG2-I

SPACE 2
SAVEFRET OS F

ORG ,
SPACE 2

Function return address

LTORG Literal pool
TITLE 'USERFN: Common symbolic assignments I
SPACE 1

CMS202 EQU 202
ARG1 EQU 8,8
ARG2 EQU 16,8

REGEQU
OS 00

FREEL EN EQU *-FREEGO
FREEL END EQU (*-FREEGO+7)/8
*

SPACE 1
* NUCEXT PLIST Flags:
SERVICE EQU X' 40 1

SYSTEM EQU X'80 1

196 VM/SP System Product Interpreter Reference

CMS SVC 202
First argument
Second argument

Get to doubleword boundary
Bytes of free store code.
Doublewords of free store
code.

*-- OSECT for input parameters
PARMBLOK OSECT
PARMIAOR OS
PARMILEN OS
PARMNTRY EQU
PARM2AOR OS
PARM2LEN OS
PARM3AOR OS
PARM3LEN OS
PARM4AOR OS
PARM4LEN OS
PARM5AOR OS
PARM5LEN OS

F
F
*-PARMBLOK
F
F
F
F
F
F
F
F

PAOR EQU O,4
*
PLEN EQU 4,4
*

SPACE 3
USERSAVE
EPLIST
NUCON
END

198 VM/SP System Product Interpreter Reference

------------------------------*
Address of parameter 1
Length of parameter 1
Length of table entry
Address of parameter 2
Length of parameter 2
Address of parameter 3
Length of parameter 3
Address of parameter 4
Length of parameter 4
Address of parameter 5
Length of parameter 5
Offset in each pair to
parameter's address.
Offset in each pair to
parameter's length.

Processing execs in GCS (CSIREX module)
All exec processing in GCS is routed to the GCS module, CSIREX. CSIREX is the
external interface for the System Product Interpreter (CSIRIN).

SVC 202 calls CSIREX with the contents of the registers as follows:

RO Address of the extended parameter list

Rl Address of the standard tokenized parameter list

R12 Address of the entry point

R13 Address of a register savearea

R14 Return address

R15 Address of the entry point (same as R12)

The Extended Plist
The extended plist has the following format:

EPLIST DSECT
EPLCMD DS A
EPLARGBG DS A
EPLARGND DS A
*
EPFBL DS A
EPARGLST DS A
*
EPFUNRET DS A
*
EPLIND DS X
EPLPGM EQU XI 00 1

EPLACMD EQU XI 01 1

*
EPLFNC EQU XI 05 1

EPLCONS EQU XI 0B 1

EPLRESVD DS 3X

The Standard Tokeliized Plist

Address of command token
Address of beginning of arguments
Address 'of byte following the end
of arguments
Address of the file block
Address of function-argument list
for EXEC
Address for return of function data
for EXEC

Indicator
Program issued command
Call from System Product Interpreter
when ADDRESS COMMAND is specified
Subroutine/function call
Console command
Reserved

The standard tokenized plist has the following format:

DC CL8 I. EXEC 1

DC CL8 1 execname i

DC XL8 1 FF 1

200 VMjSP System Product Interpreter Reference

Shared Variable Request Block
If the address of the shared variable request block passed in register 0 is invalid, the
task is terminated with abend code FCB and reason code ODOI. Each request block
in the chain must be structured as follows:

**
SHVBLOCK DSECT
SHVNEXT DS A
SHVUSER DS F
SHVCODE DS CL1
SHVRET DS XL1

DS H'e'
SHVBUFL DS F
SHVNAMA DS A
SHVNAML DS F
SHVVALA DS A
SHVVALL DS F
*

Chain pointer to next element or 0
Used during "Fetch Next"
Individual function code
Individual return code flags
Not used
Length of 'Fetch' value buffer
Address of variable name
Length of variable name
Address of value buffer
Length of value (set on 'Fetch')

* Function Codes (SHVCODE):
*
SHVSET EQU CIS' Set variable from given value
SHVFETCH EQU C'F' Copy value of variable to buffer
SHVDROPV EQU C'D' Drop variable
SHVSYSET EQU CiS' Symbolic name Set variable
SHVSYFET EQU C'f' Symbolic name Fetch variable
SHVSYDRO EQU C'd' Symbolic name Drop variable
SHVNEXTV EQU C'N' Fetch 'Next' variable
SHVPRIV EQU C' pi Fetch private information
*
* Return Codes (SHVRET)
*
SHVCLEAN EQU X'00' Execution was OK
SHVNEWV EQU X 1011 Variable did not exist
SHVLVAR EQU X'02 1 Last variable transferred (for IN')
SHVTRUNC EQU X'04' Truncation occurred during 'Fetch'
SHVBADN EQU X'0S ' Invalid variable name
SHVBADV EQU X' 10 1 Reserved in REXX
SHVBADF EQU X'S0 1 Invalid function code (SHVCODE)
**

A typical calling sequence using the EXECCOMM macro is:

EXECCOMM REQLIST=(5)

where register 5 points to the first of a chain of one or more request blocks.

Function Codes (SHVCODE)
Three function codes (S, F, and D) may be given either in lowercase or in uppercase:

Lowercase (The symbolic interface). The names must be valid REXX symbols (in
mixed case if desired), and normal REXX substitution will occur in
compound variables.

Uppercase (The direct interface). No substitution or case translation takes place.
Simple symbols must be valid REXX variable names (that is, in
uppercase, and not. starting with a digit or a period). Compound
symbols must contain a valid REXX stem. However, any characters are
permitted (including lowercase, blanks, etc.) following this valid stem.

202 VM/SP System Product Interpreter Reference

By repeatedly executing the N function (until the SHVL V AR flag is set), a
user program can locate all the REXX variables of the current generation.

P Fetch private information .. This function is identical to the F fetch
function, except that the name refers to certain fixed information items
that are available. Only the first letter of each name is checked (though
callers should supply the whole name). The following names are
recognized:

ARG Fetch primary argument string. The first argument string that
would be parsed by the ARG instruction is copied to the user's
buffer.

SOURCE Fetch source string. The source string, as described for
PARSE SOURCE on page 51, is copied to the user's buffer.

VERSION Fetch version string. The source string, as described for
PARSE VERSION on page 52, is copied to the user's buffer.

204 VM ISP System Product Interpreter Reference

New Chapter and Appendix Addedfor Release 6 of VM/SP

• The Invoking Communications Routines chapter has been added to describe
how to use the ADDRESS CPICOMM stateme'nt in a REXX program to
call program-to-program communications routines.

• Appendix E has been added to describe the DBCS functions and handling
techniques supported by REXX.

Other Changes

• Restriction on the placement of the PROCEDURE statement is enforced.
The PROCEDURE instruction, if used, must be the first instruction
executed after the CALL or function invocation.

• New section added to the System Interfaces chapter, I Calls Originating from
an Application Program I. This section describes how an application
program can call REXX using a callable services library routine.

• The backslash character(\) is supported as a synonym for the NOT character
(-,).

• Added the DROPBUF, MAKEBUF, NUCXMAP, NUCXLOAD,
PROGMAP, and SEGMENT CMS commands.

• New syntax diagrams are used to illustrate the syntax of instructions and
functions.

• Information on the EXECFLAG External Control Byte has been deleted.

Miscellaneous

• Minor changes to accommodate the CMS Shared File System (SFS) and
VM/XA.

• Minor technical and editorial changes have been made throughout this
publication.

Summary of Changes
for SC24-5239-02
for VM/SP Release 5

New Functions for Release 5 of VM/SP

DIAG Functions DIAG(C8), DIAGRC(C8), DIAG(CC) and
DIAGRC(CC) returns information related to CP
language repository.

New Options Added to Functions and Instructions for Release 5 of VM/SP

• DATE function added the Basedate option.

Miscellaneous

Minor technical and editorial changes have been made throughout this
publication.

Summary of Changes
for SC24-5239-01
for VM/SP Release 4

New Instruction and Function for Release 4 of VM/SP

OPTIONS Instruction Specifies whether double byte character set (DBCS)
strings can be manipulated.

DIAG Functions DIAG(8C) and DIAGRC(8C) returns device-dependent
information about the virtual console.

206 VM/SP System Product Interpreter Reference

208 VM/SP System Product Interpreter Reference

VM/SP RELEASE 6 LIBRARY
Evaluation

General
Information

GC20-1838

VM
Running
Guest
Operating
Systems

GC19-6212

Administration -----..

Application Development

End Use

Quick
: r Reference

t::

t::SX20-4400

Introduction
to Security

SC24-5316

CMS Primer
for Line­
Oriented
Terminals

SC24-5242

1,.jil1 one copy of each shaded manual received with product tape

210 VM/SP System Product Interpreter Reference

Installation and Service

212 VM/SP System Product Interpreter Reference

built-in functions (continued)
ERRORTEXT 86
EXTERNALS 86
FIND 87
FORM 87
FORMAT 87
FUZZ 88
INDEX 88
INSERT 89
JUSTIFY 89
LASTPOS 90
LEFT 90
LENGTH 90
LINESIZE 91
MAX 91
MIN 91
OVERLAY 92
POS 92
QUEUED 92
RANDOM 93
REVERSE 94
RIGHT 94
SIGN 94
SOURCELINE 94
SPACE 95
STRIP 95
SUBSTR 96
SUBWORD 96
SYMBOL 97
TIME 97
TRACE 99
TRANSLATE 99
TRUNC 100
USERID 100
VALUE 100
VERIFY 101
WORD 102
WORD INDEX 102
WORDLENGTH 102
WORDPOS 103
WORDS 103
XRANGE 103
X2C 104
X2D 104

BY phrase of DO instruction 35

C
CALL instruction 32
Callable Services Library (CSL)

ADDRESS CPICOMM 163
calls originating from an application program 138
CSL function 106
using routines from the callable service library 151

CENTER function 79
centering a string using CENTER function 79
centering a string using CENTRE function 79

214 VMjSP System Product Interpreter Reference

CENTRE function 79
CENTURY option of DATE function 82
changing destination of commands 28
character position of a string 90
character position using INDEX 88
character removal with STRIP function 95
character to decimal conversion 80
character to hexadecimal conversion 81
clause

as labels 16
assignment 17
continuation of 11
description of 8
null 16

CMS (Conversational Monitor System)
COMMAND environment 24
environment name 22, 29
issuing commands to 21, 22, 28, 29
search order 22
unique functions 105

CMS (Conversational Monitor System) commands
DROPBUF 161
EXECDROP 161
EXECIO 161
EXEC LOAD 161
EXECMAP 161
EXECOS 161
EXECSTAT 161
EXECUPDT 161
GLOBALV 161
IDENTIFY 161
LISTFILE 161
MAKEBUF 161
NUCXLOAD 161
NUCXMAP 161
PARSECMD 161
PROGMAP 161
QUERY 161
SEGMENT 161
SET 161
XEDIT 161
XMITMSG 161

CMSCALL 29, 73
CMSFLAG

as a debug aid 158
function 105

codes, error 165-172
collating sequence using XRANGE 103
colon

as a special character 10
in a label 16

colon as label terminators 16
combination, arithmetic 130
comma

as continuation character 11
in CALL instruction 32
in function calls 71
separator of arguments 32, 71

DBRIGHT function 184
DBRLEFT function 184
DBRRIGHT function 185
DBTODBCS function 185
DBTOSBCS function 186
DBUNBRACKET function 186
DBVALIDATE function 186
DBWIDTH function 187
debugging programs

See interactive debug
See TRACE instruction

debug, interactive 65, 155
decimal arithmetic 127-134
decimal to character conversion 85
decimal to hexadecimal conversion 85
default environment 21
deleting part of a string 84
deleting words from a string 84
delimiters in a clause

See colon
See semicolons

DELSTR function 84
DELWORD function 84
derived name 18
derived names of variables 18
DIAG function 108
DIAGRC function 109
DIGITS function 84
DIGITS option of NUMERIC instruction 48, 128
direct interface to variables 147
displaying data

See SAY instruction
division

definition 129
operator 13

DMSCSL 139
DO instruction 35, 39

See also loops
Double-Byte Character Set (D BCS) strings 49, 173
DROP instruction 40
DROPBUF 161
dummy instruction

See NOP instruction
D2C function 85
D2X function 85

E
editor macros 28
elapsed time saved during subroutine calls 33
elapsed-time calculator 97
ELSE keyword

See IF instruction
END clause

See also DO instruction
See also SELECT instruction
specifying control variable 36

216 VM/SP System Product Interpreter Reference

engineering notation 133
environments

addressing of 28
default 29, 51, 142
determining current using ADDRESS function 77
temporary change of 28

equal operator 13
equality, testing of 13
error codes 165-172
ERROR condition of SIGNAL instruction 61
error messages

retrieving with ERRORTEXT 86
error messages and codes 165-172
errors

during execution of functions 75
from host commands 21
syntax 165-172
traceback after 69

errors, trapping
See SIGNAL instruction

ERRORTEXT function 86
EUROPEAN option of DATE function 82
EV ALBLOK format 143
evaluation of expressions 12
exception conditions saved during subroutine calls 33
exclusive OR operator 14
exclusive ORing character strings together 79
EXECCOMM

interface to variables 147
subcommand entry point 147

EXECIO 161
execs

arguments to 30
calling as functions 145
in-store execution of 142
invoking 135
plist for 135
retrieving name of 51

EXECTRAC flag
external control of tracing 158

execution by language processor 7
execution of data 43
EXIT instruction 41
exponential notation

definition 132
description of 121
usage 10

exponentiation
definition 129
operator 13

EXPOSE option of PROCEDURE instruction 53
expressions

evaluation 12
examples 15
parsing of 51
results of 12
tracing results of 65

imprecise numeric comparison 132
in-store execution of execs 142
inclusive OR operator 14
indefinite loops 35

See also looping program
indentation during tracing 68
INDEX function 88
indirect evaluation of data 43
inequality, testing of 13
infinite loops 35

See also looping program
inhibition of commands with TRACE instruction 67
initialization

of arrays 19
of compound variables 19

INSERT function 89
inserting a string into another 89
instructions

ADDRESS 28
ARG 30
CALL 32
DO 35
DROP .40
EXIT 41
IF 42
INTERPRET 43
ITERATE 45
LEAVE 46
NOP 47
NUMERIC 48
OPTIONS 49
PARSE 50
PROCEDURE 53
PULL 55
PUSH 56
QUEUE 57
RETURN 58
SAY 59
SELECT 60
SIGNAL 61
TRACE 65
UPPER 70

integer arithmetic 127-134
integer division

definition 129
description of 127
operator 13

interactive debug 65, 155
See also TRACE instruction

interfaces
system 135
to external routines 145
to variables 147

internal functions
description of 72
return from 58
variables in 53

218 VM/SP System Product Interpreter Reference

internal routine invoking 32
INTERPRET instruction 43
interpretive execution of data 43
interrupting program execution 157
invoking

built-in functions 32
routines, 32

ITERATE instruction

J

See also DO instruction
description 45
use of variable on 45

JULIAN option of DATE function 83
JUSTIFY function 89

K
keywords

L

See also instructions
conflict with commands 159
mixed case 27
reservation of 159

label
as targets of CALL 32
as targets of SIGNAL 61
description of 16
duplicate 61
in INTERPRET instruction 43
search algorithm 61

language processor date and version 52
language structure and syntax 8
LASTPOS function 90
leading blank removal with STRIP function 95
leading zeros

adding with the RIGHT function 94
removal with STRIP function 95

LEA VE instruction
See also DO instruction
description of 46
use of variable on 46

leaving your program 41
LEFT function 90
LENGTH function 90
less than operator 13
less than or equal operator 13
less than or greater than operator « » 13
LIFO (last-in/first-out) stacking 56
line length of terminal 91
line width of terminal 91
lines from a program retrieved with SOURCELINE 94
LINESIZE function 91
list 18

p
packing a string with X2C 104
parameter list

extended 22
tokenized 22

parentheses
adjacent to blanks 10
in expressions 12
in function calls 71
in parsing templates 123

PARSE instruction 50
parsing 119-126

definition 121
general rules 119, 121
introduction 119
literal patterns 122
multiple strings 126
patterns 122
positional patterns 124
selecting words 122
variable patterns 123

parsing templates
in ARG instruction 30
in PARSE instruction 50
in PULL instruction 55

patterns in parsing 122
performance considerations 189
period

causing substitution in variable names 18
in numbers 128

period as placeholder in parsing 124
permanent command destination change 28
plist

extended 142
for accessing variables 147
for invoking execs 135
for invoking external routines 145

POS function 92
position

last occurrence of a string 90
of character using INDEX 88

positional patterns, parsing with 124
powers of ten in numbers 10
precedence of operators 14
precision of arithmetic 128
prefix operators 13, 14
presumed command destinations 28
PROCEDURE instruction 53
programming restrictions 7
programming style 189
programs

retrieving lines with SOURCELINE 94
retrieving name of 51

protecting variables 53
pseudo random number function of RANDOM 93
PSW

as an environment name 51, 77

220 VMjSP System Product Interpreter Reference

PSW (continued)
non-svc subcommand invocation 145

PULL instruction 55
PULL option of PARSE instruction 51
pure DBCS string 82, 174
purging storage resident execs 161
PUSH instruction 56

Q
QUERY EXECTRAC command 158
queue

counting lines in 92
reading from with PULL 55
writing to with PUSH 56
writing to with QUEUE 57

QUEUE instruction 57
QUEUED function 92

R
RANDOM function 93
random number function of RANDOM 93
RC (return code)

not set during interactive debug 155
set by CSL external function 107
set by host commands 21
set to 0 if commands inhibited 67
special variable 160

reading CMS files 161
reading the stack and console 55
remainder

definition 129
description of 127
operator 13

reordering data with TRANSLATE function 99
repeating a string with COPIES 80
repetitive loops

altering flow 46
controlled repetitive loops 36
exiting 46
simple do group 36
simple repetitive loops 36

request block
for accessing variables 148

reservation of keywords 159
restoring variables 40
restrictions

embedded blanks in numbers 10
first character of variable name 17
maximum length of results 12

restrictions in programming 7
Restructured Extended Executor language (REXX)

interpreter structure 189
RESULT

set by RETURN instruction 33, 58
special variable 160

string (continued)
hexadecimal specification of 9
interpretation of 43
length of 12
null 8, 12
quotes in 8
verifying contents of 101

string patterns, parsing with 120
STRIP function 95
structure and syntax 8
style, programming 189
SUBCOM function 25
subcommand destinations 28
subcommands

addressing of 28
concept 24

subroutines
calling of 32
external interface 145
forcing built-in or external reference 32
naming of 34
passing back values from 58
return from 58
use of labels 32
variables in 53

substitution
in expressions 12
in variable names 18

SUBSTR function 96
subtraction

definition 129
operator 13

SUBWORD function 96
symbol

assigning values to 17
classifying 18
compound 18
constant 18
description of 9
simple 18
uppercase translation 9
use of 17
valid names 9

SYMBOL function 97
syntax checking

See TRACE instruction
SYNTAX condition of SIGNAL instruction 61
syntax diagrams 4
syntax error

traceback after 69
trapping with SIGNAL instruction 61

syntax, general 8
system interfaces 135
System Product Interpreter User's Guide 5
system trace bit 157
Systems Application Architecture(SAA) 5

222 VM/SP System Product Interpreter Reference

T
TE (Trace End) immediate command 157
templates, parsing

general rules 119
in ARG instruction 30
in PARSE instruction 50
in PULL instruction 55

temporary command destination change 28
ten, powers of 132
terminals

finding width with LINESIZE 91
reading from with PULL 55
writing to with SAY 59

terms and data 12
text formatting

See formatting
See word

THEN
as free standing clause 27
following IF clause 42
following WHEN clause 60

TIME function 97
TO phrase of DO instruction 35
tokens 8
trace bit, external 157
Trace End (TE) immediate command 155
TRACE function 99
TRACE instruction 65

See also interactive debug
TRACE setting

altering with TRACE function 99
altering with TRACE instruction 65
querying 99

Trace Start (TS) immediate command 155
trace tags 68
traceback, on syntax error 69
tracing

action saved during subroutine calls 33
by interactive debug 155
data identifiers 68
execution of programs 65
external control of 157, 158
lo'oping programs 157

tracing flags
+ + + 68
- 68
>C> 69
>F> 69
>L> 69
>0> 69
>P> 69
>V> 69
>.> 68
> > > 68

trailing blank removed using STRIP function 95
trailing zeros 130

Special Characters
. (period)

as placeholder in parsing 124
causing substitution in variable names 18
in numbers 128

< (less than operator) 13
< < (strictly less than operator) 13, 14
< < = (strictly less than or equal operator) 14
< > (less than or greater than operator) 13
< = (less than or equal operator) 13
+ (addition operator) 13, 129
+ + + tracing flag 68
I (inclusive OR operator) 14
II (concatenation operator) 12
& (AND operator) 14
&& (exclusive OR operator) 14
! prefix on TRACE option 67
* (multiplication operator) 13, 129
- tracing flag 68
** (exponentiation operator) 13, 129
--, (NOT operator) 14
--, < (not less than operator) 13
--, < < (strictly not less than operator) 14
--, > (not greater than operator) 13
--, > > (strictly not greater than operator) 14
--, = (not equal operator) 13
--, = = (not strictly equal operator) 13
I (division operator) 13, 129
II (remainder operator) 13, 129
I = (not equal operator) 13
1= = (not strictly equal operator) 13
, (comma)

as continuation character 11
in CALL instruction 32
in function calls 71
separator of arguments 32, 71
within a parsing template 30, 120, 121, 126

% (integer division operator) 13, 129
> (greater than operator) 13
> C > tracing flag 69
> F > tracing flag 69
> L > tracing flag 69
> 0 > tracing flag 69
> P > tracing flag 69
> V > tracing flag 69
> . > tracing flag 68
> < (greater than or less than operator) 13
> > (strictly greater than operator) 13, 14
> > > tracing flag 68
> > = (strictly greater than or equal operator) 14
> = (greater than or equal operator) 13
? prefix on TRACE option 67
: (colon)

as a special character 10
in a label 16

= (equal sign)
assignment indicator 17

224 VM/SP System Product Interpreter Reference

= (equal sign) (continued)
equal operator 13
immediate debug command 155
in DO instruction 35

= = (strictly equaJ operator) 13
- (subtraction operator) 13, 129
\ (NOT operator) 14
\ < (not less than operator) 14
\ < < (strictly not less than operator) 14
\ > (not greater than operator) 14
\ > > (strictly not greater than operator) 14
\ = (not equal operator) 14
\ = = (strictly not equal operator) 13, 14

--------- - ------- - ---- - - -----------.-
®

Printed in U.S.A.

Program Number
5664-167

File Number
S370/4300-39

SC24-5239-03

Reader's Comment Form

Fold and tape Please Do Not Staple

II

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE:

--------- -------- - ---- - - ----------_.-
INTERNATIONAL BUSINESS MACHINES CORPORATION
DEPARTMENT G60
PO BOX 6
ENDICOTT NY 13760-9987

1111111.11.1'1.1.11 •• 1111.1.111111 •• 1111.1111111 ••• 1

Fold and tape Please Do Not Staple

--------- ----- ~ ----- - ---- - - -----------,-
®

CUT
OR

FOLD
ALONG

LINE

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

SC24-5239-03

Reader's Comment Form

Fold and tape Please Do Not Staple

I I
BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE:

--------- -------- - ---- - - -----------,-
INTERNATIONAL BUSINESS MACHINES CORPORATION
DEPARTMENT G60
PO BOX 6
ENDICOTT NY 13760-9987

1 ••• 11 •• 11.1 ••• 1.11 •• 11 ••• 1.1 •• 1.1 •• 1111.1 ••• 11111.1

Fold and tape Please Do Not Staple

--------- - ------- - ---- - - ----------_.-
®

CUT
OR

FOLD
ALONG

LINE

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

. ~ . • • •

